Sample records for underlying mechanism involves

  1. The mechanisms of low nitrogen induced weakened photosynthesis in summer maize (Zea mays L.) under field conditions.

    PubMed

    Wei, Shanshan; Wang, Xiangyu; Shi, Deyang; Li, Yanhong; Zhang, Jiwang; Liu, Peng; Zhao, Bin; Dong, Shuting

    2016-08-01

    Soil nitrogen (N) shortage is a problem which affects many developing nations. Crops grown with low soil N levels show a marked decrease in the rate of photosynthesis and this deficiency reduces crop yield significantly. Therefore, developing a better understanding of the mechanisms by which low N levels cause decreased photosynthesis is crucial for maize agriculture. To better understand this process, we assessed the responses of photosynthesis traits and enzymatic activities in the summer maize cultivar Denghai 618 under field conditions with and without the use of N fertilisers. We measured photosynthesis parameters, and compared proteome compositions to identify the mechanisms of physiological and biochemical adaptations to N deficiency in maize. We observed that parameters that indicated the rate of photosynthesis decreased significantly under N deficiency, and this response was associated with leaf senescence. Moreover, we identified 37 proteins involved in leaf photosynthesis, and found that N deficiency significantly affected light-dependent and light-independent reactions in maize leaf photosynthesis. Although further analysis is required to fully elucidate the roles of these proteins in the response to N deficiency, our study identified candidate proteins which may be involved in the regulatory mechanisms involved in reduced photosynthesis under low N conditions in maize. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Chemical Stress Cracking of Acrylic Fibers.

    DTIC Science & Technology

    1982-05-01

    stress, high fiber permeability, moderate fibe orientation, and water- plasticization . The proposed mechanism for bond cleava e involves cyclization of...tensile stress, high fiber permeability, moderate fiber orientation, and water- plasticization . The proposed mechanism for bond cleavage involves...chemical composition, plasticization , and other factors. It will be shown that the etching behavior does not reflect underlying hetero- geneities in the

  3. Epigenetic Mechanisms Impacting Aging: A Focus on Histone Levels and Telomeres

    PubMed Central

    Song, Shufei

    2018-01-01

    Aging and age-related diseases pose some of the most significant and difficult challenges to modern society as well as to the scientific and medical communities. Biological aging is a complex, and, under normal circumstances, seemingly irreversible collection of processes that involves numerous underlying mechanisms. Among these, chromatin-based processes have emerged as major regulators of cellular and organismal aging. These include DNA methylation, histone modifications, nucleosome positioning, and telomere regulation, including how these are influenced by environmental factors such as diet. Here we focus on two interconnected categories of chromatin-based mechanisms impacting aging: those involving changes in the levels of histones or in the functions of telomeres. PMID:29642537

  4. Treatment and Management

    MedlinePlus

    ... measures such as placement of a breathing tube (mechanical ventilator) and administration of medications intravenously (i.e. ... be regulated. The procedure involves implanting a small mechanical device under the skin of the chest or ...

  5. Transformations of organic compounds under the action of mechanical stress

    NASA Astrophysics Data System (ADS)

    Dubinskaya, Aleksandra M.

    1999-08-01

    Transformations of organic compounds (monomeric and polymeric) under the action of mechanical stress are considered. Two types of processes occur under these conditions. The first type involves disordering and amorphisation of crystal structure and conformational transformations as a result of rupture of intermolecular bonds. The second type includes mechanochemical reactions activated by deformation of valence bonds and angles under mechanical stress, namely, the rupture of bonds, oxidation and hydrolysis. Data on the organic mechanochemical synthesis of new compounds or molecular complexes are systematised and generalised. It is demonstrated that mechanical treatment ensures mass transfer and the contact of reacting species in these reactions. Proteins are especially sensitive to mechanical stress and undergo denaturation; enzymes are inactivated. The bibliography includes 115 references.

  6. Distinct Mechanisms of Ferritin Delivery to Lysosomes in Iron-Depleted and Iron-Replete Cells ▿

    PubMed Central

    Asano, Takeshi; Komatsu, Masaaki; Yamaguchi-Iwai, Yuko; Ishikawa, Fuyuki; Mizushima, Noboru; Iwai, Kazuhiro

    2011-01-01

    Ferritin is a cytosolic protein that stores excess iron, thereby protecting cells from iron toxicity. Ferritin-stored iron is believed to be utilized when cells become iron deficient; however, the mechanisms underlying the extraction of iron from ferritin have yet to be fully elucidated. Here, we demonstrate that ferritin is degraded in the lysosome under iron-depleted conditions and that the acidic environment of the lysosome is crucial for iron extraction from ferritin and utilization by cells. Ferritin was targeted for degradation in the lysosome even under iron-replete conditions in primary cells; however, the mechanisms underlying lysosomal targeting of ferritin were distinct under depleted and replete conditions. In iron-depleted cells, ferritin was targeted to the lysosome via a mechanism that involved autophagy. In contrast, lysosomal targeting of ferritin in iron-replete cells did not involve autophagy. The autophagy-independent pathway of ferritin delivery to lysosomes was deficient in several cancer-derived cells, and cancer-derived cell lines are more resistant to iron toxicity than primary cells. Collectively, these results suggest that ferritin trafficking may be differentially regulated by cell type and that loss of ferritin delivery to the lysosome under iron-replete conditions may be related to oncogenic cellular transformation. PMID:21444722

  7. An fMRI investigation of racial paralysis.

    PubMed

    Norton, Michael I; Mason, Malia F; Vandello, Joseph A; Biga, Andrew; Dyer, Rebecca

    2013-04-01

    We explore the existence and underlying neural mechanism of a new norm endorsed by both black and white Americans for managing interracial interactions: "racial paralysis', the tendency to opt out of decisions involving members of different races. We show that people are more willing to make choices--such as who is more intelligent, or who is more polite-between two white individuals (same-race decisions) than between a white and a black individual (cross-race decisions), a tendency which was evident more when judgments involved traits related to black stereotypes. We use functional magnetic resonance imaging to examine the mechanisms underlying racial paralysis, to examine the mechanisms underlying racial paralysis, revealing greater recruitment of brain regions implicated in socially appropriate behavior (ventromedial prefrontal cortex), conflict detection (anterior cingulate cortex), deliberative processing (dorsolateral prefrontal cortex), and inhibition (ventrolateral prefrontal cortex). We also discuss the impact of racial paralysis on the quality of interracial relations.

  8. An fMRI investigation of racial paralysis

    PubMed Central

    Mason, Malia F.; Vandello, Joseph A.; Biga, Andrew; Dyer, Rebecca

    2013-01-01

    We explore the existence and underlying neural mechanism of a new norm endorsed by both black and white Americans for managing interracial interactions: “racial paralysis’, the tendency to opt out of decisions involving members of different races. We show that people are more willing to make choices—such as who is more intelligent, or who is more polite—between two white individuals (same-race decisions) than between a white and a black individual (cross-race decisions), a tendency which was evident more when judgments involved traits related to black stereotypes. We use functional magnetic resonance imaging to examine the mechanisms underlying racial paralysis, to examine the mechanisms underlying racial paralysis, revealing greater recruitment of brain regions implicated in socially appropriate behavior (ventromedial prefrontal cortex), conflict detection (anterior cingulate cortex), deliberative processing (dorsolateral prefrontal cortex), and inhibition (ventrolateral prefrontal cortex). We also discuss the impact of racial paralysis on the quality of interracial relations. PMID:22267521

  9. Differential regulation by ATP versus ADP further links CaMKII aggregation to ischemic conditions

    PubMed Central

    Vest, Rebekah S.; O’Leary, Heather; Bayer, K. Ulrich

    2009-01-01

    CaMKII, a major mediator of synaptic plasticity, forms extra-synaptic clusters under ischemic conditions. This study further supports self-aggregation of CaMKII holoenzymes as the underlying mechanism. Aggregation in vitro was promoted by mimicking ischemic conditions: low pH (6.8 or less), Ca2+ (and calmodulin), and low ATP and/or high ADP concentration. Mutational analysis showed that high ATP prevented aggregation by a mechanism involving T286 auto-phosphorylation, and indicated requirement for nucleotide binding but not auto-phosphorylation also for extra-synaptic clustering within neurons. These results clarify a previously apparent paradox in the nucleotide and phosphorylation requirement of aggregation, and support a mechanism that involves inter-holoenzyme T286-region/T-site interaction. PMID:19840793

  10. Altered DNA methylation: a secondary mechanism involved in carcinogenesis.

    PubMed

    Goodman, Jay I; Watson, Rebecca E

    2002-01-01

    This review focuses on the role that DNA methylation plays in the regulation of normal and aberrant gene expression and on how, in a hypothesis-driven fashion, altered DNA methylation may be viewed as a secondary mechanism involved in carcinogenesis. Research aimed at discerning the mechanisms by which chemicals can transform normal cells into frank carcinomas has both theoretical and practical implications. Through an increased understanding of the mechanisms by which chemicals affect the carcinogenic process, we learn more about basic biology while, at the same time, providing the type of information required to make more rational safety assessment decisions concerning their actual potential to cause cancer under particular conditions of exposure. One key question is: does the mechanism of action of the chemical in question involve a secondary mechanism and, if so, what dose may be below its threshold?

  11. 48 CFR 22.305 - Contract clause.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... agreements) when the contract may require or involve the employment of laborers or mechanics. However, do not... employment of laborers or mechanics; or (g) Exempt under regulations of the Secretary of Labor (29 CFR 5.15...

  12. 48 CFR 22.305 - Contract clause.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... agreements) when the contract may require or involve the employment of laborers or mechanics. However, do not... employment of laborers or mechanics; or (g) Exempt under regulations of the Secretary of Labor (29 CFR 5.15...

  13. 48 CFR 22.305 - Contract clause.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... agreements) when the contract may require or involve the employment of laborers or mechanics. However, do not... employment of laborers or mechanics; or (g) Exempt under regulations of the Secretary of Labor (29 CFR 5.15...

  14. 48 CFR 22.305 - Contract clause.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... agreements) when the contract may require or involve the employment of laborers or mechanics. However, do not... employment of laborers or mechanics; or (g) Exempt under regulations of the Secretary of Labor (29 CFR 5.15...

  15. [From a Ph.D. Thesis: Understanding the Past, Predicting the Future].

    PubMed

    Watanabe, Kenichi

    2018-01-01

     Posey et al. have reported multiple molecular diagnoses in 4.5% of cases (101/2076) in which whole-exome sequencing was informative. Distinct disease phenotypes affect different organ systems, whereas overlapping disease phenotypes are more likely to be caused by two genes encoding proteins that interact within the same pathway. My research projects at the Niigata University of Pharmacy have investigated underlying mechanisms involved in human disease, including fatty acid metabolism, diabetic cardiomyopathy, atopic dermatitis, colitis, hepatitis, etc. Three students from abroad graduated this year from the Department of Clinical Pharmacology, Niigata University of Pharmacy and Applied Life Sciences. These students reported on treatments for heart disease, non-alcoholic steatohepatitis and atopic dermatitis, as well as the underlying mechanisms involved in each. The titles of these reports are "Study of the role of cardiac 14-3-3η protein in cardiac inflammation and adverse cardiac remodeling during heart failure in mice", "Non-alcoholic steatohepatitis: onset of mechanisms under diabetic background and treatment strategies" and "The role of HMGB1 and its cascade signaling pathway in atopic dermatitis". It can be concluded from these three theses that oxidative stress and inflammation are among the principal mechanisms underlying these diseases.

  16. Genes and signaling pathways involved in memory enhancement in mutant mice

    PubMed Central

    2014-01-01

    Mutant mice have been used successfully as a tool for investigating the mechanisms of memory at multiple levels, from genes to behavior. In most cases, manipulating a gene expressed in the brain impairs cognitive functions such as memory and their underlying cellular mechanisms, including synaptic plasticity. However, a remarkable number of mutations have been shown to enhance memory in mice. Understanding how to improve a system provides valuable insights into how the system works under normal conditions, because this involves understanding what the crucial components are. Therefore, more can be learned about the basic mechanisms of memory by studying mutant mice with enhanced memory. This review will summarize the genes and signaling pathways that are altered in the mutants with enhanced memory, as well as their roles in synaptic plasticity. Finally, I will discuss how knowledge of memory-enhancing mechanisms could be used to develop treatments for cognitive disorders associated with impaired plasticity. PMID:24894914

  17. Mechanical properties and area retention of leather dried with biaxial stretching under vacuum

    USDA-ARS?s Scientific Manuscript database

    The conversion of animal hides to leather involves many complicated chemical and mechanical operations. Drying is one of the mechanical operations, and plays a key role in determining the physical properties of leather. It is where leather acquires its final texture, consistency and flexibility. ...

  18. Redox Regulation in Amyotrophic Lateral Sclerosis

    PubMed Central

    Parakh, Sonam; Spencer, Damian M.; Halloran, Mark A.; Soo, Kai Y.; Atkin, Julie D.

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that results from the death of upper and lower motor neurons. Due to a lack of effective treatment, it is imperative to understand the underlying mechanisms and processes involved in disease progression. Regulations in cellular reduction/oxidation (redox) processes are being increasingly implicated in disease. Here we discuss the possible involvement of redox dysregulation in the pathophysiology of ALS, either as a cause of cellular abnormalities or a consequence. We focus on its possible role in oxidative stress, protein misfolding, glutamate excitotoxicity, lipid peroxidation and cholesterol esterification, mitochondrial dysfunction, impaired axonal transport and neurofilament aggregation, autophagic stress, and endoplasmic reticulum (ER) stress. We also speculate that an ER chaperone protein disulphide isomerase (PDI) could play a key role in this dysregulation. PDI is essential for normal protein folding by oxidation and reduction of disulphide bonds, and hence any disruption to this process may have consequences for motor neurons. Addressing the mechanism underlying redox regulation and dysregulation may therefore help to unravel the molecular mechanism involved in ALS. PMID:23533690

  19. 22 CFR Appendix A to Part 226 - Contract Provisions

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Construction”). Under this Act, contractors shall be required to pay wages to laborers and mechanics at a rate... in excess of $2500 for other such contracts that involve the employment of mechanics or laborers... section 102 of the Act, each contractor shall be required to compute the wages of every mechanic and...

  20. 29 CFR Appendix A to Part 95 - Contract Provisions

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Construction”). Under this Act, contractors shall be required to pay wages to laborers and mechanics at a rate... contracts that involve the employment of mechanics or laborers shall include a provision for compliance with... shall be required to compute the wages of every mechanic and laborer on the basis of a standard work...

  1. 22 CFR Appendix A to Part 226 - Contract Provisions

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Construction”). Under this Act, contractors shall be required to pay wages to laborers and mechanics at a rate... in excess of $2500 for other such contracts that involve the employment of mechanics or laborers... section 102 of the Act, each contractor shall be required to compute the wages of every mechanic and...

  2. 22 CFR Appendix A to Part 226 - Contract Provisions

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Construction”). Under this Act, contractors shall be required to pay wages to laborers and mechanics at a rate... in excess of $2500 for other such contracts that involve the employment of mechanics or laborers... section 102 of the Act, each contractor shall be required to compute the wages of every mechanic and...

  3. 29 CFR Appendix A to Part 95 - Contract Provisions

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Construction”). Under this Act, contractors shall be required to pay wages to laborers and mechanics at a rate... contracts that involve the employment of mechanics or laborers shall include a provision for compliance with... shall be required to compute the wages of every mechanic and laborer on the basis of a standard work...

  4. 29 CFR Appendix A to Part 95 - Contract Provisions

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Construction”). Under this Act, contractors shall be required to pay wages to laborers and mechanics at a rate... contracts that involve the employment of mechanics or laborers shall include a provision for compliance with... shall be required to compute the wages of every mechanic and laborer on the basis of a standard work...

  5. A comparative integrated transcript analysis and functional characterization of differential mechanisms for induction of liver hypertrophy in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boitier, Eric, E-mail: eric.boitier@sanofi-aventis.com; Amberg, Alexander; Barbie, Valerie

    2011-04-15

    The main goal of the present work was to better understand the molecular mechanisms underlying liver hypertrophy (LH), a recurrent finding observed following acute or repeated drug administration to animals, using transcriptomic technologies together with the results from conventional toxicology methods. Administration of 5 terminated proprietary drug candidates from participating companies involved in the EU Innomed PredTox Project or the reference hepatotoxicant troglitazone to rats for up to a 14-day duration induced LH as the main liver phenotypic toxicity outcome. The integrated analysis of transcriptomic liver expression data across studies turned out to be the most informative approach for themore » generation of mechanistic models of LH. In response to a xenobiotic stimulus, a marked increase in the expression of xenobiotic metabolizing enzymes (XME) was observed in a subset of 4 studies. Accumulation of these newly-synthesized proteins within the smooth endoplasmic reticulum (SER) would suggest proliferation of this organelle, which most likely is the main molecular process underlying the LH observed in XME studies. In another subset of 2 studies (including troglitazone), a marked up-regulation of genes involved in peroxisomal fatty acid {beta}-oxidation was noted, associated with induction of genes involved in peroxisome proliferation. Therefore, an increase in peroxisome abundance would be the main mechanism underlying LH noted in this second study subset. Together, the use of transcript profiling provides a means to generate putative mechanistic models underlying the pathogenesis of liver hypertrophy, to distinguish between subtle variations in subcellular organelle proliferation and creates opportunities for improved mechanism-based risk assessment.« less

  6. Oxygenated monoterpenes citral and carvacrol cause oxidative damage in Escherichia coli without the involvement of tricarboxylic acid cycle and Fenton reaction.

    PubMed

    Chueca, Beatriz; Pagán, Rafael; García-Gonzalo, Diego

    2014-10-17

    Oxygenated monoterpenes citral and carvacrol are common constituents of many essential oils (EOs) that have been extensively studied as antimicrobial agents but whose mechanisms of microbial inactivation have not been totally elucidated. A recent study described a mechanism of Escherichia coli death for (+)-limonene, a hydrocarbon monoterpene also frequently present in EOs, similar to the common mechanism proposed for bactericidal antibiotics. This mechanism involves the formation of Fenton-mediated hydroxyl radical, a reactive oxygen species (ROS), via tricarboxylic acid (TCA) cycle, which would ultimately inactivate cells. Our objective was to determine whether E. coli MG1655 inactivation by citral and carvacrol follows a similar mechanism of cell death. Challenging experiments with 300μL/L citral and 100μL/L carvacrol inactivated at least 2.5log10cycles of exponentially growing cells in 3h under aerobic conditions. The presence of thiourea (an ROS scavenger) reduced cell inactivation in 2log10cycles, demonstrating the role of ROS in cell death. Decreased resistance of a ΔrecA mutant (deficient in an enzyme involved in SOS response to DNA damage) indicated that citral and carvacrol caused oxidative damage to DNA. Although the mechanism of E. coli inactivation by carvacrol and citral was similarly mediated by ROS, their formation did not follow the same pathways described for (+)-limonene and bactericidal drugs because neither Fenton reaction nor NADH production via the TCA cycle was involved in cell death. Moreover, further experiments demonstrated antimicrobial activity of citral and carvacrol in anaerobic environments without the involvement of ROS. As a consequence, cell death by carvacrol and citral in anaerobiosis follows a different mechanism than that observed under aerobic conditions. These results demonstrated a different mechanism of inactivation by citral and carvacrol with regard to (+)-limonene and bactericidal antibiotics, indicating the complexity of the mechanisms of bacterial inactivation among EO constituents. Advancements in the description of these mechanisms will help in extending and improving the use of these compounds as natural antimicrobials. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Transcriptome and metabolome responses of Shewanella oneidensis MR-1 to methyl orange under microaerophilic and aerobic conditions.

    PubMed

    Cao, Xinhua; Qi, Yueling; Xu, Chen; Yang, Yuyi; Wang, Jun

    2017-04-01

    Shewanella oneidensis MR-1 degrades various azo dyes under microaerophilic and anaerobic conditions, but this process is inhibited under aerobic conditions. The mechanisms underlying azo dye biodegradation and inhibition remain unknown. Therefore, we investigated metabolic and transcriptional changes in strain MR-1, which was cultured under different conditions, to elucidate these mechanisms. At the transcriptional level, genes involved in certain metabolic processes, particularly the tricarboxylic acid (TCA) cycle, amino acid biodegradation, and the electron transfer system, were significantly altered (M ≧ 2, p > 0.8 ) in the presence of methyl orange (MO). Moreover, a high concentration of dissolved oxygen heavily impacted the expression levels of genes involved in fatty acid biodegradation. Metabolome analysis revealed significant alteration (p < 0.05) in the concentrations of nine metabolites when strain MR-1 was cultured under aerobic conditions; the majority of these metabolites were closely associated with amino acid metabolism and DNA replication. Accordingly, we propose a possible pathway for MO biodegradation and discuss the most likely causes of biodegradation inhibition due to dissolved oxygen.

  8. A versatile lab-on-chip test platform to characterize elementary deformation mechanisms and electromechanical couplings in nanoscopic objects

    NASA Astrophysics Data System (ADS)

    Pardoen, Thomas; Colla, Marie-Sthéphane; Idrissi, Hosni; Amin-Ahmadi, Behnam; Wang, Binjie; Schryvers, Dominique; Bhaskar, Umesh K.; Raskin, Jean-Pierre

    2016-03-01

    A nanomechanical on-chip test platform has recently been developed to deform under a variety of loading conditions freestanding thin films, ribbons and nanowires involving submicron dimensions. The lab-on-chip involves thousands of elementary test structures from which the elastic modulus, strength, strain hardening, fracture, creep properties can be extracted. The technique is amenable to in situ transmission electron microscopy (TEM) investigations to unravel the fundamental underlying deformation and fracture mechanisms that often lead to size-dependent effects in small-scale samples. The method allows addressing electrical and magnetic couplings as well in order to evaluate the impact of large mechanical stress levels on different solid-state physics phenomena. We had the chance to present this technique in details to Jacques Friedel in 2012 who, unsurprisingly, made a series of critical and very relevant suggestions. In the spirit of his legacy, the paper will address both mechanics of materials related phenomena and couplings with solids state physics issues.

  9. Autoimmunity-Basics and link with periodontal disease.

    PubMed

    Kaur, Gagandeep; Mohindra, Kanika; Singla, Shifali

    2017-01-01

    Autoimmune reactions reflect an imbalance between effector and regulatory immune responses, typically develop through stages of initiation and propagation, and often show phases of resolution (indicated by clinical remissions) and exacerbations (indicated by symptomatic flares). The fundamental underlying mechanism of autoimmunity is defective elimination and/or control of self-reactive lymphocytes. Periodontal diseases are characterized by inflammatory conditions that directly affect teeth-supporting structures, which are the major cause of tooth loss. Several studies have demonstrated the involvement of autoimmune responses in periodontal disease. Evidence of involvement of immunopathology has been reported in periodontal disease. Bacteria in the dental plaque induce antibody formation. Autoreactive T-cells, natural killer cells, ANCA, heat shock proteins, autoantibodies, and genetic factors are reported to have an important role in the autoimmune component of periodontal disease. The present review describes the involvement of autoimmune responses in periodontal diseases and also the mechanisms underlying these responses. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Advancements in the Underlying Pathogenesis of Schizophrenia: Implications of DNA Methylation in Glial Cells.

    PubMed

    Chen, Xing-Shu; Huang, Nanxin; Michael, Namaka; Xiao, Lan

    2015-01-01

    Schizophrenia (SZ) is a chronic and severe mental illness for which currently there is no cure. At present, the exact molecular mechanism involved in the underlying pathogenesis of SZ is unknown. The disease is thought to be caused by a combination of genetic, biological, psychological, and environmental factors. Recent studies have shown that epigenetic regulation is involved in SZ pathology. Specifically, DNA methylation, one of the earliest found epigenetic modifications, has been extensively linked to modulation of neuronal function, leading to psychiatric disorders such as SZ. However, increasing evidence indicates that glial cells, especially dysfunctional oligodendrocytes undergo DNA methylation changes that contribute to the pathogenesis of SZ. This review primarily focuses on DNA methylation involved in glial dysfunctions in SZ. Clarifying this mechanism may lead to the development of new therapeutic interventional strategies for the treatment of SZ and other illnesses by correcting abnormal methylation in glial cells.

  11. Predictable 'meta-mechanisms' emerge from feedbacks between transpiration and plant growth and cannot be simply deduced from short-term mechanisms.

    PubMed

    Tardieu, François; Parent, Boris

    2017-06-01

    Growth under water deficit is controlled by short-term mechanisms but, because of numerous feedbacks, the combination of these mechanisms over time often results in outputs that cannot be deduced from the simple inspection of individual mechanisms. It can be analysed with dynamic models in which causal relationships between variables are considered at each time-step, allowing calculation of outputs that are routed back to inputs for the next time-step and that can change the system itself. We first review physiological mechanisms involved in seven feedbacks of transpiration on plant growth, involving changes in tissue hydraulic conductance, stomatal conductance, plant architecture and underlying factors such as hormones or aquaporins. The combination of these mechanisms over time can result in non-straightforward conclusions as shown by examples of simulation outputs: 'over production of abscisic acid (ABA) can cause a lower concentration of ABA in the xylem sap ', 'decreasing root hydraulic conductance when evaporative demand is maximum can improve plant performance' and 'rapid root growth can decrease yield'. Systems of equations simulating feedbacks over numerous time-steps result in logical and reproducible emergent properties that can be viewed as 'meta-mechanisms' at plant level, which have similar roles as mechanisms at cell level. © 2016 John Wiley & Sons Ltd.

  12. Understanding brassinosteroid-regulated mechanisms to improve stress tolerance in plants: a critical review.

    PubMed

    Nawaz, Fahim; Naeem, Muhammad; Zulfiqar, Bilal; Akram, Asim; Ashraf, Muhammad Yasin; Raheel, Muhammad; Shabbir, Rana Nauman; Hussain, Rai Altaf; Anwar, Irfan; Aurangzaib, Muhammad

    2017-07-01

    Brassinosteroids (BRs) are steroidal plant hormones involved in regulation of physiological and molecular processes to ameliorate various biotic and abiotic stresses. Exogenous application of BRs to improve stress tolerance in plants has recently become a high research priority. Several studies have revealed the involvement of these steroidal hormones in upregulation of stress-related defense genes and their cross talk with other metabolic pathways. This is likely to stimulate research on many unanswered questions regarding their role in enhancing the ability of plants to tolerate adverse environmental conditions. Thus, this review appraises new insights on mechanisms mediating BR-regulated changes in plants, focused mainly on their involvement in regulation of physiological and molecular mechanisms under stress conditions. Herein, examples of BR-stimulated modulation of antioxidant defense system and upregulation of transcription factors in plants exposed to various biotic (bacterial, viral, and fungal attack) and abiotic stresses (drought, salinity, heat, low temperature, and heavy metal stress) are discussed. Based on these insights, future research in the current direction can be helpful to increase our understanding of BR-mediated complex and interrelated processes under stress conditions.

  13. The Type VI Secretion System Engages a Redox-Regulated Dual-Functional Heme Transporter for Zinc Acquisition.

    PubMed

    Si, Meiru; Wang, Yao; Zhang, Bing; Zhao, Chao; Kang, Yiwen; Bai, Haonan; Wei, Dawei; Zhu, Lingfang; Zhang, Lei; Dong, Tao G; Shen, Xihui

    2017-07-25

    The type VI secretion system was recently reported to be involved in zinc acquisition, but the underlying mechanism remains unclear. Here, we report that Burkholderia thailandensis T6SS4 is involved in zinc acquisition via secretion of a zinc-scavenging protein, TseZ, that interacts with the outer membrane heme transporter HmuR. We find that HmuR is a redox-regulated dual-functional transporter that transports heme iron under normal conditions but zinc upon sensing extracellular oxidative stress, triggered by formation of an intramolecular disulfide bond. Acting as the first line of defense against oxidative stress, HmuR not only guarantees an immediate response to the changing environment but also provides a fine-tuned mechanism that allows a gradual response to perceived stress. The T6SS/HmuR-mediated active zinc transport system is also involved in bacterial virulence and contact-independent bacterial competition. We describe a sophisticated bacterial zinc acquisition mechanism affording insights into the role of metal ion transport systems. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Investigation of a ceramic matrix composite under strain controlled fatigue condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gudaitis, J.J.; Mall, S.

    The fatigue behavior along with damage mechanisms and failure modes of a fiber reinforced ceramic matrix composite with a cross-ply lay-up was investigated under strain controlled mode. Two fatigue conditions involving tension-tension and tension-compression cycling were employed. The strain range versus fatigue life curves for both fatigue conditions were in agreement with each other. However, damage mechanisms and failure modes were different for both cases.

  15. New Insights on Neurobiological Mechanisms underlying Alcohol Addiction

    PubMed Central

    Cui, Changhai; Noronha, Antonio; Morikawa, Hitoshi; Alvarez, Veronica A.; Stuber, Garret D.; Szumlinski, Karen K.; Kash, Thomas L.; Roberto, Marisa; Wilcox, Mark V.

    2012-01-01

    Alcohol dependence/addiction is mediated by complex neural mechanisms that involve multiple brain circuits and neuroadaptive changes in a variety of neurotransmitter and neuropeptide systems. Although recent studies have provided substantial information on the neurobiological mechanisms that drive alcohol drinking behavior, significant challenges remain in understanding how alcohol-induced neuroadaptations occur and how different neurocircuits and pathways cross-talk. This review article highlights recent progress in understanding neural mechanisms of alcohol addiction from the perspectives of the development and maintenance of alcohol dependence. It provides insights on cross talks of different mechanisms and reviews the latest studies on metaplasticity, structural plasticity, interface of reward and stress pathways, and cross-talk of different neural signaling systems involved in binge-like drinking and alcohol dependence. PMID:23159531

  16. The SEB-1 Transcription Factor Binds to the STRE Motif in Neurospora crassa and Regulates a Variety of Cellular Processes Including the Stress Response and Reserve Carbohydrate Metabolism.

    PubMed

    Freitas, Fernanda Zanolli; Virgilio, Stela; Cupertino, Fernanda Barbosa; Kowbel, David John; Fioramonte, Mariana; Gozzo, Fabio Cesar; Glass, N Louise; Bertolini, Maria Célia

    2016-05-03

    When exposed to stress conditions, all cells induce mechanisms resulting in an attempt to adapt to stress that involve proteins which, once activated, trigger cell responses by modulating specific signaling pathways. In this work, using a combination of pulldown assays and mass spectrometry analyses, we identified the Neurospora crassa SEB-1 transcription factor that binds to the Stress Response Element (STRE) under heat stress. Orthologs of SEB-1 have been functionally characterized in a few filamentous fungi as being involved in stress responses; however, the molecular mechanisms mediated by this transcription factor may not be conserved. Here, we provide evidences for the involvement of N. crassa SEB-1 in multiple cellular processes, including response to heat, as well as osmotic and oxidative stress. The Δseb-1 strain displayed reduced growth under these conditions, and genes encoding stress-responsive proteins were differentially regulated in the Δseb-1 strain grown under the same conditions. In addition, the SEB-1-GFP protein translocated from the cytosol to the nucleus under heat, osmotic, and oxidative stress conditions. SEB-1 also regulates the metabolism of the reserve carbohydrates glycogen and trehalose under heat stress, suggesting an interconnection between metabolism control and this environmental condition. We demonstrated that SEB-1 binds in vivo to the promoters of genes encoding glycogen metabolism enzymes and regulates their expression. A genome-wide transcriptional profile of the Δseb-1 strain under heat stress was determined by RNA-seq, and a broad range of cellular processes was identified that suggests a role for SEB-1 as a protein interconnecting these mechanisms. Copyright © 2016 Freitas et al.

  17. The Psychophysiological Mechanisms of Alexithymia in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Gaigg, Sebastian B.; Cornell, Anna S. F.; Bird, Geoffrey

    2018-01-01

    Accumulating evidence indicates that co-occurring alexithymia underlies several facets of the social-emotional difficulties common in individuals with autism spectrum disorder. The mechanisms involved, however, remain poorly understood because measuring alexithymia relies heavily on self-report. To address this issue, carefully matched groups of…

  18. Is ABA involved in tolerance responses to salinity by affecting cytoplasm ion homeostasis in rice cell lines?

    PubMed

    Pons, Raül; Cornejo, María Jesús; Sanz, Amparo

    2013-01-01

    The ability of plant cells to maintain cytoplasm ion homeostasis under saline stress is among the main mechanisms involved in salt tolerance. To cope with excess Na(+), cells extrude it from the cytoplasm, which requires expenditure of metabolic energy, provided by H(+) gradients generated by membrane-bound H(+)-pumps. ABA is well-known to be involved in physiological processes elicited or enhanced by stresses causing cell dehydration. In this work we studied the possible implication of this plant hormone in the control of salt-induced cellular mechanisms conducting to Na(+) extrusion from the cytoplasm. We used rice (Oryza sativa L.) cell lines selected for their different tolerance to salinity to measure the response to ABA of H(+)-pumps and Na(+)/H(+)-antiporters associated to the plasma membrane and the tonoplast. Our results show that ABA generally enhances H(+)-pumping under salt stress but not under control conditions. This effect occurs to a higher extent across the tonoplast in the more tolerant lines (L-T). Na(+)/H(+) antiport activity is practically undetectable in calli under control conditions, pre-treated or not with ABA, but shows a strong activation under salinity across the tonoplast, particularly in L-T lines (cv Bahia) and also across de plasma membrane in cv Bomba. In these lines, prior treatments with ABA tend to reduce the NaCl enhanced activity of both antiporters. Overall, under saline conditions ABA seems to affect synergistically H(+) pumping and antagonistically Na(+) extrusion. A complex network of positive and negative regulatory signals seems involved in restoring ion cell homeostasis under salt stress. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  19. Investigating the Mechanisms Underlying Neuronal Death in Ischemia Using In Vitro Oxygen-Glucose Deprivation: Potential Involvement of Protein SUMOylation

    PubMed Central

    CIMAROSTI, HELENA; HENLEY, JEREMY M.

    2012-01-01

    It is well established that brain ischemia can cause neuronal death via different signaling cascades. The relative importance and interrelationships between these pathways, however, remain poorly understood. Here is presented an overview of studies using oxygen-glucose deprivation of organotypic hippocampal slice cultures to investigate the molecular mechanisms involved in ischemia. The culturing techniques, setup of the oxygen-glucose deprivation model, and analytical tools are reviewed. The authors focus on SUMOylation, a posttranslational protein modification that has recently been implicated in ischemia from whole animal studies as an example of how these powerful tools can be applied and could be of interest to investigate the molecular pathways underlying ischemic cell death. PMID:19029060

  20. Global transcriptomic profiling of aspen trees under elevated [CO2] to identify potential molecular mechanisms responsible for enhanced radial growth.

    PubMed

    Wei, Hairong; Gou, Jiqing; Yordanov, Yordan; Zhang, Huaxin; Thakur, Ramesh; Jones, Wendy; Burton, Andrew

    2013-03-01

    Aspen (Populus tremuloides) trees growing under elevated [CO(2)] at a free-air CO(2) enrichment (FACE) site produced significantly more biomass than control trees. We investigated the molecular mechanisms underlying the observed increase in biomass by producing transcriptomic profiles of the vascular cambium zone (VCZ) and leaves, and then performed a comparative study to identify significantly changed genes and pathways after 12 years exposure to elevated [CO(2)]. In leaves, elevated [CO(2)] enhanced expression of genes related to Calvin cycle activity and linked pathways. In the VCZ, the pathways involved in cell growth, cell division, hormone metabolism, and secondary cell wall formation were altered while auxin conjugation, ABA synthesis, and cytokinin glucosylation and degradation were inhibited. Similarly, the genes involved in hemicellulose and pectin biosynthesis were enhanced, but some genes that catalyze important steps in lignin biosynthesis pathway were inhibited. Evidence from systemic analysis supported the functioning of multiple molecular mechanisms that underpin the enhanced radial growth in response to elevated [CO(2)].

  1. Facilitating students' application of the integral and the area under the curve concepts in physics problems

    NASA Astrophysics Data System (ADS)

    Nguyen, Dong-Hai

    This research project investigates the difficulties students encounter when solving physics problems involving the integral and the area under the curve concepts and the strategies to facilitate students learning to solve those types of problems. The research contexts of this project are calculus-based physics courses covering mechanics and electromagnetism. In phase I of the project, individual teaching/learning interviews were conducted with 20 students in mechanics and 15 students from the same cohort in electromagnetism. The students were asked to solve problems on several topics of mechanics and electromagnetism. These problems involved calculating physical quantities (e.g. velocity, acceleration, work, electric field, electric resistance, electric current) by integrating or finding the area under the curve of functions of related quantities (e.g. position, velocity, force, charge density, resistivity, current density). Verbal hints were provided when students made an error or were unable to proceed. A total number of 140 one-hour interviews were conducted in this phase, which provided insights into students' difficulties when solving the problems involving the integral and the area under the curve concepts and the hints to help students overcome those difficulties. In phase II of the project, tutorials were created to facilitate students' learning to solve physics problems involving the integral and the area under the curve concepts. Each tutorial consisted of a set of exercises and a protocol that incorporated the helpful hints to target the difficulties that students expressed in phase I of the project. Focus group learning interviews were conducted to test the effectiveness of the tutorials in comparison with standard learning materials (i.e. textbook problems and solutions). Overall results indicated that students learning with our tutorials outperformed students learning with standard materials in applying the integral and the area under the curve concepts to physics problems. The results of this project provide broader and deeper insights into students' problem solving with the integral and the area under the curve concepts and suggest strategies to facilitate students' learning to apply these concepts to physics problems. This study also has significant implications for further research, curriculum development and instruction.

  2. If It's Resonance, What is Resonating?

    ERIC Educational Resources Information Center

    Kerber, Robert C.

