Sample records for underlying auditory temporal

  1. Mind the Gap: Two Dissociable Mechanisms of Temporal Processing in the Auditory System

    PubMed Central

    Anderson, Lucy A.

    2016-01-01

    High temporal acuity of auditory processing underlies perception of speech and other rapidly varying sounds. A common measure of auditory temporal acuity in humans is the threshold for detection of brief gaps in noise. Gap-detection deficits, observed in developmental disorders, are considered evidence for “sluggish” auditory processing. Here we show, in a mouse model of gap-detection deficits, that auditory brain sensitivity to brief gaps in noise can be impaired even without a general loss of central auditory temporal acuity. Extracellular recordings in three different subdivisions of the auditory thalamus in anesthetized mice revealed a stimulus-specific, subdivision-specific deficit in thalamic sensitivity to brief gaps in noise in experimental animals relative to controls. Neural responses to brief gaps in noise were reduced, but responses to other rapidly changing stimuli unaffected, in lemniscal and nonlemniscal (but not polysensory) subdivisions of the medial geniculate body. Through experiments and modeling, we demonstrate that the observed deficits in thalamic sensitivity to brief gaps in noise arise from reduced neural population activity following noise offsets, but not onsets. These results reveal dissociable sound-onset-sensitive and sound-offset-sensitive channels underlying auditory temporal processing, and suggest that gap-detection deficits can arise from specific impairment of the sound-offset-sensitive channel. SIGNIFICANCE STATEMENT The experimental and modeling results reported here suggest a new hypothesis regarding the mechanisms of temporal processing in the auditory system. Using a mouse model of auditory temporal processing deficits, we demonstrate the existence of specific abnormalities in auditory thalamic activity following sound offsets, but not sound onsets. These results reveal dissociable sound-onset-sensitive and sound-offset-sensitive mechanisms underlying auditory processing of temporally varying sounds. Furthermore, the findings suggest that auditory temporal processing deficits, such as impairments in gap-in-noise detection, could arise from reduced brain sensitivity to sound offsets alone. PMID:26865621

  2. Neural mechanisms underlying auditory feedback control of speech

    PubMed Central

    Reilly, Kevin J.; Guenther, Frank H.

    2013-01-01

    The neural substrates underlying auditory feedback control of speech were investigated using a combination of functional magnetic resonance imaging (fMRI) and computational modeling. Neural responses were measured while subjects spoke monosyllabic words under two conditions: (i) normal auditory feedback of their speech, and (ii) auditory feedback in which the first formant frequency of their speech was unexpectedly shifted in real time. Acoustic measurements showed compensation to the shift within approximately 135 ms of onset. Neuroimaging revealed increased activity in bilateral superior temporal cortex during shifted feedback, indicative of neurons coding mismatches between expected and actual auditory signals, as well as right prefrontal and Rolandic cortical activity. Structural equation modeling revealed increased influence of bilateral auditory cortical areas on right frontal areas during shifted speech, indicating that projections from auditory error cells in posterior superior temporal cortex to motor correction cells in right frontal cortex mediate auditory feedback control of speech. PMID:18035557

  3. The role of temporal structure in the investigation of sensory memory, auditory scene analysis, and speech perception: a healthy-aging perspective.

    PubMed

    Rimmele, Johanna Maria; Sussman, Elyse; Poeppel, David

    2015-02-01

    Listening situations with multiple talkers or background noise are common in everyday communication and are particularly demanding for older adults. Here we review current research on auditory perception in aging individuals in order to gain insights into the challenges of listening under noisy conditions. Informationally rich temporal structure in auditory signals--over a range of time scales from milliseconds to seconds--renders temporal processing central to perception in the auditory domain. We discuss the role of temporal structure in auditory processing, in particular from a perspective relevant for hearing in background noise, and focusing on sensory memory, auditory scene analysis, and speech perception. Interestingly, these auditory processes, usually studied in an independent manner, show considerable overlap of processing time scales, even though each has its own 'privileged' temporal regimes. By integrating perspectives on temporal structure processing in these three areas of investigation, we aim to highlight similarities typically not recognized. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. The role of temporal structure in the investigation of sensory memory, auditory scene analysis, and speech perception: A healthy-aging perspective

    PubMed Central

    Rimmele, Johanna Maria; Sussman, Elyse; Poeppel, David

    2014-01-01

    Listening situations with multiple talkers or background noise are common in everyday communication and are particularly demanding for older adults. Here we review current research on auditory perception in aging individuals in order to gain insights into the challenges of listening under noisy conditions. Informationally rich temporal structure in auditory signals - over a range of time scales from milliseconds to seconds - renders temporal processing central to perception in the auditory domain. We discuss the role of temporal structure in auditory processing, in particular from a perspective relevant for hearing in background noise, and focusing on sensory memory, auditory scene analysis, and speech perception. Interestingly, these auditory processes, usually studied in an independent manner, show considerable overlap of processing time scales, even though each has its own ‚privileged‘ temporal regimes. By integrating perspectives on temporal structure processing in these three areas of investigation, we aim to highlight similarities typically not recognized. PMID:24956028

  5. The role of primary auditory and visual cortices in temporal processing: A tDCS approach.

    PubMed

    Mioni, G; Grondin, S; Forgione, M; Fracasso, V; Mapelli, D; Stablum, F

    2016-10-15

    Many studies showed that visual stimuli are frequently experienced as shorter than equivalent auditory stimuli. These findings suggest that timing is distributed across many brain areas and that "different clocks" might be involved in temporal processing. The aim of this study is to investigate, with the application of tDCS over V1 and A1, the specific role of primary sensory cortices (either visual or auditory) in temporal processing. Forty-eight University students were included in the study. Twenty-four participants were stimulated over A1 and 24 participants were stimulated over V1. Participants performed time bisection tasks, in the visual and the auditory modalities, involving standard durations lasting 300ms (short) and 900ms (long). When tDCS was delivered over A1, no effect of stimulation was observed on perceived duration but we observed higher temporal variability under anodic stimulation compared to sham and higher variability in the visual compared to the auditory modality. When tDCS was delivered over V1, an under-estimation of perceived duration and higher variability was observed in the visual compared to the auditory modality. Our results showed more variability of visual temporal processing under tDCS stimulation. These results suggest a modality independent role of A1 in temporal processing and a modality specific role of V1 in the processing of temporal intervals in the visual modality. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Brainstem Correlates of Temporal Auditory Processing in Children with Specific Language Impairment

    ERIC Educational Resources Information Center

    Basu, Madhavi; Krishnan, Ananthanarayan; Weber-Fox, Christine

    2010-01-01

    Deficits in identification and discrimination of sounds with short inter-stimulus intervals or short formant transitions in children with specific language impairment (SLI) have been taken to reflect an underlying temporal auditory processing deficit. Using the sustained frequency following response (FFR) and the onset auditory brainstem responses…

  7. A possible role for a paralemniscal auditory pathway in the coding of slow temporal information

    PubMed Central

    Abrams, Daniel A.; Nicol, Trent; Zecker, Steven; Kraus, Nina

    2010-01-01

    Low frequency temporal information present in speech is critical for normal perception, however the neural mechanism underlying the differentiation of slow rates in acoustic signals is not known. Data from the rat trigeminal system suggest that the paralemniscal pathway may be specifically tuned to code low-frequency temporal information. We tested whether this phenomenon occurs in the auditory system by measuring the representation of temporal rate in lemniscal and paralemniscal auditory thalamus and cortex in guinea pig. Similar to the trigeminal system, responses measured in auditory thalamus indicate that slow rates are differentially represented in a paralemniscal pathway. In cortex, both lemniscal and paralemniscal neurons indicated sensitivity to slow rates. We speculate that a paralemniscal pathway in the auditory system may be specifically tuned to code low frequency temporal information present in acoustic signals. These data suggest that somatosensory and auditory modalities have parallel sub-cortical pathways that separately process slow rates and the spatial representation of the sensory periphery. PMID:21094680

  8. Acquired word deafness, and the temporal grain of sound representation in the primary auditory cortex.

    PubMed

    Phillips, D P; Farmer, M E

    1990-11-15

    This paper explores the nature of the processing disorder which underlies the speech discrimination deficit in the syndrome of acquired word deafness following from pathology to the primary auditory cortex. A critical examination of the evidence on this disorder revealed the following. First, the most profound forms of the condition are expressed not only in an isolation of the cerebral linguistic processor from auditory input, but in a failure of even the perceptual elaboration of the relevant sounds. Second, in agreement with earlier studies, we conclude that the perceptual dimension disturbed in word deafness is a temporal one. We argue, however, that it is not a generalized disorder of auditory temporal processing, but one which is largely restricted to the processing of sounds with temporal content in the milliseconds to tens-of-milliseconds time frame. The perceptual elaboration of sounds with temporal content outside that range, in either direction, may survive the disorder. Third, we present neurophysiological evidence that the primary auditory cortex has a special role in the representation of auditory events in that time frame, but not in the representation of auditory events with temporal grains outside that range.

  9. Temporal Information Processing as a Basis for Auditory Comprehension: Clinical Evidence from Aphasic Patients

    ERIC Educational Resources Information Center

    Oron, Anna; Szymaszek, Aneta; Szelag, Elzbieta

    2015-01-01

    Background: Temporal information processing (TIP) underlies many aspects of cognitive functions like language, motor control, learning, memory, attention, etc. Millisecond timing may be assessed by sequencing abilities, e.g. the perception of event order. It may be measured with auditory temporal-order-threshold (TOT), i.e. a minimum time gap…

  10. Effects of sensorineural hearing loss on temporal coding of narrowband and broadband signals in the auditory periphery

    PubMed Central

    Henry, Kenneth S.; Heinz, Michael G.

    2013-01-01

    People with sensorineural hearing loss have substantial difficulty understanding speech under degraded listening conditions. Behavioral studies suggest that this difficulty may be caused by changes in auditory processing of the rapidly-varying temporal fine structure (TFS) of acoustic signals. In this paper, we review the presently known effects of sensorineural hearing loss on processing of TFS and slower envelope modulations in the peripheral auditory system of mammals. Cochlear damage has relatively subtle effects on phase locking by auditory-nerve fibers to the temporal structure of narrowband signals under quiet conditions. In background noise, however, sensorineural loss does substantially reduce phase locking to the TFS of pure-tone stimuli. For auditory processing of broadband stimuli, sensorineural hearing loss has been shown to severely alter the neural representation of temporal information along the tonotopic axis of the cochlea. Notably, auditory-nerve fibers innervating the high-frequency part of the cochlea grow increasingly responsive to low-frequency TFS information and less responsive to temporal information near their characteristic frequency (CF). Cochlear damage also increases the correlation of the response to TFS across fibers of varying CF, decreases the traveling-wave delay between TFS responses of fibers with different CFs, and can increase the range of temporal modulation frequencies encoded in the periphery for broadband sounds. Weaker neural coding of temporal structure in background noise and degraded coding of broadband signals along the tonotopic axis of the cochlea are expected to contribute considerably to speech perception problems in people with sensorineural hearing loss. PMID:23376018

  11. Audition dominates vision in duration perception irrespective of salience, attention, and temporal discriminability

    PubMed Central

    Ortega, Laura; Guzman-Martinez, Emmanuel; Grabowecky, Marcia; Suzuki, Satoru

    2014-01-01

    Whereas the visual modality tends to dominate over the auditory modality in bimodal spatial perception, the auditory modality tends to dominate over the visual modality in bimodal temporal perception. Recent results suggest that the visual modality dominates bimodal spatial perception because spatial discriminability is typically greater for the visual than auditory modality; accordingly, visual dominance is eliminated or reversed when visual-spatial discriminability is reduced by degrading visual stimuli to be equivalent or inferior to auditory spatial discriminability. Thus, for spatial perception, the modality that provides greater discriminability dominates. Here we ask whether auditory dominance in duration perception is similarly explained by factors that influence the relative quality of auditory and visual signals. In contrast to the spatial results, the auditory modality dominated over the visual modality in bimodal duration perception even when the auditory signal was clearly weaker, when the auditory signal was ignored (i.e., the visual signal was selectively attended), and when the temporal discriminability was equivalent for the auditory and visual signals. Thus, unlike spatial perception where the modality carrying more discriminable signals dominates, duration perception seems to be mandatorily linked to auditory processing under most circumstances. PMID:24806403

  12. Effect of conductive hearing loss on central auditory function.

    PubMed

    Bayat, Arash; Farhadi, Mohammad; Emamdjomeh, Hesam; Saki, Nader; Mirmomeni, Golshan; Rahim, Fakher

    It has been demonstrated that long-term Conductive Hearing Loss (CHL) may influence the precise detection of the temporal features of acoustic signals or Auditory Temporal Processing (ATP). It can be argued that ATP may be the underlying component of many central auditory processing capabilities such as speech comprehension or sound localization. Little is known about the consequences of CHL on temporal aspects of central auditory processing. This study was designed to assess auditory temporal processing ability in individuals with chronic CHL. During this analytical cross-sectional study, 52 patients with mild to moderate chronic CHL and 52 normal-hearing listeners (control), aged between 18 and 45 year-old, were recruited. In order to evaluate auditory temporal processing, the Gaps-in-Noise (GIN) test was used. The results obtained for each ear were analyzed based on the gap perception threshold and the percentage of correct responses. The average of GIN thresholds was significantly smaller for the control group than for the CHL group for both ears (right: p=0.004; left: p<0.001). Individuals with CHL had significantly lower correct responses than individuals with normal hearing for both sides (p<0.001). No correlation was found between GIN performance and degree of hearing loss in either group (p>0.05). The results suggest reduced auditory temporal processing ability in adults with CHL compared to normal hearing subjects. Therefore, developing a clinical protocol to evaluate auditory temporal processing in this population is recommended. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  13. Temporal lobe stimulation reveals anatomic distinction between auditory naming processes.

    PubMed

    Hamberger, M J; Seidel, W T; Goodman, R R; Perrine, K; McKhann, G M

    2003-05-13

    Language errors induced by cortical stimulation can provide insight into function(s) supported by the area stimulated. The authors observed that some stimulation-induced errors during auditory description naming were characterized by tip-of-the-tongue responses or paraphasic errors, suggesting expressive difficulty, whereas others were qualitatively different, suggesting receptive difficulty. They hypothesized that these two response types reflected disruption at different stages of auditory verbal processing and that these "subprocesses" might be supported by anatomically distinct cortical areas. To explore the topographic distribution of error types in auditory verbal processing. Twenty-one patients requiring left temporal lobe surgery underwent preresection language mapping using direct cortical stimulation. Auditory naming was tested at temporal sites extending from 1 cm from the anterior tip to the parietal operculum. Errors were dichotomized as either "expressive" or "receptive." The topographic distribution of error types was explored. Sites associated with the two error types were topographically distinct from one another. Most receptive sites were located in the middle portion of the superior temporal gyrus (STG), whereas most expressive sites fell outside this region, scattered along lateral temporal and temporoparietal cortex. Results raise clinical questions regarding the inclusion of the STG in temporal lobe epilepsy surgery and suggest that more detailed cortical mapping might enable better prediction of postoperative language decline. From a theoretical perspective, results carry implications regarding the understanding of structure-function relations underlying temporal lobe mediation of auditory language processing.

  14. Crossmodal attention switching: auditory dominance in temporal discrimination tasks.

    PubMed

    Lukas, Sarah; Philipp, Andrea M; Koch, Iring

    2014-11-01

    Visual stimuli are often processed more efficiently than accompanying stimuli in another modality. In line with this "visual dominance", earlier studies on attentional switching showed a clear benefit for visual stimuli in a bimodal visual-auditory modality-switch paradigm that required spatial stimulus localization in the relevant modality. The present study aimed to examine the generality of this visual dominance effect. The modality appropriateness hypothesis proposes that stimuli in different modalities are differentially effectively processed depending on the task dimension, so that processing of visual stimuli is favored in the dimension of space, whereas processing auditory stimuli is favored in the dimension of time. In the present study, we examined this proposition by using a temporal duration judgment in a bimodal visual-auditory switching paradigm. Two experiments demonstrated that crossmodal interference (i.e., temporal stimulus congruence) was larger for visual stimuli than for auditory stimuli, suggesting auditory dominance when performing temporal judgment tasks. However, attention switch costs were larger for the auditory modality than for visual modality, indicating a dissociation of the mechanisms underlying crossmodal competition in stimulus processing and modality-specific biasing of attentional set. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Plastic brain mechanisms for attaining auditory temporal order judgment proficiency.

    PubMed

    Bernasconi, Fosco; Grivel, Jeremy; Murray, Micah M; Spierer, Lucas

    2010-04-15

    Accurate perception of the order of occurrence of sensory information is critical for the building up of coherent representations of the external world from ongoing flows of sensory inputs. While some psychophysical evidence reports that performance on temporal perception can improve, the underlying neural mechanisms remain unresolved. Using electrical neuroimaging analyses of auditory evoked potentials (AEPs), we identified the brain dynamics and mechanism supporting improvements in auditory temporal order judgment (TOJ) during the course of the first vs. latter half of the experiment. Training-induced changes in brain activity were first evident 43-76 ms post stimulus onset and followed from topographic, rather than pure strength, AEP modulations. Improvements in auditory TOJ accuracy thus followed from changes in the configuration of the underlying brain networks during the initial stages of sensory processing. Source estimations revealed an increase in the lateralization of initially bilateral posterior sylvian region (PSR) responses at the beginning of the experiment to left-hemisphere dominance at its end. Further supporting the critical role of left and right PSR in auditory TOJ proficiency, as the experiment progressed, responses in the left and right PSR went from being correlated to un-correlated. These collective findings provide insights on the neurophysiologic mechanism and plasticity of temporal processing of sounds and are consistent with models based on spike timing dependent plasticity. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Functional Mapping of the Human Auditory Cortex: fMRI Investigation of a Patient with Auditory Agnosia from Trauma to the Inferior Colliculus.

    PubMed

    Poliva, Oren; Bestelmeyer, Patricia E G; Hall, Michelle; Bultitude, Janet H; Koller, Kristin; Rafal, Robert D

    2015-09-01

    To use functional magnetic resonance imaging to map the auditory cortical fields that are activated, or nonreactive, to sounds in patient M.L., who has auditory agnosia caused by trauma to the inferior colliculi. The patient cannot recognize speech or environmental sounds. Her discrimination is greatly facilitated by context and visibility of the speaker's facial movements, and under forced-choice testing. Her auditory temporal resolution is severely compromised. Her discrimination is more impaired for words differing in voice onset time than place of articulation. Words presented to her right ear are extinguished with dichotic presentation; auditory stimuli in the right hemifield are mislocalized to the left. We used functional magnetic resonance imaging to examine cortical activations to different categories of meaningful sounds embedded in a block design. Sounds activated the caudal sub-area of M.L.'s primary auditory cortex (hA1) bilaterally and her right posterior superior temporal gyrus (auditory dorsal stream), but not the rostral sub-area (hR) of her primary auditory cortex or the anterior superior temporal gyrus in either hemisphere (auditory ventral stream). Auditory agnosia reflects dysfunction of the auditory ventral stream. The ventral and dorsal auditory streams are already segregated as early as the primary auditory cortex, with the ventral stream projecting from hR and the dorsal stream from hA1. M.L.'s leftward localization bias, preserved audiovisual integration, and phoneme perception are explained by preserved processing in her right auditory dorsal stream.

  17. Audiovisual speech integration in the superior temporal region is dysfunctional in dyslexia.

    PubMed

    Ye, Zheng; Rüsseler, Jascha; Gerth, Ivonne; Münte, Thomas F

    2017-07-25

    Dyslexia is an impairment of reading and spelling that affects both children and adults even after many years of schooling. Dyslexic readers have deficits in the integration of auditory and visual inputs but the neural mechanisms of the deficits are still unclear. This fMRI study examined the neural processing of auditorily presented German numbers 0-9 and videos of lip movements of a German native speaker voicing numbers 0-9 in unimodal (auditory or visual) and bimodal (always congruent) conditions in dyslexic readers and their matched fluent readers. We confirmed results of previous studies that the superior temporal gyrus/sulcus plays a critical role in audiovisual speech integration: fluent readers showed greater superior temporal activations for combined audiovisual stimuli than auditory-/visual-only stimuli. Importantly, such an enhancement effect was absent in dyslexic readers. Moreover, the auditory network (bilateral superior temporal regions plus medial PFC) was dynamically modulated during audiovisual integration in fluent, but not in dyslexic readers. These results suggest that superior temporal dysfunction may underly poor audiovisual speech integration in readers with dyslexia. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Mechanisms underlying the temporal precision of sound coding at the inner hair cell ribbon synapse

    PubMed Central

    Moser, Tobias; Neef, Andreas; Khimich, Darina

    2006-01-01

    Our auditory system is capable of perceiving the azimuthal location of a low frequency sound source with a precision of a few degrees. This requires the auditory system to detect time differences in sound arrival between the two ears down to tens of microseconds. The detection of these interaural time differences relies on network computation by auditory brainstem neurons sharpening the temporal precision of the afferent signals. Nevertheless, the system requires the hair cell synapse to encode sound with the highest possible temporal acuity. In mammals, each auditory nerve fibre receives input from only one inner hair cell (IHC) synapse. Hence, this single synapse determines the temporal precision of the fibre. As if this was not enough of a challenge, the auditory system is also capable of maintaining such high temporal fidelity with acoustic signals that vary greatly in their intensity. Recent research has started to uncover the cellular basis of sound coding. Functional and structural descriptions of synaptic vesicle pools and estimates for the number of Ca2+ channels at the ribbon synapse have been obtained, as have insights into how the receptor potential couples to the release of synaptic vesicles. Here, we review current concepts about the mechanisms that control the timing of transmitter release in inner hair cells of the cochlea. PMID:16901948

  19. Idealized Computational Models for Auditory Receptive Fields

    PubMed Central

    Lindeberg, Tony; Friberg, Anders

    2015-01-01

    We present a theory by which idealized models of auditory receptive fields can be derived in a principled axiomatic manner, from a set of structural properties to (i) enable invariance of receptive field responses under natural sound transformations and (ii) ensure internal consistency between spectro-temporal receptive fields at different temporal and spectral scales. For defining a time-frequency transformation of a purely temporal sound signal, it is shown that the framework allows for a new way of deriving the Gabor and Gammatone filters as well as a novel family of generalized Gammatone filters, with additional degrees of freedom to obtain different trade-offs between the spectral selectivity and the temporal delay of time-causal temporal window functions. When applied to the definition of a second-layer of receptive fields from a spectrogram, it is shown that the framework leads to two canonical families of spectro-temporal receptive fields, in terms of spectro-temporal derivatives of either spectro-temporal Gaussian kernels for non-causal time or a cascade of time-causal first-order integrators over the temporal domain and a Gaussian filter over the logspectral domain. For each filter family, the spectro-temporal receptive fields can be either separable over the time-frequency domain or be adapted to local glissando transformations that represent variations in logarithmic frequencies over time. Within each domain of either non-causal or time-causal time, these receptive field families are derived by uniqueness from the assumptions. It is demonstrated how the presented framework allows for computation of basic auditory features for audio processing and that it leads to predictions about auditory receptive fields with good qualitative similarity to biological receptive fields measured in the inferior colliculus (ICC) and primary auditory cortex (A1) of mammals. PMID:25822973

  20. Can spectro-temporal complexity explain the autistic pattern of performance on auditory tasks?

    PubMed

    Samson, Fabienne; Mottron, Laurent; Jemel, Boutheina; Belin, Pascal; Ciocca, Valter

    2006-01-01

    To test the hypothesis that level of neural complexity explain the relative level of performance and brain activity in autistic individuals, available behavioural, ERP and imaging findings related to the perception of increasingly complex auditory material under various processing tasks in autism were reviewed. Tasks involving simple material (pure tones) and/or low-level operations (detection, labelling, chord disembedding, detection of pitch changes) show a superior level of performance and shorter ERP latencies. In contrast, tasks involving spectrally- and temporally-dynamic material and/or complex operations (evaluation, attention) are poorly performed by autistics, or generate inferior ERP activity or brain activation. Neural complexity required to perform auditory tasks may therefore explain pattern of performance and activation of autistic individuals during auditory tasks.

  1. Perceptual consequences of disrupted auditory nerve activity.

    PubMed

    Zeng, Fan-Gang; Kong, Ying-Yee; Michalewski, Henry J; Starr, Arnold

    2005-06-01

    Perceptual consequences of disrupted auditory nerve activity were systematically studied in 21 subjects who had been clinically diagnosed with auditory neuropathy (AN), a recently defined disorder characterized by normal outer hair cell function but disrupted auditory nerve function. Neurological and electrophysical evidence suggests that disrupted auditory nerve activity is due to desynchronized or reduced neural activity or both. Psychophysical measures showed that the disrupted neural activity has minimal effects on intensity-related perception, such as loudness discrimination, pitch discrimination at high frequencies, and sound localization using interaural level differences. In contrast, the disrupted neural activity significantly impairs timing related perception, such as pitch discrimination at low frequencies, temporal integration, gap detection, temporal modulation detection, backward and forward masking, signal detection in noise, binaural beats, and sound localization using interaural time differences. These perceptual consequences are the opposite of what is typically observed in cochlear-impaired subjects who have impaired intensity perception but relatively normal temporal processing after taking their impaired intensity perception into account. These differences in perceptual consequences between auditory neuropathy and cochlear damage suggest the use of different neural codes in auditory perception: a suboptimal spike count code for intensity processing, a synchronized spike code for temporal processing, and a duplex code for frequency processing. We also proposed two underlying physiological models based on desynchronized and reduced discharge in the auditory nerve to successfully account for the observed neurological and behavioral data. These methods and measures cannot differentiate between these two AN models, but future studies using electric stimulation of the auditory nerve via a cochlear implant might. These results not only show the unique contribution of neural synchrony to sensory perception but also provide guidance for translational research in terms of better diagnosis and management of human communication disorders.

  2. Primitive Auditory Memory Is Correlated with Spatial Unmasking That Is Based on Direct-Reflection Integration

    PubMed Central

    Li, Huahui; Kong, Lingzhi; Wu, Xihong; Li, Liang

    2013-01-01

    In reverberant rooms with multiple-people talking, spatial separation between speech sources improves recognition of attended speech, even though both the head-shadowing and interaural-interaction unmasking cues are limited by numerous reflections. It is the perceptual integration between the direct wave and its reflections that bridges the direct-reflection temporal gaps and results in the spatial unmasking under reverberant conditions. This study further investigated (1) the temporal dynamic of the direct-reflection-integration-based spatial unmasking as a function of the reflection delay, and (2) whether this temporal dynamic is correlated with the listeners’ auditory ability to temporally retain raw acoustic signals (i.e., the fast decaying primitive auditory memory, PAM). The results showed that recognition of the target speech against the speech-masker background is a descending exponential function of the delay of the simulated target reflection. In addition, the temporal extent of PAM is frequency dependent and markedly longer than that for perceptual fusion. More importantly, the temporal dynamic of the speech-recognition function is significantly correlated with the temporal extent of the PAM of low-frequency raw signals. Thus, we propose that a chain process, which links the earlier-stage PAM with the later-stage correlation computation, perceptual integration, and attention facilitation, plays a role in spatially unmasking target speech under reverberant conditions. PMID:23658664

  3. Encoding of Natural Sounds at Multiple Spectral and Temporal Resolutions in the Human Auditory Cortex

    PubMed Central

    Santoro, Roberta; Moerel, Michelle; De Martino, Federico; Goebel, Rainer; Ugurbil, Kamil; Yacoub, Essa; Formisano, Elia

    2014-01-01

    Functional neuroimaging research provides detailed observations of the response patterns that natural sounds (e.g. human voices and speech, animal cries, environmental sounds) evoke in the human brain. The computational and representational mechanisms underlying these observations, however, remain largely unknown. Here we combine high spatial resolution (3 and 7 Tesla) functional magnetic resonance imaging (fMRI) with computational modeling to reveal how natural sounds are represented in the human brain. We compare competing models of sound representations and select the model that most accurately predicts fMRI response patterns to natural sounds. Our results show that the cortical encoding of natural sounds entails the formation of multiple representations of sound spectrograms with different degrees of spectral and temporal resolution. The cortex derives these multi-resolution representations through frequency-specific neural processing channels and through the combined analysis of the spectral and temporal modulations in the spectrogram. Furthermore, our findings suggest that a spectral-temporal resolution trade-off may govern the modulation tuning of neuronal populations throughout the auditory cortex. Specifically, our fMRI results suggest that neuronal populations in posterior/dorsal auditory regions preferably encode coarse spectral information with high temporal precision. Vice-versa, neuronal populations in anterior/ventral auditory regions preferably encode fine-grained spectral information with low temporal precision. We propose that such a multi-resolution analysis may be crucially relevant for flexible and behaviorally-relevant sound processing and may constitute one of the computational underpinnings of functional specialization in auditory cortex. PMID:24391486

  4. Oscillographic and Physiological Measurements of Delayed Auditory Feedback and Anxiety Factors in Stutterers and Non-Stutterers.

    ERIC Educational Resources Information Center

    Timmons, Beverly A.; Boudreau, James P.

    Reported are five studies on the use of delayed auditory feedback (DAF) with stutterers. The first study indicates that sex differences and age differences in temporal reaction were found when subjects (5-, 7-, 9-, 11-, and 13-years-old) recited a nursery rhyme under DAF and NAF (normal auditory feedback) conditions. The second study is reported…

  5. Impaired encoding of rapid pitch information underlies perception and memory deficits in congenital amusia.

    PubMed

    Albouy, Philippe; Cousineau, Marion; Caclin, Anne; Tillmann, Barbara; Peretz, Isabelle

    2016-01-06

    Recent theories suggest that the basis of neurodevelopmental auditory disorders such as dyslexia or specific language impairment might be a low-level sensory dysfunction. In the present study we test this hypothesis in congenital amusia, a neurodevelopmental disorder characterized by severe deficits in the processing of pitch-based material. We manipulated the temporal characteristics of auditory stimuli and investigated the influence of the time given to encode pitch information on participants' performance in discrimination and short-term memory. Our results show that amusics' performance in such tasks scales with the duration available to encode acoustic information. This suggests that in auditory neuro-developmental disorders, abnormalities in early steps of the auditory processing can underlie the high-level deficits (here musical disabilities). Observing that the slowing down of temporal dynamics improves amusics' pitch abilities allows considering this approach as a potential tool for remediation in developmental auditory disorders.

  6. Beta phase synchronization in the frontal-temporal-cerebellar network during auditory-to-motor rhythm learning.

    PubMed

    Edagawa, Kouki; Kawasaki, Masahiro

    2017-02-22

    Rhythm is an essential element of dancing and music. To investigate the neural mechanisms underlying how rhythm is learned, we recorded electroencephalographic (EEG) data during a rhythm-reproducing task that asked participants to memorize an auditory stimulus and reproduce it via tapping. Based on the behavioral results, we divided the participants into Learning and No-learning groups. EEG analysis showed that error-related negativity (ERN) in the Learning group was larger than in the No-learning group. Time-frequency analysis of the EEG data showed that the beta power in right and left temporal area at the late learning stage was smaller than at the early learning stage in the Learning group. Additionally, the beta power in the temporal and cerebellar areas in the Learning group when learning to reproduce the rhythm were larger than in the No Learning group. Moreover, phase synchronization between frontal and temporal regions and between temporal and cerebellar regions at late stages of learning were larger than at early stages. These results indicate that the frontal-temporal-cerebellar beta neural circuits might be related to auditory-motor rhythm learning.

  7. Reduced variability of auditory alpha activity in chronic tinnitus.

    PubMed

    Schlee, Winfried; Schecklmann, Martin; Lehner, Astrid; Kreuzer, Peter M; Vielsmeier, Veronika; Poeppl, Timm B; Langguth, Berthold

    2014-01-01

    Subjective tinnitus is characterized by the conscious perception of a phantom sound which is usually more prominent under silence. Resting state recordings without any auditory stimulation demonstrated a decrease of cortical alpha activity in temporal areas of subjects with an ongoing tinnitus perception. This is often interpreted as an indicator for enhanced excitability of the auditory cortex in tinnitus. In this study we want to further investigate this effect by analysing the moment-to-moment variability of the alpha activity in temporal areas. Magnetoencephalographic resting state recordings of 21 tinnitus subjects and 21 healthy controls were analysed with respect to the mean and the variability of spectral power in the alpha frequency band over temporal areas. A significant decrease of auditory alpha activity was detected for the low alpha frequency band (8-10 Hz) but not for the upper alpha band (10-12 Hz). Furthermore, we found a significant decrease of alpha variability for the tinnitus group. This result was significant for the lower alpha frequency range and not significant for the upper alpha frequencies. Tinnitus subjects with a longer history of tinnitus showed less variability of their auditory alpha activity which might be an indicator for reduced adaptability of the auditory cortex in chronic tinnitus.

  8. Auditory conflict and congruence in frontotemporal dementia.

    PubMed

    Clark, Camilla N; Nicholas, Jennifer M; Agustus, Jennifer L; Hardy, Christopher J D; Russell, Lucy L; Brotherhood, Emilie V; Dick, Katrina M; Marshall, Charles R; Mummery, Catherine J; Rohrer, Jonathan D; Warren, Jason D

    2017-09-01

    Impaired analysis of signal conflict and congruence may contribute to diverse socio-emotional symptoms in frontotemporal dementias, however the underlying mechanisms have not been defined. Here we addressed this issue in patients with behavioural variant frontotemporal dementia (bvFTD; n = 19) and semantic dementia (SD; n = 10) relative to healthy older individuals (n = 20). We created auditory scenes in which semantic and emotional congruity of constituent sounds were independently probed; associated tasks controlled for auditory perceptual similarity, scene parsing and semantic competence. Neuroanatomical correlates of auditory congruity processing were assessed using voxel-based morphometry. Relative to healthy controls, both the bvFTD and SD groups had impaired semantic and emotional congruity processing (after taking auditory control task performance into account) and reduced affective integration of sounds into scenes. Grey matter correlates of auditory semantic congruity processing were identified in distributed regions encompassing prefrontal, parieto-temporal and insular areas and correlates of auditory emotional congruity in partly overlapping temporal, insular and striatal regions. Our findings suggest that decoding of auditory signal relatedness may probe a generic cognitive mechanism and neural architecture underpinning frontotemporal dementia syndromes. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  9. Modulation of isochronous movements in a flexible environment: links between motion and auditory experience.

    PubMed

    Bravi, Riccardo; Del Tongo, Claudia; Cohen, Erez James; Dalle Mura, Gabriele; Tognetti, Alessandro; Minciacchi, Diego

    2014-06-01

    The ability to perform isochronous movements while listening to a rhythmic auditory stimulus requires a flexible process that integrates timing information with movement. Here, we explored how non-temporal and temporal characteristics of an auditory stimulus (presence, interval occupancy, and tempo) affect motor performance. These characteristics were chosen on the basis of their ability to modulate the precision and accuracy of synchronized movements. Subjects have participated in sessions in which they performed sets of repeated isochronous wrist's flexion-extensions under various conditions. The conditions were chosen on the basis of the defined characteristics. Kinematic parameters were evaluated during each session, and temporal parameters were analyzed. In order to study the effects of the auditory stimulus, we have minimized all other sensory information that could interfere with its perception or affect the performance of repeated isochronous movements. The present study shows that the distinct characteristics of an auditory stimulus significantly influence isochronous movements by altering their duration. Results provide evidence for an adaptable control of timing in the audio-motor coupling for isochronous movements. This flexibility would make plausible the use of different encoding strategies to adapt audio-motor coupling for specific tasks.

  10. Multivariate sensitivity to voice during auditory categorization.

    PubMed

    Lee, Yune Sang; Peelle, Jonathan E; Kraemer, David; Lloyd, Samuel; Granger, Richard

    2015-09-01

    Past neuroimaging studies have documented discrete regions of human temporal cortex that are more strongly activated by conspecific voice sounds than by nonvoice sounds. However, the mechanisms underlying this voice sensitivity remain unclear. In the present functional MRI study, we took a novel approach to examining voice sensitivity, in which we applied a signal detection paradigm to the assessment of multivariate pattern classification among several living and nonliving categories of auditory stimuli. Within this framework, voice sensitivity can be interpreted as a distinct neural representation of brain activity that correctly distinguishes human vocalizations from other auditory object categories. Across a series of auditory categorization tests, we found that bilateral superior and middle temporal cortex consistently exhibited robust sensitivity to human vocal sounds. Although the strongest categorization was in distinguishing human voice from other categories, subsets of these regions were also able to distinguish reliably between nonhuman categories, suggesting a general role in auditory object categorization. Our findings complement the current evidence of cortical sensitivity to human vocal sounds by revealing that the greatest sensitivity during categorization tasks is devoted to distinguishing voice from nonvoice categories within human temporal cortex. Copyright © 2015 the American Physiological Society.

  11. Auditory processing efficiency deficits in children with developmental language impairments

    NASA Astrophysics Data System (ADS)

    Hartley, Douglas E. H.; Moore, David R.

    2002-12-01

    The ``temporal processing hypothesis'' suggests that individuals with specific language impairments (SLIs) and dyslexia have severe deficits in processing rapidly presented or brief sensory information, both within the auditory and visual domains. This hypothesis has been supported through evidence that language-impaired individuals have excess auditory backward masking. This paper presents an analysis of masking results from several studies in terms of a model of temporal resolution. Results from this modeling suggest that the masking results can be better explained by an ``auditory efficiency'' hypothesis. If impaired or immature listeners have a normal temporal window, but require a higher signal-to-noise level (poor processing efficiency), this hypothesis predicts the observed small deficits in the simultaneous masking task, and the much larger deficits in backward and forward masking tasks amongst those listeners. The difference in performance on these masking tasks is predictable from the compressive nonlinearity of the basilar membrane. The model also correctly predicts that backward masking (i) is more prone to training effects, (ii) has greater inter- and intrasubject variability, and (iii) increases less with masker level than do other masking tasks. These findings provide a new perspective on the mechanisms underlying communication disorders and auditory masking.

  12. Irregular Speech Rate Dissociates Auditory Cortical Entrainment, Evoked Responses, and Frontal Alpha

    PubMed Central

    Kayser, Stephanie J.; Ince, Robin A.A.; Gross, Joachim

    2015-01-01

    The entrainment of slow rhythmic auditory cortical activity to the temporal regularities in speech is considered to be a central mechanism underlying auditory perception. Previous work has shown that entrainment is reduced when the quality of the acoustic input is degraded, but has also linked rhythmic activity at similar time scales to the encoding of temporal expectations. To understand these bottom-up and top-down contributions to rhythmic entrainment, we manipulated the temporal predictive structure of speech by parametrically altering the distribution of pauses between syllables or words, thereby rendering the local speech rate irregular while preserving intelligibility and the envelope fluctuations of the acoustic signal. Recording EEG activity in human participants, we found that this manipulation did not alter neural processes reflecting the encoding of individual sound transients, such as evoked potentials. However, the manipulation significantly reduced the fidelity of auditory delta (but not theta) band entrainment to the speech envelope. It also reduced left frontal alpha power and this alpha reduction was predictive of the reduced delta entrainment across participants. Our results show that rhythmic auditory entrainment in delta and theta bands reflect functionally distinct processes. Furthermore, they reveal that delta entrainment is under top-down control and likely reflects prefrontal processes that are sensitive to acoustical regularities rather than the bottom-up encoding of acoustic features. SIGNIFICANCE STATEMENT The entrainment of rhythmic auditory cortical activity to the speech envelope is considered to be critical for hearing. Previous work has proposed divergent views in which entrainment reflects either early evoked responses related to sound encoding or high-level processes related to expectation or cognitive selection. Using a manipulation of speech rate, we dissociated auditory entrainment at different time scales. Specifically, our results suggest that delta entrainment is controlled by frontal alpha mechanisms and thus support the notion that rhythmic auditory cortical entrainment is shaped by top-down mechanisms. PMID:26538641

  13. Segregation and Integration of Auditory Streams when Listening to Multi-Part Music

    PubMed Central

    Ragert, Marie; Fairhurst, Merle T.; Keller, Peter E.

    2014-01-01

    In our daily lives, auditory stream segregation allows us to differentiate concurrent sound sources and to make sense of the scene we are experiencing. However, a combination of segregation and the concurrent integration of auditory streams is necessary in order to analyze the relationship between streams and thus perceive a coherent auditory scene. The present functional magnetic resonance imaging study investigates the relative role and neural underpinnings of these listening strategies in multi-part musical stimuli. We compare a real human performance of a piano duet and a synthetic stimulus of the same duet in a prioritized integrative attention paradigm that required the simultaneous segregation and integration of auditory streams. In so doing, we manipulate the degree to which the attended part of the duet led either structurally (attend melody vs. attend accompaniment) or temporally (asynchronies vs. no asynchronies between parts), and thus the relative contributions of integration and segregation used to make an assessment of the leader-follower relationship. We show that perceptually the relationship between parts is biased towards the conventional structural hierarchy in western music in which the melody generally dominates (leads) the accompaniment. Moreover, the assessment varies as a function of both cognitive load, as shown through difficulty ratings and the interaction of the temporal and the structural relationship factors. Neurally, we see that the temporal relationship between parts, as one important cue for stream segregation, revealed distinct neural activity in the planum temporale. By contrast, integration used when listening to both the temporally separated performance stimulus and the temporally fused synthetic stimulus resulted in activation of the intraparietal sulcus. These results support the hypothesis that the planum temporale and IPS are key structures underlying the mechanisms of segregation and integration of auditory streams, respectively. PMID:24475030

  14. Segregation and integration of auditory streams when listening to multi-part music.

    PubMed

    Ragert, Marie; Fairhurst, Merle T; Keller, Peter E

    2014-01-01

    In our daily lives, auditory stream segregation allows us to differentiate concurrent sound sources and to make sense of the scene we are experiencing. However, a combination of segregation and the concurrent integration of auditory streams is necessary in order to analyze the relationship between streams and thus perceive a coherent auditory scene. The present functional magnetic resonance imaging study investigates the relative role and neural underpinnings of these listening strategies in multi-part musical stimuli. We compare a real human performance of a piano duet and a synthetic stimulus of the same duet in a prioritized integrative attention paradigm that required the simultaneous segregation and integration of auditory streams. In so doing, we manipulate the degree to which the attended part of the duet led either structurally (attend melody vs. attend accompaniment) or temporally (asynchronies vs. no asynchronies between parts), and thus the relative contributions of integration and segregation used to make an assessment of the leader-follower relationship. We show that perceptually the relationship between parts is biased towards the conventional structural hierarchy in western music in which the melody generally dominates (leads) the accompaniment. Moreover, the assessment varies as a function of both cognitive load, as shown through difficulty ratings and the interaction of the temporal and the structural relationship factors. Neurally, we see that the temporal relationship between parts, as one important cue for stream segregation, revealed distinct neural activity in the planum temporale. By contrast, integration used when listening to both the temporally separated performance stimulus and the temporally fused synthetic stimulus resulted in activation of the intraparietal sulcus. These results support the hypothesis that the planum temporale and IPS are key structures underlying the mechanisms of segregation and integration of auditory streams, respectively.

  15. Can Spectro-Temporal Complexity Explain the Autistic Pattern of Performance on Auditory Tasks?

    ERIC Educational Resources Information Center

    Samson, Fabienne; Mottron, Laurent; Jemel, Boutheina; Belin, Pascal; Ciocca, Valter

    2006-01-01

    To test the hypothesis that level of neural complexity explain the relative level of performance and brain activity in autistic individuals, available behavioural, ERP and imaging findings related to the perception of increasingly complex auditory material under various processing tasks in autism were reviewed. Tasks involving simple material…

  16. Task-dependent modulation of regions in the left temporal cortex during auditory sentence comprehension.

    PubMed

    Zhang, Linjun; Yue, Qiuhai; Zhang, Yang; Shu, Hua; Li, Ping

    2015-01-01

    Numerous studies have revealed the essential role of the left lateral temporal cortex in auditory sentence comprehension along with evidence of the functional specialization of the anterior and posterior temporal sub-areas. However, it is unclear whether task demands (e.g., active vs. passive listening) modulate the functional specificity of these sub-areas. In the present functional magnetic resonance imaging (fMRI) study, we addressed this issue by applying both independent component analysis (ICA) and general linear model (GLM) methods. Consistent with previous studies, intelligible sentences elicited greater activity in the left lateral temporal cortex relative to unintelligible sentences. Moreover, responses to intelligibility in the sub-regions were differentially modulated by task demands. While the overall activation patterns of the anterior and posterior superior temporal sulcus and middle temporal gyrus (STS/MTG) were equivalent during both passive and active tasks, a middle portion of the STS/MTG was found to be selectively activated only during the active task under a refined analysis of sub-regional contributions. Our results not only confirm the critical role of the left lateral temporal cortex in auditory sentence comprehension but further demonstrate that task demands modulate functional specialization of the anterior-middle-posterior temporal sub-areas. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Mechanisms of spectral and temporal integration in the mustached bat inferior colliculus

    PubMed Central

    Wenstrup, Jeffrey James; Nataraj, Kiran; Sanchez, Jason Tait

    2012-01-01

    This review describes mechanisms and circuitry underlying combination-sensitive response properties in the auditory brainstem and midbrain. Combination-sensitive neurons, performing a type of auditory spectro-temporal integration, respond to specific, properly timed combinations of spectral elements in vocal signals and other acoustic stimuli. While these neurons are known to occur in the auditory forebrain of many vertebrate species, the work described here establishes their origin in the auditory brainstem and midbrain. Focusing on the mustached bat, we review several major findings: (1) Combination-sensitive responses involve facilitatory interactions, inhibitory interactions, or both when activated by distinct spectral elements in complex sounds. (2) Combination-sensitive responses are created in distinct stages: inhibition arises mainly in lateral lemniscal nuclei of the auditory brainstem, while facilitation arises in the inferior colliculus (IC) of the midbrain. (3) Spectral integration underlying combination-sensitive responses requires a low-frequency input tuned well below a neuron's characteristic frequency (ChF). Low-ChF neurons in the auditory brainstem project to high-ChF regions in brainstem or IC to create combination sensitivity. (4) At their sites of origin, both facilitatory and inhibitory combination-sensitive interactions depend on glycinergic inputs and are eliminated by glycine receptor blockade. Surprisingly, facilitatory interactions in IC depend almost exclusively on glycinergic inputs and are largely independent of glutamatergic and GABAergic inputs. (5) The medial nucleus of the trapezoid body (MNTB), the lateral lemniscal nuclei, and the IC play critical roles in creating combination-sensitive responses. We propose that these mechanisms, based on work in the mustached bat, apply to a broad range of mammals and other vertebrates that depend on temporally sensitive integration of information across the audible spectrum. PMID:23109917

  18. Feasibility of endoscopic laser speckle imaging modality in the evaluation of auditory disorder: study in bone-tissue phantom

    NASA Astrophysics Data System (ADS)

    Yu, Sungkon; Jang, Seulki; Lee, Sangyeob; Park, Jihoon; Ha, Myungjin; Radfar, Edalat; Jung, Byungjo

    2016-03-01

    This study investigates the feasibility of an endoscopic laser speckle imaging modality (ELSIM) in the measurement of perfusion of flowing fluid in optical bone tissue phantom(OBTP). Many studies suggested that the change of cochlear blood flow was correlated with auditory disorder. Cochlear microcirculation occurs under the 200μm thickness bone which is the part of the internal structure of the temporal bone. Concern has been raised regarding of getting correct optical signal from hard tissue. In order to determine the possibility of the measurement of cochlear blood flow under bone tissue using the ELSIM, optical tissue phantom (OTP) mimicking optical properties of temporal bone was applied.

  19. Temporal auditory aspects in children with poor school performance and associated factors.

    PubMed

    Rezende, Bárbara Antunes; Lemos, Stela Maris Aguiar; Medeiros, Adriane Mesquita de

    2016-01-01

    To investigate the auditory temporal aspects in children with poor school performance aged 7-12 years and their association with behavioral aspects, health perception, school and health profiles, and sociodemographic factors. This is an observational, analytical, transversal study including 89 children with poor school performance aged 7-12 years enrolled in the municipal public schools of a municipality in Minas Gerais state, participants of Specialized Educational Assistance. The first stage of the study was conducted with the subjects' parents aiming to collect information on sociodemographic aspects, health profile, and educational records. In addition, the parents responded to the Strengths and Difficulties Questionnaire (SDQ). The second stage was conducted with the children in order to investigate their health self-perception and analyze the auditory assessment, which consisted of meatoscopy, Transient Otoacoustic Emissions, and tests that evaluated the aspects of simple auditory temporal ordering and auditory temporal resolution. Tests assessing the temporal aspects of auditory temporal processing were considered as response variables, and the explanatory variables were grouped for univariate and multivariate logistic regression analyses. The level of significance was set at 5%. Significant statistical correlation was found between the auditory temporal aspects and the variables age, gender, presence of repetition, and health self-perception. Children with poor school performance presented changes in the auditory temporal aspects. The temporal abilities assessed suggest association with different factors such as maturational process, health self-perception, and school records.

  20. Modulation of auditory stimulus processing by visual spatial or temporal cue: an event-related potentials study.

    PubMed

    Tang, Xiaoyu; Li, Chunlin; Li, Qi; Gao, Yulin; Yang, Weiping; Yang, Jingjing; Ishikawa, Soushirou; Wu, Jinglong

    2013-10-11

    Utilizing the high temporal resolution of event-related potentials (ERPs), we examined how visual spatial or temporal cues modulated the auditory stimulus processing. The visual spatial cue (VSC) induces orienting of attention to spatial locations; the visual temporal cue (VTC) induces orienting of attention to temporal intervals. Participants were instructed to respond to auditory targets. Behavioral responses to auditory stimuli following VSC were faster and more accurate than those following VTC. VSC and VTC had the same effect on the auditory N1 (150-170 ms after stimulus onset). The mean amplitude of the auditory P1 (90-110 ms) in VSC condition was larger than that in VTC condition, and the mean amplitude of late positivity (300-420 ms) in VTC condition was larger than that in VSC condition. These findings suggest that modulation of auditory stimulus processing by visually induced spatial or temporal orienting of attention were different, but partially overlapping. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Concurrent temporal channels for auditory processing: Oscillatory neural entrainment reveals segregation of function at different scales

    PubMed Central

    Tian, Xing; Rowland, Jess; Poeppel, David

    2017-01-01

    Natural sounds convey perceptually relevant information over multiple timescales, and the necessary extraction of multi-timescale information requires the auditory system to work over distinct ranges. The simplest hypothesis suggests that temporal modulations are encoded in an equivalent manner within a reasonable intermediate range. We show that the human auditory system selectively and preferentially tracks acoustic dynamics concurrently at 2 timescales corresponding to the neurophysiological theta band (4–7 Hz) and gamma band ranges (31–45 Hz) but, contrary to expectation, not at the timescale corresponding to alpha (8–12 Hz), which has also been found to be related to auditory perception. Listeners heard synthetic acoustic stimuli with temporally modulated structures at 3 timescales (approximately 190-, approximately 100-, and approximately 30-ms modulation periods) and identified the stimuli while undergoing magnetoencephalography recording. There was strong intertrial phase coherence in the theta band for stimuli of all modulation rates and in the gamma band for stimuli with corresponding modulation rates. The alpha band did not respond in a similar manner. Classification analyses also revealed that oscillatory phase reliably tracked temporal dynamics but not equivalently across rates. Finally, mutual information analyses quantifying the relation between phase and cochlear-scaled correlations also showed preferential processing in 2 distinct regimes, with the alpha range again yielding different patterns. The results support the hypothesis that the human auditory system employs (at least) a 2-timescale processing mode, in which lower and higher perceptual sampling scales are segregated by an intermediate temporal regime in the alpha band that likely reflects different underlying computations. PMID:29095816

  2. Inattentional Deafness: Visual Load Leads to Time-Specific Suppression of Auditory Evoked Responses

    PubMed Central

    Molloy, Katharine; Griffiths, Timothy D.; Lavie, Nilli

    2015-01-01

    Due to capacity limits on perception, conditions of high perceptual load lead to reduced processing of unattended stimuli (Lavie et al., 2014). Accumulating work demonstrates the effects of visual perceptual load on visual cortex responses, but the effects on auditory processing remain poorly understood. Here we establish the neural mechanisms underlying “inattentional deafness”—the failure to perceive auditory stimuli under high visual perceptual load. Participants performed a visual search task of low (target dissimilar to nontarget items) or high (target similar to nontarget items) load. On a random subset (50%) of trials, irrelevant tones were presented concurrently with the visual stimuli. Brain activity was recorded with magnetoencephalography, and time-locked responses to the visual search array and to the incidental presence of unattended tones were assessed. High, compared to low, perceptual load led to increased early visual evoked responses (within 100 ms from onset). This was accompanied by reduced early (∼100 ms from tone onset) auditory evoked activity in superior temporal sulcus and posterior middle temporal gyrus. A later suppression of the P3 “awareness” response to the tones was also observed under high load. A behavioral experiment revealed reduced tone detection sensitivity under high visual load, indicating that the reduction in neural responses was indeed associated with reduced awareness of the sounds. These findings support a neural account of shared audiovisual resources, which, when depleted under load, leads to failures of sensory perception and awareness. SIGNIFICANCE STATEMENT The present work clarifies the neural underpinning of inattentional deafness under high visual load. The findings of near-simultaneous load effects on both visual and auditory evoked responses suggest shared audiovisual processing capacity. Temporary depletion of shared capacity in perceptually demanding visual tasks leads to a momentary reduction in sensory processing of auditory stimuli, resulting in inattentional deafness. The dynamic “push–pull” pattern of load effects on visual and auditory processing furthers our understanding of both the neural mechanisms of attention and of cross-modal effects across visual and auditory processing. These results also offer an explanation for many previous failures to find cross-modal effects in experiments where the visual load effects may not have coincided directly with auditory sensory processing. PMID:26658858

  3. Adaptation to delayed auditory feedback induces the temporal recalibration effect in both speech perception and production.

    PubMed

    Yamamoto, Kosuke; Kawabata, Hideaki

    2014-12-01

    We ordinarily speak fluently, even though our perceptions of our own voices are disrupted by various environmental acoustic properties. The underlying mechanism of speech is supposed to monitor the temporal relationship between speech production and the perception of auditory feedback, as suggested by a reduction in speech fluency when the speaker is exposed to delayed auditory feedback (DAF). While many studies have reported that DAF influences speech motor processing, its relationship to the temporal tuning effect on multimodal integration, or temporal recalibration, remains unclear. We investigated whether the temporal aspects of both speech perception and production change due to adaptation to the delay between the motor sensation and the auditory feedback. This is a well-used method of inducing temporal recalibration. Participants continually read texts with specific DAF times in order to adapt to the delay. Then, they judged the simultaneity between the motor sensation and the vocal feedback. We measured the rates of speech with which participants read the texts in both the exposure and re-exposure phases. We found that exposure to DAF changed both the rate of speech and the simultaneity judgment, that is, participants' speech gained fluency. Although we also found that a delay of 200 ms appeared to be most effective in decreasing the rates of speech and shifting the distribution on the simultaneity judgment, there was no correlation between these measurements. These findings suggest that both speech motor production and multimodal perception are adaptive to temporal lag but are processed in distinct ways.

  4. Auditory-neurophysiological responses to speech during early childhood: Effects of background noise

    PubMed Central

    White-Schwoch, Travis; Davies, Evan C.; Thompson, Elaine C.; Carr, Kali Woodruff; Nicol, Trent; Bradlow, Ann R.; Kraus, Nina

    2015-01-01

    Early childhood is a critical period of auditory learning, during which children are constantly mapping sounds to meaning. But learning rarely occurs under ideal listening conditions—children are forced to listen against a relentless din. This background noise degrades the neural coding of these critical sounds, in turn interfering with auditory learning. Despite the importance of robust and reliable auditory processing during early childhood, little is known about the neurophysiology underlying speech processing in children so young. To better understand the physiological constraints these adverse listening scenarios impose on speech sound coding during early childhood, auditory-neurophysiological responses were elicited to a consonant-vowel syllable in quiet and background noise in a cohort of typically-developing preschoolers (ages 3–5 yr). Overall, responses were degraded in noise: they were smaller, less stable across trials, slower, and there was poorer coding of spectral content and the temporal envelope. These effects were exacerbated in response to the consonant transition relative to the vowel, suggesting that the neural coding of spectrotemporally-dynamic speech features is more tenuous in noise than the coding of static features—even in children this young. Neural coding of speech temporal fine structure, however, was more resilient to the addition of background noise than coding of temporal envelope information. Taken together, these results demonstrate that noise places a neurophysiological constraint on speech processing during early childhood by causing a breakdown in neural processing of speech acoustics. These results may explain why some listeners have inordinate difficulties understanding speech in noise. Speech-elicited auditory-neurophysiological responses offer objective insight into listening skills during early childhood by reflecting the integrity of neural coding in quiet and noise; this paper documents typical response properties in this age group. These normative metrics may be useful clinically to evaluate auditory processing difficulties during early childhood. PMID:26113025

  5. Effects of Frequency Separation and Diotic/Dichotic Presentations on the Alternation Frequency Limits in Audition Derived from a Temporal Phase Discrimination Task.

    PubMed

    Kanaya, Shoko; Fujisaki, Waka; Nishida, Shin'ya; Furukawa, Shigeto; Yokosawa, Kazuhiko

    2015-02-01

    Temporal phase discrimination is a useful psychophysical task to evaluate how sensory signals, synchronously detected in parallel, are perceptually bound by human observers. In this task two stimulus sequences synchronously alternate between two states (say, A-B-A-B and X-Y-X-Y) in either of two temporal phases (ie A and B are respectively paired with X and Y, or vice versa). The critical alternation frequency beyond which participants cannot discriminate the temporal phase is measured as an index characterizing the temporal property of the underlying binding process. This task has been used to reveal the mechanisms underlying visual and cross-modal bindings. To directly compare these binding mechanisms with those in another modality, this study used the temporal phase discrimination task to reveal the processes underlying auditory bindings. The two sequences were alternations between two pitches. We manipulated the distance between the two sequences by changing intersequence frequency separation, or presentation ears (diotic vs dichotic). Results showed that the alternation frequency limit ranged from 7 to 30 Hz, becoming higher as the intersequence distance decreased, as is the case with vision. However, unlike vision, auditory phase discrimination limits were higher and more variable across participants. © 2015 SAGE Publications.

  6. Activations in temporal areas using visual and auditory naming stimuli: A language fMRI study in temporal lobe epilepsy.

    PubMed

    Gonzálvez, Gloria G; Trimmel, Karin; Haag, Anja; van Graan, Louis A; Koepp, Matthias J; Thompson, Pamela J; Duncan, John S

    2016-12-01

    Verbal fluency functional MRI (fMRI) is used for predicting language deficits after anterior temporal lobe resection (ATLR) for temporal lobe epilepsy (TLE), but primarily engages frontal lobe areas. In this observational study we investigated fMRI paradigms using visual and auditory stimuli, which predominately involve language areas resected during ATLR. Twenty-three controls and 33 patients (20 left (LTLE), 13 right (RTLE)) were assessed using three fMRI paradigms: verbal fluency, auditory naming with a contrast of auditory reversed speech; picture naming with a contrast of scrambled pictures and blurred faces. Group analysis showed bilateral temporal activations for auditory naming and picture naming. Correcting for auditory and visual input (by subtracting activations resulting from auditory reversed speech and blurred pictures/scrambled faces respectively) resulted in left-lateralised activations for patients and controls, which was more pronounced for LTLE compared to RTLE patients. Individual subject activations at a threshold of T>2.5, extent >10 voxels, showed that verbal fluency activated predominantly the left inferior frontal gyrus (IFG) in 90% of LTLE, 92% of RTLE, and 65% of controls, compared to right IFG activations in only 15% of LTLE and RTLE and 26% of controls. Middle temporal (MTG) or superior temporal gyrus (STG) activations were seen on the left in 30% of LTLE, 23% of RTLE, and 52% of controls, and on the right in 15% of LTLE, 15% of RTLE, and 35% of controls. Auditory naming activated temporal areas more frequently than did verbal fluency (LTLE: 93%/73%; RTLE: 92%/58%; controls: 82%/70% (left/right)). Controlling for auditory input resulted in predominantly left-sided temporal activations. Picture naming resulted in temporal lobe activations less frequently than did auditory naming (LTLE 65%/55%; RTLE 53%/46%; controls 52%/35% (left/right)). Controlling for visual input had left-lateralising effects. Auditory and picture naming activated temporal lobe structures, which are resected during ATLR, more frequently than did verbal fluency. Controlling for auditory and visual input resulted in more left-lateralised activations. We hypothesise that these paradigms may be more predictive of postoperative language decline than verbal fluency fMRI. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Maturation of Visual and Auditory Temporal Processing in School-Aged Children

    ERIC Educational Resources Information Center

    Dawes, Piers; Bishop, Dorothy V. M.

    2008-01-01

    Purpose: To examine development of sensitivity to auditory and visual temporal processes in children and the association with standardized measures of auditory processing and communication. Methods: Normative data on tests of visual and auditory processing were collected on 18 adults and 98 children aged 6-10 years of age. Auditory processes…

  8. The associations between multisensory temporal processing and symptoms of schizophrenia.

    PubMed

    Stevenson, Ryan A; Park, Sohee; Cochran, Channing; McIntosh, Lindsey G; Noel, Jean-Paul; Barense, Morgan D; Ferber, Susanne; Wallace, Mark T

    2017-01-01

    Recent neurobiological accounts of schizophrenia have included an emphasis on changes in sensory processing. These sensory and perceptual deficits can have a cascading effect onto higher-level cognitive processes and clinical symptoms. One form of sensory dysfunction that has been consistently observed in schizophrenia is altered temporal processing. In this study, we investigated temporal processing within and across the auditory and visual modalities in individuals with schizophrenia (SCZ) and age-matched healthy controls. Individuals with SCZ showed auditory and visual temporal processing abnormalities, as well as multisensory temporal processing dysfunction that extended beyond that attributable to unisensory processing dysfunction. Most importantly, these multisensory temporal deficits were associated with the severity of hallucinations. This link between atypical multisensory temporal perception and clinical symptomatology suggests that clinical symptoms of schizophrenia may be at least partly a result of cascading effects from (multi)sensory disturbances. These results are discussed in terms of underlying neural bases and the possible implications for remediation. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The right hemisphere supports but does not replace left hemisphere auditory function in patients with persisting aphasia.

    PubMed

    Teki, Sundeep; Barnes, Gareth R; Penny, William D; Iverson, Paul; Woodhead, Zoe V J; Griffiths, Timothy D; Leff, Alexander P

    2013-06-01

    In this study, we used magnetoencephalography and a mismatch paradigm to investigate speech processing in stroke patients with auditory comprehension deficits and age-matched control subjects. We probed connectivity within and between the two temporal lobes in response to phonemic (different word) and acoustic (same word) oddballs using dynamic causal modelling. We found stronger modulation of self-connections as a function of phonemic differences for control subjects versus aphasics in left primary auditory cortex and bilateral superior temporal gyrus. The patients showed stronger modulation of connections from right primary auditory cortex to right superior temporal gyrus (feed-forward) and from left primary auditory cortex to right primary auditory cortex (interhemispheric). This differential connectivity can be explained on the basis of a predictive coding theory which suggests increased prediction error and decreased sensitivity to phonemic boundaries in the aphasics' speech network in both hemispheres. Within the aphasics, we also found behavioural correlates with connection strengths: a negative correlation between phonemic perception and an inter-hemispheric connection (left superior temporal gyrus to right superior temporal gyrus), and positive correlation between semantic performance and a feedback connection (right superior temporal gyrus to right primary auditory cortex). Our results suggest that aphasics with impaired speech comprehension have less veridical speech representations in both temporal lobes, and rely more on the right hemisphere auditory regions, particularly right superior temporal gyrus, for processing speech. Despite this presumed compensatory shift in network connectivity, the patients remain significantly impaired.

  10. The right hemisphere supports but does not replace left hemisphere auditory function in patients with persisting aphasia

    PubMed Central

    Barnes, Gareth R.; Penny, William D.; Iverson, Paul; Woodhead, Zoe V. J.; Griffiths, Timothy D.; Leff, Alexander P.

    2013-01-01

    In this study, we used magnetoencephalography and a mismatch paradigm to investigate speech processing in stroke patients with auditory comprehension deficits and age-matched control subjects. We probed connectivity within and between the two temporal lobes in response to phonemic (different word) and acoustic (same word) oddballs using dynamic causal modelling. We found stronger modulation of self-connections as a function of phonemic differences for control subjects versus aphasics in left primary auditory cortex and bilateral superior temporal gyrus. The patients showed stronger modulation of connections from right primary auditory cortex to right superior temporal gyrus (feed-forward) and from left primary auditory cortex to right primary auditory cortex (interhemispheric). This differential connectivity can be explained on the basis of a predictive coding theory which suggests increased prediction error and decreased sensitivity to phonemic boundaries in the aphasics’ speech network in both hemispheres. Within the aphasics, we also found behavioural correlates with connection strengths: a negative correlation between phonemic perception and an inter-hemispheric connection (left superior temporal gyrus to right superior temporal gyrus), and positive correlation between semantic performance and a feedback connection (right superior temporal gyrus to right primary auditory cortex). Our results suggest that aphasics with impaired speech comprehension have less veridical speech representations in both temporal lobes, and rely more on the right hemisphere auditory regions, particularly right superior temporal gyrus, for processing speech. Despite this presumed compensatory shift in network connectivity, the patients remain significantly impaired. PMID:23715097

  11. Neural basis of processing threatening voices in a crowded auditory world

    PubMed Central

    Mothes-Lasch, Martin; Becker, Michael P. I.; Miltner, Wolfgang H. R.

    2016-01-01

    In real world situations, we typically listen to voice prosody against a background crowded with auditory stimuli. Voices and background can both contain behaviorally relevant features and both can be selectively in the focus of attention. Adequate responses to threat-related voices under such conditions require that the brain unmixes reciprocally masked features depending on variable cognitive resources. It is unknown which brain systems instantiate the extraction of behaviorally relevant prosodic features under varying combinations of prosody valence, auditory background complexity and attentional focus. Here, we used event-related functional magnetic resonance imaging to investigate the effects of high background sound complexity and attentional focus on brain activation to angry and neutral prosody in humans. Results show that prosody effects in mid superior temporal cortex were gated by background complexity but not attention, while prosody effects in the amygdala and anterior superior temporal cortex were gated by attention but not background complexity, suggesting distinct emotional prosody processing limitations in different regions. Crucially, if attention was focused on the highly complex background, the differential processing of emotional prosody was prevented in all brain regions, suggesting that in a distracting, complex auditory world even threatening voices may go unnoticed. PMID:26884543

  12. Voluntary movement affects simultaneous perception of auditory and tactile stimuli presented to a non-moving body part.

    PubMed

    Hao, Qiao; Ora, Hiroki; Ogawa, Ken-Ichiro; Ogata, Taiki; Miyake, Yoshihiro

    2016-09-13

    The simultaneous perception of multimodal sensory information has a crucial role for effective reactions to the external environment. Voluntary movements are known to occasionally affect simultaneous perception of auditory and tactile stimuli presented to the moving body part. However, little is known about spatial limits on the effect of voluntary movements on simultaneous perception, especially when tactile stimuli are presented to a non-moving body part. We examined the effect of voluntary movement on the simultaneous perception of auditory and tactile stimuli presented to the non-moving body part. We considered the possible mechanism using a temporal order judgement task under three experimental conditions: voluntary movement, where participants voluntarily moved their right index finger and judged the temporal order of auditory and tactile stimuli presented to their non-moving left index finger; passive movement; and no movement. During voluntary movement, the auditory stimulus needed to be presented before the tactile stimulus so that they were perceived as occurring simultaneously. This subjective simultaneity differed significantly from the passive movement and no movement conditions. This finding indicates that the effect of voluntary movement on simultaneous perception of auditory and tactile stimuli extends to the non-moving body part.

  13. Modulation frequency as a cue for auditory speed perception.

    PubMed

    Senna, Irene; Parise, Cesare V; Ernst, Marc O

    2017-07-12

    Unlike vision, the mechanisms underlying auditory motion perception are poorly understood. Here we describe an auditory motion illusion revealing a novel cue to auditory speed perception: the temporal frequency of amplitude modulation (AM-frequency), typical for rattling sounds. Naturally, corrugated objects sliding across each other generate rattling sounds whose AM-frequency tends to directly correlate with speed. We found that AM-frequency modulates auditory speed perception in a highly systematic fashion: moving sounds with higher AM-frequency are perceived as moving faster than sounds with lower AM-frequency. Even more interestingly, sounds with higher AM-frequency also induce stronger motion aftereffects. This reveals the existence of specialized neural mechanisms for auditory motion perception, which are sensitive to AM-frequency. Thus, in spatial hearing, the brain successfully capitalizes on the AM-frequency of rattling sounds to estimate the speed of moving objects. This tightly parallels previous findings in motion vision, where spatio-temporal frequency of moving displays systematically affects both speed perception and the magnitude of the motion aftereffects. Such an analogy with vision suggests that motion detection may rely on canonical computations, with similar neural mechanisms shared across the different modalities. © 2017 The Author(s).

  14. Auditory hallucinations and the temporal cortical response to speech in schizophrenia: a functional magnetic resonance imaging study.

    PubMed

    Woodruff, P W; Wright, I C; Bullmore, E T; Brammer, M; Howard, R J; Williams, S C; Shapleske, J; Rossell, S; David, A S; McGuire, P K; Murray, R M

    1997-12-01

    The authors explored whether abnormal functional lateralization of temporal cortical language areas in schizophrenia was associated with a predisposition to auditory hallucinations and whether the auditory hallucinatory state would reduce the temporal cortical response to external speech. Functional magnetic resonance imaging was used to measure the blood-oxygenation-level-dependent signal induced by auditory perception of speech in three groups of male subjects: eight schizophrenic patients with a history of auditory hallucinations (trait-positive), none of whom was currently hallucinating; seven schizophrenic patients without such a history (trait-negative); and eight healthy volunteers. Seven schizophrenic patients were also examined while they were actually experiencing severe auditory verbal hallucinations and again after their hallucinations had diminished. Voxel-by-voxel comparison of the median power of subjects' responses to periodic external speech revealed that this measure was reduced in the left superior temporal gyrus but increased in the right middle temporal gyrus in the combined schizophrenic groups relative to the healthy comparison group. Comparison of the trait-positive and trait-negative patients revealed no clear difference in the power of temporal cortical activation. Comparison of patients when experiencing severe hallucinations and when hallucinations were mild revealed reduced responsivity of the temporal cortex, especially the right middle temporal gyrus, to external speech during the former state. These results suggest that schizophrenia is associated with a reduced left and increased right temporal cortical response to auditory perception of speech, with little distinction between patients who differ in their vulnerability to hallucinations. The auditory hallucinatory state is associated with reduced activity in temporal cortical regions that overlap with those that normally process external speech, possibly because of competition for common neurophysiological resources.

  15. [In Process Citation

    PubMed

    Ackermann; Mathiak

    1999-11-01

    Pure word deafness (auditory verbal agnosia) is characterized by an impairment of auditory comprehension, repetition of verbal material and writing to dictation whereas spontaneous speech production and reading largely remain unaffected. Sometimes, this syndrome is preceded by complete deafness (cortical deafness) of varying duration. Perception of vowels and suprasegmental features of verbal utterances (e.g., intonation contours) seems to be less disrupted than the processing of consonants and, therefore, might mediate residual auditory functions. Often, lip reading and/or slowing of speaking rate allow within some limits to compensate for speech comprehension deficits. Apart from a few exceptions, the available reports of pure word deafness documented a bilateral temporal lesion. In these instances, as a rule, identification of nonverbal (environmental) sounds, perception of music, temporal resolution of sequential auditory cues and/or spatial localization of acoustic events were compromised as well. The observed variable constellation of auditory signs and symptoms in central hearing disorders following bilateral temporal disorders, most probably, reflects the multitude of functional maps at the level of the auditory cortices subserving, as documented in a variety of non-human species, the encoding of specific stimulus parameters each. Thus, verbal/nonverbal auditory agnosia may be considered a paradigm of distorted "auditory scene analysis" (Bregman 1990) affecting both primitive and schema-based perceptual processes. It cannot be excluded, however, that disconnection of the Wernicke-area from auditory input (Geschwind 1965) and/or an impairment of suggested "phonetic module" (Liberman 1996) contribute to the observed deficits as well. Conceivably, these latter mechanisms underly the rare cases of pure word deafness following a lesion restricted to the dominant hemisphere. Only few instances of a rather isolated disruption of the discrimination/identification of nonverbal sound sources, in the presence of uncompromised speech comprehension, have been reported so far (nonverbal auditory agnosia). As a rule, unilateral right-sided damage has been found to be the relevant lesion.

  16. Auditory Processing Efficiency and Temporal Resolution in Children and Adults.

    ERIC Educational Resources Information Center

    Hill, Penelope R.; Hartley, Douglas E.H.; Glasberg, Brian R.; Moore, Brian C.J.; Moore, David R.

    2004-01-01

    Children have higher auditory backward masking (BM) thresholds than adults. One explanation for this is poor temporal resolution, resulting in difficulty separating brief or rapidly presented sounds. This implies that the auditory temporal window is broader in children than in adults. Alternatively, elevated BM thresholds in children may indicate…

  17. A Case of Generalized Auditory Agnosia with Unilateral Subcortical Brain Lesion

    PubMed Central

    Suh, Hyee; Kim, Soo Yeon; Kim, Sook Hee; Chang, Jae Hyeok; Shin, Yong Beom; Ko, Hyun-Yoon

    2012-01-01

    The mechanisms and functional anatomy underlying the early stages of speech perception are still not well understood. Auditory agnosia is a deficit of auditory object processing defined as a disability to recognize spoken languages and/or nonverbal environmental sounds and music despite adequate hearing while spontaneous speech, reading and writing are preserved. Usually, either the bilateral or unilateral temporal lobe, especially the transverse gyral lesions, are responsible for auditory agnosia. Subcortical lesions without cortical damage rarely causes auditory agnosia. We present a 73-year-old right-handed male with generalized auditory agnosia caused by a unilateral subcortical lesion. He was not able to repeat or dictate but to perform fluent and comprehensible speech. He could understand and read written words and phrases. His auditory brainstem evoked potential and audiometry were intact. This case suggested that the subcortical lesion involving unilateral acoustic radiation could cause generalized auditory agnosia. PMID:23342322

  18. Rapid change in articulatory lip movement induced by preceding auditory feedback during production of bilabial plosives.

    PubMed

    Mochida, Takemi; Gomi, Hiroaki; Kashino, Makio

    2010-11-08

    There has been plentiful evidence of kinesthetically induced rapid compensation for unanticipated perturbation in speech articulatory movements. However, the role of auditory information in stabilizing articulation has been little studied except for the control of voice fundamental frequency, voice amplitude and vowel formant frequencies. Although the influence of auditory information on the articulatory control process is evident in unintended speech errors caused by delayed auditory feedback, the direct and immediate effect of auditory alteration on the movements of articulators has not been clarified. This work examined whether temporal changes in the auditory feedback of bilabial plosives immediately affects the subsequent lip movement. We conducted experiments with an auditory feedback alteration system that enabled us to replace or block speech sounds in real time. Participants were asked to produce the syllable /pa/ repeatedly at a constant rate. During the repetition, normal auditory feedback was interrupted, and one of three pre-recorded syllables /pa/, /Φa/, or /pi/, spoken by the same participant, was presented once at a different timing from the anticipated production onset, while no feedback was presented for subsequent repetitions. Comparisons of the labial distance trajectories under altered and normal feedback conditions indicated that the movement quickened during the short period immediately after the alteration onset, when /pa/ was presented 50 ms before the expected timing. Such change was not significant under other feedback conditions we tested. The earlier articulation rapidly induced by the progressive auditory input suggests that a compensatory mechanism helps to maintain a constant speech rate by detecting errors between the internally predicted and actually provided auditory information associated with self movement. The timing- and context-dependent effects of feedback alteration suggest that the sensory error detection works in a temporally asymmetric window where acoustic features of the syllable to be produced may be coded.

  19. Enhanced auditory temporal gap detection in listeners with musical training.

    PubMed

    Mishra, Srikanta K; Panda, Manas R; Herbert, Carolyn

    2014-08-01

    Many features of auditory perception are positively altered in musicians. Traditionally auditory mechanisms in musicians are investigated using the Western-classical musician model. The objective of the present study was to adopt an alternative model-Indian-classical music-to further investigate auditory temporal processing in musicians. This study presents that musicians have significantly lower across-channel gap detection thresholds compared to nonmusicians. Use of the South Indian musician model provides an increased external validity for the prediction, from studies on Western-classical musicians, that auditory temporal coding is enhanced in musicians.

  20. EEG theta power and coherence to octave illusion in first-episode paranoid schizophrenia with auditory hallucinations.

    PubMed

    Zheng, Leilei; Chai, Hao; Yu, Shaohua; Xu, You; Chen, Wanzhen; Wang, Wei

    2015-01-01

    The exact mechanism behind auditory hallucinations in schizophrenia remains unknown. A corollary discharge dysfunction hypothesis has been put forward, but it requires further confirmation. Electroencephalography (EEG) of the Deutsch octave illusion might offer more insight, by demonstrating an abnormal cerebral activation similar to that under auditory hallucinations in schizophrenic patients. We invited 23 first-episode schizophrenic patients with auditory hallucinations and 23 healthy participants to listen to silence and two sound sequences, which consisted of alternating 400- and 800-Hz tones. EEG spectral power and coherence values of different frequency bands, including theta rhythm (3.5-7.5 Hz), were computed using 32 scalp electrodes. Task-related spectral power changes and task-related coherence differences were also calculated. Clinical characteristics of patients were rated using the Positive and Negative Syndrome Scale. After both sequences of octave illusion, the task-related theta power change values of frontal and temporal areas were significantly lower, and the task-related theta coherence difference values of intrahemispheric frontal-temporal areas were significantly higher in schizophrenic patients than in healthy participants. Moreover, the task-related power change values in both hemispheres were negatively correlated and the task-related coherence difference values in the right hemisphere were positively correlated with the hallucination score in schizophrenic patients. We only tested the Deutsch octave illusion in primary schizophrenic patients with acute first episode. Further studies might adopt other illusions or employ other forms of schizophrenia. Our results showed a lower activation but higher connection within frontal and temporal areas in schizophrenic patients under octave illusion. This suggests an oversynchronized but weak frontal area to exert an action to the ipsilateral temporal area, which supports the corollary discharge dysfunction hypothesis. © 2014 S. Karger AG, Basel.

  1. Perception of non-verbal auditory stimuli in Italian dyslexic children.

    PubMed

    Cantiani, Chiara; Lorusso, Maria Luisa; Valnegri, Camilla; Molteni, Massimo

    2010-01-01

    Auditory temporal processing deficits have been proposed as the underlying cause of phonological difficulties in Developmental Dyslexia. The hypothesis was tested in a sample of 20 Italian dyslexic children aged 8-14, and 20 matched control children. Three tasks of auditory processing of non-verbal stimuli, involving discrimination and reproduction of sequences of rapidly presented short sounds were expressly created. Dyslexic subjects performed more poorly than control children, suggesting the presence of a deficit only partially influenced by the duration of the stimuli and of inter-stimulus intervals (ISIs).

  2. Sensitivity and specificity of auditory steady‐state response testing

    PubMed Central

    Rabelo, Camila Maia; Schochat, Eliane

    2011-01-01

    INTRODUCTION: The ASSR test is an electrophysiological test that evaluates, among other aspects, neural synchrony, based on the frequency or amplitude modulation of tones. OBJECTIVE: The aim of this study was to determine the sensitivity and specificity of auditory steady‐state response testing in detecting lesions and dysfunctions of the central auditory nervous system. METHODS: Seventy volunteers were divided into three groups: those with normal hearing; those with mesial temporal sclerosis; and those with central auditory processing disorder. All subjects underwent auditory steady‐state response testing of both ears at 500 Hz and 2000 Hz (frequency modulation, 46 Hz). The difference between auditory steady‐state response‐estimated thresholds and behavioral thresholds (audiometric evaluation) was calculated. RESULTS: Estimated thresholds were significantly higher in the mesial temporal sclerosis group than in the normal and central auditory processing disorder groups. In addition, the difference between auditory steady‐state response‐estimated and behavioral thresholds was greatest in the mesial temporal sclerosis group when compared to the normal group than in the central auditory processing disorder group compared to the normal group. DISCUSSION: Research focusing on central auditory nervous system (CANS) lesions has shown that individuals with CANS lesions present a greater difference between ASSR‐estimated thresholds and actual behavioral thresholds; ASSR‐estimated thresholds being significantly worse than behavioral thresholds in subjects with CANS insults. This is most likely because the disorder prevents the transmission of the sound stimulus from being in phase with the received stimulus, resulting in asynchronous transmitter release. Another possible cause of the greater difference between the ASSR‐estimated thresholds and the behavioral thresholds is impaired temporal resolution. CONCLUSIONS: The overall sensitivity of auditory steady‐state response testing was lower than its overall specificity. Although the overall specificity was high, it was lower in the central auditory processing disorder group than in the mesial temporal sclerosis group. Overall sensitivity was also lower in the central auditory processing disorder group than in the mesial temporal sclerosis group. PMID:21437442

  3. Temporal Organization of Sound Information in Auditory Memory.

    PubMed

    Song, Kun; Luo, Huan

    2017-01-01

    Memory is a constructive and organizational process. Instead of being stored with all the fine details, external information is reorganized and structured at certain spatiotemporal scales. It is well acknowledged that time plays a central role in audition by segmenting sound inputs into temporal chunks of appropriate length. However, it remains largely unknown whether critical temporal structures exist to mediate sound representation in auditory memory. To address the issue, here we designed an auditory memory transferring study, by combining a previously developed unsupervised white noise memory paradigm with a reversed sound manipulation method. Specifically, we systematically measured the memory transferring from a random white noise sound to its locally temporal reversed version on various temporal scales in seven experiments. We demonstrate a U-shape memory-transferring pattern with the minimum value around temporal scale of 200 ms. Furthermore, neither auditory perceptual similarity nor physical similarity as a function of the manipulating temporal scale can account for the memory-transferring results. Our results suggest that sounds are not stored with all the fine spectrotemporal details but are organized and structured at discrete temporal chunks in long-term auditory memory representation.

