2006-12-01
on at any time from a family of candidate feedback-gains so as to control a discrete- time input-saturated LTI system possibly subject to persistent... times robustness Mosca, E. (2006) Control of Uncertain Systems under Constraints: Switching Horizon Predictive Control of Persistently Disturbed...feedback controls u = f(x̂) (3) so as to ensure, under suitable conditions, stability in the noiseless case as well as finite l∞-induced gain of the
Behavioural system identification of visual flight speed control in Drosophila melanogaster
Rohrseitz, Nicola; Fry, Steven N.
2011-01-01
Behavioural control in many animals involves complex mechanisms with intricate sensory-motor feedback loops. Modelling allows functional aspects to be captured without relying on a description of the underlying complex, and often unknown, mechanisms. A wide range of engineering techniques are available for modelling, but their ability to describe time-continuous processes is rarely exploited to describe sensory-motor control mechanisms in biological systems. We performed a system identification of visual flight speed control in the fruitfly Drosophila, based on an extensive dataset of open-loop responses previously measured under free flight conditions. We identified a second-order under-damped control model with just six free parameters that well describes both the transient and steady-state characteristics of the open-loop data. We then used the identified control model to predict flight speed responses after a visual perturbation under closed-loop conditions and validated the model with behavioural measurements performed in free-flying flies under the same closed-loop conditions. Our system identification of the fruitfly's flight speed response uncovers the high-level control strategy of a fundamental flight control reflex without depending on assumptions about the underlying physiological mechanisms. The results are relevant for future investigations of the underlying neuromotor processing mechanisms, as well as for the design of biomimetic robots, such as micro-air vehicles. PMID:20525744
Behavioural system identification of visual flight speed control in Drosophila melanogaster.
Rohrseitz, Nicola; Fry, Steven N
2011-02-06
Behavioural control in many animals involves complex mechanisms with intricate sensory-motor feedback loops. Modelling allows functional aspects to be captured without relying on a description of the underlying complex, and often unknown, mechanisms. A wide range of engineering techniques are available for modelling, but their ability to describe time-continuous processes is rarely exploited to describe sensory-motor control mechanisms in biological systems. We performed a system identification of visual flight speed control in the fruitfly Drosophila, based on an extensive dataset of open-loop responses previously measured under free flight conditions. We identified a second-order under-damped control model with just six free parameters that well describes both the transient and steady-state characteristics of the open-loop data. We then used the identified control model to predict flight speed responses after a visual perturbation under closed-loop conditions and validated the model with behavioural measurements performed in free-flying flies under the same closed-loop conditions. Our system identification of the fruitfly's flight speed response uncovers the high-level control strategy of a fundamental flight control reflex without depending on assumptions about the underlying physiological mechanisms. The results are relevant for future investigations of the underlying neuromotor processing mechanisms, as well as for the design of biomimetic robots, such as micro-air vehicles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sastry, S. S.; Desoer, C. A.
1980-01-01
Fixed point methods from nonlinear anaysis are used to establish conditions under which the uniform complete controllability of linear time-varying systems is preserved under non-linear perturbations in the state dynamics and the zero-input uniform complete observability of linear time-varying systems is preserved under non-linear perturbation in the state dynamics and output read out map. Algorithms for computing the specific input to steer the perturbed systems from a given initial state to a given final state are also presented. As an application, a very specific emergency control of an interconnected power system is formulated as a steering problem and it ismore » shown that this emergency control is indeed possible in finite time.« less
Financial management systems under decentralization and their effect on malaria control in Uganda.
Kivumbi, George W; Nangendo, Florence; Ndyabahika, Boniface Rutagira
2004-01-01
A descriptive case study with multiple sites and a single level of analysis was carried out in four purposefully selected administrative districts of Uganda to investigate the effect of financial management systems under decentralization on malaria control. Data were primarily collected from 36 interviews with district managers, staff at health units and local leaders. A review of records and documents related to decentralization at the central and district level was also used to generate data for the study. We found that a long, tedious, and bureaucratic process combined with lack of knowledge in working with new financial systems by several actors characterized financial flow under decentralization. This affected the timely use of financial resources for malaria control in that there were funds in the system that could not be accessed for use. We were also told that sometimes these funds were returned to the central government because of non-use due to difficulties in accessing them and/or stringent conditions not to divert them to other uses. Our data showed that a cocktail of bureaucratic control systems, corruption and incompetence make the financial management system under decentralization counter-productive for malaria control. The main conclusion is that good governance through appropriate and efficient financial management systems is very important for effective malaria control under decentralization.
Integrated Neural Flight and Propulsion Control System
NASA Technical Reports Server (NTRS)
Kaneshige, John; Gundy-Burlet, Karen; Norvig, Peter (Technical Monitor)
2001-01-01
This paper describes an integrated neural flight and propulsion control system. which uses a neural network based approach for applying alternate sources of control power in the presence of damage or failures. Under normal operating conditions, the system utilizes conventional flight control surfaces. Neural networks are used to provide consistent handling qualities across flight conditions and for different aircraft configurations. Under damage or failure conditions, the system may utilize unconventional flight control surface allocations, along with integrated propulsion control, when additional control power is necessary for achieving desired flight control performance. In this case, neural networks are used to adapt to changes in aircraft dynamics and control allocation schemes. Of significant importance here is the fact that this system can operate without emergency or backup flight control mode operations. An additional advantage is that this system can utilize, but does not require, fault detection and isolation information or explicit parameter identification. Piloted simulation studies were performed on a commercial transport aircraft simulator. Subjects included both NASA test pilots and commercial airline crews. Results demonstrate the potential for improving handing qualities and significantly increasing survivability rates under various simulated failure conditions.
Manual control of unstable systems
NASA Technical Reports Server (NTRS)
Allen, R. W.; Hogue, J. R.; Parseghian, Z.
1986-01-01
Under certain operational regimes and failure modes, air and ground vehicles can present the human operator with a dynamically unstable or divergent control task. Research conducted over the last two decades has explored the ability of the human operator to control unstable systems under a variety of circumstances. Past research is reviewed and human operator control capabilities are summarized. A current example of automobile directional control under rear brake lockup conditions is also reviewed. A control system model analysis of the driver's steering control task is summarized, based on a generic driver/vehicle model presented at last year's Annual Manual. Results from closed course braking tests are presented that confirm the difficulty the average driver has in controlling the unstable directional dynamics arising from rear wheel lockup.
NASA Astrophysics Data System (ADS)
Zuo, Ye; Sun, Guangjun; Li, Hongjing
2018-01-01
Under the action of near-fault ground motions, curved bridges are prone to pounding, local damage of bridge components and even unseating. A multi-scale fine finite element model of a typical three-span curved bridge is established by considering the elastic-plastic behavior of piers and pounding effect of adjacent girders. The nonlinear time-history method is used to study the seismic response of the curved bridge equipped with unseating failure control system under the action of near-fault ground motion. An in-depth analysis is carried to evaluate the control effect of the proposed unseating failure control system. The research results indicate that under the near-fault ground motion, the seismic response of the curved bridge is strong. The unseating failure control system perform effectively to reduce the pounding force of the adjacent girders and the probability of deck unseating.
42 CFR 431.836 - Corrective action under the MQC claims processing assessment system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... assessment system. 431.836 Section 431.836 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT... ADMINISTRATION Quality Control Medicaid Quality Control (mqc) Claims Processing Assessment System § 431.836 Corrective action under the MQC claims processing assessment system. The agency must— (a) Take action to...
NASA Astrophysics Data System (ADS)
Ding, Da-Wei; Liu, Fang-Fang; Chen, Hui; Wang, Nian; Liang, Dong
2017-12-01
In this paper, a simplest fractional-order delayed memristive chaotic system is proposed in order to control the chaos behaviors via sliding mode control strategy. Firstly, we design a sliding mode control strategy for the fractional-order system with time delay to make the states of the system asymptotically stable. Then, we obtain theoretical analysis results of the control method using Lyapunov stability theorem which guarantees the asymptotic stability of the non-commensurate order and commensurate order system with and without uncertainty and an external disturbance. Finally, numerical simulations are given to verify that the proposed sliding mode control method can eliminate chaos and stabilize the fractional-order delayed memristive system in a finite time. Supported by the National Nature Science Foundation of China under Grant No. 61201227, Funding of China Scholarship Council, the Natural Science Foundation of Anhui Province under Grant No. 1208085M F93, 211 Innovation Team of Anhui University under Grant Nos. KJTD007A and KJTD001B
Adaptive neural network motion control for aircraft under uncertainty conditions
NASA Astrophysics Data System (ADS)
Efremov, A. V.; Tiaglik, M. S.; Tiumentsev, Yu V.
2018-02-01
We need to provide motion control of modern and advanced aircraft under diverse uncertainty conditions. This problem can be solved by using adaptive control laws. We carry out an analysis of the capabilities of these laws for such adaptive systems as MRAC (Model Reference Adaptive Control) and MPC (Model Predictive Control). In the case of a nonlinear control object, the most efficient solution to the adaptive control problem is the use of neural network technologies. These technologies are suitable for the development of both a control object model and a control law for the object. The approximate nature of the ANN model was taken into account by introducing additional compensating feedback into the control system. The capabilities of adaptive control laws under uncertainty in the source data are considered. We also conduct simulations to assess the contribution of adaptivity to the behavior of the system.
2011-08-09
Environmental control systems are becoming an integral part of a vehicle thermal management system. This is particularly true for under - armor applications...in an under - armor vehicle to provide a zoned approach to cooling and packaging considerations and condensation effects may dictate the best
A demonstration of an intelligent control system for a reusable rocket engine
NASA Technical Reports Server (NTRS)
Musgrave, Jeffrey L.; Paxson, Daniel E.; Litt, Jonathan S.; Merrill, Walter C.
1992-01-01
An Intelligent Control System for reusable rocket engines is under development at NASA Lewis Research Center. The primary objective is to extend the useful life of a reusable rocket propulsion system while minimizing between flight maintenance and maximizing engine life and performance through improved control and monitoring algorithms and additional sensing and actuation. This paper describes current progress towards proof-of-concept of an Intelligent Control System for the Space Shuttle Main Engine. A subset of identifiable and accommodatable engine failure modes is selected for preliminary demonstration. Failure models are developed retaining only first order effects and included in a simplified nonlinear simulation of the rocket engine for analysis under closed loop control. The engine level coordinator acts as an interface between the diagnostic and control systems, and translates thrust and mixture ratio commands dictated by mission requirements, and engine status (health) into engine operational strategies carried out by a multivariable control. Control reconfiguration achieves fault tolerance if the nominal (healthy engine) control cannot. Each of the aforementioned functionalities is discussed in the context of an example to illustrate the operation of the system in the context of a representative failure. A graphical user interface allows the researcher to monitor the Intelligent Control System and engine performance under various failure modes selected for demonstration.
Mathematical model for adaptive control system of ASEA robot at Kennedy Space Center
NASA Technical Reports Server (NTRS)
Zia, Omar
1989-01-01
The dynamic properties and the mathematical model for the adaptive control of the robotic system presently under investigation at Robotic Application and Development Laboratory at Kennedy Space Center are discussed. NASA is currently investigating the use of robotic manipulators for mating and demating of fuel lines to the Space Shuttle Vehicle prior to launch. The Robotic system used as a testbed for this purpose is an ASEA IRB-90 industrial robot with adaptive control capabilities. The system was tested and it's performance with respect to stability was improved by using an analogue force controller. The objective of this research project is to determine the mathematical model of the system operating under force feedback control with varying dynamic internal perturbation in order to provide continuous stable operation under variable load conditions. A series of lumped parameter models are developed. The models include some effects of robot structural dynamics, sensor compliance, and workpiece dynamics.
Adaptive vibration control of structures under earthquakes
NASA Astrophysics Data System (ADS)
Lew, Jiann-Shiun; Juang, Jer-Nan; Loh, Chin-Hsiung
2017-04-01
techniques, for structural vibration suppression under earthquakes. Various control strategies have been developed to protect structures from natural hazards and improve the comfort of occupants in buildings. However, there has been little development of adaptive building control with the integration of real-time system identification and control design. Generalized predictive control, which combines the process of real-time system identification and the process of predictive control design, has received widespread acceptance and has been successfully applied to various test-beds. This paper presents a formulation of the predictive control scheme for adaptive vibration control of structures under earthquakes. Comprehensive simulations are performed to demonstrate and validate the proposed adaptive control technique for earthquake-induced vibration of a building.
Chen, Huipeng; Li, Mengyuan; Zhang, Yi; Xie, Huikai; Chen, Chang; Peng, Zhangming; Su, Shaohui
2018-02-08
Incorporating linear-scanning micro-electro-mechanical systems (MEMS) micromirrors into Fourier transform spectral acquisition systems can greatly reduce the size of the spectrometer equipment, making portable Fourier transform spectrometers (FTS) possible. How to minimize the tilting of the MEMS mirror plate during its large linear scan is a major problem in this application. In this work, an FTS system has been constructed based on a biaxial MEMS micromirror with a large-piston displacement of 180 μm, and a biaxial H∞ robust controller is designed. Compared with open-loop control and proportional-integral-derivative (PID) closed-loop control, H∞ robust control has good stability and robustness. The experimental results show that the stable scanning displacement reaches 110.9 μm under the H∞ robust control, and the tilting angle of the MEMS mirror plate in that full scanning range falls within ±0.0014°. Without control, the FTS system cannot generate meaningful spectra. In contrast, the FTS yields a clean spectrum with a full width at half maximum (FWHM) spectral linewidth of 96 cm -1 under the H∞ robust control. Moreover, the FTS system can maintain good stability and robustness under various driving conditions.
Li, Mengyuan; Zhang, Yi; Chen, Chang; Peng, Zhangming; Su, Shaohui
2018-01-01
Incorporating linear-scanning micro-electro-mechanical systems (MEMS) micromirrors into Fourier transform spectral acquisition systems can greatly reduce the size of the spectrometer equipment, making portable Fourier transform spectrometers (FTS) possible. How to minimize the tilting of the MEMS mirror plate during its large linear scan is a major problem in this application. In this work, an FTS system has been constructed based on a biaxial MEMS micromirror with a large-piston displacement of 180 μm, and a biaxial H∞ robust controller is designed. Compared with open-loop control and proportional-integral-derivative (PID) closed-loop control, H∞ robust control has good stability and robustness. The experimental results show that the stable scanning displacement reaches 110.9 μm under the H∞ robust control, and the tilting angle of the MEMS mirror plate in that full scanning range falls within ±0.0014°. Without control, the FTS system cannot generate meaningful spectra. In contrast, the FTS yields a clean spectrum with a full width at half maximum (FWHM) spectral linewidth of 96 cm−1 under the H∞ robust control. Moreover, the FTS system can maintain good stability and robustness under various driving conditions. PMID:29419765
Effective Dust Control Systems on Concrete Dowel Drilling Machinery
Echt, Alan S.; Sanderson, Wayne T.; Mead, Kenneth R.; Feng, H. Amy; Farwick, Daniel R.; Farwick, Dawn Ramsey
2016-01-01
Rotary-type percussion dowel drilling machines, which drill horizontal holes in concrete pavement, have been documented to produce respirable crystalline silica concentrations above recommended exposure criteria. This places operators at potential risk for developing health effects from exposure. United States manufacturers of these machines offer optional dust control systems. The effectiveness of the dust control systems to reduce respirable dust concentrations on two types of drilling machines was evaluated under controlled conditions with the machines operating inside large tent structures in an effort to eliminate secondary exposure sources not related to the dowel-drilling operation. Area air samples were collected at breathing zone height at three locations around each machine. Through equal numbers of sampling rounds with the control systems randomly selected to be on or off, the control systems were found to significantly reduce respirable dust concentrations from a geometric mean of 54 mg per cubic meter to 3.0 mg per cubic meter on one machine and 57 mg per cubic meter to 5.3 mg per cubic meter on the other machine. This research shows that the dust control systems can dramatically reduce respirable dust concentrations by over 90% under controlled conditions. However, these systems need to be evaluated under actual work conditions to determine their effectiveness in reducing worker exposures to crystalline silica below hazardous levels. PMID:27074062
DOT National Transportation Integrated Search
1998-04-01
The report documents the results of a study designed to test the effectiveness of ATMS and ATIS strategies to reduce delay resulting from an incident. The study had two main sections: a simulation study to test the effectiveness of several control st...
Neural-network hybrid control for antilock braking systems.
Lin, Chih-Min; Hsu, C F
2003-01-01
The antilock braking systems are designed to maximize wheel traction by preventing the wheels from locking during braking, while also maintaining adequate vehicle steerability; however, the performance is often degraded under harsh road conditions. In this paper, a hybrid control system with a recurrent neural network (RNN) observer is developed for antilock braking systems. This hybrid control system is comprised of an ideal controller and a compensation controller. The ideal controller, containing an RNN uncertainty observer, is the principal controller; and the compensation controller is a compensator for the difference between the system uncertainty and the estimated uncertainty. Since for dynamic response the RNN has capabilities superior to the feedforward NN, it is utilized for the uncertainty observer. The Taylor linearization technique is employed to increase the learning ability of the RNN. In addition, the on-line parameter adaptation laws are derived based on a Lyapunov function, so the stability of the system can be guaranteed. Simulations are performed to demonstrate the effectiveness of the proposed NN hybrid control system for antilock braking control under various road conditions.
Control method for physical systems and devices
Guckenheimer, John
1997-01-01
A control method for stabilizing systems or devices that are outside the control domain of a linear controller is provided. When applied to nonlinear systems, the effectiveness of this method depends upon the size of the domain of stability that is produced for the stabilized equilibrium. If this domain is small compared to the accuracy of measurements or the size of disturbances within the system, then the linear controller is likely to fail within a short period. Failure of the system or device can be catastrophic: the system or device can wander far from the desired equilibrium. The method of the invention presents a general procedure to recapture the stability of a linear controller, when the trajectory of a system or device leaves its region of stability. By using a hybrid strategy based upon discrete switching events within the state space of the system or device, the system or device will return from a much larger domain to the region of stability utilized by the linear controller. The control procedure is robust and remains effective under large classes of perturbations of a given underlying system or device.
NASA Astrophysics Data System (ADS)
Chen, Shuhong; Tan, Zhong
2007-11-01
In this paper, we consider the nonlinear elliptic systems under controllable growth condition. We use a new method introduced by Duzaar and Grotowski, for proving partial regularity for weak solutions, based on a generalization of the technique of harmonic approximation. We extend previous partial regularity results under the natural growth condition to the case of the controllable growth condition, and directly establishing the optimal Hölder exponent for the derivative of a weak solution.
Aeropropulsion facilities configuration control: Procedures manual
NASA Technical Reports Server (NTRS)
Lavelle, James J.
1990-01-01
Lewis Research Center senior management directed that the aeropropulsion facilities be put under configuration control. A Configuration Management (CM) program was established by the Facilities Management Branch of the Aeropropulsion Facilities and Experiments Division. Under the CM program, a support service contractor was engaged to staff and implement the program. The Aeronautics Directorate has over 30 facilities at Lewis of various sizes and complexities. Under the program, a Facility Baseline List (FBL) was established for each facility, listing which systems and their documents were to be placed under configuration control. A Change Control System (CCS) was established requiring that any proposed changes to FBL systems or their documents were to be processed as per the CCS. Limited access control of the FBL master drawings was implemented and an audit system established to ensure all facility changes are properly processed. This procedures manual sets forth the policy and responsibilities to ensure all key documents constituting a facilities configuration are kept current, modified as needed, and verified to reflect any proposed change. This is the essence of the CM program.
A dual closed-loop control system for mechanical ventilation.
Tehrani, Fleur; Rogers, Mark; Lo, Takkin; Malinowski, Thomas; Afuwape, Samuel; Lum, Michael; Grundl, Brett; Terry, Michael
2004-04-01
Closed-loop mechanical ventilation has the potential to provide more effective ventilatory support to patients with less complexity than conventional ventilation. The purpose of this study was to investigate the effectiveness of an automatic technique for mechanical ventilation. Two closed-loop control systems for mechanical ventilation are combined in this study. In one of the control systems several physiological data are used to automatically adjust the frequency and tidal volume of breaths of a patient. This method, which is patented under US Patent number 4986268, uses the criterion of minimal respiratory work rate to provide the patient with a natural pattern of breathing. The inputs to the system include data representing CO2 and O2 levels of the patient as well as respiratory compliance and airway resistance. The I:E ratio is adjusted on the basis of the respiratory time constant to allow for effective emptying of the lungs in expiration and to avoid intrinsic positive end expiratory pressure (PEEP). This system is combined with another closed-loop control system for automatic adjustment of the inspired fraction of oxygen of the patient. This controller uses the feedback of arterial oxygen saturation of the patient and combines a rapid stepwise control procedure with a proportional-integral-derivative (PID) control algorithm to automatically adjust the oxygen concentration in the patient's inspired gas. The dual closed-loop control system has been examined by using mechanical lung studies, computer simulations and animal experiments. In the mechanical lung studies, the ventilation controller adjusted the breathing frequency and tidal volume in a clinically appropriate manner in response to changes in respiratory mechanics. The results of computer simulations and animal studies under induced disturbances showed that blood gases were returned to the normal physiologic range in less than 25 s by the control system. In the animal experiments understeady-state conditions, the maximum standard deviations of arterial oxygen saturation and the end-tidal partial pressure of CO2 were +/- 1.76% and +/- 1.78 mmHg, respectively. The controller maintained the arterial blood gases within normal limits under steady-state conditions and the transient response of the system was robust under various disturbances. The results of the study have showed that the proposed dual closed-loop technique has effectively controlled mechanical ventilation under different test conditions.
A genuine nonlinear approach for controller design of a boiler-turbine system.
Yang, Shizhong; Qian, Chunjiang; Du, Haibo
2012-05-01
This paper proposes a genuine nonlinear approach for controller design of a drum-type boiler-turbine system. Based on a second order nonlinear model, a finite-time convergent controller is first designed to drive the states to their setpoints in a finite time. In the case when the state variables are unmeasurable, the system will be regulated using a constant controller or an output feedback controller. An adaptive controller is also designed to stabilize the system since the model parameters may vary under different operating points. The novelty of the proposed controller design approach lies in fully utilizing the system nonlinearities instead of linearizing or canceling them. In addition, the newly developed techniques for finite-time convergent controller are used to guarantee fast convergence of the system. Simulations are conducted under different cases and the results are presented to illustrate the performance of the proposed controllers. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
40 CFR 141.90 - Reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... water system deemed to have optimized corrosion control under § 141.81(b)(3), a water system subject to...), and switching corrosion inhibitor products (e.g., orthophosphate to blended phosphate). Long-term... changed. (c) Corrosion control treatment reporting requirements. By the applicable dates under § 141.81...
40 CFR 141.90 - Reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... water system deemed to have optimized corrosion control under § 141.81(b)(3), a water system subject to...), and switching corrosion inhibitor products (e.g., orthophosphate to blended phosphate). Long-term... changed. (c) Corrosion control treatment reporting requirements. By the applicable dates under § 141.81...
40 CFR 141.90 - Reporting requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... water system deemed to have optimized corrosion control under § 141.81(b)(3), a water system subject to...), and switching corrosion inhibitor products (e.g., orthophosphate to blended phosphate). Long-term... changed. (c) Corrosion control treatment reporting requirements. By the applicable dates under § 141.81...
40 CFR 141.90 - Reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... water system deemed to have optimized corrosion control under § 141.81(b)(3), a water system subject to...), and switching corrosion inhibitor products (e.g., orthophosphate to blended phosphate). Long-term... changed. (c) Corrosion control treatment reporting requirements. By the applicable dates under § 141.81...
40 CFR 141.90 - Reporting requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... water system deemed to have optimized corrosion control under § 141.81(b)(3), a water system subject to...), and switching corrosion inhibitor products (e.g., orthophosphate to blended phosphate). Long-term... changed. (c) Corrosion control treatment reporting requirements. By the applicable dates under § 141.81...
Shi, Xiaojie; Wang, Zhiqiang; Liu, Bo; ...
2014-05-16
This paper presents the analysis and control of a multilevel modular converter (MMC)-based HVDC transmission system under three possible single-line-to-ground fault conditions, with special focus on the investigation of their different fault characteristics. Considering positive-, negative-, and zero-sequence components in both arm voltages and currents, the generalized instantaneous power of a phase unit is derived theoretically according to the equivalent circuit model of the MMC under unbalanced conditions. Based on this model, a novel double-line frequency dc-voltage ripple suppression control is proposed. This controller, together with the negative-and zero-sequence current control, could enhance the overall fault-tolerant capability of the HVDCmore » system without additional cost. To further improve the fault-tolerant capability, the operation performance of the HVDC system with and without single-phase switching is discussed and compared in detail. Lastly, simulation results from a three-phase MMC-HVDC system generated with MATLAB/Simulink are provided to support the theoretical analysis and proposed control schemes.« less
Li, Shuhui; Fairbank, Michael; Johnson, Cameron; Wunsch, Donald C; Alonso, Eduardo; Proaño, Julio L
2014-04-01
Three-phase grid-connected converters are widely used in renewable and electric power system applications. Traditionally, grid-connected converters are controlled with standard decoupled d-q vector control mechanisms. However, recent studies indicate that such mechanisms show limitations in their applicability to dynamic systems. This paper investigates how to mitigate such restrictions using a neural network to control a grid-connected rectifier/inverter. The neural network implements a dynamic programming algorithm and is trained by using back-propagation through time. To enhance performance and stability under disturbance, additional strategies are adopted, including the use of integrals of error signals to the network inputs and the introduction of grid disturbance voltage to the outputs of a well-trained network. The performance of the neural-network controller is studied under typical vector control conditions and compared against conventional vector control methods, which demonstrates that the neural vector control strategy proposed in this paper is effective. Even in dynamic and power converter switching environments, the neural vector controller shows strong ability to trace rapidly changing reference commands, tolerate system disturbances, and satisfy control requirements for a faulted power system.
An application of high authority/low authority control and positivity
NASA Technical Reports Server (NTRS)
Seltzer, S. M.; Irwin, D.; Tollison, D.; Waites, H. B.
1988-01-01
Control Dynamics Company (CDy), in conjunction with NASA Marshall Space Flight Center (MSFC), has supported the U.S. Air Force Wright Aeronautical Laboratory (AFWAL) in conducting an investigation of the implementation of several DOD controls techniques. These techniques are to provide vibration suppression and precise attitude control for flexible space structures. AFWAL issued a contract to Control Dynamics to perform this work under the Active Control Technique Evaluation for Spacecraft (ACES) Program. The High Authority Control/Low Authority Control (HAC/LAC) and Positivity controls techniques, which were cultivated under the DARPA Active Control of Space Structures (ACOSS) Program, were applied to a structural model of the NASA/MSFC Ground Test Facility ACES configuration. The control systems design were accomplished and linear post-analyses of the closed-loop systems are provided. The control system designs take into account effects of sampling and delay in the control computer. Nonlinear simulation runs were used to verify the control system designs and implementations in the facility control computers. Finally, test results are given to verify operations of the control systems in the test facility.
Effective dust control systems on concrete dowel drilling machinery.
Echt, Alan S; Sanderson, Wayne T; Mead, Kenneth R; Feng, H Amy; Farwick, Daniel R; Farwick, Dawn Ramsey
2016-09-01
Rotary-type percussion dowel drilling machines, which drill horizontal holes in concrete pavement, have been documented to produce respirable crystalline silica concentrations above recommended exposure criteria. This places operators at potential risk for developing health effects from exposure. United States manufacturers of these machines offer optional dust control systems. The effectiveness of the dust control systems to reduce respirable dust concentrations on two types of drilling machines was evaluated under controlled conditions with the machines operating inside large tent structures in an effort to eliminate secondary exposure sources not related to the dowel-drilling operation. Area air samples were collected at breathing zone height at three locations around each machine. Through equal numbers of sampling rounds with the control systems randomly selected to be on or off, the control systems were found to significantly reduce respirable dust concentrations from a geometric mean of 54 mg per cubic meter to 3.0 mg per cubic meter on one machine and 57 mg per cubic meter to 5.3 mg per cubic meter on the other machine. This research shows that the dust control systems can dramatically reduce respirable dust concentrations by over 90% under controlled conditions. However, these systems need to be evaluated under actual work conditions to determine their effectiveness in reducing worker exposures to crystalline silica below hazardous levels.
Dynamically controlled crystal growth system
NASA Technical Reports Server (NTRS)
Bray, Terry L. (Inventor); Kim, Larry J. (Inventor); Harrington, Michael (Inventor); DeLucas, Lawrence J. (Inventor)
2002-01-01
Crystal growth can be initiated and controlled by dynamically controlled vapor diffusion or temperature change. In one aspect, the present invention uses a precisely controlled vapor diffusion approach to monitor and control protein crystal growth. The system utilizes a humidity sensor and various interfaces under computer control to effect virtually any evaporation rate from a number of different growth solutions simultaneously by means of an evaporative gas flow. A static laser light scattering sensor can be used to detect aggregation events and trigger a change in the evaporation rate for a growth solution. A control/follower configuration can be used to actively monitor one chamber and accurately control replicate chambers relative to the control chamber. In a second aspect, the invention exploits the varying solubility of proteins versus temperature to control the growth of protein crystals. This system contains miniature thermoelectric devices under microcomputer control that change temperature as needed to grow crystals of a given protein. Complex temperature ramps are possible using this approach. A static laser light scattering probe also can be used in this system as a non-invasive probe for detection of aggregation events. The automated dynamic control system provides systematic and predictable responses with regard to crystal size. These systems can be used for microgravity crystallization projects, for example in a space shuttle, and for crystallization work under terrestial conditions. The present invention is particularly useful for macromolecular crystallization, e.g. for proteins, polypeptides, nucleic acids, viruses and virus particles.
Flight Test Implementation of a Second Generation Intelligent Flight Control System
NASA Technical Reports Server (NTRS)
Williams-Hayes, Peggy S.
2005-01-01
The NASA F-15 Intelligent Flight Control System project team has developed a series of flight control concepts designed to demonstrate the benefits of a neural network-based adaptive controller. The objective of the team was to develop and flight-test control systems that use neural network technology, to optimize the performance of the aircraft under nominal conditions, and to stabilize the aircraft under failure conditions. Failure conditions include locked or failed control surfaces as well as unforeseen damage that might occur to the aircraft in flight. The Intelligent Flight Control System team is currently in the process of implementing a second generation control scheme, collectively known as Generation 2 or Gen 2, for flight testing on the NASA F-15 aircraft. This report describes the Gen 2 system as implemented by the team for flight test evaluation. Simulation results are shown which describe the experiment to be performed in flight and highlight the ways in which the Gen 2 system meets the defined objectives.
NASA Astrophysics Data System (ADS)
Kota, Venkata Reddy; Vinnakoti, Sudheer
2017-12-01
Today, maintaining Power Quality (PQ) is very important in the growing competent world. With new equipments and devices, new challenges are also being put before power system operators. Unified Power Quality Conditioner (UPQC) is proposed to mitigate many power quality problems and to improve the performance of the power system. In this paper, an UPQC with Fuzzy Logic controller for capacitor voltage balancing is proposed in Synchronous Reference Frame (SRF) based control with Modified Phased Locked Loop (MPLL). The proposed controller with SRF-MPLL based control is tested under non-linear and unbalanced load conditions. The system is developed in Matlab/Simulink and its performance is analyzed under various conditions like non-linear, unbalanced load and polluted supply voltage including voltage sag/swells. Active and reactive power flow in the system, power factor and %THD of voltages and currents before and after compensation are also analyzed in this work. Results prove the applicability of the proposed scheme for power quality improvement. It is observed that the fuzzy controller gives better performance than PI controller with faster capacitor voltage balancing and also improves the dynamic performance of the system.
NASA Astrophysics Data System (ADS)
Bai, Jing; Wen, Guoguang; Rahmani, Ahmed
2018-04-01
Leaderless consensus for the fractional-order nonlinear multi-agent systems is investigated in this paper. At the first part, a control protocol is proposed to achieve leaderless consensus for the nonlinear single-integrator multi-agent systems. At the second part, based on sliding mode estimator, a control protocol is given to solve leaderless consensus for the the nonlinear single-integrator multi-agent systems. It shows that the control protocol can improve the systems' convergence speed. At the third part, a control protocol is designed to accomplish leaderless consensus for the nonlinear double-integrator multi-agent systems. To judge the systems' stability in this paper, two classic continuous Lyapunov candidate functions are chosen. Finally, several worked out examples under directed interaction topology are given to prove above results.
Evolutionary game based control for biological systems with applications in drug delivery.
Li, Xiaobo; Lenaghan, Scott C; Zhang, Mingjun
2013-06-07
Control engineering and analysis of biological systems have become increasingly important for systems and synthetic biology. Unfortunately, no widely accepted control framework is currently available for these systems, especially at the cell and molecular levels. This is partially due to the lack of appropriate mathematical models to describe the unique dynamics of biological systems, and the lack of implementation techniques, such as ultra-fast and ultra-small devices and corresponding control algorithms. This paper proposes a control framework for biological systems subject to dynamics that exhibit adaptive behavior under evolutionary pressures. The control framework was formulated based on evolutionary game based modeling, which integrates both the internal dynamics and the population dynamics. In the proposed control framework, the adaptive behavior was characterized as an internal dynamic, and the external environment was regarded as an external control input. The proposed open-interface control framework can be integrated with additional control algorithms for control of biological systems. To demonstrate the effectiveness of the proposed framework, an optimal control strategy was developed and validated for drug delivery using the pathogen Giardia lamblia as a test case. In principle, the proposed control framework can be applied to any biological system exhibiting adaptive behavior under evolutionary pressures. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chen, Bo; Guo, Wei-hua; Li, Peng-yun; Xie, Wen-ping
2014-01-01
This paper presented an overview on the dynamic analysis and control of the transmission tower-line system in the past forty years. The challenges and future developing trends in the dynamic analysis and mitigation of the transmission tower-line system under dynamic excitations are also put forward. It also reviews the analytical models and approaches of the transmission tower, transmission lines, and transmission tower-line systems, respectively, which contain the theoretical model, finite element (FE) model and the equivalent model; shows the advances in wind responses of the transmission tower-line system, which contains the dynamic effects under common wind loading, tornado, downburst, and typhoon; and discusses the dynamic responses under earthquake and ice loads, respectively. The vibration control of the transmission tower-line system is also reviewed, which includes the magnetorheological dampers, friction dampers, tuned mass dampers, and pounding tuned mass dampers. PMID:25105161
Main control computer security model of closed network systems protection against cyber attacks
NASA Astrophysics Data System (ADS)
Seymen, Bilal
2014-06-01
The model that brings the data input/output under control in closed network systems, that maintains the system securely, and that controls the flow of information through the Main Control Computer which also brings the network traffic under control against cyber-attacks. The network, which can be controlled single-handedly thanks to the system designed to enable the network users to make data entry into the system or to extract data from the system securely, intends to minimize the security gaps. Moreover, data input/output record can be kept by means of the user account assigned for each user, and it is also possible to carry out retroactive tracking, if requested. Because the measures that need to be taken for each computer on the network regarding cyber security, do require high cost; it has been intended to provide a cost-effective working environment with this model, only if the Main Control Computer has the updated hardware.
Development of similarity theory for control systems
NASA Astrophysics Data System (ADS)
Myshlyaev, L. P.; Evtushenko, V. F.; Ivushkin, K. A.; Makarov, G. V.
2018-05-01
The area of effective application of the traditional similarity theory and the need necessity of its development for systems are discussed. The main statements underlying the similarity theory of control systems are given. The conditions for the similarity of control systems and the need for similarity control control are formulated. Methods and algorithms for estimating and similarity control of control systems and the results of research of control systems based on their similarity are presented. The similarity control of systems includes the current evaluation of the degree of similarity of control systems and the development of actions controlling similarity, and the corresponding targeted change in the state of any element of control systems.
Output transformations and separation results for feedback linearisable delay systems
NASA Astrophysics Data System (ADS)
Cacace, F.; Conte, F.; Germani, A.
2018-04-01
The class of strict-feedback systems enjoys special properties that make it similar to linear systems. This paper proves that such a class is equivalent, under a change of coordinates, to the wider class of feedback linearisable systems with multiplicative input, when the multiplicative terms are functions of the measured variables only. We apply this result to the control problem of feedback linearisable nonlinear MIMO systems with input and/or output delays. In this way, we provide sufficient conditions under which a separation result holds for output feedback control and moreover a predictor-based controller exists. When these conditions are satisfied, we obtain that the existence of stabilising controllers for arbitrarily large delays in the input and/or the output can be proved for a wider class of systems than previously known.
PI and repetitive control for single phase inverter based on virtual rotating coordinate system
NASA Astrophysics Data System (ADS)
Li, Mengqi; Tong, Yibin; Jiang, Jiuchun; Liang, Jiangang
2018-03-01
Microgrid technology developed rapidly and nonlinear loads were connected increasingly. A new control strategy was proposed for single phase inverter when connected nonlinear loads under island condition. PI and repetitive compound controller was realized under synchronous rotating coordinate system and acquired high quality sinusoidal voltage output without voltage spike when loads step changed. Validity and correctness were verified by simulation using MATLAB/Simulink.
Stability Analysis of Distributed Engine Control Systems Under Communication Packet Drop (Postprint)
2008-07-01
use, modify, reproduce, release, perform, display, or disclose the work. 14. ABSTRACT Currently, Full Authority Digital Engine Control ( FADEC ...based on a centralized architecture framework is being widely used for gas turbine engine control. However, current FADEC is not able to meet the...system (DEC). FADEC based on Distributed Control Systems (DCS) offers modularity, improved control systems prognostics and fault tolerance along with
Research Based on AMESim of Electro-hydraulic Servo Loading System
NASA Astrophysics Data System (ADS)
Li, Jinlong; Hu, Zhiyong
2017-09-01
Electro-hydraulic servo loading system is a subject studied by many scholars in the field of simulation and control at home and abroad. The electro-hydraulic servo loading system is a loading device simulation of stress objects by aerodynamic moment and other force in the process of movement, its function is all kinds of gas in the lab condition to analyze stress under dynamic load of objects. The purpose of this paper is the design of AMESim electro-hydraulic servo system, PID control technology is used to configure the parameters of the control system, complete the loading process under different conditions, the optimal design parameters, optimization of dynamic performance of the loading system.
Neural network based optimal control of HVAC&R systems
NASA Astrophysics Data System (ADS)
Ning, Min
Heating, Ventilation, Air-Conditioning and Refrigeration (HVAC&R) systems have wide applications in providing a desired indoor environment for different types of buildings. It is well acknowledged that 30%-40% of the total energy generated is consumed by buildings and HVAC&R systems alone account for more than 50% of the building energy consumption. Low operational efficiency especially under partial load conditions and poor control are part of reasons for such high energy consumption. To improve energy efficiency, HVAC&R systems should be properly operated to maintain a comfortable and healthy indoor environment under dynamic ambient and indoor conditions with the least energy consumption. This research focuses on the optimal operation of HVAC&R systems. The optimization problem is formulated and solved to find the optimal set points for the chilled water supply temperature, discharge air temperature and AHU (air handling unit) fan static pressure such that the indoor environment is maintained with the least chiller and fan energy consumption. To achieve this objective, a dynamic system model is developed first to simulate the system behavior under different control schemes and operating conditions. The system model is modular in structure, which includes a water-cooled vapor compression chiller model and a two-zone VAV system model. A fuzzy-set based extended transformation approach is then applied to investigate the uncertainties of this model caused by uncertain parameters and the sensitivities of the control inputs with respect to the interested model outputs. A multi-layer feed forward neural network is constructed and trained in unsupervised mode to minimize the cost function which is comprised of overall energy cost and penalty cost when one or more constraints are violated. After training, the network is implemented as a supervisory controller to compute the optimal settings for the system. In order to implement the optimal set points predicted by the supervisory controller, a set of five adaptive PI (proportional-integral) controllers are designed for each of the five local control loops of the HVAC&R system. The five controllers are used to track optimal set points and zone air temperature set points. Parameters of these PI controllers are tuned online to reduce tracking errors. The updating rules are derived from Lyapunov stability analysis. Simulation results show that compared to the conventional night reset operation scheme, the optimal operation scheme saves around 10% energy under full load condition and 19% energy under partial load conditions.
Magnetic suspension system for an Annular Momentum Control Device (AMCD)
NASA Technical Reports Server (NTRS)
1979-01-01
A technique to control a rim suspended in a magnetic field was developed. A complete system was developed, incorporating a support structure, magnetic actuators, a rim drive mechanism, an emergency fail-safe system, servo control system, and control electronics. Open loop and closed loop response of the system at zero speed and at 500 revolutions per minute (r/min) of the rim was obtained and analyzed. The rim was then dynamically balanced and a rim speed of 725 r/min was achieved. An analog simulation of the hardware was developed and tested with the actual control electronics connected to the analog computer. The system under development is stable at rim speeds below 700 r/min. Test results indicate that the rim under test is not rigid. The rim has a warp and a number of binding modes which prevented achievement of higher speeds. Further development efforts are required to achieve higher rim speeds.
Reliable actuators for twin rotor MIMO system
NASA Astrophysics Data System (ADS)
Rao, Vidya S.; V. I, George; Kamath, Surekha; Shreesha, C.
2017-11-01
Twin Rotor MIMO System (TRMS) is a bench mark system to test flight control algorithms. One of the perturbations on TRMS which is likely to affect the control system is actuator failure. Therefore, there is a need for a reliable control system, which includes H infinity controller along with redundant actuators. Reliable control refers to the design of a control system to tolerate failures of a certain set of actuators or sensors while retaining desired control system properties. Output of reliable controller has to be transferred to the redundant actuator effectively to make the TRMS reliable even under actual actuator failure.
Lin, Hao-Ting
2017-06-04
This project aims to develop a novel large stroke asymmetric pneumatic servo system of a hardware-in-the-loop for path tracking control under variable loads based on the MATLAB Simulink real-time system. High pressure compressed air provided by the air compressor is utilized for the pneumatic proportional servo valve to drive the large stroke asymmetric rod-less pneumatic actuator. Due to the pressure differences between two chambers, the pneumatic actuator will operate. The highly nonlinear mathematical models of the large stroke asymmetric pneumatic system were analyzed and developed. The functional approximation technique based on the sliding mode controller (FASC) is developed as a controller to solve the uncertain time-varying nonlinear system. The MATLAB Simulink real-time system was a main control unit of a hardware-in-the-loop system proposed to establish driver blocks for analog and digital I/O, a linear encoder, a CPU and a large stroke asymmetric pneumatic rod-less system. By the position sensor, the position signals of the cylinder will be measured immediately. The measured signals will be viewed as the feedback signals of the pneumatic servo system for the study of real-time positioning control and path tracking control. Finally, real-time control of a large stroke asymmetric pneumatic servo system with measuring system, a large stroke asymmetric pneumatic servo system, data acquisition system and the control strategy software will be implemented. Thus, upgrading the high position precision and the trajectory tracking performance of the large stroke asymmetric pneumatic servo system will be realized to promote the high position precision and path tracking capability. Experimental results show that fifth order paths in various strokes and the sine wave path are successfully implemented in the test rig. Also, results of variable loads under the different angle were implemented experimentally.
Lin, Hao-Ting
2017-01-01
This project aims to develop a novel large stroke asymmetric pneumatic servo system of a hardware-in-the-loop for path tracking control under variable loads based on the MATLAB Simulink real-time system. High pressure compressed air provided by the air compressor is utilized for the pneumatic proportional servo valve to drive the large stroke asymmetric rod-less pneumatic actuator. Due to the pressure differences between two chambers, the pneumatic actuator will operate. The highly nonlinear mathematical models of the large stroke asymmetric pneumatic system were analyzed and developed. The functional approximation technique based on the sliding mode controller (FASC) is developed as a controller to solve the uncertain time-varying nonlinear system. The MATLAB Simulink real-time system was a main control unit of a hardware-in-the-loop system proposed to establish driver blocks for analog and digital I/O, a linear encoder, a CPU and a large stroke asymmetric pneumatic rod-less system. By the position sensor, the position signals of the cylinder will be measured immediately. The measured signals will be viewed as the feedback signals of the pneumatic servo system for the study of real-time positioning control and path tracking control. Finally, real-time control of a large stroke asymmetric pneumatic servo system with measuring system, a large stroke asymmetric pneumatic servo system, data acquisition system and the control strategy software will be implemented. Thus, upgrading the high position precision and the trajectory tracking performance of the large stroke asymmetric pneumatic servo system will be realized to promote the high position precision and path tracking capability. Experimental results show that fifth order paths in various strokes and the sine wave path are successfully implemented in the test rig. Also, results of variable loads under the different angle were implemented experimentally. PMID:28587220
Intelligent Robotic Systems Study (IRSS), phase 4
NASA Technical Reports Server (NTRS)
1991-01-01
Under the Intelligent Robotics Systems Study (IRSS), a generalized robotic control architecture was developed for use with the ProtoFlight Manipulator Arm (PFMA). Based upon the NASREM system design concept, the controller built for the PFMA provides localized position based force control, teleoperation, and advanced path recording and playback capabilities. The PFMA has six computer controllable degrees of freedom (DOF) plus a 7th manually indexable DOF, making the manipulator a pseudo 7 DOF mechanism. Joints on the PFMA are driven via 7 pulse width modulated amplifiers. Digital control of the PFMA is implemented using a variety of single board computers. There were two major activities under the IRSS phase 4 study: (1) enhancement of the PFMA control system software functionality; and (2) evaluation of operating modes via a teleoperation performance study. These activities are described and results are given.
A light-controlled cell lysis system in bacteria.
Wang, Geyi; Lu, Xin; Zhu, Yisha; Zhang, Wei; Liu, Jiahui; Wu, Yankang; Yu, Liyang; Sun, Dongchang; Cheng, Feng
2018-05-08
Intracellular products (e.g., insulin), which are obtained through cell lysis, take up a big share of the biotech industry. It is often time-consuming, laborious, and environment-unfriendly to disrupt bacterial cells with traditional methods. In this study, we developed a molecular device for controlling cell lysis with light. We showed that intracellular expression of a single lysin protein was sufficient for efficient bacterial cell lysis. By placing the lysin-encoding gene under the control of an improved light-controlled system, we successfully controlled cell lysis by switching on/off light: OD 600 of the Escherichia coli cell culture was decreased by twofold when the light-controlled system was activated under dark condition. We anticipate that our work would not only pave the way for cell lysis through a convenient biological way in fermentation industry, but also provide a paradigm for applying the light-controlled system in other fields of biotech industry.
A model of neuro-musculo-skeletal system for human locomotion under position constraint condition.
Ni, Jiangsheng; Hiramatsu, Seiji; Kato, Atsuo
2003-08-01
The human locomotion was studied on the basis of the interaction of the musculo-skeletal system, the neural system and the environment. A mathematical model of human locomotion under position constraint condition was established. Besides the neural rhythm generator, the posture controller and the sensory system, the environment feedback controller and the stability controller were taken into account in the model. The environment feedback controller was proposed for two purposes, obstacle avoidance and target position control of the swing foot. The stability controller was proposed to imitate the self-balancing ability of a human body and improve the stability of the model. In the stability controller, the ankle torque was used to control the velocity of the body gravity center. A prediction control algorithm was applied to calculate the torque magnitude of the stability controller. As an example, human stairs climbing movement was simulated and the results were given. The simulation result proved that the mathematical modeling of the task was successful.
NASA Astrophysics Data System (ADS)
Prasertwattana, Kanit; Shimizu, Yoshiaki; Chiadamrong, Navee
This paper studied the material ordering and inventory control of supply chain systems. The effect of controlling policies is analyzed under three different configurations of the supply chain systems, and the formulated problem has been solved by using an evolutional optimization method known as Differential Evolution (DE). The numerical results show that the coordinating policy with the incentive scheme outperforms the other policies and can improve the performance of the overall system as well as all members under the concept of supply chain management.