    2006-01-01

    The phenomenon under the name "resonance," which, is based on the mathematical analogy between mechanical resonance and the behavior of wave functions in quantum mechanical exchange phenomena was described. The resonating system does not have a structure intermediate between those involved in the resonance, but instead a structure which is further…

  3. Neural circuits in anxiety and stress disorders: a focused review

    PubMed Central

    Duval, Elizabeth R; Javanbakht, Arash; Liberzon, Israel

    2015-01-01

    Anxiety and stress disorders are among the most prevalent neuropsychiatric disorders. In recent years, multiple studies have examined brain regions and networks involved in anxiety symptomatology in an effort to better understand the mechanisms involved and to develop more effective treatments. However, much remains unknown regarding the specific abnormalities and interactions between networks of regions underlying anxiety disorder presentations. We examined recent neuroimaging literature that aims to identify neural mechanisms underlying anxiety, searching for patterns of neural dysfunction that might be specific to different anxiety disorder categories. Across different anxiety and stress disorders, patterns of hyperactivation in emotion-generating regions and hypoactivation in prefrontal/regulatory regions are common in the literature. Interestingly, evidence of differential patterns is also emerging, such that within a spectrum of disorders ranging from more fear-based to more anxiety-based, greater involvement of emotion-generating regions is reported in panic disorder and specific phobia, and greater involvement of prefrontal regions is reported in generalized anxiety disorder and posttraumatic stress disorder. We summarize the pertinent literature and suggest areas for continued investigation. PMID:25670901

  4. Underlying Mechanisms of Cooperativity, Input Specificity, and Associativity of Long-Term Potentiation Through a Positive Feedback of Local Protein Synthesis.

    PubMed

    Hao, Lijie; Yang, Zhuoqin; Lei, Jinzhi

    2018-01-01

    Long-term potentiation (LTP) is a specific form of activity-dependent synaptic plasticity that is a leading mechanism of learning and memory in mammals. The properties of cooperativity, input specificity, and associativity are essential for LTP; however, the underlying mechanisms are unclear. Here, based on experimentally observed phenomena, we introduce a computational model of synaptic plasticity in a pyramidal cell to explore the mechanisms responsible for the cooperativity, input specificity, and associativity of LTP. The model is based on molecular processes involved in synaptic plasticity and integrates gene expression involved in the regulation of neuronal activity. In the model, we introduce a local positive feedback loop of protein synthesis at each synapse, which is essential for bimodal response and synapse specificity. Bifurcation analysis of the local positive feedback loop of brain-derived neurotrophic factor (BDNF) signaling illustrates the existence of bistability, which is the basis of LTP induction. The local bifurcation diagram provides guidance for the realization of LTP, and the projection of whole system trajectories onto the two-parameter bifurcation diagram confirms the predictions obtained from bifurcation analysis. Moreover, model analysis shows that pre- and postsynaptic components are required to achieve the three properties of LTP. This study provides insights into the mechanisms underlying the cooperativity, input specificity, and associativity of LTP, and the further construction of neural networks for learning and memory.

  5. Epigenetic mechanisms in heart development and disease.

    PubMed

    Martinez, Shannalee R; Gay, Maresha S; Zhang, Lubo

    2015-07-01

    Suboptimal intrauterine development has been linked to predisposition to cardiovascular disease in adulthood, a concept termed 'developmental origins of health and disease'. Although the exact mechanisms underlying this developmental programming are unknown, a growing body of evidence supports the involvement of epigenetic regulation. Epigenetic mechanisms such as DNA methylation, histone modifications and micro-RNA confer added levels of gene regulation without altering DNA sequences. These modifications are relatively stable signals, offering possible insight into the mechanisms underlying developmental origins of health and disease. This review will discuss the role of epigenetic mechanisms in heart development as well as aberrant epigenetic regulation contributing to cardiovascular disease. Additionally, we will address recent advances targeting epigenetic mechanisms as potential therapeutic approaches to cardiovascular disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Reliability-based optimization of maintenance scheduling of mechanical components under fatigue

    PubMed Central

    Beaurepaire, P.; Valdebenito, M.A.; Schuëller, G.I.; Jensen, H.A.

    2012-01-01

    This study presents the optimization of the maintenance scheduling of mechanical components under fatigue loading. The cracks of damaged structures may be detected during non-destructive inspection and subsequently repaired. Fatigue crack initiation and growth show inherent variability, and as well the outcome of inspection activities. The problem is addressed under the framework of reliability based optimization. The initiation and propagation of fatigue cracks are efficiently modeled using cohesive zone elements. The applicability of the method is demonstrated by a numerical example, which involves a plate with two holes subject to alternating stress. PMID:23564979

  7. Integrated analysis of transcriptome and metabolites reveals an essential role of metabolic flux in starch accumulation under nitrogen starvation in duckweed.

    PubMed

    Yu, Changjiang; Zhao, Xiaowen; Qi, Guang; Bai, Zetao; Wang, Yu; Wang, Shumin; Ma, Yubin; Liu, Qian; Hu, Ruibo; Zhou, Gongke

    2017-01-01

    Duckweed is considered a promising source of energy due to its high starch content and rapid growth rate. Starch accumulation in duckweed involves complex processes that depend on the balanced expression of genes controlled by various environmental and endogenous factors. Previous studies showed that nitrogen starvation induces a global stress response and results in the accumulation of starch in duckweed. However, relatively little is known about the mechanisms underlying the regulation of starch accumulation under conditions of nitrogen starvation. In this study, we used next-generation sequencing technology to examine the transcriptome responses of Lemna aequinoctialis 6000 at three stages (0, 3, and 7 days) during nitrogen starvation in the presence of exogenously applied sucrose. Overall, 2522, 628, and 1832 differentially expressed unigenes (DEGs) were discovered for the treated and control samples. Clustering and enrichment analysis of DEGs revealed several biological processes occurring under nitrogen starvation. Genes involved in nitrogen metabolism showed the earliest responses to nitrogen starvation, whereas genes involved in carbohydrate biosynthesis were responded subsequently. The expression of genes encoding nitrate reductase, glutamine synthetase, and glutamate synthase was down-regulated under nitrogen starvation. The expression of unigenes encoding enzymes involved in gluconeogenesis was up-regulated, while the majority of unigenes involved in glycolysis were down-regulated. The metabolite results showed that more ADP-Glc was accumulated and lower levels of UDP-Glc were accumulated under nitrogen starvation, the activity of AGPase was significantly increased while the activity of UGPase was dramatically decreased. These changes in metabolite levels under nitrogen starvation are roughly consistent with the gene expression changes in the transcriptome. Based on these results, it can be concluded that the increase of ADP-glucose and starch contents under nitrogen starvation is a consequence of increased output from the gluconeogenesis and TCA pathways, accompanied with the reduction of lipids and pectin biosynthesis. The results provide novel insights into the underlying mechanisms of starch accumulation during nitrogen starvation, which provide a foundation for the improvement of advanced bioethanol production in duckweed.

  8. 2 CFR Appendix II to Part 200 - Contract Provisions for Non-Federal Entity Contracts Under Federal Awards

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., contractors must be required to pay wages to laborers and mechanics at a rate not less than the prevailing...,000 that involve the employment of mechanics or laborers must include a provision for compliance with... U.S.C. 3702 of the Act, each contractor must be required to compute the wages of every mechanic and...

  9. Gel-free/label-free proteomic analysis of developing rice grains under heat stress.

    PubMed

    Timabud, Tarinee; Yin, Xiaojian; Pongdontri, Paweena; Komatsu, Setsuko

    2016-02-05

    High temperature markedly reduces the yields and quality of rice grains. To identify the mechanisms underlying heat stress-induced responses in rice grains, proteomic technique was used. Developing Khao Dawk Mali 105 rice grains at the milky, dough, and mature stages were treated at 40 °C for 3 days. Aromatic compounds were decreased in rice grains under heat stress. The protein abundance involved in glycolysis and tricarboxylic acid cycle, including glyceraldehyde 3-phosphate dehydrogenase and citrate synthase, was changed in milky and dough grains after heat treatment; however, none changes in mature grains. The abundance involved in amino acid metabolism was increased in dough grains, but decreased in milky grains. In addition, the abundance involved in starch and sucrose metabolism, such as starch synthase, ADP-glucose pyrophosphorylase, granule-bound starch synthase, and alpha amylase, was decreased in milky grains, but increased in dough grains. A number of redox homeostasis-related proteins, such as ascorbate peroxidase and peroxiredoxin, were increased in developing rice grains treated with heat stress. These results suggest that in response to heat stress, the abundance of numerous proteins involved in redox homeostasis and carbohydrate biosynthetic pathways may play a major role in the development of KDML105 rice grains. Yield of Khao Dawk Mali 105 rice, which is an economical aromatic rice, was disrupted by environmental stress. Rice grains developed under heat stress caused loss of aroma compound. To identify the mechanism of heat response in rice grain, gel-free/label-free proteomic technique was used. The abundance of proteins involved in glycolysis and tricarboxylic acid cycle was disrupted by heat stress. High temperature limited starch biosynthesis; however, it enhanced sugar biosynthesis in developing rice grains. Redox homeostasis related proteins were disrupted by heat stress. These results suggest that proteins involved in redox homeostasis and carbohydrate pathway might play a major role in developing grains in Khao Dawk Mali 105 rice under heat stress. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Lymphoid cell kinetics under continuous low dose-rate gamma irradiation: A comparison study

    NASA Technical Reports Server (NTRS)

    Foster, B. R.

    1975-01-01

    A comparison study was conducted of the effects of continuous low dose-rate gamma irradiation on cell population kinetics of lymphoid tissue (white pulp) of the mouse spleen with findings as they relate to the mouse thymus. Experimental techniques employed included autoradiography and specific labeling with tritiated thymidine (TdR-(h-3)). The problem studied involved the mechanism of cell proliferation of lymphoid tissue of the mouse spleen and thymus under the stress of continuous irradiation at a dose rate of 10 roentgens (R) per day for 105 days (15 weeks). The aim was to determine whether or not a steady state or near-steady state of cell population could be established for this period of time, and what compensatory mechanisms of cell population were involved.

  11. Involvement of mesolimbic dopaminergic network in neuropathic pain relief by treadmill exercise

    PubMed Central

    Wakaizumi, Kenta; Kondo, Takashige; Hamada, Yusuke; Narita, Michiko; Kawabe, Rui; Narita, Hiroki; Watanabe, Moe; Kato, Shigeki; Senba, Emiko; Kobayashi, Kazuto; Yamanaka, Akihiro

    2016-01-01

    Background Exercise alleviates pain and it is a central component of treatment strategy for chronic pain in clinical setting. However, little is known about mechanism of this exercise-induced hypoalgesia. The mesolimbic dopaminergic network plays a role in positive emotions to rewards including motivation and pleasure. Pain negatively modulates these emotions, but appropriate exercise is considered to activate the dopaminergic network. We investigated possible involvement of this network as a mechanism of exercise-induced hypoalgesia. Methods In the present study, we developed a protocol of treadmill exercise, which was able to recover pain threshold under partial sciatic nerve ligation in mice, and investigated involvement of the dopaminergic reward network in exercise-induced hypoalgesia. To temporally suppress a neural activation during exercise, a genetically modified inhibitory G-protein-coupled receptor, hM4Di, was specifically expressed on dopaminergic pathway from the ventral tegmental area to the nucleus accumbens. Results The chemogenetic-specific neural suppression by Gi-DREADD system dramatically offset the effect of exercise-induced hypoalgesia in transgenic mice with hM4Di expressed on the ventral tegmental area dopamine neurons. Additionally, anti-exercise-induced hypoalgesia effect was significantly observed under the suppression of neurons projecting out of the ventral tegmental area to the nucleus accumbens as well. Conclusion Our findings suggest that the dopaminergic pathway from the ventral tegmental area to the nucleus accumbens is involved in the anti-nociception under low-intensity exercise under a neuropathic pain-like state. PMID:27909152

  12. Dynamic Search and Working Memory in Social Recall

    ERIC Educational Resources Information Center

    Hills, Thomas T.; Pachur, Thorsten

    2012-01-01

    What are the mechanisms underlying search in social memory (e.g., remembering the people one knows)? Do the search mechanisms involve dynamic local-to-global transitions similar to semantic search, and are these transitions governed by the general control of attention, associated with working memory span? To find out, we asked participants to…

  13. Behavioural and Cognitive Phenotypes in Idiopathic Autism versus Autism Associated with Fragile X Syndrome

    ERIC Educational Resources Information Center

    Dissanayake, Cheryl; Bui, Quang; Bulhak-Paterson, Danuta; Huggins, Richard; Loesch, Danuta Z.

    2009-01-01

    Background: In order to better understand the underlying biological mechanism/s involved in autism, it is important to investigate the cognitive and behavioural phenotypes associated with idiopathic autism (autism without a known cause) and comorbid autism (autism associated with known genetic/biological disorders such as fragile X syndrome).…

  14. Metabolic and physiological mechanisms responsible for variation in feed efficiency

    USDA-ARS?s Scientific Manuscript database

    There has been an increase in the number of experiments in the past few years that explore the underlying mechanisms involved in feed efficiency of beef cattle. This is a byproduct of the need to improve feed efficiency to increase the sustainability of beef production and improve the economic situa...

  15. Sentence Repetition in Children with Specific Language Impairment: An Investigation of Underlying Mechanisms

    ERIC Educational Resources Information Center

    Riches, Nick G.

    2012-01-01

    Background: Sentence repetition (SR) is a reliable clinical marker of specific language impairment (SLI). However, little is known about cognitive processes underpinning SR, or areas of breakdown in children with SLI. Aims: The study investigated which cognitive mechanisms were most closely involved in SR performance: syntactic knowledge,…

  16. Ambient particulate matter induces IL-8 expression through an alternative NF-kB mechanism in human airway epithelial cells

    EPA Science Inventory

    BACKGROUND: Exposure to ambient air particulate matter (PM) has been shown to increase rates of cardio-pulmonary morbidity and mortality, but the underlying mechanisms are still not well understood. OBJECTIVE: To examine signaling events involved in the expression of the inflamma...

  17. Early Bilingualism Enhances Mechanisms of False-Belief Reasoning

    ERIC Educational Resources Information Center

    Kovacs, Agnes Melinda

    2009-01-01

    In their first years, children's understanding of mental states seems to improve dramatically, but the mechanisms underlying these changes are still unclear. Such "theory of mind" (ToM) abilities may arise during development, or have an innate basis, developmental changes reflecting limitations of other abilities involved in ToM tasks (e.g.…

  18. Bacterial evolution through the selective loss of beneficial Genes. Trade-offs in expression involving two loci.

    PubMed Central

    Zinser, Erik R; Schneider, Dominique; Blot, Michel; Kolter, Roberto

    2003-01-01

    The loss of preexisting genes or gene activities during evolution is a major mechanism of ecological specialization. Evolutionary processes that can account for gene loss or inactivation have so far been restricted to one of two mechanisms: direct selection for the loss of gene activities that are disadvantageous under the conditions of selection (i.e., antagonistic pleiotropy) and selection-independent genetic drift of neutral (or nearly neutral) mutations (i.e., mutation accumulation). In this study we demonstrate with an evolved strain of Escherichia coli that a third, distinct mechanism exists by which gene activities can be lost. This selection-dependent mechanism involves the expropriation of one gene's upstream regulatory element by a second gene via a homologous recombination event. Resulting from this genetic exchange is the activation of the second gene and a concomitant inactivation of the first gene. This gene-for-gene expression tradeoff provides a net fitness gain, even if the forfeited activity of the first gene can play a positive role in fitness under the conditions of selection. PMID:12930738

  19. LncRNA pathway involved in premature preterm rupture of membrane (PPROM): an epigenomic approach to study the pathogenesis of reproductive disorders.

    PubMed

    Luo, Xiucui; Shi, Qingxi; Gu, Yang; Pan, Jing; Hua, Maofang; Liu, Meilin; Dong, Ziqing; Zhang, Meijiao; Wang, Leilei; Gu, Ying; Zhong, Julia; Zhao, Xinliang; Jenkins, Edmund C; Brown, W Ted; Zhong, Nanbert

    2013-01-01

    Preterm birth (PTB) is a live birth delivered before 37 weeks of gestation (GW). About one-third of PTBs result from the preterm premature rupture of membranes (PPROM). Up to the present, the pathogenic mechanisms underlying PPROM are not clearly understood. Here, we investigated the differential expression of long chain non-coding RNAs (lncRNAs) in placentas of PTBs with PPROM, and their possible involvement in the pathogenic pathways leading to PPROM. A total number of 1954, 776, and 1050 lncRNAs were identified with a microarray from placentas of PPROM (group A), which were compared to full-term birth (FTB) (group B), PTB (group C), and premature rupture of membrane (PROM) (group D) at full-term, respectively. Instead of investigating the individual pathogenic role of each lncRNA involved in the molecular mechanism underlying PPROM, we have focused on investigating the metabolic pathways and their functions to explore what is the likely association and how they are possibly involved in the development of PPROM. Six groups, including up-regulation and down-regulation in the comparisons of A vs. B, A vs. C, and A vs. D, of pathways were analyzed. Our results showed that 22 pathways were characterized as up-regulated 7 down-regulated in A vs. C, 18 up-regulated and 15 down-regulated in A vs. D, and 33 up-regulated and 7 down-regulated in A vs. B. Functional analysis showed pathways of infection and inflammatory response, ECM-receptor interactions, apoptosis, actin cytoskeleton, and smooth muscle contraction are the major pathogenic mechanisms involved in the development of PPROM. Characterization of these pathways through identification of lncRNAs opened new avenues for further investigating the epigenomic mechanisms of lncRNAs in PPROM as well as PTB.

  20. Consciousness, unconsciousness and death in the context of slaughter. Part I. Neurobiological mechanisms underlying stunning and killing.

    PubMed

    Terlouw, Claudia; Bourguet, Cécile; Deiss, Véronique

    2016-08-01

    This review describes the neurobiological mechanisms that are relevant for the stunning and killing process of animals in the abattoir. The mechanisms underlying the loss of consciousness depend on the technique used: mechanical, electrical or gas stunning. Direct exsanguination (without prior stun) causes also a loss of consciousness before inducing death. The underlying mechanisms may involve cerebral anoxia or ischemia, or the depolarisation, acidification and/or the destruction of brain neurons. These effects may be caused by shock waves, electrical fields, the reduction or arrest of the cerebral blood circulation, increased levels of CO2 or low levels of O2 in the inhaled air, or the mechanical destruction of neurons. The targeted brain structures are the reticular formation, the ascending reticular activating system or thalamus, or the cerebral hemispheres in a general manner. Some of the techniques, when properly used, induce an immediate loss of consciousness; other techniques a progressive loss of consciousness. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Psychological and environmental determinants of relapse in crack cocaine smokers.

    PubMed

    Wallace, B C

    1989-01-01

    The paper reviews approaches to relapse in the treatment of cocaine abusers. Approaches reveal a common mechanism underlying relapse that involves drug craving, recall of euphoria, environmental cues, denial, myths of being able to sell or use drugs, and painful affect states necessitating use of a multifaceted clinical technique. Empirical validation of a common mechanism underlying relapse establishes a typology of psychological and environmental determinants of relapse for crack cocaine smokers (N = 35) who relapse after hospital detoxification and return a second time. Major findings are that relapse follows a painful emotional state (40%), failure to enter arranged aftercare treatment (37%), or encounters with conditioned environmental stimuli (34%), and involves narcissistic psychopathology and denial (28.5%) and interpersonal stress (24%); 85.7% involve multideterminants. Case examples illustrate the role of multideterminants in relapse. The paper educates clinicians to the integrated theory and multifaceted clinical technique necessary for efficacious treatment of cocaine patients, while the typology predicts probable relapse situations.

  2. Recognizing Faces

    ERIC Educational Resources Information Center

    Ellis, Hadyn D.

    1975-01-01

    The proposition that the mechanisms underlying facial recognition are different from those involved in recognizing other classes of pictorial material was assessed following a general review of the literature concerned with recognizing faces. (Author/RK)

  3. Phytochelatins: peptides involved in heavy metal detoxification.

    PubMed

    Pal, Rama; Rai, J P N

    2010-03-01

    Phytochelatins (PCs) are enzymatically synthesized peptides known to involve in heavy metal detoxification and accumulation, which have been measured in plants grown at high heavy metal concentrations, but few studies have examined the response of plants even at lower environmentally relevant metal concentrations. Recently, genes encoding the enzyme PC synthase have been identified in plants and other species enabling molecular biological studies to untangle the mechanisms underlying PC synthesis and its regulation. The present paper embodies review on recent advances in structure of PCs, their biosynthetic regulation, roles in heavy metal detoxification and/or accumulation, and PC synthase gene expression for better understanding of mechanism involved and to improve phytoremediation efficiency of plants for wider application.

  4. Behavioural system identification of visual flight speed control in Drosophila melanogaster

    PubMed Central

    Rohrseitz, Nicola; Fry, Steven N.

    2011-01-01

    Behavioural control in many animals involves complex mechanisms with intricate sensory-motor feedback loops. Modelling allows functional aspects to be captured without relying on a description of the underlying complex, and often unknown, mechanisms. A wide range of engineering techniques are available for modelling, but their ability to describe time-continuous processes is rarely exploited to describe sensory-motor control mechanisms in biological systems. We performed a system identification of visual flight speed control in the fruitfly Drosophila, based on an extensive dataset of open-loop responses previously measured under free flight conditions. We identified a second-order under-damped control model with just six free parameters that well describes both the transient and steady-state characteristics of the open-loop data. We then used the identified control model to predict flight speed responses after a visual perturbation under closed-loop conditions and validated the model with behavioural measurements performed in free-flying flies under the same closed-loop conditions. Our system identification of the fruitfly's flight speed response uncovers the high-level control strategy of a fundamental flight control reflex without depending on assumptions about the underlying physiological mechanisms. The results are relevant for future investigations of the underlying neuromotor processing mechanisms, as well as for the design of biomimetic robots, such as micro-air vehicles. PMID:20525744

  5. Behavioural system identification of visual flight speed control in Drosophila melanogaster.

    PubMed

    Rohrseitz, Nicola; Fry, Steven N

    2011-02-06

    Behavioural control in many animals involves complex mechanisms with intricate sensory-motor feedback loops. Modelling allows functional aspects to be captured without relying on a description of the underlying complex, and often unknown, mechanisms. A wide range of engineering techniques are available for modelling, but their ability to describe time-continuous processes is rarely exploited to describe sensory-motor control mechanisms in biological systems. We performed a system identification of visual flight speed control in the fruitfly Drosophila, based on an extensive dataset of open-loop responses previously measured under free flight conditions. We identified a second-order under-damped control model with just six free parameters that well describes both the transient and steady-state characteristics of the open-loop data. We then used the identified control model to predict flight speed responses after a visual perturbation under closed-loop conditions and validated the model with behavioural measurements performed in free-flying flies under the same closed-loop conditions. Our system identification of the fruitfly's flight speed response uncovers the high-level control strategy of a fundamental flight control reflex without depending on assumptions about the underlying physiological mechanisms. The results are relevant for future investigations of the underlying neuromotor processing mechanisms, as well as for the design of biomimetic robots, such as micro-air vehicles.

  6. Cellular Mechanosensing: Getting to the nucleus of it all

    PubMed Central

    Fedorchak, Gregory R.; Kaminski, Ashley; Lammerding, Jan

    2014-01-01

    Cells respond to mechanical forces by activating specific genes and signaling pathways that allow the cells to adapt to their physical environment. Examples include muscle growth in response to exercise, bone remodeling based on their mechanical load, or endothelial cells aligning under fluid shear stress. While the involved downstream signaling pathways and mechanoresponsive genes are generally well characterized, many of the molecular mechanisms of the initiating ‘mechanosensing’ remain still elusive. In this review, we discuss recent findings and accumulating evidence suggesting that the cell nucleus plays a crucial role in cellular mechanotransduction, including processing incoming mechanoresponsive signals and even directly responding to mechanical forces. Consequently, mutations in the involved proteins or changes in nuclear envelope composition can directly impact mechanotransduction signaling and contribute to the development and progression of a variety of human diseases, including muscular dystrophy, cancer, and the focus of this review, dilated cardiomyopathy. Improved insights into the molecular mechanisms underlying nuclear mechanotransduction, brought in part by the emergence of new technologies to study intracellular mechanics at high spatial and temporal resolution, will not only result in a better understanding of cellular mechanosensing in normal cells but may also lead to the development of novel therapies in the many diseases linked to defects in nuclear envelope proteins. PMID:25008017

  7. The underlying mechanism of action for various medicinal properties of Piper betle (betel).

    PubMed

    Haslan, H; Suhaimi, F H; Thent, Zar Chi; Das, S

    2015-01-01

    Piper betle (betel) plant belongs to the Piperaceae family. Piper. betle is widely known for its potent medicinal properties. Various active compounds are present in Piper. betle such as allylpyrocatechol, hydroxychavicol, piperbetol, ethylpiperbetol, piperol A, piperol B, chavibetol, and alkaloids which account for these beneficial medicinal properties. In the present narrative review, we looked into the various active compounds present in the Piper betle and attempted to understand their underlying mechanism of action. Proper understanding of the molecular biology involving the mechanism of action may help in better drug formulation and provide better therapeutic actions in the field of alternative and complementary medicine.

  8. Report on the Symposium “Molecular Mechanisms Involved in Neurodegeneration”

    PubMed Central

    Pentón-Rol, Giselle; Cervantes-Llanos, Majel

    2018-01-01

    The prevalence of neurodegenerative diseases is currently a major concern in public health because of the lack of neuroprotective and neuroregenerative drugs. The symposium on Molecular Mechanisms Involved in Neurodegeneration held in Varadero, Cuba, updated the participants on the basic mechanisms of neurodegeneration, on the different approaches for drug discovery, and on early research results on therapeutic approaches for the treatment of neurodegenerative diseases. Alzheimer’s disease and in silico research were covered by many of the presentations in the symposium, under the umbrella of the “State of the Art of Non-clinical Models for Neurodegenerative Diseases” International Congress, held from 20 to 24 June 2017. This paper summarizes the highlights of the symposium. PMID:29346273

  9. Mechanisms of phosphenes in irradiated patients

    PubMed Central

    Mathis, Thibaud; Vignot, Stephane; Leal, Cecila; Caujolle, Jean-Pierre; Maschi, Celia; Mauget-Faÿsse, Martine; Kodjikian, Laurent; Baillif, Stéphanie; Herault, Joel; Thariat, Juliette

    2017-01-01

    Anomalous visual perceptions have been reported in various diseases of the retina and visual pathways or can be experienced under specific conditions in healthy individuals. Phosphenes are perceptions of light in the absence of ambient light, occurring independently of the physiological and classical photonic stimulation of the retina. They are a frequent symptom in patients irradiated in the region of the central nervous system (CNS), head and neck and the eyes. Phosphenes have historically been attributed to complex physical phenomena such as Cherenkov radiation. While phosphenes are related to Cherenkov radiation under high energy photon/electron irradiation conditions, physical phenomena are unlikely to be responsible for light flashes at energies used for ocular proton therapy. Phosphenes may involve a direct role for ocular photoreceptors and possible interactions between cones and rods. Other mechanisms involving the retinal ganglion cells or ultraweak biophoton emission and rhodopsin bleaching after exposure to free radicals are also likely to be involved. Despite their frequency as shown in our preliminary observations, phosphenes have been underreported probably because their mechanism and impact are poorly understood. Recently, phosphenes have been used to restore the vision and whether they might predict vision loss after therapeutic irradiation is a current field of investigation. We have reviewed and also investigated here the mechanisms related to the occurrence of phosphenes in irradiated patients and especially in patients irradiated by proton therapy for ocular tumors. PMID:28969095

  10. Shading Contributes to the Reduction of Stem Mechanical Strength by Decreasing Cell Wall Synthesis in Japonica Rice (Oryza sativa L.).

    PubMed

    Wu, Longmei; Zhang, Wujun; Ding, Yanfeng; Zhang, Jianwei; Cambula, Elidio D; Weng, Fei; Liu, Zhenghui; Ding, Chengqiang; Tang, She; Chen, Lin; Wang, Shaohua; Li, Ganghua

    2017-01-01

    Low solar radiation caused by industrial development and solar dimming has become a limitation in crop production in China. It is widely accepted that low solar radiation influences many aspects of plant development, including slender, weak stems and susceptibility to lodging. However, the underlying mechanisms are not well understood. To clarify how low solar radiation affects stem mechanical strength formation and lodging resistance, the japonica rice cultivars Wuyunjing23 (lodging-resistant) and W3668 (lodging-susceptible) were grown under field conditions with normal light (Control) and shading (the incident light was reduced by 60%) with a black nylon net. The yield and yield components, plant morphological characteristics, the stem mechanical strength, cell wall components, culm microstructure, gene expression correlated with cellulose and lignin biosynthesis were measured. The results showed that shading significantly reduced grain yield attributed to reduction of spikelets per panicles and grain weight. The stem-breaking strength decreased significantly under shading treatment; consequently, resulting in higher lodging index in rice plant in both varieties, as revealed by decreased by culm diameter, culm wall thickness and increased plant height, gravity center height. Compared with control, cell wall components including non-structural carbohydrate, sucrose, cellulose, and lignin reduced quite higher. With histochemical straining, shading largely reduced lignin deposition in the sclerenchyma cells and vascular bundle cells compared with control, and decreased cellulose deposition in the parenchyma cells of culm tissue in both Wuyunjing23 and W3668. And under shading condition, gene expression involved in secondary cell wall synthesis, OsPAL, OsCOMT, OsCCoAOMT, OsCCR , and OsCAD2 , and primary cell wall synthesis, OsCesA1, OsCesA3 , and OsCesA8 were decreased significantly. These results suggest that gene expression involved in the reduction of lignin and cellulose in both sclerenchyma and parenchyma cells, which attribute to lignin and cellulose in culm tissue and weak mechanical tissue, consequently, result in poor stem strength and higher lodging risks. Highlights : (1) Shading decreases the stem mechanical strength of japonica rice by decreasing non-structural carbohydrate, sucrose, lignin, and cellulose accumulation in culms. (2) The decrease of carbon source under shading condition is the cause for the lower lignin and cellulose accumulation in culm. (3) The expression of genes involved in lignin and primarily cell wall cellulose biosynthesis ( OsCesA1, OsCesA3 , and OsCesA8 ) at the stem formation stage are down-regulated under shading condition, inducing defective cell wall development and poor lodging resistance.

  11. Evidence for transgenerational metabolic programming in Drosophila

    PubMed Central

    Buescher, Jessica L.; Musselman, Laura P.; Wilson, Christina A.; Lang, Tieming; Keleher, Madeline; Baranski, Thomas J.; Duncan, Jennifer G.

    2013-01-01

    SUMMARY Worldwide epidemiologic studies have repeatedly demonstrated an association between prenatal nutritional environment, birth weight and susceptibility to adult diseases including obesity, cardiovascular disease and type 2 diabetes. Despite advances in mammalian model systems, the molecular mechanisms underlying this phenomenon are unclear, but might involve programming mechanisms such as epigenetics. Here we describe a new system for evaluating metabolic programming mechanisms using a simple, genetically tractable Drosophila model. We examined the effect of maternal caloric excess on offspring and found that a high-sugar maternal diet alters body composition of larval offspring for at least two generations, augments an obese-like phenotype under suboptimal (high-calorie) feeding conditions in adult offspring, and modifies expression of metabolic genes. Our data indicate that nutritional programming mechanisms could be highly conserved and support the use of Drosophila as a model for evaluating the underlying genetic and epigenetic contributions to this phenomenon. PMID:23649823

  12. 7 CFR 226.22 - Procurement standards.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., all contracts awarded by institutions in excess of $2,500 which involve the employment of mechanics or...). Under section 103 of the Act, each contractor shall be required to compute the wages of every mechanic... a rate of not less than 11/2 times the basic rate of pay for all hours worked in excess of 8 hours...

  13. Understanding Cervicogenic Headache

    PubMed Central

    Chua, Nicholas H L; Suijlekom, Hans V; Wilder-Smith, Oliver H; Vissers, Kris C P

    2012-01-01

    The purported mechanism underlying the development and progression of cervicogenic headache (CEH) is the convergence of sensory inputs at the trigeminocervical nucleus. This mechanism explains the radiation of pain from the neck or the occipitonuchal area and its spread to the oculo-fronto-temporal region; it also explains the recurrent headaches caused by improper neck postures or external pressure to the structures in the neck and the occipital region. These neural connectivity mechanisms involving the trigeminal nucleus are also evident from the eyeblink reflex and findings of quantitative sensory testing (QST). Understanding the mechanisms underlying the development of CEH is important because it will not only provide a better treatment outcome but will also allow practitioners to appreciate the variability of symptomatic presentations in these patients. PMID:24223325

  14. Demonstration of motion control of ZrO2 microparticles in uniform/non-uniform electric field

    NASA Astrophysics Data System (ADS)

    Onishi, Genki; Trung, Ngo Nguyen Chi; Matsutani, Naoto; Nakayama, Tadachika; Suzuki, Tsuneo; Suematsu, Hisayuki; Niihara, Koichi

    2018-02-01

    This study aims to elucidate the mechanism that drives dielectric microparticles under an electric field. The driving of microstructures is affected by various electrical phenomena occurring at the same time such as surface potential, polarization, and electrostatic force. It makes the clarification of the driving mechanism challenging. A simple experimental system was used to observe the behavior of spherical ZrO2 microparticles in a nonaqueous solution under an electric field. The results suggest that the mechanism that drives the ZrO2 microparticles under an electric field involved the combination of an electric image force, a gradient force, and the contact charging phenomenon. A method is proposed to control the motion of micro- and nanostructures in further study and applications.

  15. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H. H.

    1987-01-01

    Muscle tissue culture techniques were developed to grow skeletal myofibers which differentiate into more adult-like myofibers. Mechanical simulation studies of these muscle cells in a newly developed mechanical cell simulator can now be performed to study growth processes in skeletal muscle. Conditions in the mechanical cell simulator were defined where mechanical activity can either prevent muscle wasting or stimulate muscle growth. The role of endogenous and exogenous growth factors in tension-induced muscle growth is being investigated under the defined conditions of tissue culture.

  16. Proteomic Adaptations to Starvation Prepare Escherichia coli for Disinfection Tolerance

    PubMed Central

    Du, Zhe; Nandakumar, Renu; Nickerson, Kenneth; Li, Xu

    2015-01-01

    Despite the low nutrient level and constant presence of secondary disinfectants, bacterial re-growth still occurs in drinking water distribution systems. The molecular mechanisms that starved bacteria use to survive low-level chlorine-based disinfectants are not well understood. The objective of this study is to investigate these molecular mechanisms at the protein level that prepare starved cells for disinfection tolerance. Two commonly used secondary disinfectants chlorine and monochloramine, both at 1 mg/L, were used in this study. The proteomes of normal and starved Escherichia coli (K12 MG1655) cells were studied using quantitative proteomics. Over 60-min disinfection, starved cells showed significantly higher disinfection tolerance than normal cells based on the inactivation curves for both chlorine and monochloramine. Proteomic analyses suggest that starvation may prepare cells for the oxidative stress that chlorine-based disinfection will cause by affecting glutathione metabolism. In addition, proteins involved in stress regulation and stress responses were among the ones up-regulated under both starvation and chlorine/monochloramine disinfection. By comparing the fold changes under different conditions, it is suggested that starvation prepares E. coli for disinfection tolerance by increasing the expression of enzymes that can help cells survive chlorine/monochloramine disinfection. Protein co-expression analyses show that proteins in glycolysis and pentose phosphate pathway that were up-regulated under starvation are also involved in disinfection tolerance. Finally, the production and detoxification of methylglyoxal may be involved in the chlorine-based disinfection and cell defense mechanisms. PMID:25463932

  17. Proteomic adaptations to starvation prepare Escherichia coli for disinfection tolerance.

    PubMed

    Du, Zhe; Nandakumar, Renu; Nickerson, Kenneth W; Li, Xu

    2015-02-01

    Despite the low nutrient level and constant presence of secondary disinfectants, bacterial re-growth still occurs in drinking water distribution systems. The molecular mechanisms that starved bacteria use to survive low-level chlorine-based disinfectants are not well understood. The objective of this study is to investigate these molecular mechanisms at the protein level that prepare starved cells for disinfection tolerance. Two commonly used secondary disinfectants chlorine and monochloramine, both at 1 mg/L, were used in this study. The proteomes of normal and starved Escherichia coli (K12 MG1655) cells were studied using quantitative proteomics. Over 60-min disinfection, starved cells showed significantly higher disinfection tolerance than normal cells based on the inactivation curves for both chlorine and monochloramine. Proteomic analyses suggest that starvation may prepare cells for the oxidative stress that chlorine-based disinfection will cause by affecting glutathione metabolism. In addition, proteins involved in stress regulation and stress responses were among the ones up-regulated under both starvation and chlorine/monochloramine disinfection. By comparing the fold changes under different conditions, it is suggested that starvation prepares E. coli for disinfection tolerance by increasing the expression of enzymes that can help cells survive chlorine/monochloramine disinfection. Protein co-expression analyses show that proteins in glycolysis and pentose phosphate pathway that were up-regulated under starvation are also involved in disinfection tolerance. Finally, the production and detoxification of methylglyoxal may be involved in the chlorine-based disinfection and cell defense mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Analysis of DNA replication associated chromatin decondensation: in vivo assay for understanding chromatin remodeling mechanisms of selected proteins.