  4. Fundamental deficits of auditory perception in Wernicke's aphasia.

    PubMed

    Robson, Holly; Grube, Manon; Lambon Ralph, Matthew A; Griffiths, Timothy D; Sage, Karen

    2013-01-01

    This work investigates the nature of the comprehension impairment in Wernicke's aphasia (WA), by examining the relationship between deficits in auditory processing of fundamental, non-verbal acoustic stimuli and auditory comprehension. WA, a condition resulting in severely disrupted auditory comprehension, primarily occurs following a cerebrovascular accident (CVA) to the left temporo-parietal cortex. Whilst damage to posterior superior temporal areas is associated with auditory linguistic comprehension impairments, functional-imaging indicates that these areas may not be specific to speech processing but part of a network for generic auditory analysis. We examined analysis of basic acoustic stimuli in WA participants (n = 10) using auditory stimuli reflective of theories of cortical auditory processing and of speech cues. Auditory spectral, temporal and spectro-temporal analysis was assessed using pure-tone frequency discrimination, frequency modulation (FM) detection and the detection of dynamic modulation (DM) in "moving ripple" stimuli. All tasks used criterion-free, adaptive measures of threshold to ensure reliable results at the individual level. Participants with WA showed normal frequency discrimination but significant impairments in FM and DM detection, relative to age- and hearing-matched controls at the group level (n = 10). At the individual level, there was considerable variation in performance, and thresholds for both FM and DM detection correlated significantly with auditory comprehension abilities in the WA participants. These results demonstrate the co-occurrence of a deficit in fundamental auditory processing of temporal and spectro-temporal non-verbal stimuli in WA, which may have a causal contribution to the auditory language comprehension impairment. Results are discussed in the context of traditional neuropsychology and current models of cortical auditory processing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Tinnitus alters resting state functional connectivity (RSFC) in human auditory and non-auditory brain regions as measured by functional near-infrared spectroscopy (fNIRS)

    PubMed Central

    Hu, Xiao-Su; Issa, Mohamad; Bisconti, Silvia; Kovelman, Ioulia; Kileny, Paul; Basura, Gregory

    2017-01-01

    Tinnitus, or phantom sound perception, leads to increased spontaneous neural firing rates and enhanced synchrony in central auditory circuits in animal models. These putative physiologic correlates of tinnitus to date have not been well translated in the brain of the human tinnitus sufferer. Using functional near-infrared spectroscopy (fNIRS) we recently showed that tinnitus in humans leads to maintained hemodynamic activity in auditory and adjacent, non-auditory cortices. Here we used fNIRS technology to investigate changes in resting state functional connectivity between human auditory and non-auditory brain regions in normal-hearing, bilateral subjective tinnitus and controls before and after auditory stimulation. Hemodynamic activity was monitored over the region of interest (primary auditory cortex) and non-region of interest (adjacent non-auditory cortices) and functional brain connectivity was measured during a 60-second baseline/period of silence before and after a passive auditory challenge consisting of alternating pure tones (750 and 8000Hz), broadband noise and silence. Functional connectivity was measured between all channel-pairs. Prior to stimulation, connectivity of the region of interest to the temporal and fronto-temporal region was decreased in tinnitus participants compared to controls. Overall, connectivity in tinnitus was differentially altered as compared to controls following sound stimulation. Enhanced connectivity was seen in both auditory and non-auditory regions in the tinnitus brain, while controls showed a decrease in connectivity following sound stimulation. In tinnitus, the strength of connectivity was increased between auditory cortex and fronto-temporal, fronto-parietal, temporal, occipito-temporal and occipital cortices. Together these data suggest that central auditory and non-auditory brain regions are modified in tinnitus and that resting functional connectivity measured by fNIRS technology may contribute to conscious phantom sound perception and potentially serve as an objective measure of central neural pathology. PMID:28604786

  6. Superior Temporal Activation in Response to Dynamic Audio-Visual Emotional Cues

    ERIC Educational Resources Information Center

    Robins, Diana L.; Hunyadi, Elinora; Schultz, Robert T.

    2009-01-01

    Perception of emotion is critical for successful social interaction, yet the neural mechanisms underlying the perception of dynamic, audio-visual emotional cues are poorly understood. Evidence from language and sensory paradigms suggests that the superior temporal sulcus and gyrus (STS/STG) play a key role in the integration of auditory and visual…

  7. Auditory Temporal Processing as a Specific Deficit among Dyslexic Readers

    ERIC Educational Resources Information Center

    Fostick, Leah; Bar-El, Sharona; Ram-Tsur, Ronit

    2012-01-01

    The present study focuses on examining the hypothesis that auditory temporal perception deficit is a basic cause for reading disabilities among dyslexics. This hypothesis maintains that reading impairment is caused by a fundamental perceptual deficit in processing rapid auditory or visual stimuli. Since the auditory perception involves a number of…

  8. Temporal lobe networks supporting the comprehension of spoken words.

    PubMed

    Bonilha, Leonardo; Hillis, Argye E; Hickok, Gregory; den Ouden, Dirk B; Rorden, Chris; Fridriksson, Julius

    2017-09-01

    Auditory word comprehension is a cognitive process that involves the transformation of auditory signals into abstract concepts. Traditional lesion-based studies of stroke survivors with aphasia have suggested that neocortical regions adjacent to auditory cortex are primarily responsible for word comprehension. However, recent primary progressive aphasia and normal neurophysiological studies have challenged this concept, suggesting that the left temporal pole is crucial for word comprehension. Due to its vasculature, the temporal pole is not commonly completely lesioned in stroke survivors and this heterogeneity may have prevented its identification in lesion-based studies of auditory comprehension. We aimed to resolve this controversy using a combined voxel-based-and structural connectome-lesion symptom mapping approach, since cortical dysfunction after stroke can arise from cortical damage or from white matter disconnection. Magnetic resonance imaging (T1-weighted and diffusion tensor imaging-based structural connectome), auditory word comprehension and object recognition tests were obtained from 67 chronic left hemisphere stroke survivors. We observed that damage to the inferior temporal gyrus, to the fusiform gyrus and to a white matter network including the left posterior temporal region and its connections to the middle temporal gyrus, inferior temporal gyrus, and cingulate cortex, was associated with word comprehension difficulties after factoring out object recognition. These results suggest that the posterior lateral and inferior temporal regions are crucial for word comprehension, serving as a hub to integrate auditory and conceptual processing. Early processing linking auditory words to concepts is situated in posterior lateral temporal regions, whereas additional and deeper levels of semantic processing likely require more anterior temporal regions.10.1093/brain/awx169_video1awx169media15555638084001. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Direct recordings from the auditory cortex in a cochlear implant user.

    PubMed

    Nourski, Kirill V; Etler, Christine P; Brugge, John F; Oya, Hiroyuki; Kawasaki, Hiroto; Reale, Richard A; Abbas, Paul J; Brown, Carolyn J; Howard, Matthew A

    2013-06-01

    Electrical stimulation of the auditory nerve with a cochlear implant (CI) is the method of choice for treatment of severe-to-profound hearing loss. Understanding how the human auditory cortex responds to CI stimulation is important for advances in stimulation paradigms and rehabilitation strategies. In this study, auditory cortical responses to CI stimulation were recorded intracranially in a neurosurgical patient to examine directly the functional organization of the auditory cortex and compare the findings with those obtained in normal-hearing subjects. The subject was a bilateral CI user with a 20-year history of deafness and refractory epilepsy. As part of the epilepsy treatment, a subdural grid electrode was implanted over the left temporal lobe. Pure tones, click trains, sinusoidal amplitude-modulated noise, and speech were presented via the auxiliary input of the right CI speech processor. Additional experiments were conducted with bilateral CI stimulation. Auditory event-related changes in cortical activity, characterized by the averaged evoked potential and event-related band power, were localized to posterolateral superior temporal gyrus. Responses were stable across recording sessions and were abolished under general anesthesia. Response latency decreased and magnitude increased with increasing stimulus level. More apical intracochlear stimulation yielded the largest responses. Cortical evoked potentials were phase-locked to the temporal modulations of periodic stimuli and speech utterances. Bilateral electrical stimulation resulted in minimal artifact contamination. This study demonstrates the feasibility of intracranial electrophysiological recordings of responses to CI stimulation in a human subject, shows that cortical response properties may be similar to those obtained in normal-hearing individuals, and provides a basis for future comparisons with extracranial recordings.

  10. Reconstructing the spectrotemporal modulations of real-life sounds from fMRI response patterns

    PubMed Central

    Santoro, Roberta; Moerel, Michelle; De Martino, Federico; Valente, Giancarlo; Ugurbil, Kamil; Yacoub, Essa; Formisano, Elia

    2017-01-01

    Ethological views of brain functioning suggest that sound representations and computations in the auditory neural system are optimized finely to process and discriminate behaviorally relevant acoustic features and sounds (e.g., spectrotemporal modulations in the songs of zebra finches). Here, we show that modeling of neural sound representations in terms of frequency-specific spectrotemporal modulations enables accurate and specific reconstruction of real-life sounds from high-resolution functional magnetic resonance imaging (fMRI) response patterns in the human auditory cortex. Region-based analyses indicated that response patterns in separate portions of the auditory cortex are informative of distinctive sets of spectrotemporal modulations. Most relevantly, results revealed that in early auditory regions, and progressively more in surrounding regions, temporal modulations in a range relevant for speech analysis (∼2–4 Hz) were reconstructed more faithfully than other temporal modulations. In early auditory regions, this effect was frequency-dependent and only present for lower frequencies (<∼2 kHz), whereas for higher frequencies, reconstruction accuracy was higher for faster temporal modulations. Further analyses suggested that auditory cortical processing optimized for the fine-grained discrimination of speech and vocal sounds underlies this enhanced reconstruction accuracy. In sum, the present study introduces an approach to embed models of neural sound representations in the analysis of fMRI response patterns. Furthermore, it reveals that, in the human brain, even general purpose and fundamental neural processing mechanisms are shaped by the physical features of real-world stimuli that are most relevant for behavior (i.e., speech, voice). PMID:28420788

  11. Evolutionary adaptations for the temporal processing of natural sounds by the anuran peripheral auditory system

    PubMed Central

    Schrode, Katrina M.; Bee, Mark A.

    2015-01-01

    ABSTRACT Sensory systems function most efficiently when processing natural stimuli, such as vocalizations, and it is thought that this reflects evolutionary adaptation. Among the best-described examples of evolutionary adaptation in the auditory system are the frequent matches between spectral tuning in both the peripheral and central auditory systems of anurans (frogs and toads) and the frequency spectra of conspecific calls. Tuning to the temporal properties of conspecific calls is less well established, and in anurans has so far been documented only in the central auditory system. Using auditory-evoked potentials, we asked whether there are species-specific or sex-specific adaptations of the auditory systems of gray treefrogs (Hyla chrysoscelis) and green treefrogs (H. cinerea) to the temporal modulations present in conspecific calls. Modulation rate transfer functions (MRTFs) constructed from auditory steady-state responses revealed that each species was more sensitive than the other to the modulation rates typical of conspecific advertisement calls. In addition, auditory brainstem responses (ABRs) to paired clicks indicated relatively better temporal resolution in green treefrogs, which could represent an adaptation to the faster modulation rates present in the calls of this species. MRTFs and recovery of ABRs to paired clicks were generally similar between the sexes, and we found no evidence that males were more sensitive than females to the temporal modulation patterns characteristic of the aggressive calls used in male–male competition. Together, our results suggest that efficient processing of the temporal properties of behaviorally relevant sounds begins at potentially very early stages of the anuran auditory system that include the periphery. PMID:25617467

  12. Neural Correlates of Auditory Figure-Ground Segregation Based on Temporal Coherence

    PubMed Central

    Teki, Sundeep; Barascud, Nicolas; Picard, Samuel; Payne, Christopher; Griffiths, Timothy D.; Chait, Maria

    2016-01-01

    To make sense of natural acoustic environments, listeners must parse complex mixtures of sounds that vary in frequency, space, and time. Emerging work suggests that, in addition to the well-studied spectral cues for segregation, sensitivity to temporal coherence—the coincidence of sound elements in and across time—is also critical for the perceptual organization of acoustic scenes. Here, we examine pre-attentive, stimulus-driven neural processes underlying auditory figure-ground segregation using stimuli that capture the challenges of listening in complex scenes where segregation cannot be achieved based on spectral cues alone. Signals (“stochastic figure-ground”: SFG) comprised a sequence of brief broadband chords containing random pure tone components that vary from 1 chord to another. Occasional tone repetitions across chords are perceived as “figures” popping out of a stochastic “ground.” Magnetoencephalography (MEG) measurement in naïve, distracted, human subjects revealed robust evoked responses, commencing from about 150 ms after figure onset that reflect the emergence of the “figure” from the randomly varying “ground.” Neural sources underlying this bottom-up driven figure-ground segregation were localized to planum temporale, and the intraparietal sulcus, demonstrating that this area, outside the “classic” auditory system, is also involved in the early stages of auditory scene analysis.” PMID:27325682

  13. Neural Correlates of Auditory Figure-Ground Segregation Based on Temporal Coherence.

    PubMed

    Teki, Sundeep; Barascud, Nicolas; Picard, Samuel; Payne, Christopher; Griffiths, Timothy D; Chait, Maria

    2016-09-01

    To make sense of natural acoustic environments, listeners must parse complex mixtures of sounds that vary in frequency, space, and time. Emerging work suggests that, in addition to the well-studied spectral cues for segregation, sensitivity to temporal coherence-the coincidence of sound elements in and across time-is also critical for the perceptual organization of acoustic scenes. Here, we examine pre-attentive, stimulus-driven neural processes underlying auditory figure-ground segregation using stimuli that capture the challenges of listening in complex scenes where segregation cannot be achieved based on spectral cues alone. Signals ("stochastic figure-ground": SFG) comprised a sequence of brief broadband chords containing random pure tone components that vary from 1 chord to another. Occasional tone repetitions across chords are perceived as "figures" popping out of a stochastic "ground." Magnetoencephalography (MEG) measurement in naïve, distracted, human subjects revealed robust evoked responses, commencing from about 150 ms after figure onset that reflect the emergence of the "figure" from the randomly varying "ground." Neural sources underlying this bottom-up driven figure-ground segregation were localized to planum temporale, and the intraparietal sulcus, demonstrating that this area, outside the "classic" auditory system, is also involved in the early stages of auditory scene analysis." © The Author 2016. Published by Oxford University Press.

  14. Fragile Spectral and Temporal Auditory Processing in Adolescents with Autism Spectrum Disorder and Early Language Delay

    ERIC Educational Resources Information Center

    Boets, Bart; Verhoeven, Judith; Wouters, Jan; Steyaert, Jean

    2015-01-01

    We investigated low-level auditory spectral and temporal processing in adolescents with autism spectrum disorder (ASD) and early language delay compared to matched typically developing controls. Auditory measures were designed to target right versus left auditory cortex processing (i.e. frequency discrimination and slow amplitude modulation (AM)…

  15. Auditory perception of a human walker.

    PubMed

    Cottrell, David; Campbell, Megan E J

    2014-01-01

    When one hears footsteps in the hall, one is able to instantly recognise it as a person: this is an everyday example of auditory biological motion perception. Despite the familiarity of this experience, research into this phenomenon is in its infancy compared with visual biological motion perception. Here, two experiments explored sensitivity to, and recognition of, auditory stimuli of biological and nonbiological origin. We hypothesised that the cadence of a walker gives rise to a temporal pattern of impact sounds that facilitates the recognition of human motion from auditory stimuli alone. First a series of detection tasks compared sensitivity with three carefully matched impact sounds: footsteps, a ball bouncing, and drumbeats. Unexpectedly, participants were no more sensitive to footsteps than to impact sounds of nonbiological origin. In the second experiment participants made discriminations between pairs of the same stimuli, in a series of recognition tasks in which the temporal pattern of impact sounds was manipulated to be either that of a walker or the pattern more typical of the source event (a ball bouncing or a drumbeat). Under these conditions, there was evidence that both temporal and nontemporal cues were important in recognising theses stimuli. It is proposed that the interval between footsteps, which reflects a walker's cadence, is a cue for the recognition of the sounds of a human walking.

  16. Auditory Cortex Is Required for Fear Potentiation of Gap Detection

    PubMed Central

    Weible, Aldis P.; Liu, Christine; Niell, Cristopher M.

    2014-01-01

    Auditory cortex is necessary for the perceptual detection of brief gaps in noise, but is not necessary for many other auditory tasks such as frequency discrimination, prepulse inhibition of startle responses, or fear conditioning with pure tones. It remains unclear why auditory cortex should be necessary for some auditory tasks but not others. One possibility is that auditory cortex is causally involved in gap detection and other forms of temporal processing in order to associate meaning with temporally structured sounds. This predicts that auditory cortex should be necessary for associating meaning with gaps. To test this prediction, we developed a fear conditioning paradigm for mice based on gap detection. We found that pairing a 10 or 100 ms gap with an aversive stimulus caused a robust enhancement of gap detection measured 6 h later, which we refer to as fear potentiation of gap detection. Optogenetic suppression of auditory cortex during pairing abolished this fear potentiation, indicating that auditory cortex is critically involved in associating temporally structured sounds with emotionally salient events. PMID:25392510

  17. Evolutionary adaptations for the temporal processing of natural sounds by the anuran peripheral auditory system.

    PubMed

    Schrode, Katrina M; Bee, Mark A

    2015-03-01

    Sensory systems function most efficiently when processing natural stimuli, such as vocalizations, and it is thought that this reflects evolutionary adaptation. Among the best-described examples of evolutionary adaptation in the auditory system are the frequent matches between spectral tuning in both the peripheral and central auditory systems of anurans (frogs and toads) and the frequency spectra of conspecific calls. Tuning to the temporal properties of conspecific calls is less well established, and in anurans has so far been documented only in the central auditory system. Using auditory-evoked potentials, we asked whether there are species-specific or sex-specific adaptations of the auditory systems of gray treefrogs (Hyla chrysoscelis) and green treefrogs (H. cinerea) to the temporal modulations present in conspecific calls. Modulation rate transfer functions (MRTFs) constructed from auditory steady-state responses revealed that each species was more sensitive than the other to the modulation rates typical of conspecific advertisement calls. In addition, auditory brainstem responses (ABRs) to paired clicks indicated relatively better temporal resolution in green treefrogs, which could represent an adaptation to the faster modulation rates present in the calls of this species. MRTFs and recovery of ABRs to paired clicks were generally similar between the sexes, and we found no evidence that males were more sensitive than females to the temporal modulation patterns characteristic of the aggressive calls used in male-male competition. Together, our results suggest that efficient processing of the temporal properties of behaviorally relevant sounds begins at potentially very early stages of the anuran auditory system that include the periphery. © 2015. Published by The Company of Biologists Ltd.

  18. An analysis of nonlinear dynamics underlying neural activity related to auditory induction in the rat auditory cortex.

    PubMed

    Noto, M; Nishikawa, J; Tateno, T

    2016-03-24

    A sound interrupted by silence is perceived as discontinuous. However, when high-intensity noise is inserted during the silence, the missing sound may be perceptually restored and be heard as uninterrupted. This illusory phenomenon is called auditory induction. Recent electrophysiological studies have revealed that auditory induction is associated with the primary auditory cortex (A1). Although experimental evidence has been accumulating, the neural mechanisms underlying auditory induction in A1 neurons are poorly understood. To elucidate this, we used both experimental and computational approaches. First, using an optical imaging method, we characterized population responses across auditory cortical fields to sound and identified five subfields in rats. Next, we examined neural population activity related to auditory induction with high temporal and spatial resolution in the rat auditory cortex (AC), including the A1 and several other AC subfields. Our imaging results showed that tone-burst stimuli interrupted by a silent gap elicited early phasic responses to the first tone and similar or smaller responses to the second tone following the gap. In contrast, tone stimuli interrupted by broadband noise (BN), considered to cause auditory induction, considerably suppressed or eliminated responses to the tone following the noise. Additionally, tone-burst stimuli that were interrupted by notched noise centered at the tone frequency, which is considered to decrease the strength of auditory induction, partially restored the second responses from the suppression caused by BN. To phenomenologically mimic the neural population activity in the A1 and thus investigate the mechanisms underlying auditory induction, we constructed a computational model from the periphery through the AC, including a nonlinear dynamical system. The computational model successively reproduced some of the above-mentioned experimental results. Therefore, our results suggest that a nonlinear, self-exciting system is a key element for qualitatively reproducing A1 population activity and to understand the underlying mechanisms. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Temporal Integration of Auditory Information Is Invariant to Temporal Grouping Cues

    PubMed

    Liu, Andrew S K; Tsunada, Joji; Gold, Joshua I; Cohen, Yale E

    2015-01-01

    Auditory perception depends on the temporal structure of incoming acoustic stimuli. Here, we examined whether a temporal manipulation that affects the perceptual grouping also affects the time dependence of decisions regarding those stimuli. We designed a novel discrimination task that required human listeners to decide whether a sequence of tone bursts was increasing or decreasing in frequency. We manipulated temporal perceptual-grouping cues by changing the time interval between the tone bursts, which led to listeners hearing the sequences as a single sound for short intervals or discrete sounds for longer intervals. Despite these strong perceptual differences, this manipulation did not affect the efficiency of how auditory information was integrated over time to form a decision. Instead, the grouping manipulation affected subjects' speed-accuracy trade-offs. These results indicate that the temporal dynamics of evidence accumulation for auditory perceptual decisions can be invariant to manipulations that affect the perceptual grouping of the evidence.

  20. Right anterior superior temporal activation predicts auditory sentence comprehension following aphasic stroke.

    PubMed

    Crinion, Jenny; Price, Cathy J

    2005-12-01

    Previous studies have suggested that recovery of speech comprehension after left hemisphere infarction may depend on a mechanism in the right hemisphere. However, the role that distinct right hemisphere regions play in speech comprehension following left hemisphere stroke has not been established. Here, we used functional magnetic resonance imaging (fMRI) to investigate narrative speech activation in 18 neurologically normal subjects and 17 patients with left hemisphere stroke and a history of aphasia. Activation for listening to meaningful stories relative to meaningless reversed speech was identified in the normal subjects and in each patient. Second level analyses were then used to investigate how story activation changed with the patients' auditory sentence comprehension skills and surprise story recognition memory tests post-scanning. Irrespective of lesion site, performance on tests of auditory sentence comprehension was positively correlated with activation in the right lateral superior temporal region, anterior to primary auditory cortex. In addition, when the stroke spared the left temporal cortex, good performance on tests of auditory sentence comprehension was also correlated with the left posterior superior temporal cortex (Wernicke's area). In distinct contrast to this, good story recognition memory predicted left inferior frontal and right cerebellar activation. The implication of this double dissociation in the effects of auditory sentence comprehension and story recognition memory is that left frontal and left temporal activations are dissociable. Our findings strongly support the role of the right temporal lobe in processing narrative speech and, in particular, auditory sentence comprehension following left hemisphere aphasic stroke. In addition, they highlight the importance of the right anterior superior temporal cortex where the response was dissociated from that in the left posterior temporal lobe.

  1. Passive stimulation and behavioral training differentially transform temporal processing in the inferior colliculus and primary auditory cortex

    PubMed Central

    Beitel, Ralph E.; Schreiner, Christoph E.; Leake, Patricia A.

    2016-01-01

    In profoundly deaf cats, behavioral training with intracochlear electric stimulation (ICES) can improve temporal processing in the primary auditory cortex (AI). To investigate whether similar effects are manifest in the auditory midbrain, ICES was initiated in neonatally deafened cats either during development after short durations of deafness (8 wk of age) or in adulthood after long durations of deafness (≥3.5 yr). All of these animals received behaviorally meaningless, “passive” ICES. Some animals also received behavioral training with ICES. Two long-deaf cats received no ICES prior to acute electrophysiological recording. After several months of passive ICES and behavioral training, animals were anesthetized, and neuronal responses to pulse trains of increasing rates were recorded in the central (ICC) and external (ICX) nuclei of the inferior colliculus. Neuronal temporal response patterns (repetition rate coding, minimum latencies, response precision) were compared with results from recordings made in the AI of the same animals (Beitel RE, Vollmer M, Raggio MW, Schreiner CE. J Neurophysiol 106: 944–959, 2011; Vollmer M, Beitel RE. J Neurophysiol 106: 2423–2436, 2011). Passive ICES in long-deaf cats remediated severely degraded temporal processing in the ICC and had no effects in the ICX. In contrast to observations in the AI, behaviorally relevant ICES had no effects on temporal processing in the ICC or ICX, with the single exception of shorter latencies in the ICC in short-deaf cats. The results suggest that independent of deafness duration passive stimulation and behavioral training differentially transform temporal processing in auditory midbrain and cortex, and primary auditory cortex emerges as a pivotal site for behaviorally driven neuronal temporal plasticity in the deaf cat. NEW & NOTEWORTHY Behaviorally relevant vs. passive electric stimulation of the auditory nerve differentially affects neuronal temporal processing in the central nucleus of the inferior colliculus (ICC) and the primary auditory cortex (AI) in profoundly short-deaf and long-deaf cats. Temporal plasticity in the ICC depends on a critical amount of electric stimulation, independent of its behavioral relevance. In contrast, the AI emerges as a pivotal site for behaviorally driven neuronal temporal plasticity in the deaf auditory system. PMID:27733594

  2. Stepping to phase-perturbed metronome cues: multisensory advantage in movement synchrony but not correction

    PubMed Central

    Wright, Rachel L.; Spurgeon, Laura C.; Elliott, Mark T.

    2014-01-01

    Humans can synchronize movements with auditory beats or rhythms without apparent effort. This ability to entrain to the beat is considered automatic, such that any perturbations are corrected for, even if the perturbation was not consciously noted. Temporal correction of upper limb (e.g., finger tapping) and lower limb (e.g., stepping) movements to a phase perturbed auditory beat usually results in individuals being back in phase after just a few beats. When a metronome is presented in more than one sensory modality, a multisensory advantage is observed, with reduced temporal variability in finger tapping movements compared to unimodal conditions. Here, we investigate synchronization of lower limb movements (stepping in place) to auditory, visual and combined auditory-visual (AV) metronome cues. In addition, we compare movement corrections to phase advance and phase delay perturbations in the metronome for the three sensory modality conditions. We hypothesized that, as with upper limb movements, there would be a multisensory advantage, with stepping variability being lowest in the bimodal condition. As such, we further expected correction to the phase perturbation to be quickest in the bimodal condition. Our results revealed lower variability in the asynchronies between foot strikes and the metronome beats in the bimodal condition, compared to unimodal conditions. However, while participants corrected substantially quicker to perturbations in auditory compared to visual metronomes, there was no multisensory advantage in the phase correction task—correction under the bimodal condition was almost identical to the auditory-only (AO) condition. On the whole, we noted that corrections in the stepping task were smaller than those previously reported for finger tapping studies. We conclude that temporal corrections are not only affected by the reliability of the sensory information, but also the complexity of the movement itself. PMID:25309397

  3. Stepping to phase-perturbed metronome cues: multisensory advantage in movement synchrony but not correction.

    PubMed

    Wright, Rachel L; Elliott, Mark T

    2014-01-01

    Humans can synchronize movements with auditory beats or rhythms without apparent effort. This ability to entrain to the beat is considered automatic, such that any perturbations are corrected for, even if the perturbation was not consciously noted. Temporal correction of upper limb (e.g., finger tapping) and lower limb (e.g., stepping) movements to a phase perturbed auditory beat usually results in individuals being back in phase after just a few beats. When a metronome is presented in more than one sensory modality, a multisensory advantage is observed, with reduced temporal variability in finger tapping movements compared to unimodal conditions. Here, we investigate synchronization of lower limb movements (stepping in place) to auditory, visual and combined auditory-visual (AV) metronome cues. In addition, we compare movement corrections to phase advance and phase delay perturbations in the metronome for the three sensory modality conditions. We hypothesized that, as with upper limb movements, there would be a multisensory advantage, with stepping variability being lowest in the bimodal condition. As such, we further expected correction to the phase perturbation to be quickest in the bimodal condition. Our results revealed lower variability in the asynchronies between foot strikes and the metronome beats in the bimodal condition, compared to unimodal conditions. However, while participants corrected substantially quicker to perturbations in auditory compared to visual metronomes, there was no multisensory advantage in the phase correction task-correction under the bimodal condition was almost identical to the auditory-only (AO) condition. On the whole, we noted that corrections in the stepping task were smaller than those previously reported for finger tapping studies. We conclude that temporal corrections are not only affected by the reliability of the sensory information, but also the complexity of the movement itself.

  4. Cerebral activation associated with speech sound discrimination during the diotic listening task: an fMRI study.

    PubMed

    Ikeda, Yumiko; Yahata, Noriaki; Takahashi, Hidehiko; Koeda, Michihiko; Asai, Kunihiko; Okubo, Yoshiro; Suzuki, Hidenori

    2010-05-01

    Comprehending conversation in a crowd requires appropriate orienting and sustainment of auditory attention to and discrimination of the target speaker. While a multitude of cognitive functions such as voice perception and language processing work in concert to subserve this ability, it is still unclear which cognitive components critically determine successful discrimination of speech sounds under constantly changing auditory conditions. To investigate this, we present a functional magnetic resonance imaging (fMRI) study of changes in cerebral activities associated with varying challenge levels of speech discrimination. Subjects participated in a diotic listening paradigm that presented them with two news stories read simultaneously but independently by a target speaker and a distracting speaker of incongruent or congruent sex. We found that the voice of distracter of congruent rather than incongruent sex made the listening more challenging, resulting in enhanced activities mainly in the left temporal and frontal gyri. Further, the activities at the left inferior, left anterior superior and right superior loci in the temporal gyrus were shown to be significantly correlated with accuracy of the discrimination performance. The present results suggest that the subregions of bilateral temporal gyri play a key role in the successful discrimination of speech under constantly changing auditory conditions as encountered in daily life. 2010 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  5. Seeing the Song: Left Auditory Structures May Track Auditory-Visual Dynamic Alignment

    PubMed Central

    Mossbridge, Julia A.; Grabowecky, Marcia; Suzuki, Satoru

    2013-01-01

    Auditory and visual signals generated by a single source tend to be temporally correlated, such as the synchronous sounds of footsteps and the limb movements of a walker. Continuous tracking and comparison of the dynamics of auditory-visual streams is thus useful for the perceptual binding of information arising from a common source. Although language-related mechanisms have been implicated in the tracking of speech-related auditory-visual signals (e.g., speech sounds and lip movements), it is not well known what sensory mechanisms generally track ongoing auditory-visual synchrony for non-speech signals in a complex auditory-visual environment. To begin to address this question, we used music and visual displays that varied in the dynamics of multiple features (e.g., auditory loudness and pitch; visual luminance, color, size, motion, and organization) across multiple time scales. Auditory activity (monitored using auditory steady-state responses, ASSR) was selectively reduced in the left hemisphere when the music and dynamic visual displays were temporally misaligned. Importantly, ASSR was not affected when attentional engagement with the music was reduced, or when visual displays presented dynamics clearly dissimilar to the music. These results appear to suggest that left-lateralized auditory mechanisms are sensitive to auditory-visual temporal alignment, but perhaps only when the dynamics of auditory and visual streams are similar. These mechanisms may contribute to correct auditory-visual binding in a busy sensory environment. PMID:24194873

  6. Auditory Processing, Speech Perception and Phonological Ability in Pre-School Children at High-Risk for Dyslexia: A Longitudinal Study of the Auditory Temporal Processing Theory

    ERIC Educational Resources Information Center

    Boets, Bart; Wouters, Jan; van Wieringen, Astrid; Ghesquiere, Pol

    2007-01-01

    This study investigates whether the core bottleneck of literacy-impairment should be situated at the phonological level or at a more basic sensory level, as postulated by supporters of the auditory temporal processing theory. Phonological ability, speech perception and low-level auditory processing were assessed in a group of 5-year-old pre-school…

  7. Spatio-temporal Dynamics of Audiovisual Speech Processing

    PubMed Central

    Bernstein, Lynne E.; Auer, Edward T.; Wagner, Michael; Ponton, Curtis W.

    2007-01-01

    The cortical processing of auditory-alone, visual-alone, and audiovisual speech information is temporally and spatially distributed, and functional magnetic resonance imaging (fMRI) cannot adequately resolve its temporal dynamics. In order to investigate a hypothesized spatio-temporal organization for audiovisual speech processing circuits, event-related potentials (ERPs) were recorded using electroencephalography (EEG). Stimuli were congruent audiovisual /bα/, incongruent auditory /bα/ synchronized with visual /gα/, auditory-only /bα/, and visual-only /bα/ and /gα/. Current density reconstructions (CDRs) of the ERP data were computed across the latency interval of 50-250 milliseconds. The CDRs demonstrated complex spatio-temporal activation patterns that differed across stimulus conditions. The hypothesized circuit that was investigated here comprised initial integration of audiovisual speech by the middle superior temporal sulcus (STS), followed by recruitment of the intraparietal sulcus (IPS), followed by activation of Broca's area (Miller and d'Esposito, 2005). The importance of spatio-temporally sensitive measures in evaluating processing pathways was demonstrated. Results showed, strikingly, early (< 100 msec) and simultaneous activations in areas of the supramarginal and angular gyrus (SMG/AG), the IPS, the inferior frontal gyrus, and the dorsolateral prefrontal cortex. Also, emergent left hemisphere SMG/AG activation, not predicted based on the unisensory stimulus conditions was observed at approximately 160 to 220 msec. The STS was neither the earliest nor most prominent activation site, although it is frequently considered the sine qua non of audiovisual speech integration. As discussed here, the relatively late activity of the SMG/AG solely under audiovisual conditions is a possible candidate audiovisual speech integration response. PMID:17920933

  8. Intracranial mapping of auditory perception: event-related responses and electrocortical stimulation.

    PubMed

    Sinai, A; Crone, N E; Wied, H M; Franaszczuk, P J; Miglioretti, D; Boatman-Reich, D

    2009-01-01

    We compared intracranial recordings of auditory event-related responses with electrocortical stimulation mapping (ESM) to determine their functional relationship. Intracranial recordings and ESM were performed, using speech and tones, in adult epilepsy patients with subdural electrodes implanted over lateral left cortex. Evoked N1 responses and induced spectral power changes were obtained by trial averaging and time-frequency analysis. ESM impaired perception and comprehension of speech, not tones, at electrode sites in the posterior temporal lobe. There was high spatial concordance between ESM sites critical for speech perception and the largest spectral power (100% concordance) and N1 (83%) responses to speech. N1 responses showed good sensitivity (0.75) and specificity (0.82), but poor positive predictive value (0.32). Conversely, increased high-frequency power (>60Hz) showed high specificity (0.98), but poorer sensitivity (0.67) and positive predictive value (0.67). Stimulus-related differences were observed in the spatial-temporal patterns of event-related responses. Intracranial auditory event-related responses to speech were associated with cortical sites critical for auditory perception and comprehension of speech. These results suggest that the distribution and magnitude of intracranial auditory event-related responses to speech reflect the functional significance of the underlying cortical regions and may be useful for pre-surgical functional mapping.

  9. Intracranial mapping of auditory perception: Event-related responses and electrocortical stimulation

    PubMed Central

    Sinai, A.; Crone, N.E.; Wied, H.M.; Franaszczuk, P.J.; Miglioretti, D.; Boatman-Reich, D.

    2010-01-01

    Objective We compared intracranial recordings of auditory event-related responses with electrocortical stimulation mapping (ESM) to determine their functional relationship. Methods Intracranial recordings and ESM were performed, using speech and tones, in adult epilepsy patients with subdural electrodes implanted over lateral left cortex. Evoked N1 responses and induced spectral power changes were obtained by trial averaging and time-frequency analysis. Results ESM impaired perception and comprehension of speech, not tones, at electrode sites in the posterior temporal lobe. There was high spatial concordance between ESM sites critical for speech perception and the largest spectral power (100% concordance) and N1 (83%) responses to speech. N1 responses showed good sensitivity (0.75) and specificity (0.82), but poor positive predictive value (0.32). Conversely, increased high-frequency power (>60 Hz) showed high specificity (0.98), but poorer sensitivity (0.67) and positive predictive value (0.67). Stimulus-related differences were observed in the spatial-temporal patterns of event-related responses. Conclusions Intracranial auditory event-related responses to speech were associated with cortical sites critical for auditory perception and comprehension of speech. Significance These results suggest that the distribution and magnitude of intracranial auditory event-related responses to speech reflect the functional significance of the underlying cortical regions and may be useful for pre-surgical functional mapping. PMID:19070540

  10. Task relevance modulates the behavioural and neural effects of sensory predictions

    PubMed Central

    Friston, Karl J.; Nobre, Anna C.

    2017-01-01

    The brain is thought to generate internal predictions to optimize behaviour. However, it is unclear whether predictions signalling is an automatic brain function or depends on task demands. Here, we manipulated the spatial/temporal predictability of visual targets, and the relevance of spatial/temporal information provided by auditory cues. We used magnetoencephalography (MEG) to measure participants’ brain activity during task performance. Task relevance modulated the influence of predictions on behaviour: spatial/temporal predictability improved spatial/temporal discrimination accuracy, but not vice versa. To explain these effects, we used behavioural responses to estimate subjective predictions under an ideal-observer model. Model-based time-series of predictions and prediction errors (PEs) were associated with dissociable neural responses: predictions correlated with cue-induced beta-band activity in auditory regions and alpha-band activity in visual regions, while stimulus-bound PEs correlated with gamma-band activity in posterior regions. Crucially, task relevance modulated these spectral correlates, suggesting that current goals influence PE and prediction signalling. PMID:29206225

  11. Visual and auditory perception in preschool children at risk for dyslexia.

    PubMed

    Ortiz, Rosario; Estévez, Adelina; Muñetón, Mercedes; Domínguez, Carolina

    2014-11-01

    Recently, there has been renewed interest in perceptive problems of dyslexics. A polemic research issue in this area has been the nature of the perception deficit. Another issue is the causal role of this deficit in dyslexia. Most studies have been carried out in adult and child literates; consequently, the observed deficits may be the result rather than the cause of dyslexia. This study addresses these issues by examining visual and auditory perception in children at risk for dyslexia. We compared children from preschool with and without risk for dyslexia in auditory and visual temporal order judgment tasks and same-different discrimination tasks. Identical visual and auditory, linguistic and nonlinguistic stimuli were presented in both tasks. The results revealed that the visual as well as the auditory perception of children at risk for dyslexia is impaired. The comparison between groups in auditory and visual perception shows that the achievement of children at risk was lower than children without risk for dyslexia in the temporal tasks. There were no differences between groups in auditory discrimination tasks. The difficulties of children at risk in visual and auditory perceptive processing affected both linguistic and nonlinguistic stimuli. Our conclusions are that children at risk for dyslexia show auditory and visual perceptive deficits for linguistic and nonlinguistic stimuli. The auditory impairment may be explained by temporal processing problems and these problems are more serious for processing language than for processing other auditory stimuli. These visual and auditory perceptive deficits are not the consequence of failing to learn to read, thus, these findings support the theory of temporal processing deficit. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Temporal integration at consecutive processing stages in the auditory pathway of the grasshopper.

    PubMed

    Wirtssohn, Sarah; Ronacher, Bernhard

    2015-04-01

    Temporal integration in the auditory system of locusts was quantified by presenting single clicks and click pairs while performing intracellular recordings. Auditory neurons were studied at three processing stages, which form a feed-forward network in the metathoracic ganglion. Receptor neurons and most first-order interneurons ("local neurons") encode the signal envelope, while second-order interneurons ("ascending neurons") tend to extract more complex, behaviorally relevant sound features. In different neuron types of the auditory pathway we found three response types: no significant temporal integration (some ascending neurons), leaky energy integration (receptor neurons and some local neurons), and facilitatory processes (some local and ascending neurons). The receptor neurons integrated input over very short time windows (<2 ms). Temporal integration on longer time scales was found at subsequent processing stages, indicative of within-neuron computations and network activity. These different strategies, realized at separate processing stages and in parallel neuronal pathways within one processing stage, could enable the grasshopper's auditory system to evaluate longer time windows and thus to implement temporal filters, while at the same time maintaining a high temporal resolution. Copyright © 2015 the American Physiological Society.

  13. Critical role for cochlear hair cell BK channels for coding the temporal structure and dynamic range of auditory information for central auditory processing

    PubMed Central

    Kurt, Simone; Sausbier, Matthias; Rüttiger, Lukas; Brandt, Niels; Moeller, Christoph K.; Kindler, Jennifer; Sausbier, Ulrike; Zimmermann, Ulrike; van Straaten, Harald; Neuhuber, Winfried; Engel, Jutta; Knipper, Marlies; Ruth, Peter; Schulze, Holger

    2012-01-01

    Large conductance, voltage- and Ca2+-activated K+ (BK) channels in inner hair cells (IHCs) of the cochlea are essential for hearing. However, germline deletion of BKα, the pore-forming subunit KCNMA1 of the BK channel, surprisingly did not affect hearing thresholds in the first postnatal weeks, even though altered IHC membrane time constants, decreased IHC receptor potential alternating current/direct current ratio, and impaired spike timing of auditory fibers were reported in these mice. To investigate the role of IHC BK channels for central auditory processing, we generated a conditional mouse model with hair cell-specific deletion of BKα from postnatal day 10 onward. This had an unexpected effect on temporal coding in the central auditory system: neuronal single and multiunit responses in the inferior colliculus showed higher excitability and greater precision of temporal coding that may be linked to the improved discrimination of temporally modulated sounds observed in behavioral training. The higher precision of temporal coding, however, was restricted to slower modulations of sound and reduced stimulus-driven activity. This suggests a diminished dynamic range of stimulus coding that is expected to impair signal detection in noise. Thus, BK channels in IHCs are crucial for central coding of the temporal fine structure of sound and for detection of signals in a noisy environment.—Kurt, S., Sausbier, M., Rüttiger, L., Brandt, N., Moeller, C. K., Kindler, J., Sausbier, U., Zimmermann, U., van Straaten, H., Neuhuber, W., Engel, J., Knipper, M., Ruth, P., Schulze, H. Critical role for cochlear hair cell BK channels for coding the temporal structure and dynamic range of auditory information for central auditory processing. PMID:22691916

  14. A Percutaneous Transtubular Middle Fossa Approach for Intracanalicular Tumors.

    PubMed

    Bernardo, Antonio; Evins, Alexander I; Tsiouris, Apostolos J; Stieg, Philip E

    2015-07-01

    In cases of small intracanalicular tumors (≤ 1.5 cm), the middle fossa approach (MFA) provides the ability for adequate tumor removal with preservation of existing auditory function. Application of a minimally invasive tubular retractor in this approach may help mitigate the risk of postoperative seizures, aphasia, and venous complications by minimizing intraoperative retraction of the temporal lobe. We propose a minimally invasive microscopic and/or endoscopic percutaneous transtubular MFA for the management of intracanalicular tumors. Subtemporal keyhole craniectomies were performed on 5 preserved cadaveric heads (10 sides), with 6 sides previously injected with a synthetic tumor model. A ViewSite Brain Access System tubular retractor (Vycor Medical, Inc., Boca Raton, Florida, USA) was used to provide minimal temporal retraction and protection of the surrounding anatomy. An extradural dissection of the internal auditory canal was performed under microscopic and endoscopic visualization with a minimally invasive surgical drill and tube shaft instruments, the intracanalicular tumors were removed, and degree of resection was assessed. All 10 approaches were completed successfully through the tubular retractor with minimal retraction of the temporal lobe. Excellent visualization of the structures within the internal auditory canal was achieved with both the microscope and 3-dimensional endoscope. On the 6 synthetic intracanalicular tumors resected, 5 gross total (Grade I) and 1 near total (Grade II) resections were achieved. A percutaneous transtubular MFA is a feasible minimally invasive option for resection of small intracanalicular tumors with potential preservation of auditory function, reduced temporal retraction, and enhanced protection of surrounding structures. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Bilateral Capacity for Speech Sound Processing in Auditory Comprehension: Evidence from Wada Procedures

    ERIC Educational Resources Information Center

    Hickok, G.; Okada, K.; Barr, W.; Pa, J.; Rogalsky, C.; Donnelly, K.; Barde, L.; Grant, A.

    2008-01-01

    Data from lesion studies suggest that the ability to perceive speech sounds, as measured by auditory comprehension tasks, is supported by temporal lobe systems in both the left and right hemisphere. For example, patients with left temporal lobe damage and auditory comprehension deficits (i.e., Wernicke's aphasics), nonetheless comprehend isolated…

  16. Intact Spectral but Abnormal Temporal Processing of Auditory Stimuli in Autism

    ERIC Educational Resources Information Center

    Groen, Wouter B.; van Orsouw, Linda; ter Huurne, Niels; Swinkels, Sophie; van der Gaag, Rutger-Jan; Buitelaar, Jan K.; Zwiers, Marcel P.

    2009-01-01

    The perceptual pattern in autism has been related to either a specific localized processing deficit or a pathway-independent, complexity-specific anomaly. We examined auditory perception in autism using an auditory disembedding task that required spectral and temporal integration. 23 children with high-functioning-autism and 23 matched controls…

  17. Temporal processing and long-latency auditory evoked potential in stutterers.

    PubMed

    Prestes, Raquel; de Andrade, Adriana Neves; Santos, Renata Beatriz Fernandes; Marangoni, Andrea Tortosa; Schiefer, Ana Maria; Gil, Daniela

    Stuttering is a speech fluency disorder, and may be associated with neuroaudiological factors linked to central auditory processing, including changes in auditory processing skills and temporal resolution. To characterize the temporal processing and long-latency auditory evoked potential in stutterers and to compare them with non-stutterers. The study included 41 right-handed subjects, aged 18-46 years, divided into two groups: stutterers (n=20) and non-stutters (n=21), compared according to age, education, and sex. All subjects were submitted to the duration pattern tests, random gap detection test, and long-latency auditory evoked potential. Individuals who stutter showed poorer performance on Duration Pattern and Random Gap Detection tests when compared with fluent individuals. In the long-latency auditory evoked potential, there was a difference in the latency of N2 and P3 components; stutterers had higher latency values. Stutterers have poor performance in temporal processing and higher latency values for N2 and P3 components. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  18. Auditory temporal processing skills in musicians with dyslexia.

    PubMed

    Bishop-Liebler, Paula; Welch, Graham; Huss, Martina; Thomson, Jennifer M; Goswami, Usha

    2014-08-01

    The core cognitive difficulty in developmental dyslexia involves phonological processing, but adults and children with dyslexia also have sensory impairments. Impairments in basic auditory processing show particular links with phonological impairments, and recent studies with dyslexic children across languages reveal a relationship between auditory temporal processing and sensitivity to rhythmic timing and speech rhythm. As rhythm is explicit in music, musical training might have a beneficial effect on the auditory perception of acoustic cues to rhythm in dyslexia. Here we took advantage of the presence of musicians with and without dyslexia in musical conservatoires, comparing their auditory temporal processing abilities with those of dyslexic non-musicians matched for cognitive ability. Musicians with dyslexia showed equivalent auditory sensitivity to musicians without dyslexia and also showed equivalent rhythm perception. The data support the view that extensive rhythmic experience initiated during childhood (here in the form of music training) can affect basic auditory processing skills which are found to be deficient in individuals with dyslexia. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Motor contributions to the temporal precision of auditory attention.

    PubMed

    Morillon, Benjamin; Schroeder, Charles E; Wyart, Valentin

    2014-10-15

    In temporal-or dynamic-attending theory, it is proposed that motor activity helps to synchronize temporal fluctuations of attention with the timing of events in a task-relevant stream, thus facilitating sensory selection. Here we develop a mechanistic behavioural account for this theory by asking human participants to track a slow reference beat, by noiseless finger pressing, while extracting auditory target tones delivered on-beat and interleaved with distractors. We find that overt rhythmic motor activity improves the segmentation of auditory information by enhancing sensitivity to target tones while actively suppressing distractor tones. This effect is triggered by cyclic fluctuations in sensory gain locked to individual motor acts, scales parametrically with the temporal predictability of sensory events and depends on the temporal alignment between motor and attention fluctuations. Together, these findings reveal how top-down influences associated with a rhythmic motor routine sharpen sensory representations, enacting auditory 'active sensing'.

  20. Transformation of temporal sequences in the zebra finch auditory system

    PubMed Central

    Lim, Yoonseob; Lagoy, Ryan; Shinn-Cunningham, Barbara G; Gardner, Timothy J

    2016-01-01

    This study examines how temporally patterned stimuli are transformed as they propagate from primary to secondary zones in the thalamorecipient auditory pallium in zebra finches. Using a new class of synthetic click stimuli, we find a robust mapping from temporal sequences in the primary zone to distinct population vectors in secondary auditory areas. We tested whether songbirds could discriminate synthetic click sequences in an operant setup and found that a robust behavioral discrimination is present for click sequences composed of intervals ranging from 11 ms to 40 ms, but breaks down for stimuli composed of longer inter-click intervals. This work suggests that the analog of the songbird auditory cortex transforms temporal patterns to sequence-selective population responses or ‘spatial codes', and that these distinct population responses contribute to behavioral discrimination of temporally complex sounds. DOI: http://dx.doi.org/10.7554/eLife.18205.001 PMID:27897971

  1. Realigning thunder and lightning: temporal adaptation to spatiotemporally distant events.

    PubMed

    Navarra, Jordi; Fernández-Prieto, Irune; Garcia-Morera, Joel

    2013-01-01

    The brain is able to realign asynchronous signals that approximately coincide in both space and time. Given that many experience-based links between visual and auditory stimuli are established in the absence of spatiotemporal proximity, we investigated whether or not temporal realignment arises in these conditions. Participants received a 3-min exposure to visual and auditory stimuli that were separated by 706 ms and appeared either from the same (Experiment 1) or from different spatial positions (Experiment 2). A simultaneity judgment task (SJ) was administered right afterwards. Temporal realignment between vision and audition was observed, in both Experiment 1 and 2, when comparing the participants' SJs after this exposure phase with those obtained after a baseline exposure to audiovisual synchrony. However, this effect was present only when the visual stimuli preceded the auditory stimuli during the exposure to asynchrony. A similar pattern of results (temporal realignment after exposure to visual-leading asynchrony but not after exposure to auditory-leading asynchrony) was obtained using temporal order judgments (TOJs) instead of SJs (Experiment 3). Taken together, these results suggest that temporal recalibration still occurs for visual and auditory stimuli that fall clearly outside the so-called temporal window for multisensory integration and appear from different spatial positions. This temporal realignment may be modulated by long-term experience with the kind of asynchrony (vision-leading) that we most frequently encounter in the outside world (e.g., while perceiving distant events).

  2. Temporal Integration of Auditory Information Is Invariant to Temporal Grouping Cues1,2,3

    PubMed Central

    Tsunada, Joji

    2015-01-01

    Abstract Auditory perception depends on the temporal structure of incoming acoustic stimuli. Here, we examined whether a temporal manipulation that affects the perceptual grouping also affects the time dependence of decisions regarding those stimuli. We designed a novel discrimination task that required human listeners to decide whether a sequence of tone bursts was increasing or decreasing in frequency. We manipulated temporal perceptual-grouping cues by changing the time interval between the tone bursts, which led to listeners hearing the sequences as a single sound for short intervals or discrete sounds for longer intervals. Despite these strong perceptual differences, this manipulation did not affect the efficiency of how auditory information was integrated over time to form a decision. Instead, the grouping manipulation affected subjects’ speed−accuracy trade-offs. These results indicate that the temporal dynamics of evidence accumulation for auditory perceptual decisions can be invariant to manipulations that affect the perceptual grouping of the evidence. PMID:26464975

  3. Representations of temporal information in short-term memory: Are they modality-specific?

    PubMed

    Bratzke, Daniel; Quinn, Katrina R; Ulrich, Rolf; Bausenhart, Karin M

    2016-10-01

    Rattat and Picard (2012) reported that the coding of temporal information in short-term memory is modality-specific, that is, temporal information received via the visual (auditory) modality is stored as a visual (auditory) code. This conclusion was supported by modality-specific interference effects on visual and auditory duration discrimination, which were induced by secondary tasks (visual tracking or articulatory suppression), presented during a retention interval. The present study assessed the stability of these modality-specific interference effects. Our study did not replicate the selective interference pattern but rather indicated that articulatory suppression not only impairs short-term memory for auditory but also for visual durations. This result pattern supports a crossmodal or an abstract view of temporal encoding. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Differential sensory cortical involvement in auditory and visual sensorimotor temporal recalibration: Evidence from transcranial direct current stimulation (tDCS).

    PubMed

    Aytemür, Ali; Almeida, Nathalia; Lee, Kwang-Hyuk

    2017-02-01

    Adaptation to delayed sensory feedback following an action produces a subjective time compression between the action and the feedback (temporal recalibration effect, TRE). TRE is important for sensory delay compensation to maintain a relationship between causally related events. It is unclear whether TRE is a sensory modality-specific phenomenon. In 3 experiments employing a sensorimotor synchronization task, we investigated this question using cathodal transcranial direct-current stimulation (tDCS). We found that cathodal tDCS over the visual cortex, and to a lesser extent over the auditory cortex, produced decreased visual TRE. However, both auditory and visual cortex tDCS did not produce any measurable effects on auditory TRE. Our study revealed different nature of TRE in auditory and visual domains. Visual-motor TRE, which is more variable than auditory TRE, is a sensory modality-specific phenomenon, modulated by the auditory cortex. The robustness of auditory-motor TRE, unaffected by tDCS, suggests the dominance of the auditory system in temporal processing, by providing a frame of reference in the realignment of sensorimotor timing signals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Auditory and motor imagery modulate learning in music performance

    PubMed Central

    Brown, Rachel M.; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of auditory interference. Motor imagery aided pitch accuracy overall when interference conditions were manipulated at encoding (Experiment 1) but not at retrieval (Experiment 2). Thus, skilled performers' imagery abilities had distinct influences on encoding and retrieval of musical sequences. PMID:23847495

  6. Visual and auditory socio-cognitive perception in unilateral temporal lobe epilepsy in children and adolescents: a prospective controlled study.

    PubMed

    Laurent, Agathe; Arzimanoglou, Alexis; Panagiotakaki, Eleni; Sfaello, Ignacio; Kahane, Philippe; Ryvlin, Philippe; Hirsch, Edouard; de Schonen, Scania

    2014-12-01

    A high rate of abnormal social behavioural traits or perceptual deficits is observed in children with unilateral temporal lobe epilepsy. In the present study, perception of auditory and visual social signals, carried by faces and voices, was evaluated in children or adolescents with temporal lobe epilepsy. We prospectively investigated a sample of 62 children with focal non-idiopathic epilepsy early in the course of the disorder. The present analysis included 39 children with a confirmed diagnosis of temporal lobe epilepsy. Control participants (72), distributed across 10 age groups, served as a control group. Our socio-perceptual evaluation protocol comprised three socio-visual tasks (face identity, facial emotion and gaze direction recognition), two socio-auditory tasks (voice identity and emotional prosody recognition), and three control tasks (lip reading, geometrical pattern and linguistic intonation recognition). All 39 patients also benefited from a neuropsychological examination. As a group, children with temporal lobe epilepsy performed at a significantly lower level compared to the control group with regards to recognition of facial identity, direction of eye gaze, and emotional facial expressions. We found no relationship between the type of visual deficit and age at first seizure, duration of epilepsy, or the epilepsy-affected cerebral hemisphere. Deficits in socio-perceptual tasks could be found independently of the presence of deficits in visual or auditory episodic memory, visual non-facial pattern processing (control tasks), or speech perception. A normal FSIQ did not exempt some of the patients from an underlying deficit in some of the socio-perceptual tasks. Temporal lobe epilepsy not only impairs development of emotion recognition, but can also impair development of perception of other socio-perceptual signals in children with or without intellectual deficiency. Prospective studies need to be designed to evaluate the results of appropriate re-education programs in children presenting with deficits in social cue processing.

  7. The spectrotemporal filter mechanism of auditory selective attention

    PubMed Central

    Lakatos, Peter; Musacchia, Gabriella; O’Connell, Monica N.; Falchier, Arnaud Y.; Javitt, Daniel C.; Schroeder, Charles E.

    2013-01-01

    SUMMARY While we have convincing evidence that attention to auditory stimuli modulates neuronal responses at or before the level of primary auditory cortex (A1), the underlying physiological mechanisms are unknown. We found that attending to rhythmic auditory streams resulted in the entrainment of ongoing oscillatory activity reflecting rhythmic excitability fluctuations in A1. Strikingly, while the rhythm of the entrained oscillations in A1 neuronal ensembles reflected the temporal structure of the attended stream, the phase depended on the attended frequency content. Counter-phase entrainment across differently tuned A1 regions resulted in both the amplification and sharpening of responses at attended time points, in essence acting as a spectrotemporal filter mechanism. Our data suggest that selective attention generates a dynamically evolving model of attended auditory stimulus streams in the form of modulatory subthreshold oscillations across tonotopically organized neuronal ensembles in A1 that enhances the representation of attended stimuli. PMID:23439126

  8. Impaired auditory temporal selectivity in the inferior colliculus of aged Mongolian gerbils.

    PubMed

    Khouri, Leila; Lesica, Nicholas A; Grothe, Benedikt

    2011-07-06

    Aged humans show severe difficulties in temporal auditory processing tasks (e.g., speech recognition in noise, low-frequency sound localization, gap detection). A degradation of auditory function with age is also evident in experimental animals. To investigate age-related changes in temporal processing, we compared extracellular responses to temporally variable pulse trains and human speech in the inferior colliculus of young adult (3 month) and aged (3 years) Mongolian gerbils. We observed a significant decrease of selectivity to the pulse trains in neuronal responses from aged animals. This decrease in selectivity led, on the population level, to an increase in signal correlations and therefore a decrease in heterogeneity of temporal receptive fields and a decreased efficiency in encoding of speech signals. A decrease in selectivity to temporal modulations is consistent with a downregulation of the inhibitory transmitter system in aged animals. These alterations in temporal processing could underlie declines in the aging auditory system, which are unrelated to peripheral hearing loss. These declines cannot be compensated by traditional hearing aids (that rely on amplification of sound) but may rather require pharmacological treatment.

  9. Time Determines the Neural Circuit Underlying Associative Fear Learning

    PubMed Central

    Guimarãis, Marta; Gregório, Ana; Cruz, Andreia; Guyon, Nicolas; Moita, Marta A.

    2011-01-01

    Ultimately associative learning is a function of the temporal features and relationships between experienced stimuli. Nevertheless how time affects the neural circuit underlying this form of learning remains largely unknown. To address this issue, we used single-trial auditory trace fear conditioning and varied the length of the interval between tone and foot-shock. Through temporary inactivation of the amygdala, medial prefrontal-cortex (mPFC), and dorsal-hippocampus in rats, we tested the hypothesis that different temporal intervals between the tone and the shock influence the neuronal structures necessary for learning. With this study we provide the first experimental evidence showing that temporarily inactivating the amygdala before training impairs auditory fear learning when there is a temporal gap between the tone and the shock. Moreover, imposing a short interval (5 s) between the two stimuli also relies on the mPFC, while learning the association across a longer interval (40 s) becomes additionally dependent on a third structure, the dorsal-hippocampus. Thus, our results suggest that increasing the interval length between tone and shock leads to the involvement of an increasing number of brain areas in order for the association between the two stimuli to be acquired normally. These findings demonstrate that the temporal relationship between events is a key factor in determining the neuronal mechanisms underlying associative fear learning. PMID:22207842

  10. Auditory temporal preparation induced by rhythmic cues during concurrent auditory working memory tasks.

    PubMed

    Cutanda, Diana; Correa, Ángel; Sanabria, Daniel

    2015-06-01

    The present study investigated whether participants can develop temporal preparation driven by auditory isochronous rhythms when concurrently performing an auditory working memory (WM) task. In Experiment 1, participants had to respond to an auditory target presented after a regular or an irregular sequence of auditory stimuli while concurrently performing a Sternberg-type WM task. Results showed that participants responded faster after regular compared with irregular rhythms and that this effect was not affected by WM load; however, the lack of a significant main effect of WM load made it difficult to draw any conclusion regarding the influence of the dual-task manipulation in Experiment 1. In order to enhance dual-task interference, Experiment 2 combined the auditory rhythm procedure with an auditory N-Back task, which required WM updating (monitoring and coding of the information) and was presumably more demanding than the mere rehearsal of the WM task used in Experiment 1. Results now clearly showed dual-task interference effects (slower reaction times [RTs] in the high- vs. the low-load condition). However, such interference did not affect temporal preparation induced by rhythms, with faster RTs after regular than after irregular sequences in the high-load and low-load conditions. These results revealed that secondary tasks demanding memory updating, relative to tasks just demanding rehearsal, produced larger interference effects on overall RTs in the auditory rhythm task. Nevertheless, rhythm regularity exerted a strong temporal preparation effect that survived the interference of the WM task even when both tasks competed for processing resources within the auditory modality. (c) 2015 APA, all rights reserved).

  11. A Novel Functional Magnetic Resonance Imaging Paradigm for the Preoperative Assessment of Auditory Perception in a Musician Undergoing Temporal Lobe Surgery.

    PubMed

    Hale, Matthew D; Zaman, Arshad; Morrall, Matthew C H J; Chumas, Paul; Maguire, Melissa J

    2018-03-01

    Presurgical evaluation for temporal lobe epilepsy routinely assesses speech and memory lateralization and anatomic localization of the motor and visual areas but not baseline musical processing. This is paramount in a musician. Although validated tools exist to assess musical ability, there are no reported functional magnetic resonance imaging (fMRI) paradigms to assess musical processing. We examined the utility of a novel fMRI paradigm in an 18-year-old left-handed pianist who underwent surgery for a left temporal low-grade ganglioglioma. Preoperative evaluation consisted of neuropsychological evaluation, T1-weighted and T2-weighted magnetic resonance imaging, and fMRI. Auditory blood oxygen level-dependent fMRI was performed using a dedicated auditory scanning sequence. Three separate auditory investigations were conducted: listening to, humming, and thinking about a musical piece. All auditory fMRI paradigms activated the primary auditory cortex with varying degrees of auditory lateralization. Thinking about the piece additionally activated the primary visual cortices (bilaterally) and right dorsolateral prefrontal cortex. Humming demonstrated left-sided predominance of auditory cortex activation with activity observed in close proximity to the tumor. This study demonstrated an fMRI paradigm for evaluating musical processing that could form part of preoperative assessment for patients undergoing temporal lobe surgery for epilepsy. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Psychoacoustics

    NASA Astrophysics Data System (ADS)

    Moore, Brian C. J.

    Psychoacoustics psychological is concerned with the relationships between the physical characteristics of sounds and their perceptual attributes. This chapter describes: the absolute sensitivity of the auditory system for detecting weak sounds and how that sensitivity varies with frequency; the frequency selectivity of the auditory system (the ability to resolve or hear out the sinusoidal components in a complex sound) and its characterization in terms of an array of auditory filters; the processes that influence the masking of one sound by another; the range of sound levels that can be processed by the auditory system; the perception and modeling of loudness; level discrimination; the temporal resolution of the auditory system (the ability to detect changes over time); the perception and modeling of pitch for pure and complex tones; the perception of timbre for steady and time-varying sounds; the perception of space and sound localization; and the mechanisms underlying auditory scene analysis that allow the construction of percepts corresponding to individual sounds sources when listening to complex mixtures of sounds.

  13. Articulatory movements modulate auditory responses to speech

    PubMed Central

    Agnew, Z.K.; McGettigan, C.; Banks, B.; Scott, S.K.

    2013-01-01

    Production of actions is highly dependent on concurrent sensory information. In speech production, for example, movement of the articulators is guided by both auditory and somatosensory input. It has been demonstrated in non-human primates that self-produced vocalizations and those of others are differentially processed in the temporal cortex. The aim of the current study was to investigate how auditory and motor responses differ for self-produced and externally produced speech. Using functional neuroimaging, subjects were asked to produce sentences aloud, to silently mouth while listening to a different speaker producing the same sentence, to passively listen to sentences being read aloud, or to read sentences silently. We show that that separate regions of the superior temporal cortex display distinct response profiles to speaking aloud, mouthing while listening, and passive listening. Responses in anterior superior temporal cortices in both hemispheres are greater for passive listening compared with both mouthing while listening, and speaking aloud. This is the first demonstration that articulation, whether or not it has auditory consequences, modulates responses of the dorsolateral temporal cortex. In contrast posterior regions of the superior temporal cortex are recruited during both articulation conditions. In dorsal regions of the posterior superior temporal gyrus, responses to mouthing and reading aloud were equivalent, and in more ventral posterior superior temporal sulcus, responses were greater for reading aloud compared with mouthing while listening. These data demonstrate an anterior–posterior division of superior temporal regions where anterior fields are suppressed during motor output, potentially for the purpose of enhanced detection of the speech of others. We suggest posterior fields are engaged in auditory processing for the guidance of articulation by auditory information. PMID:22982103

  14. Neural Correlates of Multisensory Perceptual Learning

    PubMed Central

    Powers, Albert R.; Hevey, Matthew A.; Wallace, Mark T.

    2012-01-01

    The brain’s ability to bind incoming auditory and visual stimuli depends critically on the temporal structure of this information. Specifically, there exists a temporal window of audiovisual integration within which stimuli are highly likely to be perceived as part of the same environmental event. Several studies have described the temporal bounds of this window, but few have investigated its malleability. Recently, our laboratory has demonstrated that a perceptual training paradigm is capable of eliciting a 40% narrowing in the width of this window that is stable for at least one week after cessation of training. In the current study we sought to reveal the neural substrates of these changes. Eleven human subjects completed an audiovisual simultaneity judgment training paradigm, immediately before and after which they performed the same task during an event-related 3T fMRI session. The posterior superior temporal sulcus (pSTS) and areas of auditory and visual cortex exhibited robust BOLD decreases following training, and resting state and effective connectivity analyses revealed significant increases in coupling among these cortices after training. These results provide the first evidence of the neural correlates underlying changes in multisensory temporal binding and that likely represent the substrate for a multisensory temporal binding window. PMID:22553032

  15. Characteristics of hearing and echolocation in under-studied odontocete species

    NASA Astrophysics Data System (ADS)

    Smith, Adam B.

    All odontoctes (toothed whales and dolphins) studied to date have been shown to echolocate. They use sound as their primary means for foraging, navigation, and communication with conspecifics and are thus considered acoustic specialists. However, the vast majority of what is known about odontocete acoustic systems comes from only a handful of the 76 recognized extant species. The research presented in this dissertation investigated basic characteristics of odontocete hearing and echolocation, including auditory temporal resolution, auditory pathways, directional hearing, and transmission beam characteristics, in individuals of five different odontocete species that are understudied. Modulation rate transfer functions were measured from formerly stranded individuals of four different species (Stenella longirostris, Feresa attenuata, Globicephala melas, Mesoplodon densirostris) using non-invasive auditory evoked potential methods. All individuals showed acute auditory temporal resolution that was comparable to other studied odontocete species. Using the same electrophysiological methods, auditory pathways and directional hearing were investigated in a Risso's dolphin (Grampus griseus) using both localized and far-field acoustic stimuli. The dolphin's hearing showed significant, frequency dependent asymmetry to localized sound presented on the right and left sides of its head. The dolphin also showed acute, but mostly symmetrical, directional auditory sensitivity to sounds presented in the far-field. Furthermore, characteristics of the echolocation transmission beam of this same individual Risso's dolphin were measured using a 16 element hydrophone array. The dolphin exhibited both single and dual lobed beam shapes that were more directional than similar measurements from a bottlenose dolphin, harbor porpoise, and false killer whale.

  16. Perceptual learning in temporal discrimination: asymmetric cross-modal transfer from audition to vision.

    PubMed

    Bratzke, Daniel; Seifried, Tanja; Ulrich, Rolf

    2012-08-01

    This study assessed possible cross-modal transfer effects of training in a temporal discrimination task from vision to audition as well as from audition to vision. We employed a pretest-training-post-test design including a control group that performed only the pretest and the post-test. Trained participants showed better discrimination performance with their trained interval than the control group. This training effect transferred to the other modality only for those participants who had been trained with auditory stimuli. The present study thus demonstrates for the first time that training on temporal discrimination within the auditory modality can transfer to the visual modality but not vice versa. This finding represents a novel illustration of auditory dominance in temporal processing and is consistent with the notion that time is primarily encoded in the auditory system.

  17. An fMRI Study of the Neural Systems Involved in Visually Cued Auditory Top-Down Spatial and Temporal Attention

    PubMed Central

    Li, Chunlin; Chen, Kewei; Han, Hongbin; Chui, Dehua; Wu, Jinglong

    2012-01-01

    Top-down attention to spatial and temporal cues has been thoroughly studied in the visual domain. However, because the neural systems that are important for auditory top-down temporal attention (i.e., attention based on time interval cues) remain undefined, the differences in brain activity between directed attention to auditory spatial location (compared with time intervals) are unclear. Using fMRI (magnetic resonance imaging), we measured the activations caused by cue-target paradigms by inducing the visual cueing of attention to an auditory target within a spatial or temporal domain. Imaging results showed that the dorsal frontoparietal network (dFPN), which consists of the bilateral intraparietal sulcus and the frontal eye field, responded to spatial orienting of attention, but activity was absent in the bilateral frontal eye field (FEF) during temporal orienting of attention. Furthermore, the fMRI results indicated that activity in the right ventrolateral prefrontal cortex (VLPFC) was significantly stronger during spatial orienting of attention than during temporal orienting of attention, while the DLPFC showed no significant differences between the two processes. We conclude that the bilateral dFPN and the right VLPFC contribute to auditory spatial orienting of attention. Furthermore, specific activations related to temporal cognition were confirmed within the superior occipital gyrus, tegmentum, motor area, thalamus and putamen. PMID:23166800

  18. Noise-induced hearing loss alters the temporal dynamics of auditory-nerve responses

    PubMed Central

    Scheidt, Ryan E.; Kale, Sushrut; Heinz, Michael G.

    2010-01-01

    Auditory-nerve fibers demonstrate dynamic response properties in that they adapt to rapid changes in sound level, both at the onset and offset of a sound. These dynamic response properties affect temporal coding of stimulus modulations that are perceptually relevant for many sounds such as speech and music. Temporal dynamics have been well characterized in auditory-nerve fibers from normal-hearing animals, but little is known about the effects of sensorineural hearing loss on these dynamics. This study examined the effects of noise-induced hearing loss on the temporal dynamics in auditory-nerve fiber responses from anesthetized chinchillas. Post-stimulus time histograms were computed from responses to 50-ms tones presented at characteristic frequency and 30 dB above fiber threshold. Several response metrics related to temporal dynamics were computed from post-stimulus-time histograms and were compared between normal-hearing and noise-exposed animals. Results indicate that noise-exposed auditory-nerve fibers show significantly reduced response latency, increased onset response and percent adaptation, faster adaptation after onset, and slower recovery after offset. The decrease in response latency only occurred in noise-exposed fibers with significantly reduced frequency selectivity. These changes in temporal dynamics have important implications for temporal envelope coding in hearing-impaired ears, as well as for the design of dynamic compression algorithms for hearing aids. PMID:20696230

  19. Evidence for Neural Computations of Temporal Coherence in an Auditory Scene and Their Enhancement during Active Listening.

    PubMed

    O'Sullivan, James A; Shamma, Shihab A; Lalor, Edmund C

    2015-05-06

    The human brain has evolved to operate effectively in highly complex acoustic environments, segregating multiple sound sources into perceptually distinct auditory objects. A recent theory seeks to explain this ability by arguing that stream segregation occurs primarily due to the temporal coherence of the neural populations that encode the various features of an individual acoustic source. This theory has received support from both psychoacoustic and functional magnetic resonance imaging (fMRI) studies that use stimuli which model complex acoustic environments. Termed stochastic figure-ground (SFG) stimuli, they are composed of a "figure" and background that overlap in spectrotemporal space, such that the only way to segregate the figure is by computing the coherence of its frequency components over time. Here, we extend these psychoacoustic and fMRI findings by using the greater temporal resolution of electroencephalography to investigate the neural computation of temporal coherence. We present subjects with modified SFG stimuli wherein the temporal coherence of the figure is modulated stochastically over time, which allows us to use linear regression methods to extract a signature of the neural processing of this temporal coherence. We do this under both active and passive listening conditions. Our findings show an early effect of coherence during passive listening, lasting from ∼115 to 185 ms post-stimulus. When subjects are actively listening to the stimuli, these responses are larger and last longer, up to ∼265 ms. These findings provide evidence for early and preattentive neural computations of temporal coherence that are enhanced by active analysis of an auditory scene. Copyright © 2015 the authors 0270-6474/15/357256-08$15.00/0.

  20. Realigning Thunder and Lightning: Temporal Adaptation to Spatiotemporally Distant Events

    PubMed Central

    Navarra, Jordi; Fernández-Prieto, Irune; Garcia-Morera, Joel

    2013-01-01

    The brain is able to realign asynchronous signals that approximately coincide in both space and time. Given that many experience-based links between visual and auditory stimuli are established in the absence of spatiotemporal proximity, we investigated whether or not temporal realignment arises in these conditions. Participants received a 3-min exposure to visual and auditory stimuli that were separated by 706 ms and appeared either from the same (Experiment 1) or from different spatial positions (Experiment 2). A simultaneity judgment task (SJ) was administered right afterwards. Temporal realignment between vision and audition was observed, in both Experiment 1 and 2, when comparing the participants’ SJs after this exposure phase with those obtained after a baseline exposure to audiovisual synchrony. However, this effect was present only when the visual stimuli preceded the auditory stimuli during the exposure to asynchrony. A similar pattern of results (temporal realignment after exposure to visual-leading asynchrony but not after exposure to auditory-leading asynchrony) was obtained using temporal order judgments (TOJs) instead of SJs (Experiment 3). Taken together, these results suggest that temporal recalibration still occurs for visual and auditory stimuli that fall clearly outside the so-called temporal window for multisensory integration and appear from different spatial positions. This temporal realignment may be modulated by long-term experience with the kind of asynchrony (vision-leading) that we most frequently encounter in the outside world (e.g., while perceiving distant events). PMID:24391928

  1. Brainstem auditory-evoked potentials as an objective tool for evaluating hearing dysfunction in traumatic brain injury.

    PubMed

    Lew, Henry L; Lee, Eun Ha; Miyoshi, Yasushi; Chang, Douglas G; Date, Elaine S; Jerger, James F

    2004-03-01

    Because of the violent nature of traumatic brain injury, traumatic brain injury patients are susceptible to various types of trauma involving the auditory system. We report a case of a 55-yr-old man who presented with communication problems after traumatic brain injury. Initial results from behavioral audiometry and Weber/Rinne tests were not reliable because of poor cooperation. He was transferred to our service for inpatient rehabilitation, where review of the initial head computed tomographic scan showed only left temporal bone fracture. Brainstem auditory-evoked potential was then performed to evaluate his hearing function. The results showed bilateral absence of auditory-evoked responses, which strongly suggested bilateral deafness. This finding led to a follow-up computed tomographic scan, with focus on bilateral temporal bones. A subtle transverse fracture of the right temporal bone was then detected, in addition to the left temporal bone fracture previously identified. Like children with hearing impairment, traumatic brain injury patients may not be able to verbalize their auditory deficits in a timely manner. If hearing loss is suspected in a patient who is unable to participate in traditional behavioral audiometric testing, brainstem auditory-evoked potential may be an option for evaluating hearing dysfunction.

  2. Speech Evoked Auditory Brainstem Response in Stuttering

    PubMed Central

    Tahaei, Ali Akbar; Ashayeri, Hassan; Pourbakht, Akram; Kamali, Mohammad

    2014-01-01

    Auditory processing deficits have been hypothesized as an underlying mechanism for stuttering. Previous studies have demonstrated abnormal responses in subjects with persistent developmental stuttering (PDS) at the higher level of the central auditory system using speech stimuli. Recently, the potential usefulness of speech evoked auditory brainstem responses in central auditory processing disorders has been emphasized. The current study used the speech evoked ABR to investigate the hypothesis that subjects with PDS have specific auditory perceptual dysfunction. Objectives. To determine whether brainstem responses to speech stimuli differ between PDS subjects and normal fluent speakers. Methods. Twenty-five subjects with PDS participated in this study. The speech-ABRs were elicited by the 5-formant synthesized syllable/da/, with duration of 40 ms. Results. There were significant group differences for the onset and offset transient peaks. Subjects with PDS had longer latencies for the onset and offset peaks relative to the control group. Conclusions. Subjects with PDS showed a deficient neural timing in the early stages of the auditory pathway consistent with temporal processing deficits and their abnormal timing may underlie to their disfluency. PMID:25215262

  3. Multisensory connections of monkey auditory cerebral cortex

    PubMed Central

    Smiley, John F.; Falchier, Arnaud

    2009-01-01

    Functional studies have demonstrated multisensory responses in auditory cortex, even in the primary and early auditory association areas. The features of somatosensory and visual responses in auditory cortex suggest that they are involved in multiple processes including spatial, temporal and object-related perception. Tract tracing studies in monkeys have demonstrated several potential sources of somatosensory and visual inputs to auditory cortex. These include potential somatosensory inputs from the retroinsular (RI) and granular insula (Ig) cortical areas, and from the thalamic posterior (PO) nucleus. Potential sources of visual responses include peripheral field representations of areas V2 and prostriata, as well as the superior temporal polysensory area (STP) in the superior temporal sulcus, and the magnocellular medial geniculate thalamic nucleus (MGm). Besides these sources, there are several other thalamic, limbic and cortical association structures that have multisensory responses and may contribute cross-modal inputs to auditory cortex. These connections demonstrated by tract tracing provide a list of potential inputs, but in most cases their significance has not been confirmed by functional experiments. It is possible that the somatosensory and visual modulation of auditory cortex are each mediated by multiple extrinsic sources. PMID:19619628

  4. Persistent Interictal Musical Hallucination in a Patient With Mesial Temporal Sclerosis-Related Epilepsy: First Case Report and Etiopathological Hypothesis.

    PubMed

    Borelli, Paolo; Vedovello, Marcella; Braga, Massimiliano; Pederzoli, Massimo; Beretta, Sandro

    2016-12-01

    Musical hallucination is a disorder of complex sound processing of instrumental music, songs, choirs, chants, etc. The underlying pathologies include moderate to severe acquired hearing loss (the auditory equivalent of Charles Bonnet syndrome), psychiatric illnesses (depression, schizophrenia), drug intoxication (benzodiazepines, salicylate, pentoxifylline, propranolol), traumatic lesions along the acoustic pathways, and epilepsy. The hallucinations are most likely to begin late in life; 70% of patients are women. Musical hallucination has no known specific therapy. Treating the underlying cause is the most effective approach; neuroleptic and antidepressant medications have only rarely succeeded.Musical hallucination in epilepsy typically presents as simple partial seizures originating in the lateral temporal cortex. To our knowledge, no formal report of musical hallucination in the interictal state has been published before. In contrast, other interictal psychotic features are a relatively common complication, especially in patients with long-standing drug-resistant epilepsy.We describe a 62-year-old woman with a long history of mesial temporal lobe epilepsy whose musical hallucination was solely interictal. We speculate on the possible link between temporal epilepsy and her hallucination. We hypothesize that, as a result of her epileptic activity-induced damage, an imbalance developed between the excitatory and inhibitory projections connecting the mesial temporal cortex to the other auditory structures. These structures may have generated hyperactivity in the lateral temporal cortex through a "release" mechanism that eventually resulted in musical hallucination.

  5. Interhemispheric coupling between the posterior sylvian regions impacts successful auditory temporal order judgment.

    PubMed

    Bernasconi, Fosco; Grivel, Jeremy; Murray, Micah M; Spierer, Lucas

    2010-07-01

    Accurate perception of the temporal order of sensory events is a prerequisite in numerous functions ranging from language comprehension to motor coordination. We investigated the spatio-temporal brain dynamics of auditory temporal order judgment (aTOJ) using electrical neuroimaging analyses of auditory evoked potentials (AEPs) recorded while participants completed a near-threshold task requiring spatial discrimination of left-right and right-left sound sequences. AEPs to sound pairs modulated topographically as a function of aTOJ accuracy over the 39-77ms post-stimulus period, indicating the engagement of distinct configurations of brain networks during early auditory processing stages. Source estimations revealed that accurate and inaccurate performance were linked to bilateral posterior sylvian regions activity (PSR). However, activity within left, but not right, PSR predicted behavioral performance suggesting that left PSR activity during early encoding phases of pairs of auditory spatial stimuli appears critical for the perception of their order of occurrence. Correlation analyses of source estimations further revealed that activity between left and right PSR was significantly correlated in the inaccurate but not accurate condition, indicating that aTOJ accuracy depends on the functional decoupling between homotopic PSR areas. These results support a model of temporal order processing wherein behaviorally relevant temporal information--i.e. a temporal 'stamp'--is extracted within the early stages of cortical processes within left PSR but critically modulated by inputs from right PSR. We discuss our results with regard to current models of temporal of temporal order processing, namely gating and latency mechanisms. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  6. Temporal processing dysfunction in schizophrenia.

