Sample records for underlying dynamical system

  1. OBSERVING LYAPUNOV EXPONENTS OF INFINITE-DIMENSIONAL DYNAMICAL SYSTEMS

    PubMed Central

    OTT, WILLIAM; RIVAS, MAURICIO A.; WEST, JAMES

    2016-01-01

    Can Lyapunov exponents of infinite-dimensional dynamical systems be observed by projecting the dynamics into ℝN using a ‘typical’ nonlinear projection map? We answer this question affirmatively by developing embedding theorems for compact invariant sets associated with C1 maps on Hilbert spaces. Examples of such discrete-time dynamical systems include time-T maps and Poincaré return maps generated by the solution semigroups of evolution partial differential equations. We make every effort to place hypotheses on the projected dynamics rather than on the underlying infinite-dimensional dynamical system. In so doing, we adopt an empirical approach and formulate checkable conditions under which a Lyapunov exponent computed from experimental data will be a Lyapunov exponent of the infinite-dimensional dynamical system under study (provided the nonlinear projection map producing the data is typical in the sense of prevalence). PMID:28066028

  2. OBSERVING LYAPUNOV EXPONENTS OF INFINITE-DIMENSIONAL DYNAMICAL SYSTEMS.

    PubMed

    Ott, William; Rivas, Mauricio A; West, James

    2015-12-01

    Can Lyapunov exponents of infinite-dimensional dynamical systems be observed by projecting the dynamics into ℝ N using a 'typical' nonlinear projection map? We answer this question affirmatively by developing embedding theorems for compact invariant sets associated with C 1 maps on Hilbert spaces. Examples of such discrete-time dynamical systems include time- T maps and Poincaré return maps generated by the solution semigroups of evolution partial differential equations. We make every effort to place hypotheses on the projected dynamics rather than on the underlying infinite-dimensional dynamical system. In so doing, we adopt an empirical approach and formulate checkable conditions under which a Lyapunov exponent computed from experimental data will be a Lyapunov exponent of the infinite-dimensional dynamical system under study (provided the nonlinear projection map producing the data is typical in the sense of prevalence).

  3. Dynamic Responses and Vibration Control of the Transmission Tower-Line System: A State-of-the-Art Review

    PubMed Central

    Chen, Bo; Guo, Wei-hua; Li, Peng-yun; Xie, Wen-ping

    2014-01-01

    This paper presented an overview on the dynamic analysis and control of the transmission tower-line system in the past forty years. The challenges and future developing trends in the dynamic analysis and mitigation of the transmission tower-line system under dynamic excitations are also put forward. It also reviews the analytical models and approaches of the transmission tower, transmission lines, and transmission tower-line systems, respectively, which contain the theoretical model, finite element (FE) model and the equivalent model; shows the advances in wind responses of the transmission tower-line system, which contains the dynamic effects under common wind loading, tornado, downburst, and typhoon; and discusses the dynamic responses under earthquake and ice loads, respectively. The vibration control of the transmission tower-line system is also reviewed, which includes the magnetorheological dampers, friction dampers, tuned mass dampers, and pounding tuned mass dampers. PMID:25105161

  4. Dynamically triggered slip leading to sustained fault gouge weakening under laboratory shear conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Paul Allan

    We investigate dynamic wave-triggered slip under laboratory shear conditions. The experiment is composed of a three-block system containing two gouge layers composed of glass beads and held in place by a fixed load in a biaxial configuration. When the system is sheared under steady state conditions at a normal load of 4 MPa, we find that shear failure may be instantaneously triggered by a dynamic wave, corresponding to material weakening and softening if the system is in a critical shear stress state (near failure). Following triggering, the gouge material remains in a perturbed state over multiple slip cycles as evidencedmore » by the recovery of the material strength, shear modulus, and slip recurrence time. This work suggests that faults must be critically stressed to trigger under dynamic conditions and that the recovery process following a dynamically triggered event differs from the recovery following a spontaneous event.« less

  5. Dynamically triggered slip leading to sustained fault gouge weakening under laboratory shear conditions

    DOE PAGES

    Johnson, Paul Allan

    2016-02-28

    We investigate dynamic wave-triggered slip under laboratory shear conditions. The experiment is composed of a three-block system containing two gouge layers composed of glass beads and held in place by a fixed load in a biaxial configuration. When the system is sheared under steady state conditions at a normal load of 4 MPa, we find that shear failure may be instantaneously triggered by a dynamic wave, corresponding to material weakening and softening if the system is in a critical shear stress state (near failure). Following triggering, the gouge material remains in a perturbed state over multiple slip cycles as evidencedmore » by the recovery of the material strength, shear modulus, and slip recurrence time. This work suggests that faults must be critically stressed to trigger under dynamic conditions and that the recovery process following a dynamically triggered event differs from the recovery following a spontaneous event.« less

  6. Dynamic Response Assessment for the MEMS Accelerometer Under Severe Shock Loads

    NASA Technical Reports Server (NTRS)

    Fan, Mark S.; Shaw, Harry C.

    2001-01-01

    NASA Goddard Space Flight Center (GSFC) has evaluated the dynamic response of a commercial-off-the-shelf (COTS) microelectromechanical systems (MEMS) device made by Analog Device, Inc. The device is designated as ADXL250 and is designed mainly for sensing dynamic acceleration. It is also used to measure the tilting angle of any system or component from its original level position. The device has been in commercial use (e.g., in automobile airbag deployment system as a dual-axial accelerometer and in the electronic game play-station as a tilting sensor) with success, but NASA needs an in-depth assessment of its performance under severe dynamic shock environments. It was realized while planning this evaluation task that two assessments would be beneficial to NASA's missions: (1) severe dynamic shock response under nominal thermal environments; and (2) general dynamic performance under cryogenic environments. The first evaluation aims at obtaining a good understanding of its micromachined structure within a framework of brittle fracture dynamics, while the second evaluation focuses on the structure integrity under cryogenic temperature conditions. The information we gathered from the manufacturer indicated that the environmental stresses under NASA's evaluation program have been far beyond what the device has experienced with commercial applications, for which the device was designed. Thus NASA needs the outcome of this evaluation in order to make the selection for possible use for its missions. This paper provides details of the first evaluation the dynamic response under severe multi-axial single-pulse shock load. It was performed using finite element tools with nonlinear dynamics procedures.

  7. Mathematical model for adaptive control system of ASEA robot at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Zia, Omar

    1989-01-01

    The dynamic properties and the mathematical model for the adaptive control of the robotic system presently under investigation at Robotic Application and Development Laboratory at Kennedy Space Center are discussed. NASA is currently investigating the use of robotic manipulators for mating and demating of fuel lines to the Space Shuttle Vehicle prior to launch. The Robotic system used as a testbed for this purpose is an ASEA IRB-90 industrial robot with adaptive control capabilities. The system was tested and it's performance with respect to stability was improved by using an analogue force controller. The objective of this research project is to determine the mathematical model of the system operating under force feedback control with varying dynamic internal perturbation in order to provide continuous stable operation under variable load conditions. A series of lumped parameter models are developed. The models include some effects of robot structural dynamics, sensor compliance, and workpiece dynamics.

  8. Single neuron computation: from dynamical system to feature detector.

    PubMed

    Hong, Sungho; Agüera y Arcas, Blaise; Fairhall, Adrienne L

    2007-12-01

    White noise methods are a powerful tool for characterizing the computation performed by neural systems. These methods allow one to identify the feature or features that a neural system extracts from a complex input and to determine how these features are combined to drive the system's spiking response. These methods have also been applied to characterize the input-output relations of single neurons driven by synaptic inputs, simulated by direct current injection. To interpret the results of white noise analysis of single neurons, we would like to understand how the obtained feature space of a single neuron maps onto the biophysical properties of the membrane, in particular, the dynamics of ion channels. Here, through analysis of a simple dynamical model neuron, we draw explicit connections between the output of a white noise analysis and the underlying dynamical system. We find that under certain assumptions, the form of the relevant features is well defined by the parameters of the dynamical system. Further, we show that under some conditions, the feature space is spanned by the spike-triggered average and its successive order time derivatives.

  9. Use of the dynamic stiffness method to interpret experimental data from a nonlinear system

    NASA Astrophysics Data System (ADS)

    Tang, Bin; Brennan, M. J.; Gatti, G.

    2018-05-01

    The interpretation of experimental data from nonlinear structures is challenging, primarily because of dependency on types and levels of excitation, and coupling issues with test equipment. In this paper, the use of the dynamic stiffness method, which is commonly used in the analysis of linear systems, is used to interpret the data from a vibration test of a controllable compressed beam structure coupled to a test shaker. For a single mode of the system, this method facilitates the separation of mass, stiffness and damping effects, including nonlinear stiffness effects. It also allows the separation of the dynamics of the shaker from the structure under test. The approach needs to be used with care, and is only suitable if the nonlinear system has a response that is predominantly at the excitation frequency. For the structure under test, the raw experimental data revealed little about the underlying causes of the dynamic behaviour. However, the dynamic stiffness approach allowed the effects due to the nonlinear stiffness to be easily determined.

  10. A New Real - Time Fault Detection Methodology for Systems Under Test. Phase 1

    NASA Technical Reports Server (NTRS)

    Johnson, Roger W.; Jayaram, Sanjay; Hull, Richard A.

    1998-01-01

    The purpose of this research is focussed on the identification/demonstration of critical technology innovations that will be applied to various applications viz. Detection of automated machine Health Monitoring (BM, real-time data analysis and control of Systems Under Test (SUT). This new innovation using a High Fidelity Dynamic Model-based Simulation (BFDMS) approach will be used to implement a real-time monitoring, Test and Evaluation (T&E) methodology including the transient behavior of the system under test. The unique element of this process control technique is the use of high fidelity, computer generated dynamic models to replicate the behavior of actual Systems Under Test (SUT). It will provide a dynamic simulation capability that becomes the reference truth model, from which comparisons are made with the actual raw/conditioned data from the test elements.

  11. 77 FR 13607 - Agency Forms Undergoing Paperwork Reduction Act Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... Transformation Grants: Use of System Dynamic Modeling and Economic Analysis in Select Communities--New--National... community interventions. Using a system dynamics approach, CDC also plans to conduct simulation modeling... the development of analytic tools for system dynamics modeling under more limited conditions. The...

  12. Soil Moisture Dynamics under Corn, Soybean, and Perennial Kura Clover

    NASA Astrophysics Data System (ADS)

    Ochsner, T.; Venterea, R. T.

    2009-12-01

    Rising global food and energy consumption call for increased agricultural production, whereas rising concerns for environmental quality call for farming systems with more favorable environmental impacts. Improved understanding and management of plant-soil water interactions are central to meeting these twin challenges. The objective of this research was to compare the temporal dynamics of soil moisture under contrasting cropping systems suited for the Midwestern region of the United States. Precipitation, infiltration, drainage, evapotranspiration, soil water storage, and freeze/thaw processes were measured hourly for three years in field plots of continuous corn (Zea mays L.), corn/soybean [Glycine max (L.) Merr.] rotation, and perennial kura clover (Trifolium ambiguum M. Bieb.) in southeastern Minnesota. The evapotranspiration from the perennial clover most closely followed the temporal dynamics of precipitation, resulting in deep drainage which was reduced up to 50% relative to the annual crops. Soil moisture utilization also continued later into the fall under the clover than under the annual crops. In the annual cropping systems, crop sequence influenced the soil moisture dynamics. Soybean following corn and continuous corn exhibited evapotranspiration which was 80 mm less than and deep drainage which was 80 mm greater than that of corn following soybean. These differences occurred primarily during the spring and were associated with differences in early season plant growth between the systems. In the summer, soil moisture depletion was up to 30 mm greater under corn than soybean. Crop residue also played an important role in the soil moisture dynamics. Higher amounts of residue were associated with reduced soil freezing. This presentation will highlight key aspects of the soil moisture dynamics for these contrasting cropping systems across temporal scales ranging from hours to years. The links between soil moisture dynamics, crop yields, and nutrient leaching will also be examined.

  13. Dynamics of statistical distance: Quantum limits for two-level clocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braunstein, S.L.; Milburn, G.J.

    1995-03-01

    We study the evolution of statistical distance on the Bloch sphere under unitary and nonunitary dynamics. This corresponds to studying the limits to clock precision for a clock constructed from a two-state system. We find that the initial motion away from pure states under nonunitary dynamics yields the greatest accuracy for a one-tick'' clock; in this case the clock's precision is not limited by the largest frequency of the system.

  14. Singularity perturbed zero dynamics of nonlinear systems

    NASA Technical Reports Server (NTRS)

    Isidori, A.; Sastry, S. S.; Kokotovic, P. V.; Byrnes, C. I.

    1992-01-01

    Stability properties of zero dynamics are among the crucial input-output properties of both linear and nonlinear systems. Unstable, or 'nonminimum phase', zero dynamics are a major obstacle to input-output linearization and high-gain designs. An analysis of the effects of regular perturbations in system equations on zero dynamics shows that whenever a perturbation decreases the system's relative degree, it manifests itself as a singular perturbation of zero dynamics. Conditions are given under which the zero dynamics evolve in two timescales characteristic of a standard singular perturbation form that allows a separate analysis of slow and fast parts of the zero dynamics.

  15. Fisher information due to a phase noisy laser under non-Markovian environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel-Khalek, S., E-mail: sayedquantum@yahoo.co.uk

    2014-12-15

    More recently, K. Berrada [Annals of Physics 340 (2014) 60-69] [1] studied the geometric phase of a two-level atom system driven by a phase noise laser under non-Markovian dynamics in terms of different parameters involved in the whole system, and collapse and revival phenomena were found for large class of states. In this paper, using this noise effect, we study the quantum fisher information (QFI) for a two-level atom system driven by a phase noise laser under non-Markovian dynamics. A new quantity, called QFI flow is used to characterize the damping effect and unveil a fundamental connection between non-Markovian behaviormore » and dynamics of system–environment correlations under phase noise laser. It is shown that QFI flow has disappeared suddenly followed by a sudden birth depending on the kind of the environment damping. QFI flow provides an indicator to characterize the dissipative quantum system’s decoherence by analyzing the behavior of the dynamical non-Markovian coefficients.« less

  16. Experimental studies of the effects of buffered particle dampers attached to a multi-degree-of-freedom system under dynamic loads

    NASA Astrophysics Data System (ADS)

    Lu, Zheng; Lu, Xilin; Lu, Wensheng; Masri, Sami F.

    2012-04-01

    This paper presents a systematic experimental investigation of the effects of buffered particle dampers attached to a multi-degree-of-freedom (mdof) system under different dynamic loads (free vibration, random excitation as well as real onsite earthquake excitations), and analytical/computational study of such a system. A series of shaking table tests of a three-storey steel frame with the buffered particle damper system are carried out to evaluate the performance and to verify the analysis method. It is shown that buffered particle dampers have good performance in reducing the response of structures under dynamic loads, especially under random excitation case. It can effectively control the fundamental mode of the mdof primary system; however, the control effect for higher modes is variable. It is also shown that, for a specific container geometry, a certain mass ratio leads to more efficient momentum transfer from the primary system to the particles with a better vibration attenuation effect, and that buffered particle dampers have better control effect than the conventional rigid ones. An analytical solution based on the discrete element method is also presented. Comparison between the experimental and computational results shows that reasonably accurate estimates of the response of a primary system can be obtained. Properly designed buffered particle dampers can effectively reduce the response of lightly damped mdof primary system with a small weight penalty, under different dynamic loads.

  17. Characterization of nonstationary chaotic systems

    NASA Astrophysics Data System (ADS)

    Serquina, Ruth; Lai, Ying-Cheng; Chen, Qingfei

    2008-02-01

    Nonstationary dynamical systems arise in applications, but little has been done in terms of the characterization of such systems, as most standard notions in nonlinear dynamics such as the Lyapunov exponents and fractal dimensions are developed for stationary dynamical systems. We propose a framework to characterize nonstationary dynamical systems. A natural way is to generate and examine ensemble snapshots using a large number of trajectories, which are capable of revealing the underlying fractal properties of the system. By defining the Lyapunov exponents and the fractal dimension based on a proper probability measure from the ensemble snapshots, we show that the Kaplan-Yorke formula, which is fundamental in nonlinear dynamics, remains valid most of the time even for nonstationary dynamical systems.

  18. Neuromorphic Implementation of Attractor Dynamics in a Two-Variable Winner-Take-All Circuit with NMDARs: A Simulation Study

    PubMed Central

    You, Hongzhi; Wang, Da-Hui

    2017-01-01

    Neural networks configured with winner-take-all (WTA) competition and N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic dynamics are endowed with various dynamic characteristics of attractors underlying many cognitive functions. This paper presents a novel method for neuromorphic implementation of a two-variable WTA circuit with NMDARs aimed at implementing decision-making, working memory and hysteresis in visual perceptions. The method proposed is a dynamical system approach of circuit synthesis based on a biophysically plausible WTA model. Notably, slow and non-linear temporal dynamics of NMDAR-mediated synapses was generated. Circuit simulations in Cadence reproduced ramping neural activities observed in electrophysiological recordings in experiments of decision-making, the sustained activities observed in the prefrontal cortex during working memory, and classical hysteresis behavior during visual discrimination tasks. Furthermore, theoretical analysis of the dynamical system approach illuminated the underlying mechanisms of decision-making, memory capacity and hysteresis loops. The consistence between the circuit simulations and theoretical analysis demonstrated that the WTA circuit with NMDARs was able to capture the attractor dynamics underlying these cognitive functions. Their physical implementations as elementary modules are promising for assembly into integrated neuromorphic cognitive systems. PMID:28223913

  19. Neuromorphic Implementation of Attractor Dynamics in a Two-Variable Winner-Take-All Circuit with NMDARs: A Simulation Study.

    PubMed

    You, Hongzhi; Wang, Da-Hui

    2017-01-01

    Neural networks configured with winner-take-all (WTA) competition and N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic dynamics are endowed with various dynamic characteristics of attractors underlying many cognitive functions. This paper presents a novel method for neuromorphic implementation of a two-variable WTA circuit with NMDARs aimed at implementing decision-making, working memory and hysteresis in visual perceptions. The method proposed is a dynamical system approach of circuit synthesis based on a biophysically plausible WTA model. Notably, slow and non-linear temporal dynamics of NMDAR-mediated synapses was generated. Circuit simulations in Cadence reproduced ramping neural activities observed in electrophysiological recordings in experiments of decision-making, the sustained activities observed in the prefrontal cortex during working memory, and classical hysteresis behavior during visual discrimination tasks. Furthermore, theoretical analysis of the dynamical system approach illuminated the underlying mechanisms of decision-making, memory capacity and hysteresis loops. The consistence between the circuit simulations and theoretical analysis demonstrated that the WTA circuit with NMDARs was able to capture the attractor dynamics underlying these cognitive functions. Their physical implementations as elementary modules are promising for assembly into integrated neuromorphic cognitive systems.

  20. 78 FR 71028 - Combi USA, Inc., Denial of Petition for Decision of Inconsequential Noncompliance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    ... based on its own dynamic testing of the Coccoro and Zeus 360 child restraint systems. According to Combi... under any circumstances, as the forces acting on the harness system in dynamic testing are less than 22... on the harness system when subjected to FMVSS No. 213 and NCAP crash pulse dynamic testing, the...

  1. Novel approach to evaluate the dynamic variation of wind drift and evaporation losses under moving irrigation systems

    Treesearch

    Sayed-Hossein Sadeghi; Troy R. Peters; Mohammad Z. Amini; Sparkle L. Malone; Hank W. Loescher

    2015-01-01

    The increased need for water and food security requires the development of new approaches to save water through irrigation management strategies, particularly for center pivot irrigation. To do so entails monitoring of the dynamic variation in wind drift and evaporation losses (WDELs) of irrigation systems under different weather conditions and for relatively long time...

  2. Nonlinear Dynamics of Complex Coevolutionary Systems in Historical Times

    NASA Astrophysics Data System (ADS)

    Perdigão, Rui A. P.

    2016-04-01

    A new theoretical paradigm for statistical-dynamical modeling of complex coevolutionary systems is introduced, with the aim to provide historical geoscientists with a practical tool to analyse historical data and its underlying phenomenology. Historical data is assumed to represent the history of dynamical processes of physical and socio-economic nature. If processes and their governing laws are well understood, they are often treated with traditional dynamical equations: deterministic approach. If the governing laws are unknown or impracticable, the process is often treated as if being random (even if it is not): statistical approach. Although single eventful details - such as the exact spatiotemporal structure of a particular hydro-meteorological incident - may often be elusive to a detailed analysis, the overall dynamics exhibit group properties summarized by a simple set of categories or dynamical regimes at multiple scales - from local short-lived convection patterns to large-scale hydro-climatic regimes. The overwhelming microscale complexity is thus conveniently wrapped into a manageable group entity, such as a statistical distribution. In a stationary setting whereby the distribution is assumed to be invariant, alternating regimes are approachable as dynamical intermittence. For instance, in the context of bimodal climatic oscillations such as NAO and ENSO, each mode corresponds to a dynamical regime or phase. However, given external forcings or longer-term internal variability and multiscale coevolution, the structural properties of the system may change. These changes in the dynamical structure bring about a new distribution and associated regimes. The modes of yesteryear may no longer exist as such in the new structural order of the system. In this context, aside from regime intermittence, the system exhibits structural regime change. New oscillations may emerge whilst others fade into the annals of history, e.g. particular climate fluctuations during the Little Ice Age. Traditional theories of stochastic processes and dynamical systems are grounded on the existence of so-called dynamical invariants; properties that remain unchanged as the dynamics unfold, assuming structural invariance and ergodicity of the underlying system. However, such theories are no longer optimal when trying to understand and model long-term historical records of coevolutionary systems. A new paradigm is thus needed. Therefore, we introduce a new class of dynamical systems that reinvent themselves as the dynamics unfold. Rather than only changing variables and parameters under a rigid framework, the governing laws are malleable themselves. The novel formulation captures and explains the coevolutionary dynamics of multiscale hydroclimatic systems, bringing along a physically sound understanding of their regimes, transitions and extremes over a long-term history.

  3. Motor Coordination Dynamics Underlying Graphic Motion in 7- to 11-Year-Old Children

    ERIC Educational Resources Information Center

    Danna, Jeremy; Enderli, Fabienne; Athenes, Sylvie; Zanone, Pier-Giorgio

    2012-01-01

    Using concepts and tools of a dynamical system approach in order to understand motor coordination underlying graphomotor skills, the aim of the current study was to establish whether the basic coordination dynamics found in adults is already established in children at elementary school, when handwriting is trained and eventually acquired. In the…

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Pavel V., E-mail: pvm@ispms.tsc.ru

    An evolutionary approach to earthquake development is proposed. A medium under loading is treated as a multiscale nonlinear dynamic system. Its failure involves a number of stages typical of any dynamic system: dynamic chaos, self-organized criticality, and global stability loss in the final stage of its evolution. In the latter stage, the system evolves in a blow-up mode accompanied by catastrophic superfast movements of the elements of this geomedium.

  5. Dynamic inverse models in human-cyber-physical systems

    NASA Astrophysics Data System (ADS)

    Robinson, Ryan M.; Scobee, Dexter R. R.; Burden, Samuel A.; Sastry, S. Shankar

    2016-05-01

    Human interaction with the physical world is increasingly mediated by automation. This interaction is characterized by dynamic coupling between robotic (i.e. cyber) and neuromechanical (i.e. human) decision-making agents. Guaranteeing performance of such human-cyber-physical systems will require predictive mathematical models of this dynamic coupling. Toward this end, we propose a rapprochement between robotics and neuromechanics premised on the existence of internal forward and inverse models in the human agent. We hypothesize that, in tele-robotic applications of interest, a human operator learns to invert automation dynamics, directly translating from desired task to required control input. By formulating the model inversion problem in the context of a tracking task for a nonlinear control system in control-a_ne form, we derive criteria for exponential tracking and show that the resulting dynamic inverse model generally renders a portion of the physical system state (i.e., the internal dynamics) unobservable from the human operator's perspective. Under stability conditions, we show that the human can achieve exponential tracking without formulating an estimate of the system's state so long as they possess an accurate model of the system's dynamics. These theoretical results are illustrated using a planar quadrotor example. We then demonstrate that the automation can intervene to improve performance of the tracking task by solving an optimal control problem. Performance is guaranteed to improve under the assumption that the human learns and inverts the dynamic model of the altered system. We conclude with a discussion of practical limitations that may hinder exact dynamic model inversion.

  6. Influence of the black hole spin on the chaotic particle dynamics within a dipolar halo

    NASA Astrophysics Data System (ADS)

    Nag, Sankhasubhra; Sinha, Siddhartha; Ananda, Deepika B.; Das, Tapas K.

    2017-04-01

    We investigate the role of the spin angular momentum of astrophysical black holes in controlling the special relativistic chaotic dynamics of test particles moving under the influence of a post-Newtonian pseudo-Kerr black hole potential, along with a perturbative potential created by an asymmetrically placed (dipolar) halo. Proposing a Lyapunov-like exponent to be the effective measure of the degree of chaos observed in the system under consideration, it has been found that black hole spin anti-correlates with the degree of chaos for the aforementioned dynamics. Our findings have been explained applying the general principles of dynamical systems analysis.

  7. Indirect Identification of Linear Stochastic Systems with Known Feedback Dynamics

    NASA Technical Reports Server (NTRS)

    Huang, Jen-Kuang; Hsiao, Min-Hung; Cox, David E.

    1996-01-01

    An algorithm is presented for identifying a state-space model of linear stochastic systems operating under known feedback controller. In this algorithm, only the reference input and output of closed-loop data are required. No feedback signal needs to be recorded. The overall closed-loop system dynamics is first identified. Then a recursive formulation is derived to compute the open-loop plant dynamics from the identified closed-loop system dynamics and known feedback controller dynamics. The controller can be a dynamic or constant-gain full-state feedback controller. Numerical simulations and test data of a highly unstable large-gap magnetic suspension system are presented to demonstrate the feasibility of this indirect identification method.

  8. 46 CFR 56.20-1 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., and II-L systems receiving ship motion dynamic analysis and nondestructive examination. For Class I, I-L, or II-L systems not receiving ship motion dynamic analysis and nondestructive examination under..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Valves § 56...

  9. Dual redundant arm system operational quality measures and their applications - Dynamic measures

    NASA Technical Reports Server (NTRS)

    Lee, Sukhan; Kim, Sungbok

    1990-01-01

    Dual-arm dynamic operation quality measures are presented which quantify the efficiency and capability of generating Cartesian accelerations by two cooperative arms based on the analysis of dual-arm dynamic interactions. Dual-arm dynamic manipulability is defined as the efficiency of generating Cartesian accelerations under the dynamic and kinematic interactions between individual arms and an object under manipulation. The analysis of dual-arm dynamic interactions is based on the so-called Cartesian space agent model of an arm, which represents an individual arm as a force source acting upon a point mass with the effective Cartesian space arm dynamics and an environment or an object under manipulation. The Cartesian space agent model of an arm makes it possible to derive the dynamic and kinematic constraints involved in the transport, assembly and grasping modes of dual-arm cooperation. A task-oriented operational quality measure, (TOQd) is defined by evaluating dual-arm dynamic manipulability in terms of given task requirements. TOQd is used in dual-arm joint configuration optimization. Simulation results are shown. A complete set of forward dynamic equations for a dual-arm system is derived, and dual-arm dynamic operational quality measures for various modes of dual-arm cooperation allowing sliding contacts are established.

  10. Biomimetic Design of an Under-Actuated Leg Exoskeleton for Load-Carrying Augmentation

    DTIC Science & Technology

    2006-02-01

    exoskeleton design has not considered the passive dynamics of walking and has focused on fully actuated systems that are inefficient and heavy. In this...passive dynamics of walking and has focused on fully actuated systems that are inefficient and heavy. In this thesis, an under-actuated exoskeleton...40 Figure 3.22 Braking torque of the magnetorheological damper vs. current .................... 41 Figure

  11. Dynamic Models and Coordination Analysis of Reverse Supply Chain with Remanufacturing

    NASA Astrophysics Data System (ADS)

    Yan, Nina

    In this paper, we establish a reverse chain system with one manufacturer and one retailer under demand uncertainties. Distinguishing between the recycling process of the retailer and the remanufacturing process of the manufacturer, we formulate a two-stage dynamic model for reverse supply chain based on remanufacturing. Using buyback contract as coordination mechanism and applying dynamic programming the optimal decision problems for each stage are analyzed. It concluded that the reverse supply chain system could be coordinated under the given condition. Finally, we carry out numerical calculations to analyze the expected profits for the manufacturer and the retailer under different recovery rates and recovery prices and the outcomes validate the theoretical analyses.

  12. Complex Nonlinear Dynamic System of Oligopolies Price Game with Heterogeneous Players Under Noise

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Li, Yaguang

    A nonlinear four oligopolies price game with heterogeneous players, that are boundedly rational and adaptive, is built using two different special demand costs. Based on the theory of complex discrete dynamical system, the stability and the existing equilibrium point are investigated. The complex dynamic behavior is presented via bifurcation diagrams, the Lyapunov exponents to show equilibrium state, bifurcation and chaos with the variation in parameters. As disturbance is ubiquitous in economic systems, this paper focuses on the analysis of delay feedback control method under noise circumstances. Stable dynamics is confirmed to depend mainly on the low price adjustment speed, and if all four players have limited opportunities to stabilize the market, the new adaptive player facing profits of scale are found to be higher than the incumbents of bounded rational.

  13. Adaptive servo control for umbilical mating

    NASA Technical Reports Server (NTRS)

    Zia, Omar

    1988-01-01

    Robotic applications at Kennedy Space Center are unique and in many cases require the fime positioning of heavy loads in dynamic environments. Performing such operations is beyond the capabilities of an off-the-shelf industrial robot. Therefore Robotics Applications Development Laboratory at Kennedy Space Center has put together an integrated system that coordinates state of the art robotic system providing an excellent easy to use testbed for NASA sensor integration experiments. This paper reviews the ways of improving the dynamic response of the robot operating under force feedback with varying dynamic internal perturbations in order to provide continuous stable operations under variable load conditions. The goal is to improve the stability of the system with force feedback using the adaptive control feature of existing system over a wide range of random motions. The effect of load variations on the dynamics and the transfer function (order or values of the parameters) of the system has been investigated, more accurate models of the system have been determined and analyzed.

  14. Quantum dynamics simulations in an ultraslow bath using hierarchy of stochastic Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Ke, Yaling; Zhao, Yi

    2018-04-01

    The hierarchy of stochastic Schrödinger equation, previously developed under the unpolarised initial bath states, is extended in this paper for open quantum dynamics under polarised initial bath conditions. The method is proved to be a powerful tool in investigating quantum dynamics exposed to an ultraslow Ohmic bath, as in this case the hierarchical truncation level and the random sampling number can be kept at a relatively small extent. By systematically increasing the system-bath coupling strength, the symmetric Ohmic spin-boson dynamics is investigated at finite temperature, with a very small cut-off frequency. It is confirmed that the slow bath makes the system dynamics extremely sensitive to the initial bath conditions. The localisation tendency is stronger in the polarised initial bath conditions. Besides, the oscillatory coherent dynamics persists even when the system-bath coupling is very strong, in correspondence with what is found recently in the deep sub-Ohmic bath, where also the low-frequency modes dominate.

  15. Mixed-mode oscillations and chaos in a prey-predator system with dormancy of predators.

    PubMed

    Kuwamura, Masataka; Chiba, Hayato

    2009-12-01

    It is shown that the dormancy of predators induces mixed-mode oscillations and chaos in the population dynamics of a prey-predator system under certain conditions. The mixed-mode oscillations and chaos are shown to bifurcate from a coexisting equilibrium by means of the theory of fast-slow systems. These results may help to find experimental conditions under which one can demonstrate chaotic population dynamics in a simple phytoplankton-zooplankton (-resting eggs) community in a microcosm with a short duration.

  16. System Dynamics Modeling for Supply Chain Information Sharing

    NASA Astrophysics Data System (ADS)

    Feng, Yang

    In this paper, we try to use the method of system dynamics to model supply chain information sharing. Firstly, we determine the model boundaries, establish system dynamics model of supply chain before information sharing, analyze the model's simulation results under different changed parameters and suggest improvement proposal. Then, we establish system dynamics model of supply chain information sharing and make comparison and analysis on the two model's simulation results, to show the importance of information sharing in supply chain management. We wish that all these simulations would provide scientific supports for enterprise decision-making.

  17. Parallel dynamics between non-Hermitian and Hermitian systems

    NASA Astrophysics Data System (ADS)

    Wang, P.; Lin, S.; Jin, L.; Song, Z.

    2018-06-01

    We reveals a connection between non-Hermitian and Hermitian systems by studying the connection between a family of non-Hermitian and Hermitian Hamiltonians based on exact solutions. In general, for a dynamic process in a non-Hermitian system H , there always exists a parallel dynamic process governed by the corresponding Hermitian conjugate system H†. We show that a linear superposition of the two parallel dynamics is exactly equivalent to the time evolution of a state under a Hermitian Hamiltonian H , and we present the relations between {H ,H ,H†} .

  18. Dynamic modelling of a double-pendulum gantry crane system incorporating payload

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, R. M. T. Raja; Ahmad, M. A.; Ramli, M. S.

    The natural sway of crane payloads is detrimental to safe and efficient operation. Under certain conditions, the problem is complicated when the payloads create a double pendulum effect. This paper presents dynamic modelling of a double-pendulum gantry crane system based on closed-form equations of motion. The Lagrangian method is used to derive the dynamic model of the system. A dynamic model of the system incorporating payload is developed and the effects of payload on the response of the system are discussed. Extensive results that validate the theoretical derivation are presented in the time and frequency domains.

  19. Analysis of economic benefit of wind power based on system dynamics

    NASA Astrophysics Data System (ADS)

    Zhao, Weibo; Han, Yaru; Niu, Dongxiao

    2018-04-01

    The scale of renewable power generation, such as wind power, has increased gradually in recent years. Considering that the economic benefits of wind farms are affected by many dynamic factors. The dynamic simulation model of wind power economic benefit system is established based on the system dynamics method. By comparing the economic benefits of wind farms under different setting scenarios through this model, the impact of different factors on the economic benefits of wind farms can be reflected.

  20. Modeling Spring Mass System with System Dynamics Approach in Middle School Education

    ERIC Educational Resources Information Center

    Nuhoglu, Hasret

    2008-01-01

    System Dynamics is a well formulated methodology for analyzing the components of a system including causeeffect relationships and their underlying mathematics and logic, time delays, and feedback loops. It began in the business and manufacturing world, but is now affecting education and many other disciplines. Having inspired by successful policy…

  1. Modeling Spring Mass System with System Dynamics Approach in Middle School Education

    ERIC Educational Resources Information Center

    Nuhoglu, Hasret

    2008-01-01

    System Dynamics is a well formulated methodology for analyzing the components of a system including cause-effect relationships and their underlying mathematics and logic, time delays, and feedback loops. It began in the business and manufacturing world, but is now affecting education and many other disciplines. Having inspired by successful policy…

  2. Dynamic Transition and Resonance in Coupled Oscillators Under Symmetry-Breaking Fields

    NASA Astrophysics Data System (ADS)

    Choi, J.; Choi, M. Y.; Chung, M. S.; Yoon, B.-G.

    2013-06-01

    We investigate numerically the dynamic properties of a system of globally coupled oscillators driven by periodic symmetry-breaking fields in the presence of noise. The phase distribution of the oscillators is computed and a dynamic transition is disclosed. It is further found that the stochastic resonance is closely related to the behavior of the dynamic order parameter, which is in turn explained by the formation of a bi-cluster in the system. Here noise tends to symmetrize the motion of the oscillators, facilitating the bi-cluster formation. The observed resonance appears to be of the same class as the resonance present in the two-dimensional Ising model under oscillating fields.

  3. Robustness of controllability and observability of linear time-varying systems with application to the emergency control of power systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sastry, S. S.; Desoer, C. A.

    1980-01-01

    Fixed point methods from nonlinear anaysis are used to establish conditions under which the uniform complete controllability of linear time-varying systems is preserved under non-linear perturbations in the state dynamics and the zero-input uniform complete observability of linear time-varying systems is preserved under non-linear perturbation in the state dynamics and output read out map. Algorithms for computing the specific input to steer the perturbed systems from a given initial state to a given final state are also presented. As an application, a very specific emergency control of an interconnected power system is formulated as a steering problem and it ismore » shown that this emergency control is indeed possible in finite time.« less

  4. Model-free inference of direct network interactions from nonlinear collective dynamics.

    PubMed

    Casadiego, Jose; Nitzan, Mor; Hallerberg, Sarah; Timme, Marc

    2017-12-19

    The topology of interactions in network dynamical systems fundamentally underlies their function. Accelerating technological progress creates massively available data about collective nonlinear dynamics in physical, biological, and technological systems. Detecting direct interaction patterns from those dynamics still constitutes a major open problem. In particular, current nonlinear dynamics approaches mostly require to know a priori a model of the (often high dimensional) system dynamics. Here we develop a model-independent framework for inferring direct interactions solely from recording the nonlinear collective dynamics generated. Introducing an explicit dependency matrix in combination with a block-orthogonal regression algorithm, the approach works reliably across many dynamical regimes, including transient dynamics toward steady states, periodic and non-periodic dynamics, and chaos. Together with its capabilities to reveal network (two point) as well as hypernetwork (e.g., three point) interactions, this framework may thus open up nonlinear dynamics options of inferring direct interaction patterns across systems where no model is known.

  5. Assurance of reliability and safety in liquid hydrocarbons marine transportation and storing

    NASA Astrophysics Data System (ADS)

    Korshunov, G. I.; Polyakov, S. L.; Shunmin, Li

    2017-10-01

    The problems of assurance of safety and reliability in the liquid hydrocarbons marine transportation and storing are described. The requirements of standard IEC61511 have to be fulfilled for the load/unload in tanker’s system under dynamic loads on the pipeline system. The safety zones for fires of the type “fireball” and the spillage have to be determined when storing the liquid hydrocarbons. An example of the achieved necessary safety level of the duplicated load system, the conditions of the pipelines reliable operation under dynamic loads, the principles of the method of the liquid hydrocarbons storage safety zones under possible accident conditions are represented.

  6. Fast exposure time decision in multi-exposure HDR imaging

    NASA Astrophysics Data System (ADS)

    Piao, Yongjie; Jin, Guang

    2012-10-01

    Currently available imaging and display system exists the problem of insufficient dynamic range, and the system cannot restore all the information for an high dynamic range (HDR) scene. The number of low dynamic range(LDR) image samples and fastness of exposure time decision impacts the real-time performance of the system dramatically. In order to realize a real-time HDR video acquisition system, this paper proposed a fast and robust method for exposure time selection in under and over exposure area which is based on system response function. The method utilized the monotony of the imaging system. According to this characteristic the exposure time is adjusted to an initial value to make the median value of the image equals to the middle value of the system output range; then adjust the exposure time to make the pixel value on two sides of histogram be the middle value of the system output range. Thus three low dynamic range images are acquired. Experiments show that the proposed method for adjusting the initial exposure time can converge in two iterations which is more fast and stable than average gray control method. As to the exposure time adjusting in under and over exposed area, the proposed method can use the dynamic range of the system more efficiently than fixed exposure time method.

  7. The optimal dynamic immunization under a controlled heterogeneous node-based SIRS model

    NASA Astrophysics Data System (ADS)

    Yang, Lu-Xing; Draief, Moez; Yang, Xiaofan

    2016-05-01

    Dynamic immunizations, under which the state of the propagation network of electronic viruses can be changed by adjusting the control measures, are regarded as an alternative to static immunizations. This paper addresses the optimal dynamical immunization under the widely accepted SIRS assumption. First, based on a controlled heterogeneous node-based SIRS model, an optimal control problem capturing the optimal dynamical immunization is formulated. Second, the existence of an optimal dynamical immunization scheme is shown, and the corresponding optimality system is derived. Next, some numerical examples are given to show that an optimal immunization strategy can be worked out by numerically solving the optimality system, from which it is found that the network topology has a complex impact on the optimal immunization strategy. Finally, the difference between a payoff and the minimum payoff is estimated in terms of the deviation of the corresponding immunization strategy from the optimal immunization strategy. The proposed optimal immunization scheme is justified, because it can achieve a low level of infections at a low cost.

  8. Dynamically analyzing cell interactions in biological environments using multiagent social learning framework.

    PubMed

    Zhang, Chengwei; Li, Xiaohong; Li, Shuxin; Feng, Zhiyong

    2017-09-20

    Biological environment is uncertain and its dynamic is similar to the multiagent environment, thus the research results of the multiagent system area can provide valuable insights to the understanding of biology and are of great significance for the study of biology. Learning in a multiagent environment is highly dynamic since the environment is not stationary anymore and each agent's behavior changes adaptively in response to other coexisting learners, and vice versa. The dynamics becomes more unpredictable when we move from fixed-agent interaction environments to multiagent social learning framework. Analytical understanding of the underlying dynamics is important and challenging. In this work, we present a social learning framework with homogeneous learners (e.g., Policy Hill Climbing (PHC) learners), and model the behavior of players in the social learning framework as a hybrid dynamical system. By analyzing the dynamical system, we obtain some conditions about convergence or non-convergence. We experimentally verify the predictive power of our model using a number of representative games. Experimental results confirm the theoretical analysis. Under multiagent social learning framework, we modeled the behavior of agent in biologic environment, and theoretically analyzed the dynamics of the model. We present some sufficient conditions about convergence or non-convergence and prove them theoretically. It can be used to predict the convergence of the system.

  9. Dynamics of Complexity and Accuracy: A Longitudinal Case Study of Advanced Untutored Development

    ERIC Educational Resources Information Center

    Polat, Brittany; Kim, Youjin

    2014-01-01

    This longitudinal case study follows a dynamic systems approach to investigate an under-studied research area in second language acquisition, the development of complexity and accuracy for an advanced untutored learner of English. Using the analytical tools of dynamic systems theory (Verspoor et al. 2011) within the framework of complexity,…

  10. Dynamic behavior of tripolar hip endoprostheses under physiological conditions and their effect on stability.

    PubMed

    Fabry, Christian; Kaehler, Michael; Herrmann, Sven; Woernle, Christoph; Bader, Rainer

    2014-01-01

    Tripolar systems have been implanted to reduce the risk of recurrent dislocation. However, there is little known about the dynamic behavior of tripolar hip endoprostheses under daily life conditions and achieved joint stability. Hence, the objective of this biomechanical study was to examine the in vivo dynamics and dislocation behavior of two types of tripolar systems compared to a standard total hip replacement (THR) with the same outer head diameter. Several load cases of daily life activities were applied to an eccentric and a concentric tripolar system by an industrial robot. During testing, the motion of the intermediate component was measured using a stereo camera system. Additionally, their behavior under different dislocation scenarios was investigated in comparison to a standard THR. For the eccentric tripolar system, the intermediate component demonstrated the shifting into moderate valgus-positions, regardless of the type of movement. This implant showed the highest resisting torque against dislocation in combination with a large range of motion. In contrast, the concentric tripolar system tended to remain in varus-positions and was primarily moved after stem contact. According to the results, eccentric tripolar systems can work well under in vivo conditions and increase hip joint stability in comparison to standard THRs. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. Time Series Analysis of the Bacillus subtilis Sporulation Network Reveals Low Dimensional Chaotic Dynamics.

    PubMed

    Lecca, Paola; Mura, Ivan; Re, Angela; Barker, Gary C; Ihekwaba, Adaoha E C

    2016-01-01

    Chaotic behavior refers to a behavior which, albeit irregular, is generated by an underlying deterministic process. Therefore, a chaotic behavior is potentially controllable. This possibility becomes practically amenable especially when chaos is shown to be low-dimensional, i.e., to be attributable to a small fraction of the total systems components. In this case, indeed, including the major drivers of chaos in a system into the modeling approach allows us to improve predictability of the systems dynamics. Here, we analyzed the numerical simulations of an accurate ordinary differential equation model of the gene network regulating sporulation initiation in Bacillus subtilis to explore whether the non-linearity underlying time series data is due to low-dimensional chaos. Low-dimensional chaos is expectedly common in systems with few degrees of freedom, but rare in systems with many degrees of freedom such as the B. subtilis sporulation network. The estimation of a number of indices, which reflect the chaotic nature of a system, indicates that the dynamics of this network is affected by deterministic chaos. The neat separation between the indices obtained from the time series simulated from the model and those obtained from time series generated by Gaussian white and colored noise confirmed that the B. subtilis sporulation network dynamics is affected by low dimensional chaos rather than by noise. Furthermore, our analysis identifies the principal driver of the networks chaotic dynamics to be sporulation initiation phosphotransferase B (Spo0B). We then analyzed the parameters and the phase space of the system to characterize the instability points of the network dynamics, and, in turn, to identify the ranges of values of Spo0B and of the other drivers of the chaotic dynamics, for which the whole system is highly sensitive to minimal perturbation. In summary, we described an unappreciated source of complexity in the B. subtilis sporulation network by gathering evidence for the chaotic behavior of the system, and by suggesting candidate molecules driving chaos in the system. The results of our chaos analysis can increase our understanding of the intricacies of the regulatory network under analysis, and suggest experimental work to refine our behavior of the mechanisms underlying B. subtilis sporulation initiation control.

  12. Evolutionary game based control for biological systems with applications in drug delivery.

    PubMed

    Li, Xiaobo; Lenaghan, Scott C; Zhang, Mingjun

    2013-06-07

    Control engineering and analysis of biological systems have become increasingly important for systems and synthetic biology. Unfortunately, no widely accepted control framework is currently available for these systems, especially at the cell and molecular levels. This is partially due to the lack of appropriate mathematical models to describe the unique dynamics of biological systems, and the lack of implementation techniques, such as ultra-fast and ultra-small devices and corresponding control algorithms. This paper proposes a control framework for biological systems subject to dynamics that exhibit adaptive behavior under evolutionary pressures. The control framework was formulated based on evolutionary game based modeling, which integrates both the internal dynamics and the population dynamics. In the proposed control framework, the adaptive behavior was characterized as an internal dynamic, and the external environment was regarded as an external control input. The proposed open-interface control framework can be integrated with additional control algorithms for control of biological systems. To demonstrate the effectiveness of the proposed framework, an optimal control strategy was developed and validated for drug delivery using the pathogen Giardia lamblia as a test case. In principle, the proposed control framework can be applied to any biological system exhibiting adaptive behavior under evolutionary pressures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Rethinking the logistic approach for population dynamics of mutualistic interactions.

    PubMed

    García-Algarra, Javier; Galeano, Javier; Pastor, Juan Manuel; Iriondo, José María; Ramasco, José J

    2014-12-21

    Mutualistic communities have an internal structure that makes them resilient to external perturbations. Late research has focused on their stability and the topology of the relations between the different organisms to explain the reasons of the system robustness. Much less attention has been invested in analyzing the systems dynamics. The main population models in use are modifications of the r-K formulation of logistic equation with additional terms to account for the benefits produced by the interspecific interactions. These models have shortcomings as the so-called r-K formulation diverges under some conditions. In this work, we introduce a model for population dynamics under mutualism that preserves the original logistic formulation. It is mathematically simpler than the widely used type II models, although it shows similar complexity in terms of fixed points and stability of the dynamics. We perform an analytical stability analysis and numerical simulations to study the model behavior in general interaction scenarios including tests of the resilience of its dynamics under external perturbations. Despite its simplicity, our results indicate that the model dynamics shows an important richness that can be used to gain further insights in the dynamics of mutualistic communities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Design and landing dynamic analysis of reusable landing leg for a near-space manned capsule

    NASA Astrophysics Data System (ADS)

    Yue, Shuai; Nie, Hong; Zhang, Ming; Wei, Xiaohui; Gan, Shengyong

    2018-06-01

    To improve the landing performance of a near-space manned capsule under various landing conditions, a novel landing system is designed that employs double chamber and single chamber dampers in the primary and auxiliary struts, respectively. A dynamic model of the landing system is established, and the damper parameters are determined by employing the design method. A single-leg drop test with different initial pitch angles is then conducted to compare and validate the simulation model. Based on the validated simulation model, seven critical landing conditions regarding nine crucial landing responses are found by combining the radial basis function (RBF) surrogate model and adaptive simulated annealing (ASA) optimization method. Subsequently, the adaptability of the landing system under critical landing conditions is analyzed. The results show that the simulation effectively results match the test results, which validates the accuracy of the dynamic model. In addition, all of the crucial responses under their corresponding critical landing conditions satisfy the design specifications, demonstrating the feasibility of the landing system.

  15. Time series analyses of breathing patterns of lung cancer patients using nonlinear dynamical system theory.

    PubMed

    Tewatia, D K; Tolakanahalli, R P; Paliwal, B R; Tomé, W A

    2011-04-07

    The underlying requirements for successful implementation of any efficient tumour motion management strategy are regularity and reproducibility of a patient's breathing pattern. The physiological act of breathing is controlled by multiple nonlinear feedback and feed-forward couplings. It would therefore be appropriate to analyse the breathing pattern of lung cancer patients in the light of nonlinear dynamical system theory. The purpose of this paper is to analyse the one-dimensional respiratory time series of lung cancer patients based on nonlinear dynamics and delay coordinate state space embedding. It is very important to select a suitable pair of embedding dimension 'm' and time delay 'τ' when performing a state space reconstruction. Appropriate time delay and embedding dimension were obtained using well-established methods, namely mutual information and the false nearest neighbour method, respectively. Establishing stationarity and determinism in a given scalar time series is a prerequisite to demonstrating that the nonlinear dynamical system that gave rise to the scalar time series exhibits a sensitive dependence on initial conditions, i.e. is chaotic. Hence, once an appropriate state space embedding of the dynamical system has been reconstructed, we show that the time series of the nonlinear dynamical systems under study are both stationary and deterministic in nature. Once both criteria are established, we proceed to calculate the largest Lyapunov exponent (LLE), which is an invariant quantity under time delay embedding. The LLE for all 16 patients is positive, which along with stationarity and determinism establishes the fact that the time series of a lung cancer patient's breathing pattern is not random or irregular, but rather it is deterministic in nature albeit chaotic. These results indicate that chaotic characteristics exist in the respiratory waveform and techniques based on state space dynamics should be employed for tumour motion management.

  16. A Few Integrable Dynamical Systems, Recurrence Operators, Expanding Integrable Models and Hamiltonian Structures by the r-Matrix Method

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Feng; Muhammad, Iqbal; Yue, Chao

    2017-10-01

    We extend two known dynamical systems obtained by Blaszak, et al. via choosing Casimir functions and utilizing Novikov-Lax equation so that a series of novel dynamical systems including generalized Burgers dynamical system, heat equation, and so on, are followed to be generated. Then we expand some differential operators presented in the paper to deduce two types of expanding dynamical models. By taking the generalized Burgers dynamical system as an example, we deform its expanding model to get a half-expanding system, whose recurrence operator is derived from Lax representation, and its Hamiltonian structure is also obtained by adopting a new way. Finally, we expand the generalized Burgers dynamical system to the (2+1)-dimensional case whose Hamiltonian structure is derived by Poisson tensor and gradient of the Casimir function. Besides, a kind of (2+1)-dimensional expanding dynamical model of the (2+1)-dimensional dynamical system is generated as well. Supported by the Fundamental Research Funds for the Central University under Grant No. 2017XKZD11

  17. Artificial neural networks for control of a grid-connected rectifier/inverter under disturbance, dynamic and power converter switching conditions.

    PubMed

    Li, Shuhui; Fairbank, Michael; Johnson, Cameron; Wunsch, Donald C; Alonso, Eduardo; Proaño, Julio L

    2014-04-01

    Three-phase grid-connected converters are widely used in renewable and electric power system applications. Traditionally, grid-connected converters are controlled with standard decoupled d-q vector control mechanisms. However, recent studies indicate that such mechanisms show limitations in their applicability to dynamic systems. This paper investigates how to mitigate such restrictions using a neural network to control a grid-connected rectifier/inverter. The neural network implements a dynamic programming algorithm and is trained by using back-propagation through time. To enhance performance and stability under disturbance, additional strategies are adopted, including the use of integrals of error signals to the network inputs and the introduction of grid disturbance voltage to the outputs of a well-trained network. The performance of the neural-network controller is studied under typical vector control conditions and compared against conventional vector control methods, which demonstrates that the neural vector control strategy proposed in this paper is effective. Even in dynamic and power converter switching environments, the neural vector controller shows strong ability to trace rapidly changing reference commands, tolerate system disturbances, and satisfy control requirements for a faulted power system.

  18. Structures to Resist the Effects of Accidental Explosions. Volume 3. Principles of Dynamic Analysis

    DTIC Science & Technology

    1984-06-01

    multi-degree-of-freedom systems) is presented. A step-by-step numerical integration of an element’s motion under dynamic loads using the...structural arrangements; providing closures, and preventing damage to interior portions of structures due to structual motion , shock, and fragment...an element’s motion under dynamic loads utilizing the Acceleration-Impulse- Extrapolation Method or the Average Acceleration Method and design charts

  19. Dynamics and Control of Non-Smooth Systems with Applications to Supercavitating Vehicles

    DTIC Science & Technology

    2011-01-01

    ABSTRACT Title of dissertation: Dynamics and Control of Non-Smooth Systems with Applications to Supercavitating Vehicles Vincent Nguyen, Doctor of...relates to the dynamics of non-smooth vehicle systems, and in particular, supercavitating vehicles. These high-speed under- water vehicles are...Applications to Supercavitating Vehicles 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK

  20. On the decomposition of a dynamical system into non-interacting subsystems.

    NASA Technical Reports Server (NTRS)

    Rosen, R.

    1972-01-01

    It is shown that, under rather general conditions, it is possible to formally decompose the dynamics of an n-dimensional dynamical system into a number of non-interacting subsystems. It is shown that these decompositions are in general not simply related to the kinds of observational procedures in terms of which the original state variables of the system are defined. Some consequences of this construction for reductionism in biology are discussed.

  1. Experimental Study of Slabbing and Rockburst Induced by True-Triaxial Unloading and Local Dynamic Disturbance

    NASA Astrophysics Data System (ADS)

    Du, Kun; Tao, Ming; Li, Xi-bing; Zhou, Jian

    2016-09-01

    Slabbing/spalling and rockburst are unconventional types of failure of hard rocks under conditions of unloading and various dynamic loads in environments with high and complex initial stresses. In this study, the failure behaviors of different rock types (granite, red sandstone, and cement mortar) were investigated using a novel testing system coupled to true-triaxial static loads and local dynamic disturbances. An acoustic emission system and a high-speed camera were used to record the real-time fracturing processes. The true-triaxial unloading test results indicate that slabbing occurred in the granite and sandstone, whereas the cement mortar underwent shear failure. Under local dynamically disturbed loading, none of the specimens displayed obvious fracturing at low-amplitude local dynamic loading; however, the degree of rock failure increased as the local dynamic loading amplitude increased. The cement mortar displayed no failure during testing, showing a considerable load-carrying capacity after testing. The sandstone underwent a relatively stable fracturing process, whereas violent rockbursts occurred in the granite specimen. The fracturing process does not appear to depend on the direction of local dynamic loading, and the acoustic emission count rate during rock fragmentation shows that similar crack evolution occurred under the two test scenarios (true-triaxial unloading and local dynamically disturbed loading).

  2. CAT & MAUS: A novel system for true dynamic motion measurement of underlying bony structures with compensation for soft tissue movement.

    PubMed

    Jia, Rui; Monk, Paul; Murray, David; Noble, J Alison; Mellon, Stephen

    2017-09-06

    Optoelectronic motion capture systems are widely employed to measure the movement of human joints. However, there can be a significant discrepancy between the data obtained by a motion capture system (MCS) and the actual movement of underlying bony structures, which is attributed to soft tissue artefact. In this paper, a computer-aided tracking and motion analysis with ultrasound (CAT & MAUS) system with an augmented globally optimal registration algorithm is presented to dynamically track the underlying bony structure during movement. The augmented registration part of CAT & MAUS was validated with a high system accuracy of 80%. The Euclidean distance between the marker-based bony landmark and the bony landmark tracked by CAT & MAUS was calculated to quantify the measurement error of an MCS caused by soft tissue artefact during movement. The average Euclidean distance between the target bony landmark measured by each of the CAT & MAUS system and the MCS alone varied from 8.32mm to 16.87mm in gait. This indicates the discrepancy between the MCS measured bony landmark and the actual underlying bony landmark. Moreover, Procrustes analysis was applied to demonstrate that CAT & MAUS reduces the deformation of the body segment shape modeled by markers during motion. The augmented CAT & MAUS system shows its potential to dynamically detect and locate actual underlying bony landmarks, which reduces the MCS measurement error caused by soft tissue artefact during movement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The Peace Mediator effect: Heterogeneous agents can foster consensus in continuous opinion models

    NASA Astrophysics Data System (ADS)

    Vilone, Daniele; Carletti, Timoteo; Bagnoli, Franco; Guazzini, Andrea

    2016-11-01

    Statistical mechanics has proven to be able to capture the fundamental rules underlying phenomena of social aggregation and opinion dynamics, well studied in disciplines like sociology and psychology. This approach is based on the underlying paradigm that the interesting dynamics of multi-agent systems emerge from the correct definition of few parameters governing the evolution of each individual. In this context, we propose a particular model of opinion dynamics based on the psychological construct named ;cognitive dissonance;. Our system is made of interacting individuals, the agents, each bearing only two dynamical variables (respectively ;opinion; and ;affinity;) self-consistently adjusted during time evolution. We also define two special classes of interacting entities, both acting for a peace mediation process but via different course of action: ;diplomats; and ;auctoritates;. The behavior of the system with and without peace mediators (PMs) is investigated and discussed with reference to corresponding psychological and social implications.

  4. Combinatorial games with a pass: a dynamical systems approach.

    PubMed

    Morrison, Rebecca E; Friedman, Eric J; Landsberg, Adam S

    2011-12-01

    By treating combinatorial games as dynamical systems, we are able to address a longstanding open question in combinatorial game theory, namely, how the introduction of a "pass" move into a game affects its behavior. We consider two well known combinatorial games, 3-pile Nim and 3-row Chomp. In the case of Nim, we observe that the introduction of the pass dramatically alters the game's underlying structure, rendering it considerably more complex, while for Chomp, the pass move is found to have relatively minimal impact. We show how these results can be understood by recasting these games as dynamical systems describable by dynamical recursion relations. From these recursion relations, we are able to identify underlying structural connections between these "games with passes" and a recently introduced class of "generic (perturbed) games." This connection, together with a (non-rigorous) numerical stability analysis, allows one to understand and predict the effect of a pass on a game.

  5. Liquid gating elastomeric porous system with dynamically controllable gas/liquid transport.

    PubMed

    Sheng, Zhizhi; Wang, Honglong; Tang, Yongliang; Wang, Miao; Huang, Lizhi; Min, Lingli; Meng, Haiqiang; Chen, Songyue; Jiang, Lei; Hou, Xu

    2018-02-01

    The development of membrane technology is central to fields ranging from resource harvesting to medicine, but the existing designs are unable to handle the complex sorting of multiphase substances required for many systems. Especially, the dynamic multiphase transport and separation under a steady-state applied pressure have great benefits for membrane science, but have not been realized at present. Moreover, the incorporation of precisely dynamic control with avoidance of contamination of membranes remains elusive. We show a versatile strategy for creating elastomeric microporous membrane-based systems that can finely control and dynamically modulate the sorting of a wide range of gases and liquids under a steady-state applied pressure, nearly eliminate fouling, and can be easily applied over many size scales, pressures, and environments. Experiments and theoretical calculation demonstrate the stability of our system and the tunability of the critical pressure. Dynamic transport of gas and liquid can be achieved through our gating interfacial design and the controllable pores' deformation without changing the applied pressure. Therefore, we believe that this system will bring new opportunities for many applications, such as gas-involved chemical reactions, fuel cells, multiphase separation, multiphase flow, multiphase microreactors, colloidal particle synthesis, and sizing nano/microparticles.

  6. Liquid gating elastomeric porous system with dynamically controllable gas/liquid transport

    PubMed Central

    Sheng, Zhizhi; Wang, Honglong; Tang, Yongliang; Wang, Miao; Huang, Lizhi; Min, Lingli; Meng, Haiqiang; Chen, Songyue; Jiang, Lei; Hou, Xu

    2018-01-01

    The development of membrane technology is central to fields ranging from resource harvesting to medicine, but the existing designs are unable to handle the complex sorting of multiphase substances required for many systems. Especially, the dynamic multiphase transport and separation under a steady-state applied pressure have great benefits for membrane science, but have not been realized at present. Moreover, the incorporation of precisely dynamic control with avoidance of contamination of membranes remains elusive. We show a versatile strategy for creating elastomeric microporous membrane-based systems that can finely control and dynamically modulate the sorting of a wide range of gases and liquids under a steady-state applied pressure, nearly eliminate fouling, and can be easily applied over many size scales, pressures, and environments. Experiments and theoretical calculation demonstrate the stability of our system and the tunability of the critical pressure. Dynamic transport of gas and liquid can be achieved through our gating interfacial design and the controllable pores’ deformation without changing the applied pressure. Therefore, we believe that this system will bring new opportunities for many applications, such as gas-involved chemical reactions, fuel cells, multiphase separation, multiphase flow, multiphase microreactors, colloidal particle synthesis, and sizing nano/microparticles. PMID:29487906

  7. Attractors of equations of non-Newtonian fluid dynamics

    NASA Astrophysics Data System (ADS)

    Zvyagin, V. G.; Kondrat'ev, S. K.

    2014-10-01

    This survey describes a version of the trajectory-attractor method, which is applied to study the limit asymptotic behaviour of solutions of equations of non-Newtonian fluid dynamics. The trajectory-attractor method emerged in papers of the Russian mathematicians Vishik and Chepyzhov and the American mathematician Sell under the condition that the corresponding trajectory spaces be invariant under the translation semigroup. The need for such an approach was caused by the fact that for many equations of mathematical physics for which the Cauchy initial-value problem has a global (weak) solution with respect to the time, the uniqueness of such a solution has either not been established or does not hold. In particular, this is the case for equations of fluid dynamics. At the same time, trajectory spaces invariant under the translation semigroup could not be constructed for many equations of non-Newtonian fluid dynamics. In this connection, a different approach to the construction of trajectory attractors for dissipative systems was proposed in papers of Zvyagin and Vorotnikov without using invariance of trajectory spaces under the translation semigroup and is based on the topological lemma of Shura-Bura. This paper presents examples of equations of non-Newtonian fluid dynamics (the Jeffreys system describing movement of the Earth's crust, the model of motion of weak aqueous solutions of polymers, a system with memory) for which the aforementioned construction is used to prove the existence of attractors in both the autonomous and the non-autonomous cases. At the beginning of the paper there is also a brief exposition of the results of Ladyzhenskaya on the existence of attractors of the two-dimensional Navier-Stokes system and the result of Vishik and Chepyzhov for the case of attractors of the three-dimensional Navier-Stokes system. Bibliography: 34 titles.