    PubMed

    Borysov, Sergiy; Bryant, Victoria L; Alexandrow, Mark G

    2015-01-01

    Of critical importance to many of the events underlying transcriptional control of gene expression are modifications to core and linker histones that regulate the accessibility of trans-acting factors to the DNA substrate within the context of chromatin. Likewise, control over the initiation of DNA replication, as well as the ability of the replication machinery to proceed during elongation through the multiple levels of chromatin condensation that are likely to be encountered, is known to involve the creation of chromatin accessibility. In the latter case, chromatin access will likely need to be a transient event so as to prevent total genomic unraveling of the chromatin that would be deleterious to cells. While there are many molecular and biochemical approaches in use to study histone changes and their relationship to transcription and chromatin accessibility, few techniques exist that allow a molecular dissection of the events underlying DNA replication control as it pertains to chromatin changes and accessibility. Here, we outline a novel experimental strategy for addressing the ability of specific proteins to induce large-scale chromatin unfolding (decondensation) in vivo upon site-specific targeting to an engineered locus. Our laboratory has used this powerful system in novel ways to directly address the ability of DNA replication proteins to create chromatin accessibility, and have incorporated modifications to the basic approach that allow for a molecular genetic analysis of the mechanisms and associated factors involved in causing chromatin decondensation by a protein of interest. Alternative approaches involving co-expression of other proteins (competitors or stimulators), concurrent drug treatments, and analysis of co-localizing histone modifications are also addressed, all of which are illustrative of the utility of this experimental system for extending basic findings to physiologically relevant mechanisms. Although used by our group to analyze mechanisms underlying DNA replication associated chromatin accessibility, this unique and powerful experimental system has the propensity to be a valuable tool for understanding chromatin remodeling mechanisms orchestrated by other cellular processes such as DNA repair, recombination, mitotic chromosome condensation, or other chromosome dynamics involving chromatin alterations and accessibility.

  19. Osteoporosis and alzheimer pathology: Role of cellular stress response and hormetic redox signaling in aging and bone remodeling

    PubMed Central

    Cornelius, Carolin; Koverech, Guido; Crupi, Rosalia; Di Paola, Rosanna; Koverech, Angela; Lodato, Francesca; Scuto, Maria; Salinaro, Angela T.; Cuzzocrea, Salvatore; Calabrese, Edward J.; Calabrese, Vittorio

    2014-01-01

    Alzheimer’s disease (AD) and osteoporosis are multifactorial progressive degenerative disorders. Increasing evidence shows that osteoporosis and hip fracture are common complication observed in AD patients, although the mechanisms underlying this association remain poorly understood. Reactive oxygen species (ROS) are emerging as intracellular redox signaling molecules involved in the regulation of bone metabolism, including receptor activator of nuclear factor-κB ligand-dependent osteoclast differentiation, but they also have cytotoxic effects that include lipoperoxidation and oxidative damage to proteins and DNA. ROS generation, which is implicated in the regulation of cellular stress response mechanisms, is an integrated, highly regulated, process under control of redox sensitive genes coding for redox proteins called vitagenes. Vitagenes, encoding for proteins such as heat shock proteins (Hsps) Hsp32, Hsp70, the thioredoxin, and the sirtuin protein, represent a systems controlling a complex network of intracellular signaling pathways relevant to life span and involved in the preservation of cellular homeostasis under stress conditions. Consistently, nutritional anti-oxidants have demonstrated their neuroprotective potential through a hormetic-dependent activation of vitagenes. The biological relevance of dose–response affects those strategies pointing to the optimal dosing to patients in the treatment of numerous diseases. Thus, the heat shock response has become an important hormetic target for novel cytoprotective strategies focusing on the pharmacological development of compounds capable of modulating stress response mechanisms. Here we discuss possible signaling mechanisms involved in the activation of vitagenes which, relevant to bone remodeling and through enhancement of cellular stress resistance provide a rationale to limit the deleterious consequences associated to homeostasis disruption with consequent impact on the aging process. PMID:24959146

  20. Subthalamic stimulation, oscillatory activity and connectivity reveal functional role of STN and network mechanisms during decision making under conflict.

    PubMed

    Hell, Franz; Taylor, Paul C J; Mehrkens, Jan H; Bötzel, Kai

    2018-05-01

    Inhibitory control is an important executive function that is necessary to suppress premature actions and to block interference from irrelevant stimuli. Current experimental studies and models highlight proactive and reactive mechanisms and claim several cortical and subcortical structures to be involved in response inhibition. However, the involved structures, network mechanisms and the behavioral relevance of the underlying neural activity remain debated. We report cortical EEG and invasive subthalamic local field potential recordings from a fully implanted sensing neurostimulator in Parkinson's patients during a stimulus- and response conflict task with and without deep brain stimulation (DBS). DBS made reaction times faster overall while leaving the effects of conflict intact: this lack of any effect on conflict may have been inherent to our task encouraging a high level of proactive inhibition. Drift diffusion modelling hints that DBS influences decision thresholds and drift rates are modulated by stimulus conflict. Both cortical EEG and subthalamic (STN) LFP oscillations reflected reaction times (RT). With these results, we provide a different interpretation of previously conflict-related oscillations in the STN and suggest that the STN implements a general task-specific decision threshold. The timecourse and topography of subthalamic-cortical oscillatory connectivity suggest the involvement of motor, frontal midline and posterior regions in a larger network with complementary functionality, oscillatory mechanisms and structures. While beta oscillations are functionally associated with motor cortical-subthalamic connectivity, low frequency oscillations reveal a subthalamic-frontal-posterior network. With our results, we suggest that proactive as well as reactive mechanisms and structures are involved in implementing a task-related dynamic inhibitory signal. We propose that motor and executive control networks with complementary oscillatory mechanisms are tonically active, react to stimuli and release inhibition at the response when uncertainty is resolved and return to their default state afterwards. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Involvement of mesolimbic dopaminergic network in neuropathic pain relief by treadmill exercise: A study for specific neural control with Gi-DREADD in mice.

    PubMed

    Wakaizumi, Kenta; Kondo, Takashige; Hamada, Yusuke; Narita, Michiko; Kawabe, Rui; Narita, Hiroki; Watanabe, Moe; Kato, Shigeki; Senba, Emiko; Kobayashi, Kazuto; Kuzumaki, Naoko; Yamanaka, Akihiro; Morisaki, Hiroshi; Narita, Minoru

    2016-01-01

    Exercise alleviates pain and it is a central component of treatment strategy for chronic pain in clinical setting. However, little is known about mechanism of this exercise-induced hypoalgesia. The mesolimbic dopaminergic network plays a role in positive emotions to rewards including motivation and pleasure. Pain negatively modulates these emotions, but appropriate exercise is considered to activate the dopaminergic network. We investigated possible involvement of this network as a mechanism of exercise-induced hypoalgesia. In the present study, we developed a protocol of treadmill exercise, which was able to recover pain threshold under partial sciatic nerve ligation in mice, and investigated involvement of the dopaminergic reward network in exercise-induced hypoalgesia. To temporally suppress a neural activation during exercise, a genetically modified inhibitory G-protein-coupled receptor, hM4Di, was specifically expressed on dopaminergic pathway from the ventral tegmental area to the nucleus accumbens. The chemogenetic-specific neural suppression by Gi-DREADD system dramatically offset the effect of exercise-induced hypoalgesia in transgenic mice with hM4Di expressed on the ventral tegmental area dopamine neurons. Additionally, anti-exercise-induced hypoalgesia effect was significantly observed under the suppression of neurons projecting out of the ventral tegmental area to the nucleus accumbens as well. Our findings suggest that the dopaminergic pathway from the ventral tegmental area to the nucleus accumbens is involved in the anti-nociception under low-intensity exercise under a neuropathic pain-like state. © The Author(s) 2016.

  2. Failure to Deliver and Translate-New Insights into RNA Dysregulation in ALS.

    PubMed

    Coyne, Alyssa N; Zaepfel, Benjamin L; Zarnescu, Daniela C

    2017-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a progressive and fatal neurodegenerative disease affecting both upper and lower motor neurons. The molecular mechanisms underlying disease pathogenesis remain largely unknown. Multiple genetic loci including genes involved in proteostasis and ribostasis have been linked to ALS providing key insights into the molecular mechanisms underlying disease. In particular, the identification of the RNA binding proteins TDP-43 and fused in sarcoma (FUS) as causative factors of ALS resulted in a paradigm shift centered on the study of RNA dysregulation as a major mechanism of disease. With wild-type TDP-43 pathology being found in ~97% of ALS cases and the identification of disease causing mutations within its sequence, TDP-43 has emerged as a prominent player in ALS. More recently, studies of the newly discovered C9orf72 repeat expansion are lending further support to the notion of defects in RNA metabolism as a key factor underlying ALS. RNA binding proteins are involved in all aspects of RNA metabolism ranging from splicing, transcription, transport, storage into RNA/protein granules, and translation. How these processes are affected by disease-associated mutations is just beginning to be understood. Considerable work has gone into the identification of splicing and transcription defects resulting from mutations in RNA binding proteins associated with disease. More recently, defects in RNA transport and translation have been shown to be involved in the pathomechanism of ALS. A central hypothesis in the field is that disease causing mutations lead to the persistence of RNA/protein complexes known as stress granules. Under times of prolonged cellular stress these granules sequester specific mRNAs preventing them from translation, and are thought to evolve into pathological aggregates. Here we will review recent efforts directed at understanding how altered RNA metabolism contributes to ALS pathogenesis.

  3. Involvement of the Parietal Cortex in Perceptual Learning (Eureka Effect): An Interference Approach Using rTMS

    ERIC Educational Resources Information Center

    Giovannelli, Fabio; Silingardi, Davide; Borgheresi, Alessandra; Feurra, Matteo; Amati, Gianluca; Pizzorusso, Tommaso; Viggiano, Maria Pia; Zaccara, Gaetano; Berardi, Nicoletta; Cincotta, Massimo

    2010-01-01

    The neural mechanisms underlying perceptual learning are still under investigation. Eureka effect is a form of rapid, long-lasting perceptual learning by which a degraded image, which appears meaningless when first seen, becomes recognizable after a single exposure to its undegraded version. We used online interference by focal 10-Hz repetitive…

  4. A Processing Approach to the Dual Coding Hypothesis

    ERIC Educational Resources Information Center

    Kosslyn, Stephen M.; And Others

    1976-01-01

    Investigates whether imagery and verbal encoding use different processing mechanisms and attempts to discover whether the processes underlying the use of imagery to retain words are also involved in like-modality perception. (Author/RK)

  5. Molecular analysis of Hsp70 mechanisms in plants and their function in response to stress.

    PubMed

    Usman, Magaji G; Rafii, Mohd Y; Martini, Mohammad Y; Yusuff, Oladosu A; Ismail, Mohd R; Miah, Gous

    2017-04-01

    Studying the strategies of improving abiotic stress tolerance is quite imperative and research under this field will increase our understanding of response mechanisms to abiotic stress such as heat. The Hsp70 is an essential regulator of protein having the tendency to maintain internal cell stability like proper folding protein and breakdown of unfolded proteins. Hsp70 holds together protein substrates to help in movement, regulation, and prevent aggregation under physical and or chemical pressure. However, this review reports the molecular mechanism of heat shock protein 70 kDa (Hsp70) action and its structural and functional analysis, research progress on the interaction of Hsp70 with other proteins and their interaction mechanisms as well as the involvement of Hsp70 in abiotic stress responses as an adaptive defense mechanism.

  6. S-Glutathionylation and Redox Protein Signaling in Drug Addiction

    PubMed Central

    Womersley, Jacqueline S.; Uys, Joachim D.

    2016-01-01

    Drug addiction is a chronic relapsing disorder that comes at a high cost to individuals and society. Therefore understanding the mechanisms by which drugs exert their effects is of prime importance. Drugs of abuse increase the production of reactive oxygen and nitrogen species resulting in oxidative stress. This change in redox homeostasis increases the conjugation of glutathione to protein cysteine residues; a process called S-glutathionylation. Although traditionally regarded as a protective mechanism against irreversible protein oxidation, accumulated evidence suggests a more nuanced role for S-glutathionylation, namely as a mediator in redox-sensitive protein signaling. The reversible modification of protein thiols leading to alteration in function under different physiologic/pathologic conditions provides a mechanism whereby change in redox status can be translated into a functional response. As such, S-glutathionylation represents an understudied means of post-translational protein modification that may be important in the mechanisms underlying drug addiction. This review will discuss the evidence for S-glutathionylation as a redox-sensing mechanism and how this may be involved in the response to drug-induced oxidative stress. The function of S-glutathionylated proteins involved in neurotransmission, dendritic spine structure, and drug-induced behavioral outputs will be reviewed with specific reference to alcohol, cocaine, and heroin. PMID:26809999

  7. S-Glutathionylation and Redox Protein Signaling in Drug Addiction.

    PubMed

    Womersley, Jacqueline S; Uys, Joachim D

    2016-01-01

    Drug addiction is a chronic relapsing disorder that comes at a high cost to individuals and society. Therefore understanding the mechanisms by which drugs exert their effects is of prime importance. Drugs of abuse increase the production of reactive oxygen and nitrogen species resulting in oxidative stress. This change in redox homeostasis increases the conjugation of glutathione to protein cysteine residues; a process called S-glutathionylation. Although traditionally regarded as a protective mechanism against irreversible protein oxidation, accumulated evidence suggests a more nuanced role for S-glutathionylation, namely as a mediator in redox-sensitive protein signaling. The reversible modification of protein thiols leading to alteration in function under different physiologic/pathologic conditions provides a mechanism whereby change in redox status can be translated into a functional response. As such, S-glutathionylation represents an understudied means of post-translational protein modification that may be important in the mechanisms underlying drug addiction. This review will discuss the evidence for S-glutathionylation as a redox-sensing mechanism and how this may be involved in the response to drug-induced oxidative stress. The function of S-glutathionylated proteins involved in neurotransmission, dendritic spine structure, and drug-induced behavioral outputs will be reviewed with specific reference to alcohol, cocaine, and heroin. Copyright © 2016. Published by Elsevier Inc.

  8. Gene expression metadata analysis reveals molecular mechanisms employed by Phanerochaete chrysosporium during lignin degradation and detoxification of plant extractives.

    PubMed

    Kameshwar, Ayyappa Kumar Sista; Qin, Wensheng

    2017-10-01

    Lignin, most complex and abundant biopolymer on the earth's surface, attains its stability from intricate polyphenolic units and non-phenolic bonds, making it difficult to depolymerize or separate from other units of biomass. Eccentric lignin degrading ability and availability of annotated genome make Phanerochaete chrysosporium ideal for studying lignin degrading mechanisms. Decoding and understanding the molecular mechanisms underlying the process of lignin degradation will significantly aid the progressing biofuel industries and lead to the production of commercially vital platform chemicals. In this study, we have performed a large-scale metadata analysis to understand the common gene expression patterns of P. chrysosporium during lignin degradation. Gene expression datasets were retrieved from NCBI GEO database and analyzed using GEO2R and Bioconductor packages. Commonly expressed statistically significant genes among different datasets were further considered to understand their involvement in lignin degradation and detoxification mechanisms. We have observed three sets of enzymes commonly expressed during ligninolytic conditions which were later classified into primary ligninolytic, aromatic compound-degrading and other necessary enzymes. Similarly, we have observed three sets of genes coding for detoxification and stress-responsive, phase I and phase II metabolic enzymes. Results obtained in this study indicate the coordinated action of enzymes involved in lignin depolymerization and detoxification-stress responses under ligninolytic conditions. We have developed tentative network of genes and enzymes involved in lignin degradation and detoxification mechanisms by P. chrysosporium based on the literature and results obtained in this study. However, ambiguity raised due to higher expression of several uncharacterized proteins necessitates for further proteomic studies in P. chrysosporium.

  9. How schizophrenia develops: cognitive and brain mechanisms underlying onset of psychosis

    PubMed Central

    Cannon, Tyrone D.

    2015-01-01

    Identifying cognitive and neural mechanisms involved in the development of schizophrenia requires longitudinal observation of individuals prior to onset. Here recent studies of prodromal individuals who progress to full psychosis are briefly reviewed in relation to models of schizophrenia pathophysiology. Together, this body of work suggests that disruption in brain connectivity, driven primarily by a progressive reduction in dendritic spines on cortical pyramidal neurons, may represent a key triggering mechanism. The earliest disruptions appear to be in circuits involved in referencing experiences according to time, place, and agency, which may result in a failure to recognize particular cognitions as self-generated or to constrain interpretations of the meaning of events based on prior experiences, providing the scaffolding for faulty reality testing. PMID:26493362

  10. 10 CFR Appendix B to Subpart D of... - Contract Provisions

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... in excess of $100,000 for construction and other purposes that involve the employment of mechanics or... 5). Under Section 102 of the Act, each contractor is required to compute the wages of every mechanic... basic rate of pay for all hours worked in excess of 40 hours in the work week. Section 107 of the Act is...

  11. 10 CFR Appendix B to Subpart D of... - Contract Provisions

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... in excess of $100,000 for construction and other purposes that involve the employment of mechanics or... 5). Under Section 102 of the Act, each contractor is required to compute the wages of every mechanic... basic rate of pay for all hours worked in excess of 40 hours in the work week. Section 107 of the Act is...

  12. 10 CFR Appendix B to Subpart D of... - Contract Provisions

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... in excess of $100,000 for construction and other purposes that involve the employment of mechanics or... 5). Under Section 102 of the Act, each contractor is required to compute the wages of every mechanic... basic rate of pay for all hours worked in excess of 40 hours in the work week. Section 107 of the Act is...

  13. 10 CFR Appendix B to Subpart D of... - Contract Provisions

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... in excess of $100,000 for construction and other purposes that involve the employment of mechanics or... 5). Under Section 102 of the Act, each contractor is required to compute the wages of every mechanic... basic rate of pay for all hours worked in excess of 40 hours in the work week. Section 107 of the Act is...

  14. Facial bone fragmentation in blind cavefish arises through two unusual ossification processes.

    PubMed

    Powers, Amanda K; Kaplan, Shane A; Boggs, Tyler E; Gross, Joshua B

    2018-05-03

    The precise mechanisms underlying cranial bone development, evolution and patterning remain incompletely characterised. This poses a challenge to understanding the etiologies of craniofacial malformations evolving in nature. Capitalising on natural variation, "evolutionary model systems" provide unique opportunities to identify underlying causes of aberrant phenotypes as a complement to studies in traditional systems. Mexican blind cavefish are a prime evolutionary model for cranial disorders since they frequently exhibit extreme alterations to the skull and lateral asymmetries. These aberrations occur in stark contrast to the normal cranial architectures of closely related surface-dwelling fish, providing a powerful comparative paradigm for understanding cranial bone formation. Using a longitudinal and in vivo analytical approach, we discovered two unusual ossification processes in cavefish that underlie the development of 'fragmented' and asymmetric cranial bones. The first mechanism involves the sporadic appearance of independent bony elements that fail to fuse together later in development. The second mechanism involves the "carving" of channels in the mature bone, a novel form of post-ossification remodeling. In the extreme cave environment, these novel mechanisms may have evolved to augment sensory input, and may indirectly result in a trade-off between sensory expansion and cranial bone development.

  15. Identification of Nonlinear Micron-Level Mechanics for a Precision Deployable Joint

    NASA Technical Reports Server (NTRS)

    Bullock, S. J.; Peterson, L. D.

    1994-01-01

    The experimental identification of micron-level nonlinear joint mechanics and dynamics for a pin-clevis joint used in a precision, adaptive, deployable space structure are investigated. The force-state mapping method is used to identify the behavior of the joint under a preload. The results of applying a single tension-compression cycle to the joint under a tensile preload are presented. The observed micron-level behavior is highly nonlinear and involves all six rigid body motion degrees-of-freedom of the joint. it is also suggests that at micron levels of motion modelling of the joint mechanics and dynamics must include the interactions between all internal components, such as the pin, bushings, and the joint node.

  16. A connectionist modeling study of the neural mechanisms underlying pain's ability to reorient attention.

    PubMed

    Dowman, Robert; Ritz, Benjamin; Fowler, Kathleen

    2016-08-01

    Connectionist modeling was used to investigate the brain mechanisms responsible for pain's ability to shift attention away from another stimulus modality and toward itself. Different connectionist model architectures were used to simulate the different possible brain mechanisms underlying this attentional bias, where nodes in the model simulated the brain areas thought to mediate the attentional bias, and the connections between the nodes simulated the interactions between the brain areas. Mathematical optimization techniques were used to find the model parameters, such as connection strengths, that produced the best quantitative fits of reaction time and event-related potential data obtained in our previous work. Of the several architectures tested, two produced excellent quantitative fits of the experimental data. One involved an unexpected pain stimulus activating somatic threat detectors in the dorsal posterior insula. This threat detector activity was monitored by the medial prefrontal cortex, which in turn evoked a phasic response in the locus coeruleus. The locus coeruleus phasic response resulted in a facilitation of the cortical areas involved in decision and response processes time-locked to the painful stimulus. The second architecture involved the presence of pain causing an increase in general arousal. The increase in arousal was mediated by locus coeruleus tonic activity, which facilitated responses in the cortical areas mediating the sensory, decision, and response processes involved in the task. These two neural network architectures generated competing predictions that can be tested in future studies.

  17. Deep RNA sequencing of pectoralis muscle transcriptomes during late-term embryonic to neonatal development in indigenous Chinese duck breeds

    PubMed Central

    Tao, Zhiyun; Liu, Hongxiang; Xu, Wenjuan; Zhang, Shuangjie; Li, Huifang

    2017-01-01

    Pectoral muscle (PM) comprises an important component of overall meat mass in ducks. However, PM has shown arrested or even reduced growth during late embryonic development, and the molecular mechanisms underlying PM growth during the late embryonic to neonatal period in ducks have not been addressed. In this study, we characterized potential candidate genes and signaling pathways related to PM development using RNA sequencing of PM samples selected at embryonic days (E) 21 and 27 and 5 days post-hatch (dph) in two duck breeds (Gaoyou and Jinding ducks). A total of 393 differentially expressed genes (DEGs) were identified, which showed higher or lower expression levels at E27 compared with E21 and 5 dph, reflecting the pattern of PM growth rates. Among these, 43 DEGs were common to all three time points in both duck breeds. These DEGs may thus be involved in regulating this developmental process. Specifically, KEGG pathway analysis of the 393 DEGs showed that genes involved with different metabolism pathways were highly expressed, while genes involved with cell cycle pathways showed lower expression levels at E27. These DEGs may thus be involved in the mechanisms responsible for the phenomenon of static or decreased breast muscle growth in duck breeds during the late embryonic period. These results increase the available genetic information for ducks and provide valuable resources for analyzing the mechanisms underlying the process of PM development. PMID:28771592

  18. Deep RNA sequencing of pectoralis muscle transcriptomes during late-term embryonic to neonatal development in indigenous Chinese duck breeds.

    PubMed

    Zhu, Chunhong; Song, Weitao; Tao, Zhiyun; Liu, Hongxiang; Xu, Wenjuan; Zhang, Shuangjie; Li, Huifang

    2017-01-01

    Pectoral muscle (PM) comprises an important component of overall meat mass in ducks. However, PM has shown arrested or even reduced growth during late embryonic development, and the molecular mechanisms underlying PM growth during the late embryonic to neonatal period in ducks have not been addressed. In this study, we characterized potential candidate genes and signaling pathways related to PM development using RNA sequencing of PM samples selected at embryonic days (E) 21 and 27 and 5 days post-hatch (dph) in two duck breeds (Gaoyou and Jinding ducks). A total of 393 differentially expressed genes (DEGs) were identified, which showed higher or lower expression levels at E27 compared with E21 and 5 dph, reflecting the pattern of PM growth rates. Among these, 43 DEGs were common to all three time points in both duck breeds. These DEGs may thus be involved in regulating this developmental process. Specifically, KEGG pathway analysis of the 393 DEGs showed that genes involved with different metabolism pathways were highly expressed, while genes involved with cell cycle pathways showed lower expression levels at E27. These DEGs may thus be involved in the mechanisms responsible for the phenomenon of static or decreased breast muscle growth in duck breeds during the late embryonic period. These results increase the available genetic information for ducks and provide valuable resources for analyzing the mechanisms underlying the process of PM development.

  19. Investigation on the Crack Behaviour in Kevlar 49 Based Composite Materials using Extended Finite Element Method for Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Handa, Danish; Sekhar Dondapati, Raja; Kumar, Abhinav

    2017-08-01

    Ductile to brittle transition (DTBT) is extensively observed in materials under cryogenic temperatures, thereby observing brittle failure due to the non-resistance of crack propagation. Owing to its outstanding mechanical and thermal properties, Kevlar 49 composites are widely used in aerospace applications under cryogenic temperatures. Therefore, in this paper, involving the assumption of linear elastic fracture mechanics (LEFM), mechanical characterization of Kevlar 49 composite is done using Extended Finite Element Method (X-FEM) technique in Abaqus/CAE software. Further, the failure of Kevlar 49 composites due to the propagation of crack at room temperature and the cryogenic temperature is investigated. Stress, strain and strain energy density as a function of the width of the Kevlar specimen is predicted, indicates that Kevlar 49 composites are suitable for use under cryogenic temperatures.

  20. Histamine H2 receptor - Involvement in gastric ulceration

    NASA Technical Reports Server (NTRS)

    Brown, P. A.; Vernikos-Danellis, J.; Brown, T. H.

    1976-01-01

    The involvement of the H1 and H2 receptors for histamine in the pathogenesis of gastric ulcers was investigated in rats. Metiamide, an H2 receptor antagonist, reliably reduced ulceration produced by stress alone or by a combination of stress and aspirin. In contrast, pyrilamine, which blocks only the H1 receptor, was without effect under these same conditions. The results support the hypothesis that histamine mediates both stress and stress plus aspirin induced ulceration by a mechanism involving the H2 receptor.

  1. Involvement of a glucosinolate (sinigrin) in the regulation of water transport in Brassica oleracea grown under salt stress.

    PubMed

    Martínez-Ballesta, Maria del Carmen; Muries, Beatriz; Moreno, Diego Ángel; Dominguez-Perles, Raúl; García-Viguera, Cristina; Carvajal, Micaela

    2014-02-01

    Members of the Brassicaceae are known for their contents of nutrients and health-promoting phytochemicals, including glucosinolates. The concentrations of these chemopreventive compounds (glucosinolate-degradation products, the bioactive isothiocyanates) may be modified under salinity. In this work, the effect of the aliphatic glucosinolate sinigrin (2-propenyl-glucosinolate) on plant water balance, involving aquaporins, was explored under salt stress. For this purpose, water uptake and its transport through the plasma membrane were determined in plants after NaCl addition, when sinigrin was also supplied. We found higher hydraulic conductance (L0 ) and water permeability (Pf ) and increased abundance of PIP2 aquaporins after the direct administration of sinigrin, showing the ability of the roots to promote cellular water transport across the plasma membrane in spite of the stress conditions imposed. The higher content of the allyl-isothiocyanate and the absence of sinigrin in the plant tissues suggest that the isothiocyanate is related to water balance; in fact, a direct effect of this nitro-sulphate compound on water uptake is proposed. This work provides the first evidence that the addition of a glucosinolate can regulate aquaporins and water transport: this effect and the mechanism(s) involved merit further investigation. © 2013 Scandinavian Plant Physiology Society.

  2. Mechanisms of crystalline silica-induced pulmonary toxicity revealed by global gene expression profiling

    PubMed Central

    Sellamuthu, Rajendran; Umbright, Christina; Li, Shengqiao; Kashon, Michael; Joseph, Pius

    2015-01-01

    A proper understanding of the mechanisms underlying crystalline silica-induced pulmonary toxicity has implications in the management and potential prevention of the adverse health effects associated with silica exposure including silicosis, cancer and several auto-immune diseases. Human lung type II epithelial cells and rat lungs exposed to crystalline silica were employed as experimental models to determine global gene expression changes in order to understand the molecular mechanisms underlying silica-induced pulmonary toxicity. The differential gene expression profile induced by silica correlated with its toxicity in the A549 cells. The biological processes perturbed by silica exposure in the A549 cells and rat lungs, as identified by the bioinformatics analysis of the differentially expressed genes, demonstrated significant similarity. Functional categorization of the differentially expressed genes identified cancer, cellular movement, cellular growth and proliferation, cell death, inflammatory response, cell cycle, cellular development, and genetic disorder as top ranking biological functions perturbed by silica exposure in A549 cells and rat lungs. Results of our study, in addition to confirming several previously identified molecular targets and mechanisms involved in silica toxicity, identified novel molecular targets and mechanisms potentially involved in silica-induced pulmonary toxicity. Further investigations, including those focused on the novel molecular targets and mechanisms identified in the current study may result in better management and, possibly, reduction and/or prevention of the potential adverse health effects associated with crystalline silica exposure. PMID:22087542

  3. Circuit mechanisms of sensorimotor learning

    PubMed Central

    Makino, Hiroshi; Hwang, Eun Jung; Hedrick, Nathan G.; Komiyama, Takaki

    2016-01-01

    SUMMARY The relationship between the brain and the environment is flexible, forming the foundation for our ability to learn. Here we review the current state of our understanding of the modifications in the sensorimotor pathway related to sensorimotor learning. We divide the process in three hierarchical levels with distinct goals: 1) sensory perceptual learning, 2) sensorimotor associative learning, and 3) motor skill learning. Perceptual learning optimizes the representations of important sensory stimuli. Associative learning and the initial phase of motor skill learning are ensured by feedback-based mechanisms that permit trial-and-error learning. The later phase of motor skill learning may primarily involve feedback-independent mechanisms operating under the classic Hebbian rule. With these changes under distinct constraints and mechanisms, sensorimotor learning establishes dedicated circuitry for the reproduction of stereotyped neural activity patterns and behavior. PMID:27883902

  4. Bone-Immune Cell Crosstalk: Bone Diseases

    PubMed Central

    Mori, Giorgio; D'Amelio, Patrizia; Faccio, Roberta

    2015-01-01

    Bone diseases are associated with great morbidity; thus, the understanding of the mechanisms leading to their development represents a great challenge to improve bone health. Recent reports suggest that a large number of molecules produced by immune cells affect bone cell activity. However, the mechanisms are incompletely understood. This review aims to shed new lights into the mechanisms of bone diseases involving immune cells. In particular, we focused our attention on the major pathogenic mechanism underlying periodontal disease, psoriatic arthritis, postmenopausal osteoporosis, glucocorticoid-induced osteoporosis, metastatic solid tumors, and multiple myeloma. PMID:26000310

  5. Bone-immune cell crosstalk: bone diseases.

    PubMed

    Mori, Giorgio; D'Amelio, Patrizia; Faccio, Roberta; Brunetti, Giacomina

    2015-01-01

    Bone diseases are associated with great morbidity; thus, the understanding of the mechanisms leading to their development represents a great challenge to improve bone health. Recent reports suggest that a large number of molecules produced by immune cells affect bone cell activity. However, the mechanisms are incompletely understood. This review aims to shed new lights into the mechanisms of bone diseases involving immune cells. In particular, we focused our attention on the major pathogenic mechanism underlying periodontal disease, psoriatic arthritis, postmenopausal osteoporosis, glucocorticoid-induced osteoporosis, metastatic solid tumors, and multiple myeloma.

  6. Statistical learning: A powerful mechanism that operates by mere exposure

    PubMed Central

    Aslin, Richard N.

    2015-01-01

    How do infants learn so rapidly and with little apparent effort? In 1996, Saffran, Aslin, and Newport reported that 8-month-old human infants could learn the underlying temporal structure of a stream of speech syllables after only two minutes of passive listening. This demonstration of what was called statistical learning, involving no instruction, reinforcement, or feedback, led to dozens of confirmations of this powerful mechanism of implicit learning in a variety of modalities, domains, and species. These findings reveal that infants are not nearly as dependent on explicit forms of instruction as we might have assumed from studies of learning in which children or adults are taught facts such as math or problem solving skills. Instead, at least in some domains, infants soak up the information around them by mere exposure. Learning and development in these domains thus appear to occur automatically and with little active involvement by an instructor (parent or teacher). The details of this statistical learning mechanism are discussed, including how exposure to specific types of information can, under some circumstances, generalize to never-before-observed information, thereby enabling transfer of learning. PMID:27906526

  7. Mechanism-based modeling of solute strengthening: application to thermal creep in Zr alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tome, Carlos; Wen, Wei; Capolungo, Laurent

    2017-08-01

    This report focuses on the development of a physics-based thermal creep model aiming to predict the behavior of Zr alloy under reactor accident condition. The current models used for this kind of simulations are mostly empirical in nature, based generally on fits to the experimental steady-state creep rates under different temperature and stress conditions, which has the following limitations. First, reactor accident conditions, such as RIA and LOCA, usually take place in short times and involve only the primary, not the steady-state creep behavior stage. Moreover, the empirical models cannot cover the conditions from normal operation to accident environments. Formore » example, Kombaiah and Murty [1,2] recently reported a transition between the low (n~4) and high (n~9) power law creep regimes in Zr alloys depending on the applied stress. Capturing such a behavior requires an accurate description of the mechanisms involved in the process. Therefore, a mechanism-based model that accounts for the evolution with time of microstructure is more appropriate and reliable for this kind of simulation.« less

  8. Dynamic simulation of road vehicle door window regulator mechanism of cross arm type

    NASA Astrophysics Data System (ADS)

    Miklos, I. Zs; Miklos, C.; Alic, C.

    2017-01-01

    The paper presents issues related to the dynamic simulation of a motor-drive operating mechanism of cross arm type, for the manipulation of road vehicle door windows, using Autodesk Inventor Professional software. The dynamic simulation of the mechanism involves a 3D modelling, kinematic coupling, drive motion parameters and external loads, as well as the graphically view of the kinematic and kinetostatic results for the various elements and kinematic couplings of the mechanism, under real operating conditions. Also, based on the results, the analysis of the mechanism components has been carried out using the finite element method.

  9. LncRNA Pathway Involved in Premature Preterm Rupture of Membrane (PPROM): An Epigenomic Approach to Study the Pathogenesis of Reproductive Disorders

    PubMed Central

    Gu, Yang; Pan, Jing; Hua, Maofang; Liu, Meilin; Dong, Ziqing; Zhang, Meijiao; Wang, Leilei; Gu, Ying; Zhong, Julia; Zhao, Xinliang; Jenkins, Edmund C.; Brown, W. Ted; Zhong, Nanbert

    2013-01-01

    Preterm birth (PTB) is a live birth delivered before 37 weeks of gestation (GW). About one-third of PTBs result from the preterm premature rupture of membranes (PPROM). Up to the present, the pathogenic mechanisms underlying PPROM are not clearly understood. Here, we investigated the differential expression of long chain non-coding RNAs (lncRNAs) in placentas of PTBs with PPROM, and their possible involvement in the pathogenic pathways leading to PPROM. A total number of 1954, 776, and 1050 lncRNAs were identified with a microarray from placentas of PPROM (group A), which were compared to full-term birth (FTB) (group B), PTB (group C), and premature rupture of membrane (PROM) (group D) at full-term, respectively. Instead of investigating the individual pathogenic role of each lncRNA involved in the molecular mechanism underlying PPROM, we have focused on investigating the metabolic pathways and their functions to explore what is the likely association and how they are possibly involved in the development of PPROM. Six groups, including up-regulation and down-regulation in the comparisons of A vs. B, A vs. C, and A vs. D, of pathways were analyzed. Our results showed that 22 pathways were characterized as up-regulated 7 down-regulated in A vs. C, 18 up-regulated and 15 down-regulated in A vs. D, and 33 up-regulated and 7 down-regulated in A vs. B. Functional analysis showed pathways of infection and inflammatory response, ECM-receptor interactions, apoptosis, actin cytoskeleton, and smooth muscle contraction are the major pathogenic mechanisms involved in the development of PPROM. Characterization of these pathways through identification of lncRNAs opened new avenues for further investigating the epigenomic mechanisms of lncRNAs in PPROM as well as PTB. PMID:24312190

  10. Dynamic Response and Failure Mechanism of Brittle Rocks Under Combined Compression-Shear Loading Experiments

    NASA Astrophysics Data System (ADS)

    Xu, Yuan; Dai, Feng

    2018-03-01

    A novel method is developed for characterizing the mechanical response and failure mechanism of brittle rocks under dynamic compression-shear loading: an inclined cylinder specimen using a modified split Hopkinson pressure bar (SHPB) system. With the specimen axis inclining to the loading direction of SHPB, a shear component can be introduced into the specimen. Both static and dynamic experiments are conducted on sandstone specimens. Given carefully pulse shaping, the dynamic equilibrium of the inclined specimens can be satisfied, and thus the quasi-static data reduction is employed. The normal and shear stress-strain relationships of specimens are subsequently established. The progressive failure process of the specimen illustrated via high-speed photographs manifests a mixed failure mode accommodating both the shear-dominated failure and the localized tensile damage. The elastic and shear moduli exhibit certain loading-path dependence under quasi-static loading but loading-path insensitivity under high loading rates. Loading rate dependence is evidently demonstrated through the failure characteristics involving fragmentation, compression and shear strength and failure surfaces based on Drucker-Prager criterion. Our proposed method is convenient and reliable to study the dynamic response and failure mechanism of rocks under combined compression-shear loading.

  11. The molecular mechanism of plant gravitropism.

    PubMed

    Wu, Di; Huang, Lin-zhou; Gao, Jin; Wang, Yong-hong

    2016-07-20

    Gravity is an important environmental factor that regulates plant growth and morphogenesis. In response to gravity stimulus, plants can set the optimum angle between the organs and the gravity vector. Plant gravitropism is divided into four sequential steps, including gravity perception, signal transduction, asymmetrical distribution of auxin, and organ curvature. In recent years, large numbers of mutants with defective gravitropism have been identified and genes involved in the regulation of gravitropism have been functionally characterized. In particular, progress has been achieved on elucidating the molecular mechanisms of gravity perception and asymmetrical distribution of auxin. As one of the most important strategies for plant to adapt environmental changes, gravitropism is also involved in the regulation of rice plant architecture and grain yield through modulating rice tiller angle. Therefore, the investigation of plant gravitropism not only contributes to decipher the regulatory mechanisms of plant growth and development, but also helps to guide the genetic improvement of crop architecture. However, the molecular mechanisms and regulatory network of gravitropism remain to be elusive. In this review, we focus on recent progress on elucidating molecular mechanisms underlying gravitropism and its involvement in regulating rice tiller angle, which is an important agronomic trait that determines rice plant architecture and thus grain yields.