Configuration maintaining control of three-body ring tethered system based on thrust compensation
NASA Astrophysics Data System (ADS)
Huang, Panfeng; Liu, Binbin; Zhang, Fan
2016-06-01
Space multi-tethered systems have shown broad prospects in remote observation missions. This paper mainly focuses on the dynamics and configuration maintaining control of space spinning three-body ring tethered system for such mission. Firstly, we establish the spinning dynamic model of the three-body ring tethered system considering the elasticity of the tether using Newton-Euler method, and then validate the suitability of this model by numerical simulation. Subsequently, LP (Likins-Pringle) initial equilibrium conditions for the tethered system are derived based on rigid body's equilibrium theory. Simulation results show that tether slack, snapping and interaction between the tethers exist in the three-body ring system, and its' configuration can not be maintained without control. Finally, a control strategy based on thrust compensation, namely thrust to simulate tether compression under LP initial equilibrium conditions is designed to solve the configuration maintaining control problem. Control effects are verified by numerical simulation compared with uncontrolled situation. Simulation results show that the configuration of the three-body ring tethered system could maintain under this active control strategy.
NASA Astrophysics Data System (ADS)
Khayamy, Mehdy; Ojo, Olorunfemi
2015-04-01
A current source inverter fed from photovoltaic cells is proposed to power an autonomous load when operating under either power regulation or voltage and frequency drooping modes. Input-output linearization technique is applied to the overall nonlinear system to achieve a globally stable system under feasible operating conditions. After obtaining the steady-state model that demarcates the modes of operation, computer Simulation results for variations in irradiance and the load power of the controlled system are generated in which an acceptable dynamic response of the power generator system under the two modes of operation is observed.
NASA Astrophysics Data System (ADS)
Kobayashi, Kenji; Takano, Ichiro; Sawada, Yoshio
A photovoltaic array shows relatively low output power density, and has a greatly drooping Current-Voltage (I-V) characteristic. Therefore, Maximum Power Point Tracking (MPPT) control is used to maximize the output power of the array. Many papers have been reported in relation to MPPT. However, the Current-Power (I-P) curve sometimes shows multi-local maximum points mode under non-uniform insolation conditions. The operating point of the PV system tends to converge to a local maximum output point which is not the real maximal output point on the I-P curve. Some papers have been also reported, trying to avoid this difficulty. However most of those control systems become rather complicated. Then, the two stage MPPT control method is proposed in this paper to realize a relatively simple control system which can track the real maximum power point even under non-uniform insolation conditions. The feasibility of this control concept is confirmed for steady insolation as well as for rapidly changing insolation by simulation study using software PSIM and LabVIEW. In addition, simulated experiment confirms fundament al operation of the two stage MPPT control.
Electronics Controls Assessment for the PATRIOT Air Conditioner System. Revision
1986-04-28
electronic controls in Army Air Conditioner Systems. This assessment used criteria which included: cost (initial and life cycle), efficiency, weight ...each of the twelve selected controllers as to cost and size Iqualifications was accomplished b) assigning reasonable weight factors according to the...following table:I COST SIZE5 WEIGHT FACTOR (Per Unit Price Range) (Volumetric Range) 1 Under $1000 Under 700 in 3 3 $1000 to $1500 700-1000 in 3 5 $1501
Accelerated Self-Replication under Non-Equilibrium, Periodic Energy Delivery
NASA Astrophysics Data System (ADS)
Zhang, Rui; Olvera de La Cruz, Monica
2014-03-01
Self-replication is a remarkable phenomenon in nature that has fascinated scientists for decades. In a self-replicating system, the original units are attracted to a template, which induce their binding. In equilibrium, the energy required to disassemble the newly assembled copy from the mother template is supplied by thermal energy. The possibility of optimizing self-replication is explored by controlling the frequency at which energy is supplied to the system. A model system inspired by a class of light switchable colloids is considered where light is used to control the interactions. Conditions under which self-replication can be significantly more effective under non-equilibrium, cyclic energy delivery than under equilibrium constant energy conditions are identified. Optimal self-replication does not require constant energy expenditure. Instead, the proper timing at which energy is delivered to the system is an essential controllable parameter to induce high replication rates. This work was supported by the Non-Equilibrium Energy Research Center (NERC), which is an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0000989.
Adaptive mechanism-based congestion control for networked systems
NASA Astrophysics Data System (ADS)
Liu, Zhi; Zhang, Yun; Chen, C. L. Philip
2013-03-01
In order to assure the communication quality in network systems with heavy traffic and limited bandwidth, a new ATRED (adaptive thresholds random early detection) congestion control algorithm is proposed for the congestion avoidance and resource management of network systems. Different to the traditional AQM (active queue management) algorithms, the control parameters of ATRED are not configured statically, but dynamically adjusted by the adaptive mechanism. By integrating with the adaptive strategy, ATRED alleviates the tuning difficulty of RED (random early detection) and shows a better control on the queue management, and achieve a more robust performance than RED under varying network conditions. Furthermore, a dynamic transmission control protocol-AQM control system using ATRED controller is introduced for the systematic analysis. It is proved that the stability of the network system can be guaranteed when the adaptive mechanism is finely designed. Simulation studies show the proposed ATRED algorithm achieves a good performance in varying network environments, which is superior to the RED and Gentle-RED algorithm, and providing more reliable service under varying network conditions.
? PID output-feedback control under event-triggered protocol
NASA Astrophysics Data System (ADS)
Zhao, Di; Wang, Zidong; Ding, Derui; Wei, Guoliang; Alsaadi, Fuad E.
2018-07-01
This paper is concerned with the ? proportional-integral-derivative (PID) output-feedback control problem for a class of linear discrete-time systems under event-triggered protocols. The controller and the actuators are connected through a communication network of limited bandwidth, and an event-triggered communication mechanism is adopted to decide when a certain control signal should be transmitted to the respective actuator. Furthermore, a novel PID output-feedback controller is designed where the accumulative sum-loop (the counterpart to the integral-loop in the continues-time setting) operates on a limited time-window with hope to mitigate the effect from the past measurement data. The main objective of the problem under consideration is to design a desired PID controller such that the closed-loop system is exponentially stable and the prescribed ? disturbance rejection attenuation level is guaranteed under event-triggered protocols. By means of the Lyapunov stability theory combined with the orthogonal decomposition, sufficient conditions are established under which the addressed PID controller design problem is recast into a linear convex optimization one that can be easily solved via available software packages. Finally, a simulation example is exploited to illustrate the usefulness and effectiveness of the established control scheme.
NASA Astrophysics Data System (ADS)
Chang, Insu
The objective of the thesis is to introduce a relatively general nonlinear controller/estimator synthesis framework using a special type of the state-dependent Riccati equation technique. The continuous time state-dependent Riccati equation (SDRE) technique is extended to discrete-time under input and state constraints, yielding constrained (C) discrete-time (D) SDRE, referred to as CD-SDRE. For the latter, stability analysis and calculation of a region of attraction are carried out. The derivation of the D-SDRE under state-dependent weights is provided. Stability of the D-SDRE feedback system is established using Lyapunov stability approach. Receding horizon strategy is used to take into account the constraints on D-SDRE controller. Stability condition of the CD-SDRE controller is analyzed by using a switched system. The use of CD-SDRE scheme in the presence of constraints is then systematically demonstrated by applying this scheme to problems of spacecraft formation orbit reconfiguration under limited performance on thrusters. Simulation results demonstrate the efficacy and reliability of the proposed CD-SDRE. The CD-SDRE technique is further investigated in a case where there are uncertainties in nonlinear systems to be controlled. First, the system stability under each of the controllers in the robust CD-SDRE technique is separately established. The stability of the closed-loop system under the robust CD-SDRE controller is then proven based on the stability of each control system comprising switching configuration. A high fidelity dynamical model of spacecraft attitude motion in 3-dimensional space is derived with a partially filled fuel tank, assumed to have the first fuel slosh mode. The proposed robust CD-SDRE controller is then applied to the spacecraft attitude control system to stabilize its motion in the presence of uncertainties characterized by the first fuel slosh mode. The performance of the robust CD-SDRE technique is discussed. Subsequently, filtering techniques are investigated by using the D-SDRE technique. Detailed derivation of the D-SDRE-based filter (D-SDREF) is provided under the assumption of Gaussian noises and the stability condition of the error signal between the measured signal and the estimated signals is proven to be input-to-state stable. For the non-Gaussian distributed noises, we propose a filter by combining the D-SDREF and the particle filter (PF), named the combined D-SDRE/PF. Two algorithms for the filtering techniques are provided. Several filtering techniques are compared with challenging numerical examples to show the reliability and efficacy of the proposed D-SDREF and the combined D-SDRE/PF.
Real time UNIX in embedded control-a case study within the context of LynxOS
NASA Astrophysics Data System (ADS)
Kleines, H.; Zwoll, K.
1996-02-01
Intelligent communication controllers for a layered protocol profile are a typical example of an embedded control application, where the classical approach for the software development is based on a proprietary real-time operating system kernel under which the individual layers are implemented as tasks. Based on the exemplary implementation of a derivative of MAP 3.0, an unusual and innovative approach is presented, where the protocol software is implemented under the UNIX-compatible real-time operating system LynxOS. The overall design of the embedded control application is presented under a more general view and economical implications as well as aspects of the development environment and performance are discussed
Initial design and evaluation of automatic restructurable flight control system concepts
NASA Technical Reports Server (NTRS)
Weiss, J. L.; Looze, D. P.; Eterno, J. S.; Grunberg, D. B.
1986-01-01
Results of efforts to develop automatic control design procedures for restructurable aircraft control systems is presented. The restructurable aircraft control problem involves designing a fault tolerance control system which can accommodate a wide variety of unanticipated aircraft failure. Under NASA sponsorship, many of the technologies which make such a system possible were developed and tested. Future work will focus on developing a methodology for integrating these technologies and demonstration of a complete system.
Research on Integrated Control of Microgrid Operation Mode
NASA Astrophysics Data System (ADS)
Cheng, ZhiPing; Gao, JinFeng; Li, HangYu
2018-03-01
The mode switching control of microgrid is the focus of its system control. According to the characteristics of different control, an integrated control system is put forward according to the detecting voltage and frequency deviation after switching of microgrid operating mode. This control system employs master-slave and peer-to-peer control. Wind turbine and photovoltaic(PV) adopt P/Q control, so the maximum power output can be achieved. The energy storage will work under the droop control if the system is grid-connected. When the system is off-grid, whether to employ droop control or P/f control is determined by system status. The simulation has been done and the system performance can meet the requirement.
Progress on advanced dc and ac induction drives for electric vehicles
NASA Technical Reports Server (NTRS)
Schwartz, H. J.
1982-01-01
Progress is reported in the development of complete electric vehicle propulsion systems, and the results of tests on the Road Load Simulator of two such systems representative of advanced dc and ac drive technology are presented. One is the system used in the DOE's ETV-1 integrated test vehicle which consists of a shunt wound dc traction motor under microprocessor control using a transistorized controller. The motor drives the vehicle through a fixed ratio transmission. The second system uses an ac induction motor controlled by transistorized pulse width modulated inverter which drives through a two speed automatically shifted transmission. The inverter and transmission both operate under the control of a microprocessor. The characteristics of these systems are also compared with the propulsion system technology available in vehicles being manufactured at the inception of the DOE program and with an advanced, highly integrated propulsion system upon which technology development was recently initiated.
NASA Technical Reports Server (NTRS)
Hanks, G. W.; Shomber, H. A.; Dethman, H. A.; Gratzer, L. B.; Maeshiro, A.; Gangsaas, D.; Blight, J. D.; Buchan, S. M.; Crumb, C. B.; Dorwart, R. J.
1981-01-01
The current status of the Active Controls Technology (ACT) for the advanced subsonic transport project is investigated through analysis of the systems technical data. Control systems technologies under examination include computerized reliability analysis, pitch axis fly by wire actuator, flaperon actuation system design trade study, control law synthesis and analysis, flutter mode control and gust load alleviation analysis, and implementation of alternative ACT systems. Extensive analysis of the computer techniques involved in each system is included.
The trend of digital control system design for nuclear power plants in Korea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, S. H.; Jung, H. Y.; Yang, C. Y.
2006-07-01
Currently there are 20 nuclear power plants (NPPs) in operation, and 6 more units are under construction in Korea. The control systems of those NPPs have also been developed together with the technology advancement. Control systems started with On-Off control using the relay logic, had been evolved into Solid-State logic using TTL ICs, and applied with the micro-processors since the Yonggwang NPP Units 3 and 4 which started its construction in 1989. Multiplexers are also installed at the local plant areas to collect field input and to send output signals while communicating with the controllers located in the system cabinetsmore » near the main control room in order to reduce the field wiring cables. The design of the digital control system technology for the NPPs in Korea has been optimized to maximize the operability as well as the safety through the design, construction, start-up and operation experiences. Both Shin-Kori Units 1 and 2 and Shin-Wolsong Units 1 and 2 NPP projects under construction are being progressed at the same time. Digital Plant Control Systems of these projects have adopted multi-loop controllers, redundant loop configuration, and soft control system for the radwaste system. Programmable Logic Controller (PLC) and Distributed Control System (DCS) are applied with soft control system in Shin-Kori Units 3 and 4. This paper describes the evolvement of control system at the NPPs in Korea and the experience and design improvement through the observation of the latest failure of the digital control system. In addition, design concept and its trend of the digital control system being applied to the NPP in Korea are introduced. (authors)« less
49 CFR 236.513 - Audible indicator.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Train Stop, Train Control and Cab Signal Systems Standards § 236.513 Audible indicator. (a) The automatic cab signal... control system shall have a distinctive sound and be clearly audible throughout the cab under all...
49 CFR 236.513 - Audible indicator.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Train Stop, Train Control and Cab Signal Systems Standards § 236.513 Audible indicator. (a) The automatic cab signal... control system shall have a distinctive sound and be clearly audible throughout the cab under all...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-09
... Missions Many vessels and aircraft that are under DoD's control and used to support DoD's missions do not... passengers supporting its missions under DoD's control through its own transportation system, the Defense... vessels and aircraft owned by, or under the complete control and management of DoD, or chartered by DoD...
Graph theoretical stable allocation as a tool for reproduction of control by human operators
NASA Astrophysics Data System (ADS)
van Nooijen, Ronald; Ertsen, Maurits; Kolechkina, Alla
2016-04-01
During the design of central control algorithms for existing water resource systems under manual control it is important to consider the interaction with parts of the system that remain under manual control and to compare the proposed new system with the existing manual methods. In graph theory the "stable allocation" problem has good solution algorithms and allows for formulation of flow distribution problems in terms of priorities. As a test case for the use of this approach we used the algorithm to derive water allocation rules for the Gezira Scheme, an irrigation system located between the Blue and White Niles south of Khartoum. In 1925, Gezira started with 300,000 acres; currently it covers close to two million acres.
Light-mediated control of DNA transcription in yeast
Hughes, Robert M.; Bolger, Steven; Tapadia, Hersh; Tucker, Chandra L.
2012-01-01
A variety of methods exist for inducible control of DNA transcription in yeast. These include the use of native yeast promoters or regulatory elements that are responsive to small molecules such as galactose, methionine, and copper, or engineered systems that allow regulation by orthogonal small molecules such as estrogen. While chemically regulated systems are easy to use and can yield high levels of protein expression, they often provide imprecise control over protein levels. Moreover, chemically regulated systems can affect many other proteins and pathways in yeast, activating signaling pathways or physiological responses. Here, we describe several methods for light mediated control of DNA transcription in vivo in yeast. We describe methodology for using a red light and phytochrome dependent system to induce transcription of genes under GAL1 promoter control, as well as blue light / cryptochrome dependent systems to control transcription of genes under GAL1 promoter or LexA operator control. Light is dose dependent, inexpensive to apply, easily delivered, and does not interfere with cellular pathways, and thus has significant advantages over chemical systems. PMID:22922268
NASA Technical Reports Server (NTRS)
Belcastro, Christine M.
2010-01-01
Loss of control remains one of the largest contributors to aircraft fatal accidents worldwide. Aircraft loss-of-control accidents are highly complex in that they can result from numerous causal and contributing factors acting alone or (more often) in combination. Hence, there is no single intervention strategy to prevent these accidents and reducing them will require a holistic integrated intervention capability. Future onboard integrated system technologies developed for preventing loss of vehicle control accidents must be able to assure safe operation under the associated off-nominal conditions. The transition of these technologies into the commercial fleet will require their extensive validation and verification (V and V) and ultimate certification. The V and V of complex integrated systems poses major nontrivial technical challenges particularly for safety-critical operation under highly off-nominal conditions associated with aircraft loss-of-control events. This paper summarizes the V and V problem and presents a proposed process that could be applied to complex integrated safety-critical systems developed for preventing aircraft loss-of-control accidents. A summary of recent research accomplishments in this effort is also provided.
Theoretical Framework for Integrating Distributed Energy Resources into Distribution Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lian, Jianming; Wu, Di; Kalsi, Karanjit
This paper focuses on developing a novel theoretical framework for effective coordination and control of a large number of distributed energy resources in distribution systems in order to more reliably manage the future U.S. electric power grid under the high penetration of renewable generation. The proposed framework provides a systematic view of the overall structure of the future distribution systems along with the underlying information flow, functional organization, and operational procedures. It is characterized by the features of being open, flexible and interoperable with the potential to support dynamic system configuration. Under the proposed framework, the energy consumption of variousmore » DERs is coordinated and controlled in a hierarchical way by using market-based approaches. The real-time voltage control is simultaneously considered to complement the real power control in order to keep nodal voltages stable within acceptable ranges during real time. In addition, computational challenges associated with the proposed framework are also discussed with recommended practices.« less
NASA Technical Reports Server (NTRS)
Zeigler, Bernard P.
1989-01-01
It is shown how systems can be advantageously represented as discrete-event models by using DEVS (discrete-event system specification), a set-theoretic formalism. Such DEVS models provide a basis for the design of event-based logic control. In this control paradigm, the controller expects to receive confirming sensor responses to its control commands within definite time windows determined by its DEVS model of the system under control. The event-based contral paradigm is applied in advanced robotic and intelligent automation, showing how classical process control can be readily interfaced with rule-based symbolic reasoning systems.
Nandola, Naresh N; Rivera, Daniel E
2013-01-01
We consider an improved model predictive control (MPC) formulation for linear hybrid systems described by mixed logical dynamical (MLD) models. The algorithm relies on a multiple-degree-of-freedom parametrization that enables the user to adjust the speed of setpoint tracking, measured disturbance rejection and unmeasured disturbance rejection independently in the closed-loop system. Consequently, controller tuning is more flexible and intuitive than relying on objective function weights (such as move suppression) traditionally used in MPC schemes. The controller formulation is motivated by the needs of non-traditional control applications that are suitably described by hybrid production-inventory systems. Two applications are considered in this paper: adaptive, time-varying interventions in behavioral health, and inventory management in supply chains under conditions of limited capacity. In the adaptive intervention application, a hypothetical intervention inspired by the Fast Track program, a real-life preventive intervention for reducing conduct disorder in at-risk children, is examined. In the inventory management application, the ability of the algorithm to judiciously alter production capacity under conditions of varying demand is presented. These case studies demonstrate that MPC for hybrid systems can be tuned for desired performance under demanding conditions involving noise and uncertainty.
Nandola, Naresh N.; Rivera, Daniel E.
2013-01-01
We consider an improved model predictive control (MPC) formulation for linear hybrid systems described by mixed logical dynamical (MLD) models. The algorithm relies on a multiple-degree-of-freedom parametrization that enables the user to adjust the speed of setpoint tracking, measured disturbance rejection and unmeasured disturbance rejection independently in the closed-loop system. Consequently, controller tuning is more flexible and intuitive than relying on objective function weights (such as move suppression) traditionally used in MPC schemes. The controller formulation is motivated by the needs of non-traditional control applications that are suitably described by hybrid production-inventory systems. Two applications are considered in this paper: adaptive, time-varying interventions in behavioral health, and inventory management in supply chains under conditions of limited capacity. In the adaptive intervention application, a hypothetical intervention inspired by the Fast Track program, a real-life preventive intervention for reducing conduct disorder in at-risk children, is examined. In the inventory management application, the ability of the algorithm to judiciously alter production capacity under conditions of varying demand is presented. These case studies demonstrate that MPC for hybrid systems can be tuned for desired performance under demanding conditions involving noise and uncertainty. PMID:24348004
Digitally controlled twelve-pulse firing generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berde, D.; Ferrara, A.A.
1981-01-01
Control System Studies for the Tokamak Fusion Test Reactor (TFTR) indicate that accurate thyristor firing in the AC-to-DC conversion system is required in order to achieve good regulation of the various field currents. Rapid update and exact firing angle control are required to avoid instabilities, large eddy currents, or parasitic oscillations. The Prototype Firing Generator was designed to satisfy these requirements. To achieve the required /plus or minus/0.77/degree/firing accuracy, a three-phase-locked loop reference was designed; otherwise, the Firing Generator employs digital circuitry. The unit, housed in a standard CAMAC crate, operates under microcomputer control. Functions are performed under program control,more » which resides in nonvolatile read-only memory. Communication with CICADA control system is provided via an 11-bit parallel interface.« less
NASA Astrophysics Data System (ADS)
Yuan, Yuan; Sun, Fuchun; Liu, Huaping
2016-07-01
This paper is concerned with the resilient control under denial-of-service attack launched by the intelligent attacker. The resilient control system is modelled as a multi-stage hierarchical game with a corresponding hierarchy of decisions made at cyber and physical layer, respectively. Specifically, the interaction in the cyber layer between different security agents is modelled as a static infinite Stackelberg game, while in the underlying physical layer the full-information H∞ minimax control with package drops is modelled as a different Stackelberg game. Both games are solved sequentially, which is consistent with the actual situations. Finally, the proposed method is applied to the load frequency control of the power system, which demonstrates its effectiveness.
Research on the operation control strategy of the cooling ceiling combined with fresh air system
NASA Astrophysics Data System (ADS)
Huang, Tao; Li, Hao
2018-03-01
The cooling ceiling combined with independent fresh air system was built by TRNSYS. And the cooling effects of the air conditioning system of an office in Beijing in a summer typical day were simulated. Based on the “variable temperature” control strategy, the operation strategy of “variable air volume auxiliary adjustment” was put forward. The variation of the indoor temperature, the indoor humidity, the temperature of supplying water and the temperature of returning water were simulated under the two control strategies. The energy consumption of system during the whole summer was compared by utilizing the two control strategies, and the indoor thermal comfort was analyzed. The optimal control strategy was proposed under the condition that the condensation on the surface of the cooling ceiling is not occurred and the indoor thermal comfort is satisfied.
Analysis and Experimentation of Control Strategies for Underactuated Spacecraft
2009-09-01
control techniques that provide time -invariant global asymptotic stability of the fully actuated spacecraft system of equations. Although these control ...momentum wheel actuators in finite time under the restriction that the total angular momentum vector of the system is zero. This control methodology...can be stabilizable to an arbitrarily small region about the equilibrium of the system via time -invariant smooth state feedback control
Kalman-Predictive-Proportional-Integral-Derivative (KPPID) Temperature Control
NASA Astrophysics Data System (ADS)
Fluerasu, Andrei; Sutton, Mark
2003-09-01
With third generation synchrotron X-ray sources, it is possible to acquire detailed structural information about the system under study with time resolution orders of magnitude faster than was possible a few years ago. These advances have generated many new challenges for changing and controlling the state of the system on very short time scales, in a uniform and controlled manner. For our particular X-ray experiments [1] on crystallization or order-disorder phase transitions in metallic alloys, we need to change the sample temperature by hundreds of degrees as fast as possible while avoiding over or under shooting. To achieve this, we designed and implemented a computer-controlled temperature tracking system which combines standard Proportional-Integral-Derivative (PID) feedback, thermal modeling and finite difference thermal calculations (feedforward), and Kalman filtering of the temperature readings in order to reduce the noise. The resulting Kalman-Predictive-Proportional-Integral-Derivative (KPPID) algorithm allows us to obtain accurate control, to minimize the response time and to avoid over/under shooting, even in systems with inherently noisy temperature readings and time delays. The KPPID temperature controller was successfully implemented at the Advanced Photon Source at Argonne National Laboratories and was used to perform coherent and time-resolved X-ray diffraction experiments.
76 FR 51397 - Notice of Lodging of Consent Decree Under the Clean Water Act
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-18
... the Clean Water Act, 33 U.S.C. 1251 et seq., at its sewer system and water pollution control plant. To... extensive work to its sewer system and water pollution control plant to eliminate violations of the Clean... DEPARTMENT OF JUSTICE Notice of Lodging of Consent Decree Under the Clean Water Act Notice is...
Behaviour of a series of reservoirs separated by drowned gates
NASA Astrophysics Data System (ADS)
Kolechkina, Alla; van Nooijen, Ronald
2017-04-01
Modern control systems tend to be based on computers and therefore to operate by sending commands to structures at given intervals (discrete time control system). Moreover, for almost all water management control systems there are practical lower limits on the time interval between structure adjustments and even between measurements. The water resource systems that are being controlled are physical systems whose state changes continuously. If we combine a continuously changing system and a discrete time controller we get a hybrid system. We use material from recent control theory literature to examine the behaviour of a series of reservoirs separated by drowned gates where the gates are under computer control.
Intelligent control of non-linear dynamical system based on the adaptive neurocontroller
NASA Astrophysics Data System (ADS)
Engel, E.; Kovalev, I. V.; Kobezhicov, V.
2015-10-01
This paper presents an adaptive neuro-controller for intelligent control of non-linear dynamical system. The formed as the fuzzy selective neural net the adaptive neuro-controller on the base of system's state, creates the effective control signal under random perturbations. The validity and advantages of the proposed adaptive neuro-controller are demonstrated by numerical simulations. The simulation results show that the proposed controller scheme achieves real-time control speed and the competitive performance, as compared to PID, fuzzy logic controllers.
Evaluating the effectiveness of biometric access control systems
NASA Astrophysics Data System (ADS)
Lively, Valerie M.
2005-05-01
This paper describes the contribution by the National Safe Skies Alliance (Safe Skies) in operational testing of biometric access control systems under the guidance of the Transportation Security Administration (TSA). Safe Skies has been conducting operational tests of biometric access control systems on behalf of the TSA for approximately four years. The majority of this testing has occurred at the McGhee Tyson Airport (TYS) in Knoxville, Tennessee. Twelve separate biometric devices - eight fingerprint, facial, iris, hand geometry, and fingerprint and iris, have been tested to date. Tests were conducted at a TYS administrative door and different airports to evaluate the access control device under normal, abnormal, and attempt-to-defeat conditions.
Analysis And Control System For Automated Welding
NASA Technical Reports Server (NTRS)
Powell, Bradley W.; Burroughs, Ivan A.; Kennedy, Larry Z.; Rodgers, Michael H.; Goode, K. Wayne
1994-01-01
Automated variable-polarity plasma arc (VPPA) welding apparatus operates under electronic supervision by welding analysis and control system. System performs all major monitoring and controlling functions. It acquires, analyzes, and displays weld-quality data in real time and adjusts process parameters accordingly. Also records pertinent data for use in post-weld analysis and documentation of quality. System includes optoelectronic sensors and data processors that provide feedback control of welding process.
Real time UNIX in embedded control -- A case study within context of LynxOS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleines, H.; Zwoll, K.
1996-02-01
Intelligent communication controllers for a layered protocol profile are a typical example of an embedded control application, where the classical approach for the software development is based on a proprietary real-time operating system kernel under which the individual layers are implemented as tasks. Based on the exemplary implementation of a derivative of MAP 3.0, an unusual and innovative approach is presented, where the protocol software is implemented under the UNIX-compatible real-time operating system LynxOS. The overall design of the embedded control application is presented under a more general view and economical implications as well as aspects of the development environmentmore » and performance are discussed.« less
Maaoui-Ben Hassine, Ikram; Naouar, Mohamed Wissem; Mrabet-Bellaaj, Najiba
2016-05-01
In this paper, Model Predictive Control and Dead-beat predictive control strategies are proposed for the control of a PMSG based wind energy system. The proposed MPC considers the model of the converter-based system to forecast the possible future behavior of the controlled variables. It allows selecting the voltage vector to be applied that leads to a minimum error by minimizing a predefined cost function. The main features of the MPC are low current THD and robustness against parameters variations. The Dead-beat predictive control is based on the system model to compute the optimum voltage vector that ensures zero-steady state error. The optimum voltage vector is then applied through Space Vector Modulation (SVM) technique. The main advantages of the Dead-beat predictive control are low current THD and constant switching frequency. The proposed control techniques are presented and detailed for the control of back-to-back converter in a wind turbine system based on PMSG. Simulation results (under Matlab-Simulink software environment tool) and experimental results (under developed prototyping platform) are presented in order to show the performances of the considered control strategies. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Adaptive Decentralized Control
1985-04-01
and implementation of the decentralized controllers. It raises, however, many difficult questions regarding the conditions under which such a scheme ...adaptive controller, and a general form of the model reference adaptive controller (4]. We believe that this work represents a significant advance in the...Comparing the adaptive system with the tuned system results in the development of a generic adaptive error system. Passivity theory was used to derive
Fernandez de Canete, J; Luque, J; Barbancho, J; Munoz, V
2014-04-01
A mathematical model that provides an overall description of both the short- and long-term mechanisms of arterial pressure regulation is presented. Short-term control is exerted through the baroreceptor reflex while renal elimination plays a role in long-term control. Both mechanisms operate in an integrated way over the compartmental model of the cardiovascular system. The whole system was modelled in MODELICA, which uses a hierarchical object-oriented modelling strategy, under the DYMOLA simulation environment. The performance of the controlled system was analysed by simulation in light of the existing hypothesis and validation tests previously performed with physiological data, demonstrating the effectiveness of both regulation mechanisms under physiological and pathological conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dong, Yahui; Zhang, Pengwei; Li, Wei
To strengthen the informationization construction of the financial management has great significance to the achievement of business management informationization, and under the network economic environment, it is an important task of the financial management that how to conduct informationization construction of traditional financial management to provide true, reliable and complete financial information system for the business managers. This paper thoroughly researches the problem of financial information orientation management (FIOM) by taking the method of combining theory with practice. This paper puts forward the thinking method of financial information management, makes the new contents of E-finance. At last, this paper rebuilds the system of finance internal control from four aspects such as control of organization and management, system development control and safety control of network system.
Development Of Maneuvering Autopilot For Flight Tests
NASA Technical Reports Server (NTRS)
Menon, P. K. A.; Walker, R. A.
1992-01-01
Report describes recent efforts to develop automatic control system operating under supervision of pilot and making airplane follow prescribed trajectories during flight tests. Report represents additional progress on this project. Gives background information on technology of control of test-flight trajectories; presents mathematical models of airframe, engine and command-augmentation system; focuses on mathematical modeling of maneuvers; addresses design of autopilots for maneuvers; discusses numerical simulation and evaluation of results of simulation of eight maneuvers under control of simulated autopilot; and presents summary and discussion of future work.
Human-simulated intelligent control of train braking response of bridge with MRB
NASA Astrophysics Data System (ADS)
Li, Rui; Zhou, Hongli; Wu, Yueyuan; Wang, Xiaojie
2016-04-01
The urgent train braking could bring structural response menace to the bridge under passive control. Based on the analysis of breaking dynamics of a train-bridge vibration system, a magnetorheological elastomeric bearing (MRB) whose mechanical parameters are adjustable is designed, tested and modeled. A finite element method (FEM) is carried out to model and optimize a full scale vibration isolation system for railway bridge based on MRB. According to the model above, we also consider the effect of different braking stop positions on the vibration isolation system and classify the bridge longitudinal vibration characteristics into several cases. Because the train-bridge vibration isolation system has multiple vibration states and strongly coupling with nonlinear characteristics, a human-simulated intelligent control (HSIC) algorithm for isolating the bridge vibration under the impact of train braking is proposed, in which the peak shear force of pier top, the displacement of beam and the acceleration of beam are chosen as control goals. The simulation of longitudinal vibration control system under the condition of train braking is achieved by MATLAB. The results indicate that different braking stop positions significantly affect the vibration isolation system and the structural response is the most drastic when the train stops at the third cross-span. With the proposed HSIC smart isolation system, the displacement of bridge beam and peak shear force of pier top is reduced by 53.8% and 34.4%, respectively. Moreover, the acceleration of bridge beam is effectively controlled within limited range.
NASA Technical Reports Server (NTRS)
Burken, John J.; Hanson, Curtis E.; Lee, James A.; Kaneshige, John T.
2009-01-01
This report describes the improvements and enhancements to a neural network based approach for directly adapting to aerodynamic changes resulting from damage or failures. This research is a follow-on effort to flight tests performed on the NASA F-15 aircraft as part of the Intelligent Flight Control System research effort. Previous flight test results demonstrated the potential for performance improvement under destabilizing damage conditions. Little or no improvement was provided under simulated control surface failures, however, and the adaptive system was prone to pilot-induced oscillations. An improved controller was designed to reduce the occurrence of pilot-induced oscillations and increase robustness to failures in general. This report presents an analysis of the neural networks used in the previous flight test, the improved adaptive controller, and the baseline case with no adaptation. Flight test results demonstrate significant improvement in performance by using the new adaptive controller compared with the previous adaptive system and the baseline system for control surface failures.
NASA Astrophysics Data System (ADS)
Lu, Zheng; Lu, Xilin; Lu, Wensheng; Masri, Sami F.
2012-04-01
This paper presents a systematic experimental investigation of the effects of buffered particle dampers attached to a multi-degree-of-freedom (mdof) system under different dynamic loads (free vibration, random excitation as well as real onsite earthquake excitations), and analytical/computational study of such a system. A series of shaking table tests of a three-storey steel frame with the buffered particle damper system are carried out to evaluate the performance and to verify the analysis method. It is shown that buffered particle dampers have good performance in reducing the response of structures under dynamic loads, especially under random excitation case. It can effectively control the fundamental mode of the mdof primary system; however, the control effect for higher modes is variable. It is also shown that, for a specific container geometry, a certain mass ratio leads to more efficient momentum transfer from the primary system to the particles with a better vibration attenuation effect, and that buffered particle dampers have better control effect than the conventional rigid ones. An analytical solution based on the discrete element method is also presented. Comparison between the experimental and computational results shows that reasonably accurate estimates of the response of a primary system can be obtained. Properly designed buffered particle dampers can effectively reduce the response of lightly damped mdof primary system with a small weight penalty, under different dynamic loads.
Blumrich, Matthias A.; Salapura, Valentina
2010-11-02
An apparatus and method are disclosed for single-stepping coherence events in a multiprocessor system under software control in order to monitor the behavior of a memory coherence mechanism. Single-stepping coherence events in a multiprocessor system is made possible by adding one or more step registers. By accessing these step registers, one or more coherence requests are processed by the multiprocessor system. The step registers determine if the snoop unit will operate by proceeding in a normal execution mode, or operate in a single-step mode.
Development of experimental systems for material sciences under microgravity
NASA Technical Reports Server (NTRS)
Tanii, Jun; Obi, Shinzo; Kamimiyata, Yotsuo; Ajimine, Akio
1988-01-01
As part of the Space Experiment Program of the Society of Japanese Aerospace Companies, three experimental systems (G452, G453, G454) have been developed for materials science studies under microgravity by the NEC Corporation. These systems are to be flown as Get Away Special payloads for studying the feasibility of producing new materials. Together with the experimental modules carrying the hardware specific to the experiment, the three systems all comprise standard subsystems consisting of a power supply, sequence controller, temperature controller, data recorder, and video recorder.
46 CFR 185.320 - Steering gear, controls, and communication system tests.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Steering gear, controls, and communication system tests. 185.320 Section 185.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) OPERATIONS Miscellaneous Operating Requirements § 185.320 Steering gear, controls, and communication system...
A New Real - Time Fault Detection Methodology for Systems Under Test. Phase 1
NASA Technical Reports Server (NTRS)
Johnson, Roger W.; Jayaram, Sanjay; Hull, Richard A.
1998-01-01
The purpose of this research is focussed on the identification/demonstration of critical technology innovations that will be applied to various applications viz. Detection of automated machine Health Monitoring (BM, real-time data analysis and control of Systems Under Test (SUT). This new innovation using a High Fidelity Dynamic Model-based Simulation (BFDMS) approach will be used to implement a real-time monitoring, Test and Evaluation (T&E) methodology including the transient behavior of the system under test. The unique element of this process control technique is the use of high fidelity, computer generated dynamic models to replicate the behavior of actual Systems Under Test (SUT). It will provide a dynamic simulation capability that becomes the reference truth model, from which comparisons are made with the actual raw/conditioned data from the test elements.
Neural control of magnetic suspension systems
NASA Technical Reports Server (NTRS)
Gray, W. Steven
1993-01-01
The purpose of this research program is to design, build and test (in cooperation with NASA personnel from the NASA Langley Research Center) neural controllers for two different small air-gap magnetic suspension systems. The general objective of the program is to study neural network architectures for the purpose of control in an experimental setting and to demonstrate the feasibility of the concept. The specific objectives of the research program are: (1) to demonstrate through simulation and experimentation the feasibility of using neural controllers to stabilize a nonlinear magnetic suspension system; (2) to investigate through simulation and experimentation the performance of neural controllers designs under various types of parametric and nonparametric uncertainty; (3) to investigate through simulation and experimentation various types of neural architectures for real-time control with respect to performance and complexity; and (4) to benchmark in an experimental setting the performance of neural controllers against other types of existing linear and nonlinear compensator designs. To date, the first one-dimensional, small air-gap magnetic suspension system has been built, tested and delivered to the NASA Langley Research Center. The device is currently being stabilized with a digital linear phase-lead controller. The neural controller hardware is under construction. Two different neural network paradigms are under consideration, one based on hidden layer feedforward networks trained via back propagation and one based on using Gaussian radial basis functions trained by analytical methods related to stability conditions. Some advanced nonlinear control algorithms using feedback linearization and sliding mode control are in simulation studies.
NASA Astrophysics Data System (ADS)
Ismatkhodzhaev, S. K.; Kuzishchin, V. F.
2017-05-01
An automatic control system to control the thermal load (ACS) in a drum-type boiler under random fluctuations in the blast-furnace and coke-oven gas consumption rates and to control action on the natural gas consumption is considered. The system provides for use of a compensator by the basic disturbance, the blast-furnace gas consumption rate. To enhance the performance of the system, it is proposed to use more accurate mathematical second-order delay models of the channels of the object under control in combination with calculation by frequency methods of the controller parameters as well as determination of the structure and parameters of the compensator considering the statistical characteristics of the disturbances and using simulation. The statistical characteristics of the random blast-furnace gas consumption signal based on experimental data are provided. The random signal is presented in the form of the low-frequency (LF) and high-frequency (HF) components. The models of the correlation functions and spectral densities are developed. The article presents the results of calculating the optimal settings of the control loop with the controlled variable in the form of the "heat" signal with the restricted frequency variation index using three variants of the control performance criteria, viz., the linear and quadratic integral indices under step disturbance and the control error variance under random disturbance by the blastfurnace gas consumption rate. It is recommended to select a compensator designed in the form of series connection of two parts, one of which corresponds to the operator inverse to the transfer function of the PI controller, i.e., in the form of a really differentiating element. This facilitates the realization of the second part of the compensator by the invariance condition similar to transmitting the compensating signal to the object input. The results of simulation under random disturbance by the blast-furnace gas consumption are reported. Recommendations are made on the structure and parameters of the shaping filters for modeling the LF and HF components of the random signal. The results of the research may find applications in the systems to control the thermal processes with compensation of basic disturbances, in particular, in boilers for combustion of accompanying gases.
Adaptive Modulation for DFIG and STATCOM With High-Voltage Direct Current Transmission.
Tang, Yufei; He, Haibo; Ni, Zhen; Wen, Jinyu; Huang, Tingwen
2016-08-01
This paper develops an adaptive modulation approach for power system control based on the approximate/adaptive dynamic programming method, namely, the goal representation heuristic dynamic programming (GrHDP). In particular, we focus on the fault recovery problem of a doubly fed induction generator (DFIG)-based wind farm and a static synchronous compensator (STATCOM) with high-voltage direct current (HVDC) transmission. In this design, the online GrHDP-based controller provides three adaptive supplementary control signals to the DFIG controller, STATCOM controller, and HVDC rectifier controller, respectively. The mechanism is to observe the system states and their derivatives and then provides supplementary control to the plant according to the utility function. With the GrHDP design, the controller can adaptively develop an internal goal representation signal according to the observed power system states, therefore, to achieve more effective learning and modulating. Our control approach is validated on a wind power integrated benchmark system with two areas connected by HVDC transmission lines. Compared with the classical direct HDP and proportional integral control, our GrHDP approach demonstrates the improved transient stability under system faults. Moreover, experiments under different system operating conditions with signal transmission delays are also carried out to further verify the effectiveness and robustness of the proposed approach.
Security Implications of OPC, OLE, DCOM, and RPC in Control Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2006-01-01
OPC is a collection of software programming standards and interfaces used in the process control industry. It is intended to provide open connectivity and vendor equipment interoperability. The use of OPC technology simplifies the development of control systems that integrate components from multiple vendors and support multiple control protocols. OPC-compliant products are available from most control system vendors, and are widely used in the process control industry. OPC was originally known as OLE for Process Control; the first standards for OPC were based on underlying services in the Microsoft Windows computing environment. These underlying services (OLE [Object Linking and Embedding],more » DCOM [Distributed Component Object Model], and RPC [Remote Procedure Call]) have been the source of many severe security vulnerabilities. It is not feasible to automatically apply vendor patches and service packs to mitigate these vulnerabilities in a control systems environment. Control systems using the original OPC data access technology can thus inherit the vulnerabilities associated with these services. Current OPC standardization efforts are moving away from the original focus on Microsoft protocols, with a distinct trend toward web-based protocols that are independent of any particular operating system. However, the installed base of OPC equipment consists mainly of legacy implementations of the OLE for Process Control protocols.« less
40 CFR 141.82 - Description of corrosion control treatment requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Description of corrosion control... § 141.82 Description of corrosion control treatment requirements. Each system shall complete the corrosion control treatment requirements described below which are applicable to such system under § 141.81...
40 CFR 141.82 - Description of corrosion control treatment requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Description of corrosion control... § 141.82 Description of corrosion control treatment requirements. Each system shall complete the corrosion control treatment requirements described below which are applicable to such system under § 141.81...
40 CFR 141.82 - Description of corrosion control treatment requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Description of corrosion control... § 141.82 Description of corrosion control treatment requirements. Each system shall complete the corrosion control treatment requirements described below which are applicable to such system under § 141.81...
40 CFR 141.82 - Description of corrosion control treatment requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Description of corrosion control... § 141.82 Description of corrosion control treatment requirements. Each system shall complete the corrosion control treatment requirements described below which are applicable to such system under § 141.81...
40 CFR 141.82 - Description of corrosion control treatment requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Description of corrosion control... § 141.82 Description of corrosion control treatment requirements. Each system shall complete the corrosion control treatment requirements described below which are applicable to such system under § 141.81...
NASA Astrophysics Data System (ADS)
Eguiraun, M.; Jugo, J.; Arredondo, I.; del Campo, M.; Feuchtwanger, J.; Etxebarria, V.; Bermejo, F. J.
2013-04-01
ISHN (Ion Source Hydrogen Negative) consists of a Penning type ion source in operation at ESS-Bilbao facilities. From the control point of view, this source is representative of the first steps and decisions taken towards the general control architecture of the whole accelerator to be built. The ISHN main control system is based on a PXI architecture, under a real-time controller which is programmed using LabVIEW. This system, with additional elements, is connected to the general control system. The whole system is based on EPICS for the control network, and the modularization of the communication layers of the accelerator plays an important role in the proposed control architecture.
NASA Astrophysics Data System (ADS)
Yang, Xinxin; Ge, Shuzhi Sam; He, Wei
2018-04-01
In this paper, both the closed-form dynamics and adaptive robust tracking control of a space robot with two-link flexible manipulators under unknown disturbances are developed. The dynamic model of the system is described with assumed modes approach and Lagrangian method. The flexible manipulators are represented as Euler-Bernoulli beams. Based on singular perturbation technique, the displacements/joint angles and flexible modes are modelled as slow and fast variables, respectively. A sliding mode control is designed for trajectories tracking of the slow subsystem under unknown but bounded disturbances, and an adaptive sliding mode control is derived for slow subsystem under unknown slowly time-varying disturbances. An optimal linear quadratic regulator method is proposed for the fast subsystem to damp out the vibrations of the flexible manipulators. Theoretical analysis validates the stability of the proposed composite controller. Numerical simulation results demonstrate the performance of the closed-loop flexible space robot system.
NASA Technical Reports Server (NTRS)
Taylor, Lawrence W., Jr.; Balakrishnan, A. V.
1988-01-01
The problen of controlling large, flexible space systems has been evaluated using computer simulation. In several cases, ground experiments have also been used to validate system performance under more realistic conditions. There remains a need, however, to test additional control laws for flexible spacecraft and to directly compare competing design techniques. A program is discussed which has been initiated to make direct comparisons of control laws for, first, a mathematical problem, then and experimental test article being assembled under the cognizance of the Spacecraft Control Branch at the NASA Langley Research Center with the advice and counsel of the IEEE Subcommittee on Large Space Structures. The physical apparatus will consist of a softly supported dynamic model of an antenna attached to the Shuttle by a flexible beam. The control objective will include the task of directing the line-of-sight of the Shuttle antenna configuration toward a fixed target, under conditions of noisy data, control authority and random disturbances.
Robust H(∞) positional control of 2-DOF robotic arm driven by electro-hydraulic servo system.
Guo, Qing; Yu, Tian; Jiang, Dan
2015-11-01
In this paper an H∞ positional feedback controller is developed to improve the robust performance under structural and parametric uncertainty disturbance in electro-hydraulic servo system (EHSS). The robust control model is described as the linear state-space equation by upper linear fractional transformation. According to the solution of H∞ sub-optimal control problem, the robust controller is designed and simplified to lower order linear model which is easily realized in EHSS. The simulation and experimental results can validate the robustness of this proposed method. The comparison result with PI control shows that the robust controller is suitable for this EHSS under the critical condition where the desired system bandwidth is higher and the external load of the hydraulic actuator is closed to its limited capability. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Control of joint motion simulators for biomechanical research
NASA Technical Reports Server (NTRS)
Colbaugh, R.; Glass, K.
1992-01-01
The authors present a hierarchical adaptive algorithm for controlling upper extremity human joint motion simulators. A joint motion simulator is a computer-controlled, electromechanical system which permits the application of forces to the tendons of a human cadaver specimen in such a way that the cadaver joint under study achieves a desired motion in a physiologic manner. The proposed control scheme does not require knowledge of the cadaver specimen dynamic model, and solves on-line the indeterminate problem which arises because human joints typically possess more actuators than degrees of freedom. Computer simulation results are given for an elbow/forearm system and wrist/hand system under hierarchical control. The results demonstrate that any desired normal joint motion can be accurately tracked with the proposed algorithm. These simulation results indicate that the controller resolved the indeterminate problem redundancy in a physiologic manner, and show that the control scheme was robust to parameter uncertainty and to sensor noise.
View southeast of computer controlled energy monitoring system. System replaced ...
View southeast of computer controlled energy monitoring system. System replaced strip chart recorders and other instruments under the direct observation of the load dispatcher. - Thirtieth Street Station, Load Dispatch Center, Thirtieth & Market Streets, Railroad Station, Amtrak (formerly Pennsylvania Railroad Station), Philadelphia, Philadelphia County, PA
Instructional Systems for Bilingual Children.
ERIC Educational Resources Information Center
Ortiz, Flora Ida
Instructional systems for bilingual children are extraordinarily under the teachers' control. The role teachers actualize and the classroom practices they engage in are determined by the teachers' work-orientations and incentive systems. Work-orientations and incentive systems are fundamental in the resolution of schooling dilemmas, i.e., control,…
Annual Review of Research under the Joint Services Electronics Program. Volume 1.
1982-12-01
time varying nonlinear system be transformable to a controllable time -invariant linear system have been presented. * If a...Conference Papers and Abstracts 1. Hunt, L.R., and R. Su, " Control of Nonlinear Time -Varying Systems ," 20th IEEE Conf. on Decision and Control , pp. 558...being C= vector fields on I,. We give necessary and sufficient conditions for this system to be transformable to a time -invariant controllable
46 CFR 184.100 - General requirement.
Code of Federal Regulations, 2010 CFR
2010-10-01
... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT General Provisions § 184.100 General requirement. (a) Vessel control systems and other miscellaneous systems and equipment required by this part must...