  8. Research Based on AMESim of Electro-hydraulic Servo Loading System

    NASA Astrophysics Data System (ADS)

    Li, Jinlong; Hu, Zhiyong

    2017-09-01

    Electro-hydraulic servo loading system is a subject studied by many scholars in the field of simulation and control at home and abroad. The electro-hydraulic servo loading system is a loading device simulation of stress objects by aerodynamic moment and other force in the process of movement, its function is all kinds of gas in the lab condition to analyze stress under dynamic load of objects. The purpose of this paper is the design of AMESim electro-hydraulic servo system, PID control technology is used to configure the parameters of the control system, complete the loading process under different conditions, the optimal design parameters, optimization of dynamic performance of the loading system.

  9. Stability and dynamical properties of material flow systems on random networks

    NASA Astrophysics Data System (ADS)

    Anand, K.; Galla, T.

    2009-04-01

    The theory of complex networks and of disordered systems is used to study the stability and dynamical properties of a simple model of material flow networks defined on random graphs. In particular we address instabilities that are characteristic of flow networks in economic, ecological and biological systems. Based on results from random matrix theory, we work out the phase diagram of such systems defined on extensively connected random graphs, and study in detail how the choice of control policies and the network structure affects stability. We also present results for more complex topologies of the underlying graph, focussing on finitely connected Erdös-Réyni graphs, Small-World Networks and Barabási-Albert scale-free networks. Results indicate that variability of input-output matrix elements, and random structures of the underlying graph tend to make the system less stable, while fast price dynamics or strong responsiveness to stock accumulation promote stability.

  10. Quadratic partial eigenvalue assignment in large-scale stochastic dynamic systems for resilient and economic design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Sonjoy; Goswami, Kundan; Datta, Biswa N.

    2014-12-10

    Failure of structural systems under dynamic loading can be prevented via active vibration control which shifts the damped natural frequencies of the systems away from the dominant range of loading spectrum. The damped natural frequencies and the dynamic load typically show significant variations in practice. A computationally efficient methodology based on quadratic partial eigenvalue assignment technique and optimization under uncertainty has been formulated in the present work that will rigorously account for these variations and result in an economic and resilient design of structures. A novel scheme based on hierarchical clustering and importance sampling is also developed in this workmore » for accurate and efficient estimation of probability of failure to guarantee the desired resilience level of the designed system. Numerical examples are presented to illustrate the proposed methodology.« less

  11. Failure monitoring in dynamic systems: Model construction without fault training data

    NASA Technical Reports Server (NTRS)

    Smyth, P.; Mellstrom, J.

    1993-01-01

    Advances in the use of autoregressive models, pattern recognition methods, and hidden Markov models for on-line health monitoring of dynamic systems (such as DSN antennas) have recently been reported. However, the algorithms described in previous work have the significant drawback that data acquired under fault conditions are assumed to be available in order to train the model used for monitoring the system under observation. This article reports that this assumption can be relaxed and that hidden Markov monitoring models can be constructed using only data acquired under normal conditions and prior knowledge of the system characteristics being measured. The method is described and evaluated on data from the DSS 13 34-m beam wave guide antenna. The primary conclusion from the experimental results is that the method is indeed practical and holds considerable promise for application at the 70-m antenna sites where acquisition of fault data under controlled conditions is not realistic.

  12. Influence of Dynamic Hydraulic Conditions on Nitrogen Cycling in Column Experiments

    NASA Astrophysics Data System (ADS)

    Gassen, Niklas; von Netzer, Frederick; Ryabenko, Evgenia; Lüders, Tillmann; Stumpp, Christine

    2015-04-01

    In order to improve management strategies of agricultural nitrogen input, it is of major importance to further understand which factors influence turnover processes within the nitrogen cycle. Many studies have focused on the fate of nitrate in hydrological systems, but up to date only little is known about the influence of dynamic hydraulic conditions on the fate of nitrate at the soil-groundwater interface. We conducted column experiments with natural sediment and compared a system with a fluctuating water table to systems with different water content and static conditions under the constant input of ammonia into the system. We used hydrochemical methods in order to trace nitrogen species, 15N isotope methods to get information about dominating turnover processes and microbial community analysis in order to connect hydrochemical and microbial information. We found that added ammonia was removed more effectively under dynamic hydraulic conditions than under static conditions. Furthermore, denitrification is the dominant process under saturated, static conditions, while nitrification is more important under unsaturated, static conditions. We conclude that a fluctuating water table creates hot spots where both nitrification and denitrification processes can occur spatially close to each other and therefore remove nitrogen more effectively from the system. Furthermore, the fluctuating water table enhances the exchange of solutes and triggers hot moments of solute turnover. Therefore we conclude that a fluctuating water table can amplify hot spots and trigger hot moments of nitrogen cycling.

  13. Global sensitivity and uncertainty analysis of the nitrate leaching and crop yield simulation under different water and nitrogen management practices

    USDA-ARS?s Scientific Manuscript database

    Agricultural system models have become important tools in studying water and nitrogen (N) dynamics, as well as crop growth, under different management practices. Complexity in input parameters often leads to significant uncertainty when simulating dynamic processes such as nitrate leaching or crop y...

  14. Problems experienced and envisioned for dynamical physical systems

    NASA Technical Reports Server (NTRS)

    Ryan, R. S.

    1985-01-01

    The use of high performance systems, which is the trend of future space systems, naturally leads to lower margins and a higher sensitivity to parameter variations and, therefore, more problems of dynamical physical systems. To circumvent dynamic problems of these systems, appropriate design, verification analysis, and tests must be planned and conducted. The basic design goal is to define the problem before it occurs. The primary approach for meeting this goal is a good understanding and reviewing of the problems experienced in the past in terms of the system under design. This paper reviews many of the dynamic problems experienced in space systems design and operation, categorizes them as to causes, and envisions future program implications, developing recommendations for analysis and test approaches.

  15. Characterizing system dynamics with a weighted and directed network constructed from time series data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiaoran, E-mail: sxr0806@gmail.com; School of Mathematics and Statistics, The University of Western Australia, Crawley WA 6009; Small, Michael, E-mail: michael.small@uwa.edu.au

    In this work, we propose a novel method to transform a time series into a weighted and directed network. For a given time series, we first generate a set of segments via a sliding window, and then use a doubly symbolic scheme to characterize every windowed segment by combining absolute amplitude information with an ordinal pattern characterization. Based on this construction, a network can be directly constructed from the given time series: segments corresponding to different symbol-pairs are mapped to network nodes and the temporal succession between nodes is represented by directed links. With this conversion, dynamics underlying the timemore » series has been encoded into the network structure. We illustrate the potential of our networks with a well-studied dynamical model as a benchmark example. Results show that network measures for characterizing global properties can detect the dynamical transitions in the underlying system. Moreover, we employ a random walk algorithm to sample loops in our networks, and find that time series with different dynamics exhibits distinct cycle structure. That is, the relative prevalence of loops with different lengths can be used to identify the underlying dynamics.« less

  16. Strain measurement using a Brillouin optical time domain reflectometer for development of aircraft structure health monitoring system

    NASA Astrophysics Data System (ADS)

    Shimizu, Takayuki; Yari, Takashi; Nagai, Kanehiro; Takeda, Nobuo

    2001-07-01

    We conducted theoretical and experimental approaches for applying Brillouin optical time domain reflectometer (BOTDR) to aircraft and spacecraft structure health monitoring system. Firstly, distributed strain was measured by BOTDR under 3-point bending test and a spatial resolution was enhanced up to 0.5m using Brillouin spectrum analysis and processing though the device used in this experiment had a spatial resolution of 2m normally. Secondly, dynamic strain measurement was executed under cyclic loading conditions. Brillouin spectrum measured under dynamic conditions is equivalent to superposed spectrum using many spectra measured under static loading conditions. As the measured spectrum was decomposed into many spectra in static loading state, the strain amplitude and its ratio could be estimated. Thirdly, strain and temperature could be measured independently using combined system of BOTDR and fiber Bragg grating (FBG) with wavelength division multiplexing (WDM). Additionally, the application of BOTDR sensing system was shown for a prototype carbon fiber reinforced plastic (CFRP) liquid hydrogen (LH2) tank under cryogenic condition.

  17. Network-induced chaos in integrate-and-fire neuronal ensembles.

    PubMed

    Zhou, Douglas; Rangan, Aaditya V; Sun, Yi; Cai, David

    2009-09-01

    It has been shown that a single standard linear integrate-and-fire (IF) neuron under a general time-dependent stimulus cannot possess chaotic dynamics despite the firing-reset discontinuity. Here we address the issue of whether conductance-based, pulsed-coupled network interactions can induce chaos in an IF neuronal ensemble. Using numerical methods, we demonstrate that all-to-all, homogeneously pulse-coupled IF neuronal networks can indeed give rise to chaotic dynamics under an external periodic current drive. We also provide a precise characterization of the largest Lyapunov exponent for these high dimensional nonsmooth dynamical systems. In addition, we present a stable and accurate numerical algorithm for evaluating the largest Lyapunov exponent, which can overcome difficulties encountered by traditional methods for these nonsmooth dynamical systems with degeneracy induced by, e.g., refractoriness of neurons.

  18. A framework for modeling and optimizing dynamic systems under uncertainty

    DOE PAGES

    Nicholson, Bethany; Siirola, John

    2017-11-11

    Algebraic modeling languages (AMLs) have drastically simplified the implementation of algebraic optimization problems. However, there are still many classes of optimization problems that are not easily represented in most AMLs. These classes of problems are typically reformulated before implementation, which requires significant effort and time from the modeler and obscures the original problem structure or context. In this work we demonstrate how the Pyomo AML can be used to represent complex optimization problems using high-level modeling constructs. We focus on the operation of dynamic systems under uncertainty and demonstrate the combination of Pyomo extensions for dynamic optimization and stochastic programming.more » We use a dynamic semibatch reactor model and a large-scale bubbling fluidized bed adsorber model as test cases.« less

  19. A framework for modeling and optimizing dynamic systems under uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholson, Bethany; Siirola, John

    Algebraic modeling languages (AMLs) have drastically simplified the implementation of algebraic optimization problems. However, there are still many classes of optimization problems that are not easily represented in most AMLs. These classes of problems are typically reformulated before implementation, which requires significant effort and time from the modeler and obscures the original problem structure or context. In this work we demonstrate how the Pyomo AML can be used to represent complex optimization problems using high-level modeling constructs. We focus on the operation of dynamic systems under uncertainty and demonstrate the combination of Pyomo extensions for dynamic optimization and stochastic programming.more » We use a dynamic semibatch reactor model and a large-scale bubbling fluidized bed adsorber model as test cases.« less

  20. 46 CFR 154.409 - Dynamic loads from vessel motion.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Equipment Cargo Containment Systems § 154.409 Dynamic loads from vessel motion. (a) For the calculation required under § 154.406 (a)(3) and (b), the dynamic loads must be determined from the long term... 46 Shipping 5 2010-10-01 2010-10-01 false Dynamic loads from vessel motion. 154.409 Section 154...

  1. Study of virgin olive oil clarification by settling under dynamic conditions.

    PubMed

    Gila, Abraham; Bejaoui, Mohamed Aymen; Beltrán, Gabriel; Aguilera, María Paz; Jiménez, Antonio

    2018-04-16

    Vertical centrifugation is the main method for virgin olive oil (VOO) clarification. However, in recent years, settling tanks are also being used to clarify the oils from decanters. They can operate under static or dynamic conditions. In this work, vertical centrifugation and settling under dynamic conditions for VOO clarification and their effects on VOO characteristics were compared. VOO quality parameters were not affected by the clarification systems studied. The vertical centrifugal separator (VCS) showed higher clarification efficiency, giving clarified oils with higher phenol content and better sensory characteristics. VOOs clarified by dynamic settling showed notable losses of phenols and worse sensory characteristics, since the tank purge system was not efficient, with most of the impurities remaining in the tanks. The VCS with minimal water addition is a quick operation with low water consumption and is a better option to produce VOOs of improved quality, especially in terms of longer shelf life and preservation of positive sensory notes. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  2. Dynamics Explorer twin spacecraft under evaluation tests

    NASA Technical Reports Server (NTRS)

    Redmond, C.

    1981-01-01

    The Dynamics Explorer A and B satellites designed to explore the interactive processes occuring between the magnetosphere and Earth's ionosphere, upper atmosphere, and plasmasphere are described. Effects of these interactions, satellite orbits, data collecting antennas, solar power systems, axes, configurations, and Earth based command, control and data display systems are mentioned.

  3. Language Teacher Cognitions: Complex Dynamic Systems?

    ERIC Educational Resources Information Center

    Feryok, Anne

    2010-01-01

    Language teacher cognition research is a growing field. In recent years several features of language teacher cognitions have been noted: they can be complex, ranging over a number of different subjects; they can be dynamic, changing over time and under different influences; and they can be systems, forming unified and cohesive personal or…

  4. The development of an advanced generic solar dynamic heat receiver thermal model

    NASA Technical Reports Server (NTRS)

    Wu, Y. C.; Roschke, E. J.; Kohout, L.

    1988-01-01

    An advanced generic solar dynamic heat receiver thermal model under development which can analyze both orbital transient and orbital average conditions is discussed. This model can be used to study advanced receiver concepts, evaluate receiver concepts under development, analyze receiver thermal characteristics under various operational conditions, and evaluate solar dynamic system thermal performances in various orbit conditions. The model and the basic considerations that led to its creation are described, and results based on a set of baseline orbit, configuration, and operational conditions are presented to demonstrate the working of the receiver model.

  5. Manual control of unstable systems

    NASA Technical Reports Server (NTRS)

    Allen, R. W.; Hogue, J. R.; Parseghian, Z.

    1986-01-01

    Under certain operational regimes and failure modes, air and ground vehicles can present the human operator with a dynamically unstable or divergent control task. Research conducted over the last two decades has explored the ability of the human operator to control unstable systems under a variety of circumstances. Past research is reviewed and human operator control capabilities are summarized. A current example of automobile directional control under rear brake lockup conditions is also reviewed. A control system model analysis of the driver's steering control task is summarized, based on a generic driver/vehicle model presented at last year's Annual Manual. Results from closed course braking tests are presented that confirm the difficulty the average driver has in controlling the unstable directional dynamics arising from rear wheel lockup.

  6. Energy harvesting from a DE-based dynamic vibro-impact system

    NASA Astrophysics Data System (ADS)

    Yurchenko, D.; Val, D. V.; Lai, Z. H.; Gu, G.; Thomson, G.

    2017-10-01

    Dielectric elastomer (DE) generators may be used in harvesting energy from ambient vibrations. Based on existing research on the mechanical properties of a circular DE membrane, a DE-based dynamic vibro-impact system is proposed in this paper to convert vibrational energy into electrical one. The dimensional, electrical and dynamic parameters of the DE membrane are analysed and then used to numerically estimate the output voltage of the proposed system. The system output performances under harmonic excitation are further discussed. At last, the comparison study has been conducted with an electromagnetic energy harvesting system, served as a ‘shaking’ flashlight.

  7. LETTER TO THE EDITOR: Fractal diffusion coefficient from dynamical zeta functions

    NASA Astrophysics Data System (ADS)

    Cristadoro, Giampaolo

    2006-03-01

    Dynamical zeta functions provide a powerful method to analyse low-dimensional dynamical systems when the underlying symbolic dynamics is under control. On the other hand, even simple one-dimensional maps can show an intricate structure of the grammar rules that may lead to a non-smooth dependence of global observables on parameters changes. A paradigmatic example is the fractal diffusion coefficient arising in a simple piecewise linear one-dimensional map of the real line. Using the Baladi-Ruelle generalization of the Milnor-Thurnston kneading determinant, we provide the exact dynamical zeta function for such a map and compute the diffusion coefficient from its smallest zero.

  8. Design an optimum safety policy for personnel safety management - A system dynamic approach

    NASA Astrophysics Data System (ADS)

    Balaji, P.

    2014-10-01

    Personnel safety management (PSM) ensures that employee's work conditions are healthy and safe by various proactive and reactive approaches. Nowadays it is a complex phenomenon because of increasing dynamic nature of organisations which results in an increase of accidents. An important part of accident prevention is to understand the existing system properly and make safety strategies for that system. System dynamics modelling appears to be an appropriate methodology to explore and make strategy for PSM. Many system dynamics models of industrial systems have been built entirely for specific host firms. This thesis illustrates an alternative approach. The generic system dynamics model of Personnel safety management was developed and tested in a host firm. The model was undergone various structural, behavioural and policy tests. The utility and effectiveness of model was further explored through modelling a safety scenario. In order to create effective safety policy under resource constraint, DOE (Design of experiment) was used. DOE uses classic designs, namely, fractional factorials and central composite designs. It used to make second order regression equation which serve as an objective function. That function was optimized under budget constraint and optimum value used for safety policy which shown greatest improvement in overall PSM. The outcome of this research indicates that personnel safety management model has the capability for acting as instruction tool to improve understanding of safety management and also as an aid to policy making.

  9. A locomotive-track coupled vertical dynamics model with gear transmissions

    NASA Astrophysics Data System (ADS)

    Chen, Zaigang; Zhai, Wanming; Wang, Kaiyun

    2017-02-01

    A gear transmission system is a key element in a locomotive for the transmission of traction or braking forces between the motor and the wheel-rail interface. Its dynamic performance has a direct effect on the operational reliability of the locomotive and its components. This paper proposes a comprehensive locomotive-track coupled vertical dynamics model, in which the locomotive is driven by axle-hung motors. In this coupled dynamics model, the dynamic interactions between the gear transmission system and the other components, e.g. motor and wheelset, are considered based on the detailed analysis of its structural properties and working mechanism. Thus, the mechanical transmission system for power delivery from the motor to the wheelset via gear transmission is coupled with a traditional locomotive-track dynamics system via the wheel-rail contact interface and the gear mesh interface. This developed dynamics model enables investigations of the dynamic performance of the entire dynamics system under the excitations from the wheel-rail contact interface and/or the gear mesh interface. Dynamic interactions are demonstrated by numerical simulations using this dynamics model. The results indicate that both of the excitations from the wheel-rail contact interface and the gear mesh interface have a significant effect on the dynamic responses of the components in this coupled dynamics system.

  10. Synchronizability of nonidentical weakly dissipative systems

    NASA Astrophysics Data System (ADS)

    Sendiña-Nadal, Irene; Letellier, Christophe

    2017-10-01

    Synchronization is a very generic process commonly observed in a large variety of dynamical systems which, however, has been rarely addressed in systems with low dissipation. Using the Rössler, the Lorenz 84, and the Sprott A systems as paradigmatic examples of strongly, weakly, and non-dissipative chaotic systems, respectively, we show that a parameter or frequency mismatch between two coupled such systems does not affect the synchronizability and the underlying structure of the joint attractor in the same way. By computing the Shannon entropy associated with the corresponding recurrence plots, we were able to characterize how two coupled nonidentical chaotic oscillators organize their dynamics in different dissipation regimes. While for strongly dissipative systems, the resulting dynamics exhibits a Shannon entropy value compatible with the one having an average parameter mismatch, for weak dissipation synchronization dynamics corresponds to a more complex behavior with higher values of the Shannon entropy. In comparison, conservative dynamics leads to a less rich picture, providing either similar chaotic dynamics or oversimplified periodic ones.

  11. Dynamic investigation of a locomotive with effect of gear transmissions under tractive conditions

    NASA Astrophysics Data System (ADS)

    Chen, Zaigang; Zhai, Wanming; Wang, Kaiyun

    2017-11-01

    Locomotive is used to drag trailers to move or supply the braking forces to slow the running speed of a train. The electromagnetic torque of the motor is always transmitted by the gear transmission system to the wheelset for generation of the tractive or braking forces at the wheel-rail contact interface. Consequently, gear transmission system is significant for power delivery of a locomotive. This paper develops a comprehensive locomotive-track vertical-longitudinal coupled dynamics model with dynamic effect of gear transmissions. This dynamics model enables considering the coupling interactions between the gear transmission motion, the vertical and the longitudinal motions of the vehicle, and the vertical vibration of the track structure. In this study, some complicated dynamic excitations, such as the gear time-varying mesh stiffness, nonlinear gear tooth backlash, the nonlinear wheel-rail normal contact force and creep force, and the rail vertical geometrical irregularity, are considered. Then, the dynamic responses of the locomotive under the tractive conditions are demonstrated by numerical simulations based on the established dynamics model and by experimental test. The developed dynamics model is validated by the good agreement between the experimental and the theoretical results. The calculated results reveal that the gear transmission system has strong dynamic interactions with the wheel-rail contact interface including both the vertical and the longitudinal motions, and it has negligible effect on the vibrations of the bogie frame and carbody.

  12. Modeling the Underlying Dynamics of the Spread of Crime

    PubMed Central

    McMillon, David; Simon, Carl P.; Morenoff, Jeffrey

    2014-01-01

    The spread of crime is a complex, dynamic process that calls for a systems level approach. Here, we build and analyze a series of dynamical systems models of the spread of crime, imprisonment and recidivism, using only abstract transition parameters. To find the general patterns among these parameters—patterns that are independent of the underlying particulars—we compute analytic expressions for the equilibria and for the tipping points between high-crime and low-crime equilibria in these models. We use these expressions to examine, in particular, the effects of longer prison terms and of increased incarceration rates on the prevalence of crime, with a follow-up analysis on the effects of a Three-Strike Policy. PMID:24694545

  13. Complex Dynamical Behavior in Hybrid Systems

    DTIC Science & Technology

    2012-09-29

    stability for a class of hybrid dynamical systems via averaging”, Mathematics of Control , Signals, and Systems , vol. 23, no. 4, pp...no. 7, pp. 1636-1649, 2011. J9. A.R. Teel and L. Marconi, `` Stabilization for a class of minimum phase hybrid systems under an average dwell- time ...functions for L2 and input-to-state stability in a class of quantized control systems ”, 50th IEEE Conference on Decision and Control , Dec.

  14. Topological Principles of Control in Dynamical Networks

    NASA Astrophysics Data System (ADS)

    Kim, Jason; Pasqualetti, Fabio; Bassett, Danielle

    Networked biological systems, such as the brain, feature complex patterns of interactions. To predict and correct the dynamic behavior of such systems, it is imperative to understand how the underlying topological structure affects and limits the function of the system. Here, we use network control theory to extract topological features that favor or prevent network controllability, and to understand the network-wide effect of external stimuli on large-scale brain systems. Specifically, we treat each brain region as a dynamic entity with real-valued state, and model the time evolution of all interconnected regions using linear, time-invariant dynamics. We propose a simplified feed-forward scheme where the effect of upstream regions (drivers) on the connected downstream regions (non-drivers) is characterized in closed-form. Leveraging this characterization of the simplified model, we derive topological features that predict the controllability properties of non-simplified networks. We show analytically and numerically that these predictors are accurate across a large range of parameters. Among other contributions, our analysis shows that heterogeneity in the network weights facilitate controllability, and allows us to implement targeted interventions that profoundly improve controllability. By assuming an underlying dynamical mechanism, we are able to understand the complex topology of networked biological systems in a functionally meaningful way.

  15. Modeling Dynamic Regulatory Processes in Stroke.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, Jason E.; Jarman, Kenneth D.; Taylor, Ronald C.

    2012-10-11

    The ability to examine in silico the behavior of biological systems can greatly accelerate the pace of discovery in disease pathologies, such as stroke, where in vivo experimentation is lengthy and costly. In this paper we describe an approach to in silico examination of blood genomic responses to neuroprotective agents and subsequent stroke through the development of dynamic models of the regulatory processes observed in the experimental gene expression data. First, we identified functional gene clusters from these data. Next, we derived ordinary differential equations (ODEs) relating regulators and functional clusters from the data. These ODEs were used to developmore » dynamic models that simulate the expression of regulated functional clusters using system dynamics as the modeling paradigm. The dynamic model has the considerable advantage of only requiring an initial starting state, and does not require measurement of regulatory influences at each time point in order to make accurate predictions. The manipulation of input model parameters, such as changing the magnitude of gene expression, made it possible to assess the behavior of the networks through time under varying conditions. We report that an optimized dynamic model can provide accurate predictions of overall system behavior under several different preconditioning paradigms.« less

  16. Microbial Internal Storage Alters the Carbon Transformation in Dynamic Anaerobic Fermentation.

    PubMed

    Ni, Bing-Jie; Batstone, Damien; Zhao, Bai-Hang; Yu, Han-Qing

    2015-08-04

    Microbial internal storage processes have been demonstrated to occur and play an important role in activated sludge systems under both aerobic and anoxic conditions when operating under dynamic conditions. High-rate anaerobic reactors are often operated at a high volumetric organic loading and a relatively dynamic profile, with large amounts of fermentable substrates. These dynamic operating conditions and high catabolic energy availability might also facilitate the formation of internal storage polymers by anaerobic microorganisms. However, so far information about storage under anaerobic conditions (e.g., anaerobic fermentation) as well as its consideration in anaerobic process modeling (e.g., IWA Anaerobic Digestion Model No. 1, ADM1) is still sparse. In this work, the accumulation of storage polymers during anaerobic fermentation was evaluated by batch experiments using anaerobic methanogenic sludge and based on mass balance analysis of carbon transformation. A new mathematical model was developed to describe microbial storage in anaerobic systems. The model was calibrated and validated by using independent data sets from two different anaerobic systems, with significant storage observed, and effectively simulated in both systems. The inclusion of the new anaerobic storage processes in the developed model allows for more successful simulation of transients due to lower accumulation of volatile fatty acids (correction for the overestimation of volatile fatty acids), which mitigates pH fluctuations. Current models such as the ADM1 cannot effectively simulate these dynamics due to a lack of anaerobic storage mechanisms.

  17. Collaborative Research Program on Advanced Metals and Ceramics for Armor and Anti-Armor Applications Dynamic Behavior of Non-Crystalline and Crystalline Metallic Systems

    DTIC Science & Technology

    2006-09-01

    compression, including real-time cinematography of failure under dynamic compression, was evaluated. The results (figure 10) clearly show that the failure... art of simulations of dynamic failure and damage mechanisms. An explicit dynamic parallel code has been developed to track damage mechanisms in the

  18. Dynamic evolution characteristics of a fractional order hydropower station system

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Chen, Diyi; Yan, Donglin; Xu, Beibei; Wang, Xiangyu

    2018-01-01

    This paper investigates the dynamic evolution characteristics of the hydropower station by introducing the fractional order damping forces. A careful analysis of the dynamic characteristics of the generator shaft system is carried out under different values of fractional order. It turns out the vibration state of the axis coordinates has a certain evolution law with the increase of the fractional order. Significantly, the obtained law exists in the horizontal evolution and vertical evolution of the dynamical behaviors. Meanwhile, some interesting dynamical phenomena were found in this process. The outcomes of this study enrich the nonlinear dynamic theory from the engineering practice of hydropower stations.

  19. Asymmetry and basic pathways in sleep-stage transitions

    NASA Astrophysics Data System (ADS)

    Lo, Chung-Chuan; Bartsch, Ronny P.; Ivanov, Plamen Ch.

    2013-04-01

    We study dynamical aspects of sleep micro-architecture. We find that sleep dynamics exhibits a high degree of asymmetry, and that the entire class of sleep-stage transition pathways underlying the complexity of sleep dynamics throughout the night can be characterized by two independent asymmetric transition paths. These basic pathways remain stable under sleep disorders, even though the degree of asymmetry is significantly reduced. Our findings demonstrate an intriguing temporal organization in sleep micro-architecture at short time scales that is typical for physical systems exhibiting self-organized criticality (SOC), and indicates nonequilibrium critical dynamics in brain activity during sleep.

  20. Dynamic modelling and adaptive robust tracking control of a space robot with two-link flexible manipulators under unknown disturbances

    NASA Astrophysics Data System (ADS)

    Yang, Xinxin; Ge, Shuzhi Sam; He, Wei

    2018-04-01

    In this paper, both the closed-form dynamics and adaptive robust tracking control of a space robot with two-link flexible manipulators under unknown disturbances are developed. The dynamic model of the system is described with assumed modes approach and Lagrangian method. The flexible manipulators are represented as Euler-Bernoulli beams. Based on singular perturbation technique, the displacements/joint angles and flexible modes are modelled as slow and fast variables, respectively. A sliding mode control is designed for trajectories tracking of the slow subsystem under unknown but bounded disturbances, and an adaptive sliding mode control is derived for slow subsystem under unknown slowly time-varying disturbances. An optimal linear quadratic regulator method is proposed for the fast subsystem to damp out the vibrations of the flexible manipulators. Theoretical analysis validates the stability of the proposed composite controller. Numerical simulation results demonstrate the performance of the closed-loop flexible space robot system.

  1. Post-capture vibration suppression of spacecraft via a bio-inspired isolation system

    NASA Astrophysics Data System (ADS)

    Dai, Honghua; Jing, Xingjian; Wang, Yu; Yue, Xiaokui; Yuan, Jianping

    2018-05-01

    Inspired by the smooth motions of a running kangaroo, a bio-inspired quadrilateral shape (BIQS) structure is proposed to suppress the vibrations of a free-floating spacecraft subject to periodic or impulsive forces, which may be encountered during on-orbit servicing missions. In particular, the BIQS structure is installed between the satellite platform and the capture mechanism. The dynamical model of the BIQS isolation system, i.e. a BIQS structure connecting the platform and the capture mechanism at each side, is established by Lagrange's equations to simulate the post-capture dynamical responses. The BIQS system suffering an impulsive force is dealt with by means of a modified version of Lagrange's equations. Furthermore, the classical harmonic balance method is used to solve the nonlinear dynamical system subject to periodic forces, while for the case under impulsive forces the numerical integration method is adopted. Due to the weightless environment in space, the present BIQS system is essentially an under-constrained dynamical system with one of its natural frequencies being identical to zero. The effects of system parameters, such as the number of layers in BIQS, stiffness, assembly angle, rod length, damping coefficient, masses of satellite platform and capture mechanism, on the isolation performance of the present system are thoroughly investigated. In addition, comparisons between the isolation performances of the presently proposed BIQS isolator and the conventional spring-mass-damper (SMD) isolator are conducted to demonstrate the advantages of the present isolator. Numerical simulations show that the BIQS system has a much better performance than the SMD system under either periodic or impulsive forces. Overall, the present BIQS isolator offers a highly efficient passive way for vibration suppressions of free-floating spacecraft.

  2. Electron-Nuclear Dynamics in a Quantum Dot under Nonunitary Electron Control

    DTIC Science & Technology

    2011-07-20

    relevant because inco - herent interactions are needed to initialize and read out the system. These experiments in quantum dots (QDs) ob- served dynamic...relaxation process is several orders of magnitude faster than what is used in Refs. [3,5]. The system we consider is a single electron trapped in a QD

  3. Hybrid drive for motor vehicles with a preponderantly intermittent method of operation

    NASA Technical Reports Server (NTRS)

    Schreck, H.

    1977-01-01

    A flywheel hybrid propulsion system is compared with a conventional propulsion system in a test vehicle under intermittent operation. An energy balance is presented for the conventional propulsion system. Results so far indicate especially high energy conversion of the gyro component under dynamic operation along with favorable internal combustion engine conditions.

  4. On safe configurations of a natural-artificial space tether system

    NASA Astrophysics Data System (ADS)

    Rodnikov, A. V.

    2018-05-01

    We study the dynamics of a particle moving under gravitation of precessing dynamically symmetric rigid body if the particle motion is restricted by two unilateral (flexible) constraints realized by two weightless unstretchable tethers with ends fixed at body poles, formed as the intersection of the body surface with the axis of its dynamical symmetry. The system under consideration is a simple model of an original natural-artificial space construction consisting of an asteroid and a space station tethered to each other via two cables. We note that the problem is integrable for the system safe configurations, i.e. for motions along the constraints common boundary (both tethers are tensed) if the body gravitational potential is invariant with respect to rotation about the axis of dynamical symmetry. We study these motions depicting phase portraits for possible values of system parameters. We also deduce conditions for the particle coming off the boundary of constraint(s) (if the tether(s) are slackened) and analyze these conditions, eliminating corresponding areas from phase portraits. We also formulate some statements, concerning the particle safety.

  5. Transient recovery dynamics of a predator-prey system under press and pulse disturbances.

    PubMed

    Karakoç, Canan; Singer, Alexander; Johst, Karin; Harms, Hauke; Chatzinotas, Antonis

    2017-04-04

    Species recovery after disturbances depends on the strength and duration of disturbance, on the species traits and on the biotic interactions with other species. In order to understand these complex relationships, it is essential to understand mechanistically the transient dynamics of interacting species during and after disturbances. We combined microcosm experiments with simulation modelling and studied the transient recovery dynamics of a simple microbial food web under pulse and press disturbances and under different predator couplings to an alternative resource. Our results reveal that although the disturbances affected predator and prey populations by the same mortality, predator populations suffered for a longer time. The resulting diminished predation stress caused a temporary phase of high prey population sizes (i.e. prey release) during and even after disturbances. Increasing duration and strength of disturbances significantly slowed down the recovery time of the predator prolonging the phase of prey release. However, the additional coupling of the predator to an alternative resource allowed the predator to recover faster after the disturbances thus shortening the phase of prey release. Our findings are not limited to the studied system and can be used to understand the dynamic response and recovery potential of many natural predator-prey or host-pathogen systems. They can be applied, for instance, in epidemiological and conservational contexts to regulate prey release or to avoid extinction risk of the top trophic levels under different types of disturbances.

  6. Dynamical analysis of an orbiting three-rigid-body system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagnozzi, Daniele, E-mail: daniele.pagnozzi@strath.ac.uk, E-mail: james.biggs@strath.ac.uk; Biggs, James D., E-mail: daniele.pagnozzi@strath.ac.uk, E-mail: james.biggs@strath.ac.uk

    2014-12-10

    The development of multi-joint-spacecraft mission concepts calls for a deeper understanding of their nonlinear dynamics to inform and enhance system design. This paper presents a study of a three-finite-shape rigid-body system under the action of an ideal central gravitational field. The aim of this paper is to gain an insight into the natural dynamics of this system. The Hamiltonian dynamics is derived and used to identify relative attitude equilibria of the system with respect to the orbital reference frame. Then a numerical investigation of the behaviour far from the equilibria is provided using tools from modern dynamical systems theory suchmore » as energy methods, phase portraits and Poincarè maps. Results reveal a complex structure of the dynamics as well as the existence of connections between some of the equilibria. Stable equilibrium configurations appear to be surrounded by very narrow regions of regular and quasi-regular motions. Trajectories evolve on chaotic motions in the rest of the domain.« less

  7. Predicting critical transitions in dynamical systems from time series using nonstationary probability density modeling.

    PubMed

    Kwasniok, Frank

    2013-11-01

    A time series analysis method for predicting the probability density of a dynamical system is proposed. A nonstationary parametric model of the probability density is estimated from data within a maximum likelihood framework and then extrapolated to forecast the future probability density and explore the system for critical transitions or tipping points. A full systematic account of parameter uncertainty is taken. The technique is generic, independent of the underlying dynamics of the system. The method is verified on simulated data and then applied to prediction of Arctic sea-ice extent.

  8. Dynamic response characteristics analysis of the doubly-fed wind power system under grid voltage drop

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Wang, J.; Wang, H. H.; Yang, L.; Chen, W.; Xu, Y. T.

    2016-08-01

    Double-fed induction generator (DFIG) is sensitive to the disturbances of grid, so the security and stability of the grid and the DFIG itself are under threat with the rapid increase of DFIG. Therefore, it is important to study dynamic response of the DFIG when voltage drop failure is happened in power system. In this paper, firstly, mathematical models and the control strategy about mechanical and electrical response processes is respectively introduced. Then through the analysis of response process, it is concluded that the dynamic response characteristics are related to voltage drop level, operating status of DFIG and control strategy adapted to rotor side. Last, the correctness of conclusion is validated by the simulation about mechanical and electrical response processes in different voltage levels drop and different DFIG output levels under DIgSILENT/PowerFactory software platform.

  9. A decoupled recursive approach for constrained flexible multibody system dynamics

    NASA Technical Reports Server (NTRS)

    Lai, Hao-Jan; Kim, Sung-Soo; Haug, Edward J.; Bae, Dae-Sung

    1989-01-01

    A variational-vector calculus approach is employed to derive a recursive formulation for dynamic analysis of flexible multibody systems. Kinematic relationships for adjacent flexible bodies are derived in a companion paper, using a state vector notation that represents translational and rotational components simultaneously. Cartesian generalized coordinates are assigned for all body and joint reference frames, to explicitly formulate deformation kinematics under small deformation kinematics and an efficient flexible dynamics recursive algorithm is developed. Dynamic analysis of a closed loop robot is performed to illustrate efficiency of the algorithm.

  10. Effect of the alien invasive bivalve Corbicula fluminea on the nutrient dynamics under climate change scenarios

    NASA Astrophysics Data System (ADS)

    Coelho, J. P.; Lillebø, A. I.; Crespo, D.; Leston, S.; Dolbeth, M.

    2018-05-01

    The main aim of this study was to evaluate the impact of the alien invasive bivalve Corbicula fluminea (Müller, 1774) in the nutrient dynamics of temperate estuarine systems (oligohaline areas) under climate change scenarios. The scenarios simulated shifts in climatic conditions, following salinity (0 or 5) and temperature (24 or 30 °C) changes, usual during drought and heat wave events. The effect of the individual size/age (different size classes with fixed biomass) and density (various densities of <1 cm clams) on the bioturbation-associated nutrient dynamics were also evaluated under an 18-day laboratory experimental setup. Results highlight the significant effect of C. fluminea on the ecosystem nutrient dynamics, enhancing the efflux of both phosphate and dissolved inorganic nitrogen (DIN) from the sediments to the water column. Both drought and heat wave events will have an impact on the DIN dynamics within C. fluminea colonized systems, favouring a higher NH4-N efflux. The population structure of C. fluminea will have a decisive role on the impact of the species, with stronger nutrient effluxes associated with a predominantly juvenile population structure.

  11. Markov Task Network: A Framework for Service Composition under Uncertainty in Cyber-Physical Systems.

    PubMed

    Mohammed, Abdul-Wahid; Xu, Yang; Hu, Haixiao; Agyemang, Brighter

    2016-09-21

    In novel collaborative systems, cooperative entities collaborate services to achieve local and global objectives. With the growing pervasiveness of cyber-physical systems, however, such collaboration is hampered by differences in the operations of the cyber and physical objects, and the need for the dynamic formation of collaborative functionality given high-level system goals has become practical. In this paper, we propose a cross-layer automation and management model for cyber-physical systems. This models the dynamic formation of collaborative services pursuing laid-down system goals as an ontology-oriented hierarchical task network. Ontological intelligence provides the semantic technology of this model, and through semantic reasoning, primitive tasks can be dynamically composed from high-level system goals. In dealing with uncertainty, we further propose a novel bridge between hierarchical task networks and Markov logic networks, called the Markov task network. This leverages the efficient inference algorithms of Markov logic networks to reduce both computational and inferential loads in task decomposition. From the results of our experiments, high-precision service composition under uncertainty can be achieved using this approach.

  12. Self-organization of complex networks as a dynamical system

    NASA Astrophysics Data System (ADS)

    Aoki, Takaaki; Yawata, Koichiro; Aoyagi, Toshio

    2015-01-01

    To understand the dynamics of real-world networks, we investigate a mathematical model of the interplay between the dynamics of random walkers on a weighted network and the link weights driven by a resource carried by the walkers. Our numerical studies reveal that, under suitable conditions, the co-evolving dynamics lead to the emergence of stationary power-law distributions of the resource and link weights, while the resource quantity at each node ceaselessly changes with time. We analyze the network organization as a deterministic dynamical system and find that the system exhibits multistability, with numerous fixed points, limit cycles, and chaotic states. The chaotic behavior of the system leads to the continual changes in the microscopic network dynamics in the absence of any external random noises. We conclude that the intrinsic interplay between the states of the nodes and network reformation constitutes a major factor in the vicissitudes of real-world networks.

  13. Self-organization of complex networks as a dynamical system.

    PubMed

    Aoki, Takaaki; Yawata, Koichiro; Aoyagi, Toshio

    2015-01-01

    To understand the dynamics of real-world networks, we investigate a mathematical model of the interplay between the dynamics of random walkers on a weighted network and the link weights driven by a resource carried by the walkers. Our numerical studies reveal that, under suitable conditions, the co-evolving dynamics lead to the emergence of stationary power-law distributions of the resource and link weights, while the resource quantity at each node ceaselessly changes with time. We analyze the network organization as a deterministic dynamical system and find that the system exhibits multistability, with numerous fixed points, limit cycles, and chaotic states. The chaotic behavior of the system leads to the continual changes in the microscopic network dynamics in the absence of any external random noises. We conclude that the intrinsic interplay between the states of the nodes and network reformation constitutes a major factor in the vicissitudes of real-world networks.

  14. Tensile behaviour of geopolymer-based materials under medium and high strain rates

    NASA Astrophysics Data System (ADS)

    Menna, Costantino; Asprone, Domenico; Forni, Daniele; Roviello, Giuseppina; Ricciotti, Laura; Ferone, Claudio; Bozza, Anna; Prota, Andrea; Cadoni, Ezio

    2015-09-01

    Geopolymers are a promising class of inorganic materials typically obtained from an alluminosilicate source and an alkaline solution, and characterized by an amorphous 3-D framework structure. These materials are particularly attractive for the construction industry due to mechanical and environmental advantages they exhibit compared to conventional systems. Indeed, geopolymer-based concretes represent a challenge for the large scale uses of such a binder material and many research studies currently focus on this topic. However, the behaviour of geopolymers under high dynamic loads is rarely investigated, even though it is of a fundamental concern for the integrity/vulnerability assessment under extreme dynamic events. The present study aims to investigate the effect of high dynamic loading conditions on the tensile behaviour of different geopolymer formulations. The dynamic tests were performed under different strain rates by using a Hydro-pneumatic machine and a modified Hopkinson bar at the DynaMat laboratory of the University of Applied Sciences of Southern Switzerland. The results are processed in terms of stress-strain relationships and strength dynamic increase factor at different strain-rate levels. The dynamic increase factor was also compared with CEB recommendations. The experimental outcomes can be used to assess the constitutive laws of geopolymers under dynamic load conditions and implemented into analytical models.

  15. Numerical study of Tallinn storm-water system flooding conditions using CFD simulations of multi-phase flow in a large-scale inverted siphon

    NASA Astrophysics Data System (ADS)

    Kaur, K.; Laanearu, J.; Annus, I.

    2017-10-01

    The numerical experiments are carried out for qualitative and quantitative interpretation of a multi-phase flow processes associated with malfunctioning of the Tallinn storm-water system during rain storms. The investigations are focused on the single-line inverted siphon, which is used as under-road connection of pipes of the storm-water system under interest. A multi-phase flow solver of Computational Fluid Dynamics software OpenFOAM is used for simulating the three-phase flow dynamics in the hydraulic system. The CFD simulations are performed with different inflow rates under same initial conditions. The computational results are compared essentially in two cases 1) design flow rate and 2) larger flow rate, for emptying the initially filled inverted siphon from a slurry-fluid. The larger flow-rate situations are under particular interest to detected possible flooding. In this regard, it is anticipated that the CFD solutions provide an important insight to functioning of inverted siphon under a restricted water-flow conditions at simultaneous presence of air and slurry-fluid.

  16. A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements.

    PubMed

    Durstewitz, Daniel

    2017-06-01

    The computational and cognitive properties of neural systems are often thought to be implemented in terms of their (stochastic) network dynamics. Hence, recovering the system dynamics from experimentally observed neuronal time series, like multiple single-unit recordings or neuroimaging data, is an important step toward understanding its computations. Ideally, one would not only seek a (lower-dimensional) state space representation of the dynamics, but would wish to have access to its statistical properties and their generative equations for in-depth analysis. Recurrent neural networks (RNNs) are a computationally powerful and dynamically universal formal framework which has been extensively studied from both the computational and the dynamical systems perspective. Here we develop a semi-analytical maximum-likelihood estimation scheme for piecewise-linear RNNs (PLRNNs) within the statistical framework of state space models, which accounts for noise in both the underlying latent dynamics and the observation process. The Expectation-Maximization algorithm is used to infer the latent state distribution, through a global Laplace approximation, and the PLRNN parameters iteratively. After validating the procedure on toy examples, and using inference through particle filters for comparison, the approach is applied to multiple single-unit recordings from the rodent anterior cingulate cortex (ACC) obtained during performance of a classical working memory task, delayed alternation. Models estimated from kernel-smoothed spike time data were able to capture the essential computational dynamics underlying task performance, including stimulus-selective delay activity. The estimated models were rarely multi-stable, however, but rather were tuned to exhibit slow dynamics in the vicinity of a bifurcation point. In summary, the present work advances a semi-analytical (thus reasonably fast) maximum-likelihood estimation framework for PLRNNs that may enable to recover relevant aspects of the nonlinear dynamics underlying observed neuronal time series, and directly link these to computational properties.

  17. Analysis of structural dynamic data from Skylab. Volume 1: Technical discussion

    NASA Technical Reports Server (NTRS)

    Demchak, L.; Harcrow, H.

    1976-01-01

    A compendium of Skylab structural dynamics analytical and test programs is presented. These programs are assessed to identify lessons learned from the structural dynamic prediction effort and to provide guidelines for future analysts and program managers of complex spacecraft systems. It is a synopsis of the structural dynamic effort performed under the Skylab Integration contract and specifically covers the development, utilization, and correlation of Skylab Dynamic Orbital Models.

  18. Probabilistic assessment of dynamic system performance. Part 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belhadj, Mohamed

    1993-01-01

    Accurate prediction of dynamic system failure behavior can be important for the reliability and risk analyses of nuclear power plants, as well as for their backfitting to satisfy given constraints on overall system reliability, or optimization of system performance. Global analysis of dynamic systems through investigating the variations in the structure of the attractors of the system and the domains of attraction of these attractors as a function of the system parameters is also important for nuclear technology in order to understand the fault-tolerance as well as the safety margins of the system under consideration and to insure a safemore » operation of nuclear reactors. Such a global analysis would be particularly relevant to future reactors with inherent or passive safety features that are expected to rely on natural phenomena rather than active components to achieve and maintain safe shutdown. Conventionally, failure and global analysis of dynamic systems necessitate the utilization of different methodologies which have computational limitations on the system size that can be handled. Using a Chapman-Kolmogorov interpretation of system dynamics, a theoretical basis is developed that unifies these methodologies as special cases and which can be used for a comprehensive safety and reliability analysis of dynamic systems.« less

  19. An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks.

    PubMed

    Salis, Howard; Kaznessis, Yiannis N

    2005-12-01

    Stochastic chemical kinetics more accurately describes the dynamics of "small" chemical systems, such as biological cells. Many real systems contain dynamical stiffness, which causes the exact stochastic simulation algorithm or other kinetic Monte Carlo methods to spend the majority of their time executing frequently occurring reaction events. Previous methods have successfully applied a type of probabilistic steady-state approximation by deriving an evolution equation, such as the chemical master equation, for the relaxed fast dynamics and using the solution of that equation to determine the slow dynamics. However, because the solution of the chemical master equation is limited to small, carefully selected, or linear reaction networks, an alternate equation-free method would be highly useful. We present a probabilistic steady-state approximation that separates the time scales of an arbitrary reaction network, detects the convergence of a marginal distribution to a quasi-steady-state, directly samples the underlying distribution, and uses those samples to accurately predict the state of the system, including the effects of the slow dynamics, at future times. The numerical method produces an accurate solution of both the fast and slow reaction dynamics while, for stiff systems, reducing the computational time by orders of magnitude. The developed theory makes no approximations on the shape or form of the underlying steady-state distribution and only assumes that it is ergodic. We demonstrate the accuracy and efficiency of the method using multiple interesting examples, including a highly nonlinear protein-protein interaction network. The developed theory may be applied to any type of kinetic Monte Carlo simulation to more efficiently simulate dynamically stiff systems, including existing exact, approximate, or hybrid stochastic simulation techniques.

  20. Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter

    2010-01-01

    Under the NASA Fundamental Aeronautics Program the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero-Propulso-Servo-Elastic model and for propulsion efficiency studies.

  1. Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter

    2008-01-01

    Under the NASA Fundamental Aeronautics Program, the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero-Propulso-Servo-Elastic model and for propulsion efficiency studies.

  2. Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter

    2008-01-01

    Under the NASA Fundamental Aeronautics Program the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero- Propulso-Servo-Elastic model and for propulsion efficiency studies.

  3. System dynamics approach for modeling of sugar beet yield considering the effects of climatic variables.

    PubMed

    Pervin, Lia; Islam, Md Saiful

    2015-02-01

    The aim of this study was to develop a system dynamics model for computation of yields and to investigate the dependency of yields on some major climatic parameters, i.e. temperature and rainfall, for Beta vulgaris subsp. (sugar beet crops) under future climate change scenarios. A system dynamics model was developed which takes account of the effects of rainfall and temperature on sugar beet yields under limited irrigation conditions. A relationship was also developed between the seasonal evapotranspiration and seasonal growing degree days for sugar beet crops. The proposed model was set to run for the present time period of 1993-2012 and for the future period 2013-2040 for Lethbridge region (Alberta, Canada). The model provides sugar beet yields on a yearly basis which are comparable to the present field data. It was found that the future average yield will be increased at about 14% with respect to the present average yield. The proposed model can help to improve the understanding of soil water conditions and irrigation water requirements of an area under certain climatic conditions and can be used for future prediction of yields for any crops in any region (with the required information to be provided). The developed system dynamics model can be used as a supporting tool for decision making, for improvement of agricultural management practice of any region. © 2014 Society of Chemical Industry.

  4. Phase transitions in the first-passage time of scale-invariant correlated processes

    PubMed Central

    Carretero-Campos, Concepción; Bernaola-Galván, Pedro; Ch. Ivanov, Plamen

    2012-01-01

    A key quantity describing the dynamics of complex systems is the first-passage time (FPT). The statistical properties of FPT depend on the specifics of the underlying system dynamics. We present a unified approach to account for the diversity of statistical behaviors of FPT observed in real-world systems. We find three distinct regimes, separated by two transition points, with fundamentally different behavior for FPT as a function of increasing strength of the correlations in the system dynamics: stretched exponential, power-law, and saturation regimes. In the saturation regime, the average length of FPT diverges proportionally to the system size, with important implications for understanding electronic delocalization in one-dimensional correlated-disordered systems. PMID:22400544

  5. Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems

    NASA Astrophysics Data System (ADS)

    Kuwahara, Tomotaka; Mori, Takashi; Saito, Keiji

    2016-04-01

    This work explores a fundamental dynamical structure for a wide range of many-body quantum systems under periodic driving. Generically, in the thermodynamic limit, such systems are known to heat up to infinite temperature states in the long-time limit irrespective of dynamical details, which kills all the specific properties of the system. In the present study, instead of considering infinitely long-time scale, we aim to provide a general framework to understand the long but finite time behavior, namely the transient dynamics. In our analysis, we focus on the Floquet-Magnus (FM) expansion that gives a formal expression of the effective Hamiltonian on the system. Although in general the full series expansion is not convergent in the thermodynamics limit, we give a clear relationship between the FM expansion and the transient dynamics. More precisely, we rigorously show that a truncated version of the FM expansion accurately describes the exact dynamics for a certain time-scale. Our theory reveals an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed. We discuss several dynamical phenomena, such as the effect of small integrability breaking, efficient numerical simulation of periodically driven systems, dynamical localization and thermalization. Especially on thermalization, we discuss a generic scenario on the prethermalization phenomenon in periodically driven systems.

  6. High-strain rate tensile characterization of graphite platelet reinforced vinyl ester based nanocomposites using split-Hopkinson pressure bar

    NASA Astrophysics Data System (ADS)

    Pramanik, Brahmananda

    The dynamic response of exfoliated graphite nanoplatelet (xGnP) reinforced and carboxyl terminated butadiene nitrile (CTBN) toughened vinyl ester based nanocomposites are characterized under both dynamic tensile and compressive loading. Dynamic direct tensile tests are performed applying the reverse impact Split Hopkinson Pressure Bar (SHPB) technique. The specimen geometry for tensile test is parametrically optimized by Finite Element Analysis (FEA) using ANSYS Mechanical APDLRTM. Uniform stress distribution within the specimen gage length has been verified using high-speed digital photography. The on-specimen strain gage installation is substituted by a non-contact Laser Occlusion Expansion Gage (LOEG) technique for infinitesimal dynamic tensile strain measurements. Due to very low transmitted pulse signal, an alternative approach based on incident pulse is applied for obtaining the stress-time history. Indirect tensile tests are also performed combining the conventional SHPB technique with Brazilian disk test method for evaluating cylindrical disk specimens. The cylindrical disk specimen is held snugly in between two concave end fixtures attached to the incident and transmission bars. Indirect tensile stress is estimated from the SHPB pulses, and diametrical transverse tensile strain is measured using LOEG. Failure diagnosis using high-speed digital photography validates the viability of utilizing this indirect test method for characterizing the tensile properties of the candidate vinyl ester based nanocomposite system. Also, quasi-static indirect tensile response agrees with previous investigations conducted using the traditional dog-bone specimen in quasi-static direct tensile tests. Investigation of both quasi-static and dynamic indirect tensile test responses show the strain rate effect on the tensile strength and energy absorbing capacity of the candidate materials. Finally, the conventional compressive SHPB tests are performed. It is observed that both strength and energy absorbing capacity of these candidate material systems are distinctively less under dynamic tension than under compressive loading. Nano-reinforcement appears to marginally improve these properties for pure vinyl ester under dynamic tension, although it is found to be detrimental under dynamic compression.

  7. Governing Laws of Complex System Predictability under Co-evolving Uncertainty Sources: Theory and Nonlinear Geophysical Applications

    NASA Astrophysics Data System (ADS)

    Perdigão, R. A. P.

    2017-12-01

    Predictability assessments are traditionally made on a case-by-case basis, often by running the particular model of interest with randomly perturbed initial/boundary conditions and parameters, producing computationally expensive ensembles. These approaches provide a lumped statistical view of uncertainty evolution, without eliciting the fundamental processes and interactions at play in the uncertainty dynamics. In order to address these limitations, we introduce a systematic dynamical framework for predictability assessment and forecast, by analytically deriving governing equations of predictability in terms of the fundamental architecture of dynamical systems, independent of any particular problem under consideration. The framework further relates multiple uncertainty sources along with their coevolutionary interplay, enabling a comprehensive and explicit treatment of uncertainty dynamics along time, without requiring the actual model to be run. In doing so, computational resources are freed and a quick and effective a-priori systematic dynamic evaluation is made of predictability evolution and its challenges, including aspects in the model architecture and intervening variables that may require optimization ahead of initiating any model runs. It further brings out universal dynamic features in the error dynamics elusive to any case specific treatment, ultimately shedding fundamental light on the challenging issue of predictability. The formulated approach, framed with broad mathematical physics generality in mind, is then implemented in dynamic models of nonlinear geophysical systems with various degrees of complexity, in order to evaluate their limitations and provide informed assistance on how to optimize their design and improve their predictability in fundamental dynamical terms.

  8. Hybrid Cubature Kalman filtering for identifying nonlinear models from sampled recording: Estimation of neuronal dynamics.

    PubMed

    Madi, Mahmoud K; Karameh, Fadi N

    2017-01-01

    Kalman filtering methods have long been regarded as efficient adaptive Bayesian techniques for estimating hidden states in models of linear dynamical systems under Gaussian uncertainty. Recent advents of the Cubature Kalman filter (CKF) have extended this efficient estimation property to nonlinear systems, and also to hybrid nonlinear problems where by the processes are continuous and the observations are discrete (continuous-discrete CD-CKF). Employing CKF techniques, therefore, carries high promise for modeling many biological phenomena where the underlying processes exhibit inherently nonlinear, continuous, and noisy dynamics and the associated measurements are uncertain and time-sampled. This paper investigates the performance of cubature filtering (CKF and CD-CKF) in two flagship problems arising in the field of neuroscience upon relating brain functionality to aggregate neurophysiological recordings: (i) estimation of the firing dynamics and the neural circuit model parameters from electric potentials (EP) observations, and (ii) estimation of the hemodynamic model parameters and the underlying neural drive from BOLD (fMRI) signals. First, in simulated neural circuit models, estimation accuracy was investigated under varying levels of observation noise (SNR), process noise structures, and observation sampling intervals (dt). When compared to the CKF, the CD-CKF consistently exhibited better accuracy for a given SNR, sharp accuracy increase with higher SNR, and persistent error reduction with smaller dt. Remarkably, CD-CKF accuracy shows only a mild deterioration for non-Gaussian process noise, specifically with Poisson noise, a commonly assumed form of background fluctuations in neuronal systems. Second, in simulated hemodynamic models, parametric estimates were consistently improved under CD-CKF. Critically, time-localization of the underlying neural drive, a determinant factor in fMRI-based functional connectivity studies, was significantly more accurate under CD-CKF. In conclusion, and with the CKF recently benchmarked against other advanced Bayesian techniques, the CD-CKF framework could provide significant gains in robustness and accuracy when estimating a variety of biological phenomena models where the underlying process dynamics unfold at time scales faster than those seen in collected measurements.

  9. Hybrid Cubature Kalman filtering for identifying nonlinear models from sampled recording: Estimation of neuronal dynamics

    PubMed Central

    2017-01-01

    Kalman filtering methods have long been regarded as efficient adaptive Bayesian techniques for estimating hidden states in models of linear dynamical systems under Gaussian uncertainty. Recent advents of the Cubature Kalman filter (CKF) have extended this efficient estimation property to nonlinear systems, and also to hybrid nonlinear problems where by the processes are continuous and the observations are discrete (continuous-discrete CD-CKF). Employing CKF techniques, therefore, carries high promise for modeling many biological phenomena where the underlying processes exhibit inherently nonlinear, continuous, and noisy dynamics and the associated measurements are uncertain and time-sampled. This paper investigates the performance of cubature filtering (CKF and CD-CKF) in two flagship problems arising in the field of neuroscience upon relating brain functionality to aggregate neurophysiological recordings: (i) estimation of the firing dynamics and the neural circuit model parameters from electric potentials (EP) observations, and (ii) estimation of the hemodynamic model parameters and the underlying neural drive from BOLD (fMRI) signals. First, in simulated neural circuit models, estimation accuracy was investigated under varying levels of observation noise (SNR), process noise structures, and observation sampling intervals (dt). When compared to the CKF, the CD-CKF consistently exhibited better accuracy for a given SNR, sharp accuracy increase with higher SNR, and persistent error reduction with smaller dt. Remarkably, CD-CKF accuracy shows only a mild deterioration for non-Gaussian process noise, specifically with Poisson noise, a commonly assumed form of background fluctuations in neuronal systems. Second, in simulated hemodynamic models, parametric estimates were consistently improved under CD-CKF. Critically, time-localization of the underlying neural drive, a determinant factor in fMRI-based functional connectivity studies, was significantly more accurate under CD-CKF. In conclusion, and with the CKF recently benchmarked against other advanced Bayesian techniques, the CD-CKF framework could provide significant gains in robustness and accuracy when estimating a variety of biological phenomena models where the underlying process dynamics unfold at time scales faster than those seen in collected measurements. PMID:28727850

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zitney, S.E.

    This presentation will examine process systems engineering R&D needs for application to advanced fossil energy (FE) systems and highlight ongoing research activities at the National Energy Technology Laboratory (NETL) under the auspices of a recently launched Collaboratory for Process & Dynamic Systems Research. The three current technology focus areas include: 1) High-fidelity systems with NETL's award-winning Advanced Process Engineering Co-Simulator (APECS) technology for integrating process simulation with computational fluid dynamics (CFD) and virtual engineering concepts, 2) Dynamic systems with R&D on plant-wide IGCC dynamic simulation, control, and real-time training applications, and 3) Systems optimization including large-scale process optimization, stochastic simulationmore » for risk/uncertainty analysis, and cost estimation. Continued R&D aimed at these and other key process systems engineering models, methods, and tools will accelerate the development of advanced gasification-based FE systems and produce increasingly valuable outcomes for DOE and the Nation.« less

  11. Operationalizing sustainability in urban coastal systems: a system dynamics analysis.

    PubMed

    Mavrommati, Georgia; Bithas, Kostas; Panayiotidis, Panayiotis

    2013-12-15

    We propose a system dynamics approach for Ecologically Sustainable Development (ESD) in urban coastal systems. A systematic analysis based on theoretical considerations, policy analysis and experts' knowledge is followed in order to define the concept of ESD. The principles underlying ESD feed the development of a System Dynamics Model (SDM) that connects the pollutant loads produced by urban systems' socioeconomic activities with the ecological condition of the coastal ecosystem that it is delineated in operational terms through key biological elements defined by the EU Water Framework Directive. The receiving waters of the Athens Metropolitan area, which bears the elements of typical high population density Mediterranean coastal city but which currently has also new dynamics induced by the ongoing financial crisis, are used as an experimental system for testing a system dynamics approach to apply the concept of ESD. Systems' thinking is employed to represent the complex relationships among the components of the system. Interconnections and dependencies that determine the potentials for achieving ESD are revealed. The proposed system dynamics analysis can facilitate decision makers to define paths of development that comply with the principles of ESD. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Enhancing the Learning Achievements and Attitudes of Taiwan Vocational School Students in Accounting with the Dynamic Assessment System

    ERIC Educational Resources Information Center

    Shih, Ju-Ling; Ku, David Tawei; Hung, Su-Huan

    2013-01-01

    We investigate how the computerized dynamic assessment system improves the learning achievements of vocational high school students studying accounting. Our experiment was conducted under the one-group pretest-posttest design of 34 junior students. The questionnaire results were analyzed to determine student-learning attitudes and reactions toward…

  13. Examination of the Nonlinear Dynamic Systems Associated with Science Student Cognition While Engaging in Science Information Processing

    ERIC Educational Resources Information Center

    Lamb, Richard; Cavagnetto, Andy; Akmal, Tariq

    2016-01-01

    A critical problem with the examination of learning in education is that there is an underlying assumption that the dynamic systems associated with student information processing can be measured using static linear assessments. This static linear approach does not provide sufficient ability to characterize learning. Much of the modern research…

  14. A NASTRAN/TREETOPS solution to a flexible, multi-body dynamics and controls problem on a UNIX workstation

    NASA Technical Reports Server (NTRS)

    Benavente, Javier E.; Luce, Norris R.

    1989-01-01

    Demands for nonlinear time history simulations of large, flexible multibody dynamic systems has created a need for efficient interfaces between finite-element modeling programs and time-history simulations. One such interface, TREEFLX, an interface between NASTRAN and TREETOPS, a nonlinear dynamics and controls time history simulation for multibody structures, is presented and demonstrated via example using the proposed Space Station Mobile Remote Manipulator System (MRMS). The ability to run all three programs (NASTRAN, TREEFLX and TREETOPS), in addition to other programs used for controller design and model reduction (such as DMATLAB and TREESEL, both described), under a UNIX Workstation environment demonstrates the flexibility engineers now have in designing, developing and testing control systems for dynamically complex systems.