  12. Mechanisms and evolution of plant resistance to aphids.

    PubMed

    Züst, Tobias; Agrawal, Anurag A

    2016-01-06

    Aphids are important herbivores of both wild and cultivated plants. Plants rely on unique mechanisms of recognition, signalling and defence to cope with the specialized mode of phloem feeding by aphids. Aspects of the molecular mechanisms underlying aphid-plant interactions are beginning to be understood. Recent advances include the identification of aphid salivary proteins involved in host plant manipulation, and plant receptors involved in aphid recognition. However, a complete picture of aphid-plant interactions requires consideration of the ecological outcome of these mechanisms in nature, and the evolutionary processes that shaped them. Here we identify general patterns of resistance, with a special focus on recognition, phytohormonal signalling, secondary metabolites and induction of plant resistance. We discuss how host specialization can enable aphids to co-opt both the phytohormonal responses and defensive compounds of plants for their own benefit at a local scale. In response, systemically induced resistance in plants is common and often involves targeted responses to specific aphid species or even genotypes. As co-evolutionary adaptation between plants and aphids is ongoing, the stealthy nature of aphid feeding makes both the mechanisms and outcomes of these interactions highly distinct from those of other herbivore-plant interactions.

  13. Studying mechanism of radical reactions: From radiation to nitroxides as research tools

    NASA Astrophysics Data System (ADS)

    Maimon, Eric; Samuni, Uri; Goldstein, Sara

    2018-02-01

    Radicals are part of the chemistry of life, and ionizing radiation chemistry serves as an indispensable research tool for elucidation of the mechanism(s) underlying their reactions. The ever-increasing understanding of their involvement in diverse physiological and pathological processes has expanded the search for compounds that can diminish radical-induced damage. This review surveys the areas of research focusing on radical reactions and particularly with stable cyclic nitroxide radicals, which demonstrate unique antioxidative activities. Unlike common antioxidants that are progressively depleted under oxidative stress and yield secondary radicals, nitroxides are efficient radical scavengers yielding in most cases their respective oxoammonium cations, which are readily reduced back in the tissue to the nitroxide thus continuously being recycled. Nitroxides, which not only protect enzymes, cells, and laboratory animals from diverse kinds of biological injury, but also modify the catalytic activity of heme enzymes, could be utilized in chemical and biological systems serving as a research tool for elucidating mechanisms underlying complex chemical and biochemical processes.

  14. Acclimation of Emiliania huxleyi (1516) to nutrient limitation involves precise modification of the proteome to scavenge alternative sources of N and P.

    PubMed

    McKew, Boyd A; Metodieva, Gergana; Raines, Christine A; Metodiev, Metodi V; Geider, Richard J

    2015-10-01

    Limitation of marine primary production by the availability of nitrogen or phosphorus is common. Emiliania huxleyi, a ubiquitous phytoplankter that plays key roles in primary production, calcium carbonate precipitation and production of dimethyl sulfide, often blooms in mid-latitude at the beginning of summer when inorganic nutrient concentrations are low. To understand physiological mechanisms that allow such blooms, we examined how the proteome of E. huxleyi (strain 1516) responds to N and P limitation. We observed modest changes in much of the proteome despite large physiological changes (e.g. cellular biomass, C, N and P) associated with nutrient limitation of growth rate. Acclimation to nutrient limitation did however involve significant increases in the abundance of transporters for ammonium and nitrate under N limitation and for phosphate under P limitation. More notable were large increases in proteins involved in the acquisition of organic forms of N and P, including urea and amino acid/polyamine transporters and numerous C-N hydrolases under N limitation and a large upregulation of alkaline phosphatase under P limitation. This highly targeted reorganization of the proteome towards scavenging organic forms of macronutrients gives unique insight into the molecular mechanisms that underpin how E. huxleyi has found its niche to bloom in surface waters depleted of inorganic nutrients. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Semiconductor structural damage attendant to contact formation in III-V solar cells

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S.; Weizer, Victor G.

    1991-01-01

    In order to keep the resistive losses in solar cells to a minimum, it is often necessary for the ohmic contacts to be heat treated to lower the metal-semiconductor contact resistivity to acceptable values. Sintering of the contacts, however can result in extensive mechanical damage of the semiconductor surface under the metallization. An investigation of the detailed mechanisms involved in the process of contact formation during heat treatment may control the structural damage incurred by the semiconductor surface to acceptable levels, while achieving the desired values of contact resistivity for the ohmic contacts. The reaction kinetics of sintered gold contacts to InP were determined. It was found that the Au-InP interaction involves three consecutive stages marked by distinct color changes observed on the surface of the Au, and that each stage is governed by a different mechanism. A detailed description of these mechanisms and options to control them are presented.

  16. Cell Signaling Experiments Driven by Optical Manipulation

    PubMed Central

    Difato, Francesco; Pinato, Giulietta; Cojoc, Dan

    2013-01-01

    Cell signaling involves complex transduction mechanisms in which information released by nearby cells or extracellular cues are transmitted to the cell, regulating fundamental cellular activities. Understanding such mechanisms requires cell stimulation with precise control of low numbers of active molecules at high spatial and temporal resolution under physiological conditions. Optical manipulation techniques, such as optical tweezing, mechanical stress probing or nano-ablation, allow handling of probes and sub-cellular elements with nanometric and millisecond resolution. PicoNewton forces, such as those involved in cell motility or intracellular activity, can be measured with femtoNewton sensitivity while controlling the biochemical environment. Recent technical achievements in optical manipulation have new potentials, such as exploring the actions of individual molecules within living cells. Here, we review the progress in optical manipulation techniques for single-cell experiments, with a focus on force probing, cell mechanical stimulation and the local delivery of active molecules using optically manipulated micro-vectors and laser dissection. PMID:23698758

  17. Feeding Problems and Their Underlying Mechanisms in the Esophageal Atresia–Tracheoesophageal Fistula Patient

    PubMed Central

    Mahoney, Lisa; Rosen, Rachel

    2017-01-01

    Feeding difficulties such as dysphagia, coughing, choking, or vomiting during meals, slow eating, oral aversion, food refusal, and stressful mealtimes are common in children with repaired esophageal atresia (EA) and the reasons for this are often multifactorial. The aim of this review is to describe the possible underlying mechanisms contributing to feeding difficulties in patients with EA and approaches to management. Underlying mechanisms for these feeding difficulties include esophageal dysphagia, oropharyngeal dysphagia and aspiration, and aversions related to prolonged gastrostomy tube feeding. The initial diagnostic evaluation for feeding difficulties in a patient with EA may involve an esophagram, videofluoroscopic imaging or fiberoptic endoscopic evaluation during swallowing, upper endoscopy with biopsies, pH-impedance testing, and/or esophageal motility studies. The main goal of management is to reduce the factors contributing to feeding difficulties and may include reducing esophageal stasis, maximizing reflux therapies, treating underlying lung disease, dilating strictures, and altering feeding methods, routes, or schedules. PMID:28620597

  18. The dual role of autophagy under hypoxia-involvement of interaction between autophagy and apoptosis.

    PubMed

    Li, Mengmeng; Tan, Jin; Miao, Yuyang; Lei, Ping; Zhang, Qiang

    2015-06-01

    Hypoxia is one of severe cellular stress and it is well known to be associated with a worse outcome since a lack of oxygen accelerates the induction of apoptosis. Autophagy, an important and evolutionarily conserved mechanism for maintaining cellular homeostasis, is closely related to the apoptosis caused by hypoxia. Generally autophagy blocks the induction of apoptosis and inhibits the activation of apoptosis-associated caspase which could reduce cellular injury. However, in special cases, autophagy or autophagy-relevant proteins may help to induce apoptosis, which could aggravate cell damage under hypoxia condition. In addition, the activation of apoptosis-related proteins-caspase can also degrade autophagy-related proteins, such as Atg3, Atg4, Beclin1 protein, inhibiting autophagy. Although the relationship between autophagy and apoptosis has been known for rather complex for more than a decade, the underlying regulatory mechanisms have not been clearly understood. This short review discusses and summarizes the dual role of autophagy and the interaction and molecular regulatory mechanisms between autophagy and apoptosis under hypoxia.

  19. HDAC6 is a Regulator of CTL Function through Control of Lytic Granule Dynamics

    PubMed Central

    Nunez-Andrade, Norman

    2016-01-01

    Viral infections involve specific stress exposure that can influence the quality and average lifespan of an organism. The immune system acts through virus clearance from the organism. Many aspects of immune cells accounting for this response are still under study. Here, we review recent aspects of the molecular mechanisms involved in the delivery of the lethal hit by Cytotoxic T lymphocytes. PMID:27595053

  20. Comparative Proteomics Reveals Timely Transport into Cilia of Regulators or Effectors as a Mechanism Underlying Ciliary Disassembly.

    PubMed

    Wang, Limei; Gu, Lixiao; Meng, Dan; Wu, Qiong; Deng, Haiteng; Pan, Junmin

    2017-07-07

    Primary cilia are assembled and disassembled during cell cycle progression. During ciliary disassembly, ciliary axonemal microtubules (MTs) are depolymerized accompanied by extensive posttranslational protein modifications of ciliary proteins including protein phosphorylation, methylation, and ubiquitination. These events are hypothesized to involve transport of effectors or regulators into cilia at the time of ciliary disassembly from the cell body. To prove this hypothesis and identify new proteins involved in ciliary disassembly, we analyzed disassembling flagella in Chlamydomonas using comparative proteomics with TMT labeling. Ninety-one proteins were found to increase more than 1.4-fold in four replicates. The proteins of the IFT machinery not only increase but also exhibit stoichiometric changes. The other proteins that increase include signaling molecules, chaperones, and proteins involved in microtubule dynamics or stability. In particular, we have identified a ciliopathy protein C21orf2, the AAA-ATPase CDC48, that is involved in segregating polypeptides from large assemblies or cellular structures, FAP203 and FAP236, which are homologous to stabilizers of axonemal microtubules. Our data demonstrate that ciliary transport of effectors or regulators is one of the mechanisms underlying ciliary disassembly. Further characterization of the proteins identified will provide new insights into our understanding of ciliary disassembly and likely ciliopathy.

  1. The influence of attention toward facial expressions on size perception.

    PubMed

    Choi, Jeong-Won; Kim, Kiho; Lee, Jang-Han

    2016-01-01

    According to the New Look theory, size perception is affected by emotional factors. Although previous studies have attempted to explain the effects of both emotion and motivation on size perception, they have failed to identify the underlying mechanisms. This study aimed to investigate the underlying mechanisms of size perception by applying attention toward facial expressions using the Ebbinghaus illusion as a measurement tool. The participants, female university students, were asked to judge the size of a target stimulus relative to the size of facial expressions (i.e., happy, angry, and neutral) surrounding the target. The results revealed that the participants perceived angry and neutral faces to be larger than happy faces. This finding indicates that individuals pay closer attention to neutral and angry faces than happy ones. These results suggest that the mechanisms underlying size perception involve cognitive processes that focus attention toward relevant stimuli and block out irrelevant stimuli.

  2. Imaging Polarized Secretory Traffic at the Immune Synapse in Living T Lymphocytes.

    PubMed

    Calvo, Víctor; Izquierdo, Manuel

    2018-01-01

    Immune synapse (IS) formation by T lymphocytes constitutes a crucial event involved in antigen-specific, cellular and humoral immune responses. After IS formation by T lymphocytes and antigen-presenting cells, the convergence of secretory vesicles toward the microtubule-organizing center (MTOC) and MTOC polarization to the IS are involved in polarized secretion at the synaptic cleft. This specialized mechanism appears to specifically provide the immune system with a fine strategy to increase the efficiency of crucial secretory effector functions of T lymphocytes, while minimizing non-specific, cytokine-mediated stimulation of bystander cells, target cell killing and activation-induced cell death. The molecular bases involved in the polarized secretory traffic toward the IS in T lymphocytes have been the focus of interest, thus different models and several imaging strategies have been developed to gain insights into the mechanisms governing directional secretory traffic. In this review, we deal with the most widely used, state-of-the-art approaches to address the molecular mechanisms underlying this crucial, immune secretory response.

  3. Mechanical properties of tank car steels retired from the fleet

    DOT National Transportation Integrated Search

    2009-03-03

    As a consequence of recent accidents involving the release of hazardous materials (hazmat), the structural integrity and crashworthiness of railroad tank cars have come under scrutiny. Particular attention has been given to the older portion of the f...

  4. Autophagy as a Possible Underlying Mechanism of Nanomaterial Toxicity

    PubMed Central

    Cohignac, Vanessa; Landry, Marion Julie; Boczkowski, Jorge; Lanone, Sophie

    2014-01-01

    The rapid development of nanotechnologies is raising safety concerns because of the potential effects of engineered nanomaterials on human health, particularly at the respiratory level. Since the last decades, many in vivo studies have been interested in the pulmonary effects of different classes of nanomaterials. It has been shown that some of them can induce toxic effects, essentially depending on their physico-chemical characteristics, but other studies did not identify such effects. Inflammation and oxidative stress are currently the two main mechanisms described to explain the observed toxicity. However, the exact underlying mechanism(s) still remain(s) unknown and autophagy could represent an interesting candidate. Autophagy is a physiological process in which cytoplasmic components are digested via a lysosomal pathway. It has been shown that autophagy is involved in the pathogenesis and the progression of human diseases, and is able to modulate the oxidative stress and pro-inflammatory responses. A growing amount of literature suggests that a link between nanomaterial toxicity and autophagy impairment could exist. In this review, we will first summarize what is known about the respiratory effects of nanomaterials and we will then discuss the possible involvement of autophagy in this toxicity. This review should help understand why autophagy impairment could be taken as a promising candidate to fully understand nanomaterials toxicity. PMID:28344236

  5. Autophagy regulation revealed by SapM-induced block of autophagosome-lysosome fusion via binding RAB7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Dong, E-mail: austhudong@126.com; Wu, Jing, E-mail: wujing8008@126.com; Wang, Wan

    The mechanism underlying autophagy alteration by mycobacterium tuberculosis remains unclear. Our previous study shows LpqH, a lipoprotein of mycobacterium tuberculosis, can cause autophagosomes accumulation in murine macrophages. It is well known that SapM, another virulence factor, plays an important role in blocking phagosome-endosome fusion. However, the mechanism that SapM interferes with autophagy remains poorly defined. In this study, we report that SapM suppresses the autophagy flux by blocking autophagosome fusion with lysosome. Exposure to SapM results in accumulations of autophagosomes and decreased co-localization of autophagosome with lysosome. Molecularly, Rab7, a small GTPase, is blocked by SapM through its CT domainmore » and is prevented from involvement of autophagosome-lysosome fusion. In conclusion, our study reveals that SapM takes Rab7 as a previously unknown target to govern a distinct molecular mechanism underlying autophagosome-lysosome fusion, which may bring light to a new thought about developing potential drugs or vaccines against tuberculosis. - Highlights: • A mechanism for disrupting autophagosome-lysosome fusion induced by SapM. • Rab7 is involved in SapM-inhibited autophagy. • SapM interacts with Rab7 by CT-domain. • CT-domain is indispensable to SapM-inhibited autophagy.« less

  6. Microenvironment is involved in cellular response to hydrostatic pressures during chondrogenesis of mesenchymal stem cells.

    PubMed

    Ye, Rui; Hao, Jin; Song, Jinlin; Zhao, Zhihe; Fang, Shanbao; Wang, Yating; Li, Juan

    2014-06-01

    Chondrocytes integrate numerous microenvironmental cues to mount physiologically relevant differentiation responses, and the regulation of mechanical signaling in chondrogenic differentiation is now coming into intensive focus. To facilitate tissue-engineered chondrogenesis by mechanical strategy, a thorough understanding about the interactional roles of chemical factors under mechanical stimuli in regulating chondrogenesis is in great need. Therefore, this study attempts to investigate the interaction of rat MSCs with their microenvironment by imposing dynamic and static hydrostatic pressure through modulating gaseous tension above the culture medium. Under dynamic pressure, chemical parameters (pH, pO2, and pCO2) were kept in homeostasis. In contrast, pH was remarkably reduced due to increased pCO2 under static pressure. MSCs under the dynamically pressured microenvironment exhibited a strong accumulation of GAG within and outside the alginate beads, while cells under the statically pressured environment lost newly synthesized GAG into the medium with a speed higher than its production. In addition, the synergic influence on expression of chondrogenic genes was more persistent under dynamic pressure than that under static pressure. This temporal contrast was similar to that of activation of endogenous TGF-β1. Taken altogether, it indicates that a loading strategy which can keep a homeostatic chemical microenvironment is preferred, since it might sustain the stimulatory effects of mechanical stimuli on chondrogenesis via activation of endogenous TGF-β1. © 2013 Wiley Periodicals, Inc.

  7. Cell-Nonautonomous Mechanisms Underlying Cellular and Organismal Aging.

    PubMed

    Medkour, Younes; Svistkova, Veronika; Titorenko, Vladimir I

    2016-01-01

    Cell-autonomous mechanisms underlying cellular and organismal aging in evolutionarily distant eukaryotes have been established; these mechanisms regulate longevity-defining processes within a single eukaryotic cell. Recent findings have provided valuable insight into cell-nonautonomous mechanisms modulating cellular and organismal aging in eukaryotes across phyla; these mechanisms involve a transmission of various longevity factors between different cells, tissues, and organisms. Herein, we review such cell-nonautonomous mechanisms of aging in eukaryotes. We discuss the following: (1) how low molecular weight transmissible longevity factors modulate aging and define longevity of cells in yeast populations cultured in liquid media or on solid surfaces, (2) how communications between proteostasis stress networks operating in neurons and nonneuronal somatic tissues define longevity of the nematode Caenorhabditis elegans by modulating the rates of aging in different tissues, and (3) how different bacterial species colonizing the gut lumen of C. elegans define nematode longevity by modulating the rate of organismal aging. Copyright © 2016. Published by Elsevier Inc.

  8. Influence of ankle joint plantarflexion and dorsiflexion on lateral ankle sprain: A computational study.

    PubMed

    Purevsuren, Tserenchimed; Kim, Kyungsoo; Batbaatar, Myagmarbayar; Lee, SuKyoung; Kim, Yoon Hyuk

    2018-05-01

    Understanding the mechanism of injury involved in lateral ankle sprain is essential to prevent injury, to establish surgical repair and reconstruction, and to plan reliable rehabilitation protocols. Most studies for lateral ankle sprain posit that ankle inversion, internal rotation, and plantarflexion are involved in the mechanism of injury. However, recent studies indicated that ankle dorsiflexion also plays an important role in the lateral ankle sprain mechanism. In this study, the contributions of ankle plantarflexion and dorsiflexion on the ankle joint were evaluated under complex combinations of internal and inversion moments. A multibody ankle joint model including 24 ligaments was developed and validated against two experimental cadaveric studies. The effects of ankle plantarflexion (up to 60°) and dorsiflexion (up to 30°) on the lateral ankle sprain mechanism under ankle inversion moment coupled with internal rotational moment were investigated using the validated model. Lateral ankle sprain injuries can occur during ankle dorsiflexion, in which the calcaneofibular ligament and anterior talofibular ligament tears may occur associated with excessive inversion and internal rotational moment, respectively. Various combinations of inversion and internal moment may lead to anterior talofibular ligament injuries at early ankle plantarflexion, while the inversion moment acts as a primary factor to tear the anterior talofibular ligament in early plantarflexion. It is better to consider inversion and internal rotation as primary factors of the lateral ankle sprain mechanism, while plantarflexion or dorsiflexion can be secondary factor. This information will help to clarify the lateral ankle sprain mechanism of injury.

  9. Leaf-to-branch scaling of C-gain in field-grown almond trees under different soil moisture regimes.

    PubMed

    Egea, Gregorio; González-Real, María M; Martin-Gorriz, Bernardo; Baille, Alain

    2014-06-01

    Branch/tree-level measurements of carbon (C)-acquisition provide an integration of the physical and biological processes driving the C gain of all individual leaves. Most research dealing with the interacting effects of high-irradiance environments and soil-induced water stress on the C-gain of fruit tree species has focused on leaf-level measurements. The C-gain of both sun-exposed leaves and branches of adult almond trees growing in a semi-arid climate was investigated to determine the respective costs of structural and biochemical/physiological protective mechanisms involved in the behaviour at branch scale. Measurements were performed on well-watered (fully irrigated, FI) and drought-stressed (deficit irrigated, DI) trees. Leaf-to-branch scaling for net CO2 assimilation was quantified by a global scaling factor (fg), defined as the product of two specific scaling factors: (i) a structural scaling factor (fs), determined under well-watered conditions, mainly involving leaf mutual shading; and (ii) a water stress scaling factor (fws,b) involving the limitations in C-acquisition due to soil water deficit. The contribution of structural mechanisms to limiting branch net C-gain was high (mean fs ∼0.33) and close to the projected-to-total leaf area ratio of almond branches (ε = 0.31), while the contribution of water stress mechanisms was moderate (mean fws,b ∼0.85), thus supplying an fg ranging between 0.25 and 0.33 with slightly higher values for FI trees with respect to DI trees. These results suggest that the almond tree (a drought-tolerant species) has acquired mechanisms of defensive strategy (survival) mainly based on a specific branch architectural design. This strategy allows the potential for C-gain to be preserved at branch scale under a large range of soil water deficits. In other words, almond tree branches exhibit an architecture that is suboptimal for C-acquisition under well-watered conditions, but remarkably efficient to counteract the impact of DI and drought events. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Identification of Sleep-Modulated Pathways Involved in Neuroprotection from Stroke.

    PubMed

    Pace, Marta; Baracchi, Francesca; Gao, Bo; Bassetti, Claudio

    2015-11-01

    Sleep deprivation (SDp) performed before stroke induces an ischemic tolerance state as observed in other forms of preconditioning. As the mechanisms underlying this effect are not well understood, we used DNA oligonucleotide microarray analysis to identify the genes and the gene-pathways underlying SDp preconditioning effects. Gene expression was analyzed 3 days after stroke in 4 experimental groups: (i) SDp performed before focal cerebral ischemia (IS) induction; (ii) SDp performed before sham surgery; (iii) IS without SDp; and (iv) sham surgery without SDp. SDp was performed by gentle handling during the last 6 h of the light period, and ischemia was induced immediately after. Basic sleep research laboratory. Stroke induced a massive alteration in gene expression both in sleep deprived and non-sleep deprived animals. However, compared to animals that underwent ischemia alone, SDp induced a general reduction in transcriptional changes with a reduction in the upregulation of genes involved in cell cycle regulation and immune response. Moreover, an upregulation of a new neuroendocrine pathway which included melanin concentrating hormone, glycoprotein hormones-α-polypeptide and hypocretin was observed exclusively in rats sleep deprived before stroke. Our data indicate that sleep deprivation before stroke reprogrammed the signaling response to injury. The inhibition of cell cycle regulation and inflammation are neuroprotective mechanisms reported also for other forms of preconditioning treatment, whereas the implication of the neuroendocrine function is novel and has never been described before. These results therefore provide new insights into neuroprotective mechanisms involved in ischemic tolerance mechanisms. © 2015 Associated Professional Sleep Societies, LLC.

  11. The interplay between Angiotensin II, TLR4 and hypertension.

    PubMed

    Biancardi, Vinicia Campana; Bomfim, Gisele Facholi; Reis, Wagner Luis; Al-Gassimi, Sarah; Nunes, Kenia Pedrosa

    2017-06-01

    Hypertension is a multifactorial disease. Although a number of different underlying mechanisms have been learned from the various experimental models of the disease, hypertension still poses challenges for treatment. Angiotensin II plays an unquestionable role in blood pressure regulation acting through central and peripheral mechanisms. During hypertension, dysregulation of the Renin-Angiotensin System is associated with increased expression of pro-inflammatory cytokines and reactive oxygen species causing kidney damage, endothelial dysfunction, and increase in sympathetic activity, among other damages, eventually leading to decline in organ function. Recent studies have shown that these effects involve both the innate and the adaptive immune response. The contribution of adaptive immune responses involving different lymphocyte populations in various models of hypertension has been extensively studied. However, the involvement of the innate immunity mediating inflammation in hypertension is still not well understood. The innate and adaptive immune systems intimately interact with one another and are essential to an effectively functioning of the immune response; hence, the importance of a better understanding of the underlying mechanisms mediating innate immune system during hypertension. In this review, we aim to discuss mechanisms linking Angiotensin II and the innate immune system, in the pathogenesis of hypertension. The newest research investigating Angiotensin II triggering toll like receptor 4 activation in the kidney, vasculature and central nervous system contributing to hypertension will be discussed. Understanding the role of the innate immune system in the development of hypertension may bring to light new insights necessary to improve hypertension management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Integration of transcriptomic and metabolic data reveals hub transcription factors involved in drought stress response in sunflower (Helianthus annuus L.).

    PubMed

    Moschen, Sebastián; Di Rienzo, Julio A; Higgins, Janet; Tohge, Takayuki; Watanabe, Mutsumi; González, Sergio; Rivarola, Máximo; García-García, Francisco; Dopazo, Joaquin; Hopp, H Esteban; Hoefgen, Rainer; Fernie, Alisdair R; Paniego, Norma; Fernández, Paula; Heinz, Ruth A

    2017-07-01

    By integration of transcriptional and metabolic profiles we identified pathways and hubs transcription factors regulated during drought conditions in sunflower, useful for applications in molecular and/or biotechnological breeding. Drought is one of the most important environmental stresses that effects crop productivity in many agricultural regions. Sunflower is tolerant to drought conditions but the mechanisms involved in this tolerance remain unclear at the molecular level. The aim of this study was to characterize and integrate transcriptional and metabolic pathways related to drought stress in sunflower plants, by using a system biology approach. Our results showed a delay in plant senescence with an increase in the expression level of photosynthesis related genes as well as higher levels of sugars, osmoprotectant amino acids and ionic nutrients under drought conditions. In addition, we identified transcription factors that were upregulated during drought conditions and that may act as hubs in the transcriptional network. Many of these transcription factors belong to families implicated in the drought response in model species. The integration of transcriptomic and metabolomic data in this study, together with physiological measurements, has improved our understanding of the biological responses during droughts and contributes to elucidate the molecular mechanisms involved under this environmental condition. These findings will provide useful biotechnological tools to improve stress tolerance while maintaining crop yield under restricted water availability.

  13. Controlled cellular energy conversion in brown adipose tissue thermogenesis

    NASA Technical Reports Server (NTRS)

    Horowitz, J. M.; Plant, R. E.

    1978-01-01

    Brown adipose tissue serves as a model system for nonshivering thermogenesis (NST) since a) it has as a primary physiological function the conversion of chemical energy to heat; and b) preliminary data from other tissues involved in NST (e.g., muscle) indicate that parallel mechanisms may be involved. Now that biochemical pathways have been proposed for brown fat thermogenesis, cellular models consistent with a thermodynamic representation can be formulated. Stated concisely, the thermogenic mechanism in a brown fat cell can be considered as an energy converter involving a sequence of cellular events controlled by signals over the autonomic nervous system. A thermodynamic description for NST is developed in terms of a nonisothermal system under steady-state conditions using network thermodynamics. Pathways simulated include mitochondrial ATP synthesis, a Na+/K+ membrane pump, and ionic diffusion through the adipocyte membrane.

  14. Drugs meeting the molecular basis of diabetic kidney disease: bridging from molecular mechanism to personalized medicine.

    PubMed

    Lambers Heerspink, Hiddo J; Oberbauer, Rainer; Perco, Paul; Heinzel, Andreas; Heinze, Georg; Mayer, Gert; Mayer, Bernd

    2015-08-01

    Diabetic kidney disease (DKD) is a complex, multifactorial disease and is associated with a high risk of renal and cardiovascular morbidity and mortality. Clinical practice guidelines for diabetes recommend essentially identical treatments for all patients without taking into account how the individual responds to the instituted therapy. Yet, individuals vary widely in how they respond to medications and therefore optimal therapy differs between individuals. Understanding the underlying molecular mechanisms of variability in drug response will help tailor optimal therapy. Polymorphisms in genes related to drug pharmacokinetics have been used to explore mechanisms of response variability in DKD, but with limited success. The complex interaction between genetic make-up and environmental factors on the abundance of proteins and metabolites renders pharmacogenomics alone insufficient to fully capture response variability. A complementary approach is to attribute drug response variability to individual variability in underlying molecular mechanisms involved in the progression of disease. The interplay of different processes (e.g. inflammation, fibrosis, angiogenesis, oxidative stress) appears to drive disease progression, but the individual contribution of each process varies. Drugs at the other hand address specific targets and thereby interfere in certain disease-associated processes. At this level, biomarkers may help to gain insight into which specific pathophysiological processes are involved in an individual followed by a rational assessment whether a specific drug's mode of action indeed targets the relevant process at hand. This article describes the conceptual background and data-driven workflow developed by the SysKid consortium aimed at improving characterization of the molecular mechanisms underlying DKD at the interference of the molecular impact of individual drugs in order to tailor optimal therapy to individual patients. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  15. Significant weight loss following clozapine use, how is it possible? A case report and review of published cases and literature relevant to the subject.

    PubMed

    Tungaraza, Tongeji E

    2016-10-01

    It has been repeatedly shown that clozapine is more efficacious than other antipsychotics in the management of treatment-resistant schizophrenia. However, clozapine is associated with a number of side effects including weight gain. Antipsychotic-induced weight gain has been linked with a number of untoward events including psychological factors such as stigma and low self-esteem, and physical factors such as metabolic syndromes and untimely death. The mechanism underlying antipsychotic (including clozapine)-induced weight gain is not clearly understood, although it is said to involve several brain areas, several neurotransmitters, neuropeptides and genetic factors. To some individuals however, clozapine use is associated with significant weight loss (13.5-50% of body weight). The observed weight loss in these groups of patients has not been attributed to any underlying diagnosable physical disorders. There have been a handful cases published with this phenomenon, which seems to be contrary to what is expected when clozapine is prescribed. From the currently published cases three groups emerge - those who lost weight simply by taking clozapine, those who lost weight due to improved mental state, engaging in diet and increased exercise, and those for whom weight loss was a sign of a poor response to clozapine. A case of JX who has a diagnosis of schizoaffective disorder is presented. JX lost over 26% of her body weight when she was prescribed clozapine. A detailed review of other published cases is undertaken. The underlying mechanisms involving weight loss are discussed and the implications to clinicians are highlighted. Coordinated studies to examine these groups of patients may provide some insight, not only in the mechanism of clozapine-induced weight loss, but also in the better management of patients with treatment-resistant schizophrenia involving clozapine use.

  16. Establishment of paclitaxel-resistant breast cancer cell line and nude mice models, and underlying multidrug resistance mechanisms in vitro and in vivo.

    PubMed

    Chen, Si-Ying; Hu, Sa-Sa; Dong, Qian; Cai, Jiang-Xia; Zhang, Wei-Peng; Sun, Jin-Yao; Wang, Tao-Tao; Xie, Jiao; He, Hai-Rong; Xing, Jian-Feng; Lu, Jun; Dong, Ya-Lin

    2013-01-01

    Breast cancer is a common malignant tumor which affects health of women and multidrug resistance (MDR) is one of the main factors leading to failure of chemotherapy. This study was conducted to establish paclitaxel-resistant breast cancer cell line and nude mice models to explore underlying mechanisms of MDR. The breast cancer drug-sensitive cell line MCF-7 (MCF-7/S) was exposed in stepwise escalating paclitaxel (TAX) to induce a resistant cell line MCF-7/TAX. Cell sensitivity to drugs and growth curves were measured by MTT assay. Changes of cell morphology and ultrastructure were examined by optical and electron microscopy. The cell cycle distribution was determined by flow cytometry. Furthermore, expression of proteins related to breast cancer occurrence and MDR was tested by immunocytochemistry. In Vivo, nude mice were injected with MCF-7/S and MCF-7/TAX cells and weights and tumor sizes were observed after paclitaxel treatment. In addition, proteins involved breast cancer and MDR were detected by immunohistochemistry. Compared to MCF-7/S, MCF-7/TAX cells had a higher resistance to paclitaxel, cross-resistance and prolonged doubling time. Moreover, MCF-7/TAX showed obvious alterations of ultrastructure. Estrogen receptor (ER) expression was low in drug resistant cells and tumors while expression of human epidermal growth factor receptor 2 (HER2) and Ki-67 was up-regulated. P-glycoprotein (P-gp), lung resistance-related protein (LRP) and glutathione-S-transferase-π (GST-π) involved in the MDR phenotype of resistant cells and tumors were all overexpressed. The underlying MDR mechanism of breast cancer may involve increased expression of P-gp, LRP and GST-π.

  17. Pharmacological Interventions for the MATRICS Cognitive Domains in Schizophrenia: What’s the Evidence?

    PubMed Central

    Vingerhoets, Wilhelmina A. M.; Bloemen, Oswald J. N.; Bakker, Geor; van Amelsvoort, Therese A. M. J.

    2013-01-01

    Schizophrenia is a disabling, chronic psychiatric disorder with a prevalence rate of 0.5–1% in the general population. Symptoms include positive (e.g., delusions, hallucinations), negative (e.g., blunted affect, social withdrawal), as well as cognitive symptoms (e.g., memory and attention problems). Although 75–85% of patients with schizophrenia report cognitive impairments, the underlying neuropharmacological mechanisms are not well understood and currently no effective treatment is available for these impairments. This has led to the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) initiative, which established seven cognitive domains that are fundamentally impaired in schizophrenia. These domains include verbal learning and memory, visual learning and memory, working memory, attention and vigilance, processing speed, reasoning and problem solving, and social cognition. Recently, a growing number of studies have been conducted trying to identify the underlying neuropharmacological mechanisms of cognitive impairments in schizophrenia patients. Specific cognitive impairments seem to arise from different underlying neuropharmacological mechanisms. However, most review articles describe cognition in general and an overview of the mechanisms involved in these seven separate cognitive domains is currently lacking. Therefore, we reviewed the underlying neuropharmacological mechanisms focusing on the domains as established by the MATRICS initiative which are considered most crucial in schizophrenia. PMID:24363646

  18. Complex physiological and molecular processes underlying root gravitropism

    NASA Technical Reports Server (NTRS)

    Chen, Rujin; Guan, Changhui; Boonsirichai, Kanokporn; Masson, Patrick H.

    2002-01-01

    Gravitropism allows plant organs to guide their growth in relation to the gravity vector. For most roots, this response to gravity allows downward growth into soil where water and nutrients are available for plant growth and development. The primary site for gravity sensing in roots includes the root cap and appears to involve the sedimentation of amyloplasts within the columella cells. This process triggers a signal transduction pathway that promotes both an acidification of the wall around the columella cells, an alkalinization of the columella cytoplasm, and the development of a lateral polarity across the root cap that allows for the establishment of a lateral auxin gradient. This gradient is then transmitted to the elongation zones where it triggers a differential cellular elongation on opposite flanks of the central elongation zone, responsible for part of the gravitropic curvature. Recent findings also suggest the involvement of a secondary site/mechanism of gravity sensing for gravitropism in roots, and the possibility that the early phases of graviresponse, which involve differential elongation on opposite flanks of the distal elongation zone, might be independent of this auxin gradient. This review discusses our current understanding of the molecular and physiological mechanisms underlying these various phases of the gravitropic response in roots.

  19. New particle formation and growth from methanesulfonic acid, trimethylamine and water.

    PubMed

    Chen, Haihan; Ezell, Michael J; Arquero, Kristine D; Varner, Mychel E; Dawson, Matthew L; Gerber, R Benny; Finlayson-Pitts, Barbara J

    2015-05-28

    New particle formation from gas-to-particle conversion represents a dominant source of atmospheric particles and affects radiative forcing, climate and human health. The species involved in new particle formation and the underlying mechanisms remain uncertain. Although sulfuric acid is commonly recognized as driving new particle formation, increasing evidence suggests the involvement of other species. Here we study particle formation and growth from methanesulfonic acid, trimethylamine and water at reaction times from 2.3 to 32 s where particles are 2-10 nm in diameter using a newly designed and tested flow system. The flow system has multiple inlets to facilitate changing the mixing sequence of gaseous precursors. The relative humidity and precursor concentrations, as well as the mixing sequence, are varied to explore their effects on particle formation and growth in order to provide insight into the important mechanistic steps. We show that water is involved in the formation of initial clusters, greatly enhancing their formation as well as growth into detectable size ranges. A kinetics box model is developed that quantitatively reproduces the experimental data under various conditions. Although the proposed scheme is not definitive, it suggests that incorporating such mechanisms into atmospheric models may be feasible in the near future.

  20. Isoflavones: Anti-Inflammatory Benefit and Possible Caveats

    PubMed Central

    Yu, Jie; Bi, Xiaojuan; Yu, Bing; Chen, Daiwen

    2016-01-01

    Inflammation, a biological response of body tissues to harmful stimuli, is also known to be involved in a host of diseases, such as obesity, atherosclerosis, rheumatoid arthritis, and even cancer. Isoflavones are a class of flavonoids that exhibit antioxidant, anticancer, antimicrobial, and anti-inflammatory properties. Increasing evidence has highlighted the potential for isoflavones to prevent the chronic diseases in which inflammation plays a key role, though the underlying mechanisms remain unclear. Recently, some studies have raised concerns about isoflavones induced negative effects like carcinogenesis, thymic involution, and immunosuppression. Therefore, this review aims to summarize the anti-inflammatory effects of isoflavones, unravel the underlying mechanisms, and present the potential health risks. PMID:27294954

  1. Isoflavones: Anti-Inflammatory Benefit and Possible Caveats.

    PubMed

    Yu, Jie; Bi, Xiaojuan; Yu, Bing; Chen, Daiwen

    2016-06-10

    Inflammation, a biological response of body tissues to harmful stimuli, is also known to be involved in a host of diseases, such as obesity, atherosclerosis, rheumatoid arthritis, and even cancer. Isoflavones are a class of flavonoids that exhibit antioxidant, anticancer, antimicrobial, and anti-inflammatory properties. Increasing evidence has highlighted the potential for isoflavones to prevent the chronic diseases in which inflammation plays a key role, though the underlying mechanisms remain unclear. Recently, some studies have raised concerns about isoflavones induced negative effects like carcinogenesis, thymic involution, and immunosuppression. Therefore, this review aims to summarize the anti-inflammatory effects of isoflavones, unravel the underlying mechanisms, and present the potential health risks.