41 CFR 101-30.103-1 - General.
Code of Federal Regulations, 2014 CFR
2014-07-01
... System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 30-FEDERAL CATALOG SYSTEM 30.1... and maintain a uniform Federal Catalog System to identify and classify personal property under the control of Federal agencies. Under this law each Federal agency is required to utilize the uniform Federal...
41 CFR 101-30.103-1 - General.
Code of Federal Regulations, 2011 CFR
2011-07-01
... System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 30-FEDERAL CATALOG SYSTEM 30.1... and maintain a uniform Federal Catalog System to identify and classify personal property under the control of Federal agencies. Under this law each Federal agency is required to utilize the uniform Federal...
41 CFR 101-30.103-1 - General.
Code of Federal Regulations, 2012 CFR
2012-07-01
... System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 30-FEDERAL CATALOG SYSTEM 30.1... and maintain a uniform Federal Catalog System to identify and classify personal property under the control of Federal agencies. Under this law each Federal agency is required to utilize the uniform Federal...
41 CFR 101-30.103-1 - General.
Code of Federal Regulations, 2013 CFR
2013-07-01
... System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 30-FEDERAL CATALOG SYSTEM 30.1... and maintain a uniform Federal Catalog System to identify and classify personal property under the control of Federal agencies. Under this law each Federal agency is required to utilize the uniform Federal...
The voltage control for self-excited induction generator based on STATCOM
NASA Astrophysics Data System (ADS)
Yan, Dandan; Wang, Feifeng; Pan, Juntao; Long, Weijie
2018-05-01
The small independent induction generator can build up voltage under its remanent magnetizing and excitation capacitance, but it is prone to voltage sag and harmonic increment when running with load. Therefore, the controller for constant voltage is designed based on the natural coordinate system to adjust the static synchronous compensator (STATCOM), which provides two-way dynamic reactive power compensation for power generation system to achieve voltage stability and harmonic suppression. The control strategy is verified on Matlab/Sinmulik, and the results show that the STATCOM under the controller can effectively improve the load capacity and reliability of asynchronous generator.
ATCRBS Improvement Program Reflector Antenna Development
DOT National Transportation Integrated Search
1976-06-01
This report describes the results of a program undertaken by Texas Instruments Incorporated, under contract to the Transportation Systems Center (TSC), to investigate improved antennas for the Air Traffic Control Radar Beacon System (ATCRBS). Under t...
Nonconformities in real-world fatal crashes--electronic stability control and seat belt reminders.
Lie, Anders
2012-01-01
Many new safety systems are entering the market. Vision Zero is a safety strategy aiming at the elimination of fatalities and impairing injuries by the use of a holistic model for safe traffic to develop a safe system. The aim of this article is to analyze fatalities in modern cars with respect to the Vision Zero model with special respect to electronic stability control (ESC) systems and modern seat belt reminders (SBRs). The model is used to identify and understand cases where cars with ESC systems lost control and where occupants were unbelted in a seat with seat belt reminders under normal driving conditions. The model for safe traffic was used to analyze in-depth studies of fatal crashes with respect to seat belt use and loss of control. Vehicles from 2003 and later in crashes from January 2004 to mid-2010 were analyzed. The data were analyzed case by case. Cars that were equipped with ESC systems and lost control and occupants not using the seat belt in a seat with a seat belt reminder were considered as nonconformities. A total of 138 fatal crashes involving 152 fatally injured occupants were analyzed. Cars with ESC systems had fewer loss-of-control-relevant cases than cars without ESC systems. Thirteen percent of the ESC-equipped vehicles had loss-of-control-relevant crashes and 36 percent of the cars without ESC systems had loss-of-control-relevant crashes. The analysis indicates that only one car of the 9 equipped with ESC that lost control did it on a road surface with relevant friction when driving within the speed restriction of the road. In seats with seat belt reminders that are in accordance with the European New Car Assessment Programme's (Euro NCAP) protocol, 93 percent of the occupants were using a seat belt. In seats without reminders this number was 74 percent. This study shows that ESC systems result in a very significant reduction in fatal crashes, especially under normal driving conditions. Under extreme driving conditions such as speeding or extremely low friction (snow or on the side of the road), ESC systems can fail in keeping the car under control. Seat belt reminders result in higher seat belt use rates but the level of unbelted occupants is higher than roadside studies have indicated. The holistic Vision Zero approach helped in the analysis by identifying nonconformities and putting these into the safe systems perspective.
2014-01-01
An integrated chassis control (ICC) system with active front steering (AFS) and yaw stability control (YSC) is introduced in this paper. The proposed ICC algorithm uses the improved Inverse Nyquist Array (INA) method based on a 2-degree-of-freedom (DOF) planar vehicle reference model to decouple the plant dynamics under different frequency bands, and the change of velocity and cornering stiffness were considered to calculate the analytical solution in the precompensator design so that the INA based algorithm runs well and fast on the nonlinear vehicle system. The stability of the system is guaranteed by dynamic compensator together with a proposed PI feedback controller. After the response analysis of the system on frequency domain and time domain, simulations under step steering maneuver were carried out using a 2-DOF vehicle model and a 14-DOF vehicle model by Matlab/Simulink. The results show that the system is decoupled and the vehicle handling and stability performance are significantly improved by the proposed method. PMID:24782676
Zhu, Bing; Chen, Yizhou; Zhao, Jian
2014-01-01
An integrated chassis control (ICC) system with active front steering (AFS) and yaw stability control (YSC) is introduced in this paper. The proposed ICC algorithm uses the improved Inverse Nyquist Array (INA) method based on a 2-degree-of-freedom (DOF) planar vehicle reference model to decouple the plant dynamics under different frequency bands, and the change of velocity and cornering stiffness were considered to calculate the analytical solution in the precompensator design so that the INA based algorithm runs well and fast on the nonlinear vehicle system. The stability of the system is guaranteed by dynamic compensator together with a proposed PI feedback controller. After the response analysis of the system on frequency domain and time domain, simulations under step steering maneuver were carried out using a 2-DOF vehicle model and a 14-DOF vehicle model by Matlab/Simulink. The results show that the system is decoupled and the vehicle handling and stability performance are significantly improved by the proposed method.
Intermittent control: a computational theory of human control.
Gawthrop, Peter; Loram, Ian; Lakie, Martin; Gollee, Henrik
2011-02-01
The paradigm of continuous control using internal models has advanced understanding of human motor control. However, this paradigm ignores some aspects of human control, including intermittent feedback, serial ballistic control, triggered responses and refractory periods. It is shown that event-driven intermittent control provides a framework to explain the behaviour of the human operator under a wider range of conditions than continuous control. Continuous control is included as a special case, but sampling, system matched hold, an intermittent predictor and an event trigger allow serial open-loop trajectories using intermittent feedback. The implementation here may be described as "continuous observation, intermittent action". Beyond explaining unimodal regulation distributions in common with continuous control, these features naturally explain refractoriness and bimodal stabilisation distributions observed in double stimulus tracking experiments and quiet standing, respectively. Moreover, given that human control systems contain significant time delays, a biological-cybernetic rationale favours intermittent over continuous control: intermittent predictive control is computationally less demanding than continuous predictive control. A standard continuous-time predictive control model of the human operator is used as the underlying design method for an event-driven intermittent controller. It is shown that when event thresholds are small and sampling is regular, the intermittent controller can masquerade as the underlying continuous-time controller and thus, under these conditions, the continuous-time and intermittent controller cannot be distinguished. This explains why the intermittent control hypothesis is consistent with the continuous control hypothesis for certain experimental conditions.
Optimal Real-time Dispatch for Integrated Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firestone, Ryan Michael
This report describes the development and application of a dispatch optimization algorithm for integrated energy systems (IES) comprised of on-site cogeneration of heat and electricity, energy storage devices, and demand response opportunities. This work is intended to aid commercial and industrial sites in making use of modern computing power and optimization algorithms to make informed, near-optimal decisions under significant uncertainty and complex objective functions. The optimization algorithm uses a finite set of randomly generated future scenarios to approximate the true, stochastic future; constraints are included that prevent solutions to this approximate problem from deviating from solutions to the actual problem.more » The algorithm is then expressed as a mixed integer linear program, to which a powerful commercial solver is applied. A case study of United States Postal Service Processing and Distribution Centers (P&DC) in four cities and under three different electricity tariff structures is conducted to (1) determine the added value of optimal control to a cogeneration system over current, heuristic control strategies; (2) determine the value of limited electric load curtailment opportunities, with and without cogeneration; and (3) determine the trade-off between least-cost and least-carbon operations of a cogeneration system. Key results for the P&DC sites studied include (1) in locations where the average electricity and natural gas prices suggest a marginally profitable cogeneration system, optimal control can add up to 67% to the value of the cogeneration system; optimal control adds less value in locations where cogeneration is more clearly profitable; (2) optimal control under real-time pricing is (a) more complicated than under typical time-of-use tariffs and (b) at times necessary to make cogeneration economic at all; (3) limited electric load curtailment opportunities can be more valuable as a compliment to the cogeneration system than alone; and (4) most of the trade-off between least-cost and least-carbon IES is determined during the system design stage; for the IES system considered, there is little difference between least-cost control and least-carbon control.« less
Intelligent Control Systems Research
NASA Technical Reports Server (NTRS)
Loparo, Kenneth A.
1994-01-01
Results of a three phase research program into intelligent control systems are presented. The first phase looked at implementing the lowest or direct level of a hierarchical control scheme using a reinforcement learning approach assuming no a priori information about the system under control. The second phase involved the design of an adaptive/optimizing level of the hierarchy and its interaction with the direct control level. The third and final phase of the research was aimed at combining the results of the previous phases with some a priori information about the controlled system.
75 FR 28253 - Federal Management Regulation (FMR); Notice of GSA Bulletin FMR B-26
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-20
... General and other executive agencies to develop accounting systems for Federal property. The term ``system... responsibility to provide guidance to agencies on property management accountability systems. This bulletin is... agencies maintain adequate inventory controls and accountability systems for property under their control...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-27
... technologies, namely safety-critical processor-based signal or train control systems, including subsystems and... or train control system (including a subsystem or component thereof) that was in service as of June 6... processor-based signal or train control system, subsystem, or component.'' See 49 CFR 236.903. Under Subpart...
42 CFR 431.834 - Access to records: Claims processing assessment systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ADMINISTRATION Quality Control Medicaid Quality Control (mqc) Claims Processing Assessment System § 431.834... to which the State has access, including information available under part 435, subpart J, of this...
42 CFR 431.834 - Access to records: Claims processing assessment systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... ADMINISTRATION Quality Control Medicaid Quality Control (mqc) Claims Processing Assessment System § 431.834... to which the State has access, including information available under part 435, subpart J, of this...
Implementation and comparative study of control strategies for an isolated DFIG based WECS
NASA Astrophysics Data System (ADS)
Bouchiba, Nouha; Barkia, Asma; Sallem, Souhir; Chrifi-Alaoui, Larbi; Drid, Saïd; Kammoun, M. B. A.
2017-10-01
Nowadays, a global interest for renewable energy sources has been growing intensely. In particular, a wind energy has become the most popular. In case of autonomous systems, wind energy conversion system (WECS) based on a double fed induction generator (DFIG) is widely used. In this paper, in order to control the stand-alone system outputs under wind speed and load variations, three kinds of nonlinear control strategies have been proposed, applied and compared, such as: Classical PI controller, Back-Stepping and Sliding Mode controllers. A series of experiments have been conducted to evaluate and to compare the developed controllers' dynamic performances under load demand and speed variations. The design and the implementation of different control strategies to a 1.5kW doubly fed induction machine is carried out using a dSpace DS1104 card based on MATLAB/Simulink environment. Experimental results are presented to show the validity of the implemented controllers and demonstrate the effectiveness of each controller compared with others.
Modeling and control for closed environment plant production systems
NASA Technical Reports Server (NTRS)
Fleisher, David H.; Ting, K. C.; Janes, H. W. (Principal Investigator)
2002-01-01
A computer program was developed to study multiple crop production and control in controlled environment plant production systems. The program simulates crop growth and development under nominal and off-nominal environments. Time-series crop models for wheat (Triticum aestivum), soybean (Glycine max), and white potato (Solanum tuberosum) are integrated with a model-based predictive controller. The controller evaluates and compensates for effects of environmental disturbances on crop production scheduling. The crop models consist of a set of nonlinear polynomial equations, six for each crop, developed using multivariate polynomial regression (MPR). Simulated data from DSSAT crop models, previously modified for crop production in controlled environments with hydroponics under elevated atmospheric carbon dioxide concentration, were used for the MPR fitting. The model-based predictive controller adjusts light intensity, air temperature, and carbon dioxide concentration set points in response to environmental perturbations. Control signals are determined from minimization of a cost function, which is based on the weighted control effort and squared-error between the system response and desired reference signal.
Adaptive Control Strategies for Interlimb Coordination in Legged Robots: A Review
Aoi, Shinya; Manoonpong, Poramate; Ambe, Yuichi; Matsuno, Fumitoshi; Wörgötter, Florentin
2017-01-01
Walking animals produce adaptive interlimb coordination during locomotion in accordance with their situation. Interlimb coordination is generated through the dynamic interactions of the neural system, the musculoskeletal system, and the environment, although the underlying mechanisms remain unclear. Recently, investigations of the adaptation mechanisms of living beings have attracted attention, and bio-inspired control systems based on neurophysiological findings regarding sensorimotor interactions are being developed for legged robots. In this review, we introduce adaptive interlimb coordination for legged robots induced by various factors (locomotion speed, environmental situation, body properties, and task). In addition, we show characteristic properties of adaptive interlimb coordination, such as gait hysteresis and different time-scale adaptations. We also discuss the underlying mechanisms and control strategies to achieve adaptive interlimb coordination and the design principle for the control system of legged robots. PMID:28878645
9 CFR 318.309 - Finished product inspection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... microbiological contamination; (2) An FSIS-approved total quality control system; (3) Alternative documented... associated with microbial contamination, where there is no approved total quality control system, or where... Office of Management and Budget under control number 0583-0015) [51 FR 45619, Dec. 19, 1986, as amended...
Performance-based maintenance of gas turbines for reliable control of degraded power systems
NASA Astrophysics Data System (ADS)
Mo, Huadong; Sansavini, Giovanni; Xie, Min
2018-03-01
Maintenance actions are necessary for ensuring proper operations of control systems under component degradation. However, current condition-based maintenance (CBM) models based on component health indices are not suitable for degraded control systems. Indeed, failures of control systems are only determined by the controller outputs, and the feedback mechanism compensates the control performance loss caused by the component deterioration. Thus, control systems may still operate normally even if the component health indices exceed failure thresholds. This work investigates the CBM model of control systems and employs the reduced control performance as a direct degradation measure for deciding maintenance activities. The reduced control performance depends on the underlying component degradation modelled as a Wiener process and the feedback mechanism. To this aim, the controller features are quantified by developing a dynamic and stochastic control block diagram-based simulation model, consisting of the degraded components and the control mechanism. At each inspection, the system receives a maintenance action if the control performance deterioration exceeds its preventive-maintenance or failure thresholds. Inspired by realistic cases, the component degradation model considers random start time and unit-to-unit variability. The cost analysis of maintenance model is conducted via Monte Carlo simulation. Optimal maintenance strategies are investigated to minimize the expected maintenance costs, which is a direct consequence of the control performance. The proposed framework is able to design preventive maintenance actions on a gas power plant, to ensuring required load frequency control performance against a sudden load increase. The optimization results identify the trade-off between system downtime and maintenance costs as a function of preventive maintenance thresholds and inspection frequency. Finally, the control performance-based maintenance model can reduce maintenance costs as compared to CBM and pre-scheduled maintenance.
An Open Specification for Space Project Mission Operations Control Architectures
NASA Technical Reports Server (NTRS)
Hooke, A.; Heuser, W. R.
1995-01-01
An 'open specification' for Space Project Mission Operations Control Architectures is under development in the Spacecraft Control Working Group of the American Institute for Aeronautics and Astro- nautics. This architecture identifies 5 basic elements incorporated in the design of similar operations systems: Data, System Management, Control Interface, Decision Support Engine, & Space Messaging Service.
Development of closed loop roll control for magnetic balance systems
NASA Technical Reports Server (NTRS)
Covert, E. E.; Haldeman, C. W.; Ramohalli, G.; Way, P.
1982-01-01
This research was undertaken with the goal of demonstrating closed loop control of the roll degree of freedom on the NASA prototype magnetic suspension and balance system at the MIT Aerophysics Laboratory, thus, showing feasibility for a roll control system for any large magnetic balance system which might be built in the future. During the research under this grant, study was directed toward the several areas of torque generation, position sensing, model construction and control system design. These effects were then integrated to produce successful closed loop operation of the analogue roll control system. This experience indicated the desirability of microprocessor control for the angular degrees of freedom.
NASA Astrophysics Data System (ADS)
Kapulin, D. V.; Chemidov, I. V.; Kazantsev, M. A.
2017-01-01
In the paper, the aspects of design, development and implementation of the automated control system for warehousing under the manufacturing process of the radio-electronic enterprise JSC «Radiosvyaz» are discussed. The architecture of the automated control system for warehousing proposed in the paper consists of a server which is connected to the physically separated information networks: the network with a database server, which stores information about the orders for picking, and the network with the automated storage and retrieval system. This principle allows implementing the requirements for differentiation of access, ensuring the information safety and security requirements. Also, the efficiency of the developed automated solutions in terms of optimizing the warehouse’s logistic characteristics is researched.
A computerized test system for thermal-mechanical fatigue crack growth
NASA Technical Reports Server (NTRS)
Marchand, N.; Pelloux, R. M.
1986-01-01
A computerized testing system to measure fatigue crack growth under thermal-mechanical fatigue conditions is described. Built around a servohydraulic machine, the system is capable of a push-pull test under stress-controlled or strain-controlled conditions in the temperature range of 25 to 1050 C. Temperature and mechanical strain are independently controlled by the closed-loop system to simulate the complex inservice strain-temperature relationship. A d-c electrical potential method is used to measure crack growth rates. The correction procedure of the potential signal to take into account powerline and RF-induced noises and thermal changes is described. It is shown that the potential drop technique can be used for physical mechanism studies and for modelling crack tip processes.
Feasibility study of self-powered magnetorheological damper systems
NASA Astrophysics Data System (ADS)
Chen, Chao; Liao, Wei-Hsin
2012-04-01
This paper is aimed to provide a feasibility study of self-powered magnetorheological (MR) damper systems, which could convert vibration and shock energy into electrical energy to power itself under control. The self-powered feature could bring merits such as higher reliability, energy saving, and less maintenance for the MR damper systems. A self-powered MR damper system is proposed and modeled. The criterion whether the MR damper system is self-powered or not is proposed. A prototype of MR damper with power generation is designed, fabricated, and tested. The modeling of this damper is experimentally validated. Then the damper is applied to a 2 DOF suspension system under on-off skyhook controller, to obtain the self-powered working range and vibration control performance. Effects of key factors on the self-powered MR damper systems are studied. Design considerations are given in order to increase the self-powered working range.
NASA Astrophysics Data System (ADS)
Sun, Ying; Ding, Derui; Zhang, Sunjie; Wei, Guoliang; Liu, Hongjian
2018-07-01
In this paper, the non-fragile ?-? control problem is investigated for a class of discrete-time stochastic nonlinear systems under event-triggered communication protocols, which determine whether the measurement output should be transmitted to the controller or not. The main purpose of the addressed problem is to design an event-based output feedback controller subject to gain variations guaranteeing the prescribed disturbance attenuation level described by the ?-? performance index. By utilizing the Lyapunov stability theory combined with S-procedure, a sufficient condition is established to guarantee both the exponential mean-square stability and the ?-? performance for the closed-loop system. In addition, with the help of the orthogonal decomposition, the desired controller parameter is obtained in terms of the solution to certain linear matrix inequalities. Finally, a simulation example is exploited to demonstrate the effectiveness of the proposed event-based controller design scheme.
Complex Dynamical Behavior in Hybrid Systems
2012-09-29
stability for a class of hybrid dynamical systems via averaging”, Mathematics of Control , Signals, and Systems , vol. 23, no. 4, pp...no. 7, pp. 1636-1649, 2011. J9. A.R. Teel and L. Marconi, `` Stabilization for a class of minimum phase hybrid systems under an average dwell- time ...functions for L2 and input-to-state stability in a class of quantized control systems ”, 50th IEEE Conference on Decision and Control , Dec.
Microprocessor-based control systems application in nuclear power plant critical systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, M.R.; Nowak, J.B.
Microprocessor-based control systems have been used in fossil power plants and are receiving greater acceptance for application in nuclear plants. This technology is not new but it does require unique considerations when applied to nuclear power plants. Sargent and Lundy (S and L) has used a microprocessor-based component logic control system (interposing Logic System) for safety- and non-safety-related components in nuclear power plants under construction overseas. Currently, S and L is in the design stage to replace an existing analog control system with a microprocessor-based control system in the U.S. The trend in the industry is to replace systems inmore » existing plants or design new power plants with microprocessor-based control systems.« less
9 CFR 381.309 - Finished product inspection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... FSIS-approved total quality control system; or (3) Alternative documented procedures that will ensure... contamination, where there is no approved total quality control system, or where the establishment has no... Office of Management and Budget under control number 0583-0015) [51 FR 45634, Dec. 19, 1986, as amended...
NASA Technical Reports Server (NTRS)
1978-01-01
A digital electronic control was combined with conventional hydromechanical components to operate the four controlled variables on the under-the-wing engine: fuel flow, fan blade pitch, fan exhaust area, and core compressor stator angles. The engine and control combination offers improvements in noise, pollution, thrust response, operational monitoring, and pilot workload relative to current engines.
Aerodynamic surface distension system for high angle of attack forebody vortex control
NASA Technical Reports Server (NTRS)
Zell, Peter T. (Inventor)
1994-01-01
A deployable system is introduced for assisting flight control under certain flight conditions, such as at high angles of attack, whereby two inflatable membranes are located on the forebody portion of an aircraft on opposite sides thereof. The members form control surfaces for effecting lateral control forces if one is inflated and longitudinal control forces if both are inflated.
Cryogenic pellet launcher adapted for controlling of tokamak plasma edge instabilities.
Lang, P T; Cierpka, P; Harhausen, J; Neuhauser, J; Wittmann, C; Gál, K; Kálvin, S; Kocsis, G; Sárközi, J; Szepesi, T; Dorner, C; Kauke, G
2007-02-01
One of the main challenges posed recently on pellet launcher systems in fusion-oriented plasma physics is the control of the plasma edge region. Strong energy bursts ejected from the plasma due to edge localized modes (ELMs) can form a severe threat for in-vessel components but can be mitigated by sufficiently frequent triggering of the underlying instabilities using hydrogen isotope pellet injection. However, pellet injection systems developed mainly for the task of ELM control, keeping the unwanted pellet fueling minimized, are still missing. Here, we report on a novel system developed under the premise of its suitability for control and mitigation of plasma edge instabilities. The system is based on the blower gun principle and is capable of combining high repetition rates up to 143 Hz with low pellet velocities. Thus, the flexibility of the accessible injection geometry can be maximized and the pellet size kept low. As a result the new system allows for an enhancement in the tokamak operation as well as for more sophisticated experiments investigating the underlying physics of the plasma edge instabilities. This article reports on the design of the new system, its main operational characteristics as determined in extensive test bed runs, and also its first test at the tokamak experiment ASDEX Upgrade.
NASA Astrophysics Data System (ADS)
Islami, Titiek; Wisnubroto, Erwin; Utomo, Wani
2016-04-01
Three years field experiments were conducted to study the effect of chemical and mechanical weed control on soil quality and erosion under cassava cropping system. The experiment were conducted at University Brawijaya field experimental station, Jatikerto, Malang, Indonesia. The experiments were carried out from 2011 - 2014. The treatments consist of three cropping system (cassava mono culture; cassava + maize intercropping and cassava + peanut intercropping), and two weed control method (chemical and mechanical methods). The experimental result showed that the yield of cassava first year and second year did not influenced by weed control method and cropping system. However, the third year yield of cassava was influence by weed control method and cropping system. The cassava yield planted in cassava + maize intercropping system with chemical weed control methods was only 24 t/ha, which lower compared to other treatments, even with that of the same cropping system used mechanical weed control. The highest cassava yield in third year was obtained by cassava + peanuts cropping system with mechanical weed control method. After three years experiment, the soil of cassava monoculture system with chemical weed control method possessed the lowest soil organic matter, and soil aggregate stability. During three years of cropping soil erosion in chemical weed control method, especially on cassava monoculture, was higher compared to mechanical weed control method. The soil loss from chemical control method were 40 t/ha, 44 t/ha and 54 t/ha for the first, second and third year crop. The soil loss from mechanical weed control method for the same years was: 36 t/ha, 36 t/ha and 38 t/ha. Key words: herbicide, intercropping, soil organic matter, aggregate stability.
On the Motions of an Oscillating System Under the Influence of Flip-Flop Controls
NASA Technical Reports Server (NTRS)
Fluegge-Lotz, I.; Klotter, K.
1949-01-01
So-called flip-flop controls (also called "on-off-course controls") are frequently preferred to continuous controls because of their simple construction. Thus they are used also for the steering control of airplanes. Such a body possesses-even if one thinks, for instance, only of the symmetric longitudinal motion - three degrees of freedom so that a study of its motions under the influence of an intermittent control is at least lengthy. Thus, it is suggested that an investigation of the basic effect of such a control first be made on a system with one degree of freedom. Furthermore, we limit ourselves in the resent report to the investigation of an "ideal" control where the control surface immediately obeys the command given by the "steering control function". Thus the oscillation properties of the control surface and the defects in linkage, sensing element, and mixing device are, at first, neglected. As long as the deviations from the "ideal" control may be neglected in practice, also the motion of the control surface takes place at the heat of the motion of the principal system. The aim of our investigation is to obtain a survey of the influence of the system and control coefficients on the damping behavior which is to be attained.
Hierarchical Discrete Event Supervisory Control of Aircraft Propulsion Systems
NASA Technical Reports Server (NTRS)
Yasar, Murat; Tolani, Devendra; Ray, Asok; Shah, Neerav; Litt, Jonathan S.
2004-01-01
This paper presents a hierarchical application of Discrete Event Supervisory (DES) control theory for intelligent decision and control of a twin-engine aircraft propulsion system. A dual layer hierarchical DES controller is designed to supervise and coordinate the operation of two engines of the propulsion system. The two engines are individually controlled to achieve enhanced performance and reliability, necessary for fulfilling the mission objectives. Each engine is operated under a continuously varying control system that maintains the specified performance and a local discrete-event supervisor for condition monitoring and life extending control. A global upper level DES controller is designed for load balancing and overall health management of the propulsion system.
Oceanic surveillance and navigation analysis, FY 72.
DOT National Transportation Integrated Search
1972-08-01
The report summarizes the Oceanic Surveillance and Navigation Analysis performed, at or under the direction of, the Transportation Systems Center under PPA FA-204 for FY72. A methodology has been developed by Systems Control, Inc. for relating the sa...
49 CFR 193.2707 - Operations and maintenance.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... (c) Corrosion control procedures under § 193.2605(b), including those for the design, installation, operation, and maintenance of cathodic protection systems, must be carried out by, or under the direction of, a person qualified by experience and training in corrosion control technology. ...
49 CFR 193.2707 - Operations and maintenance.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... (c) Corrosion control procedures under § 193.2605(b), including those for the design, installation, operation, and maintenance of cathodic protection systems, must be carried out by, or under the direction of, a person qualified by experience and training in corrosion control technology. ...
40 CFR 63.10009 - May I use emissions averaging to comply with this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... performance test must not be less than the design efficiency of the emissions control technology employed 180... properties, belonging to a single major industrial grouping, which are under common control of the same person (or persons under common control); and (ii) You use CEMS (or sorbent trap monitoring systems for...
40 CFR 63.10009 - May I use emissions averaging to comply with this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... performance test must not be less than the design efficiency of the emissions control technology employed 180... properties, belonging to a single major industrial grouping, which are under common control of the same person (or persons under common control); and (ii) You use CEMS (or sorbent trap monitoring systems for...
Concepts for VLBI Station Control as Part of NEXPReS
NASA Astrophysics Data System (ADS)
Ettl, M.; Neidhardt, A.; Schönberger, M.; Alef, W.; Himwich, E.; Beaudoin, C.; Plötz, C.; Lovell, J.; Hase, H.
2012-12-01
In the Novel EXploration Pushing Robust e-VLBI Services-project (NEXPReS) the Technische Universität München (TUM) realizes concepts for continuous quality monitoring and station remote control in cooperation with the Max-Planck-Institute for Radio Astronomy, Bonn. NEXPReS is a three-year project, funded within the European Seventh Framework program. It is aimed to develop e-VLBI services for the European VLBI Network (EVN), which can also support the IVS observations (VLBI2010). Within this project, the TUM focuses on developments of an operational remote control system (e-RemoteCtrl) with authentication and authorization. It includes an appropriate role management with different remote access states for future observation strategies. To allow a flexible control of different systems in parallel, sophisticated graphical user interfaces are designed and realized. The software is currently under test in the new AuScope network, Australia/New Zealand. Additional system parameters and information are collected with a new system monitoring (SysMon) for a higher degree of automation, which is currently under preparation for standardization within the IVS Monitoring and Control Infrastructure (MCI) Collaboration Group. The whole system for monitoring and control is fully compatible with the NASA Field System and extends it.
Synthesis Methods for Robust Passification and Control
NASA Technical Reports Server (NTRS)
Kelkar, Atul G.; Joshi, Suresh M. (Technical Monitor)
2000-01-01
The research effort under this cooperative agreement has been essentially the continuation of the work from previous grants. The ongoing work has primarily focused on developing passivity-based control techniques for Linear Time-Invariant (LTI) systems. During this period, there has been a significant progress made in the area of passivity-based control of LTI systems and some preliminary results have also been obtained for nonlinear systems, as well. The prior work has addressed optimal control design for inherently passive as well as non- passive linear systems. For exploiting the robustness characteristics of passivity-based controllers the passification methodology was developed for LTI systems that are not inherently passive. Various methods of passification were first proposed in and further developed. The robustness of passification was addressed for multi-input multi-output (MIMO) systems for certain classes of uncertainties using frequency-domain methods. For MIMO systems, a state-space approach using Linear Matrix Inequality (LMI)-based formulation was presented, for passification of non-passive LTI systems. An LMI-based robust passification technique was presented for systems with redundant actuators and sensors. The redundancy in actuators and sensors was used effectively for robust passification using the LMI formulation. The passification was designed to be robust to an interval-type uncertainties in system parameters. The passification techniques were used to design a robust controller for Benchmark Active Control Technology wing under parametric uncertainties. The results on passive nonlinear systems, however, are very limited to date. Our recent work in this area was presented, wherein some stability results were obtained for passive nonlinear systems that are affine in control.
NASA Astrophysics Data System (ADS)
Zhu, Kaiqun; Song, Yan; Zhang, Sunjie; Zhong, Zhaozhun
2017-07-01
In this paper, a non-fragile observer-based output feedback control problem for the polytopic uncertain system under distributed model predictive control (MPC) approach is discussed. By decomposing the global system into some subsystems, the computation complexity is reduced, so it follows that the online designing time can be saved.Moreover, an observer-based output feedback control algorithm is proposed in the framework of distributed MPC to deal with the difficulties in obtaining the states measurements. In this way, the presented observer-based output-feedback MPC strategy is more flexible and applicable in practice than the traditional state-feedback one. What is more, the non-fragility of the controller has been taken into consideration in favour of increasing the robustness of the polytopic uncertain system. After that, a sufficient stability criterion is presented by using Lyapunov-like functional approach, meanwhile, the corresponding control law and the upper bound of the quadratic cost function are derived by solving an optimisation subject to convex constraints. Finally, some simulation examples are employed to show the effectiveness of the method.
NASA Astrophysics Data System (ADS)
Azwar; Hussain, M. A.; Abdul-Wahab, A. K.; Zanil, M. F.; Mukhlishien
2018-03-01
One of major challenge in bio-hydrogen production process by using MEC process is nonlinear and highly complex system. This is mainly due to the presence of microbial interactions and highly complex phenomena in the system. Its complexity makes MEC system difficult to operate and control under optimal conditions. Thus, precise control is required for the MEC reactor, so that the amount of current required to produce hydrogen gas can be controlled according to the composition of the substrate in the reactor. In this work, two schemes for controlling the current and voltage of MEC were evaluated. The controllers evaluated are PID and Inverse neural network (NN) controller. The comparative study has been carried out under optimal condition for the production of bio-hydrogen gas wherein the controller output is based on the correlation of optimal current and voltage to the MEC. Various simulation tests involving multiple set-point changes and disturbances rejection have been evaluated and the performances of both controllers are discussed. The neural network-based controller results in fast response time and less overshoots while the offset effects are minimal. In conclusion, the Inverse neural network (NN)-based controllers provide better control performance for the MEC system compared to the PID controller.
NASA Technical Reports Server (NTRS)
1996-01-01
Under contract to the Texas Department of Transportation, AlliedSignal Technical Services developed the Transportation Guidance System (TransGuide) used in San Antonio, Texas. The system monitors the passage of traffic over the sensors embedded in the roadways and detects incidents. Control center operators are alerted to the occurrence of an accident and the area of the occurrence is highlighted on a map display. TransGuide incorporates technology AlliedSignal developed under various contracts to NASA at Goddard Space Flight Center, Johnson Space Center and Jet Propulsion Laboratory, including the design of ground control centers.
Cortical Interactions Underlying the Production of Speech Sounds
ERIC Educational Resources Information Center
Guenther, Frank H.
2006-01-01
Speech production involves the integration of auditory, somatosensory, and motor information in the brain. This article describes a model of speech motor control in which a feedforward control system, involving premotor and primary motor cortex and the cerebellum, works in concert with auditory and somatosensory feedback control systems that…
NASA Advanced Life Support Technology Testing and Development
NASA Technical Reports Server (NTRS)
Wheeler, Raymond M.
2012-01-01
Prior to 2010, NASA's advanced life support research and development was carried out primarily under the Exploration Life Support Project of NASA's Exploration Systems Mission Directorate. In 2011, the Exploration Life Support Project was merged with other projects covering Fire Prevention/Suppression, Radiation Protection, Advanced Environmental Monitoring and Control, and Thermal Control Systems. This consolidated project was called Life Support and Habitation Systems, which was managed under the Exploration Systems Mission Directorate. In 2012, NASA re-organized major directorates within the agency, which eliminated the Exploration Systems Mission Directorate and created the Office of the Chief Technologist (OCT). Life support research and development is currently conducted within the Office of the Chief Technologist, under the Next Generation Life Support Project, and within the Human Exploration Operation Missions Directorate under several Advanced Exploration System projects. These Advanced Exploration Systems projects include various themes of life support technology testing, including atmospheric management, water management, logistics and waste management, and habitation systems. Food crop testing is currently conducted as part of the Deep Space Habitation (DSH) project within the Advanced Exploration Systems Program. This testing is focused on growing salad crops that could supplement the crew's diet during near term missions.
NASA three-laser airborne differential absorption lidar system electronics
NASA Technical Reports Server (NTRS)
Allen, R. J.; Copeland, G. D.
1984-01-01
The system control and signal conditioning electronics of the NASA three laser airborne differential absorption lidar (DIAL) system are described. The multipurpose DIAL system was developed for the remote measurement of gas and aerosol profiles in the troposphere and lower stratosphere. A brief description and photographs of the majority of electronics units developed under this contract are presented. The precision control system; which includes a master control unit, three combined NASA laser control interface/quantel control units, and three noise pulse discriminator/pockels cell pulser units; is described in detail. The need and design considerations for precision timing and control are discussed. Calibration procedures are included.
State deadbeat response and observability in multi-modal systems
NASA Technical Reports Server (NTRS)
Conner, L. T., Jr.; Stanford, D. P.
1984-01-01
Two aspects of multimodal systems are examined. It is shown that any completely controllable system with state dimension n not exceeding three allows a choice of feedback matrices resulting in a state deadbeat response. Some of the results presented here are valid for arbitrary n, and it is suggested that for all n the state deadbeat response can be obtained under the hypothesis of complete controllability. The controllability canonical form for a multimodal system is refined by introducing a notion of observability which is dual to controllability for these systems.
Development of Arduino based wireless control system
NASA Astrophysics Data System (ADS)
Sun, Zhuoxiong; Dyke, Shirley J.; Pena, Francisco; Wilbee, Alana
2015-03-01
Over the past few decades, considerable attention has been given to structural control systems to mitigate structural vibration under natural hazards such as earthquakes and extreme weather conditions. Traditional wired structural control systems often employ a large amount of cables for communication among sensors, controllers and actuators. In such systems, implementation of wired sensors is usually quite complicated and expensive, especially on large scale structures such as bridges and buildings. To reduce the laborious installation and maintenance cost, wireless control systems (WCSs) are considered as a novel approach for structural vibration control. In this work, a WCS is developed based on the open source Arduino platform. Low cost, low power wireless sensing and communication components are built on the Arduino platform. Structural control algorithms are embedded within the wireless sensor board for feedback control. The developed WCS is first validated through a series of tests. Next, numerical simulations are performed simulating wireless control of a 3-story shear structure equipped with a semi-active control device (MR damper). Finally, experimental studies are carried out implementing the WCS on the 3-story shear structure in the Intelligent Infrastructure Systems Lab (IISL). A hydraulic shake table is used to generate seismic ground motions. The control performance is evaluated with the impact of modeling uncertainties, measurement noises as well as time delay and data loss induced by the wireless network. The developed WCS is shown to be effective in controlling structural vibrations under several historical earthquake ground motions.
Quantitative computer simulations of extraterrestrial processing operations
NASA Technical Reports Server (NTRS)
Vincent, T. L.; Nikravesh, P. E.
1989-01-01
The automation of a small, solid propellant mixer was studied. Temperature control is under investigation. A numerical simulation of the system is under development and will be tested using different control options. Control system hardware is currently being put into place. The construction of mathematical models and simulation techniques for understanding various engineering processes is also studied. Computer graphics packages were utilized for better visualization of the simulation results. The mechanical mixing of propellants is examined. Simulation of the mixing process is being done to study how one can control for chaotic behavior to meet specified mixing requirements. An experimental mixing chamber is also being built. It will allow visual tracking of particles under mixing. The experimental unit will be used to test ideas from chaos theory, as well as to verify simulation results. This project has applications to extraterrestrial propellant quality and reliability.
Traffic signal control enhancements under vehicle infrastructure integration systems.
DOT National Transportation Integrated Search
2011-12-01
Most current traffic signal systems are operated using a very archaic traffic-detection simple binary : logic (vehicle presence/non presence information). The logic was originally developed to provide input for old : electro-mechanical controllers th...
Safety benefits of stability control systems for tractor-semitrailers.
DOT National Transportation Integrated Search
2009-10-01
This study was conducted by the University of Michigan Transportation Research Institute : (UMTRI) under a Cooperative Agreement between NHTSA and Meritor WABCO to examine : the performance of electronic stability control (ESC) systems, and roll stab...
Mei, Jie; Ren, Wei; Li, Bing; Ma, Guangfu
2015-09-01
In this paper, we consider the distributed containment control problem for multiagent systems with unknown nonlinear dynamics. More specifically, we focus on multiple second-order nonlinear systems and networked Lagrangian systems. We first study the distributed containment control problem for multiple second-order nonlinear systems with multiple dynamic leaders in the presence of unknown nonlinearities and external disturbances under a general directed graph that characterizes the interaction among the leaders and the followers. A distributed adaptive control algorithm with an adaptive gain design based on the approximation capability of neural networks is proposed. We present a necessary and sufficient condition on the directed graph such that the containment error can be reduced as small as desired. As a byproduct, the leaderless consensus problem is solved with asymptotical convergence. Because relative velocity measurements between neighbors are generally more difficult to obtain than relative position measurements, we then propose a distributed containment control algorithm without using neighbors' velocity information. A two-step Lyapunov-based method is used to study the convergence of the closed-loop system. Next, we apply the ideas to deal with the containment control problem for networked unknown Lagrangian systems under a general directed graph. All the proposed algorithms are distributed and can be implemented using only local measurements in the absence of communication. Finally, simulation examples are provided to show the effectiveness of the proposed control algorithms.
Integrated restructurable flight control system demonstration results
NASA Technical Reports Server (NTRS)
Weiss, Jerold L.; Hsu, John Y.
1987-01-01
The purpose of this study was to examine the complementary capabilities of several restructurable flight control system (RFCS) concepts through the integration of these technologies into a complete system. Performance issues were addressed through a re-examination of RFCS functional requirements, and through a qualitative analysis of the design issues that, if properly addressed during integration, will lead to the highest possible degree of fault-tolerant performance. Software developed under previous phases of this contract and under NAS1-18004 was modified and integrated into a complete RFCS subroutine for NASA's B-737 simulation. The integration of these modules involved the development of methods for dealing with the mismatch between the outputs of the failure detection module and the input requirements of the automatic control system redesign module. The performance of this demonstration system was examined through extensive simulation trials.
Distributed Consensus of Stochastic Delayed Multi-agent Systems Under Asynchronous Switching.
Wu, Xiaotai; Tang, Yang; Cao, Jinde; Zhang, Wenbing
2016-08-01
In this paper, the distributed exponential consensus of stochastic delayed multi-agent systems with nonlinear dynamics is investigated under asynchronous switching. The asynchronous switching considered here is to account for the time of identifying the active modes of multi-agent systems. After receipt of confirmation of mode's switching, the matched controller can be applied, which means that the switching time of the matched controller in each node usually lags behind that of system switching. In order to handle the coexistence of switched signals and stochastic disturbances, a comparison principle of stochastic switched delayed systems is first proved. By means of this extended comparison principle, several easy to verified conditions for the existence of an asynchronously switched distributed controller are derived such that stochastic delayed multi-agent systems with asynchronous switching and nonlinear dynamics can achieve global exponential consensus. Two examples are given to illustrate the effectiveness of the proposed method.
Control Structures for VSC-based FACTS Devices under Normal and Faulted AC-systems
NASA Astrophysics Data System (ADS)
Babaei, Saman
This thesis is concerned with improving the Flexible AC Transmission Systems (FACTS) devices performance under the normal and fault AC-system conditions by proposing new control structures and also converter topologies. The combination of the increasing electricity demand and restrictions in expanding the power system infrastructures has urged the utility owners to deploy the utility-scaled power electronics in the power system. Basically, FACTS is referred to the application of the power electronics in the power systems. Voltage Source Converter (VSC) is the preferred building block of the FACTS devices and many other utility-scale power electronics applications. Despite of advances in the semiconductor technology and ultra-fast microprocessor based controllers, there are still many issues to address and room to improve[25]. An attempt is made in this thesis to address these important issues of the VSC-based FACTS devices and provide solutions to improve them.
Vertical flight path steering system for aircraft
NASA Technical Reports Server (NTRS)
Lambregts, Antonius A. (Inventor)
1983-01-01
Disclosed is a vertical flight path angle steering system for aircraft, utilizing a digital flight control computer which processes pilot control inputs and aircraft response parameters into suitable elevator commands and control information for display to the pilot on a cathode ray tube. The system yields desirable airplane control handling qualities and responses as well as improvements in pilot workload and safety during airplane operation in the terminal area and under windshear conditions.
Statistical Control Paradigm for Aerospace Structures Under Impulsive Disturbances
2006-08-03
attitude control system with an innovative and robust statistical controller design shows significant promise for use in attitude hold mode operation...indicate that the existing attitude control system with an innovative and robust statistical controller design shows significant promise for use in...and three thrusters are for use in controlling the attitude of the satellite. Then the angular momentum of the satellite with three thrusters and a
NASA Astrophysics Data System (ADS)
Kong, Xiangdong; Ba, Kaixian; Yu, Bin; Cao, Yuan; Zhu, Qixin; Zhao, Hualong
2016-05-01
Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit (HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.
NASA Technical Reports Server (NTRS)
Luck, Rogelio; Ray, Asok
1990-01-01
A procedure for compensating for the effects of distributed network-induced delays in integrated communication and control systems (ICCS) is proposed. The problem of analyzing systems with time-varying and possibly stochastic delays could be circumvented by use of a deterministic observer which is designed to perform under certain restrictive but realistic assumptions. The proposed delay-compensation algorithm is based on a deterministic state estimator and a linear state-variable-feedback control law. The deterministic observer can be replaced by a stochastic observer without any structural modifications of the delay compensation algorithm. However, if a feedforward-feedback control law is chosen instead of the state-variable feedback control law, the observer must be modified as a conventional nondelayed system would be. Under these circumstances, the delay compensation algorithm would be accordingly changed. The separation principle of the classical Luenberger observer holds true for the proposed delay compensator. The algorithm is suitable for ICCS in advanced aircraft, spacecraft, manufacturing automation, and chemical process applications.
Design of Distributed Engine Control Systems for Stability Under Communication Packet Dropouts
2009-08-01
remarks. II. Distributed Engine Control Systems A. FADEC based on Distributed Engine Control Architecture (DEC) In Distributed Engine...Control, the functions of Full Authority Digital Engine Control ( FADEC ) are distributed at the component level. Each sensor/actuator is to be replaced...diagnostics and health management functionality. Dual channel digital serial communication network is used to connect these smart modules with FADEC . Fig
Verification test results of Apollo stabilization and control systems during undocked operations
NASA Technical Reports Server (NTRS)
Copeland, E. L.; Haken, R. L.
1974-01-01
The results are presented of analysis and simulation testing of both the Skylark 1 reaction control system digital autopilot (RCS DAP) and the thrust vector control (TVC) autopilot for use during the undocked portions of the Apollo/Soyuz Test Project Mission. The RCS DAP testing was performed using the Skylab Functional Simulator (SLFS), a digital computer program capable of simulating the Apollo and Skylab autopilots along with vehicle dynamics including bending and sloshing. The model is used to simulate three-axis automatic maneuvers along with pilot controlled manual maneuvers using the RCS DAP. The TVC autopilot was tested in two parts. A classical stability analysis was performed on the vehicle considering the effects of structural bending and sloshing when under control of the TVC autopilot. The time response of the TVC autopilot was tested using the SLFS. Results indicate that adequate performance stability margins can be expected for the CSM/DM configuration when under the control of the Apollo control systems tested.
49 CFR 212.231 - Highway-rail grade crossing inspector.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Control Devices; and (6) Knowledge of railroad signal systems sufficient to ensure that highway-rail grade... signal systems. (d) A State signal and train control inspector qualified under this part and who has... independent inspections of all types of highway-rail grade crossing warning systems for the purpose of...
49 CFR 212.231 - Highway-rail grade crossing inspector.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Control Devices; and (6) Knowledge of railroad signal systems sufficient to ensure that highway-rail grade... signal systems. (d) A State signal and train control inspector qualified under this part and who has... independent inspections of all types of highway-rail grade crossing warning systems for the purpose of...
NASA Astrophysics Data System (ADS)
He, Shaobo; Banerjee, Santo
2018-07-01
A fractional-order SIR epidemic model is proposed under the influence of both parametric seasonality and the external noise. The integer order SIR epidemic model originally is stable. By introducing seasonality and noise force to the model, behaviors of the system is changed. It is shown that the system has rich dynamical behaviors with different system parameters, fractional derivative order and the degree of seasonality and noise. Complexity of the stochastic model is investigated by using multi-scale fuzzy entropy. Finally, hard limiter controlled system is designed and simulation results show the ratio of infected individuals can converge to a small enough target ρ, which means the epidemic outbreak can be under control by the implementation of some effective medical and health measures.
TFTR diagnostic control and data acquisition system
NASA Astrophysics Data System (ADS)
Sauthoff, N. R.; Daniels, R. E.
1985-05-01
General computerized control and data-handling support for TFTR diagnostics is presented within the context of the Central Instrumentation, Control and Data Acquisition (CICADA) System. Procedures, hardware, the interactive man-machine interface, event-driven task scheduling, system-wide arming and data acquisition, and a hierarchical data base of raw data and results are described. Similarities in data structures involved in control, monitoring, and data acquisition afford a simplification of the system functions, based on ``groups'' of devices. Emphases and optimizations appropriate for fusion diagnostic system designs are provided. An off-line data reduction computer system is under development.