  15. Comprehensive Modeling and Analysis of Rotorcraft Variable Speed Propulsion System With Coupled Engine/Transmission/Rotor Dynamics

    NASA Technical Reports Server (NTRS)

    DeSmidt, Hans A.; Smith, Edward C.; Bill, Robert C.; Wang, Kon-Well

    2013-01-01

    This project develops comprehensive modeling and simulation tools for analysis of variable rotor speed helicopter propulsion system dynamics. The Comprehensive Variable-Speed Rotorcraft Propulsion Modeling (CVSRPM) tool developed in this research is used to investigate coupled rotor/engine/fuel control/gearbox/shaft/clutch/flight control system dynamic interactions for several variable rotor speed mission scenarios. In this investigation, a prototypical two-speed Dual-Clutch Transmission (DCT) is proposed and designed to achieve 50 percent rotor speed variation. The comprehensive modeling tool developed in this study is utilized to analyze the two-speed shift response of both a conventional single rotor helicopter and a tiltrotor drive system. In the tiltrotor system, both a Parallel Shift Control (PSC) strategy and a Sequential Shift Control (SSC) strategy for constant and variable forward speed mission profiles are analyzed. Under the PSC strategy, selecting clutch shift-rate results in a design tradeoff between transient engine surge margins and clutch frictional power dissipation. In the case of SSC, clutch power dissipation is drastically reduced in exchange for the necessity to disengage one engine at a time which requires a multi-DCT drive system topology. In addition to comprehensive simulations, several sections are dedicated to detailed analysis of driveline subsystem components under variable speed operation. In particular an aeroelastic simulation of a stiff in-plane rotor using nonlinear quasi-steady blade element theory was conducted to investigate variable speed rotor dynamics. It was found that 2/rev and 4/rev flap and lag vibrations were significant during resonance crossings with 4/rev lagwise loads being directly transferred into drive-system torque disturbances. To capture the clutch engagement dynamics, a nonlinear stick-slip clutch torque model is developed. Also, a transient gas-turbine engine model based on first principles mean-line compressor and turbine approximations is developed. Finally an analysis of high frequency gear dynamics including the effect of tooth mesh stiffness variation under variable speed operation is conducted including experimental validation. Through exploring the interactions between the various subsystems, this investigation provides important insights into the continuing development of variable-speed rotorcraft propulsion systems.

  16. Complexity and dynamics of topological and community structure in complex networks

    NASA Astrophysics Data System (ADS)

    Berec, Vesna

    2017-07-01

    Complexity is highly susceptible to variations in the network dynamics, reflected on its underlying architecture where topological organization of cohesive subsets into clusters, system's modular structure and resulting hierarchical patterns, are cross-linked with functional dynamics of the system. Here we study connection between hierarchical topological scales of the simplicial complexes and the organization of functional clusters - communities in complex networks. The analysis reveals the full dynamics of different combinatorial structures of q-th-dimensional simplicial complexes and their Laplacian spectra, presenting spectral properties of resulting symmetric and positive semidefinite matrices. The emergence of system's collective behavior from inhomogeneous statistical distribution is induced by hierarchically ordered topological structure, which is mapped to simplicial complex where local interactions between the nodes clustered into subcomplexes generate flow of information that characterizes complexity and dynamics of the full system.

  17. Leo Szilard Lectureship Award Talk - Universal Scaling Laws from Cells to Cities; A Physicist's Search for Quantitative, Unified Theories of Biological and Social Structure and Dynamics

    NASA Astrophysics Data System (ADS)

    West, Geoffrey

    2013-04-01

    Many of the most challenging, exciting and profound questions facing science and society, from the origins of life to global sustainability, fall under the banner of ``complex adaptive systems.'' This talk explores how scaling can be used to begin to develop physics-inspired quantitative, predictive, coarse-grained theories for understanding their structure, dynamics and organization based on underlying mathematisable principles. Remarkably, most physiological, organisational and life history phenomena in biology and socio-economic systems scale in a simple and ``universal'' fashion: metabolic rate scales approximately as the 3/4-power of mass over 27 orders of magnitude from complex molecules to the largest organisms. Time-scales (such as lifespans and growth-rates) and sizes (such as genome lengths and RNA densities) scale with exponents which are typically simple multiples of 1/4, suggesting that fundamental constraints underlie much of the generic structure and dynamics of living systems. These scaling laws follow from dynamical and geometrical properties of space-filling, fractal-like, hierarchical branching networks, presumed optimised by natural selection. This leads to a general framework that potentially captures essential features of diverse systems including vasculature, ontogenetic growth, cancer, aging and mortality, sleep, cell size, and DNA nucleotide substitution rates. Cities and companies also scale: wages, profits, patents, crime, disease, pollution, road lengths scale similarly across the globe, reflecting underlying universal social network dynamics which point to general principles of organization transcending their individuality. These have dramatic implications for global sustainability: innovation and wealth creation that fuel social systems, left unchecked, potentially sow the seeds for their inevitable collapse.

  18. Multi-criteria dynamic decision under uncertainty: a stochastic viability analysis and an application to sustainable fishery management.

    PubMed

    De Lara, M; Martinet, V

    2009-02-01

    Managing natural resources in a sustainable way is a hard task, due to uncertainties, dynamics and conflicting objectives (ecological, social, and economical). We propose a stochastic viability approach to address such problems. We consider a discrete-time control dynamical model with uncertainties, representing a bioeconomic system. The sustainability of this system is described by a set of constraints, defined in practice by indicators - namely, state, control and uncertainty functions - together with thresholds. This approach aims at identifying decision rules such that a set of constraints, representing various objectives, is respected with maximal probability. Under appropriate monotonicity properties of dynamics and constraints, having economic and biological content, we characterize an optimal feedback. The connection is made between this approach and the so-called Management Strategy Evaluation for fisheries. A numerical application to sustainable management of Bay of Biscay nephrops-hakes mixed fishery is given.

  19. Spent nuclear fuel system dynamic stability under normal conditions of transportation

    DOE PAGES

    Jiang, Hao; Wang, Jy-An John

    2016-10-14

    In a horizontal layout of a spent nuclear fuel (SNF) assembly under normal conditions of transportation (NCT), the fuel assembly’s skeleton formed by guide tubes and spacer grids is the primary load bearing structure for carrying and transferring the vibration loads within an SNF assembly. Therefore, the integrity of guide tubes and spacer grids will dictate the vibration amplitude/intensity of the fuel assembly during transport, and must be considered when designing multipurpose purpose canister (MPC) for safe SNF transport. This paper investigates the SNF assembly deformation dynamics during normal vibration mode, as well as the transient shock mode inside themore » cask during NCT. In conclusion, dynamic analyses were performed in the frequency domain to study frequency characteristic of the fuel assembly system and in the time domain to simulate the transient dynamic response of the fuel assembly.« less

  20. Spent nuclear fuel system dynamic stability under normal conditions of transportation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Hao; Wang, Jy-An John

    In a horizontal layout of a spent nuclear fuel (SNF) assembly under normal conditions of transportation (NCT), the fuel assembly’s skeleton formed by guide tubes and spacer grids is the primary load bearing structure for carrying and transferring the vibration loads within an SNF assembly. Therefore, the integrity of guide tubes and spacer grids will dictate the vibration amplitude/intensity of the fuel assembly during transport, and must be considered when designing multipurpose purpose canister (MPC) for safe SNF transport. This paper investigates the SNF assembly deformation dynamics during normal vibration mode, as well as the transient shock mode inside themore » cask during NCT. In conclusion, dynamic analyses were performed in the frequency domain to study frequency characteristic of the fuel assembly system and in the time domain to simulate the transient dynamic response of the fuel assembly.« less

  1. Noise tolerant spatiotemporal chaos computing.

    PubMed

    Kia, Behnam; Kia, Sarvenaz; Lindner, John F; Sinha, Sudeshna; Ditto, William L

    2014-12-01

    We introduce and design a noise tolerant chaos computing system based on a coupled map lattice (CML) and the noise reduction capabilities inherent in coupled dynamical systems. The resulting spatiotemporal chaos computing system is more robust to noise than a single map chaos computing system. In this CML based approach to computing, under the coupled dynamics, the local noise from different nodes of the lattice diffuses across the lattice, and it attenuates each other's effects, resulting in a system with less noise content and a more robust chaos computing architecture.

  2. Noise tolerant spatiotemporal chaos computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kia, Behnam; Kia, Sarvenaz; Ditto, William L.

    We introduce and design a noise tolerant chaos computing system based on a coupled map lattice (CML) and the noise reduction capabilities inherent in coupled dynamical systems. The resulting spatiotemporal chaos computing system is more robust to noise than a single map chaos computing system. In this CML based approach to computing, under the coupled dynamics, the local noise from different nodes of the lattice diffuses across the lattice, and it attenuates each other's effects, resulting in a system with less noise content and a more robust chaos computing architecture.

  3. Designing attractive models via automated identification of chaotic and oscillatory dynamical regimes.

    PubMed

    Silk, Daniel; Kirk, Paul D W; Barnes, Chris P; Toni, Tina; Rose, Anna; Moon, Simon; Dallman, Margaret J; Stumpf, Michael P H

    2011-10-04

    Chaos and oscillations continue to capture the interest of both the scientific and public domains. Yet despite the importance of these qualitative features, most attempts at constructing mathematical models of such phenomena have taken an indirect, quantitative approach, for example, by fitting models to a finite number of data points. Here we develop a qualitative inference framework that allows us to both reverse-engineer and design systems exhibiting these and other dynamical behaviours by directly specifying the desired characteristics of the underlying dynamical attractor. This change in perspective from quantitative to qualitative dynamics, provides fundamental and new insights into the properties of dynamical systems.

  4. High-frequency vibration energy harvesting from impulsive excitation utilizing intentional dynamic instability caused by strong nonlinearity

    NASA Astrophysics Data System (ADS)

    Remick, Kevin; Dane Quinn, D.; Michael McFarland, D.; Bergman, Lawrence; Vakakis, Alexander

    2016-05-01

    The authors investigate a vibration-based energy harvesting system utilizing essential (nonlinearizable) nonlinearities and electromagnetic coupling elements. The system consists of a grounded, weakly damped linear oscillator (primary system) subjected to a single impulsive load. This primary system is coupled to a lightweight, damped oscillating attachment (denoted as nonlinear energy sink, NES) via a neodymium magnet and an inductance coil, and a piano wire, which generates an essential geometric cubic stiffness nonlinearity. Under impulsive input, the transient damped dynamics of this system exhibit transient resonance captures (TRCs) causing intentional large-amplitude and high-frequency instabilities in the response of the NES. These TRCs result in strong energy transfer from the directly excited primary system to the light-weight attachment. The energy is harvested by the electromagnetic elements in the coupling and, in the present case, dissipated in a resistive element in the electrical circuit. The primary goal of this work is to numerically, analytically, and experimentally demonstrate the efficacy of employing this type of intentional high-frequency dynamic instability to achieve enhanced vibration energy harvesting under impulsive excitation.

  5. Structural evolution of Colloidal Gels under Flow

    NASA Astrophysics Data System (ADS)

    Boromand, Arman; Maia, Joao; Jamali, Safa

    Colloidal suspensions are ubiquitous in different industrial applications ranging from cosmetic and food industries to soft robotics and aerospace. Owing to the fact that mechanical properties of colloidal gels are controlled by its microstructure and network topology, we trace the particles in the networks formed under different attraction potentials and try to find a universal behavior in yielding of colloidal gels. Many authors have implemented different simulation techniques such as molecular dynamics (MD) and Brownian dynamics (BD) to capture better picture during phase separation and yielding mechanism in colloidal system with short-ranged attractive force. However, BD neglects multi-body hydrodynamic interactions (HI) which are believed to be responsible for the second yielding of colloidal gels. We envision using dissipative particle dynamics (DPD) with modified depletion potential and hydrodynamic interactions, as a coarse-grain model, can provide a robust simulation package to address the gel formation process and yielding in short ranged-attractive colloidal systems. The behavior of colloidal gels with different attraction potentials under flow is examined and structural fingerprints of yielding in these systems will be discussed.

  6. Constitutional Dynamics of Metal-Organic Motifs on a Au(111) Surface.

    PubMed

    Kong, Huihui; Zhang, Chi; Xie, Lei; Wang, Likun; Xu, Wei

    2016-06-13

    Constitutional dynamic chemistry (CDC), including both dynamic covalent chemistry and dynamic noncovalent chemistry, relies on reversible formation and breakage of bonds to achieve continuous changes in constitution by reorganization of components. In this regard, CDC is considered to be an efficient and appealing strategy for selective fabrication of surface nanostructures by virtue of dynamic diversity. Although constitutional dynamics of monolayered structures has been recently demonstrated at liquid/solid interfaces, most of molecular reorganization/reaction processes were thought to be irreversible under ultrahigh vacuum (UHV) conditions where CDC is therefore a challenge to be achieved. Here, we have successfully constructed a system that presents constitutional dynamics on a solid surface based on dynamic coordination chemistry, in which selective formation of metal-organic motifs is achieved under UHV conditions. The key to making this reversible switching successful is the molecule-substrate interaction as revealed by DFT calculations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A system dynamics approach to analyze laboratory test errors.

    PubMed

    Guo, Shijing; Roudsari, Abdul; Garcez, Artur d'Avila

    2015-01-01

    Although many researches have been carried out to analyze laboratory test errors during the last decade, it still lacks a systemic view of study, especially to trace errors during test process and evaluate potential interventions. This study implements system dynamics modeling into laboratory errors to trace the laboratory error flows and to simulate the system behaviors while changing internal variable values. The change of the variables may reflect a change in demand or a proposed intervention. A review of literature on laboratory test errors was given and provided as the main data source for the system dynamics model. Three "what if" scenarios were selected for testing the model. System behaviors were observed and compared under different scenarios over a period of time. The results suggest system dynamics modeling has potential effectiveness of helping to understand laboratory errors, observe model behaviours, and provide a risk-free simulation experiments for possible strategies.

  8. Chaos and noise.

    PubMed

    He, Temple; Habib, Salman

    2013-09-01

    Simple dynamical systems--with a small number of degrees of freedom--can behave in a complex manner due to the presence of chaos. Such systems are most often (idealized) limiting cases of more realistic situations. Isolating a small number of dynamical degrees of freedom in a realistically coupled system generically yields reduced equations with terms that can have a stochastic interpretation. In situations where both noise and chaos can potentially exist, it is not immediately obvious how Lyapunov exponents, key to characterizing chaos, should be properly defined. In this paper, we show how to do this in a class of well-defined noise-driven dynamical systems, derived from an underlying Hamiltonian model.

  9. An inexact multistage fuzzy-stochastic programming for regional electric power system management constrained by environmental quality.

    PubMed

    Fu, Zhenghui; Wang, Han; Lu, Wentao; Guo, Huaicheng; Li, Wei

    2017-12-01

    Electric power system involves different fields and disciplines which addressed the economic system, energy system, and environment system. Inner uncertainty of this compound system would be an inevitable problem. Therefore, an inexact multistage fuzzy-stochastic programming (IMFSP) was developed for regional electric power system management constrained by environmental quality. A model which concluded interval-parameter programming, multistage stochastic programming, and fuzzy probability distribution was built to reflect the uncertain information and dynamic variation in the case study, and the scenarios under different credibility degrees were considered. For all scenarios under consideration, corrective actions were allowed to be taken dynamically in accordance with the pre-regulated policies and the uncertainties in reality. The results suggest that the methodology is applicable to handle the uncertainty of regional electric power management systems and help the decision makers to establish an effective development plan.

  10. Cosmological dynamics with non-minimally coupled scalar field and a constant potential function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hrycyna, Orest; Szydłowski, Marek, E-mail: orest.hrycyna@ncbj.gov.pl, E-mail: marek.szydlowski@uj.edu.pl

    2015-11-01

    Dynamical systems methods are used to investigate global behaviour of the spatially flat Friedmann-Robertson-Walker cosmological model in gravitational theory with a non-minimally coupled scalar field and a constant potential function. We show that the system can be reduced to an autonomous three-dimensional dynamical system and additionally is equipped with an invariant manifold corresponding to an accelerated expansion of the universe. Using this invariant manifold we find an exact solution of the reduced dynamics. We investigate all solutions for all admissible initial conditions using theory of dynamical systems to obtain a classification of all evolutional paths. The right-hand sides of themore » dynamical system depend crucially on the value of the non-minimal coupling constant therefore we study bifurcation values of this parameter under which the structure of the phase space changes qualitatively. We found a special bifurcation value of the non-minimal coupling constant which is distinguished by dynamics of the model and may suggest some additional symmetry in matter sector of the theory.« less

  11. Low-Dimensional Models of "Neuro-Glio-Vascular Unit" for Describing Neural Dynamics under Normal and Energy-Starved Conditions.

    PubMed

    Chhabria, Karishma; Chakravarthy, V Srinivasa

    2016-01-01

    The motivation of developing simple minimal models for neuro-glio-vascular (NGV) system arises from a recent modeling study elucidating the bidirectional information flow within the NGV system having 89 dynamic equations (1). While this was one of the first attempts at formulating a comprehensive model for neuro-glio-vascular system, it poses severe restrictions in scaling up to network levels. On the contrary, low--dimensional models are convenient devices in simulating large networks that also provide an intuitive understanding of the complex interactions occurring within the NGV system. The key idea underlying the proposed models is to describe the glio-vascular system as a lumped system, which takes neural firing rate as input and returns an "energy" variable (analogous to ATP) as output. To this end, we present two models: biophysical neuro-energy (Model 1 with five variables), comprising KATP channel activity governed by neuronal ATP dynamics, and the dynamic threshold (Model 2 with three variables), depicting the dependence of neural firing threshold on the ATP dynamics. Both the models show different firing regimes, such as continuous spiking, phasic, and tonic bursting depending on the ATP production coefficient, ɛp, and external current. We then demonstrate that in a network comprising such energy-dependent neuron units, ɛp could modulate the local field potential (LFP) frequency and amplitude. Interestingly, low-frequency LFP dominates under low ɛp conditions, which is thought to be reminiscent of seizure-like activity observed in epilepsy. The proposed "neuron-energy" unit may be implemented in building models of NGV networks to simulate data obtained from multimodal neuroimaging systems, such as functional near infrared spectroscopy coupled to electroencephalogram and functional magnetic resonance imaging coupled to electroencephalogram. Such models could also provide a theoretical basis for devising optimal neurorehabilitation strategies, such as non-invasive brain stimulation for stroke patients.

  12. Antisynchronization of Two Complex Dynamical Networks

    NASA Astrophysics Data System (ADS)

    Banerjee, Ranjib; Grosu, Ioan; Dana, Syamal K.

    A nonlinear type open-plus-closed-loop (OPCL) coupling is investi-gated for antisynchronization of two complex networks under unidirectional and bidirectional interactions where each node of the networks is considered as a continuous dynamical system. We present analytical results for antisynchroni-zation in identical networks. A numerical example is given for unidirectional coupling with each node represented by a spiking-bursting type Hindmarsh-Rose neuron model. Antisynchronization for mutual interaction is allowed only to inversion symmetric dynamical systems as chosen nodes.

  13. Dynamical stabilization of grazing systems: An interplay among plant-water interaction, overgrazing and a threshold management policy.

    PubMed

    Costa, Michel Iskin da Silveira; Meza, Magno Enrique Mendoza

    2006-12-01

    In a plant-herbivore system, a management strategy called threshold policy is proposed to control grazing intensity where the vegetation dynamics is described by a plant-water interaction model. It is shown that this policy can lead the vegetation density to a previously chosen level under an overgrazing regime. This result is obtained despite both the potential occurrence of vegetation collapse due to overgrazing and the possibility of complex dynamics sensitive to vegetation initial densities and parameter uncertainties.

  14. Study on the performance of the articulated mechanism of tracked all-terrain vehicle

    NASA Astrophysics Data System (ADS)

    Meng, Zhongliang; Zang, Hao

    2018-04-01

    Tracked all-terrain vehicle consists of two vehicle bodies featured by superior performance, the running system which can meet the all-terrain requirement, the unique steering system, power system and the vehicle body protection system. This paper focuses on the study of the five freely articulated steering system of crawler-type all-terrain engineering vehicle. The study on the dynamic characteristics of the articulated steering system can't do without the dynamic analysis of the whole vehicle. Therefore, it first studies the overall model of the tracked all-terrain vehicle, and then based on the critical states where the overall model is situated under different road conditions, mathematical models of the articulated mechanism are built under different operating conditions and also the load bearing condition of the articulated mechanism is deduced.

  15. The synchronization of asymmetric-structured electric coupling neuronal system

    NASA Astrophysics Data System (ADS)

    Wang, Guanping; Jin, Wuyin; Liu, Hao; Sun, Wei

    2018-02-01

    Based on the Hindmarsh-Rose (HR) model, the synchronization dynamics of asymmetric-structured electric coupling two neuronal system is investigated in this paper. It is discovered that when the time-delay scope and coupling strength for the synchronization are correlated positively under unequal time delay, the time-delay difference does not make a clear distinction between the two individual inter-spike intervals (ISI) bifurcation diagrams of the two coupled neurons. Therefore, the superficial difference of the system synchronization dynamics is not obvious for the unequal time-delay feedback. In the asymmetrical current incentives under asymmetric electric coupled system, the two neurons can only be almost completely synchronized in specific area of the interval which end-pointed with two discharge modes for a single neuron under different stimuli currents before coupling, but the intervention of time-delay feedback, together with the change of the coupling strength, can make the coupled system not only almost completely synchronized within anywhere in the front area, but also outside of it.

  16. System level modeling and component level control of fuel cells

    NASA Astrophysics Data System (ADS)

    Xue, Xingjian

    This dissertation investigates the fuel cell systems and the related technologies in three aspects: (1) system-level dynamic modeling of both PEM fuel cell (PEMFC) and solid oxide fuel cell (SOFC); (2) condition monitoring scheme development of PEM fuel cell system using model-based statistical method; and (3) strategy and algorithm development of precision control with potential application in energy systems. The dissertation first presents a system level dynamic modeling strategy for PEM fuel cells. It is well known that water plays a critical role in PEM fuel cell operations. It makes the membrane function appropriately and improves the durability. The low temperature operating conditions, however, impose modeling difficulties in characterizing the liquid-vapor two phase change phenomenon, which becomes even more complex under dynamic operating conditions. This dissertation proposes an innovative method to characterize this phenomenon, and builds a comprehensive model for PEM fuel cell at the system level. The model features the complete characterization of multi-physics dynamic coupling effects with the inclusion of dynamic phase change. The model is validated using Ballard stack experimental result from open literature. The system behavior and the internal coupling effects are also investigated using this model under various operating conditions. Anode-supported tubular SOFC is also investigated in the dissertation. While the Nernst potential plays a central role in characterizing the electrochemical performance, the traditional Nernst equation may lead to incorrect analysis results under dynamic operating conditions due to the current reverse flow phenomenon. This dissertation presents a systematic study in this regard to incorporate a modified Nernst potential expression and the heat/mass transfer into the analysis. The model is used to investigate the limitations and optimal results of various operating conditions; it can also be utilized to perform the optimal design of tubular SOFC. With the system-level dynamic model as a basis, a framework for the robust, online monitoring of PEM fuel cell is developed in the dissertation. The monitoring scheme employs the Hotelling T2 based statistical scheme to handle the measurement noise and system uncertainties and identifies the fault conditions through a series of self-checking and conformal testing. A statistical sampling strategy is also utilized to improve the computation efficiency. Fuel/gas flow control is the fundamental operation for fuel cell energy systems. In the final part of the dissertation, a high-precision and robust tracking control scheme using piezoelectric actuator circuit with direct hysteresis compensation is developed. The key characteristic of the developed control algorithm includes the nonlinear continuous control action with the adaptive boundary layer strategy.

  17. The quantum CP-violating kaon system reproduced in the electronic laboratory

    NASA Astrophysics Data System (ADS)

    Caruso, M.; Fanchiotti, H.; García Canal, C. A.; Mayosky, M.; Veiga, A.

    2016-11-01

    The equivalence between the Schrödinger dynamics of a quantum system with a finite number of basis states and a classical dynamics is realized in terms of electric networks. The isomorphism that connects in a univocal way both dynamical systems was applied to the case of neutral mesons, kaons in particular, and the class of electric networks univocally related to the quantum system was analysed. Moreover, under CPT invariance, the relevant ɛ parameter that measures CP violation in the kaon system is reinterpreted in terms of network parameters. All these results were explicitly shown by means of both a numerical simulation of the implied networks and by constructing the corresponding circuits.

  18. Generalized reconfigurable memristive dynamical system (MDS) for neuromorphic applications

    PubMed Central

    Bavandpour, Mohammad; Soleimani, Hamid; Linares-Barranco, Bernabé; Abbott, Derek; Chua, Leon O.

    2015-01-01

    This study firstly presents (i) a novel general cellular mapping scheme for two dimensional neuromorphic dynamical systems such as bio-inspired neuron models, and (ii) an efficient mixed analog-digital circuit, which can be conveniently implemented on a hybrid memristor-crossbar/CMOS platform, for hardware implementation of the scheme. This approach employs 4n memristors and no switch for implementing an n-cell system in comparison with 2n2 memristors and 2n switches of a Cellular Memristive Dynamical System (CMDS). Moreover, this approach allows for dynamical variables with both analog and one-hot digital values opening a wide range of choices for interconnections and networking schemes. Dynamical response analyses show that this circuit exhibits various responses based on the underlying bifurcation scenarios which determine the main characteristics of the neuromorphic dynamical systems. Due to high programmability of the circuit, it can be applied to a variety of learning systems, real-time applications, and analytically indescribable dynamical systems. We simulate the FitzHugh-Nagumo (FHN), Adaptive Exponential (AdEx) integrate and fire, and Izhikevich neuron models on our platform, and investigate the dynamical behaviors of these circuits as case studies. Moreover, error analysis shows that our approach is suitably accurate. We also develop a simple hardware prototype for experimental demonstration of our approach. PMID:26578867

  19. Generalized reconfigurable memristive dynamical system (MDS) for neuromorphic applications.

    PubMed

    Bavandpour, Mohammad; Soleimani, Hamid; Linares-Barranco, Bernabé; Abbott, Derek; Chua, Leon O

    2015-01-01

    This study firstly presents (i) a novel general cellular mapping scheme for two dimensional neuromorphic dynamical systems such as bio-inspired neuron models, and (ii) an efficient mixed analog-digital circuit, which can be conveniently implemented on a hybrid memristor-crossbar/CMOS platform, for hardware implementation of the scheme. This approach employs 4n memristors and no switch for implementing an n-cell system in comparison with 2n (2) memristors and 2n switches of a Cellular Memristive Dynamical System (CMDS). Moreover, this approach allows for dynamical variables with both analog and one-hot digital values opening a wide range of choices for interconnections and networking schemes. Dynamical response analyses show that this circuit exhibits various responses based on the underlying bifurcation scenarios which determine the main characteristics of the neuromorphic dynamical systems. Due to high programmability of the circuit, it can be applied to a variety of learning systems, real-time applications, and analytically indescribable dynamical systems. We simulate the FitzHugh-Nagumo (FHN), Adaptive Exponential (AdEx) integrate and fire, and Izhikevich neuron models on our platform, and investigate the dynamical behaviors of these circuits as case studies. Moreover, error analysis shows that our approach is suitably accurate. We also develop a simple hardware prototype for experimental demonstration of our approach.

  20. AeroPropulsoServoElasticity: Dynamic Modeling of the Variable Cycle Propulsion System

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2012-01-01

    This presentation was made at the 2012 Fundamental Aeronautics Program Technical Conference and it covers research work for the Dynamic Modeling of the Variable cycle Propulsion System that was done under the Supersonics Project, in the area of AeroPropulsoServoElasticity. The presentation covers the objective for the propulsion system dynamic modeling work, followed by the work that has been done so far to model the variable Cycle Engine, modeling of the inlet, the nozzle, the modeling that has been done to model the affects of flow distortion, and finally presenting some concluding remarks and future plans.

  1. High dynamic range coding imaging system

    NASA Astrophysics Data System (ADS)

    Wu, Renfan; Huang, Yifan; Hou, Guangqi

    2014-10-01

    We present a high dynamic range (HDR) imaging system design scheme based on coded aperture technique. This scheme can help us obtain HDR images which have extended depth of field. We adopt Sparse coding algorithm to design coded patterns. Then we utilize the sensor unit to acquire coded images under different exposure settings. With the guide of the multiple exposure parameters, a series of low dynamic range (LDR) coded images are reconstructed. We use some existing algorithms to fuse and display a HDR image by those LDR images. We build an optical simulation model and get some simulation images to verify the novel system.

  2. Fluid dynamic and thermodynamic analysis of a model pertaining to cryogenic fluid management in low gravity environments for a system with dynamically induced settling

    NASA Technical Reports Server (NTRS)

    Rios, J.

    1982-01-01

    The settling behavior of the liquid and gaseous phases of a fluid in a propellant and in a zero-g environment, when such settling is induced through the use of a dynamic device, in this particular case, a helical screw was studied. Particular emphasis was given to: (1) the description of a fluid mechanics model which seems applicable to the system under consideration, (2) a First Law of Thermodynamics analysis of the system, and (3) a discussion of applicable scaling rules.

  3. Modeling, Analysis and Mitigation of Sub-Synchronous Interactions between Full- and Partial-Scale Voltage-Source Converters and Power Networks

    NASA Astrophysics Data System (ADS)

    Alawasa, Khaled Mohammad

    Voltage-source converters (VSCs) have gained widespread acceptance in modern power systems. The stability and dynamics of power systems involving these devices have recently become salient issues. In the small-signal sense, the dynamics of VSC-based systems is dictated by its incremental output impedance, which is formed by a combination of 'passive' circuit components and 'active' control elements. Control elements such as control parameters, control loops, and control topologies play a significant role in shaping the impedance profile. Depending on the control schemes and strategies used, VSC-based systems can exhibit different incremental impedance dynamics. As the control elements and dynamics are involved in the impedance structure, the frequency-dependent output impedance might have a negative real-part (i.e., a negative resistance). In the grid-connected mode, the negative resistance degrades the system damping and negatively impacts the stability. In high-voltage networks where high-power VSC-based systems are usually employed and where sub-synchronous dynamics usually exist, integrating large VSC-based systems might reduce the overall damping and results in unstable dynamics. The objectives of this thesis are to (1) investigate and analyze the output impedance properties under different control strategies and control functions, (2) identify and characterize the key contributors to the impedance and sub-synchronous damping profiles, and (3) propose mitigation techniques to minimize and eliminate the negative impact associated with integrating VSC-based systems into power systems. Different VSC configurations are considered in this thesis; in particular, the full-scale and partial-scale topologies (doubly fed-induction generators) are addressed. Additionally, the impedance and system damping profiles are studied under two different control strategies: the standard vector control strategy and the recently-developed power synchronization control strategy. Furthermore, this thesis proposes a simple and robust technique for damping the sub-synchronous resonance in a power system.

  4. Final Report Computational Analysis of Dynamical Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guckenheimer, John

    2012-05-08

    This is the final report for DOE Grant DE-FG02-93ER25164, initiated in 1993. This grant supported research of John Guckenheimer on computational analysis of dynamical systems. During that period, seventeen individuals received PhD degrees under the supervision of Guckenheimer and over fifty publications related to the grant were produced. This document contains copies of these publications.

  5. Dynamic properties of hot-wire anemometric measurement circuits in the aspect of measurements in mine conditions / Właściwości dynamiczne termoanemometrycznych układów pomiarowych w aspekcie pomiarów w warunkach kopalnianych

    NASA Astrophysics Data System (ADS)

    Jamróz, Paweł; Ligęza, Paweł; Socha, Katarzyna

    2012-12-01

    The use of measurement apparatus under conditions which differ significantly from those under which the apparatus was adjusted carries the risk of altering the previously determined measurement characteristics. This is of special concern in the case of apparatus which is sensitive to external measurement conditions. Advanced measurement systems are equipped with algorithms which allow the negative effect of unstable environmental conditions on their static characteristics to be compensated for. Meanwhile, the problem of altered dynamic properties of such systems is often neglected. This paper presents a model study in which the effect of variable operational conditions on dynamic response of hot-wire anemometric measurement system in the case of simulated mine flows was investigated. A mathematical model of measurement system able to compensate the negative effect of changes in flow velocity and configuration of measurement apparatus itself on its dynamic properties was developed and investigated. Based on conducted experiments, we have developed an automatic regulation algorithm enabling the transmission band of measurement apparatus to be optimized for measurement conditions prevailing in mine environment.

  6. Dynamic levitation performance of Gd-Ba-Cu-O and Y-Ba-Cu-O bulk superconductors under a varying external magnetic field

    NASA Astrophysics Data System (ADS)

    Liao, Hengpei; Zheng, Jun; Jin, Liwei; Huang, Huan; Deng, Zigang; Shi, Yunhua; Zhou, Difan; Cardwell, David A.

    2018-07-01

    We report that the dynamic levitation force of bulk high temperature superconductors (HTS) in motion attenuates when exposed to an inhomogeneous magnetic field. This phenomenon has significant potential implications for the long-term stability and running performance of HTS in maglev applications. In order to suppress the attenuation of the levitation force associated with fluctuations in magnetic field, we compare the dynamic levitation performance of single grain Y-Ba-Cu-O (YBCO) and Gd-Ba-Cu-O (GdBCO) bulk superconductors with relatively high critical current densities. A bespoke HTS maglev dynamic measurement system (SCML-03) incorporating a rotating circular permanent magnet guideway was employed to simulate the movement of HTS in a varying magnetic field at different frequencies (i.e. speed of rotation). The attenuation of the levitation force during dynamic operation, which is key parameter for effective maglev operation, has been evaluated experimentally. It is found that GdBCO bulk superconductors that exhibit superior levitation force properties are more able to resist the attenuation of levitation force compared with YBCO bulk materials under the same operating conditions. This investigation indicates clearly that GdBCO bulk superconductors can play an important role in suppressing attenuation of the levitation force, therefore improving the long-term levitation performance under dynamic operating conditions. This result is potentially significant in the design and application of HTS in maglev systems.

  7. Dynamic phase transitions of the Blume-Emery-Griffiths model under an oscillating external magnetic field by the path probability method

    NASA Astrophysics Data System (ADS)

    Ertaş, Mehmet; Keskin, Mustafa

    2015-03-01

    By using the path probability method (PPM) with point distribution, we study the dynamic phase transitions (DPTs) in the Blume-Emery-Griffiths (BEG) model under an oscillating external magnetic field. The phases in the model are obtained by solving the dynamic equations for the average order parameters and a disordered phase, ordered phase and four mixed phases are found. We also investigate the thermal behavior of the dynamic order parameters to analyze the nature dynamic transitions as well as to obtain the DPT temperatures. The dynamic phase diagrams are presented in three different planes in which exhibit the dynamic tricritical point, double critical end point, critical end point, quadrupole point, triple point as well as the reentrant behavior, strongly depending on the values of the system parameters. We compare and discuss the dynamic phase diagrams with dynamic phase diagrams that were obtained within the Glauber-type stochastic dynamics based on the mean-field theory.

  8. Application of uniform design to improve dental implant system.

    PubMed

    Cheng, Yung-Chang; Lin, Deng-Huei; Jiang, Cho-Pei

    2015-01-01

    This paper introduces the application of uniform experimental design to improve dental implant systems subjected to dynamic loads. The dynamic micromotion of the Zimmer dental implant system is calculated and illustrated by explicit dynamic finite element analysis. Endogenous and exogenous factors influence the success rate of dental implant systems. Endogenous factors include: bone density, cortical bone thickness and osseointegration. Exogenous factors include: thread pitch, thread depth, diameter of implant neck and body size. A dental implant system with a crest module was selected to simulate micromotion distribution and stress behavior under dynamic loads using conventional and proposed methods. Finally, the design which caused minimum micromotion was chosen as the optimal design model. The micromotion of the improved model is 36.42 μm, with an improvement is 15.34% as compared to the original model.

  9. Dynamic combinatorial libraries: from exploring molecular recognition to systems chemistry.

    PubMed

    Li, Jianwei; Nowak, Piotr; Otto, Sijbren

    2013-06-26

    Dynamic combinatorial chemistry (DCC) is a subset of combinatorial chemistry where the library members interconvert continuously by exchanging building blocks with each other. Dynamic combinatorial libraries (DCLs) are powerful tools for discovering the unexpected and have given rise to many fascinating molecules, ranging from interlocked structures to self-replicators. Furthermore, dynamic combinatorial molecular networks can produce emergent properties at systems level, which provide exciting new opportunities in systems chemistry. In this perspective we will highlight some new methodologies in this field and analyze selected examples of DCLs that are under thermodynamic control, leading to synthetic receptors, catalytic systems, and complex self-assembled supramolecular architectures. Also reviewed are extensions of the principles of DCC to systems that are not at equilibrium and may therefore harbor richer functional behavior. Examples include self-replication and molecular machines.

  10. Optimal Placement of Dynamic Var Sources by Using Empirical Controllability Covariance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Junjian; Huang, Weihong; Sun, Kai

    In this paper, the empirical controllability covariance (ECC), which is calculated around the considered operating condition of a power system, is applied to quantify the degree of controllability of system voltages under specific dynamic var source locations. An optimal dynamic var source placement method addressing fault-induced delayed voltage recovery (FIDVR) issues is further formulated as an optimization problem that maximizes the determinant of ECC. The optimization problem is effectively solved by the NOMAD solver, which implements the mesh adaptive direct search algorithm. The proposed method is tested on an NPCC 140-bus system and the results show that the proposed methodmore » with fault specified ECC can solve the FIDVR issue caused by the most severe contingency with fewer dynamic var sources than the voltage sensitivity index (VSI)-based method. The proposed method with fault unspecified ECC does not depend on the settings of the contingency and can address more FIDVR issues than the VSI method when placing the same number of SVCs under different fault durations. It is also shown that the proposed method can help mitigate voltage collapse.« less

  11. Adaptive fuzzy wavelet network control of second order multi-agent systems with unknown nonlinear dynamics.

    PubMed

    Taheri, Mehdi; Sheikholeslam, Farid; Najafi, Majddedin; Zekri, Maryam

    2017-07-01

    In this paper, consensus problem is considered for second order multi-agent systems with unknown nonlinear dynamics under undirected graphs. A novel distributed control strategy is suggested for leaderless systems based on adaptive fuzzy wavelet networks. Adaptive fuzzy wavelet networks are employed to compensate for the effect of unknown nonlinear dynamics. Moreover, the proposed method is developed for leader following systems and leader following systems with state time delays. Lyapunov functions are applied to prove uniformly ultimately bounded stability of closed loop systems and to obtain adaptive laws. Three simulation examples are presented to illustrate the effectiveness of the proposed control algorithms. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Image reconstruction of dynamic infrared single-pixel imaging system

    NASA Astrophysics Data System (ADS)

    Tong, Qi; Jiang, Yilin; Wang, Haiyan; Guo, Limin

    2018-03-01

    Single-pixel imaging technique has recently received much attention. Most of the current single-pixel imaging is aimed at relatively static targets or the imaging system is fixed, which is limited by the number of measurements received through the single detector. In this paper, we proposed a novel dynamic compressive imaging method to solve the imaging problem, where exists imaging system motion behavior, for the infrared (IR) rosette scanning system. The relationship between adjacent target images and scene is analyzed under different system movement scenarios. These relationships are used to build dynamic compressive imaging models. Simulation results demonstrate that the proposed method can improve the reconstruction quality of IR image and enhance the contrast between the target and the background in the presence of system movement.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hauer, John F.; Mittelstadt, William; Martin, Kenneth E.

    During 2005 and 2006 the Western Electricity Coordinating Council (WECC) performed three major tests of western system dynamics. These tests used a Wide Area Measurement System (WAMS) based primarily on Phasor Measurement Units (PMUs) to determine response to events including the insertion of the 1400-MW Chief Joseph braking resistor, probing signals, and ambient events. Test security was reinforced through real-time analysis of wide area effects, and high-quality data provided dynamic profiles for interarea modes across the entire western interconnection. The tests established that low-level optimized pseudo-random ±20-MW probing with the Pacific DC Intertie (PDCI) roughly doubles the apparent noise thatmore » is natural to the power system, providing sharp dynamic information with negligible interference to system operations. Such probing is an effective alternative to use of the 1400-MW Chief Joseph dynamic brake, and it is under consideration as a standard means for assessing dynamic security.« less

  14. Intermittent dynamics in complex systems driven to depletion.

    PubMed

    Escobar, Juan V; Pérez Castillo, Isaac

    2018-03-19

    When complex systems are driven to depletion by some external factor, their non-stationary dynamics can present an intermittent behaviour between relative tranquility and burst of activity whose consequences are often catastrophic. To understand and ultimately be able to predict such dynamics, we propose an underlying mechanism based on sharp thresholds of a local generalized energy density that naturally leads to negative feedback. We find a transition from a continuous regime to an intermittent one, in which avalanches can be predicted despite the stochastic nature of the process. This model may have applications in many natural and social complex systems where a rapid depletion of resources or generalized energy drives the dynamics. In particular, we show how this model accurately describes the time evolution and avalanches present in a real social system.

  15. Healing efficiency and dynamic mechanical properties of self-healing epoxy systems

    NASA Astrophysics Data System (ADS)

    Guadagno, Liberata; Raimondo, Marialuigia; Naddeo, Carlo; Longo, Pasquale; Mariconda, Annaluisa; Binder, Wolfgang H.

    2014-03-01

    Several systems to develop self-repairing epoxy resins have recently been formulated. In this paper the effect of matrix nature and curing cycle on the healing efficiency and dynamic mechanical properties of self-healing epoxy resins were investigated. We discuss several aspects by transferring self-healing systems from the laboratory scale to real applications in the aeronautic field, such as the possibility to choose systems with increased glass transition temperature, high storage modulus and high values in the healing functionality under real working conditions.

  16. Development of a precision, wide-dynamic-range actuator for use in active optical systems

    NASA Technical Reports Server (NTRS)

    Lorell, K. R.; Aubrun, J-N.; Zacharie, D. F.; Perez, E. O.

    1989-01-01

    The design, operation, and performance of a wide-dynamic-range optical-quality actuator are discussed. The actuator uses a closed-loop control system to maintain accurate positioning and has an rms noise performance of 20 nm. A unique force offloading mechanism allows the actuator coil to dissipate less than 3 mW under quiescent conditions. The operation of an experimental segmented optical system that uses 18 of the actuators is examined to show how they are integrated into an actual system.

  17. Semiconductors Under Ion Radiation: Ultrafast Electron-Ion Dynamics in Perfect Crystals and the Effect of Defects

    NASA Astrophysics Data System (ADS)

    Lee, Cheng-Wei; Schleife, André

    Stability and safety issues have been challenging difficulties for materials and devices under radiation such as solar panels in outer space. On the other hand, radiation can be utilized to modify materials and increase their performance via focused-ion beam patterning at nano-scale. In order to grasp the underlying processes, further understanding of the radiation-material and radiation-defect interactions is required and inevitably involves the electron-ion dynamics that was traditionally hard to capture. By applying Ehrenfest dynamics based on time-dependent density functional theory, we have been able to perform real-time simulation of electron-ion dynamics in MgO and InP/GaP. By simulating a high-energy proton penetrating the material, the energy gain of electronic system can be interpreted as electronic stopping power and the result is compared to existing data. We also study electronic stopping in the vicinity of defects: for both oxygen vacancy in MgO and interface of InP/GaP superlattice, electronic stopping shows strong dependence on the velocity of the proton. To study the energy transfer from electronic system to lattice, simulations of about 100 femto-seconds are performed and we analyze the difference between Ehrenfest and Born-Oppenheimer molecular dynamics.

  18. Dynamic Response and Failure Mechanism of Brittle Rocks Under Combined Compression-Shear Loading Experiments

    NASA Astrophysics Data System (ADS)

    Xu, Yuan; Dai, Feng

    2018-03-01

    A novel method is developed for characterizing the mechanical response and failure mechanism of brittle rocks under dynamic compression-shear loading: an inclined cylinder specimen using a modified split Hopkinson pressure bar (SHPB) system. With the specimen axis inclining to the loading direction of SHPB, a shear component can be introduced into the specimen. Both static and dynamic experiments are conducted on sandstone specimens. Given carefully pulse shaping, the dynamic equilibrium of the inclined specimens can be satisfied, and thus the quasi-static data reduction is employed. The normal and shear stress-strain relationships of specimens are subsequently established. The progressive failure process of the specimen illustrated via high-speed photographs manifests a mixed failure mode accommodating both the shear-dominated failure and the localized tensile damage. The elastic and shear moduli exhibit certain loading-path dependence under quasi-static loading but loading-path insensitivity under high loading rates. Loading rate dependence is evidently demonstrated through the failure characteristics involving fragmentation, compression and shear strength and failure surfaces based on Drucker-Prager criterion. Our proposed method is convenient and reliable to study the dynamic response and failure mechanism of rocks under combined compression-shear loading.

  19. Application of the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) for Dynamic Systems Analysis

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey; Zinnecker, Alicia

    2014-01-01

    Systems analysis involves steady-state simulations of combined components to evaluate the steady-state performance, weight, and cost of a system; dynamic considerations are not included until later in the design process. The Dynamic Systems Analysis task, under NASAs Fixed Wing project, is developing the capability for assessing dynamic issues at earlier stages during systems analysis. To provide this capability the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) has been developed to design a single flight condition controller (defined as altitude and Mach number) and, ultimately, provide an estimate of the closed-loop performance of the engine model. This tool has been integrated with the Commercial Modular Aero-Propulsion System Simulation 40,000(CMAPSS40k) engine model to demonstrate the additional information TTECTrA makes available for dynamic systems analysis. This dynamic data can be used to evaluate the trade-off between performance and safety, which could not be done with steady-state systems analysis data. TTECTrA has been designed to integrate with any turbine engine model that is compatible with the MATLABSimulink (The MathWorks, Inc.) environment.

  20. Application of the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) for Dynamic Systems Analysis

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey Thomas; Zinnecker, Alicia Mae

    2014-01-01

    Systems analysis involves steady-state simulations of combined components to evaluate the steady-state performance, weight, and cost of a system; dynamic considerations are not included until later in the design process. The Dynamic Systems Analysis task, under NASAs Fixed Wing project, is developing the capability for assessing dynamic issues at earlier stages during systems analysis. To provide this capability the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) has been developed to design a single flight condition controller (defined as altitude and Mach number) and, ultimately, provide an estimate of the closed-loop performance of the engine model. This tool has been integrated with the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS 40k) engine model to demonstrate the additional information TTECTrA makes available for dynamic systems analysis. This dynamic data can be used to evaluate the trade-off between performance and safety, which could not be done with steady-state systems analysis data. TTECTrA has been designed to integrate with any turbine engine model that is compatible with the MATLAB Simulink (The MathWorks, Inc.) environment.

  1. Dynamics of Multistage Gear Transmission with Effects of Gearbox Vibrations

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Tu, Y. K.; Zakrajsek, J. J.; Townsend, Dennis P.

    1990-01-01

    A comprehensive approach is presented in analyzing the dynamic behavior of multistage gear transmission systems with the effects of gearbox induced vibrations and mass imbalances of the rotor. The modal method, with undamped frequencies and planar mode shapes, is used to reduce the degrees of freedom of the gear system for time-transient dynamic analysis. Both the lateral and torsional vibration modes of each rotor-bearing-gear stage as well as the interstage vibrational characteristics are coupled together through localized gear mesh tooth interactions. In addition, gearbox vibrations are also coupled to the rotor-bearing-gear system dynamics through bearing support forces between the rotor and the gearbox. Transient and steady state dynamics of lateral and torsional vibrations of the geared system are examined in both time and frequency domains to develop interpretations of the overall modal dynamic characteristics under various operating conditions. A typical three-stage geared system is used as an example. Effects of mass imbalance and gearbox vibrations on the system dynamic behavior are presented in terms of modal excitation functions for both lateral and torsional vibrations. Operational characteristics and conclusions are drawn from the results presented.

  2. Extended Kalman Filter for Estimation of Parameters in Nonlinear State-Space Models of Biochemical Networks

    PubMed Central

    Sun, Xiaodian; Jin, Li; Xiong, Momiao

    2008-01-01

    It is system dynamics that determines the function of cells, tissues and organisms. To develop mathematical models and estimate their parameters are an essential issue for studying dynamic behaviors of biological systems which include metabolic networks, genetic regulatory networks and signal transduction pathways, under perturbation of external stimuli. In general, biological dynamic systems are partially observed. Therefore, a natural way to model dynamic biological systems is to employ nonlinear state-space equations. Although statistical methods for parameter estimation of linear models in biological dynamic systems have been developed intensively in the recent years, the estimation of both states and parameters of nonlinear dynamic systems remains a challenging task. In this report, we apply extended Kalman Filter (EKF) to the estimation of both states and parameters of nonlinear state-space models. To evaluate the performance of the EKF for parameter estimation, we apply the EKF to a simulation dataset and two real datasets: JAK-STAT signal transduction pathway and Ras/Raf/MEK/ERK signaling transduction pathways datasets. The preliminary results show that EKF can accurately estimate the parameters and predict states in nonlinear state-space equations for modeling dynamic biochemical networks. PMID:19018286

  3. Dynamical behavior of a single polymer chain under nanometric confinement

    NASA Astrophysics Data System (ADS)

    Lagrené, K.; Zanotti, J.-M.; Daoud, M.; Farago, B.; Judeinstein, P.

    2010-10-01

    We address the dynamical behavior of a single polymer chain under nanometric confinement. We consider a polymer melt made of a mixture of hydrogenated and deuterated high molecular mass Poly(Ethylene Oxide) (PEO). The confining material is a membrane of Anodic Aluminum Oxide (AAO), a macroscopically highly ordered confining system made of parallel cylindrical channels. We use Neutron Spin-Echo (NSE) under the Zero Average Contrast (ZAC) condition to, all at once, i) match the intense porous AAO detrimental elastic SANS (Small Angle Neutron Scattering) contribution to the total intermediate scattering function I(Q,t) and ii) measure the Q dependence of the dynamical modes of a single chain under confinement. The polymer dynamics is probed on an extremely broad spacial ([2.2 10-2 Å-1, 0.2 Å-1]) and temporal ([0.1 ns, 600 ns]) ranges. We do not detect any influence of confinement on the polymer dynamics. This result is discussed in the framework of the debate on the existence of a "corset effect" recently suggested by NMR relaxometry data.

  4. Major component analysis of dynamic networks of physiologic organ interactions

    NASA Astrophysics Data System (ADS)

    Liu, Kang K. L.; Bartsch, Ronny P.; Ma, Qianli D. Y.; Ivanov, Plamen Ch

    2015-09-01

    The human organism is a complex network of interconnected organ systems, where the behavior of one system affects the dynamics of other systems. Identifying and quantifying dynamical networks of diverse physiologic systems under varied conditions is a challenge due to the complexity in the output dynamics of the individual systems and the transient and nonlinear characteristics of their coupling. We introduce a novel computational method based on the concept of time delay stability and major component analysis to investigate how organ systems interact as a network to coordinate their functions. We analyze a large database of continuously recorded multi-channel physiologic signals from healthy young subjects during night-time sleep. We identify a network of dynamic interactions between key physiologic systems in the human organism. Further, we find that each physiologic state is characterized by a distinct network structure with different relative contribution from individual organ systems to the global network dynamics. Specifically, we observe a gradual decrease in the strength of coupling of heart and respiration to the rest of the network with transition from wake to deep sleep, and in contrast, an increased relative contribution to network dynamics from chin and leg muscle tone and eye movement, demonstrating a robust association between network topology and physiologic function.

  5. A Thermodynamic Approach to Soil-Plant-Atmosphere Modeling: From Metabolic Biochemical Processes to Water-Carbon-Nitrogen Balance

    NASA Astrophysics Data System (ADS)

    Clavijo, H. W.

    2016-12-01

    Modeling the soil-plant-atmosphere continuum has been central part of understanding interrelationships among biogeochemical and hydrological processes. Theory behind of couplings Land Surface Models (LSM) and Dynamical Global Vegetation Models (DGVM) are based on physical and physiological processes connected by input-output interactions mainly. This modeling framework could be improved by the application of non-equilibrium thermodynamic basis that could encompass the majority of biophysical processes in a standard fashion. This study presents an alternative model for plant-water-atmosphere based on energy-mass thermodynamics. The system of dynamic equations derived is based on the total entropy, the total energy balance for the plant, the biomass dynamics at metabolic level and the water-carbon-nitrogen fluxes and balances. One advantage of this formulation is the capability to describe adaptation and evolution of dynamics of plant as a bio-system coupled to the environment. Second, it opens a window for applications on specific conditions from individual plant scale, to watershed scale, to global scale. Third, it enhances the possibility of analyzing anthropogenic impacts on the system, benefiting from the mathematical formulation and its non-linearity. This non-linear model formulation is analyzed under the concepts of qualitative system dynamics theory, for different state-space phase portraits. The attractors and sources are pointed out with its stability analysis. Possibility of bifurcations are explored and reported. Simulations for the system dynamics under different conditions are presented. These results show strong consistency and applicability that validates the use of the non-equilibrium thermodynamic theory.

  6. Investigation of Gearbox Vibration Transmission Paths on Gear Condition Indicator Performance

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Islam, AKM Anwarul; Feldman, Jason; Larsen, Chris

    2013-01-01

    Helicopter health monitoring systems use vibration signatures generated from damaged components to identify transmission faults. For damaged gears, these signatures relate to changes in dynamics due to the meshing of the damaged tooth. These signatures, referred to as condition indicators (CI), can perform differently when measured on different systems, such as a component test rig, or a full-scale transmission test stand, or an aircraft. These differences can result from dissimilarities in systems design and environment under dynamic operating conditions. The static structure can also filter the response between the vibration source and the accelerometer, when the accelerometer is installed on the housing. To assess the utility of static vibration transfer paths for predicting gear CI performance, measurements were taken on the NASA Glenn Spiral Bevel Gear Fatigue Test Rig. The vibration measurements were taken to determine the effect of torque, accelerometer location and gearbox design on accelerometer response. Measurements were taken at the housing and compared while impacting the gear set near mesh. These impacts were made at gear mesh to simulate gear meshing dynamics. Data measured on a helicopter gearbox installed in a static fixture were also compared to the test rig. The behavior of the structure under static conditions was also compared to CI values calculated under dynamic conditions. Results indicate that static vibration transfer path measurements can provide some insight into spiral bevel gear CI performance by identifying structural characteristics unique to each system that can affect specific CI response.

  7. Transformation of Pb(II) from Cerrusite to Chloropyromorphite in the Presence of Hydroxyapatite under Varying Conditions of pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, J.A.; Zhang, P.

    1998-10-14

    Cerrusite (PbC03) is soluble under acidic conditions and considered to be a highly bioavailable soil Pb species. In this study, synthetic cerrusite and hydroxyapatite [Ca5(P04)30H] were reacted under constant and dynamic pH conditions with various P/Pb molar ratios in an attempt to evaluate the effect of reaction kinetics on the formation of chloropyromorphite (Pb5(P04)3Cl) and solubilization of Pb. Under constant pH conditions, dissolution rates of both cerrusite and apatite were rapid when pH was low. Complete conversion of Pb from cerrusite to chloropyromorphite occurred within 60 tin at pH 4 and below when the amount of phosphate in the addedmore » apatite was stoichoimetrically equal to that needed to transform all added Pb into chloropyromorphite. The concentration of soluble Pb depended upon the volubility of chloropyromorphite. The dissolution rates of apatite and cerrusite decreased with increasing pH, and the transformation was incomplete at pH 5 and above in the 60 rnin reaction period. The soluble Pb level, therefore, was determined by the volubility of cerrusite. In the dynamic pH system which simulated the gastrointestinal tract (GI tract) system, a complete transformation of Pb from cerrusite to chloropyromorphite was achieved due to the complete dissolution of apatite and cerrusite at the initial low pHs. Chloropyromorphite was the exclusive reaction product in both constant and dynamic pH systems as indicated by XRD analysis. The differences in transformation rate and the control of Pb volubility between the reactions occurring in constant and dynamic pH systems indicate the significance of kinetics in controlling the bioavailability of Pb and the potential for the reaction to occur during ingestion.« less

  8. Propagating stress-pulses and wiggling transition revealed in string dynamics

    NASA Astrophysics Data System (ADS)

    Yao, Zhenwei

    2018-02-01

    Understanding string dynamics yields insights into the intricate dynamic behaviors of various filamentary thin structures in nature and industry covering multiple length scales. In this work, we investigate the planar dynamics of a flexible string where one end is free and the other end is subject to transverse and longitudinal motions. Under transverse harmonic motion, we reveal the propagating pulse structure in the stress profile over the string, and analyze its role in bringing the system into a chaotic state. For a string where one end is under longitudinal uniform acceleration, we identify the wiggling transition, derive the analytical wiggling solution from the string equations, and present the phase diagram.

  9. Dynamical Models for Sloshing Dynamics of Helium 2 Under Low-G Conditions

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Long, Y. T.

    1997-01-01

    Coupling of sloshing dynamics within a partially filled rotating dewar of superfluid helium 2 with spacecraft dynamics are investigated in response to the realistic environmental disturbance forces and torques acting on the spacecraft during normal operation. This study investigates: (1) the rotating bubble of superfluid helium 2 reacting to combined environmental disturbances, including gravity gradient, aerodynamic, and magnetic forces and torques; (2) characteristics of slosh reaction forces and torques coupling with spacecraft dynamics; (3) the contribution of slosh dynamics to over-all spacecraft dynamics; and (4) activating of attitude and translation control system. The numerical computation of sloshing dynamics is based on the rotational frame, while the spacecraft dynamics is associated with non-rotational frame. Results show that the contributions of spacecraft dynamics are driven by the environmental disturbances coupling with slosh dynamics. Without considering the effects of environmental disturbances-driven slosh dynamics acting on spacecraft coupling with the spacecraft dynamics may lead to the wrong results for the development of spacecraft system guidance and attitude control techniques.

  10. Floquet–Magnus theory and generic transient dynamics in periodically driven many-body quantum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuwahara, Tomotaka, E-mail: tomotaka.phys@gmail.com; WPI, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577; Mori, Takashi

    2016-04-15

    This work explores a fundamental dynamical structure for a wide range of many-body quantum systems under periodic driving. Generically, in the thermodynamic limit, such systems are known to heat up to infinite temperature states in the long-time limit irrespective of dynamical details, which kills all the specific properties of the system. In the present study, instead of considering infinitely long-time scale, we aim to provide a general framework to understand the long but finite time behavior, namely the transient dynamics. In our analysis, we focus on the Floquet–Magnus (FM) expansion that gives a formal expression of the effective Hamiltonian onmore » the system. Although in general the full series expansion is not convergent in the thermodynamics limit, we give a clear relationship between the FM expansion and the transient dynamics. More precisely, we rigorously show that a truncated version of the FM expansion accurately describes the exact dynamics for a certain time-scale. Our theory reveals an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed. We discuss several dynamical phenomena, such as the effect of small integrability breaking, efficient numerical simulation of periodically driven systems, dynamical localization and thermalization. Especially on thermalization, we discuss a generic scenario on the prethermalization phenomenon in periodically driven systems. -- Highlights: •A general framework to describe transient dynamics for periodically driven systems. •The theory is applicable to generic quantum many-body systems including long-range interacting systems. •Physical meaning of the truncation of the Floquet–Magnus expansion is rigorously established. •New mechanism of the prethermalization is proposed. •Revealing an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed.« less

  11. Crashworthiness testing of Amtrak's traditional coach seat : safety of high-speed ground transportation systems

    DOT National Transportation Integrated Search

    1996-10-01

    Tests have been conducted on Amtrak's traditional passenger seat to evaluate its performance under static and dynamic loading conditions. Quasi-static tests have been conducted to establish the load-deflection characteristics of the seat. Dynamic tes...

  12. Numerical approach on dynamic self-assembly of colloidal particles

    NASA Astrophysics Data System (ADS)

    Ibrahimi, Muhamet; Ilday, Serim; Makey, Ghaith; Pavlov, Ihor; Yavuz, Özgàn; Gulseren, Oguz; Ilday, Fatih Omer

    Far from equilibrium systems of artificial ensembles are crucial for understanding many intelligent features in self-organized natural systems. However, the lack of established theory underlies a need for numerical implementations. Inspired by a novel work, we simulate a solution-suspended colloidal system that dynamically self assembles due to convective forces generated in the solvent when heated by a laser. In order to incorporate with random fluctuations of particles and continuously changing flow, we exploit a random-walk based Brownian motion model and a fluid dynamics solver prepared for games, respectively. Simulation results manage to fit to experiments and show many quantitative features of a non equilibrium dynamic self assembly, including phase space compression and an ensemble-energy input feedback loop.

  13. Diffusion in randomly perturbed dissipative dynamics

    NASA Astrophysics Data System (ADS)

    Rodrigues, Christian S.; Chechkin, Aleksei V.; de Moura, Alessandro P. S.; Grebogi, Celso; Klages, Rainer

    2014-11-01

    Dynamical systems having many coexisting attractors present interesting properties from both fundamental theoretical and modelling points of view. When such dynamics is under bounded random perturbations, the basins of attraction are no longer invariant and there is the possibility of transport among them. Here we introduce a basic theoretical setting which enables us to study this hopping process from the perspective of anomalous transport using the concept of a random dynamical system with holes. We apply it to a simple model by investigating the role of hyperbolicity for the transport among basins. We show numerically that our system exhibits non-Gaussian position distributions, power-law escape times, and subdiffusion. Our simulation results are reproduced consistently from stochastic continuous time random walk theory.

  14. GPU accelerated Discrete Element Method (DEM) molecular dynamics for conservative, faceted particle simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spellings, Matthew; Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109; Marson, Ryan L.

    Faceted shapes, such as polyhedra, are commonly found in systems of nanoscale, colloidal, and granular particles. Many interesting physical phenomena, like crystal nucleation and growth, vacancy motion, and glassy dynamics are challenging to model in these systems because they require detailed dynamical information at the individual particle level. Within the granular materials community the Discrete Element Method has been used extensively to model systems of anisotropic particles under gravity, with friction. We provide an implementation of this method intended for simulation of hard, faceted nanoparticles, with a conservative Weeks–Chandler–Andersen (WCA) interparticle potential, coupled to a thermodynamic ensemble. This method ismore » a natural extension of classical molecular dynamics and enables rigorous thermodynamic calculations for faceted particles.« less

  15. Symmetric linear systems - An application of algebraic systems theory

    NASA Technical Reports Server (NTRS)

    Hazewinkel, M.; Martin, C.

    1983-01-01

    Dynamical systems which contain several identical subsystems occur in a variety of applications ranging from command and control systems and discretization of partial differential equations, to the stability augmentation of pairs of helicopters lifting a large mass. Linear models for such systems display certain obvious symmetries. In this paper, we discuss how these symmetries can be incorporated into a mathematical model that utilizes the modern theory of algebraic systems. Such systems are inherently related to the representation theory of algebras over fields. We will show that any control scheme which respects the dynamical structure either implicitly or explicitly uses the underlying algebra.