  2. A Novel Approach to Primary Cell Culture for Octopus vulgaris Neurons

    PubMed Central

    Maselli, Valeria; Xu, Fenglian; Syed, Naweed I.; Polese, Gianluca; Di Cosmo, Anna

    2018-01-01

    Octopus vulgaris is a unique model system for studying complex behaviors in animals. It has a large and centralized nervous system made up of lobes that are involved in controlling various sophisticated behaviors. As such, it may be considered as a model organism for untangling the neuronal mechanisms underlying behaviors—including learning and memory. However, despite considerable efforts, Octopus lags behind its other counterparts vis-à-vis its utility in deciphering the cellular, molecular and synaptic mechanisms underlying various behaviors. This study represents a novel approach designed to establish a neuronal cell culture protocol that makes this species amenable to further exploitation as a model system. Here we developed a protocol that enables dissociation of neurons from two specific Octopus' brain regions, the vertical-superior frontal system and the optic lobes, which are involved in memory, learning, sensory integration and adult neurogenesis. In particular, cells dissociated with enzyme papain and cultured on Poly-D-Lysine-coated dishes with L15-medium and fetal bovine serum yielded high neuronal survival, axon growth, and re-growth after injury. This model was also explored to define optimal culture conditions and to demonstrate the regenerative capabilities of adult Octopus neurons after axotomy. This study thus further underscores the importance of Octopus neurons as a model system for deciphering fundamental molecular and cellular mechanism of complex brain function and underlying behaviors. PMID:29666582

  3. Molecular mechanisms underlying the physiological responses of the cold-water coral Desmophyllum dianthus to ocean acidification

    NASA Astrophysics Data System (ADS)

    Carreiro-Silva, M.; Cerqueira, T.; Godinho, A.; Caetano, M.; Santos, R. S.; Bettencourt, R.

    2014-06-01

    Cold-water corals (CWCs) are thought to be particularly vulnerable to ocean acidification (OA) due to increased atmospheric pCO2, because they inhabit deep and cold waters where the aragonite saturation state is naturally low. Several recent studies have evaluated the impact of OA on organism-level physiological processes such as calcification and respiration. However, no studies to date have looked at the impact at the molecular level of gene expression. Here, we report results of a long-term, 8-month experiment to compare the physiological responses of the CWC Desmophyllum dianthus to OA at both the organismal and gene expression levels under two pCO2/pH treatments: ambient pCO2 (460 μatm, pHT = 8.01) and elevated pCO2 (997 μatm, pHT = 7.70). At the organismal level, no significant differences were detected in the calcification and respiration rates of D. dianthus. Conversely, significant differences were recorded in gene expression profiles, which showed an up-regulation of genes involved in cellular stress (HSP70) and immune defence (mannose-binding c-type lectin). Expression of alpha-carbonic anhydrase, a key enzyme involved in the synthesis of coral skeleton, was also significantly up-regulated in corals under elevated pCO2, indicating that D. dianthus was under physiological reconditioning to calcify under these conditions. Thus, gene expression profiles revealed physiological impacts that were not evident at the organismal level. Consequently, understanding the molecular mechanisms behind the physiological processes involved in a coral's response to elevated pCO2 is critical to assess the ability of CWCs to acclimate or adapt to future OA conditions.

  4. Could anterior papillary muscle partial necrosis explain early mitral valve repair failure?

    PubMed

    Pozzi, Matteo; Generali, Tommaso; Henaine, Roland; Mitchell, Julia; Lemaire, Anais; Chiari, Pascal; Fran, Jean; Obadia, Jean François

    2014-09-01

    Standardized techniques of mitral valve repair (MVR) have recently witnessed the introduction of a 'respect rather than resect' concept, the strategy of which involves the use of artificial chordae. MVR displays several advantages over mitral valve replacement in degenerative mitral regurgitation (MR), but the risk of reoperation for MVR failure must be taken into account. Different mechanisms could be advocated as the leading cause of MVR failure; procedure-related mechanisms are usually involved in early MVR failure, while valve-related mechanisms are common in late failure. Here, the case is reported of an early failure of MVR using artificial chordae that could be explained by an unusual procedure-related mechanism, namely anterior papillary muscle necrosis. MVR failure is a well-known complication after surgical repair of degenerative MR, but anterior papillary muscle partial necrosis might also be considered a possible mechanism of procedure-related MVR failure, especially when considering the increasing use of artificial chordae. Owing to the encouraging results obtained, mitral valve re-repair might be considered a viable solution, but must be selected after only a meticulous evaluation of the underlying mechanism of MVR failure.

  5. The right time to learn: mechanisms and optimization of spaced learning

    PubMed Central

    Smolen, Paul; Zhang, Yili; Byrne, John H.

    2016-01-01

    For many types of learning, spaced training, which involves repeated long inter-trial intervals, leads to more robust memory formation than does massed training, which involves short or no intervals. Several cognitive theories have been proposed to explain this superiority, but only recently have data begun to delineate the underlying cellular and molecular mechanisms of spaced training, and we review these theories and data here. Computational models of the implicated signalling cascades have predicted that spaced training with irregular inter-trial intervals can enhance learning. This strategy of using models to predict optimal spaced training protocols, combined with pharmacotherapy, suggests novel ways to rescue impaired synaptic plasticity and learning. PMID:26806627

  6. General mechanism involved in subwavelength optics of conducting microstructures: charge-oscillation-induced light emission and interference.

    PubMed

    Huang, Xian-Rong; Peng, Ru-Wen

    2010-04-01

    Interactions between light and conducting microstructures or nanostructures can result in a variety of novel phenomena, but their underlying mechanisms have not been completely understood. From calculations of surface charge density waves on conducting gratings and by comparing them with classical surface plasmons, we revealed a general yet concrete picture regarding the coupling of light to free electron oscillation on structured conducting surfaces that can lead to oscillating subwavelength charge patterns (i.e., structured surface plasmons). New wavelets emitted from these light sources then destructively interfere to form evanescent waves. This principle, usually combined with other mechanisms, is mainly a geometrical effect that can be universally involved in light scattering from all periodic and non-periodic structures containing free electrons. This picture may provide clear guidelines for developing conductor-based nano-optical devices.

  7. Convection, buoyancy or endolymph expansion: what is the actual mechanism responsible for the caloric response of semicircular canals?

    PubMed

    Valli, Paulo; Buizza, Angelo; Botta, Laura; Zucca, Giampiero; Ghezzi, Luciano; Valli, Stefano

    The mechanisms underlying caloric nystagmus are still matter of debate. The original theory proposed by Barany and more recently by Pau and Limberg suggested that convective endolymphatic currents were involved. In contrast Gentine et al. suggested that the main mechanism responsible for caloric nystagmus is buoyancy due to calorization of the endolymph, without the need of continuous convective currents. Finally, other authors (Scherer and Clarke, Arai et al.) proposed that thermal expansion or contraction of the endolymph were involved. In the present study experimental conditions have been considered able to discriminate between these different models. The experiments, were carried out on isolated labyrinth preparations of the frog. Only the predictions of the model based on buoyancy were fully consistent with the experimental results whereas those provided by the other models were not.

  8. Elucidation of reaction mechanism involved in the formation of LaNiO3 from XRD and TG analysis

    NASA Astrophysics Data System (ADS)

    Dharmadhikari, Dipti V.; Athawale, Anjali A.

    2013-06-01

    The present work is focused on the synthesis and elucidation of reaction mechanism involved in the formation of LaNiO3 with the help of X-ray diffraction (XRD) and thermogravimetric (TG) analysis. LaNiO3 was synthesized by hydrothermal method by heating at 160°C under autogenous pressure for 6h. Pure phase product was obtained after calcining the hydrothermally activated product for 6h at 700°C. The various phases of the product obtained after hydrothermal treatment and calcination followed by the formation of pure phase nanocrystalline lanthanum nickel oxide could be determined from XRD analysis of the samples. The reaction mechanism and phase formation temperature has been interpreted by thermogravimetric analysis of the hydrothermally synthesized product and XRD analysis.

  9. Mechanisms of physiological and epileptic HFO generation

    PubMed Central

    Jefferys, John G.R.; de la Prida, Liset Menendez; Wendling, Fabrice; Bragin, Anatol; Avoli, Massimo; Timofeev, Igor; Lopes da Silva, Fernando H.

    2016-01-01

    High frequency oscillations (HFO) have a variety of characteristics: band-limited or broad-band, transient burst-like phenomenon or steady-state. HFOs may be encountered under physiological or under pathological conditions (pHFO). Here we review the underlying mechanisms of oscillations, at the level of cells and networks, investigated in a variety of experimental in vitro and in vivo models. Diverse mechanisms are described, from intrinsic membrane oscillations to network processes involving different types of synaptic interactions, gap junctions and ephaptic coupling. HFOs with similar frequency ranges can differ considerably in their physiological mechanisms. The fact that in most cases the combination of intrinsic neuronal membrane oscillations and synaptic circuits are necessary to sustain network oscillations is emphasized. Evidence for pathological HFOs, particularly fast ripples, in experimental models of epilepsy and in human epileptic patients is scrutinized. The underlying mechanisms of fast ripples are examined both in the light of animal observations, in vivo and in vitro, and in epileptic patients, with emphasis on single cell dynamics. Experimental observations and computational modeling have led to hypotheses for these mechanisms, several of which are considered here, namely the role of out-of-phase firing in neuronal clusters, the importance of strong excitatory AMPA-synaptic currents and recurrent inhibitory connectivity in combination with the fast time scales of IPSPs, ephaptic coupling and the contribution of interneuronal coupling through gap junctions. The statistical behaviour of fast ripple events can provide useful information on the underlying mechanism and can help to further improve classification of the diverse forms of HFOs. PMID:22420980

  10. [Progress of researches on mechanism of acupuncture therapy underlying improvement of acute cerebral hemorrhage].

    PubMed

    Wang, Fan; Wang, Hai-qiao; Dong, Gui-rong

    2011-04-01

    In the present paper, the authors review the progress of researches on the mechanism of acupuncture therapy underlying improvement of acute cerebral hemorrhage from experimental studies and research methods. The effects of acupuncture intervention mainly involve (1) lessening inflammatory reactions, (2) reducing impairment of free radicals and excitatory amino acids on cerebral neurons, (3) balancing release of vascular bioactive substances to increase regional cerebral blood flow, and (4) promoting repair and regeneration of the neural tissue, etc. In regard to the research methods, many new biological techniques such as biological molecular approaches, neuro-cellular chemical methods, reverse transcription-polymerase chain reaction (RT-PCR) or quantitative real time-PCR, situ hybridization, western blotting, electron microscope, etc., have been extensively applied to researches on the underlying mechanism of acupuncture therapy for cerebral infarction. In addition, the authors also pointed out that in spite of achieving some bigger progresses in experimental studies, most of the results basically reflect static, isolated and regional changes rather than dynamic and whole body changes. For this reason, more vivo research techniques and noninvasive research methods are highly recommended to be used in the future research on the underlying mechanisms of acupuncture therapy for acute cerebral ischemia.

  11. Metabolite profiling and integrative modeling reveal metabolic constraints for carbon partitioning under nitrogen starvation in the green algae Haematococcus pluvialis.

    PubMed

    Recht, Lee; Töpfer, Nadine; Batushansky, Albert; Sikron, Noga; Gibon, Yves; Fait, Aaron; Nikoloski, Zoran; Boussiba, Sammy; Zarka, Aliza

    2014-10-31

    The green alga Hematococcus pluvialis accumulates large amounts of the antioxidant astaxanthin under inductive stress conditions, such as nitrogen starvation. The response to nitrogen starvation and high light leads to the accumulation of carbohydrates and fatty acids as well as increased activity of the tricarboxylic acid cycle. Although the behavior of individual pathways has been well investigated, little is known about the systemic effects of the stress response mechanism. Here we present time-resolved metabolite, enzyme activity, and physiological data that capture the metabolic response of H. pluvialis under nitrogen starvation and high light. The data were integrated into a putative genome-scale model of the green alga to in silico test hypotheses of underlying carbon partitioning. The model-based hypothesis testing reinforces the involvement of starch degradation to support fatty acid synthesis in the later stages of the stress response. In addition, our findings support a possible mechanism for the involvement of the increased activity of the tricarboxylic acid cycle in carbon repartitioning. Finally, the in vitro experiments and the in silico modeling presented here emphasize the predictive power of large scale integrative approaches to pinpoint metabolic adjustment to changing environments. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Crowding Shifts the FMN Recognition Mechanism of Riboswitch Aptamer from Conformational Selection to Induced Fit.

    PubMed

    Rode, Ambadas B; Endoh, Tamaki; Sugimoto, Naoki

    2018-06-04

    In bacteria, the binding between the riboswitch aptamer domain and ligand is regulated by environmental cues, such as low Mg 2+ in macrophages during pathogenesis to ensure spatiotemporal expression of virulence genes. Binding was investigated between the flavin mononucleotide (FMN) riboswitch aptamer and its anionic ligand in the presence of molecular crowding agent without Mg 2+ ion, which mimics pathogenic conditions. Structural, kinetic, and thermodynamic analyses under the crowding revealed more dynamic conformational rearrangements of the FMN riboswitch aptamer compared to dilute Mg 2+ -containing solution. It is hypothesized that under crowding conditions FMN binds through an induced fit mechanism in contrast to the conformational selection mechanism previously demonstrated in dilute Mg 2+ solution. Since these two mechanisms involve different conformational intermediates and rate constants, these findings have practical significance in areas such as drug design and RNA engineering. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Mechanisms underlying sexual and affiliative behaviors of mice: relation to generalized CNS arousal

    PubMed Central

    Shelley, Deborah N.; Choleris, Elena; Kavaliers, Martin

    2006-01-01

    The field of social neuroscience has grown dramatically in recent years and certain social responses have become amenable to mechanistic investigations. Toward that end, there has been remarkable progress in determining mechanisms for a simple sexual behavior, lordosis behavior. This work has proven that specific hormone-dependent biochemical reactions in specific parts of the mammalian brain regulate a biologically important behavior. On one hand, this sex behavior depends on underlying mechanisms of CNS arousal. On the other hand, it serves as a prototypical social behavior. The same sex hormones and the genes that encode their receptors as are involved in lordosis, also affect social recognition. Here we review evidence for a micronet of genes promoting social recognition in mice and discuss their biological roles. PMID:18985112

  14. Hydrocarbon activation under sulfate-reducing and methanogenic conditions proceeds by different mechanisms.

    NASA Astrophysics Data System (ADS)

    Head, Ian; Gray, Neil; Aitken, Caroline; Sherry, Angela; Jones, Martin; Larter, Stephen

    2010-05-01

    Microbial degradation of alkanes typically involves their conversion to fatty acids which are then catabolised by beta-oxidation. The critical step in this process is activation of the hydrocarbon. Under oxic conditions this is catalyzed by monooxygenase enzymes with the formation of long chain alcohols. In the absence of oxygen alternative alkane activation mechanisms have been observed or proposed. Fumarate addition to alkanes to form alkyl succinates is considered a central process in anaerobic hydrocarbon degradation. Comparative studies of crude oil degradation under sulphate-reducing and methanogenic conditions revealed distinctive patterns of compound class removal and metabolite formation. Alkyl succinates derived from C7 to C26 n-alkanes and branched chain alkanes were found in abundance in sulfate-reducing systems but these were not detected during methanogenic crude oil degradation. Only one other mechanism of alkane activation has been elucidated to date. This involves addition of carbon derived from bicarbonate/CO2 to C-3 of an alkane chain to form a 2-ethylalkane with subsequent removal of the ethyl group leading to the formation of a fatty acid 1 carbon shorter than the original alkane. 2-ethylalkanes have never been detected as metabolites of anaerobic alkane degradation and were not detected in crude oil-degrading methanogenic systems. Due to the range of alkanes present in crude oil it was not possible to infer the generation of C-odd acids from C-even alkanes which is characteristic of the C-3 carboxylation mechanism. Furthermore genes homologous to alkysuccinate synthetases were not detected in the methanogenic hydrocarbon degrading community by pyrosequencing of total DNA extracted from methanogenic enrichments cultures. beta-oxidation genes were detected and intriguingly, alcohol and aldehyde dehydrogenase genes were present. This offers the possibility that alkane activation in the methanogenic system does not proceed via acid metabolites, but may be initiated by an anaerobic hydroxylation reaction. This is not unprecedented and hydroxylation of ethylbenzene has been demonstrated. However the C-H bond dissociation energy of alkanes is typically considered too high to readily permit alkane hydroxylation. It is however clear that alkane activation in these methanogenic crude oil-degrading systems involves mechanisms other than the well-known fumarate-addition reactions.

  15. The nitric oxide donor SNAP-induced amino acid neurotransmitter release in cortical neurons. Effects of blockers of voltage-dependent sodium and calcium channels.

    PubMed

    Merino, José Joaquín; Arce, Carmen; Naddaf, Ahmad; Bellver-Landete, Victor; Oset-Gasque, Maria Jesús; González, María Pilar

    2014-01-01

    The discovery that nitric oxide (NO) functions as a signalling molecule in the nervous system has radically changed the concept of neuronal communication. NO induces the release of amino acid neurotransmitters but the underlying mechanisms remain to be elucidated. The aim of this work was to study the effect of NO on amino acid neurotransmitter release (Asp, Glu, Gly and GABA) in cortical neurons as well as the mechanism underlying the release of these neurotransmitters. Cortical neurons were stimulated with SNAP, a NO donor, and the release of different amino acid neurotransmitters was measured by HPLC. The involvement of voltage dependent Na+ and Ca2+ channels as well as cGMP in its mechanism of action was evaluated. Our results indicate that NO induces release of aspartate, glutamate, glycine and GABA in cortical neurons and that this release is inhibited by ODQ, an inhibitor of soluble guanylate cyclase. Thus, the NO effect on amino acid neurotransmission could be mediated by cGMP formation in cortical neurons. Our data also demonstrate that the Na+ and Ca2+ voltage- dependent calcium channels are involved in the NO effects on cortical neurons.

  16. Microbial photoinactivation by 470 nm radiation: an investigation into the underlying photobiological mechanism

    NASA Astrophysics Data System (ADS)

    Hoenes, K.; Wild, K.; Schmid, J.; Spellerberg, B.; Hessling, M.

    2018-02-01

    The photoinactivation properties of 405 (violet) and 470 nm (blue) light have been studied by many research groups within the last few years. Both wavelengths are capable of disinfecting bacteria and fungi, with 405 nm radiation being more efficient. The basic photoinactivation mechanism is understood for 405 nm. Violet light is absorbed by endogenous porphyrins that act as photosensitizers and generate reactive oxygen species, subsequently destroying the microorganisms from within. The underlying photobiological mechanism for 470nm radiation is still unclear though porphyrins and flavins are widely believed to be involved endogenous photosensitizer. We performed own measurements of disinfection efficacy and additionally did a meta-analysis of published photoinactivation data. The disinfection experiments were performed with LEDs at peak wavelengths between 440 and 490 nm in an interval of about 10 nm. Staphylococcus auricularis was irradiated with doses of 70, 140 and 210 J/cm2 and peak efficacy was observed at 470 nm while the impact of irradiation decreases steeply to lower and higher wavelengths. These observations are supported by the meta-analysis results and rather contradictory to the porphyrin and flavin hypothesis so that our conclusion is that there may be another unknown photosensitizer involved.

  17. GENE EXPRESSION PATTERNS ASSOCIATED WITH INFERTILITY IN HUMAN AND RODENT MODELS

    EPA Science Inventory

    Modern genomic technologies such as DNA arrays provide the means to investigate molecular interactions at an unprecedented level, and arrays have been used to carry out gene expression profiling as a means of identifying candidate genes involved in molecular mechanisms underlying...

  18. Photosynthesis Is Not Involved in the Mechanism of Action of Acifluorfen in Cucumber (Cucumis sativus L.)

    PubMed Central

    Duke, Stephen O.; Kenyon, William H.

    1986-01-01

    The possible role of photosynthesis in the mechanism of action of the herbicide acifluorfen (2-chloro-4-(trifluoromethyl)phenoxy-2-nitrobenzoate; AF) was examined. The sensitivity to AF of cotyledons of cucumber (Cucumis sativus L.) which had been grown under far red light (FR) and white light were compared. FR grown tissues which were photosynthetically imcompetent were hypersensitive to AF under white light and had approximately the same relative response to AF under blue and red light as green, white-light-grown tissues. Ultrastructural damage was apparent in FR-grown, AF-treated tissues within an hour after exposure to white light, with cytoplasmic and plastidic disorganization occurring simultaneously. In cucumber cotyledon tissue which had been greening for various time periods, there was no correlation between photosynthetic capacity and herbicidal efficacy of AF. PSII inhibitors (atrazine and DCMU) and the photophosphorylation inhibitor, tentoxin, had no effect on AF activity. Atrazine did not reduce AF activity at any concentration or light intensity tested, indicating that there is no second, photosynthetic-dependent mechanism of action operating at low AF concentrations or low fluence rates. Carbon dioxide-dependent O2 evolution of intact chloroplasts of spinach (Spinacia oleracea L.) had an AF I50 of 125 micromolar compared to 1000 micromolar for cucumber, whereas AF was much more herbicidally active in tissues of cucumber than of spinach. Differences in activity could not be accounted for by differences in uptake of AF. Our results indicate that there is no photosynthetic involvement in the mechanism of action of AF in cucumber. Images Fig. 2 PMID:16664919

  19. Does hearing in response to soft-tissue stimulation involve skull vibrations? A within-subject comparison between skull vibration magnitudes and hearing thresholds.

    PubMed

    Chordekar, Shai; Perez, Ronen; Adelman, Cahtia; Sohmer, Haim; Kishon-Rabin, Liat

    2018-04-03

    Hearing can be elicited in response to bone as well as soft-tissue stimulation. However, the underlying mechanism of soft-tissue stimulation is under debate. It has been hypothesized that if skull vibrations were the underlying mechanism of hearing in response to soft-tissue stimulation, then skull vibrations would be associated with hearing thresholds. However, if skull vibrations were not associated with hearing thresholds, an alternative mechanism is involved. In the present study, both skull vibrations and hearing thresholds were assessed in the same participants in response to bone (mastoid) and soft-tissue (neck) stimulation. The experimental group included five hearing-impaired adults in whom a bone-anchored hearing aid was implanted due to conductive or mixed hearing loss. Because the implant is exposed above the skin and has become an integral part of the temporal bone, vibration of the implant represented skull vibrations. To ensure that middle-ear pathologies of the experimental group did not affect overall results, hearing thresholds were also obtained in 10 participants with normal hearing in response to stimulation at the same sites. We found that the magnitude of the bone vibrations initiated by the stimulation at the two sites (neck and mastoid) detected by the laser Doppler vibrometer on the bone-anchored implant were linearly related to stimulus intensity. It was therefore possible to extrapolate the vibration magnitudes at low-intensity stimulation, where poor signal-to-noise ratio limited actual recordings. It was found that the vibration magnitude differences (between soft-tissue and bone stimulation) were not different than the hearing threshold differences at the tested frequencies. Results of the present study suggest that bone vibration magnitude differences can adequately explain hearing threshold differences and are likely to be responsible for the hearing sensation. Thus, the present results support the idea that bone and soft-tissue conduction could share the same underlying mechanism, namely the induction of bone vibrations. Studies with the present methodology should be continued in future work in order to obtain further insight into the underlying mechanism of activation of the hearing system. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Resizing procedure for structures under combined mechanical and thermal loading

    NASA Technical Reports Server (NTRS)

    Adelman, H. M.; Narayanaswami, R.

    1976-01-01

    The fully-stressed design (FSD) appears to be the most widely used approach for sizing of flight structures under strength and minimum-gage constraints. Almost all of the experience with FSD has been with structures primarily under mechanical loading as opposed to thermal loading. In this method the structural sizes are iterated with the step size, depending on the ratio of the total stress to the allowable stress. In this paper, the thermal fully-stressed design (TFSD) procedure developed for problems involving substantial thermal stress is extended to biaxial stress members using a Von Mises failure criterion. The TFSD resizing procedure for uniaxial stress is restated and the new procedure for biaxial stress members is developed. Results are presented for an application of the two procedures to size a simplified wing structure.

  1. GABA predicts visual intelligence.

    PubMed

    Cook, Emily; Hammett, Stephen T; Larsson, Jonas

    2016-10-06

    Early psychological researchers proposed a link between intelligence and low-level perceptual performance. It was recently suggested that this link is driven by individual variations in the ability to suppress irrelevant information, evidenced by the observation of strong correlations between perceptual surround suppression and cognitive performance. However, the neural mechanisms underlying such a link remain unclear. A candidate mechanism is neural inhibition by gamma-aminobutyric acid (GABA), but direct experimental support for GABA-mediated inhibition underlying suppression is inconsistent. Here we report evidence consistent with a global suppressive mechanism involving GABA underlying the link between sensory performance and intelligence. We measured visual cortical GABA concentration, visuo-spatial intelligence and visual surround suppression in a group of healthy adults. Levels of GABA were strongly predictive of both intelligence and surround suppression, with higher levels of intelligence associated with higher levels of GABA and stronger surround suppression. These results indicate that GABA-mediated neural inhibition may be a key factor determining cognitive performance and suggests a physiological mechanism linking surround suppression and intelligence. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  2. Bisphenol A Exposure May Induce Hepatic Lipid Accumulation via Reprogramming the DNA Methylation Patterns of Genes Involved in Lipid Metabolism

    NASA Astrophysics Data System (ADS)

    Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-08-01

    Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns.

  3. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin

    PubMed Central

    Shi, Haitao; Jiang, Chuan; Ye, Tiantian; Tan, Dun-xian; Reiter, Russel J.; Zhang, Heng; Liu, Renyi; Chan, Zhulong

    2015-01-01

    Melatonin (N-acetyl-5-methoxytryptamine), a well-known animal hormone, is also involved in plant development and abiotic stress responses. In this study, it is shown that exogenous application of melatonin conferred improved salt, drought, and cold stress resistances in bermudagrass. Moreover, exogenous melatonin treatment alleviated reactive oxygen species (ROS) burst and cell damage induced by abiotic stress; this involved activation of several antioxidants. Additionally, melatonin-pre-treated plants exhibited higher concentrations of 54 metabolites, including amino acids, organic acids, sugars, and sugar alcohols, than non-treated plants under abiotic stress conditions. Genome-wide transcriptomic profiling identified 3933 transcripts (2361 up-regulated and 1572 down-regulated) that were differentially expressed in melatonin-treated plants versus controls. Pathway and gene ontology (GO) term enrichment analyses revealed that genes involved in nitrogen metabolism, major carbohydrate metabolism, tricarboxylic acid (TCA)/org transformation, transport, hormone metabolism, metal handling, redox, and secondary metabolism were over-represented after melatonin pre-treatment. Taken together, this study provides the first evidence of the protective roles of exogenous melatonin in the bermudagrass response to abiotic stresses, partially via activation of antioxidants and modulation of metabolic homeostasis. Notably, metabolic and transcriptomic analyses showed that the underlying mechanisms of melatonin could involve major reorientation of photorespiratory and carbohydrate and nitrogen metabolism. PMID:25225478

  4. Bisphenol A Exposure May Induce Hepatic Lipid Accumulation via Reprogramming the DNA Methylation Patterns of Genes Involved in Lipid Metabolism

    PubMed Central

    Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-01-01

    Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns. PMID:27502578

  5. Muscle-related side-effects of statins: from mechanisms to evidence-based solutions.

    PubMed

    Taylor, Beth A; Thompson, Paul D

    2015-06-01

    This article highlights the recent findings regarding statin-associated muscle side effects, including mechanisms and treatment as well as the need for more comprehensive clinical trials in statin myalgia. Statin myalgia is difficult to diagnose and treat, as major clinical trials have not routinely assessed muscle side-effects, there are few clinically relevant biomarkers and assessment tools for the symptoms, many apparent statin-related muscle symptoms may be nonspecific and related to other drugs or health conditions, and prevalence estimates vary widely. Data thus suggest that only 30-50% of patients with self-reported statin myalgia actually experience muscle pain on statins during blinded, placebo-controlled trials. In addition, evidence to date involving mechanisms underlying statin myalgia and its range of symptoms and presentations supports the hypothesis that there are multiple, interactive and potentially additive mechanisms underlying statin-associated muscle side-effects. There are likely multiple and interactive mechanisms underlying statin myalgia, and recent studies have produced equivocal data regarding prevalence of statin-associated muscle side-effects, contributing factors and effectiveness of common interventions. Therefore, more clinical trials on statin myalgia are critical to the field, as are systematic resources for quantifying, predicting and reporting statin-associated muscle side-effects.

  6. Integration of chemical-specific exposure and pharmacokinetic considerations with the chemical-agnostic adverse outcome pathway framework

    EPA Science Inventory

    Traditional toxicity testing provides insight into the mechanisms underlying toxicological responses but requires a high investment in large numbers of resources. The new paradigm of testing approaches involves rapid screening of thousands of chemicals across hundreds of biologic...

  7. Mothers' unresolved trauma blunts amygdala response to infant distress

    USDA-ARS?s Scientific Manuscript database

    While the neurobiology of post-traumatic stress disorder has been extensively researched, much less attention has been paid to the neural mechanisms underlying more covert but pervasive types of trauma (e.g., those involving disrupted relationships and insecure attachment). Here, we report on a neur...

  8. Identifying Metabolically Active Chemicals Using a Consensus Quantitative Structure Activity Relationship Model for Estrogen Receptor Binding

    EPA Science Inventory

    Traditional toxicity testing provides insight into the mechanisms underlying toxicological responses but requires a high investment in a large number of resources. The new paradigm of testing approaches involves rapid screening studies able to evaluate thousands of chemicals acro...

  9. General Anesthetics to Treat Major Depressive Disorder: Clinical Relevance and Underlying Mechanisms.

    PubMed

    Vutskits, Laszlo

    2018-01-01

    Major depressive disorder is a frequent and devastating psychological condition with tremendous public health impact. The underlying pathophysiological mechanisms involve abnormal neurotransmission and a relatedly impaired synaptic plasticity. Since general anesthetics are potent modulators of neuronal activity and, thereby, can exert long-term context-dependent impact on neural networks, an intriguing hypothesis is that these drugs could enhance impaired neural plasticity associated with certain psychiatric diseases. Clinical observations over the past few decades appear to confirm this possibility. Indeed, equipotency of general anesthesia alone in comparison with electroconvulsive therapy under general anesthesia has been demonstrated in several clinical trials. Importantly, in the past 15 years, intravenous administration of subanesthetic doses of ketamine have also been demonstrated to have rapid antidepressant effects. The molecular, cellular, and network mechanisms underlying these therapeutic effects have been partially identified. Although several important questions remain to be addressed, the ensemble of these experimental and clinical observations opens new therapeutic possibilities in the treatment of depressive disorders. Importantly, they also suggest a new therapeutic role for anesthetics that goes beyond their principal use in the perioperative period to facilitate surgery.

  10. Muscle Atrophy Induced by Mechanical Unloading: Mechanisms and Potential Countermeasures

    PubMed Central

    Gao, Yunfang; Arfat, Yasir; Wang, Huiping; Goswami, Nandu

    2018-01-01

    Prolonged periods of skeletal muscle inactivity or mechanical unloading (bed rest, hindlimb unloading, immobilization, spaceflight and reduced step) can result in a significant loss of musculoskeletal mass, size and strength which ultimately lead to muscle atrophy. With advancement in understanding of the molecular and cellular mechanisms involved in disuse skeletal muscle atrophy, several different signaling pathways have been studied to understand their regulatory role in this process. However, substantial gaps exist in our understanding of the regulatory mechanisms involved, as well as their functional significance. This review aims to update the current state of knowledge and the underlying cellular mechanisms related to skeletal muscle loss during a variety of unloading conditions, both in humans and animals. Recent advancements in understanding of cellular and molecular mechanisms, including IGF1-Akt-mTOR, MuRF1/MAFbx, FOXO, and potential triggers of disuse atrophy, such as calcium overload and ROS overproduction, as well as their role in skeletal muscle protein adaptation to disuse is emphasized. We have also elaborated potential therapeutic countermeasures that have shown promising results in preventing and restoring disuse-induced muscle loss. Finally, identified are the key challenges in this field as well as some future prospectives. PMID:29615929

  11. Redox homeostasis: the linchpin in stem cell self-renewal and differentiation.

    PubMed

    Wang, Kui; Zhang, Tao; Dong, Qiang; Nice, Edouard Collins; Huang, Canhua; Wei, Yuquan

    2013-03-14

    Stem cells are characterized by their unique ability of self-renewal to maintain the so-called stem cell pool. Over the past decades, reactive oxygen species (ROS) have been recognized as toxic aerobic metabolism byproducts that are harmful to stem cells, leading to DNA damage, senescence or cell death. Recently, a growing body of literature has shown that stem cells reside in redox niches with low ROS levels. The balance of Redox homeostasis facilitates stem cell self-renewal by an intricate network. Thus, to fully decipher the underlying molecular mechanisms involved in the maintenance of stem cell self-renewal, it is critical to address the important role of redox homeostasis in the regulation of self-renewal and differentiation of stem cells. In this regard, we will discuss the regulatory mechanisms involved in the subtly orchestrated balance of redox status in stem cells by scavenger antioxidant enzyme systems that are well monitored by the hypoxia niches and crucial redox regulators including forkhead homeobox type O family (FoxOs), apurinic/apyrimidinic (AP) endonuclease1/redox factor-1 (APE1/Ref-1), nuclear factor erythroid-2-related factor 2 (Nrf2) and ataxia telangiectasia mutated (ATM). We will also introduce several pivotal ROS-sensitive molecules, such as hypoxia-inducible factors, p38 mitogen-activated protein kinase (p38) and p53, involved in the redox-regulated stem cell self-renewal. Specifically, all the aforementioned molecules can act as 'redox sensors' by virtue of redox modifications of their cysteine residues, which are critically important in the control of protein function. Given the importance of redox homeostasis in the regulation of stem cell self-renewal, understanding the underlying molecular mechanisms involved will provide important new insights into stem cell biology.

  12. Redox homeostasis: the linchpin in stem cell self-renewal and differentiation

    PubMed Central

    Wang, Kui; Zhang, Tao; Dong, Qiang; Nice, Edouard Collins; Huang, Canhua; Wei, Yuquan

    2013-01-01

    Stem cells are characterized by their unique ability of self-renewal to maintain the so-called stem cell pool. Over the past decades, reactive oxygen species (ROS) have been recognized as toxic aerobic metabolism byproducts that are harmful to stem cells, leading to DNA damage, senescence or cell death. Recently, a growing body of literature has shown that stem cells reside in redox niches with low ROS levels. The balance of Redox homeostasis facilitates stem cell self-renewal by an intricate network. Thus, to fully decipher the underlying molecular mechanisms involved in the maintenance of stem cell self-renewal, it is critical to address the important role of redox homeostasis in the regulation of self-renewal and differentiation of stem cells. In this regard, we will discuss the regulatory mechanisms involved in the subtly orchestrated balance of redox status in stem cells by scavenger antioxidant enzyme systems that are well monitored by the hypoxia niches and crucial redox regulators including forkhead homeobox type O family (FoxOs), apurinic/apyrimidinic (AP) endonuclease1/redox factor-1 (APE1/Ref-1), nuclear factor erythroid-2-related factor 2 (Nrf2) and ataxia telangiectasia mutated (ATM). We will also introduce several pivotal ROS-sensitive molecules, such as hypoxia-inducible factors, p38 mitogen-activated protein kinase (p38) and p53, involved in the redox-regulated stem cell self-renewal. Specifically, all the aforementioned molecules can act as ‘redox sensors' by virtue of redox modifications of their cysteine residues, which are critically important in the control of protein function. Given the importance of redox homeostasis in the regulation of stem cell self-renewal, understanding the underlying molecular mechanisms involved will provide important new insights into stem cell biology. PMID:23492768

  13. Cortico-basal ganglia networks subserving goal-directed behavior mediated by conditional visuo-goal association

    PubMed Central

    Hoshi, Eiji

    2013-01-01

    Action is often executed according to information provided by a visual signal. As this type of behavior integrates two distinct neural representations, perception and action, it has been thought that identification of the neural mechanisms underlying this process will yield deeper insights into the principles underpinning goal-directed behavior. Based on a framework derived from conditional visuomotor association, prior studies have identified neural mechanisms in the dorsal premotor cortex (PMd), dorsolateral prefrontal cortex (dlPFC), ventrolateral prefrontal cortex (vlPFC), and basal ganglia (BG). However, applications resting solely on this conceptualization encounter problems related to generalization and flexibility, essential processes in executive function, because the association mode involves a direct one-to-one mapping of each visual signal onto a particular action. To overcome this problem, we extend this conceptualization and postulate a more general framework, conditional visuo-goal association. According to this new framework, the visual signal identifies an abstract behavioral goal, and an action is subsequently selected and executed to meet this goal. Neuronal activity recorded from the four key areas of the brains of monkeys performing a task involving conditional visuo-goal association revealed three major mechanisms underlying this process. First, visual-object signals are represented primarily in the vlPFC and BG. Second, all four areas are involved in initially determining the goals based on the visual signals, with the PMd and dlPFC playing major roles in maintaining the salience of the goals. Third, the cortical areas play major roles in specifying action, whereas the role of the BG in this process is restrictive. These new lines of evidence reveal that the four areas involved in conditional visuomotor association contribute to goal-directed behavior mediated by conditional visuo-goal association in an area-dependent manner. PMID:24155692

  14. The mechanisms of cachexia underlying muscle dysfunction in COPD.

    PubMed

    Remels, A H V; Gosker, H R; Langen, R C J; Schols, A M W J

    2013-05-01

    Pulmonary cachexia is a prevalent, debilitating, and well-recognized feature of COPD associated with increased mortality and loss of peripheral and respiratory muscle function. The exact cause and underlying mechanisms of cachexia in COPD are still poorly understood. Increasing evidence, however, shows that pathological changes in intracellular mechanisms of muscle mass maintenance (i.e., protein turnover and myonuclear turnover) are likely involved. Potential factors triggering alterations in these mechanisms in COPD include oxidative stress, myostatin, and inflammation. In addition to muscle wasting, peripheral muscle in COPD is characterized by a fiber-type shift toward a more type II, glycolytic phenotype and an impaired oxidative capacity (collectively referred to as an impaired oxidative phenotype). Atrophied diaphragm muscle in COPD, however, displays an enhanced oxidative phenotype. Interestingly, intrinsic abnormalities in (lower limb) peripheral muscle seem more pronounced in either cachectic patients or weight loss-susceptible emphysema patients, suggesting that muscle wasting and intrinsic changes in peripheral muscle's oxidative phenotype are somehow intertwined. In this manuscript, we will review alterations in mechanisms of muscle mass maintenance in COPD and discuss the involvement of oxidative stress, inflammation, and myostatin as potential triggers of cachexia. Moreover, we postulate that an impaired muscle oxidative phenotype in COPD can accelerate the process of cachexia, as it renders muscle in COPD less energy efficient, thereby contributing to an energy deficit and weight loss when not dietary compensated. Furthermore, loss of peripheral muscle oxidative phenotype may increase the muscle's susceptibility to inflammation- and oxidative stress-induced muscle damage and wasting.