TFTR diagnostic control and data acquisition system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sauthoff, N.R.; Daniels, R.E.; PPL Computer Division
1985-05-01
General computerized control and data-handling support for TFTR diagnostics is presented within the context of the Central Instrumentation, Control and Data Acquisition (CICADA) System. Procedures, hardware, the interactive man--machine interface, event-driven task scheduling, system-wide arming and data acquisition, and a hierarchical data base of raw data and results are described. Similarities in data structures involved in control, monitoring, and data acquisition afford a simplification of the system functions, based on ''groups'' of devices. Emphases and optimizations appropriate for fusion diagnostic system designs are provided. An off-line data reduction computer system is under development.
Human factors aspects of control room design
NASA Technical Reports Server (NTRS)
Jenkins, J. P.
1983-01-01
A plan for the design and analysis of a multistation control room is reviewed. It is found that acceptance of the computer based information system by the uses in the control room is mandatory for mission and system success. Criteria to improve computer/user interface include: match of system input/output with user; reliability, compatibility and maintainability; easy to learn and little training needed; self descriptive system; system under user control; transparent language, format and organization; corresponds to user expectations; adaptable to user experience level; fault tolerant; dialog capability user communications needs reflected in flexibility, complexity, power and information load; integrated system; and documentation.
USDA-ARS?s Scientific Manuscript database
A field experiment was conducted in 2005 and 2006, to evaluate weed control in conventional, Liberty Link® (LL), and Roundup Ready® (RR) herbicide systems under standard [102 cm (40 inch)] and narrow [38 cm (15 inch)] row-spacings utilizing conventional and high-residue conservation tillage systems....
Optimized Controller Design for a 12-Pulse Voltage Source Converter Based HVDC System
NASA Astrophysics Data System (ADS)
Agarwal, Ruchi; Singh, Sanjeev
2017-12-01
The paper proposes an optimized controller design scheme for power quality improvement in 12-pulse voltage source converter based high voltage direct current system. The proposed scheme is hybrid combination of golden section search and successive linear search method. The paper aims at reduction of current sensor and optimization of controller. The voltage and current controller parameters are selected for optimization due to its impact on power quality. The proposed algorithm for controller optimizes the objective function which is composed of current harmonic distortion, power factor, and DC voltage ripples. The detailed designs and modeling of the complete system are discussed and its simulation is carried out in MATLAB-Simulink environment. The obtained results are presented to demonstrate the effectiveness of the proposed scheme under different transient conditions such as load perturbation, non-linear load condition, voltage sag condition, and tapped load fault under one phase open condition at both points-of-common coupling.
Evaluation of the intelligent cruise control system. Volume 2, Appendices
DOT National Transportation Integrated Search
1999-10-01
The Intelligent Cruise Control (ICC) system evaluation was sponsored by the National Highway Traffic Safety Administration (NHTSA) and based on an ICC Field Operational Test (FOT) conducted under a cooperative agreement between the NHTSA and the Univ...
NASA Astrophysics Data System (ADS)
Kang, Shuo; Yan, Hao; Dong, Lijing; Li, Changchun
2018-03-01
This paper addresses the force tracking problem of electro-hydraulic load simulator under the influence of nonlinear friction and uncertain disturbance. A nonlinear system model combined with the improved generalized Maxwell-slip (GMS) friction model is firstly derived to describe the characteristics of load simulator system more accurately. Then, by using particle swarm optimization (PSO) algorithm combined with the system hysteresis characteristic analysis, the GMS friction parameters are identified. To compensate for nonlinear friction and uncertain disturbance, a finite-time adaptive sliding mode control method is proposed based on the accurate system model. This controller has the ability to ensure that the system state moves along the nonlinear sliding surface to steady state in a short time as well as good dynamic properties under the influence of parametric uncertainties and disturbance, which further improves the force loading accuracy and rapidity. At the end of this work, simulation and experimental results are employed to demonstrate the effectiveness of the proposed sliding mode control strategy.
Influence of control parameters on the joint tracking performance of a coaxial weld vision system
NASA Technical Reports Server (NTRS)
Gangl, K. J.; Weeks, J. L.
1985-01-01
The first phase of a series of evaluations of a vision-based welding control sensor for the Space Shuttle Main Engine Robotic Welding System is described. The robotic welding system is presently under development at the Marshall Space Flight Center. This evaluation determines the standard control response parameters necessary for proper trajectory of the welding torch along the joint.
Code of Federal Regulations, 2010 CFR
2010-07-01
... engine's design or emission-control system. (b) To sell engines from an engine family with a revoked... under this subpart and how may I sell these engines again? 1048.340 Section 1048.340 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW...
Code of Federal Regulations, 2010 CFR
2010-07-01
... change the engine's design or emission control system. (b) To sell engines from an engine family with a... under this subpart and how may I sell these engines again? 1045.340 Section 1045.340 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK...
NASA Technical Reports Server (NTRS)
Powell, Bradley W.; Burroughs, Ivan A.
1994-01-01
Through the two phases of this contract, sensors for welding applications and parameter extraction algorithms have been developed. These sensors form the foundation of a weld control system which can provide action weld control through the monitoring of the weld pool and keyhole in a VPPA welding process. Systems of this type offer the potential of quality enhancement and cost reduction (minimization of rework on faulty welds) for high-integrity welding applications. Sensors for preweld and postweld inspection, weld pool monitoring, keyhole/weld wire entry monitoring, and seam tracking were developed. Algorithms for signal extraction were also developed and analyzed to determine their application to an adaptive weld control system. The following sections discuss findings for each of the three sensors developed under this contract: (1) weld profiling sensor; (2) weld pool sensor; and (3) stereo seam tracker/keyhole imaging sensor. Hardened versions of these sensors were designed and built under this contract. A control system, described later, was developed on a multiprocessing/multitasking operating system for maximum power and flexibility. Documentation for sensor mechanical and electrical design is also included as appendices in this report.
Drinking Water Corrosion Control and POU/POE: Where Are the Boundaries?
Protection of public health often has to go beyond regulatory limits, because the health threats do not necessarily arise under the "legal control" of the public water system. Residential and building plumbing can be a very significant contamination source under typical usage co...
Universal computer control system (UCCS) for space telerobots
NASA Technical Reports Server (NTRS)
Bejczy, Antal K.; Szakaly, Zoltan
1987-01-01
A universal computer control system (UCCS) is under development for all motor elements of a space telerobot. The basic hardware architecture and software design of UCCS are described, together with the rich motor sensing, control, and self-test capabilities of this all-computerized motor control system. UCCS is integrated into a multibus computer environment with direct interface to higher level control processors, uses pulsewidth multiplier power amplifiers, and one unit can control up to sixteen different motors simultaneously at a high I/O rate. UCCS performance capabilities are illustrated by a few data.
Intelligent control of PV system on the basis of the fuzzy recurrent neuronet*
NASA Astrophysics Data System (ADS)
Engel, E. A.; Kovalev, I. V.; Engel, N. E.
2016-04-01
This paper presents the fuzzy recurrent neuronet for PV system’s control. Based on the PV system’s state, the fuzzy recurrent neural net tracks the maximum power point under random perturbations. The validity and advantages of the proposed intelligent control of PV system are demonstrated by numerical simulations. The simulation results show that the proposed intelligent control of PV system achieves real-time control speed and competitive performance, as compared to a classical control scheme on the basis of the perturbation & observation algorithm.
Annual Review of Research under the Joint Services Electronics Program,
1981-12-01
nonlinear system under investigation to be transformed, without approximation, into an equivalent linear system to which classical design methodologies are...employed his work in the design of an experimental helicopter autopilot which is presently under- going simulation and is expected to fly in the near...decentralized, and non -quad- duced from that which would be required ratic systems is presented. Here, one for an optimal non -linlar controller. designs a
Automatic control of electric thermal storage (heat) under real-time pricing. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daryanian, B.; Tabors, R.D.; Bohn, R.E.
1995-01-01
Real-time pricing (RTP) can be used by electric utilities as a control signal for responsive demand-side management (DSM) programs. Electric thermal storage (ETS) systems in buildings provide the inherent flexibility needed to take advantage of variations in prices. Under RTP, optimal performance for ETS operations is achieved under market conditions where reductions in customers` costs coincide with the lowering of the cost of service for electric utilities. The RTP signal conveys the time-varying actual marginal cost of the electric service to customers. The RTP rate is a combination of various cost components, including marginal generation fuel and maintenance costs, marginalmore » costs of transmission and distribution losses, and marginal quality of supply and transmission costs. This report describes the results of an experiment in automatic control of heat storage systems under RTP during the winter seasons of 1989--90 and 1990--91.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sparn, Bethany F; Ruth, Mark F; Krishnamurthy, Dheepak
Many have proposed that responsive load provided by distributed energy resources (DERs) and demand response (DR) are an option to provide flexibility to the grid and especially to distribution feeders. However, because responsive load involves a complex interplay between tariffs and DER and DR technologies, it is challenging to test and evaluate options without negatively impacting customers. This paper describes a hardware-in-the-loop (HIL) simulation system that has been developed to reduce the cost of evaluating the impact of advanced controllers (e.g., model predictive controllers) and technologies (e.g., responsive appliances). The HIL simulation system combines large-scale software simulation with a smallmore » set of representative building equipment hardware. It is used to perform HIL simulation of a distribution feeder and the loads on it under various tariff structures. In the reported HIL simulation, loads include many simulated air conditioners and one physical air conditioner. Independent model predictive controllers manage operations of all air conditioners under a time-of-use tariff. Results from this HIL simulation and a discussion of future development work of the system are presented.« less
NASA Astrophysics Data System (ADS)
Young, C. R.; Martin, J. B.
2016-02-01
Assessments of the potential for salt water intrusion due to sea level rise require consideration of both coastal hydrodynamic and human activity thresholds. In siliciclastic systems, sea level rise may cause salt intrusion to coastal aquifers at annual or decadal scales, whereas in karst systems salt intrudes at the tidal scalse. In both cases, human activity impacts the freshwater portion of the system by altering the water demand on the aquifer. We combine physicochemical and human activity data to evaluate impact of sea level rise on salt intrusion to siliclastic (Indian River Lagoon, Fl, USA) and karst (Puerto Morelos, Yucatan, Mexico) systems under different sea level rise rate scenarios. Two hydrodynamic modeling scenarios are considered; flux controlled and head controlled. Under a flux controlled system hydraulic head gradients remain constant during sea level rise while under a head controlled system hydraulic graidents diminish, allowing saltwater intrusion. Our model contains three key terms; aquifer recharge, groundwater discharge and hydraulic conductivity. Groundwater discharge and hydraulic conductivity were calculated based on high frequency (karst system) and decadal (siliciclastic system) field measurements. Aquifer recharge is defined as precipitation less evapotranspiration and water demand was evaluated based on urban planning data that provided the regional water demand. Water demand includes agricultural area, toursim, traffic patterns, garbage collection and total population. Water demand was initially estimated using a partial leaset squares regression based on these variables. Our model indicates that water demand depends most on agricultural area, which has changed significantly over the last 30 years. In both systems, additional water demand creates a head controlled scenario, thus increaseing the protential fo salt intrusion with projected sea level rise.
A feedback control strategy for the airfoil system under non-Gaussian colored noise excitation.
Huang, Yong; Tao, Gang
2014-09-01
The stability of a binary airfoil with feedback control under stochastic disturbances, a non-Gaussian colored noise, is studied in this paper. First, based on some approximated theories and methods the non-Gaussian colored noise is simplified to an Ornstein-Uhlenbeck process. Furthermore, via the stochastic averaging method and the logarithmic polar transformation, one dimensional diffusion process can be obtained. At last by applying the boundary conditions, the largest Lyapunov exponent which can determine the almost-sure stability of the system and the effective region of control parameters is calculated.
A feedback control strategy for the airfoil system under non-Gaussian colored noise excitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yong, E-mail: hy@njust.edu.cn, E-mail: taogang@njust.edu.cn; Tao, Gang, E-mail: hy@njust.edu.cn, E-mail: taogang@njust.edu.cn
2014-09-01
The stability of a binary airfoil with feedback control under stochastic disturbances, a non-Gaussian colored noise, is studied in this paper. First, based on some approximated theories and methods the non-Gaussian colored noise is simplified to an Ornstein-Uhlenbeck process. Furthermore, via the stochastic averaging method and the logarithmic polar transformation, one dimensional diffusion process can be obtained. At last by applying the boundary conditions, the largest Lyapunov exponent which can determine the almost-sure stability of the system and the effective region of control parameters is calculated.
Wave-variable framework for networked robotic systems with time delays and packet losses
NASA Astrophysics Data System (ADS)
Puah, Seng-Ming; Liu, Yen-Chen
2017-05-01
This paper investigates the problem of networked control system for nonlinear robotic manipulators under time delays and packet loss by using passivity technique. With the utilisation of wave variables and a passive remote controller, the networked robotic system is demonstrated to be stable with guaranteed position regulation. For the input/output signals of robotic systems, a discretisation block is exploited to convert continuous-time signals to discrete-time signals, and vice versa. Subsequently, we propose a packet management, called wave-variable modulation, to cope with the proposed networked robotic system under time delays and packet losses. Numerical examples and experimental results are presented to demonstrate the performance of the proposed wave-variable-based networked robotic systems.
Temporal Control over Transient Chemical Systems using Structurally Diverse Chemical Fuels.
Chen, Jack L-Y; Maiti, Subhabrata; Fortunati, Ilaria; Ferrante, Camilla; Prins, Leonard J
2017-08-25
The next generation of adaptive, intelligent chemical systems will rely on a continuous supply of energy to maintain the functional state. Such systems will require chemical methodology that provides precise control over the energy dissipation process, and thus, the lifetime of the transiently activated function. This manuscript reports on the use of structurally diverse chemical fuels to control the lifetime of two different systems under dissipative conditions: transient signal generation and the transient formation of self-assembled aggregates. The energy stored in the fuels is dissipated at different rates by an enzyme, which installs a dependence of the lifetime of the active system on the chemical structure of the fuel. In the case of transient signal generation, it is shown that different chemical fuels can be used to generate a vast range of signal profiles, allowing temporal control over two orders of magnitude. Regarding self-assembly under dissipative conditions, the ability to control the lifetime using different fuels turns out to be particularly important as stable aggregates are formed only at well-defined surfactant/fuel ratios, meaning that temporal control cannot be achieved by simply changing the fuel concentration. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wind tunnel tests of the dynamic characteristics of the fluidic rudder
NASA Technical Reports Server (NTRS)
Belsterling, C. A.
1976-01-01
The fourth phase is given of a continuing program to develop the means to stabilize and control aircraft without moving parts or a separate source of power. Previous phases have demonstrated the feasibility of (1) generating adequate control forces on a standard airfoil, (2) controlling those forces with a fluidic amplifier and (3) cascading non-vented fluidic amplifiers operating on ram air supply pressure. The foremost objectives of the fourth phase covered under Part I of this report were to demonstrate a complete force-control system in a wind tunnel environment and to measure its static and dynamic control characteristics. Secondary objectives, covered under Part II, were to evaluate alternate configurations for lift control. The results demonstrate an overall response time of 150 msec, confirming this technology as a viable means for implementing low-cost reliable flight control systems.
Control of Flexible Systems in the Presence of Failures
NASA Technical Reports Server (NTRS)
Magahami, Peiman G.; Cox, David E.; Bauer, Frank H. (Technical Monitor)
2001-01-01
Control of flexible systems under degradation or failure of sensors/actuators is considered. A Linear Matrix Inequality framework is used to synthesize H(sub infinity)-based controllers, which provide good disturbance rejection while capable of tolerating real parameter uncertainties in the system model, as well as potential degradation or failure of the control system hardware. In this approach, a one-at-a-time failure scenario is considered, wherein no more than one sensor or actuator is allowed to fail at any given time. A numerical example involving control synthesis for a two-dimensional flexible system is presented to demonstrate the feasibility of the proposed approach.
Control systems for platform landings cushioned by air bags
NASA Astrophysics Data System (ADS)
Ross, Edward W.
1987-07-01
This report presents an exploratory mathematical study of control systems for airdrop platform landings cushioned by airbags. The basic theory of airbags is reviewed and solutions to special cases are noted. A computer program is presented, which calculates the time-dependence of the principal variables during a landing under the action of various control systems. Two existing control systems of open-loop type are compared with a conceptual feedback (closed-loop) system for a fairly typical set of landing conditions. The feedback controller is shown to have performance much superior to the other systems. The feedback system undergoes an interesting oscillation not present in the other systems, the source of which is investigated. Recommendations for future work are included.
The modeling of an automotive electronic control system and the application of optimizing methods
NASA Astrophysics Data System (ADS)
Zhang, Yansheng; Yang, Zhigang; Zhang, Xiang
2005-12-01
Now, MATLAB/SIMULINK software is popularly used by automotive electronic control designers to develop automotive electronic control systems and perform numerical simulations. But they will face problems, such as value initialization in the "integrator" block, conversion among different data types, selection of "if" block and "switch" block, realization of the "if-clause" under multiple options and the auto-switching control, etc. Taking as an example the designing of an Automated Mechanical Transmission (AMT) system, this paper discusses some techniques and methods for modeling the automotive electronic control system with MATLAB/SIMULINK, offering designers some successful examples.
Digital flight control systems
NASA Technical Reports Server (NTRS)
Caglayan, A. K.; Vanlandingham, H. F.
1977-01-01
The design of stable feedback control laws for sampled-data systems with variable rate sampling was investigated. These types of sampled-data systems arise naturally in digital flight control systems which use digital actuators where it is desirable to decrease the number of control computer output commands in order to save wear and tear of the associated equipment. The design of aircraft control systems which are optimally tolerant of sensor and actuator failures was also studied. Detection of the failed sensor or actuator must be resolved and if the estimate of the state is used in the control law, then it is also desirable to have an estimator which will give the optimal state estimate even under the failed conditions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... under FIFRA sections 3, 4 or 24(c). (2) An application for an experimental use permit under FIFRA... distribution of a pesticide. Batch means a specific quantity or lot of a test, control, or reference substance... to a test system. Control substance means any chemical substance or mixture, or any other material...
Code of Federal Regulations, 2013 CFR
2013-07-01
... under FIFRA sections 3, 4 or 24(c). (2) An application for an experimental use permit under FIFRA... distribution of a pesticide. Batch means a specific quantity or lot of a test, control, or reference substance... to a test system. Control substance means any chemical substance or mixture, or any other material...
Code of Federal Regulations, 2012 CFR
2012-07-01
... under FIFRA sections 3, 4 or 24(c). (2) An application for an experimental use permit under FIFRA... distribution of a pesticide. Batch means a specific quantity or lot of a test, control, or reference substance... to a test system. Control substance means any chemical substance or mixture, or any other material...
Code of Federal Regulations, 2011 CFR
2011-07-01
... under FIFRA sections 3, 4 or 24(c). (2) An application for an experimental use permit under FIFRA... distribution of a pesticide. Batch means a specific quantity or lot of a test, control, or reference substance... to a test system. Control substance means any chemical substance or mixture, or any other material...
Code of Federal Regulations, 2014 CFR
2014-07-01
... under FIFRA sections 3, 4 or 24(c). (2) An application for an experimental use permit under FIFRA... distribution of a pesticide. Batch means a specific quantity or lot of a test, control, or reference substance... to a test system. Control substance means any chemical substance or mixture, or any other material...
NASA Astrophysics Data System (ADS)
Alawasa, Khaled Mohammad
Voltage-source converters (VSCs) have gained widespread acceptance in modern power systems. The stability and dynamics of power systems involving these devices have recently become salient issues. In the small-signal sense, the dynamics of VSC-based systems is dictated by its incremental output impedance, which is formed by a combination of 'passive' circuit components and 'active' control elements. Control elements such as control parameters, control loops, and control topologies play a significant role in shaping the impedance profile. Depending on the control schemes and strategies used, VSC-based systems can exhibit different incremental impedance dynamics. As the control elements and dynamics are involved in the impedance structure, the frequency-dependent output impedance might have a negative real-part (i.e., a negative resistance). In the grid-connected mode, the negative resistance degrades the system damping and negatively impacts the stability. In high-voltage networks where high-power VSC-based systems are usually employed and where sub-synchronous dynamics usually exist, integrating large VSC-based systems might reduce the overall damping and results in unstable dynamics. The objectives of this thesis are to (1) investigate and analyze the output impedance properties under different control strategies and control functions, (2) identify and characterize the key contributors to the impedance and sub-synchronous damping profiles, and (3) propose mitigation techniques to minimize and eliminate the negative impact associated with integrating VSC-based systems into power systems. Different VSC configurations are considered in this thesis; in particular, the full-scale and partial-scale topologies (doubly fed-induction generators) are addressed. Additionally, the impedance and system damping profiles are studied under two different control strategies: the standard vector control strategy and the recently-developed power synchronization control strategy. Furthermore, this thesis proposes a simple and robust technique for damping the sub-synchronous resonance in a power system.
48 CFR 1646.201 - Contract Quality Policy.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ensure that services acquired under the FEHB contract conform to the contract's quality and audit requirements. (b) OPM will periodically evaluate the contractor's system of internal controls under the quality... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Contract Quality Policy...
Central Nervous System Control of Voice and Swallowing
Ludlow, Christy L.
2015-01-01
This review of the central nervous control systems for voice and swallowing has suggested that the traditional concepts of a separation between cortical and limbic and brain stem control should be refined and more integrative. For voice production, a separation of the non-human vocalization system from the human learned voice production system has been posited based primarily on studies of non-human primates. However, recent humans studies of emotionally based vocalizations and human volitional voice production has shown more integration between these two systems than previously proposed. Recent human studies have shown that reflexive vocalization as well as learned voice production not involving speech, involve a common integrative system. On the other hand, recent studies of non-human primates have provided evidence of some cortical activity during vocalization and cortical changes with training during vocal behavior. For swallowing, evidence from the macaque and functional brain imaging in humans indicates that the control for the pharyngeal phase of swallowing is not primarily under brain stem mechanisms as previously proposed. Studies suggest that the initiation and patterning of swallowing for the pharyngeal phase is also under active cortical control for both spontaneous as well as volitional swallowing in awake humans and non-human primates. PMID:26241238
Application of a microcomputer-based system to control and monitor bacterial growth.
Titus, J A; Luli, G W; Dekleva, M L; Strohl, W R
1984-02-01
A modular microcomputer-based system was developed to control and monitor various modes of bacterial growth. The control system was composed of an Apple II Plus microcomputer with 64-kilobyte random-access memory; a Cyborg ISAAC model 91A multichannel analog-to-digital and digital-to-analog converter; paired MRR-1 pH, pO(2), and foam control units; and in-house-designed relay, servo control, and turbidimetry systems. To demonstrate the flexibility of the system, we grew bacteria under various computer-controlled and monitored modes of growth, including batch, turbidostat, and chemostat systems. The Apple-ISAAC system was programmed in Labsoft BASIC (extended Applesoft) with an average control program using ca. 6 to 8 kilobytes of memory and up to 30 kilobytes for datum arrays. This modular microcomputer-based control system was easily coupled to laboratory scale fermentors for a variety of fermentations.
Application of a Microcomputer-Based System to Control and Monitor Bacterial Growth
Titus, Jeffrey A.; Luli, Gregory W.; Dekleva, Michael L.; Strohl, William R.
1984-01-01
A modular microcomputer-based system was developed to control and monitor various modes of bacterial growth. The control system was composed of an Apple II Plus microcomputer with 64-kilobyte random-access memory; a Cyborg ISAAC model 91A multichannel analog-to-digital and digital-to-analog converter; paired MRR-1 pH, pO2, and foam control units; and in-house-designed relay, servo control, and turbidimetry systems. To demonstrate the flexibility of the system, we grew bacteria under various computer-controlled and monitored modes of growth, including batch, turbidostat, and chemostat systems. The Apple-ISAAC system was programmed in Labsoft BASIC (extended Applesoft) with an average control program using ca. 6 to 8 kilobytes of memory and up to 30 kilobytes for datum arrays. This modular microcomputer-based control system was easily coupled to laboratory scale fermentors for a variety of fermentations. PMID:16346462
Sathiyaraj, T; Balasubramaniam, P
2017-11-30
This paper presents a new set of sufficient conditions for controllability of fractional higher order stochastic integrodifferential systems with fractional Brownian motion (fBm) in finite dimensional space using fractional calculus, fixed point technique and stochastic analysis approach. In particular, we discuss the complete controllability for nonlinear fractional stochastic integrodifferential systems under the proved result of the corresponding linear fractional system is controllable. Finally, an example is presented to illustrate the efficiency of the obtained theoretical results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Design of a telescope control system using an ARM microcontroller with embedded RTOS
NASA Astrophysics Data System (ADS)
Peñuela Pico, Cristian R.; Atara Montañez, Fabian A.; Cuervo, Juan C.; Gonzalez-Llorente, Jesus
2014-08-01
This work presents the design of a wireless control system that allows driving all the necessary instruments to control the orientation of an equatorial mounting telescope through a real time operative system (RTOS) that runs over ARM microcontroller. The control system is commanded through a user-interface which works under Android platform giving the user the option to control the tracking mode, right ascension, and declination. The system was successfully deployed and tested during a one-hour observation of the Moon. The frequency measured by the oscilloscope is 66.67 Hz which equals the sidereal speed. The telescope control systems allows the user to have a better precision when locating a star but also to cover long-duration tracking processes
System Control for the Transitional DCS.
1979-07-01
ELEMENT. PROJI Honeywell System and Research Center AREA & WORK UNIT NUMBE Aerospace and Defense Group 2700 Ridgway Parkway, Minneapolis,MN 55413 It1...performance monitoring and stress isolation system for the terrestrial transmission system. The satellite system is assumed to be under the control of its...the routing tables could be in a failed condition while some other route, although less efficient, is still functioning. The recommended adaptive
NASA Astrophysics Data System (ADS)
Gaffney, Monique Suzanne
1998-11-01
Metalorganic chemical vapor deposition (MOCVD) is a process used to manufacture electronic and optoelectronic devices that has traditionally lacked real-time growth monitoring and control. Controlling the growth rate and composition using the existing sensors, as well as advanced monitoring systems developed in-house, is shown to improve device quality. Specific MOCVD growth objectives are transformed into controller performance goals. Group III bubbler concentration variations, which perturb both growth rate and composition precision, are identified to be the primary disturbances. First a feed forward control system was investigated, which used an ultrasonic concentration monitor, located upstream in the process. This control strategy resulted in improved regulation of the gallium delivery rate by cancelling the sensed gallium bubbler concentration disturbances via the injection mass flow controller. The controller performance is investigated by growing GaInAs/InP superlattices. Results of growths performed under normal operating conditions and also under large perturbations include X-ray diffraction from the samples as well as real-time sensor signal data. High quality superlattices that display up to eight orders of satellite peaks are obtained under the feed forward compensation scheme, demonstrating improved layer-to-layer reproducibility of thickness and composition. The success of the feed forward control demonstration led to the development of a more complex downstream feedback control system. An ultraviolet absorption monitor was fabricated and retrofitted as a feedback control signal. A control-oriented model of the downstream process was developed for the feedback controller synthesis. Although challenged with both the photolysis and multi-gas detection issues common to UV absorption monitors, closed loop control with the UV sensor was performed and proved to be an effective method of disturbance rejection. An InP/GaInAs test structure was grown under both open and closed loop conditions. During the growth of a bulk GaInAs layer, an indium concentration disturbance was injected by way of the bubbler pressure control valve. The controller goal was to reject this concentration disturbance. The UV absorption real-time data, as well as both X-ray diffraction and photoluminescence post-growth sample measurements were used to evaluate the controller performance. All results indicate that the closed loop control system greatly improved the quality of the perturbed growth.
Progress in Aluminum Electrolysis Control and Future Direction for Smart Aluminum Electrolysis Plant
NASA Astrophysics Data System (ADS)
Zhang, Hongliang; Li, Tianshuang; Li, Jie; Yang, Shuai; Zou, Zhong
2017-02-01
The industrial aluminum reduction cell is an electrochemistry reactor that operates under high temperatures and highly corrosive conditions. However, these conditions have restricted the measurement of key control parameters, making the control of aluminum reduction cells a difficult problem in the industry. Because aluminum electrolysis control systems have a significant economic influence, substantial research has been conducted on control algorithms, control systems and information systems for aluminum reduction cells. This article first summarizes the development of control systems and then focuses on the progress made since 2000, including alumina concentration control, temperature control and electrolyte molecular ratio control, fault diagnosis, cell condition prediction and control system expansion. Based on these studies, the concept of a smart aluminum electrolysis plant is proposed. The frame construction, key problems and current progress are introduced. Finally, several future directions are discussed.
Online devices and measuring systems for the automatic control of newspaper printing
NASA Astrophysics Data System (ADS)
Marszalec, Elzbieta A.; Heikkila, Ismo; Juhola, Helene; Lehtonen, Tapio
1999-09-01
The paper reviews the state-of-the-art color measuring systems used for the control of newspaper printing. The printing process requirements are specified and different off-line and on-line color quality control systems, commercially available and under development, are evaluated. Recent market trends in newspaper printing are discussed based on the survey. The study was made on information derived from: conference proceedings (TAGA, IARIGAI, SPIE and IS&T), journals (American Printer, Applied Optics), discussions with experts (GMI, QTI, HONEYWELL, TOBIAS, GretagMacbeth), IFRA Expo'98/Quality Measuring Technologies, commercial brochures, and the Internet. On the background of this review, three different measuring principles, currently, under investigation at VTT Information Technology, are described and their applicability to newspaper printing is evaluated.
Mechanisms test bed math model modification and simulation support
NASA Technical Reports Server (NTRS)
Gilchrist, Andrea C.; Tobbe, Patrick A.
1995-01-01
This report summarizes the work performed under contract NAS8-38771 in support of the Marshall Space Flight Center Six Degree of Freedom Motion Facility and Flight Robotics Laboratory. The contract activities included the development of the two flexible body and Remote Manipulator System simulations, Dynamic Overhead Target Simulator control system and operating software, Global Positioning System simulation, and Manipulator Coupled Spacecraft Controls Testbed. Technical support was also provided for the Lightning Imaging Sensor and Solar X-Ray Imaging programs. The cover sheets and introductory sections for the documentation written under this contract are provided as an appendix.
Real-time studies on microalgae under microgravity
NASA Astrophysics Data System (ADS)
Wang, G. H.; Li, G. B.; Li, D. H.; Liu, Y. D.; Song, L. R.; Tong, G. H.; Liu, X. M.; Cheng, E. T.
2004-07-01
Using remote sensing technique, we investigated real-time Nostoc sphaeroides Kütz (Cyanobacterium) in Closed System under microgravity by SHENZHOU-2 spacecraft in January 2001. The experiments had 1 g centrifuges in space for control and ground control group experiments were also carried out in the same equipments and under the same controlled condition. The data about the population growth of Nostoc sp. of experiments and temperature changes of system were got from spacecraft every minute. From the data, we can find that population growth of Nostoc sp. in microgravity group was higher than that of other groups in space or on ground, even though both the control 1 g group in space and 1 g group on ground indicated same increasing characteristics in experiments. The growth rate of 1.4 g group (centrifuged group on ground) was also promoted during experiment. The temperature changes of systems are also affected by gravity and light. Some aspects about those differences were discussed. From the discussion of these results during experiment, it can be found that gravity is the major factor to lead to these changes.
NASA Astrophysics Data System (ADS)
Li, Cong; Jing, Hui; Wang, Rongrong; Chen, Nan
2018-05-01
This paper presents a robust control schema for vehicle lateral motion regulation under unreliable communication links via controller area network (CAN). The communication links between the system plant and the controller are assumed to be imperfect and therefore the data packet dropouts occur frequently. The paper takes the form of parallel distributed compensation and treats the dropouts as random binary numbers that form Bernoulli distribution. Both of the tire cornering stiffness uncertainty and external disturbances are considered to enhance the robustness of the controller. In addition, a robust H∞ static output-feedback control approach is proposed to realize the lateral motion control with relative low cost sensors. The stochastic stability of the closed-loop system and conservation of the guaranteed H∞ performance are investigated. Simulation results based on CarSim platform using a high-fidelity and full-car model verify the effectiveness of the proposed control approach.
NASA Astrophysics Data System (ADS)
Song, Enzhe; Fan, Liyun; Chen, Chao; Dong, Quan; Ma, Xiuzhen; Bai, Yun
2013-09-01
A simulation model of an electronically controlled two solenoid valve fuel injection system for a diesel engine is established in the AMESim environment. The accuracy of the model is validated through comparison with experimental data. The influence of pre-injection control parameters on main-injection quantity under different control modes is analyzed. In the spill control valve mode, main-injection fuel quantity decreases gradually and then reaches a stable level because of the increase in multi-injection dwell time. In the needle control valve mode, main-injection fuel quantity increases with rising multi-injection dwell time; this effect becomes more obvious at high-speed revolutions and large main-injection pulse widths. Pre-injection pulse width has no obvious influence on main-injection quantity under the two control modes; the variation in main-injection quantity is in the range of 1 mm3.
Chen, Weisheng
2009-07-01
This paper focuses on the problem of adaptive neural network tracking control for a class of discrete-time pure-feedback systems with unknown control direction under amplitude and rate actuator constraints. Two novel state-feedback and output-feedback dynamic control laws are established where the function tanh(.) is employed to solve the saturation constraint problem. Implicit function theorem and mean value theorem are exploited to deal with non-affine variables that are used as actual control. Radial basis function neural networks are used to approximate the desired input function. Discrete Nussbaum gain is used to estimate the unknown sign of control gain. The uniform boundedness of all closed-loop signals is guaranteed. The tracking error is proved to converge to a small residual set around the origin. A simulation example is provided to illustrate the effectiveness of control schemes proposed in this paper.
Control allocation for gimballed/fixed thrusters
NASA Astrophysics Data System (ADS)
Servidia, Pablo A.
2010-02-01
Some overactuated control systems use a control distribution law between the controller and the set of actuators, usually called control allocator. Beyond the control allocator, the configuration of actuators may be designed to be able to operate after a single point of failure, for system optimization and/or decentralization objectives. For some type of actuators, a control allocation is used even without redundancy, being a good example the design and operation of thruster configurations. In fact, as the thruster mass flow direction and magnitude only can be changed under certain limits, this must be considered in the feedback implementation. In this work, the thruster configuration design is considered in the fixed (F), single-gimbal (SG) and double-gimbal (DG) thruster cases. The minimum number of thrusters for each case is obtained and for the resulting configurations a specific control allocation is proposed using a nonlinear programming algorithm, under nominal and single-point of failure conditions.
Nuclear technology requires free elections
NASA Astrophysics Data System (ADS)
Synek, Miroslav
1999-10-01
The historical development on our planet has reached a powerful technology of nuclear intercontinental ballistic missiles, conceivably controllable through a computerized ``push-button." If this technology ever falls under the control of an irresponsible, miscalculating, or insane DICTATOR, with powerful means of a mass-produced nuclear built-up, anywhere on our planet, the very SURVIVAL OF ALL HUMANITY on our planet could be threatened. Therefore, it is a historical urgency that this technology is under the control by the people, through a sufficiently secure system of FREE ELECTIONS, in any country, wherever and whenever such a threatening possibility exists. Of course, a starting system of FREE ELECTIONS, even if quite rudimentary, should try to provide for its continuous functioning, with an underlying appropriate freedom of expression and with rules for its continuation, while aiming towards continuous improvements.
NASA Astrophysics Data System (ADS)
Yang, Hong-Yong; Zhang, Shun; Zong, Guang-Deng
2011-01-01
In this paper, the trajectory control of multi-agent dynamical systems with exogenous disturbances is studied. Suppose multiple agents composing of a scale-free network topology, the performance of rejecting disturbances for the low degree node and high degree node is analyzed. Firstly, the consensus of multi-agent systems without disturbances is studied by designing a pinning control strategy on a part of agents, where this pinning control can bring multiple agents' states to an expected consensus track. Then, the influence of the disturbances is considered by developing disturbance observers, and disturbance observers based control (DOBC) are developed for disturbances generated by an exogenous system to estimate the disturbances. Asymptotical consensus of the multi-agent systems with disturbances under the composite controller can be achieved for scale-free network topology. Finally, by analyzing examples of multi-agent systems with scale-free network topology and exogenous disturbances, the verities of the results are proved. Under the DOBC with the designed parameters, the trajectory convergence of multi-agent systems is researched by pinning two class of the nodes. We have found that it has more stronger robustness to exogenous disturbances for the high degree node pinned than that of the low degree node pinned.
Robust fast controller design via nonlinear fractional differential equations.
Zhou, Xi; Wei, Yiheng; Liang, Shu; Wang, Yong
2017-07-01
A new method for linear system controller design is proposed whereby the closed-loop system achieves both robustness and fast response. The robustness performance considered here means the damping ratio of closed-loop system can keep its desired value under system parameter perturbation, while the fast response, represented by rise time of system output, can be improved by tuning the controller parameter. We exploit techniques from both the nonlinear systems control and the fractional order systems control to derive a novel nonlinear fractional order controller. For theoretical analysis of the closed-loop system performance, two comparison theorems are developed for a class of fractional differential equations. Moreover, the rise time of the closed-loop system can be estimated, which facilitates our controller design to satisfy the fast response performance and maintain the robustness. Finally, numerical examples are given to illustrate the effectiveness of our methods. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine simulation report
NASA Technical Reports Server (NTRS)
1977-01-01
Hybrid computer simulations of the under-the-wing engine were constructed to develop the dynamic design of the controls. The engine and control system includes a variable pitch fan and a digital electronic control. Simulation results for throttle bursts from 62 to 100 percent net thrust predict that the engine will accelerate 62 to 95 percent net thrust in one second.
Identification of linear system models and state estimators for controls
NASA Technical Reports Server (NTRS)
Chen, Chung-Wen
1992-01-01
The following paper is presented in viewgraph format and covers topics including: (1) linear state feedback control system; (2) Kalman filter state estimation; (3) relation between residual and stochastic part of output; (4) obtaining Kalman filter gain; (5) state estimation under unknown system model and unknown noises; and (6) relationship between filter Markov parameters and system Markov parameters.
CSI Flight Computer System and experimental test results
NASA Technical Reports Server (NTRS)
Sparks, Dean W., Jr.; Peri, F., Jr.; Schuler, P.
1993-01-01
This paper describes the CSI Computer System (CCS) and the experimental tests performed to validate its functionality. This system is comprised of two major components: the space flight qualified Excitation and Damping Subsystem (EDS) which performs controls calculations; and the Remote Interface Unit (RIU) which is used for data acquisition, transmission, and filtering. The flight-like RIU is the interface between the EDS and the sensors and actuators positioned on the particular structure under control. The EDS and RIU communicate over the MIL-STD-1553B, a space flight qualified bus. To test the CCS under realistic conditions, it was connected to the Phase-0 CSI Evolutionary Model (CEM) at NASA Langley Research Center. The following schematic shows how the CCS is connected to the CEM. Various tests were performed which validated the ability of the system to perform control/structures experiments.
Sustained Load Crack Growth in Inconel 718 Under Non-Isothermal Conditions.
1983-12-01
AD- R136 925 SUSTINED LOAD CRCK GROWTH IN INCONEL 7±8 UNDER / NON-ISOTHERM L ONDITIONS(U) IR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF...thermocouples. This unit provides pre-programmed independent control of the four heat- Iing lamps. It also turns the cooling system on and off at the appropri...relationship between them. The microcomputer controls temperature as a function of time. The system is capable of heating and cooling a specimen at a rate of 8C
SATORI : situation assessment through the re-creation of incidents.
DOT National Transportation Integrated Search
1993-07-01
A system has been developed that graphically re-creates the radar data recorded at En Route air traffic control (ATC) facilities. Each facility records data sent to the displays associated with the airspace under its control on a System Analysis Repo...
Design of Distributed Engine Control Systems with Uncertain Delay.
Liu, Xiaofeng; Li, Yanxi; Sun, Xu
Future gas turbine engine control systems will be based on distributed architecture, in which, the sensors and actuators will be connected to the controllers via a communication network. The performance of the distributed engine control (DEC) is dependent on the network performance. This study introduces a distributed control system architecture based on a networked cascade control system (NCCS). Typical turboshaft engine-distributed controllers are designed based on the NCCS framework with a H∞ output feedback under network-induced time delays and uncertain disturbances. The sufficient conditions for robust stability are derived via the Lyapunov stability theory and linear matrix inequality approach. Both numerical and hardware-in-loop simulations illustrate the effectiveness of the presented method.
Research on pressure control of pressurizer in pressurized water reactor nuclear power plant
NASA Astrophysics Data System (ADS)
Dai, Ling; Yang, Xuhong; Liu, Gang; Ye, Jianhua; Qian, Hong; Xue, Yang
2010-07-01
Pressurizer is one of the most important components in the nuclear reactor system. Its function is to keep the pressure of the primary circuit. It can prevent shutdown of the system from the reactor accident under the normal transient state while keeping the setting value in the normal run-time. This paper is mainly research on the pressure system which is running in the Daya Bay Nuclear Power Plant. A conventional PID controller and a fuzzy controller are designed through analyzing the dynamic characteristics and calculating the transfer function. Then a fuzzy PID controller is designed by analyzing the results of two controllers. The fuzzy PID controller achieves the optimal control system finally.
Design of Distributed Engine Control Systems with Uncertain Delay
Li, Yanxi; Sun, Xu
2016-01-01
Future gas turbine engine control systems will be based on distributed architecture, in which, the sensors and actuators will be connected to the controllers via a communication network. The performance of the distributed engine control (DEC) is dependent on the network performance. This study introduces a distributed control system architecture based on a networked cascade control system (NCCS). Typical turboshaft engine-distributed controllers are designed based on the NCCS framework with a H∞ output feedback under network-induced time delays and uncertain disturbances. The sufficient conditions for robust stability are derived via the Lyapunov stability theory and linear matrix inequality approach. Both numerical and hardware-in-loop simulations illustrate the effectiveness of the presented method. PMID:27669005
Design and Analysis of Morpheus Lander Flight Control System
NASA Technical Reports Server (NTRS)
Jang, Jiann-Woei; Yang, Lee; Fritz, Mathew; Nguyen, Louis H.; Johnson, Wyatt R.; Hart, Jeremy J.
2014-01-01
The Morpheus Lander is a vertical takeoff and landing test bed vehicle developed to demonstrate the system performance of the Guidance, Navigation and Control (GN&C) system capability for the integrated autonomous landing and hazard avoidance system hardware and software. The Morpheus flight control system design must be robust to various mission profiles. This paper presents a design methodology for employing numerical optimization to develop the Morpheus flight control system. The design objectives include attitude tracking accuracy and robust stability with respect to rigid body dynamics and propellant slosh. Under the assumption that the Morpheus time-varying dynamics and control system can be frozen over a short period of time, the flight controllers are designed to stabilize all selected frozen-time control systems in the presence of parametric uncertainty. Both control gains in the inner attitude control loop and guidance gains in the outer position control loop are designed to maximize the vehicle performance while ensuring robustness. The flight control system designs provided herein have been demonstrated to provide stable control systems in both Draper Ares Stability Analysis Tool (ASAT) and the NASA/JSC Trick-based Morpheus time domain simulation.
NASA Astrophysics Data System (ADS)
Kvitko, A. N.
2018-01-01
An algorithm convenient for numerical implementation is proposed for constructing differentiable control functions that transfer a wide class of nonlinear nonstationary systems of ordinary differential equations from an initial state to a given point of the phase space. Constructive sufficient conditions imposed on the right-hand side of the controlled system are obtained under which this transfer is possible. The control of a robotic manipulator is considered, and its numerical simulation is performed.
Control system development for a 1 MW/e/ solar thermal power plant
NASA Technical Reports Server (NTRS)
Daubert, E. R.; Bergthold, F. M., Jr.; Fulton, D. G.
1981-01-01
The point-focusing distributed receiver power plant considered consists of a number of power modules delivering power to a central collection point. Each power module contains a parabolic dish concentrator with a closed-cycle receiver/turbine/alternator assembly. Currently, a single-module prototype plant is under construction. The major control system tasks required are related to concentrator pointing control, receiver temperature control, and turbine speed control. Attention is given to operational control details, control hardware and software, and aspects of CRT output display.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-13
... authorized by OMB Control Number 1076-0135, which expires September 30, 2010. DATES: Interested persons are... seeking renewal of the approval for the information collection conducted under OMB Control Number 1076... able to do so. III. Data OMB Control Number: 1076-0135. Title: Reporting System for Public Law 102-477...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-24
... authorized by OMB Control Number 1076-0135, which expires September 30, 2010. DATES: Interested persons are... renewal of the approval for the information collection conducted under OMB Control Number 1076-0135... able to do so. III. Data OMB Control Number: 1076-0135. Title: Reporting System for Public Law 102-477...
Sliding mode controller for a photovoltaic pumping system
NASA Astrophysics Data System (ADS)
ElOugli, A.; Miqoi, S.; Boutouba, M.; Tidhaf, B.
2017-03-01
In this paper, a sliding mode control scheme (SMC) for maximum power point tracking controller for a photovoltaic pumping system, is proposed. The main goal is to maximize the flow rate for a water pump, by forcing the photovoltaic system to operate in its MPP, to obtain the maximum power that a PV system can deliver.And this, through the intermediary of a sliding mode controller to track and control the MPP by overcoming the power oscillation around the operating point, which appears in most implemented MPPT techniques. The sliding mode control approach is recognized as one of the efficient and powerful tools for nonlinear systems under uncertainty conditions.The proposed controller with photovoltaic pumping system is designed and simulated using MATLAB/SIMULINK environment. In addition, to evaluate its performances, a classical MPPT algorithm using perturb and observe (P&O) has been used for the same system to compare to our controller. Simulation results are shown.
REACTOR CONTROL ROD OPERATING SYSTEM
Miller, G.
1961-12-12
A nuclear reactor control rod mechanism is designed which mechanically moves the control rods into and out of the core under normal conditions but rapidly forces the control rods into the core by catapultic action in the event of an emergency. (AEC)
Impact of payment system change from per-case to per-diem on high severity patient's length of stay.
Jang, Sung-In; Nam, Chung Mo; Lee, Sang Gyu; Kim, Tae Hyun; Park, Sohee; Park, Eun-Cheol
2016-09-01
A new payment system, the diagnosis-related group (DRG) system, and Korean diagnosis procedure combination (KDPC, per-diem) payment system were officially introduced in 2002 and in 2012, respectively. We evaluated the impact of payment system change from per-case to per-diem on high severity patient's length of stay (LOS).Claim data was used. A total of 36,240 case admissions and 72,480 control admissions were included in the analysis. Segmented regression analysis of interrupted time series between cases and controls was conducted. Hospitals that consistently participated in the DRG payment system and changed to the KDPC payment system were defined as case hospitals. Hospitals that consistently participated in the DRG payment system were defined as control hospitals.LOS increased by 0.025 days per month (P = 0.0055) for 3 surgical diagnosis-related admissions due to the bundled payment system change. LOS among emergency admissions also increased and showed an increasing tendency under the KDPC. The LOS increase was observed specifically for complex procedure admissions and high severity cases (CCI 0, 1: 0.022, P = 0.0142; CCI 2, 3: 0.026, P = 0.0288; CCI ≥ 4: 0.055, P = 0.0003).Although both payment systems are optimized to decrease LOS, incentives to reduce LOS are stronger under the DRG system than under the KDPC system. It is worth noting that too strong incentive for reducing LOS is suitable to high severity cases.
Experimental evaluation of the concept of supevisory manipulation
NASA Technical Reports Server (NTRS)
Brooks, T. L.; Sheridan, T. B.
1982-01-01
A computer-controlled teleoperator system which is based on task-referenced sensor-aided control has been developed to study supervisory manipulation. This system, called SUPERMAN, is capable of performing complicated tasks in real-time by utilizing the operator for high-level functions related to the unpredictable portions of a task, while the subordinate machine performs the more well-defined subtasks under human supervison. To determine whether supervisory control schemes such as these offer any advantage over manual control under real-time conditions, a number of experiments involving both simple and complicated tasks were performed. Six representative tasks were chosen for the study: (1) obtaining a tool from a rack, (2) returning the tool to the rack, (3) removing a nut, (4) placing samples in a storage bin, (5) opening and closing a valve, and (6) digging with a shovel. The experiments were performed under simulated conditions using four forms of manual control (i.e., switch rate, joystick rate, master-slave position control, and master-slave with force feedback), as well as supervisory control. Through these experiments the effectiveness and quality of control were evaluated on the basis of the time required to complete each portion of the task and the type and number of errors which occurred.