  16. Distributed Consensus of Stochastic Delayed Multi-agent Systems Under Asynchronous Switching.

    PubMed

    Wu, Xiaotai; Tang, Yang; Cao, Jinde; Zhang, Wenbing

    2016-08-01

    In this paper, the distributed exponential consensus of stochastic delayed multi-agent systems with nonlinear dynamics is investigated under asynchronous switching. The asynchronous switching considered here is to account for the time of identifying the active modes of multi-agent systems. After receipt of confirmation of mode's switching, the matched controller can be applied, which means that the switching time of the matched controller in each node usually lags behind that of system switching. In order to handle the coexistence of switched signals and stochastic disturbances, a comparison principle of stochastic switched delayed systems is first proved. By means of this extended comparison principle, several easy to verified conditions for the existence of an asynchronously switched distributed controller are derived such that stochastic delayed multi-agent systems with asynchronous switching and nonlinear dynamics can achieve global exponential consensus. Two examples are given to illustrate the effectiveness of the proposed method.

  17. How to make an efficient propaganda

    NASA Astrophysics Data System (ADS)

    Carletti, T.; Fanelli, D.; Grolli, S.; Guarino, A.

    2006-04-01

    The effects of propaganda are analyzed in an opinion dynamics model in which, under certain conditions, individuals adjust their opinion as a result of random binary encounters. The aim of this paper is to study under what conditions propaganda changes the opinion dynamics of a social system. Four different scenarios are found, characterized by different sensitivities to the propaganda. For each scenario the maximum efficiency of propaganda is attained following a given strategy that is here outlined.

  18. Noise-induced relations between network connectivity and dynamics

    NASA Astrophysics Data System (ADS)

    Ching, Emily Sc

    Many biological systems of interest can be represented as networks of many nodes that are interacting with one another. Often these systems are subject to external influence or noise. One of the central issues is to understand the relation between dynamics and the interaction pattern of the system or the connectivity structure of the network. In particular, a challenging problem is to infer the network connectivity structure from the dynamics. In this talk, we show that for stochastic dynamical systems subjected to noise, the presence of noise gives rise to mathematical relations between the network connectivity structure and quantities that can be calculated using solely the time-series measurements of the dynamics of the nodes. We present these relations for both undirected networks with bidirectional coupling and directed networks with directional coupling and discuss how such relations can be utilized to infer the network connectivity structure of the systems. Work supported by the Hong Kong Research Grants Council under Grant No. CUHK 14300914.

  19. Optimal estimation of recurrence structures from time series

    NASA Astrophysics Data System (ADS)

    beim Graben, Peter; Sellers, Kristin K.; Fröhlich, Flavio; Hutt, Axel

    2016-05-01

    Recurrent temporal dynamics is a phenomenon observed frequently in high-dimensional complex systems and its detection is a challenging task. Recurrence quantification analysis utilizing recurrence plots may extract such dynamics, however it still encounters an unsolved pertinent problem: the optimal selection of distance thresholds for estimating the recurrence structure of dynamical systems. The present work proposes a stochastic Markov model for the recurrent dynamics that allows for the analytical derivation of a criterion for the optimal distance threshold. The goodness of fit is assessed by a utility function which assumes a local maximum for that threshold reflecting the optimal estimate of the system's recurrence structure. We validate our approach by means of the nonlinear Lorenz system and its linearized stochastic surrogates. The final application to neurophysiological time series obtained from anesthetized animals illustrates the method and reveals novel dynamic features of the underlying system. We propose the number of optimal recurrence domains as a statistic for classifying an animals' state of consciousness.

  20. Dynamic modeling of neuronal responses in fMRI using cubature Kalman filtering

    PubMed Central

    Havlicek, Martin; Friston, Karl J.; Jan, Jiri; Brazdil, Milan; Calhoun, Vince D.

    2011-01-01

    This paper presents a new approach to inverting (fitting) models of coupled dynamical systems based on state-of-the-art (cubature) Kalman filtering. Crucially, this inversion furnishes posterior estimates of both the hidden states and parameters of a system, including any unknown exogenous input. Because the underlying generative model is formulated in continuous time (with a discrete observation process) it can be applied to a wide variety of models specified with either ordinary or stochastic differential equations. These are an important class of models that are particularly appropriate for biological time-series, where the underlying system is specified in terms of kinetics or dynamics (i.e., dynamic causal models). We provide comparative evaluations with generalized Bayesian filtering (dynamic expectation maximization) and demonstrate marked improvements in accuracy and computational efficiency. We compare the schemes using a series of difficult (nonlinear) toy examples and conclude with a special focus on hemodynamic models of evoked brain responses in fMRI. Our scheme promises to provide a significant advance in characterizing the functional architectures of distributed neuronal systems, even in the absence of known exogenous (experimental) input; e.g., resting state fMRI studies and spontaneous fluctuations in electrophysiological studies. Importantly, unlike current Bayesian filters (e.g. DEM), our scheme provides estimates of time-varying parameters, which we will exploit in future work on the adaptation and enabling of connections in the brain. PMID:21396454

  1. Nonlinear dynamic modeling of a simple flexible rotor system subjected to time-variable base motions

    NASA Astrophysics Data System (ADS)

    Chen, Liqiang; Wang, Jianjun; Han, Qinkai; Chu, Fulei

    2017-09-01

    Rotor systems carried in transportation system or under seismic excitations are considered to have a moving base. To study the dynamic behavior of flexible rotor systems subjected to time-variable base motions, a general model is developed based on finite element method and Lagrange's equation. Two groups of Euler angles are defined to describe the rotation of the rotor with respect to the base and that of the base with respect to the ground. It is found that the base rotations would cause nonlinearities in the model. To verify the proposed model, a novel test rig which could simulate the base angular-movement is designed. Dynamic experiments on a flexible rotor-bearing system with base angular motions are carried out. Based upon these, numerical simulations are conducted to further study the dynamic response of the flexible rotor under harmonic angular base motions. The effects of base angular amplitude, rotating speed and base frequency on response behaviors are discussed by means of FFT, waterfall, frequency response curve and orbits of the rotor. The FFT and waterfall plots of the disk horizontal and vertical vibrations are marked with multiplications of the base frequency and sum and difference tones of the rotating frequency and the base frequency. Their amplitudes will increase remarkably when they meet the whirling frequencies of the rotor system.

  2. Numerical and Experimental Dynamic Characteristics of Thin-Film Membranes

    NASA Technical Reports Server (NTRS)

    Young, Leyland G.; Ramanathan, Suresh; Hu, Jia-Zhu; Pai, P. Frank

    2004-01-01

    Presented is a total-Lagrangian displacement-based non-linear finite-element model of thin-film membranes for static and dynamic large-displacement analyses. The membrane theory fully accounts for geometric non-linearities. Fully non-linear static analysis followed by linear modal analysis is performed for an inflated circular cylindrical Kapton membrane tube under different pressures, and for a rectangular membrane under different tension loads at four comers. Finite element results show that shell modes dominate the dynamics of the inflated tube when the inflation pressure is low, and that vibration modes localized along four edges dominate the dynamics of the rectangular membrane. Numerical dynamic characteristics of the two membrane structures were experimentally verified using a Polytec PI PSV-200 scanning laser vibrometer and an EAGLE-500 8-camera motion analysis system.

  3. Propulsion System Dynamic Modeling for the NASA Supersonic Concept Vehicle: AeroPropulsoServoElasticity

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph; Seidel, Jonathan

    2014-01-01

    A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the low-boom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural-aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report.propulsion system dynamics, the structural dynamics, and aerodynamics.

  4. Structure-based control of complex networks with nonlinear dynamics.

    PubMed

    Zañudo, Jorge Gomez Tejeda; Yang, Gang; Albert, Réka

    2017-07-11

    What can we learn about controlling a system solely from its underlying network structure? Here we adapt a recently developed framework for control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This feedback-based framework provides realizable node overrides that steer a system toward any of its natural long-term dynamic behaviors, regardless of the specific functional forms and system parameters. We use this framework on several real networks, identify the topological characteristics that underlie the predicted node overrides, and compare its predictions to those of structural controllability in control theory. Finally, we demonstrate this framework's applicability in dynamic models of gene regulatory networks and identify nodes whose override is necessary for control in the general case but not in specific model instances.

  5. Global identification of stochastic dynamical systems under different pseudo-static operating conditions: The functionally pooled ARMAX case

    NASA Astrophysics Data System (ADS)

    Sakellariou, J. S.; Fassois, S. D.

    2017-01-01

    The identification of a single global model for a stochastic dynamical system operating under various conditions is considered. Each operating condition is assumed to have a pseudo-static effect on the dynamics and be characterized by a single measurable scheduling variable. Identification is accomplished within a recently introduced Functionally Pooled (FP) framework, which offers a number of advantages over Linear Parameter Varying (LPV) identification techniques. The focus of the work is on the extension of the framework to include the important FP-ARMAX model case. Compared to their simpler FP-ARX counterparts, FP-ARMAX models are much more general and offer improved flexibility in describing various types of stochastic noise, but at the same time lead to a more complicated, non-quadratic, estimation problem. Prediction Error (PE), Maximum Likelihood (ML), and multi-stage estimation methods are postulated, and the PE estimator optimality, in terms of consistency and asymptotic efficiency, is analytically established. The postulated estimators are numerically assessed via Monte Carlo experiments, while the effectiveness of the approach and its superiority over its FP-ARX counterpart are demonstrated via an application case study pertaining to simulated railway vehicle suspension dynamics under various mass loading conditions.

  6. Critical Dynamics in Genetic Regulatory Networks: Examples from Four Kingdoms

    PubMed Central

    Balleza, Enrique; Alvarez-Buylla, Elena R.; Chaos, Alvaro; Kauffman, Stuart; Shmulevich, Ilya; Aldana, Maximino

    2008-01-01

    The coordinated expression of the different genes in an organism is essential to sustain functionality under the random external perturbations to which the organism might be subjected. To cope with such external variability, the global dynamics of the genetic network must possess two central properties. (a) It must be robust enough as to guarantee stability under a broad range of external conditions, and (b) it must be flexible enough to recognize and integrate specific external signals that may help the organism to change and adapt to different environments. This compromise between robustness and adaptability has been observed in dynamical systems operating at the brink of a phase transition between order and chaos. Such systems are termed critical. Thus, criticality, a precise, measurable, and well characterized property of dynamical systems, makes it possible for robustness and adaptability to coexist in living organisms. In this work we investigate the dynamical properties of the gene transcription networks reported for S. cerevisiae, E. coli, and B. subtilis, as well as the network of segment polarity genes of D. melanogaster, and the network of flower development of A. thaliana. We use hundreds of microarray experiments to infer the nature of the regulatory interactions among genes, and implement these data into the Boolean models of the genetic networks. Our results show that, to the best of the current experimental data available, the five networks under study indeed operate close to criticality. The generality of this result suggests that criticality at the genetic level might constitute a fundamental evolutionary mechanism that generates the great diversity of dynamically robust living forms that we observe around us. PMID:18560561

  7. Dynamical aspects of behavior generation under constraints

    PubMed Central

    Harter, Derek; Achunala, Srinivas

    2007-01-01

    Dynamic adaptation is a key feature of brains helping to maintain the quality of their performance in the face of increasingly difficult constraints. How to achieve high-quality performance under demanding real-time conditions is an important question in the study of cognitive behaviors. Animals and humans are embedded in and constrained by their environments. Our goal is to improve the understanding of the dynamics of the interacting brain–environment system by studying human behaviors when completing constrained tasks and by modeling the observed behavior. In this article we present results of experiments with humans performing tasks on the computer under variable time and resource constraints. We compare various models of behavior generation in order to describe the observed human performance. Finally we speculate on mechanisms how chaotic neurodynamics can contribute to the generation of flexible human behaviors under constraints. PMID:19003514

  8. Interfaces in polymer nanocomposites – An NMR study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Böhme, Ute; Scheler, Ulrich, E-mail: scheler@ipfdd.de

    Nuclear Magnetic Resonance (NMR) is applied for the investigation of polymer nanocomposites. Solid-state NMR is applied to study the modification steps to compatibilize layered double hydroxides with non-polar polymers. {sup 1}H relaxation NMR gives insight on the polymer dynamics over a wide range of correlation times. For the polymer chain dynamics the transverse relaxation time T{sub 2} is most suited. In this presentation we report on two applications of T{sub 2} measurements under external mechanical stress. In a low-field system relaxation NMR studies are performed in-situ under uniaxial stress. High-temperature experiments in a Couette cell permit the investigation of themore » polymer dynamics in the melt under shear flow.« less

  9. A new apparatus design for high temperature (up to 950°C) quasi-elastic neutron scattering in a controlled gaseous environment.

    PubMed

    al-Wahish, Amal; Armitage, D; al-Binni, U; Hill, B; Mills, R; Jalarvo, N; Santodonato, L; Herwig, K W; Mandrus, D

    2015-09-01

    A design for a sample cell system suitable for high temperature Quasi-Elastic Neutron Scattering (QENS) experiments is presented. The apparatus was developed at the Spallation Neutron Source in Oak Ridge National Lab where it is currently in use. The design provides a special sample cell environment under controlled humid or dry gas flow over a wide range of temperature up to 950 °C. Using such a cell, chemical, dynamical, and physical changes can be studied in situ under various operating conditions. While the cell combined with portable automated gas environment system is especially useful for in situ studies of microscopic dynamics under operational conditions that are similar to those of solid oxide fuel cells, it can additionally be used to study a wide variety of materials, such as high temperature proton conductors. The cell can also be used in many different neutron experiments when a suitable sample holder material is selected. The sample cell system has recently been used to reveal fast dynamic processes in quasi-elastic neutron scattering experiments, which standard probes (such as electrochemical impedance spectroscopy) could not detect. In this work, we outline the design of the sample cell system and present results demonstrating its abilities in high temperature QENS experiments.

  10. Power output and carrier dynamics studies of perovskite solar cells under working conditions.

    PubMed

    Yu, Man; Wang, Hao-Yi; Hao, Ming-Yang; Qin, Yujun; Fu, Li-Min; Zhang, Jian-Ping; Ai, Xi-Cheng

    2017-08-02

    Perovskite solar cells have emerged as promising photovoltaic systems with superb power conversion efficiency. For the practical application of perovskite devices, the greatest concerns are the power output density and the related dynamics under working conditions. In this study, the working conditions of planar and mesoscopic perovskite solar cells are simulated and the power output density evolutions with the working voltage are highlighted. The planar device exhibits higher capability of outputting power than the mesoscopic one. The transient photoelectric conversion dynamics are investigated under the open circuit, short circuit and working conditions. It is found that the power output and dynamic processes are correlated intrinsically, which suggests that the power output is the competitive result of the charge carrier recombination and transport. The present work offers a unique view to elucidating the relationship between the power output and the charge carrier dynamics for perovskite solar cells in a comprehensive manner, which would be beneficial to their future practical applications.

  11. Exponential quantum spreading in a class of kicked rotor systems near high-order resonances

    NASA Astrophysics Data System (ADS)

    Wang, Hailong; Wang, Jiao; Guarneri, Italo; Casati, Giulio; Gong, Jiangbin

    2013-11-01

    Long-lasting exponential quantum spreading was recently found in a simple but very rich dynamical model, namely, an on-resonance double-kicked rotor model [J. Wang, I. Guarneri, G. Casati, and J. B. Gong, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.234104 107, 234104 (2011)]. The underlying mechanism, unrelated to the chaotic motion in the classical limit but resting on quasi-integrable motion in a pseudoclassical limit, is identified for one special case. By presenting a detailed study of the same model, this work offers a framework to explain long-lasting exponential quantum spreading under much more general conditions. In particular, we adopt the so-called “spinor” representation to treat the kicked-rotor dynamics under high-order resonance conditions and then exploit the Born-Oppenheimer approximation to understand the dynamical evolution. It is found that the existence of a flat band (or an effectively flat band) is one important feature behind why and how the exponential dynamics emerges. It is also found that a quantitative prediction of the exponential spreading rate based on an interesting and simple pseudoclassical map may be inaccurate. In addition to general interests regarding the question of how exponential behavior in quantum systems may persist for a long time scale, our results should motivate further studies toward a better understanding of high-order resonance behavior in δ-kicked quantum systems.

  12. Control and dynamics study for the satellite power system. Volume 1: MPTS/SPS collector dynamic analysis and surface deformation

    NASA Technical Reports Server (NTRS)

    Wang, S. J.

    1980-01-01

    The basic dynamic properties and performance characteristics of the microwave power transmission satellite antenna were analyzed in an effort to develop criteria, requirements, and constraints for the control and structure design. The vibrational properties, the surface deformation, and the corresponding scan loss under the influence of disturbances are considered.

  13. Modeling the system dynamics for nutrient removal in an innovative septic tank media filter.

    PubMed

    Xuan, Zhemin; Chang, Ni-Bin; Wanielista, Martin

    2012-05-01

    A next generation septic tank media filter to replace or enhance the current on-site wastewater treatment drainfields was proposed in this study. Unit operation with known treatment efficiencies, flow pattern identification, and system dynamics modeling was cohesively concatenated in order to prove the concept of a newly developed media filter. A multicompartmental model addressing system dynamics and feedbacks based on our assumed microbiological processes accounting for aerobic, anoxic, and anaerobic conditions in the media filter was constructed and calibrated with the aid of in situ measurements and the understanding of the flow patterns. Such a calibrated system dynamics model was then applied for a sensitivity analysis under changing inflow conditions based on the rates of nitrification and denitrification characterized through the field-scale testing. This advancement may contribute to design such a drainfield media filter in household septic tank systems in the future.

  14. Geometrical analysis of the LiCN vibrational dynamics: a stability geometrical indicator.

    PubMed

    Vergel, A; Benito, R M; Losada, J C; Borondo, F

    2014-02-01

    The vibrational dynamics of the LiNC/LiCN molecular system is examined making use of the Riemannian geometry. Stability and chaoticity are analyzed, in this context, by means of the Jacobi-Levi-Civita equations, derived from the Jacobi metric, and its solutions. A dynamical indicator, called stability geometrical indicator, is introduced in order to ascertain the dynamical characteristics of stability and chaos in the molecule under study.

  15. On the sighting of unicorns: A variational approach to computing invariant sets in dynamical systems

    NASA Astrophysics Data System (ADS)

    Junge, Oliver; Kevrekidis, Ioannis G.

    2017-06-01

    We propose to compute approximations to invariant sets in dynamical systems by minimizing an appropriate distance between a suitably selected finite set of points and its image under the dynamics. We demonstrate, through computational experiments, that this approach can successfully converge to approximations of (maximal) invariant sets of arbitrary topology, dimension, and stability, such as, e.g., saddle type invariant sets with complicated dynamics. We further propose to extend this approach by adding a Lennard-Jones type potential term to the objective function, which yields more evenly distributed approximating finite point sets, and illustrate the procedure through corresponding numerical experiments.

  16. On the sighting of unicorns: A variational approach to computing invariant sets in dynamical systems.

    PubMed

    Junge, Oliver; Kevrekidis, Ioannis G

    2017-06-01

    We propose to compute approximations to invariant sets in dynamical systems by minimizing an appropriate distance between a suitably selected finite set of points and its image under the dynamics. We demonstrate, through computational experiments, that this approach can successfully converge to approximations of (maximal) invariant sets of arbitrary topology, dimension, and stability, such as, e.g., saddle type invariant sets with complicated dynamics. We further propose to extend this approach by adding a Lennard-Jones type potential term to the objective function, which yields more evenly distributed approximating finite point sets, and illustrate the procedure through corresponding numerical experiments.

  17. Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration

    NASA Technical Reports Server (NTRS)

    Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Smith, E. J.; Yerazunis, S. W.

    1972-01-01

    Investigation of problems related to the design and control of a mobile planetary vehicle to implement a systematic plan for the exploration of Mars has been undertaken. Problem areas receiving attention include: vehicle configuration, control, dynamics, systems and propulsion; systems analysis; terrain modeling and path selection; and chemical analysis of specimens. The following specific tasks have been under study: vehicle model design, mathematical modeling of a dynamic vehicle, experimental vehicle dynamics, obstacle negotiation, electromechanical controls, collapsibility and deployment, construction of a wheel tester, wheel analysis, payload design, system design optimization, effect of design assumptions, accessory optimal design, on-board computer sybsystem, laser range measurement, discrete obstacle detection, obstacle detection systems, terrain modeling, path selection system simulation and evaluation, gas chromatograph/mass spectrometer system concepts, chromatograph model evaluation and improvement.

  18. Generalization of a model of hysteresis for dynamical systems.

    PubMed

    Piquette, Jean C; McLaughlin, Elizabeth A; Ren, Wei; Mukherjee, Binu K

    2002-06-01

    A previously described model of hysteresis [J. C. Piquette and S. E. Forsythe, J. Acoust. Soc. Am. 106, 3317-3327 (1999); 106, 3328-3334 (1999)] is generalized to apply to a dynamical system. The original model produces theoretical hysteresis loops that agree well with laboratory measurements acquired under quasi-static conditions. The loops are produced using three-dimensional rotation matrices. An iterative procedure, which allows the model to be applied to a dynamical system, is introduced here. It is shown that, unlike the quasi-static case, self-crossing of the loops is a realistic possibility when inertia and viscous friction are taken into account.

  19. Analysis of ISO NE Balancing Requirements: Uncertainty-based Secure Ranges for ISO New England Dynamic Inerchange Adjustments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Etingov, Pavel V.; Makarov, Yuri V.; Wu, Di

    The document describes detailed uncertainty quantification (UQ) methodology developed by PNNL to estimate secure ranges of potential dynamic intra-hour interchange adjustments in the ISO-NE system and provides description of the dynamic interchange adjustment (DINA) tool developed under the same contract. The overall system ramping up and down capability, spinning reserve requirements, interchange schedules, load variations and uncertainties from various sources that are relevant to the ISO-NE system are incorporated into the methodology and the tool. The DINA tool has been tested by PNNL and ISO-NE staff engineers using ISO-NE data.

  20. Dynamic models to analyse the influence of the seat belt in a frontal collision

    NASA Astrophysics Data System (ADS)

    Oana, Oţăt; Nicolae, Dumitru; Ilie, Dumitru

    2017-10-01

    Traffic accidents are influenced by various factors, yet, the highest impacting ones are related to vehicle impact speed and collision type. Also, passive vehicle safety systems play a significant role upon the injuries suffered by vehicle occupants. Under the circumstances, a particularly important aspect to consider when using such systems is the position of the vehicle’s driver and its occupants. In what follows we embark upon an in-depth analysis in order to investigate the contact effects between the seat belt and the driver, under a dynamic regime. We set out to identify the variation of the kinematic and dynamic parameters for both the driver and the seat belt via comparative analyses between the normal position of the driver and some other out of position instances, considered as critical.

  1. The changing global carbon cycle: Linking plant-soil carbon dynamics to global consequences

    USGS Publications Warehouse

    Chapin, F. S.; McFarland, J.; McGuire, David A.; Euskirchen, E.S.; Ruess, Roger W.; Kielland, K.

    2009-01-01

    Synthesis. Current climate systems models that include only NPP and HR are inadequate under conditions of rapid change. Many of the recent advances in biogeochemical understanding are sufficiently mature to substantially improve representation of ecosystem C dynamics in these models.

  2. DYNAMICS OF EXTRACELLULAR SIGNAL-REGULATED KINASE (ERK) ACTIVATION IN DEVELOPING CEREBELLAR GRANULE CELLS (CGC): A SYSTEMS BIOLOGY-ORIENTED STUDY

    EPA Science Inventory

    The objective of this study was to 1) characterize the dynamics of ERK activation in response to BDNF and NMDA; 2) use computational models to promote understanding of the signaling network underlying ERK activation.

  3. POPULATION DYNAMICS OF AMBIENT AND ALTERED EARTHWORM COMMUNITIES IN ROW-CROP AGROECOSYSTEMS IN OHIO, USA

    EPA Science Inventory

    Although earthworms are known to influence agroecosystem processes, there are relatively few long-term studies addressing population dynamics under cropping systems in which earthworm populations were intentionally altered. We assessed earthworm communities from fall 1994 to spr...

  4. Dynamic response characteristics of the high-temperature superconducting maglev system under lateral eccentric distance

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Zheng, Jun; Si, Shuaishuai; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang

    2016-07-01

    Off-centre operation of high-temperature superconducting (HTS) maglev systems caused by inevitable conditions such as the misregistration of vehicle, crosswind and curve negotiation, may change the distribution of the trapped flux in the HTS bulks and the magnetic interaction between HTS bulks and the PMG. It impacts on the performance of HTS maglev, and more seriously makes the maglev vehicle overturned. Therefore, understanding the performance of the HTS maglev in off-center operation is very important. In this paper, the dynamic response characteristics of a cryostat with twenty-four onboard YBaCuO superconductor bulks were experimentally investigated at different eccentric distances under loads before the initial FC process. Parameters such as vibration accelerations, displacement, natural frequency and dynamic stiffness were acquired and analyzed via the B&K vibration analyzer and laser displacement sensors. Results suggest that the natural frequency and dynamic stiffness of the maglev vehicle would be obviously reduced with the eccentric distance, posing negative effects on the stability of HTS maglev.

  5. How a small noise generates large-amplitude oscillations of volcanic plug and provides high seismicity

    NASA Astrophysics Data System (ADS)

    Alexandrov, Dmitri V.; Bashkirtseva, Irina A.; Ryashko, Lev B.

    2015-04-01

    A non-linear behavior of dynamic model of the magma-plug system under the action of N-shaped friction force and stochastic disturbances is studied. It is shown that the deterministic dynamics essentially depends on the mutual arrangement of an equilibrium point and the friction force branches. Variations of this arrangement imply bifurcations, birth and disappearance of stable limit cycles, changes of the stability of equilibria, system transformations between mono- and bistable regimes. A slope of the right increasing branch of the friction function is responsible for the formation of such regimes. In a bistable zone, the noise generates transitions between small and large amplitude stochastic oscillations. In a monostable zone with single stable equilibrium, a new dynamic phenomenon of noise-induced generation of large amplitude stochastic oscillations in the plug rate and pressure is revealed. A beat-type dynamics of the plug displacement under the influence of stochastic forcing is studied as well.

  6. A nonlinear dynamics of trunk kinematics during manual lifting tasks.

    PubMed

    Khalaf, Tamer; Karwowski, Waldemar; Sapkota, Nabin

    2015-01-01

    Human responses at work may exhibit nonlinear properties where small changes in the initial task conditions can lead to large changes in system behavior. Therefore, it is important to study such nonlinearity to gain a better understanding of human performance under a variety of physical, perceptual, and cognitive tasks conditions. The main objective of this study was to investigate whether the human trunk kinematics data during a manual lifting task exhibits nonlinear behavior in terms of determinist chaos. Data related to kinematics of the trunk with respect to the pelvis were collected using Industrial Lumbar Motion Monitor (ILMM), and analyzed applying the nonlinear dynamical systems methodology. Nonlinear dynamics quantifiers of Lyapunov exponents and Kaplan-Yorke dimensions were calculated and analyzed under different task conditions. The study showed that human trunk kinematics during manual lifting exhibits chaotic behavior in terms of trunk sagittal angular displacement, velocity and acceleration. The findings support the importance of accounting for nonlinear dynamical properties of biomechanical responses to lifting tasks.

  7. Relative Sustainability and Making Technological Choices

    EPA Science Inventory

    ABSTRACT System sustainability is a dynamic concept. Sustainability analysis is thus about making decisions on the overall, relative desirability of a system under study. The appropriate approach is to consider environmental, societal, and economic impacts of the system and de...

  8. Manipulation of Sustainability Metrics: Whys, Whats, and Hows

    EPA Science Inventory

    ABSTRACT System sustainability is a dynamic concept. Sustainability analysis is thus about making decisions on the overall, relative desirability of a system under study. The appropriate approach is to consider environmental, societal, and economic impacts of the system and ...

  9. A novel photovoltaic power system which uses a large area concentrator mirror

    NASA Technical Reports Server (NTRS)

    Arrison, Anne; Fatemi, Navid

    1987-01-01

    A preliminary analysis has been made of a novel photovoltaic power system concept. The system is composed of a small area, dense photovoltaic array, a large area solar concentrator, and a battery system for energy storage. The feasibility of such a system is assessed for space power applications. The orbital efficiency, specific power, mass, and area of the system are calculated under various conditions and compared with those for the organic Rankine cycle solar dynamic system proposed for Space Station. Near term and advanced large area concentrator photovoltaic systems not only compare favorably to solar dynamic systems in terms of performance but offer other benefits as well.

  10. Directed dynamical influence is more detectable with noise

    PubMed Central

    Jiang, Jun-Jie; Huang, Zi-Gang; Huang, Liang; Liu, Huan; Lai, Ying-Cheng

    2016-01-01

    Successful identification of directed dynamical influence in complex systems is relevant to significant problems of current interest. Traditional methods based on Granger causality and transfer entropy have issues such as difficulty with nonlinearity and large data requirement. Recently a framework based on nonlinear dynamical analysis was proposed to overcome these difficulties. We find, surprisingly, that noise can counterintuitively enhance the detectability of directed dynamical influence. In fact, intentionally injecting a proper amount of asymmetric noise into the available time series has the unexpected benefit of dramatically increasing confidence in ascertaining the directed dynamical influence in the underlying system. This result is established based on both real data and model time series from nonlinear ecosystems. We develop a physical understanding of the beneficial role of noise in enhancing detection of directed dynamical influence. PMID:27066763

  11. Directed dynamical influence is more detectable with noise.

    PubMed

    Jiang, Jun-Jie; Huang, Zi-Gang; Huang, Liang; Liu, Huan; Lai, Ying-Cheng

    2016-04-12

    Successful identification of directed dynamical influence in complex systems is relevant to significant problems of current interest. Traditional methods based on Granger causality and transfer entropy have issues such as difficulty with nonlinearity and large data requirement. Recently a framework based on nonlinear dynamical analysis was proposed to overcome these difficulties. We find, surprisingly, that noise can counterintuitively enhance the detectability of directed dynamical influence. In fact, intentionally injecting a proper amount of asymmetric noise into the available time series has the unexpected benefit of dramatically increasing confidence in ascertaining the directed dynamical influence in the underlying system. This result is established based on both real data and model time series from nonlinear ecosystems. We develop a physical understanding of the beneficial role of noise in enhancing detection of directed dynamical influence.

  12. Heterogeneity-induced large deviations in activity and (in some cases) entropy production

    NASA Astrophysics Data System (ADS)

    Gingrich, Todd R.; Vaikuntanathan, Suriyanarayanan; Geissler, Phillip L.

    2014-10-01

    We solve a simple model that supports a dynamic phase transition and show conditions for the existence of the transition. Using methods of large deviation theory we analytically compute the probability distribution for activity and entropy production rates of the trajectories on a large ring with a single heterogeneous link. The corresponding joint rate function demonstrates two dynamical phases—one localized and the other delocalized, but the marginal rate functions do not always exhibit the underlying transition. Symmetries in dynamic order parameters influence the observation of a transition, such that distributions for certain dynamic order parameters need not reveal an underlying dynamical bistability. Solution of our model system furthermore yields the form of the effective Markov transition matrices that generate dynamics in which the two dynamical phases are at coexistence. We discuss the implications of the transition for the response of bacterial cells to antibiotic treatment, arguing that even simple models of a cell cycle lacking an explicit bistability in configuration space will exhibit a bistability of dynamical phases.

  13. Non-linear dynamical classification of short time series of the rössler system in high noise regimes.

    PubMed

    Lainscsek, Claudia; Weyhenmeyer, Jonathan; Hernandez, Manuel E; Poizner, Howard; Sejnowski, Terrence J

    2013-01-01

    Time series analysis with delay differential equations (DDEs) reveals non-linear properties of the underlying dynamical system and can serve as a non-linear time-domain classification tool. Here global DDE models were used to analyze short segments of simulated time series from a known dynamical system, the Rössler system, in high noise regimes. In a companion paper, we apply the DDE model developed here to classify short segments of encephalographic (EEG) data recorded from patients with Parkinson's disease and healthy subjects. Nine simulated subjects in each of two distinct classes were generated by varying the bifurcation parameter b and keeping the other two parameters (a and c) of the Rössler system fixed. All choices of b were in the chaotic parameter range. We diluted the simulated data using white noise ranging from 10 to -30 dB signal-to-noise ratios (SNR). Structure selection was supervised by selecting the number of terms, delays, and order of non-linearity of the model DDE model that best linearly separated the two classes of data. The distances d from the linear dividing hyperplane was then used to assess the classification performance by computing the area A' under the ROC curve. The selected model was tested on untrained data using repeated random sub-sampling validation. DDEs were able to accurately distinguish the two dynamical conditions, and moreover, to quantify the changes in the dynamics. There was a significant correlation between the dynamical bifurcation parameter b of the simulated data and the classification parameter d from our analysis. This correlation still held for new simulated subjects with new dynamical parameters selected from each of the two dynamical regimes. Furthermore, the correlation was robust to added noise, being significant even when the noise was greater than the signal. We conclude that DDE models may be used as a generalizable and reliable classification tool for even small segments of noisy data.

  14. Non-Linear Dynamical Classification of Short Time Series of the Rössler System in High Noise Regimes

    PubMed Central

    Lainscsek, Claudia; Weyhenmeyer, Jonathan; Hernandez, Manuel E.; Poizner, Howard; Sejnowski, Terrence J.

    2013-01-01

    Time series analysis with delay differential equations (DDEs) reveals non-linear properties of the underlying dynamical system and can serve as a non-linear time-domain classification tool. Here global DDE models were used to analyze short segments of simulated time series from a known dynamical system, the Rössler system, in high noise regimes. In a companion paper, we apply the DDE model developed here to classify short segments of encephalographic (EEG) data recorded from patients with Parkinson’s disease and healthy subjects. Nine simulated subjects in each of two distinct classes were generated by varying the bifurcation parameter b and keeping the other two parameters (a and c) of the Rössler system fixed. All choices of b were in the chaotic parameter range. We diluted the simulated data using white noise ranging from 10 to −30 dB signal-to-noise ratios (SNR). Structure selection was supervised by selecting the number of terms, delays, and order of non-linearity of the model DDE model that best linearly separated the two classes of data. The distances d from the linear dividing hyperplane was then used to assess the classification performance by computing the area A′ under the ROC curve. The selected model was tested on untrained data using repeated random sub-sampling validation. DDEs were able to accurately distinguish the two dynamical conditions, and moreover, to quantify the changes in the dynamics. There was a significant correlation between the dynamical bifurcation parameter b of the simulated data and the classification parameter d from our analysis. This correlation still held for new simulated subjects with new dynamical parameters selected from each of the two dynamical regimes. Furthermore, the correlation was robust to added noise, being significant even when the noise was greater than the signal. We conclude that DDE models may be used as a generalizable and reliable classification tool for even small segments of noisy data. PMID:24379798

  15. Dynamic Impact of Online Word-of-Mouth and Advertising on Supply Chain Performance.

    PubMed

    Feng, Jian; Liu, Bin

    2018-01-04

    Cooperative (co-op) advertising investments benefit brand goodwill and further improve supply chain performance. Meanwhile, online word-of-mouth (OWOM) can also play an important role in supply chain performance. On the basis of co-op advertising, this paper considers a single supply chain structure led by a manufacturer and examines a fundamental issue concerning the impact of OWOM on supply chain performance. Firstly, by the method of differential game, this paper analyzes the dynamic impact of OWOM and advertising on supply chain performance (i.e., brand goodwill, sales, and profits) under three different supply chain decisions (i.e., only advertising, and manufacturers with and without sharing cost of OWOM with retailers). We compare and analyze the optimal strategies of advertising and OWOM under the above different supply chain decisions. Secondly, the system dynamics model is established to reflect the dynamic impact of OWOM and advertising on supply chain performance. Finally, three supply chain decisions under two scenarios, strong brand and weak brand, are analyzed through the system dynamics simulation. The results show that the input of OWOM can enhance brand goodwill and improve earnings. It further promotes the OWOM reputation and improves the supply chain performance if manufacturers share the cost of OWOM with retailers. Then, in order to eliminate the retailers from word-of-mouth fraud and establish a fair competition mechanism, the third parties (i.e., regulators or e-commerce platforms) should take appropriate punitive measures against retailers. Furthermore, the effect of OWOM on supply chain performance under a strong brand differed from those under a weak brand. Last but not least, if OWOM is improved, there would be more remarkable performance for the weak brand than that for the strong brand in the supply chain.

  16. Dynamic Impact of Online Word-of-Mouth and Advertising on Supply Chain Performance

    PubMed Central

    Feng, Jian

    2018-01-01

    Cooperative (co-op) advertising investments benefit brand goodwill and further improve supply chain performance. Meanwhile, online word-of-mouth (OWOM) can also play an important role in supply chain performance. On the basis of co-op advertising, this paper considers a single supply chain structure led by a manufacturer and examines a fundamental issue concerning the impact of OWOM on supply chain performance. Firstly, by the method of differential game, this paper analyzes the dynamic impact of OWOM and advertising on supply chain performance (i.e., brand goodwill, sales, and profits) under three different supply chain decisions (i.e., only advertising, and manufacturers with and without sharing cost of OWOM with retailers). We compare and analyze the optimal strategies of advertising and OWOM under the above different supply chain decisions. Secondly, the system dynamics model is established to reflect the dynamic impact of OWOM and advertising on supply chain performance. Finally, three supply chain decisions under two scenarios, strong brand and weak brand, are analyzed through the system dynamics simulation. The results show that the input of OWOM can enhance brand goodwill and improve earnings. It further promotes the OWOM reputation and improves the supply chain performance if manufacturers share the cost of OWOM with retailers. Then, in order to eliminate the retailers from word-of-mouth fraud and establish a fair competition mechanism, the third parties (i.e., regulators or e-commerce platforms) should take appropriate punitive measures against retailers. Furthermore, the effect of OWOM on supply chain performance under a strong brand differed from those under a weak brand. Last but not least, if OWOM is improved, there would be more remarkable performance for the weak brand than that for the strong brand in the supply chain. PMID:29300361

  17. Impact of visual and somatosensory deprivation on dynamic balance in adolescent idiopathic scoliosis.

    PubMed

    Kuo, Fang-Chuan; Wang, Nai-Hwei; Hong, Chang-Zern

    2010-11-01

    A cross-sectional study of balance control in adolescents with idiopathic scoliosis (AIS). To investigate the impact of visual and somatosensory deprivation on the dynamic balance in AIS patients and to discuss electromyographic (EMG) and posture sway findings. Most studies focus on posture sway in quiet standing controls with little effort on examining muscle-activated patterns in dynamic standing controls. Twenty-two AIS patients and 22 age-matched normal subjects were studied. To understand how visual and somatosensory information could modulate standing balance, balance tests with the Biodex stability system were performed on a moving platform under 3 conditions: visual feedback provided (VF), eyes closed (EC), and standing on a sponge pad with visual feedback provided (SV). Muscular activities of bilateral lumbar multifidi, gluteus medii, and gastrocnemii muscles were recorded with a telemetry EMG system. AIS patients had normal balance index and amplitude and duration of EMG similar to those of normal subjects in the balance test. However, the onset latency of right gastrocnemius was earlier in AIS patients than in normal subjects. In addition, body-side asymmetry was noted on muscle strength and onset latency in AIS subjects. Under EC condition, lumbar multifidi, and gluteus medii activities were higher than those under SV and VF conditions (P < 0.05). Under SV condition, the medial-lateral tilting angle was less than that under VF and EC conditions. In addition, the active duration of right gluteus medius was shorter under SV condition (P < 0.05). The dynamic balance control is particularly disruptive under visual deprivation with increasing lumbar multifidi and gluteus medii activities for compensation. Sponge pad can cause decrease in frontal plane tilting and gluteus medii effort. The asymmetric muscle strength and onset timing are attributed to anatomic deformation as opposed to neurologic etiological factors.

  18. Crack stability in a representative piping system under combined inertial and seismic/dynamic displacement-controlled stresses. Subtask 1.3 final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, P.; Olson, R.; Wilkowski, O.G.

    1997-06-01

    This report presents the results from Subtask 1.3 of the International Piping Integrity Research Group (IPIRG) program. The objective of Subtask 1.3 is to develop data to assess analysis methodologies for characterizing the fracture behavior of circumferentially cracked pipe in a representative piping system under combined inertial and displacement-controlled stresses. A unique experimental facility was designed and constructed. The piping system evaluated is an expansion loop with over 30 meters of 16-inch diameter Schedule 100 pipe. The experimental facility is equipped with special hardware to ensure system boundary conditions could be appropriately modeled. The test matrix involved one uncracked andmore » five cracked dynamic pipe-system experiments. The uncracked experiment was conducted to evaluate piping system damping and natural frequency characteristics. The cracked-pipe experiments evaluated the fracture behavior, pipe system response, and stability characteristics of five different materials. All cracked-pipe experiments were conducted at PWR conditions. Material characterization efforts provided tensile and fracture toughness properties of the different pipe materials at various strain rates and temperatures. Results from all pipe-system experiments and material characterization efforts are presented. Results of fracture mechanics analyses, dynamic finite element stress analyses, and stability analyses are presented and compared with experimental results.« less

  19. Design an optimum safety policy for personnel safety management - A system dynamic approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balaji, P.

    2014-10-06

    Personnel safety management (PSM) ensures that employee's work conditions are healthy and safe by various proactive and reactive approaches. Nowadays it is a complex phenomenon because of increasing dynamic nature of organisations which results in an increase of accidents. An important part of accident prevention is to understand the existing system properly and make safety strategies for that system. System dynamics modelling appears to be an appropriate methodology to explore and make strategy for PSM. Many system dynamics models of industrial systems have been built entirely for specific host firms. This thesis illustrates an alternative approach. The generic system dynamicsmore » model of Personnel safety management was developed and tested in a host firm. The model was undergone various structural, behavioural and policy tests. The utility and effectiveness of model was further explored through modelling a safety scenario. In order to create effective safety policy under resource constraint, DOE (Design of experiment) was used. DOE uses classic designs, namely, fractional factorials and central composite designs. It used to make second order regression equation which serve as an objective function. That function was optimized under budget constraint and optimum value used for safety policy which shown greatest improvement in overall PSM. The outcome of this research indicates that personnel safety management model has the capability for acting as instruction tool to improve understanding of safety management and also as an aid to policy making.« less

  20. A program for the investigation of the Multibody Modeling, Verification, and Control Laboratory

    NASA Technical Reports Server (NTRS)

    Tobbe, Patrick A.; Christian, Paul M.; Rakoczy, John M.; Bulter, Marlon L.

    1993-01-01

    The Multibody Modeling, Verification, and Control (MMVC) Laboratory is under development at NASA MSFC in Huntsville, Alabama. The laboratory will provide a facility in which dynamic tests and analyses of multibody flexible structures representative of future space systems can be conducted. The purpose of the tests are to acquire dynamic measurements of the flexible structures undergoing large angle motions and use the data to validate the multibody modeling code, TREETOPS, developed under sponsorship of NASA. Advanced control systems design and system identification methodologies will also be implemented in the MMVC laboratory. This paper describes the ground test facility, the real-time control system, and the experiments. A top-level description of the TREETOPS code is also included along with the validation plan for the MMVC program. Dynamic test results from component testing are also presented and discussed. A detailed discussion of the test articles, which manifest the properties of large flexible space structures, is included along with a discussion of the various candidate control methodologies to be applied in the laboratory.

  1. Analysis of stochastic model for non-linear volcanic dynamics

    NASA Astrophysics Data System (ADS)

    Alexandrov, D.; Bashkirtseva, I.; Ryashko, L.

    2014-12-01

    Motivated by important geophysical applications we consider a dynamic model of the magma-plug system previously derived by Iverson et al. (2006) under the influence of stochastic forcing. Due to strong nonlinearity of the friction force for solid plug along its margins, the initial deterministic system exhibits impulsive oscillations. Two types of dynamic behavior of the system under the influence of the parametric stochastic forcing have been found: random trajectories are scattered on both sides of the deterministic cycle or grouped on its internal side only. It is shown that dispersions are highly inhomogeneous along cycles in the presence of noises. The effects of noise-induced shifts, pressure stabilization and localization of random trajectories have been revealed with increasing the noise intensity. The plug velocity, pressure and displacement are highly dependent of noise intensity as well. These new stochastic phenomena are related with the nonlinear peculiarities of the deterministic phase portrait. It is demonstrated that the repetitive stick-slip motions of the magma-plug system in the case of stochastic forcing can be connected with drumbeat earthquakes.

  2. Chaos without nonlinear dynamics.

    PubMed

    Corron, Ned J; Hayes, Scott T; Pethel, Shawn D; Blakely, Jonathan N

    2006-07-14

    A linear, second-order filter driven by randomly polarized pulses is shown to generate a waveform that is chaotic under time reversal. That is, the filter output exhibits determinism and a positive Lyapunov exponent when viewed backward in time. The filter is demonstrated experimentally using a passive electronic circuit, and the resulting waveform exhibits a Lorenz-like butterfly structure. This phenomenon suggests that chaos may be connected to physical theories whose underlying framework is not that of a traditional deterministic nonlinear dynamical system.

  3. Polymer dynamics under cylindrical confinement featuring a locally repulsive surface: A quasielastic neutron scattering study.

    PubMed

    Krutyeva, M; Pasini, S; Monkenbusch, M; Allgaier, J; Maiz, J; Mijangos, C; Hartmann-Azanza, B; Steinhart, M; Jalarvo, N; Richter, D

    2017-05-28

    We investigated the effect of intermediate cylindrical confinement with locally repulsive walls on the segmental and entanglement dynamics of a polymer melt by quasielastic neutron scattering. As a reference, the corresponding polymer melt was measured under identical conditions. The locally repulsive confinement was realized by hydrophilic anodic alumina nanopores with a diameter of 20 nm. The end-to-end distance of the hydrophobic infiltrated polyethylene-alt-propylene was close to this diameter. In the case of hard wall repulsion with negligible local attraction, several simulations predicted an acceleration of segmental dynamics close to the wall. Other than in attractive or neutral systems, where the segmental dynamics is slowed down, we found that the segmental dynamics in the nanopores is identical to the local mobility in the bulk. Even under very careful scrutiny, we could not find any acceleration of the surface-near segmental motion. On the larger time scale, the neutron spin-echo experiment showed that the Rouse relaxation was not altered by confinement effects. Also the entanglement dynamics was not affected. Thus at moderate confinement conditions, facilitated by locally repulsive walls, the dynamics remains as in the bulk melt, a result that is not so clear from simulations.

  4. Polymer dynamics under cylindrical confinement featuring a locally repulsive surface: A quasielastic neutron scattering study

    NASA Astrophysics Data System (ADS)

    Krutyeva, M.; Pasini, S.; Monkenbusch, M.; Allgaier, J.; Maiz, J.; Mijangos, C.; Hartmann-Azanza, B.; Steinhart, M.; Jalarvo, N.; Richter, D.

    2017-05-01

    We investigated the effect of intermediate cylindrical confinement with locally repulsive walls on the segmental and entanglement dynamics of a polymer melt by quasielastic neutron scattering. As a reference, the corresponding polymer melt was measured under identical conditions. The locally repulsive confinement was realized by hydrophilic anodic alumina nanopores with a diameter of 20 nm. The end-to-end distance of the hydrophobic infiltrated polyethylene-alt-propylene was close to this diameter. In the case of hard wall repulsion with negligible local attraction, several simulations predicted an acceleration of segmental dynamics close to the wall. Other than in attractive or neutral systems, where the segmental dynamics is slowed down, we found that the segmental dynamics in the nanopores is identical to the local mobility in the bulk. Even under very careful scrutiny, we could not find any acceleration of the surface-near segmental motion. On the larger time scale, the neutron spin-echo experiment showed that the Rouse relaxation was not altered by confinement effects. Also the entanglement dynamics was not affected. Thus at moderate confinement conditions, facilitated by locally repulsive walls, the dynamics remains as in the bulk melt, a result that is not so clear from simulations.

  5. Transient Oscilliations in Mechanical Systems of Automatic Control with Random Parameters

    NASA Astrophysics Data System (ADS)

    Royev, B.; Vinokur, A.; Kulikov, G.

    2018-04-01

    Transient oscillations in mechanical systems of automatic control with random parameters is a relevant but insufficiently studied issue. In this paper, a modified spectral method was applied to investigate the problem. The nature of dynamic processes and the phase portraits are analyzed depending on the amplitude and frequency of external influence. It is evident from the obtained results, that the dynamic phenomena occurring in the systems with random parameters under external influence are complex, and their study requires further investigation.

  6. Intelligent control of non-linear dynamical system based on the adaptive neurocontroller

    NASA Astrophysics Data System (ADS)

    Engel, E.; Kovalev, I. V.; Kobezhicov, V.

    2015-10-01

    This paper presents an adaptive neuro-controller for intelligent control of non-linear dynamical system. The formed as the fuzzy selective neural net the adaptive neuro-controller on the base of system's state, creates the effective control signal under random perturbations. The validity and advantages of the proposed adaptive neuro-controller are demonstrated by numerical simulations. The simulation results show that the proposed controller scheme achieves real-time control speed and the competitive performance, as compared to PID, fuzzy logic controllers.

  7. Solar dynamic heat receiver thermal characteristics in low earth orbit

    NASA Technical Reports Server (NTRS)

    Wu, Y. C.; Roschke, E. J.; Birur, G. C.

    1988-01-01

    A simplified system model is under development for evaluating the thermal characteristics and thermal performance of a solar dynamic spacecraft energy system's heat receiver. Results based on baseline orbit, power system configuration, and operational conditions, are generated for three basic receiver concepts and three concentrator surface slope errors. Receiver thermal characteristics and thermal behavior in LEO conditions are presented. The configuration in which heat is directly transferred to the working fluid is noted to generate the best system and thermal characteristics. as well as the lowest performance degradation with increasing slope error.

  8. DynamO: a free O(N) general event-driven molecular dynamics simulator.

    PubMed

    Bannerman, M N; Sargant, R; Lue, L

    2011-11-30

    Molecular dynamics algorithms for systems of particles interacting through discrete or "hard" potentials are fundamentally different to the methods for continuous or "soft" potential systems. Although many software packages have been developed for continuous potential systems, software for discrete potential systems based on event-driven algorithms are relatively scarce and specialized. We present DynamO, a general event-driven simulation package, which displays the optimal O(N) asymptotic scaling of the computational cost with the number of particles N, rather than the O(N) scaling found in most standard algorithms. DynamO provides reference implementations of the best available event-driven algorithms. These techniques allow the rapid simulation of both complex and large (>10(6) particles) systems for long times. The performance of the program is benchmarked for elastic hard sphere systems, homogeneous cooling and sheared inelastic hard spheres, and equilibrium Lennard-Jones fluids. This software and its documentation are distributed under the GNU General Public license and can be freely downloaded from http://marcusbannerman.co.uk/dynamo. Copyright © 2011 Wiley Periodicals, Inc.

  9. Hierarchical relaxation dynamics in a tilted two-band Bose-Hubbard model

    NASA Astrophysics Data System (ADS)

    Cosme, Jayson G.

    2018-04-01

    We numerically examine slow and hierarchical relaxation dynamics of interacting bosons described by a tilted two-band Bose-Hubbard model. The system is found to exhibit signatures of quantum chaos within the spectrum and the validity of the eigenstate thermalization hypothesis for relevant physical observables is demonstrated for certain parameter regimes. Using the truncated Wigner representation in the semiclassical limit of the system, dynamics of relevant observables reveal hierarchical relaxation and the appearance of prethermalized states is studied from the perspective of statistics of the underlying mean-field trajectories. The observed prethermalization scenario can be attributed to different stages of glassy dynamics in the mode-time configuration space due to dynamical phase transition between ergodic and nonergodic trajectories.

  10. A smartphone-based prototype system for incident/work zone management driven by crowd-sourced data.

    DOT National Transportation Integrated Search

    2015-02-01

    This project develops a smartphone-based prototype system that supplements the 511 system to improve its dynamic traffic : routing service to state highway users under non-recurrent congestion. This system will save considerable time to provide cruci...

  11. Practical limits for reverse engineering of dynamical systems: a statistical analysis of sensitivity and parameter inferability in systems biology models.

    PubMed

    Erguler, Kamil; Stumpf, Michael P H

    2011-05-01

    The size and complexity of cellular systems make building predictive models an extremely difficult task. In principle dynamical time-course data can be used to elucidate the structure of the underlying molecular mechanisms, but a central and recurring problem is that many and very different models can be fitted to experimental data, especially when the latter are limited and subject to noise. Even given a model, estimating its parameters remains challenging in real-world systems. Here we present a comprehensive analysis of 180 systems biology models, which allows us to classify the parameters with respect to their contribution to the overall dynamical behaviour of the different systems. Our results reveal candidate elements of control in biochemical pathways that differentially contribute to dynamics. We introduce sensitivity profiles that concisely characterize parameter sensitivity and demonstrate how this can be connected to variability in data. Systematically linking data and model sloppiness allows us to extract features of dynamical systems that determine how well parameters can be estimated from time-course measurements, and associates the extent of data required for parameter inference with the model structure, and also with the global dynamical state of the system. The comprehensive analysis of so many systems biology models reaffirms the inability to estimate precisely most model or kinetic parameters as a generic feature of dynamical systems, and provides safe guidelines for performing better inferences and model predictions in the context of reverse engineering of mathematical models for biological systems.

  12. International Space Station Model Correlation Analysis

    NASA Technical Reports Server (NTRS)

    Laible, Michael R.; Fitzpatrick, Kristin; Hodge, Jennifer; Grygier, Michael

    2018-01-01

    This paper summarizes the on-orbit structural dynamic data and the related modal analysis, model validation and correlation performed for the International Space Station (ISS) configuration ISS Stage ULF7, 2015 Dedicated Thruster Firing (DTF). The objective of this analysis is to validate and correlate the analytical models used to calculate the ISS internal dynamic loads and compare the 2015 DTF with previous tests. During the ISS configurations under consideration, on-orbit dynamic measurements were collected using the three main ISS instrumentation systems; Internal Wireless Instrumentation System (IWIS), External Wireless Instrumentation System (EWIS) and the Structural Dynamic Measurement System (SDMS). The measurements were recorded during several nominal on-orbit DTF tests on August 18, 2015. Experimental modal analyses were performed on the measured data to extract modal parameters including frequency, damping, and mode shape information. Correlation and comparisons between test and analytical frequencies and mode shapes were performed to assess the accuracy of the analytical models for the configurations under consideration. These mode shapes were also compared to earlier tests. Based on the frequency comparisons, the accuracy of the mathematical models is assessed and model refinement recommendations are given. In particular, results of the first fundamental mode will be discussed, nonlinear results will be shown, and accelerometer placement will be assessed.

  13. Variable-Speed Simulation of a Dual-Clutch Gearbox Tiltrotor Driveline

    NASA Technical Reports Server (NTRS)

    DeSmidt, Hans; Wang, Kon-Well; Smith, Edward C.; Lewicki, David G.

    2012-01-01

    This investigation explores the variable-speed operation and shift response of a prototypical two-speed dual-clutch transmission tiltrotor driveline in forward flight. Here, a Comprehensive Variable-Speed Rotorcraft Propulsion System Modeling (CVSRPM) tool developed under a NASA funded NRA program is utilized to simulate the drive system dynamics. In this study, a sequential shifting control strategy is analyzed under a steady forward cruise condition. This investigation attempts to build upon previous variable-speed rotorcraft propulsion studies by 1) including a fully nonlinear transient gas-turbine engine model, 2) including clutch stick-slip friction effects, 3) including shaft flexibility, 4) incorporating a basic flight dynamics model to account for interactions with the flight control system. Through exploring the interactions between the various subsystems, this analysis provides important insights into the continuing development of variable-speed rotorcraft propulsion systems.

  14. Dynamically controlled crystal growth system

    NASA Technical Reports Server (NTRS)

    Bray, Terry L. (Inventor); Kim, Larry J. (Inventor); Harrington, Michael (Inventor); DeLucas, Lawrence J. (Inventor)

    2002-01-01

    Crystal growth can be initiated and controlled by dynamically controlled vapor diffusion or temperature change. In one aspect, the present invention uses a precisely controlled vapor diffusion approach to monitor and control protein crystal growth. The system utilizes a humidity sensor and various interfaces under computer control to effect virtually any evaporation rate from a number of different growth solutions simultaneously by means of an evaporative gas flow. A static laser light scattering sensor can be used to detect aggregation events and trigger a change in the evaporation rate for a growth solution. A control/follower configuration can be used to actively monitor one chamber and accurately control replicate chambers relative to the control chamber. In a second aspect, the invention exploits the varying solubility of proteins versus temperature to control the growth of protein crystals. This system contains miniature thermoelectric devices under microcomputer control that change temperature as needed to grow crystals of a given protein. Complex temperature ramps are possible using this approach. A static laser light scattering probe also can be used in this system as a non-invasive probe for detection of aggregation events. The automated dynamic control system provides systematic and predictable responses with regard to crystal size. These systems can be used for microgravity crystallization projects, for example in a space shuttle, and for crystallization work under terrestial conditions. The present invention is particularly useful for macromolecular crystallization, e.g. for proteins, polypeptides, nucleic acids, viruses and virus particles.

  15. Canonical transformation path to gauge theories of gravity

    NASA Astrophysics Data System (ADS)

    Struckmeier, J.; Muench, J.; Vasak, D.; Kirsch, J.; Hanauske, M.; Stoecker, H.

    2017-06-01

    In this paper, the generic part of the gauge theory of gravity is derived, based merely on the action principle and on the general principle of relativity. We apply the canonical transformation framework to formulate geometrodynamics as a gauge theory. The starting point of our paper is constituted by the general De Donder-Weyl Hamiltonian of a system of scalar and vector fields, which is supposed to be form-invariant under (global) Lorentz transformations. Following the reasoning of gauge theories, the corresponding locally form-invariant system is worked out by means of canonical transformations. The canonical transformation approach ensures by construction that the form of the action functional is maintained. We thus encounter amended Hamiltonian systems which are form-invariant under arbitrary spacetime transformations. This amended system complies with the general principle of relativity and describes both, the dynamics of the given physical system's fields and their coupling to those quantities which describe the dynamics of the spacetime geometry. In this way, it is unambiguously determined how spin-0 and spin-1 fields couple to the dynamics of spacetime. A term that describes the dynamics of the "free" gauge fields must finally be added to the amended Hamiltonian, as common to all gauge theories, to allow for a dynamic spacetime geometry. The choice of this "dynamics" Hamiltonian is outside of the scope of gauge theory as presented in this paper. It accounts for the remaining indefiniteness of any gauge theory of gravity and must be chosen "by hand" on the basis of physical reasoning. The final Hamiltonian of the gauge theory of gravity is shown to be at least quadratic in the conjugate momenta of the gauge fields—this is beyond the Einstein-Hilbert theory of general relativity.

  16. Dynamic stability and bifurcation analysis in fractional thermodynamics

    NASA Astrophysics Data System (ADS)

    Béda, Péter B.

    2018-02-01

    In mechanics, viscoelasticity was the first field of applications in studying geomaterials. Further possibilities arise in spatial non-locality. Non-local materials were already studied in the 1960s by several authors as a part of continuum mechanics and are still in focus of interest because of the rising importance of materials with internal micro- and nano-structure. When material instability gained more interest, non-local behavior appeared in a different aspect. The problem was concerned to numerical analysis, because then instability zones exhibited singular properties for local constitutive equations. In dynamic stability analysis, mathematical aspects of non-locality were studied by using the theory of dynamic systems. There the basic set of equations describing the behavior of continua was transformed to an abstract dynamic system consisting of differential operators acting on the perturbation field variables. Such functions should satisfy homogeneous boundary conditions and act as indicators of stability of a selected state of the body under consideration. Dynamic systems approach results in conditions for cases, when the differential operators have critical eigenvalues of zero real parts (dynamic stability or instability conditions). When the critical eigenvalues have non-trivial eigenspace, the way of loss of stability is classified as a typical (or generic) bifurcation. Our experiences show that material non-locality and the generic nature of bifurcation at instability are connected, and the basic functions of the non-trivial eigenspace can be used to determine internal length quantities of non-local mechanics. Fractional calculus is already successfully used in thermo-elasticity. In the paper, non-locality is introduced via fractional strain into the constitutive relations of various conventional types. Then, by defining dynamic systems, stability and bifurcation are studied for states of thermo-mechanical solids. Stability conditions and genericity conditions are presented for constitutive relations under consideration.

  17. Developing Dynamic Field Theory Architectures for Embodied Cognitive Systems with cedar.

    PubMed

    Lomp, Oliver; Richter, Mathis; Zibner, Stephan K U; Schöner, Gregor

    2016-01-01

    Embodied artificial cognitive systems, such as autonomous robots or intelligent observers, connect cognitive processes to sensory and effector systems in real time. Prime candidates for such embodied intelligence are neurally inspired architectures. While components such as forward neural networks are well established, designing pervasively autonomous neural architectures remains a challenge. This includes the problem of tuning the parameters of such architectures so that they deliver specified functionality under variable environmental conditions and retain these functions as the architectures are expanded. The scaling and autonomy problems are solved, in part, by dynamic field theory (DFT), a theoretical framework for the neural grounding of sensorimotor and cognitive processes. In this paper, we address how to efficiently build DFT architectures that control embodied agents and how to tune their parameters so that the desired cognitive functions emerge while such agents are situated in real environments. In DFT architectures, dynamic neural fields or nodes are assigned dynamic regimes, that is, attractor states and their instabilities, from which cognitive function emerges. Tuning thus amounts to determining values of the dynamic parameters for which the components of a DFT architecture are in the specified dynamic regime under the appropriate environmental conditions. The process of tuning is facilitated by the software framework cedar , which provides a graphical interface to build and execute DFT architectures. It enables to change dynamic parameters online and visualize the activation states of any component while the agent is receiving sensory inputs in real time. Using a simple example, we take the reader through the workflow of conceiving of DFT architectures, implementing them on embodied agents, tuning their parameters, and assessing performance while the system is coupled to real sensory inputs.