    PubMed

    Carroll, Christine A; Boggs, Jennifer; O'Donnell, Brian F; Shekhar, Anantha; Hetrick, William P

    2008-07-01

    Schizophrenia may be associated with a fundamental disturbance in the temporal coordination of information processing in the brain, leading to classic symptoms of schizophrenia such as thought disorder and disorganized and contextually inappropriate behavior. Despite the growing interest and centrality of time-dependent conceptualizations of the pathophysiology of schizophrenia, there remains a paucity of research directly examining overt timing performance in the disorder. Accordingly, the present study investigated timing in schizophrenia using a well-established task of time perception. Twenty-three individuals with schizophrenia and 22 non-psychiatric control participants completed a temporal bisection task, which required participants to make temporal judgments about auditory and visually presented durations ranging from 300 to 600 ms. Both schizophrenia and control groups displayed greater visual compared to auditory timing variability, with no difference between groups in the visual modality. However, individuals with schizophrenia exhibited less temporal precision than controls in the perception of auditory durations. These findings correlated with parameter estimates obtained from a quantitative model of time estimation, and provide evidence of a fundamental deficit in temporal auditory precision in schizophrenia.

  7. Auditory Temporal Resolution in Individuals with Diabetes Mellitus Type 2.

    PubMed

    Mishra, Rajkishor; Sanju, Himanshu Kumar; Kumar, Prawin

    2016-10-01

    Introduction  "Diabetes mellitus is a group of metabolic disorders characterized by elevated blood sugar and abnormalities in insulin secretion and action" (American Diabetes Association). Previous literature has reported connection between diabetes mellitus and hearing impairment. There is a dearth of literature on auditory temporal resolution ability in individuals with diabetes mellitus type 2. Objective  The main objective of the present study was to assess auditory temporal resolution ability through GDT (Gap Detection Threshold) in individuals with diabetes mellitus type 2 with high frequency hearing loss. Methods  Fifteen subjects with diabetes mellitus type 2 with high frequency hearing loss in the age range of 30 to 40 years participated in the study as the experimental group. Fifteen age-matched non-diabetic individuals with normal hearing served as the control group. We administered the Gap Detection Threshold (GDT) test to all participants to assess their temporal resolution ability. Result  We used the independent t -test to compare between groups. Results showed that the diabetic group (experimental) performed significantly poorer compared with the non-diabetic group (control). Conclusion  It is possible to conclude that widening of auditory filters and changes in the central auditory nervous system contributed to poorer performance for temporal resolution task (Gap Detection Threshold) in individuals with diabetes mellitus type 2. Findings of the present study revealed the deteriorating effect of diabetes mellitus type 2 at the central auditory processing level.

  8. Dynamic Correlations between Intrinsic Connectivity and Extrinsic Connectivity of the Auditory Cortex in Humans.

    PubMed

    Cui, Zhuang; Wang, Qian; Gao, Yayue; Wang, Jing; Wang, Mengyang; Teng, Pengfei; Guan, Yuguang; Zhou, Jian; Li, Tianfu; Luan, Guoming; Li, Liang

    2017-01-01

    The arrival of sound signals in the auditory cortex (AC) triggers both local and inter-regional signal propagations over time up to hundreds of milliseconds and builds up both intrinsic functional connectivity (iFC) and extrinsic functional connectivity (eFC) of the AC. However, interactions between iFC and eFC are largely unknown. Using intracranial stereo-electroencephalographic recordings in people with drug-refractory epilepsy, this study mainly investigated the temporal dynamic of the relationships between iFC and eFC of the AC. The results showed that a Gaussian wideband-noise burst markedly elicited potentials in both the AC and numerous higher-order cortical regions outside the AC (non-auditory cortices). Granger causality analyses revealed that in the earlier time window, iFC of the AC was positively correlated with both eFC from the AC to the inferior temporal gyrus and that to the inferior parietal lobule. While in later periods, the iFC of the AC was positively correlated with eFC from the precentral gyrus to the AC and that from the insula to the AC. In conclusion, dual-directional interactions occur between iFC and eFC of the AC at different time windows following the sound stimulation and may form the foundation underlying various central auditory processes, including auditory sensory memory, object formation, integrations between sensory, perceptional, attentional, motor, emotional, and executive processes.

  9. The role of auditory cortex in retention of rhythmic patterns as studied in patients with temporal lobe removals including Heschl's gyrus.

    PubMed

    Penhune, V B; Zatorre, R J; Feindel, W H

    1999-03-01

    This experiment examined the participation of the auditory cortex of the temporal lobe in the perception and retention of rhythmic patterns. Four patient groups were tested on a paradigm contrasting reproduction of auditory and visual rhythms: those with right or left anterior temporal lobe removals which included Heschl's gyrus (HG), the region of primary auditory cortex (RT-A and LT-A); and patients with right or left anterior temporal lobe removals which did not include HG (RT-a and LT-a). Estimation of lesion extent in HG using an MRI-based probabilistic map indicated that, in the majority of subjects, the lesion was confined to the anterior secondary auditory cortex located on the anterior-lateral extent of HG. On the rhythm reproduction task, RT-A patients were impaired in retention of auditory but not visual rhythms, particularly when accurate reproduction of stimulus durations was required. In contrast, LT-A patients as well as both RT-a and LT-a patients were relatively unimpaired on this task. None of the patient groups was impaired in the ability to make an adequate motor response. Further, they were unimpaired when using a dichotomous response mode, indicating that they were able to adequately differentiate the stimulus durations and, when given an alternative method of encoding, to retain them. Taken together, these results point to a specific role for the right anterior secondary auditory cortex in the retention of a precise analogue representation of auditory tonal patterns.

  10. [Auditory processing evaluation in children born preterm].

    PubMed

    Gallo, Júlia; Dias, Karin Ziliotto; Pereira, Liliane Desgualdo; Azevedo, Marisa Frasson de; Sousa, Elaine Colombo

    2011-01-01

    To verify the performance of children born preterm on auditory processing evaluation, and to correlate the data with behavioral hearing assessment carried out at 12 months of age, comparing the results to those of auditory processing evaluation of children born full-term. Participants were 30 children with ages between 4 and 7 years, who were divided into two groups: Group 1 (children born preterm), and Group 2 (children born full-term). The auditory processing results of Group 1 were correlated to data obtained from the behavioral auditory evaluation carried out at 12 months of age. The results were compared between groups. Subjects in Group 1 presented at least one risk indicator for hearing loss at birth. In the behavioral auditory assessment carried out at 12 months of age, 38% of the children in Group 1 were at risk for central auditory processing deficits, and 93.75% presented auditory processing deficits on the evaluation. Significant differences were found between the groups for the temporal order test, the PSI test with ipsilateral competitive message, and the speech-in-noise test. The delay in sound localization ability was associated to temporal processing deficits. Children born preterm have worse performance in auditory processing evaluation than children born full-term. Delay in sound localization at 12 months is associated to deficits on the physiological mechanism of temporal processing in the auditory processing evaluation carried out between 4 and 7 years.

  11. Audio-visual temporal perception in children with restored hearing.

    PubMed

    Gori, Monica; Chilosi, Anna; Forli, Francesca; Burr, David

    2017-05-01

    It is not clear how audio-visual temporal perception develops in children with restored hearing. In this study we measured temporal discrimination thresholds with an audio-visual temporal bisection task in 9 deaf children with restored audition, and 22 typically hearing children. In typically hearing children, audition was more precise than vision, with no gain in multisensory conditions (as previously reported in Gori et al. (2012b)). However, deaf children with restored audition showed similar thresholds for audio and visual thresholds and some evidence of gain in audio-visual temporal multisensory conditions. Interestingly, we found a strong correlation between auditory weighting of multisensory signals and quality of language: patients who gave more weight to audition had better language skills. Similarly, auditory thresholds for the temporal bisection task were also a good predictor of language skills. This result supports the idea that the temporal auditory processing is associated with language development. Copyright © 2017. Published by Elsevier Ltd.

  12. Dynamic speech representations in the human temporal lobe.

    PubMed

    Leonard, Matthew K; Chang, Edward F

    2014-09-01

    Speech perception requires rapid integration of acoustic input with context-dependent knowledge. Recent methodological advances have allowed researchers to identify underlying information representations in primary and secondary auditory cortex and to examine how context modulates these representations. We review recent studies that focus on contextual modulations of neural activity in the superior temporal gyrus (STG), a major hub for spectrotemporal encoding. Recent findings suggest a highly interactive flow of information processing through the auditory ventral stream, including influences of higher-level linguistic and metalinguistic knowledge, even within individual areas. Such mechanisms may give rise to more abstract representations, such as those for words. We discuss the importance of characterizing representations of context-dependent and dynamic patterns of neural activity in the approach to speech perception research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Motor contributions to the temporal precision of auditory attention

    PubMed Central

    Morillon, Benjamin; Schroeder, Charles E.; Wyart, Valentin

    2014-01-01

    In temporal—or dynamic—attending theory, it is proposed that motor activity helps to synchronize temporal fluctuations of attention with the timing of events in a task-relevant stream, thus facilitating sensory selection. Here we develop a mechanistic behavioural account for this theory by asking human participants to track a slow reference beat, by noiseless finger pressing, while extracting auditory target tones delivered on-beat and interleaved with distractors. We find that overt rhythmic motor activity improves the segmentation of auditory information by enhancing sensitivity to target tones while actively suppressing distractor tones. This effect is triggered by cyclic fluctuations in sensory gain locked to individual motor acts, scales parametrically with the temporal predictability of sensory events and depends on the temporal alignment between motor and attention fluctuations. Together, these findings reveal how top-down influences associated with a rhythmic motor routine sharpen sensory representations, enacting auditory ‘active sensing’. PMID:25314898

  14. Auditory Temporal Information Processing in Preschool Children at Family Risk for Dyslexia: Relations with Phonological Abilities and Developing Literacy Skills

    ERIC Educational Resources Information Center

    Boets, Bart; Wouters, Jan; van Wieringen, Astrid; Ghesquiere, Pol

    2006-01-01

    In this project, the hypothesis of an auditory temporal processing deficit in dyslexia was tested by examining auditory processing in relation to phonological skills in two contrasting groups of five-year-old preschool children, a familial high risk and a familial low risk group. Participants were individually matched for gender, age, non-verbal…

  15. How do auditory cortex neurons represent communication sounds?

    PubMed

    Gaucher, Quentin; Huetz, Chloé; Gourévitch, Boris; Laudanski, Jonathan; Occelli, Florian; Edeline, Jean-Marc

    2013-11-01

    A major goal in auditory neuroscience is to characterize how communication sounds are represented at the cortical level. The present review aims at investigating the role of auditory cortex in the processing of speech, bird songs and other vocalizations, which all are spectrally and temporally highly structured sounds. Whereas earlier studies have simply looked for neurons exhibiting higher firing rates to particular conspecific vocalizations over their modified, artificially synthesized versions, more recent studies determined the coding capacity of temporal spike patterns, which are prominent in primary and non-primary areas (and also in non-auditory cortical areas). In several cases, this information seems to be correlated with the behavioral performance of human or animal subjects, suggesting that spike-timing based coding strategies might set the foundations of our perceptive abilities. Also, it is now clear that the responses of auditory cortex neurons are highly nonlinear and that their responses to natural stimuli cannot be predicted from their responses to artificial stimuli such as moving ripples and broadband noises. Since auditory cortex neurons cannot follow rapid fluctuations of the vocalizations envelope, they only respond at specific time points during communication sounds, which can serve as temporal markers for integrating the temporal and spectral processing taking place at subcortical relays. Thus, the temporal sparse code of auditory cortex neurons can be considered as a first step for generating high level representations of communication sounds independent of the acoustic characteristic of these sounds. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives". Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Neural correlates of auditory recognition memory in the primate dorsal temporal pole

    PubMed Central

    Ng, Chi-Wing; Plakke, Bethany

    2013-01-01

    Temporal pole (TP) cortex is associated with higher-order sensory perception and/or recognition memory, as human patients with damage in this region show impaired performance during some tasks requiring recognition memory (Olson et al. 2007). The underlying mechanisms of TP processing are largely based on examination of the visual nervous system in humans and monkeys, while little is known about neuronal activity patterns in the auditory portion of this region, dorsal TP (dTP; Poremba et al. 2003). The present study examines single-unit activity of dTP in rhesus monkeys performing a delayed matching-to-sample task utilizing auditory stimuli, wherein two sounds are determined to be the same or different. Neurons of dTP encode several task-relevant events during the delayed matching-to-sample task, and encoding of auditory cues in this region is associated with accurate recognition performance. Population activity in dTP shows a match suppression mechanism to identical, repeated sound stimuli similar to that observed in the visual object identification pathway located ventral to dTP (Desimone 1996; Nakamura and Kubota 1996). However, in contrast to sustained visual delay-related activity in nearby analogous regions, auditory delay-related activity in dTP is transient and limited. Neurons in dTP respond selectively to different sound stimuli and often change their sound response preferences between experimental contexts. Current findings suggest a significant role for dTP in auditory recognition memory similar in many respects to the visual nervous system, while delay memory firing patterns are not prominent, which may relate to monkeys' shorter forgetting thresholds for auditory vs. visual objects. PMID:24198324

  17. Neuronal correlates of perception, imagery, and memory for familiar tunes.

    PubMed

    Herholz, Sibylle C; Halpern, Andrea R; Zatorre, Robert J

    2012-06-01

    We used fMRI to investigate the neuronal correlates of encoding and recognizing heard and imagined melodies. Ten participants were shown lyrics of familiar verbal tunes; they either heard the tune along with the lyrics, or they had to imagine it. In a subsequent surprise recognition test, they had to identify the titles of tunes that they had heard or imagined earlier. The functional data showed substantial overlap during melody perception and imagery, including secondary auditory areas. During imagery compared with perception, an extended network including pFC, SMA, intraparietal sulcus, and cerebellum showed increased activity, in line with the increased processing demands of imagery. Functional connectivity of anterior right temporal cortex with frontal areas was increased during imagery compared with perception, indicating that these areas form an imagery-related network. Activity in right superior temporal gyrus and pFC was correlated with the subjective rating of imagery vividness. Similar to the encoding phase, the recognition task recruited overlapping areas, including inferior frontal cortex associated with memory retrieval, as well as left middle temporal gyrus. The results present new evidence for the cortical network underlying goal-directed auditory imagery, with a prominent role of the right pFC both for the subjective impression of imagery vividness and for on-line mental monitoring of imagery-related activity in auditory areas.

  18. Robust decoding of selective auditory attention from MEG in a competing-speaker environment via state-space modeling✩

    PubMed Central

    Akram, Sahar; Presacco, Alessandro; Simon, Jonathan Z.; Shamma, Shihab A.; Babadi, Behtash

    2015-01-01

    The underlying mechanism of how the human brain solves the cocktail party problem is largely unknown. Recent neuroimaging studies, however, suggest salient temporal correlations between the auditory neural response and the attended auditory object. Using magnetoencephalography (MEG) recordings of the neural responses of human subjects, we propose a decoding approach for tracking the attentional state while subjects are selectively listening to one of the two speech streams embedded in a competing-speaker environment. We develop a biophysically-inspired state-space model to account for the modulation of the neural response with respect to the attentional state of the listener. The constructed decoder is based on a maximum a posteriori (MAP) estimate of the state parameters via the Expectation Maximization (EM) algorithm. Using only the envelope of the two speech streams as covariates, the proposed decoder enables us to track the attentional state of the listener with a temporal resolution of the order of seconds, together with statistical confidence intervals. We evaluate the performance of the proposed model using numerical simulations and experimentally measured evoked MEG responses from the human brain. Our analysis reveals considerable performance gains provided by the state-space model in terms of temporal resolution, computational complexity and decoding accuracy. PMID:26436490

  19. Sensory Entrainment Mechanisms in Auditory Perception: Neural Synchronization Cortico-Striatal Activation.

    PubMed

    Sameiro-Barbosa, Catia M; Geiser, Eveline

    2016-01-01

    The auditory system displays modulations in sensitivity that can align with the temporal structure of the acoustic environment. This sensory entrainment can facilitate sensory perception and is particularly relevant for audition. Systems neuroscience is slowly uncovering the neural mechanisms underlying the behaviorally observed sensory entrainment effects in the human sensory system. The present article summarizes the prominent behavioral effects of sensory entrainment and reviews our current understanding of the neural basis of sensory entrainment, such as synchronized neural oscillations, and potentially, neural activation in the cortico-striatal system.

  20. Training in rapid auditory processing ameliorates auditory comprehension in aphasic patients: a randomized controlled pilot study.

    PubMed

    Szelag, Elzbieta; Lewandowska, Monika; Wolak, Tomasz; Seniow, Joanna; Poniatowska, Renata; Pöppel, Ernst; Szymaszek, Aneta

    2014-03-15

    Experimental studies have often reported close associations between rapid auditory processing and language competency. The present study was aimed at improving auditory comprehension in aphasic patients following specific training in the perception of temporal order (TO) of events. We tested 18 aphasic patients showing both comprehension and TO perception deficits. Auditory comprehension was assessed by the Token Test, phonemic awareness and Voice-Onset-Time Test. The TO perception was assessed using auditory Temporal-Order-Threshold, defined as the shortest interval between two consecutive stimuli, necessary to report correctly their before-after relation. Aphasic patients participated in eight 45-minute sessions of either specific temporal training (TT, n=11) aimed to improve sequencing abilities, or control non-temporal training (NT, n=7) focussed on volume discrimination. The TT yielded improved TO perception; moreover, a transfer of improvement was observed from the time domain to the language domain, which was untrained during the training. The NT did not improve either the TO perception or comprehension in any language test. These results are in agreement with previous literature studies which proved ameliorated language competency following the TT in language-learning-impaired or dyslexic children. Our results indicated for the first time such benefits also in aphasic patients. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Transcranial alternating current stimulation modulates auditory temporal resolution in elderly people.

    PubMed

    Baltus, Alina; Vosskuhl, Johannes; Boetzel, Cindy; Herrmann, Christoph Siegfried

    2018-05-13

    Recent research provides evidence for a functional role of brain oscillations for perception. For example, auditory temporal resolution seems to be linked to individual gamma frequency of auditory cortex. Individual gamma frequency not only correlates with performance in between-channel gap detection tasks but can be modulated via auditory transcranial alternating current stimulation. Modulation of individual gamma frequency is accompanied by an improvement in gap detection performance. Aging changes electrophysiological frequency components and sensory processing mechanisms. Therefore, we conducted a study to investigate the link between individual gamma frequency and gap detection performance in elderly people using auditory transcranial alternating current stimulation. In a within-subject design, twelve participants were electrically stimulated with two individualized transcranial alternating current stimulation frequencies: 3 Hz above their individual gamma frequency (experimental condition) and 4 Hz below their individual gamma frequency (control condition) while they were performing a between-channel gap detection task. As expected, individual gamma frequencies correlated significantly with gap detection performance at baseline and in the experimental condition, transcranial alternating current stimulation modulated gap detection performance. In the control condition, stimulation did not modulate gap detection performance. In addition, in elderly, the effect of transcranial alternating current stimulation on auditory temporal resolution seems to be dependent on endogenous frequencies in auditory cortex: elderlies with slower individual gamma frequencies and lower auditory temporal resolution profit from auditory transcranial alternating current stimulation and show increased gap detection performance during stimulation. Our results strongly suggest individualized transcranial alternating current stimulation protocols for successful modulation of performance. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Cholecystokinin from the entorhinal cortex enables neural plasticity in the auditory cortex

    PubMed Central

    Li, Xiao; Yu, Kai; Zhang, Zicong; Sun, Wenjian; Yang, Zhou; Feng, Jingyu; Chen, Xi; Liu, Chun-Hua; Wang, Haitao; Guo, Yi Ping; He, Jufang

    2014-01-01

    Patients with damage to the medial temporal lobe show deficits in forming new declarative memories but can still recall older memories, suggesting that the medial temporal lobe is necessary for encoding memories in the neocortex. Here, we found that cortical projection neurons in the perirhinal and entorhinal cortices were mostly immunopositive for cholecystokinin (CCK). Local infusion of CCK in the auditory cortex of anesthetized rats induced plastic changes that enabled cortical neurons to potentiate their responses or to start responding to an auditory stimulus that was paired with a tone that robustly triggered action potentials. CCK infusion also enabled auditory neurons to start responding to a light stimulus that was paired with a noise burst. In vivo intracellular recordings in the auditory cortex showed that synaptic strength was potentiated after two pairings of presynaptic and postsynaptic activity in the presence of CCK. Infusion of a CCKB antagonist in the auditory cortex prevented the formation of a visuo-auditory association in awake rats. Finally, activation of the entorhinal cortex potentiated neuronal responses in the auditory cortex, which was suppressed by infusion of a CCKB antagonist. Together, these findings suggest that the medial temporal lobe influences neocortical plasticity via CCK-positive cortical projection neurons in the entorhinal cortex. PMID:24343575

  3. Contributions of local speech encoding and functional connectivity to audio-visual speech perception

    PubMed Central

    Giordano, Bruno L; Ince, Robin A A; Gross, Joachim; Schyns, Philippe G; Panzeri, Stefano; Kayser, Christoph

    2017-01-01

    Seeing a speaker’s face enhances speech intelligibility in adverse environments. We investigated the underlying network mechanisms by quantifying local speech representations and directed connectivity in MEG data obtained while human participants listened to speech of varying acoustic SNR and visual context. During high acoustic SNR speech encoding by temporally entrained brain activity was strong in temporal and inferior frontal cortex, while during low SNR strong entrainment emerged in premotor and superior frontal cortex. These changes in local encoding were accompanied by changes in directed connectivity along the ventral stream and the auditory-premotor axis. Importantly, the behavioral benefit arising from seeing the speaker’s face was not predicted by changes in local encoding but rather by enhanced functional connectivity between temporal and inferior frontal cortex. Our results demonstrate a role of auditory-frontal interactions in visual speech representations and suggest that functional connectivity along the ventral pathway facilitates speech comprehension in multisensory environments. DOI: http://dx.doi.org/10.7554/eLife.24763.001 PMID:28590903

  4. Functional connectivity between face-movement and speech-intelligibility areas during auditory-only speech perception.

    PubMed

    Schall, Sonja; von Kriegstein, Katharina

    2014-01-01

    It has been proposed that internal simulation of the talking face of visually-known speakers facilitates auditory speech recognition. One prediction of this view is that brain areas involved in auditory-only speech comprehension interact with visual face-movement sensitive areas, even under auditory-only listening conditions. Here, we test this hypothesis using connectivity analyses of functional magnetic resonance imaging (fMRI) data. Participants (17 normal participants, 17 developmental prosopagnosics) first learned six speakers via brief voice-face or voice-occupation training (<2 min/speaker). This was followed by an auditory-only speech recognition task and a control task (voice recognition) involving the learned speakers' voices in the MRI scanner. As hypothesized, we found that, during speech recognition, familiarity with the speaker's face increased the functional connectivity between the face-movement sensitive posterior superior temporal sulcus (STS) and an anterior STS region that supports auditory speech intelligibility. There was no difference between normal participants and prosopagnosics. This was expected because previous findings have shown that both groups use the face-movement sensitive STS to optimize auditory-only speech comprehension. Overall, the present findings indicate that learned visual information is integrated into the analysis of auditory-only speech and that this integration results from the interaction of task-relevant face-movement and auditory speech-sensitive areas.

  5. Temporal auditory processing at 17 months of age is associated with preliterate language comprehension and later word reading fluency: an ERP study.

    PubMed

    van Zuijen, Titia L; Plakas, Anna; Maassen, Ben A M; Been, Pieter; Maurits, Natasha M; Krikhaar, Evelien; van Driel, Joram; van der Leij, Aryan

    2012-10-18

    Dyslexia is heritable and associated with auditory processing deficits. We investigate whether temporal auditory processing is compromised in young children at-risk for dyslexia and whether it is associated with later language and reading skills. We recorded EEG from 17 months-old children with or without familial risk for dyslexia to investigate whether their auditory system was able to detect a temporal change in a tone pattern. The children were followed longitudinally and performed an intelligence- and language development test at ages 4 and 4.5 years. Literacy related skills were measured at the beginning of second grade, and word- and pseudo-word reading fluency were measured at the end of second grade. The EEG responses showed that control children could detect the temporal change as indicated by a mismatch response (MMR). The MMR was not observed in at-risk children. Furthermore, the fronto-central MMR amplitude correlated with preliterate language comprehension and with later word reading fluency, but not with phonological awareness. We conclude that temporal auditory processing differentiates young children at risk for dyslexia from controls and is a precursor of preliterate language comprehension and reading fluency. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Temporal pattern of acoustic imaging noise asymmetrically modulates activation in the auditory cortex.

    PubMed

    Ranaweera, Ruwan D; Kwon, Minseok; Hu, Shuowen; Tamer, Gregory G; Luh, Wen-Ming; Talavage, Thomas M

    2016-01-01

    This study investigated the hemisphere-specific effects of the temporal pattern of imaging related acoustic noise on auditory cortex activation. Hemodynamic responses (HDRs) to five temporal patterns of imaging noise corresponding to noise generated by unique combinations of imaging volume and effective repetition time (TR), were obtained using a stroboscopic event-related paradigm with extra-long (≥27.5 s) TR to minimize inter-acquisition effects. In addition to confirmation that fMRI responses in auditory cortex do not behave in a linear manner, temporal patterns of imaging noise were found to modulate both the shape and spatial extent of hemodynamic responses, with classically non-auditory areas exhibiting responses to longer duration noise conditions. Hemispheric analysis revealed the right primary auditory cortex to be more sensitive than the left to the presence of imaging related acoustic noise. Right primary auditory cortex responses were significantly larger during all the conditions. This asymmetry of response to imaging related acoustic noise could lead to different baseline activation levels during acquisition schemes using short TR, inducing an observed asymmetry in the responses to an intended acoustic stimulus through limitations of dynamic range, rather than due to differences in neuronal processing of the stimulus. These results emphasize the importance of accounting for the temporal pattern of the acoustic noise when comparing findings across different fMRI studies, especially those involving acoustic stimulation. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Preservation of perceptual integration improves temporal stability of bimanual coordination in the elderly: an evidence of age-related brain plasticity.

    PubMed

    Blais, Mélody; Martin, Elodie; Albaret, Jean-Michel; Tallet, Jessica

    2014-12-15

    Despite the apparent age-related decline in perceptual-motor performance, recent studies suggest that the elderly people can improve their reaction time when relevant sensory information are available. However, little is known about which sensory information may improve motor behaviour itself. Using a synchronization task, the present study investigates how visual and/or auditory stimulations could increase accuracy and stability of three bimanual coordination modes produced by elderly and young adults. Neurophysiological activations are recorded with ElectroEncephaloGraphy (EEG) to explore neural mechanisms underlying behavioural effects. Results reveal that the elderly stabilize all coordination modes when auditory or audio-visual stimulations are available, compared to visual stimulation alone. This suggests that auditory stimulations are sufficient to improve temporal stability of rhythmic coordination, even more in the elderly. This behavioural effect is primarily associated with increased attentional and sensorimotor-related neural activations in the elderly but similar perceptual-related activations in elderly and young adults. This suggests that, despite a degradation of attentional and sensorimotor neural processes, perceptual integration of auditory stimulations is preserved in the elderly. These results suggest that perceptual-related brain plasticity is, at least partially, conserved in normal aging. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Seasonal Plasticity of Precise Spike Timing in the Avian Auditory System

    PubMed Central

    Sen, Kamal; Rubel, Edwin W; Brenowitz, Eliot A.

    2015-01-01

    Vertebrate audition is a dynamic process, capable of exhibiting both short- and long-term adaptations to varying listening conditions. Precise spike timing has long been known to play an important role in auditory encoding, but its role in sensory plasticity remains largely unexplored. We addressed this issue in Gambel's white-crowned sparrow (Zonotrichia leucophrys gambelii), a songbird that shows pronounced seasonal fluctuations in circulating levels of sex-steroid hormones, which are known to be potent neuromodulators of auditory function. We recorded extracellular single-unit activity in the auditory forebrain of males and females under different breeding conditions and used a computational approach to explore two potential strategies for the neural discrimination of sound level: one based on spike counts and one based on spike timing reliability. We report that breeding condition has robust sex-specific effects on spike timing. Specifically, in females, breeding condition increases the proportion of cells that rely solely on spike timing information and increases the temporal resolution required for optimal intensity encoding. Furthermore, in a functionally distinct subset of cells that are particularly well suited for amplitude encoding, female breeding condition enhances spike timing-based discrimination accuracy. No effects of breeding condition were observed in males. Our results suggest that high-resolution temporal discharge patterns may provide a plastic neural substrate for sensory coding. PMID:25716843

  9. Population responses in primary auditory cortex simultaneously represent the temporal envelope and periodicity features in natural speech.

    PubMed

    Abrams, Daniel A; Nicol, Trent; White-Schwoch, Travis; Zecker, Steven; Kraus, Nina

    2017-05-01

    Speech perception relies on a listener's ability to simultaneously resolve multiple temporal features in the speech signal. Little is known regarding neural mechanisms that enable the simultaneous coding of concurrent temporal features in speech. Here we show that two categories of temporal features in speech, the low-frequency speech envelope and periodicity cues, are processed by distinct neural mechanisms within the same population of cortical neurons. We measured population activity in primary auditory cortex of anesthetized guinea pig in response to three variants of a naturally produced sentence. Results show that the envelope of population responses closely tracks the speech envelope, and this cortical activity more closely reflects wider bandwidths of the speech envelope compared to narrow bands. Additionally, neuronal populations represent the fundamental frequency of speech robustly with phase-locked responses. Importantly, these two temporal features of speech are simultaneously observed within neuronal ensembles in auditory cortex in response to clear, conversation, and compressed speech exemplars. Results show that auditory cortical neurons are adept at simultaneously resolving multiple temporal features in extended speech sentences using discrete coding mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Crossmodal association of auditory and visual material properties in infants.

    PubMed

    Ujiie, Yuta; Yamashita, Wakayo; Fujisaki, Waka; Kanazawa, So; Yamaguchi, Masami K

    2018-06-18

    The human perceptual system enables us to extract visual properties of an object's material from auditory information. In monkeys, the neural basis underlying such multisensory association develops through experience of exposure to a material; material information could be processed in the posterior inferior temporal cortex, progressively from the high-order visual areas. In humans, however, the development of this neural representation remains poorly understood. Here, we demonstrated for the first time the presence of a mapping of the auditory material property with visual material ("Metal" and "Wood") in the right temporal region in preverbal 4- to 8-month-old infants, using near-infrared spectroscopy (NIRS). Furthermore, we found that infants acquired the audio-visual mapping for a property of the "Metal" material later than for the "Wood" material, since infants form the visual property of "Metal" material after approximately 6 months of age. These findings indicate that multisensory processing of material information induces the activation of brain areas related to sound symbolism. Our findings also indicate that the material's familiarity might facilitate the development of multisensory processing during the first year of life.

  11. On the balance of envelope and temporal fine structure in the encoding of speech in the early auditory system.

    PubMed

    Shamma, Shihab; Lorenzi, Christian

    2013-05-01

    There is much debate on how the spectrotemporal modulations of speech (or its spectrogram) are encoded in the responses of the auditory nerve, and whether speech intelligibility is best conveyed via the "envelope" (E) or "temporal fine-structure" (TFS) of the neural responses. Wide use of vocoders to resolve this question has commonly assumed that manipulating the amplitude-modulation and frequency-modulation components of the vocoded signal alters the relative importance of E or TFS encoding on the nerve, thus facilitating assessment of their relative importance to intelligibility. Here we argue that this assumption is incorrect, and that the vocoder approach is ineffective in differentially altering the neural E and TFS. In fact, we demonstrate using a simplified model of early auditory processing that both neural E and TFS encode the speech spectrogram with constant and comparable relative effectiveness regardless of the vocoder manipulations. However, we also show that neural TFS cues are less vulnerable than their E counterparts under severe noisy conditions, and hence should play a more prominent role in cochlear stimulation strategies.

  12. Reversal of age-related neural timing delays with training

    PubMed Central

    Anderson, Samira; White-Schwoch, Travis; Parbery-Clark, Alexandra; Kraus, Nina

    2013-01-01

    Neural slowing is commonly noted in older adults, with consequences for sensory, motor, and cognitive domains. One of the deleterious effects of neural slowing is impairment of temporal resolution; older adults, therefore, have reduced ability to process the rapid events that characterize speech, especially in noisy environments. Although hearing aids provide increased audibility, they cannot compensate for deficits in auditory temporal processing. Auditory training may provide a strategy to address these deficits. To that end, we evaluated the effects of auditory-based cognitive training on the temporal precision of subcortical processing of speech in noise. After training, older adults exhibited faster neural timing and experienced gains in memory, speed of processing, and speech-in-noise perception, whereas a matched control group showed no changes. Training was also associated with decreased variability of brainstem response peaks, suggesting a decrease in temporal jitter in response to a speech signal. These results demonstrate that auditory-based cognitive training can partially restore age-related deficits in temporal processing in the brain; this plasticity in turn promotes better cognitive and perceptual skills. PMID:23401541

  13. Spatio-temporal source cluster analysis reveals fronto-temporal auditory change processing differences within a shared autistic and schizotypal trait phenotype.

    PubMed

    Ford, Talitha C; Woods, Will; Crewther, David P

    2017-01-01

    Social Disorganisation (SD) is a shared autistic and schizotypal phenotype that is present in the subclinical population. Auditory processing deficits, particularly in mismatch negativity/field (MMN/F) have been reported across both spectrum disorders. This study investigates differences in MMN/F cortical spatio-temporal source activity between higher and lower quintiles of the SD spectrum. Sixteen low (9 female) and 19 high (9 female) SD subclinical adults (18-40years) underwent magnetoencephalography (MEG) during an MMF paradigm where standard tones (50ms) were interrupted by infrequent duration deviants (100ms). Spatio-temporal source cluster analysis with permutation testing revealed no difference between the groups in source activation to the standard tone. To the deviant tone however, there was significantly reduced right hemisphere fronto-temporal and insular cortex activation for the high SD group ( p = 0.038). The MMF, as a product of the cortical response to the deviant minus that to the standard, did not differ significantly between the high and low Social Disorganisation groups. These data demonstrate a deficit in right fronto-temporal processing of an auditory change for those with more of the shared SD phenotype, indicating that right fronto-temporal auditory processing may be associated with psychosocial functioning.

  14. Hearing shapes our perception of time: temporal discrimination of tactile stimuli in deaf people.

    PubMed

    Bolognini, Nadia; Cecchetto, Carlo; Geraci, Carlo; Maravita, Angelo; Pascual-Leone, Alvaro; Papagno, Costanza

    2012-02-01

    Confronted with the loss of one type of sensory input, we compensate using information conveyed by other senses. However, losing one type of sensory information at specific developmental times may lead to deficits across all sensory modalities. We addressed the effect of auditory deprivation on the development of tactile abilities, taking into account changes occurring at the behavioral and cortical level. Congenitally deaf and hearing individuals performed two tactile tasks, the first requiring the discrimination of the temporal duration of touches and the second requiring the discrimination of their spatial length. Compared with hearing individuals, deaf individuals were impaired only in tactile temporal processing. To explore the neural substrate of this difference, we ran a TMS experiment. In deaf individuals, the auditory association cortex was involved in temporal and spatial tactile processing, with the same chronometry as the primary somatosensory cortex. In hearing participants, the involvement of auditory association cortex occurred at a later stage and selectively for temporal discrimination. The different chronometry in the recruitment of the auditory cortex in deaf individuals correlated with the tactile temporal impairment. Thus, early hearing experience seems to be crucial to develop an efficient temporal processing across modalities, suggesting that plasticity does not necessarily result in behavioral compensation.

  15. Psychophysics and Neuronal Bases of Sound Localization in Humans

    PubMed Central

    Ahveninen, Jyrki; Kopco, Norbert; Jääskeläinen, Iiro P.

    2013-01-01

    Localization of sound sources is a considerable computational challenge for the human brain. Whereas the visual system can process basic spatial information in parallel, the auditory system lacks a straightforward correspondence between external spatial locations and sensory receptive fields. Consequently, the question how different acoustic features supporting spatial hearing are represented in the central nervous system is still open. Functional neuroimaging studies in humans have provided evidence for a posterior auditory “where” pathway that encompasses non-primary auditory cortex areas, including the planum temporale (PT) and posterior superior temporal gyrus (STG), which are strongly activated by horizontal sound direction changes, distance changes, and movement. However, these areas are also activated by a wide variety of other stimulus features, posing a challenge for the interpretation that the underlying areas are purely spatial. This review discusses behavioral and neuroimaging studies on sound localization, and some of the competing models of representation of auditory space in humans. PMID:23886698

  16. Acute auditory agnosia as the presenting hearing disorder in MELAS.

    PubMed

    Miceli, Gabriele; Conti, Guido; Cianfoni, Alessandro; Di Giacopo, Raffaella; Zampetti, Patrizia; Servidei, Serenella

    2008-12-01

    MELAS is commonly associated with peripheral hearing loss. Auditory agnosia is a rare cortical auditory impairment, usually due to bilateral temporal damage. We document, for the first time, auditory agnosia as the presenting hearing disorder in MELAS. A young woman with MELAS (A3243G mtDNA mutation) suffered from acute cortical hearing damage following a single stroke-like episode, in the absence of previous hearing deficits. Audiometric testing showed marked central hearing impairment and very mild sensorineural hearing loss. MRI documented bilateral, acute lesions to superior temporal regions. Neuropsychological tests demonstrated auditory agnosia without aphasia. Our data and a review of published reports show that cortical auditory disorders are relatively frequent in MELAS, probably due to the strikingly high incidence of bilateral and symmetric damage following stroke-like episodes. Acute auditory agnosia can be the presenting hearing deficit in MELAS and, conversely, MELAS should be suspected in young adults with sudden hearing loss.

  17. Music and language: relations and disconnections.

    PubMed

    Kraus, Nina; Slater, Jessica

    2015-01-01

    Music and language provide an important context in which to understand the human auditory system. While they perform distinct and complementary communicative functions, music and language are both rooted in the human desire to connect with others. Since sensory function is ultimately shaped by what is biologically important to the organism, the human urge to communicate has been a powerful driving force in both the evolution of auditory function and the ways in which it can be changed by experience within an individual lifetime. This chapter emphasizes the highly interactive nature of the auditory system as well as the depth of its integration with other sensory and cognitive systems. From the origins of music and language to the effects of auditory expertise on the neural encoding of sound, we consider key themes in auditory processing, learning, and plasticity. We emphasize the unique role of the auditory system as the temporal processing "expert" in the brain, and explore relationships between communication and cognition. We demonstrate how experience with music and language can have a significant impact on underlying neural function, and that auditory expertise strengthens some of the very same aspects of sound encoding that are deficient in impaired populations. © 2015 Elsevier B.V. All rights reserved.

  18. Perception of temporally modified speech in auditory neuropathy.

    PubMed

    Hassan, Dalia Mohamed

    2011-01-01

    Disrupted auditory nerve activity in auditory neuropathy (AN) significantly impairs the sequential processing of auditory information, resulting in poor speech perception. This study investigated the ability of AN subjects to perceive temporally modified consonant-vowel (CV) pairs and shed light on their phonological awareness skills. Four Arabic CV pairs were selected: /ki/-/gi/, /to/-/do/, /si/-/sti/ and /so/-/zo/. The formant transitions in consonants and the pauses between CV pairs were prolonged. Rhyming, segmentation and blending skills were tested using words at a natural rate of speech and with prolongation of the speech stream. Fourteen adult AN subjects were compared to a matched group of cochlear-impaired patients in their perception of acoustically processed speech. The AN group distinguished the CV pairs at a low speech rate, in particular with modification of the consonant duration. Phonological awareness skills deteriorated in adult AN subjects but improved with prolongation of the speech inter-syllabic time interval. A rehabilitation program for AN should consider temporal modification of speech, training for auditory temporal processing and the use of devices with innovative signal processing schemes. Verbal modifications as well as visual imaging appear to be promising compensatory strategies for remediating the affected phonological processing skills.

  19. Identification of environmental sounds and melodies in syndromes of anterior temporal lobe degeneration.

    PubMed

    Golden, Hannah L; Downey, Laura E; Fletcher, Philip D; Mahoney, Colin J; Schott, Jonathan M; Mummery, Catherine J; Crutch, Sebastian J; Warren, Jason D

    2015-05-15

    Recognition of nonverbal sounds in semantic dementia and other syndromes of anterior temporal lobe degeneration may determine clinical symptoms and help to define phenotypic profiles. However, nonverbal auditory semantic function has not been widely studied in these syndromes. Here we investigated semantic processing in two key nonverbal auditory domains - environmental sounds and melodies - in patients with semantic dementia (SD group; n=9) and in patients with anterior temporal lobe atrophy presenting with behavioural decline (TL group; n=7, including four cases with MAPT mutations) in relation to healthy older controls (n=20). We assessed auditory semantic performance in each domain using novel, uniform within-modality neuropsychological procedures that determined sound identification based on semantic classification of sound pairs. Both the SD and TL groups showed comparable overall impairments of environmental sound and melody identification; individual patients generally showed superior identification of environmental sounds than melodies, however relative sparing of melody over environmental sound identification also occurred in both groups. Our findings suggest that nonverbal auditory semantic impairment is a common feature of neurodegenerative syndromes with anterior temporal lobe atrophy. However, the profile of auditory domain involvement varies substantially between individuals. Copyright © 2015. Published by Elsevier B.V.

  20. Reversing Spoken Items--Mind Twisting Not Tongue Twisting

    ERIC Educational Resources Information Center

    Rudner, Mary; Ronnberg, Jerker; Hugdahl, Kenneth

    2005-01-01

    Using 12 participants we conducted an fMRI study involving two tasks, word reversal and rhyme judgment, based on pairs of natural speech stimuli, to study the neural correlates of manipulating auditory imagery under taxing conditions. Both tasks engaged the left anterior superior temporal gyrus, reflecting previously established perceptual…

  1. The Tactile Continuity Illusion

    ERIC Educational Resources Information Center

    Kitagawa, Norimichi; Igarashi, Yuka; Kashino, Makio

    2009-01-01

    We can perceive the continuity of an object or event by integrating spatially/temporally discrete sensory inputs. The mechanism underlying this perception of continuity has intrigued many researchers and has been well documented in both the visual and auditory modalities. The present study shows for the first time to our knowledge that an illusion…

  2. Coding of auditory temporal and pitch information by hippocampal individual cells and cell assemblies in the rat.

    PubMed

    Sakurai, Y

    2002-01-01

    This study reports how hippocampal individual cells and cell assemblies cooperate for neural coding of pitch and temporal information in memory processes for auditory stimuli. Each rat performed two tasks, one requiring discrimination of auditory pitch (high or low) and the other requiring discrimination of their duration (long or short). Some CA1 and CA3 complex-spike neurons showed task-related differential activity between the high and low tones in only the pitch-discrimination task. However, without exception, neurons which showed task-related differential activity between the long and short tones in the duration-discrimination task were always task-related neurons in the pitch-discrimination task. These results suggest that temporal information (long or short), in contrast to pitch information (high or low), cannot be coded independently by specific neurons. The results also indicate that the two different behavioral tasks cannot be fully differentiated by the task-related single neurons alone and suggest a model of cell-assembly coding of the tasks. Cross-correlation analysis among activities of simultaneously recorded multiple neurons supported the suggested cell-assembly model.Considering those results, this study concludes that dual coding by hippocampal single neurons and cell assemblies is working in memory processing of pitch and temporal information of auditory stimuli. The single neurons encode both auditory pitches and their temporal lengths and the cell assemblies encode types of tasks (contexts or situations) in which the pitch and the temporal information are processed.

  3. Contribution of Temporal Processing Skills to Reading Comprehension in 8-Year-Olds: Evidence for a Mediation Effect of Phonological Awareness

    ERIC Educational Resources Information Center

    Malenfant, Nathalie; Grondin, Simon; Boivin, Michel; Forget-Dubois, Nadine; Robaey, Philippe; Dionne, Ginette

    2012-01-01

    This study tested whether the association between temporal processing (TP) and reading is mediated by phonological awareness (PA) in a normative sample of 615 eight-year-olds. TP was measured with auditory and bimodal (visual-auditory) temporal order judgment tasks and PA with a phoneme deletion task. PA partially mediated the association between…

  4. Brief Report: Which Came First? Exploring Crossmodal Temporal Order Judgements and Their Relationship with Sensory Reactivity in Autism and Neurotypicals

    ERIC Educational Resources Information Center

    Poole, Daniel; Gowen, Emma; Warren, Paul A.; Poliakoff, Ellen

    2017-01-01

    Previous studies have indicated that visual-auditory temporal acuity is reduced in children with autism spectrum conditions (ASC) in comparison to neurotypicals. In the present study we investigated temporal acuity for all possible bimodal pairings of visual, tactile and auditory information in adults with ASC (n = 18) and a matched control group…

  5. Auditory Temporal Processing Deficits in Chronic Stroke: A Comparison of Brain Damage Lateralization Effect.

    PubMed

    Jafari, Zahra; Esmaili, Mahdiye; Delbari, Ahmad; Mehrpour, Masoud; Mohajerani, Majid H

    2016-06-01

    There have been a few reports about the effects of chronic stroke on auditory temporal processing abilities and no reports regarding the effects of brain damage lateralization on these abilities. Our study was performed on 2 groups of chronic stroke patients to compare the effects of hemispheric lateralization of brain damage and of age on auditory temporal processing. Seventy persons with normal hearing, including 25 normal controls, 25 stroke patients with damage to the right brain, and 20 stroke patients with damage to the left brain, without aphasia and with an age range of 31-71 years were studied. A gap-in-noise (GIN) test and a duration pattern test (DPT) were conducted for each participant. Significant differences were found between the 3 groups for GIN threshold, overall GIN percent score, and DPT percent score in both ears (P ≤ .001). For all stroke patients, performance in both GIN and DPT was poorer in the ear contralateral to the damaged hemisphere, which was significant in DPT and in 2 measures of GIN (P ≤ .046). Advanced age had a negative relationship with temporal processing abilities for all 3 groups. In cases of confirmed left- or right-side stroke involving auditory cerebrum damage, poorer auditory temporal processing is associated with the ear contralateral to the damaged cerebral hemisphere. Replication of our results and the use of GIN and DPT tests for the early diagnosis of auditory processing deficits and for monitoring the effects of aural rehabilitation interventions are recommended. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  6. Electrostimulation mapping of comprehension of auditory and visual words.

    PubMed

    Roux, Franck-Emmanuel; Miskin, Krasimir; Durand, Jean-Baptiste; Sacko, Oumar; Réhault, Emilie; Tanova, Rositsa; Démonet, Jean-François

    2015-10-01

    In order to spare functional areas during the removal of brain tumours, electrical stimulation mapping was used in 90 patients (77 in the left hemisphere and 13 in the right; 2754 cortical sites tested). Language functions were studied with a special focus on comprehension of auditory and visual words and the semantic system. In addition to naming, patients were asked to perform pointing tasks from auditory and visual stimuli (using sets of 4 different images controlled for familiarity), and also auditory object (sound recognition) and Token test tasks. Ninety-two auditory comprehension interference sites were observed. We found that the process of auditory comprehension involved a few, fine-grained, sub-centimetre cortical territories. Early stages of speech comprehension seem to relate to two posterior regions in the left superior temporal gyrus. Downstream lexical-semantic speech processing and sound analysis involved 2 pathways, along the anterior part of the left superior temporal gyrus, and posteriorly around the supramarginal and middle temporal gyri. Electrostimulation experimentally dissociated perceptual consciousness attached to speech comprehension. The initial word discrimination process can be considered as an "automatic" stage, the attention feedback not being impaired by stimulation as would be the case at the lexical-semantic stage. Multimodal organization of the superior temporal gyrus was also detected since some neurones could be involved in comprehension of visual material and naming. These findings demonstrate a fine graded, sub-centimetre, cortical representation of speech comprehension processing mainly in the left superior temporal gyrus and are in line with those described in dual stream models of language comprehension processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Sensorineural hearing loss amplifies neural coding of envelope information in the central auditory system of chinchillas

    PubMed Central

    Zhong, Ziwei; Henry, Kenneth S.; Heinz, Michael G.

    2014-01-01

    People with sensorineural hearing loss often have substantial difficulty understanding speech under challenging listening conditions. Behavioral studies suggest that reduced sensitivity to the temporal structure of sound may be responsible, but underlying neurophysiological pathologies are incompletely understood. Here, we investigate the effects of noise-induced hearing loss on coding of envelope (ENV) structure in the central auditory system of anesthetized chinchillas. ENV coding was evaluated noninvasively using auditory evoked potentials recorded from the scalp surface in response to sinusoidally amplitude modulated tones with carrier frequencies of 1, 2, 4, and 8 kHz and a modulation frequency of 140 Hz. Stimuli were presented in quiet and in three levels of white background noise. The latency of scalp-recorded ENV responses was consistent with generation in the auditory midbrain. Hearing loss amplified neural coding of ENV at carrier frequencies of 2 kHz and above. This result may reflect enhanced ENV coding from the periphery and/or an increase in the gain of central auditory neurons. In contrast to expectations, hearing loss was not associated with a stronger adverse effect of increasing masker intensity on ENV coding. The exaggerated neural representation of ENV information shown here at the level of the auditory midbrain helps to explain previous findings of enhanced sensitivity to amplitude modulation in people with hearing loss under some conditions. Furthermore, amplified ENV coding may potentially contribute to speech perception problems in people with cochlear hearing loss by acting as a distraction from more salient acoustic cues, particularly in fluctuating backgrounds. PMID:24315815

  8. Spatial and temporal relationships of electrocorticographic alpha and gamma activity during auditory processing.

    PubMed

    Potes, Cristhian; Brunner, Peter; Gunduz, Aysegul; Knight, Robert T; Schalk, Gerwin

    2014-08-15

    Neuroimaging approaches have implicated multiple brain sites in musical perception, including the posterior part of the superior temporal gyrus and adjacent perisylvian areas. However, the detailed spatial and temporal relationship of neural signals that support auditory processing is largely unknown. In this study, we applied a novel inter-subject analysis approach to electrophysiological signals recorded from the surface of the brain (electrocorticography (ECoG)) in ten human subjects. This approach allowed us to reliably identify those ECoG features that were related to the processing of a complex auditory stimulus (i.e., continuous piece of music) and to investigate their spatial, temporal, and causal relationships. Our results identified stimulus-related modulations in the alpha (8-12 Hz) and high gamma (70-110 Hz) bands at neuroanatomical locations implicated in auditory processing. Specifically, we identified stimulus-related ECoG modulations in the alpha band in areas adjacent to primary auditory cortex, which are known to receive afferent auditory projections from the thalamus (80 of a total of 15,107 tested sites). In contrast, we identified stimulus-related ECoG modulations in the high gamma band not only in areas close to primary auditory cortex but also in other perisylvian areas known to be involved in higher-order auditory processing, and in superior premotor cortex (412/15,107 sites). Across all implicated areas, modulations in the high gamma band preceded those in the alpha band by 280 ms, and activity in the high gamma band causally predicted alpha activity, but not vice versa (Granger causality, p<1e(-8)). Additionally, detailed analyses using Granger causality identified causal relationships of high gamma activity between distinct locations in early auditory pathways within superior temporal gyrus (STG) and posterior STG, between posterior STG and inferior frontal cortex, and between STG and premotor cortex. Evidence suggests that these relationships reflect direct cortico-cortical connections rather than common driving input from subcortical structures such as the thalamus. In summary, our inter-subject analyses defined the spatial and temporal relationships between music-related brain activity in the alpha and high gamma bands. They provide experimental evidence supporting current theories about the putative mechanisms of alpha and gamma activity, i.e., reflections of thalamo-cortical interactions and local cortical neural activity, respectively, and the results are also in agreement with existing functional models of auditory processing. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Short-term memory stores organized by information domain.

    PubMed

    Noyce, Abigail L; Cestero, Nishmar; Shinn-Cunningham, Barbara G; Somers, David C

    2016-04-01

    Vision and audition have complementary affinities, with vision excelling in spatial resolution and audition excelling in temporal resolution. Here, we investigated the relationships among the visual and auditory modalities and spatial and temporal short-term memory (STM) using change detection tasks. We created short sequences of visual or auditory items, such that each item within a sequence arose at a unique spatial location at a unique time. On each trial, two successive sequences were presented; subjects attended to either space (the sequence of locations) or time (the sequence of inter item intervals) and reported whether the patterns of locations or intervals were identical. Each subject completed blocks of unimodal trials (both sequences presented in the same modality) and crossmodal trials (Sequence 1 visual, Sequence 2 auditory, or vice versa) for both spatial and temporal tasks. We found a strong interaction between modality and task: Spatial performance was best on unimodal visual trials, whereas temporal performance was best on unimodal auditory trials. The order of modalities on crossmodal trials also mattered, suggesting that perceptual fidelity at encoding is critical to STM. Critically, no cost was attributable to crossmodal comparison: In both tasks, performance on crossmodal trials was as good as or better than on the weaker unimodal trials. STM representations of space and time can guide change detection in either the visual or the auditory modality, suggesting that the temporal or spatial organization of STM may supersede sensory-specific organization.

  10. The 5% difference: early sensory processing predicts sarcasm perception in schizophrenia and schizo-affective disorder.

    PubMed

    Kantrowitz, J T; Hoptman, M J; Leitman, D I; Silipo, G; Javitt, D C

    2014-01-01

    Intact sarcasm perception is a crucial component of social cognition and mentalizing (the ability to understand the mental state of oneself and others). In sarcasm, tone of voice is used to negate the literal meaning of an utterance. In particular, changes in pitch are used to distinguish between sincere and sarcastic utterances. Schizophrenia patients show well-replicated deficits in auditory function and functional connectivity (FC) within and between auditory cortical regions. In this study we investigated the contributions of auditory deficits to sarcasm perception in schizophrenia. Auditory measures including pitch processing, auditory emotion recognition (AER) and sarcasm detection were obtained from 76 patients with schizophrenia/schizo-affective disorder and 72 controls. Resting-state FC (rsFC) was obtained from a subsample and was analyzed using seeds placed in both auditory cortex and meta-analysis-defined core-mentalizing regions relative to auditory performance. Patients showed large effect-size deficits across auditory measures. Sarcasm deficits correlated significantly with general functioning and impaired pitch processing both across groups and within the patient group alone. Patients also showed reduced sensitivity to alterations in mean pitch and variability. For patients, sarcasm discrimination correlated exclusively with the level of rsFC within primary auditory regions whereas for controls, correlations were observed exclusively within core-mentalizing regions (the right posterior superior temporal gyrus, anterior superior temporal sulcus and insula, and left posterior medial temporal gyrus). These findings confirm the contribution of auditory deficits to theory of mind (ToM) impairments in schizophrenia, and demonstrate that FC within auditory, but not core-mentalizing, regions is rate limiting with respect to sarcasm detection in schizophrenia.

  11. Effect of low-frequency rTMS on electromagnetic tomography (LORETA) and regional brain metabolism (PET) in schizophrenia patients with auditory hallucinations.

    PubMed

    Horacek, Jiri; Brunovsky, Martin; Novak, Tomas; Skrdlantova, Lucie; Klirova, Monika; Bubenikova-Valesova, Vera; Krajca, Vladimir; Tislerova, Barbora; Kopecek, Milan; Spaniel, Filip; Mohr, Pavel; Höschl, Cyril

    2007-01-01

    Auditory hallucinations are characteristic symptoms of schizophrenia with high clinical importance. It was repeatedly reported that low frequency (

  12. The Role of Inhibition in a Computational Model of an Auditory Cortical Neuron during the Encoding of Temporal Information

    PubMed Central

    Bendor, Daniel

    2015-01-01

    In auditory cortex, temporal information within a sound is represented by two complementary neural codes: a temporal representation based on stimulus-locked firing and a rate representation, where discharge rate co-varies with the timing between acoustic events but lacks a stimulus-synchronized response. Using a computational neuronal model, we find that stimulus-locked responses are generated when sound-evoked excitation is combined with strong, delayed inhibition. In contrast to this, a non-synchronized rate representation is generated when the net excitation evoked by the sound is weak, which occurs when excitation is coincident and balanced with inhibition. Using single-unit recordings from awake marmosets (Callithrix jacchus), we validate several model predictions, including differences in the temporal fidelity, discharge rates and temporal dynamics of stimulus-evoked responses between neurons with rate and temporal representations. Together these data suggest that feedforward inhibition provides a parsimonious explanation of the neural coding dichotomy observed in auditory cortex. PMID:25879843

  13. Functional Connectivity between Face-Movement and Speech-Intelligibility Areas during Auditory-Only Speech Perception

    PubMed Central

    Schall, Sonja; von Kriegstein, Katharina

    2014-01-01

    It has been proposed that internal simulation of the talking face of visually-known speakers facilitates auditory speech recognition. One prediction of this view is that brain areas involved in auditory-only speech comprehension interact with visual face-movement sensitive areas, even under auditory-only listening conditions. Here, we test this hypothesis using connectivity analyses of functional magnetic resonance imaging (fMRI) data. Participants (17 normal participants, 17 developmental prosopagnosics) first learned six speakers via brief voice-face or voice-occupation training (<2 min/speaker). This was followed by an auditory-only speech recognition task and a control task (voice recognition) involving the learned speakers’ voices in the MRI scanner. As hypothesized, we found that, during speech recognition, familiarity with the speaker’s face increased the functional connectivity between the face-movement sensitive posterior superior temporal sulcus (STS) and an anterior STS region that supports auditory speech intelligibility. There was no difference between normal participants and prosopagnosics. This was expected because previous findings have shown that both groups use the face-movement sensitive STS to optimize auditory-only speech comprehension. Overall, the present findings indicate that learned visual information is integrated into the analysis of auditory-only speech and that this integration results from the interaction of task-relevant face-movement and auditory speech-sensitive areas. PMID:24466026

  14. Cerebral Processing of Voice Gender Studied Using a Continuous Carryover fMRI Design

    PubMed Central

    Pernet, Cyril; Latinus, Marianne; Crabbe, Frances; Belin, Pascal

    2013-01-01

    Normal listeners effortlessly determine a person's gender by voice, but the cerebral mechanisms underlying this ability remain unclear. Here, we demonstrate 2 stages of cerebral processing during voice gender categorization. Using voice morphing along with an adaptation-optimized functional magnetic resonance imaging design, we found that secondary auditory cortex including the anterior part of the temporal voice areas in the right hemisphere responded primarily to acoustical distance with the previously heard stimulus. In contrast, a network of bilateral regions involving inferior prefrontal and anterior and posterior cingulate cortex reflected perceived stimulus ambiguity. These findings suggest that voice gender recognition involves neuronal populations along the auditory ventral stream responsible for auditory feature extraction, functioning in pair with the prefrontal cortex in voice gender perception. PMID:22490550

  15. Statistical learning of multisensory regularities is enhanced in musicians: An MEG study.

    PubMed

    Paraskevopoulos, Evangelos; Chalas, Nikolas; Kartsidis, Panagiotis; Wollbrink, Andreas; Bamidis, Panagiotis

    2018-07-15

    The present study used magnetoencephalography (MEG) to identify the neural correlates of audiovisual statistical learning, while disentangling the differential contributions of uni- and multi-modal statistical mismatch responses in humans. The applied paradigm was based on a combination of a statistical learning paradigm and a multisensory oddball one, combining an audiovisual, an auditory and a visual stimulation stream, along with the corresponding deviances. Plasticity effects due to musical expertise were investigated by comparing the behavioral and MEG responses of musicians to non-musicians. The behavioral results indicated that the learning was successful for both musicians and non-musicians. The unimodal MEG responses are consistent with previous studies, revealing the contribution of Heschl's gyrus for the identification of auditory statistical mismatches and the contribution of medial temporal and visual association areas for the visual modality. The cortical network underlying audiovisual statistical learning was found to be partly common and partly distinct from the corresponding unimodal networks, comprising right temporal and left inferior frontal sources. Musicians showed enhanced activation in superior temporal and superior frontal gyrus. Connectivity and information processing flow amongst the sources comprising the cortical network of audiovisual statistical learning, as estimated by transfer entropy, was reorganized in musicians, indicating enhanced top-down processing. This neuroplastic effect showed a cross-modal stability between the auditory and audiovisual modalities. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Figure-background in dichotic task and their relation to skills untrained.

    PubMed

    Cibian, Aline Priscila; Pereira, Liliane Desgualdo

    2015-01-01

    To evaluate the effectiveness of auditory training in dichotic task and to compare the responses of trained skills with the responses of untrained skills, after 4-8 weeks. Nineteen subjects, aged 12-15 years, underwent an auditory training based on dichotic interaural intensity difference (DIID), organized in eight sessions, each lasting 50 min. The assessment of auditory processing was conducted in three stages: before the intervention, after the intervention, and in the middle and at the end of the training. Data from this evaluation were analyzed as per group of disorder, according to the changes in the auditory processes evaluated: selective attention and temporal processing. Each of them was named selective attention group (SAG) and temporal processing group (TPG), and, for both the processes, selective attention and temporal processing group (SATPG). The training improved both the trained and untrained closing skill, normalizing all individuals. Untrained solving and temporal ordering skills did not reach normality for SATPG and TPG. Individuals reached normality for the trained figure-ground skill and for the untrained closing skill. The untrained solving and temporal ordering skills improved in some individuals but failed to reach normality.

  17. Electrophysiological Evidence for the Sources of the Masking Level Difference.

    PubMed

    Fowler, Cynthia G

    2017-08-16

    The purpose of this review article is to review evidence from auditory evoked potential studies to describe the contributions of the auditory brainstem and cortex to the generation of the masking level difference (MLD). A literature review was performed, focusing on the auditory brainstem, middle, and late latency responses used in protocols similar to those used to generate the behavioral MLD. Temporal coding of the signals necessary for generating the MLD occurs in the auditory periphery and brainstem. Brainstem disorders up to wave III of the auditory brainstem response (ABR) can disrupt the MLD. The full MLD requires input to the generators of the auditory late latency potentials to produce all characteristics of the MLD; these characteristics include threshold differences for various binaural signal and noise conditions. Studies using central auditory lesions are beginning to identify the cortical effects on the MLD. The MLD requires auditory processing from the periphery to cortical areas. A healthy auditory periphery and brainstem codes temporal synchrony, which is essential for the ABR. Threshold differences require engaging cortical function beyond the primary auditory cortex. More studies using cortical lesions and evoked potentials or imaging should clarify the specific cortical areas involved in the MLD.

  18. The effects of context and musical training on auditory temporal-interval discrimination.

    PubMed

    Banai, Karen; Fisher, Shirley; Ganot, Ron

    2012-02-01

    Non sensory factors such as stimulus context and musical experience are known to influence auditory frequency discrimination, but whether the context effect extends to auditory temporal processing remains unknown. Whether individual experiences such as musical training alter the context effect is also unknown. The goal of the present study was therefore to investigate the effects of stimulus context and musical experience on auditory temporal-interval discrimination. In experiment 1, temporal-interval discrimination was compared between fixed context conditions in which a single base temporal interval was presented repeatedly across all trials and variable context conditions in which one of two base intervals was randomly presented on each trial. Discrimination was significantly better in the fixed than in the variable context conditions. In experiment 2 temporal discrimination thresholds of musicians and non-musicians were compared across 3 conditions: a fixed context condition in which the target interval was presented repeatedly across trials, and two variable context conditions differing in the frequencies used for the tones marking the temporal intervals. Musicians outperformed non-musicians on all 3 conditions, but the effects of context were similar for the two groups. Overall, it appears that, like frequency discrimination, temporal-interval discrimination benefits from having a fixed reference. Musical experience, while improving performance, did not alter the context effect, suggesting that improved discrimination skills among musicians are probably not an outcome of more sensitive contextual facilitation or predictive coding mechanisms. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Audiovisual Temporal Perception in Aging: The Role of Multisensory Integration and Age-Related Sensory Loss

    PubMed Central

    Brooks, Cassandra J.; Chan, Yu Man; Anderson, Andrew J.; McKendrick, Allison M.

    2018-01-01

    Within each sensory modality, age-related deficits in temporal perception contribute to the difficulties older adults experience when performing everyday tasks. Since perceptual experience is inherently multisensory, older adults also face the added challenge of appropriately integrating or segregating the auditory and visual cues present in our dynamic environment into coherent representations of distinct objects. As such, many studies have investigated how older adults perform when integrating temporal information across audition and vision. This review covers both direct judgments about temporal information (the sound-induced flash illusion, temporal order, perceived synchrony, and temporal rate discrimination) and judgments regarding stimuli containing temporal information (the audiovisual bounce effect and speech perception). Although an age-related increase in integration has been demonstrated on a variety of tasks, research specifically investigating the ability of older adults to integrate temporal auditory and visual cues has produced disparate results. In this short review, we explore what factors could underlie these divergent findings. We conclude that both task-specific differences and age-related sensory loss play a role in the reported disparity in age-related effects on the integration of auditory and visual temporal information. PMID:29867415

  20. Audiovisual Temporal Perception in Aging: The Role of Multisensory Integration and Age-Related Sensory Loss.

    PubMed

    Brooks, Cassandra J; Chan, Yu Man; Anderson, Andrew J; McKendrick, Allison M

    2018-01-01

    Within each sensory modality, age-related deficits in temporal perception contribute to the difficulties older adults experience when performing everyday tasks. Since perceptual experience is inherently multisensory, older adults also face the added challenge of appropriately integrating or segregating the auditory and visual cues present in our dynamic environment into coherent representations of distinct objects. As such, many studies have investigated how older adults perform when integrating temporal information across audition and vision. This review covers both direct judgments about temporal information (the sound-induced flash illusion, temporal order, perceived synchrony, and temporal rate discrimination) and judgments regarding stimuli containing temporal information (the audiovisual bounce effect and speech perception). Although an age-related increase in integration has been demonstrated on a variety of tasks, research specifically investigating the ability of older adults to integrate temporal auditory and visual cues has produced disparate results. In this short review, we explore what factors could underlie these divergent findings. We conclude that both task-specific differences and age-related sensory loss play a role in the reported disparity in age-related effects on the integration of auditory and visual temporal information.

  1. Unsupervised learning of temporal features for word categorization in a spiking neural network model of the auditory brain.

    PubMed

    Higgins, Irina; Stringer, Simon; Schnupp, Jan

    2017-01-01

    The nature of the code used in the auditory cortex to represent complex auditory stimuli, such as naturally spoken words, remains a matter of debate. Here we argue that such representations are encoded by stable spatio-temporal patterns of firing within cell assemblies known as polychronous groups, or PGs. We develop a physiologically grounded, unsupervised spiking neural network model of the auditory brain with local, biologically realistic, spike-time dependent plasticity (STDP) learning, and show that the plastic cortical layers of the network develop PGs which convey substantially more information about the speaker independent identity of two naturally spoken word stimuli than does rate encoding that ignores the precise spike timings. We furthermore demonstrate that such informative PGs can only develop if the input spatio-temporal spike patterns to the plastic cortical areas of the model are relatively stable.

  2. Unsupervised learning of temporal features for word categorization in a spiking neural network model of the auditory brain

    PubMed Central

    Stringer, Simon

    2017-01-01

    The nature of the code used in the auditory cortex to represent complex auditory stimuli, such as naturally spoken words, remains a matter of debate. Here we argue that such representations are encoded by stable spatio-temporal patterns of firing within cell assemblies known as polychronous groups, or PGs. We develop a physiologically grounded, unsupervised spiking neural network model of the auditory brain with local, biologically realistic, spike-time dependent plasticity (STDP) learning, and show that the plastic cortical layers of the network develop PGs which convey substantially more information about the speaker independent identity of two naturally spoken word stimuli than does rate encoding that ignores the precise spike timings. We furthermore demonstrate that such informative PGs can only develop if the input spatio-temporal spike patterns to the plastic cortical areas of the model are relatively stable. PMID:28797034

  3. Syllabic (~2-5 Hz) and fluctuation (~1-10 Hz) ranges in speech and auditory processing

    PubMed Central

    Edwards, Erik; Chang, Edward F.

    2013-01-01

    Given recent interest in syllabic rates (~2-5 Hz) for speech processing, we review the perception of “fluctuation” range (~1-10 Hz) modulations during listening to speech and technical auditory stimuli (AM and FM tones and noises, and ripple sounds). We find evidence that the temporal modulation transfer function (TMTF) of human auditory perception is not simply low-pass in nature, but rather exhibits a peak in sensitivity in the syllabic range (~2-5 Hz). We also address human and animal neurophysiological evidence, and argue that this bandpass tuning arises at the thalamocortical level and is more associated with non-primary regions than primary regions of cortex. The bandpass rather than low-pass TMTF has implications for modeling auditory central physiology and speech processing: this implicates temporal contrast rather than simple temporal integration, with contrast enhancement for dynamic stimuli in the fluctuation range. PMID:24035819

  4. Speech perception in individuals with auditory dys-synchrony.

    PubMed

    Kumar, U A; Jayaram, M

    2011-03-01

    This study aimed to evaluate the effect of lengthening the transition duration of selected speech segments upon the perception of those segments in individuals with auditory dys-synchrony. Thirty individuals with auditory dys-synchrony participated in the study, along with 30 age-matched normal hearing listeners. Eight consonant-vowel syllables were used as auditory stimuli. Two experiments were conducted. Experiment one measured the 'just noticeable difference' time: the smallest prolongation of the speech sound transition duration which was noticeable by the subject. In experiment two, speech sounds were modified by lengthening the transition duration by multiples of the just noticeable difference time, and subjects' speech identification scores for the modified speech sounds were assessed. Subjects with auditory dys-synchrony demonstrated poor processing of temporal auditory information. Lengthening of speech sound transition duration improved these subjects' perception of both the placement and voicing features of the speech syllables used. These results suggest that innovative speech processing strategies which enhance temporal cues may benefit individuals with auditory dys-synchrony.

  5. An association between auditory-visual synchrony processing and reading comprehension: Behavioral and electrophysiological evidence

    PubMed Central

    Mossbridge, Julia; Zweig, Jacob; Grabowecky, Marcia; Suzuki, Satoru

    2016-01-01

    The perceptual system integrates synchronized auditory-visual signals in part to promote individuation of objects in cluttered environments. The processing of auditory-visual synchrony may more generally contribute to cognition by synchronizing internally generated multimodal signals. Reading is a prime example because the ability to synchronize internal phonological and/or lexical processing with visual orthographic processing may facilitate encoding of words and meanings. Consistent with this possibility, developmental and clinical research has suggested a link between reading performance and the ability to compare visual spatial/temporal patterns with auditory temporal patterns. Here, we provide converging behavioral and electrophysiological evidence suggesting that greater behavioral ability to judge auditory-visual synchrony (Experiment 1) and greater sensitivity of an electrophysiological marker of auditory-visual synchrony processing (Experiment 2) both predict superior reading comprehension performance, accounting for 16% and 25% of the variance, respectively. These results support the idea that the mechanisms that detect auditory-visual synchrony contribute to reading comprehension. PMID:28129060

  6. An Association between Auditory-Visual Synchrony Processing and Reading Comprehension: Behavioral and Electrophysiological Evidence.

    PubMed

    Mossbridge, Julia; Zweig, Jacob; Grabowecky, Marcia; Suzuki, Satoru

    2017-03-01

    The perceptual system integrates synchronized auditory-visual signals in part to promote individuation of objects in cluttered environments. The processing of auditory-visual synchrony may more generally contribute to cognition by synchronizing internally generated multimodal signals. Reading is a prime example because the ability to synchronize internal phonological and/or lexical processing with visual orthographic processing may facilitate encoding of words and meanings. Consistent with this possibility, developmental and clinical research has suggested a link between reading performance and the ability to compare visual spatial/temporal patterns with auditory temporal patterns. Here, we provide converging behavioral and electrophysiological evidence suggesting that greater behavioral ability to judge auditory-visual synchrony (Experiment 1) and greater sensitivity of an electrophysiological marker of auditory-visual synchrony processing (Experiment 2) both predict superior reading comprehension performance, accounting for 16% and 25% of the variance, respectively. These results support the idea that the mechanisms that detect auditory-visual synchrony contribute to reading comprehension.

  7. A Role for the Right Superior Temporal Sulcus in Categorical Perception of Musical Chords

    ERIC Educational Resources Information Center

    Klein, Mike E.; Zatorre, Robert J.

    2011-01-01

    Categorical perception (CP) is a mechanism whereby non-identical stimuli that have the same underlying meaning become invariantly represented in the brain. Through behavioral identification and discrimination tasks, CP has been demonstrated to occur broadly across the auditory modality, including in perception of speech (e.g. phonemes) and music…

  8. Learning and Generalization on Asynchrony and Order Tasks at Sound Offset: Implications for Underlying Neural Circuitry

    ERIC Educational Resources Information Center

    Mossbridge, Julia A.; Scissors, Beth N.; Wright, Beverly A.

    2008-01-01

    Normal auditory perception relies on accurate judgments about the temporal relationships between sounds. Previously, we used a perceptual-learning paradigm to investigate the neural substrates of two such relative-timing judgments made at sound onset: detecting stimulus asynchrony and discriminating stimulus order. Here, we conducted parallel…

  9. Effects of low frequency rTMS treatment on brain networks for inner speech in patients with schizophrenia and auditory verbal hallucinations.

    PubMed

    Bais, Leonie; Liemburg, Edith; Vercammen, Ans; Bruggeman, Richard; Knegtering, Henderikus; Aleman, André

    2017-08-01

    Efficacy of repetitive Transcranial Magnetic Stimulation (rTMS) targeting the temporo-parietal junction (TPJ) for the treatment of auditory verbal hallucinations (AVH) remains under debate. We assessed the influence of a 1Hz rTMS treatment on neural networks involved in a cognitive mechanism proposed to subserve AVH. Patients with schizophrenia (N=24) experiencing medication-resistant AVH completed a 10-day 1Hz rTMS treatment. Participants were randomized to active stimulation of the left or bilateral TPJ, or sham stimulation. The effects of rTMS on neural networks were investigated with an inner speech task during fMRI. Changes within and between neural networks were analyzed using Independent Component Analysis. rTMS of the left and bilateral TPJ areas resulted in a weaker network contribution of the left supramarginal gyrus to the bilateral fronto-temporal network. Left-sided rTMS resulted in stronger network contributions of the right superior temporal gyrus to the auditory-sensorimotor network, right inferior gyrus to the left fronto-parietal network, and left middle frontal gyrus to the default mode network. Bilateral rTMS was associated with a predominant inhibitory effect on network contribution. Sham stimulation showed different patterns of change compared to active rTMS. rTMS of the left temporo-parietal region decreased the contribution of the left supramarginal gyrus to the bilateral fronto-temporal network, which may reduce the likelihood of speech intrusions. On the other hand, left rTMS appeared to increase the contribution of functionally connected regions involved in perception, cognitive control and self-referential processing. These findings hint to potential neural mechanisms underlying rTMS for hallucinations but need corroboration in larger samples. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Temporal information processing as a basis for auditory comprehension: clinical evidence from aphasic patients.

    PubMed

    Oron, Anna; Szymaszek, Aneta; Szelag, Elzbieta

    2015-01-01

    Temporal information processing (TIP) underlies many aspects of cognitive functions like language, motor control, learning, memory, attention, etc. Millisecond timing may be assessed by sequencing abilities, e.g. the perception of event order. It may be measured with auditory temporal-order-threshold (TOT), i.e. a minimum time gap separating two successive stimuli necessary for a subject to report their temporal order correctly, thus the relation 'before-after'. Neuropsychological evidence has indicated elevated TOT values (corresponding to deteriorated time perception) in different clinical groups, such as aphasic patients, dyslexic subjects or children with specific language impairment. To test relationships between elevated TOT and declined cognitive functions in brain-injured patients suffering from post-stroke aphasia. We tested 30 aphasic patients (13 male, 17 female), aged between 50 and 81 years. TIP comprised assessment of TOT. Auditory comprehension was assessed with the selected language tests, i.e. Token Test, Phoneme Discrimination Test (PDT) and Voice-Onset-Time Test (VOT), while two aspects of attentional resources (i.e. alertness and vigilance) were measured using the Test of Attentional Performance (TAP) battery. Significant correlations were indicated between elevated values of TOT and deteriorated performance on all applied language tests. Moreover, significant correlations were evidenced between elevated TOT and alertness. Finally, positive correlations were found between particular language tests, i.e. (1) Token Test and PDT; (2) Token Test and VOT Test; and (3) PDT and VOT Test, as well as between PDT and both attentional tasks. These results provide further clinical evidence supporting the thesis that TIP constitutes the core process incorporated in both language and attentional resources. The novel value of the present study is the indication for the first time in Slavic language users a clear coexistence of the 'timing-auditory comprehension-attention' relationships. © 2015 Royal College of Speech and Language Therapists.

  11. Losing the beat: deficits in temporal coordination.

    PubMed

    Palmer, Caroline; Lidji, Pascale; Peretz, Isabelle

    2014-12-19

    Tapping or clapping to an auditory beat, an easy task for most individuals, reveals precise temporal synchronization with auditory patterns such as music, even in the presence of temporal fluctuations. Most models of beat-tracking rely on the theoretical concept of pulse: a perceived regular beat generated by an internal oscillation that forms the foundation of entrainment abilities. Although tapping to the beat is a natural sensorimotor activity for most individuals, not everyone can track an auditory beat. Recently, the case of Mathieu was documented (Phillips-Silver et al. 2011 Neuropsychologia 49, 961-969. (doi:10.1016/j.neuropsychologia.2011.02.002)). Mathieu presented himself as having difficulty following a beat and exhibited synchronization failures. We examined beat-tracking in normal control participants, Mathieu, and a second beat-deaf individual, who tapped with an auditory metronome in which unpredictable perturbations were introduced to disrupt entrainment. Both beat-deaf cases exhibited failures in error correction in response to the perturbation task while exhibiting normal spontaneous motor tempi (in the absence of an auditory stimulus), supporting a deficit specific to perception-action coupling. A damped harmonic oscillator model was applied to the temporal adaptation responses; the model's parameters of relaxation time and endogenous frequency accounted for differences between the beat-deaf cases as well as the control group individuals.

  12. Losing the beat: deficits in temporal coordination

    PubMed Central

    Palmer, Caroline; Lidji, Pascale; Peretz, Isabelle

    2014-01-01

    Tapping or clapping to an auditory beat, an easy task for most individuals, reveals precise temporal synchronization with auditory patterns such as music, even in the presence of temporal fluctuations. Most models of beat-tracking rely on the theoretical concept of pulse: a perceived regular beat generated by an internal oscillation that forms the foundation of entrainment abilities. Although tapping to the beat is a natural sensorimotor activity for most individuals, not everyone can track an auditory beat. Recently, the case of Mathieu was documented (Phillips-Silver et al. 2011 Neuropsychologia 49, 961–969. (doi:10.1016/j.neuropsychologia.2011.02.002)). Mathieu presented himself as having difficulty following a beat and exhibited synchronization failures. We examined beat-tracking in normal control participants, Mathieu, and a second beat-deaf individual, who tapped with an auditory metronome in which unpredictable perturbations were introduced to disrupt entrainment. Both beat-deaf cases exhibited failures in error correction in response to the perturbation task while exhibiting normal spontaneous motor tempi (in the absence of an auditory stimulus), supporting a deficit specific to perception–action coupling. A damped harmonic oscillator model was applied to the temporal adaptation responses; the model's parameters of relaxation time and endogenous frequency accounted for differences between the beat-deaf cases as well as the control group individuals. PMID:25385783

  13. Sound envelope processing in the developing human brain: A MEG study.

    PubMed

    Tang, Huizhen; Brock, Jon; Johnson, Blake W

    2016-02-01

    This study investigated auditory cortical processing of linguistically-relevant temporal modulations in the developing brains of young children. Auditory envelope following responses to white noise amplitude modulated at rates of 1-80 Hz in healthy children (aged 3-5 years) and adults were recorded using a paediatric magnetoencephalography (MEG) system and a conventional MEG system, respectively. For children, there were envelope following responses to slow modulations but no significant responses to rates higher than about 25 Hz, whereas adults showed significant envelope following responses to almost the entire range of stimulus rates. Our results show that the auditory cortex of preschool-aged children has a sharply limited capacity to process rapid amplitude modulations in sounds, as compared to the auditory cortex of adults. These neurophysiological results are consistent with previous psychophysical evidence for a protracted maturational time course for auditory temporal processing. The findings are also in good agreement with current linguistic theories that posit a perceptual bias for low frequency temporal information in speech during language acquisition. These insights also have clinical relevance for our understanding of language disorders that are associated with difficulties in processing temporal information in speech. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Dual Gamma Rhythm Generators Control Interlaminar Synchrony in Auditory Cortex

    PubMed Central

    Ainsworth, Matthew; Lee, Shane; Cunningham, Mark O.; Roopun, Anita K.; Traub, Roger D.; Kopell, Nancy J.; Whittington, Miles A.