Stark, Mario; Tietz, Rigo; Gattinger, Heidrun; Hantikainen, Virpi; Ott, Stefan
2017-12-01
Nursing homes in Switzerland are under pressure to efficiently coordinate staff activities to cover their personnel costs under the care financing system. In this study, the use of a mobility monitoring system accompanied with case conferences was investigated in order to improve sleep quality and estimate the cost benefit of this intervention. In an open two-phase randomized controlled trial at three nursing homes, residents with cognitive impairment were randomly assigned to an intervention group and a control group. In the intervention group, a 10-week period of intensive use of the monitoring system and case conferences led by an advanced nurse practitioner (Phase I) was followed by 3 months of reduced use of the monitoring system and case conferences led by an internal registered nurse (Phase II). In the control group, the monitoring system was only used for data acquisition. Nurses reported the activities with a specifically developed tool. Based on the recorded activities, the cost of care was calculated. The correlating reimbursement per patient was calculated from the care levels in the Swiss reimbursement system. Data from 44 residents was included in the analysis with a linear mixed model. Although analysis revealed no statistically significant effects, results indicate that the use of a monitoring system can guide nurses in organizing their tasks to increase effectiveness. Information systems such as the mobility monitor can help to identify single outliers that do not correspond with the overall situation. In the health care system, problematic individual cases can account for a disproportionally high cost levels. It was shown that information systems can have a significant economic impact in the long run. The study is registered at the German Clinical Trials Register under the Nr. DRKS00006829 .
Microgrid Restraining Strategy Based on Improved DC Grid Connected DFIG Torque Ripple
NASA Astrophysics Data System (ADS)
Fei, Xia; Yang, Zhixiong; Zongze, Xia
2017-05-01
Aiming to the voltage of the stator side is generated by the modulation of the SSC in the improved topology, especially under the circumstance with the asymmTeric fault of stator side, DFIG’s electromagnTeic torque, amplifies ripple of grid-connected power for the grid side. The novel control mTehod suitable to stator side converter and rotor side converter based on reduced-order resonant controller (RORC) is proposed in this thesis, DFIG’s torque and output power performance are improved. Under the RORC control conditions the transfer functions of stator current and torque control system are established, the amplitude characteristic and the system stability of RORC control are analysed. The simulation results in Matlab/Simulink verify the correctness and validity of the proposed mTehod.
Distributed Synchronization Control of Multiagent Systems With Unknown Nonlinearities.
Su, Shize; Lin, Zongli; Garcia, Alfredo
2016-01-01
This paper revisits the distributed adaptive control problem for synchronization of multiagent systems where the dynamics of the agents are nonlinear, nonidentical, unknown, and subject to external disturbances. Two communication topologies, represented, respectively, by a fixed strongly-connected directed graph and by a switching connected undirected graph, are considered. Under both of these communication topologies, we use distributed neural networks to approximate the uncertain dynamics. Decentralized adaptive control protocols are then constructed to solve the cooperative tracker problem, the problem of synchronization of all follower agents to a leader agent. In particular, we show that, under the proposed decentralized control protocols, the synchronization errors are ultimately bounded, and their ultimate bounds can be reduced arbitrarily by choosing the control parameter appropriately. Simulation study verifies the effectiveness of our proposed protocols.
A comparison of adaptive and adaptable automation under different levels of environmental stress.
Sauer, Juergen; Kao, Chung-Shan; Wastell, David
2012-01-01
The effectiveness of different forms of adaptive and adaptable automation was examined under low- and high-stress conditions, in the form of different levels of noise. Thirty-six participants were assigned to one of the three types of variable automation (adaptive event-based, adaptive performance-based and adaptable serving as a control condition). Participants received 3 h of training on a simulation of a highly automated process control task and were subsequently tested during a 4-h session under noise exposure and quiet conditions. The results for performance suggested no clear benefits of one automation control mode over the other two. However, it emerged that participants under adaptable automation adopted a more active system management strategy and reported higher levels of self-confidence than in the two adaptive control modes. Furthermore, the results showed higher levels of perceived workload, fatigue and anxiety for performance-based adaptive automation control than the other two modes. This study compared two forms of adaptive automation (where the automated system flexibly allocates tasks between human and machine) with adaptable automation (where the human allocates the tasks). The adaptable mode showed marginal advantages. This is of relevance, given that this automation mode may also be easier to design.
Growth control of the eukaryote cell: a systems biology study in yeast.
Castrillo, Juan I; Zeef, Leo A; Hoyle, David C; Zhang, Nianshu; Hayes, Andrew; Gardner, David Cj; Cornell, Michael J; Petty, June; Hakes, Luke; Wardleworth, Leanne; Rash, Bharat; Brown, Marie; Dunn, Warwick B; Broadhurst, David; O'Donoghue, Kerry; Hester, Svenja S; Dunkley, Tom Pj; Hart, Sarah R; Swainston, Neil; Li, Peter; Gaskell, Simon J; Paton, Norman W; Lilley, Kathryn S; Kell, Douglas B; Oliver, Stephen G
2007-01-01
Cell growth underlies many key cellular and developmental processes, yet a limited number of studies have been carried out on cell-growth regulation. Comprehensive studies at the transcriptional, proteomic and metabolic levels under defined controlled conditions are currently lacking. Metabolic control analysis is being exploited in a systems biology study of the eukaryotic cell. Using chemostat culture, we have measured the impact of changes in flux (growth rate) on the transcriptome, proteome, endometabolome and exometabolome of the yeast Saccharomyces cerevisiae. Each functional genomic level shows clear growth-rate-associated trends and discriminates between carbon-sufficient and carbon-limited conditions. Genes consistently and significantly upregulated with increasing growth rate are frequently essential and encode evolutionarily conserved proteins of known function that participate in many protein-protein interactions. In contrast, more unknown, and fewer essential, genes are downregulated with increasing growth rate; their protein products rarely interact with one another. A large proportion of yeast genes under positive growth-rate control share orthologs with other eukaryotes, including humans. Significantly, transcription of genes encoding components of the TOR complex (a major controller of eukaryotic cell growth) is not subject to growth-rate regulation. Moreover, integrative studies reveal the extent and importance of post-transcriptional control, patterns of control of metabolic fluxes at the level of enzyme synthesis, and the relevance of specific enzymatic reactions in the control of metabolic fluxes during cell growth. This work constitutes a first comprehensive systems biology study on growth-rate control in the eukaryotic cell. The results have direct implications for advanced studies on cell growth, in vivo regulation of metabolic fluxes for comprehensive metabolic engineering, and for the design of genome-scale systems biology models of the eukaryotic cell.
Growth control of the eukaryote cell: a systems biology study in yeast
Castrillo, Juan I; Zeef, Leo A; Hoyle, David C; Zhang, Nianshu; Hayes, Andrew; Gardner, David CJ; Cornell, Michael J; Petty, June; Hakes, Luke; Wardleworth, Leanne; Rash, Bharat; Brown, Marie; Dunn, Warwick B; Broadhurst, David; O'Donoghue, Kerry; Hester, Svenja S; Dunkley, Tom PJ; Hart, Sarah R; Swainston, Neil; Li, Peter; Gaskell, Simon J; Paton, Norman W; Lilley, Kathryn S; Kell, Douglas B; Oliver, Stephen G
2007-01-01
Background Cell growth underlies many key cellular and developmental processes, yet a limited number of studies have been carried out on cell-growth regulation. Comprehensive studies at the transcriptional, proteomic and metabolic levels under defined controlled conditions are currently lacking. Results Metabolic control analysis is being exploited in a systems biology study of the eukaryotic cell. Using chemostat culture, we have measured the impact of changes in flux (growth rate) on the transcriptome, proteome, endometabolome and exometabolome of the yeast Saccharomyces cerevisiae. Each functional genomic level shows clear growth-rate-associated trends and discriminates between carbon-sufficient and carbon-limited conditions. Genes consistently and significantly upregulated with increasing growth rate are frequently essential and encode evolutionarily conserved proteins of known function that participate in many protein-protein interactions. In contrast, more unknown, and fewer essential, genes are downregulated with increasing growth rate; their protein products rarely interact with one another. A large proportion of yeast genes under positive growth-rate control share orthologs with other eukaryotes, including humans. Significantly, transcription of genes encoding components of the TOR complex (a major controller of eukaryotic cell growth) is not subject to growth-rate regulation. Moreover, integrative studies reveal the extent and importance of post-transcriptional control, patterns of control of metabolic fluxes at the level of enzyme synthesis, and the relevance of specific enzymatic reactions in the control of metabolic fluxes during cell growth. Conclusion This work constitutes a first comprehensive systems biology study on growth-rate control in the eukaryotic cell. The results have direct implications for advanced studies on cell growth, in vivo regulation of metabolic fluxes for comprehensive metabolic engineering, and for the design of genome-scale systems biology models of the eukaryotic cell. PMID:17439666
Optimal feedback control infinite dimensional parabolic evolution systems: Approximation techniques
NASA Technical Reports Server (NTRS)
Banks, H. T.; Wang, C.
1989-01-01
A general approximation framework is discussed for computation of optimal feedback controls in linear quadratic regular problems for nonautonomous parabolic distributed parameter systems. This is done in the context of a theoretical framework using general evolution systems in infinite dimensional Hilbert spaces. Conditions are discussed for preservation under approximation of stabilizability and detectability hypotheses on the infinite dimensional system. The special case of periodic systems is also treated.
NASA Astrophysics Data System (ADS)
Gao, Gang; Wang, Jinzhi; Wang, Xianghua
2017-05-01
This paper investigates fault-tolerant control (FTC) for feedback linearisable systems (FLSs) and its application to an aircraft. To ensure desired transient and steady-state behaviours of the tracking error under actuator faults, the dynamic effect caused by the actuator failures on the error dynamics of a transformed model is analysed, and three control strategies are designed. The first FTC strategy is proposed as a robust controller, which relies on the explicit information about several parameters of the actuator faults. To eliminate the need for these parameters and the input chattering phenomenon, the robust control law is later combined with the adaptive technique to generate the adaptive FTC law. Next, the adaptive control law is further improved to achieve the prescribed performance under more severe input disturbance. Finally, the proposed control laws are applied to an air-breathing hypersonic vehicle (AHV) subject to actuator failures, which confirms the effectiveness of the proposed strategies.
21 CFR 111.140 - Under this subpart F, what records must you make and keep?
Code of Federal Regulations, 2010 CFR
2010-04-01
... and making a disposition decision and written procedures for approving or rejecting any reprocessing... perform the quality control operation, who conducted the material review and made the disposition decision... System: Requirements for Quality Control § 111.140 Under this subpart F, what records must you make and...
NASA Astrophysics Data System (ADS)
Singh, B.; Goel, S.
2015-03-01
This paper presents a grid interfaced solar photovoltaic (SPV) energy system with a novel adaptive harmonic detection control for power quality improvement at ac mains under balanced as well as unbalanced and distorted supply conditions. The SPV energy system is capable of compensation of linear and nonlinear loads with the objectives of load balancing, harmonics elimination, power factor correction and terminal voltage regulation. The proposed control increases the utilization of PV infrastructure and brings down its effective cost due to its other benefits. The adaptive harmonic detection control algorithm is used to detect the fundamental active power component of load currents which are subsequently used for reference source currents estimation. An instantaneous symmetrical component theory is used to obtain instantaneous positive sequence point of common coupling (PCC) voltages which are used to derive inphase and quadrature phase voltage templates. The proposed grid interfaced PV energy system is modelled and simulated in MATLAB Simulink and its performance is verified under various operating conditions.
Progress in Development of the ITER Plasma Control System Simulation Platform
NASA Astrophysics Data System (ADS)
Walker, Michael; Humphreys, David; Sammuli, Brian; Ambrosino, Giuseppe; de Tommasi, Gianmaria; Mattei, Massimiliano; Raupp, Gerhard; Treutterer, Wolfgang; Winter, Axel
2017-10-01
We report on progress made and expected uses of the Plasma Control System Simulation Platform (PCSSP), the primary test environment for development of the ITER Plasma Control System (PCS). PCSSP will be used for verification and validation of the ITER PCS Final Design for First Plasma, to be completed in 2020. We discuss the objectives of PCSSP, its overall structure, selected features, application to existing devices, and expected evolution over the lifetime of the ITER PCS. We describe an archiving solution for simulation results, methods for incorporating physics models of the plasma and physical plant (tokamak, actuator, and diagnostic systems) into PCSSP, and defining characteristics of models suitable for a plasma control development environment such as PCSSP. Applications of PCSSP simulation models including resistive plasma equilibrium evolution are demonstrated. PCSSP development supported by ITER Organization under ITER/CTS/6000000037. Resistive evolution code developed under General Atomics' Internal funding. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.
Built-in-test by signature inspection (bitsi)
Bergeson, Gary C.; Morneau, Richard A.
1991-01-01
A system and method for fault detection for electronic circuits. A stimulus generator sends a signal to the input of the circuit under test. Signature inspection logic compares the resultant signal from test nodes on the circuit to an expected signal. If the signals do not match, the signature inspection logic sends a signal to the control logic for indication of fault detection in the circuit. A data input multiplexer between the test nodes of the circuit under test and the signature inspection logic can provide for identification of the specific node at fault by the signature inspection logic. Control logic responsive to the signature inspection logic conveys information about fault detection for use in determining the condition of the circuit. When used in conjunction with a system test controller, the built-in test by signature inspection system and method can be used to poll a plurality of circuits automatically and continuous for faults and record the results of such polling in the system test controller.
Thermionic switched self-actuating reactor shutdown system
Barrus, Donald M.; Shires, Charles D.; Brummond, William A.
1989-01-01
A self-actuating reactor shutdown system incorporating a thermionic switched electromagnetic latch arrangement which is responsive to reactor neutron flux changes and to reactor coolant temperature changes. The system is self-actuating in that the sensing thermionic device acts directly to release (scram) the control rod (absorber) without reference or signal from the main reactor plant protective and control systems. To be responsive to both temperature and neutron flux effects, two detectors are used, one responsive to reactor coolant temperatures, and the other responsive to reactor neutron flux increase. The detectors are incorporated into a thermionic diode connected electrically with an electromagnetic mechanism which under normal reactor operating conditions holds the the control rod in its ready position (exterior of the reactor core). Upon reaching either a specified temperature or neutron flux, the thermionic diode functions to short-circuit the electromagnetic mechanism causing same to lose its holding power and release the control rod, which drops into the reactor core region under gravitational force.
Measurement of semiochemical release rates with a dedicated environmental control system
Heping Zhu; Harold W. Thistle; Christopher M. Ranger; Hongping Zhou; Brian L. Strom
2015-01-01
Insect semiochemical dispensers are commonly deployed under variable environmental conditions over a specified period. Predictions of their longevity are hampered by a lack of methods to accurately monitor and predict how primary variables affect semiochemical release rate. A system was constructed to precisely determine semiochemical release rates under...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-27
... FEDERAL RESERVE SYSTEM Agency Information Collection Activities: Announcement of Board Approval... Reserve System (Board) under OMB delegated authority, as per 5 CFR 1320.16 (OMB Regulations on Controlling... placed into OMB's public docket files. The Federal Reserve may not conduct or sponsor, and the respondent...
Neuromechanical tuning of nonlinear postural control dynamics
NASA Astrophysics Data System (ADS)
Ting, Lena H.; van Antwerp, Keith W.; Scrivens, Jevin E.; McKay, J. Lucas; Welch, Torrence D. J.; Bingham, Jeffrey T.; DeWeerth, Stephen P.
2009-06-01
Postural control may be an ideal physiological motor task for elucidating general questions about the organization, diversity, flexibility, and variability of biological motor behaviors using nonlinear dynamical analysis techniques. Rather than presenting "problems" to the nervous system, the redundancy of biological systems and variability in their behaviors may actually be exploited to allow for the flexible achievement of multiple and concurrent task-level goals associated with movement. Such variability may reflect the constant "tuning" of neuromechanical elements and their interactions for movement control. The problem faced by researchers is that there is no one-to-one mapping between the task goal and the coordination of the underlying elements. We review recent and ongoing research in postural control with the goal of identifying common mechanisms underlying variability in postural control, coordination of multiple postural strategies, and transitions between them. We present a delayed-feedback model used to characterize the variability observed in muscle coordination patterns during postural responses to perturbation. We emphasize the significance of delays in physiological postural systems, requiring the modulation and coordination of both the instantaneous, "passive" response to perturbations as well as the delayed, "active" responses to perturbations. The challenge for future research lies in understanding the mechanisms and principles underlying neuromechanical tuning of and transitions between the diversity of postural behaviors. Here we describe some of our recent and ongoing studies aimed at understanding variability in postural control using physical robotic systems, human experiments, dimensional analysis, and computational models that could be enhanced from a nonlinear dynamics approach.
Integration of a mechanical forebody vortex control system into the F-15
NASA Technical Reports Server (NTRS)
Boalbey, Richard E.; Citurs, Kevin D.; Ely, Wayne L.; Harbaugh, Stephen P.; Hollingsworth, William B.; Phillips, Ronald L.
1994-01-01
The goal of the F-15 Forebody Vortex Control (FVC) program is to develop a production FVC system for the F-15. The system may consist of either a mechanically actuated device such as the strakes developed for the HARV program, or a pneumatic device such as the port blowing system being tested on the X-29. Both types of systems are being evaluated under this program. Background information on the F-15 and a description and overview of forebody vortex controls (FVC) will be presented.
NASA Astrophysics Data System (ADS)
Lyakhovets, M. V.; Wenger, K. G.; Myshlyaev, L. P.; Shipunov, M. V.; Grachev, V. V.; Melkozerov, M. Yu; Fairoshin, Sh A.
2018-05-01
The experience of modernization of the automation control system of technological processes at the preparation plant under the conditions of technical re-equipment of the preparation plant “Barzasskoye Tovarischestvo” LLC (Berezovsky) is considered. The automated process control systems (APCS), the modernization goals and the ways to achieve them are indicated, the main subsystems of the integrated APCS are presented, the enlarged functional and technical structure of the upgraded system is given. The procedure for commissioning an upgraded system is described.
Large scale static tests of a tilt-nacelle V/STOL propulsion/attitude control system
NASA Technical Reports Server (NTRS)
1978-01-01
The concept of a combined V/STOL propulsion and aircraft attitude control system was subjected to large scale engine tests. The tilt nacelle/attitude control vane package consisted of the T55 powered Hamilton Standard Q-Fan demonstrator. Vane forces, moments, thermal and acoustic characteristics as well as the effects on propulsion system performance were measured under conditions simulating hover in and out of ground effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firestone, Ryan; Marnay, Chris
The on-site generation of electricity can offer buildingowners and occupiers financial benefits as well as social benefits suchas reduced grid congestion, improved energy efficiency, and reducedgreenhouse gas emissions. Combined heat and power (CHP), or cogeneration,systems make use of the waste heat from the generator for site heatingneeds. Real-time optimal dispatch of CHP systems is difficult todetermine because of complicated electricity tariffs and uncertainty inCHP equipment availability, energy prices, and system loads. Typically,CHP systems use simple heuristic control strategies. This paper describesa method of determining optimal control in real-time and applies it to alight industrial site in San Diego, California, tomore » examine: 1) the addedbenefit of optimal over heuristic controls, 2) the price elasticity ofthe system, and 3) the site-attributable greenhouse gas emissions, allunder three different tariff structures. Results suggest that heuristiccontrols are adequate under the current tariff structure and relativelyhigh electricity prices, capturing 97 percent of the value of thedistributed generation system. Even more value could be captured bysimply not running the CHP system during times of unusually high naturalgas prices. Under hypothetical real-time pricing of electricity,heuristic controls would capture only 70 percent of the value ofdistributed generation.« less
A program for the investigation of the Multibody Modeling, Verification, and Control Laboratory
NASA Technical Reports Server (NTRS)
Tobbe, Patrick A.; Christian, Paul M.; Rakoczy, John M.; Bulter, Marlon L.
1993-01-01
The Multibody Modeling, Verification, and Control (MMVC) Laboratory is under development at NASA MSFC in Huntsville, Alabama. The laboratory will provide a facility in which dynamic tests and analyses of multibody flexible structures representative of future space systems can be conducted. The purpose of the tests are to acquire dynamic measurements of the flexible structures undergoing large angle motions and use the data to validate the multibody modeling code, TREETOPS, developed under sponsorship of NASA. Advanced control systems design and system identification methodologies will also be implemented in the MMVC laboratory. This paper describes the ground test facility, the real-time control system, and the experiments. A top-level description of the TREETOPS code is also included along with the validation plan for the MMVC program. Dynamic test results from component testing are also presented and discussed. A detailed discussion of the test articles, which manifest the properties of large flexible space structures, is included along with a discussion of the various candidate control methodologies to be applied in the laboratory.
Distributed Coordinated Control of Large-Scale Nonlinear Networks
Kundu, Soumya; Anghel, Marian
2015-11-08
We provide a distributed coordinated approach to the stability analysis and control design of largescale nonlinear dynamical systems by using a vector Lyapunov functions approach. In this formulation the large-scale system is decomposed into a network of interacting subsystems and the stability of the system is analyzed through a comparison system. However finding such comparison system is not trivial. In this work, we propose a sum-of-squares based completely decentralized approach for computing the comparison systems for networks of nonlinear systems. Moreover, based on the comparison systems, we introduce a distributed optimal control strategy in which the individual subsystems (agents) coordinatemore » with their immediate neighbors to design local control policies that can exponentially stabilize the full system under initial disturbances.We illustrate the control algorithm on a network of interacting Van der Pol systems.« less
Site classification of ponderosa pine stands under stocking control in California
Robert F. Powers; William W. Oliver
1978-01-01
Existing systems for estimating site index of ponderosa pine (Pinus ponderosa Laws.) do not apply well to California stands where stocking is controlled. A more suitable system has been developed using trends in natural height growth, derived from stem analysis of dominant trees in California. This site index system produces polymorphic patterns of...
Fuzzy logic in autonomous orbital operations
NASA Technical Reports Server (NTRS)
Lea, Robert N.; Jani, Yashvant
1991-01-01
Fuzzy logic can be used advantageously in autonomous orbital operations that require the capability of handling imprecise measurements from sensors. Several applications are underway to investigate fuzzy logic approaches and develop guidance and control algorithms for autonomous orbital operations. Translational as well as rotational control of a spacecraft have been demonstrated using space shuttle simulations. An approach to a camera tracking system has been developed to support proximity operations and traffic management around the Space Station Freedom. Pattern recognition and object identification algorithms currently under development will become part of this camera system at an appropriate level in the future. A concept to control environment and life support systems for large Lunar based crew quarters is also under development. Investigations in the area of reinforcement learning, utilizing neural networks, combined with a fuzzy logic controller, are planned as a joint project with the Ames Research Center.
Investigations on response time of magnetorheological elastomer under compression mode
NASA Astrophysics Data System (ADS)
Zhu, Mi; Yu, Miao; Qi, Song; Fu, Jie
2018-05-01
For efficient fast control of vibration system with magnetorheological elastomer (MRE)-based smart device, the response time of MRE material is the key parameter which directly affects the control performance of the vibration system. For a step coil current excitation, this paper proposed a Maxwell behavior model with time constant λ to describe the normal force response of MRE, and the response time of MRE was extracted through the separation of coil response time. Besides, the transient responses of MRE under compression mode were experimentally investigated, and the effects of (i) applied current, (ii) particle distribution and (iii) compressive strain on the response time of MRE were addressed. The results revealed that the three factors can affect the response characteristic of MRE quite significantly. Besides the intrinsic importance for contributing to the response evaluation and effective design of MRE device, this study may conduce to the optimal design of controller for MRE control system.
Stepping-Motion Motor-Control Subsystem For Testing Bearings
NASA Technical Reports Server (NTRS)
Powers, Charles E.
1992-01-01
Control subsystem closed-loop angular-position-control system causing motor and bearing under test to undergo any of variety of continuous or stepping motions. Also used to test bearing-and-motor assemblies, motors, angular-position sensors including rotating shafts, and like. Monitoring subsystem gathers data used to evaluate performance of bearing or other article under test. Monitoring subsystem described in article, "Monitoring Subsystem For Testing Bearings" (GSC-13432).
Multiple-User, Multitasking, Virtual-Memory Computer System
NASA Technical Reports Server (NTRS)
Generazio, Edward R.; Roth, Don J.; Stang, David B.
1993-01-01
Computer system designed and programmed to serve multiple users in research laboratory. Provides for computer control and monitoring of laboratory instruments, acquisition and anlaysis of data from those instruments, and interaction with users via remote terminals. System provides fast access to shared central processing units and associated large (from megabytes to gigabytes) memories. Underlying concept of system also applicable to monitoring and control of industrial processes.
Automatic brightness control of laser spot vision inspection system
NASA Astrophysics Data System (ADS)
Han, Yang; Zhang, Zhaoxia; Chen, Xiaodong; Yu, Daoyin
2009-10-01
The laser spot detection system aims to locate the center of the laser spot after long-distance transmission. The accuracy of positioning laser spot center depends very much on the system's ability to control brightness. In this paper, an automatic brightness control system with high-performance is designed using the device of FPGA. The brightness is controlled by combination of auto aperture (video driver) and adaptive exposure algorithm, and clear images with proper exposure are obtained under different conditions of illumination. Automatic brightness control system creates favorable conditions for positioning of the laser spot center later, and experiment results illuminate the measurement accuracy of the system has been effectively guaranteed. The average error of the spot center is within 0.5mm.
Wang, Ding; Liu, Derong; Zhang, Yun; Li, Hongyi
2018-01-01
In this paper, we aim to tackle the neural robust tracking control problem for a class of nonlinear systems using the adaptive critic technique. The main contribution is that a neural-network-based robust tracking control scheme is established for nonlinear systems involving matched uncertainties. The augmented system considering the tracking error and the reference trajectory is formulated and then addressed under adaptive critic optimal control formulation, where the initial stabilizing controller is not needed. The approximate control law is derived via solving the Hamilton-Jacobi-Bellman equation related to the nominal augmented system, followed by closed-loop stability analysis. The robust tracking control performance is guaranteed theoretically via Lyapunov approach and also verified through simulation illustration. Copyright © 2017 Elsevier Ltd. All rights reserved.
Real Time Control of the SSC String Magnets
NASA Astrophysics Data System (ADS)
Calvo, O.; Flora, R.; MacPherson, M.
1987-08-01
The system described in this paper, called SECAR, was designed to control the excitation of a test string of magnets for the proposed Superconducting Super Collider (SSC) and will be used to upgrade the present Tevatron Excitation, Control and Regulation (TECAR) hardware and software . It resides in a VME crate and is controlled by a 68020/68881 based CPU running the application software under a real time operating system named VRTX.
Real time control of the SSC string magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calvo, O.; Flora, R.; MacPherson, M.
1987-08-01
The system described in this paper, called SECAR, was designed to control the excitation of a test string of magnets for the proposed Superconducting Super Collider (SSC) and will be used to upgrade the present Tevatron Excitation, Control and Regulation (TECAR) hardware and software. It resides in a VME orate and is controlled by a 68020/68881 based CPU running the application software under a real time operating system named VRTX.
Comparison of automatic control systems
NASA Technical Reports Server (NTRS)
Oppelt, W
1941-01-01
This report deals with a reciprocal comparison of an automatic pressure control, an automatic rpm control, an automatic temperature control, and an automatic directional control. It shows the difference between the "faultproof" regulator and the actual regulator which is subject to faults, and develops this difference as far as possible in a parallel manner with regard to the control systems under consideration. Such as analysis affords, particularly in its extension to the faults of the actual regulator, a deep insight into the mechanism of the regulator process.
CO laser angioplasty system: efficacy of manipulatable laser angioscope catheter
NASA Astrophysics Data System (ADS)
Arai, Tsunenori; Kikuchi, Makoto; Mizuno, Kyoichi; Sakurada, Masami; Miyamoto, Akira; Arakawa, Koh; Kurita, Akira; Nakamura, Haruo; Takeuchi, Kiyoshi; Utsumi, Atsushi; Akai, Yoshiro
1992-08-01
A percutaneous transluminal coronary angioplasty system using a unique combination of CO laser (5 micrometers ) and As-S infrared glass fiber under the guidance of a manipulatable laser angioscope catheter is described. The ablation and guidance functions of this system are evaluated. The angioplasty treatment procedure under angioscope guidance was studied by in vitro model experiment and in vivo animal experiment. The whole angioplasty system is newly developed. That is, a transportable compact medical CO laser device which can emit up to 10 W, a 5 F manipulatable laser angioscope catheter, a thin CO laser cable of which the diameter is 0.6 mm, an angioscope imaging system for laser ablation guidance, and a system controller were developed. Anesthetized adult mongrel dogs (n equals 5) with an artificial complete occlusion in the femoral artery and an artificial human vessel model including occluded or stenotic coronary artery were used. The manipulatability of the catheter was drastically improved (both rotation and bending), therefore, precise control of ablation to expand stenosis was obtained. A 90% artificial stenosis made of human yellow plaque in 4.0 mm diameter in the vessel was expanded to 70% stenosis by repetitive CO laser ablations of which total energy was 220 J. All procedures were performed and controlled under angioscope visualization.
A study of the durability of beryllium rocket engines. [space shuttle reaction control system
NASA Technical Reports Server (NTRS)
Paster, R. D.; French, G. C.
1974-01-01
An experimental test program was performed to demonstrate the durability of a beryllium INTEREGEN rocket engine when operating under conditions simulating the space shuttle reaction control system. A vibration simulator was exposed to the equivalent of 100 missions of X, Y, and Z axes random vibration to demonstrate the integrity of the recently developed injector-to-chamber braze joint. An off-limits engine was hot fired under extreme conditions of mixture ratio, chamber pressure, and orifice plugging. A durability engine was exposed to six environmental cycles interspersed with hot-fire tests without intermediate cleaning, service, or maintenance. Results from this program indicate the ability of the beryllium INTEREGEN engine concept to meet the operational requirements of the space shuttle reaction control system.
NASA Astrophysics Data System (ADS)
Huang, Shoudao; Wu, Xuan; Liu, Xiao; Gao, Jian; He, Yunze
2017-09-01
Electric power conversion system (EPCS), which consists of a generator and power converter, is one of the most important subsystems in a direct-drive wind turbine (DD-WT). However, this component accounts for the most failures (approximately 60% of the total number) in the entire DD-WT system according to statistical data. To improve the reliability of EPCSs and reduce the operation and maintenance cost of DD-WTs, numerous researchers have studied condition monitoring (CM) and fault diagnostics (FD). Numerous CM and FD techniques, which have respective advantages and disadvantages, have emerged. This paper provides an overview of the CM, FD, and operation control of EPCSs in DD-WTs under faults. After introducing the functional principle and structure of EPCS, this survey discusses the common failures in wind generators and power converters; briefly reviewed CM and FD methods and operation control of these generators and power converters under faults; and discussed the grid voltage faults related to EPCSs in DD-WTs. These theories and their related technical concepts are systematically discussed. Finally, predicted development trends are presented. The paper provides a valuable reference for developing service quality evaluation methods and fault operation control systems to achieve high-performance and high-intelligence DD-WTs.
Decentralized stochastic control
NASA Technical Reports Server (NTRS)
Speyer, J. L.
1980-01-01
Decentralized stochastic control is characterized by being decentralized in that the information to one controller is not the same as information to another controller. The system including the information has a stochastic or uncertain component. This complicates the development of decision rules which one determines under the assumption that the system is deterministic. The system is dynamic which means the present decisions affect future system responses and the information in the system. This circumstance presents a complex problem where tools like dynamic programming are no longer applicable. These difficulties are discussed from an intuitive viewpoint. Particular assumptions are introduced which allow a limited theory which produces mechanizable affine decision rules.
NASA Technical Reports Server (NTRS)
Maddalon, Dal V.; Braslow, Albert L.
1990-01-01
The effectiveness and practicality of candidate leading edge systems for suction laminar flow control transport airplanes were investigated in a flight test program utilizing a modified JetStar airplane. The leading edge region imposes the most severe conditions on systems required for any type of laminar flow control. Tests of the leading edge systems, therefore, provided definitive results as to the feasibility of active laminar flow control on airplanes. The test airplane was operated under commercial transport operating procedures from various commercial airports and at various seasons of the year.
Detection techniques for tenuous planetary atmospheres
NASA Technical Reports Server (NTRS)
Hoenig, S. A.; Summerton, J. E.; Kirchner, J. D.; Allred, J. B.
1974-01-01
The development of new types of detectors for analysis of planetary atmospheres is discussed. Initially, the interest was in detectors for use under partial vacuum conditions; recently, the program has been extended to include detectors for use at one atmosphere and adsorption systems for control and separation of gases. Results to date have included detector for O2 and H2 under partial vacuum conditions. Experiments on detectors for use at high pressures began in 1966; and systems for CO, H2, and O2 were reported in 1967 and 1968. In 1968 studies began on an electrically controlled adsorbent. It was demonstrated that under proper conditions a thin film of semiconductor material could be electrically cycled to absorb and desorb a specific gas. This work was extended to obtain quantitative data on the use of semiconductors as controllable adsorbents.
NASA Astrophysics Data System (ADS)
Przygoda, K.; Piotrowski, A.; Jablonski, G.; Makowski, D.; Pozniak, T.; Napieralski, A.
2009-08-01
Pulsed operation of high gradient superconducting radio frequency (SCRF) cavities results in dynamic Lorentz force detuning (LFD) approaching or exceeding the bandwidth of the cavity of order of a few hundreds of Hz. The resulting modulation of the resonance frequency of the cavity is leading to a perturbation of the amplitude and phase of the accelerating field, which can be controlled only at the expense of RF power. Presently, at various labs, a piezoelectric fast tuner based on an active compensation scheme for the resonance frequency control of the cavity is under study. The tests already performed in the Free Electron Laser in Hamburg (FLASH), proved the possibility of Lorentz force detuning compensation by the means of the piezo element excited with the single period of sine wave prior to the RF pulse. The X-Ray Free Electron Laser (X-FEL) accelerator, which is now under development in Deutsche Elektronen-Synchrotron (DESY), will consists of around 800 cavities with a fast tuner fixture including the actuator/sensor configuration. Therefore, it is necessary to design a distributed control system which would be able to supervise around 25 RF stations, each one comprised of 32 cavities. The Advanced Telecomunications Computing Architecture (ATCA) was chosen to design, develop, and build a Low Level Radio Frequency (LLRF) controller for X-FEL. The prototype control system for Lorentz force detuning compensation was designed and developed. The control applications applied in the system were fitted to the main framework of interfaces and communication protocols proposed for the ATCA-based LLRF control system. The paper presents the general view of a designed control system and shows the first experimental results from the tests carried out in FLASH facility. Moreover, the possibilities for integration of the piezo control system to the ATCA standards are discussed.
1988-05-20
AVF Control Number: AVF-VSR-84.1087 ’S (0 87-03-10-TEL I- Ada® COMPILER VALIDATION SUMMARY REPORT: International Business Machines Corporation IBM...System, Version 1.1.0, International Business Machines Corporation, Wright-Patterson AFB. IBM 4381 under VM/SP CMS, Release 3.6 (host) and IBM 4381...an IBM 4381 operating under MVS, Release 3.8. On-site testing was performed 18 May 1987 through 20 May 1987 at International Business Machines
ERIC Educational Resources Information Center
McLawhorn, Kerry
2001-01-01
Explains how the Scotland County School District in Laurinburg, North Carolina, tackled the problem of controlling building and room keys for fifteen K-12 schools and 7,000 students by marrying a computerized records management system for key tracking with a patented hardware system that produces keys that can't be duplicated. (GR)
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-05
... shares of Anchor Commercial Bank, Juno Beach, Florida. Board of Governors of the Federal Reserve System... FEDERAL RESERVE SYSTEM Change in Bank Control Notices; Acquisitions of Shares of a Bank or Bank Holding Company The notificants listed below have applied under the Change in Bank Control Act (12 U.S.C...
Topological Principles of Control in Dynamical Networks
NASA Astrophysics Data System (ADS)
Kim, Jason; Pasqualetti, Fabio; Bassett, Danielle
Networked biological systems, such as the brain, feature complex patterns of interactions. To predict and correct the dynamic behavior of such systems, it is imperative to understand how the underlying topological structure affects and limits the function of the system. Here, we use network control theory to extract topological features that favor or prevent network controllability, and to understand the network-wide effect of external stimuli on large-scale brain systems. Specifically, we treat each brain region as a dynamic entity with real-valued state, and model the time evolution of all interconnected regions using linear, time-invariant dynamics. We propose a simplified feed-forward scheme where the effect of upstream regions (drivers) on the connected downstream regions (non-drivers) is characterized in closed-form. Leveraging this characterization of the simplified model, we derive topological features that predict the controllability properties of non-simplified networks. We show analytically and numerically that these predictors are accurate across a large range of parameters. Among other contributions, our analysis shows that heterogeneity in the network weights facilitate controllability, and allows us to implement targeted interventions that profoundly improve controllability. By assuming an underlying dynamical mechanism, we are able to understand the complex topology of networked biological systems in a functionally meaningful way.
Automatic reactor control system for transient operation
NASA Astrophysics Data System (ADS)
Lipinski, Walter C.; Bhattacharyya, Samit K.; Hanan, Nelson A.
Various programmatic considerations have delayed the upgrading of the TREAT reactor and the performance of the control system is not yet experimentally verified. The current schedule calls for the upgrading activities to occur last in the calendar year 1987. Detailed simulation results, coupled with earlier validation of individual components of the control strategy in TREAT, verify the performance of the algorithms. The control system operates within the safety envelope provided by a protection system designed to ensure reactor safety under conditions of spurious reactivity additions. The approach should be directly applicable to MMW systems, with appropriate accounting of temperature rate limitations of key components and of the inertia of the secondary system components.
The development of a control system for a small high speed steam microturbine generator system
NASA Astrophysics Data System (ADS)
Alford, A.; Nichol, P.; Saunders, M.; Frisby, B.
2015-08-01
Steam is a widely used energy source. In many situations steam is generated at high pressures and then reduced in pressure through control valves before reaching point of use. An opportunity was identified to convert some of the energy at the point of pressure reduction into electricity. To take advantage of a market identified for small scale systems, a microturbine generator was designed based on a small high speed turbo machine. This machine was packaged with the necessary control valves and systems to allow connection of the machine to the grid. Traditional machines vary the speed of the generator to match the grid frequency. This was not possible due to the high speed of this machine. The characteristics of the rotating unit had to be understood to allow a control that allowed export of energy at the right frequency to the grid under the widest possible range of steam conditions. A further goal of the control system was to maximise the efficiency of generation under all conditions. A further complication was to provide adequate protection for the rotating unit in the event of the loss of connection to the grid. The system to meet these challenges is outlined with the solutions employed and tested for this application.
Autonomous benthic algal cultivator under feedback control of ecosystem metabolism
USDA-ARS?s Scientific Manuscript database
An autonomous and internally-controlled techno-ecological hybrid was developed that controls primary production of algae in a laboratory-scale cultivator. The technoecosystem is based on an algal turf scrubber (ATS) system that combines engineered feedback control programming with internal feedback...
Single axis control of ball position in magnetic levitation system using fuzzy logic control
NASA Astrophysics Data System (ADS)
Sahoo, Narayan; Tripathy, Ashis; Sharma, Priyaranjan
2018-03-01
This paper presents the design and real time implementation of Fuzzy logic control(FLC) for the control of the position of a ferromagnetic ball by manipulating the current flowing in an electromagnet that changes the magnetic field acting on the ball. This system is highly nonlinear and open loop unstable. Many un-measurable disturbances are also acting on the system, making the control of it highly complex but interesting for any researcher in control system domain. First the system is modelled using the fundamental laws, which gives a nonlinear equation. The nonlinear model is then linearized at an operating point. Fuzzy logic controller is designed after studying the system in closed loop under PID control action. The controller is then implemented in real time using Simulink real time environment. The controller is tuned manually to get a stable and robust performance. The set point tracking performance of FLC and PID controllers were compared and analyzed.
NASA Astrophysics Data System (ADS)
Xiong, Lu; Yu, Zhuoping; Wang, Yang; Yang, Chen; Meng, Yufeng
2012-06-01
This paper focuses on the vehicle dynamic control system for a four in-wheel motor drive electric vehicle, aiming at improving vehicle stability under critical driving conditions. The vehicle dynamics controller is composed of three modules, i.e. motion following control, control allocation and vehicle state estimation. Considering the strong nonlinearity of the tyres under critical driving conditions, the yaw motion of the vehicle is regulated by gain scheduling control based on the linear quadratic regulator theory. The feed-forward and feedback gains of the controller are updated in real-time by online estimation of the tyre cornering stiffness, so as to ensure the control robustness against environmental disturbances as well as parameter uncertainty. The control allocation module allocates the calculated generalised force requirements to each in-wheel motor based on quadratic programming theory while taking the tyre longitudinal/lateral force coupling characteristic into consideration. Simulations under a variety of driving conditions are carried out to verify the control algorithm. Simulation results indicate that the proposed vehicle stability controller can effectively stabilise the vehicle motion under critical driving conditions.
Army Corps of Engineers, Southwestern Division, Reservoir Control Center Annual Report 1988
1989-01-01
water control data system. This system includes the equipment and software used for the acquisition, transmission and processing of real-time hydrologic... transmission . The SWD system was installed at the Federal Center in Fort Worth, Texas, in September 1983. This is a Synergetics Model 10C direct Readout Ground...reservoir projects under control of the Department of the Army in the area comprising all of Arkansas and Louisiana and portions of Missouri, Kansas
NASA Astrophysics Data System (ADS)
Jamshidi-Ghaleh, Kazem; Ebrahimi-hamed, Zahra; Sahrai, Mostafa
2017-10-01
This paper investigates the behavior of linear and nonlinear optical susceptibility of an open four-level molecular system, under two-step excitation based on electromagnetically induced transparency (EIT). The system was irradiated with a weak probe field and strong coupling field. It is shown that the use of a strong coupling field in the triplet states of an alkali-metal dimer can change the spin-orbit interaction (SOI). The optical response of the system can then be modified in a controllable way. The electromagnetically induced transparency transforms into electromagnetically induced absorption (EIA) in the presence of a coupling field. Changing the sign of the dispersion, this region is associated with switching subluminal and superluminal propagation. Furthermore, for the proper value of the coupling field, the controllable parameters, enhanced Kerr nonlinearity with reduced linear absorption, can be obtained under a weak probe field. With this approach, SOI can be controlled by changing only one of the controllable parameters, using triplet-triplet strong coupling with different spin state. Therefore, the desired region of the spectra can be obtained, in contrast to the other four-level system, in which at least two strong fields are used to change optical properties. This mechanism can be suitable in molecular systems or semiconductors to be used in optical bistability and fast all-optical switching devices.
Modeling and control for a magnetic levitation system based on SIMLAB platform in real time
NASA Astrophysics Data System (ADS)
Yaseen, Mundher H. A.; Abd, Haider J.
2018-03-01
Magnetic Levitation system becomes a hot topic of study due to the minimum friction and low energy consumption which regards as very important issues. This paper proposed a new magnetic levitation system using real-time control simulink feature of (SIMLAB) microcontroller. The control system of the maglev transportation system is verified by simulations with experimental results, and its superiority is indicated in comparison with previous literature and conventional control strategies. In addition, the proposed system was implemented under effect of three controller types which are Linear-quadratic regulator (LQR), proportional-integral-derivative controller (PID) and Lead compensation. As well, the controller system performance was compared in term of three parameters Peak overshoot, Settling time and Rise time. The findings prove the agreement of simulation with experimental results obtained. Moreover, the LQR controller produced a great stability and homogeneous response than other controllers used. For experimental results, the LQR brought a 14.6%, 0.199 and 0.064 for peak overshoot, Setting time and Rise time respectively.
A computer aided engineering tool for ECLS systems
NASA Technical Reports Server (NTRS)
Bangham, Michal E.; Reuter, James L.
1987-01-01
The Computer-Aided Systems Engineering and Analysis tool used by NASA for environmental control and life support system design studies is capable of simulating atmospheric revitalization systems, water recovery and management systems, and single-phase active thermal control systems. The designer/analysis interface used is graphics-based, and allows the designer to build a model by constructing a schematic of the system under consideration. Data management functions are performed, and the program is translated into a format that is compatible with the solution routines.
Stabilization of model-based networked control systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miranda, Francisco; Instituto Politécnico de Viana do Castelo, Viana do Castelo; Abreu, Carlos
2016-06-08
A class of networked control systems called Model-Based Networked Control Systems (MB-NCSs) is considered. Stabilization of MB-NCSs is studied using feedback controls and simulation of stabilization for different feedbacks is made with the purpose to reduce the network trafic. The feedback control input is applied in a compensated model of the plant that approximates the plant dynamics and stabilizes the plant even under slow network conditions. Conditions for global exponential stabilizability and for the choosing of a feedback control input for a given constant time between the information moments of the network are derived. An optimal control problem to obtainmore » an optimal feedback control is also presented.« less
Controlling the Shannon Entropy of Quantum Systems
Xing, Yifan; Wu, Jun
2013-01-01
This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking. PMID:23818819
Controlling the shannon entropy of quantum systems.
Xing, Yifan; Wu, Jun
2013-01-01
This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking.
Magnetic Leviation System Design and Implementation for Wind Tunnel Application
NASA Technical Reports Server (NTRS)
Lin, Chin E.; Sheu, Yih-Ran; Jou, Hui-Long
1996-01-01
This paper presents recent work in magnetic suspension wind tunnel development in National Cheng Kung University. In this phase of research, a control-based study is emphasized to implement a robust control system into the experimental system under study. A ten-coil 10 cm x 10 cm magnetic suspension wind tunnel is built using a set of quadrant detectors for six degree of freedom control. To achieve the attitude control of suspended model with different attitudes, a spacial electromagnetic field simulation using OPERA 3D is studied. A successful test for six degree of freedom control is demonstrated in this paper.
Wang, Yujuan; Song, Yongduan; Ren, Wei
2017-07-06
This paper presents a distributed adaptive finite-time control solution to the formation-containment problem for multiple networked systems with uncertain nonlinear dynamics and directed communication constraints. By integrating the special topology feature of the new constructed symmetrical matrix, the technical difficulty in finite-time formation-containment control arising from the asymmetrical Laplacian matrix under single-way directed communication is circumvented. Based upon fractional power feedback of the local error, an adaptive distributed control scheme is established to drive the leaders into the prespecified formation configuration in finite time. Meanwhile, a distributed adaptive control scheme, independent of the unavailable inputs of the leaders, is designed to keep the followers within a bounded distance from the moving leaders and then to make the followers enter the convex hull shaped by the formation of the leaders in finite time. The effectiveness of the proposed control scheme is confirmed by the simulation.
Ground-water management under the appropriation doctrine. Technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ralston, D.; Bruhl, E.J.
The purpose of the research is to better understand the characteristics of ground-water management under the prior-appropriation doctrine in the western United States. The general objective is to summarize the legal and administrative controls on ground-water use in eight western states and to compare the impacts of these controls on ground water systems.
State reference design and saturated control of doubly-fed induction generators under voltage dips
NASA Astrophysics Data System (ADS)
Tilli, Andrea; Conficoni, Christian; Hashemi, Ahmad
2017-04-01
In this paper, the stator/rotor currents control problem of doubly-fed induction generator under faulty line voltage is carried out. Common grid faults cause a steep decline in the line voltage profile, commonly denoted as voltage dip. This point is critical for such kind of machines, having their stator windings directly connected to the grid. In this respect, solid methodological nonlinear control theory arguments are exploited and applied to design a novel controller, whose main goal is to improve the system behaviour during voltage dips, endowing it with low voltage ride through capability, a fundamental feature required by modern Grid Codes. The proposed solution exploits both feedforward and feedback actions. The feedforward part relies on suitable reference trajectories for the system internal dynamics, which are designed to prevent large oscillations in the rotor currents and command voltages, excited by line perturbations. The feedback part uses state measurements and is designed according to Linear Matrix Inequalities (LMI) based saturated control techniques to further reduce oscillations, while explicitly accounting for the system constraints. Numerical simulations verify the benefits of the internal dynamics trajectory planning, and the saturated state feedback action, in crucially improving the Doubly-Fed Induction Machine response under severe grid faults.
NASA Technical Reports Server (NTRS)
Mcgehee, C. R.