  18. Developing Dynamic Field Theory Architectures for Embodied Cognitive Systems with cedar

    PubMed Central

    Lomp, Oliver; Richter, Mathis; Zibner, Stephan K. U.; Schöner, Gregor

    2016-01-01

    Embodied artificial cognitive systems, such as autonomous robots or intelligent observers, connect cognitive processes to sensory and effector systems in real time. Prime candidates for such embodied intelligence are neurally inspired architectures. While components such as forward neural networks are well established, designing pervasively autonomous neural architectures remains a challenge. This includes the problem of tuning the parameters of such architectures so that they deliver specified functionality under variable environmental conditions and retain these functions as the architectures are expanded. The scaling and autonomy problems are solved, in part, by dynamic field theory (DFT), a theoretical framework for the neural grounding of sensorimotor and cognitive processes. In this paper, we address how to efficiently build DFT architectures that control embodied agents and how to tune their parameters so that the desired cognitive functions emerge while such agents are situated in real environments. In DFT architectures, dynamic neural fields or nodes are assigned dynamic regimes, that is, attractor states and their instabilities, from which cognitive function emerges. Tuning thus amounts to determining values of the dynamic parameters for which the components of a DFT architecture are in the specified dynamic regime under the appropriate environmental conditions. The process of tuning is facilitated by the software framework cedar, which provides a graphical interface to build and execute DFT architectures. It enables to change dynamic parameters online and visualize the activation states of any component while the agent is receiving sensory inputs in real time. Using a simple example, we take the reader through the workflow of conceiving of DFT architectures, implementing them on embodied agents, tuning their parameters, and assessing performance while the system is coupled to real sensory inputs. PMID:27853431

  19. Breaking down barriers in cooperative fault management: Temporal and functional information displays

    NASA Technical Reports Server (NTRS)

    Potter, Scott S.; Woods, David D.

    1994-01-01

    At the highest level, the fundamental question addressed by this research is how to aid human operators engaged in dynamic fault management. In dynamic fault management there is some underlying dynamic process (an engineered or physiological process referred to as the monitored process - MP) whose state changes over time and whose behavior must be monitored and controlled. In these types of applications (dynamic, real-time systems), a vast array of sensor data is available to provide information on the state of the MP. Faults disturb the MP and diagnosis must be performed in parallel with responses to maintain process integrity and to correct the underlying problem. These situations frequently involve time pressure, multiple interacting goals, high consequences of failure, and multiple interleaved tasks.

  20. Hysteresis-induced bifurcation and chaos in a magneto-rheological suspension system under external excitation

    NASA Astrophysics Data System (ADS)

    Hailong, Zhang; Enrong, Wang; Fuhong, Min; Ning, Zhang

    2016-03-01

    The magneto-rheological damper (MRD) is a promising device used in vehicle semi-active suspension systems, for its continuous adjustable damping output. However, the innate nonlinear hysteresis characteristic of MRD may cause the nonlinear behaviors. In this work, a two-degree-of-freedom (2-DOF) MR suspension system was established first, by employing the modified Bouc-Wen force-velocity (F-v) hysteretic model. The nonlinear dynamic response of the system was investigated under the external excitation of single-frequency harmonic and bandwidth-limited stochastic road surface. The largest Lyapunov exponent (LLE) was used to detect the chaotic area of the frequency and amplitude of harmonic excitation, and the bifurcation diagrams, time histories, phase portraits, and power spectrum density (PSD) diagrams were used to reveal the dynamic evolution process in detail. Moreover, the LLE and Kolmogorov entropy (K entropy) were used to identify whether the system response was random or chaotic under stochastic road surface. The results demonstrated that the complex dynamical behaviors occur under different external excitation conditions. The oscillating mechanism of alternating periodic oscillations, quasi-periodic oscillations, and chaotic oscillations was observed in detail. The chaotic regions revealed that chaotic motions may appear in conditions of mid-low frequency and large amplitude, as well as small amplitude and all frequency. The obtained parameter regions where the chaotic motions may appear are useful for design of structural parameters of the vibration isolation, and the optimization of control strategy for MR suspension system. Projects supported by the National Natural Science Foundation of China (Grant Nos. 51475246, 51277098, and 51075215), the Research Innovation Program for College Graduates of Jiangsu Province China (Grant No. KYLX15 0725), and the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20131402).

  1. Simple adaptation for dynamic Bogota bag.

    PubMed

    Johnson, O Kenneth

    2016-01-01

    The use of a large Bogota bag tucked well under fascial edges to the colonic gutters and easily made elastic bands from Esmarch bandage provides a dynamic tension system that decreases subsequent trips to theatre and may allow gradual closure of the abdominal wound. © The Author(s) 2015.

  2. ISS method for coordination control of nonlinear dynamical agents under directed topology.

    PubMed

    Wang, Xiangke; Qin, Jiahu; Yu, Changbin

    2014-10-01

    The problems of coordination of multiagent systems with second-order locally Lipschitz continuous nonlinear dynamics under directed interaction topology are investigated in this paper. A completely nonlinear input-to-state stability (ISS)-based framework, drawing on ISS methods, with the aid of results from graph theory, matrix theory, and the ISS cyclic-small-gain theorem, is proposed for the coordination problem under directed topology, which can effectively tackle the technical challenges caused by locally Lipschitz continuous dynamics. Two coordination problems, i.e., flocking with a virtual leader and containment control, are considered. For both problems, it is assumed that only a portion of the agents can obtain the information from the leader(s). For the first problem, the proposed strategy is shown effective in driving a group of nonlinear dynamical agents reach the prespecified geometric pattern under the condition that at least one agent in each strongly connected component of the information-interconnection digraph with zero in-degree has access to the state information of the virtual leader; and the strategy proposed for the second problem can guarantee the nonlinear dynamical agents moving to the convex hull spanned by the positions of multiple leaders under the condition that for each agent there exists at least one leader that has a directed path to this agent.

  3. Unveiling the decoherence effect of noise on the entropic uncertainty relation and its control by partially collapsed operations

    NASA Astrophysics Data System (ADS)

    Chen, Min-Nan; Sun, Wen-Yang; Huang, Ai-Jun; Ming, Fei; Wang, Dong; Ye, Liu

    2018-01-01

    In this work, we investigate the dynamics of quantum-memory-assisted entropic uncertainty relations under open systems, and how to steer the uncertainty under different types of decoherence. Specifically, we develop the dynamical behaviors of the uncertainty of interest under two typical categories of noise; bit flipping and depolarizing channels. It has been shown that the measurement uncertainty firstly increases and then decreases with the growth of the decoherence strength in bit flipping channels. In contrast, the uncertainty monotonically increases with the increase of the decoherence strength in depolarizing channels. Notably, and to a large degree, it is shown that the uncertainty depends on both the systematic quantum correlation and the minimal conditional entropy of the observed subsystem. Moreover, we present a possible physical interpretation for these distinctive behaviors of the uncertainty within such scenarios. Furthermore, we propose a simple and effective strategy to reduce the entropic uncertainty by means of a partially collapsed operation—quantum weak measurement. Therefore, our investigations might offer an insight into the dynamics of the measurment uncertainty under decoherence, and be of importance to quantum precision measurement in open systems.

  4. Quiet Clean Short-haul Experimental Engine (QCSEE). Under-The-Wing (UTW) engine boilerplate nacelle test report. Volume 3: Mechanical performance

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Results of initial tests of the under the wing experimental engine and boilerplate nacelle are presented. The mechanical performance of the engine is reported with emphasis on the advanced technology components. Technology elements of the propulsion system covered include: system dynamics, composite fan blades, reduction gear, lube and accessory drive system, fan frame, inlet, core cowl cooling, fan exhaust nozzle, and digital control system.

  5. Component model reduction via the projection and assembly method

    NASA Technical Reports Server (NTRS)

    Bernard, Douglas E.

    1989-01-01

    The problem of acquiring a simple but sufficiently accurate model of a dynamic system is made more difficult when the dynamic system of interest is a multibody system comprised of several components. A low order system model may be created by reducing the order of the component models and making use of various available multibody dynamics programs to assemble them into a system model. The difficulty is in choosing the reduced order component models to meet system level requirements. The projection and assembly method, proposed originally by Eke, solves this difficulty by forming the full order system model, performing model reduction at the the system level using system level requirements, and then projecting the desired modes onto the components for component level model reduction. The projection and assembly method is analyzed to show the conditions under which the desired modes are captured exactly; to the numerical precision of the algorithm.

  6. Evaluation of existing smartphone applications and data needs for travel survey.

    DOT National Transportation Integrated Search

    2015-02-01

    This project develops a smartphone-based prototype system that supplements the 511 system to improve its dynamic traffic : routing service to state highway users under non-recurrent congestion. This system will save considerable time to provide cruci...

  7. Mechanical Analyses for coupled Vegetation-Flow System

    NASA Astrophysics Data System (ADS)

    Chen, L.; Acharya, K.; Stone, M.

    2010-12-01

    Vegetation in riparian areas plays important roles in hydrology, geomorphology and ecology in local environment. Mechanical response of the aquatic vegetation to hydraulic forces and its impact on flow hydraulics have received considerable attention due to implications for flood control, habitat restoration, and water resources management. This study aims to advance understanding of the mechanical properties of in-stream vegetation including drag force, moment and stress. Dynamic changes of these properties under various flow conditions largely determine vegetation affected flow field and dynamic resistance with progressive bending, and hydraulic conditions for vegetation failure (rupture or wash-out) thus are critical for understanding the coupled vegetation-flow system. A new approach combining fluid and material mechanics is developed in this study to examine the behavior of both rigid and flexible vegetation. The major advantage of this approach is its capability to treat large deflection (bending) of plants and associated changes of mechanical properties in both vegetation and flow. Starting from simple emergent vegetation, both static and dynamic formulations of the problem are presented and the solutions are compared. Results show the dynamic behavior of a simplified system mimicking complex and real systems, implying the approach is able to disclose the physical essence of the coupled system. The approach is extended to complex vegetation under both submerged and emergent conditions using more realistic representation of biomechanical properties for vegetation.

  8. Living on the edge of chaos: minimally nonlinear models of genetic regulatory dynamics.

    PubMed

    Hanel, Rudolf; Pöchacker, Manfred; Thurner, Stefan

    2010-12-28

    Linearized catalytic reaction equations (modelling, for example, the dynamics of genetic regulatory networks), under the constraint that expression levels, i.e. molecular concentrations of nucleic material, are positive, exhibit non-trivial dynamical properties, which depend on the average connectivity of the reaction network. In these systems, an inflation of the edge of chaos and multi-stability have been demonstrated to exist. The positivity constraint introduces a nonlinearity, which makes chaotic dynamics possible. Despite the simplicity of such minimally nonlinear systems, their basic properties allow us to understand the fundamental dynamical properties of complex biological reaction networks. We analyse the Lyapunov spectrum, determine the probability of finding stationary oscillating solutions, demonstrate the effect of the nonlinearity on the effective in- and out-degree of the active interaction network, and study how the frequency distributions of oscillatory modes of such a system depend on the average connectivity.

  9. Understanding force-generating microtubule systems through in vitro reconstitution

    PubMed Central

    Kok, Maurits; Dogterom, Marileen

    2016-01-01

    ABSTRACT Microtubules switch between growing and shrinking states, a feature known as dynamic instability. The biochemical parameters underlying dynamic instability are modulated by a wide variety of microtubule-associated proteins that enable the strict control of microtubule dynamics in cells. The forces generated by controlled growth and shrinkage of microtubules drive a large range of processes, including organelle positioning, mitotic spindle assembly, and chromosome segregation. In the past decade, our understanding of microtubule dynamics and microtubule force generation has progressed significantly. Here, we review the microtubule-intrinsic process of dynamic instability, the effect of external factors on this process, and how the resulting forces act on various biological systems. Recently, reconstitution-based approaches have strongly benefited from extensive biochemical and biophysical characterization of individual components that are involved in regulating or transmitting microtubule-driven forces. We will focus on the current state of reconstituting increasingly complex biological systems and provide new directions for future developments. PMID:27715396

  10. Automated adaptive inference of phenomenological dynamical models.

    PubMed

    Daniels, Bryan C; Nemenman, Ilya

    2015-08-21

    Dynamics of complex systems is often driven by large and intricate networks of microscopic interactions, whose sheer size obfuscates understanding. With limited experimental data, many parameters of such dynamics are unknown, and thus detailed, mechanistic models risk overfitting and making faulty predictions. At the other extreme, simple ad hoc models often miss defining features of the underlying systems. Here we develop an approach that instead constructs phenomenological, coarse-grained models of network dynamics that automatically adapt their complexity to the available data. Such adaptive models produce accurate predictions even when microscopic details are unknown. The approach is computationally tractable, even for a relatively large number of dynamical variables. Using simulated data, it correctly infers the phase space structure for planetary motion, avoids overfitting in a biological signalling system and produces accurate predictions for yeast glycolysis with tens of data points and over half of the interacting species unobserved.

  11. Enzyme-free nucleic acid dynamical systems.

    PubMed

    Srinivas, Niranjan; Parkin, James; Seelig, Georg; Winfree, Erik; Soloveichik, David

    2017-12-15

    Chemistries exhibiting complex dynamics-from inorganic oscillators to gene regulatory networks-have been long known but either cannot be reprogrammed at will or rely on the sophisticated enzyme chemistry underlying the central dogma. Can simpler molecular mechanisms, designed from scratch, exhibit the same range of behaviors? Abstract chemical reaction networks have been proposed as a programming language for complex dynamics, along with their systematic implementation using short synthetic DNA molecules. We developed this technology for dynamical systems by identifying critical design principles and codifying them into a compiler automating the design process. Using this approach, we built an oscillator containing only DNA components, establishing that Watson-Crick base-pairing interactions alone suffice for complex chemical dynamics and that autonomous molecular systems can be designed via molecular programming languages. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  12. Aquaporin-4 Functionality and Virchow-Robin Space Water Dynamics: Physiological Model for Neurovascular Coupling and Glymphatic Flow

    PubMed Central

    Kwee, Ingrid L.

    2017-01-01

    The unique properties of brain capillary endothelium, critical in maintaining the blood-brain barrier (BBB) and restricting water permeability across the BBB, have important consequences on fluid hydrodynamics inside the BBB hereto inadequately recognized. Recent studies indicate that the mechanisms underlying brain water dynamics are distinct from systemic tissue water dynamics. Hydrostatic pressure created by the systolic force of the heart, essential for interstitial circulation and lymphatic flow in systemic circulation, is effectively impeded from propagating into the interstitial fluid inside the BBB by the tightly sealed endothelium of brain capillaries. Instead, fluid dynamics inside the BBB is realized by aquaporin-4 (AQP-4), the water channel that connects astrocyte cytoplasm and extracellular (interstitial) fluid. Brain interstitial fluid dynamics, and therefore AQP-4, are now recognized as essential for two unique functions, namely, neurovascular coupling and glymphatic flow, the brain equivalent of systemic lymphatics. PMID:28820467

  13. Automated adaptive inference of phenomenological dynamical models

    PubMed Central

    Daniels, Bryan C.; Nemenman, Ilya

    2015-01-01

    Dynamics of complex systems is often driven by large and intricate networks of microscopic interactions, whose sheer size obfuscates understanding. With limited experimental data, many parameters of such dynamics are unknown, and thus detailed, mechanistic models risk overfitting and making faulty predictions. At the other extreme, simple ad hoc models often miss defining features of the underlying systems. Here we develop an approach that instead constructs phenomenological, coarse-grained models of network dynamics that automatically adapt their complexity to the available data. Such adaptive models produce accurate predictions even when microscopic details are unknown. The approach is computationally tractable, even for a relatively large number of dynamical variables. Using simulated data, it correctly infers the phase space structure for planetary motion, avoids overfitting in a biological signalling system and produces accurate predictions for yeast glycolysis with tens of data points and over half of the interacting species unobserved. PMID:26293508

  14. Aquaporin-4 Functionality and Virchow-Robin Space Water Dynamics: Physiological Model for Neurovascular Coupling and Glymphatic Flow.

    PubMed

    Nakada, Tsutomu; Kwee, Ingrid L; Igarashi, Hironaka; Suzuki, Yuji

    2017-08-18

    The unique properties of brain capillary endothelium, critical in maintaining the blood-brain barrier (BBB) and restricting water permeability across the BBB, have important consequences on fluid hydrodynamics inside the BBB hereto inadequately recognized. Recent studies indicate that the mechanisms underlying brain water dynamics are distinct from systemic tissue water dynamics. Hydrostatic pressure created by the systolic force of the heart, essential for interstitial circulation and lymphatic flow in systemic circulation, is effectively impeded from propagating into the interstitial fluid inside the BBB by the tightly sealed endothelium of brain capillaries. Instead, fluid dynamics inside the BBB is realized by aquaporin-4 (AQP-4), the water channel that connects astrocyte cytoplasm and extracellular (interstitial) fluid. Brain interstitial fluid dynamics, and therefore AQP-4, are now recognized as essential for two unique functions, namely, neurovascular coupling and glymphatic flow, the brain equivalent of systemic lymphatics.

  15. Potential impacts of climate change on carbon dynamics in a rain-fed agro-ecosystem on the Loess Plateau of China.

    PubMed

    Qiu, Linjing; Hao, Mingde; Wu, Yiping

    2017-01-15

    Although many studies have been conducted on crop yield in rain-fed agriculture, the possible impacts of climate change on the carbon (C) dynamics of rain-fed rotation systems, particularly their direction and magnitude at the long-term scale, are still poorly understood. In this study, the sensitivity of C dynamics of a typical rotation system to elevated CO 2 and changed temperature and precipitation were first tested using the CENTURY model, based on data collected from a 30-year field experiment of a corn-wheat-wheat-millet (CWWM) rotation system in the tableland of the Loess Plateau. The possible responses of crop biomass C and soil organic C (SOC) accumulation were then evaluated under scenarios representing the Representative Concentration Pathways (RCPs) 4.5 and 8.5. The results indicated that elevated CO 2 and increased precipitation exerted positive effect on biomass C in CWWM rotation system, while increasing the temperature by 1°C, 2°C and 4°C had negative effects on biomass C due to opposite responses of corn and winter wheat to warming. SOC accumulation was enhanced by increased CO 2 concentration and precipitation but impaired by increased temperature. Under future RCP scenarios with dynamic CO 2 , the biomass C of corn exhibited decrease during the period of 2046-2075 under RCP4.5 and the period of 2016-2075 under RCP8.5 due to reduced precipitation and a warmer climate. In contrast, winter wheat would benefit from increased CO 2 and temperature and was projected to have larger biomass C under both RCP scenarios. Although the climate condition had large differences between RCP4.5 and RCP8.5, the projected SOC had similar trends under two scenarios due to CO 2 fertilizer effect and precipitation fluctuation. These results implied that crop biomass C and SOC accumulation in a warmer environment are strongly related to precipitation, and increase in field water storage should be emphasized in coping with future climate. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Chaos in plasma simulation and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watts, C.; Newman, D.E.; Sprott, J.C.

    1993-09-01

    We investigate the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas using data from both numerical simulations and experiment. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos. These tools include phase portraits and Poincard sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulate the plasma dynamics. These are -the DEBS code, which models global RFPmore » dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low,dimensional chaos and simple determinism. Experimental data were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or other simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system.« less

  17. Topics in Complexity: Dynamical Patterns in the Cyberworld

    NASA Astrophysics Data System (ADS)

    Qi, Hong

    Quantitative understanding of mechanism in complex systems is a common "difficult" problem across many fields such as physical, biological, social and economic sciences. Investigation on underlying dynamics of complex systems and building individual-based models have recently been fueled by big data resulted from advancing information technology. This thesis investigates complex systems in social science, focusing on civil unrests on streets and relevant activities online. Investigation consists of collecting data of unrests from open digital source, featuring dynamical patterns underlying, making predictions and constructing models. A simple law governing the progress of two-sided confrontations is proposed with data of activities at micro-level. Unraveling the connections between activity of organizing online and outburst of unrests on streets gives rise to a further meso-level pattern of human behavior, through which adversarial groups evolve online and hyper-escalate ahead of real-world uprisings. Based on the patterns found, noticeable improvement of prediction of civil unrests is achieved. Meanwhile, novel model created from combination of mobility dynamics in the cyberworld and a traditional contagion model can better capture the characteristics of modern civil unrests and other contagion-like phenomena than the original one.

  18. Dynamic characteristics of motor-gear system under load saltations and voltage transients

    NASA Astrophysics Data System (ADS)

    Bai, Wenyu; Qin, Datong; Wang, Yawen; Lim, Teik C.

    2018-02-01

    In this paper, a dynamic model of a motor-gear system is proposed. The model combines a nonlinear permeance network model (PNM) of a squirrel-cage induction motor and a coupled lateral-torsional dynamic model of a planetary geared rotor system. The external excitations including voltage transients and load saltations, as well as the internal excitations such as spatial effects, magnetic circuits topology and material nonlinearity in the motor, and time-varying mesh stiffness and damping in the planetary gear system are considered in the proposed model. Then, the simulation results are compared with those predicted by the electromechanical model containing a dynamic motor model with constant inductances. The comparison showed that the electromechanical system model with the PNM motor model yields more reasonable results than the electromechanical system model with the lumped-parameter electric machine. It is observed that electromechanical coupling effect can induce additional and severe gear vibrations. In addition, the external conditions, especially the voltage transients, will dramatically affect the dynamic characteristics of the electromechanical system. Finally, some suggestions are offered based on this analysis for improving the performance and reliability of the electromechanical system.

  19. Effect of dynamic load on water flow boiling CHF in rectangular channels

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Song, Baoyin; Li, Gang; Cao, Xi

    2018-06-01

    Experimental investigation into flow boiling critical heat flux (CHF) characteristics in narrow rectangular channels was performed under rotating state using distilled water as working fluids. The effects of mass velocity, inlet temperature and heating orientation on CHF under dynamic load were analyzed and discussed in this paper. The results show that the dynamic load obviously influences the CHF through enhancing two-phase mixing up and bubble separating. The greater the dynamic load, the higher the CHF values. The CHF values increase with the increase of mass velocity and inlet subcooling in the experimental range. The magnitude of CHF increase with the dynamic load for bottom heating is greater than that for up heating. The present study and its newly correlation may provide some technical supports in designing the airborne vapor cycle system.

  20. A subharmonic dynamical bifurcation during in vitro epileptiform activity

    NASA Astrophysics Data System (ADS)

    Perez Velazquez, Jose L.; Khosravani, Houman

    2004-06-01

    Epileptic seizures are considered to result from a sudden change in the synchronization of firing neurons in brain neural networks. We have used an in vitro model of status epilepticus (SE) to characterize dynamical regimes underlying the observed seizure-like activity. Time intervals between spikes or bursts were used as the variable to construct first-return interpeak or interburst interval plots, for studying neuronal population activity during the transition to seizure, as well as within seizures. Return maps constructed for a brief epoch before seizures were used for approximating the local system dynamics during that time window. Analysis of the first-return maps suggests that intermittency is a dynamical regime underlying the observed epileptic activity. This type of analysis may be useful for understanding the collective dynamics of neuronal populations in the normal and pathological brain.

  1. System identification from closed-loop data with known output feedback dynamics

    NASA Technical Reports Server (NTRS)

    Phan, Minh; Juang, Jer-Nan; Horta, Lucas G.; Longman, Richard W.

    1992-01-01

    This paper presents a procedure to identify the open loop systems when it is operating under closed loop conditions. First, closed loop excitation data are used to compute the system open loop and closed loop Markov parameters. The Markov parameters, which are the pulse response samples, are then used to compute a state space representation of the open loop system. Two closed loop configurations are considered in this paper. The closed loop system can have either a linear output feedback controller or a dynamic output feedback controller. Numerical examples are provided to illustrate the proposed closed loop identification method.

  2. Pattern dynamics of the reaction-diffusion immune system.

    PubMed

    Zheng, Qianqian; Shen, Jianwei; Wang, Zhijie

    2018-01-01

    In this paper, we will investigate the effect of diffusion, which is ubiquitous in nature, on the immune system using a reaction-diffusion model in order to understand the dynamical behavior of complex patterns and control the dynamics of different patterns. Through control theory and linear stability analysis of local equilibrium, we obtain the optimal condition under which the system loses stability and a Turing pattern occurs. By combining mathematical analysis and numerical simulation, we show the possible patterns and how these patterns evolve. In addition, we establish a bridge between the complex patterns and the biological mechanism using the results from a previous study in Nature Cell Biology. The results in this paper can help us better understand the biological significance of the immune system.

  3. Adaptive Variability in Skilled Human Movements

    NASA Astrophysics Data System (ADS)

    Kudo, Kazutoshi; Ohtsuki, Tatsuyuki

    Human movements are produced in variable external/internal environments. Because of this variability, the same motor command can result in quite different movement patterns. Therefore, to produce skilled movements humans must coordinate the variability, not try to exclude it. In addition, because human movements are produced in redundant and complex systems, a combination of variability should be observed in different anatomical/physiological levels. In this paper, we introduce our research about human movement variability that shows remarkable coordination among components, and between organism and environment. We also introduce nonlinear dynamical models that can describe a variety of movements as a self-organization of a dynamical system, because the dynamical systems approach is a major candidate to understand the principle underlying organization of varying systems with huge degrees-of-freedom.

  4. Unsteady Reynolds-averaged Navier-Stokes simulations of inlet distortion in the fan system of a gas-turbine aero-engine

    NASA Astrophysics Data System (ADS)

    Spotts, Nathan

    As modern trends in commercial aircraft design move toward high-bypass-ratio fan systems of increasing diameter with shorter, nonaxisymmetric nacelle geometries, inlet distortion is becoming common in all operating regimes. The distortion may induce aerodynamic instabilities within the fan system, leading to catastrophic damage to fan blades, should the surge margin be exceeded. Even in the absence of system instability, the heterogeneity of the flow affects aerodynamic performance significantly. Therefore, an understanding of fan-distortion interaction is critical to aircraft engine system design. This thesis research elucidates the complex fluid dynamics and fan-distortion interaction by means of computational fluid dynamics (CFD) modeling of a complete engine fan system; including rotor, stator, spinner, nacelle and nozzle; under conditions typical of those encountered by commercial aircraft. The CFD simulations, based on a Reynolds-averaged Navier-Stokes (RANS) approach, were unsteady, three-dimensional, and of a full-annulus geometry. A thorough, systematic validation has been performed for configurations from a single passage of a rotor to a full-annulus system by comparing the predicted flow characteristics and aerodynamic performance to those found in literature. The original contributions of this research include the integration of a complete engine fan system, based on the NASA rotor 67 transonic stage and representative of the propulsion systems in commercial aircraft, and a benchmark case for unsteady RANS simulations of distorted flow in such a geometry under realistic operating conditions. This study is unique in that the complex flow dynamics, resulting from fan-distortion interaction, were illustrated in a practical geometry under realistic operating conditions. For example, the compressive stage is shown to influence upstream static pressure distributions and thus suppress separation of flow on the nacelle. Knowledge of such flow physics is valuable for engine system design.

  5. Three-Dimensional Dynamic Analyses of Track-Embankment-Ground System Subjected to High Speed Train Loads

    PubMed Central

    2014-01-01

    A three-dimensional finite element model was developed to investigate dynamic response of track-embankment-ground system subjected to moving loads caused by high speed trains. The track-embankment-ground systems such as the sleepers, the ballast, the embankment, and the ground are represented by 8-noded solid elements. The infinite elements are used to represent the infinite boundary condition to absorb vibration waves induced by the passing of train load at the boundary. The loads were applied on the rails directly to simulate the real moving loads of trains. The effects of train speed on dynamic response of the system are considered. The effect of material parameters, especially the modulus changes of ballast and embankment, is taken into account to demonstrate the effectiveness of strengthening the ballast, embankment, and ground for mitigating system vibration in detail. The numerical results show that the model is reliable for predicting the amplitude of vibrations produced in the track-embankment-ground system by high-speed trains. Stiffening of fill under the embankment can reduce the vibration level, on the other hand, it can be realized by installing a concrete slab under the embankment. The influence of axle load on the vibration of the system is obviously lower than that of train speed. PMID:24723838

  6. Three-dimensional dynamic analyses of track-embankment-ground system subjected to high speed train loads.

    PubMed

    Fu, Qiang; Zheng, Changjie

    2014-01-01

    A three-dimensional finite element model was developed to investigate dynamic response of track-embankment-ground system subjected to moving loads caused by high speed trains. The track-embankment-ground systems such as the sleepers, the ballast, the embankment, and the ground are represented by 8-noded solid elements. The infinite elements are used to represent the infinite boundary condition to absorb vibration waves induced by the passing of train load at the boundary. The loads were applied on the rails directly to simulate the real moving loads of trains. The effects of train speed on dynamic response of the system are considered. The effect of material parameters, especially the modulus changes of ballast and embankment, is taken into account to demonstrate the effectiveness of strengthening the ballast, embankment, and ground for mitigating system vibration in detail. The numerical results show that the model is reliable for predicting the amplitude of vibrations produced in the track-embankment-ground system by high-speed trains. Stiffening of fill under the embankment can reduce the vibration level, on the other hand, it can be realized by installing a concrete slab under the embankment. The influence of axle load on the vibration of the system is obviously lower than that of train speed.

  7. Double density dynamics: realizing a joint distribution of a physical system and a parameter system

    NASA Astrophysics Data System (ADS)

    Fukuda, Ikuo; Moritsugu, Kei

    2015-11-01

    To perform a variety of types of molecular dynamics simulations, we created a deterministic method termed ‘double density dynamics’ (DDD), which realizes an arbitrary distribution for both physical variables and their associated parameters simultaneously. Specifically, we constructed an ordinary differential equation that has an invariant density relating to a joint distribution of the physical system and the parameter system. A generalized density function leads to a physical system that develops under nonequilibrium environment-describing superstatistics. The joint distribution density of the physical system and the parameter system appears as the Radon-Nikodym derivative of a distribution that is created by a scaled long-time average, generated from the flow of the differential equation under an ergodic assumption. The general mathematical framework is fully discussed to address the theoretical possibility of our method, and a numerical example representing a 1D harmonic oscillator is provided to validate the method being applied to the temperature parameters.

  8. Cultural propagation on social networks

    NASA Astrophysics Data System (ADS)

    Kuperman, M. N.

    2006-04-01

    In this work we present a model for the propagation of culture on networks of different topology and by considering different underlying dynamics. We extend a previous model proposed by Axelrod by letting a majority govern the dynamics of changes. This in turn allows us to define a Lyapunov functional for the system.

  9. Integration of Multiple Data Sources to Simulate the Dynamics of Land Systems

    PubMed Central

    Deng, Xiangzheng; Su, Hongbo; Zhan, Jinyan

    2008-01-01

    In this paper we present and develop a new model, which we have called Dynamics of Land Systems (DLS). The DLS model is capable of integrating multiple data sources to simulate the dynamics of a land system. Three main modules are incorporated in DLS: a spatial regression module, to explore the relationship between land uses and influencing factors, a scenario analysis module of the land uses of a region during the simulation period and a spatial disaggregation module, to allocate land use changes from a regional level to disaggregated grid cells. A case study on Taips County in North China is incorporated in this paper to test the functionality of DLS. The simulation results under the baseline, economic priority and environmental scenarios help to understand the land system dynamics and project near future land-use trajectories of a region, in order to focus management decisions on land uses and land use planning. PMID:27879726

  10. Stochastic modeling and simulation of reaction-diffusion system with Hill function dynamics.

    PubMed

    Chen, Minghan; Li, Fei; Wang, Shuo; Cao, Young

    2017-03-14

    Stochastic simulation of reaction-diffusion systems presents great challenges for spatiotemporal biological modeling and simulation. One widely used framework for stochastic simulation of reaction-diffusion systems is reaction diffusion master equation (RDME). Previous studies have discovered that for the RDME, when discretization size approaches zero, reaction time for bimolecular reactions in high dimensional domains tends to infinity. In this paper, we demonstrate that in the 1D domain, highly nonlinear reaction dynamics given by Hill function may also have dramatic change when discretization size is smaller than a critical value. Moreover, we discuss methods to avoid this problem: smoothing over space, fixed length smoothing over space and a hybrid method. Our analysis reveals that the switch-like Hill dynamics reduces to a linear function of discretization size when the discretization size is small enough. The three proposed methods could correctly (under certain precision) simulate Hill function dynamics in the microscopic RDME system.

  11. Quantum dynamics characteristic and the flow of information for an open quantum system under relativistic motion

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Yang; Wang, Dong; Fang, Bao-Long; Ye, Liu

    2018-03-01

    In this letter, the dynamics characteristics of quantum entanglement (negativity) and distinguishability (trace distance), and the flow of information for an open quantum system under relativistic motion are investigated. Explicitly, we propose a scenario that a particle A held by Alice suffers from an amplitude damping (AD) noise in a flat space-time and another particle B by Bob entangled with A travels with a fixed acceleration under a non-inertial frame. The results show that quantum distinguishability and entanglement are very vulnerable and fragile under the collective influence of AD noise and Unruh effect. Both of them will decrease with the growing intensity of the Unruh effect and the AD thermal bath. It means that the abilities of quantum distinguishability and entanglement to suppress the collective decoherence (AD noise and Unruh effect) are very weak. Furthermore, it turns out that the reduced quantum distinguishability of Alice’s system and Bob in the physically accessible region is distributed to another quantum distinguishability for Alice’s environment and Bob in the physically inaccessible region. That is, the information regarding the scenario is that the lost quantum distinguishability, as a fixed information, flows from the systems to the collective decoherence environment.

  12. On the Interplay between Order Parameter Dynamics and System Parameter Dynamics in Human Perceptual-Cognitive-Behavioral Systems.

    PubMed

    Frank, T D

    2015-04-01

    Previous research has demonstrated that perceiving, thinking, and acting are human activities that correspond to self-organized patterns. The emergence of such patterns can be completely described in terms of the dynamics of the pattern amplitudes, which are referred to as order parameters. The patterns emerge at bifurcations points when certain system parameters internal and external to a human agent exceed critical values. At issue is how one might study the order parameter dynamics for sequences of consecutive, emergent perceptual, cognitive, or behavioral activities. In particular, these activities may in turn impact the system parameters that have led to the emergence of the activities in the first place. This interplay between order parameter dynamics and system parameter dynamics is discussed in general and formulated in mathematical terms. Previous work that has made use of this two-tiered framework of order parameter and system parameter dynamics are briefly addressed. As an application, a model for perception under functional fixedness is presented. Finally, it is argued that the phenomena that emerge in this framework and can be observed when human agents perceive, think, and act are just as likely to occur in pattern formation systems of the inanimate world. Consequently, these phenomena do not necessarily have a neurophysiological basis but should instead be understood from the perspective of the theory of self-organization.

  13. Prediction and validation of diffusion coefficients in a model drug delivery system using microsecond atomistic molecular dynamics simulation and vapour sorption analysis.

    PubMed

    Forrey, Christopher; Saylor, David M; Silverstein, Joshua S; Douglas, Jack F; Davis, Eric M; Elabd, Yossef A

    2014-10-14

    Diffusion of small to medium sized molecules in polymeric medical device materials underlies a broad range of public health concerns related to unintended leaching from or uptake into implantable medical devices. However, obtaining accurate diffusion coefficients for such systems at physiological temperature represents a formidable challenge, both experimentally and computationally. While molecular dynamics simulation has been used to accurately predict the diffusion coefficients, D, of a handful of gases in various polymers, this success has not been extended to molecules larger than gases, e.g., condensable vapours, liquids, and drugs. We present atomistic molecular dynamics simulation predictions of diffusion in a model drug eluting system that represent a dramatic improvement in accuracy compared to previous simulation predictions for comparable systems. We find that, for simulations of insufficient duration, sub-diffusive dynamics can lead to dramatic over-prediction of D. We present useful metrics for monitoring the extent of sub-diffusive dynamics and explore how these metrics correlate to error in D. We also identify a relationship between diffusion and fast dynamics in our system, which may serve as a means to more rapidly predict diffusion in slowly diffusing systems. Our work provides important precedent and essential insights for utilizing atomistic molecular dynamics simulations to predict diffusion coefficients of small to medium sized molecules in condensed soft matter systems.

  14. Longitudinal magnetization dynamics in Heisenberg magnets: Spin Green functions approach (Review Article)

    NASA Astrophysics Data System (ADS)

    Krivoruchko, V. N.

    2017-11-01

    In spite of the fact that dynamical properties of magnets have been extensively studied over the past years, the longitudinal magnetization dynamics is still much less understood than transverse one even in the equilibrium state of a system. In this paper, we give a review of existing, based on quantum-mechanical approach, theoretical descriptions of the longitudinal magnetization dynamics for ferro-, ferri- and antiferromagnetic dielectrics. The aim is to reveal specific features of this type of magnetization vibrations under description a system within the framework of one of the basic model theory of magnetism—the Heisenberg model. Related experimental investigations as well as open questions are also briefly discussed. We hope that understanding of the longitudinal magnetization dynamics distinctive features in the equilibrium state have to be a reference point for a theory uncovering the physical mechanisms that govern ultrafast spin dynamics after femtosecond laser pulse demagnetization when a system is far beyond an equilibrium state.

  15. Structure-based control of complex networks with nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Zanudo, Jorge G. T.; Yang, Gang; Albert, Reka

    What can we learn about controlling a system solely from its underlying network structure? Here we use a framework for control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This feedback-based framework provides realizable node overrides that steer a system towards any of its natural long term dynamic behaviors, regardless of the dynamic details and system parameters. We use this framework on several real networks, identify the topological characteristics that underlie the predicted node overrides, and compare its predictions to those of classical structural control theory. Finally, we demonstrate this framework's applicability in dynamic models of gene regulatory networks and identify nodes whose override is necessary for control in the general case, but not in specific model instances. This work was supported by NSF Grants PHY 1205840 and IIS 1160995. JGTZ is a recipient of a Stand Up To Cancer - The V Foundation Convergence Scholar Award.

  16. Dynamic modeling of neuronal responses in fMRI using cubature Kalman filtering.

    PubMed

    Havlicek, Martin; Friston, Karl J; Jan, Jiri; Brazdil, Milan; Calhoun, Vince D

    2011-06-15

    This paper presents a new approach to inverting (fitting) models of coupled dynamical systems based on state-of-the-art (cubature) Kalman filtering. Crucially, this inversion furnishes posterior estimates of both the hidden states and parameters of a system, including any unknown exogenous input. Because the underlying generative model is formulated in continuous time (with a discrete observation process) it can be applied to a wide variety of models specified with either ordinary or stochastic differential equations. These are an important class of models that are particularly appropriate for biological time-series, where the underlying system is specified in terms of kinetics or dynamics (i.e., dynamic causal models). We provide comparative evaluations with generalized Bayesian filtering (dynamic expectation maximization) and demonstrate marked improvements in accuracy and computational efficiency. We compare the schemes using a series of difficult (nonlinear) toy examples and conclude with a special focus on hemodynamic models of evoked brain responses in fMRI. Our scheme promises to provide a significant advance in characterizing the functional architectures of distributed neuronal systems, even in the absence of known exogenous (experimental) input; e.g., resting state fMRI studies and spontaneous fluctuations in electrophysiological studies. Importantly, unlike current Bayesian filters (e.g. DEM), our scheme provides estimates of time-varying parameters, which we will exploit in future work on the adaptation and enabling of connections in the brain. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Population dynamics, information transfer, and spatial organization in a chemical reaction network under spatial confinement and crowding conditions

    NASA Astrophysics Data System (ADS)

    Bellesia, Giovanni; Bales, Benjamin B.

    2016-10-01

    We investigate, via Brownian dynamics simulations, the reaction dynamics of a generic, nonlinear chemical network under spatial confinement and crowding conditions. In detail, the Willamowski-Rossler chemical reaction system has been "extended" and considered as a prototype reaction-diffusion system. Our results are potentially relevant to a number of open problems in biophysics and biochemistry, such as the synthesis of primitive cellular units (protocells) and the definition of their role in the chemical origin of life and the characterization of vesicle-mediated drug delivery processes. More generally, the computational approach presented in this work makes the case for the use of spatial stochastic simulation methods for the study of biochemical networks in vivo where the "well-mixed" approximation is invalid and both thermal and intrinsic fluctuations linked to the possible presence of molecular species in low number copies cannot be averaged out.

  18. Incubation under fluid dynamic conditions markedly improves the structural preservation in vitro of explanted skeletal muscles.

    PubMed

    Carton, Flavia; Calderan, Laura; Malatesta, Manuela

    2017-11-28

    Explanted organs and tissues represent suitable experimental systems mimicking the functional and structural complexity of the living organism, with positive ethical and economic impact on research activities. However, their preservation in culture is generally limited, thus hindering their application as experimental models for biomedical research. In the present study, we investigated the potential of an innovative fluid dynamic culture system to improve the structural preservation in vitro of explanted mouse skeletal muscles (soleus). We used light and transmission electron microscopy to compare the morphological features of muscles maintained either in multiwell plates under conventional conditions or in a bioreactor mimicking the flow of physiological fluids. Our results demonstrate that fluid dynamic conditions markedly slowed the progressive structural deterioration of the muscle tissue occurring during the permanence in the culture medium, prolonging the preservation of some organelles such as mitochondria up to 48 h.

  19. Incubation under fluid dynamic conditions markedly improves the structural preservation in vitro of explanted skeletal muscles

    PubMed Central

    Carton, Flavia; Calderan, Laura; Malatesta, Manuela

    2017-01-01

    Explanted organs and tissues represent suitable experimental systems mimicking the functional and structural complexity of the living organism, with positive ethical and economic impact on research activities. However, their preservation in culture is generally limited, thus hindering their application as experimental models for biomedical research. In the present study, we investigated the potential of an innovative fluid dynamic culture system to improve the structural preservation in vitro of explanted mouse skeletal muscles (soleus). We used light and transmission electron microscopy to compare the morphological features of muscles maintained either in multiwell plates under conventional conditions or in a bioreactor mimicking the flow of physiological fluids. Our results demonstrate that fluid dynamic conditions markedly slowed the progressive structural deterioration of the muscle tissue occurring during the permanence in the culture medium, prolonging the preservation of some organelles such as mitochondria up to 48 h. PMID:29313601

  20. Periodic synchronization and chimera in conformist and contrarian oscillators

    NASA Astrophysics Data System (ADS)

    Hong, Hyunsuk

    2014-06-01

    We consider a system of phase oscillators that couple with both attractive and repulsive interaction under a pinning force and explore collective behavior of the system. The oscillators can be divided into two subpopulations of "conformist" oscillators with attractive interaction and "contrarian" ones with repulsive interaction. We find that the interplay between the pinning force and the opposite relationship of the conformist and contrarian oscillators induce peculiar dynamic states: periodic synchronization, breathing chimera, and fully pinned state depending on the fraction of the conformists. Using the Watanabe-Strogatz transformation, we reduce the dynamics into a low-dimensional one and find that the above dynamic states are generated from the reduced dynamics.

  1. Microfluidic resonant waveguide grating biosensor system for whole cell sensing

    NASA Astrophysics Data System (ADS)

    Zaytseva, Natalya; Miller, William; Goral, Vasily; Hepburn, Jerry; Fang, Ye

    2011-04-01

    We report on a fluidic resonant waveguide grating (RWG) biosensor system that enables medium throughput measurements of cellular responses under microfluidics in a 32-well format. Dynamic mass redistribution assays under microfluidics differentiate the cross-desensitization process between the β2-adrenoceptor agonist epinephrine and the adenylate cyclase activator forskolin mediated signaling. This system opens new possibility to study cellular processes that are otherwise difficult to achieve using conventional RWG configurations.

  2. Adding dynamic rules to self-organizing fuzzy systems

    NASA Technical Reports Server (NTRS)

    Buhusi, Catalin V.

    1992-01-01

    This paper develops a Dynamic Self-Organizing Fuzzy System (DSOFS) capable of adding, removing, and/or adapting the fuzzy rules and the fuzzy reference sets. The DSOFS background consists of a self-organizing neural structure with neuron relocation features which will develop a map of the input-output behavior. The relocation algorithm extends the topological ordering concept. Fuzzy rules (neurons) are dynamically added or released while the neural structure learns the pattern. The DSOFS advantages are the automatic synthesis and the possibility of parallel implementation. A high adaptation speed and a reduced number of neurons is needed in order to keep errors under some limits. The computer simulation results are presented in a nonlinear systems modelling application.

  3. Reaction Analysis of Shocked Nitromethane using Extended Lagrangian Born-Oppenheimer Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Perriot, Romain; Kober, Ed; Mniszewski, Sue; Martinez, Enrique; Niklasson, Anders; Yang, Ping; McGrane, Shawn; Cawkwell, Marc

    2017-06-01

    Characterizing the complex, rapid reactions of energetic materials under conditions of high temperatures and pressures presents strong experimental and computational challenges. The recently developed extended Lagrangian Born-Oppenheimer molecular dynamics formalism enables the long-term conservation of the total energy in microcanonical trajectories, and using a density functional tight binding formulation provides good chemical accuracy. We use this combined approach to study the evolution of temperature, pressure, and chemical species in shock-compressed liquid nitromethane over hundreds of picoseconds. The chemical species seen in nitromethane under shock compression are compared with those seen under static high temperature conditions. A reduced-order representation of the complex sequence of chemical reactions that characterize this system has been developed from the molecular dynamics simulations by focusing on classes of chemical reactions rather than specific molecular species. Time-resolved infra-red vibrational spectra were also computed from the molecular trajectories and compared to the chemical analysis. These spectra provide a time history of the species present in the system that can be compared directly with recent experiments at LANL.

  4. Gas Bubble Dynamics under Mechanical Vibrations

    NASA Astrophysics Data System (ADS)

    Mohagheghian, Shahrouz; Elbing, Brian

    2017-11-01

    The scientific community has a limited understanding of the bubble dynamics under mechanical oscillations due to over simplification of Navier-Stockes equation by neglecting the shear stress tensor and not accounting for body forces when calculating the acoustic radiation force. The current work experimental investigates bubble dynamics under mechanical vibration and resulting acoustic field by measuring the bubble size and velocity using high-speed imaging. The experimental setup consists of a custom-designed shaker table, cast acrylic bubble column, compressed air injection manifold and an optical imaging system. The mechanical vibrations resulted in accelerations between 0.25 to 10 times gravitational acceleration corresponding to frequency and amplitude range of 8 - 22Hz and 1 - 10mm respectively. Throughout testing the void fraction was limited to <5%. The bubble size is larger than resonance size and smaller than acoustic wavelength. The amplitude of acoustic pressure wave was estimated using the definition of Bjerknes force in combination with Rayleigh-Plesset equation. Physical behavior of the system was capture and classified. Bubble size, velocity as well as size and spatial distribution will be presented.

  5. Development of an optical time-resolved measurement system under high-pressure and low-temperature with a piston-cylinder pressure cell

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Satoshi; Kino, Yohei; Nakagawa, Koichi; Nakagawa, Daisuke; Yamada, Jun-ichi; Toda, Yasunori

    2016-04-01

    To perform the femtosecond pump-probe spectroscopy under high pressure and low temperature, we constructed a measurement system with a piston cylinder type pressure cell installing an optical fiber bundle. The applied pressure was achieved to 6 kbar and the cell was cooled down to 15 K. Several demonstrations revealed that broadening and change of polarization of pulse (duration of ˜120 fs) owing to the dispersions in the fiber bundle are much small indicating that those have little influence on the measurement of carrier relaxation dynamics. In the measurements of κ-(BEDT-TTF)2Cu(NCS)2 under 1.3 kbar at 43 K, we have successfully detected the polarization anisotropy of the carrier relaxation dynamics and estimated the decay time in the same way as the normal measurement.

  6. Development of an optical time-resolved measurement system under high-pressure and low-temperature with a piston-cylinder pressure cell.

    PubMed

    Tsuchiya, Satoshi; Kino, Yohei; Nakagawa, Koichi; Nakagawa, Daisuke; Yamada, Jun-Ichi; Toda, Yasunori

    2016-04-01

    To perform the femtosecond pump-probe spectroscopy under high pressure and low temperature, we constructed a measurement system with a piston cylinder type pressure cell installing an optical fiber bundle. The applied pressure was achieved to 6 kbar and the cell was cooled down to 15 K. Several demonstrations revealed that broadening and change of polarization of pulse (duration of ∼120 fs) owing to the dispersions in the fiber bundle are much small indicating that those have little influence on the measurement of carrier relaxation dynamics. In the measurements of κ-(BEDT-TTF)2Cu(NCS)2 under 1.3 kbar at 43 K, we have successfully detected the polarization anisotropy of the carrier relaxation dynamics and estimated the decay time in the same way as the normal measurement.

  7. Moment Lyapunov Exponent and Stochastic Stability of Binary Airfoil under Combined Harmonic and Non-Gaussian Colored Noise Excitations

    NASA Astrophysics Data System (ADS)

    Hu, D. L.; Liu, X. B.

    Both periodic loading and random forces commonly co-exist in real engineering applications. However, the dynamic behavior, especially dynamic stability of systems under parametric periodic and random excitations has been reported little in the literature. In this study, the moment Lyapunov exponent and stochastic stability of binary airfoil under combined harmonic and non-Gaussian colored noise excitations are investigated. The noise is simplified to an Ornstein-Uhlenbeck process by applying the path-integral method. Via the singular perturbation method, the second-order expansions of the moment Lyapunov exponent are obtained, which agree well with the results obtained by the Monte Carlo simulation. Finally, the effects of the noise and parametric resonance (such as subharmonic resonance and combination additive resonance) on the stochastic stability of the binary airfoil system are discussed.

  8. Control Parameters Optimization Based on Co-Simulation of a Mechatronic System for an UA-Based Two-Axis Inertially Stabilized Platform.

    PubMed

    Zhou, Xiangyang; Zhao, Beilei; Gong, Guohao

    2015-08-14

    This paper presents a method based on co-simulation of a mechatronic system to optimize the control parameters of a two-axis inertially stabilized platform system (ISP) applied in an unmanned airship (UA), by which high control performance and reliability of the ISP system are achieved. First, a three-dimensional structural model of the ISP is built by using the three-dimensional parametric CAD software SOLIDWORKS(®); then, to analyze the system's kinematic and dynamic characteristics under operating conditions, dynamics modeling is conducted by using the multi-body dynamics software ADAMS™, thus the main dynamic parameters such as displacement, velocity, acceleration and reaction curve are obtained, respectively, through simulation analysis. Then, those dynamic parameters were input into the established MATLAB(®) SIMULINK(®) controller to simulate and test the performance of the control system. By these means, the ISP control parameters are optimized. To verify the methods, experiments were carried out by applying the optimized parameters to the control system of a two-axis ISP. The results show that the co-simulation by using virtual prototyping (VP) is effective to obtain optimized ISP control parameters, eventually leading to high ISP control performance.

  9. Force sensor characterization under sinusoidal excitations.

    PubMed

    Medina, Nieves; de Vicente, Jesús

    2014-10-06

    The aim in the current work is the development of a method to characterize force sensors under sinusoidal excitations using a primary standard as the source of traceability. During this work the influence factors have been studied and a method to minimise their contributions, as well as the corrections to be performed under dynamic conditions have been established. These results will allow the realization of an adequate characterization of force sensors under sinusoidal excitations, which will be essential for its further proper use under dynamic conditions. The traceability of the sensor characterization is based in the direct definition of force as mass multiplied by acceleration. To do so, the sensor is loaded with different calibrated loads and is maintained under different sinusoidal accelerations by means of a vibration shaker system that is able to generate accelerations up to 100 m/s2 with frequencies from 5 Hz up to 2400 Hz. The acceleration is measured by means of a laser vibrometer with traceability to the units of time and length. A multiple channel data acquisition system is also required to simultaneously acquire the electrical output signals of the involved instrument in real time.

  10. Relaxation Dynamics in the Merging of N Independent Condensates

    NASA Astrophysics Data System (ADS)

    Aidelsburger, M.; Ville, J. L.; Saint-Jalm, R.; Nascimbène, S.; Dalibard, J.; Beugnon, J.

    2017-11-01

    Controlled quantum systems such as ultracold atoms can provide powerful platforms to study nonequilibrium dynamics of closed many-body quantum systems, especially since a complete theoretical description is generally challenging. In this Letter, we present a detailed study of the rich out-of-equilibrium dynamics of an adjustable number N of uncorrelated condensates after connecting them in a ring-shaped optical trap. We observe the formation of long-lived supercurrents and confirm the scaling of their winding number with N in agreement with the geodesic rule. Moreover, we provide insight into the microscopic mechanism that underlies the smoothening of the phase profile.

  11. Mechanical stress and network structure drive protein dynamics during cytokinesis.

    PubMed

    Srivastava, Vasudha; Robinson, Douglas N

    2015-03-02

    Cell-shape changes associated with processes like cytokinesis and motility proceed on several-second timescales but are derived from molecular events, including protein-protein interactions, filament assembly, and force generation by molecular motors, all of which occur much faster [1-4]. Therefore, defining the dynamics of such molecular machinery is critical for understanding cell-shape regulation. In addition to signaling pathways, mechanical stresses also direct cytoskeletal protein accumulation [5-7]. A myosin-II-based mechanosensory system controls cellular contractility and shape during cytokinesis and under applied stress [6, 8]. In Dictyostelium, this system tunes myosin II accumulation by feedback through the actin network, particularly through the crosslinker cortexillin I. Cortexillin-binding IQGAPs are major regulators of this system. Here, we defined the short timescale dynamics of key cytoskeletal proteins during cytokinesis and under mechanical stress, using fluorescence recovery after photobleaching and fluorescence correlation spectroscopy, to examine the dynamic interplay between these proteins. Equatorially enriched proteins including cortexillin I, IQGAP2, and myosin II recovered much more slowly than actin and polar crosslinkers. The mobility of equatorial proteins was greatly reduced at the furrow compared to the interphase cortex, suggesting their stabilization during cytokinesis. This mobility shift did not arise from a single biochemical event, but rather from a global inhibition of protein dynamics by mechanical-stress-associated changes in the cytoskeletal structure. Mechanical tuning of contractile protein dynamics provides robustness to the cytoskeletal framework responsible for regulating cell shape and contributes to cytokinesis fidelity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Global Langevin model of multidimensional biomolecular dynamics.

    PubMed

    Schaudinnus, Norbert; Lickert, Benjamin; Biswas, Mithun; Stock, Gerhard

    2016-11-14

    Molecular dynamics simulations of biomolecular processes are often discussed in terms of diffusive motion on a low-dimensional free energy landscape F(). To provide a theoretical basis for this interpretation, one may invoke the system-bath ansatz á la Zwanzig. That is, by assuming a time scale separation between the slow motion along the system coordinate x and the fast fluctuations of the bath, a memory-free Langevin equation can be derived that describes the system's motion on the free energy landscape F(), which is damped by a friction field and driven by a stochastic force that is related to the friction via the fluctuation-dissipation theorem. While the theoretical formulation of Zwanzig typically assumes a highly idealized form of the bath Hamiltonian and the system-bath coupling, one would like to extend the approach to realistic data-based biomolecular systems. Here a practical method is proposed to construct an analytically defined global model of structural dynamics. Given a molecular dynamics simulation and adequate collective coordinates, the approach employs an "empirical valence bond"-type model which is suitable to represent multidimensional free energy landscapes as well as an approximate description of the friction field. Adopting alanine dipeptide and a three-dimensional model of heptaalanine as simple examples, the resulting Langevin model is shown to reproduce the results of the underlying all-atom simulations. Because the Langevin equation can also be shown to satisfy the underlying assumptions of the theory (such as a delta-correlated Gaussian-distributed noise), the global model provides a correct, albeit empirical, realization of Zwanzig's formulation. As an application, the model can be used to investigate the dependence of the system on parameter changes and to predict the effect of site-selective mutations on the dynamics.

  13. Global Langevin model of multidimensional biomolecular dynamics

    NASA Astrophysics Data System (ADS)

    Schaudinnus, Norbert; Lickert, Benjamin; Biswas, Mithun; Stock, Gerhard

    2016-11-01

    Molecular dynamics simulations of biomolecular processes are often discussed in terms of diffusive motion on a low-dimensional free energy landscape F ( 𝒙 ) . To provide a theoretical basis for this interpretation, one may invoke the system-bath ansatz á la Zwanzig. That is, by assuming a time scale separation between the slow motion along the system coordinate x and the fast fluctuations of the bath, a memory-free Langevin equation can be derived that describes the system's motion on the free energy landscape F ( 𝒙 ) , which is damped by a friction field and driven by a stochastic force that is related to the friction via the fluctuation-dissipation theorem. While the theoretical formulation of Zwanzig typically assumes a highly idealized form of the bath Hamiltonian and the system-bath coupling, one would like to extend the approach to realistic data-based biomolecular systems. Here a practical method is proposed to construct an analytically defined global model of structural dynamics. Given a molecular dynamics simulation and adequate collective coordinates, the approach employs an "empirical valence bond"-type model which is suitable to represent multidimensional free energy landscapes as well as an approximate description of the friction field. Adopting alanine dipeptide and a three-dimensional model of heptaalanine as simple examples, the resulting Langevin model is shown to reproduce the results of the underlying all-atom simulations. Because the Langevin equation can also be shown to satisfy the underlying assumptions of the theory (such as a delta-correlated Gaussian-distributed noise), the global model provides a correct, albeit empirical, realization of Zwanzig's formulation. As an application, the model can be used to investigate the dependence of the system on parameter changes and to predict the effect of site-selective mutations on the dynamics.

  14. Analytical and experimental study of vibrations in a gear transmission

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Ruan, Y. F.; Zakrajsek, J. J.; Oswald, Fred B.; Coy, J. J.

    1991-01-01

    An analytical simulation of the dynamics of a gear transmission system is presented and compared to experimental results from a gear noise test rig at the NASA Lewis Research Center. The analytical procedure developed couples the dynamic behaviors of the rotor-bearing-gear system with the response of the gearbox structure. The modal synthesis method is used in solving the overall dynamics of the system. Locally each rotor-gear stage is modeled as an individual rotor-bearing system using the matrix transfer technique. The dynamics of each individual rotor are coupled with other rotor stages through the nonlinear gear mesh forces and with the gearbox structure through bearing support systems. The modal characteristics of the gearbox structure are evaluated using the finite element procedure. A variable time steping integration routine is used to calculate the overall time transient behavior of the system in modal coordinates. The global dynamic behavior of the system is expressed in a generalized coordinate system. Transient and steady state vibrations of the gearbox system are presented in the time and frequency domains. The vibration characteristics of a simple single mesh gear noise test rig is modeled. The numerical simulations are compared to experimental data measured under typical operating conditions. The comparison of system natural frequencies, peak vibration amplitudes, and gear mesh frequencies are generally in good agreement.

  15. Recent developments in chaotic dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ott, E.

    1994-02-01

    Before the relatively recent wide acceptance of the existence of chaotic dynamics, many physicists and engineers were under the impression that simple systems could necessarily only display simple solutions. This feeling had been unintentionally reinforced by conventional college courses which emphasize linear dynamics (partly because that is the only case with nice general solutions). More recently, physical experiments and numerical examples have abundantly demonstrated how wrong this feeling is. A brief review of chaotic dynamics is presented. Topics discussed include basic concepts, recent developments, and applications.

  16. A data base and analysis program for shuttle main engine dynamic pressure measurements. Appendix F: Data base plots for SSME tests 750-120 through 750-200

    NASA Technical Reports Server (NTRS)

    Coffin, T.

    1986-01-01

    A dynamic pressure data base and data base management system developed to characterize the Space Shuttle Main Engine (SSME) dynamic pressure environment is presented. The data base represents dynamic pressure measurements obtained during single engine hot firing tests of the SSME. Software is provided to permit statistical evaluation of selected measurements under specified operating conditions. An interpolation scheme is also included to estimate spectral trends with SSME power level.

  17. Sustainable infrastructure system modeling under uncertainties and dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Yongxi

    Infrastructure systems support human activities in transportation, communication, water use, and energy supply. The dissertation research focuses on critical transportation infrastructure and renewable energy infrastructure systems. The goal of the research efforts is to improve the sustainability of the infrastructure systems, with an emphasis on economic viability, system reliability and robustness, and environmental impacts. The research efforts in critical transportation infrastructure concern the development of strategic robust resource allocation strategies in an uncertain decision-making environment, considering both uncertain service availability and accessibility. The study explores the performances of different modeling approaches (i.e., deterministic, stochastic programming, and robust optimization) to reflect various risk preferences. The models are evaluated in a case study of Singapore and results demonstrate that stochastic modeling methods in general offers more robust allocation strategies compared to deterministic approaches in achieving high coverage to critical infrastructures under risks. This general modeling framework can be applied to other emergency service applications, such as, locating medical emergency services. The development of renewable energy infrastructure system development aims to answer the following key research questions: (1) is the renewable energy an economically viable solution? (2) what are the energy distribution and infrastructure system requirements to support such energy supply systems in hedging against potential risks? (3) how does the energy system adapt the dynamics from evolving technology and societal needs in the transition into a renewable energy based society? The study of Renewable Energy System Planning with Risk Management incorporates risk management into its strategic planning of the supply chains. The physical design and operational management are integrated as a whole in seeking mitigations against the potential risks caused by feedstock seasonality and demand uncertainty. Facility spatiality, time variation of feedstock yields, and demand uncertainty are integrated into a two-stage stochastic programming (SP) framework. In the study of Transitional Energy System Modeling under Uncertainty, a multistage stochastic dynamic programming is established to optimize the process of building and operating fuel production facilities during the transition. Dynamics due to the evolving technologies and societal changes and uncertainty due to demand fluctuations are the major issues to be addressed.

  18. A new apparatus design for high temperature (up to 950°C) quasi-elastic neutron scattering in a controlled gaseous environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    al-Wahish, Amal; Armitage, D.; al-Binni, U.

    Our design for a sample cell system suitable for high temperature Quasi-Elastic Neutron Scattering (QENS) experiments is presented. The apparatus was developed at the Spallation Neutron Source in Oak Ridge National Lab where it is currently in use. The design provides a special sample cell environment under controlled humid or dry gas flow over a wide range of temperature up to 950°C. Using such a cell, chemical, dynamical, and physical changes can be studied in situ under various operating conditions. And while the cell combined with portable automated gas environment system is especially useful for in situ studies of microscopicmore » dynamics under operational conditions that are similar to those of solid oxide fuel cells, it can additionally be used to study a wide variety of materials, such as high temperature protonconductors. The cell can also be used in many different neutron experiments when a suitable sample holder material is selected. Finally, the sample cell system has recently been used to reveal fast dynamic processes in quasi-elastic neutron scattering experiments, which standard probes (such as electrochemical impedance spectroscopy) could not detect. In this work, we outline the design of the sample cell system and present results demonstrating its abilities in high temperature QENS experiments.« less

  19. Exploring Complex Systems Aspects of Blackout Risk and Mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, David E; Carreras, Benjamin A; Lynch, Vickie E

    2011-01-01

    Electric power transmission systems are a key infrastructure, and blackouts of these systems have major consequences for the economy and national security. Analyses of blackout data suggest that blackout size distributions have a power law form over much of their range. This result is an indication that blackouts behave as a complex dynamical system. We use a simulation of an upgrading power transmission system to investigate how these complex system dynamics impact the assessment and mitigation of blackout risk. The mitigation of failures in complex systems needs to be approached with care. The mitigation efforts can move the system tomore » a new dynamic equilibrium while remaining near criticality and preserving the power law region. Thus, while the absolute frequency of blackouts of all sizes may be reduced, the underlying forces can still cause the relative frequency of large blackouts to small blackouts to remain the same. Moreover, in some cases, efforts to mitigate small blackouts can even increase the frequency of large blackouts. This result occurs because the large and small blackouts are not mutually independent, but are strongly coupled by the complex dynamics.« less

  20. A dynamic model for assessing the effects of management strategies on the reduction of construction and demolition waste.