    2013-01-01

    Rhythmic activity in populations of cortical neurons accompanies, and may underlie, many aspects of primary sensory processing and short-term memory. Activity in the gamma band (30 Hz up to > 100 Hz) is associated with such cognitive tasks and is thought to provide a substrate for temporal coupling of spatially separate regions of the brain. However, such coupling requires close matching of frequencies in co-active areas, and because the nominal gamma band is so spectrally broad, it may not constitute a single underlying process. Here we show that, for inhibition-based gamma rhythms in vitro in rat neocortical slices, mechanistically distinct local circuit generators exist in different laminae of rat primary auditory cortex. A persistent, 30 – 45 Hz, gap-junction-dependent gamma rhythm dominates rhythmic activity in supragranular layers 2/3, whereas a tonic depolarization-dependent, 50 – 80 Hz, pyramidal/interneuron gamma rhythm is expressed in granular layer 4 with strong glutamatergic excitation. As a consequence, altering the degree of excitation of the auditory cortex causes bifurcation in the gamma frequency spectrum and can effectively switch temporal control of layer 5 from supragranular to granular layers. Computational modeling predicts the pattern of interlaminar connections may help to stabilize this bifurcation. The data suggest that different strategies are used by primary auditory cortex to represent weak and strong inputs, with principal cell firing rate becoming increasingly important as excitation strength increases. PMID:22114273

  15. Evidence for cue-independent spatial representation in the human auditory cortex during active listening.

    PubMed

    Higgins, Nathan C; McLaughlin, Susan A; Rinne, Teemu; Stecker, G Christopher

    2017-09-05

    Few auditory functions are as important or as universal as the capacity for auditory spatial awareness (e.g., sound localization). That ability relies on sensitivity to acoustical cues-particularly interaural time and level differences (ITD and ILD)-that correlate with sound-source locations. Under nonspatial listening conditions, cortical sensitivity to ITD and ILD takes the form of broad contralaterally dominated response functions. It is unknown, however, whether that sensitivity reflects representations of the specific physical cues or a higher-order representation of auditory space (i.e., integrated cue processing), nor is it known whether responses to spatial cues are modulated by active spatial listening. To investigate, sensitivity to parametrically varied ITD or ILD cues was measured using fMRI during spatial and nonspatial listening tasks. Task type varied across blocks where targets were presented in one of three dimensions: auditory location, pitch, or visual brightness. Task effects were localized primarily to lateral posterior superior temporal gyrus (pSTG) and modulated binaural-cue response functions differently in the two hemispheres. Active spatial listening (location tasks) enhanced both contralateral and ipsilateral responses in the right hemisphere but maintained or enhanced contralateral dominance in the left hemisphere. Two observations suggest integrated processing of ITD and ILD. First, overlapping regions in medial pSTG exhibited significant sensitivity to both cues. Second, successful classification of multivoxel patterns was observed for both cue types and-critically-for cross-cue classification. Together, these results suggest a higher-order representation of auditory space in the human auditory cortex that at least partly integrates the specific underlying cues.

  16. Evidence for cue-independent spatial representation in the human auditory cortex during active listening

    PubMed Central

    McLaughlin, Susan A.; Rinne, Teemu; Stecker, G. Christopher

    2017-01-01

    Few auditory functions are as important or as universal as the capacity for auditory spatial awareness (e.g., sound localization). That ability relies on sensitivity to acoustical cues—particularly interaural time and level differences (ITD and ILD)—that correlate with sound-source locations. Under nonspatial listening conditions, cortical sensitivity to ITD and ILD takes the form of broad contralaterally dominated response functions. It is unknown, however, whether that sensitivity reflects representations of the specific physical cues or a higher-order representation of auditory space (i.e., integrated cue processing), nor is it known whether responses to spatial cues are modulated by active spatial listening. To investigate, sensitivity to parametrically varied ITD or ILD cues was measured using fMRI during spatial and nonspatial listening tasks. Task type varied across blocks where targets were presented in one of three dimensions: auditory location, pitch, or visual brightness. Task effects were localized primarily to lateral posterior superior temporal gyrus (pSTG) and modulated binaural-cue response functions differently in the two hemispheres. Active spatial listening (location tasks) enhanced both contralateral and ipsilateral responses in the right hemisphere but maintained or enhanced contralateral dominance in the left hemisphere. Two observations suggest integrated processing of ITD and ILD. First, overlapping regions in medial pSTG exhibited significant sensitivity to both cues. Second, successful classification of multivoxel patterns was observed for both cue types and—critically—for cross-cue classification. Together, these results suggest a higher-order representation of auditory space in the human auditory cortex that at least partly integrates the specific underlying cues. PMID:28827357

  17. Behavioural evidence for separate mechanisms of audiovisual temporal binding as a function of leading sensory modality.

    PubMed

    Cecere, Roberto; Gross, Joachim; Thut, Gregor

    2016-06-01

    The ability to integrate auditory and visual information is critical for effective perception and interaction with the environment, and is thought to be abnormal in some clinical populations. Several studies have investigated the time window over which audiovisual events are integrated, also called the temporal binding window, and revealed asymmetries depending on the order of audiovisual input (i.e. the leading sense). When judging audiovisual simultaneity, the binding window appears narrower and non-malleable for auditory-leading stimulus pairs and wider and trainable for visual-leading pairs. Here we specifically examined the level of independence of binding mechanisms when auditory-before-visual vs. visual-before-auditory input is bound. Three groups of healthy participants practiced audiovisual simultaneity detection with feedback, selectively training on auditory-leading stimulus pairs (group 1), visual-leading stimulus pairs (group 2) or both (group 3). Subsequently, we tested for learning transfer (crossover) from trained stimulus pairs to non-trained pairs with opposite audiovisual input. Our data confirmed the known asymmetry in size and trainability for auditory-visual vs. visual-auditory binding windows. More importantly, practicing one type of audiovisual integration (e.g. auditory-visual) did not affect the other type (e.g. visual-auditory), even if trainable by within-condition practice. Together, these results provide crucial evidence that audiovisual temporal binding for auditory-leading vs. visual-leading stimulus pairs are independent, possibly tapping into different circuits for audiovisual integration due to engagement of different multisensory sampling mechanisms depending on leading sense. Our results have implications for informing the study of multisensory interactions in healthy participants and clinical populations with dysfunctional multisensory integration. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Differential effects of rhythmic auditory stimulation and neurodevelopmental treatment/Bobath on gait patterns in adults with cerebral palsy: a randomized controlled trial.

    PubMed

    Kim, Soo Ji; Kwak, Eunmi E; Park, Eun Sook; Cho, Sung-Rae

    2012-10-01

    To investigate the effects of rhythmic auditory stimulation (RAS) on gait patterns in comparison with changes after neurodevelopmental treatment (NDT/Bobath) in adults with cerebral palsy. A repeated-measures analysis between the pretreatment and posttreatment tests and a comparison study between groups. Human gait analysis laboratory. Twenty-eight cerebral palsy patients with bilateral spasticity participated in this study. The subjects were randomly allocated to either neurodevelopmental treatment (n = 13) or rhythmic auditory stimulation (n = 15). Gait training with rhythmic auditory stimulation or neurodevelopmental treatment was performed three sessions per week for three weeks. Temporal and kinematic data were analysed before and after the intervention. Rhythmic auditory stimulation was provided using a combination of a metronome beat set to the individual's cadence and rhythmic cueing from a live keyboard, while neurodevelopmental treatment was implemented following the traditional method. Temporal data, kinematic parameters and gait deviation index as a measure of overall gait pathology were assessed. Temporal gait measures revealed that rhythmic auditory stimulation significantly increased cadence, walking velocity, stride length, and step length (P < 0.05). Kinematic data demonstrated that anterior tilt of the pelvis and hip flexion during a gait cycle was significantly ameliorated after rhythmic auditory stimulation (P < 0.05). Gait deviation index also showed modest improvement in cerebral palsy patients treated with rhythmic auditory stimulation (P < 0.05). However, neurodevelopmental treatment showed that internal and external rotations of hip joints were significantly improved, whereas rhythmic auditory stimulation showed aggravated maximal internal rotation in the transverse plane (P < 0.05). Gait training with rhythmic auditory stimulation or neurodevelopmental treatment elicited differential effects on gait patterns in adults with cerebral palsy.

  19. Temporal Influence on Awareness

    DTIC Science & Technology

    1995-12-01

    43 38. Test Setup Timing: Measured vs Expected Modal Delays (in ms) ............. 46 39. Experiment I: visual and auditory stimuli...presented simultaneously; visual- auditory delay=Oms, visual-visual delay=0ms ....... .......................... 47 40. Experiment II: visual and auditory ...stimuli presented in order; visual- auditory de- lay=Oms, visual-visual delay=variable ................................ 48 41. Experiment II: visual and

  20. Maturation of Rapid Auditory Temporal Processing and Subsequent Nonword Repetition Performance in Children

    ERIC Educational Resources Information Center

    Fox, Allison M.; Reid, Corinne L.; Anderson, Mike; Richardson, Cassandra; Bishop, Dorothy V. M.

    2012-01-01

    According to the rapid auditory processing theory, the ability to parse incoming auditory information underpins learning of oral and written language. There is wide variation in this low-level perceptual ability, which appears to follow a protracted developmental course. We studied the development of rapid auditory processing using event-related…

  1. Reproduction of auditory and visual standards in monochannel cochlear implant users.

    PubMed

    Kanabus, Magdalena; Szelag, Elzbieta; Kolodziejczyk, Iwona; Szuchnik, Joanna

    2004-01-01

    The temporal reproduction of standard durations ranging from 1 to 9 seconds was investigated in monochannel cochlear implant (CI) users and in normally hearing subjects for the auditory and visual modality. The results showed that the pattern of performance in patients depended on their level of auditory comprehension. Results for CI users, who displayed relatively good auditory comprehension, did not differ from that of normally hearing subjects for both modalities. Patients with poor auditory comprehension significantly overestimated shorter auditory standards (1, 1.5 and 2.5 s), compared to both patients with good comprehension and controls. For the visual modality the between-group comparisons were not significant. These deficits in the reproduction of auditory standards were explained in accordance with both the attentional-gate model and the role of working memory in prospective time judgment. The impairments described above can influence the functioning of the temporal integration mechanism that is crucial for auditory speech comprehension on the level of words and phrases. We postulate that the deficits in time reproduction of short standards may be one of the possible reasons for poor speech understanding in monochannel CI users.

  2. Auditory Temporal Processing and Working Memory: Two Independent Deficits for Dyslexia

    ERIC Educational Resources Information Center

    Fostick, Leah; Bar-El, Sharona; Ram-Tsur, Ronit

    2012-01-01

    Dyslexia is a neuro-cognitive disorder with a strong genetic basis, characterized by a difficulty in acquiring reading skills. Several hypotheses have been suggested in an attempt to explain the origin of dyslexia, among which some have suggested that dyslexic readers might have a deficit in auditory temporal processing, while others hypothesized…

  3. Auditory Temporal Conditioning in Neonates.

    ERIC Educational Resources Information Center

    Franz, W. K.; And Others

    Twenty normal newborns, approximately 36 hours old, were tested using an auditory temporal conditioning paradigm which consisted of a slow rise, 75 db tone played for five seconds every 25 seconds, ten times. Responses to the tones were measured by instantaneous, beat-to-beat heartrate; and the test trial was designated as the 2 1/2-second period…

  4. Auditory and Speech Processing and Reading Development in Chinese School Children: Behavioural and ERP Evidence

    ERIC Educational Resources Information Center

    Meng, Xiangzhi; Sai, Xiaoguang; Wang, Cixin; Wang, Jue; Sha, Shuying; Zhou, Xiaolin

    2005-01-01

    By measuring behavioural performance and event-related potentials (ERPs) this study investigated the extent to which Chinese school children's reading development is influenced by their skills in auditory, speech, and temporal processing. In Experiment 1, 102 normal school children's performance in pure tone temporal order judgment, tone frequency…

  5. Learning Pitch with STDP: A Computational Model of Place and Temporal Pitch Perception Using Spiking Neural Networks.

    PubMed

    Erfanian Saeedi, Nafise; Blamey, Peter J; Burkitt, Anthony N; Grayden, David B

    2016-04-01

    Pitch perception is important for understanding speech prosody, music perception, recognizing tones in tonal languages, and perceiving speech in noisy environments. The two principal pitch perception theories consider the place of maximum neural excitation along the auditory nerve and the temporal pattern of the auditory neurons' action potentials (spikes) as pitch cues. This paper describes a biophysical mechanism by which fine-structure temporal information can be extracted from the spikes generated at the auditory periphery. Deriving meaningful pitch-related information from spike times requires neural structures specialized in capturing synchronous or correlated activity from amongst neural events. The emergence of such pitch-processing neural mechanisms is described through a computational model of auditory processing. Simulation results show that a correlation-based, unsupervised, spike-based form of Hebbian learning can explain the development of neural structures required for recognizing the pitch of simple and complex tones, with or without the fundamental frequency. The temporal code is robust to variations in the spectral shape of the signal and thus can explain the phenomenon of pitch constancy.

  6. Learning Pitch with STDP: A Computational Model of Place and Temporal Pitch Perception Using Spiking Neural Networks

    PubMed Central

    Erfanian Saeedi, Nafise; Blamey, Peter J.; Burkitt, Anthony N.; Grayden, David B.

    2016-01-01

    Pitch perception is important for understanding speech prosody, music perception, recognizing tones in tonal languages, and perceiving speech in noisy environments. The two principal pitch perception theories consider the place of maximum neural excitation along the auditory nerve and the temporal pattern of the auditory neurons’ action potentials (spikes) as pitch cues. This paper describes a biophysical mechanism by which fine-structure temporal information can be extracted from the spikes generated at the auditory periphery. Deriving meaningful pitch-related information from spike times requires neural structures specialized in capturing synchronous or correlated activity from amongst neural events. The emergence of such pitch-processing neural mechanisms is described through a computational model of auditory processing. Simulation results show that a correlation-based, unsupervised, spike-based form of Hebbian learning can explain the development of neural structures required for recognizing the pitch of simple and complex tones, with or without the fundamental frequency. The temporal code is robust to variations in the spectral shape of the signal and thus can explain the phenomenon of pitch constancy. PMID:27049657

  7. Hierarchical Processing of Auditory Objects in Humans

    PubMed Central

    Kumar, Sukhbinder; Stephan, Klaas E; Warren, Jason D; Friston, Karl J; Griffiths, Timothy D

    2007-01-01

    This work examines the computational architecture used by the brain during the analysis of the spectral envelope of sounds, an important acoustic feature for defining auditory objects. Dynamic causal modelling and Bayesian model selection were used to evaluate a family of 16 network models explaining functional magnetic resonance imaging responses in the right temporal lobe during spectral envelope analysis. The models encode different hypotheses about the effective connectivity between Heschl's Gyrus (HG), containing the primary auditory cortex, planum temporale (PT), and superior temporal sulcus (STS), and the modulation of that coupling during spectral envelope analysis. In particular, we aimed to determine whether information processing during spectral envelope analysis takes place in a serial or parallel fashion. The analysis provides strong support for a serial architecture with connections from HG to PT and from PT to STS and an increase of the HG to PT connection during spectral envelope analysis. The work supports a computational model of auditory object processing, based on the abstraction of spectro-temporal “templates” in the PT before further analysis of the abstracted form in anterior temporal lobe areas. PMID:17542641

  8. Mismatch Negativity in Recent-Onset and Chronic Schizophrenia: A Current Source Density Analysis

    PubMed Central

    Fulham, W. Ross; Michie, Patricia T.; Ward, Philip B.; Rasser, Paul E.; Todd, Juanita; Johnston, Patrick J.; Thompson, Paul M.; Schall, Ulrich

    2014-01-01

    Mismatch negativity (MMN) is a component of the event-related potential elicited by deviant auditory stimuli. It is presumed to index pre-attentive monitoring of changes in the auditory environment. MMN amplitude is smaller in groups of individuals with schizophrenia compared to healthy controls. We compared duration-deviant MMN in 16 recent-onset and 19 chronic schizophrenia patients versus age- and sex-matched controls. Reduced frontal MMN was found in both patient groups, involved reduced hemispheric asymmetry, and was correlated with Global Assessment of Functioning (GAF) and negative symptom ratings. A cortically-constrained LORETA analysis, incorporating anatomical data from each individual's MRI, was performed to generate a current source density model of the MMN response over time. This model suggested MMN generation within a temporal, parietal and frontal network, which was right hemisphere dominant only in controls. An exploratory analysis revealed reduced CSD in patients in superior and middle temporal cortex, inferior and superior parietal cortex, precuneus, anterior cingulate, and superior and middle frontal cortex. A region of interest (ROI) analysis was performed. For the early phase of the MMN, patients had reduced bilateral temporal and parietal response and no lateralisation in frontal ROIs. For late MMN, patients had reduced bilateral parietal response and no lateralisation in temporal ROIs. In patients, correlations revealed a link between GAF and the MMN response in parietal cortex. In controls, the frontal response onset was 17 ms later than the temporal and parietal response. In patients, onset latency of the MMN response was delayed in secondary, but not primary, auditory cortex. However amplitude reductions were observed in both primary and secondary auditory cortex. These latency delays may indicate relatively intact information processing upstream of the primary auditory cortex, but impaired primary auditory cortex or cortico-cortical or thalamo-cortical communication with higher auditory cortices as a core deficit in schizophrenia. PMID:24949859

  9. Visual Timing of Structured Dance Movements Resembles Auditory Rhythm Perception

    PubMed Central

    Su, Yi-Huang; Salazar-López, Elvira

    2016-01-01

    Temporal mechanisms for processing auditory musical rhythms are well established, in which a perceived beat is beneficial for timing purposes. It is yet unknown whether such beat-based timing would also underlie visual perception of temporally structured, ecological stimuli connected to music: dance. In this study, we investigated whether observers extracted a visual beat when watching dance movements to assist visual timing of these movements. Participants watched silent videos of dance sequences and reproduced the movement duration by mental recall. We found better visual timing for limb movements with regular patterns in the trajectories than without, similar to the beat advantage for auditory rhythms. When movements involved both the arms and the legs, the benefit of a visual beat relied only on the latter. The beat-based advantage persisted despite auditory interferences that were temporally incongruent with the visual beat, arguing for the visual nature of these mechanisms. Our results suggest that visual timing principles for dance parallel their auditory counterparts for music, which may be based on common sensorimotor coupling. These processes likely yield multimodal rhythm representations in the scenario of music and dance. PMID:27313900

  10. Nonverbal auditory agnosia with lesion to Wernicke's area.

    PubMed

    Saygin, Ayse Pinar; Leech, Robert; Dick, Frederic

    2010-01-01

    We report the case of patient M, who suffered unilateral left posterior temporal and parietal damage, brain regions typically associated with language processing. Language function largely recovered since the infarct, with no measurable speech comprehension impairments. However, the patient exhibited a severe impairment in nonverbal auditory comprehension. We carried out extensive audiological and behavioral testing in order to characterize M's unusual neuropsychological profile. We also examined the patient's and controls' neural responses to verbal and nonverbal auditory stimuli using functional magnetic resonance imaging (fMRI). We verified that the patient exhibited persistent and severe auditory agnosia for nonverbal sounds in the absence of verbal comprehension deficits or peripheral hearing problems. Acoustical analyses suggested that his residual processing of a minority of environmental sounds might rely on his speech processing abilities. In the patient's brain, contralateral (right) temporal cortex as well as perilesional (left) anterior temporal cortex were strongly responsive to verbal, but not to nonverbal sounds, a pattern that stands in marked contrast to the controls' data. This substantial reorganization of auditory processing likely supported the recovery of M's speech processing.

  11. Visual Timing of Structured Dance Movements Resembles Auditory Rhythm Perception.

    PubMed

    Su, Yi-Huang; Salazar-López, Elvira

    2016-01-01

    Temporal mechanisms for processing auditory musical rhythms are well established, in which a perceived beat is beneficial for timing purposes. It is yet unknown whether such beat-based timing would also underlie visual perception of temporally structured, ecological stimuli connected to music: dance. In this study, we investigated whether observers extracted a visual beat when watching dance movements to assist visual timing of these movements. Participants watched silent videos of dance sequences and reproduced the movement duration by mental recall. We found better visual timing for limb movements with regular patterns in the trajectories than without, similar to the beat advantage for auditory rhythms. When movements involved both the arms and the legs, the benefit of a visual beat relied only on the latter. The beat-based advantage persisted despite auditory interferences that were temporally incongruent with the visual beat, arguing for the visual nature of these mechanisms. Our results suggest that visual timing principles for dance parallel their auditory counterparts for music, which may be based on common sensorimotor coupling. These processes likely yield multimodal rhythm representations in the scenario of music and dance.

  12. Temporal factors affecting somatosensory–auditory interactions in speech processing

    PubMed Central

    Ito, Takayuki; Gracco, Vincent L.; Ostry, David J.

    2014-01-01

    Speech perception is known to rely on both auditory and visual information. However, sound-specific somatosensory input has been shown also to influence speech perceptual processing (Ito et al., 2009). In the present study, we addressed further the relationship between somatosensory information and speech perceptual processing by addressing the hypothesis that the temporal relationship between orofacial movement and sound processing contributes to somatosensory–auditory interaction in speech perception. We examined the changes in event-related potentials (ERPs) in response to multisensory synchronous (simultaneous) and asynchronous (90 ms lag and lead) somatosensory and auditory stimulation compared to individual unisensory auditory and somatosensory stimulation alone. We used a robotic device to apply facial skin somatosensory deformations that were similar in timing and duration to those experienced in speech production. Following synchronous multisensory stimulation the amplitude of the ERP was reliably different from the two unisensory potentials. More importantly, the magnitude of the ERP difference varied as a function of the relative timing of the somatosensory–auditory stimulation. Event-related activity change due to stimulus timing was seen between 160 and 220 ms following somatosensory onset, mostly around the parietal area. The results demonstrate a dynamic modulation of somatosensory–auditory convergence and suggest the contribution of somatosensory information for speech processing process is dependent on the specific temporal order of sensory inputs in speech production. PMID:25452733

  13. The influence of selective attention to auditory and visual speech on the integration of audiovisual speech information.

    PubMed

    Buchan, Julie N; Munhall, Kevin G

    2011-01-01

    Conflicting visual speech information can influence the perception of acoustic speech, causing an illusory percept of a sound not present in the actual acoustic speech (the McGurk effect). We examined whether participants can voluntarily selectively attend to either the auditory or visual modality by instructing participants to pay attention to the information in one modality and to ignore competing information from the other modality. We also examined how performance under these instructions was affected by weakening the influence of the visual information by manipulating the temporal offset between the audio and video channels (experiment 1), and the spatial frequency information present in the video (experiment 2). Gaze behaviour was also monitored to examine whether attentional instructions influenced the gathering of visual information. While task instructions did have an influence on the observed integration of auditory and visual speech information, participants were unable to completely ignore conflicting information, particularly information from the visual stream. Manipulating temporal offset had a more pronounced interaction with task instructions than manipulating the amount of visual information. Participants' gaze behaviour suggests that the attended modality influences the gathering of visual information in audiovisual speech perception.

  14. Multisensory perceptual learning of temporal order: audiovisual learning transfers to vision but not audition.

    PubMed

    Alais, David; Cass, John

    2010-06-23

    An outstanding question in sensory neuroscience is whether the perceived timing of events is mediated by a central supra-modal timing mechanism, or multiple modality-specific systems. We use a perceptual learning paradigm to address this question. Three groups were trained daily for 10 sessions on an auditory, a visual or a combined audiovisual temporal order judgment (TOJ). Groups were pre-tested on a range TOJ tasks within and between their group modality prior to learning so that transfer of any learning from the trained task could be measured by post-testing other tasks. Robust TOJ learning (reduced temporal order discrimination thresholds) occurred for all groups, although auditory learning (dichotic 500/2000 Hz tones) was slightly weaker than visual learning (lateralised grating patches). Crossmodal TOJs also displayed robust learning. Post-testing revealed that improvements in temporal resolution acquired during visual learning transferred within modality to other retinotopic locations and orientations, but not to auditory or crossmodal tasks. Auditory learning did not transfer to visual or crossmodal tasks, and neither did it transfer within audition to another frequency pair. In an interesting asymmetry, crossmodal learning transferred to all visual tasks but not to auditory tasks. Finally, in all conditions, learning to make TOJs for stimulus onsets did not transfer at all to discriminating temporal offsets. These data present a complex picture of timing processes. The lack of transfer between unimodal groups indicates no central supramodal timing process for this task; however, the audiovisual-to-visual transfer cannot be explained without some form of sensory interaction. We propose that auditory learning occurred in frequency-tuned processes in the periphery, precluding interactions with more central visual and audiovisual timing processes. Functionally the patterns of featural transfer suggest that perceptual learning of temporal order may be optimised to object-centered rather than viewer-centered constraints.

  15. Neural Entrainment to Rhythmically Presented Auditory, Visual, and Audio-Visual Speech in Children

    PubMed Central

    Power, Alan James; Mead, Natasha; Barnes, Lisa; Goswami, Usha

    2012-01-01

    Auditory cortical oscillations have been proposed to play an important role in speech perception. It is suggested that the brain may take temporal “samples” of information from the speech stream at different rates, phase resetting ongoing oscillations so that they are aligned with similar frequency bands in the input (“phase locking”). Information from these frequency bands is then bound together for speech perception. To date, there are no explorations of neural phase locking and entrainment to speech input in children. However, it is clear from studies of language acquisition that infants use both visual speech information and auditory speech information in learning. In order to study neural entrainment to speech in typically developing children, we use a rhythmic entrainment paradigm (underlying 2 Hz or delta rate) based on repetition of the syllable “ba,” presented in either the auditory modality alone, the visual modality alone, or as auditory-visual speech (via a “talking head”). To ensure attention to the task, children aged 13 years were asked to press a button as fast as possible when the “ba” stimulus violated the rhythm for each stream type. Rhythmic violation depended on delaying the occurrence of a “ba” in the isochronous stream. Neural entrainment was demonstrated for all stream types, and individual differences in standardized measures of language processing were related to auditory entrainment at the theta rate. Further, there was significant modulation of the preferred phase of auditory entrainment in the theta band when visual speech cues were present, indicating cross-modal phase resetting. The rhythmic entrainment paradigm developed here offers a method for exploring individual differences in oscillatory phase locking during development. In particular, a method for assessing neural entrainment and cross-modal phase resetting would be useful for exploring developmental learning difficulties thought to involve temporal sampling, such as dyslexia. PMID:22833726

  16. Auditory temporal processing in patients with temporal lobe epilepsy.

    PubMed

    Lavasani, Azam Navaei; Mohammadkhani, Ghassem; Motamedi, Mahmoud; Karimi, Leyla Jalilvand; Jalaei, Shohreh; Shojaei, Fereshteh Sadat; Danesh, Ali; Azimi, Hadi

    2016-07-01

    Auditory temporal processing is the main feature of speech processing ability. Patients with temporal lobe epilepsy, despite their normal hearing sensitivity, may present speech recognition disorders. The present study was carried out to evaluate the auditory temporal processing in patients with unilateral TLE. The present study was carried out on 25 patients with epilepsy: 11 patients with right temporal lobe epilepsy and 14 with left temporal lobe epilepsy with a mean age of 31.1years and 18 control participants with a mean age of 29.4years. The two experimental and control groups were evaluated via gap-in-noise and duration pattern sequence tests. One-way ANOVA was run to analyze the data. The mean of the threshold of the GIN test in the control group was observed to be better than that in participants with LTLE and RTLE. Also, it was observed that the percentage of correct responses on the DPS test in the control group and in participants with RTLE was better than that in participants with LTLE. Patients with TLE have difficulties in temporal processing. Difficulties are more significant in patients with LTLE, likely because the left temporal lobe is specialized for the processing of temporal information. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Evolutionary diversification of the auditory organ sensilla in Neoconocephalus katydids (Orthoptera: Tettigoniidae) correlates with acoustic signal diversification over phylogenetic relatedness and life history.

    PubMed

    Strauß, J; Alt, J A; Ekschmitt, K; Schul, J; Lakes-Harlan, R

    2017-06-01

    Neoconocephalus Tettigoniidae are a model for the evolution of acoustic signals as male calls have diversified in temporal structure during the radiation of the genus. The call divergence and phylogeny in Neoconocephalus are established, but in tettigoniids in general, accompanying evolutionary changes in hearing organs are not studied. We investigated anatomical changes of the tympanal hearing organs during the evolutionary radiation and divergence of intraspecific acoustic signals. We compared the neuroanatomy of auditory sensilla (crista acustica) from nine Neoconocephalus species for the number of auditory sensilla and the crista acustica length. These parameters were correlated with differences in temporal call features, body size, life histories and different phylogenetic positions. By this, adaptive responses to shifting frequencies of male calls and changes in their temporal patterns can be evaluated against phylogenetic constraints and allometry. All species showed well-developed auditory sensilla, on average 32-35 between species. Crista acustica length and sensillum numbers correlated with body size, but not with phylogenetic position or life history. Statistically significant correlations existed also with specific call patterns: a higher number of auditory sensilla occurred in species with continuous calls or slow pulse rates, and a longer crista acustica occurred in species with double pulses or slow pulse rates. The auditory sensilla show significant differences between species despite their recent radiation, and morphological and ecological similarities. This indicates the responses to natural and sexual selection, including divergence of temporal and spectral signal properties. Phylogenetic constraints are unlikely to limit these changes of the auditory systems. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  18. Seeing voices: High-density electrical mapping and source-analysis of the multisensory mismatch negativity evoked during the McGurk illusion.

    PubMed

    Saint-Amour, Dave; De Sanctis, Pierfilippo; Molholm, Sophie; Ritter, Walter; Foxe, John J

    2007-02-01

    Seeing a speaker's facial articulatory gestures powerfully affects speech perception, helping us overcome noisy acoustical environments. One particularly dramatic illustration of visual influences on speech perception is the "McGurk illusion", where dubbing an auditory phoneme onto video of an incongruent articulatory movement can often lead to illusory auditory percepts. This illusion is so strong that even in the absence of any real change in auditory stimulation, it activates the automatic auditory change-detection system, as indexed by the mismatch negativity (MMN) component of the auditory event-related potential (ERP). We investigated the putative left hemispheric dominance of McGurk-MMN using high-density ERPs in an oddball paradigm. Topographic mapping of the initial McGurk-MMN response showed a highly lateralized left hemisphere distribution, beginning at 175 ms. Subsequently, scalp activity was also observed over bilateral fronto-central scalp with a maximal amplitude at approximately 290 ms, suggesting later recruitment of right temporal cortices. Strong left hemisphere dominance was again observed during the last phase of the McGurk-MMN waveform (350-400 ms). Source analysis indicated bilateral sources in the temporal lobe just posterior to primary auditory cortex. While a single source in the right superior temporal gyrus (STG) accounted for the right hemisphere activity, two separate sources were required, one in the left transverse gyrus and the other in STG, to account for left hemisphere activity. These findings support the notion that visually driven multisensory illusory phonetic percepts produce an auditory-MMN cortical response and that left hemisphere temporal cortex plays a crucial role in this process.

  19. Seeing voices: High-density electrical mapping and source-analysis of the multisensory mismatch negativity evoked during the McGurk illusion

    PubMed Central

    Saint-Amour, Dave; De Sanctis, Pierfilippo; Molholm, Sophie; Ritter, Walter; Foxe, John J.

    2006-01-01

    Seeing a speaker’s facial articulatory gestures powerfully affects speech perception, helping us overcome noisy acoustical environments. One particularly dramatic illustration of visual influences on speech perception is the “McGurk illusion”, where dubbing an auditory phoneme onto video of an incongruent articulatory movement can often lead to illusory auditory percepts. This illusion is so strong that even in the absence of any real change in auditory stimulation, it activates the automatic auditory change-detection system, as indexed by the mismatch negativity (MMN) component of the auditory event-related potential (ERP). We investigated the putative left hemispheric dominance of McGurk-MMN using high-density ERPs in an oddball paradigm. Topographic mapping of the initial McGurk-MMN response showed a highly lateralized left hemisphere distribution, beginning at 175 ms. Subsequently, scalp activity was also observed over bilateral fronto-central scalp with a maximal amplitude at ~290 ms, suggesting later recruitment of right temporal cortices. Strong left hemisphere dominance was again observed during the last phase of the McGurk-MMN waveform (350–400 ms). Source analysis indicated bilateral sources in the temporal lobe just posterior to primary auditory cortex. While a single source in the right superior temporal gyrus (STG) accounted for the right hemisphere activity, two separate sources were required, one in the left transverse gyrus and the other in STG, to account for left hemisphere activity. These findings support the notion that visually driven multisensory illusory phonetic percepts produce an auditory-MMN cortical response and that left hemisphere temporal cortex plays a crucial role in this process. PMID:16757004

  20. Testing the dual-pathway model for auditory processing in human cortex.

    PubMed

    Zündorf, Ida C; Lewald, Jörg; Karnath, Hans-Otto

    2016-01-01

    Analogous to the visual system, auditory information has been proposed to be processed in two largely segregated streams: an anteroventral ("what") pathway mainly subserving sound identification and a posterodorsal ("where") stream mainly subserving sound localization. Despite the popularity of this assumption, the degree of separation of spatial and non-spatial auditory information processing in cortex is still under discussion. In the present study, a statistical approach was implemented to investigate potential behavioral dissociations for spatial and non-spatial auditory processing in stroke patients, and voxel-wise lesion analyses were used to uncover their neural correlates. The results generally provided support for anatomically and functionally segregated auditory networks. However, some degree of anatomo-functional overlap between "what" and "where" aspects of processing was found in the superior pars opercularis of right inferior frontal gyrus (Brodmann area 44), suggesting the potential existence of a shared target area of both auditory streams in this region. Moreover, beyond the typically defined posterodorsal stream (i.e., posterior superior temporal gyrus, inferior parietal lobule, and superior frontal sulcus), occipital lesions were found to be associated with sound localization deficits. These results, indicating anatomically and functionally complex cortical networks for spatial and non-spatial auditory processing, are roughly consistent with the dual-pathway model of auditory processing in its original form, but argue for the need to refine and extend this widely accepted hypothesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Competing streams at the cocktail party: Exploring the mechanisms of attention and temporal integration

    PubMed Central

    Xiang, Juanjuan; Simon, Jonathan; Elhilali, Mounya

    2010-01-01

    Processing of complex acoustic scenes depends critically on the temporal integration of sensory information as sounds evolve naturally over time. It has been previously speculated that this process is guided by both innate mechanisms of temporal processing in the auditory system, as well as top-down mechanisms of attention, and possibly other schema-based processes. In an effort to unravel the neural underpinnings of these processes and their role in scene analysis, we combine Magnetoencephalography (MEG) with behavioral measures in humans in the context of polyrhythmic tone sequences. While maintaining unchanged sensory input, we manipulate subjects’ attention to one of two competing rhythmic streams in the same sequence. The results reveal that the neural representation of the attended rhythm is significantly enhanced both in its steady-state power and spatial phase coherence relative to its unattended state, closely correlating with its perceptual detectability for each listener. Interestingly, the data reveals a differential efficiency of rhythmic rates of the order of few hertz during the streaming process, closely following known neural and behavioral measures of temporal modulation sensitivity in the auditory system. These findings establish a direct link between known temporal modulation tuning in the auditory system (particularly at the level of auditory cortex) and the temporal integration of perceptual features in a complex acoustic scene, while mediated by processes of attention. PMID:20826671

  2. The function of the left anterior temporal pole: evidence from acute stroke and infarct volume

    PubMed Central

    Tsapkini, Kyrana; Frangakis, Constantine E.

    2011-01-01

    The role of the anterior temporal lobes in cognition and language has been much debated in the literature over the last few years. Most prevailing theories argue for an important role of the anterior temporal lobe as a semantic hub or a place for the representation of unique entities such as proper names of peoples and places. Lately, a few studies have investigated the role of the most anterior part of the left anterior temporal lobe, the left temporal pole in particular, and argued that the left anterior temporal pole is the area responsible for mapping meaning on to sound through evidence from tasks such as object naming. However, another recent study indicates that bilateral anterior temporal damage is required to cause a clinically significant semantic impairment. In the present study, we tested these hypotheses by evaluating patients with acute stroke before reorganization of structure–function relationships. We compared a group of 20 patients with acute stroke with anterior temporal pole damage to a group of 28 without anterior temporal pole damage matched for infarct volume. We calculated the average percent error in auditory comprehension and naming tasks as a function of infarct volume using a non-parametric regression method. We found that infarct volume was the only predictive variable in the production of semantic errors in both auditory comprehension and object naming tasks. This finding favours the hypothesis that left unilateral anterior temporal pole lesions, even acutely, are unlikely to cause significant deficits in mapping meaning to sound by themselves, although they contribute to networks underlying both naming and comprehension of objects. Therefore, the anterior temporal lobe may be a semantic hub for object meaning, but its role must be represented bilaterally and perhaps redundantly. PMID:21685458

  3. Auditory Attentional Control and Selection during Cocktail Party Listening

    PubMed Central

    Hill, Kevin T.

    2010-01-01

    In realistic auditory environments, people rely on both attentional control and attentional selection to extract intelligible signals from a cluttered background. We used functional magnetic resonance imaging to examine auditory attention to natural speech under such high processing-load conditions. Participants attended to a single talker in a group of 3, identified by the target talker's pitch or spatial location. A catch-trial design allowed us to distinguish activity due to top-down control of attention versus attentional selection of bottom-up information in both the spatial and spectral (pitch) feature domains. For attentional control, we found a left-dominant fronto-parietal network with a bias toward spatial processing in dorsal precentral sulcus and superior parietal lobule, and a bias toward pitch in inferior frontal gyrus. During selection of the talker, attention modulated activity in left intraparietal sulcus when using talker location and in bilateral but right-dominant superior temporal sulcus when using talker pitch. We argue that these networks represent the sources and targets of selective attention in rich auditory environments. PMID:19574393

  4. In search of an auditory engram.

    PubMed

    Fritz, Jonathan; Mishkin, Mortimer; Saunders, Richard C

    2005-06-28

    Monkeys trained preoperatively on a task designed to assess auditory recognition memory were impaired after removal of either the rostral superior temporal gyrus or the medial temporal lobe but were unaffected by lesions of the rhinal cortex. Behavioral analysis indicated that this result occurred because the monkeys did not or could not use long-term auditory recognition, and so depended instead on short-term working memory, which is unaffected by rhinal lesions. The findings suggest that monkeys may be unable to place representations of auditory stimuli into a long-term store and thus question whether the monkey's cerebral memory mechanisms in audition are intrinsically different from those in other sensory modalities. Furthermore, it raises the possibility that language is unique to humans not only because it depends on speech but also because it requires long-term auditory memory.

  5. Elevated audiovisual temporal interaction in patients with migraine without aura

    PubMed Central

    2014-01-01

    Background Photophobia and phonophobia are the most prominent symptoms in patients with migraine without aura. Hypersensitivity to visual stimuli can lead to greater hypersensitivity to auditory stimuli, which suggests that the interaction between visual and auditory stimuli may play an important role in the pathogenesis of migraine. However, audiovisual temporal interactions in migraine have not been well studied. Therefore, our aim was to examine auditory and visual interactions in migraine. Methods In this study, visual, auditory, and audiovisual stimuli with different temporal intervals between the visual and auditory stimuli were randomly presented to the left or right hemispace. During this time, the participants were asked to respond promptly to target stimuli. We used cumulative distribution functions to analyze the response times as a measure of audiovisual integration. Results Our results showed that audiovisual integration was significantly elevated in the migraineurs compared with the normal controls (p < 0.05); however, audiovisual suppression was weaker in the migraineurs compared with the normal controls (p < 0.05). Conclusions Our findings further objectively support the notion that migraineurs without aura are hypersensitive to external visual and auditory stimuli. Our study offers a new quantitative and objective method to evaluate hypersensitivity to audio-visual stimuli in patients with migraine. PMID:24961903

  6. On the cyclic nature of perception in vision versus audition

    PubMed Central

    VanRullen, Rufin; Zoefel, Benedikt; Ilhan, Barkin

    2014-01-01

    Does our perceptual awareness consist of a continuous stream, or a discrete sequence of perceptual cycles, possibly associated with the rhythmic structure of brain activity? This has been a long-standing question in neuroscience. We review recent psychophysical and electrophysiological studies indicating that part of our visual awareness proceeds in approximately 7–13 Hz cycles rather than continuously. On the other hand, experimental attempts at applying similar tools to demonstrate the discreteness of auditory awareness have been largely unsuccessful. We argue and demonstrate experimentally that visual and auditory perception are not equally affected by temporal subsampling of their respective input streams: video sequences remain intelligible at sampling rates of two to three frames per second, whereas audio inputs lose their fine temporal structure, and thus all significance, below 20–30 samples per second. This does not mean, however, that our auditory perception must proceed continuously. Instead, we propose that audition could still involve perceptual cycles, but the periodic sampling should happen only after the stage of auditory feature extraction. In addition, although visual perceptual cycles can follow one another at a spontaneous pace largely independent of the visual input, auditory cycles may need to sample the input stream more flexibly, by adapting to the temporal structure of the auditory inputs. PMID:24639585

  7. The Relationship between Auditory Temporal Processing, Phonemic Awareness, and Reading Disability.

    ERIC Educational Resources Information Center

    Bretherton, Lesley; Holmes, V. M.

    2003-01-01

    Investigated the relationship between auditory temporal processing of nonspeech sounds and phonological awareness ability in 8- to 12-year-olds with a reading disability, placed in groups based on performance on Tallal's tone-order judgment task. Found that a tone-order deficit did not relate to performance on order processing of speech sounds, to…

  8. Neural Correlates of Temporal Auditory Processing in Developmental Dyslexia during German Vowel Length Discrimination: An fMRI Study

    ERIC Educational Resources Information Center

    Steinbrink, Claudia; Groth, Katarina; Lachmann, Thomas; Riecker, Axel

    2012-01-01

    This fMRI study investigated phonological vs. auditory temporal processing in developmental dyslexia by means of a German vowel length discrimination paradigm (Groth, Lachmann, Riecker, Muthmann, & Steinbrink, 2011). Behavioral and fMRI data were collected from dyslexics and controls while performing same-different judgments of vowel duration in…

  9. Auditory Temporal Order Discrimination and Backward Recognition Masking in Adults with Dyslexia

    ERIC Educational Resources Information Center

    Griffiths, Yvonne M.; Hill, Nicholas I.; Bailey, Peter J.; Snowling, Margaret J.

    2003-01-01

    The ability of 20 adult dyslexic readers to extract frequency information from successive tone pairs was compared with that of IQ-matched controls using temporal order discrimination and auditory backward recognition masking (ABRM) tasks. In both paradigms, the interstimulus interval (ISI) between tones in a pair was either short (20 ms) or long…

  10. Auditory/visual Duration Bisection in Patients with Left or Right Medial-Temporal Lobe Resection

    ERIC Educational Resources Information Center

    Melgire, Manuela; Ragot, Richard; Samson, Severine; Penney, Trevor B.; Meck, Warren H.; Pouthas, Viviane

    2005-01-01

    Patients with unilateral (left or right) medial temporal lobe lesions and normal control (NC) volunteers participated in two experiments, both using a duration bisection procedure. Experiment 1 assessed discrimination of auditory and visual signal durations ranging from 2 to 8 s, in the same test session. Patients and NC participants judged…

  11. Neural sensitivity to statistical regularities as a fundamental biological process that underlies auditory learning: the role of musical practice.

    PubMed

    François, Clément; Schön, Daniele

    2014-02-01

    There is increasing evidence that humans and other nonhuman mammals are sensitive to the statistical structure of auditory input. Indeed, neural sensitivity to statistical regularities seems to be a fundamental biological property underlying auditory learning. In the case of speech, statistical regularities play a crucial role in the acquisition of several linguistic features, from phonotactic to more complex rules such as morphosyntactic rules. Interestingly, a similar sensitivity has been shown with non-speech streams: sequences of sounds changing in frequency or timbre can be segmented on the sole basis of conditional probabilities between adjacent sounds. We recently ran a set of cross-sectional and longitudinal experiments showing that merging music and speech information in song facilitates stream segmentation and, further, that musical practice enhances sensitivity to statistical regularities in speech at both neural and behavioral levels. Based on recent findings showing the involvement of a fronto-temporal network in speech segmentation, we defend the idea that enhanced auditory learning observed in musicians originates via at least three distinct pathways: enhanced low-level auditory processing, enhanced phono-articulatory mapping via the left Inferior Frontal Gyrus and Pre-Motor cortex and increased functional connectivity within the audio-motor network. Finally, we discuss how these data predict a beneficial use of music for optimizing speech acquisition in both normal and impaired populations. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Exploring the extent and function of higher-order auditory cortex in rhesus monkeys.

    PubMed

    Poremba, Amy; Mishkin, Mortimer

    2007-07-01

    Just as cortical visual processing continues far beyond the boundaries of early visual areas, so too does cortical auditory processing continue far beyond the limits of early auditory areas. In passively listening rhesus monkeys examined with metabolic mapping techniques, cortical areas reactive to auditory stimulation were found to include the entire length of the superior temporal gyrus (STG) as well as several other regions within the temporal, parietal, and frontal lobes. Comparison of these widespread activations with those from an analogous study in vision supports the notion that audition, like vision, is served by several cortical processing streams, each specialized for analyzing a different aspect of sensory input, such as stimulus quality, location, or motion. Exploration with different classes of acoustic stimuli demonstrated that most portions of STG show greater activation on the right than on the left regardless of stimulus class. However, there is a striking shift to left-hemisphere "dominance" during passive listening to species-specific vocalizations, though this reverse asymmetry is observed only in the region of temporal pole. The mechanism for this left temporal pole "dominance" appears to be suppression of the right temporal pole by the left hemisphere, as demonstrated by a comparison of the results in normal monkeys with those in split-brain monkeys.

  13. Exploring the extent and function of higher-order auditory cortex in rhesus monkeys

    PubMed Central

    Mishkin, Mortimer

    2009-01-01

    Just as cortical visual processing continues far beyond the boundaries of early visual areas, so too does cortical auditory processing continue far beyond the limits of early auditory areas. In passively listening rhesus monkeys examined with metabolic mapping techniques, cortical areas reactive to auditory stimulation were found to include the entire length of the superior temporal gyrus (STG) as well as several other regions within the temporal, parietal, and frontal lobes. Comparison of these widespread activations with those from an analogous study in vision supports the notion that audition, like vision, is served by several cortical processing streams, each specialized for analyzing a different aspect of sensory input, such as stimulus quality, location, or motion. Exploration with different classes of acoustic stimuli demonstrated that most portions of STG show greater activation on the right than on the left regardless of stimulus class. However, there is a striking shift to left hemisphere “dominance” during passive listening to species-specific vocalizations, though this reverse asymmetry is observed only in the region of temporal pole. The mechanism for this left temporal pole “dominance” appears to be suppression of the right temporal pole by the left hemisphere, as demonstrated by a comparison of the results in normal monkeys with those in split-brain monkeys. PMID:17321703

  14. Assessing spectral and temporal processing in children and adults using temporal modulation transfer function (TMTF), Iterated Ripple Noise (IRN) perception, and spectral ripple discrimination (SRD).

    PubMed

    Peter, Varghese; Wong, Kogo; Narne, Vijaya Kumar; Sharma, Mridula; Purdy, Suzanne C; McMahon, Catherine

    2014-02-01

    There are many clinically available tests for the assessment of auditory processing skills in children and adults. However, there is limited data available on the maturational effects on the performance on these tests. The current study investigated maturational effects on auditory processing abilities using three psychophysical measures: temporal modulation transfer function (TMTF), iterated ripple noise (IRN) perception, and spectral ripple discrimination (SRD). A cross-sectional study. Three groups of subjects were tested: 10 adults (18-30 yr), 10 older children (12-18 yr), and 10 young children (8-11 yr) Temporal envelope processing was measured by obtaining thresholds for amplitude modulation detection as a function of modulation frequency (TMTF; 4, 8, 16, 32, 64, and 128 Hz). Temporal fine structure processing was measured using IRN, and spectral processing was measured using SRD. The results showed that young children had significantly higher modulation thresholds at 4 Hz (TMTF) compared to the other two groups and poorer SRD scores compared to adults. The results on IRN did not differ across groups. The results suggest that different aspects of auditory processing mature at different age periods and these maturational effects need to be considered while assessing auditory processing in children. American Academy of Audiology.

  15. Magnetic resonance imaging abnormalities in familial temporal lobe epilepsy with auditory auras.

    PubMed

    Kobayashi, Eliane; Santos, Neide F; Torres, Fabio R; Secolin, Rodrigo; Sardinha, Luiz A C; Lopez-Cendes, Iscia; Cendes, Fernando

    2003-11-01

    Two forms of familial temporal lobe epilepsy (FTLE) have been described: mesial FTLE and FTLE with auditory auras. The gene responsible for mesial FTLE has not been mapped yet, whereas mutations in the LGI1 (leucine-rich, glioma-inactivated 1) gene, localized on chromosome 10q, have been found in FTLE with auditory auras. To describe magnetic resonance imaging (MRI) findings in patients with FTLE with auditory auras. We performed detailed clinical and molecular studies as well as MRI evaluation (including volumetry) in all available individuals from one family, segregating FTLE from auditory auras. We evaluated 18 of 23 possibly affected individuals, and 13 patients reported auditory auras. In one patient, auditory auras were associated with déjà vu; in one patient, with ictal aphasia; and in 2 patients, with visual misperception. Most patients were not taking medication at the time, although all of them reported sporadic auras. Two-point lod scores were positive for 7 genotyped markers on chromosome 10q, and a Zmax of 6.35 was achieved with marker D10S185 at a recombination fraction of 0.0. Nucleotide sequence analysis of the LGI1 gene showed a point mutation, VIIIS7(-2)A-G, in all affected individuals. Magnetic resonance imaging was performed in 22 individuals (7 asymptomatic, 4 of them carriers of the affected haplotype on chromosome 10q and the VIIIS7[-2]A-G mutation). Lateral temporal lobe malformations were identified by visual analysis in 10 individuals, 2 of them with global enlargement demonstrated by volumetry. Mildly reduced hippocampi were observed in 4 individuals. In this family with FTLE with auditory auras, we found developmental abnormalities in the lateral cortex of the temporal lobes in 53% of the affected individuals. In contrast with mesial FTLE, none of the affected individuals had MRI evidence of hippocampal sclerosis.

  16. White matter microstructural properties correlate with sensorimotor synchronization abilities.

    PubMed

    Blecher, Tal; Tal, Idan; Ben-Shachar, Michal

    2016-09-01

    Sensorimotor synchronization (SMS) to an external auditory rhythm is a developed ability in humans, particularly evident in dancing and singing. This ability is typically measured in the lab via a simple task of finger tapping to an auditory beat. While simplistic, there is some evidence that poor performance on this task could be related to impaired phonological and reading abilities in children. Auditory-motor synchronization is hypothesized to rely on a tight coupling between auditory and motor neural systems, but the specific pathways that mediate this coupling have not been identified yet. In this study, we test this hypothesis and examine the contribution of fronto-temporal and callosal connections to specific measures of rhythmic synchronization. Twenty participants went through SMS and diffusion magnetic resonance imaging (dMRI) measurements. We quantified the mean asynchrony between an auditory beat and participants' finger taps, as well as the time to resynchronize (TTR) with an altered meter, and examined the correlations between these behavioral measures and diffusivity in a small set of predefined pathways. We found significant correlations between asynchrony and fractional anisotropy (FA) in the left (but not right) arcuate fasciculus and in the temporal segment of the corpus callosum. On the other hand, TTR correlated with FA in the precentral segment of the callosum. To our knowledge, this is the first demonstration that relates these particular white matter tracts with performance on an auditory-motor rhythmic synchronization task. We propose that left fronto-temporal and temporal-callosal fibers are involved in prediction and constant comparison between auditory inputs and motor commands, while inter-hemispheric connections between the motor/premotor cortices contribute to successful resynchronization of motor responses with a new external rhythm, perhaps via inhibition of tapping to the previous rhythm. Our results indicate that auditory-motor synchronization skills are associated with anatomical pathways that have been previously related to phonological awareness, thus offering a possible anatomical basis for the behavioral covariance between these abilities. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Combined diffusion-weighted and functional magnetic resonance imaging reveals a temporal-occipital network involved in auditory-visual object processing

    PubMed Central

    Beer, Anton L.; Plank, Tina; Meyer, Georg; Greenlee, Mark W.

    2013-01-01

    Functional magnetic resonance imaging (MRI) showed that the superior temporal and occipital cortex are involved in multisensory integration. Probabilistic fiber tracking based on diffusion-weighted MRI suggests that multisensory processing is supported by white matter connections between auditory cortex and the temporal and occipital lobe. Here, we present a combined functional MRI and probabilistic fiber tracking study that reveals multisensory processing mechanisms that remained undetected by either technique alone. Ten healthy participants passively observed visually presented lip or body movements, heard speech or body action sounds, or were exposed to a combination of both. Bimodal stimulation engaged a temporal-occipital brain network including the multisensory superior temporal sulcus (msSTS), the lateral superior temporal gyrus (lSTG), and the extrastriate body area (EBA). A region-of-interest (ROI) analysis showed multisensory interactions (e.g., subadditive responses to bimodal compared to unimodal stimuli) in the msSTS, the lSTG, and the EBA region. Moreover, sounds elicited responses in the medial occipital cortex. Probabilistic tracking revealed white matter tracts between the auditory cortex and the medial occipital cortex, the inferior occipital cortex (IOC), and the superior temporal sulcus (STS). However, STS terminations of auditory cortex tracts showed limited overlap with the msSTS region. Instead, msSTS was connected to primary sensory regions via intermediate nodes in the temporal and occipital cortex. Similarly, the lSTG and EBA regions showed limited direct white matter connections but instead were connected via intermediate nodes. Our results suggest that multisensory processing in the STS is mediated by separate brain areas that form a distinct network in the lateral temporal and inferior occipital cortex. PMID:23407860

  18. Pure word deafness with auditory object agnosia after bilateral lesion of the superior temporal sulcus.

    PubMed

    Gutschalk, Alexander; Uppenkamp, Stefan; Riedel, Bernhard; Bartsch, Andreas; Brandt, Tobias; Vogt-Schaden, Marlies

    2015-12-01

    Based on results from functional imaging, cortex along the superior temporal sulcus (STS) has been suggested to subserve phoneme and pre-lexical speech perception. For vowel classification, both superior temporal plane (STP) and STS areas have been suggested relevant. Lesion of bilateral STS may conversely be expected to cause pure word deafness and possibly also impaired vowel classification. Here we studied a patient with bilateral STS lesions caused by ischemic strokes and relatively intact medial STPs to characterize the behavioral consequences of STS loss. The patient showed severe deficits in auditory speech perception, whereas his speech production was fluent and communication by written speech was grossly intact. Auditory-evoked fields in the STP were within normal limits on both sides, suggesting that major parts of the auditory cortex were functionally intact. Further studies showed that the patient had normal hearing thresholds and only mild disability in tests for telencephalic hearing disorder. Prominent deficits were discovered in an auditory-object classification task, where the patient performed four standard deviations below the control group. In marked contrast, performance in a vowel-classification task was intact. Auditory evoked fields showed enhanced responses for vowels compared to matched non-vowels within normal limits. Our results are consistent with the notion that cortex along STS is important for auditory speech perception, although it does not appear to be entirely speech specific. Formant analysis and single vowel classification, however, appear to be already implemented in auditory cortex on the STP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. How silent is silent reading? Intracerebral evidence for top-down activation of temporal voice areas during reading.

    PubMed

    Perrone-Bertolotti, Marcela; Kujala, Jan; Vidal, Juan R; Hamame, Carlos M; Ossandon, Tomas; Bertrand, Olivier; Minotti, Lorella; Kahane, Philippe; Jerbi, Karim; Lachaux, Jean-Philippe

    2012-12-05

    As you might experience it while reading this sentence, silent reading often involves an imagery speech component: we can hear our own "inner voice" pronouncing words mentally. Recent functional magnetic resonance imaging studies have associated that component with increased metabolic activity in the auditory cortex, including voice-selective areas. It remains to be determined, however, whether this activation arises automatically from early bottom-up visual inputs or whether it depends on late top-down control processes modulated by task demands. To answer this question, we collaborated with four epileptic human patients recorded with intracranial electrodes in the auditory cortex for therapeutic purposes, and measured high-frequency (50-150 Hz) "gamma" activity as a proxy of population level spiking activity. Temporal voice-selective areas (TVAs) were identified with an auditory localizer task and monitored as participants viewed words flashed on screen. We compared neural responses depending on whether words were attended or ignored and found a significant increase of neural activity in response to words, strongly enhanced by attention. In one of the patients, we could record that response at 800 ms in TVAs, but also at 700 ms in the primary auditory cortex and at 300 ms in the ventral occipital temporal cortex. Furthermore, single-trial analysis revealed a considerable jitter between activation peaks in visual and auditory cortices. Altogether, our results demonstrate that the multimodal mental experience of reading is in fact a heterogeneous complex of asynchronous neural responses, and that auditory and visual modalities often process distinct temporal frames of our environment at the same time.

  20. Mapping a lateralization gradient within the ventral stream for auditory speech perception.

    PubMed

    Specht, Karsten

    2013-01-01

    Recent models on speech perception propose a dual-stream processing network, with a dorsal stream, extending from the posterior temporal lobe of the left hemisphere through inferior parietal areas into the left inferior frontal gyrus, and a ventral stream that is assumed to originate in the primary auditory cortex in the upper posterior part of the temporal lobe and to extend toward the anterior part of the temporal lobe, where it may connect to the ventral part of the inferior frontal gyrus. This article describes and reviews the results from a series of complementary functional magnetic resonance imaging studies that aimed to trace the hierarchical processing network for speech comprehension within the left and right hemisphere with a particular focus on the temporal lobe and the ventral stream. As hypothesized, the results demonstrate a bilateral involvement of the temporal lobes in the processing of speech signals. However, an increasing leftward asymmetry was detected from auditory-phonetic to lexico-semantic processing and along the posterior-anterior axis, thus forming a "lateralization" gradient. This increasing leftward lateralization was particularly evident for the left superior temporal sulcus and more anterior parts of the temporal lobe.

  1. The ability to tap to a beat relates to cognitive, linguistic, and perceptual skills

    PubMed Central

    Tierney, Adam T.; Kraus, Nina

    2013-01-01

    Reading-impaired children have difficulty tapping to a beat. Here we tested whether this relationship between reading ability and synchronized tapping holds in typically-developing adolescents. We also hypothesized that tapping relates to two other abilities. First, since auditory-motor synchronization requires monitoring of the relationship between motor output and auditory input, we predicted that subjects better able to tap to the beat would perform better on attention tests. Second, since auditory-motor synchronization requires fine temporal precision within the auditory system for the extraction of a sound’s onset time, we predicted that subjects better able to tap to the beat would be less affected by backward masking, a measure of temporal precision within the auditory system. As predicted, tapping performance related to reading, attention, and backward masking. These results motivate future research investigating whether beat synchronization training can improve not only reading ability, but potentially executive function and basic auditory processing as well. PMID:23400117

  2. Feeling the beat: premotor and striatal interactions in musicians and non-musicians during beat perception

    PubMed Central

    Grahn, Jessica A.; Rowe, James B.

    2009-01-01

    Little is known about the underlying neurobiology of rhythm and beat perception, despite its universal cultural importance. Here we used functional magnetic resonance imaging to study rhythm perception in musicians and non-musicians. Three conditions varied in the degree to which external reinforcement versus internal generation of the beat was required. The ‘Volume’ condition strongly externally marked the beat with volume changes, the ‘Duration’ condition marked the beat with weaker accents arising from duration changes, and the ‘Unaccented’ condition required the beat to be entirely internally generated. In all conditions, beat rhythms compared to nonbeat control rhythms revealed putamen activity. The presence of a beat was also associated with greater connectivity between the putamen and the supplementary motor area (SMA), the premotor cortex (PMC) and auditory cortex. In contrast, the type of accent within the beat conditions modulated the coupling between premotor and auditory cortex, with greater modulation for musicians than non-musicians. Importantly, the putamen's response to beat conditions was not due to differences in temporal complexity between the three rhythm conditions. We propose that a cortico-subcortical network including the putamen, SMA, and PMC is engaged for the analysis of temporal sequences and prediction or generation of putative beats, especially under conditions that may require internal generation of the beat. The importance of this system for auditory-motor interaction and development of precisely timed movement is suggested here by its facilitation in musicians. PMID:19515922

  3. Feeling the beat: premotor and striatal interactions in musicians and nonmusicians during beat perception.

    PubMed

    Grahn, Jessica A; Rowe, James B

    2009-06-10

    Little is known about the underlying neurobiology of rhythm and beat perception, despite its universal cultural importance. Here we used functional magnetic resonance imaging to study rhythm perception in musicians and nonmusicians. Three conditions varied in the degree to which external reinforcement versus internal generation of the beat was required. The "volume" condition strongly externally marked the beat with volume changes, the "duration" condition marked the beat with weaker accents arising from duration changes, and the "unaccented" condition required the beat to be entirely internally generated. In all conditions, beat rhythms compared with nonbeat control rhythms revealed putamen activity. The presence of a beat was also associated with greater connectivity between the putamen and the supplementary motor area (SMA), the premotor cortex (PMC), and auditory cortex. In contrast, the type of accent within the beat conditions modulated the coupling between premotor and auditory cortex, with greater modulation for musicians than nonmusicians. Importantly, the response of the putamen to beat conditions was not attributable to differences in temporal complexity between the three rhythm conditions. We propose that a cortico-subcortical network including the putamen, SMA, and PMC is engaged for the analysis of temporal sequences and prediction or generation of putative beats, especially under conditions that may require internal generation of the beat. The importance of this system for auditory-motor interaction and development of precisely timed movement is suggested here by its facilitation in musicians.

  4. Development and modulation of intrinsic membrane properties control the temporal precision of auditory brain stem neurons.

    PubMed

    Franzen, Delwen L; Gleiss, Sarah A; Berger, Christina; Kümpfbeck, Franziska S; Ammer, Julian J; Felmy, Felix

    2015-01-15

    Passive and active membrane properties determine the voltage responses of neurons. Within the auditory brain stem, refinements in these intrinsic properties during late postnatal development usually generate short integration times and precise action-potential generation. This developmentally acquired temporal precision is crucial for auditory signal processing. How the interactions of these intrinsic properties develop in concert to enable auditory neurons to transfer information with high temporal precision has not yet been elucidated in detail. Here, we show how the developmental interaction of intrinsic membrane parameters generates high firing precision. We performed in vitro recordings from neurons of postnatal days 9-28 in the ventral nucleus of the lateral lemniscus of Mongolian gerbils, an auditory brain stem structure that converts excitatory to inhibitory information with high temporal precision. During this developmental period, the input resistance and capacitance decrease, and action potentials acquire faster kinetics and enhanced precision. Depending on the stimulation time course, the input resistance and capacitance contribute differentially to action-potential thresholds. The decrease in input resistance, however, is sufficient to explain the enhanced action-potential precision. Alterations in passive membrane properties also interact with a developmental change in potassium currents to generate the emergence of the mature firing pattern, characteristic of coincidence-detector neurons. Cholinergic receptor-mediated depolarizations further modulate this intrinsic excitability profile by eliciting changes in the threshold and firing pattern, irrespective of the developmental stage. Thus our findings reveal how intrinsic membrane properties interact developmentally to promote temporally precise information processing. Copyright © 2015 the American Physiological Society.

  5. Electrophysiological Correlates of Individual Differences in Perception of Audiovisual Temporal Asynchrony

    PubMed Central

    Kaganovich, Natalya; Schumaker, Jennifer

    2016-01-01

    Sensitivity to the temporal relationship between auditory and visual stimuli is key to efficient audiovisual integration. However, even adults vary greatly in their ability to detect audiovisual temporal asynchrony. What underlies this variability is currently unknown. We recorded event-related potentials (ERPs) while participants performed a simultaneity judgment task on a range of audiovisual (AV) and visual-auditory (VA) stimulus onset asynchronies (SOAs) and compared ERP responses in good and poor performers to the 200 ms SOA, which showed the largest individual variability in the number of synchronous perceptions. Analysis of ERPs to the VA200 stimulus yielded no significant results. However, those individuals who were more sensitive to the AV200 SOA had significantly more positive voltage between 210 and 270 ms following the sound onset. In a follow-up analysis, we showed that the mean voltage within this window predicted approximately 36% of variability in sensitivity to AV temporal asynchrony in a larger group of participants. The relationship between the ERP measure in the 210-270 ms window and accuracy on the simultaneity judgment task also held for two other AV SOAs with significant individual variability - 100 and 300 ms. Because the identified window was time-locked to the onset of sound in the AV stimulus, we conclude that sensitivity to AV temporal asynchrony is shaped to a large extent by the efficiency in the neural encoding of sound onsets. PMID:27094850

  6. Sensory-motor interactions for vocal pitch monitoring in non-primary human auditory cortex.

    PubMed

    Greenlee, Jeremy D W; Behroozmand, Roozbeh; Larson, Charles R; Jackson, Adam W; Chen, Fangxiang; Hansen, Daniel R; Oya, Hiroyuki; Kawasaki, Hiroto; Howard, Matthew A

    2013-01-01

    The neural mechanisms underlying processing of auditory feedback during self-vocalization are poorly understood. One technique used to study the role of auditory feedback involves shifting the pitch of the feedback that a speaker receives, known as pitch-shifted feedback. We utilized a pitch shift self-vocalization and playback paradigm to investigate the underlying neural mechanisms of audio-vocal interaction. High-resolution electrocorticography (ECoG) signals were recorded directly from auditory cortex of 10 human subjects while they vocalized and received brief downward (-100 cents) pitch perturbations in their voice auditory feedback (speaking task). ECoG was also recorded when subjects passively listened to playback of their own pitch-shifted vocalizations. Feedback pitch perturbations elicited average evoked potential (AEP) and event-related band power (ERBP) responses, primarily in the high gamma (70-150 Hz) range, in focal areas of non-primary auditory cortex on superior temporal gyrus (STG). The AEPs and high gamma responses were both modulated by speaking compared with playback in a subset of STG contacts. From these contacts, a majority showed significant enhancement of high gamma power and AEP responses during speaking while the remaining contacts showed attenuated response amplitudes. The speaking-induced enhancement effect suggests that engaging the vocal motor system can modulate auditory cortical processing of self-produced sounds in such a way as to increase neural sensitivity for feedback pitch error detection. It is likely that mechanisms such as efference copies may be involved in this process, and modulation of AEP and high gamma responses imply that such modulatory effects may affect different cortical generators within distinctive functional networks that drive voice production and control.

  7. Sensory-Motor Interactions for Vocal Pitch Monitoring in Non-Primary Human Auditory Cortex

    PubMed Central

    Larson, Charles R.; Jackson, Adam W.; Chen, Fangxiang; Hansen, Daniel R.; Oya, Hiroyuki; Kawasaki, Hiroto; Howard, Matthew A.

    2013-01-01

    The neural mechanisms underlying processing of auditory feedback during self-vocalization are poorly understood. One technique used to study the role of auditory feedback involves shifting the pitch of the feedback that a speaker receives, known as pitch-shifted feedback. We utilized a pitch shift self-vocalization and playback paradigm to investigate the underlying neural mechanisms of audio-vocal interaction. High-resolution electrocorticography (ECoG) signals were recorded directly from auditory cortex of 10 human subjects while they vocalized and received brief downward (−100 cents) pitch perturbations in their voice auditory feedback (speaking task). ECoG was also recorded when subjects passively listened to playback of their own pitch-shifted vocalizations. Feedback pitch perturbations elicited average evoked potential (AEP) and event-related band power (ERBP) responses, primarily in the high gamma (70–150 Hz) range, in focal areas of non-primary auditory cortex on superior temporal gyrus (STG). The AEPs and high gamma responses were both modulated by speaking compared with playback in a subset of STG contacts. From these contacts, a majority showed significant enhancement of high gamma power and AEP responses during speaking while the remaining contacts showed attenuated response amplitudes. The speaking-induced enhancement effect suggests that engaging the vocal motor system can modulate auditory cortical processing of self-produced sounds in such a way as to increase neural sensitivity for feedback pitch error detection. It is likely that mechanisms such as efference copies may be involved in this process, and modulation of AEP and high gamma responses imply that such modulatory effects may affect different cortical generators within distinctive functional networks that drive voice production and control. PMID:23577157

  8. Auditory Temporal Structure Processing in Dyslexia: Processing of Prosodic Phrase Boundaries Is Not Impaired in Children with Dyslexia

    ERIC Educational Resources Information Center

    Geiser, Eveline; Kjelgaard, Margaret; Christodoulou, Joanna A.; Cyr, Abigail; Gabrieli, John D. E.

    2014-01-01

    Reading disability in children with dyslexia has been proposed to reflect impairment in auditory timing perception. We investigated one aspect of timing perception--"temporal grouping"--as present in prosodic phrase boundaries of natural speech, in age-matched groups of children, ages 6-8 years, with and without dyslexia. Prosodic phrase…

  9. Modulation rate transfer functions from four species of stranded odontocete (Stenella longirostris, Feresa attenuata, Globicephala melas, and Mesoplodon densirostris).

    PubMed

    Smith, Adam B; Pacini, Aude F; Nachtigall, Paul E

    2018-04-01

    Odontocete marine mammals explore the environment by rapidly producing echolocation signals and receiving the corresponding echoes, which likewise return at very rapid rates. Thus, it is important that the auditory system has a high temporal resolution to effectively process and extract relevant information from click echoes. This study used auditory evoked potential methods to investigate auditory temporal resolution of individuals from four different odontocete species, including a spinner dolphin (Stenella longirostris), pygmy killer whale (Feresa attenuata), long-finned pilot whale (Globicephala melas), and Blainville's beaked whale (Mesoplodon densirostris). Each individual had previously stranded and was undergoing rehabilitation. Auditory Brainstem Responses (ABRs) were elicited via acoustic stimuli consisting of a train of broadband tone pulses presented at rates between 300 and 2000 Hz. Similar to other studied species, modulation rate transfer functions (MRTFs) of the studied individuals followed the shape of a low-pass filter, with the ability to process acoustic stimuli at presentation rates up to and exceeding 1250 Hz. Auditory integration times estimated from the bandwidths of the MRTFs ranged between 250 and 333 µs. The results support the hypothesis that high temporal resolution is conserved throughout the diverse range of odontocete species.

  10. Region-specific reduction of auditory sensory gating in older adults.

    PubMed

    Cheng, Chia-Hsiung; Baillet, Sylvain; Lin, Yung-Yang

    2015-12-01

    Aging has been associated with declines in sensory-perceptual processes. Sensory gating (SG), or repetition suppression, refers to the attenuation of neural activity in response to a second stimulus and is considered to be an automatic process to inhibit redundant sensory inputs. It is controversial whether SG deficits, as tested with an auditory paired-stimulus protocol, accompany normal aging in humans. To reconcile the debates arising from event-related potential studies, we recorded auditory neuromagnetic reactivity in 20 young and 19 elderly adult men and determined the neural activation by using minimum-norm estimate (MNE) source modeling. SG of M100 was calculated by the ratio of the response to the second stimulus over that to the first stimulus. MNE results revealed that fronto-temporo-parietal networks were implicated in the M100 SG. Compared to the younger participants, the elderly showed selectively increased SG ratios in the anterior superior temporal gyrus, anterior middle temporal gyrus, temporal pole and orbitofrontal cortex, suggesting an insufficient age-related gating to repetitive auditory stimulation. These findings also highlight the loss of frontal inhibition of the auditory cortex in normal aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Temporal variability of spectro-temporal receptive fields in the anesthetized auditory cortex.

    PubMed

    Meyer, Arne F; Diepenbrock, Jan-Philipp; Ohl, Frank W; Anemüller, Jörn

    2014-01-01

    Temporal variability of neuronal response characteristics during sensory stimulation is a ubiquitous phenomenon that may reflect processes such as stimulus-driven adaptation, top-down modulation or spontaneous fluctuations. It poses a challenge to functional characterization methods such as the receptive field, since these often assume stationarity. We propose a novel method for estimation of sensory neurons' receptive fields that extends the classic static linear receptive field model to the time-varying case. Here, the long-term estimate of the static receptive field serves as the mean of a probabilistic prior distribution from which the short-term temporally localized receptive field may deviate stochastically with time-varying standard deviation. The derived corresponding generalized linear model permits robust characterization of temporal variability in receptive field structure also for highly non-Gaussian stimulus ensembles. We computed and analyzed short-term auditory spectro-temporal receptive field (STRF) estimates with characteristic temporal resolution 5-30 s based on model simulations and responses from in total 60 single-unit recordings in anesthetized Mongolian gerbil auditory midbrain and cortex. Stimulation was performed with short (100 ms) overlapping frequency-modulated tones. Results demonstrate identification of time-varying STRFs, with obtained predictive model likelihoods exceeding those from baseline static STRF estimation. Quantitative characterization of STRF variability reveals a higher degree thereof in auditory cortex compared to midbrain. Cluster analysis indicates that significant deviations from the long-term static STRF are brief, but reliably estimated. We hypothesize that the observed variability more likely reflects spontaneous or state-dependent internal fluctuations that interact with stimulus-induced processing, rather than experimental or stimulus design.

  12. Identification of a pathway for intelligible speech in the left temporal lobe

    PubMed Central

    Scott, Sophie K.; Blank, C. Catrin; Rosen, Stuart; Wise, Richard J. S.

    2017-01-01

    Summary It has been proposed that the identification of sounds, including species-specific vocalizations, by primates depends on anterior projections from the primary auditory cortex, an auditory pathway analogous to the ventral route proposed for the visual identification of objects. We have identified a similar route in the human for understanding intelligible speech. Using PET imaging to identify separable neural subsystems within the human auditory cortex, we used a variety of speech and speech-like stimuli with equivalent acoustic complexity but varying intelligibility. We have demonstrated that the left superior temporal sulcus responds to the presence of phonetic information, but its anterior part only responds if the stimulus is also intelligible. This novel observation demonstrates a left anterior temporal pathway for speech comprehension. PMID:11099443

  13. Modality-dependent effect of motion information in sensory-motor synchronised tapping.

    PubMed

    Ono, Kentaro

    2018-05-14

    Synchronised action is important for everyday life. Generally, the auditory domain is more sensitive for coding temporal information, and previous studies have shown that auditory-motor synchronisation is much more precise than visuo-motor synchronisation. Interestingly, adding motion information improves synchronisation with visual stimuli and the advantage of the auditory modality seems to diminish. However, whether adding motion information also improves auditory-motor synchronisation remains unknown. This study compared tapping accuracy with a stationary or moving stimulus in both auditory and visual modalities. Participants were instructed to tap in synchrony with the onset of a sound or flash in the stationary condition, while these stimuli were perceived as moving from side to side in the motion condition. The results demonstrated that synchronised tapping with a moving visual stimulus was significantly more accurate than tapping with a stationary visual stimulus, as previous studies have shown. However, tapping with a moving auditory stimulus was significantly poorer than tapping with a stationary auditory stimulus. Although motion information impaired audio-motor synchronisation, an advantage of auditory modality compared to visual modality still existed. These findings are likely the result of higher temporal resolution in the auditory domain, which is likely due to the physiological and structural differences in the auditory and visual pathways in the brain. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Neural Representation of Concurrent Harmonic Sounds in Monkey Primary Auditory Cortex: Implications for Models of Auditory Scene Analysis

    PubMed Central

    Steinschneider, Mitchell; Micheyl, Christophe

    2014-01-01

    The ability to attend to a particular sound in a noisy environment is an essential aspect of hearing. To accomplish this feat, the auditory system must segregate sounds that overlap in frequency and time. Many natural sounds, such as human voices, consist of harmonics of a common fundamental frequency (F0). Such harmonic complex tones (HCTs) evoke a pitch corresponding to their F0. A difference in pitch between simultaneous HCTs provides a powerful cue for their segregation. The neural mechanisms underlying concurrent sound segregation based on pitch differences are poorly understood. Here, we examined neural responses in monkey primary auditory cortex (A1) to two concurrent HCTs that differed in F0 such that they are heard as two separate “auditory objects” with distinct pitches. We found that A1 can resolve, via a rate-place code, the lower harmonics of both HCTs, a prerequisite for deriving their pitches and for their perceptual segregation. Onset asynchrony between the HCTs enhanced the neural representation of their harmonics, paralleling their improved perceptual segregation in humans. Pitches of the concurrent HCTs could also be temporally represented by neuronal phase-locking at their respective F0s. Furthermore, a model of A1 responses using harmonic templates could qualitatively reproduce psychophysical data on concurrent sound segregation in humans. Finally, we identified a possible intracortical homolog of the “object-related negativity” recorded noninvasively in humans, which correlates with the perceptual segregation of concurrent sounds. Findings indicate that A1 contains sufficient spectral and temporal information for segregating concurrent sounds based on differences in pitch. PMID:25209282

  15. Early neural disruption and auditory processing outcomes in rodent models: implications for developmental language disability

    PubMed Central

    Fitch, R. Holly; Alexander, Michelle L.; Threlkeld, Steven W.

    2013-01-01

    Most researchers in the field of neural plasticity are familiar with the “Kennard Principle,” which purports a positive relationship between age at brain injury and severity of subsequent deficits (plateauing in adulthood). As an example, a child with left hemispherectomy can recover seemingly normal language, while an adult with focal injury to sub-regions of left temporal and/or frontal cortex can suffer dramatic and permanent language loss. Here we present data regarding the impact of early brain injury in rat models as a function of type and timing, measuring long-term behavioral outcomes via auditory discrimination tasks varying in temporal demand. These tasks were created to model (in rodents) aspects of human sensory processing that may correlate—both developmentally and functionally—with typical and atypical language. We found that bilateral focal lesions to the cortical plate in rats during active neuronal migration led to worse auditory outcomes than comparable lesions induced after cortical migration was complete. Conversely, unilateral hypoxic-ischemic (HI) injuries (similar to those seen in premature infants and term infants with birth complications) led to permanent auditory processing deficits when induced at a neurodevelopmental point comparable to human “term,” but only transient deficits (undetectable in adulthood) when induced in a “preterm” window. Convergent evidence suggests that regardless of when or how disruption of early neural development occurs, the consequences may be particularly deleterious to rapid auditory processing (RAP) outcomes when they trigger developmental alterations that extend into subcortical structures (i.e., lower sensory processing stations). Collective findings hold implications for the study of behavioral outcomes following early brain injury as well as genetic/environmental disruption, and are relevant to our understanding of the neurologic risk factors underlying developmental language disability in human populations. PMID:24155699

  16. The unity assumption facilitates cross-modal binding of musical, non-speech stimuli: The role of spectral and amplitude envelope cues.

    PubMed

    Chuen, Lorraine; Schutz, Michael

    2016-07-01

    An observer's inference that multimodal signals originate from a common underlying source facilitates cross-modal binding. This 'unity assumption' causes asynchronous auditory and visual speech streams to seem simultaneous (Vatakis & Spence, Perception & Psychophysics, 69(5), 744-756, 2007). Subsequent tests of non-speech stimuli such as musical and impact events found no evidence for the unity assumption, suggesting the effect is speech-specific (Vatakis & Spence, Acta Psychologica, 127(1), 12-23, 2008). However, the role of amplitude envelope (the changes in energy of a sound over time) was not previously appreciated within this paradigm. Here, we explore whether previous findings suggesting speech-specificity of the unity assumption were confounded by similarities in the amplitude envelopes of the contrasted auditory stimuli. Experiment 1 used natural events with clearly differentiated envelopes: single notes played on either a cello (bowing motion) or marimba (striking motion). Participants performed an un-speeded temporal order judgments task; viewing audio-visually matched (e.g., marimba auditory with marimba video) and mismatched (e.g., cello auditory with marimba video) versions of stimuli at various stimulus onset asynchronies, and were required to indicate which modality was presented first. As predicted, participants were less sensitive to temporal order in matched conditions, demonstrating that the unity assumption can facilitate the perception of synchrony outside of speech stimuli. Results from Experiments 2 and 3 revealed that when spectral information was removed from the original auditory stimuli, amplitude envelope alone could not facilitate the influence of audiovisual unity. We propose that both amplitude envelope and spectral acoustic cues affect the percept of audiovisual unity, working in concert to help an observer determine when to integrate across modalities.

  17. Neural correlates of visualizations of concrete and abstract words in preschool children: a developmental embodied approach

    PubMed Central

    D’Angiulli, Amedeo; Griffiths, Gordon; Marmolejo-Ramos, Fernando

    2015-01-01

    The neural correlates of visualization underlying word comprehension were examined in preschool children. On each trial, a concrete or abstract word was delivered binaurally (part 1: post-auditory visualization), followed by a four-picture array (a target plus three distractors; part 2: matching visualization). Children were to select the picture matching the word they heard in part 1. Event-related potentials (ERPs) locked to each stimulus presentation and task interval were averaged over sets of trials of increasing word abstractness. ERP time-course during both parts of the task showed that early activity (i.e., <300 ms) was predominant in response to concrete words, while activity in response to abstract words became evident only at intermediate (i.e., 300–699 ms) and late (i.e., 700–1000 ms) ERP intervals. Specifically, ERP topography showed that while early activity during post-auditory visualization was linked to left temporo-parietal areas for concrete words, early activity during matching visualization occurred mostly in occipito-parietal areas for concrete words, but more anteriorly in centro-parietal areas for abstract words. In intermediate ERPs, post-auditory visualization coincided with parieto-occipital and parieto-frontal activity in response to both concrete and abstract words, while in matching visualization a parieto-central activity was common to both types of words. In the late ERPs for both types of words, the post-auditory visualization involved right-hemispheric activity following a “post-anterior” pathway sequence: occipital, parietal, and temporal areas; conversely, matching visualization involved left-hemispheric activity following an “ant-posterior” pathway sequence: frontal, temporal, parietal, and occipital areas. These results suggest that, similarly, for concrete and abstract words, meaning in young children depends on variably complex visualization processes integrating visuo-auditory experiences and supramodal embodying representations. PMID:26175697

  18. Bilateral capacity for speech sound processing in auditory comprehension: evidence from Wada procedures.

    PubMed

    Hickok, G; Okada, K; Barr, W; Pa, J; Rogalsky, C; Donnelly, K; Barde, L; Grant, A

    2008-12-01

    Data from lesion studies suggest that the ability to perceive speech sounds, as measured by auditory comprehension tasks, is supported by temporal lobe systems in both the left and right hemisphere. For example, patients with left temporal lobe damage and auditory comprehension deficits (i.e., Wernicke's aphasics), nonetheless comprehend isolated words better than one would expect if their speech perception system had been largely destroyed (70-80% accuracy). Further, when comprehension fails in such patients their errors are more often semantically-based, than-phonemically based. The question addressed by the present study is whether this ability of the right hemisphere to process speech sounds is a result of plastic reorganization following chronic left hemisphere damage, or whether the ability exists in undamaged language systems. We sought to test these possibilities by studying auditory comprehension in acute left versus right hemisphere deactivation during Wada procedures. A series of 20 patients undergoing clinically indicated Wada procedures were asked to listen to an auditorily presented stimulus word, and then point to its matching picture on a card that contained the target picture, a semantic foil, a phonemic foil, and an unrelated foil. This task was performed under three conditions, baseline, during left carotid injection of sodium amytal, and during right carotid injection of sodium amytal. Overall, left hemisphere injection led to a significantly higher error rate than right hemisphere injection. However, consistent with lesion work, the majority (75%) of these errors were semantic in nature. These findings suggest that auditory comprehension deficits are predominantly semantic in nature, even following acute left hemisphere disruption. This, in turn, supports the hypothesis that the right hemisphere is capable of speech sound processing in the intact brain.