  15. Mechanisms of stress in the brain.

    PubMed

    McEwen, Bruce S; Bowles, Nicole P; Gray, Jason D; Hill, Matthew N; Hunter, Richard G; Karatsoreos, Ilia N; Nasca, Carla

    2015-10-01

    The brain is the central organ involved in perceiving and adapting to social and physical stressors via multiple interacting mediators, from the cell surface to the cytoskeleton to epigenetic regulation and nongenomic mechanisms. A key result of stress is structural remodeling of neural architecture, which may be a sign of successful adaptation, whereas persistence of these changes when stress ends indicates failed resilience. Excitatory amino acids and glucocorticoids have key roles in these processes, along with a growing list of extra- and intracellular mediators that includes endocannabinoids and brain-derived neurotrophic factor (BDNF). The result is a continually changing pattern of gene expression mediated by epigenetic mechanisms involving histone modifications and CpG methylation and hydroxymethylation as well as by the activity of retrotransposons that may alter genomic stability. Elucidation of the underlying mechanisms of plasticity and vulnerability of the brain provides a basis for understanding the efficacy of interventions for anxiety and depressive disorders as well as age-related cognitive decline.

  16. Current perspectives on behavioural and cellular mechanisms of illness anorexia.

    PubMed

    Asarian, Lori; Langhans, Wolfgang

    2005-12-01

    Here we review our current understanding of the integration of immune, neural, metabolic and endocrine signals involved in the generation of anorexia during acute infection, with the focus on anorexia elicited by peripheral administration of bacterial lipopolysaccharide (LPS). We chose to limit this review to peripheral LPS-anorexia because the mechanisms underlying this response may also be valid for anorexia during other types of acute or chronic infections, with slight differences in the duration of anorexia, levels of circulating concentrations of pro-inflammatory cytokines and hypermetabolism. Evidence so far indicates that LPS-anorexia is a complex response beneficial to host defence that involves both peripheral and central action of pro-inflammatory cytokines, other immune factors, such as prostanoids, and neurotransmitters, such as serotonin. One interesting characteristic of LPS-anorexia is its sexual differentiation, an aspect mainly mediated by the gonadal hormone estradiol. Understanding the behavioural and molecular mechanisms of LPS-anorexia may even provide useful leads for identifying mechanisms of eating disorders in humans.

  17. Mechanism of valvular regurgitation.

    PubMed

    Khoo, Nee S; Smallhorn, Jeffery F

    2011-10-01

    Despite improvements in surgical techniques, valvular regurgitation results in major morbidity in children with heart disease. Functional anatomy, mechanisms of valve closure and adaptation to changing hemodynamic stress in normal mitral and tricuspid valves are complex and only partially understood. As well, pathology of atrioventricular valve regurgitation is further complicated by congenital valve abnormalities involving leaflet tissue, supporting chordal apparatus and displaced papillary muscles. This review provides a current understanding of the mechanisms that result in atrioventricular valve failure. Mitral valve leaflets have contractile elements, in addition to atrial muscle modulation of leaflet tension. When placed under mechanical tethering stress, the mitral valve adapts by leaflet expansion, which increases coaptation surface reserve and chordal thickening. Both pediatric and adult studies are increasingly reporting on the importance of subvalvar apparatus function in maintaining valve competency. The maintenance of efficient valve function is accomplished by a complex series of events involving atrial and annular contraction, annular deformation, active leaflet tension, chordal transmission of papillary muscle contractions and ventricular contraction.

  18. Neural circuits and mechanisms involved in Pavlovian fear conditioning: A critical review

    PubMed Central

    Kim, Jeansok J.; Jung, Min Whan

    2015-01-01

    Pavlovian or classical fear conditioning is recognized as a model system to investigate the neurobiological mechanisms of learning and memory in the mammalian brain and to understand the root of fear-related disorders in humans. In recent decades, important progress has been made in delineating the essential neural circuitry and cellular–molecular mechanisms of fear conditioning. Converging lines of evidence indicate that the amygdala is necessarily involved in the acquisition, storage and expression of conditioned fear memory, and long-term potentiation (LTP) in the lateral nucleus of the amygdala is often proposed as the underlying synaptic mechanism of associative fear memory. Recent studies further implicate the prefrontal cortex–amygdala interaction in the extinction (or inhibition) of conditioned fear. Despite these advances, there are unresolved issues and findings that challenge the validity and sufficiency of the current amygdalar LTP hypothesis of fear conditioning. The purpose of this review is to critically evaluate the strengths and weaknesses of evidence indicating that fear conditioning depend crucially upon the amygdalar circuit and plasticity. PMID:16120461

  19. New developments in brain research of internet and gaming disorder.

    PubMed

    Weinstein, Aviv; Livny, Abigail; Weizman, Abraham

    2017-04-01

    There is evidence that the neural mechanisms underlying Internet Gaming Disorder (IGD) resemble those of drug addiction. Functional Magnetic Resonance Imaging (fMRI) studies of the resting state and measures of gray matter volume have shown that Internet game playing was associated with changes to brain regions responsible for attention and control, impulse control, motor function, emotional regulation, sensory-motor coordination. Furthermore, Internet game playing was associated with lower white matter density in brain regions that are involved in decision-making, behavioral inhibition and emotional regulation. Videogame playing involved changes in reward inhibitory mechanisms and loss of control. Structural brain imaging studies showed alterations in the volume of the ventral striatum that is an important part of the brain's reward mechanisms. Finally, videogame playing was associated with dopamine release similar in magnitude to those of drugs of abuse and lower dopamine transporter and dopamine receptor D 2 occupancy indicating sub-sensitivity of dopamine reward mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Stable Rat Model of Mechanical Allodynia in Diabetic Peripheral Neuropathy: The Role of Nerve Compression.

    PubMed

    Liao, Chenlong; Yang, Min; Liu, Pengfei; Zhong, Wenxiang; Zhang, Wenchuan

    2018-05-01

     Preclinical studies involving animal models are essential for understanding the underlying mechanisms of diabetic neuropathic pain.  Rats were divided into four groups: two controls and two experimental. Diabetes mellitus was induced by streptozotocin (STZ) injection in two experimental groups. The first group involved one sham operation. The second group involved one latex tube encircling the sciatic nerve. The vehicle-injection rats were used as two corresponding control groups: sham operation and encircled nerves. By the third week, STZ-injected rats with encircled nerves were further divided into three subgroups: one involving continuing observation and the other two involving decompression (removal of the latex tube) at different time points (third week and fifth week). Weight and blood glucose were monitored, and behavioral analysis, including paw withdrawal threshold (PWT) and latency, was performed every week during the experimental period (7 weeks).  Hyperglycemia was induced in all STZ-injected rats. A significant increase in weight was observed in the control groups when compared with the experimental groups. By the third week, more STZ-injected rats with encircled nerves developed mechanical allodynia than those without ( P  < 0.05), while no significant difference was noted ( P  > 0.05) on the incidence of thermal hyperalgesia. Mechanical allodynia, but not thermal hyperalgesia, could be ameliorated by the removal of the latex tube at an early stage (third week).  With the combined use of a latex tube and STZ injection, a stable rat model of painful diabetic peripheral neuropathy (DPN) manifesting both thermal hyperalgesia and mechanical allodynia has been established. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  1. The Mechanisms of Psychedelic Visionary Experiences: Hypotheses from Evolutionary Psychology

    PubMed Central

    Winkelman, Michael J.

    2017-01-01

    Neuropharmacological effects of psychedelics have profound cognitive, emotional, and social effects that inspired the development of cultures and religions worldwide. Findings that psychedelics objectively and reliably produce mystical experiences press the question of the neuropharmacological mechanisms by which these highly significant experiences are produced by exogenous neurotransmitter analogs. Humans have a long evolutionary relationship with psychedelics, a consequence of psychedelics' selective effects for human cognitive abilities, exemplified in the information rich visionary experiences. Objective evidence that psychedelics produce classic mystical experiences, coupled with the finding that hallucinatory experiences can be induced by many non-drug mechanisms, illustrates the need for a common model of visionary effects. Several models implicate disturbances of normal regulatory processes in the brain as the underlying mechanisms responsible for the similarities of visionary experiences produced by psychedelic and other methods for altering consciousness. Similarities in psychedelic-induced visionary experiences and those produced by practices such as meditation and hypnosis and pathological conditions such as epilepsy indicate the need for a general model explaining visionary experiences. Common mechanisms underlying diverse alterations of consciousness involve the disruption of normal functions of the prefrontal cortex and default mode network (DMN). This interruption of ordinary control mechanisms allows for the release of thalamic and other lower brain discharges that stimulate a visual information representation system and release the effects of innate cognitive functions and operators. Converging forms of evidence support the hypothesis that the source of psychedelic experiences involves the emergence of these innate cognitive processes of lower brain systems, with visionary experiences resulting from the activation of innate processes based in the mirror neuron system (MNS). PMID:29033783

  2. Mechanisms Underlying Activation of α₁-Adrenergic Receptor-Induced Trafficking of AQP5 in Rat Parotid Acinar Cells under Isotonic or Hypotonic Conditions.

    PubMed

    Bragiel, Aneta M; Wang, Di; Pieczonka, Tomasz D; Shono, Masayuki; Ishikawa, Yasuko

    2016-06-28

    Defective cellular trafficking of aquaporin-5 (AQP5) to the apical plasma membrane (APM) in salivary glands is associated with the loss of salivary fluid secretion. To examine mechanisms of α₁-adrenoceptor (AR)-induced trafficking of AQP5, immunoconfocal microscopy and Western blot analysis were used to analyze AQP5 localization in parotid tissues stimulated with phenylephrine under different osmolality. Phenylephrine-induced trafficking of AQP5 to the APM and lateral plasma membrane (LPM) was mediated via the α1A-AR subtype, but not the α1B- and α1D-AR subtypes. Phenylephrine-induced trafficking of AQP5 was inhibited by ODQ and KT5823, inhibitors of nitric oxide (NO)-stimulated guanylcyclase (GC) and protein kinase (PK) G, respectively, indicating the involvement of the NO/ soluble (c) GC/PKG signaling pathway. Under isotonic conditions, phenylephrine-induced trafficking was inhibited by La(3+), implying the participation of store-operated Ca(2+) channel. Under hypotonic conditions, phenylephrine-induced trafficking of AQP5 to the APM was higher than that under isotonic conditions. Under non-stimulated conditions, hypotonicity-induced trafficking of AQP5 to the APM was inhibited by ruthenium red and La(3+), suggesting the involvement of extracellular Ca(2+) entry. Thus, α1A-AR activation induced the trafficking of AQP5 to the APM and LPM via the Ca(2+)/ cyclic guanosine monophosphate (cGMP)/PKG signaling pathway, which is associated with store-operated Ca(2+) entry.

  3. Effect of exercise training on ventilatory efficiency in patients with heart disease: a review.

    PubMed

    Prado, D M L; Rocco, E A; Silva, A G; Rocco, D F; Pacheco, M T; Furlan, V

    2016-06-20

    The analysis of ventilatory efficiency in cardiopulmonary exercise testing has proven useful for assessing the presence and severity of cardiorespiratory diseases. During exercise, efficient pulmonary gas exchange is characterized by uniform matching of lung ventilation with perfusion. By contrast, mismatching is marked by inefficient pulmonary gas exchange, requiring increased ventilation for a given CO2 production. The etiology of increased and inefficient ventilatory response to exercise in heart disease is multifactorial, involving both peripheral and central mechanisms. Exercise training has been recommended as non-pharmacological treatment for patients with different chronic cardiopulmonary diseases. In this respect, previous studies have reported improvements in ventilatory efficiency after aerobic exercise training in patients with heart disease. Against this background, the primary objective of the present review was to discuss the pathophysiological mechanisms involved in abnormal ventilatory response to exercise, with an emphasis on both patients with heart failure syndrome and coronary artery disease. Secondly, special focus was dedicated to the role of aerobic exercise training in improving indices of ventilatory efficiency among these patients, as well as to the underlying mechanisms involved.

  4. Mechanisms and neuronal networks involved in reactive and proactive cognitive control of interference in working memory.

    PubMed

    Irlbacher, Kerstin; Kraft, Antje; Kehrer, Stefanie; Brandt, Stephan A

    2014-10-01

    Cognitive control can be reactive or proactive in nature. Reactive control mechanisms, which support the resolution of interference, start after its onset. Conversely, proactive control involves the anticipation and prevention of interference prior to its occurrence. The interrelation of both types of cognitive control is currently under debate: Are they mediated by different neuronal networks? Or are there neuronal structures that have the potential to act in a proactive as well as in a reactive manner? This review illustrates the way in which integrating knowledge gathered from behavioral studies, functional imaging, and human electroencephalography proves useful in answering these questions. We focus on studies that investigate interference resolution at the level of working memory representations. In summary, different mechanisms are instrumental in supporting reactive and proactive control. Distinct neuronal networks are involved, though some brain regions, especially pre-SMA, possess functions that are relevant to both control modes. Therefore, activation of these brain areas could be observed in reactive, as well as proactive control, but at different times during information processing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Understanding behavioral effects of early life stress using the reactive scope and allostatic load models

    PubMed Central

    HOWELL, BRITTANY R.; SANCHEZ, MAR M.

    2015-01-01

    The mechanisms through which early life stress leads to psychopathology are thought to involve allostatic load, the “wear and tear” an organism is subjected to as a consequence of sustained elevated levels of glucocorticoids caused by repeated/prolonged stress activations. The allostatic load model described this phenomenon, but has been criticized as inadequate to explain alterations associated with early adverse experience in some systems, including behavior, which cannot be entirely explained from an energy balance perspective. The reactive scope model has been more recently proposed and focuses less on energy balance and more on dynamic ranges of physiological and behavioral mediators. In this review we examine the mechanisms underlying the behavioral consequences of early life stress in the context of both these models. We focus on adverse experiences that involve mother–infant relationship disruption, and dissect those mechanisms involving maternal care as a regulator of development of neural circuits that control emotional and social behaviors in the offspring. We also discuss the evolutionary purpose of the plasticity in behavioral development, which has a clear adaptive value in a changing environment. PMID:22018078

  6. Neurophysiological mechanisms involved in language learning in adults

    PubMed Central

    Rodríguez-Fornells, Antoni; Cunillera, Toni; Mestres-Missé, Anna; de Diego-Balaguer, Ruth

    2009-01-01

    Little is known about the brain mechanisms involved in word learning during infancy and in second language acquisition and about the way these new words become stable representations that sustain language processing. In several studies we have adopted the human simulation perspective, studying the effects of brain-lesions and combining different neuroimaging techniques such as event-related potentials and functional magnetic resonance imaging in order to examine the language learning (LL) process. In the present article, we review this evidence focusing on how different brain signatures relate to (i) the extraction of words from speech, (ii) the discovery of their embedded grammatical structure, and (iii) how meaning derived from verbal contexts can inform us about the cognitive mechanisms underlying the learning process. We compile these findings and frame them into an integrative neurophysiological model that tries to delineate the major neural networks that might be involved in the initial stages of LL. Finally, we propose that LL simulations can help us to understand natural language processing and how the recovery from language disorders in infants and adults can be accomplished. PMID:19933142

  7. PHASE-SHIFT, STIMULI-RESPONSIVE PERFLUOROCARBON NANODROPLETS FOR DRUG DELIVERY TO CANCER

    PubMed Central

    2012-01-01

    This review focuses on phase-shift perfluorocarbon nanoemulsions whose action depends on an ultrasound-triggered phase shift from a liquid to gas state. For drug-loaded perfluorocarbon nanoemulsions, microbubbles are formed under the action of tumor-directed ultrasound and drug is released locally into tumor volume in this process. This review covers in detail mechanisms involved in the droplet-to-bubble transition as well as mechanisms of ultrasound-mediated drug delivery. PMID:22730185

  8. A dynamically minimalist cognitive explanation of musical preference: is familiarity everything?

    PubMed

    Schubert, Emery; Hargreaves, David J; North, Adrian C

    2014-01-01

    This paper examines the idea that attraction to music is generated at a cognitive level through the formation and activation of networks of interlinked "nodes." Although the networks involved are vast, the basic mechanism for activating the links is relatively simple. Two comprehensive cognitive-behavioral models of musical engagement are examined with the aim of identifying the underlying cognitive mechanisms and processes involved in musical experience. A "dynamical minimalism" approach (after Nowak, 2004) is applied to re-interpret musical engagement (listening, performing, composing, or imagining any of these) and to revise the latest version of the reciprocal-feedback model (RFM) of music processing. Specifically, a single cognitive mechanism of "spreading activation" through previously associated networks is proposed as a pleasurable outcome of musical engagement. This mechanism underlies the dynamic interaction of the various components of the RFM, and can thereby explain the generation of positive affects in the listener's musical experience. This includes determinants of that experience stemming from the characteristics of the individual engaging in the musical activity (whether listener, composer, improviser, or performer), the situation and contexts (e.g., social factors), and the music (e.g., genre, structural features). The theory calls for new directions for future research, two being (1) further investigation of the components of the RFM to better understand musical experience and (2) more rigorous scrutiny of common findings about the salience of familiarity in musical experience and preference.

  9. Parallel and interactive learning processes within the basal ganglia: relevance for the understanding of addiction.

    PubMed

    Belin, David; Jonkman, Sietse; Dickinson, Anthony; Robbins, Trevor W; Everitt, Barry J

    2009-04-12

    In this review we discuss the evidence that drug addiction, defined as a maladaptive compulsive habit, results from the progressive subversion by addictive drugs of striatum-dependent operant and Pavlovian learning mechanisms that are usually involved in the control over behaviour by stimuli associated with natural reinforcement. Although mainly organized through segregated parallel cortico-striato-pallido-thalamo-cortical loops involved in motor or emotional functions, the basal ganglia, and especially the striatum, are key mediators of the modulation of behavioural responses, under the control of both action-outcome and stimulus-response mechanisms, by incentive motivational processes and Pavlovian associations. Here we suggest that protracted exposure to addictive drugs recruits serial and dopamine-dependent, striato-nigro-striatal ascending spirals from the nucleus accumbens to more dorsal regions of the striatum that underlie a shift from action-outcome to stimulus-response mechanisms in the control over drug seeking. When this progressive ventral to dorsal striatum shift is combined with drug-associated Pavlovian influences from limbic structures such as the amygdala and the orbitofrontal cortex, drug seeking behaviour becomes established as an incentive habit. This instantiation of implicit sub-cortical processing of drug-associated stimuli and instrumental responding might be a key mechanism underlying the development of compulsive drug seeking and the high vulnerability to relapse which are hallmarks of drug addiction.

  10. Presentation of an approach for the analysis of the mechanical response of propellant under a large spectrum of loadings: numerical and mechanical issues

    NASA Astrophysics Data System (ADS)

    Fanget, Alain

    2009-06-01

    Many authors claim that to understand the response of a propellant, specifically under quasi static and dynamic loading, the mesostructural morphology and the mechanical behaviour of each of its components have to be known. However the scale of the mechanical description of the behaviour of a propellant is relative to its heterogeneities and the wavelength of loading. The shorter it is, the more important the topological description of the material is. In our problems, involving the safety of energetic materials, the propellant can be subjected to a large spectrum of loadings. This presentation is divided into five parts. The first part describes the processes used to extract the information about the morphology of the meso-structure of the material and presents some results. The results, the difficulties and the perspectives for this part will be recalled. The second part determines the physical processes involved at this scale from experimental results. Taking into account the knowledge of the morphology, two ways have been chosen to describe the response of the material. One concerns the quasi static loading, the object of the third part, in which we show how we use the mesoscopic scale as a base of development to build constitutive models. The fourth part presents for low but dynamic loading the comparison between numerical analysis and experiments.

  11. Intercellular and systemic spread of RNA and RNAi in plants.

    PubMed

    Nazim Uddin, Mohammad; Kim, Jae-Yean

    2013-01-01

    Plants possess dynamic networks of intercellular communication that are crucial for plant development and physiology. In plants, intercellular communication involves a combination of ligand-receptor-based apoplasmic signaling, and plasmodesmata and phloem-mediated symplasmic signaling. The intercellular trafficking of macromolecules, including RNAs and proteins, has emerged as a novel mechanism of intercellular communication in plants. Various forms of regulatory RNAs move over distinct cellular boundaries through plasmodesmata and phloem. This plant-specific, non-cell-autonomous RNA trafficking network is also involved in development, nutrient homeostasis, gene silencing, pathogen defense, and many other physiological processes. However, the mechanism underlying macromolecular trafficking in plants remains poorly understood. Current progress made in RNA trafficking research and its biological relevance to plant development will be summarized. Diverse plant regulatory mechanisms of cell-to-cell and systemic long-distance transport of RNAs, including mRNAs, viral RNAs, and small RNAs, will also be discussed. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Novel paradigms to measure variability of behavior in early childhood: posture, gaze, and pupil dilation

    PubMed Central

    Hepach, Robert; Vaish, Amrisha; Tomasello, Michael

    2015-01-01

    A central challenge of investigating the underlying mechanisms of and the individual differences in young children’s behavior is the measurement of the internal physiological mechanism and the involved expressive emotions. Here, we illustrate two paradigms that assess concurrent indicators of both children’s social perception as well as their emotional expression. In one set of studies, children view situations while their eye movements are mapped onto a live scene. In these studies, children’s internal arousal is measured via changes in their pupil dilation by using eye tracking technology. In another set of studies, we measured children’s emotional expression via changes in their upper-body posture by using depth sensor imaging technology. Together, these paradigms can provide new insights into the internal mechanism and outward emotional expression involved in young children’s behavior. PMID:26217246

  13. SLS-1 flight experiments preliminary significant results

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Spacelab Life Sciences-1 (SLS-1) is the first of a series of dedicated life sciences Spacelab missions designed to investigate the mechanisms involved in the physiological adaptation to weightlessness and the subsequent readaptation to 1 gravity (1 G). Hypotheses generated from the physiological effects observed during earlier missions led to the formulation of several integrated experiments to determine the underlying mechanisms responsible for the observed phenomena. The 18 experiments selected for flight on SLS-1 investigated the cardiovascular, cardiopulmonary, regulatory physiology, musculoskeletal, and neuroscience disciplines in both human and rodent subjects. The SLS-1 preliminary results gave insight to the mechanisms involved in the adaptation to the microgravity environment and readaptation when returning to Earth. The experimental results will be used to promote health and safety for future long duration space flights and, as in the past, will be applied to many biomedical problems encountered here on Earth.

  14. Neurobiochemical mechanisms of a ketogenic diet in refractory epilepsy.

    PubMed

    Lima, Patricia Azevedo de; Sampaio, Leticia Pereira de Brito; Damasceno, Nágila Raquel Teixeira

    2014-12-01

    A ketogenic diet is an important therapy used in the control of drug-refractory seizures. Many studies have shown that children and adolescents following ketogenic diets exhibit an over 50% reduction in seizure frequency, which is considered to be clinically relevant. These benefits are based on a diet containing high fat (approximately 90% fat) for 24 months. This dietary model was proposed in the 1920s and has produced variable clinical responses. Previous studies have shown that the mechanisms underlying seizure control involve ketone bodies, which are produced by fatty acid oxidation. Although the pathways involved in the ketogenic diet are not entirely clear, the main effects of the production of ketone bodies appear to be neurotransmitter modulation and antioxidant effects on the brain. This review highlights the impacts of the ketogenic diet on the modulation of neurotransmitters, levels of biogenic monoamines and protective antioxidant mechanisms of neurons. In addition, future perspectives are proposed.

  15. The involvement of audio-motor coupling in the music-supported therapy applied to stroke patients.

    PubMed

    Rodriguez-Fornells, Antoni; Rojo, Nuria; Amengual, Julià L; Ripollés, Pablo; Altenmüller, Eckart; Münte, Thomas F

    2012-04-01

    Music-supported therapy (MST) has been developed recently to improve the use of the affected upper extremity after stroke. MST uses musical instruments, an electronic piano and an electronic drum set emitting piano sounds, to retrain fine and gross movements of the paretic upper extremity. In this paper, we first describe the rationale underlying MST, and we review the previous studies conducted on acute and chronic stroke patients using this new neurorehabilitation approach. Second, we address the neural mechanisms involved in the motor movement improvements observed in acute and chronic stroke patients. Third, we provide some recent studies on the involvement of auditory-motor coupling in the MST in chronic stroke patients using functional neuroimaging. Finally, these ideas are discussed and focused on understanding the dynamics involved in the neural circuit underlying audio-motor coupling and how functional connectivity could help to explain the neuroplastic changes observed after therapy in stroke patients. © 2012 New York Academy of Sciences.

  16. What pharmacological interventions indicate concerning the role of the perirhinal cortex in recognition memory

    PubMed Central

    Brown, M.W.; Barker, G.R.I.; Aggleton, J.P.; Warburton, E.C.

    2012-01-01

    Findings of pharmacological studies that have investigated the involvement of specific regions of the brain in recognition memory are reviewed. The particular emphasis of the review concerns what such studies indicate concerning the role of the perirhinal cortex in recognition memory. Most of the studies involve rats and most have investigated recognition memory for objects. Pharmacological studies provide a large body of evidence supporting the essential role of the perirhinal cortex in the acquisition, consolidation and retrieval of object recognition memory. Such studies provide increasingly detailed evidence concerning both the neurotransmitter systems and the underlying intracellular mechanisms involved in recognition memory processes. They have provided evidence in support of synaptic weakening as a major synaptic plastic process within perirhinal cortex underlying object recognition memory. They have also supplied confirmatory evidence that that there is more than one synaptic plastic process involved. The demonstrated necessity to long-term recognition memory of intracellular signalling mechanisms related to synaptic modification within perirhinal cortex establishes a central role for the region in the information storage underlying such memory. Perirhinal cortex is thereby established as an information storage site rather than solely a processing station. Pharmacological studies have also supplied new evidence concerning the detailed roles of other regions, including the hippocampus and the medial prefrontal cortex in different types of recognition memory tasks that include a spatial or temporal component. In so doing, they have also further defined the contribution of perirhinal cortex to such tasks. To date it appears that the contribution of perirhinal cortex to associative and temporal order memory reflects that in simple object recognition memory, namely that perirhinal cortex provides information concerning objects and their prior occurrence (novelty/familiarity). PMID:22841990

  17. Generalized continuity equations from two-field Schrödinger Lagrangians

    NASA Astrophysics Data System (ADS)

    Spourdalakis, A. G. B.; Pappas, G.; Morfonios, C. Â. V.; Kalozoumis, P. A.; Diakonos, F. K.; Schmelcher, P.

    2016-11-01

    A variational scheme for the derivation of generalized, symmetry-induced continuity equations for Hermitian and non-Hermitian quantum mechanical systems is developed. We introduce a Lagrangian which involves two complex wave fields and whose global invariance under dilation and phase variations leads to a mixed continuity equation for the two fields. In combination with discrete spatial symmetries of the underlying Hamiltonian, the mixed continuity equation is shown to produce bilocal conservation laws for a single field. This leads to generalized conserved charges for vanishing boundary currents and to divergenceless bilocal currents for stationary states. The formalism reproduces the bilocal continuity equation obtained in the special case of P T -symmetric quantum mechanics and paraxial optics.

  18. Ion Transport via Structural Relaxations in Polymerized Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Ganesan, Venkat; Mogurampelly, Santosh

    We study the mechanisms underlying ion transport in poly(1-butyl-3-vinylimidazolium-hexafluorophosphate) polymer electrolytes. We consider polymer electrolytes of varying polymerized ionic liquid to ionic liquid (polyIL:IL) ratios and use atomistic molecular dynamics (MD) simulations to probe the dynamical and structural characteristics of the electrolyte. Our results reveal that anion diffusion along polymer backbone occurs primarily viathe formation and breaking of ion-pairs involving threepolymerized cationic monomers of twodifferent polymer chains. Moreover, we observe that the ionic diffusivities exhibit a direct correlation with the structural relaxation times of the ion-pairs and hydrogen bonds (H-bonds). These results provide new insights into the mechanisms underlying ion transport in polymerized ionic liquid electrolytes.

  19. Health Literacy and Online Health Information Processing: Unraveling the Underlying Mechanisms.

    PubMed

    Meppelink, Corine S; Smit, Edith G; Diviani, Nicola; Van Weert, Julia C M

    2016-01-01

    The usefulness of the Internet as a health information source largely depends on the receiver's health literacy. This study investigates the mechanisms through which health literacy affects information recall and website attitudes. Using 2 independent surveys addressing different Dutch health websites (N = 423 and N = 395), we tested the mediating role of cognitive load, imagination ease, and website involvement. The results showed that the influence of health literacy on information recall and website attitudes was mediated by cognitive load and imagination ease but only marginally by website involvement. Thus, to improve recall and attitudes among people with lower health literacy, online health communication should consist of information that is not cognitively demanding and that is easy to imagine.

  20. Seven Steps to the Diagnosis of NSAIDs Hypersensitivity: How to Apply a New Classification in Real Practice?

    PubMed Central

    Makowska, Joanna S.

    2015-01-01

    Frequent use of non-steroidal anti-inflammatory drugs (NSAIDs) has been paralleled by increasing occurrence of adverse reactions, which vary from mild local skin rashes or gastric irritation to severe, generalized symptoms and even life-threatening anaphylaxis. NSAID-induced hypersensitivity reactions may involve both immunological and non-immunological mechanisms and should be differentiated from type A adverse reactions. Clinical diagnosis and effective management of a hypersensitive patient cannot be achieved without identifying the underlying mechanism. In this review, we discuss the current classification of NSAID-induced adverse reactions and propose a practical diagnostic algorithm that involves 7 steps leading to the determination of the type of NSAID-induced hypersensitivity and allows for proper patient management. PMID:25749768

  1. Octopamine and tyramine modulate the thermoregulatory fanning response in honey bees (Apis mellifera L.)

    USDA-ARS?s Scientific Manuscript database

    Biogenic amines regulate the proximate mechanisms underlying most behavior, including those that contribute to the overall success of complex societies. For honey bees one critical set of behaviors contributing to the welfare of a colony are involved with nest thermoregulation. Worker honey bees co...

  2. REACTIONS OF FUEL NITROGEN COMPOUNDS UNDER CONDITIONS OF INERT PYROLYSIS

    EPA Science Inventory

    The paper describes the pyrolysis of fossil fuels and model nitrogen compounds in helium in a small quartz plow reactor, as part of a study of the chemical mechanisms involved in the conversion of fuel-nitrogen compounds to nitric oxide (NO) during combustion. Hydrogen cyanide (H...

  3. The Role of Thermal Properties in Periodic Time-Varying Phenomena

    ERIC Educational Resources Information Center

    Marin, E.

    2007-01-01

    The role played by physical parameters governing the transport of heat in periodical time-varying phenomena within solids is discussed. Starting with a brief look at the conduction heat transport mechanism, the equations governing heat conduction under static, stationary and non-stationary conditions, and the physical parameters involved, are…

  4. Memory for Pro-Social Intentions: When Competing Motives Collide

    ERIC Educational Resources Information Center

    Brandimonte, Maria A.; Ferrante, Donatella; Bianco, Carmela; Villani, Maria Grazia

    2010-01-01

    Memory for future actions, or "prospective memory" (PM), often involves remembering to do things "for others". The present article explores the motivational mechanisms underlying memory for pro-social intentions through the manipulation of the social relevance of goals and presence of material rewards during an activity-based PM task. Results…

  5. Moire strain analysis of paper

    Treesearch

    R. E. Rowlands; P. K. Beasley; D. E. Gunderson

    1983-01-01

    Efficient use of paper products involves using modern aspects of materials science and engineering mechanics. This implies the ability to determine simultaneously different components of strain at multiple locations and under static or dynamic conditions. Although measuring strains in paper has been a topic of interest for over 40 years, present capability remains...

  6. Theta Synchronizes the Activity of Medial Prefrontal Neurons during Learning

    ERIC Educational Resources Information Center

    Paz, Rony; Bauer, Elizabeth P.; Pare, Denis

    2008-01-01

    Memory consolidation is thought to involve the gradual transfer of transient hippocampal-dependent traces to distributed neocortical sites via the rhinal cortices. Recently, medial prefrontal (mPFC) neurons were shown to facilitate this process when their activity becomes synchronized. However, the mechanisms underlying this enhanced synchrony…

  7. [Advance in research on regulatory mechanism and functions of neutral sphingomyelinse 2].

    PubMed

    Zhang, Lan; Guo, Jun

    2013-10-01

    Neutral sphingomyelinase 2 (nSMase2), which located mainly on the plasma membrane, hydrolyzes sphingomyelin into ceramide and plays an important role in the physiological and pathological regulation of cell apoptosis, cell growth arrest, and inflammation. nSMase2 is also involved in the development of Alzheimer's disease and the bone growth.Under neutral pH and the presence of Ca(2+), Mg(2+), and Mn(+), the activity of nSMase2 is induced by oxidative stress through phosphorylation. Furthermore, the induced interaction of anionic phospholipids and the signaling molecules like receptor for activated C-kinase 1/embryonic ectodermal development with nSMase2 are also crucial mechanisms of protein activation. In the review, recent research advances in the structure and function of nSMase2 and its underlying mechanisms are summarized.

  8. Testicular defense systems: immune privilege and innate immunity

    PubMed Central

    Zhao, Shutao; Zhu, Weiwei; Xue, Shepu; Han, Daishu

    2014-01-01

    The mammalian testis possesses a special immunological environment because of its properties of remarkable immune privilege and effective local innate immunity. Testicular immune privilege protects immunogenic germ cells from systemic immune attack, and local innate immunity is important in preventing testicular microbial infections. The breakdown of local testicular immune homeostasis may lead to orchitis, an etiological factor of male infertility. The mechanisms underlying testicular immune privilege have been investigated for a long time. Increasing evidence shows that both a local immunosuppressive milieu and systemic immune tolerance are involved in maintaining testicular immune privilege status. The mechanisms underlying testicular innate immunity are emerging based on the investigation of the pattern recognition receptor-mediated innate immune response in testicular cells. This review summarizes our current understanding of testicular defense mechanisms and identifies topics that merit further investigation. PMID:24954222

  9. Nitrergic Mechanisms for Management of Recurrent Priapism

    PubMed Central

    Anele, Uzoma A.; Burnett, Arthur L.

    2015-01-01

    Introduction Priapism is a condition involving prolonged penile erection unrelated to sexual interest or desire. The ischemic type, including its recurrent variant, is often associated with both physical and psychological complications. As such, management is of critical importance. Ideal therapies for recurrent priapism should address its underlying pathophysiology. Aim To review the available literature on priapism management approaches particularly related to nitrergic mechanisms. Methods A literature review of the pathophysiology and management of priapism was performed using PubMed. Main Outcome Measure Publications pertaining to mechanisms of the molecular pathophysiology of priapism. Results Nitrergic mechanisms are characterized as major players in the molecular pathophysiology of priapism. PDE5 inhibitors represent an available therapeutic option with demonstrated ability in attenuating these underlying nitrergic derangements. Several additional signaling pathways have been found to play a role in the molecular pathophysiology of priapism and have also been associated with these nitrergic mechanisms. Conclusion An increasing understanding of the molecular pathophysiology of priapism has led to the discovery of new potential targets. Several mechanism-based therapeutic approaches may become available in the future. PMID:26478814

  10. Genetic architecture underlying convergent evolution of egg-laying behavior in a seed-feeding beetle.

    PubMed

    Fox, Charles W; Wagner, James D; Cline, Sara; Thomas, Frances Ann; Messina, Frank J

    2009-05-01

    Independent populations subjected to similar environments often exhibit convergent evolution. An unresolved question is the frequency with which such convergence reflects parallel genetic mechanisms. We examined the convergent evolution of egg-laying behavior in the seed-feeding beetle Callosobruchus maculatus. Females avoid ovipositing on seeds bearing conspecific eggs, but the degree of host discrimination varies among geographic populations. In a previous experiment, replicate lines switched from a small host to a large one evolved reduced discrimination after 40 generations. We used line crosses to determine the genetic architecture underlying this rapid response. The most parsimonious genetic models included dominance and/or epistasis for all crosses. The genetic architecture underlying reduced discrimination in two lines was not significantly different from the architecture underlying differences between geographic populations, but the architecture underlying the divergence of a third line differed from all others. We conclude that convergence of this complex trait may in some cases involve parallel genetic mechanisms.