    PubMed

    Yuan, Hongping; Chini, Abdol R; Lu, Yujie; Shen, Liyin

    2012-03-01

    During the past few decades, construction and demolition (C&D) waste has received increasing attention from construction practitioners and researchers worldwide. A plethora of research regarding C&D waste management has been published in various academic journals. However, it has been determined that existing studies with respect to C&D waste reduction are mainly carried out from a static perspective, without considering the dynamic and interdependent nature of the whole waste reduction system. This might lead to misunderstanding about the actual effect of implementing any waste reduction strategies. Therefore, this research proposes a model that can serve as a decision support tool for projecting C&D waste reduction in line with the waste management situation of a given construction project, and more importantly, as a platform for simulating effects of various management strategies on C&D waste reduction. The research is conducted using system dynamics methodology, which is a systematic approach that deals with the complexity - interrelationships and dynamics - of any social, economic and managerial system. The dynamic model integrates major variables that affect C&D waste reduction. In this paper, seven causal loop diagrams that can deepen understanding about the feedback relationships underlying C&D waste reduction system are firstly presented. Then a stock-flow diagram is formulated by using software for system dynamics modeling. Finally, a case study is used to illustrate the validation and application of the proposed model. Results of the case study not only built confidence in the model so that it can be used for quantitative analysis, but also assessed and compared the effect of three designed policy scenarios on C&D waste reduction. One major contribution of this study is the development of a dynamic model for evaluating C&D waste reduction strategies under various scenarios, so that best management strategies could be identified before being implemented in practice. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Closure measures for coarse-graining of the tent map.

    PubMed

    Pfante, Oliver; Olbrich, Eckehard; Bertschinger, Nils; Ay, Nihat; Jost, Jürgen

    2014-03-01

    We quantify the relationship between the dynamics of a time-discrete dynamical system, the tent map T and its iterations T(m), and the induced dynamics at a symbolical level in information theoretical terms. The symbol dynamics, given by a binary string s of length m, is obtained by choosing a partition point [Formula: see text] and lumping together the points [Formula: see text] s.t. T(i)(x) concurs with the i - 1th digit of s-i.e., we apply a so called threshold crossing technique. Interpreting the original dynamics and the symbolic one as different levels, this allows us to quantitatively evaluate and compare various closure measures that have been proposed for identifying emergent macro-levels of a dynamical system. In particular, we can see how these measures depend on the choice of the partition point α. As main benefit of this new information theoretical approach, we get all Markov partitions with full support of the time-discrete dynamical system induced by the tent map. Furthermore, we could derive an example of a Markovian symbol dynamics whose underlying partition is not Markovian at all, and even a whole hierarchy of Markovian symbol dynamics.

  2. Time-dependent nonlinear Jaynes-Cummings dynamics of a trapped ion

    NASA Astrophysics Data System (ADS)

    Krumm, F.; Vogel, W.

    2018-04-01

    In quantum interaction problems with explicitly time-dependent interaction Hamiltonians, the time ordering plays a crucial role for describing the quantum evolution of the system under consideration. In such complex scenarios, exact solutions of the dynamics are rarely available. Here we study the nonlinear vibronic dynamics of a trapped ion, driven in the resolved sideband regime with some small frequency mismatch. By describing the pump field in a quantized manner, we are able to derive exact solutions for the dynamics of the system. This eventually allows us to provide analytical solutions for various types of time-dependent quantities. In particular, we study in some detail the electronic and the motional quantum dynamics of the ion, as well as the time evolution of the nonclassicality of the motional quantum state.

  3. Existence and the dynamical behaviors of the positive solutions for a ratio-dependent predator-prey system with the crowing term and the weak growth

    NASA Astrophysics Data System (ADS)

    Zeng, Xianzhong; Gu, Yonggeng

    2018-03-01

    This paper deals with a ratio-dependent predator-prey system with the crowing term and the weak growth in the prey equation. Under the condition that the coefficient λ is less than a critical value λ1D (Ω0), we obtain existence of multiple positive steady state solutions of the predator-prey system and the dynamical behaviors of its positive solutions. Our results show that the predator and the prey possess not only the common coexistence, but also the very weak coexistence which both of the predator and the prey are very low. Meantime, the persistence of the positive solutions for the corresponding parabolic type system sometime depends strictly on the ratio of its initial data. Therefore, our results may be used to explain some special phenomena which under some bad environment, the predator and the prey may still coexist.

  4. CO and CO2 dual-gas detection based on mid-infrared wideband absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Dong, Ming; Zhong, Guo-qiang; Miao, Shu-zhuo; Zheng, Chuan-tao; Wang, Yi-ding

    2018-03-01

    A dual-gas sensor system is developed for CO and CO2 detection using a single broadband light source, pyroelectric detectors and time-division multiplexing (TDM) technique. A stepper motor based rotating system and a single-reflection spherical optical mirror are designed and adopted for realizing and enhancing dual-gas detection. Detailed measurements under static detection mode (without rotation) and dynamic mode (with rotation) are performed to study the performance of the sensor system for the two gas samples. The detection period is 7.9 s in one round of detection by scanning the two detectors. Based on an Allan deviation analysis, the 1σ detection limits under static operation are 3.0 parts per million (ppm) in volume and 2.6 ppm for CO and CO2, respectively, and those under dynamic operation are 9.4 ppm and 10.8 ppm for CO and CO2, respectively. The reported sensor has potential applications in various fields requiring CO and CO2 detection such as in the coal mine.

  5. Amplitude-Phase Modulation, Topological Horseshoe and Scaling Attractor of a Dynamical System

    NASA Astrophysics Data System (ADS)

    Li, Chun-Lai; Li, Wen; Zhang, Jing; Xie, Yuan-Xi; Zhao, Yi-Bo

    2016-09-01

    A three-dimensional autonomous chaotic system is discussed in this paper. Some basic dynamical properties of the system, including phase portrait, Poincaré map, power spectrum, Kaplan-Yorke dimension, Lyapunov exponent spectra, signal amplitude and topological horseshoe are studied theoretically and numerically. The main finding by analysis is that the signal amplitude can be modulated via controlling the coefficients of the linear term, cross-product term and squared term simultaneously or respectively, and the phase of x3 can be modulated by the product of the coefficients of the linear term and cross-product term. Furthermore, scaling chaotic attractors of this system are achieved by modified projective synchronization with an optimization-based linear coupling method, which is safer for secure communications than the existed synchronization scheme since the scaling factors can be regarded as the security encoding key. Supported by Hunan Provincial Natural Science Foundation of China under Grant No. 2016JJ4036, University Natural Science Foundation of Jiangsu Province under Grant No. 14KJB120007 and the National Natural Science Foundation of China under Grant Nos. 11504176 and 11602084

  6. Technology development program for an advanced microsheet glass concentrator

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.; Lacy, Dovie E.

    1990-01-01

    Solar Dynamic Space Power Systems are candidate electrical power generating systems for future NASA missions. One of the key components in a solar dynamic power system is the concentrator which collects the sun's energy and focuses it into a receiver. In 1985, the NASA Lewis Research Center initiated the Advanced Solar Dynamic Concentrator Program with funding from NASA's Office of Aeronautics and Space Technology (OAST). The objectives of the Advanced Concentrator Program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived (7 to 10 years) space solar dynamic concentrators. The Advanced Concentrator Program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. The Advanced Microsheet Glass Concentrator Program, a reflector concept, that is currently being investigated both in-house and under contract is discussed.

  7. Composite quantum collision models

    NASA Astrophysics Data System (ADS)

    Lorenzo, Salvatore; Ciccarello, Francesco; Palma, G. Massimo

    2017-09-01

    A collision model (CM) is a framework to describe open quantum dynamics. In its memoryless version, it models the reservoir R as consisting of a large collection of elementary ancillas: the dynamics of the open system S results from successive collisions of S with the ancillas of R . Here, we present a general formulation of memoryless composite CMs, where S is partitioned into the very open system under study S coupled to one or more auxiliary systems {Si} . Their composite dynamics occurs through internal S -{Si} collisions interspersed with external ones involving {Si} and the reservoir R . We show that important known instances of quantum non-Markovian dynamics of S —such as the emission of an atom into a reservoir featuring a Lorentzian, or multi-Lorentzian, spectral density or a qubit subject to random telegraph noise—can be mapped on to such memoryless composite CMs.

  8. Processes on the emergent landscapes of biochemical reaction networks and heterogeneous cell population dynamics: differentiation in living matters

    PubMed Central

    Li, Fangting

    2017-01-01

    The notion of an attractor has been widely employed in thinking about the nonlinear dynamics of organisms and biological phenomena as systems and as processes. The notion of a landscape with valleys and mountains encoding multiple attractors, however, has a rigorous foundation only for closed, thermodynamically non-driven, chemical systems, such as a protein. Recent advances in the theory of nonlinear stochastic dynamical systems and its applications to mesoscopic reaction networks, one reaction at a time, have provided a new basis for a landscape of open, driven biochemical reaction systems under sustained chemostat. The theory is equally applicable not only to intracellular dynamics of biochemical regulatory networks within an individual cell but also to tissue dynamics of heterogeneous interacting cell populations. The landscape for an individual cell, applicable to a population of isogenic non-interacting cells under the same environmental conditions, is defined on the counting space of intracellular chemical compositions x = (x1,x2, … ,xN) in a cell, where xℓ is the concentration of the ℓth biochemical species. Equivalently, for heterogeneous cell population dynamics xℓ is the number density of cells of the ℓth cell type. One of the insights derived from the landscape perspective is that the life history of an individual organism, which occurs on the hillsides of a landscape, is nearly deterministic and ‘programmed’, while population-wise an asynchronous non-equilibrium steady state resides mostly in the lowlands of the landscape. We argue that a dynamic ‘blue-sky’ bifurcation, as a representation of Waddington's landscape, is a more robust mechanism for a cell fate decision and subsequent differentiation than the widely pictured pitch-fork bifurcation. We revisit, in terms of the chemostatic driving forces upon active, living matter, the notions of near-equilibrium thermodynamic branches versus far-from-equilibrium states. The emergent landscape perspective permits a quantitative discussion of a wide range of biological phenomena as nonlinear, stochastic dynamics. PMID:28490602

  9. Statistical physics and physiology: monofractal and multifractal approaches

    NASA Technical Reports Server (NTRS)

    Stanley, H. E.; Amaral, L. A.; Goldberger, A. L.; Havlin, S.; Peng, C. K.

    1999-01-01

    Even under healthy, basal conditions, physiologic systems show erratic fluctuations resembling those found in dynamical systems driven away from a single equilibrium state. Do such "nonequilibrium" fluctuations simply reflect the fact that physiologic systems are being constantly perturbed by external and intrinsic noise? Or, do these fluctuations actually, contain useful, "hidden" information about the underlying nonequilibrium control mechanisms? We report some recent attempts to understand the dynamics of complex physiologic fluctuations by adapting and extending concepts and methods developed very recently in statistical physics. Specifically, we focus on interbeat interval variability as an important quantity to help elucidate possibly non-homeostatic physiologic variability because (i) the heart rate is under direct neuroautonomic control, (ii) interbeat interval variability is readily measured by noninvasive means, and (iii) analysis of these heart rate dynamics may provide important practical diagnostic and prognostic information not obtainable with current approaches. The analytic tools we discuss may be used on a wider range of physiologic signals. We first review recent progress using two analysis methods--detrended fluctuation analysis and wavelets--sufficient for quantifying monofractual structures. We then describe recent work that quantifies multifractal features of interbeat interval series, and the discovery that the multifractal structure of healthy subjects is different than that of diseased subjects.

  10. Dissipative particle dynamics: Effects of thermostating schemes on nano-colloid electrophoresis

    NASA Astrophysics Data System (ADS)

    Hassanzadeh Afrouzi, Hamid; Moshfegh, Abouzar; Farhadi, Mousa; Sedighi, Kurosh

    2018-05-01

    A novel fully explicit approach using dissipative particle dynamics (DPD) method is introduced in the present study to model the electrophoretic transport of nano-colloids in an electrolyte solution. Slater type charge smearing function included in 3D Ewald summation method is employed to treat electrostatic interaction. Performance of various thermostats are challenged to control the system temperature and study the dynamic response of colloidal electrophoretic mobility under practical ranges of external electric field (0 . 072 < E < 0 . 361 v/nm) covering linear to non-linear response regime, and ionic salt concentration (0.049 < SC < 0 . 69 [M]) covering weak to strong Debye screening of the colloid. System temperature and electrophoretic mobility both show a direct and inverse relationships respectively with electric field and colloidal repulsion; although they each respectively behave direct and inverse trends with salt concentration under various thermostats. Nosé-Hoover-Lowe-Andersen and Lowe-Andersen thermostats are found to function more effectively under high electric fields (E > 0 . 145[v/nm ]) while thermal equilibrium is maintained. Reasonable agreements are achieved by benchmarking the system radial distribution function with available EW3D modellings, as well as comparing reduced mobility against conventional Smoluchowski and Hückel theories, and numerical solution of Poisson-Boltzmann equation.

  11. Intraoperative CT in the assessment of posterior wall acetabular fracture stability.

    PubMed

    Cunningham, Brian; Jackson, Kelly; Ortega, Gil

    2014-04-01

    Posterior wall acetabular fractures that involve 10% to 40% of the posterior wall may or may not require an open reduction and internal fixation. Dynamic stress examination of the acetabular fracture under fluoroscopy has been used as an intraoperative method to assess joint stability. The aim of this study was to demonstrate the value of intraoperative ISO computed tomography (CT) examination using the Siemens ISO-C imaging system (Siemens Corp, Malvern, Pennsylvania) in the assessment of posterior wall acetabular fracture stability during stress examination under anesthesia. In 5 posterior wall acetabular fractures, standard fluoroscopic images (including anteroposterior pelvis and Judet radiographs) with dynamic stress examinations were compared with the ISO-C CT imaging system to assess posterior wall fracture stability during stress examination. After review of standard intraoperative fluoroscopic images under dynamic stress examination, all 5 cases appeared to demonstrate posterior wall stability; however, when the intraoperative images from the ISO-C CT imaging system demonstrated that 1 case showed fracture instability of the posterior wall segment during stress examination, open reduction and internal fixation was performed. The use of intraoperative ISO CT imaging has shown an initial improvement in the surgeon's ability to assess the intraoperative stability of posterior wall acetabular fractures during stress examination when compared with standard fluoroscopic images. Copyright 2014, SLACK Incorporated.

  12. Observation of quantum-memory-assisted entropic uncertainty relation under open systems, and its steering

    NASA Astrophysics Data System (ADS)

    Chen, Peng-Fei; Sun, Wen-Yang; Ming, Fei; Huang, Ai-Jun; Wang, Dong; Ye, Liu

    2018-01-01

    Quantum objects are susceptible to noise from their surrounding environments, interaction with which inevitably gives rise to quantum decoherence or dissipation effects. In this work, we examine how different types of local noise under an open system affect entropic uncertainty relations for two incompatible measurements. Explicitly, we observe the dynamics of the entropic uncertainty in the presence of quantum memory under two canonical categories of noisy environments: unital (phase flip) and nonunital (amplitude damping). Our study shows that the measurement uncertainty exhibits a non-monotonic dynamical behavior—that is, the amount of the uncertainty will first inflate, and subsequently decrease, with the growth of decoherence strengths in the two channels. In contrast, the uncertainty decreases monotonically with the growth of the purity of the initial state shared in prior. In order to reduce the measurement uncertainty in noisy environments, we put forward a remarkably effective strategy to steer the magnitude of uncertainty by means of a local non-unitary operation (i.e. weak measurement) on the qubit of interest. It turns out that this non-unitary operation can greatly reduce the entropic uncertainty, upon tuning the operation strength. Our investigations might thereby offer an insight into the dynamics and steering of entropic uncertainty in open systems.

  13. Motion performance and mooring system of a floating offshore wind turbine

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Zhang, Liang; Wu, Haitao

    2012-09-01

    The development of offshore wind farms was originally carried out in shallow water areas with fixed (seabed mounted) structures. However, countries with limited shallow water areas require innovative floating platforms to deploy wind turbines offshore in order to harness wind energy to generate electricity in deep seas. The performances of motion and mooring system dynamics are vital to designing a cost effective and durable floating platform. This paper describes a numerical model to simulate dynamic behavior of a new semi-submersible type floating offshore wind turbine (FOWT) system. The wind turbine was modeled as a wind block with a certain thrust coefficient, and the hydrodynamics and mooring system dynamics of the platform were calculated by SESAM software. The effect of change in environmental conditions on the dynamic response of the system under wave and wind loading was examined. The results indicate that the semi-submersible concept has excellent performance and SESAM could be an effective tool for floating wind turbine design and analysis.

  14. Assessment of dynamic properties and stiffness of composite bridges with pavement defects

    NASA Astrophysics Data System (ADS)

    Kartopol'tsev, Vladimir; Kartopol'tsev, Andrei; Kolmakov, Boris

    2017-01-01

    This paper is aimed at assessing the dynamic properties and stiffness of the reinforced concrete roadway slab under live loads that impact composite bridge girders considering pavement defects. A special attention is paid to the reinforced concrete roadway slab as a transfer member of forced oscillations. The test results obtained for bridges with different spans ranging from 24 to 110 m are presented to assess the behavior of the reinforced concrete roadway slab and the dynamic stiffness of bridge span allowed for the pavement defects. Dynamic tests are carried out under controlled and random loads that simulate live load interaction with the span and the pavement with defects. The differential equations are presented for vertical oscillations of spans, pavement defect parameter, Eigen frequency and others. As a result of the experimental research the equation is derived to ascertain the dynamic stiffness of the vehicle-span system.

  15. Driven evolution of a constitutional dynamic library of molecular helices toward the selective generation of [2 x 2] gridlike arrays under the pressure of metal ion coordination.

    PubMed

    Giuseppone, Nicolas; Schmitt, Jean-Louis; Lehn, Jean-Marie

    2006-12-27

    Constitutional dynamics, self-assembly, and helical-folding control are brought together in the efficient Sc(OTf)3/microwave-catalyzed transimination of helical oligohydrazone strands, yielding highly diverse dynamic libraries of interconverting constituents through assembly, dissociation, and exchange of components. The transimination-type mechanism of the ScIII-promoted exchange, as well as its regioselectivity, occurring only at the extremities of the helical strands, allow one to perform directional terminal polymerization/depolymerization processes when starting with dissymmetric strands. A particular library is subsequently brought to express quantitatively [2 x 2] gridlike metallosupramolecular arrays in the presence of ZnII ions by component recombination generating the correct ligand from the dynamic set of interconverting strands. This behavior represents a process of driven evolution of a constitutional dynamic chemical system under the pressure (coordination interaction) of an external effector (metal ions).

  16. PT -symmetric slowing down of decoherence

    DOE PAGES

    Gardas, Bartlomiej; Deffner, Sebastian; Saxena, Avadh Behari

    2016-10-27

    Here, we invesmore » tigate PT -symmetric quantum systems ultraweakly coupled to an environment. We find that such open systems evolve under PT -symmetric, purely dephasing and unital dynamics. The dynamical map describing the evolution is then determined explicitly using a quantum canonical transformation. Furthermore, we provide an explanation of why PT -symmetric dephasing-type interactions lead to a critical slowing down of decoherence. This effect is further exemplified with an experimentally relevant system, a PT -symmetric qubit easily realizable, e.g., in optical or microcavity experiments.« less

  17. PT -symmetric slowing down of decoherence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardas, Bartlomiej; Deffner, Sebastian; Saxena, Avadh Behari

    Here, we invesmore » tigate PT -symmetric quantum systems ultraweakly coupled to an environment. We find that such open systems evolve under PT -symmetric, purely dephasing and unital dynamics. The dynamical map describing the evolution is then determined explicitly using a quantum canonical transformation. Furthermore, we provide an explanation of why PT -symmetric dephasing-type interactions lead to a critical slowing down of decoherence. This effect is further exemplified with an experimentally relevant system, a PT -symmetric qubit easily realizable, e.g., in optical or microcavity experiments.« less

  18. Dynamic NMR under nonstationary conditions: Theoretical model, numerical calculation, and potential of application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babailov, S. P., E-mail: babajlov@niic.nsc.ru; National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050; Purtov, P. A.

    An expression has been derived for the time dependence of the NMR line shape for systems with multi-site chemical exchange in the absence of spin-spin coupling, in a zero saturation limit. The dynamics of variation of the NMR line shape with time is considered in detail for the case of two-site chemical exchange. Mathematical programs have been designed for numerical simulation of the NMR spectra of chemical exchange systems. The analytical expressions obtained are useful for NMR line shape simulations for systems with photoinduced chemical exchange.

  19. Time-resolved spectroscopy at surfaces and adsorbate dynamics:insights from a model-system approach

    NASA Astrophysics Data System (ADS)

    Boström, Emil; Mikkelsen, Anders; Verdozzi, Claudio

    We introduce a finite-system, model description of the initial stages of femtosecond laser induced desorption at surfaces. Using the exact many-body time evolution and also results from a novel time-dependent DFT description for electron-nuclear systems, we analyse the competition between several surface-response mechanisms and electronic correlations in the transient and longer time dynamics under the influence of dipole-coupled fields. Our model allows us to explore how coherent multiple-pulse protocols impact desorption in a variety of prototypical experiments.

  20. Dynamics of polymer nanoparticles and chains.

    NASA Astrophysics Data System (ADS)

    Streletzky, Kiril; McKenna, John; Hillier, Gerry

    2006-10-01

    We present a Dynamic Light Scattering study of transport properties of the polymer chains and nanoparticles made out of the same starting solution. The spectra of both systems are highly non-exponential requiring a spectral time moment analysis. Our findings indicate the existence of several modes of relaxation in both systems. The comparison of the mean relaxation rates and diffusion coefficients of the different modes in two systems under good solvent conditions will be reported. Temperature sensitivity of the polymer nanoparticles and its possible applications in pharmaceutical, coatings, and petroleum industries will also be discussed.

  1. Estimation Method of Center of Inertia Frequency based on Multiple Synchronized Phasor Measurement Data

    NASA Astrophysics Data System (ADS)

    Hashiguchi, Takuhei; Watanabe, Masayuki; Goda, Tadahiro; Mitani, Yasunori; Saeki, Osamu; Hojo, Masahide; Ukai, Hiroyuki

    Open access and deregulation have been introduced into Japan and some independent power producers (IPP) and power producer and suppliers (PPS) are participating in the power generation business, which is possible to makes power system dynamics more complex. To maintain power system condition under various situations, it is essential that a real time measurement system over wide area is available. Therefore we started a project to construct an original measurement system by the use of phasor measurement units (PMU) in Japan. This paper describes the estimation method of a center of inertia frequency by applying actual measurement data. The application of this method enables us to extract power system oscillations from measurement data appropriately. Moreover, the analysis of power system dynamics for power system oscillations occurring in western Japan 60Hz system is shown. These results will lead to the clarification of power system dynamics and may make it possible to realize the monitoring of power system oscillations associated with power system stability.

  2. Leveraging natural dynamical structures to explore multi-body systems

    NASA Astrophysics Data System (ADS)

    Bosanac, Natasha

    Multi-body systems have become the target of an increasing number of mission concepts and observations, supplying further information about the composition, origin and dynamical environment of bodies within the solar system and beyond. In many of these scenarios, identification and characterization of the particular solutions that exist in a circular restricted three-body model is valuable. This insight into the underlying natural dynamical structures is achieved via the application of dynamical systems techniques. One application of such analysis is trajectory design for CubeSats, which are intended to explore cislunar space and other planetary systems. These increasingly complex mission objectives necessitate innovative trajectory design strategies for spacecraft within our solar system, as well as the capability for rapid and well-informed redesign. Accordingly, a trajectory design framework is constructed using dynamical systems techniques and demonstrated for the Lunar IceCube mission. An additional application explored in this investigation involves the motion of an exoplanet near a binary star system. Due to the strong gravitational field near a binary star, physicists have previously leveraged these systems as testbeds for examining the validity of gravitational and relativistic theories. In this investigation, a preliminary analysis into the effect of an additional three-body interaction on the dynamical environment near a large mass ratio binary system is conducted. As demonstrated through both of these sample applications, identification and characterization of the natural particular solutions that exist within a multi-body system supports a well-informed and guided analysis.

  3. Polymer dynamics under cylindrical confinement featuring a locally repulsive surface: A quasielastic neutron scattering study

    DOE PAGES

    Krutyeva, M.; Pasini, S.; Monkenbusch, M.; ...

    2017-02-02

    We investigated the effect of intermediate cylindrical confinement with locally repulsive walls on the segmental and entanglement dynamics of a polymer melt by quasielastic neutron scattering. As a reference, we measured the corresponding polymer melt under identical conditions. The locally repulsive confinement was realized by hydrophilic anodic alumina nanopores with a diameter of 20 nm. The end-to-end distance of the hydrophobic infiltrated polyethylene-alt-propylene was close to this diameter. In the case of hard wall repulsion with negligible local attraction, several simulations predicted an acceleration of segmental dynamics close to the wall. Other than in attractive or neutral systems, where themore » segmental dynamics is slowed down, we found that the segmental dynamics in the nanopores is identical to the local mobility in the bulk. Even under very careful scrutiny, we could not find any acceleration of the surface-near segmental motion. On the larger time scale, the neutron spin-echo experiment showed that the Rouse relaxation was not altered by confinement effects. Moreover, the entanglement dynamics was not affected. Thus at moderate confinement conditions, facilitated by locally repulsive walls, the dynamics remains as in the bulk melt, a result that is not so clear from simulations.« less

  4. The Enemy at Home: Images of Addiction in American Society.

    ERIC Educational Resources Information Center

    Statman, James M.

    1993-01-01

    Notes that much of American public, political leadership, and service providers share marked denial of antecedents, dynamics, and consequences of dysfunctional drug use. Examines dynamics of this denial, describes popular images of drug use and drug users in American culture, and considers roots of these images in the underlying value systems of…

  5. Dynamic analysis of a 5-MW tripod offshore wind turbine by considering fluid-structure interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Li-wei; Li, Xin

    2017-10-01

    Fixed offshore wind turbines usually have large underwater supporting structures. The fluid influences the dynamic characteristics of the structure system. The dynamic model of a 5-MW tripod offshore wind turbine considering the pile-soil system and fluid structure interaction (FSI) is established, and the structural modes in air and in water are obtained by use of ANSYS. By comparing low-order natural frequencies and mode shapes, the influence of sea water on the free vibration characteristics of offshore wind turbine is analyzed. On basis of the above work, seismic responses under excitation by El-Centro waves are calculated by the time-history analysis method. The results reveal that the dynamic responses such as the lateral displacement of the foundation and the section bending moment of the tubular piles increase substantially under the influence of the added-mass and hydrodynamic pressure of sea water. The method and conclusions presented in this paper can provide a theoretical reference for structure design and analysis of offshore wind turbines fixed in deep seawater.

  6. Dynamic mechanical control of local vacancies in NiO thin films

    NASA Astrophysics Data System (ADS)

    Seol, Daehee; Yang, Sang Mo; Jesse, Stephen; Choi, Minseok; Hwang, Inrok; Choi, Taekjib; Park, Bae Ho; Kalinin, Sergei V.; Kim, Yunseok

    2018-07-01

    The manipulation of local ionic behavior via external stimuli in oxide systems is of great interest because it can help in directly tuning material properties. Among external stimuli, mechanical force has attracted intriguing attention as novel stimulus for ionic modulation. Even though effectiveness of mechanical force on local ionic modulation has been validated in terms of static effect, its real-time i.e., dynamic, behavior under an application of the force is barely investigated in spite of its crucial impact on device performance such as force or pressure sensors. In this study, we explore dynamic ionic behavior modulated by mechanical force in NiO thin films using electrochemical strain microscopy (ESM). Ionically mediated ESM hysteresis loops were significantly varied under an application of mechanical force. Based on these results, we were able to investigate relative relationship between the force and voltage effects on ionic motion and, further, control effectively ionic behavior through combination of mechanical and electrical stimuli. Our results can provide comprehensive information on the effect of mechanical forces on ionic dynamics in ionic systems.

  7. On the slow dynamics of near-field acoustically levitated objects under High excitation frequencies

    NASA Astrophysics Data System (ADS)

    Ilssar, Dotan; Bucher, Izhak

    2015-10-01

    This paper introduces a simplified analytical model describing the governing dynamics of near-field acoustically levitated objects. The simplification converts the equation of motion coupled with the partial differential equation of a compressible fluid, into a compact, second order ordinary differential equation, where the local stiffness and damping are transparent. The simplified model allows one to more easily analyse and design near-field acoustic levitation based systems, and it also helps to devise closed-loop controller algorithms for such systems. Near-field acoustic levitation employs fast ultrasonic vibrations of a driving surface and exploits the viscosity and the compressibility of a gaseous medium to achieve average, load carrying pressure. It is demonstrated that the slow dynamics dominates the transient behaviour, while the time-scale associated with the fast, ultrasonic excitation has a small presence in the oscillations of the levitated object. Indeed, the present paper formulates the slow dynamics under an ultrasonic excitation without the need to explicitly consider the latter. The simplified model is compared with a numerical scheme based on Reynolds equation and with experiments, both showing reasonably good results.

  8. Dynamic mechanical control of local vacancies in NiO thin films.

    PubMed

    Seol, Daehee; Yang, Sang Mo; Jesse, Stephen; Choi, Minseok; Hwang, Inrok; Choi, Taekjib; Park, Bae Ho; Kalinin, Sergei V; Kim, Yunseok

    2018-07-06

    The manipulation of local ionic behavior via external stimuli in oxide systems is of great interest because it can help in directly tuning material properties. Among external stimuli, mechanical force has attracted intriguing attention as novel stimulus for ionic modulation. Even though effectiveness of mechanical force on local ionic modulation has been validated in terms of static effect, its real-time i.e., dynamic, behavior under an application of the force is barely investigated in spite of its crucial impact on device performance such as force or pressure sensors. In this study, we explore dynamic ionic behavior modulated by mechanical force in NiO thin films using electrochemical strain microscopy (ESM). Ionically mediated ESM hysteresis loops were significantly varied under an application of mechanical force. Based on these results, we were able to investigate relative relationship between the force and voltage effects on ionic motion and, further, control effectively ionic behavior through combination of mechanical and electrical stimuli. Our results can provide comprehensive information on the effect of mechanical forces on ionic dynamics in ionic systems.

  9. Variable threshold algorithm for division of labor analyzed as a dynamical system.

    PubMed

    Castillo-Cagigal, Manuel; Matallanas, Eduardo; Navarro, Iñaki; Caamaño-Martín, Estefanía; Monasterio-Huelin, Félix; Gutiérrez, Álvaro

    2014-12-01

    Division of labor is a widely studied aspect of colony behavior of social insects. Division of labor models indicate how individuals distribute themselves in order to perform different tasks simultaneously. However, models that study division of labor from a dynamical system point of view cannot be found in the literature. In this paper, we define a division of labor model as a discrete-time dynamical system, in order to study the equilibrium points and their properties related to convergence and stability. By making use of this analytical model, an adaptive algorithm based on division of labor can be designed to satisfy dynamic criteria. In this way, we have designed and tested an algorithm that varies the response thresholds in order to modify the dynamic behavior of the system. This behavior modification allows the system to adapt to specific environmental and collective situations, making the algorithm a good candidate for distributed control applications. The variable threshold algorithm is based on specialization mechanisms. It is able to achieve an asymptotically stable behavior of the system in different environments and independently of the number of individuals. The algorithm has been successfully tested under several initial conditions and number of individuals.

  10. Control Parameters Optimization Based on Co-Simulation of a Mechatronic System for an UA-Based Two-Axis Inertially Stabilized Platform

    PubMed Central

    Zhou, Xiangyang; Zhao, Beilei; Gong, Guohao

    2015-01-01

    This paper presents a method based on co-simulation of a mechatronic system to optimize the control parameters of a two-axis inertially stabilized platform system (ISP) applied in an unmanned airship (UA), by which high control performance and reliability of the ISP system are achieved. First, a three-dimensional structural model of the ISP is built by using the three-dimensional parametric CAD software SOLIDWORKS®; then, to analyze the system’s kinematic and dynamic characteristics under operating conditions, dynamics modeling is conducted by using the multi-body dynamics software ADAMS™, thus the main dynamic parameters such as displacement, velocity, acceleration and reaction curve are obtained, respectively, through simulation analysis. Then, those dynamic parameters were input into the established MATLAB® SIMULINK® controller to simulate and test the performance of the control system. By these means, the ISP control parameters are optimized. To verify the methods, experiments were carried out by applying the optimized parameters to the control system of a two-axis ISP. The results show that the co-simulation by using virtual prototyping (VP) is effective to obtain optimized ISP control parameters, eventually leading to high ISP control performance. PMID:26287210

  11. [Dynamic Wavelength Characteristics of Semiconductor Laser in Electric Current Tuning Process].

    PubMed

    Liu, Jing-wang; Li, Zhong-yang; Zhang, Wei-zhong; Wang, Qing-chuan; An, Ying; Li, Yong-hui

    2015-11-01

    In order to measure the dynamic wavelength of semiconductor lasers under current tuning, an improved method of fi- ber delay self-heterodyne interferometer was proposed. The measurement principle, as well the beat frequency and dynamic wavelength of recursive relations are theoretically analyzed. The application of the experimental system measured the dynamic wavelength characteristics of distributed feedback semiconductor laser and the static wavelength characteristics measurement by the spectrometer. The comparison between the two values indicates that both dynamic and static wavelength characteristic with the current tuning are the similar non-linear curve. In 20-100 mA current tuning range, the difference of them is less than 0.002 nm. At the same time, according to the absorption lines of CO2 gas, and HITRAN spectrum library, we can identify the dynamic wavelength of the laser. Comparing it with dynamic wavelength calculated by the beat signal, the difference is only 0.001 nm, which verifies the reliability of the experimental system to measure the dynamic wavelength.

  12. Dynamic interaction of monowheel inclined vehicle-vibration platform coupled system with quadratic and cubic nonlinearities

    NASA Astrophysics Data System (ADS)

    Zhou, Shihua; Song, Guiqiu; Sun, Maojun; Ren, Zhaohui; Wen, Bangchun

    2018-01-01

    In order to analyze the nonlinear dynamics and stability of a novel design for the monowheel inclined vehicle-vibration platform coupled system (MIV-VPCS) with intermediate nonlinearity support subjected to a harmonic excitation, a multi-degree of freedom lumped parameter dynamic model taking into account the dynamic interaction of the MIV-VPCS with quadratic and cubic nonlinearities is presented. The dynamical equations of the coupled system are derived by applying the displacement relationship, interaction force relationship at the contact position and Lagrange's equation, which are further discretized into a set of nonlinear ordinary differential equations with coupled terms by Galerkin's truncation. Based on the mathematical model, the coupled multi-body nonlinear dynamics of the vibration system is investigated by numerical method, and the parameters influences of excitation amplitude, mass ratio and inclined angle on the dynamic characteristics are precisely analyzed and discussed by bifurcation diagram, Largest Lyapunov exponent and 3-D frequency spectrum. Depending on different ranges of system parameters, the results show that the different motions and jump discontinuity appear, and the coupled system enters into chaotic behavior through different routes (period-doubling bifurcation, inverse period-doubling bifurcation, saddle-node bifurcation and Hopf bifurcation), which are strongly attributed to the dynamic interaction of the MIV-VPCS. The decreasing excitation amplitude and inclined angle could reduce the higher order bifurcations, and effectively control the complicated nonlinear dynamic behaviors under the perturbation of low rotational speed. The first bifurcation and chaotic motion occur at lower value of inclined angle, and the chaotic behavior lasts for larger intervals with higher rotational speed. The investigation results could provide a better understanding of the nonlinear dynamic behaviors for the dynamic interaction of the MIV-VPCS.

  13. A Power Regulation and Droop Mode Control Method for a Stand-Alone Load Fed from a PV-Current Source Inverter

    NASA Astrophysics Data System (ADS)

    Khayamy, Mehdy; Ojo, Olorunfemi

    2015-04-01

    A current source inverter fed from photovoltaic cells is proposed to power an autonomous load when operating under either power regulation or voltage and frequency drooping modes. Input-output linearization technique is applied to the overall nonlinear system to achieve a globally stable system under feasible operating conditions. After obtaining the steady-state model that demarcates the modes of operation, computer Simulation results for variations in irradiance and the load power of the controlled system are generated in which an acceptable dynamic response of the power generator system under the two modes of operation is observed.

  14. Decentralized stochastic control

    NASA Technical Reports Server (NTRS)

    Speyer, J. L.

    1980-01-01

    Decentralized stochastic control is characterized by being decentralized in that the information to one controller is not the same as information to another controller. The system including the information has a stochastic or uncertain component. This complicates the development of decision rules which one determines under the assumption that the system is deterministic. The system is dynamic which means the present decisions affect future system responses and the information in the system. This circumstance presents a complex problem where tools like dynamic programming are no longer applicable. These difficulties are discussed from an intuitive viewpoint. Particular assumptions are introduced which allow a limited theory which produces mechanizable affine decision rules.

  15. Study of an External Neutron Source for an Accelerator-Driven System using the PHITS Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugawara, Takanori; Iwasaki, Tomohiko; Chiba, Takashi

    A code system for the Accelerator Driven System (ADS) has been under development for analyzing dynamic behaviors of a subcritical core coupled with an accelerator. This code system named DSE (Dynamics calculation code system for a Subcritical system with an External neutron source) consists of an accelerator part and a reactor part. The accelerator part employs a database, which is calculated by using PHITS, for investigating the effect related to the accelerator such as the changes of beam energy, beam diameter, void generation, and target level. This analysis method using the database may introduce some errors into dynamics calculations sincemore » the neutron source data derived from the database has some errors in fitting or interpolating procedures. In this study, the effects of various events are investigated to confirm that the method based on the database is appropriate.« less

  16. Using directed information for influence discovery in interconnected dynamical systems

    NASA Astrophysics Data System (ADS)

    Rao, Arvind; Hero, Alfred O.; States, David J.; Engel, James Douglas

    2008-08-01

    Structure discovery in non-linear dynamical systems is an important and challenging problem that arises in various applications such as computational neuroscience, econometrics, and biological network discovery. Each of these systems have multiple interacting variables and the key problem is the inference of the underlying structure of the systems (which variables are connected to which others) based on the output observations (such as multiple time trajectories of the variables). Since such applications demand the inference of directed relationships among variables in these non-linear systems, current methods that have a linear assumption on structure or yield undirected variable dependencies are insufficient. Hence, in this work, we present a methodology for structure discovery using an information-theoretic metric called directed time information (DTI). Using both synthetic dynamical systems as well as true biological datasets (kidney development and T-cell data), we demonstrate the utility of DTI in such problems.

  17. Disorder-mediated crowd control in an active matter system

    NASA Astrophysics Data System (ADS)

    Pinçe, Erçağ; Velu, Sabareesh K. P.; Callegari, Agnese; Elahi, Parviz; Gigan, Sylvain; Volpe, Giovanni; Volpe, Giorgio

    2016-03-01

    Living active matter systems such as bacterial colonies, schools of fish and human crowds, display a wealth of emerging collective and dynamic behaviours as a result of far-from-equilibrium interactions. The dynamics of these systems are better understood and controlled considering their interaction with the environment, which for realistic systems is often highly heterogeneous and disordered. Here, we demonstrate that the presence of spatial disorder can alter the long-term dynamics in a colloidal active matter system, making it switch between gathering and dispersal of individuals. At equilibrium, colloidal particles always gather at the bottom of any attractive potential; however, under non-equilibrium driving forces in a bacterial bath, the colloids disperse if disorder is added to the potential. The depth of the local roughness in the environment regulates the transition between gathering and dispersal of individuals in the active matter system, thus inspiring novel routes for controlling emerging behaviours far from equilibrium.

  18. Request-Based Mediated Execution

    ERIC Educational Resources Information Center

    Sundresh, Sameer

    2009-01-01

    How do you dynamically customize the programming language available in a context within an existing system, without changing the underlying system? This dissertation introduces a language design approach that addresses this problem. The basic idea is to structure programs as systems of multiple interacting levels of abstraction, where all of the…

  19. 5 CFR 831.2202 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... computing the present value are those used by the Board of Actuaries of the Civil Service Retirement System for valuation of the System, based on dynamic assumptions. The present value factors are unisex... based on mortality rates for non-disability annuitants under the Civil Service Retirement System; and (b...

  20. Mixing Silicate Melts with High Viscosity Contrast by Chaotic Dynamics: Results from a New Experimental Device

    NASA Astrophysics Data System (ADS)

    de Campos, Cristina; Perugini, Diego; Ertel-Ingrisch, Werner; Dingwell, Donald B.; Poli, Giampiero

    2010-05-01

    A new experimental device has been developed to perform chaotic mixing between high viscosity melts under controlled fluid-dynamic conditions. The apparatus is based on the Journal Bearing System (JBS). It consists of an outer cylinder hosting the melts of interest and an inner cylinder, which is eccentrically located. Both cylinders can be independently moved to generate chaotic streamlines in the mixing system. Two experiments were performed using as end-members different proportions of a peralkaline haplogranite and a mafic melt, corresponding to the 1 atm eutectic composition in the An-Di binary system. The two melts were stirred together in the JBS for ca. two hours, at 1,400° C and under laminar fluid dynamic condition (Re of the order of 10-7). The viscosity ratio between the two melts, at the beginning of the experiment, was of the order of 103. Optical analyses of experimental samples revealed, at short length scale (of the order of μm), a complex pattern of mixed structures. These consisted of an intimate distribution of filaments; a complex inter-fingering of the two melts. Such features are typically observed in rocks thought to be produced by magma mixing processes. Stretching and folding dynamics between the melts induced chaotic flow fields and generated wide compositional interfaces. In this way, chemical diffusion processes become more efficient, producing melts with highly heterogeneous compositions. A remarkable modulation of compositional fields has been obtained by performing short time-scale experiments and using melts with a high viscosity ratio. This indicates that chaotic mixing of magmas can be a very efficient process in modulating compositional variability in igneous systems, especially under high viscosity ratios and laminar fluid-dynamic regimes. Our experimental device may replicate magma mixing features, observed in natural rocks, and therefore open new frontiers in the study of this important petrologic and volcanological process.

  1. Dynamic information routing in complex networks

    PubMed Central

    Kirst, Christoph; Timme, Marc; Battaglia, Demian

    2016-01-01

    Flexible information routing fundamentally underlies the function of many biological and artificial networks. Yet, how such systems may specifically communicate and dynamically route information is not well understood. Here we identify a generic mechanism to route information on top of collective dynamical reference states in complex networks. Switching between collective dynamics induces flexible reorganization of information sharing and routing patterns, as quantified by delayed mutual information and transfer entropy measures between activities of a network's units. We demonstrate the power of this mechanism specifically for oscillatory dynamics and analyse how individual unit properties, the network topology and external inputs co-act to systematically organize information routing. For multi-scale, modular architectures, we resolve routing patterns at all levels. Interestingly, local interventions within one sub-network may remotely determine nonlocal network-wide communication. These results help understanding and designing information routing patterns across systems where collective dynamics co-occurs with a communication function. PMID:27067257

  2. Principles for the dynamic maintenance of cortical polarity

    PubMed Central

    Marco, Eugenio; Wedlich-Soldner, Roland; Li, Rong; Altschuler, Steven J.; Wu, Lani F.

    2007-01-01

    Summary Diverse cell types require the ability to dynamically maintain polarized membrane protein distributions through balancing transport and diffusion. However, design principles underlying dynamically maintained cortical polarity are not well understood. Here we constructed a mathematical model for characterizing the morphology of dynamically polarized protein distributions. We developed analytical approaches for measuring all model parameters from single-cell experiments. We applied our methods to a well-characterized system for studying polarized membrane proteins: budding yeast cells expressing activated Cdc42. We found that balanced diffusion and colocalized transport to and from the plasma membrane were sufficient for accurately describing polarization morphologies. Surprisingly, the model predicts that polarized regions are defined with a precision that is nearly optimal for measured transport rates, and that polarity can be dynamically stabilized through positive feedback with directed transport. Our approach provides a step towards understanding how biological systems shape spatially precise, unambiguous cortical polarity domains using dynamic processes. PMID:17448998

  3. An assay to image neuronal microtubule dynamics in mice.

    PubMed

    Kleele, Tatjana; Marinković, Petar; Williams, Philip R; Stern, Sina; Weigand, Emily E; Engerer, Peter; Naumann, Ronald; Hartmann, Jana; Karl, Rosa M; Bradke, Frank; Bishop, Derron; Herms, Jochen; Konnerth, Arthur; Kerschensteiner, Martin; Godinho, Leanne; Misgeld, Thomas

    2014-09-12

    Microtubule dynamics in neurons play critical roles in physiology, injury and disease and determine microtubule orientation, the cell biological correlate of neurite polarization. Several microtubule binding proteins, including end-binding protein 3 (EB3), specifically bind to the growing plus tip of microtubules. In the past, fluorescently tagged end-binding proteins have revealed microtubule dynamics in vitro and in non-mammalian model organisms. Here, we devise an imaging assay based on transgenic mice expressing yellow fluorescent protein-tagged EB3 to study microtubules in intact mammalian neurites. Our approach allows measurement of microtubule dynamics in vivo and ex vivo in peripheral nervous system and central nervous system neurites under physiological conditions and after exposure to microtubule-modifying drugs. We find an increase in dynamic microtubules after injury and in neurodegenerative disease states, before axons show morphological indications of degeneration or regrowth. Thus increased microtubule dynamics might serve as a general indicator of neurite remodelling in health and disease.

  4. International Space Station Modal Correction Analysis

    NASA Technical Reports Server (NTRS)

    Fotz[atrocl. Lrostom; Grugoer. < ocjae; Laible, Michael; Sugavanam, Sujatha

    2012-01-01

    This paper summarizes the on-orbit modal test and the related modal analysis, model validation and correlation performed for the ISS Stage ULF4, DTF S4-1A, October 11,2010, GMT 284/06:13:00.00. The objective of this analysis is to validate and correlate analytical models with the intent to verify the ISS critical interface dynamic loads and improve fatigue life prediction. For the ISS configurations under consideration, on-orbit dynamic responses were collected with Russian vehicles attached and without the Orbiter attached to the ISS. ISS instrumentation systems that were used to collect the dynamic responses during the DTF S4-1A included the Internal Wireless Instrumentation System (IWIS), External Wireless Instrumentation System (EWIS), Structural Dynamic Measurement System (SDMS), Space Acceleration Measurement System (SAMS), Inertial Measurement Unit (IMU) and ISS External Cameras. Experimental modal analyses were performed on the measured data to extract modal parameters including frequency, damping and mode shape information. Correlation and comparisons between test and analytical modal parameters were performed to assess the accuracy of models for the ISS configuration under consideration. Based on the frequency comparisons, the accuracy of the mathematical models is assessed and model refinement recommendations are given. Section 2.0 of this report presents the math model used in the analysis. This section also describes the ISS configuration under consideration and summarizes the associated primary modes of interest along with the fundamental appendage modes. Section 3.0 discusses the details of the ISS Stage ULF4 DTF S4-1A test. Section 4.0 discusses the on-orbit instrumentation systems that were used in the collection of the data analyzed in this paper. The modal analysis approach and results used in the analysis of the collected data are summarized in Section 5.0. The model correlation and validation effort is reported in Section 6.0. Conclusions and recommendations drawn from this analysis are included in Section 7.0.

  5. Synchronous Motions Across the Instrumental Climate Record

    NASA Astrophysics Data System (ADS)

    Carl, Peter

    The Earth's climate system bears a rich variety of feedback mechanisms that may give rise to complex, evolving modal structures under internal and external control. Various types of synchronization may be identified in the system's motion when looking at representative time series of the instrumental period through the glasses of an advanced technique of sparse data approximation, the Matching Pursuit (MP) approach. To disentangle the emerging network of oscillatory modes to the degree that climate dynamics turns out to be separable, a large dictionary of "Gaussian logons," i.e. frequency modulated (FM) Gabor atoms, is applied. Though the extracted modes make up linear decompositions, this flexible analyzing signal matches highly nonlinear waveforms. Univariate analyses over the period 1870-1997 are presented of a set of customary time series in annual resolution, comprising global and regional climate, central European synoptic systems, German precipitation, and runoff of the Elbe river near Dresden. All the evidence from this first-generation MP-FM study, obtained in subsequent multivariate syntheses, points to dynamically excited regimes of an organized yet complex climate system under permanent change—perhaps a (pre)chaotic one at centennial timescales, suggesting a "chaos control" perspective on global climate dynamics and change. Findings and conclusions include, among others, internal structure of reconstructed insolation, the episodic nature of global warming as reflected in multidecadal temperature modes, their swarm of "interdomain" companions across the whole system that unveils an unknown regime character of interannual climate dynamics, and the apparent onset early in the 1990s of the present thermal stagnation.

  6. Dynamic tests of composite panels of an aircraft wing

    NASA Astrophysics Data System (ADS)

    Splichal, Jan; Pistek, Antonin; Hlinka, Jiri

    2015-10-01

    The paper describes the analysis of aerospace composite structures under dynamic loading. Today, it is common to use design procedures based on assumption of static loading only, and dynamic loading is rarely assumed and applied in design and certification of aerospace structures. The paper describes the application of dynamic loading for the design of aircraft structures, and the validation of the procedure on a selected structure. The goal is to verify the possibility of reducing the weight through improved design/modelling processes using dynamic loading instead of static loading. The research activity focuses on the modelling and testing of a composite panel representing a local segment of an aircraft wing section, investigating in particular the buckling behavior under dynamic loading. Finite Elements simulation tools are discussed, as well as the advantages of using a digital optical measurement system for the evaluation of the tests. The comparison of the finite element simulations with the results of the tests is presented.

  7. The groningen laryngomalacia classification system--based on systematic review and dynamic airway changes.

    PubMed

    van der Heijden, Martijn; Dikkers, Frederik G; Halmos, Gyorgy B

    2015-12-01

    Laryngomalacia is the most common cause of dyspnea and stridor in newborn infants. Laryngomalacia is a dynamic change of the upper airway based on abnormally pliable supraglottic structures, which causes upper airway obstruction. In the past, different classification systems have been introduced. Until now no classification system is widely accepted and applied. Our goal is to provide a simple and complete classification system based on systematic literature search and our experiences. Retrospective cohort study with literature review. All patients with laryngomalacia under the age of 5 at time of diagnosis were included. Photo and video documentation was used to confirm diagnosis and characteristics of dynamic airway change. Outcome was compared with available classification systems in literature. Eighty-five patients were included. In contrast to other classification systems, only three typical different dynamic changes have been identified in our series. Two existing classification systems covered 100% of our findings, but there was an unnecessary overlap between different types in most of the systems. Based on our finding, we propose a new a classification system for laryngomalacia, which is purely based on dynamic airway changes. The groningen laryngomalacia classification is a new, simplified classification system with three types, based on purely dynamic laryngeal changes, tested in a tertiary referral center: Type 1: inward collapse of arytenoids cartilages, Type 2: medial displacement of aryepiglottic folds, and Type 3: posterocaudal displacement of epiglottis against the posterior pharyngeal wall. © 2015 Wiley Periodicals, Inc.

  8. Structural dynamics of lipid bilayers using ultrafast electron crystallography

    NASA Astrophysics Data System (ADS)

    Chen, Songye; Seidel, Marco; Zewail, Ahmed

    2007-03-01

    The structures and dynamics of bilayers of crystalline fatty acids and phospholipids were studied using ultrafast electron crystallography (UEC). The systems investigated are arachidic (eicosanoic) acid and dimyristoyl phosphatidic acid (DMPA), deposited on a substrate by the Langmuir-Blodgett technique. The atomic structures under different preparation conditions were determined. The structural dynamics following a temperature jump induced by femtosecond laser on the substrates were obtained and compared to the equilibrium temperature dependence.

  9. Delayed nonlinear cournot and bertrand dynamics with product differentiation.

    PubMed

    Matsumoto, Akio; Szidarovszky, Ferenc

    2007-07-01

    Dynamic duopolies will be examined with product differentiation and isoelastic price functions. We will first prove that under realistic conditions the equilibrium is always locally asymptotically stable. The stability can however be lost if the firms use delayed information in forming their best responses. Stability conditions are derived in special cases, and simulation results illustrate the complexity of the dynamism of the systems. Both price and quantity adjusting models are discussed.

  10. Fixing the fixed-point system—Applying Dynamic Renormalization Group to systems with long-range interactions

    NASA Astrophysics Data System (ADS)

    Katzav, Eytan

    2013-04-01

    In this paper, a mode of using the Dynamic Renormalization Group (DRG) method is suggested in order to cope with inconsistent results obtained when applying it to a continuous family of one-dimensional nonlocal models. The key observation is that the correct fixed-point dynamical system has to be identified during the analysis in order to account for all the relevant terms that are generated under renormalization. This is well established for static problems, however poorly implemented in dynamical ones. An application of this approach to a nonlocal extension of the Kardar-Parisi-Zhang equation resolves certain problems in one-dimension. Namely, obviously problematic predictions are eliminated and the existing exact analytic results are recovered.

  11. Dynamics of absence seizures

    NASA Astrophysics Data System (ADS)

    Deeba, Farah; Sanz-Leon, Paula; Robinson, Peter

    A neural field model of the corticothalamic system is used to investigate the dynamics of absence seizures in the presence of temporally varying connection strength between the cerebral cortex and thalamus. Variation of connection strength from cortex to thalamus drives the system into seizure once a threshold is passed and a supercritical Hopf bifurcation occurs. The dynamics and spectral characteristics of the resulting seizures are explored as functions of maximum connection strength, time above threshold, and ramp rate. The results enable spectral and temporal characteristics of seizures to be related to underlying physiological variations via nonlinear dynamics and neural field theory. Notably, this analysis adds to neural field modeling of a wide variety of brain activity phenomena and measurements in recent years. Australian Research Council Grants FL1401000225 and CE140100007.

  12. Dynamic regime of coherent population trapping and optimization of frequency modulation parameters in atomic clocks.

    PubMed

    Yudin, V I; Taichenachev, A V; Basalaev, M Yu; Kovalenko, D V

    2017-02-06

    We theoretically investigate the dynamic regime of coherent population trapping (CPT) in the presence of frequency modulation (FM). We have formulated the criteria for quasi-stationary (adiabatic) and dynamic (non-adiabatic) responses of atomic system driven by this FM. Using the density matrix formalism for Λ system, the error signal is exactly calculated and optimized. It is shown that the optimal FM parameters correspond to the dynamic regime of atomic-field interaction, which significantly differs from conventional description of CPT resonances in the frame of quasi-stationary approach (under small modulation frequency). Obtained theoretical results are in good qualitative agreement with different experiments. Also we have found CPT-analogue of Pound-Driver-Hall regime of frequency stabilization.

  13. Dimension Reduction Near Periodic Orbits of Hybrid Systems: Appendix

    DTIC Science & Technology

    2011-09-07

    aplicable to a class of non-smooth systems called hybrid dynamical systems. We relegate a formal definition of the class of hybrid systems under...and highly mobile hexapod robot. IJRR, 20(7):616, 2001. [4] S. Kim, J.E. Clark, and M.R. Cutkosky. iSprawl: Design and tuning for high-speed

  14. Anomalous diffusion in a dynamical optical lattice

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Cooper, Nigel R.

    2018-02-01

    Motivated by experimental progress in strongly coupled atom-photon systems in optical cavities, we study theoretically the quantum dynamics of atoms coupled to a one-dimensional dynamical optical lattice. The dynamical lattice is chosen to have a period that is incommensurate with that of an underlying static lattice, leading to a dynamical version of the Aubry-André model which can cause localization of single-particle wave functions. We show that atomic wave packets in this dynamical lattice generically spread via anomalous diffusion, which can be tuned between superdiffusive and subdiffusive regimes. This anomalous diffusion arises from an interplay between Anderson localization and quantum fluctuations of the cavity field.

  15. A data base and analysis program for shuttle main engine dynamic pressure measurements. Appendix B: Data base plots for SSME tests 901-290 through 901-414

    NASA Technical Reports Server (NTRS)

    Coffin, T.

    1986-01-01

    A dynamic pressure data base and data base management system developed to characterize the Space Shuttle Main Engine (SSME) dynamic pressure environment is described. The data base represents dynamic pressure measurements obtained during single engine hot firing tesets of the SSME. Software is provided to permit statistical evaluation of selected measurements under specified operating conditions. An interpolation scheme is also included to estimate spectral trends with SSME power level. Flow dynamic environments in high performance rocket engines are discussed.

  16. A data base and analysis program for shuttle main engine dynamic pressure measurements. Appendix C: Data base plots for SSME tests 902-214 through 902-314

    NASA Technical Reports Server (NTRS)

    Coffin, T.

    1986-01-01

    A dynamic pressure data base and data base management system developed to characterize the Space Shuttle Main Engine (SSME) dynamic pressure environment is reported. The data base represents dynamic pressure measurements obtained during single engine hot firing tests of the SSME. Software is provided to permit statistical evaluation of selected measurements under specified operating conditions. An interpolation scheme is included to estimate spectral trends with SSME power level. Flow Dynamic Environments in High Performance Rocket Engines are described.

  17. Deciphering the Interdependence between Ecological and Evolutionary Networks.

    PubMed

    Melián, Carlos J; Matthews, Blake; de Andreazzi, Cecilia S; Rodríguez, Jorge P; Harmon, Luke J; Fortuna, Miguel A

    2018-05-24

    Biological systems consist of elements that interact within and across hierarchical levels. For example, interactions among genes determine traits of individuals, competitive and cooperative interactions among individuals influence population dynamics, and interactions among species affect the dynamics of communities and ecosystem processes. Such systems can be represented as hierarchical networks, but can have complex dynamics when interdependencies among levels of the hierarchy occur. We propose integrating ecological and evolutionary processes in hierarchical networks to explore interdependencies in biological systems. We connect gene networks underlying predator-prey trait distributions to food webs. Our approach addresses longstanding questions about how complex traits and intraspecific trait variation affect the interdependencies among biological levels and the stability of meta-ecosystems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Dynamics of bow-tie shaped bursting: Forced pendulum with dynamic feedback.

    PubMed

    Hongray, Thotreithem; Balakrishnan, Janaki

    2016-12-01

    A detailed study is performed on the parameter space of the mechanical system of a driven pendulum with damping and constant torque under feedback control. We report an interesting bow-tie shaped bursting oscillatory behaviour, which is exhibited for small driving frequencies, in a certain parameter regime, which has not been reported earlier in this forced system with dynamic feedback. We show that the bursting oscillations are caused because of a transition of the quiescent state to the spiking state by a saddle-focus bifurcation, and because of another saddle-focus bifurcation, which leads to cessation of spiking, bringing the system back to the quiescent state. The resting period between two successive bursts (T rest ) is estimated analytically.

  19. Systems, Stakeholders, and Students: Including Students in School Reform

    ERIC Educational Resources Information Center

    Zion, Shelley D.

    2009-01-01

    The education system in the United States is under pressure from a variety of sources to reform and improve the delivery of educational services to students. Change across a system as complex and dynamic as the educational system requires a systemic approach and requires the participation or buy-in of all participants and stakeholders. This…

  20. Capturing complexity in work disability research: application of system dynamics modeling methodology.

    PubMed

    Jetha, Arif; Pransky, Glenn; Hettinger, Lawrence J

    2016-01-01

    Work disability (WD) is characterized by variable and occasionally undesirable outcomes. The underlying determinants of WD outcomes include patterns of dynamic relationships among health, personal, organizational and regulatory factors that have been challenging to characterize, and inadequately represented by contemporary WD models. System dynamics modeling (SDM) methodology applies a sociotechnical systems thinking lens to view WD systems as comprising a range of influential factors linked by feedback relationships. SDM can potentially overcome limitations in contemporary WD models by uncovering causal feedback relationships, and conceptualizing dynamic system behaviors. It employs a collaborative and stakeholder-based model building methodology to create a visual depiction of the system as a whole. SDM can also enable researchers to run dynamic simulations to provide evidence of anticipated or unanticipated outcomes that could result from policy and programmatic intervention. SDM may advance rehabilitation research by providing greater insights into the structure and dynamics of WD systems while helping to understand inherent complexity. Challenges related to data availability, determining validity, and the extensive time and technical skill requirements for model building may limit SDM's use in the field and should be considered. Contemporary work disability (WD) models provide limited insight into complexity associated with WD processes. System dynamics modeling (SDM) has the potential to capture complexity through a stakeholder-based approach that generates a simulation model consisting of multiple feedback loops. SDM may enable WD researchers and practitioners to understand the structure and behavior of the WD system as a whole, and inform development of improved strategies to manage straightforward and complex WD cases.

  1. Finding the Missing Physics: Simulating Polydisperse Polymer Melts

    NASA Astrophysics Data System (ADS)

    Rorrer, Nichoals; Dorgan, John

    2014-03-01

    A Monte Carlo algorithm has been developed to model polydisperse polymer melts. For the first time, this enables the specification of a predetermined molecular weight distribution for lattice based simulations. It is demonstrated how to map an arbitrary probability distributions onto a discrete number of chains residing on an fcc lattice. The resulting algorithm is able to simulate a wide variety of behaviors for polydisperse systems including confinement effects, shear flow, and parabolic flow. The dynamic version of the algorithm accurately captures Rouse dynamics for short polymer chains, and reptation-like dynamics for longer chain lengths.1 When polydispersity is introduced, smaller Rouse times and broadened the transition between different scaling regimes are observed. Rouse times also decrease under confinement for both polydisperse and monodisperse systems and chain length dependent migration effects are observed. The steady-state version of the algorithm enables the simulation of flow and when polydisperse systems are subject to parabolic (Poiseulle) flow, a migration phenomenon based on chain length is again present. These and other phenomena highlight the importance of including polydispersity in obtaining physically realistic simulations of polymeric melts. 1. Dorgan, J.R.; Rorrer, N.A.; Maupin, C.M., Macromolecules 2012, 45(21), 8833-8840. Work funded by the Fluid Dynamics program of the National Science Foundation under grant CBET-1067707.

  2. Chaos and simple determinism in reversed field pinch plasmas: Nonlinear analysis of numerical simulation and experimental data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watts, Christopher A.

    In this dissertation the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas is investigated. To properly assess this possibility, data from both numerical simulations and experiment are analyzed. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos in the data. These tools include phase portraits and Poincare sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulatemore » the plasma dynamics. These are the DEBS code, which models global RFP dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low dimensional chaos and simple determinism. Experimental date were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or low simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system.« less

  3. Adaptive optimal input design and parametric estimation of nonlinear dynamical systems: application to neuronal modeling.