  19. Atypical vertical sound localization and sound-onset sensitivity in people with autism spectrum disorders.

    PubMed

    Visser, Eelke; Zwiers, Marcel P; Kan, Cornelis C; Hoekstra, Liesbeth; van Opstal, A John; Buitelaar, Jan K

    2013-11-01

    Autism spectrum disorders (ASDs) are associated with auditory hyper- or hyposensitivity; atypicalities in central auditory processes, such as speech-processing and selective auditory attention; and neural connectivity deficits. We sought to investigate whether the low-level integrative processes underlying sound localization and spatial discrimination are affected in ASDs. We performed 3 behavioural experiments to probe different connecting neural pathways: 1) horizontal and vertical localization of auditory stimuli in a noisy background, 2) vertical localization of repetitive frequency sweeps and 3) discrimination of horizontally separated sound stimuli with a short onset difference (precedence effect). Ten adult participants with ASDs and 10 healthy control listeners participated in experiments 1 and 3; sample sizes for experiment 2 were 18 adults with ASDs and 19 controls. Horizontal localization was unaffected, but vertical localization performance was significantly worse in participants with ASDs. The temporal window for the precedence effect was shorter in participants with ASDs than in controls. The study was performed with adult participants and hence does not provide insight into the developmental aspects of auditory processing in individuals with ASDs. Changes in low-level auditory processing could underlie degraded performance in vertical localization, which would be in agreement with recently reported changes in the neuroanatomy of the auditory brainstem in individuals with ASDs. The results are further discussed in the context of theories about abnormal brain connectivity in individuals with ASDs.

  20. The Width of the Auditory Filter in Children.

    ERIC Educational Resources Information Center

    Irwin, R. J.; And Others

    1986-01-01

    Because young children have poorer auditory temporal resolution than older children, a study measured the auditory filters of two 6-year-olds, two 10-year-olds, and two adults by having them detect a 400-ms sinusoid centered in a spectral notch in a band of noise. (HOD)

  1. Auditory Backward Masking Deficits in Children with Reading Disabilities

    ERIC Educational Resources Information Center

    Montgomery, Christine R.; Morris, Robin D.; Sevcik, Rose A.; Clarkson, Marsha G.

    2005-01-01

    Studies evaluating temporal auditory processing among individuals with reading and other language deficits have yielded inconsistent findings due to methodological problems (Studdert-Kennedy & Mody, 1995) and sample differences. In the current study, seven auditory masking thresholds were measured in fifty-two 7- to 10-year-old children (26…

  2. Synchronization to auditory and visual rhythms in hearing and deaf individuals

    PubMed Central

    Iversen, John R.; Patel, Aniruddh D.; Nicodemus, Brenda; Emmorey, Karen

    2014-01-01

    A striking asymmetry in human sensorimotor processing is that humans synchronize movements to rhythmic sound with far greater precision than to temporally equivalent visual stimuli (e.g., to an auditory vs. a flashing visual metronome). Traditionally, this finding is thought to reflect a fundamental difference in auditory vs. visual processing, i.e., superior temporal processing by the auditory system and/or privileged coupling between the auditory and motor systems. It is unclear whether this asymmetry is an inevitable consequence of brain organization or whether it can be modified (or even eliminated) by stimulus characteristics or by experience. With respect to stimulus characteristics, we found that a moving, colliding visual stimulus (a silent image of a bouncing ball with a distinct collision point on the floor) was able to drive synchronization nearly as accurately as sound in hearing participants. To study the role of experience, we compared synchronization to flashing metronomes in hearing and profoundly deaf individuals. Deaf individuals performed better than hearing individuals when synchronizing with visual flashes, suggesting that cross-modal plasticity enhances the ability to synchronize with temporally discrete visual stimuli. Furthermore, when deaf (but not hearing) individuals synchronized with the bouncing ball, their tapping patterns suggest that visual timing may access higher-order beat perception mechanisms for deaf individuals. These results indicate that the auditory advantage in rhythmic synchronization is more experience- and stimulus-dependent than has been previously reported. PMID:25460395

  3. Auditory Resting-State Network Connectivity in Tinnitus: A Functional MRI Study

    PubMed Central

    Maudoux, Audrey; Lefebvre, Philippe; Cabay, Jean-Evrard; Demertzi, Athena; Vanhaudenhuyse, Audrey; Laureys, Steven; Soddu, Andrea

    2012-01-01

    The underlying functional neuroanatomy of tinnitus remains poorly understood. Few studies have focused on functional cerebral connectivity changes in tinnitus patients. The aim of this study was to test if functional MRI “resting-state” connectivity patterns in auditory network differ between tinnitus patients and normal controls. Thirteen chronic tinnitus subjects and fifteen age-matched healthy controls were studied on a 3 tesla MRI. Connectivity was investigated using independent component analysis and an automated component selection approach taking into account the spatial and temporal properties of each component. Connectivity in extra-auditory regions such as brainstem, basal ganglia/NAc, cerebellum, parahippocampal, right prefrontal, parietal, and sensorimotor areas was found to be increased in tinnitus subjects. The right primary auditory cortex, left prefrontal, left fusiform gyrus, and bilateral occipital regions showed a decreased connectivity in tinnitus. These results show that there is a modification of cortical and subcortical functional connectivity in tinnitus encompassing attentional, mnemonic, and emotional networks. Our data corroborate the hypothesized implication of non-auditory regions in tinnitus physiopathology and suggest that various regions of the brain seem involved in the persistent awareness of the phenomenon as well as in the development of the associated distress leading to disabling chronic tinnitus. PMID:22574141

  4. Reality of auditory verbal hallucinations.

    PubMed

    Raij, Tuukka T; Valkonen-Korhonen, Minna; Holi, Matti; Therman, Sebastian; Lehtonen, Johannes; Hari, Riitta

    2009-11-01

    Distortion of the sense of reality, actualized in delusions and hallucinations, is the key feature of psychosis but the underlying neuronal correlates remain largely unknown. We studied 11 highly functioning subjects with schizophrenia or schizoaffective disorder while they rated the reality of auditory verbal hallucinations (AVH) during functional magnetic resonance imaging (fMRI). The subjective reality of AVH correlated strongly and specifically with the hallucination-related activation strength of the inferior frontal gyri (IFG), including the Broca's language region. Furthermore, how real the hallucination that subjects experienced was depended on the hallucination-related coupling between the IFG, the ventral striatum, the auditory cortex, the right posterior temporal lobe, and the cingulate cortex. Our findings suggest that the subjective reality of AVH is related to motor mechanisms of speech comprehension, with contributions from sensory and salience-detection-related brain regions as well as circuitries related to self-monitoring and the experience of agency.

  5. Reality of auditory verbal hallucinations

    PubMed Central

    Valkonen-Korhonen, Minna; Holi, Matti; Therman, Sebastian; Lehtonen, Johannes; Hari, Riitta

    2009-01-01

    Distortion of the sense of reality, actualized in delusions and hallucinations, is the key feature of psychosis but the underlying neuronal correlates remain largely unknown. We studied 11 highly functioning subjects with schizophrenia or schizoaffective disorder while they rated the reality of auditory verbal hallucinations (AVH) during functional magnetic resonance imaging (fMRI). The subjective reality of AVH correlated strongly and specifically with the hallucination-related activation strength of the inferior frontal gyri (IFG), including the Broca's language region. Furthermore, how real the hallucination that subjects experienced was depended on the hallucination-related coupling between the IFG, the ventral striatum, the auditory cortex, the right posterior temporal lobe, and the cingulate cortex. Our findings suggest that the subjective reality of AVH is related to motor mechanisms of speech comprehension, with contributions from sensory and salience-detection-related brain regions as well as circuitries related to self-monitoring and the experience of agency. PMID:19620178

  6. Mismatch negativity results from bilateral asymmetric dipole sources in the frontal and temporal lobes.

    PubMed

    Jemel, Boutheina; Achenbach, Christiane; Müller, Bernhard W; Röpcke, Bernd; Oades, Robert D

    2002-01-01

    The event-related potential (ERP) reflecting auditory change detection (mismatch negativity, MMN) registers automatic selective processing of a deviant sound with respect to a working memory template resulting from a series of standard sounds. Controversy remains whether MMN can be generated in the frontal as well as the temporal cortex. Our aim was to see if frontal as well as temporal lobe dipoles could explain MMN recorded after pitch-deviants (Pd-MMN) and duration deviants (Dd-MMN). EEG recordings were taken from 32 sites in 14 healthy subjects during a passive 3-tone oddball presented during a simple visual discrimination and an active auditory discrimination condition. Both conditions were repeated after one month. The Pd-MMN was larger, peaked earlier and correlated better between sessions than the Dd-MMN. Two dipoles in the auditory cortex and two in the frontal lobe (left cingulate and right inferior frontal cortex) were found to be similarly placed for Pd- and Dd-MMN, and were well replicated on retest. This study confirms interactions between activity generated in the frontal and auditory temporal cortices in automatic attention-like processes that resemble initial brain imaging reports of unconscious visual change detection. The lack of interference between sessions shows that the situation is likely to be sensitive to treatment or illness effects on fronto-temporal interactions involving repeated measures.

  7. Neural Dynamics of Audiovisual Synchrony and Asynchrony Perception in 6-Month-Old Infants

    PubMed Central

    Kopp, Franziska; Dietrich, Claudia

    2013-01-01

    Young infants are sensitive to multisensory temporal synchrony relations, but the neural dynamics of temporal interactions between vision and audition in infancy are not well understood. We investigated audiovisual synchrony and asynchrony perception in 6-month-old infants using event-related brain potentials (ERP). In a prior behavioral experiment (n = 45), infants were habituated to an audiovisual synchronous stimulus and tested for recovery of interest by presenting an asynchronous test stimulus in which the visual stream was delayed with respect to the auditory stream by 400 ms. Infants who behaviorally discriminated the change in temporal alignment were included in further analyses. In the EEG experiment (final sample: n = 15), synchronous and asynchronous stimuli (visual delay of 400 ms) were presented in random order. Results show latency shifts in the auditory ERP components N1 and P2 as well as the infant ERP component Nc. Latencies in the asynchronous condition were significantly longer than in the synchronous condition. After video onset but preceding the auditory onset, amplitude modulations propagating from posterior to anterior sites and related to the Pb component of infants’ ERP were observed. Results suggest temporal interactions between the two modalities. Specifically, they point to the significance of anticipatory visual motion for auditory processing, and indicate young infants’ predictive capacities for audiovisual temporal synchrony relations. PMID:23346071

  8. Shared and distinct factors driving attention and temporal processing across modalities

    PubMed Central

    Berry, Anne S.; Li, Xu; Lin, Ziyong; Lustig, Cindy

    2013-01-01

    In addition to the classic finding that “sounds are judged longer than lights,” the timing of auditory stimuli is often more precise and accurate than is the timing of visual stimuli. In cognitive models of temporal processing, these modality differences are explained by positing that auditory stimuli more automatically capture and hold attention, more efficiently closing an attentional switch that allows the accumulation of pulses marking the passage of time (Block & Zakay, 1997; Meck, 1991; Penney, 2003). However, attention is a multifaceted construct, and there has been little attempt to determine which aspects of attention may be related to modality effects. We used visual and auditory versions of the Continuous Temporal Expectancy Task (CTET; O'Connell et al., 2009) a timing task previously linked to behavioral and electrophysiological measures of mind-wandering and attention lapses, and tested participants with or without the presence of a video distractor. Performance in the auditory condition was generally superior to that in the visual condition, replicating standard results in the timing literature. The auditory modality was also less affected by declines in sustained attention indexed by declines in performance over time. In contrast, distraction had an equivalent impact on performance in the two modalities. Analysis of individual differences in performance revealed further differences between the two modalities: Poor performance in the auditory condition was primarily related to boredom whereas poor performance in the visual condition was primarily related to distractibility. These results suggest that: 1) challenges to different aspects of attention reveal both modality-specific and nonspecific effects on temporal processing, and 2) different factors drive individual differences when testing across modalities. PMID:23978664

  9. Auditory aura in nocturnal frontal lobe epilepsy: a red flag to suspect an extra-frontal epileptogenic zone.

    PubMed

    Ferri, Lorenzo; Bisulli, Francesca; Nobili, Lino; Tassi, Laura; Licchetta, Laura; Mostacci, Barbara; Stipa, Carlotta; Mainieri, Greta; Bernabè, Giorgia; Provini, Federica; Tinuper, Paolo

    2014-11-01

    To describe the anatomo-electro-clinical findings of patients with nocturnal hypermotor seizures (NHS) preceded by auditory symptoms, to evaluate the localizing value of auditory aura. Our database of 165 patients with nocturnal frontal lobe epilepsy (NFLE) diagnosis confirmed by videopolysomnography (VPSG) was reviewed, selecting those who reported an auditory aura as the initial ictal symptom in at least two NHS during their lifetime. Eleven patients were selected (seven males, four females). According to the anatomo-electro-clinical data, three groups were identified. Group 1 [defined epileptogenic zone (EZ)]: three subjects were studied with stereo-EEG. The EZ lay in the left superior temporal gyrus in two cases, whereas in the third case seizures arose from a dysplastic lesion located in the left temporal lobe. One of these three patients underwent left Heschl's gyrus resection, and is currently seizure-free. Group 2 (presumed EZ): three cases in which a presumed EZ was identified; in the left temporal lobe in two cases and in the left temporal lobe extending to the insula in one subject. Group 3 (uncertain EZ): five cases had anatomo-electro-clinical correlations discordant. This work suggests that auditory aura may be a helpful anamnestic feature suggesting an extra-frontal seizure origin. This finding could guide secondary investigations to improve diagnostic definition and selection of candidates for surgical treatment. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Specialization along the left superior temporal sulcus for auditory categorization.

    PubMed

    Liebenthal, Einat; Desai, Rutvik; Ellingson, Michael M; Ramachandran, Brinda; Desai, Anjali; Binder, Jeffrey R

    2010-12-01

    The affinity and temporal course of functional fields in middle and posterior superior temporal cortex for the categorization of complex sounds was examined using functional magnetic resonance imaging (fMRI) and event-related potentials (ERPs) recorded simultaneously. Data were compared before and after subjects were trained to categorize a continuum of unfamiliar nonphonemic auditory patterns with speech-like properties (NP) and a continuum of familiar phonemic patterns (P). fMRI activation for NP increased after training in left posterior superior temporal sulcus (pSTS). The ERP P2 response to NP also increased with training, and its scalp topography was consistent with left posterior superior temporal generators. In contrast, the left middle superior temporal sulcus (mSTS) showed fMRI activation only for P, and this response was not affected by training. The P2 response to P was also independent of training, and its estimated source was more anterior in left superior temporal cortex. Results are consistent with a role for left pSTS in short-term representation of relevant sound features that provide the basis for identifying newly acquired sound categories. Categorization of highly familiar phonemic patterns is mediated by long-term representations in left mSTS. Results provide new insight regarding the function of ventral and dorsal auditory streams.

  11. Monkey׳s short-term auditory memory nearly abolished by combined removal of the rostral superior temporal gyrus and rhinal cortices.

    PubMed

    Fritz, Jonathan B; Malloy, Megan; Mishkin, Mortimer; Saunders, Richard C

    2016-06-01

    While monkeys easily acquire the rules for performing visual and tactile delayed matching-to-sample, a method for testing recognition memory, they have extraordinary difficulty acquiring a similar rule in audition. Another striking difference between the modalities is that whereas bilateral ablation of the rhinal cortex (RhC) leads to profound impairment in visual and tactile recognition, the same lesion has no detectable effect on auditory recognition memory (Fritz et al., 2005). In our previous study, a mild impairment in auditory memory was obtained following bilateral ablation of the entire medial temporal lobe (MTL), including the RhC, and an equally mild effect was observed after bilateral ablation of the auditory cortical areas in the rostral superior temporal gyrus (rSTG). In order to test the hypothesis that each of these mild impairments was due to partial disconnection of acoustic input to a common target (e.g., the ventromedial prefrontal cortex), in the current study we examined the effects of a more complete auditory disconnection of this common target by combining the removals of both the rSTG and the MTL. We found that the combined lesion led to forgetting thresholds (performance at 75% accuracy) that fell precipitously from the normal retention duration of ~30 to 40s to a duration of ~1 to 2s, thus nearly abolishing auditory recognition memory, and leaving behind only a residual echoic memory. This article is part of a Special Issue entitled SI: Auditory working memory. Published by Elsevier B.V.

  12. Auditory temporal processing in healthy aging: a magnetoencephalographic study

    PubMed Central

    Sörös, Peter; Teismann, Inga K; Manemann, Elisabeth; Lütkenhöner, Bernd

    2009-01-01

    Background Impaired speech perception is one of the major sequelae of aging. In addition to peripheral hearing loss, central deficits of auditory processing are supposed to contribute to the deterioration of speech perception in older individuals. To test the hypothesis that auditory temporal processing is compromised in aging, auditory evoked magnetic fields were recorded during stimulation with sequences of 4 rapidly recurring speech sounds in 28 healthy individuals aged 20 – 78 years. Results The decrement of the N1m amplitude during rapid auditory stimulation was not significantly different between older and younger adults. The amplitudes of the middle-latency P1m wave and of the long-latency N1m, however, were significantly larger in older than in younger participants. Conclusion The results of the present study do not provide evidence for the hypothesis that auditory temporal processing, as measured by the decrement (short-term habituation) of the major auditory evoked component, the N1m wave, is impaired in aging. The differences between these magnetoencephalographic findings and previously published behavioral data might be explained by differences in the experimental setting between the present study and previous behavioral studies, in terms of speech rate, attention, and masking noise. Significantly larger amplitudes of the P1m and N1m waves suggest that the cortical processing of individual sounds differs between younger and older individuals. This result adds to the growing evidence that brain functions, such as sensory processing, motor control and cognitive processing, can change during healthy aging, presumably due to experience-dependent neuroplastic mechanisms. PMID:19351410

  13. It's about time: Presentation in honor of Ira Hirsh

    NASA Astrophysics Data System (ADS)

    Grant, Ken

    2002-05-01

    Over his long and illustrious career, Ira Hirsh has returned time and time again to his interest in the temporal aspects of pattern perception. Although Hirsh has studied and published articles and books pertaining to many aspects of the auditory system, such as sound conduction in the ear, cochlear mechanics, masking, auditory localization, psychoacoustic behavior in animals, speech perception, medical and audiological applications, coupling between psychophysics and physiology, and ecological acoustics, it is his work on auditory timing of simple and complex rhythmic patterns, the backbone of speech and music, that are at the heart of his more recent work. Here, we will focus on several aspects of temporal processing of simple and complex signals, both within and across sensory systems. Data will be reviewed on temporal order judgments of simple tones, and simultaneity judgments and intelligibility of unimodal and bimodal complex stimuli where stimulus components are presented either synchronously or asynchronously. Differences in the symmetry and shape of ``temporal windows'' derived from these data sets will be highlighted.

  14. The topography of frequency and time representation in primate auditory cortices

    PubMed Central

    Baumann, Simon; Joly, Olivier; Rees, Adrian; Petkov, Christopher I; Sun, Li; Thiele, Alexander; Griffiths, Timothy D

    2015-01-01

    Natural sounds can be characterised by their spectral content and temporal modulation, but how the brain is organized to analyse these two critical sound dimensions remains uncertain. Using functional magnetic resonance imaging, we demonstrate a topographical representation of amplitude modulation rate in the auditory cortex of awake macaques. The representation of this temporal dimension is organized in approximately concentric bands of equal rates across the superior temporal plane in both hemispheres, progressing from high rates in the posterior core to low rates in the anterior core and lateral belt cortex. In A1 the resulting gradient of modulation rate runs approximately perpendicular to the axis of the tonotopic gradient, suggesting an orthogonal organisation of spectral and temporal sound dimensions. In auditory belt areas this relationship is more complex. The data suggest a continuous representation of modulation rate across several physiological areas, in contradistinction to a separate representation of frequency within each area. DOI: http://dx.doi.org/10.7554/eLife.03256.001 PMID:25590651

  15. Fibrous Dysplasia of the Temporal Bone with External Auditory Canal Stenosis and Secondary Cholesteatoma.

    PubMed

    Liu, Yu-Hsi; Chang, Kuo-Ping

    2016-04-01

    Fibrous dysplasia is a slowly progressive benign fibro-osseous disease, rarely occurring in temporal bones. In these cases, most bony lesions developed from the bony part of the external auditory canals, causing otalgia, hearing impairment, otorrhea, and ear hygiene blockade and probably leading to secondary cholesteatoma. We presented the medical history of a 24-year-old woman with temporal monostotic fibrous dysplasia with secondary cholesteatoma. The initial presentation was unilateral conductive hearing loss. A hard external canal tumor contributing to canal stenosis and a near-absent tympanic membrane were found. Canaloplasty and type I tympanoplasty were performed, but the symptoms recurred after 5 years. She received canal wall down tympanomastoidectomy with ossciculoplasty at the second time, and secondary cholesteatoma in the middle ear was diagnosed. Fifteen years later, left otorrhea recurred again and transcanal endoscopic surgery was performed for middle ear clearance. Currently, revision surgeries provide a stable auditory condition, but her monostotic temporal fibrous dysplasia is still in place.

  16. Absence of both auditory evoked potentials and auditory percepts dependent on timing cues.

    PubMed

    Starr, A; McPherson, D; Patterson, J; Don, M; Luxford, W; Shannon, R; Sininger, Y; Tonakawa, L; Waring, M

    1991-06-01

    An 11-yr-old girl had an absence of sensory components of auditory evoked potentials (brainstem, middle and long-latency) to click and tone burst stimuli that she could clearly hear. Psychoacoustic tests revealed a marked impairment of those auditory perceptions dependent on temporal cues, that is, lateralization of binaural clicks, change of binaural masked threshold with changes in signal phase, binaural beats, detection of paired monaural clicks, monaural detection of a silent gap in a sound, and monaural threshold elevation for short duration tones. In contrast, auditory functions reflecting intensity or frequency discriminations (difference limens) were only minimally impaired. Pure tone audiometry showed a moderate (50 dB) bilateral hearing loss with a disproportionate severe loss of word intelligibility. Those auditory evoked potentials that were preserved included (1) cochlear microphonics reflecting hair cell activity; (2) cortical sustained potentials reflecting processing of slowly changing signals; and (3) long-latency cognitive components (P300, processing negativity) reflecting endogenous auditory cognitive processes. Both the evoked potential and perceptual deficits are attributed to changes in temporal encoding of acoustic signals perhaps occurring at the synapse between hair cell and eighth nerve dendrites. The results from this patient are discussed in relation to previously published cases with absent auditory evoked potentials and preserved hearing.

  17. Distinctiveness revisited: unpredictable temporal isolation does not benefit short-term serial recall of heard or seen events.

    PubMed

    Nimmo, Lisa M; Lewandowsky, Stephan

    2006-09-01

    The notion of a link between time and memory is intuitively appealing and forms the core assumption of temporal distinctiveness models. Distinctiveness models predict that items that are temporally isolated from their neighbors at presentation should be recalled better than items that are temporally crowded. By contrast, event-based theories consider time to be incidental to the processes that govern memory, and such theories would not imply a temporal isolation advantage unless participants engaged in a consolidation process (e.g., rehearsal or selective encoding) that exploited the temporal structure of the list. In this report, we examine two studies that assessed the effect of temporal distinctiveness on memory, using auditory (Experiment 1) and auditory and visual (Experiment 2) presentation with unpredictably varying interitem intervals. The results show that with unpredictable intervals temporal isolation does not benefit memory, regardless of presentation modality.

  18. Does the Auditory Saltation Stimulus Distinguish Dyslexic from Competently Reading Adults?

    ERIC Educational Resources Information Center

    Kidd, Joanna C.; Hogben, John H.

    2007-01-01

    Purpose: Where the auditory saltation illusion has been used as a measure of auditory temporal processing (ATP) in dyslexia, conflicting results have been apparent (cf. R. Hari & P. Kiesila, 1996; M. Kronbichler, F. Hutzler, & H. Wimmer, 2002). This study sought to re-examine these findings by investigating whether dyslexia is characterized by…

  19. Auditory rhythmic cueing in movement rehabilitation: findings and possible mechanisms

    PubMed Central

    Schaefer, Rebecca S.

    2014-01-01

    Moving to music is intuitive and spontaneous, and music is widely used to support movement, most commonly during exercise. Auditory cues are increasingly also used in the rehabilitation of disordered movement, by aligning actions to sounds such as a metronome or music. Here, the effect of rhythmic auditory cueing on movement is discussed and representative findings of cued movement rehabilitation are considered for several movement disorders, specifically post-stroke motor impairment, Parkinson's disease and Huntington's disease. There are multiple explanations for the efficacy of cued movement practice. Potentially relevant, non-mutually exclusive mechanisms include the acceleration of learning; qualitatively different motor learning owing to an auditory context; effects of increased temporal skills through rhythmic practices and motivational aspects of musical rhythm. Further considerations of rehabilitation paradigm efficacy focus on specific movement disorders, intervention methods and complexity of the auditory cues. Although clinical interventions using rhythmic auditory cueing do not show consistently positive results, it is argued that internal mechanisms of temporal prediction and tracking are crucial, and further research may inform rehabilitation practice to increase intervention efficacy. PMID:25385780

  20. Psychophysical and Neural Correlates of Auditory Attraction and Aversion

    NASA Astrophysics Data System (ADS)

    Patten, Kristopher Jakob

    This study explores the psychophysical and neural processes associated with the perception of sounds as either pleasant or aversive. The underlying psychophysical theory is based on auditory scene analysis, the process through which listeners parse auditory signals into individual acoustic sources. The first experiment tests and confirms that a self-rated pleasantness continuum reliably exists for 20 various stimuli (r = .48). In addition, the pleasantness continuum correlated with the physical acoustic characteristics of consonance/dissonance (r = .78), which can facilitate auditory parsing processes. The second experiment uses an fMRI block design to test blood oxygen level dependent (BOLD) changes elicited by a subset of 5 exemplar stimuli chosen from Experiment 1 that are evenly distributed over the pleasantness continuum. Specifically, it tests and confirms that the pleasantness continuum produces systematic changes in brain activity for unpleasant acoustic stimuli beyond what occurs with pleasant auditory stimuli. Results revealed that the combination of two positively and two negatively valenced experimental sounds compared to one neutral baseline control elicited BOLD increases in the primary auditory cortex, specifically the bilateral superior temporal gyrus, and left dorsomedial prefrontal cortex; the latter being consistent with a frontal decision-making process common in identification tasks. The negatively-valenced stimuli yielded additional BOLD increases in the left insula, which typically indicates processing of visceral emotions. The positively-valenced stimuli did not yield any significant BOLD activation, consistent with consonant, harmonic stimuli being the prototypical acoustic pattern of auditory objects that is optimal for auditory scene analysis. Both the psychophysical findings of Experiment 1 and the neural processing findings of Experiment 2 support that consonance is an important dimension of sound that is processed in a manner that aids auditory parsing and functional representation of acoustic objects and was found to be a principal feature of pleasing auditory stimuli.

  1. Audio-visual onset differences are used to determine syllable identity for ambiguous audio-visual stimulus pairs

    PubMed Central

    ten Oever, Sanne; Sack, Alexander T.; Wheat, Katherine L.; Bien, Nina; van Atteveldt, Nienke

    2013-01-01

    Content and temporal cues have been shown to interact during audio-visual (AV) speech identification. Typically, the most reliable unimodal cue is used more strongly to identify specific speech features; however, visual cues are only used if the AV stimuli are presented within a certain temporal window of integration (TWI). This suggests that temporal cues denote whether unimodal stimuli belong together, that is, whether they should be integrated. It is not known whether temporal cues also provide information about the identity of a syllable. Since spoken syllables have naturally varying AV onset asynchronies, we hypothesize that for suboptimal AV cues presented within the TWI, information about the natural AV onset differences can aid in speech identification. To test this, we presented low-intensity auditory syllables concurrently with visual speech signals, and varied the stimulus onset asynchronies (SOA) of the AV pair, while participants were instructed to identify the auditory syllables. We revealed that specific speech features (e.g., voicing) were identified by relying primarily on one modality (e.g., auditory). Additionally, we showed a wide window in which visual information influenced auditory perception, that seemed even wider for congruent stimulus pairs. Finally, we found a specific response pattern across the SOA range for syllables that were not reliably identified by the unimodal cues, which we explained as the result of the use of natural onset differences between AV speech signals. This indicates that temporal cues not only provide information about the temporal integration of AV stimuli, but additionally convey information about the identity of AV pairs. These results provide a detailed behavioral basis for further neuro-imaging and stimulation studies to unravel the neurofunctional mechanisms of the audio-visual-temporal interplay within speech perception. PMID:23805110

  2. Audio-visual onset differences are used to determine syllable identity for ambiguous audio-visual stimulus pairs.

    PubMed

    Ten Oever, Sanne; Sack, Alexander T; Wheat, Katherine L; Bien, Nina; van Atteveldt, Nienke

    2013-01-01

    Content and temporal cues have been shown to interact during audio-visual (AV) speech identification. Typically, the most reliable unimodal cue is used more strongly to identify specific speech features; however, visual cues are only used if the AV stimuli are presented within a certain temporal window of integration (TWI). This suggests that temporal cues denote whether unimodal stimuli belong together, that is, whether they should be integrated. It is not known whether temporal cues also provide information about the identity of a syllable. Since spoken syllables have naturally varying AV onset asynchronies, we hypothesize that for suboptimal AV cues presented within the TWI, information about the natural AV onset differences can aid in speech identification. To test this, we presented low-intensity auditory syllables concurrently with visual speech signals, and varied the stimulus onset asynchronies (SOA) of the AV pair, while participants were instructed to identify the auditory syllables. We revealed that specific speech features (e.g., voicing) were identified by relying primarily on one modality (e.g., auditory). Additionally, we showed a wide window in which visual information influenced auditory perception, that seemed even wider for congruent stimulus pairs. Finally, we found a specific response pattern across the SOA range for syllables that were not reliably identified by the unimodal cues, which we explained as the result of the use of natural onset differences between AV speech signals. This indicates that temporal cues not only provide information about the temporal integration of AV stimuli, but additionally convey information about the identity of AV pairs. These results provide a detailed behavioral basis for further neuro-imaging and stimulation studies to unravel the neurofunctional mechanisms of the audio-visual-temporal interplay within speech perception.

  3. The what, where and how of auditory-object perception.

    PubMed

    Bizley, Jennifer K; Cohen, Yale E

    2013-10-01

    The fundamental perceptual unit in hearing is the 'auditory object'. Similar to visual objects, auditory objects are the computational result of the auditory system's capacity to detect, extract, segregate and group spectrotemporal regularities in the acoustic environment; the multitude of acoustic stimuli around us together form the auditory scene. However, unlike the visual scene, resolving the component objects within the auditory scene crucially depends on their temporal structure. Neural correlates of auditory objects are found throughout the auditory system. However, neural responses do not become correlated with a listener's perceptual reports until the level of the cortex. The roles of different neural structures and the contribution of different cognitive states to the perception of auditory objects are not yet fully understood.

  4. The what, where and how of auditory-object perception

    PubMed Central

    Bizley, Jennifer K.; Cohen, Yale E.

    2014-01-01

    The fundamental perceptual unit in hearing is the ‘auditory object’. Similar to visual objects, auditory objects are the computational result of the auditory system's capacity to detect, extract, segregate and group spectrotemporal regularities in the acoustic environment; the multitude of acoustic stimuli around us together form the auditory scene. However, unlike the visual scene, resolving the component objects within the auditory scene crucially depends on their temporal structure. Neural correlates of auditory objects are found throughout the auditory system. However, neural responses do not become correlated with a listener's perceptual reports until the level of the cortex. The roles of different neural structures and the contribution of different cognitive states to the perception of auditory objects are not yet fully understood. PMID:24052177

  5. Mate choice in the eye and ear of the beholder? Female multimodal sensory configuration influences her preferences.

    PubMed

    Ronald, Kelly L; Fernández-Juricic, Esteban; Lucas, Jeffrey R

    2018-05-16

    A common assumption in sexual selection studies is that receivers decode signal information similarly. However, receivers may vary in how they rank signallers if signal perception varies with an individual's sensory configuration. Furthermore, receivers may vary in their weighting of different elements of multimodal signals based on their sensory configuration. This could lead to complex levels of selection on signalling traits. We tested whether multimodal sensory configuration could affect preferences for multimodal signals. We used brown-headed cowbird ( Molothrus ater ) females to examine how auditory sensitivity and auditory filters, which influence auditory spectral and temporal resolution, affect song preferences, and how visual spatial resolution and visual temporal resolution, which influence resolution of a moving visual signal, affect visual display preferences. Our results show that multimodal sensory configuration significantly affects preferences for male displays: females with better auditory temporal resolution preferred songs that were shorter, with lower Wiener entropy, and higher frequency; and females with better visual temporal resolution preferred males with less intense visual displays. Our findings provide new insights into mate-choice decisions and receiver signal processing. Furthermore, our results challenge a long-standing assumption in animal communication which can affect how we address honest signalling, assortative mating and sensory drive. © 2018 The Author(s).

  6. Can rhythmic auditory cuing remediate language-related deficits in Parkinson's disease?

    PubMed

    Kotz, Sonja A; Gunter, Thomas C

    2015-03-01

    Neurodegenerative changes of the basal ganglia in idiopathic Parkinson's disease (IPD) lead to motor deficits as well as general cognitive decline. Given these impairments, the question arises as to whether motor and nonmotor deficits can be ameliorated similarly. We reason that a domain-general sensorimotor circuit involved in temporal processing may support the remediation of such deficits. Following findings that auditory cuing benefits gait kinematics, we explored whether reported language-processing deficits in IPD can also be remediated via auditory cuing. During continuous EEG measurement, an individual diagnosed with IPD heard two types of temporally predictable but metrically different auditory beat-based cues: a march, which metrically aligned with the speech accent structure, a waltz that did not metrically align, or no cue before listening to naturally spoken sentences that were either grammatically well formed or were semantically or syntactically incorrect. Results confirmed that only the cuing with a march led to improved computation of syntactic and semantic information. We infer that a marching rhythm may lead to a stronger engagement of the cerebello-thalamo-cortical circuit that compensates dysfunctional striato-cortical timing. Reinforcing temporal realignment, in turn, may lead to the timely processing of linguistic information embedded in the temporally variable speech signal. © 2014 New York Academy of Sciences.

  7. On pure word deafness, temporal processing, and the left hemisphere.

    PubMed

    Stefanatos, Gerry A; Gershkoff, Arthur; Madigan, Sean

    2005-07-01

    Pure word deafness (PWD) is a rare neurological syndrome characterized by severe difficulties in understanding and reproducing spoken language, with sparing of written language comprehension and speech production. The pathognomonic disturbance of auditory comprehension appears to be associated with a breakdown in processes involved in mapping auditory input to lexical representations of words, but the functional locus of this disturbance and the localization of the responsible lesion have long been disputed. We report here on a woman with PWD resulting from a circumscribed unilateral infarct involving the left superior temporal lobe who demonstrated significant problems processing transitional spectrotemporal cues in both speech and nonspeech sounds. On speech discrimination tasks, she exhibited poor differentiation of stop consonant-vowel syllables distinguished by voicing onset and brief formant frequency transitions. Isolated formant transitions could be reliably discriminated only at very long durations (> 200 ms). By contrast, click fusion threshold, which depends on millisecond-level resolution of brief auditory events, was normal. These results suggest that the problems with speech analysis in this case were not secondary to general constraints on auditory temporal resolution. Rather, they point to a disturbance of left hemisphere auditory mechanisms that preferentially analyze rapid spectrotemporal variations in frequency. The findings have important implications for our conceptualization of PWD and its subtypes.

  8. A physiologically based model for temporal envelope encoding in human primary auditory cortex.

    PubMed

    Dugué, Pierre; Le Bouquin-Jeannès, Régine; Edeline, Jean-Marc; Faucon, Gérard

    2010-09-01

    Communication sounds exhibit temporal envelope fluctuations in the low frequency range (<70 Hz) and human speech has prominent 2-16 Hz modulations with a maximum at 3-4 Hz. Here, we propose a new phenomenological model of the human auditory pathway (from cochlea to primary auditory cortex) to simulate responses to amplitude-modulated white noise. To validate the model, performance was estimated by quantifying temporal modulation transfer functions (TMTFs). Previous models considered either the lower stages of the auditory system (up to the inferior colliculus) or only the thalamocortical loop. The present model, divided in two stages, is based on anatomical and physiological findings and includes the entire auditory pathway. The first stage, from the outer ear to the colliculus, incorporates inhibitory interneurons in the cochlear nucleus to increase performance at high stimuli levels. The second stage takes into account the anatomical connections of the thalamocortical system and includes the fast and slow excitatory and inhibitory currents. After optimizing the parameters of the model to reproduce the diversity of TMTFs obtained from human subjects, a patient-specific model was derived and the parameters were optimized to effectively reproduce both spontaneous activity and the oscillatory part of the evoked response. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  9. FMRI investigation of cross-modal interactions in beat perception: Audition primes vision, but not vice versa

    PubMed Central

    Grahn, Jessica A.; Henry, Molly J.; McAuley, J. Devin

    2011-01-01

    How we measure time and integrate temporal cues from different sensory modalities are fundamental questions in neuroscience. Sensitivity to a “beat” (such as that routinely perceived in music) differs substantially between auditory and visual modalities. Here we examined beat sensitivity in each modality, and examined cross-modal influences, using functional magnetic resonance imaging (fMRI) to characterize brain activity during perception of auditory and visual rhythms. In separate fMRI sessions, participants listened to auditory sequences or watched visual sequences. The order of auditory and visual sequence presentation was counterbalanced so that cross-modal order effects could be investigated. Participants judged whether sequences were speeding up or slowing down, and the pattern of tempo judgments was used to derive a measure of sensitivity to an implied beat. As expected, participants were less sensitive to an implied beat in visual sequences than in auditory sequences. However, visual sequences produced a stronger sense of beat when preceded by auditory sequences with identical temporal structure. Moreover, increases in brain activity were observed in the bilateral putamen for visual sequences preceded by auditory sequences when compared to visual sequences without prior auditory exposure. No such order-dependent differences (behavioral or neural) were found for the auditory sequences. The results provide further evidence for the role of the basal ganglia in internal generation of the beat and suggest that an internal auditory rhythm representation may be activated during visual rhythm perception. PMID:20858544

  10. Perception of visual apparent motion is modulated by a gap within concurrent auditory glides, even when it is illusory

    PubMed Central

    Wang, Qingcui; Guo, Lu; Bao, Ming; Chen, Lihan

    2015-01-01

    Auditory and visual events often happen concurrently, and how they group together can have a strong effect on what is perceived. We investigated whether/how intra- or cross-modal temporal grouping influenced the perceptual decision of otherwise ambiguous visual apparent motion. To achieve this, we juxtaposed auditory gap transfer illusion with visual Ternus display. The Ternus display involves a multi-element stimulus that can induce either of two different percepts of apparent motion: ‘element motion’ (EM) or ‘group motion’ (GM). In “EM,” the endmost disk is seen as moving back and forth while the middle disk at the central position remains stationary; while in “GM,” both disks appear to move laterally as a whole. The gap transfer illusion refers to the illusory subjective transfer of a short gap (around 100 ms) from the long glide to the short continuous glide when the two glides intercede at the temporal middle point. In our experiments, observers were required to make a perceptual discrimination of Ternus motion in the presence of concurrent auditory glides (with or without a gap inside). Results showed that a gap within a short glide imposed a remarkable effect on separating visual events, and led to a dominant perception of GM as well. The auditory configuration with gap transfer illusion triggered the same auditory capture effect. Further investigations showed that visual interval which coincided with the gap interval (50–230 ms) in the long glide was perceived to be shorter than that within both the short glide and the ‘gap-transfer’ auditory configurations in the same physical intervals (gaps). The results indicated that auditory temporal perceptual grouping takes priority over the cross-modal interaction in determining the final readout of the visual perception, and the mechanism of selective attention on auditory events also plays a role. PMID:26042055

  11. Perception of visual apparent motion is modulated by a gap within concurrent auditory glides, even when it is illusory.

    PubMed

    Wang, Qingcui; Guo, Lu; Bao, Ming; Chen, Lihan

    2015-01-01

    Auditory and visual events often happen concurrently, and how they group together can have a strong effect on what is perceived. We investigated whether/how intra- or cross-modal temporal grouping influenced the perceptual decision of otherwise ambiguous visual apparent motion. To achieve this, we juxtaposed auditory gap transfer illusion with visual Ternus display. The Ternus display involves a multi-element stimulus that can induce either of two different percepts of apparent motion: 'element motion' (EM) or 'group motion' (GM). In "EM," the endmost disk is seen as moving back and forth while the middle disk at the central position remains stationary; while in "GM," both disks appear to move laterally as a whole. The gap transfer illusion refers to the illusory subjective transfer of a short gap (around 100 ms) from the long glide to the short continuous glide when the two glides intercede at the temporal middle point. In our experiments, observers were required to make a perceptual discrimination of Ternus motion in the presence of concurrent auditory glides (with or without a gap inside). Results showed that a gap within a short glide imposed a remarkable effect on separating visual events, and led to a dominant perception of GM as well. The auditory configuration with gap transfer illusion triggered the same auditory capture effect. Further investigations showed that visual interval which coincided with the gap interval (50-230 ms) in the long glide was perceived to be shorter than that within both the short glide and the 'gap-transfer' auditory configurations in the same physical intervals (gaps). The results indicated that auditory temporal perceptual grouping takes priority over the cross-modal interaction in determining the final readout of the visual perception, and the mechanism of selective attention on auditory events also plays a role.

  12. [Auditory processing and high frequency audiometry in students of São Paulo].

    PubMed

    Ramos, Cristina Silveira; Pereira, Liliane Desgualdo

    2005-01-01

    Auditory processing and auditory sensibility to high Frequency sounds. To characterize the localization processes, temporal ordering, hearing patterns and detection of high frequency sounds, looking for possible relations between these factors. 32 hearing fourth grade students, born in city of São Paulo, were submitted to: a simplified evaluation of the auditory processing; duration pattern test; high frequency audiometry. Three (9,4%) individuals presented auditory processing disorder (APD) and in one of them there was the coexistence of lower hearing thresholds in high frequency audiometry. APD associated to an auditory sensibility loss in high frequencies should be further investigated.

  13. Temporal Structure and Complexity Affect Audio-Visual Correspondence Detection

    PubMed Central

    Denison, Rachel N.; Driver, Jon; Ruff, Christian C.

    2013-01-01

    Synchrony between events in different senses has long been considered the critical temporal cue for multisensory integration. Here, using rapid streams of auditory and visual events, we demonstrate how humans can use temporal structure (rather than mere temporal coincidence) to detect multisensory relatedness. We find psychophysically that participants can detect matching auditory and visual streams via shared temporal structure for crossmodal lags of up to 200 ms. Performance on this task reproduced features of past findings based on explicit timing judgments but did not show any special advantage for perfectly synchronous streams. Importantly, the complexity of temporal patterns influences sensitivity to correspondence. Stochastic, irregular streams – with richer temporal pattern information – led to higher audio-visual matching sensitivity than predictable, rhythmic streams. Our results reveal that temporal structure and its complexity are key determinants for human detection of audio-visual correspondence. The distinctive emphasis of our new paradigms on temporal patterning could be useful for studying special populations with suspected abnormalities in audio-visual temporal perception and multisensory integration. PMID:23346067

  14. Sensory processing during viewing of cinematographic material: Computational modeling and functional neuroimaging

    PubMed Central

    Bordier, Cecile; Puja, Francesco; Macaluso, Emiliano

    2013-01-01

    The investigation of brain activity using naturalistic, ecologically-valid stimuli is becoming an important challenge for neuroscience research. Several approaches have been proposed, primarily relying on data-driven methods (e.g. independent component analysis, ICA). However, data-driven methods often require some post-hoc interpretation of the imaging results to draw inferences about the underlying sensory, motor or cognitive functions. Here, we propose using a biologically-plausible computational model to extract (multi-)sensory stimulus statistics that can be used for standard hypothesis-driven analyses (general linear model, GLM). We ran two separate fMRI experiments, which both involved subjects watching an episode of a TV-series. In Exp 1, we manipulated the presentation by switching on-and-off color, motion and/or sound at variable intervals, whereas in Exp 2, the video was played in the original version, with all the consequent continuous changes of the different sensory features intact. Both for vision and audition, we extracted stimulus statistics corresponding to spatial and temporal discontinuities of low-level features, as well as a combined measure related to the overall stimulus saliency. Results showed that activity in occipital visual cortex and the superior temporal auditory cortex co-varied with changes of low-level features. Visual saliency was found to further boost activity in extra-striate visual cortex plus posterior parietal cortex, while auditory saliency was found to enhance activity in the superior temporal cortex. Data-driven ICA analyses of the same datasets also identified “sensory” networks comprising visual and auditory areas, but without providing specific information about the possible underlying processes, e.g., these processes could relate to modality, stimulus features and/or saliency. We conclude that the combination of computational modeling and GLM enables the tracking of the impact of bottom–up signals on brain activity during viewing of complex and dynamic multisensory stimuli, beyond the capability of purely data-driven approaches. PMID:23202431

  15. Assessment of Spectral and Temporal Resolution in Cochlear Implant Users Using Psychoacoustic Discrimination and Speech Cue Categorization.

    PubMed

    Winn, Matthew B; Won, Jong Ho; Moon, Il Joon

    This study was conducted to measure auditory perception by cochlear implant users in the spectral and temporal domains, using tests of either categorization (using speech-based cues) or discrimination (using conventional psychoacoustic tests). The authors hypothesized that traditional nonlinguistic tests assessing spectral and temporal auditory resolution would correspond to speech-based measures assessing specific aspects of phonetic categorization assumed to depend on spectral and temporal auditory resolution. The authors further hypothesized that speech-based categorization performance would ultimately be a superior predictor of speech recognition performance, because of the fundamental nature of speech recognition as categorization. Nineteen cochlear implant listeners and 10 listeners with normal hearing participated in a suite of tasks that included spectral ripple discrimination, temporal modulation detection, and syllable categorization, which was split into a spectral cue-based task (targeting the /ba/-/da/ contrast) and a timing cue-based task (targeting the /b/-/p/ and /d/-/t/ contrasts). Speech sounds were manipulated to contain specific spectral or temporal modulations (formant transitions or voice onset time, respectively) that could be categorized. Categorization responses were quantified using logistic regression to assess perceptual sensitivity to acoustic phonetic cues. Word recognition testing was also conducted for cochlear implant listeners. Cochlear implant users were generally less successful at utilizing both spectral and temporal cues for categorization compared with listeners with normal hearing. For the cochlear implant listener group, spectral ripple discrimination was significantly correlated with the categorization of formant transitions; both were correlated with better word recognition. Temporal modulation detection using 100- and 10-Hz-modulated noise was not correlated either with the cochlear implant subjects' categorization of voice onset time or with word recognition. Word recognition was correlated more closely with categorization of the controlled speech cues than with performance on the psychophysical discrimination tasks. When evaluating people with cochlear implants, controlled speech-based stimuli are feasible to use in tests of auditory cue categorization, to complement traditional measures of auditory discrimination. Stimuli based on specific speech cues correspond to counterpart nonlinguistic measures of discrimination, but potentially show better correspondence with speech perception more generally. The ubiquity of the spectral (formant transition) and temporal (voice onset time) stimulus dimensions across languages highlights the potential to use this testing approach even in cases where English is not the native language.

  16. Semantic congruency but not temporal synchrony enhances long-term memory performance for audio-visual scenes.

    PubMed

    Meyerhoff, Hauke S; Huff, Markus

    2016-04-01

    Human long-term memory for visual objects and scenes is tremendous. Here, we test how auditory information contributes to long-term memory performance for realistic scenes. In a total of six experiments, we manipulated the presentation modality (auditory, visual, audio-visual) as well as semantic congruency and temporal synchrony between auditory and visual information of brief filmic clips. Our results show that audio-visual clips generally elicit more accurate memory performance than unimodal clips. This advantage even increases with congruent visual and auditory information. However, violations of audio-visual synchrony hardly have any influence on memory performance. Memory performance remained intact even with a sequential presentation of auditory and visual information, but finally declined when the matching tracks of one scene were presented separately with intervening tracks during learning. With respect to memory performance, our results therefore show that audio-visual integration is sensitive to semantic congruency but remarkably robust against asymmetries between different modalities.

  17. Analysis of MEG Auditory 40-Hz Response by Event-Related Coherence

    NASA Astrophysics Data System (ADS)

    Tanaka, Keita; Kawakatsu, Masaki; Yunokuchi, Kazutomo

    We examined the event-related coherence of magnetoencephalography (auditory 40-Hz response) while the subjects were presented click acoustic stimuli at repetition rate 40Hz in the ‘Attend' and ‘Reading' conditions. MEG signals were recorded of 5 healthy males using the whole-head SQUID system. The event-related coherence was used to provide a measurement of short synchronization which occurs in response to a stimulus. The results showed that the peak value of coherence in auditory 40-Hz response between right and left temporal regions was significantly larger when subjects paid attention to stimuli (‘Attend' condition) rather than it was when the subject ignored them (‘Reading' condition). Moreover, the latency of coherence in auditory 40-Hz response was significantly shorter when the subjects paid attention to stimuli (‘Attend' condition). These results suggest that the phase synchronization between right and left temporal region in auditory 40-Hz response correlate closely with selective attention.

  18. Auditory processing disorders, verbal disfluency, and learning difficulties: a case study.

    PubMed

    Jutras, Benoît; Lagacé, Josée; Lavigne, Annik; Boissonneault, Andrée; Lavoie, Charlen

    2007-01-01

    This case study reports the findings of auditory behavioral and electrophysiological measures performed on a graduate student (identified as LN) presenting verbal disfluency and learning difficulties. Results of behavioral audiological testing documented the presence of auditory processing disorders, particularly temporal processing and binaural integration. Electrophysiological test results, including middle latency, late latency and cognitive potentials, revealed that LN's central auditory system processes acoustic stimuli differently to a reference group with normal hearing.

  19. Monkey’s short-term auditory memory nearly abolished by combined removal of the rostral superior temporal gyrus and rhinal cortices

    PubMed Central

    Fritz, Jonathan B.; Malloy, Megan; Mishkin, Mortimer; Saunders, Richard C.

    2016-01-01

    While monkeys easily acquire the rules for performing visual and tactile delayed matching-to-sample, a method for testing recognition memory, they have extraordinary difficulty acquiring a similar rule in audition. Another striking difference between the modalities is that whereas bilateral ablation of the rhinal cortex (RhC) leads to profound impairment in visual and tactile recognition, the same lesion has no detectable effect on auditory recognition memory (Fritz et al., 2005). In our previous study, a mild impairment in auditory memory was obtained following bilateral ablation of the entire medial temporal lobe (MTL), including the RhC, and an equally mild effect was observed after bilateral ablation of the auditory cortical areas in the rostral superior temporal gyrus (rSTG). In order to test the hypothesis that each of these mild impairments was due to partial disconnection of acoustic input to a common target (e.g., the ventromedial prefrontal cortex), in the current study we examined the effects of a more complete auditory disconnection of this common target by combining the removals of both the rSTG and the MTL. We found that the combined lesion led to forgetting thresholds (performance at 75% accuracy) that fell precipitously from the normal retention duration of ~30–40 seconds to a duration of ~1–2 seconds, thus nearly abolishing auditory recognition memory, and leaving behind only a residual echoic memory. PMID:26707975

  20. Differential coding of conspecific vocalizations in the ventral auditory cortical stream.

    PubMed

    Fukushima, Makoto; Saunders, Richard C; Leopold, David A; Mishkin, Mortimer; Averbeck, Bruno B

    2014-03-26

    The mammalian auditory cortex integrates spectral and temporal acoustic features to support the perception of complex sounds, including conspecific vocalizations. Here we investigate coding of vocal stimuli in different subfields in macaque auditory cortex. We simultaneously measured auditory evoked potentials over a large swath of primary and higher order auditory cortex along the supratemporal plane in three animals chronically using high-density microelectrocorticographic arrays. To evaluate the capacity of neural activity to discriminate individual stimuli in these high-dimensional datasets, we applied a regularized multivariate classifier to evoked potentials to conspecific vocalizations. We found a gradual decrease in the level of overall classification performance along the caudal to rostral axis. Furthermore, the performance in the caudal sectors was similar across individual stimuli, whereas the performance in the rostral sectors significantly differed for different stimuli. Moreover, the information about vocalizations in the caudal sectors was similar to the information about synthetic stimuli that contained only the spectral or temporal features of the original vocalizations. In the rostral sectors, however, the classification for vocalizations was significantly better than that for the synthetic stimuli, suggesting that conjoined spectral and temporal features were necessary to explain differential coding of vocalizations in the rostral areas. We also found that this coding in the rostral sector was carried primarily in the theta frequency band of the response. These findings illustrate a progression in neural coding of conspecific vocalizations along the ventral auditory pathway.

  1. Differential Coding of Conspecific Vocalizations in the Ventral Auditory Cortical Stream

    PubMed Central

    Saunders, Richard C.; Leopold, David A.; Mishkin, Mortimer; Averbeck, Bruno B.

    2014-01-01

    The mammalian auditory cortex integrates spectral and temporal acoustic features to support the perception of complex sounds, including conspecific vocalizations. Here we investigate coding of vocal stimuli in different subfields in macaque auditory cortex. We simultaneously measured auditory evoked potentials over a large swath of primary and higher order auditory cortex along the supratemporal plane in three animals chronically using high-density microelectrocorticographic arrays. To evaluate the capacity of neural activity to discriminate individual stimuli in these high-dimensional datasets, we applied a regularized multivariate classifier to evoked potentials to conspecific vocalizations. We found a gradual decrease in the level of overall classification performance along the caudal to rostral axis. Furthermore, the performance in the caudal sectors was similar across individual stimuli, whereas the performance in the rostral sectors significantly differed for different stimuli. Moreover, the information about vocalizations in the caudal sectors was similar to the information about synthetic stimuli that contained only the spectral or temporal features of the original vocalizations. In the rostral sectors, however, the classification for vocalizations was significantly better than that for the synthetic stimuli, suggesting that conjoined spectral and temporal features were necessary to explain differential coding of vocalizations in the rostral areas. We also found that this coding in the rostral sector was carried primarily in the theta frequency band of the response. These findings illustrate a progression in neural coding of conspecific vocalizations along the ventral auditory pathway. PMID:24672012

  2. Auditory-motor interaction revealed by fMRI: speech, music, and working memory in area Spt.

    PubMed

    Hickok, Gregory; Buchsbaum, Bradley; Humphries, Colin; Muftuler, Tugan

    2003-07-01

    The concept of auditory-motor interaction pervades speech science research, yet the cortical systems supporting this interface have not been elucidated. Drawing on experimental designs used in recent work in sensory-motor integration in the cortical visual system, we used fMRI in an effort to identify human auditory regions with both sensory and motor response properties, analogous to single-unit responses in known visuomotor integration areas. The sensory phase of the task involved listening to speech (nonsense sentences) or music (novel piano melodies); the "motor" phase of the task involved covert rehearsal/humming of the auditory stimuli. A small set of areas in the superior temporal and temporal-parietal cortex responded both during the listening phase and the rehearsal/humming phase. A left lateralized region in the posterior Sylvian fissure at the parietal-temporal boundary, area Spt, showed particularly robust responses to both phases of the task. Frontal areas also showed combined auditory + rehearsal responsivity consistent with the claim that the posterior activations are part of a larger auditory-motor integration circuit. We hypothesize that this circuit plays an important role in speech development as part of the network that enables acoustic-phonetic input to guide the acquisition of language-specific articulatory-phonetic gestures; this circuit may play a role in analogous musical abilities. In the adult, this system continues to support aspects of speech production, and, we suggest, supports verbal working memory.

  3. Neural Substrates of Auditory Emotion Recognition Deficits in Schizophrenia.

    PubMed

    Kantrowitz, Joshua T; Hoptman, Matthew J; Leitman, David I; Moreno-Ortega, Marta; Lehrfeld, Jonathan M; Dias, Elisa; Sehatpour, Pejman; Laukka, Petri; Silipo, Gail; Javitt, Daniel C

    2015-11-04

    Deficits in auditory emotion recognition (AER) are a core feature of schizophrenia and a key component of social cognitive impairment. AER deficits are tied behaviorally to impaired ability to interpret tonal ("prosodic") features of speech that normally convey emotion, such as modulations in base pitch (F0M) and pitch variability (F0SD). These modulations can be recreated using synthetic frequency modulated (FM) tones that mimic the prosodic contours of specific emotional stimuli. The present study investigates neural mechanisms underlying impaired AER using a combined event-related potential/resting-state functional connectivity (rsfMRI) approach in 84 schizophrenia/schizoaffective disorder patients and 66 healthy comparison subjects. Mismatch negativity (MMN) to FM tones was assessed in 43 patients/36 controls. rsfMRI between auditory cortex and medial temporal (insula) regions was assessed in 55 patients/51 controls. The relationship between AER, MMN to FM tones, and rsfMRI was assessed in the subset who performed all assessments (14 patients, 21 controls). As predicted, patients showed robust reductions in MMN across FM stimulus type (p = 0.005), particularly to modulations in F0M, along with impairments in AER and FM tone discrimination. MMN source analysis indicated dipoles in both auditory cortex and anterior insula, whereas rsfMRI analyses showed reduced auditory-insula connectivity. MMN to FM tones and functional connectivity together accounted for ∼50% of the variance in AER performance across individuals. These findings demonstrate that impaired preattentive processing of tonal information and reduced auditory-insula connectivity are critical determinants of social cognitive dysfunction in schizophrenia, and thus represent key targets for future research and clinical intervention. Schizophrenia patients show deficits in the ability to infer emotion based upon tone of voice [auditory emotion recognition (AER)] that drive impairments in social cognition and global functional outcome. This study evaluated neural substrates of impaired AER in schizophrenia using a combined event-related potential/resting-state fMRI approach. Patients showed impaired mismatch negativity response to emotionally relevant frequency modulated tones along with impaired functional connectivity between auditory and medial temporal (anterior insula) cortex. These deficits contributed in parallel to impaired AER and accounted for ∼50% of variance in AER performance. Overall, these findings demonstrate the importance of both auditory-level dysfunction and impaired auditory/insula connectivity in the pathophysiology of social cognitive dysfunction in schizophrenia. Copyright © 2015 the authors 0270-6474/15/3514910-13$15.00/0.

  4. Auditory Temporal-Organization Abilities in School-Age Children with Peripheral Hearing Loss

    ERIC Educational Resources Information Center

    Koravand, Amineh; Jutras, Benoit

    2013-01-01

    Purpose: The objective was to assess auditory sequential organization (ASO) ability in children with and without hearing loss. Method: Forty children 9 to 12 years old participated in the study: 12 with sensory hearing loss (HL), 12 with central auditory processing disorder (CAPD), and 16 with normal hearing. They performed an ASO task in which…

  5. Atypical vertical sound localization and sound-onset sensitivity in people with autism spectrum disorders

    PubMed Central

    Visser, Eelke; Zwiers, Marcel P.; Kan, Cornelis C.; Hoekstra, Liesbeth; van Opstal, A. John; Buitelaar, Jan K.

    2013-01-01

    Background Autism spectrum disorders (ASDs) are associated with auditory hyper- or hyposensitivity; atypicalities in central auditory processes, such as speech-processing and selective auditory attention; and neural connectivity deficits. We sought to investigate whether the low-level integrative processes underlying sound localization and spatial discrimination are affected in ASDs. Methods We performed 3 behavioural experiments to probe different connecting neural pathways: 1) horizontal and vertical localization of auditory stimuli in a noisy background, 2) vertical localization of repetitive frequency sweeps and 3) discrimination of horizontally separated sound stimuli with a short onset difference (precedence effect). Results Ten adult participants with ASDs and 10 healthy control listeners participated in experiments 1 and 3; sample sizes for experiment 2 were 18 adults with ASDs and 19 controls. Horizontal localization was unaffected, but vertical localization performance was significantly worse in participants with ASDs. The temporal window for the precedence effect was shorter in participants with ASDs than in controls. Limitations The study was performed with adult participants and hence does not provide insight into the developmental aspects of auditory processing in individuals with ASDs. Conclusion Changes in low-level auditory processing could underlie degraded performance in vertical localization, which would be in agreement with recently reported changes in the neuroanatomy of the auditory brainstem in individuals with ASDs. The results are further discussed in the context of theories about abnormal brain connectivity in individuals with ASDs. PMID:24148845

  6. Auditory Gap-in-Noise Detection Behavior in Ferrets and Humans

    PubMed Central

    2015-01-01

    The precise encoding of temporal features of auditory stimuli by the mammalian auditory system is critical to the perception of biologically important sounds, including vocalizations, speech, and music. In this study, auditory gap-detection behavior was evaluated in adult pigmented ferrets (Mustelid putorius furo) using bandpassed stimuli designed to widely sample the ferret’s behavioral and physiological audiogram. Animals were tested under positive operant conditioning, with psychometric functions constructed in response to gap-in-noise lengths ranging from 3 to 270 ms. Using a modified version of this gap-detection task, with the same stimulus frequency parameters, we also tested a cohort of normal-hearing human subjects. Gap-detection thresholds were computed from psychometric curves transformed according to signal detection theory, revealing that for both ferrets and humans, detection sensitivity was worse for silent gaps embedded within low-frequency noise compared with high-frequency or broadband stimuli. Additional psychometric function analysis of ferret behavior indicated effects of stimulus spectral content on aspects of behavioral performance related to decision-making processes, with animals displaying improved sensitivity for broadband gap-in-noise detection. Reaction times derived from unconditioned head-orienting data and the time from stimulus onset to reward spout activation varied with the stimulus frequency content and gap length, as well as the approach-to-target choice and reward location. The present study represents a comprehensive evaluation of gap-detection behavior in ferrets, while similarities in performance with our human subjects confirm the use of the ferret as an appropriate model of temporal processing. PMID:26052794

  7. A model of the temporal dynamics of multisensory enhancement

    PubMed Central

    Rowland, Benjamin A.; Stein, Barry E.

    2014-01-01

    The senses transduce different forms of environmental energy, and the brain synthesizes information across them to enhance responses to salient biological events. We hypothesize that the potency of multisensory integration is attributable to the convergence of independent and temporally aligned signals derived from cross-modal stimulus configurations onto multisensory neurons. The temporal profile of multisensory integration in neurons of the deep superior colliculus (SC) is consistent with this hypothesis. The responses of these neurons to visual, auditory, and combinations of visual–auditory stimuli reveal that multisensory integration takes place in real-time; that is, the input signals are integrated as soon as they arrive at the target neuron. Interactions between cross-modal signals may appear to reflect linear or nonlinear computations on a moment-by-moment basis, the aggregate of which determines the net product of multisensory integration. Modeling observations presented here suggest that the early nonlinear components of the temporal profile of multisensory integration can be explained with a simple spiking neuron model, and do not require more sophisticated assumptions about the underlying biology. A transition from nonlinear “super-additive” computation to linear, additive computation can be accomplished via scaled inhibition. The findings provide a set of design constraints for artificial implementations seeking to exploit the basic principles and potency of biological multisensory integration in contexts of sensory substitution or augmentation. PMID:24374382

  8. Predictive motor control of sensory dynamics in Auditory Active Sensing

    PubMed Central

    Morillon, Benjamin; Hackett, Troy A.; Kajikawa, Yoshinao; Schroeder, Charles E.

    2016-01-01

    Neuronal oscillations present potential physiological substrates for brain operations that require temporal prediction. We review this idea in the context of auditory perception. Using speech as an exemplar, we illustrate how hierarchically organized oscillations can be used to parse and encode complex input streams. We then consider the motor system as a major source of rhythms (temporal priors) in auditory processing, that act in concert with attention to sharpen sensory representations and link them across areas. We discuss the anatomo-functional pathways that could mediate this audio-motor interaction, and notably the potential role of the somatosensory cortex. Finally, we reposition temporal predictions in the context of internal models, discussing how they interact with feature-based or spatial predictions. We argue that complementary predictions interact synergistically according to the organizational principles of each sensory system, forming multidimensional filters crucial to perception. PMID:25594376

  9. Discriminating between auditory and motor cortical responses to speech and non-speech mouth sounds

    PubMed Central

    Agnew, Z.K.; McGettigan, C.; Scott, S.K.

    2012-01-01

    Several perspectives on speech perception posit a central role for the representation of articulations in speech comprehension, supported by evidence for premotor activation when participants listen to speech. However no experiments have directly tested whether motor responses mirror the profile of selective auditory cortical responses to native speech sounds, or whether motor and auditory areas respond in different ways to sounds. We used fMRI to investigate cortical responses to speech and non-speech mouth (ingressive click) sounds. Speech sounds activated bilateral superior temporal gyri more than other sounds, a profile not seen in motor and premotor cortices. These results suggest that there are qualitative differences in the ways that temporal and motor areas are activated by speech and click sounds: anterior temporal lobe areas are sensitive to the acoustic/phonetic properties while motor responses may show more generalised responses to the acoustic stimuli. PMID:21812557

  10. Learning effects of dynamic postural control by auditory biofeedback versus visual biofeedback training.

    PubMed

    Hasegawa, Naoya; Takeda, Kenta; Sakuma, Moe; Mani, Hiroki; Maejima, Hiroshi; Asaka, Tadayoshi

    2017-10-01

    Augmented sensory biofeedback (BF) for postural control is widely used to improve postural stability. However, the effective sensory information in BF systems of motor learning for postural control is still unknown. The purpose of this study was to investigate the learning effects of visual versus auditory BF training in dynamic postural control. Eighteen healthy young adults were randomly divided into two groups (visual BF and auditory BF). In test sessions, participants were asked to bring the real-time center of pressure (COP) in line with a hidden target by body sway in the sagittal plane. The target moved in seven cycles of sine curves at 0.23Hz in the vertical direction on a monitor. In training sessions, the visual and auditory BF groups were required to change the magnitude of a visual circle and a sound, respectively, according to the distance between the COP and target in order to reach the target. The perceptual magnitudes of visual and auditory BF were equalized according to Stevens' power law. At the retention test, the auditory but not visual BF group demonstrated decreased postural performance errors in both the spatial and temporal parameters under the no-feedback condition. These findings suggest that visual BF increases the dependence on visual information to control postural performance, while auditory BF may enhance the integration of the proprioceptive sensory system, which contributes to motor learning without BF. These results suggest that auditory BF training improves motor learning of dynamic postural control. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Multi-voxel Patterns Reveal Functionally Differentiated Networks Underlying Auditory Feedback Processing of Speech

    PubMed Central

    Zheng, Zane Z.; Vicente-Grabovetsky, Alejandro; MacDonald, Ewen N.; Munhall, Kevin G.; Cusack, Rhodri; Johnsrude, Ingrid S.

    2013-01-01

    The everyday act of speaking involves the complex processes of speech motor control. An important component of control is monitoring, detection and processing of errors when auditory feedback does not correspond to the intended motor gesture. Here we show, using fMRI and converging operations within a multi-voxel pattern analysis framework, that this sensorimotor process is supported by functionally differentiated brain networks. During scanning, a real-time speech-tracking system was employed to deliver two acoustically different types of distorted auditory feedback or unaltered feedback while human participants were vocalizing monosyllabic words, and to present the same auditory stimuli while participants were passively listening. Whole-brain analysis of neural-pattern similarity revealed three functional networks that were differentially sensitive to distorted auditory feedback during vocalization, compared to during passive listening. One network of regions appears to encode an ‘error signal’ irrespective of acoustic features of the error: this network, including right angular gyrus, right supplementary motor area, and bilateral cerebellum, yielded consistent neural patterns across acoustically different, distorted feedback types, only during articulation (not during passive listening). In contrast, a fronto-temporal network appears sensitive to the speech features of auditory stimuli during passive listening; this preference for speech features was diminished when the same stimuli were presented as auditory concomitants of vocalization. A third network, showing a distinct functional pattern from the other two, appears to capture aspects of both neural response profiles. Taken together, our findings suggest that auditory feedback processing during speech motor control may rely on multiple, interactive, functionally differentiated neural systems. PMID:23467350

  12. Speech processing: from peripheral to hemispheric asymmetry of the auditory system.

    PubMed

    Lazard, Diane S; Collette, Jean-Louis; Perrot, Xavier

    2012-01-01

    Language processing from the cochlea to auditory association cortices shows side-dependent specificities with an apparent left hemispheric dominance. The aim of this article was to propose to nonspeech specialists a didactic review of two complementary theories about hemispheric asymmetry in speech processing. Starting from anatomico-physiological and clinical observations of auditory asymmetry and interhemispheric connections, this review then exposes behavioral (dichotic listening paradigm) as well as functional (functional magnetic resonance imaging and positron emission tomography) experiments that assessed hemispheric specialization for speech processing. Even though speech at an early phonological level is regarded as being processed bilaterally, a left-hemispheric dominance exists for higher-level processing. This asymmetry may arise from a segregation of the speech signal, broken apart within nonprimary auditory areas in two distinct temporal integration windows--a fast one on the left and a slower one on the right--modeled through the asymmetric sampling in time theory or a spectro-temporal trade-off, with a higher temporal resolution in the left hemisphere and a higher spectral resolution in the right hemisphere, modeled through the spectral/temporal resolution trade-off theory. Both theories deal with the concept that lower-order tuning principles for acoustic signal might drive higher-order organization for speech processing. However, the precise nature, mechanisms, and origin of speech processing asymmetry are still being debated. Finally, an example of hemispheric asymmetry alteration, which has direct clinical implications, is given through the case of auditory aging that mixes peripheral disorder and modifications of central processing. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  13. Clinical significance and developmental changes of auditory-language-related gamma activity

    PubMed Central

    Kojima, Katsuaki; Brown, Erik C.; Rothermel, Robert; Carlson, Alanna; Fuerst, Darren; Matsuzaki, Naoyuki; Shah, Aashit; Atkinson, Marie; Basha, Maysaa; Mittal, Sandeep; Sood, Sandeep; Asano, Eishi

    2012-01-01

    OBJECTIVE We determined the clinical impact and developmental changes of auditory-language-related augmentation of gamma activity at 50–120 Hz recorded on electrocorticography (ECoG). METHODS We analyzed data from 77 epileptic patients ranging 4 – 56 years in age. We determined the effects of seizure-onset zone, electrode location, and patient-age upon gamma-augmentation elicited by an auditory-naming task. RESULTS Gamma-augmentation was less frequently elicited within seizure-onset sites compared to other sites. Regardless of age, gamma-augmentation most often involved the 80–100 Hz frequency band. Gamma-augmentation initially involved bilateral superior-temporal regions, followed by left-side dominant involvement in the middle-temporal, medial-temporal, inferior-frontal, dorsolateral-premotor, and medial-frontal regions and concluded with bilateral inferior-Rolandic involvement. Compared to younger patients, those older than 10 years had a larger proportion of left dorsolateral-premotor and right inferior-frontal sites showing gamma-augmentation. The incidence of a post-operative language deficit requiring speech therapy was predicted by the number of resected sites with gamma-augmentation in the superior-temporal, inferior-frontal, dorsolateral-premotor, and inferior-Rolandic regions of the left hemisphere assumed to contain essential language function (r2=0.59; p=0.001; odds ratio=6.04 [95% confidence-interval: 2.26 to 16.15]). CONCLUSIONS Auditory-language-related gamma-augmentation can provide additional information useful to localize the primary language areas. SIGNIFICANCE These results derived from a large sample of patients support the utility of auditory-language-related gamma-augmentation in presurgical evaluation. PMID:23141882

  14. It's about time: revisiting temporal processing deficits in dyslexia.

    PubMed

    Casini, Laurence; Pech-Georgel, Catherine; Ziegler, Johannes C

    2018-03-01

    Temporal processing in French children with dyslexia was evaluated in three tasks: a word identification task requiring implicit temporal processing, and two explicit temporal bisection tasks, one in the auditory and one in the visual modality. Normally developing children matched on chronological age and reading level served as a control group. Children with dyslexia exhibited robust deficits in temporal tasks whether they were explicit or implicit and whether they involved the auditory or the visual modality. First, they presented larger perceptual variability when performing temporal tasks, whereas they showed no such difficulties when performing the same task on a non-temporal dimension (intensity). This dissociation suggests that their difficulties were specific to temporal processing and could not be attributed to lapses of attention, reduced alertness, faulty anchoring, or overall noisy processing. In the framework of cognitive models of time perception, these data point to a dysfunction of the 'internal clock' of dyslexic children. These results are broadly compatible with the recent temporal sampling theory of dyslexia. © 2017 John Wiley & Sons Ltd.

  15. Auditory pathways: are 'what' and 'where' appropriate?

    PubMed

    Hall, Deborah A

    2003-05-13

    New evidence confirms that the auditory system encompasses temporal, parietal and frontal brain regions, some of which partly overlap with the visual system. But common assumptions about the functional homologies between sensory systems may be misleading.

  16. Left Superior Temporal Gyrus Is Coupled to Attended Speech in a Cocktail-Party Auditory Scene.

    PubMed

    Vander Ghinst, Marc; Bourguignon, Mathieu; Op de Beeck, Marc; Wens, Vincent; Marty, Brice; Hassid, Sergio; Choufani, Georges; Jousmäki, Veikko; Hari, Riitta; Van Bogaert, Patrick; Goldman, Serge; De Tiège, Xavier

    2016-02-03

    Using a continuous listening task, we evaluated the coupling between the listener's cortical activity and the temporal envelopes of different sounds in a multitalker auditory scene using magnetoencephalography and corticovocal coherence analysis. Neuromagnetic signals were recorded from 20 right-handed healthy adult humans who listened to five different recorded stories (attended speech streams), one without any multitalker background (No noise) and four mixed with a "cocktail party" multitalker background noise at four signal-to-noise ratios (5, 0, -5, and -10 dB) to produce speech-in-noise mixtures, here referred to as Global scene. Coherence analysis revealed that the modulations of the attended speech stream, presented without multitalker background, were coupled at ∼0.5 Hz to the activity of both superior temporal gyri, whereas the modulations at 4-8 Hz were coupled to the activity of the right supratemporal auditory cortex. In cocktail party conditions, with the multitalker background noise, the coupling was at both frequencies stronger for the attended speech stream than for the unattended Multitalker background. The coupling strengths decreased as the Multitalker background increased. During the cocktail party conditions, the ∼0.5 Hz coupling became left-hemisphere dominant, compared with bilateral coupling without the multitalker background, whereas the 4-8 Hz coupling remained right-hemisphere lateralized in both conditions. The brain activity was not coupled to the multitalker background or to its individual talkers. The results highlight the key role of listener's left superior temporal gyri in extracting the slow ∼0.5 Hz modulations, likely reflecting the attended speech stream within a multitalker auditory scene. When people listen to one person in a "cocktail party," their auditory cortex mainly follows the attended speech stream rather than the entire auditory scene. However, how the brain extracts the attended speech stream from the whole auditory scene and how increasing background noise corrupts this process is still debated. In this magnetoencephalography study, subjects had to attend a speech stream with or without multitalker background noise. Results argue for frequency-dependent cortical tracking mechanisms for the attended speech stream. The left superior temporal gyrus tracked the ∼0.5 Hz modulations of the attended speech stream only when the speech was embedded in multitalker background, whereas the right supratemporal auditory cortex tracked 4-8 Hz modulations during both noiseless and cocktail-party conditions. Copyright © 2016 the authors 0270-6474/16/361597-11$15.00/0.

  17. Neural correlates of auditory scene analysis and perception

    PubMed Central

    Cohen, Yale E.

    2014-01-01

    The auditory system is designed to transform acoustic information from low-level sensory representations into perceptual representations. These perceptual representations are the computational result of the auditory system's ability to group and segregate spectral, spatial and temporal regularities in the acoustic environment into stable perceptual units (i.e., sounds or auditory objects). Current evidence suggests that the cortex--specifically, the ventral auditory pathway--is responsible for the computations most closely related to perceptual representations. Here, we discuss how the transformations along the ventral auditory pathway relate to auditory percepts, with special attention paid to the processing of vocalizations and categorization, and explore recent models of how these areas may carry out these computations. PMID:24681354

  18. Hippocampal, amygdala, and neocortical synchronization of theta rhythms is related to an immediate recall during rey auditory verbal learning test.

    PubMed

    Babiloni, Claudio; Vecchio, Fabrizio; Mirabella, Giovanni; Buttiglione, Maura; Sebastiano, Fabio; Picardi, Angelo; Di Gennaro, Giancarlo; Quarato, Pier P; Grammaldo, Liliana G; Buffo, Paola; Esposito, Vincenzo; Manfredi, Mario; Cantore, Giampaolo; Eusebi, Fabrizio

    2009-07-01

    It is well known that theta rhythms (3-8 Hz) are the fingerprint of hippocampus, and that neural activity accompanying encoding of words differs according to whether the items are later remembered or forgotten ["subsequent memory effect" (SME)]. Here, we tested the hypothesis that temporal synchronization of theta rhythms among hippocampus, amygdala, and neocortex is related to immediate memorization of repeated words. To address this issue, intracerebral electroencephalographic (EEG) activity was recorded in five subjects with drug-resistant temporal lobe epilepsy (TLE), under presurgical monitoring routine. During the recording of the intracerebral EEG activity, the subjects performed a computerized version of Rey auditory verbal learning test (RAVLT), a popular test for the clinical evaluation of the immediate and delayed memory. They heard the same list of 15 common words for five times. Each time, immediately after listening the list, the subjects were required to repeat as many words as they could recall. Spectral coherence of the intracerebral EEG activity was computed in order to assess the temporal synchronization of the theta (about 3-8 Hz) rhythms among hippocampus, amygdala, and temporal-occipital neocortex. We found that theta coherence values between amygdala and hippocampus, and between hippocampus and occipital-temporal cortex, were higher in amplitude during successful than unsuccessful immediate recall. A control analysis showed that this was true also for a gamma band (40-45 Hz). Furthermore, these theta and gamma effects were not observed in an additional (control) subject with drug-resistant TLE and a wide lesion to hippocampus. In conclusion, a successful immediate recall to the RAVLT was associated to the enhancement of temporal synchronization of the theta (gamma) rhythms within a cerebral network including hippocampus, amygdala, and temporal-occipital neocortex. Copyright 2009 Wiley-Liss, Inc

  19. Tracing the neural basis of auditory entrainment.

    PubMed

    Lehmann, Alexandre; Arias, Diana Jimena; Schönwiesner, Marc

    2016-11-19

    Neurons in the auditory cortex synchronize their responses to temporal regularities in sound input. This coupling or "entrainment" is thought to facilitate beat extraction and rhythm perception in temporally structured sounds, such as music. As a consequence of such entrainment, the auditory cortex responds to an omitted (silent) sound in a regular sequence. Although previous studies suggest that the auditory brainstem frequency-following response (FFR) exhibits some of the beat-related effects found in the cortex, it is unknown whether omissions of sounds evoke a brainstem response. We simultaneously recorded cortical and brainstem responses to isochronous and irregular sequences of consonant-vowel syllable /da/ that contained sporadic omissions. The auditory cortex responded strongly to omissions, but we found no evidence of evoked responses to omitted stimuli from the auditory brainstem. However, auditory brainstem responses in the isochronous sound sequence were more consistent across trials than in the irregular sequence. These results indicate that the auditory brainstem faithfully encodes short-term acoustic properties of a stimulus and is sensitive to sequence regularity, but does not entrain to isochronous sequences sufficiently to generate overt omission responses, even for sequences that evoke such responses in the cortex. These findings add to our understanding of the processing of sound regularities, which is an important aspect of human cognitive abilities like rhythm, music and speech perception. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. You can't stop the music: reduced auditory alpha power and coupling between auditory and memory regions facilitate the illusory perception of music during noise.