1986-01-01
A study was conducted under Drones for Aerodynamic and Structural Testing (DAST) program to accomplish the final design and hardware fabrication for four active control systems compatible with and ready for installation in the NASA Aeroelastic Research Wing No. 2 (ARW-2) and Firebee II drone flight test vehicle. The wing structure was designed so that Active Control Systems (ACS) are required in the normal flight envelope by integrating control system design with aerodynamics and structure technologies. The DAST ARW-2 configuration uses flutter suppression, relaxed static stability, and gust and maneuver load alleviation ACS systems, and an automatic flight control system. Performance goals and criteria were applied to individual systems and the systems collectively to assure that vehicle stability margins, flutter margins, flying qualities and load reductions are achieved.
14 CFR 29.399 - Dual control system.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Dual control system. 29.399 Section 29.399 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... result when pilot forces not less than 0.75 times those obtained under § 29.395 are applied— (a) In...
14 CFR 25.399 - Dual control system.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Dual control system. 25.399 Section 25.399 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... individual pilot forces not less than— (1) 0.75 times those obtained under § 25.395; or (2) The minimum...
14 CFR 25.399 - Dual control system.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Dual control system. 25.399 Section 25.399 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... individual pilot forces not less than— (1) 0.75 times those obtained under § 25.395; or (2) The minimum...
14 CFR 29.399 - Dual control system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Dual control system. 29.399 Section 29.399 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... result when pilot forces not less than 0.75 times those obtained under § 29.395 are applied— (a) In...
14 CFR 25.399 - Dual control system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Dual control system. 25.399 Section 25.399 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... individual pilot forces not less than— (1) 0.75 times those obtained under § 25.395; or (2) The minimum...
14 CFR 29.399 - Dual control system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Dual control system. 29.399 Section 29.399 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... result when pilot forces not less than 0.75 times those obtained under § 29.395 are applied— (a) In...
14 CFR 27.399 - Dual control system.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Dual control system. 27.399 Section 27.399 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... result when pilot forces of 0.75 times those obtained under § 27.395 are applied— (a) In opposition; and...
14 CFR 29.399 - Dual control system.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Dual control system. 29.399 Section 29.399 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... result when pilot forces not less than 0.75 times those obtained under § 29.395 are applied— (a) In...
14 CFR 27.399 - Dual control system.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Dual control system. 27.399 Section 27.399 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... result when pilot forces of 0.75 times those obtained under § 27.395 are applied— (a) In opposition; and...
14 CFR 27.399 - Dual control system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Dual control system. 27.399 Section 27.399 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... result when pilot forces of 0.75 times those obtained under § 27.395 are applied— (a) In opposition; and...
14 CFR 25.399 - Dual control system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Dual control system. 25.399 Section 25.399 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... individual pilot forces not less than— (1) 0.75 times those obtained under § 25.395; or (2) The minimum...
14 CFR 27.399 - Dual control system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Dual control system. 27.399 Section 27.399 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... result when pilot forces of 0.75 times those obtained under § 27.395 are applied— (a) In opposition; and...
14 CFR 29.399 - Dual control system.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Dual control system. 29.399 Section 29.399 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... result when pilot forces not less than 0.75 times those obtained under § 29.395 are applied— (a) In...
14 CFR 25.399 - Dual control system.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Dual control system. 25.399 Section 25.399 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... individual pilot forces not less than— (1) 0.75 times those obtained under § 25.395; or (2) The minimum...
14 CFR 27.399 - Dual control system.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Dual control system. 27.399 Section 27.399 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... result when pilot forces of 0.75 times those obtained under § 27.395 are applied— (a) In opposition; and...
46 CFR 185.320 - Steering gear, controls, and communication system tests.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Steering gear, controls, and communication system tests. 185.320 Section 185.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) OPERATIONS Miscellaneous Operating Requirements § 185.320 Steering...
Cockpit control system conceptual design
NASA Technical Reports Server (NTRS)
Meholic, Greg; Brown, Rhonda; Hall, Melissa; Harvey, Robert; Singer, Michael; Tella, Gustavo
1993-01-01
The purpose of this project was to provide a means for operating the ailerons, elevator, elevator trim, rudder, nosewheel steering, and brakes in the Triton primary flight trainer. The main design goals under consideration were to illustrate system and subsystem integration, control function ability, and producibility. Weight and maintenance goals were addressed.
Haaland, Ben; Min, Wanli; Qian, Peter Z. G.; Amemiya, Yasuo
2011-01-01
Temperature control for a large data center is both important and expensive. On the one hand, many of the components produce a great deal of heat, and on the other hand, many of the components require temperatures below a fairly low threshold for reliable operation. A statistical framework is proposed within which the behavior of a large cooling system can be modeled and forecast under both steady state and perturbations. This framework is based upon an extension of multivariate Gaussian autoregressive hidden Markov models (HMMs). The estimated parameters of the fitted model provide useful summaries of the overall behavior of and relationships within the cooling system. Predictions under system perturbations are useful for assessing potential changes and improvements to be made to the system. Many data centers have far more cooling capacity than necessary under sensible circumstances, thus resulting in energy inefficiencies. Using this model, predictions for system behavior after a particular component of the cooling system is shut down or reduced in cooling power can be generated. Steady-state predictions are also useful for facility monitors. System traces outside control boundaries flag a change in behavior to examine. The proposed model is fit to data from a group of air conditioners within an enterprise data center from the IT industry. The fitted model is examined, and a particular unit is found to be underutilized. Predictions generated for the system under the removal of that unit appear very reasonable. Steady-state system behavior also is predicted well. PMID:22076026
Large shipyard enlists EMS control capabilities. [Energy management system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-10-01
The energy management plan of the Ingalls Shipbuilding in Pascagoula, Mississippi, featuring computer technology, is described. An integral component of the plan is a plus 300-point energy management system with Phase II expansion envisaging to bring additional points under control Within the first ten months of operation, the system saved more than /89,763 in electricity costs alone.
Early Synthetic Prototyping: Exploring Designs and Concepts Within Games
2014-12-01
UAS unmanned aircraft system UGV unmanned ground vehicle USD(AT&L) Under Secretary of Defense for Acquisition, Technology, and Logistics... unmanned aircraft system (UAS) realm for the wingman concept? The players were familiar with the Marine Corps’ unmanned tactical autonomous control and...UTACCS Unmanned Tactical Autonomous Control and Collaboration System VBIED vehicle borne improvised explosive device VBS2/3 Virtual Battlespace
12 CFR 225.113 - Services under section 4(a) of Bank Holding Company Act.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Company Act. 225.113 Section 225.113 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM BANK HOLDING COMPANIES AND CHANGE IN BANK CONTROL (REGULATION Y) Regulations Financial Holding Companies Interpretations § 225.113 Services under section 4(a) of Bank Holding...
DEVELOPMENT AND IMPLEMENTATION OF A PRACTICAL PUBLIC HEALTH TRAINING SYSTEM IN CHINA.
Liu, Changjiang; Zhang, Junyue; Chen, Guoyuan; Yang, Kedi
2015-03-01
Public health education is becoming an increasing priority among educators of medicine. In China, little attention has been paid to public health education reform. A new public health training system was introduced in China in 2007. We conducted this study during 2006-2012 to evaluate the graduate core competencies under the new system. Data were collected from 231 graduates and 49 public health agencies. The 144 graduates who enrolled in 2006 and were trained under the old system constituted the control group; the 87 graduates who enrolled in 2007 and were trained under the new system constituted the experimental group. Surveys of graduate core competencies found analyzing and solving problems in the laboratory, conducting on-site practice and learning new technologies were the top three abilities most expected by public health agencies. After 5-year practical ability training, the graduates in the experimental group had better performance; on-site practical ability and laboratory practical ability increased significantly by 24.5% and 20.0%, respectively. Three other important competencies also improved: designing epidemiologic surveys, collecting information from the literature and doing statistical analyses. However, preventing and controlling common diseases and dealing with emergencies remained weak. These results show the new training system should be continued, but revisions are needed to improve this training system, especially in the areas of preventing and controlling common diseases and dealing with emergencies.
Description of the control system design for the SSF PMAD DC testbed
NASA Technical Reports Server (NTRS)
Baez, Anastacio N.; Kimnach, Greg L.
1991-01-01
The Power Management and Distribution (PMAD) DC Testbed Control System for Space Station Freedom was developed using a top down approach based on classical control system and conventional terrestrial power utilities design techniques. The design methodology includes the development of a testbed operating concept. This operating concept describes the operation of the testbed under all possible scenarios. A unique set of operating states was identified and a description of each state, along with state transitions, was generated. Each state is represented by a unique set of attributes and constraints, and its description reflects the degree of system security within which the power system is operating. Using the testbed operating states description, a functional design for the control system was developed. This functional design consists of a functional outline, a text description, and a logical flowchart for all the major control system functions. Described here are the control system design techniques, various control system functions, and the status of the design and implementation.
Long Range Plan for Embedded Computer Systems Support. Volume II
1981-10-01
interface (pilot displays and controls plus visual system), and data collection (CMAC data, bus data and simulation data). Non-real time functions include...unless adequate upfront planning is implemented, the command will be controlled by the dynamics rather than controll - ing them. The upfront planning should...or should they be called manually? What amount and type of data should the various tools pass between each other? Under what conditions and controls
NASA Astrophysics Data System (ADS)
Miwa, Shotaro; Kage, Hiroshi; Hirai, Takashi; Sumi, Kazuhiko
We propose a probabilistic face recognition algorithm for Access Control System(ACS)s. Comparing with existing ACSs using low cost IC-cards, face recognition has advantages in usability and security that it doesn't require people to hold cards over scanners and doesn't accept imposters with authorized cards. Therefore face recognition attracts more interests in security markets than IC-cards. But in security markets where low cost ACSs exist, price competition is important, and there is a limitation on the quality of available cameras and image control. Therefore ACSs using face recognition are required to handle much lower quality images, such as defocused and poor gain-controlled images than high security systems, such as immigration control. To tackle with such image quality problems we developed a face recognition algorithm based on a probabilistic model which combines a variety of image-difference features trained by Real AdaBoost with their prior probability distributions. It enables to evaluate and utilize only reliable features among trained ones during each authentication, and achieve high recognition performance rates. The field evaluation using a pseudo Access Control System installed in our office shows that the proposed system achieves a constant high recognition performance rate independent on face image qualities, that is about four times lower EER (Equal Error Rate) under a variety of image conditions than one without any prior probability distributions. On the other hand using image difference features without any prior probabilities are sensitive to image qualities. We also evaluated PCA, and it has worse, but constant performance rates because of its general optimization on overall data. Comparing with PCA, Real AdaBoost without any prior distribution performs twice better under good image conditions, but degrades to a performance as good as PCA under poor image conditions.
Damage-Mitigating Control of Space Propulsion Systems for High Performance and Extended Life
NASA Technical Reports Server (NTRS)
Ray, Asok; Wu, Min-Kuang
1994-01-01
A major goal in the control of complex mechanical system such as spacecraft rocket engine's advanced aircraft, and power plants is to achieve high performance with increased reliability, component durability, and maintainability. The current practice of decision and control systems synthesis focuses on improving performance and diagnostic capabilities under constraints that often do not adequately represent the materials degradation. In view of the high performance requirements of the system and availability of improved materials, the lack of appropriate knowledge about the properties of these materials will lead to either less than achievable performance due to overly conservative design, or over-straining of the structure leading to unexpected failures and drastic reduction of the service life. The key idea in this report is that a significant improvement in service life could be achieved by a small reduction in the system dynamic performance. The major task is to characterize the damage generation process, and then utilize this information in a mathematical form to synthesize a control law that would meet the system requirements and simultaneously satisfy the constraints that are imposed by the material and structural properties of the critical components. The concept of damage mitigation is introduced for control of mechanical systems to achieve high performance with a prolonged life span. A model of fatigue damage dynamics is formulated in the continuous-time setting, instead of a cycle-based representation, for direct application to control systems synthesis. An optimal control policy is then formulated via nonlinear programming under specified constraints of the damage rate and accumulated damage. The results of simulation experiments for the transient upthrust of a bipropellant rocket engine are presented to demonstrate efficacy of the damage-mitigating control concept.
NASA Astrophysics Data System (ADS)
Voronov, V. N.; Yegoshina, O. V.; Bolshakova, N. A.; Yarovoi, V. O.; Latt, Aie Min
2016-12-01
Typical disturbances in the dynamics of a corrective reagent dosing system under unsteady-state conditions during the unsatisfactory operation of a chemical control system with some water chemistry upsets at thermal and nuclear power stations are considered. An experimental setup representing a physical model for the water chemistry control system is described. The two disturbances, which are most frequently encountered in water chemistry control practice, such as a breakdown or shutdown of temperature compensation during pH measurement and an increase in the heat-transfer fluid flow rate, have been modeled in the process of study. The study of the effect produced by the response characteristics of chemical control analyzers on the operation of a reagent dosing system under unsteady-state conditions is important for the operative control of a water chemistry regime state. The effect of temperature compensation during pH measurement on the dynamics of an ammonia-dosing system in the manual and automatic cycle chemistry control modes has been studied. It has been demonstrated that the reading settling time of a pH meter in the manual ammonia- dosing mode grows with a breakdown in temperature compensation and a simultaneous increase in the temperature of a heat-transfer fluid sample. To improve the efficiency of water chemistry control, some systems for the quality control of a heat-transfer fluid by a chemical parameter with the obligatory compensation of a disturbance in its flow rate have been proposed for use. Experimental results will possibly differ from industrial data due to a great length of sampling lines. For this reason, corrective reagent dosing systems must be adapted to the conditions of a certain power-generating unit in the process of their implementation.
The optimal dynamic immunization under a controlled heterogeneous node-based SIRS model
NASA Astrophysics Data System (ADS)
Yang, Lu-Xing; Draief, Moez; Yang, Xiaofan
2016-05-01
Dynamic immunizations, under which the state of the propagation network of electronic viruses can be changed by adjusting the control measures, are regarded as an alternative to static immunizations. This paper addresses the optimal dynamical immunization under the widely accepted SIRS assumption. First, based on a controlled heterogeneous node-based SIRS model, an optimal control problem capturing the optimal dynamical immunization is formulated. Second, the existence of an optimal dynamical immunization scheme is shown, and the corresponding optimality system is derived. Next, some numerical examples are given to show that an optimal immunization strategy can be worked out by numerically solving the optimality system, from which it is found that the network topology has a complex impact on the optimal immunization strategy. Finally, the difference between a payoff and the minimum payoff is estimated in terms of the deviation of the corresponding immunization strategy from the optimal immunization strategy. The proposed optimal immunization scheme is justified, because it can achieve a low level of infections at a low cost.
23 CFR 190.3 - Agreement to control advertising.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 23 Highways 1 2010-04-01 2010-04-01 false Agreement to control advertising. 190.3 Section 190.3... FOR CONTROLLING OUTDOOR ADVERTISING ON THE INTERSTATE SYSTEM § 190.3 Agreement to control advertising... control outdoor advertising. It must fulfill, and must continue to fulfill its obligations under such...
23 CFR 190.3 - Agreement to control advertising.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 23 Highways 1 2014-04-01 2014-04-01 false Agreement to control advertising. 190.3 Section 190.3... FOR CONTROLLING OUTDOOR ADVERTISING ON THE INTERSTATE SYSTEM § 190.3 Agreement to control advertising... control outdoor advertising. It must fulfill, and must continue to fulfill its obligations under such...
23 CFR 190.3 - Agreement to control advertising.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 23 Highways 1 2012-04-01 2012-04-01 false Agreement to control advertising. 190.3 Section 190.3... FOR CONTROLLING OUTDOOR ADVERTISING ON THE INTERSTATE SYSTEM § 190.3 Agreement to control advertising... control outdoor advertising. It must fulfill, and must continue to fulfill its obligations under such...
23 CFR 190.3 - Agreement to control advertising.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 23 Highways 1 2011-04-01 2011-04-01 false Agreement to control advertising. 190.3 Section 190.3... FOR CONTROLLING OUTDOOR ADVERTISING ON THE INTERSTATE SYSTEM § 190.3 Agreement to control advertising... control outdoor advertising. It must fulfill, and must continue to fulfill its obligations under such...
23 CFR 190.3 - Agreement to control advertising.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 23 Highways 1 2013-04-01 2013-04-01 false Agreement to control advertising. 190.3 Section 190.3... FOR CONTROLLING OUTDOOR ADVERTISING ON THE INTERSTATE SYSTEM § 190.3 Agreement to control advertising... control outdoor advertising. It must fulfill, and must continue to fulfill its obligations under such...
NASA Glenn Research in Controls and Diagnostics for Intelligent Aerospace Propulsion Systems
NASA Technical Reports Server (NTRS)
Garg, Sanjay
2007-01-01
With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. This presentation describes the current CDB activities in support of the NASA Aeronautics Research Mission, with an emphasis on activities under the Integrated Vehicle Health Management (IVHM) and Integrated Resilient Aircraft Control (IRAC) projects of the Aviation Safety Program. Under IVHM, CDB focus is on developing advanced techniques for monitoring the health of the aircraft engine gas path with a focus on reliable and early detection of sensor, actuator and engine component faults. Under IRAC, CDB focus is on developing adaptive engine control technologies which will increase the probability of survival of aircraft in the presence of damage to flight control surfaces or to one or more engines. The technology development plans are described as well as results from recent research accomplishments.
Wang, Feng; Hidaka, Taira; Tsuno, Hiroshi; Tsubota, Jun
2012-05-01
Two series of two-phase anaerobic systems, consisting of a hyperthermophilic (80°C) reactor and a thermophilic (55°C) reactor, fed with a mixture of kitchen garbage (KG) and polylactide (PLA), was compared with a single-phase thermophilic reactor for the overall performance. The result indicated that ammonia addition under hyperthermophilic condition promoted the transformation of PLA particles to lactic acid. The systems with hyperthermophilic treatment had advantages on PLA transformation and methane conversion ratio to the control system. Under the organic loading rate (OLR) of 10.3 g COD/(L day), the PLA transformation ratios of the two-phase systems were 82.0% and 85.2%, respectively, higher than that of the control system (63.5%). The methane conversion ratios of the two-phase systems were 82.9% and 80.8%, respectively, higher than 70.1% of the control system. The microbial community analysis indicated that hyperthermophilic treatment is easily installed to traditional thermophilic anaerobic digestion plants without inoculation of special bacteria. Copyright © 2012 Elsevier Ltd. All rights reserved.
Postural perturbations: new insights for treatment of balance disorders
NASA Technical Reports Server (NTRS)
Horak, F. B.; Henry, S. M.; Shumway-Cook, A.; Peterson, B. W. (Principal Investigator)
1997-01-01
This article reviews the neural control of posture as understood through studies of automatic responses to mechanical perturbations. Recent studies of responses to postural perturbations have provided a new view of how postural stability is controlled, and this view has profound implications for physical therapy practice. We discuss the implications for rehabilitation of balance disorders and demonstrate how an understanding of the specific systems underlying postural control can help to focus and enrich our therapeutic approaches. By understanding the basic systems underlying control of balance, such as strategy selection, rapid latencies, coordinated temporal spatial patterns, force control, and context-specific adaptations, therapists can focus their treatment on each patient's specific impairments. Research on postural responses to surface translations has shown that balance is not based on a fixed set of equilibrium reflexes but on a flexible, functional motor skill that can adapt with training and experience. More research is needed to determine the extent to which quantification of automatic postural responses has practical implications for predicting falls in patients with constraints in their postural control system.
Computer aided control of a mechanical arm
NASA Technical Reports Server (NTRS)
Derocher, W. L., Jr.; Zermuehlen, r. O.
1979-01-01
A method for computer-aided remote control of a six-degree-of-freedom manipulator arm involved in the on-orbit servicing of a spacecraft is presented. The control configuration features a supervisory type of control in which each of the segments of a module exchange trajectory is controlled automatically under human supervision, with manual commands to proceed to the next step and in the event of a failure or undesirable outcome. The implementation of the supervisory system is discussed in terms of necessary onboard and ground- or Orbiter-based hardware and software, and a one-g demonstration system built to allow further investigation of system operation is described. Possible applications of the system include the construction of satellite solar power systems, environmental testing and the control of heliostat solar power stations.
Tang, Zhao-Ming; Wang, Ping; Chang, Pan-Pan; Hasahya, Tony; Xing, Hui; Wang, Jin-Ping; Hu, Li-Hua
2015-11-01
rs2431697 is located on 5q33.3, between pituitary tumor-transforming gene 1 and miR-146a. Several studies have estimated the association between rs2431697 and systemic lupus erythematosus risk. However, the results were inconsistent. A case-control study was carried out to explore the association between rs2431697 and systemic lupus erythematosus risk in a central Chinese population. Meta-analyses combining present with previous studies were conducted to further explore the association. Our case-control study included 322 cases and 353 controls. rs2431697 T allele was associated with increased risk of systemic lupus erythematosus (odds ratios (ORs) = 1.461, 95% confidence intervals (CI) 1.091-1.957, P = 0.011). The association was stronger between T allele and the risk of anti-double-stranded DNA (dsDNA)-positive systemic lupus erythematosus (OR = 2.510, 95% CI 1.545-4.077, P < 0.001). The meta-analyses included 8648 systemic lupus erythematosus patients and 10947 controls. rs2431697 T allele had an overall OR of 1.262 (95% CI 1.205-1.323, P < 0.001) under fixed-effects model. After stratified by ethnicity, I (2) reduced from 24.3 to 0 %. T allele had an OR of 1.213 (95% CI 1.145-1.284, P < 0.001) in European descendant and 1.365 (95% CI 1.259-1.480, P < 0.001) in Asian under fixed-effects model. Data on women were also extracted, and T allele had an OR of 1.337 (95% CI 1.162-1.539, P < 0.001) under random-effects model. The pooled ORs were not influenced by each study in sensitivity analyses. There were no publication biases observed in these analyses. The results from our case-control study and the meta-analyses indicate that rs2431697 T allele significantly associates with the increased risk of systemic lupus erythematosus.
NASA Technical Reports Server (NTRS)
Biddle, A. P.; Reynolds, J. M.
1985-01-01
A system was developed for the calibration and development of thermal ion instrumentation. The system provides an extended beam with usable current rates, approx. 1 pA/sq cm, at beam energies as low as 1 eV, with much higher values available with increasing energy. A tandem electrostatic and variable geometry magnetic mirror configuration within the ion source optimizes the use of the ionizing electrons. The system is integrated under microcomputer control to allow automatic control and monitoring of the beam energy and composition and the mass and angle-dependent response of the instrument under test. The system is pumped by a combination of carbon vane and cryogenic sorption roughing pumps and ion and liquid helium operating pumps.
An information theory account of cognitive control.
Fan, Jin
2014-01-01
Our ability to efficiently process information and generate appropriate responses depends on the processes collectively called cognitive control. Despite a considerable focus in the literature on the cognitive control of information processing, neural mechanisms underlying control are still unclear, and have not been characterized by considering the quantity of information to be processed. A novel and comprehensive account of cognitive control is proposed using concepts from information theory, which is concerned with communication system analysis and the quantification of information. This account treats the brain as an information-processing entity where cognitive control and its underlying brain networks play a pivotal role in dealing with conditions of uncertainty. This hypothesis and theory article justifies the validity and properties of such an account and relates experimental findings to the frontoparietal network under the framework of information theory.
Versatile, low-cost, computer-controlled, sample positioning system for vacuum applications
NASA Technical Reports Server (NTRS)
Vargas-Aburto, Carlos; Liff, Dale R.
1991-01-01
A versatile, low-cost, easy to implement, microprocessor-based motorized positioning system (MPS) suitable for accurate sample manipulation in a Second Ion Mass Spectrometry (SIMS) system, and for other ultra-high vacuum (UHV) applications was designed and built at NASA LeRC. The system can be operated manually or under computer control. In the latter case, local, as well as remote operation is possible via the IEEE-488 bus. The position of the sample can be controlled in three linear orthogonal and one angular coordinates.
Robustness of reduced-order multivariable state-space self-tuning controller
NASA Technical Reports Server (NTRS)
Yuan, Zhuzhi; Chen, Zengqiang
1994-01-01
In this paper, we present a quantitative analysis of the robustness of a reduced-order pole-assignment state-space self-tuning controller for a multivariable adaptive control system whose order of the real process is higher than that of the model used in the controller design. The result of stability analysis shows that, under a specific bounded modelling error, the adaptively controlled closed-loop real system via the reduced-order state-space self-tuner is BIBO stable in the presence of unmodelled dynamics.
NASA Technical Reports Server (NTRS)
Shaver, Charles; Williamson, Michael
1986-01-01
The NASA Ames Research Center sponsors a research program for the investigation of Intelligent Flight Control Actuation systems. The use of artificial intelligence techniques in conjunction with algorithmic techniques for autonomous, decentralized fault management of flight-control actuation systems is explored under this program. The design, development, and operation of the interface for laboratory investigation of this program is documented. The interface, architecturally based on the Intel 8751 microcontroller, is an interrupt-driven system designed to receive a digital message from an ultrareliable fault-tolerant control system (UFTCS). The interface links the UFTCS to an electronic servo-control unit, which controls a set of hydraulic actuators. It was necessary to build a UFTCS emulator (also based on the Intel 8751) to provide signal sources for testing the equipment.
Ultimate boundedness stability and controllability of hereditary systems
NASA Technical Reports Server (NTRS)
Chukwu, E. N.
1979-01-01
By generalizing the Liapunov-Yoshizawa techniques, necessary and sufficient conditions are given for uniform boundedness and uniform ultimate boundedness of a rather general class of nonlinear differential equations of neutral type. Among the applications treated by the methods are the Lienard equation of neutral type and hereditary systems of Lurie type. The absolute stability of this later equation is also investigated. A certain existence result of a solution of a neutral functional differential inclusion with two point boundary values is applied to study the exact function space controllability of a nonlinear neutral functional differential control system. A geometric growth condition is used to characterize both the function space and Euclidean controllability of another nonlinear delay system which has a compact and convex control set. This yields conditions under which perturbed nonlinear delay controllable systems are controllable.
Gorbenko, M V; Popova, T N; Shul'gin, K K; Popov, S S
2013-01-01
Investigation of glutathione antioxidant system activity and diene conjugates content in rats liver and blood serum at the influence of melaksen and valdoxan under experimental hyperthyroidism (EG) has been revealed. It has been established that the activities of glutathione reductase (GR), glutathione peroxidase (GP) and glutathione transferase (GT), growing at pathological conditions, change to the side of control value at these substunces introduction. Reduced glutathione content (GSH) at melaxen and valdoxan action increased compared with values under the pathology, that, obviously, could be associated with a reduction of its spending on the detoxication of free radical oxidation (FRO) toxic products. Diene conjugates level in rats liver and blood serum, increasing at experimental hyperthyroidism conditions, under introduction of melatonin level correcting drugs, also approached to the control meaning. Results of the study indicate on positive effect of melaxen and valdoxan on free radical homeostasis, that appears to be accompanied by decrease of load on the glutathione antioxidant system in comparison with the pathology.
Powerful nuclear technology, anywhere, requires functioning system of free elections
NASA Astrophysics Data System (ADS)
Synek, Miroslav
2000-03-01
Historical development on our planet, utilizing the knowledge of physics, has reached a powerful technology of nuclear intercontinental ballistic missiles, conceivably controllable through a computerized ``push-button". Whenever this technology falls under the control of an irresponsible, miscalculating, or, insane, dictator, with powerful means of a mass-produced nuclear built-up, anywhere on our planet, the very survival of all humanity on our planet could be threatened. Therefore, it is a historical urgency that this technology is under the control by a government of the people, by the people and for the people, based on a sufficiently secure system of free elections, in any country on our planet, wherever and whenever such a threatening possibility exists.
Nonlinear system identification of smart structures under high impact loads
NASA Astrophysics Data System (ADS)
Sarp Arsava, Kemal; Kim, Yeesock; El-Korchi, Tahar; Park, Hyo Seon
2013-05-01
The main purpose of this paper is to develop numerical models for the prediction and analysis of the highly nonlinear behavior of integrated structure control systems subjected to high impact loading. A time-delayed adaptive neuro-fuzzy inference system (TANFIS) is proposed for modeling of the complex nonlinear behavior of smart structures equipped with magnetorheological (MR) dampers under high impact forces. Experimental studies are performed to generate sets of input and output data for training and validation of the TANFIS models. The high impact load and current signals are used as the input disturbance and control signals while the displacement and acceleration responses from the structure-MR damper system are used as the output signals. The benchmark adaptive neuro-fuzzy inference system (ANFIS) is used as a baseline. Comparisons of the trained TANFIS models with experimental results demonstrate that the TANFIS modeling framework is an effective way to capture nonlinear behavior of integrated structure-MR damper systems under high impact loading. In addition, the performance of the TANFIS model is much better than that of ANFIS in both the training and the validation processes.
Motion control system of MAX IV Laboratory soft x-ray beamlines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjöblom, Peter, E-mail: peter.sjoblom@maxlab.lu.se; Lindberg, Mirjam, E-mail: mirjam.lindberg@maxlab.lu.se; Forsberg, Johan, E-mail: johan.forsberg@maxlab.lu.se
2016-07-27
At the MAX IV Laboratory, five new soft x-ray beamlines are under development. The first is Species and it will be used to develop and set the standard of the control system, which will be common across the facility. All motion axes at MAX IV will be motorized using stepper motors steered by the IcePAP motion controller and a mixture of absolute and incremental encoders following a predefined coordinate system. The control system software is built in Tango and uses the Python-based Sardana framework. The user controls the entire beamline through a synoptic overview and Sardana is used to runmore » the scans.« less
Decentralized reinforcement-learning control and emergence of motion patterns
NASA Astrophysics Data System (ADS)
Svinin, Mikhail; Yamada, Kazuyaki; Okhura, Kazuhiro; Ueda, Kanji
1998-10-01
In this paper we propose a system for studying emergence of motion patterns in autonomous mobile robotic systems. The system implements an instance-based reinforcement learning control. Three spaces are of importance in formulation of the control scheme. They are the work space, the sensor space, and the action space. Important feature of our system is that all these spaces are assumed to be continuous. The core part of the system is a classifier system. Based on the sensory state space analysis, the control is decentralized and is specified at the lowest level of the control system. However, the local controllers are implicitly connected through the perceived environment information. Therefore, they constitute a dynamic environment with respect to each other. The proposed control scheme is tested under simulation for a mobile robot in a navigation task. It is shown that some patterns of global behavior--such as collision avoidance, wall-following, light-seeking--can emerge from the local controllers.
Annual Review of Research Under the Joint Services Electronics Program.
1978-10-01
Electronic Science at Texas Tech University. Specific topics covered include fault analysis, Stochastic control and estimation, nonlinear control, multidimensional system theory , Optical noise, and pattern recognition.
Balkhair, Khaled S.
2015-01-01
Increasing lack of potable water in arid countries leads to the use of treated wastewater for crop production. However, the use of inappropriate irrigation practices could result in a serious contamination risk to plants, soils, and groundwater with sewage water. This research was initiated in view to the increasing danger of vegetable crops and groundwater contamination with pathogenic bacteria due to wastewater land application. The research was designed to study: (1) the effect of treated wastewater irrigation on the yield and microbial contamination of the radish plant under field conditions; (2) contamination of the agricultural soil profile with fecal coliform bacteria. Effluent from a domestic wastewater treatment plant (100%) in Jeddah city, Saudi Arabia, was diluted to 80% and 40% with the groundwater of the experimental site constituting three different water qualities plus groundwater as control. Radish plant was grown in two consecutive seasons under two drip irrigation systems and four irrigation water qualities. Upon harvesting, plant weight per ha, total bacterial, fecal coliform, fecal streptococci were detected per 100 g of dry matter and compared with the control. The soil profile was also sampled at an equal distance of 3 cm from soil surface for fecal coliform detection. The results indicated that the yield increased significantly under the subsurface irrigation system and the control water quality compared to surface irrigation system and other water qualities. There was a considerable drop in the count of all bacteria species under the subsurface irrigation system compared to surface irrigation. The bacterial count/g of the plant shoot system increased as the percentage of wastewater in the irrigation water increased. Most of the fecal coliform bacteria were deposited in the first few centimeters below the column inlet and the profile exponentially decreased with increasing depth. PMID:26858571
NASA Astrophysics Data System (ADS)
Haque, N.; Singh, M.; Hossain, S. A.
2016-12-01
The present study was aimed at determining changes in milk yield and composition along with the plasminogen-plasmin system of milk, plasma hormones, and metabolites of buffaloes during hot dry season (air temperature range 39.7 to 44.8 °C) under two different management systems. Buffaloes were divided in two groups of six animals each: control and treatment, where treatment group animals accessed benefit of mist and fan cooling from 9:30 a.m. to 5:00 p.m., while control group animals were devoid of it. Duration of experiment was 6 weeks. Under mist and fan cooling system, buffaloes experienced better comfort by alleviating environmental stress as their physiological responses such as rectal temperature, respiration rate, pulse rate, and forehead and middorsal temperatures were significantly ( P < 0.05) reduced compared to control, which subsequently resulted higher milk yield by 4.44 % ( P < 0.001). Analysis of milk samples revealed higher concentration of plasminogen (7.99 vs 6.27 μg/ml; P < 0.01) and β-casein (1.09 vs 0.92 g/dl; P < 0.001) and lower plasmin level (0.178 vs 0.194 μg/ml; P < 0.05) in buffaloes under the treatment group compared to that under the control. Plasma glucose level was higher ( P < 0.001) by 21.08 %, whereas cortisol, norepinephrine, and NEFA levels were lower ( P < 0.001) by 19.19, 15.38, and 11.41 %, respectively, in treatment animals. However, exposure of buffaloes to cooling system did not alter composition and calcium content of milk, GH, and epinephrine level in plasma. Hence, it may be concluded that provision of cooling system during summer was effective to minimize environmental stress and improve milk production by manipulation of the PG-PL system in buffaloes.
Haque, N; Singh, M; Hossain, S A
2016-12-01
The present study was aimed at determining changes in milk yield and composition along with the plasminogen-plasmin system of milk, plasma hormones, and metabolites of buffaloes during hot dry season (air temperature range 39.7 to 44.8 °C) under two different management systems. Buffaloes were divided in two groups of six animals each: control and treatment, where treatment group animals accessed benefit of mist and fan cooling from 9:30 a.m. to 5:00 p.m., while control group animals were devoid of it. Duration of experiment was 6 weeks. Under mist and fan cooling system, buffaloes experienced better comfort by alleviating environmental stress as their physiological responses such as rectal temperature, respiration rate, pulse rate, and forehead and middorsal temperatures were significantly (P < 0.05) reduced compared to control, which subsequently resulted higher milk yield by 4.44 % (P < 0.001). Analysis of milk samples revealed higher concentration of plasminogen (7.99 vs 6.27 μg/ml; P < 0.01) and β-casein (1.09 vs 0.92 g/dl; P < 0.001) and lower plasmin level (0.178 vs 0.194 μg/ml; P < 0.05) in buffaloes under the treatment group compared to that under the control. Plasma glucose level was higher (P < 0.001) by 21.08 %, whereas cortisol, norepinephrine, and NEFA levels were lower (P < 0.001) by 19.19, 15.38, and 11.41 %, respectively, in treatment animals. However, exposure of buffaloes to cooling system did not alter composition and calcium content of milk, GH, and epinephrine level in plasma. Hence, it may be concluded that provision of cooling system during summer was effective to minimize environmental stress and improve milk production by manipulation of the PG-PL system in buffaloes.
Scenario-based fitted Q-iteration for adaptive control of water reservoir systems under uncertainty
NASA Astrophysics Data System (ADS)
Bertoni, Federica; Giuliani, Matteo; Castelletti, Andrea
2017-04-01
Over recent years, mathematical models have largely been used to support planning and management of water resources systems. Yet, the increasing uncertainties in their inputs - due to increased variability in the hydrological regimes - are a major challenge to the optimal operations of these systems. Such uncertainty, boosted by projected changing climate, violates the stationarity principle generally used for describing hydro-meteorological processes, which assumes time persisting statistical characteristics of a given variable as inferred by historical data. As this principle is unlikely to be valid in the future, the probability density function used for modeling stochastic disturbances (e.g., inflows) becomes an additional uncertain parameter of the problem, which can be described in a deterministic and set-membership based fashion. This study contributes a novel method for designing optimal, adaptive policies for controlling water reservoir systems under climate-related uncertainty. The proposed method, called scenario-based Fitted Q-Iteration (sFQI), extends the original Fitted Q-Iteration algorithm by enlarging the state space to include the space of the uncertain system's parameters (i.e., the uncertain climate scenarios). As a result, sFQI embeds the set-membership uncertainty of the future inflow scenarios in the action-value function and is able to approximate, with a single learning process, the optimal control policy associated to any scenario included in the uncertainty set. The method is demonstrated on a synthetic water system, consisting of a regulated lake operated for ensuring reliable water supply to downstream users. Numerical results show that the sFQI algorithm successfully identifies adaptive solutions to operate the system under different inflow scenarios, which outperform the control policy designed under historical conditions. Moreover, the sFQI policy generalizes over inflow scenarios not directly experienced during the policy design, thus alleviating the risk of mis-adaptation, namely the design of a solution fully adapted to a scenario that is different from the one that will actually realize.
Annual Review of Research Under the Joint Service Electronics Program.
1979-10-01
Contents: Quadratic Optimization Problems; Nonlinear Control; Nonlinear Fault Analysis; Qualitative Analysis of Large Scale Systems; Multidimensional System Theory ; Optical Noise; and Pattern Recognition.
End-to-End Flow Control for Visual-Haptic Communication under Bandwidth Change
NASA Astrophysics Data System (ADS)
Yashiro, Daisuke; Tian, Dapeng; Yakoh, Takahiro
This paper proposes an end-to-end flow controller for visual-haptic communication. A visual-haptic communication system transmits non-real-time packets, which contain large-size visual data, and real-time packets, which contain small-size haptic data. When the transmission rate of visual data exceeds the communication bandwidth, the visual-haptic communication system becomes unstable owing to buffer overflow. To solve this problem, an end-to-end flow controller is proposed. This controller determines the optimal transmission rate of visual data on the basis of the traffic conditions, which are estimated by the packets for haptic communication. Experimental results confirm that in the proposed method, a short packet-sending interval and a short delay are achieved under bandwidth change, and thus, high-precision visual-haptic communication is realized.
NASA Astrophysics Data System (ADS)
Sun, Shu-Ting; Li, Xiao-Dong; Zhong, Ren-Xin
2017-10-01
For nonlinear switched discrete-time systems with input constraints, this paper presents an open-closed-loop iterative learning control (ILC) approach, which includes a feedforward ILC part and a feedback control part. Under a given switching rule, the mathematical induction is used to prove the convergence of ILC tracking error in each subsystem. It is demonstrated that the convergence of ILC tracking error is dependent on the feedforward control gain, but the feedback control can speed up the convergence process of ILC by a suitable selection of feedback control gain. A switched freeway traffic system is used to illustrate the effectiveness of the proposed ILC law.
Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf
2017-11-28
Current developments in exhaust gas aftertreatment led to a huge mistrust in diesel driven passenger cars due to their NO x emissions being too high. The selective catalytic reduction (SCR) with ammonia (NH₃) as reducing agent is the only approach today with the capability to meet upcoming emission limits. Therefore, the radio-frequency-based (RF) catalyst state determination to monitor the NH₃ loading on SCR catalysts has a huge potential in emission reduction. Recent work on this topic proved the basic capability of this technique under realistic conditions on an engine test bench. In these studies, an RF system calibration for the serial type SCR catalyst Cu-SSZ-13 was developed and different approaches for a temperature dependent NH₃ storage were determined. This paper continues this work and uses a fully calibrated RF-SCR system under transient conditions to compare different directly measured and controlled NH₃ storage levels, and NH₃ target curves. It could be clearly demonstrated that the right NH₃ target curve, together with a direct control on the desired level by the RF system, is able to operate the SCR system with the maximum possible NO x conversion efficiency and without NH₃ slip.
Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System
NASA Technical Reports Server (NTRS)
Williams-Hayes, Peggy S.
2004-01-01
The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.
Horak, Fay B
2006-09-01
Postural control is no longer considered simply a summation of static reflexes but, rather, a complex skill based on the interaction of dynamic sensorimotor processes. The two main functional goals of postural behaviour are postural orientation and postural equilibrium. Postural orientation involves the active alignment of the trunk and head with respect to gravity, support surfaces, the visual surround and internal references. Sensory information from somatosensory, vestibular and visual systems is integrated, and the relative weights placed on each of these inputs are dependent on the goals of the movement task and the environmental context. Postural equilibrium involves the coordination of movement strategies to stabilise the centre of body mass during both self-initiated and externally triggered disturbances of stability. The specific response strategy selected depends not only on the characteristics of the external postural displacement but also on the individual's expectations, goals and prior experience. Anticipatory postural adjustments, prior to voluntary limb movement, serve to maintain postural stability by compensating for destabilising forces associated with moving a limb. The amount of cognitive processing required for postural control depends both on the complexity of the postural task and on the capability of the subject's postural control system. The control of posture involves many different underlying physiological systems that can be affected by pathology or sub-clinical constraints. Damage to any of the underlying systems will result in different, context-specific instabilities. The effective rehabilitation of balance to improve mobility and to prevent falls requires a better understanding of the multiple mechanisms underlying postural control.
Control of nonlinear systems represented in quasilinear form. Ph.D. Thesis, 1994 Final Report
NASA Technical Reports Server (NTRS)
Coetsee, Josef A.
1993-01-01
Methods to synthesize controllers for nonlinear systems are developed by exploiting the fact that under mild differentiability conditions, systems of the form: x-dot = f(x) + G(x)u can be represented in quasilinear form, viz: x-dot = A(x)x + B(x)u. Two classes of control methods are investigated. The first is zero-look-ahead control, where the control input depends only on the current values of A(x) and B(x). For this case the control input is computed by continuously solving a matrix Riccati equation as the system progresses along a trajectory. The second is controllers with look-ahead, where the control input depends on the future behavior of A(x) and B(x). These controllers use the similarity between quasilinear systems and linear time varying systems to find approximate solutions to optimal control type problems. The methods that are developed are not guaranteed to be globally stable. However in simulation studies they were found to be useful alternatives for synthesizing control laws for a general class of nonlinear systems.
Wallops Ship Surveillance System
NASA Technical Reports Server (NTRS)
Smith, Donna C.
2011-01-01
Approved as a Wallops control center backup system, the Wallops Ship Surveillance Software is a day-of-launch risk analysis tool for spaceport activities. The system calculates impact probabilities and displays ship locations relative to boundary lines. It enables rapid analysis of possible flight paths to preclude the need to cancel launches and allow execution of launches in a timely manner. Its design is based on low-cost, large-customer- base elements including personal computers, the Windows operating system, C/C++ object-oriented software, and network interfaces. In conformance with the NASA software safety standard, the system is designed to ensure that it does not falsely report a safe-for-launch condition. To improve the current ship surveillance method, the system is designed to prevent delay of launch under a safe-for-launch condition. A single workstation is designated the controller of the official ship information and the official risk analysis. Copies of this information are shared with other networked workstations. The program design is divided into five subsystems areas: 1. Communication Link -- threads that control the networking of workstations; 2. Contact List -- a thread that controls a list of protected item (ocean vessel) information; 3. Hazard List -- threads that control a list of hazardous item (debris) information and associated risk calculation information; 4. Display -- threads that control operator inputs and screen display outputs; and 5. Archive -- a thread that controls archive file read and write access. Currently, most of the hazard list thread and parts of other threads are being reused as part of a new ship surveillance system, under the SureTrak project.
Zhang, Zhen; Ma, Cheng; Zhu, Rong
2016-10-14
High integration of multi-functional instruments raises a critical issue in temperature control that is challenging due to its spatial-temporal complexity. This paper presents a multi-input multi-output (MIMO) self-tuning temperature sensing and control system for efficiently modulating the temperature environment within a multi-module instrument. The smart system ensures that the internal temperature of the instrument converges to a target without the need of a system model, thus making the control robust. The system consists of a fully-connected proportional-integral-derivative (PID) neural network (FCPIDNN) and an on-line self-tuning module. The experimental results show that the presented system can effectively control the internal temperature under various mission scenarios, in particular, it is able to self-reconfigure upon actuator failure. The system provides a new scheme for a complex and time-variant MIMO control system which can be widely applied for the distributed measurement and control of the environment in instruments, integration electronics, and house constructions.
Cooperative control theory and integrated flight and propulsion control
NASA Technical Reports Server (NTRS)
Schmidt, David K.; Schierman, John D.
1995-01-01
The major contribution of this research was the exposition of the fact that airframe and engine interactions could be present, and their effects could include loss of stability and performance of the control systems. Also, the significance of two directional, as opposed to one-directional, coupling was identified and explained. A multivariable stability and performance analysis methodology was developed, and applied to several candidate aircraft configurations. In these example evaluations, the significance of these interactions was underscored. Also exposed was the fact that with interactions present along with some integrated control approaches, the engine command/limiting logic (which represents an important nonlinear component of the engine control system) can impact closed-loop airframe/engine system stability. Finally, a brief investigation of control-law synthesis techniques appropriate for the class of systems was pursued, and it was determined that multivariable techniques, including model-following formulations of LQG and/or H infinity methods, showed promise. However, for practical reasons, decentralized control architectures are preferred, which is an architecture incompatible with these synthesis methods. The major contributions of the second phase of the grant was the development of conditions under which no decentralized controller could achieve closed loop system requirements on stability and/or performance. Sought were conditions that depended only on properties of the plant and the requirement, and independent of any particular control law or synthesis approach. Therefore, they could be applied a priori, before synthesis of a candidate control law. Under this grant, such conditions were found regarding stability, and encouraging initial results were obtained regarding performance.
Development of an Automatic Ground Collision Avoidance System Using a Digital Terrain Database
1989-12-01
release; distribution unlimited I I I I The purpose of this study was to develop a working control system that would perform automatic ground... control system analysis. I also wish to extend a hand of appreciation to my sponsor Mr. I Finley Barfield of the Flight Dynamics Laboratory for the use of...facilities, as- sistance in deciphering control law diagrams, and his expert knowledge of the F-16. Under the area of morale, I wish to thank all of my
Indirect Identification of Linear Stochastic Systems with Known Feedback Dynamics
NASA Technical Reports Server (NTRS)
Huang, Jen-Kuang; Hsiao, Min-Hung; Cox, David E.
1996-01-01
An algorithm is presented for identifying a state-space model of linear stochastic systems operating under known feedback controller. In this algorithm, only the reference input and output of closed-loop data are required. No feedback signal needs to be recorded. The overall closed-loop system dynamics is first identified. Then a recursive formulation is derived to compute the open-loop plant dynamics from the identified closed-loop system dynamics and known feedback controller dynamics. The controller can be a dynamic or constant-gain full-state feedback controller. Numerical simulations and test data of a highly unstable large-gap magnetic suspension system are presented to demonstrate the feasibility of this indirect identification method.
NASA Technical Reports Server (NTRS)
1977-01-01
Results of initial tests of the under the wing experimental engine and boilerplate nacelle are presented. The mechanical performance of the engine is reported with emphasis on the advanced technology components. Technology elements of the propulsion system covered include: system dynamics, composite fan blades, reduction gear, lube and accessory drive system, fan frame, inlet, core cowl cooling, fan exhaust nozzle, and digital control system.
Fuzzy logic applications to control engineering
NASA Astrophysics Data System (ADS)
Langari, Reza
1993-12-01
This paper presents the results of a project presently under way at Texas A&M which focuses on the use of fuzzy logic in integrated control of manufacturing systems. The specific problems investigated here include diagnosis of critical tool wear in machining of metals via a neuro-fuzzy algorithm, as well as compensation of friction in mechanical positioning systems via an adaptive fuzzy logic algorithm. The results indicate that fuzzy logic in conjunction with conventional algorithmic based approaches or neural nets can prove useful in dealing with the intricacies of control/monitoring of manufacturing systems and can potentially play an active role in multi-modal integrated control systems of the future.
... the autonomic nervous system. This is the part of the nervous system that is not under your control. Sweating is ... Skin layers References Chelimsky T, Chelimsky G. Disorders of the autonomic nervous system. In: Daroff RB, Jankovic J, Mazziotta JC, Pomeroy ...