  11. Blowup with vorticity control for a 2D model of the Boussinesq equations

    NASA Astrophysics Data System (ADS)

    Hoang, V.; Orcan-Ekmekci, B.; Radosz, M.; Yang, H.

    2018-06-01

    We propose a system of equations with nonlocal flux in two space dimensions which is closely modeled after the 2D Boussinesq equations in a hyperbolic flow scenario. Our equations involve a vorticity stretching term and a non-local Biot-Savart law and provide insight into the underlying intrinsic mechanisms of singularity formation. We prove stable, controlled finite time blowup involving upper and lower bounds on the vorticity up to the time of blowup for a wide class of initial data.

  12. Subgroups of musculoskeletal pain patients and their psychobiological patterns - the LOGIN study protocol.

    PubMed

    Gerhardt, Andreas; Hartmann, Mechthild; Tesarz, Jonas; Janke, Susanne; Leisner, Sabine; Seidler, Günter; Eich, Wolfgang

    2012-08-03

    Pain conditions of the musculoskeletal system are very common and have tremendous socioeconomic impact. Despite its high prevalence, musculoskeletal pain remains poorly understood and predominantly non-specifically and insufficiently treated.The group of chronic musculoskeletal pain patients is supposed to be heterogeneous, due to a multitude of mechanisms involved in chronic pain. Psychological variables, psychophysiological processes, and neuroendocrine alterations are expected to be involved. Thus far, studies on musculoskeletal pain have predominantly focused on the general aspects of pain processing, thus neglecting the heterogeneity of patients with musculoskeletal pain. Consequently, there is a need for studies that comprise a multitude of mechanisms that are potentially involved in the chronicity and spread of pain. This need might foster research and facilitate a better pathophysiological understanding of the condition, thereby promoting the development of specific mechanism-based treatments for chronic pain. Therefore, the objectives of this study are as follows: 1) identify and describe subgroups of patients with musculoskeletal pain with regard to clinical manifestations (including mental co-morbidity) and 2) investigate whether distinct sensory profiles or 3) distinct plasma levels of pain-related parameters due to different underlying mechanisms can be distinguished in various subgroups of pain patients. We will examine a population-based chronic pain sample (n = 100), a clinical tertiary care sample (n = 100) and pain-free patients with depression or post-traumatic stress disorder and pain-free healthy controls (each n = 30, respectively). The samples will be pain localisation matched by sex and age to the population-based sample. Patients will undergo physical examination and thorough assessments of mental co-morbidity (including psychological trauma), perceptual and central sensitisation (quantitative sensory testing), descending inhibition (conditioned pain modulation, the diffuse noxious inhibitory control-like effect), as well as measurement of the plasma levels of nerve growth factor and endocannabinoids. The identification of the underlying pathophysiologic mechanisms in different subgroups of chronic musculoskeletal pain patients will contribute to a mechanism-based subgroup classification. This will foster the development of mechanism-based treatments and holds promise to treat patients more sufficient.

  13. Why bother with the brain? A role for decision neuroscience in understanding strategic variability.

    PubMed

    Venkatraman, Vinod

    2013-01-01

    Neuroscience, by its nature, seems to hold considerable promise for understanding the fundamental mechanisms of decision making. In recent years, several studies in the domain of "neuroeconomics" or "decision neuroscience" have provided important insights into brain function. Yet, the apparent success and value of each of these domains are frequently called into question by researchers in economics and behavioral decision making. Critics often charge that knowledge about the brain is unnecessary for understanding decision preferences. In this chapter, I contend that knowledge about underlying brain mechanisms helps in the development of biologically plausible models of behavior, which can then help elucidate the mechanisms underlying individual choice biases and strategic preferences. Using a novel risky choice paradigm, I will demonstrate that people vary in whether they adopt compensatory or noncompensatory rules in economic decision making. Importantly, neuroimaging studies using functional magnetic resonance imaging reveal that distinct neural mechanisms support variability in choices and variability in strategic preferences. Converging evidence from a study involving decisions between hypothetical stocks illustrates how knowledge about the underlying mechanisms can help inform neuroanatomical models of cognitive control. Last, I will demonstrate how knowledge about these underlying neural mechanisms can provide novel insights into the effects of decision states like sleep deprivation on decision preferences. Together, these findings suggest that neuroscience can play a critical role in creating robust and flexible models of real-world decision behavior. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Report to DHS on Summer Internship 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckwith, R H

    2006-07-26

    This summer I worked at Lawrence Livermore National Laboratory in a bioforensics collection and extraction research group under David Camp. The group is involved with researching efficiencies of various methods for collecting bioforensic evidence from crime scenes. The different methods under examination are a wipe, swab, HVAC filter and a vacuum. The vacuum is something that has particularly gone uncharacterized. My time was spent mostly on modeling and calculations work, but at the end of the summer I completed my internship with a few experiments to supplement my calculations. I had two major projects this summer. My first major projectmore » this summer involved fluid mechanics modeling of collection and extraction situations. This work examines different fluid dynamic models for the case of a micron spore attached to a fiber. The second project I was involved with was a statistical analysis of the different sampling techniques.« less

  15. Influence of sulfur oxyanions on reductive dehalogenation activities in Desulfomonile tiedjei.

    PubMed Central

    Townsend, G T; Suflita, J M

    1997-01-01

    The inhibition of aryl reductive dehalogenation reactions by sulfur oxyanions has been demonstrated in environmental samples, dehalogenating enrichments, and the sulfate-reducing bacterium Desulfomonile tiedjei; however, this phenomenon is not well understood. We examined the effects of sulfate, sulfite, and thiosulfate on reductive dehalogenation in the model microorganism D. tiedjei and found separate mechanisms of inhibition due to these oxyanions under growth versus nongrowth conditions. Dehalogenation activity was greatly reduced in extracts of cells grown in the presence of both 3-chlorobenzoate, the substrate or inducer for the aryl dehalogenation activity, and either sulfate, sulfite, or thiosulfate, indicating that sulfur oxyanions repress the requisite enzymes. In extracts of fully induced cells, thiosulfate and sulfite, but not sulfate, were potent inhibitors of aryl dehalogenation activity even in membrane fractions lacking the cytoplasmically located sulfur oxyanion reductase. These results suggest that under growth conditions, sulfur oxyanions serve as preferred electron acceptors and negatively influence dehalogenation activity in D. tiedjei by regulating the amount of active aryl dehalogenase in cells. Additionally, in vitro inhibition by sulfur oxyanions is due to the interaction of the reactive species with enzymes involved in dehalogenation and need not involve competition between two respiratory processes for reducing equivalents. Sulfur oxyanions also inhibited tetrachloroethylene dehalogenation by the same mechanisms, further indicating that chloroethylenes are fortuitously dehalogenated by the aryl dehalogenase. The commonly observed inhibition of reductive dehalogenation reactions under sulfate-reducing conditions may be due to similar regulation mechanisms in other dehalogenating microorganisms that contain multiple respiratory activities. PMID:9293011

  16. Towards the production of salt-tolerant crops.

    PubMed

    Barkla, B J; Vera-Estrella, R; Pantoja, O

    1999-01-01

    Crop production is affected by numerous environmental factors, with soil salinity and drought having the most detrimental effects. Attempts to improve yield under stress conditions by plant breeding have been unsuccessful, primarily due to the multigenic origin of the adaptive responses. The transfer of genes through genetic engineering of crop plants appears more feasible. Important adaptive mechanisms targeted for potential gene transfer would be the tonoplast Na+/H+ antiport, compatible solute synthesis and, regulation of water channel activity and expression, mechanisms involved in cellular osmoregulation. In this review we discuss recent advances in our understanding of these adaptive mechanisms.

  17. Immunological mechanisms behind the cystic fibrosis-ABPA link.

    PubMed

    Hartl, Dominik

    2009-01-01

    Allergic bronchopulmonary aspergillosis (ABPA), a pulmonary hypersensitivity disease mediated by an allergic response to Aspergillus fumigatus (A. fumigatus), occurs preferentially in disease conditions with an impaired pulmonary immunity, especially in cystic fibrosis (CF) and allergic asthma. The pathophysiological mechanisms underlying the link between CF and ABPA are poorly understood. Animal and human data support a critical role for chemokines, especially CCL17 and its receptor CCR4, in ABPA. A summary and discussion of the immunological mechanism involved in the pathogenesis of ABPA with a focus on CF lung disease and the role of chemokines is presented here.

  18. An Overview of the State of the Art in Atomistic and Multiscale Simulation of Fracture

    NASA Technical Reports Server (NTRS)

    Saether, Erik; Yamakov, Vesselin; Phillips, Dawn R.; Glaessgen, Edward H.

    2009-01-01

    The emerging field of nanomechanics is providing a new focus in the study of the mechanics of materials, particularly in simulating fundamental atomic mechanisms involved in the initiation and evolution of damage. Simulating fundamental material processes using first principles in physics strongly motivates the formulation of computational multiscale methods to link macroscopic failure to the underlying atomic processes from which all material behavior originates. This report gives an overview of the state of the art in applying concurrent and sequential multiscale methods to analyze damage and failure mechanisms across length scales.

  19. Out with the old and in with the new: Synaptic mechanisms of extinction in the amygdala

    PubMed Central

    Maren, Stephen

    2014-01-01

    Considerable research indicates that long-term synaptic plasticity in the amygdala underlies the acquisition of emotional memories, including those learned during Pavlovian fear conditioning. Much less is known about the synaptic mechanisms involved in other forms of associative learning, including extinction, that update fear memories. Extinction learning might reverse conditioning-related changes (e.g., depotentiation) or induce plasticity at inhibitory synapses (e.g., long-term potentiation) to suppress conditioned fear responses. Either mechanism must account for fear recovery phenomena after extinction, as well as savings of extinction after fear recovery. PMID:25312830

  20. Magnetoreception in birds: different physical processes for two types of directional responses

    PubMed Central

    Wiltschko, Roswitha; Stapput, Katrin; Ritz, Thorsten; Thalau, Peter; Wiltschko, Wolfgang

    2007-01-01

    Migratory orientation in birds involves an inclination compass based on radical-pair processes. Under certain light regimes, however, “fixed-direction” responses are observed that do not undergo the seasonal change between spring and autumn typical for migratory orientation. To identify the underlying transduction mechanisms, we analyzed a fixed-direction response under a combination of 502 nm turquoise and 590 nm yellow light, with migratory orientation under 565 nm green light serving as the control. High-frequency fields, diagnostic for a radical-pair mechanism, disrupted migratory orientation without affecting fixed-direction responses. Local anaesthesia of the upper beak where magnetite is found in birds, in contrast, disrupted the fixed-direction response without affecting migratory orientation. The two types of responses are thus based on different physical principles, with the compass response based on a radical pair mechanism and the fixed-direction responses probably originating in magnetite-based receptors in the upper beak. Directional input from these receptors seems to affect the behavior only when the regular inclination compass does not work properly. Evolutionary considerations suggest that magnetite-based receptors may represent an ancient mechanism that, in birds, has been replaced by the modern inclination compass based on radical-pair processes now used for directional orientation. PMID:19404459

  1. Identification of cadmium-induced Agaricus blazei genes through suppression subtractive hybridization.

    PubMed

    Wang, Liling; Li, Haibo; Wei, Hailong; Wu, Xueqian; Ke, Leqin

    2014-01-01

    Cadmium (Cd) is one of the most serious environmental pollutants. Filamentous fungi are very promising organisms for controlling and reducing the amount of heavy metals released by human and industrial activities. However, the molecular mechanisms involved in Cd accumulation and tolerance of filamentous fungi are not fully understood. Agaricus blazei Murrill, an edible mushroom with medicinal properties, demonstrates high tolerance for heavy metals, especially Cd. To investigate the molecular mechanisms underlying the response of A. blazei after Cd exposure, we constructed a forward subtractive library that represents cadmium-induced genes in A. blazei under 4 ppm Cd stress for 14 days using suppression subtractive hybridization combined with mirror orientation selection. Differential screening allowed us to identify 39 upregulated genes, 26 of which are involved in metabolism, protein fate, cellular transport, transport facilitation and transport routes, cell rescue, defense and virulence, transcription, and the action of proteins with a binding function, and 13 are encoding hypothetical proteins with unknown functions. Induction of six A. blazei genes after Cd exposure was further confirmed by RT-qPCR. The cDNAs isolated in this study contribute to our understanding of genes involved in the biochemical pathways that participate in the response of filamentous fungi to Cd exposure. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  2. The Escherichia coli Cpx envelope stress response regulates genes of diverse function that impact antibiotic resistance and membrane integrity.

    PubMed

    Raivio, Tracy L; Leblanc, Shannon K D; Price, Nancy L

    2013-06-01

    The Cpx envelope stress response mediates adaptation to stresses that cause envelope protein misfolding. Adaptation is partly conferred through increased expression of protein folding and degradation factors. The Cpx response also plays a conserved role in the regulation of virulence determinant expression and impacts antibiotic resistance. We sought to identify adaptive mechanisms that may be involved in these important functions by characterizing changes in the transcriptome of two different Escherichia coli strains when the Cpx response is induced. We show that, while there is considerable strain- and condition-specific variability in the Cpx response, the regulon is enriched for proteins and functions that are inner membrane associated under all conditions. Genes that were changed by Cpx pathway induction under all conditions were involved in a number of cellular functions and included several intergenic regions, suggesting that posttranscriptional regulation is important during Cpx-mediated adaptation. Some Cpx-regulated genes are centrally involved in energetics and play a role in antibiotic resistance. We show that a number of small, uncharacterized envelope proteins are Cpx regulated and at least two of these affect phenotypes associated with membrane integrity. Altogether, our work suggests new mechanisms of Cpx-mediated envelope stress adaptation and antibiotic resistance.

  3. Excess thyroid hormone inhibits embryonic neural stem/progenitor cells proliferation and maintenance through STAT3 signalling pathway.

    PubMed

    Chen, Chunhai; Zhou, Zhou; Zhong, Min; Li, Maoquan; Yang, Xuesen; Zhang, Yanwen; Wang, Yuan; Wei, Aimin; Qu, Mingyue; Zhang, Lei; Xu, Shangcheng; Chen, Shude; Yu, Zhengping

    2011-07-01

    Hyperthyroidism is prevalent during pregnancy, but little is known about the effects of excess thyroid hormone on the development of embryonic neural stem/progenitor cells (NSCs), and the mechanisms underlying these effects. Previous studies indicate that STAT3 plays a crucial role in determining NSC fate during neurodevelopment. In this study, we investigated the effects of a supraphysiological dose of 3,5,3'-L-triiodothyronine (T3) on the proliferation and maintenance of NSCs derived from embryonic day 13.5 mouse neocortex, and the involvement of STAT3 in this process. Our results suggest that excess T3 treatment inhibits NSC proliferation and maintenance. T3 decreased tyrosine phosphorylation of JAK1, JAK2 and STAT3, and subsequently inhibited STAT3-DNA binding activity. Furthermore, proliferation and maintenance of NSCs were decreased by inhibitors of JAKs and STAT3, indicating that the STAT3 signalling pathway is involved in the process of NSC proliferation and maintenance. Taken together, these results suggest that the STAT3 signalling pathway is involved in the process of T3-induced inhibition of embryonic NSC proliferation and maintenance. These findings provide data for understanding the effects of hyperthyroidism during pregnancy on fetal brain development, and the mechanisms underlying these effects.

  4. Sickle cell disease: renal manifestations and mechanisms

    PubMed Central

    Nath, Karl A.; Hebbel, Robert P.

    2015-01-01

    Sickle cell disease (SCD) substantially alters renal structure and function, and causes various renal syndromes and diseases. Such diverse renal outcomes reflect the uniquely complex vascular pathobiology of SCD and the propensity of red blood cells to sickle in the renal medulla because of its hypoxic, acidotic, and hyperosmolar conditions. Renal complications and involvement in sickle cell nephropathy (SCN) include altered haemodynamics, hypertrophy, assorted glomerulopathies, chronic kidney disease, acute kidney injury, impaired urinary concentrating ability, distal nephron dysfunction, haematuria, and increased risks of urinary tract infections and renal medullary carcinoma. SCN largely reflects an underlying vasculopathy characterized by cortical hyperperfusion, medullary hypoperfusion, and an increased, stress-induced vasoconstrictive response. Renal involvement is usually more severe in homozygous disease (sickle cell anaemia, HbSS) than in compound heterozygous types of SCD (for example HbSC and HbSβ+-thalassaemia), and is typically mild, albeit prevalent, in the heterozygous state (sickle cell trait, HbAS). Renal involvement contributes substantially to the diminished life expectancy of patients with SCD, accounting for 16–18% of mortality. As improved clinical care promotes survival into adulthood, SCN imposes a growing burden on both individual health and health system costs. This Review addresses the renal manifestations of SCD and focuses on their underlying mechanisms. PMID:25668001

  5. The human sexual response cycle: brain imaging evidence linking sex to other pleasures.

    PubMed

    Georgiadis, J R; Kringelbach, M L

    2012-07-01

    Sexual behavior is critical to species survival, yet comparatively little is known about the neural mechanisms in the human brain. Here we systematically review the existing human brain imaging literature on sexual behavior and show that the functional neuroanatomy of sexual behavior is comparable to that involved in processing other rewarding stimuli. Sexual behavior clearly follows the established principles and phases for wanting, liking and satiety involved in the pleasure cycle of other rewards. The studies have uncovered the brain networks involved in sexual wanting or motivation/anticipation, as well as sexual liking or arousal/consummation, while there is very little data on sexual satiety or post-orgasmic refractory period. Human sexual behavior also interacts with other pleasures, most notably social interaction and high arousal states. We discuss the changes in the underlying brain networks supporting sexual behavior in the context of the pleasure cycle, the changes to this cycle over the individual's life-time and the interactions between them. Overall, it is clear from the data that the functional neuroanatomy of sex is very similar to that of other pleasures and that it is unlikely that there is anything special about the brain mechanisms and networks underlying sex. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Ovarian cancer: prevention, detection, and treatment of the disease and its recurrence. Molecular mechanisms and personalized medicine meeting report.

    PubMed

    Modugno, Francesmary; Edwards, Robert P

    2012-10-01

    To review the current understanding of the underlying molecular, biologic, and genetic mechanisms involved in ovarian cancer development and how these mechanisms can be targets for prevention, detection, and treatment of the disease and its recurrence. In May 2012, we convened a meeting of researchers, clinicians, and consumer advocates to review the state of current knowledge on molecular mechanisms and identify fruitful areas for further investigations. The meeting consisted of 7 scientific sessions ranging from Epidemiology, Early Detection, and Biology to Therapeutics and Quality of Life. Sessions consisted of talks and panel discussions by international leaders in ovarian cancer research. A special career development session by the Congressionally Directed Medical Research Program Department of Defense Ovarian Cancer Academy as well as an oral abstract and poster session showcased promising new research by junior scientists. Technological advances in the last decade have increased our knowledge of the molecular mechanisms involved in a host of biological activities related to ovarian cancer. Understanding the role these mechanisms play in cancer initiation and progression will help lead to the development of prevention and treatment modalities that can be personalized to each patient, thereby helping to overcome this highly fatal malignancy.

  7. Synaptic plasticity in the medial vestibular nuclei: role of glutamate receptors and retrograde messengers in rat brainstem slices.

    PubMed

    Grassi, S; Pettorossi, V E

    2001-08-01

    The analysis of cellular-molecular events mediating synaptic plasticity within vestibular nuclei is an attempt to explain the mechanisms underlying vestibular plasticity phenomena. The present review is meant to illustrate the main results, obtained in vitro, on the mechanisms underlying long-term changes in synaptic strength within the medial vestibular nuclei. The synaptic plasticity phenomena taking place at the level of vestibular nuclei could be useful for adapting and consolidating the efficacy of vestibular neuron responsiveness to environmental requirements, as during visuo-vestibular recalibration and vestibular compensation. Following a general introduction on the most salient features of vestibular compensation and visuo-vestibular adaptation, which are two plastic events involving neuronal circuitry within the medial vestibular nuclei, the second and third sections describe the results from rat brainstem slice studies, demonstrating the possibility to induce long-term potentiation and depression in the medial vestibular nuclei, following high frequency stimulation of the primary vestibular afferents. In particular the mechanisms sustaining the induction and expression of vestibular long-term potentiation and depression, such as the role of various glutamate receptors and retrograde messengers have been described. The relevant role of the interaction between the platelet-activating factor, acting as a retrograde messenger, and the presynaptic metabotropic glutamate receptors, in determining the full expression of vestibular long-term potentiation is also underlined. In addition, the mechanisms involved in vestibular long-term potentiation have been compared with those leading to long-term potentiation in the hippocampus to emphasize the most significant differences emerging from vestibular studies. The fourth part, describes recent results demonstrating the essential role of nitric oxide, another retrograde messenger, in the induction of vestibular potentiation. Finally the fifth part suggests the possible functional significance of different action times of the two retrograde messengers and metabotropic glutamate receptors, which are involved in mediating the presynaptic mechanism sustaining vestibular long-term potentiation.

  8. Magnetization mechanisms in ordered arrays of polycrystalline Fe100-xCox nanowires

    NASA Astrophysics Data System (ADS)

    Viqueira, M. S.; Bajales, N.; Urreta, S. E.; Bercoff, P. G.

    2015-05-01

    Magnetization reversal processes and coercivity mechanisms in polycrystalline Fe100-xCox nanowire arrays, resulting from an AC electrodeposition process, are investigated. The array coercivity is described on the basis of polarization reversal mechanisms operating in individual wires, under the effect of inter-wire dipolar interactions described by a mean field approximation. For individual wires, a reversal mechanism involving the nucleation and further expansion of domain-wall like spin configuration is considered. The wires have a mean grain size larger than both the nanowire diameter and the exchange length, so localized and non-cooperative nucleation modes are considered. As the Co content increases, the alloy saturation polarization gradually decreases, but the coercive field and the relative remanence of the arrays increase, indicating that they are not controlled by the shape anisotropy in all the composition range. The coercive field dependence on the angle between the applied field and the wire long axis is not well described by reversal mechanisms involving nucleation and further displacement of neither vortex nor transverse ideal domain walls. On the contrary, the angular dependence of the coercive field observed at room temperature is well predicted by a model considering nucleation of inverse domains by localized curling, in regions smaller than the grain size, exhibiting quite small aspect ratios as compared to those of the entire nanowire. In arrays with higher Co contents, a transition from an initial (small angle) localized curling nucleation mechanism to another one, involving localized coherent rotation is observed at about π/4.

  9. Functional stability of cerebral circulatory system

    NASA Technical Reports Server (NTRS)

    Moskalenko, Y. Y.

    1980-01-01

    The functional stability of the cerebral circulation system seems to be based on the active mechanisms and on those stemming from specific of the biophysical structure of the system under study. This latter parameter has some relevant criteria for its quantitative estimation. The data obtained suggest that the essential part of the mechanism for active responses of cerebral vessels which maintains the functional stability of this portion of the vascular system, consists of a neurogenic component involving central nervous structures localized, for instance, in the medulla oblongata.

  10. Carcinogen-induced trans activation of gene expression.

    PubMed Central

    Kleinberger, T; Flint, Y B; Blank, M; Etkin, S; Lavi, S

    1988-01-01

    We report a new mechanism of carcinogen action by which the expression of several genes was concomitantly enhanced. This mechanism involved the altered activity of cellular factors which modulate the expression of genes under their control. The increased expression was regulated at least in part on the transcriptional level and did not require amplification of the overexpressed genes. This phenomenon was transient; it was apparent as early as 24 h after carcinogen treatment and declined a few days later. Images PMID:2835673

  11. Clustering mechanism of oxocarboxylic acids involving hydration reaction: Implications for the atmospheric models

    NASA Astrophysics Data System (ADS)

    Liu, Ling; Kupiainen-Määttä, Oona; Zhang, Haijie; Li, Hao; Zhong, Jie; Kurtén, Theo; Vehkamäki, Hanna; Zhang, Shaowen; Zhang, Yunhong; Ge, Maofa; Zhang, Xiuhui; Li, Zesheng

    2018-06-01

    The formation of atmospheric aerosol particles from condensable gases is a dominant source of particulate matter in the boundary layer, but the mechanism is still ambiguous. During the clustering process, precursors with different reactivities can induce various chemical reactions in addition to the formation of hydrogen bonds. However, the clustering mechanism involving chemical reactions is rarely considered in most of the nucleation process models. Oxocarboxylic acids are common compositions of secondary organic aerosol, but the role of oxocarboxylic acids in secondary organic aerosol formation is still not fully understood. In this paper, glyoxylic acid, the simplest and the most abundant atmospheric oxocarboxylic acid, has been selected as a representative example of oxocarboxylic acids in order to study the clustering mechanism involving hydration reactions using density functional theory combined with the Atmospheric Clusters Dynamic Code. The hydration reaction of glyoxylic acid can occur either in the gas phase or during the clustering process. Under atmospheric conditions, the total conversion ratio of glyoxylic acid to its hydration reaction product (2,2-dihydroxyacetic acid) in both gas phase and clusters can be up to 85%, and the product can further participate in the clustering process. The differences in cluster structures and properties induced by the hydration reaction lead to significant differences in cluster formation rates and pathways at relatively low temperatures.

  12. The Nitric Oxide Donor SNAP-Induced Amino Acid Neurotransmitter Release in Cortical Neurons. Effects of Blockers of Voltage-Dependent Sodium and Calcium Channels

    PubMed Central

    Merino, José Joaquín; Arce, Carmen; Naddaf, Ahmad; Bellver-Landete, Victor; Oset-Gasque, Maria Jesús; González, María Pilar

    2014-01-01

    Background The discovery that nitric oxide (NO) functions as a signalling molecule in the nervous system has radically changed the concept of neuronal communication. NO induces the release of amino acid neurotransmitters but the underlying mechanisms remain to be elucidated. Findings The aim of this work was to study the effect of NO on amino acid neurotransmitter release (Asp, Glu, Gly and GABA) in cortical neurons as well as the mechanism underlying the release of these neurotransmitters. Cortical neurons were stimulated with SNAP, a NO donor, and the release of different amino acid neurotransmitters was measured by HPLC. The involvement of voltage dependent Na+ and Ca2+ channels as well as cGMP in its mechanism of action was evaluated. Conclusions Our results indicate that NO induces release of aspartate, glutamate, glycine and GABA in cortical neurons and that this release is inhibited by ODQ, an inhibitor of soluble guanylate cyclase. Thus, the NO effect on amino acid neurotransmission could be mediated by cGMP formation in cortical neurons. Our data also demonstrate that the Na+ and Ca2+ voltage- dependent calcium channels are involved in the NO effects on cortical neurons. PMID:24598811

  13. Biomarkers of anhedonic-like behavior, antidepressant drug refraction, and stress resilience in a rat model of depression.

    PubMed

    Christensen, T; Bisgaard, C F; Wiborg, O

    2011-11-24

    The aim of the present study was to identify potential biomarkers for depression in the search for novel disease targets and treatment regimens. Furthermore, the study includes a search for biomarkers involved in treatment resistance and stress resilience in order to investigate mechanisms underlying antidepressant drug refraction and stress-coping strategies. Depression-related transcriptomic changes in gene expression profiles were investigated in laser-captured microdissected (LCM) rat hippocampal granular cell layers (GCL) using the chronic mild stress (CMS) rat model of depression and chronic administration of two selective serotonin reuptake inhibitors (SSRIs), escitalopram and sertraline. CMS rats were segregated into diverging groups according to behavioral readouts, and under stringent constraints, the associated differential gene regulations were analyzed. Accordingly, we identified four genes associated with recovery, two genes implicated in treatment resistance, and three genes involved in stress resilience. The identified genes associated with mechanisms of cellular plasticity, including signal transduction, cell proliferation, cell differentiation, and synaptic release. Hierarchical clustering analysis confirmed the subgroup segregation pattern in the CMS model. Thus antidepressant treatment refractors cluster with anhedonic-like rats, and, interestingly, stress-resilient rats cluster with rats undergoing antidepressant-mediated recovery from anhedonia, suggesting antidepressant mechanisms of action to emulate endogenous stress-coping strategies. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants

    PubMed Central

    Hasanuzzaman, Mirza; Nahar, Kamrun; Alam, Md. Mahabub; Roychowdhury, Rajib; Fujita, Masayuki

    2013-01-01

    High temperature (HT) stress is a major environmental stress that limits plant growth, metabolism, and productivity worldwide. Plant growth and development involve numerous biochemical reactions that are sensitive to temperature. Plant responses to HT vary with the degree and duration of HT and the plant type. HT is now a major concern for crop production and approaches for sustaining high yields of crop plants under HT stress are important agricultural goals. Plants possess a number of adaptive, avoidance, or acclimation mechanisms to cope with HT situations. In addition, major tolerance mechanisms that employ ion transporters, proteins, osmoprotectants, antioxidants, and other factors involved in signaling cascades and transcriptional control are activated to offset stress-induced biochemical and physiological alterations. Plant survival under HT stress depends on the ability to perceive the HT stimulus, generate and transmit the signal, and initiate appropriate physiological and biochemical changes. HT-induced gene expression and metabolite synthesis also substantially improve tolerance. The physiological and biochemical responses to heat stress are active research areas, and the molecular approaches are being adopted for developing HT tolerance in plants. This article reviews the recent findings on responses, adaptation, and tolerance to HT at the cellular, organellar, and whole plant levels and describes various approaches being taken to enhance thermotolerance in plants. PMID:23644891

  15. Effect of fibrillation conditions on the anti-amyloidogenic properties of polyphenols and their involved mechanisms.

    PubMed

    Mahdavimehr, Mohsen; Katebi, Bentolhoda; Meratan, Ali Akbar

    2018-06-24

    In the present study, we have investigated the effects of protein concentration and stirring on the in vitro assembly of Hen Egg White Lysozyme (HEWL), particularly with regard to the aggregate morphology and anti-amyloidogenic properties of two naturally occurring polyphenols, taxifolin and silibinin. The results obtained clearly demonstrated that applying stirring and concentration enhancement alter the amount as well as morphology of amyloid fibrils formed. Additionally, latter aggregates exhibited higher affinity for amyloid-specific dyes. The second part of the present investigation was devoted to studies involving anti-amyloidogenic properties of selected polyphenols. Importantly, we found that the potency of polyphenols to inhibit HEWL amyloid fibrillation and related toxicity is strongly dependent on the amyloidogenic conditions in which amyloid fibrils are produced. Based on obtained data, under condition where the rate of protein assembly is high (higher protein concentration and stirring), the capacity of polyphenols to inhibit HEWL fibrillogenesis and related cytotoxicity may dramatically decrease. Similar results were obtained when we used taxifolin to inhibit bovine insulin amyloid fibrillation. Additionally, amyloidogenic conditions may also affect the mechanism by which these molecules inhibit HEWL fibrillation. The possible mechanism by which selected polyphenols exert their inhibitory effects, under various experimental conditions, is also discussed. Copyright © 2018. Published by Elsevier B.V.

  16. The impact of Polycomb group (PcG) and Trithorax group (TrxG) epigenetic factors in plant plasticity.

    PubMed

    de la Paz Sanchez, Maria; Aceves-García, Pamela; Petrone, Emilio; Steckenborn, Stefan; Vega-León, Rosario; Álvarez-Buylla, Elena R; Garay-Arroyo, Adriana; García-Ponce, Berenice

    2015-11-01

    Current advances indicate that epigenetic mechanisms play important roles in the regulatory networks involved in plant developmental responses to environmental conditions. Hence, understanding the role of such components becomes crucial to understanding the mechanisms underlying the plasticity and variability of plant traits, and thus the ecology and evolution of plant development. We now know that important components of phenotypic variation may result from heritable and reversible epigenetic mechanisms without genetic alterations. The epigenetic factors Polycomb group (PcG) and Trithorax group (TrxG) are involved in developmental processes that respond to environmental signals, playing important roles in plant plasticity. In this review, we discuss current knowledge of TrxG and PcG functions in different developmental processes in response to internal and environmental cues and we also integrate the emerging evidence concerning their function in plant plasticity. Many such plastic responses rely on meristematic cell behavior, including stem cell niche maintenance, cellular reprogramming, flowering and dormancy as well as stress memory. This information will help to determine how to integrate the role of epigenetic regulation into models of gene regulatory networks, which have mostly included transcriptional interactions underlying various aspects of plant development and its plastic response to environmental conditions. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  17. Boron stress response and accumulation potential of the extremely tolerant species Puccinellia frigida.

    PubMed

    Rámila, Consuelo D P; Contreras, Samuel A; Di Domenico, Camila; Molina-Montenegro, Marco A; Vega, Andrea; Handford, Michael; Bonilla, Carlos A; Pizarro, Gonzalo E

    2016-11-05

    Phytoremediation is a promising technology to tackle boron toxicity, which restricts agricultural activities in many arid and semi-arid areas. Puccinellia frigida is a perennial grass that was reported to hyperaccumulate boron in extremely boron-contaminated sites. To further investigate its potential for phytoremediation, we determined its response to boron stress under controlled conditions (hydroponic culture). Also, as a first step towards understanding the mechanisms underlying its extreme tolerance, we evaluated the presence and expression of genes related with boron tolerance. We found that P. frigida grew normally even at highly toxic boron concentrations in the medium (500mg/L), and within its tissues (>5000mg/kg DW). We postulate that the strategies conferring this extreme tolerance involve both restricting boron accumulation and an internal tolerance mechanism; this is consistent with the identification of putative genes involved in both mechanisms, including the expression of a possible boron efflux transporter. We also found that P. frigida hyperaccumulated boron over a wide range of boron concentrations. We propose that P. frigida could be used for boron phytoremediation strategies in places with different soil characteristics and boron concentrations. Further studies should pave the way for the development of clean and low-cost solutions to boron toxicity problems. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Statistical learning: a powerful mechanism that operates by mere exposure.

    PubMed

    Aslin, Richard N

    2017-01-01

    How do infants learn so rapidly and with little apparent effort? In 1996, Saffran, Aslin, and Newport reported that 8-month-old human infants could learn the underlying temporal structure of a stream of speech syllables after only 2 min of passive listening. This demonstration of what was called statistical learning, involving no instruction, reinforcement, or feedback, led to dozens of confirmations of this powerful mechanism of implicit learning in a variety of modalities, domains, and species. These findings reveal that infants are not nearly as dependent on explicit forms of instruction as we might have assumed from studies of learning in which children or adults are taught facts such as math or problem solving skills. Instead, at least in some domains, infants soak up the information around them by mere exposure. Learning and development in these domains thus appear to occur automatically and with little active involvement by an instructor (parent or teacher). The details of this statistical learning mechanism are discussed, including how exposure to specific types of information can, under some circumstances, generalize to never-before-observed information, thereby enabling transfer of learning. WIREs Cogn Sci 2017, 8:e1373. doi: 10.1002/wcs.1373 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  19. Social Cognition and the Evolution of Language: Constructing Cognitive Phylogenies

    PubMed Central

    Fitch, W. Tecumseh; Huber, Ludwig; Bugnyar, Thomas

    2015-01-01

    Human language and social cognition are closely linked: advanced social cognition is necessary for children to acquire language, and language allows forms of social understanding (and, more broadly, culture) that would otherwise be impossible. Both “language” and “social cognition” are complex constructs, involving many independent cognitive mechanisms, and the comparative approach provides a powerful route to understanding the evolution of such mechanisms. We provide a broad comparative review of mechanisms underlying social intelligence in vertebrates, with the goal of determining which human mechanisms are broadly shared, which have evolved in parallel in other clades, and which, potentially, are uniquely developed in our species. We emphasize the importance of convergent evolution for testing hypotheses about neural mechanisms and their evolution. PMID:20346756

  20. The Extreme Mechanics of Soft Structures

    NASA Astrophysics Data System (ADS)

    Reis, Pedro

    2015-03-01

    I will present a series of experimental investigations on the rich behavior of soft mechanical structures, which, similarly to soft materials, can undergo large deformations under a variety of loading conditions. Soft structures typically comprise slender elements that can readily undergo mechanical instabilities to achieve extreme flexibility and reversible reconfigurations. This field has came to be warmly known as `Extreme Mechanics', where one of the fundamental challenges lies in rationalizing the geometric nonlinearities that arise in the post-buckling regime. I shall focus on problems involving thin elastic rods and shells, through examples ranging from the deployment of submarine cables onto the seabed, locomotion of uniflagellar bacteria, crystallography of curved wrinkling and its usage for active aerodynamic drag reduction. The main common feature underlying this series of studies is the prominence of geometry, and its interplay with mechanics, in dictating complex mechanical behavior that is relevant and applicable over a wide range of length scales. Moreover, our findings suggest that we rethink our relationship with mechanical instabilities which, rather than modes of failure, can be embraced as opportunities for functionality that are scalable, reversible, and robust. The author knowledges financial support from the National Science Foundation, CMMI-1351449 (CAREER).

  1. Dysfunctions of decision-making and cognitive control as transdiagnostic mechanisms of mental disorders: advances, gaps, and needs in current research.