    PubMed

    Madi, Mahmoud K; Karameh, Fadi N

    2018-05-11

    Many physical models of biological processes including neural systems are characterized by parametric nonlinear dynamical relations between driving inputs, internal states, and measured outputs of the process. Fitting such models using experimental data (data assimilation) is a challenging task since the physical process often operates in a noisy, possibly non-stationary environment; moreover, conducting multiple experiments under controlled and repeatable conditions can be impractical, time consuming or costly. The accuracy of model identification, therefore, is dictated principally by the quality and dynamic richness of collected data over single or few experimental sessions. Accordingly, it is highly desirable to design efficient experiments that, by exciting the physical process with smart inputs, yields fast convergence and increased accuracy of the model. We herein introduce an adaptive framework in which optimal input design is integrated with Square root Cubature Kalman Filters (OID-SCKF) to develop an online estimation procedure that first, converges significantly quicker, thereby permitting model fitting over shorter time windows, and second, enhances model accuracy when only few process outputs are accessible. The methodology is demonstrated on common nonlinear models and on a four-area neural mass model with noisy and limited measurements. Estimation quality (speed and accuracy) is benchmarked against high-performance SCKF-based methods that commonly employ dynamically rich informed inputs for accurate model identification. For all the tested models, simulated single-trial and ensemble averages showed that OID-SCKF exhibited (i) faster convergence of parameter estimates and (ii) lower dependence on inter-trial noise variability with gains up to around 1000 msec in speed and 81% increase in variability for the neural mass models. In terms of accuracy, OID-SCKF estimation was superior, and exhibited considerably less variability across experiments, in identifying model parameters of (a) systems with challenging model inversion dynamics and (b) systems with fewer measurable outputs that directly relate to the underlying processes. Fast and accurate identification therefore carries particular promise for modeling of transient (short-lived) neuronal network dynamics using a spatially under-sampled set of noisy measurements, as is commonly encountered in neural engineering applications. © 2018 IOP Publishing Ltd.

  4. Integrated Chassis Control of Active Front Steering and Yaw Stability Control Based on Improved Inverse Nyquist Array Method

    PubMed Central

    2014-01-01

    An integrated chassis control (ICC) system with active front steering (AFS) and yaw stability control (YSC) is introduced in this paper. The proposed ICC algorithm uses the improved Inverse Nyquist Array (INA) method based on a 2-degree-of-freedom (DOF) planar vehicle reference model to decouple the plant dynamics under different frequency bands, and the change of velocity and cornering stiffness were considered to calculate the analytical solution in the precompensator design so that the INA based algorithm runs well and fast on the nonlinear vehicle system. The stability of the system is guaranteed by dynamic compensator together with a proposed PI feedback controller. After the response analysis of the system on frequency domain and time domain, simulations under step steering maneuver were carried out using a 2-DOF vehicle model and a 14-DOF vehicle model by Matlab/Simulink. The results show that the system is decoupled and the vehicle handling and stability performance are significantly improved by the proposed method. PMID:24782676

  5. Integrated chassis control of active front steering and yaw stability control based on improved inverse nyquist array method.

    PubMed

    Zhu, Bing; Chen, Yizhou; Zhao, Jian

    2014-01-01

    An integrated chassis control (ICC) system with active front steering (AFS) and yaw stability control (YSC) is introduced in this paper. The proposed ICC algorithm uses the improved Inverse Nyquist Array (INA) method based on a 2-degree-of-freedom (DOF) planar vehicle reference model to decouple the plant dynamics under different frequency bands, and the change of velocity and cornering stiffness were considered to calculate the analytical solution in the precompensator design so that the INA based algorithm runs well and fast on the nonlinear vehicle system. The stability of the system is guaranteed by dynamic compensator together with a proposed PI feedback controller. After the response analysis of the system on frequency domain and time domain, simulations under step steering maneuver were carried out using a 2-DOF vehicle model and a 14-DOF vehicle model by Matlab/Simulink. The results show that the system is decoupled and the vehicle handling and stability performance are significantly improved by the proposed method.

  6. Adaptive mechanism-based congestion control for networked systems

    NASA Astrophysics Data System (ADS)

    Liu, Zhi; Zhang, Yun; Chen, C. L. Philip

    2013-03-01

    In order to assure the communication quality in network systems with heavy traffic and limited bandwidth, a new ATRED (adaptive thresholds random early detection) congestion control algorithm is proposed for the congestion avoidance and resource management of network systems. Different to the traditional AQM (active queue management) algorithms, the control parameters of ATRED are not configured statically, but dynamically adjusted by the adaptive mechanism. By integrating with the adaptive strategy, ATRED alleviates the tuning difficulty of RED (random early detection) and shows a better control on the queue management, and achieve a more robust performance than RED under varying network conditions. Furthermore, a dynamic transmission control protocol-AQM control system using ATRED controller is introduced for the systematic analysis. It is proved that the stability of the network system can be guaranteed when the adaptive mechanism is finely designed. Simulation studies show the proposed ATRED algorithm achieves a good performance in varying network environments, which is superior to the RED and Gentle-RED algorithm, and providing more reliable service under varying network conditions.

  7. A Galerkin method for linear PDE systems in circular geometries with structural acoustic applications

    NASA Technical Reports Server (NTRS)

    Smith, Ralph C.

    1994-01-01

    A Galerkin method for systems of PDE's in circular geometries is presented with motivating problems being drawn from structural, acoustic, and structural acoustic applications. Depending upon the application under consideration, piecewise splines or Legendre polynomials are used when approximating the system dynamics with modifications included to incorporate the analytic solution decay near the coordinate singularity. This provides an efficient method which retains its accuracy throughout the circular domain without degradation at singularity. Because the problems under consideration are linear or weakly nonlinear with constant or piecewise constant coefficients, transform methods for the problems are not investigated. While the specific method is developed for the two dimensional wave equations on a circular domain and the equation of transverse motion for a thin circular plate, examples demonstrating the extension of the techniques to a fully coupled structural acoustic system are used to illustrate the flexibility of the method when approximating the dynamics of more complex systems.

  8. Effect of train vibration on settlement of soil: A numerical analysis

    NASA Astrophysics Data System (ADS)

    Tiong, Kah-Yong; Ling, Felix Ngee-Leh; Talib, Zaihasra Abu

    2017-10-01

    The drastic development of transit system caused the influence of ground-borne vibrations induced by train on ground settlement became concern problem nowadays. The purpose of this study is to investigate soil settlement caused by train vibration. To facilitate this study, computer simulation of soil dynamic response using commercial finite element package - PLAXIS 2D was performed to simulate track-subgrade system together with dynamic train load under three different conditions. The results of simulation analysis established the facts that the soil deformation increased with raising in water level. This phenomenon happens because the increasing water level not only induced greater excess pore water pressure but also reduced stiffness of soil. Furthermore, the simulation analysis also deduced that the soil settlement was reduced by placing material with high stiffness between the subgrade and the ballast layer since material with high stiffness was able to dissipate energy efficiently due to its high bearing capacity, thus protecting the subgrade from deteriorating. The simulation analysis result also showed that the soil dynamic response increased with the increase in the speed of train and a noticeable amplification in soil deformation occurred as the train speed approaches the Rayleigh wave velocity of the track subgrade system. This is due to the fact that dynamic train load depend on both the self-weight of the train and the dynamic component due to inertial effects associated with the train speed. Thus, controlling the train speeds under critical velocity of track-subgrade system is able to ensure the safety of train operation as it prevents track-ground resonance and dramatic ground.

  9. Development of a Stirling System Dynamic Model With Enhanced Thermodynamics

    NASA Technical Reports Server (NTRS)

    Regan, Timothy F.; Lewandowski, Edward J.

    2005-01-01

    The Stirling Convertor System Dynamic Model developed at NASA Glenn Research Center is a software model developed from first principles that includes the mechanical and mounting dynamics, the thermodynamics, the linear alternator, and the controller of a free-piston Stirling power convertor, along with the end user load. As such it represents the first detailed modeling tool for fully integrated Stirling convertor-based power systems. The thermodynamics of the model were originally a form of the isothermal Stirling cycle. In some situations it may be desirable to improve the accuracy of the Stirling cycle portion of the model. An option under consideration is to enhance the SDM thermodynamics by coupling the model with Gedeon Associates Sage simulation code. The result will be a model that gives a more accurate prediction of the performance and dynamics of the free-piston Stirling convertor. A method of integrating the Sage simulation code with the System Dynamic Model is described. Results of SDM and Sage simulation are compared to test data. Model parameter estimation and model validation are discussed.

  10. Functional coordination of muscles underlying changes in behavioural dynamics.

    PubMed

    Vernooij, Carlijn A; Rao, Guillaume; Perdikis, Dionysios; Huys, Raoul; Jirsa, Viktor K; Temprado, Jean-Jacques

    2016-06-10

    The dynamical systems approach addresses Bernstein's degrees of freedom problem by assuming that the neuro-musculo-skeletal system transiently assembles and dismantles its components into functional units (or synergies) to meet task demands. Strikingly, little is known from a dynamical point of view about the functioning of the muscular sub-system in this process. To investigate the interaction between the dynamical organisation at muscular and behavioural levels, we searched for specific signatures of a phase transition in muscular coordination when a transition is displayed at the behavioural level. Our results provide evidence that, during Fitts' task when behaviour switches to a different dynamical regime, muscular activation displays typical signatures of a phase transition; a reorganisation in muscular coordination patterns accompanied by a peak in the variability of muscle activation. This suggests that consistent changes occur in coordination processes across the different levels of description (i.e., behaviour and muscles). Specifically, in Fitts' task, target size acts as a control parameter that induces a destabilisation and a reorganisation of coordination patterns at different levels of the neuro-musculo-skeletal system.

  11. Development of a Stirling System Dynamic Model with Enhanced Thermodynamics

    NASA Astrophysics Data System (ADS)

    Regan, Timothy F.; Lewandowski, Edward J.

    2005-02-01

    The Stirling Convertor System Dynamic Model developed at NASA Glenn Research Center is a software model developed from first principles that includes the mechanical and mounting dynamics, the thermodynamics, the linear alternator, and the controller of a free-piston Stirling power convertor, along with the end user load. As such it represents the first detailed modeling tool for fully integrated Stirling convertor-based power systems. The thermodynamics of the model were originally a form of the isothermal Stirling cycle. In some situations it may be desirable to improve the accuracy of the Stirling cycle portion of the model. An option under consideration is to enhance the SDM thermodynamics by coupling the model with Gedeon Associates' Sage simulation code. The result will be a model that gives a more accurate prediction of the performance and dynamics of the free-piston Stirling convertor. A method of integrating the Sage simulation code with the System Dynamic Model is described. Results of SDM and Sage simulation are compared to test data. Model parameter estimation and model validation are discussed.

  12. Snowflakes, Living Systems, and the Mystery of Giftedness

    ERIC Educational Resources Information Center

    Dai, David Yun; Renzulli, Joseph S.

    2008-01-01

    The main argument of this article is that human living systems are open, dynamic, intentional systems and, therefore, are capable of building ever more complex behaviors through self-organization and self-direction. This principle underlying general human development is also applicable to the development of gifted and talented behaviors. These…

  13. The space station power system

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The requirements for electrical power by the proposed Space Station Freedom are discussed. The options currently under consideration are examined. The three power options are photovoltaic, solar dynamic, and a hybrid system. Advantages and disadvantages of each system are tabulated. Drawings and artist concepts of the Space Station configuration are provided.

  14. Nonlinear Dynamics and Bifurcation Analysis of a Boost Converter for Battery Charging in Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Al-Hindawi, Mohammed M.; Abusorrah, Abdullah; Al-Turki, Yusuf; Giaouris, Damian; Mandal, Kuntal; Banerjee, Soumitro

    Photovoltaic (PV) systems with a battery back-up form an integral part of distributed generation systems and therefore have recently attracted a lot of interest. In this paper, we consider a system of charging a battery from a PV panel through a current mode controlled boost dc-dc converter. We analyze its complete nonlinear/nonsmooth dynamics, using a piecewise model of the converter and realistic nonlinear v-i characteristics of the PV panel. Through this study, it is revealed that system design without taking into account the nonsmooth dynamics of the converter combined with the nonlinear v-i characteristics of the PV panel can lead to unpredictable responses of the overall system with high current ripple and other undesirable phenomena. This analysis can lead to better designed converters that can operate under a wide variation of the solar irradiation and the battery's state of charge. We show that the v-i characteristics of the PV panel combined with the battery's output voltage variation can increase or decrease the converter's robustness, both under peak current mode control and average current mode control. We justify the observation in terms of the change in the discrete-time map caused by the nonlinear v-i characteristics of the PV panel. The theoretical results are validated experimentally.

  15. Integration and dynamics of a renewable regenerative hydrogen fuel cell system

    NASA Astrophysics Data System (ADS)

    Bergen, Alvin Peter

    2008-10-01

    This thesis explores the integration and dynamics of residential scale renewable-regenerative energy systems which employ hydrogen for energy buffering. The development of the Integrated Renewable Energy Experiment (IRENE) test-bed is presented. IRENE is a laboratory-scale distributed energy system with a modular structure which can be readily re-configured to test newly developed components for generic regenerative systems. Key aspects include renewable energy conversion, electrolysis, hydrogen and electricity storage, and fuel cells. A special design feature of this test bed is the ability to accept dynamic inputs from and provide dynamic loads to real devices as well as from simulated energy sources/sinks. The integration issues encountered while developing IRENE and innovative solutions devised to overcome these barriers are discussed. Renewable energy systems that employ a regenerative approach to enable intermittent energy sources to service time varying loads rely on the efficient transfer of energy through the storage media. Experiments were conducted to evaluate the performance of the hydrogen energy buffer under a range of dynamic operating conditions. Results indicate that the operating characteristics of the electrolyser under transient conditions limit the production of hydrogen from excess renewable input power. These characteristics must be considered when designing or modeling a renewable-regenerative system. Strategies to mitigate performance degradation due to interruptions in the renewable power supply are discussed. Experiments were conducted to determine the response of the IRENE system to operating conditions that are representative of a residential scale, solar based, renewable-regenerative system. A control algorithm, employing bus voltage constraints and device current limitations, was developed to guide system operation. Results for a two week operating period that indicate that the system response is very dynamic but repeatable are presented. The overall system energy balance reveals that the energy input from the renewable source was sufficient to meet the demand load and generate a net surplus of hydrogen. The energy loss associated with the various system components as well as a breakdown of the unused renewable energy input is presented. In general, the research indicates that the technical challenges associated with hydrogen energy buffing can be overcome, but the round trip efficiency for the current technologies is low at only 22 percent.

  16. Dynamical effects of dark matter in systems of galaxies

    NASA Astrophysics Data System (ADS)

    Navarro, J. F.; Garcia Lambas, D.; Sersic, J. L.

    1986-06-01

    Several N-body experiments were performed in order to simulate the dynamical behavior of systems of galaxies gravitationally dominated by a massive dark background. Mass estimates from the dynamics of the luminous component under the influence of such a background are discussed, assuming a constant dark/luminous mass ratio and plausible physical conditions. Previous studies (Smith, 1980, 1984) about the dependence of the virial theorem mass on the relative distributions of dark and luminous matter (Limber, 1959) are extended. It is found that the observed ratio of the virial theorem mass to luminosity in systems of galaxies of different sizes could be the result of different stages of their postvirialisation evolution as previously suggested by White and Rees (1978) and Barnes (1983). This evolution is mainly the result of the dynamical friction that dark matter exerts on the luminous component. Thus the results give support to the idea that compact groups of galaxies are dynamically more evolved than large clusters, which is expected from the 'hierarchical cluster' picture for the formation of such structures.

  17. Metastable decoherence-free subspaces and electromagnetically induced transparency in interacting many-body systems

    NASA Astrophysics Data System (ADS)

    Macieszczak, Katarzyna; Zhou, YanLi; Hofferberth, Sebastian; Garrahan, Juan P.; Li, Weibin; Lesanovsky, Igor

    2017-10-01

    We investigate the dynamics of a generic interacting many-body system under conditions of electromagnetically induced transparency (EIT). This problem is of current relevance due to its connection to nonlinear optical media realized by Rydberg atoms. In an interacting system the structure of the dynamics and the approach to the stationary state becomes far more complex than in the case of conventional EIT. In particular, we discuss the emergence of a metastable decoherence-free subspace, whose dimension for a single Rydberg excitation grows linearly in the number of atoms. On approach to stationarity this leads to a slow dynamics, which renders the typical assumption of fast relaxation invalid. We derive analytically the effective nonequilibrium dynamics in the decoherence-free subspace, which features coherent and dissipative two-body interactions. We discuss the use of this scenario for the preparation of collective entangled dark states and the realization of general unitary dynamics within the spin-wave subspace.

  18. System of tolerances for a solar-tower power station

    NASA Astrophysics Data System (ADS)

    Aparisi, R. R.; Tepliakov, D. I.

    The principles underlying the establishment of a system of tolerances for a solar-tower station are presented. Attention is given to static and dynamic tolerances and deviations for a single heliostat, and geometrical tolerances for a field of heliostats.

  19. J.A. Schumpeter and T.B. Veblen on economic evolution: the dichotomy between statics and dynamics

    PubMed Central

    Schütz, Marlies; Rainer, Andreas

    2016-01-01

    Abstract At present, the discussion on the dichotomy between statics and dynamics is resolved by concentrating on its mathematical meaning. Yet, a simple formalisation masks the underlying methodological discussion. Overcoming this limitation, the paper discusses Schumpeter's and Veblen's viewpoint on dynamic economic systems as systems generating change from within. It contributes to an understanding on their ideas of how economics could become an evolutionary science and on their contributions to elaborate an evolutionary economics. It confronts Schumpeter's with Veblen's perspective on evolutionary economics and provides insight into their evolutionary economic theorising by discussing their ideas on the evolution of capitalism. PMID:28057981

  20. Cellular and Network Mechanisms Underlying Information Processing in a Simple Sensory System

    NASA Technical Reports Server (NTRS)

    Jacobs, Gwen; Henze, Chris; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Realistic, biophysically-based compartmental models were constructed of several primary sensory interneurons in the cricket cercal sensory system. A dynamic atlas of the afferent input to these cells was used to set spatio-temporal parameters for the simulated stimulus-dependent synaptic inputs. We examined the roles of dendritic morphology, passive membrane properties, and active conductances on the frequency tuning of the neurons. The sensitivity of narrow-band low pass interneurons could be explained entirely by the electronic structure of the dendritic arbors and the dynamic sensitivity of the SIZ. The dynamic characteristics of interneurons with higher frequency sensitivity required models with voltage-dependent dendritic conductances.

  1. Representing and reasoning about program in situation calculus

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Zhang, Ming-yi; Wu, Mao-nian; Xie, Gang

    2011-12-01

    Situation calculus is an expressive tool for modeling dynamical system in artificial intelligence, changes in a dynamical world is represented naturally by the notions of action, situation and fluent in situation calculus. Program can be viewed as a discrete dynamical system, so it is possible to model program with situation calculus. To model program written in a smaller core programming language CL, notion of fluent is expanded for representing value of expression. Together with some functions returning concerned objects from expressions, a basic action theory of CL programming is constructed. Under such a theory, some properties of program, such as correctness and termination can be reasoned about.

  2. Ultrashort optical waveguide excitations in uniaxial silica fibers: elastic collision scenarios.

    PubMed

    Kuetche, Victor K; Youssoufa, Saliou; Kofane, Timoleon C

    2014-12-01

    In this work, we investigate the dynamics of an uniaxial silica fiber under the viewpoint of propagation of ultimately ultrashort optical waveguide channels. As a result, we unveil the existence of three typical kinds of ultrabroadband excitations whose profiles strongly depend upon their angular momenta. Looking forward to surveying their scattering features, we unearth some underlying head-on scenarios of elastic collisions. Accordingly, we address some useful and straightforward applications in nonlinear optics through secured data transmission systems, as well as laser physics and soliton theory with optical soliton dynamics.

  3. Fast "Feast/Famine" Cycles for Studying Microbial Physiology Under Dynamic Conditions: A Case Study with Saccharomyces cerevisiae.

    PubMed

    Suarez-Mendez, Camilo A; Sousa, Andre; Heijnen, Joseph J; Wahl, Aljoscha

    2014-05-15

    Microorganisms are constantly exposed to rapidly changing conditions, under natural as well as industrial production scale environments, especially due to large-scale substrate mixing limitations. In this work, we present an experimental approach based on a dynamic feast/famine regime (400 s) that leads to repetitive cycles with moderate changes in substrate availability in an aerobic glucose cultivation of Saccharomyces cerevisiae. After a few cycles, the feast/famine produced a stable and repetitive pattern with a reproducible metabolic response in time, thus providing a robust platform for studying the microorganism's physiology under dynamic conditions. We found that the biomass yield was slightly reduced (-5%) under the feast/famine regime, while the averaged substrate and oxygen consumption as well as the carbon dioxide production rates were comparable. The dynamic response of the intracellular metabolites showed specific differences in comparison to other dynamic experiments (especially stimulus-response experiments, SRE). Remarkably, the frequently reported ATP paradox observed in single pulse experiments was not present during the repetitive perturbations applied here. We found that intracellular dynamic accumulations led to an uncoupling of the substrate uptake rate (up to 9-fold change at 20 s.) Moreover, the dynamic profiles of the intracellular metabolites obtained with the feast/famine suggest the presence of regulatory mechanisms that resulted in a delayed response. With the feast famine setup many cellular states can be measured at high frequency given the feature of reproducible cycles. The feast/famine regime is thus a versatile platform for systems biology approaches, which can help us to identify and investigate metabolite regulations under realistic conditions (e.g., large-scale bioreactors or natural environments).

  4. Fast “Feast/Famine” Cycles for Studying Microbial Physiology Under Dynamic Conditions: A Case Study with Saccharomyces cerevisiae

    PubMed Central

    Suarez-Mendez, Camilo A.; Sousa, Andre; Heijnen, Joseph J.; Wahl, Aljoscha

    2014-01-01

    Microorganisms are constantly exposed to rapidly changing conditions, under natural as well as industrial production scale environments, especially due to large-scale substrate mixing limitations. In this work, we present an experimental approach based on a dynamic feast/famine regime (400 s) that leads to repetitive cycles with moderate changes in substrate availability in an aerobic glucose cultivation of Saccharomyces cerevisiae. After a few cycles, the feast/famine produced a stable and repetitive pattern with a reproducible metabolic response in time, thus providing a robust platform for studying the microorganism’s physiology under dynamic conditions. We found that the biomass yield was slightly reduced (−5%) under the feast/famine regime, while the averaged substrate and oxygen consumption as well as the carbon dioxide production rates were comparable. The dynamic response of the intracellular metabolites showed specific differences in comparison to other dynamic experiments (especially stimulus-response experiments, SRE). Remarkably, the frequently reported ATP paradox observed in single pulse experiments was not present during the repetitive perturbations applied here. We found that intracellular dynamic accumulations led to an uncoupling of the substrate uptake rate (up to 9-fold change at 20 s.) Moreover, the dynamic profiles of the intracellular metabolites obtained with the feast/famine suggest the presence of regulatory mechanisms that resulted in a delayed response. With the feast famine setup many cellular states can be measured at high frequency given the feature of reproducible cycles. The feast/famine regime is thus a versatile platform for systems biology approaches, which can help us to identify and investigate metabolite regulations under realistic conditions (e.g., large-scale bioreactors or natural environments). PMID:24957030

  5. Static and dynamic efficiency of irreversible health care investments under alternative payment rules.

    PubMed

    Levaggi, R; Moretto, M; Pertile, P

    2012-01-01

    The paper studies the incentive for providers to invest in new health care technologies under alternative payment systems, when the patients' benefits are uncertain. If the reimbursement by the purchaser includes both a variable (per patient) and a lump-sum component, efficiency can be ensured both in the timing of adoption (dynamic) and the intensity of use of the technology (static). If the second instrument is unavailable, a trade-off may emerge between static and dynamic efficiency. In this context, we also discuss how the regulator could use control of the level of uncertainty faced by the provider as an instrument to mitigate the trade-off between static and dynamic efficiency. Finally, we calibrate the model to study a specific technology and estimate the cost of a regulatory failure. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Dynamic analysis of elastic rubber tired car wheel breaking under variable normal load

    NASA Astrophysics Data System (ADS)

    Fedotov, A. I.; Zedgenizov, V. G.; Ovchinnikova, N. I.

    2017-10-01

    The purpose of the paper is to analyze the dynamics of the braking of the wheel under normal load variations. The paper uses a mathematical simulation method according to which the calculation model of an object as a mechanical system is associated with a dynamically equivalent schematic structure of the automatic control. Transfer function tool analyzing structural and technical characteristics of an object as well as force disturbances were used. It was proved that the analysis of dynamic characteristics of the wheel subjected to external force disturbances has to take into account amplitude and phase-frequency characteristics. Normal load variations impact car wheel braking subjected to disturbances. The closer slip to the critical point is, the higher the impact is. In the super-critical area, load variations cause fast wheel blocking.

  7. Critical dynamics of Hopf bifurcations in the corticothalamic system: Transitions from normal arousal states to epileptic seizures.

    PubMed

    Yang, Dong-Ping; Robinson, P A

    2017-04-01

    A physiologically based corticothalamic model of large-scale brain activity is used to analyze critical dynamics of transitions from normal arousal states to epileptic seizures, which correspond to Hopf bifurcations. This relates an abstract normal form quantitatively to underlying physiology that includes neural dynamics, axonal propagation, and time delays. Thus, a bridge is constructed that enables normal forms to be used to interpret quantitative data. The normal form of the Hopf bifurcations with delays is derived using Hale's theory, the center manifold theorem, and normal form analysis, and it is found to be explicitly expressed in terms of transfer functions and the sensitivity matrix of a reduced open-loop system. It can be applied to understand the effect of each physiological parameter on the critical dynamics and determine whether the Hopf bifurcation is supercritical or subcritical in instabilities that lead to absence and tonic-clonic seizures. Furthermore, the effects of thalamic and cortical nonlinearities on the bifurcation type are investigated, with implications for the roles of underlying physiology. The theoretical predictions about the bifurcation type and the onset dynamics are confirmed by numerical simulations and provide physiologically based criteria for determining bifurcation types from first principles. The results are consistent with experimental data from previous studies, imply that new regimes of seizure transitions may exist in clinical settings, and provide a simplified basis for control-systems interventions. Using the normal form, and the full equations from which it is derived, more complex dynamics, such as quasiperiodic cycles and saddle cycles, are discovered near the critical points of the subcritical Hopf bifurcations.

  8. Critical dynamics of Hopf bifurcations in the corticothalamic system: Transitions from normal arousal states to epileptic seizures

    NASA Astrophysics Data System (ADS)

    Yang, Dong-Ping; Robinson, P. A.

    2017-04-01

    A physiologically based corticothalamic model of large-scale brain activity is used to analyze critical dynamics of transitions from normal arousal states to epileptic seizures, which correspond to Hopf bifurcations. This relates an abstract normal form quantitatively to underlying physiology that includes neural dynamics, axonal propagation, and time delays. Thus, a bridge is constructed that enables normal forms to be used to interpret quantitative data. The normal form of the Hopf bifurcations with delays is derived using Hale's theory, the center manifold theorem, and normal form analysis, and it is found to be explicitly expressed in terms of transfer functions and the sensitivity matrix of a reduced open-loop system. It can be applied to understand the effect of each physiological parameter on the critical dynamics and determine whether the Hopf bifurcation is supercritical or subcritical in instabilities that lead to absence and tonic-clonic seizures. Furthermore, the effects of thalamic and cortical nonlinearities on the bifurcation type are investigated, with implications for the roles of underlying physiology. The theoretical predictions about the bifurcation type and the onset dynamics are confirmed by numerical simulations and provide physiologically based criteria for determining bifurcation types from first principles. The results are consistent with experimental data from previous studies, imply that new regimes of seizure transitions may exist in clinical settings, and provide a simplified basis for control-systems interventions. Using the normal form, and the full equations from which it is derived, more complex dynamics, such as quasiperiodic cycles and saddle cycles, are discovered near the critical points of the subcritical Hopf bifurcations.

  9. Interparental Relationship Dynamics and Cardiac Vagal Functioning in Infancy

    PubMed Central

    Graham, Alice M.; Ablow, Jennifer C.; Measelle, Jeffrey R.

    2010-01-01

    This study examined associations between interparental relationship dynamics and vagus system functioning in infancy. The functioning of the vagus system, part of the parasympathetic nervous system, indexes emotional reactivity and regulation. Interparental avoidance and dyadic adjustment constitute the focus of this study in order to bring attention to relationship dynamics not subsumed under overt conflict. Infants’ baseline vagal tone and change in vagal tone in response to a novel toy were assessed at five months in a sample of high-risk mother-infant dyads (n = 77). Maternal report of interparental avoidance demonstrated an association with infants’ baseline vagal tone, while interparental dyadic adjustment was associated with change in infants’ vagal tone from baseline to the novel toy. Infant gender moderated these associations. Maternal sensitivity did not mediate interparental relationship dynamics and infants’ vagal functioning. Results are discussed in the context of emotional security theory. PMID:20727595

  10. Dynamical Evolution of an Effective Two-Level System with {\\mathscr{P}}{\\mathscr{T}} Symmetry

    NASA Astrophysics Data System (ADS)

    Du, Lei; Xu, Zhihao; Yin, Chuanhao; Guo, Liping

    2018-05-01

    We investigate the dynamics of parity- and time-reversal (PT ) symmetric two-energy-level atoms in the presence of two optical and a radio-frequency (rf) fields. The strength and relative phase of fields can drive the system from unbroken to broken PT symmetric regions. Compared with the Hermitian model, Rabi-type oscillation is still observed, and the oscillation characteristics are also adjusted by the strength and relative phase in the region of unbroken PT symmetry. At exception point (EP), the oscillation breaks down. To better understand the underlying properties we study the effective Bloch dynamics and find the emergence of the z components of the fixed points is the feature of the PT symmetry breaking and the projections in x-y plane can be controlled with high flexibility compared with the standard two-level system with PT symmetry. It helps to study the dynamic behavior of the complex PT symmetric model.

  11. Study on dynamic response measurement of the submarine pipeline by full-term FBG sensors.

    PubMed

    Zhou, Jinghai; Sun, Li; Li, Hongnan

    2014-01-01

    The field of structural health monitoring is concerned with accurately and reliably assessing the integrity of a given structure to reduce ownership costs, increase operational lifetime, and improve safety. In structural health monitoring systems, fiber Bragg grating (FBG) is a promising measurement technology for its superior ability of explosion proof, immunity to electromagnetic interference, and high accuracy. This paper is a study on the dynamic characteristics of fiber Bragg grating (FBG) sensors applied to a submarine pipeline, as well as an experimental investigation on a laboratory model of the pipeline. The dynamic response of a submarine pipeline under seismic excitation is a coupled vibration of liquid and solid interaction. FBG sensors and strain gauges are used to monitor the dynamic response of a submarine pipeline model under a variety of dynamic loading conditions and the maximum working frequency of an FBG strain sensor is calculated according to its dynamic strain responses. Based on the theoretical and experimental results, it can be concluded that FBG sensor is superior to strain gauge and satisfies the demand of dynamic strain measurement.

  12. Study on Dynamic Response Measurement of the Submarine Pipeline by Full-Term FBG Sensors

    PubMed Central

    Zhou, Jinghai; Sun, Li; Li, Hongnan

    2014-01-01

    The field of structural health monitoring is concerned with accurately and reliably assessing the integrity of a given structure to reduce ownership costs, increase operational lifetime, and improve safety. In structural health monitoring systems, fiber Bragg grating (FBG) is a promising measurement technology for its superior ability of explosion proof, immunity to electromagnetic interference, and high accuracy. This paper is a study on the dynamic characteristics of fiber Bragg grating (FBG) sensors applied to a submarine pipeline, as well as an experimental investigation on a laboratory model of the pipeline. The dynamic response of a submarine pipeline under seismic excitation is a coupled vibration of liquid and solid interaction. FBG sensors and strain gauges are used to monitor the dynamic response of a submarine pipeline model under a variety of dynamic loading conditions and the maximum working frequency of an FBG strain sensor is calculated according to its dynamic strain responses. Based on the theoretical and experimental results, it can be concluded that FBG sensor is superior to strain gauge and satisfies the demand of dynamic strain measurement. PMID:24971391

  13. Establishment and verification of three-dimensional dynamic model for heavy-haul train-track coupled system

    NASA Astrophysics Data System (ADS)

    Liu, Pengfei; Zhai, Wanming; Wang, Kaiyun

    2016-11-01

    For the long heavy-haul train, the basic principles of the inter-vehicle interaction and train-track dynamic interaction are analysed firstly. Based on the theories of train longitudinal dynamics and vehicle-track coupled dynamics, a three-dimensional (3-D) dynamic model of the heavy-haul train-track coupled system is established through a modularised method. Specifically, this model includes the subsystems such as the train control, the vehicle, the wheel-rail relation and the line geometries. And for the calculation of the wheel-rail interaction force under the driving or braking conditions, the large creep phenomenon that may occur within the wheel-rail contact patch is considered. For the coupler and draft gear system, the coupler forces in three directions and the coupler lateral tilt angles in curves are calculated. Then, according to the characteristics of the long heavy-haul train, an efficient solving method is developed to improve the computational efficiency for such a large system. Some basic principles which should be followed in order to meet the requirement of calculation accuracy are determined. Finally, the 3-D train-track coupled model is verified by comparing the calculated results with the running test results. It is indicated that the proposed dynamic model could simulate the dynamic performance of the heavy-haul train well.

  14. A model of economic growth with physical and human capital: The role of time delays.

    PubMed

    Gori, Luca; Guerrini, Luca; Sodini, Mauro

    2016-09-01

    This article aims at analysing a two-sector economic growth model with discrete delays. The focus is on the dynamic properties of the emerging system. In particular, this study concentrates on the stability properties of the stationary solution, characterised by analytical results and geometrical techniques (stability crossing curves), and the conditions under which oscillatory dynamics emerge (through Hopf bifurcations). In addition, this article proposes some numerical simulations to illustrate the behaviour of the system when the stationary equilibrium is unstable.

  15. Simultaneous measurements of bulk moduli and particle dynamics in a sheared colloidal glass

    NASA Astrophysics Data System (ADS)

    Massa, Michael V.; Eisenmann, Christoph; Kim, Chanjoong; Weitz, David A.

    2007-03-01

    We present a novel study of glassy colloidal systems, using a stress-controlled rheometer in conjunction with a confocal microscope. This experimental setup combines the measurement of bulk moduli, using conventional rheology, with the ability to track the motion of individual particles, through confocal microscopy techniques. We explore the response of the system to applied shear, by simultaneously monitoring the macroscopic relaxation and microscopic particle dynamics, under conditions from the quiescent glass to a shear-melted liquid.

  16. Salience network dynamics underlying successful resistance of temptation

    PubMed Central

    Nomi, Jason S; Calhoun, Vince D; Stelzel, Christine; Paschke, Lena M; Gaschler, Robert; Goschke, Thomas; Walter, Henrik; Uddin, Lucina Q

    2017-01-01

    Abstract Self-control and the ability to resist temptation are critical for successful completion of long-term goals. Contemporary models in cognitive neuroscience emphasize the primary role of prefrontal cognitive control networks in aligning behavior with such goals. Here, we use gaze pattern analysis and dynamic functional connectivity fMRI data to explore how individual differences in the ability to resist temptation are related to intrinsic brain dynamics of the cognitive control and salience networks. Behaviorally, individuals exhibit greater gaze distance from target location (e.g. higher distractibility) during presentation of tempting erotic images compared with neutral images. Individuals whose intrinsic dynamic functional connectivity patterns gravitate toward configurations in which salience detection systems are less strongly coupled with visual systems resist tempting distractors more effectively. The ability to resist tempting distractors was not significantly related to intrinsic dynamics of the cognitive control network. These results suggest that susceptibility to temptation is governed in part by individual differences in salience network dynamics and provide novel evidence for involvement of brain systems outside canonical cognitive control networks in contributing to individual differences in self-control. PMID:29048582

  17. Configuration maintaining control of three-body ring tethered system based on thrust compensation

    NASA Astrophysics Data System (ADS)

    Huang, Panfeng; Liu, Binbin; Zhang, Fan

    2016-06-01

    Space multi-tethered systems have shown broad prospects in remote observation missions. This paper mainly focuses on the dynamics and configuration maintaining control of space spinning three-body ring tethered system for such mission. Firstly, we establish the spinning dynamic model of the three-body ring tethered system considering the elasticity of the tether using Newton-Euler method, and then validate the suitability of this model by numerical simulation. Subsequently, LP (Likins-Pringle) initial equilibrium conditions for the tethered system are derived based on rigid body's equilibrium theory. Simulation results show that tether slack, snapping and interaction between the tethers exist in the three-body ring system, and its' configuration can not be maintained without control. Finally, a control strategy based on thrust compensation, namely thrust to simulate tether compression under LP initial equilibrium conditions is designed to solve the configuration maintaining control problem. Control effects are verified by numerical simulation compared with uncontrolled situation. Simulation results show that the configuration of the three-body ring tethered system could maintain under this active control strategy.

  18. Comparison of Mechanical Axis and Dynamic Range Assessed with Weight Bearing Radiographs and Navigation System in Closed Wedge High Tibial Osteotomy

    PubMed Central

    Bae, Dae Kyung; Lee, Jong Whan; Cho, Seong Jin; Song, Sang Jun

    2017-01-01

    Purpose To compare navigation and weight bearing radiographic measurements of mechanical axis (MA) before and after closed wedge high tibial osteotomy (HTO) and to evaluate post-osteotomy changes in MA assessed during application of external varus or valgus force. Materials and Methods Data from 30 consecutive patients (30 knees) who underwent computer-assisted closed-wedge HTO were prospectively analyzed. Pre- and postoperative weight bearing radiographic evaluation of MA was performed. Under navigation guidance, pre- and post-osteotomy MA values were measured in an unloaded position. Any change in the post-osteotomy MA in response to external varus or valgus force, which was named as dynamic range, was evaluated with the navigation system. The navigation and weight bearing radiographic measurements were compared. Results Although there was a positive correlation between navigation and radiographic measurements, the reliability of navigation measurements of coronal alignment was reduced after osteotomy and wedge closing. The mean post-osteotomy MA value measured with the navigation was 3.5°±0.8° valgus in an unloaded position. It was 1.3°±0.8° valgus under varus force and 5.8°±1.1° valgus under valgus force. The average dynamic range was >±2°. Conclusions Potential differences between the postoperative MAs assessed by weight bearing radiographs and the navigation system in unloaded position should be considered during computer-assisted closed wedge HTO. Care should be taken to keep the dynamic range within the permissible range of alignment goal in HTO. PMID:28854769

  19. ASRC Aerospace Corporation Selects Dynamically Reconfigurable Anadigm(Registered Trademark) FPAA For Advanced Data Acquisition System

    NASA Technical Reports Server (NTRS)

    Mata, Carlos T.

    2003-01-01

    Anadigm(registered trademark) today announced that ASRC Aerospace Corporation has designed Anadigm's dynamically reconfigurable Field Programmable Analog Array (FPAA) technology into an advanced data acquisition system developed under contract for NASA. ASRC Aerospace designed in the Anadigm(registered trademark) FPAA to provide complex analog signal conditioning in its intelligent, self-calibrating, and self-healing advanced data acquisition system (ADAS). The ADAS has potential applications in industrial, manufacturing, and aerospace markets. This system offers highly reliable operation while reducing the need for user interaction. Anadigm(registered trademark)'s dynamically reconfigurable FPAAs can be reconfigured in-system by the designer or on the fly by a microprocessor. A single device can thus be programmed to implement multiple analog functions and/or to adapt on-the-fly to maintain precision operation despite system degradation and aging. In the case of the ASRC advanced data acquisition system, the FPAA helps ensure that the system will continue to operating at 100% functionality despite changes in the environment, component degradation, and/or component failures.

  20. Shape Distributions of Nonlinear Dynamical Systems for Video-Based Inference.

    PubMed

    Venkataraman, Vinay; Turaga, Pavan

    2016-12-01

    This paper presents a shape-theoretic framework for dynamical analysis of nonlinear dynamical systems which appear frequently in several video-based inference tasks. Traditional approaches to dynamical modeling have included linear and nonlinear methods with their respective drawbacks. A novel approach we propose is the use of descriptors of the shape of the dynamical attractor as a feature representation of nature of dynamics. The proposed framework has two main advantages over traditional approaches: a) representation of the dynamical system is derived directly from the observational data, without any inherent assumptions, and b) the proposed features show stability under different time-series lengths where traditional dynamical invariants fail. We illustrate our idea using nonlinear dynamical models such as Lorenz and Rossler systems, where our feature representations (shape distribution) support our hypothesis that the local shape of the reconstructed phase space can be used as a discriminative feature. Our experimental analyses on these models also indicate that the proposed framework show stability for different time-series lengths, which is useful when the available number of samples are small/variable. The specific applications of interest in this paper are: 1) activity recognition using motion capture and RGBD sensors, 2) activity quality assessment for applications in stroke rehabilitation, and 3) dynamical scene classification. We provide experimental validation through action and gesture recognition experiments on motion capture and Kinect datasets. In all these scenarios, we show experimental evidence of the favorable properties of the proposed representation.

  1. Curriculum Planning and Development in Mathematics from the Formative Stages

    ERIC Educational Resources Information Center

    Festus, Azuka Benard; Kurumeh, Mary Seraphina

    2015-01-01

    Curriculum of a school consists of all the experiences that a learner encounters under the direction of the school. The curriculum of any educational system is planned and developed according to the needs of the society. Just as the society is dynamic, the curriculum is also dynamic. Hence, curriculum is usually changed from time to time. This…

  2. Divergent carbon dynamics under climate change in forests with diverse soils, tree species, and land use histories

    Treesearch

    Robert M. Scheller; Alec M. Kretchun; Steve Van Tuyl; Kenneth L. Clark; Melissa S. Lucash; John Hom

    2012-01-01

    Accounting for both climate change and natural disturbances—which typically result in greenhouse gas emissions—is necessary to begin managing forest carbon sequestration. Gaining a complete understanding of forest carbon dynamics is, however, challenging in systems characterized by historic over-utilization, diverse soils and tree species, and...

  3. An Exact Solvable Model of Rocket Dynamics in Atmosphere

    ERIC Educational Resources Information Center

    Rodrigues, H.; Pinho, M. O.; Portes, D., Jr.; Santiago, A.

    2009-01-01

    In basic physics courses at undergraduate level, the dynamics of self-propelled bodies is presented as an example of momentum conservation law applied to systems with time-varying mass. However, is often studied the simple situation of free motion or the motion under the action of a constant gravitational field. In this work, we investigate the…

  4. Dynamic Safety Cases for Through-Life Safety Assurance

    NASA Technical Reports Server (NTRS)

    Denney, Ewen; Pai, Ganesh; Habli, Ibrahim

    2015-01-01

    We describe dynamic safety cases, a novel operationalization of the concept of through-life safety assurance, whose goal is to enable proactive safety management. Using an example from the aviation systems domain, we motivate our approach, its underlying principles, and a lifecycle. We then identify the key elements required to move towards a formalization of the associated framework.

  5. Direct heuristic dynamic programming for damping oscillations in a large power system.

    PubMed

    Lu, Chao; Si, Jennie; Xie, Xiaorong

    2008-08-01

    This paper applies a neural-network-based approximate dynamic programming method, namely, the direct heuristic dynamic programming (direct HDP), to a large power system stability control problem. The direct HDP is a learning- and approximation-based approach to addressing nonlinear coordinated control under uncertainty. One of the major design parameters, the controller learning objective function, is formulated to directly account for network-wide low-frequency oscillation with the presence of nonlinearity, uncertainty, and coupling effect among system components. Results include a novel learning control structure based on the direct HDP with applications to two power system problems. The first case involves static var compensator supplementary damping control, which is used to provide a comprehensive evaluation of the learning control performance. The second case aims at addressing a difficult complex system challenge by providing a new solution to a large interconnected power network oscillation damping control problem that frequently occurs in the China Southern Power Grid.

  6. Dynamic gamma knife radiosurgery

    NASA Astrophysics Data System (ADS)

    Luan, Shuang; Swanson, Nathan; Chen, Zhe; Ma, Lijun

    2009-03-01

    Gamma knife has been the treatment of choice for various brain tumors and functional disorders. Current gamma knife radiosurgery is planned in a 'ball-packing' approach and delivered in a 'step-and-shoot' manner, i.e. it aims to 'pack' the different sized spherical high-dose volumes (called 'shots') into a tumor volume. We have developed a dynamic scheme for gamma knife radiosurgery based on the concept of 'dose-painting' to take advantage of the new robotic patient positioning system on the latest Gamma Knife C™ and Perfexion™ units. In our scheme, the spherical high dose volume created by the gamma knife unit will be viewed as a 3D spherical 'paintbrush', and treatment planning reduces to finding the best route of this 'paintbrush' to 'paint' a 3D tumor volume. Under our dose-painting concept, gamma knife radiosurgery becomes dynamic, where the patient moves continuously under the robotic positioning system. We have implemented a fully automatic dynamic gamma knife radiosurgery treatment planning system, where the inverse planning problem is solved as a traveling salesman problem combined with constrained least-square optimizations. We have also carried out experimental studies of dynamic gamma knife radiosurgery and showed the following. (1) Dynamic gamma knife radiosurgery is ideally suited for fully automatic inverse planning, where high quality radiosurgery plans can be obtained in minutes of computation. (2) Dynamic radiosurgery plans are more conformal than step-and-shoot plans and can maintain a steep dose gradient (around 13% per mm) between the target tumor volume and the surrounding critical structures. (3) It is possible to prescribe multiple isodose lines with dynamic gamma knife radiosurgery, so that the treatment can cover the periphery of the target volume while escalating the dose for high tumor burden regions. (4) With dynamic gamma knife radiosurgery, one can obtain a family of plans representing a tradeoff between the delivery time and the dose distributions, thus giving the clinician one more dimension of flexibility of choosing a plan based on the clinical situations.

  7. Study of a Steel’s Energy Absorption System for Heavy Quadricycles and Nonlinear Explicit Dynamic Analysis of its Behavior under Impact by FEM

    PubMed Central

    López Campos, José Ángel; Segade Robleda, Abraham; Vilán Vilán, José Antonio; García Nieto, Paulino José; Blanco Cordero, Javier

    2015-01-01

    Current knowledge of the behavior of heavy quadricycles under impact is still very poor. One of the most significant causes is the lack of energy absorption in the vehicle frame or its steel chassis structure. For this reason, special steels (with yield stresses equal to or greater than 350 MPa) are commonly used in the automotive industry due to their great strain hardening properties along the plastic zone, which allows good energy absorption under impact. This paper presents a proposal for a steel quadricycle energy absorption system which meets the percentages of energy absorption for conventional vehicles systems. This proposal is validated by explicit dynamics simulation, which will define the whole problem mathematically and verify behavior under impact at speeds of 40 km/h and 56 km/h using the finite element method (FEM). One of the main consequences of this study is that this FEM–based methodology can tackle high nonlinear problems like this one with success, avoiding the need to carry out experimental tests, with consequent economical savings since experimental tests are very expensive. Finally, the conclusions from this innovative research work are given. PMID:28793607

  8. Study of a Steel's Energy Absorption System for Heavy Quadricycles and Nonlinear Explicit Dynamic Analysis of its Behavior under Impact by FEM.

    PubMed

    López Campos, José Ángel; Segade Robleda, Abraham; Vilán Vilán, José Antonio; García Nieto, Paulino José; Blanco Cordero, Javier

    2015-10-10

    Current knowledge of the behavior of heavy quadricycles under impact is still very poor. One of the most significant causes is the lack of energy absorption in the vehicle frame or its steel chassis structure. For this reason, special steels (with yield stresses equal to or greater than 350 MPa) are commonly used in the automotive industry due to their great strain hardening properties along the plastic zone, which allows good energy absorption under impact. This paper presents a proposal for a steel quadricycle energy absorption system which meets the percentages of energy absorption for conventional vehicles systems. This proposal is validated by explicit dynamics simulation, which will define the whole problem mathematically and verify behavior under impact at speeds of 40 km/h and 56 km/h using the finite element method (FEM). One of the main consequences of this study is that this FEM-based methodology can tackle high nonlinear problems like this one with success, avoiding the need to carry out experimental tests, with consequent economical savings since experimental tests are very expensive. Finally, the conclusions from this innovative research work are given.

  9. Why do Reservoir Computing Networks Predict Chaotic Systems so Well?

    NASA Astrophysics Data System (ADS)

    Lu, Zhixin; Pathak, Jaideep; Girvan, Michelle; Hunt, Brian; Ott, Edward

    Recently a new type of artificial neural network, which is called a reservoir computing network (RCN), has been employed to predict the evolution of chaotic dynamical systems from measured data and without a priori knowledge of the governing equations of the system. The quality of these predictions has been found to be spectacularly good. Here, we present a dynamical-system-based theory for how RCN works. Basically a RCN is thought of as consisting of three parts, a randomly chosen input layer, a randomly chosen recurrent network (the reservoir), and an output layer. The advantage of the RCN framework is that training is done only on the linear output layer, making it computationally feasible for the reservoir dimensionality to be large. In this presentation, we address the underlying dynamical mechanisms of RCN function by employing the concepts of generalized synchronization and conditional Lyapunov exponents. Using this framework, we propose conditions on reservoir dynamics necessary for good prediction performance. By looking at the RCN from this dynamical systems point of view, we gain a deeper understanding of its surprising computational power, as well as insights on how to design a RCN. Supported by Army Research Office Grant Number W911NF1210101.

  10. Eco-evolutionary Red Queen dynamics regulate biodiversity in a metabolite-driven microbial system.

    PubMed

    Bonachela, Juan A; Wortel, Meike T; Stenseth, Nils Chr

    2017-12-15

    The Red Queen Hypothesis proposes that perpetual co-evolution among organisms can result from purely biotic drivers. After more than four decades, there is no satisfactory understanding as to which mechanisms trigger Red Queen dynamics or their implications for ecosystem features such as biodiversity. One reason for such a knowledge gap is that typical models are complicated theories where limit cycles represent an idealized Red Queen, and therefore cannot be used to devise experimental setups. Here, we bridge this gap by introducing a simple model for microbial systems able to show Red Queen dynamics. We explore diverse biotic sources that can drive the emergence of the Red Queen and that have the potential to be found in nature or to be replicated in the laboratory. Our model enables an analytical understanding of how Red Queen dynamics emerge in our setup, and the translation of model terms and phenomenology into general underlying mechanisms. We observe, for example, that in our system the Red Queen offers opportunities for the increase of biodiversity by facilitating challenging conditions for intraspecific dominance, whereas stasis tends to homogenize the system. Our results can be used to design and engineer experimental microbial systems showing Red Queen dynamics.

  11. System dynamic modelling to assess economic viability and risk trade-offs for ecological restoration in South Africa.

    PubMed

    Crookes, D J; Blignaut, J N; de Wit, M P; Esler, K J; Le Maitre, D C; Milton, S J; Mitchell, S A; Cloete, J; de Abreu, P; Fourie nee Vlok, H; Gull, K; Marx, D; Mugido, W; Ndhlovu, T; Nowell, M; Pauw, M; Rebelo, A

    2013-05-15

    Can markets assist by providing support for ecological restoration, and if so, under what conditions? The first step in addressing this question is to develop a consistent methodology for economic evaluation of ecological restoration projects. A risk analysis process was followed in which a system dynamics model was constructed for eight diverse case study sites where ecological restoration is currently being pursued. Restoration costs vary across each of these sites, as do the benefits associated with restored ecosystem functioning. The system dynamics model simulates the ecological, hydrological and economic benefits of ecological restoration and informs a portfolio mapping exercise where payoffs are matched against the likelihood of success of a project, as well as a number of other factors (such as project costs and risk measures). This is the first known application that couples ecological restoration with system dynamics and portfolio mapping. The results suggest an approach that is able to move beyond traditional indicators of project success, since the effect of discounting is virtually eliminated. We conclude that systems dynamic modelling with portfolio mapping can guide decisions on when markets for restoration activities may be feasible. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Dynamical Analysis and Visualization of Tornadoes Time Series

    PubMed Central

    2015-01-01

    In this paper we analyze the behavior of tornado time-series in the U.S. from the perspective of dynamical systems. A tornado is a violently rotating column of air extending from a cumulonimbus cloud down to the ground. Such phenomena reveal features that are well described by power law functions and unveil characteristics found in systems with long range memory effects. Tornado time series are viewed as the output of a complex system and are interpreted as a manifestation of its dynamics. Tornadoes are modeled as sequences of Dirac impulses with amplitude proportional to the events size. First, a collection of time series involving 64 years is analyzed in the frequency domain by means of the Fourier transform. The amplitude spectra are approximated by power law functions and their parameters are read as an underlying signature of the system dynamics. Second, it is adopted the concept of circular time and the collective behavior of tornadoes analyzed. Clustering techniques are then adopted to identify and visualize the emerging patterns. PMID:25790281

  13. Dynamical analysis and visualization of tornadoes time series.

    PubMed

    Lopes, António M; Tenreiro Machado, J A

    2015-01-01

    In this paper we analyze the behavior of tornado time-series in the U.S. from the perspective of dynamical systems. A tornado is a violently rotating column of air extending from a cumulonimbus cloud down to the ground. Such phenomena reveal features that are well described by power law functions and unveil characteristics found in systems with long range memory effects. Tornado time series are viewed as the output of a complex system and are interpreted as a manifestation of its dynamics. Tornadoes are modeled as sequences of Dirac impulses with amplitude proportional to the events size. First, a collection of time series involving 64 years is analyzed in the frequency domain by means of the Fourier transform. The amplitude spectra are approximated by power law functions and their parameters are read as an underlying signature of the system dynamics. Second, it is adopted the concept of circular time and the collective behavior of tornadoes analyzed. Clustering techniques are then adopted to identify and visualize the emerging patterns.

  14. Interaction Control to Synchronize Non-synchronizable Networks.

    PubMed

    Schröder, Malte; Chakraborty, Sagar; Witthaut, Dirk; Nagler, Jan; Timme, Marc

    2016-11-17

    Synchronization constitutes one of the most fundamental collective dynamics across networked systems and often underlies their function. Whether a system may synchronize depends on the internal unit dynamics as well as the topology and strength of their interactions. For chaotic units with certain interaction topologies synchronization might be impossible across all interaction strengths, meaning that these networks are non-synchronizable. Here we propose the concept of interaction control, generalizing transient uncoupling, to induce desired collective dynamics in complex networks and apply it to synchronize even such non-synchronizable systems. After highlighting that non-synchronizability prevails for a wide range of networks of arbitrary size, we explain how a simple binary control may localize interactions in state space and thereby synchronize networks. Intriguingly, localizing interactions by a fixed control scheme enables stable synchronization across all connected networks regardless of topological constraints. Interaction control may thus ease the design of desired collective dynamics even without knowledge of the networks' exact interaction topology and consequently have implications for biological and self-organizing technical systems.

  15. Interaction Control to Synchronize Non-synchronizable Networks

    PubMed Central

    Schröder, Malte; Chakraborty, Sagar; Witthaut, Dirk; Nagler, Jan; Timme, Marc

    2016-01-01

    Synchronization constitutes one of the most fundamental collective dynamics across networked systems and often underlies their function. Whether a system may synchronize depends on the internal unit dynamics as well as the topology and strength of their interactions. For chaotic units with certain interaction topologies synchronization might be impossible across all interaction strengths, meaning that these networks are non-synchronizable. Here we propose the concept of interaction control, generalizing transient uncoupling, to induce desired collective dynamics in complex networks and apply it to synchronize even such non-synchronizable systems. After highlighting that non-synchronizability prevails for a wide range of networks of arbitrary size, we explain how a simple binary control may localize interactions in state space and thereby synchronize networks. Intriguingly, localizing interactions by a fixed control scheme enables stable synchronization across all connected networks regardless of topological constraints. Interaction control may thus ease the design of desired collective dynamics even without knowledge of the networks’ exact interaction topology and consequently have implications for biological and self-organizing technical systems. PMID:27853266

  16. Statistical quasi-particle theory for open quantum systems

    NASA Astrophysics Data System (ADS)

    Zhang, Hou-Dao; Xu, Rui-Xue; Zheng, Xiao; Yan, YiJing

    2018-04-01

    This paper presents a comprehensive account on the recently developed dissipaton-equation-of-motion (DEOM) theory. This is a statistical quasi-particle theory for quantum dissipative dynamics. It accurately describes the influence of bulk environments, with a few number of quasi-particles, the dissipatons. The novel dissipaton algebra is then followed, which readily bridges the Schrödinger equation to the DEOM theory. As a fundamental theory of quantum mechanics in open systems, DEOM characterizes both the stationary and dynamic properties of system-and-bath interferences. It treats not only the quantum dissipative systems of primary interest, but also the hybrid environment dynamics that could be experimentally measurable. Examples are the linear or nonlinear Fano interferences and the Herzberg-Teller vibronic couplings in optical spectroscopies. This review covers the DEOM construction, the underlying dissipaton algebra and theorems, the physical meanings of dynamical variables, the possible identifications of dissipatons, and some recent advancements in efficient DEOM evaluations on various problems. The relations of the present theory to other nonperturbative methods are also critically presented.

  17. Neuromechanical tuning of nonlinear postural control dynamics

    NASA Astrophysics Data System (ADS)

    Ting, Lena H.; van Antwerp, Keith W.; Scrivens, Jevin E.; McKay, J. Lucas; Welch, Torrence D. J.; Bingham, Jeffrey T.; DeWeerth, Stephen P.

    2009-06-01

    Postural control may be an ideal physiological motor task for elucidating general questions about the organization, diversity, flexibility, and variability of biological motor behaviors using nonlinear dynamical analysis techniques. Rather than presenting "problems" to the nervous system, the redundancy of biological systems and variability in their behaviors may actually be exploited to allow for the flexible achievement of multiple and concurrent task-level goals associated with movement. Such variability may reflect the constant "tuning" of neuromechanical elements and their interactions for movement control. The problem faced by researchers is that there is no one-to-one mapping between the task goal and the coordination of the underlying elements. We review recent and ongoing research in postural control with the goal of identifying common mechanisms underlying variability in postural control, coordination of multiple postural strategies, and transitions between them. We present a delayed-feedback model used to characterize the variability observed in muscle coordination patterns during postural responses to perturbation. We emphasize the significance of delays in physiological postural systems, requiring the modulation and coordination of both the instantaneous, "passive" response to perturbations as well as the delayed, "active" responses to perturbations. The challenge for future research lies in understanding the mechanisms and principles underlying neuromechanical tuning of and transitions between the diversity of postural behaviors. Here we describe some of our recent and ongoing studies aimed at understanding variability in postural control using physical robotic systems, human experiments, dimensional analysis, and computational models that could be enhanced from a nonlinear dynamics approach.

  18. Control of base-excited dynamical systems through piezoelectric energy harvesting absorber

    NASA Astrophysics Data System (ADS)

    Abdelmoula, H.; Dai, H. L.; Abdelkefi, A.; Wang, L.

    2017-09-01

    The spring-mass absorber usually offers a good control to dynamical systems under direct base excitations for a specific value of the excitation frequency. As the vibrational energy of a primary dynamical system is transferred to the absorber, it gets dissipated. In this study, this energy is no longer dissipated but converted to available electrical power by designing efficient energy harvesters. A novel design of a piezoelectric beam installed inside an elastically-mounted dynamical system undergoing base excitations is considered. A design is carried out in order to determine the properties and dimensions of the energy harvester with the constraint of simultaneously decreasing the oscillating amplitudes of the primary dynamical system and increasing the harvested power of the energy harvesting absorber. An analytical model for the coupled system is constructed using Euler-Lagrange principle and Galerkin discretization. Different strategies for controlling the primary structure displacement and enhancing the harvested power as functions of the electrical load resistance and thickness of the beam substrate are performed. The linear polynomial approximation of the system’s key parameters as a function of the beam’s substrate thickness is first carried out. Then, the gradient method is applied to determine the adequate values of the electrical load resistance and thickness of the substrate under the constraints of minimizing the amplitudes of the primary structure or maximizing the levels of the harvested power. After that, an iterative strategy is considered in order to simultaneously minimize the amplitudes of the primary structure and maximize the levels of the harvested power as functions of the thickness of the substrate and electrical load resistance. In addition to harmonic excitations, the coupled system subjected to a white noise is explored. Through this analysis, the load resistance and thickness of the substrate of the piezoelectric energy harvester are determined. It is shown that, in addition to efficiently control the oscillating amplitudes of the primary structure, broadband resonance regions can take place and hence high levels of the harvested power are obtained.

  19. Three-dimensional vesicles under shear flow: numerical study of dynamics and phase diagram.

    PubMed

    Biben, Thierry; Farutin, Alexander; Misbah, Chaouqi

    2011-03-01

    The study of vesicles under flow, a model system for red blood cells (RBCs), is an essential step in understanding various intricate dynamics exhibited by RBCs in vivo and in vitro. Quantitative three-dimensional analyses of vesicles under flow are presented. The regions of parameters to produce tumbling (TB), tank-treating, vacillating-breathing (VB), and even kayaking (or spinning) modes are determined. New qualitative features are found: (i) a significant widening of the VB mode region in parameter space upon increasing shear rate γ and (ii) a robustness of normalized period of TB and VB with γ. Analytical support is also provided. We make a comparison with existing experimental results. In particular, we find that the phase diagram of the various dynamics depends on three dimensionless control parameters, while a recent experimental work reported that only two are sufficient.

  20. A review of dynamic stability of repulsive-force maglev suspension systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Y.; Rote, D.M.

    1998-07-01

    Vehicle dynamics and the need to satisfy ride quality requirements have long been recognized as crucial to the commercial success of passenger-carrying transportation systems. Design concepts for maglev systems are no exception. Early maglev investigators and designers were well aware of the importance of ride quality and took care to ensure that their designs would meet acceptable ride quality standards. In contrast, the dynamic stability of electrodynamic suspension (EDS) systems, which has obvious implications for system safety and cost as well as for ride quality, has not received nearly as much attention. Because of the well-known under-damped nature of EDSmore » suspension systems and the observation of instabilities in laboratory-scale model systems, it is prudent to develop a better understanding of vehicle stability characteristics. The work reported in this was undertaken with the intention of summarizing information that has been accumulated worldwide and that is relevant to dynamic stability of repulsive-force maglev suspension systems, assimilating that information, and gaining an understanding of the factors that influence that stability. Included in the paper is a discussion and comparison of results acquired from some representative tests of large-scale vehicles on linear test tracks, together with analytical and laboratory-scale investigations of stability and dynamics of EDS systems. This paper will also summarize the R and D activities at Argonne National Laboratory (ANL) since 1991 to study the nature of the forces that are operative in an EDS system and the dynamic stability of such systems.« less

  1. Force Sensor Characterization Under Sinusoidal Excitations

    PubMed Central

    Medina, Nieves; de Vicente, Jesús

    2014-01-01

    The aim in the current work is the development of a method to characterize force sensors under sinusoidal excitations using a primary standard as the source of traceability. During this work the influence factors have been studied and a method to minimise their contributions, as well as the corrections to be performed under dynamic conditions have been established. These results will allow the realization of an adequate characterization of force sensors under sinusoidal excitations, which will be essential for its further proper use under dynamic conditions. The traceability of the sensor characterization is based in the direct definition of force as mass multiplied by acceleration. To do so, the sensor is loaded with different calibrated loads and is maintained under different sinusoidal accelerations by means of a vibration shaker system that is able to generate accelerations up to 100 m/s2 with frequencies from 5 Hz up to 2400 Hz. The acceleration is measured by means of a laser vibrometer with traceability to the units of time and length. A multiple channel data acquisition system is also required to simultaneously acquire the electrical output signals of the involved instrument in real time. PMID:25290287

  2. Blue laser system for photo-dynamic therapy

    NASA Astrophysics Data System (ADS)

    Dabu, R.; Carstocea, B.; Blanaru, C.; Pacala, O.; Stratan, A.; Ursu, D.; Stegaru, F.