Xu, Shi-Zhou; Wang, Chun-Jie; Lin, Fang-Li; Li, Shi-Xiang
2017-10-31
The multi-device open-circuit fault is a common fault of ANPC (Active Neutral-Point Clamped) three-level inverter and effect the operation stability of the whole system. To improve the operation stability, this paper summarized the main solutions currently firstly and analyzed all the possible states of multi-device open-circuit fault. Secondly, an order-reduction optimal control strategy was proposed under multi-device open-circuit fault to realize fault-tolerant control based on the topology and control requirement of ANPC three-level inverter and operation stability. This control strategy can solve the faults with different operation states, and can works in order-reduction state under specific open-circuit faults with specific combined devices, which sacrifices the control quality to obtain the stability priority control. Finally, the simulation and experiment proved the effectiveness of the proposed strategy.
40 CFR 1060.101 - What evaporative emission requirements apply under this part?
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (c) Section 1060.104 describes running loss emission control requirements for fuel systems. (d... AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND IN-USE NONROAD... related requirements as follows: (a) Section 1060.102 describes permeation emission control requirements...
HPT Clearance Control: Intelligent Engine Systems-Phase 1
NASA Technical Reports Server (NTRS)
2005-01-01
The following work has been completed to satisfy the Phase I Deliverables for the "HPT Clearance Control" project under NASA GRC's "Intelligent Engine Systems" program: (1) Need for the development of an advanced HPT ACC system has been very clearly laid out, (2) Several existing and potential clearance control systems have been reviewed, (3) A scorecard has been developed to document the system, performance (fuel burn, range, payload, etc.), thermal, and mechanical characteristics of the existing clearance control systems, (4) Engine size and flight cycle selection for the advanced HPT ACC system has been reviewed with "large engine"/"long range mission" combination showing the most benefit, (5) A scoring criteria has been developed to tie together performance parameters for an objective, data driven comparison of competing systems, and (6) The existing HPT ACC systems have been scored based on this scoring system.
An architecture for rule based system explanation
NASA Technical Reports Server (NTRS)
Fennel, T. R.; Johannes, James D.
1990-01-01
A system architecture is presented which incorporate both graphics and text into explanations provided by rule based expert systems. This architecture facilitates explanation of the knowledge base content, the control strategies employed by the system, and the conclusions made by the system. The suggested approach combines hypermedia and inference engine capabilities. Advantages include: closer integration of user interface, explanation system, and knowledge base; the ability to embed links to deeper knowledge underlying the compiled knowledge used in the knowledge base; and allowing for more direct control of explanation depth and duration by the user. User models are suggested to control the type, amount, and order of information presented.
Effects of experimental leg length discrepancies on body posture and dental occlusion.
Maeda, Nozomi; Sakaguchi, Kiwamu; Mehta, Noshir R; Abdallah, Emad F; Forgione, Albert G; Yokoyama, Atsuro
2011-07-01
The purpose of this study was to quantitatively evaluate the effects of experimental leg length discrepancies on body posture and dental occlusion. Thirty asymptomatic subjects (15 males and 15 females, ages 19-33, mean age 25.6 years) were included in this study and randomly assigned to one of two groups based on a table of random numbers. The only difference between group A and group B was the sequence of testing. Experimental leg length discrepancies were provided by using ten types of insoles with heights ranging from one to ten mm at one mm intervals, placed under both feet. The MatScan (Nitta Corp., Osaka, Japan) system was used to measure changes in body posture (center of foot pressure: COP) while subjects maintained the following three postural positions: 1. natural standing posture (control); 2. control with a heel lift under the right foot; or 3. control with a heel lift under the left foot. The T-Scan II system (Nitta Corp., Osaka, Japan) was used to analyze the results of changes in dental occlusion (center of occlusal force: COF) in the above-mentioned three postural positions. When subjects used a heel lift of six mm or more under the right foot, lateral weight distribution (LWD) shifted to the right side compared to the control (p<0.05). When a heel lift of four mm or more was used under the left foot, LWD shifted to the left side compared to the control (p<0.05). When subjects used a heel lift of eight mm or more under the right foot, occlusal force shifted to the right side compared to the control (p<0.05). When subjects used a heel lift of seven mm or more under the left foot, occlusal force shifted to the left side compared to the control (p<0.05). Based on these findings, it was concluded that leg length discrepancy affected body posture and dental occlusion.
Gao, Fangzheng; Wu, Yuqiang; Zhang, Zhongcai
2015-11-01
This paper investigates the problem of finite-time stabilization by output feedback for a class of nonholonomic systems in chained form with uncertainties. Comparing with the existing relevant literature, a distinguishing feature of the systems under investigation is that the x-subsystem is a feedforward-like rather than feedback-like system. This renders the existing control methods inapplicable to the control problems of the systems. A constructive design procedure for output feedback control is given. The designed controller renders that the states of closed-loop system are regulated to zero in a finite time. Two simulation examples are provided to illustrate the effectiveness of the proposed approach. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
2006-01-01
Access 5 analyzed the differences between UAS and manned aircraft operations under five categories of abnormal or emergency situations: Link Failure, Lost Communications, Onboard System Failures, Control Station Failures and Abnormal Weather. These analyses were made from the vantage point of the impact that these operations have on the US air traffic control system, with recommendations for new policies and procedures included where appropriate.
NMR System for a Type II Quantum Computer
2007-06-01
Kevin Henry, Jr., "Coherent Control in QIP" June 2007. Please see Appendix pdf file pages 296-399. 4 Chapter 1 Introduction Recent research [1, 2, 3...can often by reduced by careful design of the time dependence of control fields. This is possible since the operators underlying the incoherence are...ob- tained by measurement. 21 1.2 Optimal Control Theory applied to Quantum Systems One of the main goals for theoretical research in quantum control
Mathematical Modeling Of The Terrain Around A Robot
NASA Technical Reports Server (NTRS)
Slack, Marc G.
1992-01-01
In conceptual system for modeling of terrain around autonomous mobile robot, representation of terrain used for control separated from representation provided by sensors. Concept takes motion-planning system out from under constraints imposed by discrete spatial intervals of square terrain grid(s). Separation allows sensing and motion-controlling systems to operate asynchronously; facilitating integration of new map and sensor data into planning of motions.
Evaluation of the Terminal Precision Scheduling and Spacing System for Near-Term NAS Application
NASA Technical Reports Server (NTRS)
Thipphavong, Jane; Martin, Lynne Hazel; Swenson, Harry N.; Lin, Paul; Nguyen, Jimmy
2012-01-01
NASA has developed a capability for terminal area precision scheduling and spacing (TAPSS) to provide higher capacity and more efficiently manage arrivals during peak demand periods. This advanced technology is NASA's vision for the NextGen terminal metering capability. A set of human-in-the-loop experiments was conducted to evaluate the performance of the TAPSS system for near-term implementation. The experiments evaluated the TAPSS system under the current terminal routing infrastructure to validate operational feasibility. A second goal of the study was to measure the benefit of the Center and TRACON advisory tools to help prioritize the requirements for controller radar display enhancements. Simulation results indicate that using the TAPSS system provides benefits under current operations, supporting a 10% increase in airport throughput. Enhancements to Center decision support tools had limited impact on improving the efficiency of terminal operations, but did provide more fuel-efficient advisories to achieve scheduling conformance within 20 seconds. The TRACON controller decision support tools were found to provide the most benefit, by improving the precision in schedule conformance to within 20 seconds, reducing the number of arrivals having lateral path deviations by 50% and lowering subjective controller workload. Overall, the TAPSS system was found to successfully develop an achievable terminal arrival metering plan that was sustainable under heavy traffic demand levels and reduce the complexity of terminal operations when coupled with the use of the terminal controller advisory tools.
Collision avoidance system cost-benefit analysis : volume I - technical manual
DOT National Transportation Integrated Search
1981-09-01
Collision-avoidance systems under development in the U.S.A., Japan and Germany were evaluated. The performance evaluation showed that the signal processing and the control law of a system were the key parameters that decided the system's capability, ...
48 CFR 34.202 - Integrated Baseline Reviews.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Integrated Baseline... SPECIAL CATEGORIES OF CONTRACTING MAJOR SYSTEM ACQUISITION Earned Value Management System 34.202... inherent risks in offerors'/contractors' performance plans and the underlying management control systems...
48 CFR 34.202 - Integrated Baseline Reviews.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Integrated Baseline... SPECIAL CATEGORIES OF CONTRACTING MAJOR SYSTEM ACQUISITION Earned Value Management System 34.202... inherent risks in offerors'/contractors' performance plans and the underlying management control systems...
48 CFR 34.202 - Integrated Baseline Reviews.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Integrated Baseline... SPECIAL CATEGORIES OF CONTRACTING MAJOR SYSTEM ACQUISITION Earned Value Management System 34.202... inherent risks in offerors'/contractors' performance plans and the underlying management control systems...
Integrated passive/active vibration absorber for multi-story buildings
NASA Technical Reports Server (NTRS)
Lee-Glauser, Gina J.; Ahmadi, Goodarz; Horta, Lucas G.
1995-01-01
Passive isolator, active vibration absorber, and an integrated passive/active (hybrid) control are studied for their effectiveness in reducing structural vibration under seismic excitations. For the passive isolator, a laminated rubber bearing base isolator which has been studied and used extensively by researchers and seismic designers is considered. An active vibration absorber concept, which can provide guaranteed closed-loop stability with minimum knowledge of the controlled system, is used to reduce the passive isolator displacement and to suppress the top floor vibration. A three-story building model is used for the numerical simulation. The performance of an active vibration absorber and a hybrid vibration controller in reducing peak structural responses is compared with the passively isolated structural response and with absence of vibration control systems under the N00W component of El Centro 1940 and N90W component of the Mexico City earthquake excitation records. The results show that the integrated passive/active vibration control system is most effective in suppressing the peak structural acceleration for the El Centro 1940 earthquake when compared with the passive or active vibration absorber alone. The active vibration absorber, however, is the only system that suppresses the peak acceleration of the structure for the Mexico City 1985 earthquake.
NASA Technical Reports Server (NTRS)
Mcgehee, C. R.
1986-01-01
This is Part 2-Appendices of a study conducted under Drones for Aerodynamic and Structural Testing (DAST) Program to accomplish the final design and hardware fabrication for four active control systems compatible with and ready for installation in the NASA Aeroelastic Research Wing No. 2 (ARW-2) and Firebee II drone flight test vehicle. The wing structure was designed so that Active Control Systems (ACS) are required in the normal flight envelope by integrating control system design with aerodynamics and structure technologies. The DAST ARW-2 configuration uses flutter suppression, relaxed static stability, and gust and maneuver load alleviation ACS systems, and an automatic flight control system. Performance goals and criteria were applied to individual systems and the systems collectively to assure that vehicle stability margins, flutter margins, flying qualities, and load reductions were achieved.
On the Representational Systems Underlying Prospection: Evidence from the Event-Cueing Paradigm
ERIC Educational Resources Information Center
D'Argembeau, Arnaud; Demblon, Julie
2012-01-01
The ability to think about the future--prospection--is central to many aspects of human cognition and behavior, from planning and decision making, to self-control and the construction of a sense of identity. Yet, the exact nature of the representational systems underlying prospection is not fully understood. Recent findings point to the critical…
12 CFR 225.104 - “Services” under section 4(c)(1) of Bank Holding Company Act.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Holding Company Act. 225.104 Section 225.104 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM BANK HOLDING COMPANIES AND CHANGE IN BANK CONTROL (REGULATION Y) Regulations Financial Holding Companies Interpretations § 225.104 “Services” under section 4(c)(1) of Bank...
12 CFR 225.109 - “Services” under section 4(c)(1) of Bank Holding Company Act.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Holding Company Act. 225.109 Section 225.109 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM BANK HOLDING COMPANIES AND CHANGE IN BANK CONTROL (REGULATION Y) Regulations Financial Holding Companies Interpretations § 225.109 “Services” under section 4(c)(1) of Bank...
USDA-ARS?s Scientific Manuscript database
Mass trapping and attract-and-kill bait stations are two attractant based systems that are being used or are under development as pesticide alternatives for control of a number of pest tephritid fruit flies. Results of field trials for suppression of Caribbean fruit flies in guava orchards in Florid...
NASA Technical Reports Server (NTRS)
Thomas, N. L.; Chisel, D. M.
1976-01-01
The success of a rocket-borne experiment depends not only on the pointing of the attitude control system, but on the alignment of the attitude control system to the payload. To ensure proper alignment, special optical tools and alignment techniques are required. Those that were used in the SPARCS program are described and discussed herein. These tools include theodolites, autocollimators, a 38-cm diameter solar simulator, a high-performance 1-m heliostat to provide a stable solar source during the integration of the rocket payload, a portable 75-cm sun tracker for use at the launch site, and an innovation called the Solar Alignment Prism. Using the real sun as the primary reference under field conditions, the Solar Alignment Prism facilitates the coalignment of the attitude sun sensor with the payload. The alignment techniques were developed to ensure the precise alignment of the solar payloads to the SPARCS attitude sensors during payload integration and to verify the required alignment under field conditions just prior to launch.
Real-time Simulation of Turboprop Engine Control System
NASA Astrophysics Data System (ADS)
Sheng, Hanlin; Zhang, Tianhong; Zhang, Yi
2017-05-01
On account of the complexity of turboprop engine control system, real-time simulation is the technology, under the prerequisite of maintaining real-time, to effectively reduce development cost, shorten development cycle and avert testing risks. The paper takes RT-LAB as a platform and studies the real-time digital simulation of turboprop engine control system. The architecture, work principles and external interfaces of RT-LAB real-time simulation platform are introduced firstly. Then based on a turboprop engine model, the control laws of propeller control loop and fuel control loop are studied. From that and on the basis of Matlab/Simulink, an integrated controller is designed which can realize the entire process control of the engine from start-up to maximum power till stop. At the end, on the basis of RT-LAB platform, the real-time digital simulation of the designed control system is studied, different regulating plans are tried and more ideal control effects have been obtained.
Flight Validation of a Metrics Driven L(sub 1) Adaptive Control
NASA Technical Reports Server (NTRS)
Dobrokhodov, Vladimir; Kitsios, Ioannis; Kaminer, Isaac; Jones, Kevin D.; Xargay, Enric; Hovakimyan, Naira; Cao, Chengyu; Lizarraga, Mariano I.; Gregory, Irene M.
2008-01-01
The paper addresses initial steps involved in the development and flight implementation of new metrics driven L1 adaptive flight control system. The work concentrates on (i) definition of appropriate control driven metrics that account for the control surface failures; (ii) tailoring recently developed L1 adaptive controller to the design of adaptive flight control systems that explicitly address these metrics in the presence of control surface failures and dynamic changes under adverse flight conditions; (iii) development of a flight control system for implementation of the resulting algorithms onboard of small UAV; and (iv) conducting a comprehensive flight test program that demonstrates performance of the developed adaptive control algorithms in the presence of failures. As the initial milestone the paper concentrates on the adaptive flight system setup and initial efforts addressing the ability of a commercial off-the-shelf AP with and without adaptive augmentation to recover from control surface failures.
Spunt, Robert P; Lieberman, Matthew D
2013-01-01
Much social-cognitive processing is believed to occur automatically; however, the relative automaticity of the brain systems underlying social cognition remains largely undetermined. We used functional MRI to test for automaticity in the functioning of two brain systems that research has indicated are important for understanding other people's behavior: the mirror neuron system and the mentalizing system. Participants remembered either easy phone numbers (low cognitive load) or difficult phone numbers (high cognitive load) while observing actions after adopting one of four comprehension goals. For all four goals, mirror neuron system activation showed relatively little evidence of modulation by load; in contrast, the association of mentalizing system activation with the goal of inferring the actor's mental state was extinguished by increased cognitive load. These results support a dual-process model of the brain systems underlying action understanding and social cognition; the mirror neuron system supports automatic behavior identification, and the mentalizing system supports controlled social causal attribution.
NASA Technical Reports Server (NTRS)
Mullen, T. J.; Appel, M. L.; Mukkamala, R.; Mathias, J. M.; Cohen, R. J.
1997-01-01
We applied system identification to the analysis of fluctuations in heart rate (HR), arterial blood pressure (ABP), and instantaneous lung volume (ILV) to characterize quantitatively the physiological mechanisms responsible for the couplings between these variables. We characterized two autonomically mediated coupling mechanisms [the heart rate baroreflex (HR baroreflex) and respiratory sinus arrhythmia (ILV-HR)] and two mechanically mediated coupling mechanisms [the blood pressure wavelet generated with each cardiac contraction (circulatory mechanics) and the direct mechanical effects of respiration on blood pressure (ILV-->ABP)]. We evaluated the method in humans studied in the supine and standing postures under control conditions and under conditions of beta-sympathetic and parasympathetic pharmacological blockades. Combined beta-sympathetic and parasympathetic blockade abolished the autonomically mediated couplings while preserving the mechanically mediated coupling. Selective autonomic blockade and postural changes also altered the couplings in a manner consistent with known physiological mechanisms. System identification is an "inverse-modeling" technique that provides a means for creating a closed-loop model of cardiovascular regulation for an individual subject without altering the underlying physiological control mechanisms.
Decoupling Identification for Serial Two-Link Two-Inertia System
NASA Astrophysics Data System (ADS)
Oaki, Junji; Adachi, Shuichi
The purpose of our study is to develop a precise model by applying the technique of system identification for the model-based control of a nonlinear robot arm, under taking joint-elasticity into consideration. We previously proposed a systematic identification method, called “decoupling identification,” for a “SCARA-type” planar two-link robot arm with elastic joints caused by the Harmonic-drive® reduction gears. The proposed method serves as an extension of the conventional rigid-joint-model-based identification. The robot arm is treated as a serial two-link two-inertia system with nonlinearity. The decoupling identification method using link-accelerometer signals enables the serial two-link two-inertia system to be divided into two linear one-link two-inertia systems. The MATLAB®'s commands for state-space model estimation are utilized in the proposed method. Physical parameters such as motor inertias, link inertias, joint-friction coefficients, and joint-spring coefficients are estimated through the identified one-link two-inertia systems using a gray-box approach. This paper describes accuracy evaluations using the two-link arm for the decoupling identification method under introducing closed-loop-controlled elements and varying amplitude-setup of identification-input. Experimental results show that the identification method also works with closed-loop-controlled elements. Therefore, the identification method is applicable to a “PUMA-type” vertical robot arm under gravity.
Precision pointing and control of flexible spacecraft
NASA Technical Reports Server (NTRS)
Bantell, M. H., Jr.
1987-01-01
The problem and long term objectives for the precision pointing and control of flexible spacecraft are given. The four basic objectives are stated in terms of two principle tasks. Under Task 1, robust low order controllers, improved structural modeling methods for control applications and identification methods for structural dynamics are being developed. Under Task 2, a lab test experiment for verification of control laws and system identification algorithms is being developed. For Task 1, work has focused on robust low order controller design and some initial considerations for structural modeling in control applications. For Task 2, work has focused on experiment design and fabrication, along with sensor selection and initial digital controller implementation. Conclusions are given.
Comparison of multi- and hyperspectral imaging data of leaf rust infected wheat plants
NASA Astrophysics Data System (ADS)
Franke, Jonas; Menz, Gunter; Oerke, Erich-Christian; Rascher, Uwe
2005-10-01
In the context of precision agriculture, several recent studies have focused on detecting crop stress caused by pathogenic fungi. For this purpose, several sensor systems have been used to develop in-field-detection systems or to test possible applications of remote sensing. The objective of this research was to evaluate the potential of different sensor systems for multitemporal monitoring of leaf rust (puccinia recondita) infected wheat crops, with the aim of early detection of infected stands. A comparison between a hyperspectral (120 spectral bands) and a multispectral (3 spectral bands) imaging system shows the benefits and limitations of each approach. Reflectance data of leaf rust infected and fungicide treated control wheat stand boxes (1sqm each) were collected before and until 17 days after inoculation. Plants were grown under controlled conditions in the greenhouse and measurements were taken under consistent illumination conditions. The results of mixture tuned matched filtering analysis showed the suitability of hyperspectral data for early discrimination of leaf rust infected wheat crops due to their higher spectral sensitivity. Five days after inoculation leaf rust infected leaves were detected, although only slight visual symptoms appeared. A clear discrimination between infected and control stands was possible. Multispectral data showed a higher sensitivity to external factors like illumination conditions, causing poor classification accuracy. Nevertheless, if these factors could get under control, even multispectral data may serve a good indicator for infection severity.
Pol, Tejas R; Vandekar, Meghna; Patil, Anuradha; Desai, Sanjana; Shetty, Vikram; Hazarika, Saptarshi
2018-01-01
The aim of present study was to investigate the difference of torque control during intrusive force on upper central incisors with normal, under and high torque in lingual and labial orthodontic systems through 3D finite element analysis. Six 3D models of an upper right central incisor with different torque were designed in Solid Works 2006. Software ANSYS Version 16.0 was used to evaluate intrusive force on upper central incisor model . An intrusive force of 0.15 N was applied to the bracket slot in different torque models and the displacements along a path of nodes in the upper central incisor was assessed. On application of Intrusive force on under torqued upper central incisor in Labial system produce labial crown movement but in Lingual system caused lingual movement in the apical and incisal parts. The same intrusive force in normal-torqued central incisor led to a palatal movement in apical and labial displacement of incisal edge in Lingual system and a palatal displacement in apical area and a labial movement in the incisal edge in Labial systemin. In overtorqued upper central incisor, the labial crown displacement in Labial system is more than Lingual system. In labial and lingual system on application of the same forces in upper central incisor with different inclinations showed different responses. The magnitudes of torque Loss during intrusive loads in incisors with normal, under and over-torque were higher in Labial system than Lingual orthodontic appliances. Key words: FEM, lingual orthodontics, intrusion, torque control, labial bracket systems.
Development of An Intelligent Flight Propulsion Control System
NASA Technical Reports Server (NTRS)
Calise, A. J.; Rysdyk, R. T.; Leonhardt, B. K.
1999-01-01
The initial design and demonstration of an Intelligent Flight Propulsion and Control System (IFPCS) is documented. The design is based on the implementation of a nonlinear adaptive flight control architecture. This initial design of the IFPCS enhances flight safety by using propulsion sources to provide redundancy in flight control. The IFPCS enhances the conventional gain scheduled approach in significant ways: (1) The IFPCS provides a back up flight control system that results in consistent responses over a wide range of unanticipated failures. (2) The IFPCS is applicable to a variety of aircraft models without redesign and,(3) significantly reduces the laborious research and design necessary in a gain scheduled approach. The control augmentation is detailed within an approximate Input-Output Linearization setting. The availability of propulsion only provides two control inputs, symmetric and differential thrust. Earlier Propulsion Control Augmentation (PCA) work performed by NASA provided for a trajectory controller with pilot command input of glidepath and heading. This work is aimed at demonstrating the flexibility of the IFPCS in providing consistency in flying qualities under a variety of failure scenarios. This report documents the initial design phase where propulsion only is used. Results confirm that the engine dynamics and associated hard nonlineaaities result in poor handling qualities at best. However, as demonstrated in simulation, the IFPCS is capable of results similar to the gain scheduled designs of the NASA PCA work. The IFPCS design uses crude estimates of aircraft behaviour. The adaptive control architecture demonstrates robust stability and provides robust performance. In this work, robust stability means that all states, errors, and adaptive parameters remain bounded under a wide class of uncertainties and input and output disturbances. Robust performance is measured in the quality of the tracking. The results demonstrate the flexibility of the IFPCS architecture and the ability to provide robust performance under a broad range of uncertainty. Robust stability is proved using Lyapunov like analysis. Future development of the IFPCS will include integration of conventional control surfaces with the use of propulsion augmentation, and utilization of available lift and drag devices, to demonstrate adaptive control capability under a greater variety of failure scenarios. Further work will specifically address the effects of actuator saturation.
Johnson, Norman A; Porter, Adam H
2007-01-01
Developmental systems are regulated by a web of interacting loci. One common and useful approach in studying the evolution of development is to focus on classes of interacting elements within these systems. Here, we use individual-based simulations to study the evolution of traits controlled by branched developmental pathways involving three loci, where one locus regulates two different traits. We examined the system under a variety of selective regimes. In the case where one branch was under stabilizing selection and the other under directional selection, we observed "developmental system drift": the trait under stabilizing selection showed little phenotypic change even though the loci underlying that trait showed considerable evolutionary divergence. This occurs because the pleiotropic locus responds to directional selection and compensatory mutants are then favored in the pathway under stabilizing selection. Though developmental system drift may be caused by other mechanisms, it seems likely that it is accelerated by the same underlying genetic mechanism as that producing the Dobzhansky-Muller incompatibilities that lead to speciation in both linear and branched pathways. We also discuss predictions of our model for developmental system drift and how different selective regimes affect probabilities of speciation in the branched pathway system.
Okayama optical polarimetry and spectroscopy system (OOPS) II. Network-transparent control software.
NASA Astrophysics Data System (ADS)
Sasaki, T.; Kurakami, T.; Shimizu, Y.; Yutani, M.
Control system of the OOPS (Okayama Optical Polarimetry and Spectroscopy system) is designed to integrate several instruments whose controllers are distributed over a network; the OOPS instrument, a CCD camera and data acquisition unit, the 91 cm telescope, an autoguider, a weather monitor, and an image display tool SAOimage. With the help of message-based communication, the control processes cooperate with related processes to perform an astronomical observation under supervising control by a scheduler process. A logger process collects status data of all the instruments to distribute them to related processes upon request. Software structure of each process is described.
The aircraft energy efficiency active controls technology program
NASA Technical Reports Server (NTRS)
Hood, R. V., Jr.
1977-01-01
Broad outlines of the NASA Aircraft Energy Efficiency Program for expediting the application of active controls technology to civil transport aircraft are presented. Advances in propulsion and airframe technology to cut down on fuel consumption and fuel costs, a program for an energy-efficient transport, and integrated analysis and design technology in aerodynamics, structures, and active controls are envisaged. Fault-tolerant computer systems and fault-tolerant flight control system architectures are under study. Contracts with leading manufacturers for research and development work on wing-tip extensions and winglets for the B-747, a wing load alleviation system, elastic mode suppression, maneuver-load control, and gust alleviation are mentioned.
Configurable technology development for reusable control and monitor ground systems
NASA Technical Reports Server (NTRS)
Uhrlaub, David R.
1994-01-01
The control monitor unit (CMU) uses configurable software technology for real-time mission command and control, telemetry processing, simulation, data acquisition, data archiving, and ground operations automation. The base technology is currently planned for the following control and monitor systems: portable Space Station checkout systems; ecological life support systems; Space Station logistics carrier system; and the ground system of the Delta Clipper (SX-2) in the Single-Stage Rocket Technology program. The CMU makes extensive use of commercial technology to increase capability and reduce development and life-cycle costs. The concepts and technology are being developed by McDonnell Douglas Space and Defense Systems for the Real-Time Systems Laboratory at NASA's Kennedy Space Center under the Payload Ground Operations Contract. A second function of the Real-Time Systems Laboratory is development and utilization of advanced software development practices.
A rule-based expert system for generating control displays at the Advanced Photon Source
NASA Astrophysics Data System (ADS)
Coulter, Karen J.
1994-12-01
The integration of a rule-based expert system for generating screen displays for controlling and monitoring instrumentation under the Experimental Physics and Industrial Control System (EPICS) is presented. The expert system is implemented using CLIPS, an expert system shell from the Software Technology Branch at Lyndon B. Johnson Space Center. The user selects the hardware input and output to be displayed and the expert system constructs a graphical control screen appropriate for the data. Such a system provides a method for implementing a common look and feel for displays created by several different users and reduces the amount of time required to create displays for new hardware configurations. Users are able to modify the displays as needed using the EPICS display editor tool.
Liquid gating elastomeric porous system with dynamically controllable gas/liquid transport.
Sheng, Zhizhi; Wang, Honglong; Tang, Yongliang; Wang, Miao; Huang, Lizhi; Min, Lingli; Meng, Haiqiang; Chen, Songyue; Jiang, Lei; Hou, Xu
2018-02-01
The development of membrane technology is central to fields ranging from resource harvesting to medicine, but the existing designs are unable to handle the complex sorting of multiphase substances required for many systems. Especially, the dynamic multiphase transport and separation under a steady-state applied pressure have great benefits for membrane science, but have not been realized at present. Moreover, the incorporation of precisely dynamic control with avoidance of contamination of membranes remains elusive. We show a versatile strategy for creating elastomeric microporous membrane-based systems that can finely control and dynamically modulate the sorting of a wide range of gases and liquids under a steady-state applied pressure, nearly eliminate fouling, and can be easily applied over many size scales, pressures, and environments. Experiments and theoretical calculation demonstrate the stability of our system and the tunability of the critical pressure. Dynamic transport of gas and liquid can be achieved through our gating interfacial design and the controllable pores' deformation without changing the applied pressure. Therefore, we believe that this system will bring new opportunities for many applications, such as gas-involved chemical reactions, fuel cells, multiphase separation, multiphase flow, multiphase microreactors, colloidal particle synthesis, and sizing nano/microparticles.
Tunnel Ventilation Control Using Reinforcement Learning Methodology
NASA Astrophysics Data System (ADS)
Chu, Baeksuk; Kim, Dongnam; Hong, Daehie; Park, Jooyoung; Chung, Jin Taek; Kim, Tae-Hyung
The main purpose of tunnel ventilation system is to maintain CO pollutant concentration and VI (visibility index) under an adequate level to provide drivers with comfortable and safe driving environment. Moreover, it is necessary to minimize power consumption used to operate ventilation system. To achieve the objectives, the control algorithm used in this research is reinforcement learning (RL) method. RL is a goal-directed learning of a mapping from situations to actions without relying on exemplary supervision or complete models of the environment. The goal of RL is to maximize a reward which is an evaluative feedback from the environment. In the process of constructing the reward of the tunnel ventilation system, two objectives listed above are included, that is, maintaining an adequate level of pollutants and minimizing power consumption. RL algorithm based on actor-critic architecture and gradient-following algorithm is adopted to the tunnel ventilation system. The simulations results performed with real data collected from existing tunnel ventilation system and real experimental verification are provided in this paper. It is confirmed that with the suggested controller, the pollutant level inside the tunnel was well maintained under allowable limit and the performance of energy consumption was improved compared to conventional control scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lian, Jianming; Sun, Y.; Kalsi, Karanjit
This document is the second of a two-part report. Part 1 reviewed several demonstrations of transactive control and compared them in terms of their payoff functions, control decisions, information privacy, and mathematical solution concepts. It was suggested in Part 1 that these four listed components should be adopted for meaningful comparison and design of future transactive systems. Part 2 proposes qualitative and quantitative metrics that will be needed to compare alternative transactive systems. It then uses the analysis and design principles from Part 1 while conducting more in-depth analysis of two transactive demonstrations: the American Electric Power (AEP) gridSMART Demonstration,more » which used a double –auction market mechanism, and a consensus method like that used in the Pacific Northwest Smart Grid Demonstration. Ultimately, metrics must be devised and used to meaningfully compare alternative transactive systems. One significant contribution of this report is an observation that the decision function used for thermostat control in the AEP gridSMART Demonstration has superior performance if its decision function is recast to more accurately reflect the power that will be used under for thermostatic control under alternative market outcomes.« less
Liquid gating elastomeric porous system with dynamically controllable gas/liquid transport
Sheng, Zhizhi; Wang, Honglong; Tang, Yongliang; Wang, Miao; Huang, Lizhi; Min, Lingli; Meng, Haiqiang; Chen, Songyue; Jiang, Lei; Hou, Xu
2018-01-01
The development of membrane technology is central to fields ranging from resource harvesting to medicine, but the existing designs are unable to handle the complex sorting of multiphase substances required for many systems. Especially, the dynamic multiphase transport and separation under a steady-state applied pressure have great benefits for membrane science, but have not been realized at present. Moreover, the incorporation of precisely dynamic control with avoidance of contamination of membranes remains elusive. We show a versatile strategy for creating elastomeric microporous membrane-based systems that can finely control and dynamically modulate the sorting of a wide range of gases and liquids under a steady-state applied pressure, nearly eliminate fouling, and can be easily applied over many size scales, pressures, and environments. Experiments and theoretical calculation demonstrate the stability of our system and the tunability of the critical pressure. Dynamic transport of gas and liquid can be achieved through our gating interfacial design and the controllable pores’ deformation without changing the applied pressure. Therefore, we believe that this system will bring new opportunities for many applications, such as gas-involved chemical reactions, fuel cells, multiphase separation, multiphase flow, multiphase microreactors, colloidal particle synthesis, and sizing nano/microparticles. PMID:29487906
NASA Astrophysics Data System (ADS)
Yue, Fengfa; Li, Xingfei; Chen, Cheng; Tan, Wenbin
2017-12-01
In order to improve the control accuracy and stability of opto-electronic tracking system fixed on reef or airport under friction and external disturbance conditions, adaptive integral backstepping sliding mode control approach with friction compensation is developed to achieve accurate and stable tracking for fast moving target. The nonlinear observer and slide mode controller based on modified LuGre model with friction compensation can effectively reduce the influence of nonlinear friction and disturbance of this servo system. The stability of the closed-loop system is guaranteed by Lyapunov theory. The steady-state error of the system is eliminated by integral action. The adaptive integral backstepping sliding mode controller and its performance are validated by a nonlinear modified LuGre dynamic model of the opto-electronic tracking system in simulation and practical experiments. The experiment results demonstrate that the proposed controller can effectively realise the accuracy and stability control of opto-electronic tracking system.
Direct heuristic dynamic programming for damping oscillations in a large power system.
Lu, Chao; Si, Jennie; Xie, Xiaorong
2008-08-01
This paper applies a neural-network-based approximate dynamic programming method, namely, the direct heuristic dynamic programming (direct HDP), to a large power system stability control problem. The direct HDP is a learning- and approximation-based approach to addressing nonlinear coordinated control under uncertainty. One of the major design parameters, the controller learning objective function, is formulated to directly account for network-wide low-frequency oscillation with the presence of nonlinearity, uncertainty, and coupling effect among system components. Results include a novel learning control structure based on the direct HDP with applications to two power system problems. The first case involves static var compensator supplementary damping control, which is used to provide a comprehensive evaluation of the learning control performance. The second case aims at addressing a difficult complex system challenge by providing a new solution to a large interconnected power network oscillation damping control problem that frequently occurs in the China Southern Power Grid.
A Machine Vision Quality Control System for Industrial Acrylic Fibre Production
NASA Astrophysics Data System (ADS)
Heleno, Paulo; Davies, Roger; Correia, Bento A. Brázio; Dinis, João
2002-12-01
This paper describes the implementation of INFIBRA, a machine vision system used in the quality control of acrylic fibre production. The system was developed by INETI under a contract with a leading industrial manufacturer of acrylic fibres. It monitors several parameters of the acrylic production process. This paper presents, after a brief overview of the system, a detailed description of the machine vision algorithms developed to perform the inspection tasks unique to this system. Some of the results of online operation are also presented.
Karimi, Hamid Reza; Gao, Huijun
2008-07-01
A mixed H2/Hinfinity output-feedback control design methodology is presented in this paper for second-order neutral linear systems with time-varying state and input delays. Delay-dependent sufficient conditions for the design of a desired control are given in terms of linear matrix inequalities (LMIs). A controller, which guarantees asymptotic stability and a mixed H2/Hinfinity performance for the closed-loop system of the second-order neutral linear system, is then developed directly instead of coupling the model to a first-order neutral system. A Lyapunov-Krasovskii method underlies the LMI-based mixed H2/Hinfinity output-feedback control design using some free weighting matrices. The simulation results illustrate the effectiveness of the proposed methodology.
An information theory account of cognitive control
Fan, Jin
2014-01-01
Our ability to efficiently process information and generate appropriate responses depends on the processes collectively called cognitive control. Despite a considerable focus in the literature on the cognitive control of information processing, neural mechanisms underlying control are still unclear, and have not been characterized by considering the quantity of information to be processed. A novel and comprehensive account of cognitive control is proposed using concepts from information theory, which is concerned with communication system analysis and the quantification of information. This account treats the brain as an information-processing entity where cognitive control and its underlying brain networks play a pivotal role in dealing with conditions of uncertainty. This hypothesis and theory article justifies the validity and properties of such an account and relates experimental findings to the frontoparietal network under the framework of information theory. PMID:25228875
Development of automated optical verification technologies for control systems
NASA Astrophysics Data System (ADS)
Volegov, Peter L.; Podgornov, Vladimir A.
1999-08-01
The report considers optical techniques for automated verification of object's identity designed for control system of nuclear objects. There are presented results of experimental researches and results of development of pattern recognition techniques carried out under the ISTC project number 772 with the purpose of identification of unique feature of surface structure of a controlled object and effects of its random treatment. Possibilities of industrial introduction of the developed technologies in frames of USA and Russia laboratories' lab-to-lab cooperation, including development of up-to-date systems for nuclear material control and accounting are examined.
A spacecraft integrated power/attitude control system
NASA Technical Reports Server (NTRS)
Keckler, C. R.; Jacobs, K. L.
1974-01-01
A study to determine the viability and application of a system capable of performing the dual function of power storage/generation and attitude control has been conducted. Results from the study indicate that an integrated power/attitude control system (IPACS) can satisfy future mission requirements while providing significant savings in weight, volume, and cost over conventional systems. A failure-mode configuration of an IPACS was applied to a shuttle-launched RAM free-flyer and simulated using make-do hardware linked to a hybrid computer. Data from the simulation runs indicate that control interactions resulting from heavy power demands have minimal effect on system control effectiveness. The system was shown to be capable of meeting the stringent pointing requirements of 1 arc-second while operating under the influence of an orbital disturbance environment and during periods of momentum variations imposed by energy transfer requirements.
1992-11-18
Rev. 2-89) Prescribed by ANSI Std. 239-128 AVr Control Number: AVF-VSR-542-1092 Date VSR Complete: 18 November 1992 92-06-23- vRx Ada COMPILER...System: AST Premium 486 under UNIX System V, Release 4.0 Customer Agreement Number: 92-06-23- VRX See section 3.1 for any additional information about
Collision avoidance system cost-benefit analysis : volume III - appendices F-M
DOT National Transportation Integrated Search
1981-09-01
Collision-avoidance systems under development in the U.S.A., Japan and Germany were evaluated. The performance evaluation showed that the signal processing and the control law of a system were the key parameters that decided the system's capability, ...
Collision avoidance system cost-benefit analysis : volume II - appendices A-E
DOT National Transportation Integrated Search
1981-09-01
Collision-avoidance systems under development in the U.S.A., Japan and Germany were evaluated. The performance evaluation showed that the signal processing and the control law of a system were the key parameters that decided the system's capability, ...
48 CFR 1034.202 - Integrated Baseline Reviews.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Integrated Baseline... SPECIAL CATEGORIES OF CONTRACTING MAJOR SYSTEM ACQUISITION Earned Value Management System 1034.202... plans and the underlying management control systems, and it should formulate a plan to handle these...
48 CFR 1034.202 - Integrated Baseline Reviews.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Integrated Baseline... SPECIAL CATEGORIES OF CONTRACTING MAJOR SYSTEM ACQUISITION Earned Value Management System 1034.202... plans and the underlying management control systems, and it should formulate a plan to handle these...
48 CFR 1034.202 - Integrated Baseline Reviews.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Integrated Baseline... SPECIAL CATEGORIES OF CONTRACTING MAJOR SYSTEM ACQUISITION Earned Value Management System 1034.202... plans and the underlying management control systems, and it should formulate a plan to handle these...
System/observer/controller identification toolbox
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Horta, Lucas G.; Phan, Minh
1992-01-01
System Identification is the process of constructing a mathematical model from input and output data for a system under testing, and characterizing the system uncertainties and measurement noises. The mathematical model structure can take various forms depending upon the intended use. The SYSTEM/OBSERVER/CONTROLLER IDENTIFICATION TOOLBOX (SOCIT) is a collection of functions, written in MATLAB language and expressed in M-files, that implements a variety of modern system identification techniques. For an open loop system, the central features of the SOCIT are functions for identification of a system model and its corresponding forward and backward observers directly from input and output data. The system and observers are represented by a discrete model. The identified model and observers may be used for controller design of linear systems as well as identification of modal parameters such as dampings, frequencies, and mode shapes. For a closed-loop system, an observer and its corresponding controller gain directly from input and output data.
76 FR 22849 - DoD Unclassified Controlled Nuclear Information (UCNI)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-25
... computer or other information technology systems shall enforce protection from unauthorized disclosure or..., and control of the Under Secretary of Defense for Acquisition, Technology and Logistics, shall: (1... slides) containing DoD UCNI shall be conspicuously marked ``DOD UNCLASSIFIED CONTROLLED NUCLEAR...
Modeling of the Human - Operator in a Complex System Functioning Under Extreme Conditions
NASA Astrophysics Data System (ADS)
Getzov, Peter; Hubenova, Zoia; Yordanov, Dimitar; Popov, Wiliam
2013-12-01
Problems, related to the explication of sophisticated control systems of objects, operating under extreme conditions, have been examined and the impact of the effectiveness of the operator's activity on the systems as a whole. The necessity of creation of complex simulation models, reflecting operator's activity, is discussed. Organizational and technical system of an unmanned aviation complex is described as a sophisticated ergatic system. Computer realization of main subsystems of algorithmic system of the man as a controlling system is implemented and specialized software for data processing and analysis is developed. An original computer model of a Man as a tracking system has been implemented. Model of unmanned complex for operators training and formation of a mental model in emergency situation, implemented in "matlab-simulink" environment, has been synthesized. As a unit of the control loop, the pilot (operator) is simplified viewed as an autocontrol system consisting of three main interconnected subsystems: sensitive organs (perception sensors); central nervous system; executive organs (muscles of the arms, legs, back). Theoretical-data model of prediction the level of operator's information load in ergatic systems is proposed. It allows the assessment and prediction of the effectiveness of a real working operator. Simulation model of operator's activity in takeoff based on the Petri nets has been synthesized.
Probabilistic Integrated Assessment of ``Dangerous'' Climate Change
NASA Astrophysics Data System (ADS)
Mastrandrea, Michael D.; Schneider, Stephen H.
2004-04-01
Climate policy decisions are being made despite layers of uncertainty. Such decisions directly influence the potential for ``dangerous anthropogenic interference with the climate system.'' We mapped a metric for this concept, based on Intergovernmental Panel on Climate Change assessment of climate impacts, onto probability distributions of future climate change produced from uncertainty in key parameters of the coupled social-natural system-climate sensitivity, climate damages, and discount rate. Analyses with a simple integrated assessment model found that, under midrange assumptions, endogenously calculated, optimal climate policy controls can reduce the probability of dangerous anthropogenic interference from ~45% under minimal controls to near zero.
Steady-State Modeling of Modular Multilevel Converter Under Unbalanced Grid Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xiaojie M.; Wang, Zhiqiang; Liu, Bo
This paper presents a steady-state model of MMC for the second-order phase voltage ripple prediction under unbalanced conditions, taking the impact of negative-sequence current control into account. From the steady-state model, a circular relationship is found among current and voltage quantities, which can be used to evaluate the magnitudes and initial phase angles of different circulating current components. Moreover, in order to calculate the circulating current in a point-to-point MMC-based HVdc system under unbalanced grid conditions, the derivation of equivalent dc impedance of an MMC is discussed as well. According to the dc impedance model, an MMC inverter can bemore » represented as a series connected R-L-C branch, with its equivalent resistance and capacitance directly related to the circulating current control parameters. Experimental results from a scaled-down three-phase MMC system under an emulated single-line-to-ground fault are provided to support the theoretical analysis and derived model. In conclusion, this new models provides an insight into the impact of different control schemes on the fault characteristics and improves the understanding of the operation of MMC under unbalanced conditions.« less
Steady-State Modeling of Modular Multilevel Converter Under Unbalanced Grid Conditions
Shi, Xiaojie M.; Wang, Zhiqiang; Liu, Bo; ...
2016-11-16
This paper presents a steady-state model of MMC for the second-order phase voltage ripple prediction under unbalanced conditions, taking the impact of negative-sequence current control into account. From the steady-state model, a circular relationship is found among current and voltage quantities, which can be used to evaluate the magnitudes and initial phase angles of different circulating current components. Moreover, in order to calculate the circulating current in a point-to-point MMC-based HVdc system under unbalanced grid conditions, the derivation of equivalent dc impedance of an MMC is discussed as well. According to the dc impedance model, an MMC inverter can bemore » represented as a series connected R-L-C branch, with its equivalent resistance and capacitance directly related to the circulating current control parameters. Experimental results from a scaled-down three-phase MMC system under an emulated single-line-to-ground fault are provided to support the theoretical analysis and derived model. In conclusion, this new models provides an insight into the impact of different control schemes on the fault characteristics and improves the understanding of the operation of MMC under unbalanced conditions.« less
NASA Technical Reports Server (NTRS)
Stewart, James F.; Shuck, Thomas L.
1990-01-01
Flight tests conducted with the self-repairing flight control system (SRFCS) installed on the NASA F-15 highly integrated digital electronic control aircraft are described. The development leading to the current SRFCS configuration is highlighted. Key objectives of the program are outlined: (1) to flight-evaluate a control reconfiguration strategy with three types of control surface failure; (2) to evaluate a cockpit display that will inform the pilot of the maneuvering capacity of the damage aircraft; and (3) to flight-evaluate the onboard expert system maintenance diagnostics process using representative faults set to occur only under maneuvering conditions. Preliminary flight results addressing the operation of the overall system, as well as the individual technologies, are included.
[Social control and information democratization: a process under construction].
Assis, Marluce Maria Araújo; Villa, Tereza Cristina Scatena
2003-01-01
This work aims at a critical reflection on social control as a legal-institutional achievement and its legitimacy conditions, pointing out strategies for information democratization in the local health system. The text was developed according to three thematic units: the first discusses social participation as a legal-institutional achievement; the second analyzes the essential conditions for legitimacy and the third presents information as a fundamental element for management and social control as an unfinished process that is still under construction.
Health-system strengthening and tuberculosis control.
Atun, Rifat; Weil, Diana E C; Eang, Mao Tan; Mwakyusa, David
2010-06-19
Weak health systems are hindering global efforts for tuberculosis care and control, but little evidence is available on effective interventions to address system bottlenecks. This report examines published evidence, programme reviews, and case studies to identify innovations in system design and tuberculosis control to resolve these bottlenecks. We outline system bottlenecks in relation to governance, financing, supply chain management, human resources, health-information systems, and service delivery; and adverse effects from rapid introduction of suboptimum system designs. This report also documents innovative solutions for disease control and system design. Solutions pursued in individual countries are specific to the nature of the tuberculosis epidemic, the underlying national health system, and the contributors engaged: no one size fits all. Findings from countries, including Bangladesh, Cambodia, India, Tanzania, Thailand, and Vietnam, suggest that advances in disease control and system strengthening are complementary. Tuberculosis care and control are essential elements of health systems, and simultaneous efforts to innovate systems and disease response are mutually reinforcing. Highly varied and context-specific responses to tuberculosis show that solutions need to be documented and compared to develop evidence-based policies and practice. Copyright 2010 Elsevier Ltd. All rights reserved.
Features of control systems analysis with discrete control devices using mathematical packages
NASA Astrophysics Data System (ADS)
Yakovleva, E. M.; Faerman, V. A.
2017-02-01
The article contains presentation of basic provisions of the theory of automatic pulse control systems as well as methods of analysis of such systems using the mathematical software widespread in the academic environment. The pulse systems under research are considered as analogues systems interacting among themselves, including sensors, amplifiers, controlled objects, and discrete parts. To describe such systems, one uses a mathematical apparatus of difference equations as well as discrete transfer functions. To obtain a transfer function of the open-loop system, being important from the point of view of the analysis of control systems, one uses mathematical packages Mathcad and Matlab. Despite identity of the obtained result, the way of its achievement from the point of view of user’s action is various for the specified means. In particular, Matlab uses a structural model of the control system while Mathcad allows only execution of a chain of operator transforms. It is worth noting that distinctions taking place allow considering transformation of signals during interaction of the linear and continuous parts of the control system from different sides. The latter can be used in an educational process for the best assimilation of the course of the control system theory by students.