    PubMed

    Müller, Nadia; Keil, Julian; Obleser, Jonas; Schulz, Hannah; Grunwald, Thomas; Bernays, René-Ludwig; Huppertz, Hans-Jürgen; Weisz, Nathan

    2013-10-01

    Our brain has the capacity of providing an experience of hearing even in the absence of auditory stimulation. This can be seen as illusory conscious perception. While increasing evidence postulates that conscious perception requires specific brain states that systematically relate to specific patterns of oscillatory activity, the relationship between auditory illusions and oscillatory activity remains mostly unexplained. To investigate this we recorded brain activity with magnetoencephalography and collected intracranial data from epilepsy patients while participants listened to familiar as well as unknown music that was partly replaced by sections of pink noise. We hypothesized that participants have a stronger experience of hearing music throughout noise when the noise sections are embedded in familiar compared to unfamiliar music. This was supported by the behavioral results showing that participants rated the perception of music during noise as stronger when noise was presented in a familiar context. Time-frequency data show that the illusory perception of music is associated with a decrease in auditory alpha power pointing to increased auditory cortex excitability. Furthermore, the right auditory cortex is concurrently synchronized with the medial temporal lobe, putatively mediating memory aspects associated with the music illusion. We thus assume that neuronal activity in the highly excitable auditory cortex is shaped through extensive communication between the auditory cortex and the medial temporal lobe, thereby generating the illusion of hearing music during noise. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Resolving the neural dynamics of visual and auditory scene processing in the human brain: a methodological approach

    PubMed Central

    Teng, Santani

    2017-01-01

    In natural environments, visual and auditory stimulation elicit responses across a large set of brain regions in a fraction of a second, yielding representations of the multimodal scene and its properties. The rapid and complex neural dynamics underlying visual and auditory information processing pose major challenges to human cognitive neuroscience. Brain signals measured non-invasively are inherently noisy, the format of neural representations is unknown, and transformations between representations are complex and often nonlinear. Further, no single non-invasive brain measurement technique provides a spatio-temporally integrated view. In this opinion piece, we argue that progress can be made by a concerted effort based on three pillars of recent methodological development: (i) sensitive analysis techniques such as decoding and cross-classification, (ii) complex computational modelling using models such as deep neural networks, and (iii) integration across imaging methods (magnetoencephalography/electroencephalography, functional magnetic resonance imaging) and models, e.g. using representational similarity analysis. We showcase two recent efforts that have been undertaken in this spirit and provide novel results about visual and auditory scene analysis. Finally, we discuss the limits of this perspective and sketch a concrete roadmap for future research. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044019

  2. Resolving the neural dynamics of visual and auditory scene processing in the human brain: a methodological approach.

    PubMed

    Cichy, Radoslaw Martin; Teng, Santani

    2017-02-19

    In natural environments, visual and auditory stimulation elicit responses across a large set of brain regions in a fraction of a second, yielding representations of the multimodal scene and its properties. The rapid and complex neural dynamics underlying visual and auditory information processing pose major challenges to human cognitive neuroscience. Brain signals measured non-invasively are inherently noisy, the format of neural representations is unknown, and transformations between representations are complex and often nonlinear. Further, no single non-invasive brain measurement technique provides a spatio-temporally integrated view. In this opinion piece, we argue that progress can be made by a concerted effort based on three pillars of recent methodological development: (i) sensitive analysis techniques such as decoding and cross-classification, (ii) complex computational modelling using models such as deep neural networks, and (iii) integration across imaging methods (magnetoencephalography/electroencephalography, functional magnetic resonance imaging) and models, e.g. using representational similarity analysis. We showcase two recent efforts that have been undertaken in this spirit and provide novel results about visual and auditory scene analysis. Finally, we discuss the limits of this perspective and sketch a concrete roadmap for future research.This article is part of the themed issue 'Auditory and visual scene analysis'. © 2017 The Authors.

  3. Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst

    NASA Technical Reports Server (NTRS)

    Noohi, Fatemeh; Kinnaird, Catherine; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael

    2014-01-01

    The aim of the current study was to characterize the brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit saccular Vestibular Evoked Myogenic Potentials (VEMP) (Colebatch & Halmagyi 1992; Colebatch et al. 1994). Some researchers have reported that airconducted skull tap elicits both saccular and utricle VEMPs, while being faster and less irritating for the subjects (Curthoys et al. 2009, Wackym et al., 2012). However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying the vestibular disorders related to otolith deficits. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, pre and post central gyri, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation (Bottini et al., 1994; Dieterich et al., 2003; Emri et al., 2003; Schlindwein et al., 2008; Janzen et al., 2008). Here we hypothesized that the skull tap elicits the similar pattern of cortical activity as the auditory tone burst. Subjects put on a set of MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in supine position, with eyes closed. All subjects received both forms of the stimulation, however, the order of stimulation with auditory tone burst and air-conducted skull tap was counterbalanced across subjects. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular cortex, resulting in vestibular response (Halmagyi et al., 1995). Auditory tone bursts were also delivered for comparison. To validate our stimulation method, we measured the ocular VEMP outside of the scanner. This measurement showed that both skull tap and auditory tone burst elicited vestibular evoked activation, indicated by eye muscle response. Our preliminary analyses showed that the skull tap elicited activation in medial frontal gyrus, superior temporal gyrus, postcentral gyrus, transverse temporal gyrus, anterior cingulate, and putamen. The auditory tone bursts elicited activation in medial frontal gyrus, superior temporal gyrus, superior frontal gyrus, precentral gyrus, inferior and superior parietal lobules. In line with our hypothesis, skull taps elicited a pattern of cortical activity closely similar to one elicited by auditory tone bursts. Further analysis will determine the extent to which the skull taps can replace the auditory tone stimulation in clinical and basic science vestibular assessments.

  4. Neural correlates of auditory short-term memory in rostral superior temporal cortex

    PubMed Central

    Scott, Brian H.; Mishkin, Mortimer; Yin, Pingbo

    2014-01-01

    Summary Background Auditory short-term memory (STM) in the monkey is less robust than visual STM and may depend on a retained sensory trace, which is likely to reside in the higher-order cortical areas of the auditory ventral stream. Results We recorded from the rostral superior temporal cortex as monkeys performed serial auditory delayed-match-to-sample (DMS). A subset of neurons exhibited modulations of their firing rate during the delay between sounds, during the sensory response, or both. This distributed subpopulation carried a predominantly sensory signal modulated by the mnemonic context of the stimulus. Excitatory and suppressive effects on match responses were dissociable in their timing, and in their resistance to sounds intervening between the sample and match. Conclusions Like the monkeys’ behavioral performance, these neuronal effects differ from those reported in the same species during visual DMS, suggesting different neural mechanisms for retaining dynamic sounds and static images in STM. PMID:25456448

  5. Identification of a motor to auditory pathway important for vocal learning

    PubMed Central

    Roberts, Todd F.; Hisey, Erin; Tanaka, Masashi; Kearney, Matthew; Chattree, Gaurav; Yang, Cindy F.; Shah, Nirao M.; Mooney, Richard

    2017-01-01

    Summary Learning to vocalize depends on the ability to adaptively modify the temporal and spectral features of vocal elements. Neurons that convey motor-related signals to the auditory system are theorized to facilitate vocal learning, but the identity and function of such neurons remain unknown. Here we identify a previously unknown neuron type in the songbird brain that transmits vocal motor signals to the auditory cortex. Genetically ablating these neurons in juveniles disrupted their ability to imitate features of an adult tutor’s song. Ablating these neurons in adults had little effect on previously learned songs, but interfered with their ability to adaptively modify the duration of vocal elements and largely prevented the degradation of song’s temporal features normally caused by deafening. These findings identify a motor to auditory circuit essential to vocal imitation and to the adaptive modification of vocal timing. PMID:28504672

  6. Interactions between the spatial and temporal stimulus factors that influence multisensory integration in human performance.

    PubMed

    Stevenson, Ryan A; Fister, Juliane Krueger; Barnett, Zachary P; Nidiffer, Aaron R; Wallace, Mark T

    2012-05-01

    In natural environments, human sensory systems work in a coordinated and integrated manner to perceive and respond to external events. Previous research has shown that the spatial and temporal relationships of sensory signals are paramount in determining how information is integrated across sensory modalities, but in ecologically plausible settings, these factors are not independent. In the current study, we provide a novel exploration of the impact on behavioral performance for systematic manipulations of the spatial location and temporal synchrony of a visual-auditory stimulus pair. Simple auditory and visual stimuli were presented across a range of spatial locations and stimulus onset asynchronies (SOAs), and participants performed both a spatial localization and simultaneity judgment task. Response times in localizing paired visual-auditory stimuli were slower in the periphery and at larger SOAs, but most importantly, an interaction was found between the two factors, in which the effect of SOA was greater in peripheral as opposed to central locations. Simultaneity judgments also revealed a novel interaction between space and time: individuals were more likely to judge stimuli as synchronous when occurring in the periphery at large SOAs. The results of this study provide novel insights into (a) how the speed of spatial localization of an audiovisual stimulus is affected by location and temporal coincidence and the interaction between these two factors and (b) how the location of a multisensory stimulus impacts judgments concerning the temporal relationship of the paired stimuli. These findings provide strong evidence for a complex interdependency between spatial location and temporal structure in determining the ultimate behavioral and perceptual outcome associated with a paired multisensory (i.e., visual-auditory) stimulus.

  7. Assessment of spectral and temporal resolution in cochlear implant users using psychoacoustic discrimination and speech cue categorization

    PubMed Central

    Winn, Matthew B.; Won, Jong Ho; Moon, Il Joon

    2016-01-01

    Objectives This study was conducted to measure auditory perception by cochlear implant users in the spectral and temporal domains, using tests of either categorization (using speech-based cues) or discrimination (using conventional psychoacoustic tests). We hypothesized that traditional nonlinguistic tests assessing spectral and temporal auditory resolution would correspond to speech-based measures assessing specific aspects of phonetic categorization assumed to depend on spectral and temporal auditory resolution. We further hypothesized that speech-based categorization performance would ultimately be a superior predictor of speech recognition performance, because of the fundamental nature of speech recognition as categorization. Design Nineteen CI listeners and 10 listeners with normal hearing (NH) participated in a suite of tasks that included spectral ripple discrimination (SRD), temporal modulation detection (TMD), and syllable categorization, which was split into a spectral-cue-based task (targeting the /ba/-/da/ contrast) and a timing-cue-based task (targeting the /b/-/p/ and /d/-/t/ contrasts). Speech sounds were manipulated in order to contain specific spectral or temporal modulations (formant transitions or voice onset time, respectively) that could be categorized. Categorization responses were quantified using logistic regression in order to assess perceptual sensitivity to acoustic phonetic cues. Word recognition testing was also conducted for CI listeners. Results CI users were generally less successful at utilizing both spectral and temporal cues for categorization compared to listeners with normal hearing. For the CI listener group, SRD was significantly correlated with the categorization of formant transitions; both were correlated with better word recognition. TMD using 100 Hz and 10 Hz modulated noise was not correlated with the CI subjects’ categorization of VOT, nor with word recognition. Word recognition was correlated more closely with categorization of the controlled speech cues than with performance on the psychophysical discrimination tasks. Conclusions When evaluating people with cochlear implants, controlled speech-based stimuli are feasible to use in tests of auditory cue categorization, to complement traditional measures of auditory discrimination. Stimuli based on specific speech cues correspond to counterpart non-linguistic measures of discrimination, but potentially show better correspondence with speech perception more generally. The ubiquity of the spectral (formant transition) and temporal (VOT) stimulus dimensions across languages highlights the potential to use this testing approach even in cases where English is not the native language. PMID:27438871

  8. Change of temporal-order judgment of sounds during long-lasting exposure to large-field visual motion.

    PubMed

    Teramoto, Wataru; Watanabe, Hiroshi; Umemura, Hiroyuki

    2008-01-01

    The perceived temporal order of external successive events does not always follow their physical temporal order. We examined the contribution of self-motion mechanisms in the perception of temporal order in the auditory modality. We measured perceptual biases in the judgment of the temporal order of two short sounds presented successively, while participants experienced visually induced self-motion (yaw-axis circular vection) elicited by viewing long-lasting large-field visual motion. In experiment 1, a pair of white-noise patterns was presented to participants at various stimulus-onset asynchronies through headphones, while they experienced visually induced self-motion. Perceived temporal order of auditory events was modulated by the direction of the visual motion (or self-motion). Specifically, the sound presented to the ear in the direction opposite to the visual motion (ie heading direction) was perceived prior to the sound presented to the ear in the same direction. Experiments 2A and 2B were designed to reduce the contributions of decisional and/or response processes. In experiment 2A, the directional cueing of the background (left or right) and the response dimension (high pitch or low pitch) were not spatially associated. In experiment 2B, participants were additionally asked to report which of the two sounds was perceived 'second'. Almost the same results as in experiment 1 were observed, suggesting that the change in temporal order of auditory events during large-field visual motion reflects a change in perceptual processing. Experiment 3 showed that the biases in the temporal-order judgments of auditory events were caused by concurrent actual self-motion with a rotatory chair. In experiment 4, using a small display, we showed that 'pure' long exposure to visual motion without the sensation of self-motion was not responsible for this phenomenon. These results are consistent with previous studies reporting a change in the perceived temporal order of visual or tactile events depending on the direction of self-motion. Hence, large-field induced (ie optic flow) self-motion can affect the temporal order of successive external events across various modalities.

  9. Behavioral training enhances cortical temporal processing in neonatally deafened juvenile cats

    PubMed Central

    Vollmer, Maike; Raggio, Marcia W.; Schreiner, Christoph E.

    2011-01-01

    Deaf humans implanted with a cochlear prosthesis depend largely on temporal cues for speech recognition because spectral information processing is severely impaired. Training with a cochlear prosthesis is typically required before speech perception shows improvement, suggesting that relevant experience modifies temporal processing in the central auditory system. We tested this hypothesis in neonatally deafened cats by comparing temporal processing in the primary auditory cortex (AI) of cats that received only chronic passive intracochlear electric stimulation (ICES) with cats that were also trained with ICES to detect temporally challenging trains of electric pulses. After months of chronic passive stimulation and several weeks of detection training in behaviorally trained cats, multineuronal AI responses evoked by temporally modulated ICES were recorded in anesthetized animals. The stimulus repetition rates that produced the maximum number of phase-locked spikes (best repetition rate) and 50% cutoff rate were significantly higher in behaviorally trained cats than the corresponding rates in cats that received only chronic passive ICES. Behavioral training restored neuronal temporal following ability to levels comparable with those recorded in naïve prior normal-hearing adult deafened animals. Importantly, best repetitition rates and cutoff rates were highest for neuronal clusters activated by the electrode configuration used in behavioral training. These results suggest that neuroplasticity in the AI is induced by behavioral training and perceptual learning in animals deprived of ordinary auditory experience during development and indicate that behavioral training can ameliorate or restore temporal processing in the AI of profoundly deaf animals. PMID:21543753

  10. Dual-Pitch Processing Mechanisms in Primate Auditory Cortex

    PubMed Central

    Bendor, Daniel; Osmanski, Michael S.

    2012-01-01

    Pitch, our perception of how high or low a sound is on a musical scale, is a fundamental perceptual attribute of sounds and is important for both music and speech. After more than a century of research, the exact mechanisms used by the auditory system to extract pitch are still being debated. Theoretically, pitch can be computed using either spectral or temporal acoustic features of a sound. We have investigated how cues derived from the temporal envelope and spectrum of an acoustic signal are used for pitch extraction in the common marmoset (Callithrix jacchus), a vocal primate species, by measuring pitch discrimination behaviorally and examining pitch-selective neuronal responses in auditory cortex. We find that pitch is extracted by marmosets using temporal envelope cues for lower pitch sounds composed of higher-order harmonics, whereas spectral cues are used for higher pitch sounds with lower-order harmonics. Our data support dual-pitch processing mechanisms, originally proposed by psychophysicists based on human studies, whereby pitch is extracted using a combination of temporal envelope and spectral cues. PMID:23152599

  11. The role of spatiotemporal and spectral cues in segregating short sound events: evidence from auditory Ternus display.

    PubMed

    Wang, Qingcui; Bao, Ming; Chen, Lihan

    2014-01-01

    Previous studies using auditory sequences with rapid repetition of tones revealed that spatiotemporal cues and spectral cues are important cues used to fuse or segregate sound streams. However, the perceptual grouping was partially driven by the cognitive processing of the periodicity cues of the long sequence. Here, we investigate whether perceptual groupings (spatiotemporal grouping vs. frequency grouping) could also be applicable to short auditory sequences, where auditory perceptual organization is mainly subserved by lower levels of perceptual processing. To find the answer to that question, we conducted two experiments using an auditory Ternus display. The display was composed of three speakers (A, B and C), with each speaker consecutively emitting one sound consisting of two frames (AB and BC). Experiment 1 manipulated both spatial and temporal factors. We implemented three 'within-frame intervals' (WFIs, or intervals between A and B, and between B and C), seven 'inter-frame intervals' (IFIs, or intervals between AB and BC) and two different speaker layouts (inter-distance of speakers: near or far). Experiment 2 manipulated the differentiations of frequencies between two auditory frames, in addition to the spatiotemporal cues as in Experiment 1. Listeners were required to make two alternative forced choices (2AFC) to report the perception of a given Ternus display: element motion (auditory apparent motion from sound A to B to C) or group motion (auditory apparent motion from sound 'AB' to 'BC'). The results indicate that the perceptual grouping of short auditory sequences (materialized by the perceptual decisions of the auditory Ternus display) was modulated by temporal and spectral cues, with the latter contributing more to segregating auditory events. Spatial layout plays a less role in perceptual organization. These results could be accounted for by the 'peripheral channeling' theory.

  12. Visual activity predicts auditory recovery from deafness after adult cochlear implantation.

    PubMed

    Strelnikov, Kuzma; Rouger, Julien; Demonet, Jean-François; Lagleyre, Sebastien; Fraysse, Bernard; Deguine, Olivier; Barone, Pascal

    2013-12-01

    Modern cochlear implantation technologies allow deaf patients to understand auditory speech; however, the implants deliver only a coarse auditory input and patients must use long-term adaptive processes to achieve coherent percepts. In adults with post-lingual deafness, the high progress of speech recovery is observed during the first year after cochlear implantation, but there is a large range of variability in the level of cochlear implant outcomes and the temporal evolution of recovery. It has been proposed that when profoundly deaf subjects receive a cochlear implant, the visual cross-modal reorganization of the brain is deleterious for auditory speech recovery. We tested this hypothesis in post-lingually deaf adults by analysing whether brain activity shortly after implantation correlated with the level of auditory recovery 6 months later. Based on brain activity induced by a speech-processing task, we found strong positive correlations in areas outside the auditory cortex. The highest positive correlations were found in the occipital cortex involved in visual processing, as well as in the posterior-temporal cortex known for audio-visual integration. The other area, which positively correlated with auditory speech recovery, was localized in the left inferior frontal area known for speech processing. Our results demonstrate that the visual modality's functional level is related to the proficiency level of auditory recovery. Based on the positive correlation of visual activity with auditory speech recovery, we suggest that visual modality may facilitate the perception of the word's auditory counterpart in communicative situations. The link demonstrated between visual activity and auditory speech perception indicates that visuoauditory synergy is crucial for cross-modal plasticity and fostering speech-comprehension recovery in adult cochlear-implanted deaf patients.

  13. Central auditory processing and migraine: a controlled study.

    PubMed

    Agessi, Larissa Mendonça; Villa, Thaís Rodrigues; Dias, Karin Ziliotto; Carvalho, Deusvenir de Souza; Pereira, Liliane Desgualdo

    2014-11-08

    This study aimed to verify and compare central auditory processing (CAP) performance in migraine with and without aura patients and healthy controls. Forty-one volunteers of both genders, aged between 18 and 40 years, diagnosed with migraine with and without aura by the criteria of "The International Classification of Headache Disorders" (ICDH-3 beta) and a control group of the same age range and with no headache history, were included. Gaps-in-noise (GIN), Duration Pattern test (DPT) and Dichotic Digits Test (DDT) tests were used to assess central auditory processing performance. The volunteers were divided into 3 groups: Migraine with aura (11), migraine without aura (15), and control group (15), matched by age and schooling. Subjects with aura and without aura performed significantly worse in GIN test for right ear (p = .006), for left ear (p = .005) and for DPT test (p < .001) when compared with controls without headache, however no significant differences were found in the DDT test for the right ear (p = .362) and for the left ear (p = .190). Subjects with migraine performed worsened in auditory gap detection, in the discrimination of short and long duration. They also presented impairment in the physiological mechanism of temporal processing, especially in temporal resolution and temporal ordering when compared with controls. Migraine could be related to an impaired central auditory processing. Research Ethics Committee (CEP 0480.10) - UNIFESP.

  14. Visual and auditory synchronization deficits among dyslexic readers as compared to non-impaired readers: a cross-correlation algorithm analysis

    PubMed Central

    Sela, Itamar

    2014-01-01

    Visual and auditory temporal processing and crossmodal integration are crucial factors in the word decoding process. The speed of processing (SOP) gap (Asynchrony) between these two modalities, which has been suggested as related to the dyslexia phenomenon, is the focus of the current study. Nineteen dyslexic and 17 non-impaired University adult readers were given stimuli in a reaction time (RT) procedure where participants were asked to identify whether the stimulus type was only visual, only auditory or crossmodally integrated. Accuracy, RT, and Event Related Potential (ERP) measures were obtained for each of the three conditions. An algorithm to measure the contribution of the temporal SOP of each modality to the crossmodal integration in each group of participants was developed. Results obtained using this model for the analysis of the current study data, indicated that in the crossmodal integration condition the presence of the auditory modality at the pre-response time frame (between 170 and 240 ms after stimulus presentation), increased processing speed in the visual modality among the non-impaired readers, but not in the dyslexic group. The differences between the temporal SOP of the modalities among the dyslexics and the non-impaired readers give additional support to the theory that an asynchrony between the visual and auditory modalities is a cause of dyslexia. PMID:24959125

  15. Two-channel recording of auditory-evoked potentials to detect age-related deficits in temporal processing.

    PubMed

    Parthasarathy, Aravindakshan; Bartlett, Edward

    2012-07-01

    Auditory brainstem responses (ABRs), and envelope and frequency following responses (EFRs and FFRs) are widely used to study aberrant auditory processing in conditions such as aging. We have previously reported age-related deficits in auditory processing for rapid amplitude modulation (AM) frequencies using EFRs recorded from a single channel. However, sensitive testing of EFRs along a wide range of modulation frequencies is required to gain a more complete understanding of the auditory processing deficits. In this study, ABRs and EFRs were recorded simultaneously from two electrode configurations in young and old Fischer-344 rats, a common auditory aging model. Analysis shows that the two channels respond most sensitively to complementary AM frequencies. Channel 1, recorded from Fz to mastoid, responds better to faster AM frequencies in the 100-700 Hz range of frequencies, while Channel 2, recorded from the inter-aural line to the mastoid, responds better to slower AM frequencies in the 16-100 Hz range. Simultaneous recording of Channels 1 and 2 using AM stimuli with varying sound levels and modulation depths show that age-related deficits in temporal processing are not present at slower AM frequencies but only at more rapid ones, which would not have been apparent recording from either channel alone. Comparison of EFRs between un-anesthetized and isoflurane-anesthetized recordings in young animals, as well as comparison with previously published ABR waveforms, suggests that the generators of Channel 1 may emphasize more caudal brainstem structures while those of Channel 2 may emphasize more rostral auditory nuclei including the inferior colliculus and the forebrain, with the boundary of separation potentially along the cochlear nucleus/superior olivary complex. Simultaneous two-channel recording of EFRs help to give a more complete understanding of the properties of auditory temporal processing over a wide range of modulation frequencies which is useful in understanding neural representations of sound stimuli in normal, developmental or pathological conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Speech comprehension aided by multiple modalities: behavioural and neural interactions

    PubMed Central

    McGettigan, Carolyn; Faulkner, Andrew; Altarelli, Irene; Obleser, Jonas; Baverstock, Harriet; Scott, Sophie K.

    2014-01-01

    Speech comprehension is a complex human skill, the performance of which requires the perceiver to combine information from several sources – e.g. voice, face, gesture, linguistic context – to achieve an intelligible and interpretable percept. We describe a functional imaging investigation of how auditory, visual and linguistic information interact to facilitate comprehension. Our specific aims were to investigate the neural responses to these different information sources, alone and in interaction, and further to use behavioural speech comprehension scores to address sites of intelligibility-related activation in multifactorial speech comprehension. In fMRI, participants passively watched videos of spoken sentences, in which we varied Auditory Clarity (with noise-vocoding), Visual Clarity (with Gaussian blurring) and Linguistic Predictability. Main effects of enhanced signal with increased auditory and visual clarity were observed in overlapping regions of posterior STS. Two-way interactions of the factors (auditory × visual, auditory × predictability) in the neural data were observed outside temporal cortex, where positive signal change in response to clearer facial information and greater semantic predictability was greatest at intermediate levels of auditory clarity. Overall changes in stimulus intelligibility by condition (as determined using an independent behavioural experiment) were reflected in the neural data by increased activation predominantly in bilateral dorsolateral temporal cortex, as well as inferior frontal cortex and left fusiform gyrus. Specific investigation of intelligibility changes at intermediate auditory clarity revealed a set of regions, including posterior STS and fusiform gyrus, showing enhanced responses to both visual and linguistic information. Finally, an individual differences analysis showed that greater comprehension performance in the scanning participants (measured in a post-scan behavioural test) were associated with increased activation in left inferior frontal gyrus and left posterior STS. The current multimodal speech comprehension paradigm demonstrates recruitment of a wide comprehension network in the brain, in which posterior STS and fusiform gyrus form sites for convergence of auditory, visual and linguistic information, while left-dominant sites in temporal and frontal cortex support successful comprehension. PMID:22266262

  17. Speech comprehension aided by multiple modalities: behavioural and neural interactions.

    PubMed

    McGettigan, Carolyn; Faulkner, Andrew; Altarelli, Irene; Obleser, Jonas; Baverstock, Harriet; Scott, Sophie K

    2012-04-01

    Speech comprehension is a complex human skill, the performance of which requires the perceiver to combine information from several sources - e.g. voice, face, gesture, linguistic context - to achieve an intelligible and interpretable percept. We describe a functional imaging investigation of how auditory, visual and linguistic information interact to facilitate comprehension. Our specific aims were to investigate the neural responses to these different information sources, alone and in interaction, and further to use behavioural speech comprehension scores to address sites of intelligibility-related activation in multifactorial speech comprehension. In fMRI, participants passively watched videos of spoken sentences, in which we varied Auditory Clarity (with noise-vocoding), Visual Clarity (with Gaussian blurring) and Linguistic Predictability. Main effects of enhanced signal with increased auditory and visual clarity were observed in overlapping regions of posterior STS. Two-way interactions of the factors (auditory × visual, auditory × predictability) in the neural data were observed outside temporal cortex, where positive signal change in response to clearer facial information and greater semantic predictability was greatest at intermediate levels of auditory clarity. Overall changes in stimulus intelligibility by condition (as determined using an independent behavioural experiment) were reflected in the neural data by increased activation predominantly in bilateral dorsolateral temporal cortex, as well as inferior frontal cortex and left fusiform gyrus. Specific investigation of intelligibility changes at intermediate auditory clarity revealed a set of regions, including posterior STS and fusiform gyrus, showing enhanced responses to both visual and linguistic information. Finally, an individual differences analysis showed that greater comprehension performance in the scanning participants (measured in a post-scan behavioural test) were associated with increased activation in left inferior frontal gyrus and left posterior STS. The current multimodal speech comprehension paradigm demonstrates recruitment of a wide comprehension network in the brain, in which posterior STS and fusiform gyrus form sites for convergence of auditory, visual and linguistic information, while left-dominant sites in temporal and frontal cortex support successful comprehension. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Anteverted internal auditory canal as an inner ear anomaly in patients with craniofacial microsomia.

    PubMed

    L'Heureux-Lebeau, Bénédicte; Saliba, Issam

    2014-09-01

    Craniofacial microsomia involves structure of the first and second branchial arches. A wide range of ear anomalies, affecting external, middle and inner ear, has been described in association with this condition. We report three cases of anteverted internal auditory canal in patients presenting craniofacial microsomia. This unique internal auditory canal orientation was found on high-resolution computed tomography of the temporal bones. This internal auditory canal anomaly is yet unreported in craniofacial anomalies. Copyright © 2014. Published by Elsevier Ireland Ltd.

  19. Functional relevance of interindividual differences in temporal lobe callosal pathways: a DTI tractography study.

    PubMed

    Westerhausen, René; Grüner, Renate; Specht, Karsten; Hugdahl, Kenneth

    2009-06-01

    The midsagittal corpus callosum is topographically organized, that is, with regard to their cortical origin several subtracts can be distinguished within the corpus callosum that belong to specific functional brain networks. Recent diffusion tensor tractography studies have also revealed remarkable interindividual differences in the size and exact localization of these tracts. To examine the functional relevance of interindividual variability in callosal tracts, 17 right-handed male participants underwent structural and diffusion tensor magnetic resonance imaging. Probabilistic tractography was carried out to identify the callosal subregions that interconnect left and right temporal lobe auditory processing areas, and the midsagittal size of this tract was seen as indicator of the (anatomical) strength of this connection. Auditory information transfer was assessed applying an auditory speech perception task with dichotic presentations of consonant-vowel syllables (e.g., /ba-ga/). The frequency of correct left ear reports in this task served as a functional measure of interhemispheric transfer. Statistical analysis showed that a stronger anatomical connection between the superior temporal lobe areas supports a better information transfer. This specific structure-function association in the auditory modality supports the general notion that interindividual differences in callosal topography possess functional relevance.

  20. The temporal representation of speech in a nonlinear model of the guinea pig cochlea

    NASA Astrophysics Data System (ADS)

    Holmes, Stephen D.; Sumner, Christian J.; O'Mard, Lowel P.; Meddis, Ray

    2004-12-01

    The temporal representation of speechlike stimuli in the auditory-nerve output of a guinea pig cochlea model is described. The model consists of a bank of dual resonance nonlinear filters that simulate the vibratory response of the basilar membrane followed by a model of the inner hair cell/auditory nerve complex. The model is evaluated by comparing its output with published physiological auditory nerve data in response to single and double vowels. The evaluation includes analyses of individual fibers, as well as ensemble responses over a wide range of best frequencies. In all cases the model response closely follows the patterns in the physiological data, particularly the tendency for the temporal firing pattern of each fiber to represent the frequency of a nearby formant of the speech sound. In the model this behavior is largely a consequence of filter shapes; nonlinear filtering has only a small contribution at low frequencies. The guinea pig cochlear model produces a useful simulation of the measured physiological response to simple speech sounds and is therefore suitable for use in more advanced applications including attempts to generalize these principles to the response of human auditory system, both normal and impaired. .

  1. Noise-induced hearing loss increases the temporal precision of complex envelope coding by auditory-nerve fibers

    PubMed Central

    Henry, Kenneth S.; Kale, Sushrut; Heinz, Michael G.

    2014-01-01

    While changes in cochlear frequency tuning are thought to play an important role in the perceptual difficulties of people with sensorineural hearing loss (SNHL), the possible role of temporal processing deficits remains less clear. Our knowledge of temporal envelope coding in the impaired cochlea is limited to two studies that examined auditory-nerve fiber responses to narrowband amplitude modulated stimuli. In the present study, we used Wiener-kernel analyses of auditory-nerve fiber responses to broadband Gaussian noise in anesthetized chinchillas to quantify changes in temporal envelope coding with noise-induced SNHL. Temporal modulation transfer functions (TMTFs) and temporal windows of sensitivity to acoustic stimulation were computed from 2nd-order Wiener kernels and analyzed to estimate the temporal precision, amplitude, and latency of envelope coding. Noise overexposure was associated with slower (less negative) TMTF roll-off with increasing modulation frequency and reduced temporal window duration. The results show that at equal stimulus sensation level, SNHL increases the temporal precision of envelope coding by 20–30%. Furthermore, SNHL increased the amplitude of envelope coding by 50% in fibers with CFs from 1–2 kHz and decreased mean response latency by 0.4 ms. While a previous study of envelope coding demonstrated a similar increase in response amplitude, the present study is the first to show enhanced temporal precision. This new finding may relate to the use of a more complex stimulus with broad frequency bandwidth and a dynamic temporal envelope. Exaggerated neural coding of fast envelope modulations may contribute to perceptual difficulties in people with SNHL by acting as a distraction from more relevant acoustic cues, especially in fluctuating background noise. Finally, the results underscore the value of studying sensory systems with more natural, real-world stimuli. PMID:24596545

  2. Auditory Neuroscience: Temporal Anticipation Enhances Cortical Processing

    PubMed Central

    Walker, Kerry M. M.; King, Andrew J.

    2015-01-01

    Summary A recent study shows that expectation about the timing of behaviorally-relevant sounds enhances the responses of neurons in the primary auditory cortex and improves the accuracy and speed with which animals respond to those sounds. PMID:21481759

  3. Auditory Magnetoencephalographic Frequency-Tagged Responses Mirror the Ongoing Segmentation Processes Underlying Statistical Learning.

    PubMed

    Farthouat, Juliane; Franco, Ana; Mary, Alison; Delpouve, Julie; Wens, Vincent; Op de Beeck, Marc; De Tiège, Xavier; Peigneux, Philippe

    2017-03-01

    Humans are highly sensitive to statistical regularities in their environment. This phenomenon, usually referred as statistical learning, is most often assessed using post-learning behavioural measures that are limited by a lack of sensibility and do not monitor the temporal dynamics of learning. In the present study, we used magnetoencephalographic frequency-tagged responses to investigate the neural sources and temporal development of the ongoing brain activity that supports the detection of regularities embedded in auditory streams. Participants passively listened to statistical streams in which tones were grouped as triplets, and to random streams in which tones were randomly presented. Results show that during exposure to statistical (vs. random) streams, tritone frequency-related responses reflecting the learning of regularities embedded in the stream increased in the left supplementary motor area and left posterior superior temporal sulcus (pSTS), whereas tone frequency-related responses decreased in the right angular gyrus and right pSTS. Tritone frequency-related responses rapidly developed to reach significance after 3 min of exposure. These results suggest that the incidental extraction of novel regularities is subtended by a gradual shift from rhythmic activity reflecting individual tone succession toward rhythmic activity synchronised with triplet presentation, and that these rhythmic processes are subtended by distinct neural sources.

  4. Psycho acoustical Measures in Individuals with Congenital Visual Impairment.

    PubMed

    Kumar, Kaushlendra; Thomas, Teenu; Bhat, Jayashree S; Ranjan, Rajesh

    2017-12-01

    In congenital visual impaired individuals one modality is impaired (visual modality) this impairment is compensated by other sensory modalities. There is evidence that visual impaired performed better in different auditory task like localization, auditory memory, verbal memory, auditory attention, and other behavioural tasks when compare to normal sighted individuals. The current study was aimed to compare the temporal resolution, frequency resolution and speech perception in noise ability in individuals with congenital visual impaired and normal sighted. Temporal resolution, frequency resolution, and speech perception in noise were measured using MDT, GDT, DDT, SRDT, and SNR50 respectively. Twelve congenital visual impaired participants with age range of 18 to 40 years were taken and equal in number with normal sighted participants. All the participants had normal hearing sensitivity with normal middle ear functioning. Individual with visual impairment showed superior threshold in MDT, SRDT and SNR50 as compared to normal sighted individuals. This may be due to complexity of the tasks; MDT, SRDT and SNR50 are complex tasks than GDT and DDT. Visual impairment showed superior performance in auditory processing and speech perception with complex auditory perceptual tasks.

  5. Auditory temporal perceptual learning and transfer in Chinese-speaking children with developmental dyslexia.

    PubMed

    Zhang, Manli; Xie, Weiyi; Xu, Yanzhi; Meng, Xiangzhi

    2018-03-01

    Perceptual learning refers to the improvement of perceptual performance as a function of training. Recent studies found that auditory perceptual learning may improve phonological skills in individuals with developmental dyslexia in alphabetic writing system. However, whether auditory perceptual learning could also benefit the reading skills of those learning the Chinese logographic writing system is, as yet, unknown. The current study aimed to investigate the remediation effect of auditory temporal perceptual learning on Mandarin-speaking school children with developmental dyslexia. Thirty children with dyslexia were screened from a large pool of students in 3th-5th grades. They completed a series of pretests and then were assigned to either a non-training control group or a training group. The training group worked on a pure tone duration discrimination task for 7 sessions over 2 weeks with thirty minutes per session. Post-tests immediately after training and a follow-up test 2 months later were conducted. Analyses revealed a significant training effect in the training group relative to non-training group, as well as near transfer to the temporal interval discrimination task and far transfer to phonological awareness, character recognition and reading fluency. Importantly, the training effect and all the transfer effects were stable at the 2-month follow-up session. Further analyses found that a significant correlation between character recognition performance and learning rate mainly existed in the slow learning phase, the consolidation stage of perceptual learning, and this effect was modulated by an individuals' executive function. These findings indicate that adaptive auditory temporal perceptual learning can lead to learning and transfer effects on reading performance, and shed further light on the potential role of basic perceptual learning in the remediation and prevention of developmental dyslexia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Lesion localization of speech comprehension deficits in chronic aphasia

    PubMed Central

    Binder, Jeffrey R.; Humphries, Colin; Gross, William L.; Book, Diane S.

    2017-01-01

    Objective: Voxel-based lesion-symptom mapping (VLSM) was used to localize impairments specific to multiword (phrase and sentence) spoken language comprehension. Methods: Participants were 51 right-handed patients with chronic left hemisphere stroke. They performed an auditory description naming (ADN) task requiring comprehension of a verbal description, an auditory sentence comprehension (ASC) task, and a picture naming (PN) task. Lesions were mapped using high-resolution MRI. VLSM analyses identified the lesion correlates of ADN and ASC impairment, first with no control measures, then adding PN impairment as a covariate to control for cognitive and language processes not specific to spoken language. Results: ADN and ASC deficits were associated with lesions in a distributed frontal-temporal parietal language network. When PN impairment was included as a covariate, both ADN and ASC deficits were specifically correlated with damage localized to the mid-to-posterior portion of the middle temporal gyrus (MTG). Conclusions: Damage to the mid-to-posterior MTG is associated with an inability to integrate multiword utterances during comprehension of spoken language. Impairment of this integration process likely underlies the speech comprehension deficits characteristic of Wernicke aphasia. PMID:28179469

  7. Lesion localization of speech comprehension deficits in chronic aphasia.

    PubMed

    Pillay, Sara B; Binder, Jeffrey R; Humphries, Colin; Gross, William L; Book, Diane S

    2017-03-07

    Voxel-based lesion-symptom mapping (VLSM) was used to localize impairments specific to multiword (phrase and sentence) spoken language comprehension. Participants were 51 right-handed patients with chronic left hemisphere stroke. They performed an auditory description naming (ADN) task requiring comprehension of a verbal description, an auditory sentence comprehension (ASC) task, and a picture naming (PN) task. Lesions were mapped using high-resolution MRI. VLSM analyses identified the lesion correlates of ADN and ASC impairment, first with no control measures, then adding PN impairment as a covariate to control for cognitive and language processes not specific to spoken language. ADN and ASC deficits were associated with lesions in a distributed frontal-temporal parietal language network. When PN impairment was included as a covariate, both ADN and ASC deficits were specifically correlated with damage localized to the mid-to-posterior portion of the middle temporal gyrus (MTG). Damage to the mid-to-posterior MTG is associated with an inability to integrate multiword utterances during comprehension of spoken language. Impairment of this integration process likely underlies the speech comprehension deficits characteristic of Wernicke aphasia. © 2017 American Academy of Neurology.

  8. Selective inner hair cell loss in prematurity: a temporal bone study of infants from a neonatal intensive care unit.

    PubMed

    Amatuzzi, Monica; Liberman, M Charles; Northrop, Clarinda

    2011-10-01

    Premature birth is a well-known risk factor for sensorineural hearing loss in general and auditory neuropathy in particular. However, relatively little is known about the underlying causes, in part because there are so few relevant histopathological studies. Here, we report on the analysis of hair cell loss patterns in 54 temporal bones from premature infants and a control group of 46 bones from full-term infants, all of whom spent time in the neonatal intensive care unit at the Hospital de Niños in San Jose, Costa Rica, between 1977 and 1993. The prevalence of significant hair cell loss was higher in the preterm group than the full-term group (41% vs. 28%, respectively). The most striking finding was the frequency of selective inner hair cell loss, an extremely rare histopathological pattern, in the preterm vs. the full-term babies (27% vs. 3%, respectively). The findings suggest that a common cause of non-genetic auditory neuropathy is selective loss of inner hair cells rather than primary damage to the cochlear nerve.

  9. Functional Topography of Human Auditory Cortex

    PubMed Central

    Rauschecker, Josef P.

    2016-01-01

    Functional and anatomical studies have clearly demonstrated that auditory cortex is populated by multiple subfields. However, functional characterization of those fields has been largely the domain of animal electrophysiology, limiting the extent to which human and animal research can inform each other. In this study, we used high-resolution functional magnetic resonance imaging to characterize human auditory cortical subfields using a variety of low-level acoustic features in the spectral and temporal domains. Specifically, we show that topographic gradients of frequency preference, or tonotopy, extend along two axes in human auditory cortex, thus reconciling historical accounts of a tonotopic axis oriented medial to lateral along Heschl's gyrus and more recent findings emphasizing tonotopic organization along the anterior–posterior axis. Contradictory findings regarding topographic organization according to temporal modulation rate in acoustic stimuli, or “periodotopy,” are also addressed. Although isolated subregions show a preference for high rates of amplitude-modulated white noise (AMWN) in our data, large-scale “periodotopic” organization was not found. Organization by AM rate was correlated with dominant pitch percepts in AMWN in many regions. In short, our data expose early auditory cortex chiefly as a frequency analyzer, and spectral frequency, as imposed by the sensory receptor surface in the cochlea, seems to be the dominant feature governing large-scale topographic organization across human auditory cortex. SIGNIFICANCE STATEMENT In this study, we examine the nature of topographic organization in human auditory cortex with fMRI. Topographic organization by spectral frequency (tonotopy) extended in two directions: medial to lateral, consistent with early neuroimaging studies, and anterior to posterior, consistent with more recent reports. Large-scale organization by rates of temporal modulation (periodotopy) was correlated with confounding spectral content of amplitude-modulated white-noise stimuli. Together, our results suggest that the organization of human auditory cortex is driven primarily by its response to spectral acoustic features, and large-scale periodotopy spanning across multiple regions is not supported. This fundamental information regarding the functional organization of early auditory cortex will inform our growing understanding of speech perception and the processing of other complex sounds. PMID:26818527

  10. Textural timbre

    PubMed Central

    Hollins, Mark

    2009-01-01

    During haptic exploration of surfaces, complex mechanical oscillations—of surface displacement and air pressure—are generated, which are then transduced by receptors in the skin and in the inner ear. Tactile and auditory signals thus convey redundant information about texture, partially carried in the spectral content of these signals. It is no surprise, then, that the representation of temporal frequency is linked in the auditory and somatosensory systems. An emergent hypothesis is that there exists a supramodal representation of temporal frequency, and by extension texture. PMID:19721886

  11. Top-down and bottom-up modulation of brain structures involved in auditory discrimination.

    PubMed

    Diekhof, Esther K; Biedermann, Franziska; Ruebsamen, Rudolf; Gruber, Oliver

    2009-11-10

    Auditory deviancy detection comprises both automatic and voluntary processing. Here, we investigated the neural correlates of different components of the sensory discrimination process using functional magnetic resonance imaging. Subliminal auditory processing of deviant events that were not detected led to activation in left superior temporal gyrus. On the other hand, both correct detection of deviancy and false alarms activated a frontoparietal network of attentional processing and response selection, i.e. this network was activated regardless of the physical presence of deviant events. Finally, activation in the putamen, anterior cingulate and middle temporal cortex depended on factual stimulus representations and occurred only during correct deviancy detection. These results indicate that sensory discrimination may rely on dynamic bottom-up and top-down interactions.

  12. Applications of psychophysical models to the study of auditory development

    NASA Astrophysics Data System (ADS)

    Werner, Lynne

    2003-04-01

    Psychophysical models of listening, such as the energy detector model, have provided a framework from which to characterize the function of the mature auditory system and to explore how mature listeners make use of auditory information in sound identification. The application of such models to the study of auditory development has similarly provided insight into the characteristics of infant hearing and listening. Infants intensity, frequency, temporal and spatial resolution have been described at least grossly and some contributions of immature listening strategies to infant hearing have been identified. Infants psychoacoustic performance is typically poorer than adults under identical stimulus conditions. However, the infant's performance typically varies with stimulus condition in a way that is qualitatively similar to the adult's performance. In some cases, though, infants perform in a qualitatively different way from adults in psychoacoustic experiments. Further, recent psychoacoustic studies of children suggest that the classic models of listening may be inadequate to describe the children's performance. The characteristics of a model that might be appropriate for the immature listener will be outlined and the implications for models of mature listening will be discussed. [Work supported by NIH grants DC00396 and by DC04661.

  13. A psychophysical imaging method evidencing auditory cue extraction during speech perception: a group analysis of auditory classification images.

    PubMed

    Varnet, Léo; Knoblauch, Kenneth; Serniclaes, Willy; Meunier, Fanny; Hoen, Michel

    2015-01-01

    Although there is a large consensus regarding the involvement of specific acoustic cues in speech perception, the precise mechanisms underlying the transformation from continuous acoustical properties into discrete perceptual units remains undetermined. This gap in knowledge is partially due to the lack of a turnkey solution for isolating critical speech cues from natural stimuli. In this paper, we describe a psychoacoustic imaging method known as the Auditory Classification Image technique that allows experimenters to estimate the relative importance of time-frequency regions in categorizing natural speech utterances in noise. Importantly, this technique enables the testing of hypotheses on the listening strategies of participants at the group level. We exemplify this approach by identifying the acoustic cues involved in da/ga categorization with two phonetic contexts, Al- or Ar-. The application of Auditory Classification Images to our group of 16 participants revealed significant critical regions on the second and third formant onsets, as predicted by the literature, as well as an unexpected temporal cue on the first formant. Finally, through a cluster-based nonparametric test, we demonstrate that this method is sufficiently sensitive to detect fine modifications of the classification strategies between different utterances of the same phoneme.

  14. Thalamic connections of the core auditory cortex and rostral supratemporal plane in the macaque monkey.

    PubMed

    Scott, Brian H; Saleem, Kadharbatcha S; Kikuchi, Yukiko; Fukushima, Makoto; Mishkin, Mortimer; Saunders, Richard C

    2017-11-01

    In the primate auditory cortex, information flows serially in the mediolateral dimension from core, to belt, to parabelt. In the caudorostral dimension, stepwise serial projections convey information through the primary, rostral, and rostrotemporal (AI, R, and RT) core areas on the supratemporal plane, continuing to the rostrotemporal polar area (RTp) and adjacent auditory-related areas of the rostral superior temporal gyrus (STGr) and temporal pole. In addition to this cascade of corticocortical connections, the auditory cortex receives parallel thalamocortical projections from the medial geniculate nucleus (MGN). Previous studies have examined the projections from MGN to auditory cortex, but most have focused on the caudal core areas AI and R. In this study, we investigated the full extent of connections between MGN and AI, R, RT, RTp, and STGr using retrograde and anterograde anatomical tracers. Both AI and R received nearly 90% of their thalamic inputs from the ventral subdivision of the MGN (MGv; the primary/lemniscal auditory pathway). By contrast, RT received only ∼45% from MGv, and an equal share from the dorsal subdivision (MGd). Area RTp received ∼25% of its inputs from MGv, but received additional inputs from multisensory areas outside the MGN (30% in RTp vs. 1-5% in core areas). The MGN input to RTp distinguished this rostral extension of auditory cortex from the adjacent auditory-related cortex of the STGr, which received 80% of its thalamic input from multisensory nuclei (primarily medial pulvinar). Anterograde tracers identified complementary descending connections by which highly processed auditory information may modulate thalamocortical inputs. © 2017 Wiley Periodicals, Inc.

  15. Functional neuroanatomy of auditory scene analysis in Alzheimer's disease

    PubMed Central

    Golden, Hannah L.; Agustus, Jennifer L.; Goll, Johanna C.; Downey, Laura E.; Mummery, Catherine J.; Schott, Jonathan M.; Crutch, Sebastian J.; Warren, Jason D.

    2015-01-01

    Auditory scene analysis is a demanding computational process that is performed automatically and efficiently by the healthy brain but vulnerable to the neurodegenerative pathology of Alzheimer's disease. Here we assessed the functional neuroanatomy of auditory scene analysis in Alzheimer's disease using the well-known ‘cocktail party effect’ as a model paradigm whereby stored templates for auditory objects (e.g., hearing one's spoken name) are used to segregate auditory ‘foreground’ and ‘background’. Patients with typical amnestic Alzheimer's disease (n = 13) and age-matched healthy individuals (n = 17) underwent functional 3T-MRI using a sparse acquisition protocol with passive listening to auditory stimulus conditions comprising the participant's own name interleaved with or superimposed on multi-talker babble, and spectrally rotated (unrecognisable) analogues of these conditions. Name identification (conditions containing the participant's own name contrasted with spectrally rotated analogues) produced extensive bilateral activation involving superior temporal cortex in both the AD and healthy control groups, with no significant differences between groups. Auditory object segregation (conditions with interleaved name sounds contrasted with superimposed name sounds) produced activation of right posterior superior temporal cortex in both groups, again with no differences between groups. However, the cocktail party effect (interaction of own name identification with auditory object segregation processing) produced activation of right supramarginal gyrus in the AD group that was significantly enhanced compared with the healthy control group. The findings delineate an altered functional neuroanatomical profile of auditory scene analysis in Alzheimer's disease that may constitute a novel computational signature of this neurodegenerative pathology. PMID:26029629

  16. T-complex measures in bilingual Spanish-English and Turkish-German children and monolingual peers.

    PubMed

    Rinker, Tanja; Shafer, Valerie L; Kiefer, Markus; Vidal, Nancy; Yu, Yan H

    2017-01-01

    Lateral temporal neural measures (Na and T-complex Ta and Tb) of the auditory evoked potential (AEP) index maturation of auditory/speech processing. These measures are also sensitive to language experience in adults. This paper examined neural responses to a vowel sound at temporal electrodes in four- to five-year-old Spanish-English bilinguals and English monolinguals and in five- to six-year-old Turkish-German bilinguals and German monolinguals. The goal was to determine whether obligatory AEPs at temporal electrode sites were modulated by language experience. Language experience was defined in terms of monolingual versus bilingual status as well as the amount and quality of the bilingual language experience. AEPs were recorded at left and right temporal electrode sites to a 250-ms vowel [Ɛ] from 20 monolingual (American)-English and 18 Spanish-English children from New York City, and from 11 Turkish-German and 13 monolingual German children from Ulm, Germany. Language background information and standardized verbal and non-verbal test scores were obtained for the children. The results revealed differences in temporal AEPs (Na and Ta of the T-complex) between monolingual and bilingual children. Specifically, bilingual children showed smaller and/or later peak amplitudes than the monolingual groups. Ta-amplitude distinguished monolingual and bilingual children best at right electrode sites for both the German and American groups. Amount of experience and type of experience with the target language (English and German) influenced processing. The finding of reduced amplitudes at the Ta latency for bilingual compared to monolingual children indicates that language specific experience, and not simply maturational factors, influences development of the neural processes underlying the Ta AEP, and suggests that lateral temporal cortex has an important role in language-specific speech perception development.

  17. T-complex measures in bilingual Spanish-English and Turkish-German children and monolingual peers

    PubMed Central

    Rinker, Tanja; Shafer, Valerie L.; Kiefer, Markus; Vidal, Nancy; Yu, Yan H.

    2017-01-01

    Background Lateral temporal neural measures (Na and T-complex Ta and Tb) of the auditory evoked potential (AEP) index maturation of auditory/speech processing. These measures are also sensitive to language experience in adults. This paper examined neural responses to a vowel sound at temporal electrodes in four- to five-year-old Spanish-English bilinguals and English monolinguals and in five- to six-year-old Turkish-German bilinguals and German monolinguals. The goal was to determine whether obligatory AEPs at temporal electrode sites were modulated by language experience. Language experience was defined in terms of monolingual versus bilingual status as well as the amount and quality of the bilingual language experience. Method AEPs were recorded at left and right temporal electrode sites to a 250-ms vowel [Ɛ] from 20 monolingual (American)-English and 18 Spanish-English children from New York City, and from 11 Turkish-German and 13 monolingual German children from Ulm, Germany. Language background information and standardized verbal and non-verbal test scores were obtained for the children. Results The results revealed differences in temporal AEPs (Na and Ta of the T-complex) between monolingual and bilingual children. Specifically, bilingual children showed smaller and/or later peak amplitudes than the monolingual groups. Ta-amplitude distinguished monolingual and bilingual children best at right electrode sites for both the German and American groups. Amount of experience and type of experience with the target language (English and German) influenced processing. Conclusions The finding of reduced amplitudes at the Ta latency for bilingual compared to monolingual children indicates that language specific experience, and not simply maturational factors, influences development of the neural processes underlying the Ta AEP, and suggests that lateral temporal cortex has an important role in language-specific speech perception development. PMID:28267801

  18. Adult Plasticity in the Subcortical Auditory Pathway of the Maternal Mouse

    PubMed Central

    Miranda, Jason A.; Shepard, Kathryn N.; McClintock, Shannon K.; Liu, Robert C.

    2014-01-01

    Subcortical auditory nuclei were traditionally viewed as non-plastic in adulthood so that acoustic information could be stably conveyed to higher auditory areas. Studies in a variety of species, including humans, now suggest that prolonged acoustic training can drive long-lasting brainstem plasticity. The neurobiological mechanisms for such changes are not well understood in natural behavioral contexts due to a relative dearth of in vivo animal models in which to study this. Here, we demonstrate in a mouse model that a natural life experience with increased demands on the auditory system – motherhood – is associated with improved temporal processing in the subcortical auditory pathway. We measured the auditory brainstem response to test whether mothers and pup-naïve virgin mice differed in temporal responses to both broadband and tone stimuli, including ultrasonic frequencies found in mouse pup vocalizations. Mothers had shorter latencies for early ABR peaks, indicating plasticity in the auditory nerve and the cochlear nucleus. Shorter interpeak latency between waves IV and V also suggest plasticity in the inferior colliculus. Hormone manipulations revealed that these cannot be explained solely by estrogen levels experienced during pregnancy and parturition in mothers. In contrast, we found that pup-care experience, independent of pregnancy and parturition, contributes to shortening auditory brainstem response latencies. These results suggest that acoustic experience in the maternal context imparts plasticity on early auditory processing that lasts beyond pup weaning. In addition to establishing an animal model for exploring adult auditory brainstem plasticity in a neuroethological context, our results have broader implications for models of perceptual, behavioral and neural changes that arise during maternity, where subcortical sensorineural plasticity has not previously been considered. PMID:24992362

  19. Binaural speech processing in individuals with auditory neuropathy.

    PubMed

    Rance, G; Ryan, M M; Carew, P; Corben, L A; Yiu, E; Tan, J; Delatycki, M B

    2012-12-13

    Auditory neuropathy disrupts the neural representation of sound and may therefore impair processes contingent upon inter-aural integration. The aims of this study were to investigate binaural auditory processing in individuals with axonal (Friedreich ataxia) and demyelinating (Charcot-Marie-Tooth disease type 1A) auditory neuropathy and to evaluate the relationship between the degree of auditory deficit and overall clinical severity in patients with neuropathic disorders. Twenty-three subjects with genetically confirmed Friedreich ataxia and 12 subjects with Charcot-Marie-Tooth disease type 1A underwent psychophysical evaluation of basic auditory processing (intensity discrimination/temporal resolution) and binaural speech perception assessment using the Listening in Spatialized Noise test. Age, gender and hearing-level-matched controls were also tested. Speech perception in noise for individuals with auditory neuropathy was abnormal for each listening condition, but was particularly affected in circumstances where binaural processing might have improved perception through spatial segregation. Ability to use spatial cues was correlated with temporal resolution suggesting that the binaural-processing deficit was the result of disordered representation of timing cues in the left and right auditory nerves. Spatial processing was also related to overall disease severity (as measured by the Friedreich Ataxia Rating Scale and Charcot-Marie-Tooth Neuropathy Score) suggesting that the degree of neural dysfunction in the auditory system accurately reflects generalized neuropathic changes. Measures of binaural speech processing show promise for application in the neurology clinic. In individuals with auditory neuropathy due to both axonal and demyelinating mechanisms the assessment provides a measure of functional hearing ability, a biomarker capable of tracking the natural history of progressive disease and a potential means of evaluating the effectiveness of interventions. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Towards neural correlates of auditory stimulus processing: A simultaneous auditory evoked potentials and functional magnetic resonance study using an odd-ball paradigm

    PubMed Central

    Milner, Rafał; Rusiniak, Mateusz; Lewandowska, Monika; Wolak, Tomasz; Ganc, Małgorzata; Piątkowska-Janko, Ewa; Bogorodzki, Piotr; Skarżyński, Henryk

    2014-01-01

    Background The neural underpinnings of auditory information processing have often been investigated using the odd-ball paradigm, in which infrequent sounds (deviants) are presented within a regular train of frequent stimuli (standards). Traditionally, this paradigm has been applied using either high temporal resolution (EEG) or high spatial resolution (fMRI, PET). However, used separately, these techniques cannot provide information on both the location and time course of particular neural processes. The goal of this study was to investigate the neural correlates of auditory processes with a fine spatio-temporal resolution. A simultaneous auditory evoked potentials (AEP) and functional magnetic resonance imaging (fMRI) technique (AEP-fMRI), together with an odd-ball paradigm, were used. Material/Methods Six healthy volunteers, aged 20–35 years, participated in an odd-ball simultaneous AEP-fMRI experiment. AEP in response to acoustic stimuli were used to model bioelectric intracerebral generators, and electrophysiological results were integrated with fMRI data. Results fMRI activation evoked by standard stimuli was found to occur mainly in the primary auditory cortex. Activity in these regions overlapped with intracerebral bioelectric sources (dipoles) of the N1 component. Dipoles of the N1/P2 complex in response to standard stimuli were also found in the auditory pathway between the thalamus and the auditory cortex. Deviant stimuli induced fMRI activity in the anterior cingulate gyrus, insula, and parietal lobes. Conclusions The present study showed that neural processes evoked by standard stimuli occur predominantly in subcortical and cortical structures of the auditory pathway. Deviants activate areas non-specific for auditory information processing. PMID:24413019

  1. Auditory connections and functions of prefrontal cortex

    PubMed Central

    Plakke, Bethany; Romanski, Lizabeth M.

    2014-01-01

    The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC). In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG) most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition. PMID:25100931

  2. Adult plasticity in the subcortical auditory pathway of the maternal mouse.

    PubMed

    Miranda, Jason A; Shepard, Kathryn N; McClintock, Shannon K; Liu, Robert C

    2014-01-01

    Subcortical auditory nuclei were traditionally viewed as non-plastic in adulthood so that acoustic information could be stably conveyed to higher auditory areas. Studies in a variety of species, including humans, now suggest that prolonged acoustic training can drive long-lasting brainstem plasticity. The neurobiological mechanisms for such changes are not well understood in natural behavioral contexts due to a relative dearth of in vivo animal models in which to study this. Here, we demonstrate in a mouse model that a natural life experience with increased demands on the auditory system - motherhood - is associated with improved temporal processing in the subcortical auditory pathway. We measured the auditory brainstem response to test whether mothers and pup-naïve virgin mice differed in temporal responses to both broadband and tone stimuli, including ultrasonic frequencies found in mouse pup vocalizations. Mothers had shorter latencies for early ABR peaks, indicating plasticity in the auditory nerve and the cochlear nucleus. Shorter interpeak latency between waves IV and V also suggest plasticity in the inferior colliculus. Hormone manipulations revealed that these cannot be explained solely by estrogen levels experienced during pregnancy and parturition in mothers. In contrast, we found that pup-care experience, independent of pregnancy and parturition, contributes to shortening auditory brainstem response latencies. These results suggest that acoustic experience in the maternal context imparts plasticity on early auditory processing that lasts beyond pup weaning. In addition to establishing an animal model for exploring adult auditory brainstem plasticity in a neuroethological context, our results have broader implications for models of perceptual, behavioral and neural changes that arise during maternity, where subcortical sensorineural plasticity has not previously been considered.

  3. Click train encoding in primary and non-primary auditory cortex of anesthetized macaque monkeys.

    PubMed

    Oshurkova, E; Scheich, H; Brosch, M

    2008-06-02

    We studied encoding of temporally modulated sounds in 28 multiunits in the primary auditory cortical field (AI) and in 35 multiunits in the secondary auditory cortical field (caudomedial auditory cortical field, CM) by presenting periodic click trains with click rates between 1 and 300 Hz lasting for 2-4 s. We found that all multiunits increased or decreased their firing rate during the steady state portion of the click train and that all except two multiunits synchronized their firing to individual clicks in the train. Rate increases and synchronized responses were most prevalent and strongest at low click rates, as expressed by best modulation frequency, limiting frequency, percentage of responsive multiunits, and average rate response and vector strength. Synchronized responses occurred up to 100 Hz; rate response occurred up to 300 Hz. Both auditory fields responded similarly to low click rates but differed at click rates above approximately 12 Hz at which more multiunits in AI than in CM exhibited synchronized responses and increased rate responses and more multiunits in CM exhibited decreased rate responses. These findings suggest that the auditory cortex of macaque monkeys encodes temporally modulated sounds similar to the auditory cortex of other mammals. Together with other observations presented in this and other reports, our findings also suggest that AI and CM have largely overlapping sensitivities for acoustic stimulus features but encode these features differently.

  4. Auditory post-processing in a passive listening task is deficient in Alzheimer's disease.

    PubMed

    Bender, Stephan; Bluschke, Annet; Dippel, Gabriel; Rupp, André; Weisbrod, Matthias; Thomas, Christine

    2014-01-01

    To investigate whether automatic auditory post-processing is deficient in patients with Alzheimer's disease and is related to sensory gating. Event-related potentials were recorded during a passive listening task to examine the automatic transient storage of auditory information (short click pairs). Patients with Alzheimer's disease were compared to a healthy age-matched control group. A young healthy control group was included to assess effects of physiological aging. A bilateral frontal negativity in combination with deep temporal positivity occurring 500 ms after stimulus offset was reduced in patients with Alzheimer's disease, but was unaffected by physiological aging. Its amplitude correlated with short-term memory capacity, but was independent of sensory gating in healthy elderly controls. Source analysis revealed a dipole pair in the anterior temporal lobes. Results suggest that auditory post-processing is deficient in Alzheimer's disease, but is not typically related to sensory gating. The deficit could neither be explained by physiological aging nor by problems in earlier stages of auditory perception. Correlations with short-term memory capacity and executive control tasks suggested an association with memory encoding and/or overall cognitive control deficits. An auditory late negative wave could represent a marker of auditory working memory encoding deficits in Alzheimer's disease. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Temporal precision and the capacity of auditory-verbal short-term memory.

    PubMed

    Gilbert, Rebecca A; Hitch, Graham J; Hartley, Tom

    2017-12-01

    The capacity of serially ordered auditory-verbal short-term memory (AVSTM) is sensitive to the timing of the material to be stored, and both temporal processing and AVSTM capacity are implicated in the development of language. We developed a novel "rehearsal-probe" task to investigate the relationship between temporal precision and the capacity to remember serial order. Participants listened to a sub-span sequence of spoken digits and silently rehearsed the items and their timing during an unfilled retention interval. After an unpredictable delay, a tone prompted report of the item being rehearsed at that moment. An initial experiment showed cyclic distributions of item responses over time, with peaks preserving serial order and broad, overlapping tails. The spread of the response distributions increased with additional memory load and correlated negatively with participants' auditory digit spans. A second study replicated the negative correlation and demonstrated its specificity to AVSTM by controlling for differences in visuo-spatial STM and nonverbal IQ. The results are consistent with the idea that a common resource underpins both the temporal precision and capacity of AVSTM. The rehearsal-probe task may provide a valuable tool for investigating links between temporal processing and AVSTM capacity in the context of speech and language abilities.

  6. The frequency modulated auditory evoked response (FMAER), a technical advance for study of childhood language disorders: cortical source localization and selected case studies

    PubMed Central

    2013-01-01

    Background Language comprehension requires decoding of complex, rapidly changing speech streams. Detecting changes of frequency modulation (FM) within speech is hypothesized as essential for accurate phoneme detection, and thus, for spoken word comprehension. Despite past demonstration of FM auditory evoked response (FMAER) utility in language disorder investigations, it is seldom utilized clinically. This report's purpose is to facilitate clinical use by explaining analytic pitfalls, demonstrating sites of cortical origin, and illustrating potential utility. Results FMAERs collected from children with language disorders, including Developmental Dysphasia, Landau-Kleffner syndrome (LKS), and autism spectrum disorder (ASD) and also normal controls - utilizing multi-channel reference-free recordings assisted by discrete source analysis - provided demonstratrions of cortical origin and examples of clinical utility. Recordings from inpatient epileptics with indwelling cortical electrodes provided direct assessment of FMAER origin. The FMAER is shown to normally arise from bilateral posterior superior temporal gyri and immediate temporal lobe surround. Childhood language disorders associated with prominent receptive deficits demonstrate absent left or bilateral FMAER temporal lobe responses. When receptive language is spared, the FMAER may remain present bilaterally. Analyses based upon mastoid or ear reference electrodes are shown to result in erroneous conclusions. Serial FMAER studies may dynamically track status of underlying language processing in LKS. FMAERs in ASD with language impairment may be normal or abnormal. Cortical FMAERs can locate language cortex when conventional cortical stimulation does not. Conclusion The FMAER measures the processing by the superior temporal gyri and adjacent cortex of rapid frequency modulation within an auditory stream. Clinical disorders associated with receptive deficits are shown to demonstrate absent left or bilateral responses. Serial FMAERs may be useful for tracking language change in LKS. Cortical FMAERs may augment invasive cortical language testing in epilepsy surgical patients. The FMAER may be normal in ASD and other language disorders when pathology spares the superior temporal gyrus and surround but presumably involves other brain regions. Ear/mastoid reference electrodes should be avoided and multichannel, reference free recordings utilized. Source analysis may assist in better understanding of complex FMAER findings. PMID:23351174

  7. Alpha power indexes task-related networks on large and small scales: A multimodal ECoG study in humans and a non-human primate.

    PubMed

    de Pesters, A; Coon, W G; Brunner, P; Gunduz, A; Ritaccio, A L; Brunet, N M; de Weerd, P; Roberts, M J; Oostenveld, R; Fries, P; Schalk, G

    2016-07-01

    Performing different tasks, such as generating motor movements or processing sensory input, requires the recruitment of specific networks of neuronal populations. Previous studies suggested that power variations in the alpha band (8-12Hz) may implement such recruitment of task-specific populations by increasing cortical excitability in task-related areas while inhibiting population-level cortical activity in task-unrelated areas (Klimesch et al., 2007; Jensen and Mazaheri, 2010). However, the precise temporal and spatial relationships between the modulatory function implemented by alpha oscillations and population-level cortical activity remained undefined. Furthermore, while several studies suggested that alpha power indexes task-related populations across large and spatially separated cortical areas, it was largely unclear whether alpha power also differentially indexes smaller networks of task-related neuronal populations. Here we addressed these questions by investigating the temporal and spatial relationships of electrocorticographic (ECoG) power modulations in the alpha band and in the broadband gamma range (70-170Hz, indexing population-level activity) during auditory and motor tasks in five human subjects and one macaque monkey. In line with previous research, our results confirm that broadband gamma power accurately tracks task-related behavior and that alpha power decreases in task-related areas. More importantly, they demonstrate that alpha power suppression lags population-level activity in auditory areas during the auditory task, but precedes it in motor areas during the motor task. This suppression of alpha power in task-related areas was accompanied by an increase in areas not related to the task. In addition, we show for the first time that these differential modulations of alpha power could be observed not only across widely distributed systems (e.g., motor vs. auditory system), but also within the auditory system. Specifically, alpha power was suppressed in the locations within the auditory system that most robustly responded to particular sound stimuli. Altogether, our results provide experimental evidence for a mechanism that preferentially recruits task-related neuronal populations by increasing cortical excitability in task-related cortical areas and decreasing cortical excitability in task-unrelated areas. This mechanism is implemented by variations in alpha power and is common to humans and the non-human primate under study. These results contribute to an increasingly refined understanding of the mechanisms underlying the selection of the specific neuronal populations required for task execution. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Using fNIRS to Examine Occipital and Temporal Responses to Stimulus Repetition in Young Infants: Evidence of Selective Frontal Cortex Involvement

    PubMed Central

    Emberson, Lauren L.; Cannon, Grace; Palmeri, Holly; Richards, John E.; Aslin, Richard N.

    2016-01-01

    How does the developing brain respond to recent experience? Repetition suppression (RS) is a robust and well-characterized response of to recent experience found, predominantly, in the perceptual cortices of the adult brain. We use functional near-infrared spectroscopy (fNIRS) to investigate how perceptual (temporal and occipital) and frontal cortices in the infant brain respond to auditory and visual stimulus repetitions (spoken words and faces). In Experiment 1, we find strong evidence of repetition suppression in the frontal cortex but only for auditory stimuli. In perceptual cortices, we find only suggestive evidence of auditory RS in the temporal cortex and no evidence of visual RS in any ROI. In Experiments 2 and 3, we replicate and extend these findings. Overall, we provide the first evidence that infant and adult brains respond differently to stimulus repetition. We suggest that the frontal lobe may support the development of RS in perceptual cortices. PMID:28012401

  9. Neuronal chronometry of target detection: fusion of hemodynamic and event-related potential data.

    PubMed

    Calhoun, V D; Adali, T; Pearlson, G D; Kiehl, K A

    2006-04-01

    Event-related potential (ERP) studies of the brain's response to infrequent, target (oddball) stimuli elicit a sequence of physiological events, the most prominent and well studied being a complex, the P300 (or P3) peaking approximately 300 ms post-stimulus for simple stimuli and slightly later for more complex stimuli. Localization of the neural generators of the human oddball response remains challenging due to the lack of a single imaging technique with good spatial and temporal resolution. Here, we use independent component analyses to fuse ERP and fMRI modalities in order to examine the dynamics of the auditory oddball response with high spatiotemporal resolution across the entire brain. Initial activations in auditory and motor planning regions are followed by auditory association cortex and motor execution regions. The P3 response is associated with brainstem, temporal lobe, and medial frontal activity and finally a late temporal lobe "evaluative" response. We show that fusing imaging modalities with different advantages can provide new information about the brain.

  10. Central auditory processing and migraine: a controlled study

    PubMed Central

    2014-01-01

    Background This study aimed to verify and compare central auditory processing (CAP) performance in migraine with and without aura patients and healthy controls. Methods Forty-one volunteers of both genders, aged between 18 and 40 years, diagnosed with migraine with and without aura by the criteria of “The International Classification of Headache Disorders” (ICDH-3 beta) and a control group of the same age range and with no headache history, were included. Gaps-in-noise (GIN), Duration Pattern test (DPT) and Dichotic Digits Test (DDT) tests were used to assess central auditory processing performance. Results The volunteers were divided into 3 groups: Migraine with aura (11), migraine without aura (15), and control group (15), matched by age and schooling. Subjects with aura and without aura performed significantly worse in GIN test for right ear (p = .006), for left ear (p = .005) and for DPT test (p < .001) when compared with controls without headache, however no significant differences were found in the DDT test for the right ear (p = .362) and for the left ear (p = .190). Conclusions Subjects with migraine performed worsened in auditory gap detection, in the discrimination of short and long duration. They also presented impairment in the physiological mechanism of temporal processing, especially in temporal resolution and temporal ordering when compared with controls. Migraine could be related to an impaired central auditory processing. Clinical trial registration Research Ethics Committee (CEP 0480.10) – UNIFESP PMID:25380661

  11. Temporal and identity prediction in visual-auditory events: Electrophysiological evidence from stimulus omissions.

    PubMed

    van Laarhoven, Thijs; Stekelenburg, Jeroen J; Vroomen, Jean

    2017-04-15

    A rare omission of a sound that is predictable by anticipatory visual information induces an early negative omission response (oN1) in the EEG during the period of silence where the sound was expected. It was previously suggested that the oN1 was primarily driven by the identity of the anticipated sound. Here, we examined the role of temporal prediction in conjunction with identity prediction of the anticipated sound in the evocation of the auditory oN1. With incongruent audiovisual stimuli (a video of a handclap that is consistently combined with the sound of a car horn) we demonstrate in Experiment 1 that a natural match in identity between the visual and auditory stimulus is not required for inducing the oN1, and that the perceptual system can adapt predictions to unnatural stimulus events. In Experiment 2 we varied either the auditory onset (relative to the visual onset) or the identity of the sound across trials in order to hamper temporal and identity predictions. Relative to the natural stimulus with correct auditory timing and matching audiovisual identity, the oN1 was abolished when either the timing or the identity of the sound could not be predicted reliably from the video. Our study demonstrates the flexibility of the perceptual system in predictive processing (Experiment 1) and also shows that precise predictions of timing and content are both essential elements for inducing an oN1 (Experiment 2). Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Auditory and Visual Differences in Time Perception? An Investigation from a Developmental Perspective with Neuropsychological Tests

    ERIC Educational Resources Information Center

    Zelanti, Pierre S.; Droit-Volet, Sylvie

    2012-01-01

    Adults and children (5- and 8-year-olds) performed a temporal bisection task with either auditory or visual signals and either a short (0.5-1.0s) or long (4.0-8.0s) duration range. Their working memory and attentional capacities were assessed by a series of neuropsychological tests administered in both the auditory and visual modalities. Results…

  13. Temporal Lobe Epilepsy Alters Auditory-motor Integration For Voice Control

    PubMed Central

    Li, Weifeng; Chen, Ziyi; Yan, Nan; Jones, Jeffery A.; Guo, Zhiqiang; Huang, Xiyan; Chen, Shaozhen; Liu, Peng; Liu, Hanjun

    2016-01-01

    Temporal lobe epilepsy (TLE) is the most common drug-refractory focal epilepsy in adults. Previous research has shown that patients with TLE exhibit decreased performance in listening to speech sounds and deficits in the cortical processing of auditory information. Whether TLE compromises auditory-motor integration for voice control, however, remains largely unknown. To address this question, event-related potentials (ERPs) and vocal responses to vocal pitch errors (1/2 or 2 semitones upward) heard in auditory feedback were compared across 28 patients with TLE and 28 healthy controls. Patients with TLE produced significantly larger vocal responses but smaller P2 responses than healthy controls. Moreover, patients with TLE exhibited a positive correlation between vocal response magnitude and baseline voice variability and a negative correlation between P2 amplitude and disease duration. Graphical network analyses revealed a disrupted neuronal network for patients with TLE with a significant increase of clustering coefficients and path lengths as compared to healthy controls. These findings provide strong evidence that TLE is associated with an atypical integration of the auditory and motor systems for vocal pitch regulation, and that the functional networks that support the auditory-motor processing of pitch feedback errors differ between patients with TLE and healthy controls. PMID:27356768

  14. Characteristics of spectro-temporal modulation frequency selectivity in humans.

    PubMed

    Oetjen, Arne; Verhey, Jesko L

    2017-03-01

    There is increasing evidence that the auditory system shows frequency selectivity for spectro-temporal modulations. A recent study of the authors has shown spectro-temporal modulation masking patterns that were in agreement with the hypothesis of spectro-temporal modulation filters in the human auditory system [Oetjen and Verhey (2015). J. Acoust. Soc. Am. 137(2), 714-723]. In the present study, that experimental data and additional data were used to model this spectro-temporal frequency selectivity. The additional data were collected to investigate to what extent the spectro-temporal modulation-frequency selectivity results from a combination of a purely temporal amplitude-modulation filter and a purely spectral amplitude-modulation filter. In contrast to the previous study, thresholds were measured for masker and target modulations with opposite directions, i.e., an upward pointing target modulation and a downward pointing masker modulation. The comparison of this data set with previous corresponding data with the same direction from target and masker modulations indicate that a specific spectro-temporal modulation filter is required to simulate all aspects of spectro-temporal modulation frequency selectivity. A model using a modified Gabor filter with a purely temporal and a purely spectral filter predicts the spectro-temporal modulation masking data.

  15. Aging affects neural precision of speech encoding

    PubMed Central

    Anderson, Samira; Parbery-Clark, Alexandra; White-Schwoch, Travis; Kraus, Nina

    2012-01-01

    Older adults frequently report they can hear what is said but cannot understand the meaning, especially in noise. This difficulty may arise from the inability to process rapidly changing elements of speech. Aging is accompanied by a general slowing of neural processing and decreased neural inhibition, both of which likely interfere with temporal processing in auditory and other sensory domains. Age-related reductions in inhibitory neurotransmitter levels and delayed neural recovery can contribute to decreases in the auditory system’s temporal precision. Decreased precision may lead to neural timing delays, reductions in neural response magnitude, and a disadvantage in processing the rapid acoustic changes in speech. The auditory brainstem response (ABR), a scalp-recorded electrical potential, is known for its ability to capture precise neural synchrony within subcortical auditory nuclei; therefore, we hypothesized that a loss of temporal precision results in subcortical timing delays and decreases in response consistency and magnitude. To assess this hypothesis, we recorded ABRs to the speech syllable /da/ in normal hearing younger (ages 18 to 30) and older adult humans (60 to 67). Older adults had delayed ABRs, especially in response to the rapidly changing formant transition, and greater response variability. We also found that older adults had decreased phase locking and smaller response magnitudes than younger adults. Taken together, our results support the theory that older adults have a loss of temporal precision in subcortical encoding of sound, which may account, at least in part, for their difficulties with speech perception. PMID:23055485

  16. Atypical white-matter microstructure in congenitally deaf adults: A region of interest and tractography study using diffusion-tensor imaging.

    PubMed

    Karns, Christina M; Stevens, Courtney; Dow, Mark W; Schorr, Emily M; Neville, Helen J

    2017-01-01

    Considerable research documents the cross-modal reorganization of auditory cortices as a consequence of congenital deafness, with remapped functions that include visual and somatosensory processing of both linguistic and nonlinguistic information. Structural changes accompany this cross-modal neuroplasticity, but precisely which specific structural changes accompany congenital and early deafness and whether there are group differences in hemispheric asymmetries remain to be established. Here, we used diffusion tensor imaging (DTI) to examine microstructural white matter changes accompanying cross-modal reorganization in 23 deaf adults who were genetically, profoundly, and congenitally deaf, having learned sign language from infancy with 26 hearing controls who participated in our previous fMRI studies of cross-modal neuroplasticity. In contrast to prior literature using a whole-brain approach, we introduce a semiautomatic method for demarcating auditory regions in which regions of interest (ROIs) are defined on the normalized white matter skeleton for all participants, projected into each participants native space, and manually constrained to anatomical boundaries. White-matter ROIs were left and right Heschl's gyrus (HG), left and right anterior superior temporal gyrus (aSTG), left and right posterior superior temporal gyrus (pSTG), as well as one tractography-defined region in the splenium of the corpus callosum connecting homologous left and right superior temporal regions (pCC). Within these regions, we measured fractional anisotropy (FA), radial diffusivity (RD), axial diffusivity (AD), and white-matter volume. Congenitally deaf adults had reduced FA and volume in white matter structures underlying bilateral HG, aSTG, pSTG, and reduced FA in pCC. In HG and pCC, this reduction in FA corresponded with increased RD, but differences in aSTG and pSTG could not be localized to alterations in RD or AD. Direct statistical tests of hemispheric asymmetries in these differences indicated the most prominent effects in pSTG, where the largest differences between groups occurred in the right hemisphere. Other regions did not show significant hemispheric asymmetries in group differences. Taken together, these results indicate that atypical white matter microstructure and reduced volume underlies regions of superior temporal primary and association auditory cortex and introduce a robust method for quantifying volumetric and white matter microstructural differences that can be applied to future studies of special populations. Published by Elsevier B.V.

  17. Speech-evoked activation in adult temporal cortex measured using functional near-infrared spectroscopy (fNIRS): Are the measurements reliable?

    PubMed

    Wiggins, Ian M; Anderson, Carly A; Kitterick, Pádraig T; Hartley, Douglas E H

    2016-09-01

    Functional near-infrared spectroscopy (fNIRS) is a silent, non-invasive neuroimaging technique that is potentially well suited to auditory research. However, the reliability of auditory-evoked activation measured using fNIRS is largely unknown. The present study investigated the test-retest reliability of speech-evoked fNIRS responses in normally-hearing adults. Seventeen participants underwent fNIRS imaging in two sessions separated by three months. In a block design, participants were presented with auditory speech, visual speech (silent speechreading), and audiovisual speech conditions. Optode arrays were placed bilaterally over the temporal lobes, targeting auditory brain regions. A range of established metrics was used to quantify the reproducibility of cortical activation patterns, as well as the amplitude and time course of the haemodynamic response within predefined regions of interest. The use of a signal processing algorithm designed to reduce the influence of systemic physiological signals was found to be crucial to achieving reliable detection of significant activation at the group level. For auditory speech (with or without visual cues), reliability was good to excellent at the group level, but highly variable among individuals. Temporal-lobe activation in response to visual speech was less reliable, especially in the right hemisphere. Consistent with previous reports, fNIRS reliability was improved by averaging across a small number of channels overlying a cortical region of interest. Overall, the present results confirm that fNIRS can measure speech-evoked auditory responses in adults that are highly reliable at the group level, and indicate that signal processing to reduce physiological noise may substantially improve the reliability of fNIRS measurements. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Enhanced pure-tone pitch discrimination among persons with autism but not Asperger syndrome.

    PubMed

    Bonnel, Anna; McAdams, Stephen; Smith, Bennett; Berthiaume, Claude; Bertone, Armando; Ciocca, Valter; Burack, Jacob A; Mottron, Laurent

    2010-07-01

    Persons with Autism spectrum disorders (ASD) display atypical perceptual processing in visual and auditory tasks. In vision, Bertone, Mottron, Jelenic, and Faubert (2005) found that enhanced and diminished visual processing is linked to the level of neural complexity required to process stimuli, as proposed in the neural complexity hypothesis. Based on these findings, Samson, Mottron, Jemel, Belin, and Ciocca (2006) proposed to extend the neural complexity hypothesis to the auditory modality. They hypothesized that persons with ASD should display enhanced performance for simple tones that are processed in primary auditory cortical regions, but diminished performance for complex tones that require additional processing in associative auditory regions, in comparison to typically developing individuals. To assess this hypothesis, we designed four auditory discrimination experiments targeting pitch, non-vocal and vocal timbre, and loudness. Stimuli consisted of spectro-temporally simple and complex tones. The participants were adolescents and young adults with autism, Asperger syndrome, and typical developmental histories, all with IQs in the normal range. Consistent with the neural complexity hypothesis and enhanced perceptual functioning model of ASD (Mottron, Dawson, Soulières, Hubert, & Burack, 2006), the participants with autism, but not with Asperger syndrome, displayed enhanced pitch discrimination for simple tones. However, no discrimination-thresholds differences were found between the participants with ASD and the typically developing persons across spectrally and temporally complex conditions. These findings indicate that enhanced pure-tone pitch discrimination may be a cognitive correlate of speech-delay among persons with ASD. However, auditory discrimination among this group does not appear to be directly contingent on the spectro-temporal complexity of the stimuli. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  19. Functional mapping of the primate auditory system.