    2007-03-01

    A blue laser system for eye diseases (age related macular degeneration, sub-retinal neo-vascularisation in myopia and presumed ocular histoplasmosis syndrome - POHS) photo-dynamic therapy, based on riboflavin as photosensitive substance, has been developed. A CW diode laser at 445 nm wavelength was coupled through an opto-mechanical system to the viewing path of a bio-microscope. The laser beam power in the irradiated area is adjustable between 1 mW and 40 mW, in a spot of 3-5 mm diameter. The irradiation time can be programmed in the range of 1-19 minutes. Currently, the laser system is under clinic tests.

  3. Final Report. Analysis and Reduction of Complex Networks Under Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marzouk, Youssef M.; Coles, T.; Spantini, A.

    2013-09-30

    The project was a collaborative effort among MIT, Sandia National Laboratories (local PI Dr. Habib Najm), the University of Southern California (local PI Prof. Roger Ghanem), and The Johns Hopkins University (local PI Prof. Omar Knio, now at Duke University). Our focus was the analysis and reduction of large-scale dynamical systems emerging from networks of interacting components. Such networks underlie myriad natural and engineered systems. Examples important to DOE include chemical models of energy conversion processes, and elements of national infrastructure—e.g., electric power grids. Time scales in chemical systems span orders of magnitude, while infrastructure networks feature both local andmore » long-distance connectivity, with associated clusters of time scales. These systems also blend continuous and discrete behavior; examples include saturation phenomena in surface chemistry and catalysis, and switching in electrical networks. Reducing size and stiffness is essential to tractable and predictive simulation of these systems. Computational singular perturbation (CSP) has been effectively used to identify and decouple dynamics at disparate time scales in chemical systems, allowing reduction of model complexity and stiffness. In realistic settings, however, model reduction must contend with uncertainties, which are often greatest in large-scale systems most in need of reduction. Uncertainty is not limited to parameters; one must also address structural uncertainties—e.g., whether a link is present in a network—and the impact of random perturbations, e.g., fluctuating loads or sources. Research under this project developed new methods for the analysis and reduction of complex multiscale networks under uncertainty, by combining computational singular perturbation (CSP) with probabilistic uncertainty quantification. CSP yields asymptotic approximations of reduceddimensionality “slow manifolds” on which a multiscale dynamical system evolves. Introducing uncertainty in this context raised fundamentally new issues, e.g., how is the topology of slow manifolds transformed by parametric uncertainty? How to construct dynamical models on these uncertain manifolds? To address these questions, we used stochastic spectral polynomial chaos (PC) methods to reformulate uncertain network models and analyzed them using CSP in probabilistic terms. Finding uncertain manifolds involved the solution of stochastic eigenvalue problems, facilitated by projection onto PC bases. These problems motivated us to explore the spectral properties stochastic Galerkin systems. We also introduced novel methods for rank-reduction in stochastic eigensystems—transformations of a uncertain dynamical system that lead to lower storage and solution complexity. These technical accomplishments are detailed below. This report focuses on the MIT portion of the joint project.« less

  4. Deconstructing the core dynamics from a complex time-lagged regulatory biological circuit.

    PubMed

    Eriksson, O; Brinne, B; Zhou, Y; Björkegren, J; Tegnér, J

    2009-03-01

    Complex regulatory dynamics is ubiquitous in molecular networks composed of genes and proteins. Recent progress in computational biology and its application to molecular data generate a growing number of complex networks. Yet, it has been difficult to understand the governing principles of these networks beyond graphical analysis or extensive numerical simulations. Here the authors exploit several simplifying biological circumstances which thereby enable to directly detect the underlying dynamical regularities driving periodic oscillations in a dynamical nonlinear computational model of a protein-protein network. System analysis is performed using the cell cycle, a mathematically well-described complex regulatory circuit driven by external signals. By introducing an explicit time delay and using a 'tearing-and-zooming' approach the authors reduce the system to a piecewise linear system with two variables that capture the dynamics of this complex network. A key step in the analysis is the identification of functional subsystems by identifying the relations between state-variables within the model. These functional subsystems are referred to as dynamical modules operating as sensitive switches in the original complex model. By using reduced mathematical representations of the subsystems the authors derive explicit conditions on how the cell cycle dynamics depends on system parameters, and can, for the first time, analyse and prove global conditions for system stability. The approach which includes utilising biological simplifying conditions, identification of dynamical modules and mathematical reduction of the model complexity may be applicable to other well-characterised biological regulatory circuits. [Includes supplementary material].

  5. Imaging the Dynamics of the Ferroelectric Stripe Phase Near a Field-Driven Phase Transition in Bismuth Ferrite

    NASA Astrophysics Data System (ADS)

    Laanait, Nouamane; Li, Qian; Zhang, Zhan; Kalinin, Sergei

    Electric field-driven phase transitions in multiferroic systems such as Bismuth Ferrite could potentially host interesting domain dynamics due to the coexistence of multiple order parameters. Structural imaging of these dynamics under a host of elastic and electric boundary conditions is therefore of interest. Here, we present X-ray diffraction microscopy (XDM) studies of the domain wall dynamics in a bismuth ferrite thin-film near the field-driven transition from rhombohedral to monoclinic (R to M). XDM is a novel full-field imaging technique that uses Bragg diffraction contrast to image structural configurations with sub-100nm lateral resolutions and fast acquisition times (milliseconds to seconds per image). We find that under electric fields 100 kV/cm, a bismuth ferrite thin-film (100 nm BiFeO3/DyScO3 (110)) undergoes a structural phase transition but that this new phase (M) is pinned by the preexisting ferroelectric/ferroelastic stripe phase (R). At higher fields ( 300 kV/cm), we observe unusually slow domain wall dynamics in the stripe phase, consisting of periodicity doubling, domain wall roughening and crowding. These observed ferroelastic domain wall spatial dynamics are weakly constrained by the crystal symmetry of the orthorhombic substrate but exhibit nonlinear dynamics more commonly associated with disordered nematic systems. This work was supported by the Eugene P. Wigner Fellowship program at Oak Ridge National Laboratory, a U.S. Department of Energy facility.

  6. Can a simple dynamical system describe the interplay between drag and buoyancy in terrain-induced canopy flows?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Roo, Frederik; Banerjee, Tirtha

    Under non-neutral stratification and in the presence of topography the dynamics of turbulent flow within a canopy is not yet completely understood. This has, among others, serious implications for the measurement of surface – atmosphere exchange by means of eddy-covariance: for example the measurement of carbon dioxide fluxes are strongly influenced if drainage flows occur during night, when the flow within the canopy decouples from the flow aloft. An improved physical understanding of the behavior of scalars under canopy turbulence in complex terrain is urgently needed. In the present work, we investigate the dynamics of turbulent flow within sloped canopies,more » focusing on the slope wind and potential temperature. We concentrate on the presence of oscillatory behavior in the flow variables in terms of switching of flow regimes by conducting linear stability analysis. We revisit and correct the simplified theory that exists in the literature, which is based on the interplay between the drag force and the buoyancy. We find that the simplified description of this dynamical system cannot exhibit the observed richness of the dynamics. To augment the simplified dynamical system’s analysis, we make use of large-eddy simulation of a three-dimensional hill covered by a homogeneous forest and analyze the phase synchronization behavior of the buoyancy and drag forces in the momentum budget to explore the turbulent dynamics in more detail.« less

  7. Can a simple dynamical system describe the interplay between drag and buoyancy in terrain-induced canopy flows?

    DOE PAGES

    De Roo, Frederik; Banerjee, Tirtha

    2018-02-23

    Under non-neutral stratification and in the presence of topography the dynamics of turbulent flow within a canopy is not yet completely understood. This has, among others, serious implications for the measurement of surface – atmosphere exchange by means of eddy-covariance: for example the measurement of carbon dioxide fluxes are strongly influenced if drainage flows occur during night, when the flow within the canopy decouples from the flow aloft. An improved physical understanding of the behavior of scalars under canopy turbulence in complex terrain is urgently needed. In the present work, we investigate the dynamics of turbulent flow within sloped canopies,more » focusing on the slope wind and potential temperature. We concentrate on the presence of oscillatory behavior in the flow variables in terms of switching of flow regimes by conducting linear stability analysis. We revisit and correct the simplified theory that exists in the literature, which is based on the interplay between the drag force and the buoyancy. We find that the simplified description of this dynamical system cannot exhibit the observed richness of the dynamics. To augment the simplified dynamical system’s analysis, we make use of large-eddy simulation of a three-dimensional hill covered by a homogeneous forest and analyze the phase synchronization behavior of the buoyancy and drag forces in the momentum budget to explore the turbulent dynamics in more detail.« less

  8. Extracting neuronal functional network dynamics via adaptive Granger causality analysis.

    PubMed

    Sheikhattar, Alireza; Miran, Sina; Liu, Ji; Fritz, Jonathan B; Shamma, Shihab A; Kanold, Patrick O; Babadi, Behtash

    2018-04-24

    Quantifying the functional relations between the nodes in a network based on local observations is a key challenge in studying complex systems. Most existing time series analysis techniques for this purpose provide static estimates of the network properties, pertain to stationary Gaussian data, or do not take into account the ubiquitous sparsity in the underlying functional networks. When applied to spike recordings from neuronal ensembles undergoing rapid task-dependent dynamics, they thus hinder a precise statistical characterization of the dynamic neuronal functional networks underlying adaptive behavior. We develop a dynamic estimation and inference paradigm for extracting functional neuronal network dynamics in the sense of Granger, by integrating techniques from adaptive filtering, compressed sensing, point process theory, and high-dimensional statistics. We demonstrate the utility of our proposed paradigm through theoretical analysis, algorithm development, and application to synthetic and real data. Application of our techniques to two-photon Ca 2+ imaging experiments from the mouse auditory cortex reveals unique features of the functional neuronal network structures underlying spontaneous activity at unprecedented spatiotemporal resolution. Our analysis of simultaneous recordings from the ferret auditory and prefrontal cortical areas suggests evidence for the role of rapid top-down and bottom-up functional dynamics across these areas involved in robust attentive behavior.

  9. Fixed Equipment in the Energy Systems Integration Facility | Energy Systems

    Science.gov Websites

    dynamic simulation of future energy systems. Photo of a robot used to test hydrogen coupling hardware. At test chambers (rated up to 60°C) for testing HVAC systems under simulated loading conditions Two bench performance Test stand for measuring performance of receiver tubes for concentrating solar power applications

  10. Stability of large-scale systems.

    NASA Technical Reports Server (NTRS)

    Siljak, D. D.

    1972-01-01

    The purpose of this paper is to present the results obtained in stability study of large-scale systems based upon the comparison principle and vector Liapunov functions. The exposition is essentially self-contained, with emphasis on recent innovations which utilize explicit information about the system structure. This provides a natural foundation for the stability theory of dynamic systems under structural perturbations.

  11. Population dynamics, information transfer, and spatial organization in a chemical reaction network under spatial confinement and crowding conditions

    DOE PAGES

    Bellesia, Giovanni; Bales, Benjamin B.

    2016-10-10

    Here, we investigate, via Brownian dynamics simulations, the reaction dynamics of a generic, nonlinear chemical network under spatial confinement and crowding conditions. In detail, the Willamowski-Rossler chemical reaction system has been “extended” and considered as a prototype reaction-diffusion system. These results are potentially relevant to a number of open problems in biophysics and biochemistry, such as the synthesis of primitive cellular units (protocells) and the definition of their role in the chemical origin of life and the characterization of vesicle-mediated drug delivery processes. More generally, the computational approach presented in this work makes the case for the use of spatialmore » stochastic simulation methods for the study of biochemical networks in vivo where the “well-mixed” approximation is invalid and both thermal and intrinsic fluctuations linked to the possible presence of molecular species in low number copies cannot be averaged out.« less

  12. Role of transcriptional regulation in the evolution of plant phenotype: A dynamic systems approach.

    PubMed

    Rodríguez-Mega, Emiliano; Piñeyro-Nelson, Alma; Gutierrez, Crisanto; García-Ponce, Berenice; Sánchez, María De La Paz; Zluhan-Martínez, Estephania; Álvarez-Buylla, Elena R; Garay-Arroyo, Adriana

    2015-03-02

    A growing body of evidence suggests that alterations in transcriptional regulation of genes involved in modulating development are an important part of phenotypic evolution, and this can be documented among species and within populations. While the effects of differential transcriptional regulation in organismal development have been preferentially studied in animal systems, this phenomenon has also been addressed in plants. In this review, we summarize evidence for cis-regulatory mutations, trans-regulatory changes and epigenetic modifications as molecular events underlying important phenotypic alterations, and thus shaping the evolution of plant development. We postulate that a mechanistic understanding of why such molecular alterations have a key role in development, morphology and evolution will have to rely on dynamic models of complex regulatory networks that consider the concerted action of genetic and nongenetic components, and that also incorporate the restrictions underlying the genotype to phenotype mapping process. Developmental Dynamics, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  13. Communities as cliques

    PubMed Central

    Fried, Yael; Kessler, David A.; Shnerb, Nadav M.

    2016-01-01

    High-diversity species assemblages are very common in nature, and yet the factors allowing for the maintenance of biodiversity remain obscure. The competitive exclusion principle and May’s complexity-diversity puzzle both suggest that a community can support only a small number of species, turning the spotlight on the dynamics of local patches or islands, where stable and uninvadable (SU) subsets of species play a crucial role. Here we map the question of the number of different possible SUs a community can support to the geometric problem of finding maximal cliques of the corresponding graph. This enables us to solve for the number of SUs as a function of the species richness in the regional pool, N, showing that the growth of this number is subexponential in N, contrary to long-standing wisdom. To understand the dynamics under noise we examine the relaxation time to an SU. Symmetric systems relax rapidly, whereas in asymmetric systems the relaxation time grows much faster with N, suggesting an excitable dynamics under noise. PMID:27759102

  14. Molecular dynamics of liquid SiO2 under high pressure

    NASA Technical Reports Server (NTRS)

    Rustad, James R.; Yuen, David A.; Spera, Frank J.

    1990-01-01

    The molecular dynamics of pure SiO2 liquids was investigated up to pressures of 20 GPa at 4000 K using 252, 498, 864, and 1371 particles. The results obtained suggest that the pressure-induced maxima in the self-diffusion coefficients of both oxygen and silicon are dependent on the system size. In the case of larger systems, the maximum decreases and shifts to lower pressures. Changes in the velocity autocorrelation function with increasing pressure are described. The populations of anomalously coordinated silicon and oxygen are then discussed as a function of pressure and system size.

  15. Discrete Abstractions of Hybrid Systems: Verification of Safety and Application to User-Interface Design

    NASA Technical Reports Server (NTRS)

    Oishi, Meeko; Tomlin, Claire; Degani, Asaf

    2003-01-01

    Human interaction with complex hybrid systems involves the user, the automation's discrete mode logic, and the underlying continuous dynamics of the physical system. Often the user-interface of such systems displays a reduced set of information about the entire system. In safety-critical systems, how can we identify user-interface designs which do not have adequate information, or which may confuse the user? Here we describe a methodology, based on hybrid system analysis, to verify that a user-interface contains information necessary to safely complete a desired procedure or task. Verification within a hybrid framework allows us to account for the continuous dynamics underlying the simple, discrete representations displayed to the user. We provide two examples: a car traveling through a yellow light at an intersection and an aircraft autopilot in a landing/go-around maneuver. The examples demonstrate the general nature of this methodology, which is applicable to hybrid systems (not fully automated) which have operational constraints we can pose in terms of safety. This methodology differs from existing work in hybrid system verification in that we directly account for the user's interactions with the system.

  16. A genetically-encoded chloride and pH sensor for dissociating ion dynamics in the nervous system

    PubMed Central

    Raimondo, Joseph V.; Joyce, Bradley; Kay, Louise; Schlagheck, Theresa; Newey, Sarah E.; Srinivas, Shankar; Akerman, Colin J.

    2013-01-01

    Within the nervous system, intracellular Cl− and pH regulate fundamental processes including cell proliferation, metabolism, synaptic transmission, and network excitability. Cl− and pH are often co-regulated, and network activity results in the movement of both Cl− and H+. Tools to accurately measure these ions are crucial for understanding their role under physiological and pathological conditions. Although genetically-encoded Cl− and pH sensors have been described previously, these either lack ion specificity or are unsuitable for neuronal use. Here we present ClopHensorN—a new genetically-encoded ratiometric Cl− and pH sensor that is optimized for the nervous system. We demonstrate the ability of ClopHensorN to dissociate and simultaneously quantify Cl− and H+ concentrations under a variety of conditions. In addition, we establish the sensor's utility by characterizing activity-dependent ion dynamics in hippocampal neurons. PMID:24312004

  17. A genetically-encoded chloride and pH sensor for dissociating ion dynamics in the nervous system.

    PubMed

    Raimondo, Joseph V; Joyce, Bradley; Kay, Louise; Schlagheck, Theresa; Newey, Sarah E; Srinivas, Shankar; Akerman, Colin J

    2013-01-01

    Within the nervous system, intracellular Cl(-) and pH regulate fundamental processes including cell proliferation, metabolism, synaptic transmission, and network excitability. Cl(-) and pH are often co-regulated, and network activity results in the movement of both Cl(-) and H(+). Tools to accurately measure these ions are crucial for understanding their role under physiological and pathological conditions. Although genetically-encoded Cl(-) and pH sensors have been described previously, these either lack ion specificity or are unsuitable for neuronal use. Here we present ClopHensorN-a new genetically-encoded ratiometric Cl(-) and pH sensor that is optimized for the nervous system. We demonstrate the ability of ClopHensorN to dissociate and simultaneously quantify Cl(-) and H(+) concentrations under a variety of conditions. In addition, we establish the sensor's utility by characterizing activity-dependent ion dynamics in hippocampal neurons.

  18. Dynamics of non-holonomic systems with stochastic transport

    NASA Astrophysics Data System (ADS)

    Holm, D. D.; Putkaradze, V.

    2018-01-01

    This paper formulates a variational approach for treating observational uncertainty and/or computational model errors as stochastic transport in dynamical systems governed by action principles under non-holonomic constraints. For this purpose, we derive, analyse and numerically study the example of an unbalanced spherical ball rolling under gravity along a stochastic path. Our approach uses the Hamilton-Pontryagin variational principle, constrained by a stochastic rolling condition, which we show is equivalent to the corresponding stochastic Lagrange-d'Alembert principle. In the example of the rolling ball, the stochasticity represents uncertainty in the observation and/or error in the computational simulation of the angular velocity of rolling. The influence of the stochasticity on the deterministically conserved quantities is investigated both analytically and numerically. Our approach applies to a wide variety of stochastic, non-holonomically constrained systems, because it preserves the mathematical properties inherited from the variational principle.

  19. Modeling of larch forest dynamics under a changing climate in eastern Siberia

    NASA Astrophysics Data System (ADS)

    Nakai, T.; Kumagai, T.; Iijima, Y.; Ohta, T.; Kotani, A.; Maximov, T. C.; Hiyama, T.

    2017-12-01

    According to the projection by an earth system model under RCP8.5 scenario, boreal forest in eastern Siberia (near Yakutsk) is predicted to experience significant changes in climate, in which the mean annual air temperature is projected to be positive and the annual precipitation will be doubled by the end of 21st century. Since the forest in this region is underlain by continuous permafrost, both increasing temperature and precipitation can affect the dynamics of forest through the soil water processes. To investigate such effects, we adopted a newly developed terrestrial ecosystem dynamics model named S-TEDy (SEIB-DGVM-originated Terrestrial Ecosystem Dynamics model), which mechanistically simulates "the way of life" of each individual tree and resulting tree mortality under the future climate conditions. This model was first developed for the simulation of the dynamics of a tropical rainforest in the Borneo Island, and successfully reproduced higher mortality of large trees due to a prolonged drought induced by ENSO event of 1997-1998. To apply this model to a larch forest in eastern Siberia, we are developing a soil submodel to consider the effect of thawing-freezing processes. We will present a simulation results using the future climate projection.

  20. The fluctuating ribosome: thermal molecular dynamics characterized by neutron scattering

    NASA Astrophysics Data System (ADS)

    Zaccai, Giuseppe; Natali, Francesca; Peters, Judith; Řihová, Martina; Zimmerman, Ella; Ollivier, J.; Combet, J.; Maurel, Marie-Christine; Bashan, Anat; Yonath, Ada

    2016-11-01

    Conformational changes associated with ribosome function have been identified by X-ray crystallography and cryo-electron microscopy. These methods, however, inform poorly on timescales. Neutron scattering is well adapted for direct measurements of thermal molecular dynamics, the ‘lubricant’ for the conformational fluctuations required for biological activity. The method was applied to compare water dynamics and conformational fluctuations in the 30 S and 50 S ribosomal subunits from Haloarcula marismortui, under high salt, stable conditions. Similar free and hydration water diffusion parameters are found for both subunits. With respect to the 50 S subunit, the 30 S is characterized by a softer force constant and larger mean square displacements (MSD), which would facilitate conformational adjustments required for messenger and transfer RNA binding. It has been shown previously that systems from mesophiles and extremophiles are adapted to have similar MSD under their respective physiological conditions. This suggests that the results presented are not specific to halophiles in high salt but a general property of ribosome dynamics under corresponding, active conditions. The current study opens new perspectives for neutron scattering characterization of component functional molecular dynamics within the ribosome.

  1. Structure theorems and the dynamics of nitrogen catabolite repression in yeast

    PubMed Central

    Boczko, Erik M.; Cooper, Terrance G.; Gedeon, Tomas; Mischaikow, Konstantin; Murdock, Deborah G.; Pratap, Siddharth; Wells, K. Sam

    2005-01-01

    By using current biological understanding, a conceptually simple, but mathematically complex, model is proposed for the dynamics of the gene circuit responsible for regulating nitrogen catabolite repression (NCR) in yeast. A variety of mathematical “structure” theorems are described that allow one to determine the asymptotic dynamics of complicated systems under very weak hypotheses. It is shown that these theorems apply to several subcircuits of the full NCR circuit, most importantly to the URE2–GLN3 subcircuit that is independent of the other constituents but governs the switching behavior of the full NCR circuit under changes in nitrogen source. Under hypotheses that are fully consistent with biological data, it is proven that the dynamics of this subcircuit is simple periodic behavior in synchrony with the cell cycle. Although the current mathematical structure theorems do not apply to the full NCR circuit, extensive simulations suggest that the dynamics is constrained in much the same way as that of the URE2–GLN3 subcircuit. This finding leads to the proposal that mathematicians study genetic circuits to find new geometries for which structure theorems may exist. PMID:15814615

  2. Phenomenological study of decoherence in solid-state spin qubits due to nuclear spin diffusion

    NASA Astrophysics Data System (ADS)

    Biercuk, Michael J.; Bluhm, Hendrik

    2011-06-01

    We present a study of the prospects for coherence preservation in solid-state spin qubits using dynamical decoupling protocols. Recent experiments have provided the first demonstrations of multipulse dynamical decoupling sequences in this qubit system, but quantitative analyses of potential coherence improvements have been hampered by a lack of concrete knowledge of the relevant noise processes. We present calculations of qubit coherence under the application of arbitrary dynamical decoupling pulse sequences based on an experimentally validated semiclassical model. This phenomenological approach bundles the details of underlying noise processes into a single experimentally relevant noise power spectral density. Our results show that the dominant features of experimental measurements in a two-electron singlet-triplet spin qubit can be replicated using a 1/ω2 noise power spectrum associated with nuclear spin flips in the host material. Beginning with this validation, we address the effects of nuclear programming, high-frequency nuclear spin dynamics, and other high-frequency classical noise sources, with conjectures supported by physical arguments and microscopic calculations where relevant. Our results provide expected performance bounds and identify diagnostic metrics that can be measured experimentally in order to better elucidate the underlying nuclear spin dynamics.

  3. Suspension system vibration analysis with regard to variable type ability to smooth road irregularities

    NASA Astrophysics Data System (ADS)

    Rykov, S. P.; Rykova, O. A.; Koval, V. S.; Makhno, D. E.; Fedotov, K. V.

    2018-03-01

    The paper aims to analyze vibrations of the dynamic system equivalent of the suspension system with regard to tyre ability to smooth road irregularities. The research is based on static dynamics for linear systems of automated control, methods of correlation, spectral and numerical analysis. Input of new data on the smoothing effect of the pneumatic tyre reflecting changes of a contact area between the wheel and road under vibrations of the suspension makes the system non-linear which requires using numerical analysis methods. Taking into account the variable smoothing ability of the tyre when calculating suspension vibrations, one can approximate calculation and experimental results and improve the constant smoothing ability of the tyre.

  4. Steadily oscillating axial bands of binary granules in a nearly filled coaxial cylinder.

    PubMed

    Inagaki, Shio; Ebata, Hiroyuki; Yoshikawa, Kenichi

    2015-01-01

    Granular materials often segregate under mechanical agitation such as flowing, shaking, or rotating, in contrast to an expectation of mixing. It is well known that bidisperse mixtures of granular materials in a partially filled rotating cylinder exhibit monotonic coarsening dynamics of segregation. Here we report the steady oscillation of segregated axial bands under the stationary rotation of a nearly filled coaxial cylinder for O(10(3)) revolutions. The axial bands demonstrate steady back-and-forth motion along the axis of rotation. Experimental findings indicated that these axial band dynamics are driven by global convection throughout the system. The essential features of the spatiotemporal dynamics are reproduced with a simple phenomenological equation that incorporates the effect of global convection.

  5. Policy choices in dementia care-An exploratory analysis of the Alberta continuing care system (ACCS) using system dynamics.

    PubMed

    Cepoiu-Martin, Monica; Bischak, Diane P

    2018-02-01

    The increase in the incidence of dementia in the aging population and the decrease in the availability of informal caregivers put pressure on continuing care systems to care for a growing number of people with disabilities. Policy changes in the continuing care system need to address this shift in the population structure. One of the most effective tools for assessing policies in complex systems is system dynamics. Nevertheless, this method is underused in continuing care capacity planning. A system dynamics model of the Alberta Continuing Care System was developed using stylized data. Sensitivity analyses and policy evaluations were conducted to demonstrate the use of system dynamics modelling in this area of public health planning. We focused our policy exploration on introducing staff/resident benchmarks in both supportive living and long-term care (LTC). The sensitivity analyses presented in this paper help identify leverage points in the system that need to be acknowledged when policy decisions are made. Our policy explorations showed that the deficits of staff increase dramatically when benchmarks are introduced, as expected, but at the end of the simulation period, the difference in deficits of both nurses and health care aids are similar between the 2 scenarios tested. Modifying the benchmarks in LTC only versus in both supportive living and LTC has similar effects on staff deficits in long term, under the assumptions of this particular model. The continuing care system dynamics model can be used to test various policy scenarios, allowing decision makers to visualize the effect of a certain policy choice on different system variables and to compare different policy options. Our exploration illustrates the use of system dynamics models for policy making in complex health care systems. © 2017 John Wiley & Sons, Ltd.

  6. Exploration of Multi-State Conformational Dynamics and Underlying Global Functional Landscape of Maltose Binding Protein

    PubMed Central

    Wang, Yong; Tang, Chun; Wang, Erkang; Wang, Jin

    2012-01-01

    An increasing number of biological machines have been revealed to have more than two macroscopic states. Quantifying the underlying multiple-basin functional landscape is essential for understanding their functions. However, the present models seem to be insufficient to describe such multiple-state systems. To meet this challenge, we have developed a coarse grained triple-basin structure-based model with implicit ligand. Based on our model, the constructed functional landscape is sufficiently sampled by the brute-force molecular dynamics simulation. We explored maltose-binding protein (MBP) which undergoes large-scale domain motion between open, apo-closed (partially closed) and holo-closed (fully closed) states responding to ligand binding. We revealed an underlying mechanism whereby major induced fit and minor population shift pathways co-exist by quantitative flux analysis. We found that the hinge regions play an important role in the functional dynamics as well as that increases in its flexibility promote population shifts. This finding provides a theoretical explanation of the mechanistic discrepancies in PBP protein family. We also found a functional “backtracking” behavior that favors conformational change. We further explored the underlying folding landscape in response to ligand binding. Consistent with earlier experimental findings, the presence of ligand increases the cooperativity and stability of MBP. This work provides the first study to explore the folding dynamics and functional dynamics under the same theoretical framework using our triple-basin functional model. PMID:22532792

  7. Flexible aircraft dynamic modeling for dynamic analysis and control synthesis

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.

    1989-01-01

    The linearization and simplification of a nonlinear, literal model for flexible aircraft is highlighted. Areas of model fidelity that are critical if the model is to be used for control system synthesis are developed and several simplification techniques that can deliver the necessary model fidelity are discussed. These techniques include both numerical and analytical approaches. An analytical approach, based on first-order sensitivity theory is shown to lead not only to excellent numerical results, but also to closed-form analytical expressions for key system dynamic properties such as the pole/zero factors of the vehicle transfer-function matrix. The analytical results are expressed in terms of vehicle mass properties, vibrational characteristics, and rigid-body and aeroelastic stability derivatives, thus leading to the underlying causes for critical dynamic characteristics.

  8. The development of a dynamic software for the user interaction from the geographic information system environment with the database of the calibration site of the satellite remote electro-optic sensors

    NASA Astrophysics Data System (ADS)

    Zyelyk, Ya. I.; Semeniv, O. V.

    2015-12-01

    The state of the problem of the post-launch calibration of the satellite electro-optic remote sensors and its solutions in Ukraine is analyzed. The database is improved and dynamic services for user interaction with database from the environment of open geographical information system Quantum GIS for information support of calibration activities are created. A dynamic application under QGIS is developed, implementing these services in the direction of the possibility of data entering, editing and extraction from the database, using the technology of object-oriented programming and of modern complex program design patterns. The functional and algorithmic support of this dynamic software and its interface are developed.

  9. Features of CRISPR-Cas Regulation Key to Highly Efficient and Temporally-Specific crRNA Production.

    PubMed

    Rodic, Andjela; Blagojevic, Bojana; Djordjevic, Magdalena; Severinov, Konstantin; Djordjevic, Marko

    2017-01-01

    Bacterial immune systems, such as CRISPR-Cas or restriction-modification (R-M) systems, affect bacterial pathogenicity and antibiotic resistance by modulating horizontal gene flow. A model system for CRISPR-Cas regulation, the Type I-E system from Escherichia coli , is silent under standard laboratory conditions and experimentally observing the dynamics of CRISPR-Cas activation is challenging. Two characteristic features of CRISPR-Cas regulation in E. coli are cooperative transcription repression of cas gene and CRISPR array promoters, and fast non-specific degradation of full length CRISPR transcripts (pre-crRNA). In this work, we use computational modeling to understand how these features affect the system expression dynamics. Signaling which leads to CRISPR-Cas activation is currently unknown, so to bypass this step, we here propose a conceptual setup for cas expression activation, where cas genes are put under transcription control typical for a restriction-modification (R-M) system and then introduced into a cell. Known transcription regulation of an R-M system is used as a proxy for currently unknown CRISPR-Cas transcription control, as both systems are characterized by high cooperativity, which is likely related to similar dynamical constraints of their function. We find that the two characteristic CRISPR-Cas control features are responsible for its temporally-specific dynamical response, so that the system makes a steep (switch-like) transition from OFF to ON state with a time-delay controlled by pre-crRNA degradation rate. We furthermore find that cooperative transcription regulation qualitatively leads to a cross-over to a regime where, at higher pre-crRNA processing rates, crRNA generation approaches the limit of an infinitely abrupt system induction. We propose that these dynamical properties are associated with rapid expression of CRISPR-Cas components and efficient protection of bacterial cells against foreign DNA. In terms of synthetic applications, the setup proposed here should allow highly efficient expression of small RNAs in a narrow time interval, with a specified time-delay with respect to the signal onset.

  10. Diffusion Geometry Unravels the Emergence of Functional Clusters in Collective Phenomena.

    PubMed

    De Domenico, Manlio

    2017-04-21

    Collective phenomena emerge from the interaction of natural or artificial units with a complex organization. The interplay between structural patterns and dynamics might induce functional clusters that, in general, are different from topological ones. In biological systems, like the human brain, the overall functionality is often favored by the interplay between connectivity and synchronization dynamics, with functional clusters that do not coincide with anatomical modules in most cases. In social, sociotechnical, and engineering systems, the quest for consensus favors the emergence of clusters. Despite the unquestionable evidence for mesoscale organization of many complex systems and the heterogeneity of their interconnectivity, a way to predict and identify the emergence of functional modules in collective phenomena continues to elude us. Here, we propose an approach based on random walk dynamics to define the diffusion distance between any pair of units in a networked system. Such a metric allows us to exploit the underlying diffusion geometry to provide a unifying framework for the intimate relationship between metastable synchronization, consensus, and random search dynamics in complex networks, pinpointing the functional mesoscale organization of synthetic and biological systems.

  11. Diffusion Geometry Unravels the Emergence of Functional Clusters in Collective Phenomena

    NASA Astrophysics Data System (ADS)

    De Domenico, Manlio

    2017-04-01

    Collective phenomena emerge from the interaction of natural or artificial units with a complex organization. The interplay between structural patterns and dynamics might induce functional clusters that, in general, are different from topological ones. In biological systems, like the human brain, the overall functionality is often favored by the interplay between connectivity and synchronization dynamics, with functional clusters that do not coincide with anatomical modules in most cases. In social, sociotechnical, and engineering systems, the quest for consensus favors the emergence of clusters. Despite the unquestionable evidence for mesoscale organization of many complex systems and the heterogeneity of their interconnectivity, a way to predict and identify the emergence of functional modules in collective phenomena continues to elude us. Here, we propose an approach based on random walk dynamics to define the diffusion distance between any pair of units in a networked system. Such a metric allows us to exploit the underlying diffusion geometry to provide a unifying framework for the intimate relationship between metastable synchronization, consensus, and random search dynamics in complex networks, pinpointing the functional mesoscale organization of synthetic and biological systems.

  12. Feedback coupling in dynamical systems

    NASA Astrophysics Data System (ADS)

    Trimper, Steffen; Zabrocki, Knud

    2003-05-01

    Different evolution models are considered with feedback-couplings. In particular, we study the Lotka-Volterra system under the influence of a cumulative term, the Ginzburg-Landau model with a convolution memory term and chemical rate equations with time delay. The memory leads to a modified dynamical behavior. In case of a positive coupling the generalized Lotka-Volterra system exhibits a maximum gain achieved after a finite time, but the population will die out in the long time limit. In the opposite case, the time evolution is terminated in a crash. Due to the nonlinear feedback coupling the two branches of a bistable model are controlled by the the strength and the sign of the memory. For a negative coupling the system is able to switch over between both branches of the stationary solution. The dynamics of the system is further controlled by the initial condition. The diffusion-limited reaction is likewise studied in case the reacting entities are not available simultaneously. Whereas for an external feedback the dynamics is altered, but the stationary solution remain unchanged, a self-organized internal feedback leads to a time persistent solution.

  13. Generic Helicopter-Based Testbed for Surface Terrain Imaging Sensors

    NASA Technical Reports Server (NTRS)

    Alexander, James; Goldberg, Hannah; Montgomery, James; Spiers, Gary; Liebe, Carl; Johnson, Andrew; Gromov, Konstantin; Konefat, Edward; Lam, Raymond; Meras, Patrick

    2008-01-01

    To be certain that a candidate sensor system will perform as expected during missions, we have developed a field test system and have executed test flights with a helicopter-mounted sensor platform over desert terrains, which simulate Lunar features. A key advantage to this approach is that different sensors can be tested and characterized in an environment relevant to the flight needs prior to flight. Testing the various sensors required the development of a field test system, including an instrument to validate the truth of the sensor system under test. The field test system was designed to be flexible enough to cover the test needs of many sensors (lidar, radar, cameras) that require an aerial test platform, including helicopters, airplanes, unmanned aerial vehicles (UAV), or balloons. To validate the performance of the sensor under test, the dynamics of the test platform must be known with sufficient accuracy to provide accurate models for input into algorithm development. The test system provides support equipment to measure the dynamics of the field test sensor platform, and allow computation of the truth position, velocity, attitude, and time.

  14. Modeling the depth-sectioning effect in reflection-mode dynamic speckle-field interferometric microscopy

    PubMed Central

    Zhou, Renjie; Jin, Di; Hosseini, Poorya; Singh, Vijay Raj; Kim, Yang-hyo; Kuang, Cuifang; Dasari, Ramachandra R.; Yaqoob, Zahid; So, Peter T. C.

    2017-01-01

    Unlike most optical coherence microscopy (OCM) systems, dynamic speckle-field interferometric microscopy (DSIM) achieves depth sectioning through the spatial-coherence gating effect. Under high numerical aperture (NA) speckle-field illumination, our previous experiments have demonstrated less than 1 μm depth resolution in reflection-mode DSIM, while doubling the diffraction limited resolution as under structured illumination. However, there has not been a physical model to rigorously describe the speckle imaging process, in particular explaining the sectioning effect under high illumination and imaging NA settings in DSIM. In this paper, we develop such a model based on the diffraction tomography theory and the speckle statistics. Using this model, we calculate the system response function, which is used to further obtain the depth resolution limit in reflection-mode DSIM. Theoretically calculated depth resolution limit is in an excellent agreement with experiment results. We envision that our physical model will not only help in understanding the imaging process in DSIM, but also enable better designing such systems for depth-resolved measurements in biological cells and tissues. PMID:28085800

  15. Robust dynamics in minimal hybrid models of genetic networks

    PubMed Central

    Perkins, Theodore J.; Wilds, Roy; Glass, Leon

    2010-01-01

    Many gene-regulatory networks necessarily display robust dynamics that are insensitive to noise and stable under evolution. We propose that a class of hybrid systems can be used to relate the structure of these networks to their dynamics and provide insight into the origin of robustness. In these systems, the genes are represented by logical functions, and the controlling transcription factor protein molecules are real variables, which are produced and destroyed. As the transcription factor concentrations cross thresholds, they control the production of other transcription factors. We discuss mathematical analysis of these systems and show how the concepts of robustness and minimality can be used to generate putative logical organizations based on observed symbolic sequences. We apply the methods to control of the cell cycle in yeast. PMID:20921006

  16. Flight dynamics software in a distributed network environment

    NASA Technical Reports Server (NTRS)

    Jeletic, J.; Weidow, D.; Boland, D.

    1995-01-01

    As with all NASA facilities, the announcement of reduced budgets, reduced staffing, and the desire to implement smaller/quicker/cheaper missions has required the Agency's organizations to become more efficient in what they do. To accomplish these objectives, the FDD has initiated the development of the Flight Dynamics Distributed System (FDDS). The underlying philosophy of FDDS is to build an integrated system that breaks down the traditional barriers of attitude, mission planning, and navigation support software to provide a uniform approach to flight dynamics applications. Through the application of open systems concepts and state-of-the-art technologies, including object-oriented specification concepts, object-oriented software, and common user interface, communications, data management, and executive services, the FDD will reengineer most of its six million lines of code.

  17. Robust dynamics in minimal hybrid models of genetic networks.

    PubMed

    Perkins, Theodore J; Wilds, Roy; Glass, Leon

    2010-11-13

    Many gene-regulatory networks necessarily display robust dynamics that are insensitive to noise and stable under evolution. We propose that a class of hybrid systems can be used to relate the structure of these networks to their dynamics and provide insight into the origin of robustness. In these systems, the genes are represented by logical functions, and the controlling transcription factor protein molecules are real variables, which are produced and destroyed. As the transcription factor concentrations cross thresholds, they control the production of other transcription factors. We discuss mathematical analysis of these systems and show how the concepts of robustness and minimality can be used to generate putative logical organizations based on observed symbolic sequences. We apply the methods to control of the cell cycle in yeast.

  18. The investigation of tethered satellite system dynamics

    NASA Technical Reports Server (NTRS)

    Lorenzini, E.

    1985-01-01

    A progress report is presented that deals with three major topics related to Tethered Satellite System Dynamics. The SAO rotational dynamics computer code was updated. The program is now suitable to deal with inclined orbits. The output has been also modified in order to show the satellite Euler angles referred to the rotating orbital frame. The three-dimensional high resolution computer program SLACK3 was developed. The code simulates the three-dimensional dynamics of a tether going slack taking into account the effect produced by boom rotations. Preliminary simulations on the three-dimensional dynamics of a recoiling slack tether are shown in this report. A program to evaluate the electric potential around a severed tether is immersed in a plasma. The potential is computed on a three-dimensional grid axially symmetric with respect to the tether longitudinal axis. The electric potential variations due to the plasma are presently under investigation.

  19. Natural extension of fast-slow decomposition for dynamical systems

    NASA Astrophysics Data System (ADS)

    Rubin, J. E.; Krauskopf, B.; Osinga, H. M.

    2018-01-01

    Modeling and parameter estimation to capture the dynamics of physical systems are often challenging because many parameters can range over orders of magnitude and are difficult to measure experimentally. Moreover, selecting a suitable model complexity requires a sufficient understanding of the model's potential use, such as highlighting essential mechanisms underlying qualitative behavior or precisely quantifying realistic dynamics. We present an approach that can guide model development and tuning to achieve desired qualitative and quantitative solution properties. It relies on the presence of disparate time scales and employs techniques of separating the dynamics of fast and slow variables, which are well known in the analysis of qualitative solution features. We build on these methods to show how it is also possible to obtain quantitative solution features by imposing designed dynamics for the slow variables in the form of specified two-dimensional paths in a bifurcation-parameter landscape.

  20. Embedding dynamical networks into distributed models

    NASA Astrophysics Data System (ADS)

    Innocenti, Giacomo; Paoletti, Paolo

    2015-07-01

    Large networks of interacting dynamical systems are well-known for the complex behaviours they are able to display, even when each node features a quite simple dynamics. Despite examples of such networks being widespread both in nature and in technological applications, the interplay between the local and the macroscopic behaviour, through the interconnection topology, is still not completely understood. Moreover, traditional analytical methods for dynamical response analysis fail because of the intrinsically large dimension of the phase space of the network which makes the general problem intractable. Therefore, in this paper we develop an approach aiming to condense all the information in a compact description based on partial differential equations. By focusing on propagative phenomena, rigorous conditions under which the original network dynamical properties can be successfully analysed within the proposed framework are derived as well. A network of Fitzhugh-Nagumo systems is finally used to illustrate the effectiveness of the proposed method.

  1. Characterizing heterogeneous dynamics at hydrated electrode surfaces.

    PubMed

    Willard, Adam P; Limmer, David T; Madden, Paul A; Chandler, David

    2013-05-14

    In models of Pt 111 and Pt 100 surfaces in water, motions of molecules in the first hydration layer are spatially and temporally correlated. To interpret these collective motions, we apply quantitative measures of dynamic heterogeneity that are standard tools for considering glassy systems. Specifically, we carry out an analysis in terms of mobility fields and distributions of persistence times and exchange times. In so doing, we show that dynamics in these systems is facilitated by transient disorder in frustrated two-dimensional hydrogen bonding networks. The frustration is the result of unfavorable geometry imposed by strong metal-water bonding. The geometry depends upon the structure of the underlying metal surface. Dynamic heterogeneity of water on the Pt 111 surface is therefore qualitatively different than that for water on the Pt 100 surface. In both cases, statistics of this ad-layer dynamic heterogeneity responds asymmetrically to applied voltage.

  2. Characterizing heterogeneous dynamics at hydrated electrode surfaces

    NASA Astrophysics Data System (ADS)

    Willard, Adam P.; Limmer, David T.; Madden, Paul A.; Chandler, David

    2013-05-01

    In models of Pt 111 and Pt 100 surfaces in water, motions of molecules in the first hydration layer are spatially and temporally correlated. To interpret these collective motions, we apply quantitative measures of dynamic heterogeneity that are standard tools for considering glassy systems. Specifically, we carry out an analysis in terms of mobility fields and distributions of persistence times and exchange times. In so doing, we show that dynamics in these systems is facilitated by transient disorder in frustrated two-dimensional hydrogen bonding networks. The frustration is the result of unfavorable geometry imposed by strong metal-water bonding. The geometry depends upon the structure of the underlying metal surface. Dynamic heterogeneity of water on the Pt 111 surface is therefore qualitatively different than that for water on the Pt 100 surface. In both cases, statistics of this ad-layer dynamic heterogeneity responds asymmetrically to applied voltage.

  3. Dynamic control of magnetic nanowires by light-induced domain-wall kickoffs

    NASA Astrophysics Data System (ADS)

    Heintze, Eric; El Hallak, Fadi; Clauß, Conrad; Rettori, Angelo; Pini, Maria Gloria; Totti, Federico; Dressel, Martin; Bogani, Lapo

    2013-03-01

    Controlling the speed at which systems evolve is a challenge shared by all disciplines, and otherwise unrelated areas use common theoretical frameworks towards this goal. A particularly widespread model is Glauber dynamics, which describes the time evolution of the Ising model and can be applied to any binary system. Here we show, using molecular nanowires under irradiation, that Glauber dynamics can be controlled by a novel domain-wall kickoff mechanism. In contrast to known processes, the kickoff has unambiguous fingerprints, slowing down the spin-flip attempt rate by several orders of magnitude, and following a scaling law. The required irradiance is very low, a substantial improvement over present methods of magneto-optical switching. These results provide a new way to control and study stochastic dynamic processes. Being general for Glauber dynamics, they can be extended to different kinds of magnetic nanowires and to numerous fields, ranging from social evolution to neural networks and chemical reactivity.

  4. Detection of bifurcations in noisy coupled systems from multiple time series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, Mark S., E-mail: m.s.williamson@exeter.ac.uk; Lenton, Timothy M.

    We generalize a method of detecting an approaching bifurcation in a time series of a noisy system from the special case of one dynamical variable to multiple dynamical variables. For a system described by a stochastic differential equation consisting of an autonomous deterministic part with one dynamical variable and an additive white noise term, small perturbations away from the system's fixed point will decay slower the closer the system is to a bifurcation. This phenomenon is known as critical slowing down and all such systems exhibit this decay-type behaviour. However, when the deterministic part has multiple coupled dynamical variables, themore » possible dynamics can be much richer, exhibiting oscillatory and chaotic behaviour. In our generalization to the multi-variable case, we find additional indicators to decay rate, such as frequency of oscillation. In the case of approaching a homoclinic bifurcation, there is no change in decay rate but there is a decrease in frequency of oscillations. The expanded method therefore adds extra tools to help detect and classify approaching bifurcations given multiple time series, where the underlying dynamics are not fully known. Our generalisation also allows bifurcation detection to be applied spatially if one treats each spatial location as a new dynamical variable. One may then determine the unstable spatial mode(s). This is also something that has not been possible with the single variable method. The method is applicable to any set of time series regardless of its origin, but may be particularly useful when anticipating abrupt changes in the multi-dimensional climate system.« less

  5. Detection of bifurcations in noisy coupled systems from multiple time series

    NASA Astrophysics Data System (ADS)

    Williamson, Mark S.; Lenton, Timothy M.

    2015-03-01

    We generalize a method of detecting an approaching bifurcation in a time series of a noisy system from the special case of one dynamical variable to multiple dynamical variables. For a system described by a stochastic differential equation consisting of an autonomous deterministic part with one dynamical variable and an additive white noise term, small perturbations away from the system's fixed point will decay slower the closer the system is to a bifurcation. This phenomenon is known as critical slowing down and all such systems exhibit this decay-type behaviour. However, when the deterministic part has multiple coupled dynamical variables, the possible dynamics can be much richer, exhibiting oscillatory and chaotic behaviour. In our generalization to the multi-variable case, we find additional indicators to decay rate, such as frequency of oscillation. In the case of approaching a homoclinic bifurcation, there is no change in decay rate but there is a decrease in frequency of oscillations. The expanded method therefore adds extra tools to help detect and classify approaching bifurcations given multiple time series, where the underlying dynamics are not fully known. Our generalisation also allows bifurcation detection to be applied spatially if one treats each spatial location as a new dynamical variable. One may then determine the unstable spatial mode(s). This is also something that has not been possible with the single variable method. The method is applicable to any set of time series regardless of its origin, but may be particularly useful when anticipating abrupt changes in the multi-dimensional climate system.

  6. Intelligent control of a planning system for astronaut training.

    PubMed

    Ortiz, J; Chen, G

    1999-07-01

    This work intends to design, analyze and solve, from the systems control perspective, a complex, dynamic, and multiconstrained planning system for generating training plans for crew members of the NASA-led International Space Station. Various intelligent planning systems have been developed within the framework of artificial intelligence. These planning systems generally lack a rigorous mathematical formalism to allow a reliable and flexible methodology for their design, modeling, and performance analysis in a dynamical, time-critical, and multiconstrained environment. Formulating the planning problem in the domain of discrete-event systems under a unified framework such that it can be modeled, designed, and analyzed as a control system will provide a self-contained theory for such planning systems. This will also provide a means to certify various planning systems for operations in the dynamical and complex environments in space. The work presented here completes the design, development, and analysis of an intricate, large-scale, and representative mathematical formulation for intelligent control of a real planning system for Space Station crew training. This planning system has been tested and used at NASA-Johnson Space Center.

  7. New method to improve dynamic stiffness of electro-hydraulic servo systems

    NASA Astrophysics Data System (ADS)

    Bai, Yanhong; Quan, Long

    2013-09-01

    Most current researches working on improving stiffness focus on the application of control theories. But controller in closed-loop hydraulic control system takes effect only after the controlled position is deviated, so the control action is lagged. Thus dynamic performance against force disturbance and dynamic load stiffness can’t be improved evidently by advanced control algorithms. In this paper, the elementary principle of maintaining piston position unchanged under sudden external force load change by charging additional oil is analyzed. On this basis, the conception of raising dynamic stiffness of electro hydraulic position servo system by flow feedforward compensation is put forward. And a scheme using double servo valves to realize flow feedforward compensation is presented, in which another fast response servo valve is added to the regular electro hydraulic servo system and specially utilized to compensate the compressed oil volume caused by load impact in time. The two valves are arranged in parallel to control the cylinder jointly. Furthermore, the model of flow compensation is derived, by which the product of the amplitude and width of the valve’s pulse command signal can be calculated. And determination rules of the amplitude and width of pulse signal are concluded by analysis and simulations. Using the proposed scheme, simulations and experiments at different positions with different force changes are conducted. The simulation and experimental results show that the system dynamic performance against load force impact is largely improved with decreased maximal dynamic position deviation and shortened settling time. That is, system dynamic load stiffness is evidently raised. This paper proposes a new method which can effectively improve the dynamic stiffness of electro-hydraulic servo systems.

  8. Discovering governing equations from data by sparse identification of nonlinear dynamical systems

    PubMed Central

    Brunton, Steven L.; Proctor, Joshua L.; Kutz, J. Nathan

    2016-01-01

    Extracting governing equations from data is a central challenge in many diverse areas of science and engineering. Data are abundant whereas models often remain elusive, as in climate science, neuroscience, ecology, finance, and epidemiology, to name only a few examples. In this work, we combine sparsity-promoting techniques and machine learning with nonlinear dynamical systems to discover governing equations from noisy measurement data. The only assumption about the structure of the model is that there are only a few important terms that govern the dynamics, so that the equations are sparse in the space of possible functions; this assumption holds for many physical systems in an appropriate basis. In particular, we use sparse regression to determine the fewest terms in the dynamic governing equations required to accurately represent the data. This results in parsimonious models that balance accuracy with model complexity to avoid overfitting. We demonstrate the algorithm on a wide range of problems, from simple canonical systems, including linear and nonlinear oscillators and the chaotic Lorenz system, to the fluid vortex shedding behind an obstacle. The fluid example illustrates the ability of this method to discover the underlying dynamics of a system that took experts in the community nearly 30 years to resolve. We also show that this method generalizes to parameterized systems and systems that are time-varying or have external forcing. PMID:27035946

  9. Discovering governing equations from data by sparse identification of nonlinear dynamical systems.

    PubMed

    Brunton, Steven L; Proctor, Joshua L; Kutz, J Nathan

    2016-04-12

    Extracting governing equations from data is a central challenge in many diverse areas of science and engineering. Data are abundant whereas models often remain elusive, as in climate science, neuroscience, ecology, finance, and epidemiology, to name only a few examples. In this work, we combine sparsity-promoting techniques and machine learning with nonlinear dynamical systems to discover governing equations from noisy measurement data. The only assumption about the structure of the model is that there are only a few important terms that govern the dynamics, so that the equations are sparse in the space of possible functions; this assumption holds for many physical systems in an appropriate basis. In particular, we use sparse regression to determine the fewest terms in the dynamic governing equations required to accurately represent the data. This results in parsimonious models that balance accuracy with model complexity to avoid overfitting. We demonstrate the algorithm on a wide range of problems, from simple canonical systems, including linear and nonlinear oscillators and the chaotic Lorenz system, to the fluid vortex shedding behind an obstacle. The fluid example illustrates the ability of this method to discover the underlying dynamics of a system that took experts in the community nearly 30 years to resolve. We also show that this method generalizes to parameterized systems and systems that are time-varying or have external forcing.

  10. Wigner flow reveals topological order in quantum phase space dynamics.

    PubMed

    Steuernagel, Ole; Kakofengitis, Dimitris; Ritter, Georg

    2013-01-18

    The behavior of classical mechanical systems is characterized by their phase portraits, the collections of their trajectories. Heisenberg's uncertainty principle precludes the existence of sharply defined trajectories, which is why traditionally only the time evolution of wave functions is studied in quantum dynamics. These studies are quite insensitive to the underlying structure of quantum phase space dynamics. We identify the flow that is the quantum analog of classical particle flow along phase portrait lines. It reveals hidden features of quantum dynamics and extra complexity. Being constrained by conserved flow winding numbers, it also reveals fundamental topological order in quantum dynamics that has so far gone unnoticed.

  11. On the distinguishability of HRF models in fMRI.

    PubMed

    Rosa, Paulo N; Figueiredo, Patricia; Silvestre, Carlos J

    2015-01-01

    Modeling the Hemodynamic Response Function (HRF) is a critical step in fMRI studies of brain activity, and it is often desirable to estimate HRF parameters with physiological interpretability. A biophysically informed model of the HRF can be described by a non-linear time-invariant dynamic system. However, the identification of this dynamic system may leave much uncertainty on the exact values of the parameters. Moreover, the high noise levels in the data may hinder the model estimation task. In this context, the estimation of the HRF may be seen as a problem of model falsification or invalidation, where we are interested in distinguishing among a set of eligible models of dynamic systems. Here, we propose a systematic tool to determine the distinguishability among a set of physiologically plausible HRF models. The concept of absolutely input-distinguishable systems is introduced and applied to a biophysically informed HRF model, by exploiting the structure of the underlying non-linear dynamic system. A strategy to model uncertainty in the input time-delay and magnitude is developed and its impact on the distinguishability of two physiologically plausible HRF models is assessed, in terms of the maximum noise amplitude above which it is not possible to guarantee the falsification of one model in relation to another. Finally, a methodology is proposed for the choice of the input sequence, or experimental paradigm, that maximizes the distinguishability of the HRF models under investigation. The proposed approach may be used to evaluate the performance of HRF model estimation techniques from fMRI data.

  12. Accomplishment Summary 1968-1969. Biological Computer Laboratory.

    ERIC Educational Resources Information Center

    Von Foerster, Heinz; And Others

    This report summarizes theoretical, applied, and experimental studies in the areas of computational principles in complex intelligent systems, cybernetics, multivalued logic, and the mechanization of cognitive processes. This work is summarized under the following topic headings: properties of complex dynamic systems; computers and the language…

  13. Fluid dynamic analysis of a continuous stirred tank reactor for technical optimization of wastewater digestion.

    PubMed

    Hurtado, F J; Kaiser, A S; Zamora, B

    2015-03-15

    Continuous stirred tank reactors (CSTR) are widely used in wastewater treatment plants to reduce the organic matter and microorganism present in sludge by anaerobic digestion. The present study carries out a numerical analysis of the fluid dynamic behaviour of a CSTR in order to optimize the process energetically. The characterization of the sludge flow inside the digester tank, the residence time distribution and the active volume of the reactor under different criteria are determined. The effects of design and power of the mixing system on the active volume of the CSTR are analyzed. The numerical model is solved under non-steady conditions by examining the evolution of the flow during the stop and restart of the mixing system. An intermittent regime of the mixing system, which kept the active volume between 94% and 99%, is achieved. The results obtained can lead to the eventual energy optimization of the mixing system of the CSTR. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Effect of Recombination in the Evolutionary Dynamics of HIV under the Surveillance of Immune System

    NASA Astrophysics Data System (ADS)

    Peng, Weiqun; Yang, Wenjing; Wang, Guanyu

    2009-03-01

    Human immunodeficiency virus (HIV) is a retrovirus that causes acquired immunodeficiency syndrome (AIDS), which has become one of the most destructive pandemics in history. The fact that HIV virus evolves very fast plays a central role in AIDS immunopathogenesis and the difficulty we face in finding a cure or a vaccine for AIDS. A distinguishing feature of HIV is its high frequency of recombination. The effect of recombination in the HIV evolution is not clear. We establish a mathematical model of the evolutionary dynamics. This model incorporates both point mutation and recombination for genetic diversity, and employs a fitness function developed by Wang and Deem (PRL 97, 188106, 2006) that accounts for the effect of immune system. Using this model, we explore the role of recombination in the battle between the virus population and the immune system, with a special focus on the condition under which recombination helps the virus population to escape from the immune system.

  15. Global dynamics of a delay differential equation with spatial non-locality in an unbounded domain

    NASA Astrophysics Data System (ADS)

    Yi, Taishan; Zou, Xingfu

    In this paper, we study the global dynamics of a class of differential equations with temporal delay and spatial non-locality in an unbounded domain. Adopting the compact open topology, we describe the delicate asymptotic properties of the nonlocal delayed effect and establish some a priori estimate for nontrivial solutions which enables us to show the permanence of the equation. Combining these results with a dynamical systems approach, we determine the global dynamics of the equation under appropriate conditions. Applying the main results to the model with Ricker's birth function and Mackey-Glass's hematopoiesis function, we obtain threshold results for the global dynamics of these two models. We explain why our results on the global attractivity of the positive equilibrium in C∖{0} under the compact open topology becomes invalid in C∖{0} with respect to the usual supremum norm, and we identify a subset of C∖{0} in which the positive equilibrium remains attractive with respect to the supremum norm.

  16. New insights into the complex regulation of the glycolytic pathway in Lactococcus lactis. I. Construction and diagnosis of a comprehensive dynamic model.

    PubMed

    Dolatshahi, Sepideh; Fonseca, Luis L; Voit, Eberhard O

    2016-01-01

    This article and the companion paper use computational systems modeling to decipher the complex coordination of regulatory signals controlling the glycolytic pathway in the dairy bacterium Lactococcus lactis. In this first article, the development of a comprehensive kinetic dynamic model is described. The model is based on in vivo NMR data that consist of concentration trends in key glycolytic metabolites and cofactors. The model structure and parameter values are identified with a customized optimization strategy that uses as its core the method of dynamic flux estimation. For the first time, a dynamic model with a single parameter set fits all available glycolytic time course data under anaerobic operation. The model captures observations that had not been addressed so far and suggests the existence of regulatory effects that had been observed in other species, but not in L. lactis. The companion paper uses this model to analyze details of the dynamic control of glycolysis under aerobic and anaerobic conditions.

  17. Neutron star dynamics under time-dependent external torques

    NASA Astrophysics Data System (ADS)

    Gügercinoǧlu, Erbil; Alpar, M. Ali

    2017-11-01

    The two-component model describes neutron star dynamics incorporating the response of the superfluid interior. Conventional solutions and applications involve constant external torques, as appropriate for radio pulsars on dynamical time-scales. We present the general solution of two-component dynamics under arbitrary time-dependent external torques, with internal torques that are linear in the rotation rates, or with the extremely non-linear internal torques due to vortex creep. The two-component model incorporating the response of linear or non-linear internal torques can now be applied not only to radio pulsars but also to magnetars and to neutron stars in binary systems, with strong observed variability and noise in the spin-down or spin-up rates. Our results allow the extraction of the time-dependent external torques from the observed spin-down (or spin-up) time series, \\dot{Ω }(t). Applications are discussed.

  18. Third harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Squier, Jeffrey A.; Muller, Michiel; Brakenhoff, G. J.; Wilson, Kent R.

    1998-10-01

    Third harmonic generation microscopy is used to make dynamical images of living systems for the first time. A 100 fs excitation pulse at 1.2 æm results in a 400 nm signal which is generated directly within the specimen. Chara plant rhizoids have been imaged, showing dynamic plant activity, and non-fading image characteristics even with continuous viewing, indicating prolonged viability under these THG-imaging conditions.

  19. Distributed Synchronization Control of Multiagent Systems With Unknown Nonlinearities.

    PubMed

    Su, Shize; Lin, Zongli; Garcia, Alfredo

    2016-01-01

    This paper revisits the distributed adaptive control problem for synchronization of multiagent systems where the dynamics of the agents are nonlinear, nonidentical, unknown, and subject to external disturbances. Two communication topologies, represented, respectively, by a fixed strongly-connected directed graph and by a switching connected undirected graph, are considered. Under both of these communication topologies, we use distributed neural networks to approximate the uncertain dynamics. Decentralized adaptive control protocols are then constructed to solve the cooperative tracker problem, the problem of synchronization of all follower agents to a leader agent. In particular, we show that, under the proposed decentralized control protocols, the synchronization errors are ultimately bounded, and their ultimate bounds can be reduced arbitrarily by choosing the control parameter appropriately. Simulation study verifies the effectiveness of our proposed protocols.

  20. Study on heat transfer coefficients during cooling of PET bottles for food beverages

    NASA Astrophysics Data System (ADS)

    Liga, Antonio; Montesanto, Salvatore; Mannella, Gianluca A.; La Carrubba, Vincenzo; Brucato, Valerio; Cammalleri, Marco

    2016-08-01

    The heat transfer properties of different cooling systems dealing with Poly-Ethylene-Terephthalate (PET) bottles were investigated. The heat transfer coefficient (Ug) was measured in various fluid dynamic conditions. Cooling media were either air or water. It was shown that heat transfer coefficients are strongly affected by fluid dynamics conditions, and range from 10 W/m2 K to nearly 400 W/m2 K. PET bottle thickness effect on Ug was shown to become relevant under faster fluid dynamics regimes.

Top