Goschke, Thomas
2014-01-01
Disadvantageous decision-making and impaired volitional control over actions, thoughts, and emotions are characteristics of a wide range of mental disorders such as addiction, eating disorders, depression, and anxiety disorders and may reflect transdiagnostic core mechanisms and possibly vulnerability factors. Elucidating the underlying neurocognitive mechanisms is a precondition for moving from symptom-based to mechanism-based disorder classifications and ultimately mechanism-targeted interventions. However, despite substantial advances in basic research on decision-making and cognitive control, there are still profound gaps in our current understanding of dysfunctions of these processes in mental disorders. Central unresolved questions are: (i) to which degree such dysfunctions reflect transdiagnostic mechanisms or disorder-specific patterns of impairment; (ii) how phenotypical features of mental disorders relate to dysfunctional control parameter settings and aberrant interactions between large-scale brain systems involved in habit and reward-based learning, performance monitoring, emotion regulation, and cognitive control; (iii) whether cognitive control impairments are consequences or antecedent vulnerability factors of mental disorders; (iv) whether they reflect generalized competence impairments or context-specific performance failures; (v) whether not only impaired but also chronic over-control contributes to mental disorders. In the light of these gaps, needs for future research are: (i) an increased focus on basic cognitive-affective mechanisms underlying decision and control dysfunctions across disorders; (ii) longitudinal-prospective studies systematically incorporating theory-driven behavioural tasks and neuroimaging protocols to assess decision-making and control dysfunctions and aberrant interactions between underlying large-scale brain systems; (iii) use of latent-variable models of cognitive control rather than single tasks; (iv) increased focus on the interplay of implicit and explicit cognitive-affective processes; (v) stronger focus on computational models specifying neurocognitive mechanisms underlying phenotypical expressions of mental disorders. Copyright © 2013 John Wiley & Sons, Ltd.
Neutron Imaging Control Report: FY 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, D. J.
2016-11-30
During the 2016 fiscal year, work began on the supervision and control systems for the neutron source currently under construction in the B194 accelerator caves. This source relies on a deuteron beam colliding with a high-speed stream of deuterium gas to create neutrons, which poses significant technical challenges. To help overcome those challenges, an integrated, operator-focused control architecture is required to collect and assimilate disparate data from a variety of measurement points, as well as provide the means to remotely control the system hardware.
NASA Technical Reports Server (NTRS)
Nuttall, L. J.; Titterington, W. A.
1974-01-01
Details of the design and system verification test results are presented for a six-man-rated oxygen generation system. The system configuration incorporates components and instrumentation for computer-controlled operation with automatic start-up/shutdown sequencing, fault detection and isolation, and with self-contained sensors and controls for automatic safe emergency shutdown. All fluid and electrical components, sensors, and electronic controls are designed to be easily maintainable under zero-gravity conditions. On-board component spares are utilized in the system concept to sustain long-term operation (six months minimum) in a manned spacecraft application. The system is centered on a 27-cell solid polymer electrolyte water electrolysis module which, combined with the associated system components and controls, forms a total system envelope 40 in. high, 40 in. wide, and 30 in. deep.
NASA Technical Reports Server (NTRS)
Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Smith, E. J.; Yerazunis, S. W.
1972-01-01
Investigation of problems related to the design and control of a mobile planetary vehicle to implement a systematic plan for the exploration of Mars has been undertaken. Problem areas receiving attention include: vehicle configuration, control, dynamics, systems and propulsion; systems analysis; terrain modeling and path selection; and chemical analysis of specimens. The following specific tasks have been under study: vehicle model design, mathematical modeling of a dynamic vehicle, experimental vehicle dynamics, obstacle negotiation, electromechanical controls, collapsibility and deployment, construction of a wheel tester, wheel analysis, payload design, system design optimization, effect of design assumptions, accessory optimal design, on-board computer sybsystem, laser range measurement, discrete obstacle detection, obstacle detection systems, terrain modeling, path selection system simulation and evaluation, gas chromatograph/mass spectrometer system concepts, chromatograph model evaluation and improvement.
Dynamic malware containment under an epidemic model with alert
NASA Astrophysics Data System (ADS)
Zhang, Tianrui; Yang, Lu-Xing; Yang, Xiaofan; Wu, Yingbo; Tang, Yuan Yan
2017-03-01
Alerting at the early stage of malware invasion turns out to be an important complement to malware detection and elimination. This paper addresses the issue of how to dynamically contain the prevalence of malware at a lower cost, provided alerting is feasible. A controlled epidemic model with alert is established, and an optimal control problem based on the epidemic model is formulated. The optimality system for the optimal control problem is derived. The structure of an optimal control for the proposed optimal control problem is characterized under some conditions. Numerical examples show that the cost-efficiency of an optimal control strategy can be enhanced by adjusting the upper and lower bounds on admissible controls.
NASA Astrophysics Data System (ADS)
Arya, Sabha Raj; Patel, Ashish; Giri, Ashutosh
2018-06-01
This paper deals wind energy based power generation system using Permanent Magnet Synchronous Generator (PMSG). It is controlled using advanced enhanced phase-lock loop for power quality features using distribution static compensator to eliminate the harmonics and to provide KVAR compensation as well as load balancing. It also manages rated potential at the point of common interface under linear and non-linear loads. In order to have better efficiency and reliable operation of PMSG driven by wind turbine, it is necessary to analyze the governing equation of wind based turbine and PMSG under fixed and variable wind speed. For handling power quality problems, power electronics based shunt connected custom power device is used in three wire system. The simulations in MATLAB/Simulink environment have been carried out in order to demonstrate this model and control approach used for the power quality enhancement. The performance results show the adequate performance of PMSG based power generation system and control algorithm.
Adaptive tracking control of leader-following linear multi-agent systems with external disturbances
NASA Astrophysics Data System (ADS)
Lin, Hanquan; Wei, Qinglai; Liu, Derong; Ma, Hongwen
2016-10-01
In this paper, the consensus problem for leader-following linear multi-agent systems with external disturbances is investigated. Brownian motions are used to describe exogenous disturbances. A distributed tracking controller based on Riccati inequalities with an adaptive law for adjusting coupling weights between neighbouring agents is designed for leader-following multi-agent systems under fixed and switching topologies. In traditional distributed static controllers, the coupling weights depend on the communication graph. However, coupling weights associated with the feedback gain matrix in our method are updated by state errors between neighbouring agents. We further present the stability analysis of leader-following multi-agent systems with stochastic disturbances under switching topology. Most traditional literature requires the graph to be connected all the time, while the communication graph is only assumed to be jointly connected in this paper. The design technique is based on Riccati inequalities and algebraic graph theory. Finally, simulations are given to show the validity of our method.
NASA Astrophysics Data System (ADS)
Arya, Sabha Raj; Patel, Ashish; Giri, Ashutosh
2018-03-01
This paper deals wind energy based power generation system using Permanent Magnet Synchronous Generator (PMSG). It is controlled using advanced enhanced phase-lock loop for power quality features using distribution static compensator to eliminate the harmonics and to provide KVAR compensation as well as load balancing. It also manages rated potential at the point of common interface under linear and non-linear loads. In order to have better efficiency and reliable operation of PMSG driven by wind turbine, it is necessary to analyze the governing equation of wind based turbine and PMSG under fixed and variable wind speed. For handling power quality problems, power electronics based shunt connected custom power device is used in three wire system. The simulations in MATLAB/Simulink environment have been carried out in order to demonstrate this model and control approach used for the power quality enhancement. The performance results show the adequate performance of PMSG based power generation system and control algorithm.
Operational effectiveness of a Multiple Aquila Control System (MACS)
NASA Technical Reports Server (NTRS)
Brown, R. W.; Flynn, J. D.; Frey, M. R.
1983-01-01
The operational effectiveness of a multiple aquila control system (MACS) was examined under a variety of remotely piloted vehicle (RPV) mission configurations. The set of assumptions and inputs used to form the rules under which a computerized simulation of MACS was run is given. The characteristics that are to govern MACS operations include: the battlefield environment that generates the requests for RPV missions, operating time-lines of the RPV-peculiar equipment, maintenance requirements, and vulnerability to enemy fire. The number of RPV missions and the number of operation days are discussed. Command, control, and communication data rates are estimated by determining how many messages are passed and what information is necessary in them to support ground coordination between MACS sections.
The optimal operation of cooling tower systems with variable-frequency control
NASA Astrophysics Data System (ADS)
Cao, Yong; Huang, Liqing; Cui, Zhiguo; Liu, Jing
2018-02-01
This study investigates the energy performance of chiller and cooling tower systems integrated with variable-frequency control for cooling tower fans and condenser water pumps. With regard to an example chiller system serving an office building, Chiller and cooling towers models were developed to assess how different variable-frequency control methods of cooling towers fans and condenser water pumps influence the trade-off between the chiller power, pump power and fan power under various operating conditions. The matching relationship between the cooling tower fans frequency and condenser water pumps frequency at optimal energy consumption of the system is introduced to achieve optimum system performance.
Iodine Hall Thruster Propellant Feed System for a CubeSat
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.
2014-01-01
There has been significant work recently in the development of iodine-fed Hall thrusters for in-space propulsion applications.1 The use of iodine as a propellant provides many advantages over present xenon-gas-fed Hall thruster systems. Iodine is a solid at ambient temperature (no pressurization required) and has no special handling requirements, making it safe for secondary flight opportunities. It has exceptionally high ?I sp (density times specific impulse), making it an enabling technology for small satellite near-term applications and providing system level advantages over mid-term high power electric propulsion options. Iodine provides thrust and efficiency that are comparable to xenonfed Hall thrusters while operating in the same discharge current and voltage regime, making it possible to leverage the development of flight-qualified xenon Hall thruster power processing units for the iodine application. Work at MSFC is presently aimed at designing, integrating, and demonstrating a flight-like iodine feed system suitable for the Hall thruster application. This effort represents a significant advancement in state-of-the-art. Though Iodine thrusters have demonstrated high performance with mission enabling potential, a flight-like feed system has never been demonstrated and iodine compatible components do not yet exist. Presented in this paper is the end-to-end integrated feed system demonstration. The system includes a propellant tank with active feedback-control heating, fill and drain interfaces, latching and proportional flow control valves (PFCV), flow resistors, and flight-like CubeSat power and control electronics. Hardware is integrated into a CubeSat-sized structure, calibrated and tested under vacuum conditions, and operated under under hot-fire conditions using a Busek BHT-200 thruster designed for iodine. Performance of the system is evaluated thorugh accurate measurement of thrust and a calibrated of mass flow rate measurement, which is a function of reservoir temperature/pressure, the flow resistors, and the setting of the PFCV. The calibration is performed using independent flow control monitoring techniques, providing an in situ measure of the flowrate as a function of controllable parameters. The reservoir temperature controls the iodine sublimation rate, providing propellant to ths thruster by pressurizing the propellant feed system to approx.1-2 psi. Control of the temperature and the PFCV are used to maintain reservoir pressure and keep the thruster discharge current constant.
DOT National Transportation Integrated Search
1996-03-01
This two-volume study documents an investigation of controlled flight into terrain (CFIT) aircraft accidents involving turbine-powered aircraft with six or more passenger seats flying under Federal Aviation Regulations (FAR) Part 91 flight rules, and...
ERIC Educational Resources Information Center
Ziomek, M. M.; Rehfeldt, R. A.
2008-01-01
This study compared the total amount of training time and total number of trial blocks for individuals with severe developmental disabilities to acquire mands under control of unconditioned establishing operations and mands under control of transitive conditioned establishing operations for manual sign and for the Picture Exchange Communication…
Uga, Yusaku; Sugimoto, Kazuhiko; Ogawa, Satoshi; Rane, Jagadish; Ishitani, Manabu; Hara, Naho; Kitomi, Yuka; Inukai, Yoshiaki; Ono, Kazuko; Kanno, Noriko; Inoue, Haruhiko; Takehisa, Hinako; Motoyama, Ritsuko; Nagamura, Yoshiaki; Wu, Jianzhong; Matsumoto, Takashi; Takai, Toshiyuki; Okuno, Kazutoshi; Yano, Masahiro
2013-09-01
The genetic improvement of drought resistance is essential for stable and adequate crop production in drought-prone areas. Here we demonstrate that alteration of root system architecture improves drought avoidance through the cloning and characterization of DEEPER ROOTING 1 (DRO1), a rice quantitative trait locus controlling root growth angle. DRO1 is negatively regulated by auxin and is involved in cell elongation in the root tip that causes asymmetric root growth and downward bending of the root in response to gravity. Higher expression of DRO1 increases the root growth angle, whereby roots grow in a more downward direction. Introducing DRO1 into a shallow-rooting rice cultivar by backcrossing enabled the resulting line to avoid drought by increasing deep rooting, which maintained high yield performance under drought conditions relative to the recipient cultivar. Our experiments suggest that control of root system architecture will contribute to drought avoidance in crops.
Automated potentiometric electrolyte analysis system. [for use in weightlessness
NASA Technical Reports Server (NTRS)
1973-01-01
The feasibility is demonstrated of utilizing chemical sensing electrode technology as the basis for an automatically-controlled system for blood gas and electrolyte analyses under weightlessness conditions. The specific measurements required were pH, pCO2, sodium, chloride, potassium ions, and ionized calcium. The general electrode theory, and ion activity measurements are described along with the fluid transport package, electronics unit, and controller for the automated potentiometric analysis system.
Security for safety critical space borne systems
NASA Technical Reports Server (NTRS)
Legrand, Sue
1987-01-01
The Space Station contains safety critical computer software components in systems that can affect life and vital property. These components require a multilevel secure system that provides dynamic access control of the data and processes involved. A study is under way to define requirements for a security model providing access control through level B3 of the Orange Book. The model will be prototyped at NASA-Johnson Space Center.
NASA Astrophysics Data System (ADS)
Zachariadou, K.; Yiasemides, K.; Trougkakos, N.
2012-11-01
We present a low-cost, fully computer-controlled, Arduino-based, educational laboratory (SolarInsight) to be used in undergraduate university courses concerned with electrical engineering and physics. The major goal of the system is to provide students with the necessary instrumentation, software tools and methodology in order to learn fundamental concepts of semiconductor physics by exploring the process of an experimental physics inquiry. The system runs under the Windows operating system and is composed of a data acquisition/control board, a power supply and processing boards, sensing elements, a graphical user interface and data analysis software. The data acquisition/control board is based on the Arduino open source electronics prototyping platform. The graphical user interface and communication with the Arduino are developed in C# and C++ programming languages respectively, by using IDE Microsoft Visual Studio 2010 Professional, which is freely available to students. Finally, the data analysis is performed by using the open source, object-oriented framework ROOT. Currently the system supports five teaching activities, each one corresponding to an independent tab in the user interface. SolarInsight has been partially developed in the context of a diploma thesis conducted within the Technological Educational Institute of Piraeus under the co-supervision of the Physics and Electronic Computer Systems departments’ academic staff.
Automated mass spectrometer analysis system
NASA Technical Reports Server (NTRS)
Giffin, Charles E. (Inventor); Kuppermann, Aron (Inventor); Dreyer, William J. (Inventor); Boettger, Heinz G. (Inventor)
1982-01-01
An automated mass spectrometer analysis system is disclosed, in which samples are automatically processed in a sample processor and converted into volatilizable samples, or their characteristic volatilizable derivatives. Each volatilizable sample is sequentially volatilized and analyzed in a double focusing mass spectrometer, whose output is in the form of separate ion beams all of which are simultaneously focused in a focal plane. Each ion beam is indicative of a different sample component or different fragments of one or more sample components and the beam intensity is related to the relative abundance of the sample component. The system includes an electro-optical ion detector which automatically and simultaneously converts the ion beams, first into electron beams which in turn produce a related image which is transferred to the target of a vilicon unit. The latter converts the images into electrical signals which are supplied to a data processor, whose output is a list of the components of the analyzed sample and their abundances. The system is under the control of a master control unit, which in addition to monitoring and controlling various power sources, controls the automatic operation of the system under expected and some unexpected conditions and further protects various critical parts of the system from damage due to particularly abnormal conditions.
Shang, Weijian; Su, Hao; Li, Gang; Fischer, Gregory S.
2014-01-01
This paper presents a surgical master-slave tele-operation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. This system consists of a piezoelectrically actuated slave robot for needle placement with integrated fiber optic force sensor utilizing Fabry-Perot interferometry (FPI) sensing principle. The sensor flexure is optimized and embedded to the slave robot for measuring needle insertion force. A novel, compact opto-mechanical FPI sensor interface is integrated into an MRI robot control system. By leveraging the complementary features of pneumatic and piezoelectric actuation, a pneumatically actuated haptic master robot is also developed to render force associated with needle placement interventions to the clinician. An aluminum load cell is implemented and calibrated to close the impedance control loop of the master robot. A force-position control algorithm is developed to control the hybrid actuated system. Teleoperated needle insertion is demonstrated under live MR imaging, where the slave robot resides in the scanner bore and the user manipulates the master beside the patient outside the bore. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. It has a position tracking error of 0.318mm and sine wave force tracking error of 2.227N. PMID:25126446
Shang, Weijian; Su, Hao; Li, Gang; Fischer, Gregory S
2013-01-01
This paper presents a surgical master-slave tele-operation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. This system consists of a piezoelectrically actuated slave robot for needle placement with integrated fiber optic force sensor utilizing Fabry-Perot interferometry (FPI) sensing principle. The sensor flexure is optimized and embedded to the slave robot for measuring needle insertion force. A novel, compact opto-mechanical FPI sensor interface is integrated into an MRI robot control system. By leveraging the complementary features of pneumatic and piezoelectric actuation, a pneumatically actuated haptic master robot is also developed to render force associated with needle placement interventions to the clinician. An aluminum load cell is implemented and calibrated to close the impedance control loop of the master robot. A force-position control algorithm is developed to control the hybrid actuated system. Teleoperated needle insertion is demonstrated under live MR imaging, where the slave robot resides in the scanner bore and the user manipulates the master beside the patient outside the bore. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. It has a position tracking error of 0.318mm and sine wave force tracking error of 2.227N.
Automated mass spectrometer analysis system
NASA Technical Reports Server (NTRS)
Boettger, Heinz G. (Inventor); Giffin, Charles E. (Inventor); Dreyer, William J. (Inventor); Kuppermann, Aron (Inventor)
1978-01-01
An automated mass spectrometer analysis system is disclosed, in which samples are automatically processed in a sample processor and converted into volatilizable samples, or their characteristic volatilizable derivatives. Each volatizable sample is sequentially volatilized and analyzed in a double focusing mass spectrometer, whose output is in the form of separate ion beams all of which are simultaneously focused in a focal plane. Each ion beam is indicative of a different sample component or different fragments of one or more sample components and the beam intensity is related to the relative abundance of the sample component. The system includes an electro-optical ion detector which automatically and simultaneously converts the ion beams, first into electron beams which in turn produce a related image which is transferred to the target of a vidicon unit. The latter converts the images into electrical signals which are supplied to a data processor, whose output is a list of the components of the analyzed sample and their abundances. The system is under the control of a master control unit, which in addition to monitoring and controlling various power sources, controls the automatic operation of the system under expected and some unexpected conditions and further protects various critical parts of the system from damage due to particularly abnormal conditions.
Control-based method to identify underlying delays of a nonlinear dynamical system.
Yu, Dongchuan; Frasca, Mattia; Liu, Fang
2008-10-01
We suggest several stationary state control-based delay identification methods which do not require any structural information about the controlled systems and are applicable to systems described by delayed ordinary differential equations. This proposed technique includes three steps: (i) driving a system to a steady state; (ii) perturbing the control signal for shifting the steady state; and (iii) identifying all delays by detecting the time that the system is abruptly drawn out of stationarity. Some aspects especially important for applications are discussed as well, including interaction delay identification, stationary state convergence speed, performance comparison, and the influence of noise on delay identification. Several examples are presented to illustrate the reliability and robustness of all delay identification methods suggested.
Use of PROFIBUS for cryogenic instrumentation at XFEL
NASA Astrophysics Data System (ADS)
Boeckmann, T.; Bolte, J.; Bozhko, Y.; Clausen, M.; Escherich, K.; Korth, O.; Penning, J.; Rickens, H.; Schnautz, T.; Schoeneburg, B.; Zhirnov, A.
2017-12-01
The European X-ray Free Electron Laser (XFEL) is a research facility and since December 2016 under commissioning at DESY in Hamburg. The XFEL superconducting accelerator is 1.5 km long and contains 96 superconducting accelerator modules. The control system EPICS (Experimental Physics and Industrial Control System) is used to control and operate the XFEL cryogenic system consisting of the XFEL refrigerator, cryogenic distribution systems and the XFEL accelerator. The PROFIBUS fieldbus technology is the key technology of the cryogenic instrumentation and the link to the control system. More than 650 PROFIBUS nodes are implemented in the different parts of the XFEL cryogenic facilities. The presentation will give an overview of PROFIBUS installation in these facilities regarding engineering, possibilities of diagnostics, commissioning and the first operating experience.
H2/H∞ control for grid-feeding converter considering system uncertainty
NASA Astrophysics Data System (ADS)
Li, Zhongwen; Zang, Chuanzhi; Zeng, Peng; Yu, Haibin; Li, Shuhui; Fu, Xingang
2017-05-01
Three-phase grid-feeding converters are key components to integrate distributed generation and renewable power sources to the power utility. Conventionally, proportional integral and proportional resonant-based control strategies are applied to control the output power or current of a GFC. But, those control strategies have poor transient performance and are not robust against uncertainties and volatilities in the system. This paper proposes a H2/H∞-based control strategy, which can mitigate the above restrictions. The uncertainty and disturbance are included to formulate the GFC system state-space model, making it more accurate to reflect the practical system conditions. The paper uses a convex optimisation method to design the H2/H∞-based optimal controller. Instead of using a guess-and-check method, the paper uses particle swarm optimisation to search a H2/H∞ optimal controller. Several case studies implemented by both simulation and experiment can verify the superiority of the proposed control strategy than the traditional PI control methods especially under dynamic and variable system conditions.
Prototyping Control and Data Acquisition for the ITER Neutral Beam Test Facility
NASA Astrophysics Data System (ADS)
Luchetta, Adriano; Manduchi, Gabriele; Taliercio, Cesare; Soppelsa, Anton; Paolucci, Francesco; Sartori, Filippo; Barbato, Paolo; Breda, Mauro; Capobianco, Roberto; Molon, Federico; Moressa, Modesto; Polato, Sandro; Simionato, Paola; Zampiva, Enrico
2013-10-01
The ITER Neutral Beam Test Facility will be the project's R&D facility for heating neutral beam injectors (HNB) for fusion research operating with H/D negative ions. Its mission is to develop technology to build the HNB prototype injector meeting the stringent HNB requirements (16.5 MW injection power, -1 MeV acceleration energy, 40 A ion current and one hour continuous operation). Two test-beds will be built in sequence in the facility: first SPIDER, the ion source test-bed, to optimize the negative ion source performance, second MITICA, the actual prototype injector, to optimize ion beam acceleration and neutralization. The SPIDER control and data acquisition system is under design. To validate the main architectural choices, a system prototype has been assembled and performance tests have been executed to assess the prototype's capability to meet the control and data acquisition system requirements. The prototype is based on open-source software frameworks running under Linux. EPICS is the slow control engine, MDSplus is the data handler and MARTe is the fast control manager. The prototype addresses low and high-frequency data acquisition, 10 kS/s and 10 MS/s respectively, camera image acquisition, data archiving, data streaming, data retrieval and visualization, real time fast control with 100 μs control cycle and supervisory control.
pH-Controlled Assembly of DNA Tiles
Amodio, Alessia; Adedeji, Abimbola Feyisara; Castronovo, Matteo; ...
2016-09-15
We demonstrate a strategy to trigger and finely control the assembly of supramolecular DNA nanostructures with pH. Control is achieved via a rationally designed strand displacement circuit that responds to pH and activates a downstream DNA tile self-assembly process. We observe that the DNA structures form under neutral/basic conditions, while the self-assembly process is suppressed under acidic conditions. The strategy presented here demonstrates a modular approach toward building systems capable of processing biochemical inputs and finely controlling the assembly of DNA-based nanostructures under isothermal conditions. In particular, the presented architecture is relevant for the development of complex DNA devices ablemore » to sense and respond to molecular markers associated with abnormal metabolism.« less
pH-Controlled Assembly of DNA Tiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amodio, Alessia; Adedeji, Abimbola Feyisara; Castronovo, Matteo
We demonstrate a strategy to trigger and finely control the assembly of supramolecular DNA nanostructures with pH. Control is achieved via a rationally designed strand displacement circuit that responds to pH and activates a downstream DNA tile self-assembly process. We observe that the DNA structures form under neutral/basic conditions, while the self-assembly process is suppressed under acidic conditions. The strategy presented here demonstrates a modular approach toward building systems capable of processing biochemical inputs and finely controlling the assembly of DNA-based nanostructures under isothermal conditions. In particular, the presented architecture is relevant for the development of complex DNA devices ablemore » to sense and respond to molecular markers associated with abnormal metabolism.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levitan, L.; Bloomfield, J.
1996-10-01
In most visions of the AHS--including that of the National Automated Highway System Consortium--it has been assumed that when a vehicle was under automated control, the driver would be allowed to engage in any of a variety of activities not related to driving (e.g, working, reading, sleeping). The objective of the first study reported here--one of the noncommuter studies--was to determine what drivers do when traveling under automated control, and whether the age of and/gender or the driver and/or the intrastring gap have an influence on those activities. One the objectives of the commuter experiment--of relevance for this report--was tomore » determine whether what drivers do when traveling under automated control changes as a function of experience with the AHS (i.e., across trials). As conceptualization of the AHS proceeds, the details of the interface between the driver and the in-vehicle system will become more important. One part of that interface will be information supplied by the AHS to the driver, perhaps about such things as traffic conditions ahead predicted trip time to the driver`s selected exit, and so on. To maximize the utility of that information, it is important to determine what it is that drivers would like to know when traveling under automated control. The objective of the third study reported here--the second of the five noncommuter experiments--was to provide a first investigation of that issue.« less
Performance of active feedforward control systems in non-ideal, synthesized diffuse sound fields.
Misol, Malte; Bloch, Christian; Monner, Hans Peter; Sinapius, Michael
2014-04-01
The acoustic performance of passive or active panel structures is usually tested in sound transmission loss facilities. A reverberant sending room, equipped with one or a number of independent sound sources, is used to generate a diffuse sound field excitation which acts as a disturbance source on the structure under investigation. The spatial correlation and coherence of such a synthesized non-ideal diffuse-sound-field excitation, however, might deviate significantly from the ideal case. This has consequences for the operation of an active feedforward control system which heavily relies on the acquisition of coherent disturbance source information. This work, therefore, evaluates the spatial correlation and coherence of ideal and non-ideal diffuse sound fields and considers the implications on the performance of a feedforward control system. The system under consideration is an aircraft-typical double panel system, equipped with an active sidewall panel (lining), which is realized in a transmission loss facility. Experimental results for different numbers of sound sources in the reverberation room are compared to simulation results of a comparable generic double panel system excited by an ideal diffuse sound field. It is shown that the number of statistically independent noise sources acting on the primary structure of the double panel system depends not only on the type of diffuse sound field but also on the sample lengths of the processed signals. The experimental results show that the number of reference sensors required for a defined control performance exhibits an inverse relationship to control filter length.
1985-09-01
Transducers capable of measuring electro-hydraulic control system which fore-aft and vertical load on a driven controls the brake system to deactivate tire...power. * axle allows design of all load-carrying - System logic power. ENGINE I EXTERNAL COMPARTMENT COMPONENTS CAB Brake Levelin system I trans... brake con- The TWS DAS was designed to 1) pro- trol system . vide onboard data sampling and filtering, A simplified truck operational flow chart 2) make
Informap... a computerized information system for fire planning and fire control
Theodore G. Storey; Ross D. Carder; Ernest T. Tolin
1969-01-01
INFORMAP (Information Necessary for Optimum Resource Management and Protection) is a computerized system under development for storing, manipulating, retrieving, and displaying data for fire planning and fire control. A prototype for planning applications has been developed and tested. It is programed in Fortran IV for the IBM 7040 computer, and displays information in...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-23
...: Ovarian Adnexal Mass Assessment Score Test System; Availability AGENCY: Food and Drug Administration, HHS... assessment score test system into class II (special controls) under section 513(f)(2) of the Federal Food... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-D-0028...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-27
... the Young Family control group; to retain control of Southeastern Bancshares, Inc., and thereby... FEDERAL RESERVE SYSTEM Change in Bank Control Notices; Acquisitions of Shares of a Bank or Bank Holding Company The notificants listed below have applied under the Change in Bank Control Act (12 U.S.C...
NASA Astrophysics Data System (ADS)
Sun, Shang; Moravek, Alexander; von der Heyden, Lisa; Held, Andreas; Sörgel, Matthias; Kesselmeier, Jürgen
2016-02-01
We present a dynamic twin-cuvette system for quantifying the trace-gas exchange fluxes between plants and the atmosphere under controlled temperature, light, and humidity conditions. Compared with a single-cuvette system, the twin-cuvette system is insensitive to disturbing background effects such as wall deposition. In combination with a climate chamber, we can perform flux measurements under constant and controllable environmental conditions. With an Automatic Temperature Regulated Air Humidification System (ATRAHS), we are able to regulate the relative humidity inside both cuvettes between 40 and 90 % with a high precision of 0.3 %. Thus, we could demonstrate that for a cuvette system operated with a high flow rate (> 20 L min-1), a temperature-regulated humidification system such as ATRAHS is an accurate method for air humidification of the flushing air. Furthermore, the fully automatic progressive fill-up of ATRAHS based on a floating valve improved the performance of the entire measurement system and prevented data gaps. Two reactive gas species, ozone (O3) and peroxyacetyl nitrate (PAN), were used to demonstrate the quality and performance of the twin-cuvette system. O3 and PAN exchange with Quercus ilex was investigated over a 14 day measurement period under controlled climate chamber conditions. By using O3 mixing ratios between 32 and 105 ppb and PAN mixing ratios between 100 and 350 ppt, a linear dependency of the O3 flux as well as the PAN flux in relation to its ambient mixing ratio could be observed. At relative humidity (RH) of 40 %, the deposition velocity ratio of O3 and PAN was determined to be 0.45. At that humidity, the deposition of O3 to the plant leaves was found to be only controlled by the leaf stomata. For PAN, an additional resistance inhibited the uptake of PAN by the leaves. Furthermore, the formation of water films on the leaf surface of plants inside the chamber could be continuously tracked with our custom built leaf wetness sensors. Using this modified leaf wetness sensor measuring the electrical surface conductance on the leaves, an exponential relationship between the ambient humidity and the electrical surface conductance could be determined.
NASA Astrophysics Data System (ADS)
Sun, S.; Moravek, A.; von der Heyden, L.; Held, A.; Sörgel, M.; Kesselmeier, J.
2015-11-01
We present a dynamic twin-cuvette system for quantifying the trace gas exchange fluxes between plants and the atmosphere under controlled temperature, light and humidity conditions. Compared with a single cuvette system, the twin-cuvette system is insensitive for disturbing background effects such as wall deposition. In combination with a climate chamber we can perform flux measurements under constant and controllable environmental conditions. With an Automatic Temperature Regulated Air Humidification System (ATRAHS) we are able to regulate the relative humidity inside both cuvettes between 40 to 90 % with a high precision of 0.3 %. Thus, we could demonstrate that for a cuvette system operated with a high flow rate (> 20 L min-1) such a temperature regulated humidification system as ATRAHS is an accurate method for air humidification of the flushing air. Furthermore, the fully automatic progressive fill-up of ATRAHS based on a floating valve improved the performance of the entire measurement system and prevented data gaps. Two reactive gas species, ozone (O3) and peroxyacetyl nitrate (PAN), were used to demonstrate the quality and performance of the twin-cuvette system. O3 and PAN exchange with Quercus ilex was investigated over a 14 day measurement period under controlled climate chamber conditions. By using O3 mixing ratios between 32-105 ppb and PAN mixing ratios between 100-350 ppt a linear dependency of the O3 flux as well as the PAN flux in relation to its ambient mixing ratio could be observed. At relative humidity (RH) of 40 %, the deposition velocity ratio of O3 and PAN was determined to be 0.45. At that humidity, the deposition of O3 to the plant leaves was found to be only controlled by the leaf stomata. For PAN an additional resistance inhibited the uptake of PAN by the leaves. Furthermore, the formation of water films on the leaf surface of plants inside the chamber could be continuously tracked with our custom built leaf wetness sensors. Using this modified leaf wetness sensor measuring the electrical surface conductance on the leaves, an exponential relationship between the ambient humidity and the electrical surface conductance could be determined.
49 CFR 238.431 - Brake system.
Code of Federal Regulations, 2011 CFR
2011-10-01
... train is operating under worst-case adhesion conditions. (b) The brake system shall be designed to allow... a brake rate consistent with prevailing adhesion, passenger safety, and brake system thermal... adhesion control system designed to automatically adjust the braking force on each wheel to prevent sliding...
Flight software requirements and design support system
NASA Technical Reports Server (NTRS)
Riddle, W. E.; Edwards, B.
1980-01-01
The desirability and feasibility of computer-augmented support for the pre-implementation activities occurring during the development of flight control software was investigated. The specific topics to be investigated were the capabilities to be included in a pre-implementation support system for flight control software system development, and the specification of a preliminary design for such a system. Further, the pre-implementation support system was to be characterized and specified under the constraints that it: (1) support both description and assessment of flight control software requirements definitions and design specification; (2) account for known software description and assessment techniques; (3) be compatible with existing and planned NASA flight control software development support system; and (4) does not impose, but may encourage, specific development technologies. An overview of the results is given.
NASA Technical Reports Server (NTRS)
Klarer, Paul
1993-01-01
An approach for a robotic control system which implements so called 'behavioral' control within a realtime multitasking architecture is proposed. The proposed system would attempt to ameliorate some of the problems noted by some researchers when implementing subsumptive or behavioral control systems, particularly with regard to multiple processor systems and realtime operations. The architecture is designed to allow synchronous operations between various behavior modules by taking advantage of a realtime multitasking system's intertask communications channels, and by implementing each behavior module and each interconnection node as a stand-alone task. The potential advantages of this approach over those previously described in the field are discussed. An implementation of the architecture is planned for a prototype Robotic All Terrain Lunar Exploration Rover (RATLER) currently under development and is briefly described.
Laser metrology and optic active control system for GAIA
NASA Astrophysics Data System (ADS)
D'Angelo, F.; Bonino, L.; Cesare, S.; Castorina, G.; Mottini, S.; Bertinetto, F.; Bisi, M.; Canuto, E.; Musso, F.
2017-11-01
The Laser Metrology and Optic Active Control (LM&OAC) program has been carried out under ESA contract with the purpose to design and validate a laser metrology system and an actuation mechanism to monitor and control at microarcsec level the stability of the Basic Angle (angle between the lines of sight of the two telescopes) of GAIA satellite. As part of the program, a breadboard (including some EQM elements) of the laser metrology and control system has been built and submitted to functional, performance and environmental tests. In the followings we describe the mission requirements, the system architecture, the breadboard design, and finally the performed validation tests. Conclusion and appraisals from this experience are also reported.
Cyber attack analysis on cyber-physical systems: Detectability, severity, and attenuation strategy
NASA Astrophysics Data System (ADS)
Kwon, Cheolhyeon
Security of Cyber-Physical Systems (CPS) against malicious cyber attacks is an important yet challenging problem. Since most cyber attacks happen in erratic ways, it is usually intractable to describe and diagnose them systematically. Motivated by such difficulties, this thesis presents a set of theories and algorithms for a cyber-secure architecture of the CPS within the control theoretic perspective. Here, instead of identifying a specific cyber attack model, we are focused on analyzing the system's response during cyber attacks. Firstly, we investigate the detectability of the cyber attacks from the system's behavior under cyber attacks. Specifically, we conduct a study on the vulnerabilities in the CPS's monitoring system against the stealthy cyber attack that is carefully designed to avoid being detected by its detection scheme. After classifying three kinds of cyber attacks according to the attacker's ability to compromise the system, we derive the necessary and sufficient conditions under which such stealthy cyber attacks can be designed to cause the unbounded estimation error while not being detected. Then, the analytical design method of the optimal stealthy cyber attack that maximizes the estimation error is developed. The proposed stealthy cyber attack analysis is demonstrated with illustrative examples on Air Traffic Control (ATC) system and Unmanned Aerial Vehicle (UAV) navigation system applications. Secondly, in an attempt to study the CPSs' vulnerabilities in more detail, we further discuss a methodology to identify potential cyber threats inherent in the given CPSs and quantify the attack severity accordingly. We then develop an analytical algorithm to test the behavior of the CPS under various cyber attack combinations. Compared to a numerical approach, the analytical algorithm enables the prediction of the most effective cyber attack combinations without computing the severity of all possible attack combinations, thereby greatly reducing the computational cost. The proposed algorithm is validated through a linearized longitudinal motion of a UAV example. Finally, we propose an attack attenuation strategy via the controller design for CPSs that are robust to various types of cyber attacks. While the previous studies have investigated a secure control by assuming a specific attack strategy, in this research we propose a hybrid robust control scheme that contains multiple sub-controllers, each matched to a specific type of cyber attacks. Then the system can be adapted to various cyber attacks (including those that are not assumed for sub-controller design) by switching its sub-controllers to achieve the best performance. Then, a method for designing a secure switching logic to counter all possible cyber attacks is proposed and it verifies mathematically the system's performance and stability as well. The performance of the proposed control scheme is demonstrated by an example with the hybrid H2 - H-infinity controller applied to a UAV example.
Advanced dc-Traction-Motor Control System
NASA Technical Reports Server (NTRS)
Vittone, O.
1985-01-01
Motor-control concept for battery-powered vehicles includes stateof-the-art power-transistor switching and separate excitation of motor windings in traction and regenerative braking. Switching transistors and other components of power-conditioning subsystem operate under control of computer that coordinates traction, braking, and protective functions.
Finite Energy and Bounded Attacks on Control System Sensor Signals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Djouadi, Seddik M; Melin, Alexander M; Ferragut, Erik M
Control system networks are increasingly being connected to enterprise level networks. These connections leave critical industrial controls systems vulnerable to cyber-attacks. Most of the effort in protecting these cyber-physical systems (CPS) has been in securing the networks using information security techniques and protection and reliability concerns at the control system level against random hardware and software failures. However, besides these failures the inability of information security techniques to protect against all intrusions means that the control system must be resilient to various signal attacks for which new analysis and detection methods need to be developed. In this paper, sensor signalmore » attacks are analyzed for observer-based controlled systems. The threat surface for sensor signal attacks is subdivided into denial of service, finite energy, and bounded attacks. In particular, the error signals between states of attack free systems and systems subject to these attacks are quantified. Optimal sensor and actuator signal attacks for the finite and infinite horizon linear quadratic (LQ) control in terms of maximizing the corresponding cost functions are computed. The closed-loop system under optimal signal attacks are provided. Illustrative numerical examples are provided together with an application to a power network with distributed LQ controllers.« less
Analysis of PV Advanced Inverter Functions and Setpoints under Time Series Simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seuss, John; Reno, Matthew J.; Broderick, Robert Joseph
Utilities are increasingly concerned about the potential negative impacts distributed PV may have on the operational integrity of their distribution feeders. Some have proposed novel methods for controlling a PV system's grid - tie inverter to mitigate poten tial PV - induced problems. This report investigates the effectiveness of several of these PV advanced inverter controls on improving distribution feeder operational metrics. The controls are simulated on a large PV system interconnected at several locations within two realistic distribution feeder models. Due to the time - domain nature of the advanced inverter controls, quasi - static time series simulations aremore » performed under one week of representative variable irradiance and load data for each feeder. A para metric study is performed on each control type to determine how well certain measurable network metrics improve as a function of the control parameters. This methodology is used to determine appropriate advanced inverter settings for each location on the f eeder and overall for any interconnection location on the feeder.« less
CFAVC scheme for high frequency series resonant inverter-fed domestic induction heating system
NASA Astrophysics Data System (ADS)
Nagarajan, Booma; Reddy Sathi, Rama
2016-01-01
This article presents the investigations on the constant frequency asymmetric voltage cancellation control in the AC-AC resonant converter-fed domestic induction heating system. Conventional fixed frequency control techniques used in the high frequency converters lead to non-zero voltage switching operation and reduced output power. The proposed control technique produces higher output power than the conventional fixed-frequency control strategies. In this control technique, zero-voltage-switching operation is maintained during different duty cycle operation for reduction in the switching losses. Complete analysis of the induction heating power supply system with asymmetric voltage cancellation control is discussed in this article. Simulation and experimental study on constant frequency asymmetric voltage cancellation (CFAVC)-controlled full bridge series resonant inverter is performed. Time domain simulation results for the open and closed loop of the system are obtained using MATLAB simulation tool. The simulation results prove the control of voltage and power in a wide range. PID controller-based closed loop control system achieves the voltage regulation of the proposed system for the step change in load. Hardware implementation of the system under CFAVC control is done using the embedded controller. The simulation and experimental results validate the performance of the CFAVC control technique for series resonant-based induction cooking system.
A Summary of Some Discrete-Event System Control Problems
NASA Astrophysics Data System (ADS)
Rudie, Karen
A summary of the area of control of discrete-event systems is given. In this research area, automata and formal language theory is used as a tool to model physical problems that arise in technological and industrial systems. The key ingredients to discrete-event control problems are a process that can be modeled by an automaton, events in that process that cannot be disabled or prevented from occurring, and a controlling agent that manipulates the events that can be disabled to guarantee that the process under control either generates all the strings in some prescribed language or as many strings as possible in some prescribed language. When multiple controlling agents act on a process, decentralized control problems arise. In decentralized discrete-event systems, it is presumed that the agents effecting control cannot each see all event occurrences. Partial observation leads to some problems that cannot be solved in polynomial time and some others that are not even decidable.
Liang, Geng
2015-01-01
In this paper, improving control performance of a networked control system by reducing DTD in a different perspective was investigated. Two different network architectures for system implementation were presented. Analysis and improvement dealing with DTD for the experimental control system were expounded. Effects of control scheme configuration on DTD in the form of FB were investigated and corresponding improvements by reallocation of FB and re-arrangement of schedule table are proposed. Issues of DTD in hybrid network were investigated and corresponding approaches to improve performance including (1) reducing DTD in PLC or PAC by way of IEC61499 and (2) cascade Smith predictive control with BPNN-based identification were proposed and investigated. Control effects under the proposed methodologies were also given. Experimental and field practices validated these methodologies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Research on Performance of Wire-controlled Hydraulic Steering System Based on Four-wheel Steering
NASA Astrophysics Data System (ADS)
Tao, P.; Jin, X. H.
2018-05-01
In this paper, the steering stability and control strategy of forklift are put forward. Drive based on yawing moment distribution of rotary torque coordination control method, through analyzing the linear two degree of freedom model of forklift truck, forklift yawing angular velocity and mass center side-slip Angle of expectations, as the control target parameters system, using fuzzy controller output driving forklift steering the yawing moment, to drive rotary torque distribution, make the forklift truck to drive horizontal pendulum angular velocity and side-slip Angle tracking reference model very well. In this paper, the lateral stability control system were designed, the joint simulation in MATLAB/Simulink, the simulation results show that under the different partial load, the control system can effectively to control side forklift lateral stability, enhanced the forklift driving safety, for the side forklift steering stability study provides a theoretical basis.
Resquín, Francisco; Gonzalez-Vargas, Jose; Ibáñez, Jaime; Brunetti, Fernando; Pons, José Luis
2016-01-01
Hybrid robotic systems represent a novel research field, where functional electrical stimulation (FES) is combined with a robotic device for rehabilitation of motor impairment. Under this approach, the design of robust FES controllers still remains an open challenge. In this work, we aimed at developing a learning FES controller to assist in the performance of reaching movements in a simple hybrid robotic system setting. We implemented a Feedback Error Learning (FEL) control strategy consisting of a feedback PID controller and a feedforward controller based on a neural network. A passive exoskeleton complemented the FES controller by compensating the effects of gravity. We carried out experiments with healthy subjects to validate the performance of the system. Results show that the FEL control strategy is able to adjust the FES intensity to track the desired trajectory accurately without the need of a previous mathematical model. PMID:27990245
Fuzzy fractional order sliding mode controller for nonlinear systems
NASA Astrophysics Data System (ADS)
Delavari, H.; Ghaderi, R.; Ranjbar, A.; Momani, S.
2010-04-01
In this paper, an intelligent robust fractional surface sliding mode control for a nonlinear system is studied. At first a sliding PD surface is designed and then, a fractional form of these networks PDα, is proposed. Fast reaching velocity into the switching hyperplane in the hitting phase and little chattering phenomena in the sliding phase is desired. To reduce the chattering phenomenon in sliding mode control (SMC), a fuzzy logic controller is used to replace the discontinuity in the signum function at the reaching phase in the sliding mode control. For the problem of determining and optimizing the parameters of fuzzy sliding mode controller (FSMC), genetic algorithm (GA) is used. Finally, the performance and the significance of the controlled system two case studies (robot manipulator and coupled tanks) are investigated under variation in system parameters and also in presence of an external disturbance. The simulation results signify performance of genetic-based fuzzy fractional sliding mode controller.
Observer-based state tracking control of uncertain stochastic systems via repetitive controller
NASA Astrophysics Data System (ADS)
Sakthivel, R.; Susana Ramya, L.; Selvaraj, P.
2017-08-01
This paper develops the repetitive control scheme for state tracking control of uncertain stochastic time-varying delay systems via equivalent-input-disturbance approach. The main purpose of this work is to design a repetitive controller to guarantee the tracking performance under the effects of unknown disturbances with bounded frequency and parameter variations. Specifically, a new set of linear matrix inequality (LMI)-based conditions is derived based on the suitable Lyapunov-Krasovskii functional theory for designing a repetitive controller which guarantees stability and desired tracking performance. More precisely, an equivalent-input-disturbance estimator is incorporated into the control design to reduce the effect of the external disturbances. Simulation results are provided to demonstrate the desired control system stability and their tracking performance. A practical stream water quality preserving system is also provided to show the effectiveness and advantage of the proposed approach.
NASA Technical Reports Server (NTRS)
Williams, R. J.; Mullins, O.
1981-01-01
Details are given for the construction and operation of a 101.3 KN/sq meter (1 atmosphere) redox control system. A solid ceramic oxygen electrolyte cell is used to monitor the oxygen fugacity in the furnace. The system consists of a vertical quench gas mixing furnace with heads designed for mounting the electrolyte cell and with facilities for inserting and removing the samples, a simplified version of a gas mixing apparatus, and devices for experiments under controlled rates of change of temperature. A thermogravimetric analysis system employing these techniques of redox control and measurement is also described. The calibration and maintenance of the system are discussed.
Robust Neighboring Optimal Guidance for the Advanced Launch System
NASA Technical Reports Server (NTRS)
Hull, David G.
1993-01-01
In recent years, optimization has become an engineering tool through the availability of numerous successful nonlinear programming codes. Optimal control problems are converted into parameter optimization (nonlinear programming) problems by assuming the control to be piecewise linear, making the unknowns the nodes or junction points of the linear control segments. Once the optimal piecewise linear control (suboptimal) control is known, a guidance law for operating near the suboptimal path is the neighboring optimal piecewise linear control (neighboring suboptimal control). Research conducted under this grant has been directed toward the investigation of neighboring suboptimal control as a guidance scheme for an advanced launch system.
Maximum Principle for General Controlled Systems Driven by Fractional Brownian Motions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han Yuecai; Hu Yaozhong; Song Jian, E-mail: jsong2@math.rutgers.edu
2013-04-15
We obtain a maximum principle for stochastic control problem of general controlled stochastic differential systems driven by fractional Brownian motions (of Hurst parameter H>1/2). This maximum principle specifies a system of equations that the optimal control must satisfy (necessary condition for the optimal control). This system of equations consists of a backward stochastic differential equation driven by both fractional Brownian motions and the corresponding underlying standard Brownian motions. In addition to this backward equation, the maximum principle also involves the Malliavin derivatives. Our approach is to use conditioning and Malliavin calculus. To arrive at our maximum principle we need tomore » develop some new results of stochastic analysis of the controlled systems driven by fractional Brownian motions via fractional calculus. Our approach of conditioning and Malliavin calculus is also applied to classical system driven by standard Brownian motions while the controller has only partial information. As a straightforward consequence, the classical maximum principle is also deduced in this more natural and simpler way.« less