    PubMed

    Poremba, Amy; Saunders, Richard C; Crane, Alison M; Cook, Michelle; Sokoloff, Louis; Mishkin, Mortimer

    2003-01-24

    Cerebral auditory areas were delineated in the awake, passively listening, rhesus monkey by comparing the rates of glucose utilization in an intact hemisphere and in an acoustically isolated contralateral hemisphere of the same animal. The auditory system defined in this way occupied large portions of cerebral tissue, an extent probably second only to that of the visual system. Cortically, the activated areas included the entire superior temporal gyrus and large portions of the parietal, prefrontal, and limbic lobes. Several auditory areas overlapped with previously identified visual areas, suggesting that the auditory system, like the visual system, contains separate pathways for processing stimulus quality, location, and motion.

  20. A temperature rise reduces trial-to-trial variability of locust auditory neuron responses.

    PubMed

    Eberhard, Monika J B; Schleimer, Jan-Hendrik; Schreiber, Susanne; Ronacher, Bernhard

    2015-09-01

    The neurophysiology of ectothermic animals, such as insects, is affected by environmental temperature, as their body temperature fluctuates with ambient conditions. Changes in temperature alter properties of neurons and, consequently, have an impact on the processing of information. Nevertheless, nervous system function is often maintained over a broad temperature range, exhibiting a surprising robustness to variations in temperature. A special problem arises for acoustically communicating insects, as in these animals mate recognition and mate localization typically rely on the decoding of fast amplitude modulations in calling and courtship songs. In the auditory periphery, however, temporal resolution is constrained by intrinsic neuronal noise. Such noise predominantly arises from the stochasticity of ion channel gating and potentially impairs the processing of sensory signals. On the basis of intracellular recordings of locust auditory neurons, we show that intrinsic neuronal variability on the level of spikes is reduced with increasing temperature. We use a detailed mathematical model including stochastic ion channel gating to shed light on the underlying biophysical mechanisms in auditory receptor neurons: because of a redistribution of channel-induced current noise toward higher frequencies and specifics of the temperature dependence of the membrane impedance, membrane potential noise is indeed reduced at higher temperatures. This finding holds under generic conditions and physiologically plausible assumptions on the temperature dependence of the channels' kinetics and peak conductances. We demonstrate that the identified mechanism also can explain the experimentally observed reduction of spike timing variability at higher temperatures. Copyright © 2015 the American Physiological Society.

  1. A temperature rise reduces trial-to-trial variability of locust auditory neuron responses

    PubMed Central

    Schleimer, Jan-Hendrik; Schreiber, Susanne; Ronacher, Bernhard

    2015-01-01

    The neurophysiology of ectothermic animals, such as insects, is affected by environmental temperature, as their body temperature fluctuates with ambient conditions. Changes in temperature alter properties of neurons and, consequently, have an impact on the processing of information. Nevertheless, nervous system function is often maintained over a broad temperature range, exhibiting a surprising robustness to variations in temperature. A special problem arises for acoustically communicating insects, as in these animals mate recognition and mate localization typically rely on the decoding of fast amplitude modulations in calling and courtship songs. In the auditory periphery, however, temporal resolution is constrained by intrinsic neuronal noise. Such noise predominantly arises from the stochasticity of ion channel gating and potentially impairs the processing of sensory signals. On the basis of intracellular recordings of locust auditory neurons, we show that intrinsic neuronal variability on the level of spikes is reduced with increasing temperature. We use a detailed mathematical model including stochastic ion channel gating to shed light on the underlying biophysical mechanisms in auditory receptor neurons: because of a redistribution of channel-induced current noise toward higher frequencies and specifics of the temperature dependence of the membrane impedance, membrane potential noise is indeed reduced at higher temperatures. This finding holds under generic conditions and physiologically plausible assumptions on the temperature dependence of the channels' kinetics and peak conductances. We demonstrate that the identified mechanism also can explain the experimentally observed reduction of spike timing variability at higher temperatures. PMID:26041833

  2. Temporal resolution in individuals with neurological disorders

    PubMed Central

    Rabelo, Camila Maia; Weihing, Jeffrey A; Schochat, Eliane

    2015-01-01

    OBJECTIVE: Temporal processing refers to the ability of the central auditory nervous system to encode and detect subtle changes in acoustic signals. This study aims to investigate the temporal resolution ability of individuals with mesial temporal sclerosis and to determine the sensitivity and specificity of the gaps-in-noise test in identifying this type of lesion. METHOD: This prospective study investigated differences in temporal resolution between 30 individuals with normal hearing and without neurological lesions (G1) and 16 individuals with both normal hearing and mesial temporal sclerosis (G2). Test performances were compared, and the sensitivity and specificity were calculated. RESULTS: There was no difference in gap detection thresholds between the two groups, although G1 revealed better average thresholds than G2 did. The sensitivity and specificity of the gaps-in-noise test for neurological lesions were 68% and 98%, respectively. CONCLUSIONS: Temporal resolution ability is compromised in individuals with neurological lesions caused by mesial temporal sclerosis. The gaps-in-noise test was shown to be a sensitive and specific measure of central auditory dysfunction in these patients. PMID:26375561

  3. Effects of sound intensity on temporal properties of inhibition in the pallid bat auditory cortex.

    PubMed

    Razak, Khaleel A

    2013-01-01

    Auditory neurons in bats that use frequency modulated (FM) sweeps for echolocation are selective for the behaviorally-relevant rates and direction of frequency change. Such selectivity arises through spectrotemporal interactions between excitatory and inhibitory components of the receptive field. In the pallid bat auditory system, the relationship between FM sweep direction/rate selectivity and spectral and temporal properties of sideband inhibition have been characterized. Of note is the temporal asymmetry in sideband inhibition, with low-frequency inhibition (LFI) exhibiting faster arrival times compared to high-frequency inhibition (HFI). Using the two-tone inhibition over time (TTI) stimulus paradigm, this study investigated the interactions between two sound parameters in shaping sideband inhibition: intensity and time. Specifically, the impact of changing relative intensities of the excitatory and inhibitory tones on arrival time of inhibition was studied. Using this stimulation paradigm, single unit data from the auditory cortex of pentobarbital-anesthetized cortex show that the threshold for LFI is on average ~8 dB lower than HFI. For equal intensity tones near threshold, LFI is stronger than HFI. When the inhibitory tone intensity is increased further from threshold, the strength asymmetry decreased. The temporal asymmetry in LFI vs. HFI arrival time is strongest when the excitatory and inhibitory tones are of equal intensities or if excitatory tone is louder. As inhibitory tone intensity is increased, temporal asymmetry decreased suggesting that the relative magnitude of excitatory and inhibitory inputs shape arrival time of inhibition and FM sweep rate and direction selectivity. Given that most FM bats use downward sweeps as echolocation calls, a similar asymmetry in threshold and strength of LFI vs. HFI may be a general adaptation to enhance direction selectivity while maintaining sweep-rate selective responses to downward sweeps.

  4. Audio-tactile integration and the influence of musical training.

    PubMed

    Kuchenbuch, Anja; Paraskevopoulos, Evangelos; Herholz, Sibylle C; Pantev, Christo

    2014-01-01

    Perception of our environment is a multisensory experience; information from different sensory systems like the auditory, visual and tactile is constantly integrated. Complex tasks that require high temporal and spatial precision of multisensory integration put strong demands on the underlying networks but it is largely unknown how task experience shapes multisensory processing. Long-term musical training is an excellent model for brain plasticity because it shapes the human brain at functional and structural levels, affecting a network of brain areas. In the present study we used magnetoencephalography (MEG) to investigate how audio-tactile perception is integrated in the human brain and if musicians show enhancement of the corresponding activation compared to non-musicians. Using a paradigm that allowed the investigation of combined and separate auditory and tactile processing, we found a multisensory incongruency response, generated in frontal, cingulate and cerebellar regions, an auditory mismatch response generated mainly in the auditory cortex and a tactile mismatch response generated in frontal and cerebellar regions. The influence of musical training was seen in the audio-tactile as well as in the auditory condition, indicating enhanced higher-order processing in musicians, while the sources of the tactile MMN were not influenced by long-term musical training. Consistent with the predictive coding model, more basic, bottom-up sensory processing was relatively stable and less affected by expertise, whereas areas for top-down models of multisensory expectancies were modulated by training.

  5. Neural correlates of auditory short-term memory in rostral superior temporal cortex.

    PubMed

    Scott, Brian H; Mishkin, Mortimer; Yin, Pingbo

    2014-12-01

    Auditory short-term memory (STM) in the monkey is less robust than visual STM and may depend on a retained sensory trace, which is likely to reside in the higher-order cortical areas of the auditory ventral stream. We recorded from the rostral superior temporal cortex as monkeys performed serial auditory delayed match-to-sample (DMS). A subset of neurons exhibited modulations of their firing rate during the delay between sounds, during the sensory response, or during both. This distributed subpopulation carried a predominantly sensory signal modulated by the mnemonic context of the stimulus. Excitatory and suppressive effects on match responses were dissociable in their timing and in their resistance to sounds intervening between the sample and match. Like the monkeys' behavioral performance, these neuronal effects differ from those reported in the same species during visual DMS, suggesting different neural mechanisms for retaining dynamic sounds and static images in STM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Brain activity is related to individual differences in the number of items stored in auditory short-term memory for pitch: evidence from magnetoencephalography.

    PubMed

    Grimault, Stephan; Nolden, Sophie; Lefebvre, Christine; Vachon, François; Hyde, Krista; Peretz, Isabelle; Zatorre, Robert; Robitaille, Nicolas; Jolicoeur, Pierre

    2014-07-01

    We used magnetoencephalography (MEG) to examine brain activity related to the maintenance of non-verbal pitch information in auditory short-term memory (ASTM). We focused on brain activity that increased with the number of items effectively held in memory by the participants during the retention interval of an auditory memory task. We used very simple acoustic materials (i.e., pure tones that varied in pitch) that minimized activation from non-ASTM related systems. MEG revealed neural activity in frontal, temporal, and parietal cortices that increased with a greater number of items effectively held in memory by the participants during the maintenance of pitch representations in ASTM. The present results reinforce the functional role of frontal and temporal cortices in the retention of pitch information in ASTM. This is the first MEG study to provide both fine spatial localization and temporal resolution on the neural mechanisms of non-verbal ASTM for pitch in relation to individual differences in the capacity of ASTM. This research contributes to a comprehensive understanding of the mechanisms mediating the representation and maintenance of basic non-verbal auditory features in the human brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Do not throw out the baby with the bath water: choosing an effective baseline for a functional localizer of speech processing.

    PubMed

    Stoppelman, Nadav; Harpaz, Tamar; Ben-Shachar, Michal

    2013-05-01

    Speech processing engages multiple cortical regions in the temporal, parietal, and frontal lobes. Isolating speech-sensitive cortex in individual participants is of major clinical and scientific importance. This task is complicated by the fact that responses to sensory and linguistic aspects of speech are tightly packed within the posterior superior temporal cortex. In functional magnetic resonance imaging (fMRI), various baseline conditions are typically used in order to isolate speech-specific from basic auditory responses. Using a short, continuous sampling paradigm, we show that reversed ("backward") speech, a commonly used auditory baseline for speech processing, removes much of the speech responses in frontal and temporal language regions of adult individuals. On the other hand, signal correlated noise (SCN) serves as an effective baseline for removing primary auditory responses while maintaining strong signals in the same language regions. We show that the response to reversed speech in left inferior frontal gyrus decays significantly faster than the response to speech, thus suggesting that this response reflects bottom-up activation of speech analysis followed up by top-down attenuation once the signal is classified as nonspeech. The results overall favor SCN as an auditory baseline for speech processing.

  8. Relation between brain activation and lexical performance.

    PubMed

    Booth, James R; Burman, Douglas D; Meyer, Joel R; Gitelman, Darren R; Parrish, Todd B; Mesulam, M Marsel

    2003-07-01

    Functional magnetic resonance imaging (fMRI) was used to determine whether performance on lexical tasks was correlated with cerebral activation patterns. We found that such relationships did exist and that their anatomical distribution reflected the neurocognitive processing routes required by the task. Better performance on intramodal tasks (determining if visual words were spelled the same or if auditory words rhymed) was correlated with more activation in unimodal regions corresponding to the modality of sensory input, namely the fusiform gyrus (BA 37) for written words and the superior temporal gyrus (BA 22) for spoken words. Better performance in tasks requiring cross-modal conversions (determining if auditory words were spelled the same or if visual words rhymed), on the other hand, was correlated with more activation in posterior heteromodal regions, including the supramarginal gyrus (BA 40) and the angular gyrus (BA 39). Better performance in these cross-modal tasks was also correlated with greater activation in unimodal regions corresponding to the target modality of the conversion process (i.e., fusiform gyrus for auditory spelling and superior temporal gyrus for visual rhyming). In contrast, performance on the auditory spelling task was inversely correlated with activation in the superior temporal gyrus possibly reflecting a greater emphasis on the properties of the perceptual input rather than on the relevant transmodal conversions. Copyright 2003 Wiley-Liss, Inc.

  9. The cortical language circuit: from auditory perception to sentence comprehension.

    PubMed

    Friederici, Angela D

    2012-05-01

    Over the years, a large body of work on the brain basis of language comprehension has accumulated, paving the way for the formulation of a comprehensive model. The model proposed here describes the functional neuroanatomy of the different processing steps from auditory perception to comprehension as located in different gray matter brain regions. It also specifies the information flow between these regions, taking into account white matter fiber tract connections. Bottom-up, input-driven processes proceeding from the auditory cortex to the anterior superior temporal cortex and from there to the prefrontal cortex, as well as top-down, controlled and predictive processes from the prefrontal cortex back to the temporal cortex are proposed to constitute the cortical language circuit. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Selective impairment of auditory selective attention under concurrent cognitive load.

    PubMed

    Dittrich, Kerstin; Stahl, Christoph

    2012-06-01

    Load theory predicts that concurrent cognitive load impairs selective attention. For visual stimuli, it has been shown that this impairment can be selective: Distraction was specifically increased when the stimulus material used in the cognitive load task matches that of the selective attention task. Here, we report four experiments that demonstrate such selective load effects for auditory selective attention. The effect of two different cognitive load tasks on two different auditory Stroop tasks was examined, and selective load effects were observed: Interference in a nonverbal-auditory Stroop task was increased under concurrent nonverbal-auditory cognitive load (compared with a no-load condition), but not under concurrent verbal-auditory cognitive load. By contrast, interference in a verbal-auditory Stroop task was increased under concurrent verbal-auditory cognitive load but not under nonverbal-auditory cognitive load. This double-dissociation pattern suggests the existence of different and separable verbal and nonverbal processing resources in the auditory domain.

  11. Deconvolution of magnetic acoustic change complex (mACC).

    PubMed

    Bardy, Fabrice; McMahon, Catherine M; Yau, Shu Hui; Johnson, Blake W

    2014-11-01

    The aim of this study was to design a novel experimental approach to investigate the morphological characteristics of auditory cortical responses elicited by rapidly changing synthesized speech sounds. Six sound-evoked magnetoencephalographic (MEG) responses were measured to a synthesized train of speech sounds using the vowels /e/ and /u/ in 17 normal hearing young adults. Responses were measured to: (i) the onset of the speech train, (ii) an F0 increment; (iii) an F0 decrement; (iv) an F2 decrement; (v) an F2 increment; and (vi) the offset of the speech train using short (jittered around 135ms) and long (1500ms) stimulus onset asynchronies (SOAs). The least squares (LS) deconvolution technique was used to disentangle the overlapping MEG responses in the short SOA condition only. Comparison between the morphology of the recovered cortical responses in the short and long SOAs conditions showed high similarity, suggesting that the LS deconvolution technique was successful in disentangling the MEG waveforms. Waveform latencies and amplitudes were different for the two SOAs conditions and were influenced by the spectro-temporal properties of the sound sequence. The magnetic acoustic change complex (mACC) for the short SOA condition showed significantly lower amplitudes and shorter latencies compared to the long SOA condition. The F0 transition showed a larger reduction in amplitude from long to short SOA compared to the F2 transition. Lateralization of the cortical responses were observed under some stimulus conditions and appeared to be associated with the spectro-temporal properties of the acoustic stimulus. The LS deconvolution technique provides a new tool to study the properties of the auditory cortical response to rapidly changing sound stimuli. The presence of the cortical auditory evoked responses for rapid transition of synthesized speech stimuli suggests that the temporal code is preserved at the level of the auditory cortex. Further, the reduced amplitudes and shorter latencies might reflect intrinsic properties of the cortical neurons to rapidly presented sounds. This is the first demonstration of the separation of overlapping cortical responses to rapidly changing speech sounds and offers a potential new biomarker of discrimination of rapid transition of sound. Crown Copyright © 2014. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Hierarchical auditory processing directed rostrally along the monkey's supratemporal plane.

    PubMed

    Kikuchi, Yukiko; Horwitz, Barry; Mishkin, Mortimer

    2010-09-29

    Connectional anatomical evidence suggests that the auditory core, containing the tonotopic areas A1, R, and RT, constitutes the first stage of auditory cortical processing, with feedforward projections from core outward, first to the surrounding auditory belt and then to the parabelt. Connectional evidence also raises the possibility that the core itself is serially organized, with feedforward projections from A1 to R and with additional projections, although of unknown feed direction, from R to RT. We hypothesized that area RT together with more rostral parts of the supratemporal plane (rSTP) form the anterior extension of a rostrally directed stimulus quality processing stream originating in the auditory core area A1. Here, we analyzed auditory responses of single neurons in three different sectors distributed caudorostrally along the supratemporal plane (STP): sector I, mainly area A1; sector II, mainly area RT; and sector III, principally RTp (the rostrotemporal polar area), including cortex located 3 mm from the temporal tip. Mean onset latency of excitation responses and stimulus selectivity to monkey calls and other sounds, both simple and complex, increased progressively from sector I to III. Also, whereas cells in sector I responded with significantly higher firing rates to the "other" sounds than to monkey calls, those in sectors II and III responded at the same rate to both stimulus types. The pattern of results supports the proposal that the STP contains a rostrally directed, hierarchically organized auditory processing stream, with gradually increasing stimulus selectivity, and that this stream extends from the primary auditory area to the temporal pole.

  13. A selective impairment of perception of sound motion direction in peripheral space: A case study.

    PubMed

    Thaler, Lore; Paciocco, Joseph; Daley, Mark; Lesniak, Gabriella D; Purcell, David W; Fraser, J Alexander; Dutton, Gordon N; Rossit, Stephanie; Goodale, Melvyn A; Culham, Jody C

    2016-01-08

    It is still an open question if the auditory system, similar to the visual system, processes auditory motion independently from other aspects of spatial hearing, such as static location. Here, we report psychophysical data from a patient (female, 42 and 44 years old at the time of two testing sessions), who suffered a bilateral occipital infarction over 12 years earlier, and who has extensive damage in the occipital lobe bilaterally, extending into inferior posterior temporal cortex bilaterally and into right parietal cortex. We measured the patient's spatial hearing ability to discriminate static location, detect motion and perceive motion direction in both central (straight ahead), and right and left peripheral auditory space (50° to the left and right of straight ahead). Compared to control subjects, the patient was impaired in her perception of direction of auditory motion in peripheral auditory space, and the deficit was more pronounced on the right side. However, there was no impairment in her perception of the direction of auditory motion in central space. Furthermore, detection of motion and discrimination of static location were normal in both central and peripheral space. The patient also performed normally in a wide battery of non-spatial audiological tests. Our data are consistent with previous neuropsychological and neuroimaging results that link posterior temporal cortex and parietal cortex with the processing of auditory motion. Most importantly, however, our data break new ground by suggesting a division of auditory motion processing in terms of speed and direction and in terms of central and peripheral space. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Mouth and Voice: A Relationship between Visual and Auditory Preference in the Human Superior Temporal Sulcus

    PubMed Central

    2017-01-01

    Cortex in and around the human posterior superior temporal sulcus (pSTS) is known to be critical for speech perception. The pSTS responds to both the visual modality (especially biological motion) and the auditory modality (especially human voices). Using fMRI in single subjects with no spatial smoothing, we show that visual and auditory selectivity are linked. Regions of the pSTS were identified that preferred visually presented moving mouths (presented in isolation or as part of a whole face) or moving eyes. Mouth-preferring regions responded strongly to voices and showed a significant preference for vocal compared with nonvocal sounds. In contrast, eye-preferring regions did not respond to either vocal or nonvocal sounds. The converse was also true: regions of the pSTS that showed a significant response to speech or preferred vocal to nonvocal sounds responded more strongly to visually presented mouths than eyes. These findings can be explained by environmental statistics. In natural environments, humans see visual mouth movements at the same time as they hear voices, while there is no auditory accompaniment to visual eye movements. The strength of a voxel's preference for visual mouth movements was strongly correlated with the magnitude of its auditory speech response and its preference for vocal sounds, suggesting that visual and auditory speech features are coded together in small populations of neurons within the pSTS. SIGNIFICANCE STATEMENT Humans interacting face to face make use of auditory cues from the talker's voice and visual cues from the talker's mouth to understand speech. The human posterior superior temporal sulcus (pSTS), a brain region known to be important for speech perception, is complex, with some regions responding to specific visual stimuli and others to specific auditory stimuli. Using BOLD fMRI, we show that the natural statistics of human speech, in which voices co-occur with mouth movements, are reflected in the neural architecture of the pSTS. Different pSTS regions prefer visually presented faces containing either a moving mouth or moving eyes, but only mouth-preferring regions respond strongly to voices. PMID:28179553

  15. Mouth and Voice: A Relationship between Visual and Auditory Preference in the Human Superior Temporal Sulcus.

    PubMed

    Zhu, Lin L; Beauchamp, Michael S

    2017-03-08

    Cortex in and around the human posterior superior temporal sulcus (pSTS) is known to be critical for speech perception. The pSTS responds to both the visual modality (especially biological motion) and the auditory modality (especially human voices). Using fMRI in single subjects with no spatial smoothing, we show that visual and auditory selectivity are linked. Regions of the pSTS were identified that preferred visually presented moving mouths (presented in isolation or as part of a whole face) or moving eyes. Mouth-preferring regions responded strongly to voices and showed a significant preference for vocal compared with nonvocal sounds. In contrast, eye-preferring regions did not respond to either vocal or nonvocal sounds. The converse was also true: regions of the pSTS that showed a significant response to speech or preferred vocal to nonvocal sounds responded more strongly to visually presented mouths than eyes. These findings can be explained by environmental statistics. In natural environments, humans see visual mouth movements at the same time as they hear voices, while there is no auditory accompaniment to visual eye movements. The strength of a voxel's preference for visual mouth movements was strongly correlated with the magnitude of its auditory speech response and its preference for vocal sounds, suggesting that visual and auditory speech features are coded together in small populations of neurons within the pSTS. SIGNIFICANCE STATEMENT Humans interacting face to face make use of auditory cues from the talker's voice and visual cues from the talker's mouth to understand speech. The human posterior superior temporal sulcus (pSTS), a brain region known to be important for speech perception, is complex, with some regions responding to specific visual stimuli and others to specific auditory stimuli. Using BOLD fMRI, we show that the natural statistics of human speech, in which voices co-occur with mouth movements, are reflected in the neural architecture of the pSTS. Different pSTS regions prefer visually presented faces containing either a moving mouth or moving eyes, but only mouth-preferring regions respond strongly to voices. Copyright © 2017 the authors 0270-6474/17/372697-12$15.00/0.

  16. Emotional context enhances auditory novelty processing in superior temporal gyrus.

    PubMed

    Domínguez-Borràs, Judith; Trautmann, Sina-Alexa; Erhard, Peter; Fehr, Thorsten; Herrmann, Manfred; Escera, Carles

    2009-07-01

    Visualizing emotionally loaded pictures intensifies peripheral reflexes toward sudden auditory stimuli, suggesting that the emotional context may potentiate responses elicited by novel events in the acoustic environment. However, psychophysiological results have reported that attentional resources available to sounds become depleted, as attention allocation to emotional pictures increases. These findings have raised the challenging question of whether an emotional context actually enhances or attenuates auditory novelty processing at a central level in the brain. To solve this issue, we used functional magnetic resonance imaging to first identify brain activations induced by novel sounds (NOV) when participants made a color decision on visual stimuli containing both negative (NEG) and neutral (NEU) facial expressions. We then measured modulation of these auditory responses by the emotional load of the task. Contrary to what was assumed, activation induced by NOV in superior temporal gyrus (STG) was enhanced when subjects responded to faces with a NEG emotional expression compared with NEU ones. Accordingly, NOV yielded stronger behavioral disruption on subjects' performance in the NEG context. These results demonstrate that the emotional context modulates the excitability of auditory and possibly multimodal novelty cerebral regions, enhancing acoustic novelty processing in a potentially harming environment.

  17. [Low level auditory skills compared to writing skills in school children attending third and fourth grade: evidence for the rapid auditory processing deficit theory?].

    PubMed

    Ptok, M; Meisen, R

    2008-01-01

    The rapid auditory processing defi-cit theory holds that impaired reading/writing skills are not caused exclusively by a cognitive deficit specific to representation and processing of speech sounds but arise due to sensory, mainly auditory, deficits. To further explore this theory we compared different measures of auditory low level skills to writing skills in school children. prospective study. School children attending third and fourth grade. just noticeable differences for intensity and frequency (JNDI, JNDF), gap detection (GD) monaural and binaural temporal order judgement (TOJb and TOJm); grade in writing, language and mathematics. correlation analysis. No relevant correlation was found between any auditory low level processing variable and writing skills. These data do not support the rapid auditory processing deficit theory.

  18. Being First Matters: Topographical Representational Similarity Analysis of ERP Signals Reveals Separate Networks for Audiovisual Temporal Binding Depending on the Leading Sense.

    PubMed

    Cecere, Roberto; Gross, Joachim; Willis, Ashleigh; Thut, Gregor

    2017-05-24

    In multisensory integration, processing in one sensory modality is enhanced by complementary information from other modalities. Intersensory timing is crucial in this process because only inputs reaching the brain within a restricted temporal window are perceptually bound. Previous research in the audiovisual field has investigated various features of the temporal binding window, revealing asymmetries in its size and plasticity depending on the leading input: auditory-visual (AV) or visual-auditory (VA). Here, we tested whether separate neuronal mechanisms underlie this AV-VA dichotomy in humans. We recorded high-density EEG while participants performed an audiovisual simultaneity judgment task including various AV-VA asynchronies and unisensory control conditions (visual-only, auditory-only) and tested whether AV and VA processing generate different patterns of brain activity. After isolating the multisensory components of AV-VA event-related potentials (ERPs) from the sum of their unisensory constituents, we ran a time-resolved topographical representational similarity analysis (tRSA) comparing the AV and VA ERP maps. Spatial cross-correlation matrices were built from real data to index the similarity between the AV and VA maps at each time point (500 ms window after stimulus) and then correlated with two alternative similarity model matrices: AV maps = VA maps versus AV maps ≠ VA maps The tRSA results favored the AV maps ≠ VA maps model across all time points, suggesting that audiovisual temporal binding (indexed by synchrony perception) engages different neural pathways depending on the leading sense. The existence of such dual route supports recent theoretical accounts proposing that multiple binding mechanisms are implemented in the brain to accommodate different information parsing strategies in auditory and visual sensory systems. SIGNIFICANCE STATEMENT Intersensory timing is a crucial aspect of multisensory integration, determining whether and how inputs in one modality enhance stimulus processing in another modality. Our research demonstrates that evaluating synchrony of auditory-leading (AV) versus visual-leading (VA) audiovisual stimulus pairs is characterized by two distinct patterns of brain activity. This suggests that audiovisual integration is not a unitary process and that different binding mechanisms are recruited in the brain based on the leading sense. These mechanisms may be relevant for supporting different classes of multisensory operations, for example, auditory enhancement of visual attention (AV) and visual enhancement of auditory speech (VA). Copyright © 2017 Cecere et al.

  19. Pairing tone trains with vagus nerve stimulation induces temporal plasticity in auditory cortex.

    PubMed

    Shetake, Jai A; Engineer, Navzer D; Vrana, Will A; Wolf, Jordan T; Kilgard, Michael P

    2012-01-01

    The selectivity of neurons in sensory cortex can be modified by pairing neuromodulator release with sensory stimulation. Repeated pairing of electrical stimulation of the cholinergic nucleus basalis, for example, induces input specific plasticity in primary auditory cortex (A1). Pairing nucleus basalis stimulation (NBS) with a tone increases the number of A1 neurons that respond to the paired tone frequency. Pairing NBS with fast or slow tone trains can respectively increase or decrease the ability of A1 neurons to respond to rapidly presented tones. Pairing vagus nerve stimulation (VNS) with a single tone alters spectral tuning in the same way as NBS-tone pairing without the need for brain surgery. In this study, we tested whether pairing VNS with tone trains can change the temporal response properties of A1 neurons. In naïve rats, A1 neurons respond strongly to tones repeated at rates up to 10 pulses per second (pps). Repeatedly pairing VNS with 15 pps tone trains increased the temporal following capacity of A1 neurons and repeatedly pairing VNS with 5 pps tone trains decreased the temporal following capacity of A1 neurons. Pairing VNS with tone trains did not alter the frequency selectivity or tonotopic organization of auditory cortex neurons. Since VNS is well tolerated by patients, VNS-tone train pairing represents a viable method to direct temporal plasticity in a variety of human conditions associated with temporal processing deficits. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Assessing the effect of physical differences in the articulation of consonants and vowels on audiovisual temporal perception

    PubMed Central

    Vatakis, Argiro; Maragos, Petros; Rodomagoulakis, Isidoros; Spence, Charles

    2012-01-01

    We investigated how the physical differences associated with the articulation of speech affect the temporal aspects of audiovisual speech perception. Video clips of consonants and vowels uttered by three different speakers were presented. The video clips were analyzed using an auditory-visual signal saliency model in order to compare signal saliency and behavioral data. Participants made temporal order judgments (TOJs) regarding which speech-stream (auditory or visual) had been presented first. The sensitivity of participants' TOJs and the point of subjective simultaneity (PSS) were analyzed as a function of the place, manner of articulation, and voicing for consonants, and the height/backness of the tongue and lip-roundedness for vowels. We expected that in the case of the place of articulation and roundedness, where the visual-speech signal is more salient, temporal perception of speech would be modulated by the visual-speech signal. No such effect was expected for the manner of articulation or height. The results demonstrate that for place and manner of articulation, participants' temporal percept was affected (although not always significantly) by highly-salient speech-signals with the visual-signals requiring smaller visual-leads at the PSS. This was not the case when height was evaluated. These findings suggest that in the case of audiovisual speech perception, a highly salient visual-speech signal may lead to higher probabilities regarding the identity of the auditory-signal that modulate the temporal window of multisensory integration of the speech-stimulus. PMID:23060756

  1. Processing of spectral and amplitude envelope of animal vocalizations in the human auditory cortex.

    PubMed

    Altmann, Christian F; Gomes de Oliveira Júnior, Cícero; Heinemann, Linda; Kaiser, Jochen

    2010-08-01

    In daily life, we usually identify sounds effortlessly and efficiently. Two properties are particularly salient and of importance for sound identification: the sound's overall spectral envelope and its temporal amplitude envelope. In this study, we aimed at investigating the representation of these two features in the human auditory cortex by using a functional magnetic resonance imaging adaptation paradigm. We presented pairs of sound stimuli derived from animal vocalizations that preserved the time-averaged frequency spectrum of the animal vocalizations and the amplitude envelope. We presented the pairs in four different conditions: (a) pairs with the same amplitude envelope and mean spectral envelope, (b) same amplitude envelope, but different mean spectral envelope, (c) different amplitude envelope, but same mean spectral envelope and (d) both different amplitude envelope and mean spectral envelope. We found fMRI adaptation effects for both the mean spectral envelope and the amplitude envelope of animal vocalizations in overlapping cortical areas in the bilateral superior temporal gyrus posterior to Heschl's gyrus. Areas sensitive to the amplitude envelope extended further anteriorly along the lateral superior temporal gyrus in the left hemisphere, while areas sensitive to the spectral envelope extended further anteriorly along the right lateral superior temporal gyrus. Posterior tonotopic areas within the left superior temporal lobe displayed sensitivity for the mean spectrum. Our findings suggest involvement of primary auditory areas in the representation of spectral cues and encoding of general spectro-temporal features of natural sounds in non-primary posterior and lateral superior temporal cortex. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. Cross-modal activation of auditory regions during visuo-spatial working memory in early deafness.

    PubMed

    Ding, Hao; Qin, Wen; Liang, Meng; Ming, Dong; Wan, Baikun; Li, Qiang; Yu, Chunshui

    2015-09-01

    Early deafness can reshape deprived auditory regions to enable the processing of signals from the remaining intact sensory modalities. Cross-modal activation has been observed in auditory regions during non-auditory tasks in early deaf subjects. In hearing subjects, visual working memory can evoke activation of the visual cortex, which further contributes to behavioural performance. In early deaf subjects, however, whether and how auditory regions participate in visual working memory remains unclear. We hypothesized that auditory regions may be involved in visual working memory processing and activation of auditory regions may contribute to the superior behavioural performance of early deaf subjects. In this study, 41 early deaf subjects (22 females and 19 males, age range: 20-26 years, age of onset of deafness < 2 years) and 40 age- and gender-matched hearing controls underwent functional magnetic resonance imaging during a visuo-spatial delayed recognition task that consisted of encoding, maintenance and recognition stages. The early deaf subjects exhibited faster reaction times on the spatial working memory task than did the hearing controls. Compared with hearing controls, deaf subjects exhibited increased activation in the superior temporal gyrus bilaterally during the recognition stage. This increased activation amplitude predicted faster and more accurate working memory performance in deaf subjects. Deaf subjects also had increased activation in the superior temporal gyrus bilaterally during the maintenance stage and in the right superior temporal gyrus during the encoding stage. These increased activation amplitude also predicted faster reaction times on the spatial working memory task in deaf subjects. These findings suggest that cross-modal plasticity occurs in auditory association areas in early deaf subjects. These areas are involved in visuo-spatial working memory. Furthermore, amplitudes of cross-modal activation during the maintenance stage were positively correlated with the age of onset of hearing aid use and were negatively correlated with the percentage of lifetime hearing aid use in deaf subjects. These findings suggest that earlier and longer hearing aid use may inhibit cross-modal reorganization in early deaf subjects. Granger causality analysis revealed that, compared to the hearing controls, the deaf subjects had an enhanced net causal flow from the frontal eye field to the superior temporal gyrus. These findings indicate that a top-down mechanism may better account for the cross-modal activation of auditory regions in early deaf subjects.See MacSweeney and Cardin (doi:10/1093/awv197) for a scientific commentary on this article. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Oscillatory support for rapid frequency change processing in infants.

    PubMed

    Musacchia, Gabriella; Choudhury, Naseem A; Ortiz-Mantilla, Silvia; Realpe-Bonilla, Teresa; Roesler, Cynthia P; Benasich, April A

    2013-11-01

    Rapid auditory processing and auditory change detection abilities are crucial aspects of speech and language development, particularly in the first year of life. Animal models and adult studies suggest that oscillatory synchrony, and in particular low-frequency oscillations play key roles in this process. We hypothesize that infant perception of rapid pitch and timing changes is mediated, at least in part, by oscillatory mechanisms. Using event-related potentials (ERPs), source localization and time-frequency analysis of event-related oscillations (EROs), we examined the neural substrates of rapid auditory processing in 4-month-olds. During a standard oddball paradigm, infants listened to tone pairs with invariant standard (STD, 800-800 Hz) and variant deviant (DEV, 800-1200 Hz) pitch. STD and DEV tone pairs were first presented in a block with a short inter-stimulus interval (ISI) (Rapid Rate: 70 ms ISI), followed by a block of stimuli with a longer ISI (Control Rate: 300 ms ISI). Results showed greater ERP peak amplitude in response to the DEV tone in both conditions and later and larger peaks during Rapid Rate presentation, compared to the Control condition. Sources of neural activity, localized to right and left auditory regions, showed larger and faster activation in the right hemisphere for both rate conditions. Time-frequency analysis of the source activity revealed clusters of theta band enhancement to the DEV tone in right auditory cortex for both conditions. Left auditory activity was enhanced only during Rapid Rate presentation. These data suggest that local low-frequency oscillatory synchrony underlies rapid processing and can robustly index auditory perception in young infants. Furthermore, left hemisphere recruitment during rapid frequency change discrimination suggests a difference in the spectral and temporal resolution of right and left hemispheres at a very young age. © 2013 Elsevier Ltd. All rights reserved.

  4. White matter anisotropy in the ventral language pathway predicts sound-to-word learning success

    PubMed Central

    Wong, Francis C. K.; Chandrasekaran, Bharath; Garibaldi, Kyla; Wong, Patrick C. M.

    2011-01-01

    According to the dual stream model of auditory language processing, the dorsal stream is responsible for mapping sound to articulation while the ventral stream plays the role of mapping sound to meaning. Most researchers agree that the arcuate fasciculus (AF) is the neuroanatomical correlate of the dorsal steam, however, less is known about what constitutes the ventral one. Nevertheless two hypotheses exist, one suggests that the segment of the AF that terminates in middle temporal gyrus corresponds to the ventral stream and the other suggests that it is the extreme capsule that underlies this sound to meaning pathway. The goal of this study is to evaluate these two competing hypotheses. We trained participants with a sound-to-word learning paradigm in which they learned to use a foreign phonetic contrast for signaling word meaning. Using diffusion tensor imaging (DTI), a brain imaging tool to investigate white matter connectivity in humans, we found that fractional anisotropy in the left parietal-temporal region positively correlated with the performance in sound-to-word learning. In addition, fiber tracking revealed a ventral pathway, composed of the extreme capsule and the inferior longitudinal fasciculus, that mediated auditory comprehension. Our findings provide converging evidence supporting the importance of the ventral steam, an extreme capsule system, in the frontal-temporal language network. Implications for current models of speech processing will also be discussed. PMID:21677162

  5. In-Vivo Animation of Auditory-Language-Induced Gamma-Oscillations in Children with Intractable Focal Epilepsy

    PubMed Central

    Brown, Erik C.; Rothermel, Robert; Nishida, Masaaki; Juhász, Csaba; Muzik, Otto; Hoechstetter, Karsten; Sood, Sandeep; Chugani, Harry T.; Asano, Eishi

    2008-01-01

    We determined if high-frequency gamma-oscillations (50- to 150-Hz) were induced by simple auditory communication over the language network areas in children with focal epilepsy. Four children (ages: 7, 9, 10 and 16 years) with intractable left-hemispheric focal epilepsy underwent extraoperative electrocorticography (ECoG) as well as language mapping using neurostimulation and auditory-language-induced gamma-oscillations on ECoG. The audible communication was recorded concurrently and integrated with ECoG recording to allow for accurate time-lock upon ECoG analysis. In three children, who successfully completed the auditory-language task, high-frequency gamma-augmentation sequentially involved: i) the posterior superior temporal gyrus when listening to the question, ii) the posterior lateral temporal region and the posterior frontal region in the time interval between question completion and the patient’s vocalization, and iii) the pre- and post-central gyri immediately preceding and during the patient’s vocalization. The youngest child, with attention deficits, failed to cooperate during the auditory-language task, and high-frequency gamma-augmentation was noted only in the posterior superior temporal gyrus when audible questions were given. The size of language areas suggested by statistically-significant high-frequency gamma-augmentation was larger than that defined by neurostimulation. The present method can provide in-vivo imaging of electrophysiological activities over the language network areas during language processes. Further studies are warranted to determine whether recording of language-induced gamma-oscillations can supplement language mapping using neurostimulation in presurgical evaluation of children with focal epilepsy. PMID:18455440

  6. Inter-subject synchronization of brain responses during natural music listening

    PubMed Central

    Abrams, Daniel A.; Ryali, Srikanth; Chen, Tianwen; Chordia, Parag; Khouzam, Amirah; Levitin, Daniel J.; Menon, Vinod

    2015-01-01

    Music is a cultural universal and a rich part of the human experience. However, little is known about common brain systems that support the processing and integration of extended, naturalistic ‘real-world’ music stimuli. We examined this question by presenting extended excerpts of symphonic music, and two pseudomusical stimuli in which the temporal and spectral structure of the Natural Music condition were disrupted, to non-musician participants undergoing functional brain imaging and analysing synchronized spatiotemporal activity patterns between listeners. We found that music synchronizes brain responses across listeners in bilateral auditory midbrain and thalamus, primary auditory and auditory association cortex, right-lateralized structures in frontal and parietal cortex, and motor planning regions of the brain. These effects were greater for natural music compared to the pseudo-musical control conditions. Remarkably, inter-subject synchronization in the inferior colliculus and medial geniculate nucleus was also greater for the natural music condition, indicating that synchronization at these early stages of auditory processing is not simply driven by spectro-temporal features of the stimulus. Increased synchronization during music listening was also evident in a right-hemisphere fronto-parietal attention network and bilateral cortical regions involved in motor planning. While these brain structures have previously been implicated in various aspects of musical processing, our results are the first to show that these regions track structural elements of a musical stimulus over extended time periods lasting minutes. Our results show that a hierarchical distributed network is synchronized between individuals during the processing of extended musical sequences, and provide new insight into the temporal integration of complex and biologically salient auditory sequences. PMID:23578016

  7. Auditory Temporal Acuity Probed With Cochlear Implant Stimulation and Cortical Recording

    PubMed Central

    Kirby, Alana E.

    2010-01-01

    Cochlear implants stimulate the auditory nerve with amplitude-modulated (AM) electric pulse trains. Pulse rates >2,000 pulses per second (pps) have been hypothesized to enhance transmission of temporal information. Recent studies, however, have shown that higher pulse rates impair phase locking to sinusoidal AM in the auditory cortex and impair perceptual modulation detection. Here, we investigated the effects of high pulse rates on the temporal acuity of transmission of pulse trains to the auditory cortex. In anesthetized guinea pigs, signal-detection analysis was used to measure the thresholds for detection of gaps in pulse trains at rates of 254, 1,017, and 4,069 pps and in acoustic noise. Gap-detection thresholds decreased by an order of magnitude with increases in pulse rate from 254 to 4,069 pps. Such a pulse-rate dependence would likely influence speech reception through clinical speech processors. To elucidate the neural mechanisms of gap detection, we measured recovery from forward masking after a 196.6-ms pulse train. Recovery from masking was faster at higher carrier pulse rates and masking increased linearly with current level. We fit the data with a dual-exponential recovery function, consistent with a peripheral and a more central process. High-rate pulse trains evoked less central masking, possibly due to adaptation of the response in the auditory nerve. Neither gap detection nor forward masking varied with cortical depth, indicating that these processes are likely subcortical. These results indicate that gap detection and modulation detection are mediated by two separate neural mechanisms. PMID:19923242

  8. Temporal Processing, Attention, and Learning Disorders

    ERIC Educational Resources Information Center

    Landerl, Karin; Willburger, Edith

    2010-01-01

    In a large sample (N = 439) of literacy impaired and unimpaired elementary school children the predictions of the temporal processing theory of dyslexia were tested while controlling for (sub)clininal attentional deficits. Visual and Auditory Temporal Order Judgement were administered as well as three subtests of a standardized attention test. The…

  9. Cerebrospinal otorrhoea--a temporal bone report.

    PubMed

    Walby, A P

    1988-05-01

    Spontaneous cerebrospinal otorrhoea is a rare complication of a cholesteatoma. The histological findings in a temporal bone from such a case are reported. The cholesteatoma had eroded deeply through the vestibule into the internal auditory meatus.

  10. Timing in audiovisual speech perception: A mini review and new psychophysical data.

    PubMed

    Venezia, Jonathan H; Thurman, Steven M; Matchin, William; George, Sahara E; Hickok, Gregory

    2016-02-01

    Recent influential models of audiovisual speech perception suggest that visual speech aids perception by generating predictions about the identity of upcoming speech sounds. These models place stock in the assumption that visual speech leads auditory speech in time. However, it is unclear whether and to what extent temporally-leading visual speech information contributes to perception. Previous studies exploring audiovisual-speech timing have relied upon psychophysical procedures that require artificial manipulation of cross-modal alignment or stimulus duration. We introduce a classification procedure that tracks perceptually relevant visual speech information in time without requiring such manipulations. Participants were shown videos of a McGurk syllable (auditory /apa/ + visual /aka/ = perceptual /ata/) and asked to perform phoneme identification (/apa/ yes-no). The mouth region of the visual stimulus was overlaid with a dynamic transparency mask that obscured visual speech in some frames but not others randomly across trials. Variability in participants' responses (~35 % identification of /apa/ compared to ~5 % in the absence of the masker) served as the basis for classification analysis. The outcome was a high resolution spatiotemporal map of perceptually relevant visual features. We produced these maps for McGurk stimuli at different audiovisual temporal offsets (natural timing, 50-ms visual lead, and 100-ms visual lead). Briefly, temporally-leading (~130 ms) visual information did influence auditory perception. Moreover, several visual features influenced perception of a single speech sound, with the relative influence of each feature depending on both its temporal relation to the auditory signal and its informational content.

  11. Comparison of temporal properties of auditory single units in response to cochlear infrared laser stimulation recorded with multi-channel and single tungsten electrodes

    NASA Astrophysics Data System (ADS)

    Tan, Xiaodong; Xia, Nan; Young, Hunter; Richter, Claus-Peter

    2015-02-01

    Auditory prostheses may benefit from Infrared Neural Stimulation (INS) because optical stimulation allows for spatially selective activation of neuron populations. Selective activation of neurons in the cochlear spiral ganglion can be determined in the central nucleus of the inferior colliculus (ICC) because the tonotopic organization of frequencies in the cochlea is maintained throughout the auditory pathway. The activation profile of INS is well represented in the ICC by multichannel electrodes (MCEs). To characterize single unit properties in response to INS, however, single tungsten electrodes (STEs) should be used because of its better signal-to-noise ratio. In this study, we compared the temporal properties of ICC single units recorded with MCEs and STEs in order to characterize the response properties of single auditory neurons in response to INS in guinea pigs. The length along the cochlea stimulated with infrared radiation corresponded to a frequency range of about 0.6 octaves, similar to that recorded with STEs. The temporal properties of single units recorded with MCEs showed higher maximum rates, shorter latencies, and higher firing efficiencies compared to those recorded with STEs. When the preset amplitude threshold for triggering MCE recordings was raised to twice over the noise level, the temporal properties of the single units became similar to those obtained with STEs. Undistinguishable neural activities from multiple sources in MCE recordings could be responsible for the response property difference between MCEs and STEs. Thus, caution should be taken in single unit recordings with MCEs.

  12. Timing in Audiovisual Speech Perception: A Mini Review and New Psychophysical Data

    PubMed Central

    Venezia, Jonathan H.; Thurman, Steven M.; Matchin, William; George, Sahara E.; Hickok, Gregory

    2015-01-01

    Recent influential models of audiovisual speech perception suggest that visual speech aids perception by generating predictions about the identity of upcoming speech sounds. These models place stock in the assumption that visual speech leads auditory speech in time. However, it is unclear whether and to what extent temporally-leading visual speech information contributes to perception. Previous studies exploring audiovisual-speech timing have relied upon psychophysical procedures that require artificial manipulation of cross-modal alignment or stimulus duration. We introduce a classification procedure that tracks perceptually-relevant visual speech information in time without requiring such manipulations. Participants were shown videos of a McGurk syllable (auditory /apa/ + visual /aka/ = perceptual /ata/) and asked to perform phoneme identification (/apa/ yes-no). The mouth region of the visual stimulus was overlaid with a dynamic transparency mask that obscured visual speech in some frames but not others randomly across trials. Variability in participants' responses (∼35% identification of /apa/ compared to ∼5% in the absence of the masker) served as the basis for classification analysis. The outcome was a high resolution spatiotemporal map of perceptually-relevant visual features. We produced these maps for McGurk stimuli at different audiovisual temporal offsets (natural timing, 50-ms visual lead, and 100-ms visual lead). Briefly, temporally-leading (∼130 ms) visual information did influence auditory perception. Moreover, several visual features influenced perception of a single speech sound, with the relative influence of each feature depending on both its temporal relation to the auditory signal and its informational content. PMID:26669309

  13. Interaction of language, auditory and memory brain networks in auditory verbal hallucinations.

    PubMed

    Ćurčić-Blake, Branislava; Ford, Judith M; Hubl, Daniela; Orlov, Natasza D; Sommer, Iris E; Waters, Flavie; Allen, Paul; Jardri, Renaud; Woodruff, Peter W; David, Olivier; Mulert, Christoph; Woodward, Todd S; Aleman, André

    2017-01-01

    Auditory verbal hallucinations (AVH) occur in psychotic disorders, but also as a symptom of other conditions and even in healthy people. Several current theories on the origin of AVH converge, with neuroimaging studies suggesting that the language, auditory and memory/limbic networks are of particular relevance. However, reconciliation of these theories with experimental evidence is missing. We review 50 studies investigating functional (EEG and fMRI) and anatomic (diffusion tensor imaging) connectivity in these networks, and explore the evidence supporting abnormal connectivity in these networks associated with AVH. We distinguish between functional connectivity during an actual hallucination experience (symptom capture) and functional connectivity during either the resting state or a task comparing individuals who hallucinate with those who do not (symptom association studies). Symptom capture studies clearly reveal a pattern of increased coupling among the auditory, language and striatal regions. Anatomical and symptom association functional studies suggest that the interhemispheric connectivity between posterior auditory regions may depend on the phase of illness, with increases in non-psychotic individuals and first episode patients and decreases in chronic patients. Leading hypotheses involving concepts as unstable memories, source monitoring, top-down attention, and hybrid models of hallucinations are supported in part by the published connectivity data, although several caveats and inconsistencies remain. Specifically, possible changes in fronto-temporal connectivity are still under debate. Precise hypotheses concerning the directionality of connections deduced from current theoretical approaches should be tested using experimental approaches that allow for discrimination of competing hypotheses. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Predicting Future Reading Problems Based on Pre-reading Auditory Measures: A Longitudinal Study of Children with a Familial Risk of Dyslexia

    PubMed Central

    Law, Jeremy M.; Vandermosten, Maaike; Ghesquière, Pol; Wouters, Jan

    2017-01-01

    Purpose: This longitudinal study examines measures of temporal auditory processing in pre-reading children with a family risk of dyslexia. Specifically, it attempts to ascertain whether pre-reading auditory processing, speech perception, and phonological awareness (PA) reliably predict later literacy achievement. Additionally, this study retrospectively examines the presence of pre-reading auditory processing, speech perception, and PA impairments in children later found to be literacy impaired. Method: Forty-four pre-reading children with and without a family risk of dyslexia were assessed at three time points (kindergarten, first, and second grade). Auditory processing measures of rise time (RT) discrimination and frequency modulation (FM) along with speech perception, PA, and various literacy tasks were assessed. Results: Kindergarten RT uniquely contributed to growth in literacy in grades one and two, even after controlling for letter knowledge and PA. Highly significant concurrent and predictive correlations were observed with kindergarten RT significantly predicting first grade PA. Retrospective analysis demonstrated atypical performance in RT and PA at all three time points in children who later developed literacy impairments. Conclusions: Although significant, kindergarten auditory processing contributions to later literacy growth lack the power to be considered as a single-cause predictor; thus results support temporal processing deficits' contribution within a multiple deficit model of dyslexia. PMID:28223953

  15. Brain bases for auditory stimulus-driven figure-ground segregation.

    PubMed

    Teki, Sundeep; Chait, Maria; Kumar, Sukhbinder; von Kriegstein, Katharina; Griffiths, Timothy D

    2011-01-05

    Auditory figure-ground segregation, listeners' ability to selectively hear out a sound of interest from a background of competing sounds, is a fundamental aspect of scene analysis. In contrast to the disordered acoustic environment we experience during everyday listening, most studies of auditory segregation have used relatively simple, temporally regular signals. We developed a new figure-ground stimulus that incorporates stochastic variation of the figure and background that captures the rich spectrotemporal complexity of natural acoustic scenes. Figure and background signals overlap in spectrotemporal space, but vary in the statistics of fluctuation, such that the only way to extract the figure is by integrating the patterns over time and frequency. Our behavioral results demonstrate that human listeners are remarkably sensitive to the appearance of such figures. In a functional magnetic resonance imaging experiment, aimed at investigating preattentive, stimulus-driven, auditory segregation mechanisms, naive subjects listened to these stimuli while performing an irrelevant task. Results demonstrate significant activations in the intraparietal sulcus (IPS) and the superior temporal sulcus related to bottom-up, stimulus-driven figure-ground decomposition. We did not observe any significant activation in the primary auditory cortex. Our results support a role for automatic, bottom-up mechanisms in the IPS in mediating stimulus-driven, auditory figure-ground segregation, which is consistent with accumulating evidence implicating the IPS in structuring sensory input and perceptual organization.

  16. Auditory processing and speech perception in children with specific language impairment: relations with oral language and literacy skills.

    PubMed

    Vandewalle, Ellen; Boets, Bart; Ghesquière, Pol; Zink, Inge

    2012-01-01

    This longitudinal study investigated temporal auditory processing (frequency modulation and between-channel gap detection) and speech perception (speech-in-noise and categorical perception) in three groups of 6 years 3 months to 6 years 8 months-old children attending grade 1: (1) children with specific language impairment (SLI) and literacy delay (n = 8), (2) children with SLI and normal literacy (n = 10) and (3) typically developing children (n = 14). Moreover, the relations between these auditory processing and speech perception skills and oral language and literacy skills in grade 1 and grade 3 were analyzed. The SLI group with literacy delay scored significantly lower than both other groups on speech perception, but not on temporal auditory processing. Both normal reading groups did not differ in terms of speech perception or auditory processing. Speech perception was significantly related to reading and spelling in grades 1 and 3 and had a unique predictive contribution to reading growth in grade 3, even after controlling reading level, phonological ability, auditory processing and oral language skills in grade 1. These findings indicated that speech perception also had a unique direct impact upon reading development and not only through its relation with phonological awareness. Moreover, speech perception seemed to be more associated with the development of literacy skills and less with oral language ability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Early multisensory interactions affect the competition among multiple visual objects.

    PubMed

    Van der Burg, Erik; Talsma, Durk; Olivers, Christian N L; Hickey, Clayton; Theeuwes, Jan

    2011-04-01

    In dynamic cluttered environments, audition and vision may benefit from each other in determining what deserves further attention and what does not. We investigated the underlying neural mechanisms responsible for attentional guidance by audiovisual stimuli in such an environment. Event-related potentials (ERPs) were measured during visual search through dynamic displays consisting of line elements that randomly changed orientation. Search accuracy improved when a target orientation change was synchronized with an auditory signal as compared to when the auditory signal was absent or synchronized with a distractor orientation change. The ERP data show that behavioral benefits were related to an early multisensory interaction over left parieto-occipital cortex (50-60 ms post-stimulus onset), which was followed by an early positive modulation (80-100 ms) over occipital and temporal areas contralateral to the audiovisual event, an enhanced N2pc (210-250 ms), and a contralateral negative slow wave (CNSW). The early multisensory interaction was correlated with behavioral search benefits, indicating that participants with a strong multisensory interaction benefited the most from the synchronized auditory signal. We suggest that an auditory signal enhances the neural response to a synchronized visual event, which increases the chances of selection in a multiple object environment. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. A biophysical model for modulation frequency encoding in the cochlear nucleus.

    PubMed

    Eguia, Manuel C; Garcia, Guadalupe C; Romano, Sebastian A

    2010-01-01

    Encoding of amplitude modulated (AM) acoustical signals is one of the most compelling tasks for the mammalian auditory system: environmental sounds, after being filtered and transduced by the cochlea, become narrowband AM signals. Despite much experimental work dedicated to the comprehension of auditory system extraction and encoding of AM information, the neural mechanisms underlying this remarkable feature are far from being understood (Joris et al., 2004). One of the most accepted theories for this processing is the existence of a periodotopic organization (based on temporal information) across the more studied tonotopic axis (Frisina et al., 1990b). In this work, we will review some recent advances in the study of the mechanisms involved in neural processing of AM sounds, and propose an integrated model that runs from the external ear, through the cochlea and the auditory nerve, up to a sub-circuit of the cochlear nucleus (the first processing unit in the central auditory system). We will show that varying the amount of inhibition in our model we can obtain a range of best modulation frequencies (BMF) in some principal cells of the cochlear nucleus. This could be a basis for a synchronicity based, low-level periodotopic organization. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  19. Language impairment is reflected in auditory evoked fields.

    PubMed

    Pihko, Elina; Kujala, Teija; Mickos, Annika; Alku, Paavo; Byring, Roger; Korkman, Marit

    2008-05-01

    Specific language impairment (SLI) is diagnosed when a child has problems in producing or understanding language despite having a normal IQ and there being no other obvious explanation. There can be several associated problems, and no single underlying cause has yet been identified. Some theories propose problems in auditory processing, specifically in the discrimination of sound frequency or rapid temporal frequency changes. We compared automatic cortical speech-sound processing and discrimination between a group of children with SLI and control children with normal language development (mean age: 6.6 years; range: 5-7 years). We measured auditory evoked magnetic fields using two sets of CV syllables, one with a changing consonant /da/ba/ga/ and another one with a changing vowel /su/so/sy/ in an oddball paradigm. The P1m responses for onsets of repetitive stimuli were weaker in the SLI group whereas no significant group differences were found in the mismatch responses. The results indicate that the SLI group, having weaker responses to the onsets of sounds, might have slightly depressed sensory encoding.

  20. Cross-modal detection using various temporal and spatial configurations.

    PubMed

    Schirillo, James A

    2011-01-01

    To better understand temporal and spatial cross-modal interactions, two signal detection experiments were conducted in which an auditory target was sometimes accompanied by an irrelevant flash of light. In the first, a psychometric function for detecting a unisensory auditory target in varying signal-to-noise ratios (SNRs) was derived. Then auditory target detection was measured while an irrelevant light was presented with light/sound stimulus onset asynchronies (SOAs) between 0 and ±700 ms. When the light preceded the sound by 100 ms or was coincident, target detection (d') improved for low SNR conditions. In contrast, for larger SOAs (350 and 700 ms), the behavioral gain resulted from a change in both d' and response criterion (β). However, when the light followed the sound, performance changed little. In the second experiment, observers detected multimodal target sounds at eccentricities of ±8°, and ±24°. Sensitivity benefits occurred at both locations, with a larger change at the more peripheral location. Thus, both temporal and spatial factors affect signal detection measures, effectively parsing sensory and decision-making processes.

  1. Temporal ventriloquism: crossmodal interaction on the time dimension. 1. Evidence from auditory-visual temporal order judgment.

    PubMed

    Bertelson, Paul; Aschersleben, Gisa

    2003-10-01

    In the well-known visual bias of auditory location (alias the ventriloquist effect), auditory and visual events presented in separate locations appear closer together, provided the presentations are synchronized. Here, we consider the possibility of the converse phenomenon: crossmodal attraction on the time dimension conditional on spatial proximity. Participants judged the order of occurrence of sound bursts and light flashes, respectively, separated in time by varying stimulus onset asynchronies (SOAs) and delivered either in the same or in different locations. Presentation was organized using randomly mixed psychophysical staircases, by which the SOA was reduced progressively until a point of uncertainty was reached. This point was reached at longer SOAs with the sounds in the same frontal location as the flashes than in different places, showing that apparent temporal separation is effectively longer in the first condition. Together with a similar one obtained recently in a case of tactile-visual discrepancy, this result supports a view in which timing and spatial layout of the inputs play to some extent inter-changeable roles in the pairing operation at the base of crossmodal interaction.

  2. Auditory Spatial Attention Representations in the Human Cerebral Cortex

    PubMed Central

    Kong, Lingqiang; Michalka, Samantha W.; Rosen, Maya L.; Sheremata, Summer L.; Swisher, Jascha D.; Shinn-Cunningham, Barbara G.; Somers, David C.

    2014-01-01

    Auditory spatial attention serves important functions in auditory source separation and selection. Although auditory spatial attention mechanisms have been generally investigated, the neural substrates encoding spatial information acted on by attention have not been identified in the human neocortex. We performed functional magnetic resonance imaging experiments to identify cortical regions that support auditory spatial attention and to test 2 hypotheses regarding the coding of auditory spatial attention: 1) auditory spatial attention might recruit the visuospatial maps of the intraparietal sulcus (IPS) to create multimodal spatial attention maps; 2) auditory spatial information might be encoded without explicit cortical maps. We mapped visuotopic IPS regions in individual subjects and measured auditory spatial attention effects within these regions of interest. Contrary to the multimodal map hypothesis, we observed that auditory spatial attentional modulations spared the visuotopic maps of IPS; the parietal regions activated by auditory attention lacked map structure. However, multivoxel pattern analysis revealed that the superior temporal gyrus and the supramarginal gyrus contained significant information about the direction of spatial attention. These findings support the hypothesis that auditory spatial information is coded without a cortical map representation. Our findings suggest that audiospatial and visuospatial attention utilize distinctly different spatial coding schemes. PMID:23180753

  3. Reverberation impairs brainstem temporal representations of voiced vowel sounds: challenging “periodicity-tagged” segregation of competing speech in rooms

    PubMed Central

    Sayles, Mark; Stasiak, Arkadiusz; Winter, Ian M.

    2015-01-01

    The auditory system typically processes information from concurrently active sound sources (e.g., two voices speaking at once), in the presence of multiple delayed, attenuated and distorted sound-wave reflections (reverberation). Brainstem circuits help segregate these complex acoustic mixtures into “auditory objects.” Psychophysical studies demonstrate a strong interaction between reverberation and fundamental-frequency (F0) modulation, leading to impaired segregation of competing vowels when segregation is on the basis of F0 differences. Neurophysiological studies of complex-sound segregation have concentrated on sounds with steady F0s, in anechoic environments. However, F0 modulation and reverberation are quasi-ubiquitous. We examine the ability of 129 single units in the ventral cochlear nucleus (VCN) of the anesthetized guinea pig to segregate the concurrent synthetic vowel sounds /a/ and /i/, based on temporal discharge patterns under closed-field conditions. We address the effects of added real-room reverberation, F0 modulation, and the interaction of these two factors, on brainstem neural segregation of voiced speech sounds. A firing-rate representation of single-vowels' spectral envelopes is robust to the combination of F0 modulation and reverberation: local firing-rate maxima and minima across the tonotopic array code vowel-formant structure. However, single-vowel F0-related periodicity information in shuffled inter-spike interval distributions is significantly degraded in the combined presence of reverberation and F0 modulation. Hence, segregation of double-vowels' spectral energy into two streams (corresponding to the two vowels), on the basis of temporal discharge patterns, is impaired by reverberation; specifically when F0 is modulated. All unit types (primary-like, chopper, onset) are similarly affected. These results offer neurophysiological insights to perceptual organization of complex acoustic scenes under realistically challenging listening conditions. PMID:25628545

  4. Active listening: task-dependent plasticity of spectrotemporal receptive fields in primary auditory cortex.

    PubMed

    Fritz, Jonathan; Elhilali, Mounya; Shamma, Shihab

    2005-08-01

    Listening is an active process in which attentive focus on salient acoustic features in auditory tasks can influence receptive field properties of cortical neurons. Recent studies showing rapid task-related changes in neuronal spectrotemporal receptive fields (STRFs) in primary auditory cortex of the behaving ferret are reviewed in the context of current research on cortical plasticity. Ferrets were trained on spectral tasks, including tone detection and two-tone discrimination, and on temporal tasks, including gap detection and click-rate discrimination. STRF changes could be measured on-line during task performance and occurred within minutes of task onset. During spectral tasks, there were specific spectral changes (enhanced response to tonal target frequency in tone detection and discrimination, suppressed response to tonal reference frequency in tone discrimination). However, only in the temporal tasks, the STRF was changed along the temporal dimension by sharpening temporal dynamics. In ferrets trained on multiple tasks, distinctive and task-specific STRF changes could be observed in the same cortical neurons in successive behavioral sessions. These results suggest that rapid task-related plasticity is an ongoing process that occurs at a network and single unit level as the animal switches between different tasks and dynamically adapts cortical STRFs in response to changing acoustic demands.

  5. Auditory processing, speech perception and phonological ability in pre-school children at high-risk for dyslexia: a longitudinal study of the auditory temporal processing theory.

    PubMed

    Boets, Bart; Wouters, Jan; van Wieringen, Astrid; Ghesquière, Pol

    2007-04-09

    This study investigates whether the core bottleneck of literacy-impairment should be situated at the phonological level or at a more basic sensory level, as postulated by supporters of the auditory temporal processing theory. Phonological ability, speech perception and low-level auditory processing were assessed in a group of 5-year-old pre-school children at high-family risk for dyslexia, compared to a group of well-matched low-risk control children. Based on family risk status and first grade literacy achievement children were categorized in groups and pre-school data were retrospectively reanalyzed. On average, children showing both increased family risk and literacy-impairment at the end of first grade, presented significant pre-school deficits in phonological awareness, rapid automatized naming, speech-in-noise perception and frequency modulation detection. The concurrent presence of these deficits before receiving any formal reading instruction, might suggest a causal relation with problematic literacy development. However, a closer inspection of the individual data indicates that the core of the literacy problem is situated at the level of higher-order phonological processing. Although auditory and speech perception problems are relatively over-represented in literacy-impaired subjects and might possibly aggravate the phonological and literacy problem, it is unlikely that they would be at the basis of these problems. At a neurobiological level, results are interpreted as evidence for dysfunctional processing along the auditory-to-articulation stream that is implied in phonological processing, in combination with a relatively intact or inconsistently impaired functioning of the auditory-to-meaning stream that subserves auditory processing and speech perception.

  6. Slow Cholinergic Modulation of Spike Probability in Ultra-Fast Time-Coding Sensory Neurons

    PubMed Central

    Goyer, David; Kurth, Stefanie; Rübsamen, Rudolf

    2016-01-01

    Abstract Sensory processing in the lower auditory pathway is generally considered to be rigid and thus less subject to modulation than central processing. However, in addition to the powerful bottom-up excitation by auditory nerve fibers, the ventral cochlear nucleus also receives efferent cholinergic innervation from both auditory and nonauditory top–down sources. We thus tested the influence of cholinergic modulation on highly precise time-coding neurons in the cochlear nucleus of the Mongolian gerbil. By combining electrophysiological recordings with pharmacological application in vitro and in vivo, we found 55–72% of spherical bushy cells (SBCs) to be depolarized by carbachol on two time scales, ranging from hundreds of milliseconds to minutes. These effects were mediated by nicotinic and muscarinic acetylcholine receptors, respectively. Pharmacological block of muscarinic receptors hyperpolarized the resting membrane potential, suggesting a novel mechanism of setting the resting membrane potential for SBC. The cholinergic depolarization led to an increase of spike probability in SBCs without compromising the temporal precision of the SBC output in vitro. In vivo, iontophoretic application of carbachol resulted in an increase in spontaneous SBC activity. The inclusion of cholinergic modulation in an SBC model predicted an expansion of the dynamic range of sound responses and increased temporal acuity. Our results thus suggest of a top–down modulatory system mediated by acetylcholine which influences temporally precise information processing in the lower auditory pathway. PMID:27699207

  7. Screening LGI1 in a cohort of 26 lateral temporal lobe epilepsy patients with auditory aura from Turkey detects a novel de novo mutation.

    PubMed

    Kesim, Yesim F; Uzun, Gunes Altiokka; Yucesan, Emrah; Tuncer, Feyza N; Ozdemir, Ozkan; Bebek, Nerses; Ozbek, Ugur; Iseri, Sibel A Ugur; Baykan, Betul

    2016-02-01

    Autosomal dominant lateral temporal lobe epilepsy (ADLTE) is an autosomal dominant epileptic syndrome characterized by focal seizures with auditory or aphasic symptoms. The same phenotype is also observed in a sporadic form of lateral temporal lobe epilepsy (LTLE), namely idiopathic partial epilepsy with auditory features (IPEAF). Heterozygous mutations in LGI1 account for up to 50% of ADLTE families and only rarely observed in IPEAF cases. In this study, we analysed a cohort of 26 individuals with LTLE diagnosed according to the following criteria: focal epilepsy with auditory aura and absence of cerebral lesions on brain MRI. All patients underwent clinical, neuroradiological and electroencephalography examinations and afterwards they were screened for mutations in LGI1 gene. The single LGI1 mutation identified in this study is a novel missense variant (NM_005097.2: c.1013T>C; p.Phe338Ser) observed de novo in a sporadic patient. This is the first study involving clinical analysis of a LTLE cohort from Turkey and genetic contribution of LGI1 to ADLTE phenotype. Identification of rare LGI1 gene mutations in sporadic cases supports diagnosis as ADTLE and draws attention to potential familial clustering of ADTLE in suggestive generations, which is especially important for genetic counselling. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Temporal tuning in the bat auditory cortex is sharper when studied with natural echolocation sequences.

    PubMed

    Beetz, M Jerome; Hechavarría, Julio C; Kössl, Manfred

    2016-06-30

    Precise temporal coding is necessary for proper acoustic analysis. However, at cortical level, forward suppression appears to limit the ability of neurons to extract temporal information from natural sound sequences. Here we studied how temporal processing can be maintained in the bats' cortex in the presence of suppression evoked by natural echolocation streams that are relevant to the bats' behavior. We show that cortical neurons tuned to target-distance actually profit from forward suppression induced by natural echolocation sequences. These neurons can more precisely extract target distance information when they are stimulated with natural echolocation sequences than during stimulation with isolated call-echo pairs. We conclude that forward suppression does for time domain tuning what lateral inhibition does for selectivity forms such as auditory frequency tuning and visual orientation tuning. When talking about cortical processing, suppression should be seen as a mechanistic tool rather than a limiting element.

  9. How bodies and voices interact in early emotion perception.

    PubMed

    Jessen, Sarah; Obleser, Jonas; Kotz, Sonja A

    2012-01-01

    Successful social communication draws strongly on the correct interpretation of others' body and vocal expressions. Both can provide emotional information and often occur simultaneously. Yet their interplay has hardly been studied. Using electroencephalography, we investigated the temporal development underlying their neural interaction in auditory and visual perception. In particular, we tested whether this interaction qualifies as true integration following multisensory integration principles such as inverse effectiveness. Emotional vocalizations were embedded in either low or high levels of noise and presented with or without video clips of matching emotional body expressions. In both, high and low noise conditions, a reduction in auditory N100 amplitude was observed for audiovisual stimuli. However, only under high noise, the N100 peaked earlier in the audiovisual than the auditory condition, suggesting facilitatory effects as predicted by the inverse effectiveness principle. Similarly, we observed earlier N100 peaks in response to emotional compared to neutral audiovisual stimuli. This was not the case in the unimodal auditory condition. Furthermore, suppression of beta-band oscillations (15-25 Hz) primarily reflecting biological motion perception was modulated 200-400 ms after the vocalization. While larger differences in suppression between audiovisual and audio stimuli in high compared to low noise levels were found for emotional stimuli, no such difference was observed for neutral stimuli. This observation is in accordance with the inverse effectiveness principle and suggests a modulation of integration by emotional content. Overall, results show that ecologically valid, complex stimuli such as joined body and vocal expressions are effectively integrated very early in processing.

  10. Neural coding strategies in auditory cortex.

    PubMed

    Wang, Xiaoqin

    2007-07-01

    In contrast to the visual system, the auditory system has longer subcortical pathways and more spiking synapses between the peripheral receptors and the cortex. This unique organization reflects the needs of the auditory system to extract behaviorally relevant information from a complex acoustic environment using strategies different from those used by other sensory systems. The neural representations of acoustic information in auditory cortex can be characterized by three types: (1) isomorphic (faithful) representations of acoustic structures; (2) non-isomorphic transformations of acoustic features and (3) transformations from acoustical to perceptual dimensions. The challenge facing auditory neurophysiologists is to understand the nature of the latter two transformations. In this article, I will review recent studies from our laboratory regarding temporal discharge patterns in auditory cortex of awake marmosets and cortical representations of time-varying signals. Findings from these studies show that (1) firing patterns of neurons in auditory cortex are dependent on stimulus optimality and context and (2) the auditory cortex forms internal representations of sounds that are no longer faithful replicas of their acoustic structures.

  11. Investigation of Abnormal Left Temporal Functioning in Dyslexia through rCBF, Auditory Evoked Potentials, and Positron Emission Tomography.

    ERIC Educational Resources Information Center

    Wood, Frank; And Others

    1991-01-01

    Investigates the proposed left hemisphere dysfunction in dyslexia by reviewing four studies using regional cerebral blood flow (RCBF) and combined auditory evoked responses with positron emission tomography. Emphasizes methodological issues. Finds that dyslexics showed a positive correlation between Heschl's gyrus activation and phonemic…

  12. Rhythms that Speed You Up

    ERIC Educational Resources Information Center

    Sanabria, Daniel; Capizzi, Mariagrazia; Correa, Angel

    2011-01-01

    This study investigates whether a rhythm can orient attention to specific moments enhancing people's reaction times (RT). We used a modified version of the temporal orienting paradigm in which an auditory isochronous rhythm was presented prior to an auditory single target. The rhythm could have a fast pace (450 ms Inter-Onset-Interval or IOI) or a…

  13. Auditory Frequency Discrimination in Children with Specific Language Impairment: A Longitudinal Study

    ERIC Educational Resources Information Center

    Hill, P. R.; Hogben, J. H.; Bishop, D. M. V.

    2005-01-01

    It has been proposed that specific language impairment (SLI) is caused by an impairment of auditory processing, but it is unclear whether this problem affects temporal processing, frequency discrimination (FD), or both. Furthermore, there are few longitudinal studies in this area, making it hard to establish whether any deficit represents a…

  14. The Effects of Auditory Information on 4-Month-Old Infants' Perception of Trajectory Continuity

    ERIC Educational Resources Information Center

    Bremner, J. Gavin; Slater, Alan M.; Johnson, Scott P.; Mason, Uschi C.; Spring, Jo

    2012-01-01

    Young infants perceive an object's trajectory as continuous across occlusion provided the temporal or spatial gap in perception is small. In 3 experiments involving 72 participants the authors investigated the effects of different forms of auditory information on 4-month-olds' perception of trajectory continuity. Provision of dynamic auditory…

  15. Late Maturation of Auditory Perceptual Learning

    ERIC Educational Resources Information Center

    Huyck, Julia Jones; Wright, Beverly A.

    2011-01-01

    Adults can improve their performance on many perceptual tasks with training, but when does the response to training become mature? To investigate this question, we trained 11-year-olds, 14-year-olds and adults on a basic auditory task (temporal-interval discrimination) using a multiple-session training regimen known to be effective for adults. The…

  16. Auditory Stream Segregation and the Perception of Across-Frequency Synchrony

    ERIC Educational Resources Information Center

    Micheyl, Christophe; Hunter, Cynthia; Oxenham, Andrew J.

    2010-01-01

    This study explored the extent to which sequential auditory grouping affects the perception of temporal synchrony. In Experiment 1, listeners discriminated between 2 pairs of asynchronous "target" tones at different frequencies, A and B, in which the B tone either led or lagged. Thresholds were markedly higher when the target tones were temporally…

  17. Individual Differences and Auditory Conditioning in Neonates.

    ERIC Educational Resources Information Center

    Franz, W. K.; And Others

    The purposes of this study are (1) to analyze learning ability in newborns using heart rate responses to auditory temporal conditioning and (2) to correlate these with measures on the Brazelton Neonatal Behavioral Assessment Scale. Twenty normal neonates were tested using the Brazelton Scale on the third day of life. They were also given a…

  18. Intramodal and Intermodal Functioning of Normal and LD Children

    ERIC Educational Resources Information Center

    Heath, Earl J.; Early, George H.

    1973-01-01

    Assessed were the abilities of 50 normal 5-to 9-year-old children and 30 learning disabled 7-to 9-year-old children to recognize temporal patterns presented visually and auditorially (intramodal abilities) and to vocally produce the patterns whether presentation was visual or auditory (intramodal and cross-modal abilities). (MC)

  19. Learning to Encode Timing: Mechanisms of Plasticity in the Auditory Brainstem

    PubMed Central

    Tzounopoulos, Thanos; Kraus, Nina

    2009-01-01

    Mechanisms of plasticity have traditionally been ascribed to higher-order sensory processing areas such as the cortex, whereas early sensory processing centers have been considered largely hard-wired. In agreement with this view, the auditory brainstem has been viewed as a nonplastic site, important for preserving temporal information and minimizing transmission delays. However, recent groundbreaking results from animal models and human studies have revealed remarkable evidence for cellular and behavioral mechanisms for learning and memory in the auditory brainstem. PMID:19477149

  20. Concentric scheme of monkey auditory cortex

    NASA Astrophysics Data System (ADS)

    Kosaki, Hiroko; Saunders, Richard C.; Mishkin, Mortimer

    2003-04-01

    The cytoarchitecture of the rhesus monkey's auditory cortex was examined using immunocytochemical staining with parvalbumin, calbindin-D28K, and SMI32, as well as staining for cytochrome oxidase (CO). The results suggest that Kaas and Hackett's scheme of the auditory cortices can be extended to include five concentric rings surrounding an inner core. The inner core, containing areas A1 and R, is the most densely stained with parvalbumin and CO and can be separated on the basis of laminar patterns of SMI32 staining into lateral and medial subdivisions. From the inner core to the fifth (outermost) ring, parvalbumin staining gradually decreases and calbindin staining gradually increases. The first ring corresponds to Kaas and Hackett's auditory belt, and the second, to their parabelt. SMI32 staining revealed a clear border between these two. Rings 2 through 5 extend laterally into the dorsal bank of the superior temporal sulcus. The results also suggest that the rostral tip of the outermost ring adjoins the rostroventral part of the insula (area Pro) and the temporal pole, while the caudal tip adjoins the ventral part of area 7a.

  1. Short-Term Memory for Space and Time Flexibly Recruit Complementary Sensory-Biased Frontal Lobe Attention Networks.

    PubMed

    Michalka, Samantha W; Kong, Lingqiang; Rosen, Maya L; Shinn-Cunningham, Barbara G; Somers, David C

    2015-08-19

    The frontal lobes control wide-ranging cognitive functions; however, functional subdivisions of human frontal cortex are only coarsely mapped. Here, functional magnetic resonance imaging reveals two distinct visual-biased attention regions in lateral frontal cortex, superior precentral sulcus (sPCS) and inferior precentral sulcus (iPCS), anatomically interdigitated with two auditory-biased attention regions, transverse gyrus intersecting precentral sulcus (tgPCS) and caudal inferior frontal sulcus (cIFS). Intrinsic functional connectivity analysis demonstrates that sPCS and iPCS fall within a broad visual-attention network, while tgPCS and cIFS fall within a broad auditory-attention network. Interestingly, we observe that spatial and temporal short-term memory (STM), respectively, recruit visual and auditory attention networks in the frontal lobe, independent of sensory modality. These findings not only demonstrate that both sensory modality and information domain influence frontal lobe functional organization, they also demonstrate that spatial processing co-localizes with visual processing and that temporal processing co-localizes with auditory processing in lateral frontal cortex. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Glycinergic inhibition tunes coincidence detection in the auditory brainstem

    PubMed Central

    Myoga, Michael H.; Lehnert, Simon; Leibold, Christian; Felmy, Felix; Grothe, Benedikt

    2014-01-01

    Neurons in the medial superior olive (MSO) detect microsecond differences in the arrival time of sounds between the ears (interaural time differences or ITDs), a crucial binaural cue for sound localization. Synaptic inhibition has been implicated in tuning ITD sensitivity, but the cellular mechanisms underlying its influence on coincidence detection are debated. Here we determine the impact of inhibition on coincidence detection in adult Mongolian gerbil MSO brain slices by testing precise temporal integration of measured synaptic responses using conductance-clamp. We find that inhibition dynamically shifts the peak timing of excitation, depending on its relative arrival time, which in turn modulates the timing of best coincidence detection. Inhibitory control of coincidence detection timing is consistent with the diversity of ITD functions observed in vivo and is robust under physiologically relevant conditions. Our results provide strong evidence that temporal interactions between excitation and inhibition on microsecond timescales are critical for binaural processing. PMID:24804642

  3. Musicians have enhanced audiovisual multisensory binding: experience-dependent effects in the double-flash illusion.

    PubMed

    Bidelman, Gavin M

    2016-10-01

    Musical training is associated with behavioral and neurophysiological enhancements in auditory processing for both musical and nonmusical sounds (e.g., speech). Yet, whether the benefits of musicianship extend beyond enhancements to auditory-specific skills and impact multisensory (e.g., audiovisual) processing has yet to be fully validated. Here, we investigated multisensory integration of auditory and visual information in musicians and nonmusicians using a double-flash illusion, whereby the presentation of multiple auditory stimuli (beeps) concurrent with a single visual object (flash) induces an illusory perception of multiple flashes. We parametrically varied the onset asynchrony between auditory and visual events (leads and lags of ±300 ms) to quantify participants' "temporal window" of integration, i.e., stimuli in which auditory and visual cues were fused into a single percept. Results show that musically trained individuals were both faster and more accurate at processing concurrent audiovisual cues than their nonmusician peers; nonmusicians had a higher susceptibility for responding to audiovisual illusions and perceived double flashes over an extended range of onset asynchronies compared to trained musicians. Moreover, temporal window estimates indicated that musicians' windows (<100 ms) were ~2-3× shorter than nonmusicians' (~200 ms), suggesting more refined multisensory integration and audiovisual binding. Collectively, findings indicate a more refined binding of auditory and visual cues in musically trained individuals. We conclude that experience-dependent plasticity of intensive musical experience extends beyond simple listening skills, improving multimodal processing and the integration of multiple sensory systems in a domain-general manner.

  4. Prediction and constraint in audiovisual speech perception

    PubMed Central

    Peelle, Jonathan E.; Sommers, Mitchell S.

    2015-01-01

    During face-to-face conversational speech listeners must efficiently process a rapid and complex stream of multisensory information. Visual speech can serve as a critical complement to auditory information because it provides cues to both the timing of the incoming acoustic signal (the amplitude envelope, influencing attention and perceptual sensitivity) and its content (place and manner of articulation, constraining lexical selection). Here we review behavioral and neurophysiological evidence regarding listeners' use of visual speech information. Multisensory integration of audiovisual speech cues improves recognition accuracy, particularly for speech in noise. Even when speech is intelligible based solely on auditory information, adding visual information may reduce the cognitive demands placed on listeners through increasing precision of prediction. Electrophysiological studies demonstrate oscillatory cortical entrainment to speech in auditory cortex is enhanced when visual speech is present, increasing sensitivity to important acoustic cues. Neuroimaging studies also suggest increased activity in auditory cortex when congruent visual information is available, but additionally emphasize the involvement of heteromodal regions of posterior superior temporal sulcus as playing a role in integrative processing. We interpret these findings in a framework of temporally-focused lexical competition in which visual speech information affects auditory processing to increase sensitivity to auditory information through an early integration mechanism, and a late integration stage that incorporates specific information about a speaker's articulators to constrain the number of possible candidates in a spoken utterance. Ultimately it is words compatible with both auditory and visual information that most strongly determine successful speech perception during everyday listening. Thus, audiovisual speech perception is accomplished through multiple stages of integration, supported by distinct neuroanatomical mechanisms. PMID:25890390

  5. Cellular and Molecular Underpinnings of Neuronal Assembly in the Central Auditory System during Mouse Development

    PubMed Central

    Di Bonito, Maria; Studer, Michèle

    2017-01-01

    During development, the organization of the auditory system into distinct functional subcircuits depends on the spatially and temporally ordered sequence of neuronal specification, differentiation, migration and connectivity. Regional patterning along the antero-posterior axis and neuronal subtype specification along the dorso-ventral axis intersect to determine proper neuronal fate and assembly of rhombomere-specific auditory subcircuits. By taking advantage of the increasing number of transgenic mouse lines, recent studies have expanded the knowledge of developmental mechanisms involved in the formation and refinement of the auditory system. Here, we summarize several findings dealing with the molecular and cellular mechanisms that underlie the assembly of central auditory subcircuits during mouse development, focusing primarily on the rhombomeric and dorso-ventral origin of auditory nuclei and their associated molecular genetic pathways. PMID:28469562

  6. Auditory psychophysics and perception.

    PubMed

    Hirsh, I J; Watson, C S

    1996-01-01

    In this review of auditory psychophysics and perception, we cite some important books, research monographs, and research summaries from the past decade. Within auditory psychophysics, we have singled out some topics of current importance: Cross-Spectral Processing, Timbre and Pitch, and Methodological Developments. Complex sounds and complex listening tasks have been the subject of new studies in auditory perception. We review especially work that concerns auditory pattern perception, with emphasis on temporal aspects of the patterns and on patterns that do not depend on the cognitive structures often involved in the perception of speech and music. Finally, we comment on some aspects of individual difference that are sufficiently important to question the goal of characterizing auditory properties of the typical, average, adult listener. Among the important factors that give rise to these individual differences are those involved in selective processing and attention.

  7. Modulations of neural activity in auditory streaming caused by spectral and temporal alternation in subsequent stimuli: a magnetoencephalographic study.

    PubMed

    Chakalov, Ivan; Draganova, Rossitza; Wollbrink, Andreas; Preissl, Hubert; Pantev, Christo

    2012-06-20

    The aim of the present study was to identify a specific neuronal correlate underlying the pre-attentive auditory stream segregation of subsequent sound patterns alternating in spectral or temporal cues. Fifteen participants with normal hearing were presented with series' of two consecutive ABA auditory tone-triplet sequences, the initial triplets being the Adaptation sequence and the subsequent triplets being the Test sequence. In the first experiment, the frequency separation (delta-f) between A and B tones in the sequences was varied by 2, 4 and 10 semitones. In the second experiment, a constant delta-f of 6 semitones was maintained but the Inter-Stimulus Intervals (ISIs) between A and B tones were varied. Auditory evoked magnetic fields (AEFs) were recorded using magnetoencephalography (MEG). Participants watched a muted video of their choice and ignored the auditory stimuli. In a subsequent behavioral study both MEG experiments were replicated to provide information about the participants' perceptual state. MEG measurements showed a significant increase in the amplitude of the B-tone related P1 component of the AEFs as delta-f increased. This effect was seen predominantly in the left hemisphere. A significant increase in the amplitude of the N1 component was only obtained for a Test sequence delta-f of 10 semitones with a prior Adaptation sequence of 2 semitones. This effect was more pronounced in the right hemisphere. The additional behavioral data indicated an increased probability of two-stream perception for delta-f = 4 and delta-f = 10 semitones with a preceding Adaptation sequence of 2 semitones. However, neither the neural activity nor the perception of the successive streaming sequences were modulated when the ISIs were alternated. Our MEG experiment demonstrated differences in the behavior of P1 and N1 components during the automatic segregation of sounds when induced by an initial Adaptation sequence. The P1 component appeared enhanced in all Test-conditions and thus demonstrates the preceding context effect, whereas N1 was specifically modulated only by large delta-f Test sequences induced by a preceding small delta-f Adaptation sequence. These results suggest that P1 and N1 components represent at least partially-different systems that underlie the neural representation of auditory streaming.

  8. Auditory perception of temporal order in centenarians in comparison with young and elderly subjects.

    PubMed

    Kołodziejczyk, Iwona; Szelsg, Elzbieta

    2008-01-01

    Temporal information processing controls many aspects of human mental activity and may be assessed by examining perception of temporal order in the tens of milliseconds time range. Although existing studies suggest an age-related decline in mental abilities, the data on the deterioration of temporal order perception seems inconsistent. Moreover, any evidence on subjects aged over 70 years is lacking. The present experiment aimed to extend the existing data to extremely old people. Temporal order judgment (TOJ) for auditory stimuli was tested across the life span of approx. 80 years, i.e. in young (mean age 22 years) elderly (66 years) and very old (101 years) subjects. Age-related deterioration of performance was observed, with slight changes in elderly subjects and significant deterioration in centenarians which was more distinct in women than in men. The results confirm age-related decrease in temporal resolution which may be explained by slowing of information processing or of a hypothetical internal-timing mechanism. These effects may be influenced by different strategies used in particular age groups.

  9. Song and speech: brain regions involved with perception and covert production.

    PubMed

    Callan, Daniel E; Tsytsarev, Vassiliy; Hanakawa, Takashi; Callan, Akiko M; Katsuhara, Maya; Fukuyama, Hidenao; Turner, Robert

    2006-07-01

    This 3-T fMRI study investigates brain regions similarly and differentially involved with listening and covert production of singing relative to speech. Given the greater use of auditory-motor self-monitoring and imagery with respect to consonance in singing, brain regions involved with these processes are predicted to be differentially active for singing more than for speech. The stimuli consisted of six Japanese songs. A block design was employed in which the tasks for the subject were to listen passively to singing of the song lyrics, passively listen to speaking of the song lyrics, covertly sing the song lyrics visually presented, covertly speak the song lyrics visually presented, and to rest. The conjunction of passive listening and covert production tasks used in this study allow for general neural processes underlying both perception and production to be discerned that are not exclusively a result of stimulus induced auditory processing nor to low level articulatory motor control. Brain regions involved with both perception and production for singing as well as speech were found to include the left planum temporale/superior temporal parietal region, as well as left and right premotor cortex, lateral aspect of the VI lobule of posterior cerebellum, anterior superior temporal gyrus, and planum polare. Greater activity for the singing over the speech condition for both the listening and covert production tasks was found in the right planum temporale. Greater activity in brain regions involved with consonance, orbitofrontal cortex (listening task), subcallosal cingulate (covert production task) were also present for singing over speech. The results are consistent with the PT mediating representational transformation across auditory and motor domains in response to consonance for singing over that of speech. Hemispheric laterality was assessed by paired t tests between active voxels in the contrast of interest relative to the left-right flipped contrast of interest calculated from images normalized to the left-right reflected template. Consistent with some hypotheses regarding hemispheric specialization, a pattern of differential laterality for speech over singing (both covert production and listening tasks) occurs in the left temporal lobe, whereas, singing over speech (listening task only) occurs in right temporal lobe.

  10. The Interaction of Temporal and Spectral Acoustic Information with Word Predictability on Speech Intelligibility

    NASA Astrophysics Data System (ADS)

    Shahsavarani, Somayeh Bahar

    High-level, top-down information such as linguistic knowledge is a salient cortical resource that influences speech perception under most listening conditions. But, are all listeners able to exploit these resources for speech facilitation to the same extent? It was found that children with cochlear implants showed different patterns of benefit from contextual information in speech perception compared with their normal-haring peers. Previous studies have discussed the role of non-acoustic factors such as linguistic and cognitive capabilities to account for this discrepancy. Given the fact that the amount of acoustic information encoded and processed by auditory nerves of listeners with cochlear implants differs from normal-hearing listeners and even varies across individuals with cochlear implants, it is important to study the interaction of specific acoustic properties of the speech signal with contextual cues. This relationship has been mostly neglected in previous research. In this dissertation, we aimed to explore how different acoustic dimensions interact to affect listeners' abilities to combine top-down information with bottom-up information in speech perception beyond the known effects of linguistic and cognitive capacities shown previously. Specifically, the present study investigated whether there were any distinct context effects based on the resolution of spectral versus slowly-varying temporal information in perception of spectrally impoverished speech. To that end, two experiments were conducted. In both experiments, a noise-vocoded technique was adopted to generate spectrally-degraded speech to approximate acoustic cues delivered to listeners with cochlear implants. The frequency resolution was manipulated by varying the number of frequency channels. The temporal resolution was manipulated by low-pass filtering of amplitude envelope with varying low-pass cutoff frequencies. The stimuli were presented to normal-hearing native speakers of American English. Our results revealed a significant interaction effect between spectral, temporal, and contextual information in the perception of spectrally-degraded speech. This suggests that specific types and degradation of bottom-up information combine differently to utilize contextual resources. These findings emphasize the importance of taking the listener's specific auditory abilities into consideration while studying context effects. These results also introduce a novel perspective for designing interventions for listeners with cochlear implants or other auditory prostheses.

  11. Assessment of temporal state-dependent interactions between auditory fMRI responses to desired and undesired acoustic sources.

    PubMed

    Olulade, O; Hu, S; Gonzalez-Castillo, J; Tamer, G G; Luh, W-M; Ulmer, J L; Talavage, T M

    2011-07-01

    A confounding factor in auditory functional magnetic resonance imaging (fMRI) experiments is the presence of the acoustic noise inherently associated with the echo planar imaging acquisition technique. Previous studies have demonstrated that this noise can induce unwanted neuronal responses that can mask stimulus-induced responses. Similarly, activation accumulated over multiple stimuli has been demonstrated to elevate the baseline, thus reducing the dynamic range available for subsequent responses. To best evaluate responses to auditory stimuli, it is necessary to account for the presence of all recent acoustic stimulation, beginning with an understanding of the attenuating effects brought about by interaction between and among induced unwanted neuronal responses, and responses to desired auditory stimuli. This study focuses on the characterization of the duration of this temporal memory and qualitative assessment of the associated response attenuation. Two experimental parameters--inter-stimulus interval (ISI) and repetition time (TR)--were varied during an fMRI experiment in which participants were asked to passively attend to an auditory stimulus. Results present evidence of a state-dependent interaction between induced responses. As expected, attenuating effects of these interactions become less significant as TR and ISI increase and in contrast to previous work, persist up to 18s after a stimulus presentation. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Auditory agnosia.

    PubMed

    Slevc, L Robert; Shell, Alison R

    2015-01-01

    Auditory agnosia refers to impairments in sound perception and identification despite intact hearing, cognitive functioning, and language abilities (reading, writing, and speaking). Auditory agnosia can be general, affecting all types of sound perception, or can be (relatively) specific to a particular domain. Verbal auditory agnosia (also known as (pure) word deafness) refers to deficits specific to speech processing, environmental sound agnosia refers to difficulties confined to non-speech environmental sounds, and amusia refers to deficits confined to music. These deficits can be apperceptive, affecting basic perceptual processes, or associative, affecting the relation of a perceived auditory object to its meaning. This chapter discusses what is known about the behavioral symptoms and lesion correlates of these different types of auditory agnosia (focusing especially on verbal auditory agnosia), evidence for the role of a rapid temporal processing deficit in some aspects of auditory agnosia, and the few attempts to treat the perceptual deficits associated with auditory agnosia. A clear picture of auditory agnosia has been slow to emerge, hampered by the considerable heterogeneity in behavioral deficits, associated brain damage, and variable assessments across cases. Despite this lack of clarity, these striking deficits in complex sound processing continue to inform our understanding of auditory perception and cognition. © 2015 Elsevier B.V. All rights reserved.

  13. Sequencing the Cortical Processing of Pitch-Evoking Stimuli using EEG Analysis and Source Estimation

    PubMed Central

    Butler, Blake E.; Trainor, Laurel J.

    2012-01-01

    Cues to pitch include spectral cues that arise from tonotopic organization and temporal cues that arise from firing patterns of auditory neurons. fMRI studies suggest a common pitch center is located just beyond primary auditory cortex along the lateral aspect of Heschl’s gyrus, but little work has examined the stages of processing for the integration of pitch cues. Using electroencephalography, we recorded cortical responses to high-pass filtered iterated rippled noise (IRN) and high-pass filtered complex harmonic stimuli, which differ in temporal and spectral content. The two stimulus types were matched for pitch saliency, and a mismatch negativity (MMN) response was elicited by infrequent pitch changes. The P1 and N1 components of event-related potentials (ERPs) are thought to arise from primary and secondary auditory areas, respectively, and to result from simple feature extraction. MMN is generated in secondary auditory cortex and is thought to act on feature-integrated auditory objects. We found that peak latencies of both P1 and N1 occur later in response to IRN stimuli than to complex harmonic stimuli, but found no latency differences between stimulus types for MMN. The location of each ERP component was estimated based on iterative fitting of regional sources in the auditory cortices. The sources of both the P1 and N1 components elicited by IRN stimuli were located dorsal to those elicited by complex harmonic stimuli, whereas no differences were observed for MMN sources across stimuli. Furthermore, the MMN component was located between the P1 and N1 components, consistent with fMRI studies indicating a common pitch region in lateral Heschl’s gyrus. These results suggest that while the spectral and temporal processing of different pitch-evoking stimuli involves different cortical areas during early processing, by the time the object-related MMN response is formed, these cues have been integrated into a common representation of pitch. PMID:22740836

  14. Cortical activity associated with the perception of temporal asymmetry in ramped and damped noises.

    PubMed

    Rupp, André; Spachmann, André; Dettlaff, Anna; Patterson, Roy D

    2013-01-01

    Human listeners are very sensitive to the asymmetry of time-reversed pairs of ramped and damped sounds. When the carrier is noise, the hiss -component of the perception is stronger in ramped sounds and the drumming component is stronger in damped sounds (Akeroyd and Patterson 1995). In the current study, a paired comparison technique was used to establish the relative "hissiness" of these noises, and the ratings were correlated with (a) components of the auditory evoked field (AEF) produced by these noises and (b) the magnitude of a hissiness feature derived from a model of the internal auditory images produced by these noises (Irino and Patterson 1998). An earlier AEF report indicated that the peak magnitude of the transient N100m response mirrors the perceived salience of the tonal perception (Rupp et al. 2005). The AEFs of 14 subjects were recorded in response to damped/ramped noises with half-lives between 1 and 64 ms and repetition rates between 12.5 and 100 ms. Spatio-temporal source analysis was used to fit the P50m, the P200m, and the sustained field (SF). These noise stimuli did not produce a reliable N100m. The hissiness feature from the auditory model was extracted from a time-averaged sequence of summary auditory images as in Patterson and Irino (1998). The results show that the perceptual measure of hissiness is highly correlated with the hissiness feature from the summary auditory image, and both are highly correlated with the magnitude of the transient P200m. There is a significant but weaker correlation with the SF and a nonsignificant correlation with the P50m. The results suggest that regularity in the carrier effects branching at an early stage of auditory processing with tonal and noisy sounds following separate spatio-temporal routes through the system.

  15. The spatio-temporal dynamics of deviance and target detection in the passive and active auditory oddball paradigm: a sLORETA study.

    PubMed

    Justen, Christoph; Herbert, Cornelia

    2018-04-19

    Numerous studies have investigated the neural underpinnings of passive and active deviance and target detection in the well-known auditory oddball paradigm by means of event-related potentials (ERPs) or functional magnetic resonance imaging (fMRI). The present auditory oddball study investigates the spatio-temporal dynamics of passive versus active deviance and target detection by analyzing amplitude modulations of early and late ERPs while at the same time exploring the neural sources underling this modulation with standardized low-resolution brain electromagnetic tomography (sLORETA) . A 64-channel EEG was recorded from twelve healthy right-handed participants while listening to 'standards' and 'deviants' (500 vs. 1000 Hz pure tones) during a passive (block 1) and an active (block 2) listening condition. During passive listening, participants had to simply listen to the tones. During active listening they had to attend and press a key in response to the deviant tones. Passive and active listening elicited an N1 component, a mismatch negativity (MMN) as difference potential (whose amplitudes were temporally overlapping with the N1) and a P3 component. N1/MMN and P3 amplitudes were significantly more pronounced for deviants as compared to standards during both listening conditions. Active listening augmented P3 modulation to deviants significantly compared to passive listening, whereas deviance detection as indexed by N1/MMN modulation was unaffected by the task. During passive listening, sLORETA contrasts (deviants > standards) revealed significant activations in the right superior temporal gyrus (STG) and the lingual gyri bilaterally (N1/MMN) as well as in the left and right insulae (P3). During active listening, significant activations were found for the N1/MMN in the right inferior parietal lobule (IPL) and for the P3 in multiple cortical regions (e.g., precuneus). The results provide evidence for the hypothesis that passive as well as active deviance and target detection elicit cortical activations in spatially distributed brain regions and neural networks including the ventral attention network (VAN), dorsal attention network (DAN) and salience network (SN). Based on the temporal activation of the neural sources underlying ERP modulations, a neurophysiological model of passive and active deviance and target detection is proposed which can be tested in future studies.

  16. Slow Temporal Integration Enables Robust Neural Coding and Perception of a Cue to Sound Source Location.

    PubMed

    Brown, Andrew D; Tollin, Daniel J

    2016-09-21

    In mammals, localization of sound sources in azimuth depends on sensitivity to interaural differences in sound timing (ITD) and level (ILD). Paradoxically, while typical ILD-sensitive neurons of the auditory brainstem require millisecond synchrony of excitatory and inhibitory inputs for the encoding of ILDs, human and animal behavioral ILD sensitivity is robust to temporal stimulus degradations (e.g., interaural decorrelation due to reverberation), or, in humans, bilateral clinical device processing. Here we demonstrate that behavioral ILD sensitivity is only modestly degraded with even complete decorrelation of left- and right-ear signals, suggesting the existence of a highly integrative ILD-coding mechanism. Correspondingly, we find that a majority of auditory midbrain neurons in the central nucleus of the inferior colliculus (of chinchilla) effectively encode ILDs despite complete decorrelation of left- and right-ear signals. We show that such responses can be accounted for by relatively long windows of bilateral excitatory-inhibitory interaction, which we explicitly measure using trains of narrowband clicks. Neural and behavioral data are compared with the outputs of a simple model of ILD processing with a single free parameter, the duration of excitatory-inhibitory interaction. Behavioral, neural, and modeling data collectively suggest that ILD sensitivity depends on binaural integration of excitation and inhibition within a ≳3 ms temporal window, significantly longer than observed in lower brainstem neurons. This relatively slow integration potentiates a unique role for the ILD system in spatial hearing that may be of particular importance when informative ITD cues are unavailable. In mammalian hearing, interaural differences in the timing (ITD) and level (ILD) of impinging sounds carry critical information about source location. However, natural sounds are often decorrelated between the ears by reverberation and background noise, degrading the fidelity of both ITD and ILD cues. Here we demonstrate that behavioral ILD sensitivity (in humans) and neural ILD sensitivity (in single neurons of the chinchilla auditory midbrain) remain robust under stimulus conditions that render ITD cues undetectable. This result can be explained by "slow" temporal integration arising from several-millisecond-long windows of excitatory-inhibitory interaction evident in midbrain, but not brainstem, neurons. Such integrative coding can account for the preservation of ILD sensitivity despite even extreme temporal degradations in ecological acoustic stimuli. Copyright © 2016 the authors 0270-6474/16/369908-14$15.00/0.

  17. Acute marijuana effects on rCBF and cognition: a PET study.

    PubMed

    O'Leary, D S; Block, R I; Flaum, M; Schultz, S K; Boles Ponto, L L; Watkins, G L; Hurtig, R R; Andreasen, N C; Hichwa, R D

    2000-11-27

    The effects of smoking marijuana on cognition and brain function were assessed with PET using H2(15)O. Regional cerebral blood flow (rCBF) was measured in five recreational users before and after smoking a marijuana cigarette, as they repeatedly performed an auditory attention task. Blood flow increased following smoking in a number of paralimbic brain regions (e.g. orbital frontal lobes, insula, temporal poles) and in anterior cingulate and cerebellum. Large reductions in rCBF were observed in temporal lobe regions that are sensitive to auditory attention effects. Brain regions showing increased rCBF may mediate the intoxicating and mood-related effects of smoking marijuana, whereas reduction of task-related rCBF in temporal lobe cortices may account for the impaired cognitive functions associated with acute intoxication.

  18. Understanding The Neural Mechanisms Involved In Sensory Control Of Voice Production

    PubMed Central

    Parkinson, Amy L.; Flagmeier, Sabina G.; Manes, Jordan L.; Larson, Charles R.; Rogers, Bill; Robin, Donald A.

    2012-01-01

    Auditory feedback is important for the control of voice fundamental frequency (F0). In the present study we used neuroimaging to identify regions of the brain responsible for sensory control of the voice. We used a pitch-shift paradigm where subjects respond to an alteration, or shift, of voice pitch auditory feedback with a reflexive change in F0. To determine the neural substrates involved in these audio-vocal responses, subjects underwent fMRI scanning while vocalizing with or without pitch-shifted feedback. The comparison of shifted and unshifted vocalization revealed activation bilaterally in the superior temporal gyrus (STG) in response to the pitch shifted feedback. We hypothesize that the STG activity is related to error detection by auditory error cells located in the superior temporal cortex and efference copy mechanisms whereby this region is responsible for the coding of a mismatch between actual and predicted voice F0. PMID:22406500

  19. Summary statistics in auditory perception.

    PubMed

    McDermott, Josh H; Schemitsch, Michael; Simoncelli, Eero P

    2013-04-01

    Sensory signals are transduced at high resolution, but their structure must be stored in a more compact format. Here we provide evidence that the auditory system summarizes the temporal details of sounds using time-averaged statistics. We measured discrimination of 'sound textures' that were characterized by particular statistical properties, as normally result from the superposition of many acoustic features in auditory scenes. When listeners discriminated examples of different textures, performance improved with excerpt duration. In contrast, when listeners discriminated different examples of the same texture, performance declined with duration, a paradoxical result given that the information available for discrimination grows with duration. These results indicate that once these sounds are of moderate length, the brain's representation is limited to time-averaged statistics, which, for different examples of the same texture, converge to the same values with increasing duration. Such statistical representations produce good categorical discrimination, but limit the ability to discern temporal detail.

  20. Recognition of emotion with temporal lobe epilepsy and asymmetrical amygdala damage.

    PubMed

    Fowler, Helen L; Baker, Gus A; Tipples, Jason; Hare, Dougal J; Keller, Simon; Chadwick, David W; Young, Andrew W

    2006-08-01

    Impairments in emotion recognition occur when there is bilateral damage to the amygdala. In this study, ability to recognize auditory and visual expressions of emotion was investigated in people with asymmetrical amygdala damage (AAD) and temporal lobe epilepsy (TLE). Recognition of five emotions was tested across three participant groups: those with right AAD and TLE, those with left AAD and TLE, and a comparison group. Four tasks were administered: recognition of emotion from facial expressions, sentences describing emotion-laden situations, nonverbal sounds, and prosody. Accuracy scores for each task and emotion were analysed, and no consistent overall effect of AAD on emotion recognition was found. However, some individual participants with AAD were significantly impaired at recognizing emotions, in both auditory and visual domains. The findings indicate that a minority of individuals with AAD have impairments in emotion recognition, but no evidence of specific impairments (e.g., visual or auditory) was found.

  1. Proportional spike-timing precision and firing reliability underlie efficient temporal processing of periodicity and envelope shape cues

    PubMed Central

    Zheng, Y.

    2013-01-01

    Temporal sound cues are essential for sound recognition, pitch, rhythm, and timbre perception, yet how auditory neurons encode such cues is subject of ongoing debate. Rate coding theories propose that temporal sound features are represented by rate tuned modulation filters. However, overwhelming evidence also suggests that precise spike timing is an essential attribute of the neural code. Here we demonstrate that single neurons in the auditory midbrain employ a proportional code in which spike-timing precision and firing reliability covary with the sound envelope cues to provide an efficient representation of the stimulus. Spike-timing precision varied systematically with the timescale and shape of the sound envelope and yet was largely independent of the sound modulation frequency, a prominent cue for pitch. In contrast, spike-count reliability was strongly affected by the modulation frequency. Spike-timing precision extends from sub-millisecond for brief transient sounds up to tens of milliseconds for sounds with slow-varying envelope. Information theoretic analysis further confirms that spike-timing precision depends strongly on the sound envelope shape, while firing reliability was strongly affected by the sound modulation frequency. Both the information efficiency and total information were limited by the firing reliability and spike-timing precision in a manner that reflected the sound structure. This result supports a temporal coding strategy in the auditory midbrain where proportional changes in spike-timing precision and firing reliability can efficiently signal shape and periodicity temporal cues. PMID:23636724

  2. Auditory processing deficits in individuals with primary open-angle glaucoma.

    PubMed

    Rance, Gary; O'Hare, Fleur; O'Leary, Stephen; Starr, Arnold; Ly, Anna; Cheng, Belinda; Tomlin, Dani; Graydon, Kelley; Chisari, Donella; Trounce, Ian; Crowston, Jonathan

    2012-01-01

    The high energy demand of the auditory and visual pathways render these sensory systems prone to diseases that impair mitochondrial function. Primary open-angle glaucoma, a neurodegenerative disease of the optic nerve, has recently been associated with a spectrum of mitochondrial abnormalities. This study sought to investigate auditory processing in individuals with open-angle glaucoma. DESIGN/STUDY SAMPLE: Twenty-seven subjects with open-angle glaucoma underwent electrophysiologic (auditory brainstem response), auditory temporal processing (amplitude modulation detection), and speech perception (monosyllabic words in quiet and background noise) assessment in each ear. A cohort of age, gender and hearing level matched control subjects was also tested. While the majority of glaucoma subjects in this study demonstrated normal auditory function, there were a significant number (6/27 subjects, 22%) who showed abnormal auditory brainstem responses and impaired auditory perception in one or both ears. The finding that a significant proportion of subjects with open-angle glaucoma presented with auditory dysfunction provides evidence of systemic neuronal susceptibility. Affected individuals may suffer significant communication difficulties in everyday listening situations.

  3. [Computed tomography of the temporal bone in diagnosis of chronic exudative otitis media].

    PubMed

    Zelikovich, E I

    2005-01-01

    Computed tomography (CT) of the temporal bone was made in 37 patients aged 2 to 55 years with chronic exudative otitis media (CEOM). In 21 of them the pathology was bilateral. The analysis of 58 CT images has identified CT signs of chronic exudative otitis media. They include partial (17 temporary bones) or complete (38 temporal bones) block of the bone opening of the auditory tube, pneumatic defects of the tympanic cavity (58 temporal bones), pneumatic defects of the mastoid process and antrum (47 temporal bones), pathologic retraction of the tympanic membrane. The examination of the temporal bone detected both CT-signs of CEOM and other causes of hearing disorders in 14 patients (26 temporal bones) with CEOM symptoms and inadequately high hypoacusis. Among these causes were malformation of the auditory ossicula (n=5), malformation of the labynthine window (n=2), malformation of the middle and internal ear (n=4), a wide aqueduct of the vestibule, labyrinthine anomaly of Mondini's type (n=1), cochlear hypoplasia (n=4), stenosis of the internal acoustic meatuses (n=2). Sclerotic fibrous dysplasia was suggested in 2 temporal bones (by CT data). CT was repeated after surgical treatment of 10 patients (14 temporal bones) and visual assessment of tympanostomy results was made.

  4. Chronic auditory hallucinations in schizophrenic patients: MR analysis of the coincidence between functional and morphologic abnormalities.

    PubMed

    Martí-Bonmatí, Luis; Lull, Juan José; García-Martí, Gracián; Aguilar, Eduardo J; Moratal-Pérez, David; Poyatos, Cecilio; Robles, Montserrat; Sanjuán, Julio

    2007-08-01

    To prospectively evaluate if functional magnetic resonance (MR) imaging abnormalities associated with auditory emotional stimuli coexist with focal brain reductions in schizophrenic patients with chronic auditory hallucinations. Institutional review board approval was obtained and all participants gave written informed consent. Twenty-one right-handed male patients with schizophrenia and persistent hallucinations (started to hear hallucinations at a mean age of 23 years +/- 10, with 15 years +/- 8 of mean illness duration) and 10 healthy paired participants (same ethnic group [white], age, and education level [secondary school]) were studied. Functional echo-planar T2*-weighted (after both emotional and neutral auditory stimulation) and morphometric three-dimensional gradient-recalled echo T1-weighted MR images were analyzed using Statistical Parametric Mapping (SPM2) software. Brain activation images were extracted by subtracting those with emotional from nonemotional words. Anatomic differences were explored by optimized voxel-based morphometry. The functional and morphometric MR images were overlaid to depict voxels statistically reported by both techniques. A coincidence map was generated by multiplying the emotional subtracted functional MR and volume decrement morphometric maps. Statistical analysis used the general linear model, Student t tests, random effects analyses, and analysis of covariance with a correction for multiple comparisons following the false discovery rate method. Large coinciding brain clusters (P < .005) were found in the left and right middle temporal and superior temporal gyri. Smaller coinciding clusters were found in the left posterior and right anterior cingular gyri, left inferior frontal gyrus, and middle occipital gyrus. The middle and superior temporal and the cingular gyri are closely related to the abnormal neural network involved in the auditory emotional dysfunction seen in schizophrenic patients.

  5. The effects of postnatal phthalate exposure on the development of auditory temporal processing in rats.

    PubMed

    Kim, Bong Jik; Kim, Jungyoon; Keoboutdy, Vanhnansy; Kwon, Ho-Jang; Oh, Seung-Ha; Jung, Jae Yun; Park, Il Yong; Paik, Ki Chung

    2017-06-01

    The central auditory pathway is known to continue its development during the postnatal critical periods and is shaped by experience and sensory inputs. Phthalate, a known neurotoxic material, has been reported to be associated with attention deficits in children, impacting many infant neurobehaviors. The objective of this study was to investigate the potential effects of neonatal phthalate exposure on the development of auditory temporal processing. Neonatal Sprague-Dawley rats were randomly assigned into two groups: The phthalate group (n = 6), and the control group (n = 6). Phthalate was given once per day from postnatal day 8 (P8) to P28. Upon completion, at P28, the Auditory Brainstem Response (ABR) and Gap Prepulse Inhibition of Acoustic Startle response (GPIAS) at each gap duration (2, 5, 10, 20, 50 and 80 ms) were measured, and gap detection threshold (GDT) was calculated. These outcomes were compared between the two groups. Hearing thresholds by ABR showed no significant differences at all frequencies between the two groups. Regarding GPIAS, no significant difference was observed, except at a gap duration of 20 ms (p = 0.037). The mean GDT of the phthalate group (44.0 ms) was higher than that of the control group (20.0 ms), but without statistical significance (p = 0.065). Moreover, the phthalate group tended to demonstrate more of a scattered distribution in the GDT group than the in the control group. Neonatal phthalate exposure may disrupt the development of auditory temporal processing in rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The role of auditory and cognitive factors in understanding speech in noise by normal-hearing older listeners

    PubMed Central

    Schoof, Tim; Rosen, Stuart

    2014-01-01

    Normal-hearing older adults often experience increased difficulties understanding speech in noise. In addition, they benefit less from amplitude fluctuations in the masker. These difficulties may be attributed to an age-related auditory temporal processing deficit. However, a decline in cognitive processing likely also plays an important role. This study examined the relative contribution of declines in both auditory and cognitive processing to the speech in noise performance in older adults. Participants included older (60–72 years) and younger (19–29 years) adults with normal hearing. Speech reception thresholds (SRTs) were measured for sentences in steady-state speech-shaped noise (SS), 10-Hz sinusoidally amplitude-modulated speech-shaped noise (AM), and two-talker babble. In addition, auditory temporal processing abilities were assessed by measuring thresholds for gap, amplitude-modulation, and frequency-modulation detection. Measures of processing speed, attention, working memory, Text Reception Threshold (a visual analog of the SRT), and reading ability were also obtained. Of primary interest was the extent to which the various measures correlate with listeners' abilities to perceive speech in noise. SRTs were significantly worse for older adults in the presence of two-talker babble but not SS and AM noise. In addition, older adults showed some cognitive processing declines (working memory and processing speed) although no declines in auditory temporal processing. However, working memory and processing speed did not correlate significantly with SRTs in babble. Despite declines in cognitive processing, normal-hearing older adults do not necessarily have problems understanding speech in noise as SRTs in SS and AM noise did not differ significantly between the two groups. Moreover, while older adults had higher SRTs in two-talker babble, this could not be explained by age-related cognitive declines in working memory or processing speed. PMID:25429266

  7. Plasticity of white matter connectivity in phonetics experts.

    PubMed

    Vandermosten, Maaike; Price, Cathy J; Golestani, Narly

    2016-09-01

    Phonetics experts are highly trained to analyze and transcribe speech, both with respect to faster changing, phonetic features, and to more slowly changing, prosodic features. Previously we reported that, compared to non-phoneticians, phoneticians had greater local brain volume in bilateral auditory cortices and the left pars opercularis of Broca's area, with training-related differences in the grey-matter volume of the left pars opercularis in the phoneticians group (Golestani et al. 2011). In the present study, we used diffusion MRI to examine white matter microstructure, indexed by fractional anisotropy, in (1) the long segment of arcuate fasciculus (AF_long), which is a well-known language tract that connects Broca's area, including left pars opercularis, to the temporal cortex, and in (2) the fibers arising from the auditory cortices. Most of these auditory fibers belong to three validated language tracts, namely to the AF_long, the posterior segment of the arcuate fasciculus and the middle longitudinal fasciculus. We found training-related differences in phoneticians in left AF_long, as well as group differences relative to non-experts in the auditory fibers (including the auditory fibers belonging to the left AF_long). Taken together, the results of both studies suggest that grey matter structural plasticity arising from phonetic transcription training in Broca's area is accompanied by changes to the white matter fibers connecting this very region to the temporal cortex. Our findings suggest expertise-related changes in white matter fibers connecting fronto-temporal functional hubs that are important for phonetic processing. Further studies can pursue this hypothesis by examining the dynamics of these expertise related grey and white matter changes as they arise during phonetic training.

  8. Inter-subject synchronization of brain responses during natural music listening.

    PubMed

    Abrams, Daniel A; Ryali, Srikanth; Chen, Tianwen; Chordia, Parag; Khouzam, Amirah; Levitin, Daniel J; Menon, Vinod

    2013-05-01

    Music is a cultural universal and a rich part of the human experience. However, little is known about common brain systems that support the processing and integration of extended, naturalistic 'real-world' music stimuli. We examined this question by presenting extended excerpts of symphonic music, and two pseudomusical stimuli in which the temporal and spectral structure of the Natural Music condition were disrupted, to non-musician participants undergoing functional brain imaging and analysing synchronized spatiotemporal activity patterns between listeners. We found that music synchronizes brain responses across listeners in bilateral auditory midbrain and thalamus, primary auditory and auditory association cortex, right-lateralized structures in frontal and parietal cortex, and motor planning regions of the brain. These effects were greater for natural music compared to the pseudo-musical control conditions. Remarkably, inter-subject synchronization in the inferior colliculus and medial geniculate nucleus was also greater for the natural music condition, indicating that synchronization at these early stages of auditory processing is not simply driven by spectro-temporal features of the stimulus. Increased synchronization during music listening was also evident in a right-hemisphere fronto-parietal attention network and bilateral cortical regions involved in motor planning. While these brain structures have previously been implicated in various aspects of musical processing, our results are the first to show that these regions track structural elements of a musical stimulus over extended time periods lasting minutes. Our results show that a hierarchical distributed network is synchronized between individuals during the processing of extended musical sequences, and provide new insight into the temporal integration of complex and biologically salient auditory sequences. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Processing of speech temporal and spectral information by users of auditory brainstem implants and cochlear implants.

    PubMed

    Azadpour, Mahan; McKay, Colette M

    2014-01-01

    Auditory brainstem implants (ABI) use the same processing strategy as was developed for cochlear implants (CI). However, the cochlear nucleus (CN), the stimulation site of ABIs, is anatomically and physiologically more complex than the auditory nerve and consists of neurons with differing roles in auditory processing. The aim of this study was to evaluate the hypotheses that ABI users are less able than CI users to access speech spectro-temporal information delivered by the existing strategies and that the sites stimulated by different locations of CI and ABI electrode arrays differ in encoding of temporal patterns in the stimulation. Six CI users and four ABI users of Nucleus implants with ACE processing strategy participated in this study. Closed-set perception of aCa syllables (16 consonants) and bVd words (11 vowels) was evaluated via experimental processing strategies that activated one, two, or four of the electrodes of the array in a CIS manner as well as subjects' clinical strategies. Three single-channel strategies presented the overall temporal envelope variations of the signal on a single-implant electrode located at the high-, medium-, and low-frequency regions of the array. Implantees' ability to discriminate within electrode temporal patterns of stimulation for phoneme perception and their ability to make use of spectral information presented by increased number of active electrodes were assessed in the single- and multiple-channel strategies, respectively. Overall percentages and information transmission of phonetic features were obtained for each experimental program. Phoneme perception performance of three ABI users was within the range of CI users in most of the experimental strategies and improved as the number of active electrodes increased. One ABI user performed close to chance with all the single and multiple electrode strategies. There was no significant difference between apical, basal, and middle CI electrodes in transmitting speech temporal information, except a trend that the voicing feature was the least transmitted by the basal electrode. A similar electrode-location pattern could be observed in most ABI subjects. Although the number of tested ABI subjects was small, their wide range of phoneme perception performance was consistent with previous reports of overall speech perception in ABI patients. The better-performing ABI user participants had access to speech temporal and spectral information that was comparable to that of average CI user. The poor-performing ABI user did not have access to within-channel speech temporal information and did not benefit from an increased number of spectral channels. The within-subject variability between different ABI electrodes was less than the variability across users in transmission of speech temporal information. The difference in the performance of ABI users could be related to the location of their electrode array on the CN, anatomy, and physiology of their CN or the damage to their auditory brainstem due to tumor or surgery.

  10. fMRI during natural sleep as a method to study brain function during early childhood.

    PubMed

    Redcay, Elizabeth; Kennedy, Daniel P; Courchesne, Eric

    2007-12-01

    Many techniques to study early functional brain development lack the whole-brain spatial resolution that is available with fMRI. We utilized a relatively novel method in which fMRI data were collected from children during natural sleep. Stimulus-evoked responses to auditory and visual stimuli as well as stimulus-independent functional networks were examined in typically developing 2-4-year-old children. Reliable fMRI data were collected from 13 children during presentation of auditory stimuli (tones, vocal sounds, and nonvocal sounds) in a block design. Twelve children were presented with visual flashing lights at 2.5 Hz. When analyses combined all three types of auditory stimulus conditions as compared to rest, activation included bilateral superior temporal gyri/sulci (STG/S) and right cerebellum. Direct comparisons between conditions revealed significantly greater responses to nonvocal sounds and tones than to vocal sounds in a number of brain regions including superior temporal gyrus/sulcus, medial frontal cortex and right lateral cerebellum. The response to visual stimuli was localized to occipital cortex. Furthermore, stimulus-independent functional connectivity MRI analyses (fcMRI) revealed functional connectivity between STG and other temporal regions (including contralateral STG) and medial and lateral prefrontal regions. Functional connectivity with an occipital seed was localized to occipital and parietal cortex. In sum, 2-4 year olds showed a differential fMRI response both between stimulus modalities and between stimuli in the auditory modality. Furthermore, superior temporal regions showed functional connectivity with numerous higher-order regions during sleep. We conclude that the use of sleep fMRI may be a valuable tool for examining functional brain organization in young children.

  11. Pure word deafness following left temporal damage: Behavioral and neuroanatomical evidence from a new case.

    PubMed

    Maffei, Chiara; Capasso, Rita; Cazzolli, Giulia; Colosimo, Cesare; Dell'Acqua, Flavio; Piludu, Francesca; Catani, Marco; Miceli, Gabriele

    2017-12-01

    Pure Word Deafness (PWD) is a rare disorder, characterized by selective loss of speech input processing. Its most common cause is temporal damage to the primary auditory cortex of both hemispheres, but it has been reported also following unilateral lesions. In unilateral cases, PWD has been attributed to the disconnection of Wernicke's area from both right and left primary auditory cortex. Here we report behavioral and neuroimaging evidence from a new case of left unilateral PWD with both cortical and white matter damage due to a relatively small stroke lesion in the left temporal gyrus. Selective impairment in auditory language processing was accompanied by intact processing of nonspeech sounds and normal speech, reading and writing. Performance on dichotic listening was characterized by a reversal of the right-ear advantage typically observed in healthy subjects. Cortical thickness and gyral volume were severely reduced in the left superior temporal gyrus (STG), although abnormalities were not uniformly distributed and residual intact cortical areas were detected, for example in the medial portion of the Heschl's gyrus. Diffusion tractography documented partial damage to the acoustic radiations (AR), callosal temporal connections and intralobar tracts dedicated to single words comprehension. Behavioral and neuroimaging results in this case are difficult to integrate in a pure cortical or disconnection framework, as damage to primary auditory cortex in the left STG was only partial and Wernicke's area was not completely isolated from left or right-hemisphere input. On the basis of our findings we suggest that in this case of PWD, concurrent partial topological (cortical) and disconnection mechanisms have contributed to a selective impairment of speech sounds. The discrepancy between speech and non-speech sounds suggests selective damage to a language-specific left lateralized network involved in phoneme processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Impaired pitch perception and memory in congenital amusia: the deficit starts in the auditory cortex.

    PubMed

    Albouy, Philippe; Mattout, Jérémie; Bouet, Romain; Maby, Emmanuel; Sanchez, Gaëtan; Aguera, Pierre-Emmanuel; Daligault, Sébastien; Delpuech, Claude; Bertrand, Olivier; Caclin, Anne; Tillmann, Barbara

    2013-05-01

    Congenital amusia is a lifelong disorder of music perception and production. The present study investigated the cerebral bases of impaired pitch perception and memory in congenital amusia using behavioural measures, magnetoencephalography and voxel-based morphometry. Congenital amusics and matched control subjects performed two melodic tasks (a melodic contour task and an easier transposition task); they had to indicate whether sequences of six tones (presented in pairs) were the same or different. Behavioural data indicated that in comparison with control participants, amusics' short-term memory was impaired for the melodic contour task, but not for the transposition task. The major finding was that pitch processing and short-term memory deficits can be traced down to amusics' early brain responses during encoding of the melodic information. Temporal and frontal generators of the N100m evoked by each note of the melody were abnormally recruited in the amusic brain. Dynamic causal modelling of the N100m further revealed decreased intrinsic connectivity in both auditory cortices, increased lateral connectivity between auditory cortices as well as a decreased right fronto-temporal backward connectivity in amusics relative to control subjects. Abnormal functioning of this fronto-temporal network was also shown during the retention interval and the retrieval of melodic information. In particular, induced gamma oscillations in right frontal areas were decreased in amusics during the retention interval. Using voxel-based morphometry, we confirmed morphological brain anomalies in terms of white and grey matter concentration in the right inferior frontal gyrus and the right superior temporal gyrus in the amusic brain. The convergence between functional and structural brain differences strengthens the hypothesis of abnormalities in the fronto-temporal pathway of the amusic brain. Our data provide first evidence of altered functioning of the auditory cortices during pitch perception and memory in congenital amusia. They further support the hypothesis that in neurodevelopmental disorders impacting high-level functions (here musical abilities), abnormalities in cerebral processing can be observed in early brain responses.

  13. Thresholds of Auditory-Motor Coupling Measured with a Simple Task in Musicians and Non-Musicians: Was the Sound Simultaneous to the Key Press?

    PubMed Central

    van Vugt, Floris T.; Tillmann, Barbara

    2014-01-01

    The human brain is able to predict the sensory effects of its actions. But how precise are these predictions? The present research proposes a tool to measure thresholds between a simple action (keystroke) and a resulting sound. On each trial, participants were required to press a key. Upon each keystroke, a woodblock sound was presented. In some trials, the sound came immediately with the downward keystroke; at other times, it was delayed by a varying amount of time. Participants were asked to verbally report whether the sound came immediately or was delayed. Participants' delay detection thresholds (in msec) were measured with a staircase-like procedure. We hypothesised that musicians would have a lower threshold than non-musicians. Comparing pianists and brass players, we furthermore hypothesised that, as a result of a sharper attack of the timbre of their instrument, pianists might have lower thresholds than brass players. Our results show that non-musicians exhibited higher thresholds for delay detection (180±104 ms) than the two groups of musicians (102±65 ms), but there were no differences between pianists and brass players. The variance in delay detection thresholds could be explained by variance in sensorimotor synchronisation capacities as well as variance in a purely auditory temporal irregularity detection measure. This suggests that the brain's capacity to generate temporal predictions of sensory consequences can be decomposed into general temporal prediction capacities together with auditory-motor coupling. These findings indicate that the brain has a relatively large window of integration within which an action and its resulting effect are judged as simultaneous. Furthermore, musical expertise may narrow this window down, potentially due to a more refined temporal prediction. This novel paradigm provides a simple test to estimate the temporal precision of auditory-motor action-effect coupling, and the paradigm can readily be incorporated in studies investigating both healthy and patient populations. PMID:24498299

  14. Experience-dependent enhancement of pitch-specific responses in the auditory cortex is limited to acceleration rates in normal voice range

    PubMed Central

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Suresh, Chandan H.

    2015-01-01

    The aim of this study is to determine how pitch acceleration rates within and outside the normal pitch range may influence latency and amplitude of cortical pitch-specific responses (CPR) as a function of language experience (Chinese, English). Responses were elicited from a set of four pitch stimuli chosen to represent a range of acceleration rates (two each inside and outside the normal voice range) imposed on the high rising Mandarin Tone 2. Pitch-relevant neural activity, as reflected in the latency and amplitude of scalp-recorded CPR components, varied depending on language-experience and pitch acceleration of dynamic, time-varying pitch contours. Peak latencies of CPR components were shorter in the Chinese than the English group across stimuli. Chinese participants showed greater amplitude than English for CPR components at both frontocentral and temporal electrode sites in response to pitch contours with acceleration rates inside the normal voice pitch range as compared to pitch contours with acceleration rates that exceed the normal range. As indexed by CPR amplitude at the temporal sites, a rightward asymmetry was observed for the Chinese group only. Only over the right temporal site was amplitude greater in the Chinese group relative to the English. These findings may suggest that the neural mechanism(s) underlying processing of pitch in the right auditory cortex reflect experience-dependent modulation of sensitivity to acceleration in just those rising pitch contours that fall within the bounds of one’s native language. More broadly, enhancement of native pitch stimuli and stronger rightward asymmetry of CPR components in the Chinese group is consistent with the notion that long-term experience shapes adaptive, distributed hierarchical pitch processing in the auditory cortex, and reflects an interaction with higher-order, extrasensory processes beyond the sensory memory trace. PMID:26166727

  15. Mapping a lateralization gradient within the ventral stream for auditory speech perception

    PubMed Central

    Specht, Karsten

    2013-01-01

    Recent models on speech perception propose a dual-stream processing network, with a dorsal stream, extending from the posterior temporal lobe of the left hemisphere through inferior parietal areas into the left inferior frontal gyrus, and a ventral stream that is assumed to originate in the primary auditory cortex in the upper posterior part of the temporal lobe and to extend toward the anterior part of the temporal lobe, where it may connect to the ventral part of the inferior frontal gyrus. This article describes and reviews the results from a series of complementary functional magnetic resonance imaging studies that aimed to trace the hierarchical processing network for speech comprehension within the left and right hemisphere with a particular focus on the temporal lobe and the ventral stream. As hypothesized, the results demonstrate a bilateral involvement of the temporal lobes in the processing of speech signals. However, an increasing leftward asymmetry was detected from auditory–phonetic to lexico-semantic processing and along the posterior–anterior axis, thus forming a “lateralization” gradient. This increasing leftward lateralization was particularly evident for the left superior temporal sulcus and more anterior parts of the temporal lobe. PMID:24106470

  16. Sex differences in the representation of call stimuli in a songbird secondary auditory area

    PubMed Central

    Giret, Nicolas; Menardy, Fabien; Del Negro, Catherine

    2015-01-01

    Understanding how communication sounds are encoded in the central auditory system is critical to deciphering the neural bases of acoustic communication. Songbirds use learned or unlearned vocalizations in a variety of social interactions. They have telencephalic auditory areas specialized for processing natural sounds and considered as playing a critical role in the discrimination of behaviorally relevant vocal sounds. The zebra finch, a highly social songbird species, forms lifelong pair bonds. Only male zebra finches sing. However, both sexes produce the distance call when placed in visual isolation. This call is sexually dimorphic, is learned only in males and provides support for individual recognition in both sexes. Here, we assessed whether auditory processing of distance calls differs between paired males and females by recording spiking activity in a secondary auditory area, the caudolateral mesopallium (CLM), while presenting the distance calls of a variety of individuals, including the bird itself, the mate, familiar and unfamiliar males and females. In males, the CLM is potentially involved in auditory feedback processing important for vocal learning. Based on both the analyses of spike rates and temporal aspects of discharges, our results clearly indicate that call-evoked responses of CLM neurons are sexually dimorphic, being stronger, lasting longer, and conveying more information about calls in males than in females. In addition, how auditory responses vary among call types differ between sexes. In females, response strength differs between familiar male and female calls. In males, temporal features of responses reveal a sensitivity to the bird's own call. These findings provide evidence that sexual dimorphism occurs in higher-order processing areas within the auditory system. They suggest a sexual dimorphism in the function of the CLM, contributing to transmit information about the self-generated calls in males and to storage of information about the bird's auditory experience in females. PMID:26578918

  17. Sex differences in the representation of call stimuli in a songbird secondary auditory area.

    PubMed

    Giret, Nicolas; Menardy, Fabien; Del Negro, Catherine

    2015-01-01

    Understanding how communication sounds are encoded in the central auditory system is critical to deciphering the neural bases of acoustic communication. Songbirds use learned or unlearned vocalizations in a variety of social interactions. They have telencephalic auditory areas specialized for processing natural sounds and considered as playing a critical role in the discrimination of behaviorally relevant vocal sounds. The zebra finch, a highly social songbird species, forms lifelong pair bonds. Only male zebra finches sing. However, both sexes produce the distance call when placed in visual isolation. This call is sexually dimorphic, is learned only in males and provides support for individual recognition in both sexes. Here, we assessed whether auditory processing of distance calls differs between paired males and females by recording spiking activity in a secondary auditory area, the caudolateral mesopallium (CLM), while presenting the distance calls of a variety of individuals, including the bird itself, the mate, familiar and unfamiliar males and females. In males, the CLM is potentially involved in auditory feedback processing important for vocal learning. Based on both the analyses of spike rates and temporal aspects of discharges, our results clearly indicate that call-evoked responses of CLM neurons are sexually dimorphic, being stronger, lasting longer, and conveying more information about calls in males than in females. In addition, how auditory responses vary among call types differ between sexes. In females, response strength differs between familiar male and female calls. In males, temporal features of responses reveal a sensitivity to the bird's own call. These findings provide evidence that sexual dimorphism occurs in higher-order processing areas within the auditory system. They suggest a sexual dimorphism in the function of the CLM, contributing to transmit information about the self-generated calls in males and to storage of information about the bird's auditory experience in females.

  18. Auditory hallucinations: A review of the ERC “VOICE” project

    PubMed Central

    Hugdahl, Kenneth

    2015-01-01

    In this invited review I provide a selective overview of recent research on brain mechanisms and cognitive processes involved in auditory hallucinations. The review is focused on research carried out in the “VOICE” ERC Advanced Grant Project, funded by the European Research Council, but I also review and discuss the literature in general. Auditory hallucinations are suggested to be perceptual phenomena, with a neuronal origin in the speech perception areas in the temporal lobe. The phenomenology of auditory hallucinations is conceptualized along three domains, or dimensions; a perceptual dimension, experienced as someone speaking to the patient; a cognitive dimension, experienced as an inability to inhibit, or ignore the voices, and an emotional dimension, experienced as the “voices” having primarily a negative, or sinister, emotional tone. I will review cognitive, imaging, and neurochemistry data related to these dimensions, primarily the first two. The reviewed data are summarized in a model that sees auditory hallucinations as initiated from temporal lobe neuronal hyper-activation that draws attentional focus inward, and which is not inhibited due to frontal lobe hypo-activation. It is further suggested that this is maintained through abnormal glutamate and possibly gamma-amino-butyric-acid transmitter mediation, which could point towards new pathways for pharmacological treatment. A final section discusses new methods of acquiring quantitative data on the phenomenology and subjective experience of auditory hallucination that goes beyond standard interview questionnaires, by suggesting an iPhone/iPod app. PMID:26110121

  19. A Double Dissociation between Anterior and Posterior Superior Temporal Gyrus for Processing Audiovisual Speech Demonstrated by Electrocorticography.

    PubMed

    Ozker, Muge; Schepers, Inga M; Magnotti, John F; Yoshor, Daniel; Beauchamp, Michael S

    2017-06-01

    Human speech can be comprehended using only auditory information from the talker's voice. However, comprehension is improved if the talker's face is visible, especially if the auditory information is degraded as occurs in noisy environments or with hearing loss. We explored the neural substrates of audiovisual speech perception using electrocorticography, direct recording of neural activity using electrodes implanted on the cortical surface. We observed a double dissociation in the responses to audiovisual speech with clear and noisy auditory component within the superior temporal gyrus (STG), a region long known to be important for speech perception. Anterior STG showed greater neural activity to audiovisual speech with clear auditory component, whereas posterior STG showed similar or greater neural activity to audiovisual speech in which the speech was replaced with speech-like noise. A distinct border between the two response patterns was observed, demarcated by a landmark corresponding to the posterior margin of Heschl's gyrus. To further investigate the computational roles of both regions, we considered Bayesian models of multisensory integration, which predict that combining the independent sources of information available from different modalities should reduce variability in the neural responses. We tested this prediction by measuring the variability of the neural responses to single audiovisual words. Posterior STG showed smaller variability than anterior STG during presentation of audiovisual speech with noisy auditory component. Taken together, these results suggest that posterior STG but not anterior STG is important for multisensory integration of noisy auditory and visual speech.

  20. Synchronisation signatures in the listening brain: a perspective from non-invasive neuroelectrophysiology.

    PubMed

    Weisz, Nathan; Obleser, Jonas

    2014-01-01

    Human magneto- and electroencephalography (M/EEG) are capable of tracking brain activity at millisecond temporal resolution in an entirely non-invasive manner, a feature that offers unique opportunities to uncover the spatiotemporal dynamics of the hearing brain. In general, precise synchronisation of neural activity within as well as across distributed regions is likely to subserve any cognitive process, with auditory cognition being no exception. Brain oscillations, in a range of frequencies, are a putative hallmark of this synchronisation process. Embedded in a larger effort to relate human cognition to brain oscillations, a field of research is emerging on how synchronisation within, as well as between, brain regions may shape auditory cognition. Combined with much improved source localisation and connectivity techniques, it has become possible to study directly the neural activity of auditory cortex with unprecedented spatio-temporal fidelity and to uncover frequency-specific long-range connectivities across the human cerebral cortex. In the present review, we will summarise recent contributions mainly of our laboratories to this emerging domain. We present (1) a more general introduction on how to study local as well as interareal synchronisation in human M/EEG; (2) how these networks may subserve and influence illusory auditory perception (clinical and non-clinical) and (3) auditory selective attention; and (4) how oscillatory networks further reflect and impact on speech comprehension. This article is part of a Special Issue entitled Human Auditory Neuroimaging. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. A Dynamic Compressive Gammachirp Auditory Filterbank

    PubMed Central

    Irino, Toshio; Patterson, Roy D.

    2008-01-01

    It is now common to use knowledge about human auditory processing in the development of audio signal processors. Until recently, however, such systems were limited by their linearity. The auditory filter system is known to be level-dependent as evidenced by psychophysical data on masking, compression, and two-tone suppression. However, there were no analysis/synthesis schemes with nonlinear filterbanks. This paper describe18300060s such a scheme based on the compressive gammachirp (cGC) auditory filter. It was developed to extend the gammatone filter concept to accommodate the changes in psychophysical filter shape that are observed to occur with changes in stimulus level in simultaneous, tone-in-noise masking. In models of simultaneous noise masking, the temporal dynamics of the filtering can be ignored. Analysis/synthesis systems, however, are intended for use with speech sounds where the glottal cycle can be long with respect to auditory time constants, and so they require specification of the temporal dynamics of auditory filter. In this paper, we describe a fast-acting level control circuit for the cGC filter and show how psychophysical data involving two-tone suppression and compression can be used to estimate the parameter values for this dynamic version of the cGC filter (referred to as the “dcGC” filter). One important advantage of analysis/synthesis systems with a dcGC filterbank is that they can inherit previously refined signal processing algorithms developed with conventional short-time Fourier transforms (STFTs) and linear filterbanks. PMID:19330044

  2. The Relationship between Brainstem Temporal Processing and Performance on Tests of Central Auditory Function in Children with Reading Disorders

    ERIC Educational Resources Information Center

    Billiet, Cassandra R.; Bellis, Teri James

    2011-01-01

    Purpose: Studies using speech stimuli to elicit electrophysiologic responses have found approximately 30% of children with language-based learning problems demonstrate abnormal brainstem timing. Research is needed regarding how these responses relate to performance on behavioral tests of central auditory function. The purpose of the study was to…

  3. Perception of Audio-Visual Speech Synchrony in Spanish-Speaking Children with and without Specific Language Impairment

    ERIC Educational Resources Information Center

    Pons, Ferran; Andreu, Llorenc; Sanz-Torrent, Monica; Buil-Legaz, Lucia; Lewkowicz, David J.

    2013-01-01

    Speech perception involves the integration of auditory and visual articulatory information, and thus requires the perception of temporal synchrony between this information. There is evidence that children with specific language impairment (SLI) have difficulty with auditory speech perception but it is not known if this is also true for the…

  4. Characteristics of Auditory Agnosia in a Child with Severe Traumatic Brain Injury: A Case Report

    ERIC Educational Resources Information Center

    Hattiangadi, Nina; Pillion, Joseph P.; Slomine, Beth; Christensen, James; Trovato, Melissa K.; Speedie, Lynn J.

    2005-01-01

    We present a case that is unusual in many respects from other documented incidences of auditory agnosia, including the mechanism of injury, age of the individual, and location of neurological insult. The clinical presentation is one of disturbance in the perception of spoken language, music, pitch, emotional prosody, and temporal auditory…

  5. Audiovisual Perception of Noise Vocoded Speech in Dyslexic and Non-Dyslexic Adults: The Role of Low-Frequency Visual Modulations

    ERIC Educational Resources Information Center

    Megnin-Viggars, Odette; Goswami, Usha

    2013-01-01

    Visual speech inputs can enhance auditory speech information, particularly in noisy or degraded conditions. The natural statistics of audiovisual speech highlight the temporal correspondence between visual and auditory prosody, with lip, jaw, cheek and head movements conveying information about the speech envelope. Low-frequency spatial and…

  6. Auditory Sequential Organization among Children with and without a Hearing Loss.

    ERIC Educational Resources Information Center

    Jutras, Benoit; Gagne, Jean-Pierre

    1999-01-01

    Forty-eight children, either with or without a sensorineural hearing loss and either young (6 and 7 years old) or older (9 and 10 years old) reproduced sequences of acoustic stimuli that varied in number, temporal spacing, and type. Results suggested that the poorer performance of the hearing-impaired children was due to auditory processing…

  7. High-density EEG characterization of brain responses to auditory rhythmic stimuli during wakefulness and NREM sleep.

    PubMed

    Lustenberger, Caroline; Patel, Yogi A; Alagapan, Sankaraleengam; Page, Jessica M; Price, Betsy; Boyle, Michael R; Fröhlich, Flavio

    2018-04-01

    Auditory rhythmic sensory stimulation modulates brain oscillations by increasing phase-locking to the temporal structure of the stimuli and by increasing the power of specific frequency bands, resulting in Auditory Steady State Responses (ASSR). The ASSR is altered in different diseases of the central nervous system such as schizophrenia. However, in order to use the ASSR as biological markers for disease states, it needs to be understood how different vigilance states and underlying brain activity affect the ASSR. Here, we compared the effects of auditory rhythmic stimuli on EEG brain activity during wake and NREM sleep, investigated the influence of the presence of dominant sleep rhythms on the ASSR, and delineated the topographical distribution of these modulations. Participants (14 healthy males, 20-33 years) completed on the same day a 60 min nap session and two 30 min wakefulness sessions (before and after the nap). During these sessions, amplitude modulated (AM) white noise auditory stimuli at different frequencies were applied. High-density EEG was continuously recorded and time-frequency analyses were performed to assess ASSR during wakefulness and NREM periods. Our analysis revealed that depending on the electrode location, stimulation frequency applied and window/frequencies analysed the ASSR was significantly modulated by sleep pressure (before and after sleep), vigilance state (wake vs. NREM sleep), and the presence of slow wave activity and sleep spindles. Furthermore, AM stimuli increased spindle activity during NREM sleep but not during wakefulness. Thus, (1) electrode location, sleep history, vigilance state and ongoing brain activity needs to be carefully considered when investigating ASSR and (2) auditory rhythmic stimuli during sleep might represent a powerful tool to boost sleep spindles. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Hair cell regeneration in the avian auditory epithelium.

    PubMed

    Stone, Jennifer S; Cotanche, Douglas A

    2007-01-01

    Regeneration of sensory hair cells in the mature avian inner ear was first described just over 20 years ago. Since then, it has been shown that many other non-mammalian species either continually produce new hair cells or regenerate them in response to trauma. However, mammals exhibit limited hair cell regeneration, particularly in the auditory epithelium. In birds and other non-mammals, regenerated hair cells arise from adjacent non-sensory (supporting) cells. Hair cell regeneration was initially described as a proliferative response whereby supporting cells re-enter the mitotic cycle, forming daughter cells that differentiate into either hair cells or supporting cells and thereby restore cytoarchitecture and function in the sensory epithelium. However, further analyses of the avian auditory epithelium (and amphibian vestibular epithelium) revealed a second regenerative mechanism, direct transdifferentiation, during which supporting cells change their gene expression and convert into hair cells without dividing. In the chicken auditory epithelium, these two distinct mechanisms show unique spatial and temporal patterns, suggesting they are differentially regulated. Current efforts are aimed at identifying signals that maintain supporting cells in a quiescent state or direct them to undergo direct transdifferentiation or cell division. Here, we review current knowledge about supporting cell properties and discuss candidate signaling molecules for regulating supporting cell behavior, in quiescence and after damage. While significant advances have been made in understanding regeneration in non-mammals over the last 20 years, we have yet to determine why the mammalian auditory epithelium lacks the ability to regenerate hair cells spontaneously and whether it is even capable of significant regeneration under additional circumstances. The continued study of mechanisms controlling regeneration in the avian auditory epithelium may lead to strategies for inducing significant and functional regeneration in mammals.

  9. Auditory development after placement of bone-anchored hearing aids Softband among Chinese Mandarin-speaking children with bilateral aural atresia.

    PubMed

    Fan, Yue; Zhang, Ying; Wang, Suju; Chen, Xiaowei

    2014-01-01

    To evaluate auditory developments of Chinese Mandarin-speaking children with congenital bilateral aural atresia after using Bone-anchored hearing aids (Baha) Softband and to compare them with matched peers with normal hearing. Sixteen patients (age ranging from 3 months to 6 years) with bilateral aural atresia and 29 children with normal hearing (age ranging from 8 months to 6 years) were studied. Auditory development was assessed at three time intervals: baseline, 6 months and 12 months. Infant-Toddler Meaningful Auditory Integration Scale (IT-MAIS) was conducted for children under 4 years old; Meaningful Auditory Integration Scale (MAIS), Chinese Mandarin lexical neighborhood test (MLNT) and sound field pure tone audiometry (PTA) were used for children of 4-6 years old. Mean IT-MAIS scores were 41 ± 24%, 60 ± 22% and 73 ± 7%, respectively at three time intervals. Mean MAIS scores were 66 ± 7%, 90 ± 5%, and 99 ± 2%. Mean speech discrimination scores at the three time intervals were 74 ± 19%, 86 ± 16%, and 95 ± 4% with the easy disyllabic (D-E) list; 48 ± 18%, 73 ± 15%, and 81 ± 7% with the hard disyllabic (D-H) list; 55 ± 17%, 74 ± 22%, and 83 ± 14% with the easy monosyllabic(M-E) list; and 31 ± 14%, 61 ± 15%, and 71 ± 13% with the hard monosyllabic (M-H) list. Baha Softband is suitable for infants and young children with bilateral atresia. Results from these auditory development testing are encouraging. Baha Softband should be used as a bridge for surgical implantations when the temporal bone is thick enough. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. The Audiovisual Temporal Binding Window Narrows in Early Childhood

    ERIC Educational Resources Information Center

    Lewkowicz, David J.; Flom, Ross

    2014-01-01

    Binding is key in multisensory perception. This study investigated the audio-visual (A-V) temporal binding window in 4-, 5-, and 6-year-old children (total N = 120). Children watched a person uttering a syllable whose auditory and visual components were either temporally synchronized or desynchronized by 366, 500, or 666 ms. They were asked…

  11. Being First Matters: Topographical Representational Similarity Analysis of ERP Signals Reveals Separate Networks for Audiovisual Temporal Binding Depending on the Leading Sense

    PubMed Central

    2017-01-01

    In multisensory integration, processing in one sensory modality is enhanced by complementary information from other modalities. Intersensory timing is crucial in this process because only inputs reaching the brain within a restricted temporal window are perceptually bound. Previous research in the audiovisual field has investigated various features of the temporal binding window, revealing asymmetries in its size and plasticity depending on the leading input: auditory–visual (AV) or visual–auditory (VA). Here, we tested whether separate neuronal mechanisms underlie this AV–VA dichotomy in humans. We recorded high-density EEG while participants performed an audiovisual simultaneity judgment task including various AV–VA asynchronies and unisensory control conditions (visual-only, auditory-only) and tested whether AV and VA processing generate different patterns of brain activity. After isolating the multisensory components of AV–VA event-related potentials (ERPs) from the sum of their unisensory constituents, we ran a time-resolved topographical representational similarity analysis (tRSA) comparing the AV and VA ERP maps. Spatial cross-correlation matrices were built from real data to index the similarity between the AV and VA maps at each time point (500 ms window after stimulus) and then correlated with two alternative similarity model matrices: AVmaps = VAmaps versus AVmaps ≠ VAmaps. The tRSA results favored the AVmaps ≠ VAmaps model across all time points, suggesting that audiovisual temporal binding (indexed by synchrony perception) engages different neural pathways depending on the leading sense. The existence of such dual route supports recent theoretical accounts proposing that multiple binding mechanisms are implemented in the brain to accommodate different information parsing strategies in auditory and visual sensory systems. SIGNIFICANCE STATEMENT Intersensory timing is a crucial aspect of multisensory integration, determining whether and how inputs in one modality enhance stimulus processing in another modality. Our research demonstrates that evaluating synchrony of auditory-leading (AV) versus visual-leading (VA) audiovisual stimulus pairs is characterized by two distinct patterns of brain activity. This suggests that audiovisual integration is not a unitary process and that different binding mechanisms are recruited in the brain based on the leading sense. These mechanisms may be relevant for supporting different classes of multisensory operations, for example, auditory enhancement of visual attention (AV) and visual enhancement of auditory speech (VA). PMID:28450537

  12. Visual form predictions facilitate auditory processing at the N1.

    PubMed

    Paris, Tim; Kim, Jeesun; Davis, Chris

    2017-02-20

    Auditory-visual (AV) events often involve a leading visual cue (e.g. auditory-visual speech) that allows the perceiver to generate predictions about the upcoming auditory event. Electrophysiological evidence suggests that when an auditory event is predicted, processing is sped up, i.e., the N1 component of the ERP occurs earlier (N1 facilitation). However, it is not clear (1) whether N1 facilitation is based specifically on predictive rather than multisensory integration and (2) which particular properties of the visual cue it is based on. The current experiment used artificial AV stimuli in which visual cues predicted but did not co-occur with auditory cues. Visual form cues (high and low salience) and the auditory-visual pairing were manipulated so that auditory predictions could be based on form and timing or on timing only. The results showed that N1 facilitation occurred only for combined form and temporal predictions. These results suggest that faster auditory processing (as indicated by N1 facilitation) is based on predictive processing generated by a visual cue that clearly predicts both what and when the auditory stimulus will occur. Copyright © 2016. Published by Elsevier Ltd.

  13. Human auditory event-related potentials predict duration judgments.

    PubMed

    Bendixen, Alexandra; Grimm, Sabine; Schröger, Erich

    2005-08-05

    Internal clock models postulate a pulse accumulation process underlying timing activities, with more accumulated pulses resulting in longer perceived durations. We investigated whether this accumulation is reflected in the amplitude of event-related brain potentials (ERPs) elicited by auditory stimuli with durations of 400-600 ms. In a duration discrimination paradigm, we found more negative amplitudes to physically identical stimuli when they were judged as longer than the memorized standard duration (500 ms) as compared to being classified as shorter. This sustained negativity was already developing during the first 100 ms after stimulus onset. It could not be explained as a bias to respond with a particular hand (lateralized readiness potential), but rather reflects a processing difference between the tones to be judged as shorter or longer. Our results are in line with models of time processing which assume that higher numbers of accumulated pulses of a temporal processor result in an increase in perceived duration.

  14. Attention distributed across sensory modalities enhances perceptual performance

    PubMed Central

    Mishra, Jyoti; Gazzaley, Adam

    2012-01-01

    This study investigated the interaction between top-down attentional control and multisensory processing in humans. Using semantically congruent and incongruent audiovisual stimulus streams, we found target detection to be consistently improved in the setting of distributed audiovisual attention versus focused visual attention. This performance benefit was manifested as faster reaction times for congruent audiovisual stimuli, and as accuracy improvements for incongruent stimuli, resulting in a resolution of stimulus interference. Electrophysiological recordings revealed that these behavioral enhancements were associated with reduced neural processing of both auditory and visual components of the audiovisual stimuli under distributed vs. focused visual attention. These neural changes were observed at early processing latencies, within 100–300 ms post-stimulus onset, and localized to auditory, visual, and polysensory temporal cortices. These results highlight a novel neural mechanism for top-down driven performance benefits via enhanced efficacy of sensory neural processing during distributed audiovisual attention relative to focused visual attention. PMID:22933811

  15. Selective verbal recognition memory impairments are associated with atrophy of the language network in non-semantic variants of primary progressive aphasia.

    PubMed

    Nilakantan, Aneesha S; Voss, Joel L; Weintraub, Sandra; Mesulam, M-Marsel; Rogalski, Emily J

    2017-06-01

    Primary progressive aphasia (PPA) is clinically defined by an initial loss of language function and preservation of other cognitive abilities, including episodic memory. While PPA primarily affects the left-lateralized perisylvian language network, some clinical neuropsychological tests suggest concurrent initial memory loss. The goal of this study was to test recognition memory of objects and words in the visual and auditory modality to separate language-processing impairments from retentive memory in PPA. Individuals with non-semantic PPA had longer reaction times and higher false alarms for auditory word stimuli compared to visual object stimuli. Moreover, false alarms for auditory word recognition memory were related to cortical thickness within the left inferior frontal gyrus and left temporal pole, while false alarms for visual object recognition memory was related to cortical thickness within the right-temporal pole. This pattern of results suggests that specific vulnerability in processing verbal stimuli can hinder episodic memory in PPA, and provides evidence for differential contributions of the left and right temporal poles in word and object recognition memory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Spectral-temporal EEG dynamics of speech discrimination processing in infants during sleep.

    PubMed

    Gilley, Phillip M; Uhler, Kristin; Watson, Kaylee; Yoshinaga-Itano, Christine

    2017-03-22

    Oddball paradigms are frequently used to study auditory discrimination by comparing event-related potential (ERP) responses from a standard, high probability sound and to a deviant, low probability sound. Previous research has established that such paradigms, such as the mismatch response or mismatch negativity, are useful for examining auditory processes in young children and infants across various sleep and attention states. The extent to which oddball ERP responses may reflect subtle discrimination effects, such as speech discrimination, is largely unknown, especially in infants that have not yet acquired speech and language. Mismatch responses for three contrasts (non-speech, vowel, and consonant) were computed as a spectral-temporal probability function in 24 infants, and analyzed at the group level by a modified multidimensional scaling. Immediately following an onset gamma response (30-50 Hz), the emergence of a beta oscillation (12-30 Hz) was temporally coupled with a lower frequency theta oscillation (2-8 Hz). The spectral-temporal probability of this coupling effect relative to a subsequent theta modulation corresponds with discrimination difficulty for non-speech, vowel, and consonant contrast features. The theta modulation effect suggests that unexpected sounds are encoded as a probabilistic measure of surprise. These results support the notion that auditory discrimination is driven by the development of brain networks for predictive processing, and can be measured in infants during sleep. The results presented here have implications for the interpretation of discrimination as a probabilistic process, and may provide a basis for the development of single-subject and single-trial classification in a clinically useful context. An infant's brain is processing information about the environment and performing computations, even during sleep. These computations reflect subtle differences in acoustic feature processing that are necessary for language-learning. Results from this study suggest that brain responses to deviant sounds in an oddball paradigm follow a cascade of oscillatory modulations. This cascade begins with a gamma response that later emerges as a beta synchronization, which is temporally coupled with a theta modulation, and followed by a second, subsequent theta modulation. The difference in frequency and timing of the theta modulations appears to reflect a measure of surprise. These insights into the neurophysiological mechanisms of auditory discrimination provide a basis for exploring the clinically utility of the MMR TF and other auditory oddball responses.

  17. Spectral context affects temporal processing in awake auditory cortex

    PubMed Central

    Beitel, Ralph E.; Vollmer, Maike; Heiser, Marc A; Schreiner, Christoph E.

    2013-01-01

    Amplitude modulation encoding is critical for human speech perception and complex sound processing in general. The modulation transfer function (MTF) is a staple of auditory psychophysics, and has been shown to predict speech intelligibility performance in a range of adverse listening conditions and hearing impairments, including cochlear implant-supported hearing. Although both tonal and broadband carriers have been employed in psychophysical studies of modulation detection and discrimination, relatively little is known about differences in the cortical representation of such signals. We obtained MTFs in response to sinusoidal amplitude modulation (SAM) for both narrowband tonal carriers and 2-octave bandwidth noise carriers in the auditory core of awake squirrel monkeys. MTFs spanning modulation frequencies from 4 to 512 Hz were obtained using 16 channel linear recording arrays sampling across all cortical laminae. Carrier frequency for tonal SAM and center frequency for noise SAM was set at the estimated best frequency for each penetration. Changes in carrier type affected both rate and temporal MTFs in many neurons. Using spike discrimination techniques, we found that discrimination of modulation frequency was significantly better for tonal SAM than for noise SAM, though the differences were modest at the population level. Moreover, spike trains elicited by tonal and noise SAM could be readily discriminated in most cases. Collectively, our results reveal remarkable sensitivity to the spectral content of modulated signals, and indicate substantial interdependence between temporal and spectral processing in neurons of the core auditory cortex. PMID:23719811

  18. Encoding frequency contrast in primate auditory cortex

    PubMed Central

    Scott, Brian H.; Semple, Malcolm N.

    2014-01-01

    Changes in amplitude and frequency jointly determine much of the communicative significance of complex acoustic signals, including human speech. We have previously described responses of neurons in the core auditory cortex of awake rhesus macaques to sinusoidal amplitude modulation (SAM) signals. Here we report a complementary study of sinusoidal frequency modulation (SFM) in the same neurons. Responses to SFM were analogous to SAM responses in that changes in multiple parameters defining SFM stimuli (e.g., modulation frequency, modulation depth, carrier frequency) were robustly encoded in the temporal dynamics of the spike trains. For example, changes in the carrier frequency produced highly reproducible changes in shapes of the modulation period histogram, consistent with the notion that the instantaneous probability of discharge mirrors the moment-by-moment spectrum at low modulation rates. The upper limit for phase locking was similar across SAM and SFM within neurons, suggesting shared biophysical constraints on temporal processing. Using spike train classification methods, we found that neural thresholds for modulation depth discrimination are typically far lower than would be predicted from frequency tuning to static tones. This “dynamic hyperacuity” suggests a substantial central enhancement of the neural representation of frequency changes relative to the auditory periphery. Spike timing information was superior to average rate information when discriminating among SFM signals, and even when discriminating among static tones varying in frequency. This finding held even when differences in total spike count across stimuli were normalized, indicating both the primacy and generality of temporal response dynamics in cortical auditory processing. PMID:24598525

  19. Cochlear neuropathy and the coding of supra-threshold sound.

    PubMed

    Bharadwaj, Hari M; Verhulst, Sarah; Shaheen, Luke; Liberman, M Charles; Shinn-Cunningham, Barbara G

    2014-01-01

    Many listeners with hearing thresholds within the clinically normal range nonetheless complain of difficulty hearing in everyday settings and understanding speech in noise. Converging evidence from human and animal studies points to one potential source of such difficulties: differences in the fidelity with which supra-threshold sound is encoded in the early portions of the auditory pathway. Measures of auditory subcortical steady-state responses (SSSRs) in humans and animals support the idea that the temporal precision of the early auditory representation can be poor even when hearing thresholds are normal. In humans with normal hearing thresholds (NHTs), paradigms that require listeners to make use of the detailed spectro-temporal structure of supra-threshold sound, such as selective attention and discrimination of frequency modulation (FM), reveal individual differences that correlate with subcortical temporal coding precision. Animal studies show that noise exposure and aging can cause a loss of a large percentage of auditory nerve fibers (ANFs) without any significant change in measured audiograms. Here, we argue that cochlear neuropathy may reduce encoding precision of supra-threshold sound, and that this manifests both behaviorally and in SSSRs in humans. Furthermore, recent studies suggest that noise-induced neuropathy may be selective for higher-threshold, lower-spontaneous-rate nerve fibers. Based on our hypothesis, we suggest some approaches that may yield particularly sensitive, objective measures of supra-threshold coding deficits that arise due to neuropathy. Finally, we comment on the potential clinical significance of these ideas and identify areas for future investigation.

  20. Gender effect on pre-attentive change detection in major depressive disorder patients revealed by auditory MMN.

    PubMed

    Qiao, Zhengxue; Yang, Aiying; Qiu, Xiaohui; Yang, Xiuxian; Zhang, Congpei; Zhu, Xiongzhao; He, Jincai; Wang, Lin; Bai, Bing; Sun, Hailian; Zhao, Lun; Yang, Yanjie

    2015-10-30

    Gender differences in rates of major depressive disorder (MDD) are well established, but gender differences in cognitive function have been little studied. Auditory mismatch negativity (MMN) was used to investigate gender differences in pre-attentive information processing in first episode MDD. In the deviant-standard reverse oddball paradigm, duration auditory MMN was obtained in 30 patients (15 males) and 30 age-/education-matched controls. Over frontal-central areas, mean amplitude of increment MMN (to a 150-ms deviant tone) was smaller in female than male patients; there was no sex difference in decrement MMN (to a 50-ms deviant tone). Neither increment nor decrement MMN differed between female and male patients over temporal areas. Frontal-central MMN and temporal MMN did not differ between male and female controls in any condition. Over frontal-central areas, mean amplitude of increment MMN was smaller in female patients than female controls; there was no difference in decrement MMN. Neither increment nor decrement MMN differed between female patients and female controls over temporal areas. Frontal-central MMN and temporal MMN did not differ between male patients and male controls. Mean amplitude of increment MMN in female patients did not correlate with symptoms, suggesting this sex-specific deficit is a trait- not a state-dependent phenomenon. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

Top