    PubMed

    Goschke, Thomas

    2014-01-01

    Disadvantageous decision-making and impaired volitional control over actions, thoughts, and emotions are characteristics of a wide range of mental disorders such as addiction, eating disorders, depression, and anxiety disorders and may reflect transdiagnostic core mechanisms and possibly vulnerability factors. Elucidating the underlying neurocognitive mechanisms is a precondition for moving from symptom-based to mechanism-based disorder classifications and ultimately mechanism-targeted interventions. However, despite substantial advances in basic research on decision-making and cognitive control, there are still profound gaps in our current understanding of dysfunctions of these processes in mental disorders. Central unresolved questions are: (i) to which degree such dysfunctions reflect transdiagnostic mechanisms or disorder-specific patterns of impairment; (ii) how phenotypical features of mental disorders relate to dysfunctional control parameter settings and aberrant interactions between large-scale brain systems involved in habit and reward-based learning, performance monitoring, emotion regulation, and cognitive control; (iii) whether cognitive control impairments are consequences or antecedent vulnerability factors of mental disorders; (iv) whether they reflect generalized competence impairments or context-specific performance failures; (v) whether not only impaired but also chronic over-control contributes to mental disorders. In the light of these gaps, needs for future research are: (i) an increased focus on basic cognitive-affective mechanisms underlying decision and control dysfunctions across disorders; (ii) longitudinal-prospective studies systematically incorporating theory-driven behavioural tasks and neuroimaging protocols to assess decision-making and control dysfunctions and aberrant interactions between underlying large-scale brain systems; (iii) use of latent-variable models of cognitive control rather than single tasks; (iv) increased focus on the interplay of implicit and explicit cognitive-affective processes; (v) stronger focus on computational models specifying neurocognitive mechanisms underlying phenotypical expressions of mental disorders. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin.

    PubMed

    Shi, Haitao; Jiang, Chuan; Ye, Tiantian; Tan, Dun-Xian; Reiter, Russel J; Zhang, Heng; Liu, Renyi; Chan, Zhulong

    2015-02-01

    Melatonin (N-acetyl-5-methoxytryptamine), a well-known animal hormone, is also involved in plant development and abiotic stress responses. In this study, it is shown that exogenous application of melatonin conferred improved salt, drought, and cold stress resistances in bermudagrass. Moreover, exogenous melatonin treatment alleviated reactive oxygen species (ROS) burst and cell damage induced by abiotic stress; this involved activation of several antioxidants. Additionally, melatonin-pre-treated plants exhibited higher concentrations of 54 metabolites, including amino acids, organic acids, sugars, and sugar alcohols, than non-treated plants under abiotic stress conditions. Genome-wide transcriptomic profiling identified 3933 transcripts (2361 up-regulated and 1572 down-regulated) that were differentially expressed in melatonin-treated plants versus controls. Pathway and gene ontology (GO) term enrichment analyses revealed that genes involved in nitrogen metabolism, major carbohydrate metabolism, tricarboxylic acid (TCA)/org transformation, transport, hormone metabolism, metal handling, redox, and secondary metabolism were over-represented after melatonin pre-treatment. Taken together, this study provides the first evidence of the protective roles of exogenous melatonin in the bermudagrass response to abiotic stresses, partially via activation of antioxidants and modulation of metabolic homeostasis. Notably, metabolic and transcriptomic analyses showed that the underlying mechanisms of melatonin could involve major reorientation of photorespiratory and carbohydrate and nitrogen metabolism. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. Biological mechanisms discriminating growth rate and adult body weight phenotypes in two Chinese indigenous chicken breeds.

    PubMed

    Dou, Tengfei; Zhao, Sumei; Rong, Hua; Gu, Dahai; Li, Qihua; Huang, Ying; Xu, Zhiqiang; Chu, Xiaohui; Tao, Linli; Liu, Lixian; Ge, Changrong; Te Pas, Marinus F W; Jia, Junjing

    2017-06-20

    Intensive selection has resulted in increased growth rates and muscularity in broiler chickens, in addition to adverse effects, including delayed organ development, sudden death syndrome, and altered metabolic rates. The biological mechanisms underlying selection responses remain largely unknown. Non-artificially-selected indigenous Chinese chicken breeds display a wide variety of phenotypes, including differential growth rate, body weight, and muscularity. The Wuding chicken breed is a fast growing large chicken breed, and the Daweishan mini chicken breed is a slow growing small chicken breed. Together they form an ideal model system to study the biological mechanisms underlying broiler chicken selection responses in a natural system. The objective of this study was to study the biological mechanisms underlying differential phenotypes between the two breeds in muscle and liver tissues, and relate these to the growth rate and body development phenotypes of the two breeds. The muscle tissue in the Wuding breed showed higher expression of muscle development genes than muscle tissue in the Daweishan chicken breed. This expression was accompanied by higher expression of acute inflammatory response genes in Wuding chicken than in Daweishan chicken. The muscle tissue of the Daweishan mini chicken breed showed higher expression of genes involved in several metabolic mechanisms including endoplasmic reticulum, protein and lipid metabolism, energy metabolism, as well as specific immune traits than in the Wuding chicken. The liver tissue showed fewer differences between the two breeds. Genes displaying higher expression in the Wuding breed than in the Daweishan breed were not associated with a specific gene network or biological mechanism. Genes highly expressed in the Daweishan mini chicken breed compared to the Wuding breed were enriched for protein metabolism, ABC receptors, signal transduction, and IL6-related mechanisms. We conclude that faster growth rates and larger body size are related to increased expression of genes involved in muscle development and immune response in muscle, while slower growth rates and smaller body size are related to increased general cellular metabolism. The liver of the Daweishan breed displayed increased expression of metabolic genes.

  4. ER-mediated stress induces mitochondrial-dependent caspases activation in NT2 neuron-like cells.

    PubMed

    Arduino, Daniela M; Esteves, A Raquel; Domingues, A Filipa; Pereira, Claudia M F; Cardoso, Sandra M; Oliveira, Catarina R

    2009-11-30

    Recent studies have revealed that endoplasmic reticulum (ER) disturbance is involved in the pathophysiology of neurodegenerative disorders, contributing to the activation of the ER stress-mediated apoptotic pathway. Therefore, we investigated here the molecular mechanisms underlying the ER-mitochondria axis, focusing on calcium as a potential mediator of cell death signals. Using NT2 cells treated with brefeldin A or tunicamycin, we observed that ER stress induces changes in the mitochondrial function, impairing mitochondrial membrane potential and distressing mitochondrial respiratory chain complex Moreover, stress stimuli at ER level evoked calcium fluxes between ER and mitochondria. Under these conditions, ER stress activated the unfolded protein response by an overexpression of GRP78, and also caspase-4 and-2, both involved upstream of caspase-9. Our findings show that ER and mitochondria interconnection plays a prominent role in the induction of neuronal cell death under particular stress circumstances.

  5. Physical mechanisms of self-organization and formation of current patterns in gas discharges of the Townsend and glow types

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raizer, Yu. P.; Mokrov, M. S.

    The paper discusses current filamentation and formation of current structures (in particular, hexagonal current patterns) in discharges of the Townsend and glow types. The aim of the paper, which is in part a review, is to reveal basic reasons for formation of current patterns in different cases, namely, in dielectric barrier discharge, discharge with semiconductor cathode, and micro-discharge between metallic electrodes. Pursuing this goal, we give a very brief review of observations and discuss only those theoretical, computational, and experimental papers that shed light on the physical mechanisms involved. The mechanisms are under weak currents—the thermal expansion of the gasmore » as a result of Joule heating; under enhanced currents—the electric field and ionization rate redistribution induced by space charge. Both mechanisms lead to instability of the homogeneous discharges. In addition, we present new results of numerical simulations of observed short-living current filaments which are chaotic in space and time.« less

  6. Infant sleep and paternal involvement in infant caregiving during the first 6 months of life.

    PubMed

    Tikotzky, Liat; Sadeh, Avi; Glickman-Gavrieli, Tamar

    2011-01-01

    The goals of this study were to assess: (a) the involvement of fathers and mothers in overall and nighttime infant caregiving; (b) the links between paternal involvement in infant care and infant sleep patterns during the first 6 months. Fifty-six couples recruited during their first pregnancy, participated in the study. After delivery (1 and 6 months), both parents completed a questionnaire assessing the involvement of fathers relative to mothers in infant caregiving. Infant sleep was assessed using actigraphy and sleep diaries. Mothers were significantly more involved than fathers in daytime and nighttime caregiving. A higher involvement of fathers in overall infant care predicted and was associated with fewer infant night-wakings and with shorter total sleep time after controlling for breastfeeding. The findings highlight the importance of including fathers in developmental sleep research. Future studies should explore mechanisms underlying the relations between paternal involvement and infant sleep.

  7. Flavonoid transport mechanisms: how to go, and with whom.

    PubMed

    Zhao, Jian

    2015-09-01

    Subcellular flavonoid transport and its underlying regulatory mechanisms are still poorly understood, but are fascinating research frontiers in plant science. Recent studies support and further extend previous hypotheses indicating that vacuolar sequestration of flavonoids involves vesicle trafficking, membrane transporters, and glutathione S-transferase (GST). However, the question remains to be addressed of how three distinct but nonexclusive mechanisms are functionally integrated into diverse but redundant transport routes for vacuolar sequestration or extracellular secretion of flavonoids. In this review, I highlight recent progress in understanding flavonoid-transporting vesicle behavior and properties, GST and membrane transporter functions and mechanisms, and flavonoid transport substrate specificity and preference. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Carbonate-mediated Mars-van Krevelen mechanism for CO oxidation on cobalt-doped ceria catalysts: facet-dependence and coordination-dependence.

    PubMed

    Liu, Bing; Li, Wenping; Song, Weiyu; Liu, Jian

    2018-06-13

    Carbonate intermediates have been reported to play an active role in CO oxidation over ceria-based catalysts in recent experimental studies. However, the detailed CO oxidation mechanism involving carbonate intermediates over ceria-based catalysts remains obscure. In this work, we carried out systematic density functional theory calculations corrected by on-site Coulomb interactions (DFT+U) to investigate the complete CO oxidation mechanism involving carbonate intermediates over cobalt-doped CeO2 catalysts, aiming to unravel how the carbonate participates in CO oxidation and shed light on the underlying factors that control the carbonate-mediated reaction mechanism. A novel carbonate-mediated Mars-van Krevelen (M-vK) mechanism was proposed, in which the carbonate acts as an active intermediate rather than a spectator and can react with CO to form CO2. This carbonate-mediated M-vK mechanism is facet-dependent because it is predominant on the (110) surface whereas the conventional M-vK mechanism is more favorable on (111) and (100) surfaces. The origin of facet-dependence was discussed by analyzing the geometric and electronic structures. It is found that the negatively charged bent CO2- intermediate formed on the (110) surface plays a critical role in the carbonate-mediated M-vK mechanism, whereas the formation of a neutral linear CO2 intermediate on (111) and (100) surfaces hinders the carbonate-mediated M-vK mechanism. The surface oxygen vacancy hinders the formation of carbonate intermediates, indicating that the carbonate-mediated M-vK mechanism is also vacancy-dependent. The formation of carbonate intermediates on different metal (Ti, V, W, Mo and Re) doped CeO2(110) surfaces was studied and the results indicate that the coordination environment of the dopant species is a key factor that determines the carbonate-mediated M-vK mechanism. This study provides atomic-scale insights into the reaction mechanism involving carbonate intermediates and the structure-mechanism relationship for CO oxidation over cobalt-ceria catalysts.

  9. Role of the Ventral Tegmental Area in Methamphetamine Extinction: AMPA Receptor-Mediated Neuroplasticity

    ERIC Educational Resources Information Center

    Chen Han-Ting; Chen, Jin-Chung

    2015-01-01

    The molecular mechanisms underlying drug extinction remain largely unknown, although a role for medial prefrontal cortex (mPFC) glutamate neurons has been suggested. Considering that the mPFC sends glutamate efferents to the ventral tegmental area (VTA), we tested whether the VTA is involved in methamphetamine (METH) extinction via conditioned…

  10. ONR Far East Scientific Bulletin. Volume 6, Number 4, October - December 1981,

    DTIC Science & Technology

    1981-12-01

    been found to delay dark adaptation in the absence of calcium; this makes it unlikely that the darK adaptation process after bleaching is related to...presynaptically in a gastropod nerve cell. Calcium ions are involved, but the mechanisms underlying the effect are still not clear. The effects of

  11. Russia-A New Empire Under Construction. The Russian Policy towards Former Communist Satellites-Mechanisms of Exertion of Influence

    DTIC Science & Technology

    2008-12-01

    the agreement, seeking rather better cooperation within the EU than with the USA. Finally, the very last involvement of the Polish President Lech ...nuclear weapons if 164 See the Polish President Lech Kaczyński speech cited in “Umowa w sprawie tarczy podpisana (Anti

  12. Research on aviation fuel instability

    NASA Technical Reports Server (NTRS)

    Baker, C. E.; Bittker, D. A.; Cohen, S. M.; Seng, G. T.

    1983-01-01

    The underlying causes of fuel thermal degradation are discussed. Topics covered include: nature of fuel instability and its temperature dependence, methods of measuring the instability, chemical mechanisms involved in deposit formation, and instrumental methods for characterizing fuel deposits. Finally, some preliminary thoughts on design approaches for minimizing the effects of lowered thermal stability are briefly discussed.

  13. A massive expansion of effector genes underlies gall-formation in the wheat pest Mayetiola destructor

    USDA-ARS?s Scientific Manuscript database

    The mechanisms arthropods use to induce plant gall formation are poorly understood. However, there is growing evidence that effector proteins are involved. To examine this hypothesis, we sequenced the genome of the Hessian fly (Mayetiola destructor, M. des), an obligate plant parasitic gall midge an...

  14. Comprehensive analysis of NAC transcription factors and their expression during cucumber fruit spine development

    USDA-ARS?s Scientific Manuscript database

    Cucumber (Cucumis sativus L.) is an important vegetable crop worldwide, and fruit trichomes ir spines are an important trait for external fruit quality. The mechanisms underlying spine formation are not well understood, but there is evidence of the involvement of the plant-specific NAC family of tra...

  15. Ethanol and thermotolerance in the bioconversion of xylose by yeasts

    Treesearch

    Thomas W. Jeffries; Yong-Su Jin

    2000-01-01

    The mechanisms underlying ethanol and heat tolerance are complex. Many different genes are involved, and the exact basis is not fully understood. The integrity of cytoplasmic and mitochondrial membranes is critical to maintain proton gradients for metabolic energy and nutrient uptake. Heat and ethanol stress adversely affect membrane integrity. These factors are...

  16. The short-term stress response - Mother nature's mechanism for enhancing protection and performance under conditions of threat, challenge, and opportunity.

    PubMed

    Dhabhar, Firdaus S

    2018-03-26

    Our group has proposed that in contrast to chronic stress that can have harmful effects, the short-term (fight-or-flight) stress response (lasting for minutes to hours) is nature's fundamental survival mechanism that enhances protection and performance under conditions involving threat/challenge/opportunity. Short-term stress enhances innate/primary, adaptive/secondary, vaccine-induced, and anti-tumor immune responses, and post-surgical recovery. Mechanisms and mediators include stress hormones, dendritic cell, neutrophil, macrophage, and lymphocyte trafficking/function and local/systemic chemokine and cytokine production. Short-term stress may also enhance mental/cognitive and physical performance through effects on brain, musculo-skeletal, and cardiovascular function, reappraisal of threat/anxiety, and training-induced stress-optimization. Therefore, short-term stress psychology/physiology could be harnessed to enhance immuno-protection, as well as mental and physical performance. This review aims to provide a conceptual framework and targets for further investigation of mechanisms and conditions under which the protective/adaptive aspects of short-term stress/exercise can be optimized/harnessed, and for developing pharmacological/biobehavioral interventions to enhance health/healing, and mental/cognitive/physical performance. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Consensus Paper: Pathological Role of the Cerebellum in Autism

    PubMed Central

    Fatemi, S. Hossein; Aldinger, Kimberly A.; Ashwood, Paul; Bauman, Margaret L.; Blaha, Charles D.; Blatt, Gene J.; Chauhan, Abha; Chauhan, Ved; Dager, Stephen R.; Dickson, Price E.; Estes, Annette M.; Goldowitz, Dan; Heck, Detlef H.; Kemper, Thomas L.; King, Bryan H.; Martin, Loren A.; Millen, Kathleen J.; Mittleman, Guy; Mosconi, Matthew W.; Persico, Antonio M.; Sweeney, John A.; Webb, Sara J.; Welsh, John P.

    2013-01-01

    There has been significant advancement in various aspects of scientific knowledge concerning the role of cerebellum in the etiopathogenesis of autism. In the current consensus paper, we will observe the diversity of opinions regarding the involvement of this important site in the pathology of autism. Recent emergent findings in literature related to cerebellar involvement in autism are discussed, including: cerebellar pathology, cerebellar imaging and symptom expression in autism, cerebellar genetics, cerebellar immune function, oxidative stress and mitochondrial dysfunction, GABAergic and glutamatergic systems, cholinergic, dopaminergic, serotonergic, and oxytocin related changes in autism, motor control and cognitive deficits, cerebellar coordination of movements and cognition, gene-environment interactions, therapeutics in autism and relevant animal models of autism. Points of consensus include presence of abnormal cerebellar anatomy, abnormal neurotransmitter systems, oxidative stress, cerebellar motor and cognitive deficits, and neuroinflammation in subjects with autism. Undefined areas or areas requiring further investigation include lack of treatment options for core symptoms of autism, vermal hypoplasia and other vermal abnormalities as a consistent feature of autism, mechanisms underlying cerebellar contributions to cognition, and unknown mechanisms underlying neuroinflammation. PMID:22370873

  18. Spontaneous prosocial choice by captive bottlenose dolphins, Tursiops truncatus.

    PubMed

    Nakahara, Fumio; Komaba, Masayuki; Sato, Ryoichi; Ikeda, Hisako; Komaba, Kumiko; Kawakubo, Akihiro

    2017-02-01

    Dolphins exhibit prosocial behavior across several different contexts. However, only a few experimental studies have investigated the psychological mechanisms underlying this behavior. In this study, we investigated the mechanisms underlying prosociality in bottlenose dolphins (Tursiops truncatus). In the experiments, water shower devices, developed as environmental enrichment items, were used. Two paradigms were used to measure prosociality. The first was the prosocial choice task, involving the subject typically being offered one choice between two options. The first option provided a reward (take a shower) to both the subject and partner (prosocial choice). The second option provided a reward only to the subject (selfish choice). The second paradigm was the giving assistance task, involving the subject being provided a choice between providing instrumental help to the partner (prosocial choice) or doing nothing. It was observed that the subjects chose the prosocial choices in both paradigms. In these experiments, prosocial choices were spontaneously taken without requests from the partners. These results indicated that the dolphins show preference for other-regarding behavior. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Consensus paper: pathological role of the cerebellum in autism.

    PubMed

    Fatemi, S Hossein; Aldinger, Kimberly A; Ashwood, Paul; Bauman, Margaret L; Blaha, Charles D; Blatt, Gene J; Chauhan, Abha; Chauhan, Ved; Dager, Stephen R; Dickson, Price E; Estes, Annette M; Goldowitz, Dan; Heck, Detlef H; Kemper, Thomas L; King, Bryan H; Martin, Loren A; Millen, Kathleen J; Mittleman, Guy; Mosconi, Matthew W; Persico, Antonio M; Sweeney, John A; Webb, Sara J; Welsh, John P

    2012-09-01

    There has been significant advancement in various aspects of scientific knowledge concerning the role of cerebellum in the etiopathogenesis of autism. In the current consensus paper, we will observe the diversity of opinions regarding the involvement of this important site in the pathology of autism. Recent emergent findings in literature related to cerebellar involvement in autism are discussed, including: cerebellar pathology, cerebellar imaging and symptom expression in autism, cerebellar genetics, cerebellar immune function, oxidative stress and mitochondrial dysfunction, GABAergic and glutamatergic systems, cholinergic, dopaminergic, serotonergic, and oxytocin-related changes in autism, motor control and cognitive deficits, cerebellar coordination of movements and cognition, gene-environment interactions, therapeutics in autism, and relevant animal models of autism. Points of consensus include presence of abnormal cerebellar anatomy, abnormal neurotransmitter systems, oxidative stress, cerebellar motor and cognitive deficits, and neuroinflammation in subjects with autism. Undefined areas or areas requiring further investigation include lack of treatment options for core symptoms of autism, vermal hypoplasia, and other vermal abnormalities as a consistent feature of autism, mechanisms underlying cerebellar contributions to cognition, and unknown mechanisms underlying neuroinflammation.

  20. Towards a richer evolutionary game theory

    PubMed Central

    McNamara, John M.

    2013-01-01

    Most examples of the application of evolutionary game theory to problems in biology involve highly simplified models. I contend that it is time to move on and include much more richness in models. In particular, more thought needs to be given to the importance of (i) between-individual variation; (ii) the interaction between individuals, and hence the process by which decisions are reached; (iii) the ecological and life-history context of the situation; (iv) the traits that are under selection, and (v) the underlying psychological mechanisms that lead to behaviour. I give examples where including variation between individuals fundamentally changes predicted outcomes of a game. Variation also selects for real-time responses, again resulting in changed outcomes. Variation can select for other traits, such as choosiness and social sensitivity. More generally, many problems involve coevolution of more than one trait. I identify situations where a reductionist approach, in which a game is isolated from is ecological setting, can be misleading. I also highlight the need to consider flexibility of behaviour, mental states and other issues concerned with the evolution of mechanism. PMID:23966616

  1. Calcium and magnesium ions modulate the oligomeric state and function of mitochondrial 2-Cys peroxiredoxins in Leishmania parasites.

    PubMed

    Morais, Mariana A B; Giuseppe, Priscila O; Souza, Tatiana A C B; Castro, Helena; Honorato, Rodrigo V; Oliveira, Paulo S L; Netto, Luis E S; Tomas, Ana M; Murakami, Mario T

    2017-04-28

    Leishmania parasites have evolved a number of strategies to cope with the harsh environmental changes during mammalian infection. One of these mechanisms involves the functional gain that allows mitochondrial 2-Cys peroxiredoxins to act as molecular chaperones when forming decamers. This function is critical for parasite infectivity in mammals, and its activation has been considered to be controlled exclusively by the enzyme redox state under physiological conditions. Herein, we have revealed that magnesium and calcium ions play a major role in modulating the ability of these enzymes to act as molecular chaperones, surpassing the redox effect. These ions are directly involved in mitochondrial metabolism and participate in a novel mechanism to stabilize the decameric form of 2-Cys peroxiredoxins in Leishmania mitochondria. Moreover, we have demonstrated that a constitutively dimeric Prx1m mutant impairs the survival of Leishmania under heat stress, supporting the central role of the chaperone function of Prx1m for Leishmania parasites during the transition from insect to mammalian hosts. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Nitrogen fertilizer application affects lodging resistance by altering secondary cell wall synthesis in japonica rice (Oryza sativa).

    PubMed

    Zhang, Wujun; Wu, Longmei; Ding, Yanfeng; Yao, Xiong; Wu, Xiaoran; Weng, Fei; Li, Ganghua; Liu, Zhenghui; Tang, She; Ding, Chengqiang; Wang, Shaohua

    2017-09-01

    Stem mechanical strength is an important agricultural quantitative trait that is closely related to lodging resistance in rice, which is known to be reduced by fertilizer with higher levels of nitrogen. To understand the mechanism that regulates stem mechanical strength in response to nitrogen, we analysed stem morphology, anatomy, mechanical properties, cell wall components, and expression of cell wall-related genes, in two varieties of japonica rice, namely, Wuyunjing23 (lodging-resistant variety) and W3668 (lodging-susceptible variety). The results showed that higher nitrogen fertilizer increased the lodging index in both varieties due to a reduction in breaking strength and bending stress, and these changes were larger in W3668. Cellulose content decreased slightly under higher nitrogen fertilizer, whereas lignin content reduced remarkably. Histochemical staining revealed that high nitrogen application decreased lignin deposition in the secondary cell wall of the sclerenchyma cells and vascular bundle cells compared with the low nitrogen treatments, while it did not alter the pattern of cellulose deposition in these cells in both Wuyunjing23 and W3668. In addition, the expression of the genes involved in lignin biosynthesis, OsPAL, OsCoMT, Os4CL3, OsCCR, OsCAD2, OsCAD7, OsCesA4, and OsCesA7, were also down-regulated under higher nitrogen conditions at the early stage of culm growth. These results suggest that the genes involved in lignin biosynthesis are down-regulated by higher nitrogen fertilizer, which causes lignin deficiency in the secondary cell walls and the weakening of mechanical tissue structure. Subsequently, this results in these internodes with reduced mechanical strength and poor lodging resistance.

  3. Cellular Mechanisms Underlying Bone-Forming Cell Proliferative Response to Hypergravity

    NASA Technical Reports Server (NTRS)

    Vercoutere, W.; Parra, M.; DaCosta, M.; Wing, A.; Roden, C.; Damsky, C.; Holton, E.; Searby, N.; Globus, R.; Almeida, E.

    2004-01-01

    Life on Earth has evolved under the continuous influence of gravity (1-g). As humans explore and develop space, however, we must learn to adapt to an environment with little or no gravity. Studies indicate that lack of weightbearing for vertebrates occurring with immobilization, paralysis, or in a microgravity environment may cause muscle and bone atrophy through cellular and subcellular level mechanisms. We hypothesize that gravity is needed for the efficient transduction of cell growth and survival signals from the extra-cellular matrix (ECM) (consisting of molecules such as collagen, fibronectin, and laminin) in mechanosensitive tissues. We test for the presence of gravity-sensitive pathways in bone-forming cells (osteoblasts) using hypergravity applied by a cell culture centrifuge. Stimulation of 50 times gravity (50-g) increased proliferation in primary rat osteoblasts for cells grown on collagen Type I and fibronectin, but not on laminin or uncoated surfaces. Survival was also enhanced during hypergravity stimulation by the presence of ECM. Bromodeoxyuridine incorporation in proliferating cells showed an increase in the number of actively dividing cells from about 60% at 1-g to over 90% at 25-g. Reverse transcription-polymerase chain reaction was used to test for all possible integrins. Our combined results indicate that beta1 and/or beta3 integrin subunits may be involved. These data indicate that gravity mechanostimulation of osteoblast proliferation involves specific matrix-integrin signalling pathways which are sensitive to g-level. Further research to define the mechanisms involved will provide direction so that we may better adapt and counteract bone atrophy caused by the lack of weightbearing.

  4. New Physical Mechanism for Lightning

    NASA Astrophysics Data System (ADS)

    Artekha, Sergey N.; Belyan, Andrey V.

    2018-02-01

    The article is devoted to electromagnetic phenomena in the atmosphere. The set of experimental data on the thunderstorm activity is analyzed. It helps to identify a possible physical mechanism of lightning flashes. This mechanism can involve the formation of metallic bonds in thunderclouds. The analysis of the problem is performed at a microphysical level within the framework of quantum mechanics. The mechanism of appearance of metallic conductivity includes the resonant tunneling of electrons along resonance-percolation trajectories. Such bonds allow the charges from the vast cloud charged subsystems concentrate quickly in lightning channel. The formation of metal bonds in the thunderstorm cloudiness is described as the second-order phase transition. A successive mechanism for the process of formation and development of the lightning channel is suggested. This mechanism is associated with the change in the orientation of crystals in growing electric field. Possible consequences of the quantum-mechanical mechanism under discussion are compared with the results of observations.

  5. Circadian glucocorticoid oscillations promote learning-dependent synapse formation and maintenance

    PubMed Central

    Liston, Conor; Cichon, Joseph M; Jeanneteau, Freddy; Jia, Zhengping; Chao, Moses V; Gan, Wen-Biao

    2013-01-01

    Excessive glucocorticoid exposure during chronic stress causes synapse loss and learning impairment. Under normal physiological conditions, glucocorticoid activity oscillates in synchrony with the circadian rhythm. Whether and how endogenous glucocorticoid oscillations modulate synaptic plasticity and learning is unknown. Here we show that circadian glucocorticoid peaks promote postsynaptic dendritic spine formation in the mouse cortex after motor skill learning, whereas troughs are required for stabilizing newly formed spines that are important for long-term memory retention. Conversely, chronic and excessive exposure to glucocorticoids eliminates learning-associated new spines and disrupts previously acquired memories. Furthermore, we show that glucocorticoids promote rapid spine formation through a non-transcriptional mechanism by means of the LIM kinase–cofilin pathway and increase spine elimination through transcriptional mechanisms involving mineralocorticoid receptor activation. Together, these findings indicate that tightly regulated circadian glucocorticoid oscillations are important for learning-dependent synaptic formation and maintenance. They also delineate a new signaling mechanism underlying these effects. PMID:23624512

  6. Role of exercise in maintaining the integrity of the neuromuscular junction

    PubMed Central

    Nishimune, Hiroshi; Stanford, John A.; Mori, Yasuo

    2014-01-01

    Physical activity plays an important role in preventing chronic disease in adults and the elderly. Exercise has beneficial effects on the nervous system, including at the neuromuscular junction (NMJ). Exercise causes hypertrophy of NMJs and improves recovery from peripheral nerve injuries, whereas decreased physical activity causes degenerative changes in NMJs. Recent studies have begun to elucidate molecular mechanisms underlying the beneficial effects of exercise. These mechanisms involve Bassoon, neuregulin-1, peroxisome proliferator-activated receptor gamma coactivator 1α, Insulin-like growth factor-1, glial cell line-derived neurotrophic factor, neurotrophin 4, Homer, and nuclear factor of activated T cells c1. For example, NMJ denervation and active zone decreases have been observed in aged NMJs, but these age-dependent degenerative changes can be ameliorated by exercise. This review will discuss the effects of exercise on the maintenance and regeneration of NMJs and will highlight recent insights into the molecular mechanisms underlying these exercise effects. PMID:24122772

  7. Influence analysis of electronically and vibrationally excited particles on the ignition of methane and hydrogen under the conditions of a gas turbine engine

    NASA Astrophysics Data System (ADS)

    Deminskii, M. A.; Konina, K. M.; Potapkin, B. V.

    2018-03-01

    The vibronic and electronic energy relaxation phenomena in the specific conditions of a gas turbine engine were investigated in this paper. The plasma-chemical mechanism has been augmented with the results of recent investigations of the processes that involve electronically and vibrationally excited species. The updated mechanism was employed for the computer simulation of plasma-assisted combustion of hydrogen-air and methane-air mixtures under high pressure and in the range of initial temperatures T  =  500-900 K. The updated mechanism was verified using the experimental data. The influence of electronically excited nitrogen on the ignition delay time was analyzed. The rate coefficient of the vibration-vibration exchange between N2 and HO2 was calculated as well as the rate coefficient of HO2 decomposition.

  8. The role of proton shuttling mechanisms in solvent-free and catalyst-free acetalization reactions of imines.

    PubMed

    Lillo, Victor J; Mansilla, Javier; Saá, José M

    2018-06-06

    Proton transfer is central to the understanding of chemical processes. More so in addition reactions of the type NuH + E → Nu-EH taking place under solvent-free and catalyst-free conditions. Herein we show that the addition of alcohols or amines (the NuH component) to imine derivatives (the E component), in 1 : 1 ratio, under solvent-free and catalyst-free conditions, are efficient methods to access N,O and N,N-acetal derivatives. In addition, computational studies reveal that they are catalyzed reactions involving two or even three NuH molecules operating in a cooperative manner as H-bonded NuH(NuH)nNuH associates (many body effects) in the transition state through a concerted proton shuttling mechanism (addition of alcohols) or stepwise proton shuttling mechanism (addition of amines), thereby facilitating the key proton transfer step.

  9. Structure evolution of self-catalyzed grown Au, Ag and their alloy nanostructure

    NASA Astrophysics Data System (ADS)

    Zhu, Zhu; Chen, Feng; Xu, Chunxiang; Yang, Guangcan; Zhu, Ye; Luo, Zhaoxu

    2017-12-01

    Monitoring the nucleation and growth of nanomaterials is a key technique for material synthesis design and control. An efficient fabrication method can be realized deeply understanding the growth mechanisms. Here, noble metal nanostructures, gold (Au) nanoparticles, silver nanostructures (Ag nanoparticles/Ag nanowires) and gold-silver alloy nanoparticles were prepared in a facile method at room temperature. The growth processes of the Au nanoparticles, Ag nanowires and Au-Ag alloy nanoparticles can be monitored real-timely through the ultraviolet visible absorption (UV-vis), dynamic light scattering (DLS) and transmission electron microscopy (TEM). It is found that the whole formation involved Digestive ripening and Ostwald ripening cooperative mechanism. Furthermore, the self-assembly growth is noticed in the oriented attachment of precursor Ag monomers into nanowires under the same synthetic conditions without external templates or rigorous conditions. This result can provide a platform to discover the underlying growth mechanism of wet-chemistry methods for metal nanostructure fabrication.

  10. Design of a Sample Recovery Assembly for Magnetic Ramp-Wave Loading

    NASA Astrophysics Data System (ADS)

    Chantrenne, S.; Wise, J. L.; Asay, J. R.; Kipp, M. E.; Hall, C. A.

    2009-06-01

    Characterization of material behavior under dynamic loading requires studies at strain rates ranging from quasi-static to the limiting values of shock compression. For completeness, these studies involve complementary time-resolved data, which define the mechanical constitutive properties, and microstructural data, which reveal physical mechanisms underlying the observed mechanical response. Well-preserved specimens must be recovered for microstructural investigations. Magnetically generated ramp waves produce strain rates lower than those associated with shock waves, but recovery methods have been lacking for this type of loading. We adapted existing shock recovery techniques for application to magnetic ramp loading using 2-D and 3-D ALEGRA MHD code calculations to optimize the recovery design for mitigation of undesired late-time processing of the sample due to edge effects and secondary stress waves. To assess the validity of our simulations, measurements of sample deformation were compared to wavecode predictions.

  11. Partial IGF-1 deficiency is sufficient to reduce heart contractibility, angiotensin II sensibility, and alter gene expression of structural and functional cardiac proteins.

    PubMed

    González-Guerra, José Luis; Castilla-Cortazar, Inma; Aguirre, Gabriel A; Muñoz, Úrsula; Martín-Estal, Irene; Ávila-Gallego, Elena; Granado, Miriam; Puche, Juan E; García-Villalón, Ángel Luis

    2017-01-01

    Circulating levels of IGF-1 may decrease under several circumstances like ageing, metabolic syndrome, and advanced cirrhosis. This reduction is associated with insulin resistance, dyslipidemia, progression to type 2 diabetes, and increased risk for cardiovascular diseases. However, underlying mechanisms between IGF-1 deficiency and cardiovascular disease remain elusive. The specific aim of the present work was to study whether the partial IGF-1 deficiency influences heart and/or coronary circulation, comparing vasoactive factors before and after of ischemia-reperfusion (I/R). In addition, histology of the heart was performed together with cardiac gene expression for proteins involved in structure and function (extracellular matrix, contractile proteins, active peptides); carried out using microarrays, followed by RT-qPCR confirmation of the three experimental groups. IGF-1 partial deficiency is associated to a reduction in contractility and angiotensin II sensitivity, interstitial fibrosis as well as altered expression pattern of genes involved in extracellular matrix proteins, calcium dynamics, and cardiac structure and function. Although this work is descriptive, it provides a clear insight of the impact that partial IGF-1 deficiency on the heart and establishes this experimental model as suitable for studying cardiac disease mechanisms and exploring therapeutic options for patients under IGF-1 deficiency conditions.

  12. Partial IGF-1 deficiency is sufficient to reduce heart contractibility, angiotensin II sensibility, and alter gene expression of structural and functional cardiac proteins

    PubMed Central

    Aguirre, Gabriel A.; Muñoz, Úrsula; Martín-Estal, Irene; Ávila-Gallego, Elena; Granado, Miriam; Puche, Juan E.; García-Villalón, Ángel Luis

    2017-01-01

    Circulating levels of IGF-1 may decrease under several circumstances like ageing, metabolic syndrome, and advanced cirrhosis. This reduction is associated with insulin resistance, dyslipidemia, progression to type 2 diabetes, and increased risk for cardiovascular diseases. However, underlying mechanisms between IGF-1 deficiency and cardiovascular disease remain elusive. The specific aim of the present work was to study whether the partial IGF-1 deficiency influences heart and/or coronary circulation, comparing vasoactive factors before and after of ischemia-reperfusion (I/R). In addition, histology of the heart was performed together with cardiac gene expression for proteins involved in structure and function (extracellular matrix, contractile proteins, active peptides); carried out using microarrays, followed by RT-qPCR confirmation of the three experimental groups. IGF-1 partial deficiency is associated to a reduction in contractility and angiotensin II sensitivity, interstitial fibrosis as well as altered expression pattern of genes involved in extracellular matrix proteins, calcium dynamics, and cardiac structure and function. Although this work is descriptive, it provides a clear insight of the impact that partial IGF-1 deficiency on the heart and establishes this experimental model as suitable for studying cardiac disease mechanisms and exploring therapeutic options for patients under IGF-1 deficiency conditions. PMID:28806738

  13. Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms

    PubMed Central

    Vidal-Dupiol, Jeremie; Adjeroud, Mehdi; Roger, Emmanuel; Foure, Laurent; Duval, David; Mone, Yves; Ferrier-Pages, Christine; Tambutte, Eric; Tambutte, Sylvie; Zoccola, Didier; Allemand, Denis; Mitta, Guillaume

    2009-01-01

    Background Coral bleaching can be defined as the loss of symbiotic zooxanthellae and/or their photosynthetic pigments from their cnidarian host. This major disturbance of reef ecosystems is principally induced by increases in water temperature. Since the beginning of the 1980s and the onset of global climate change, this phenomenon has been occurring at increasing rates and scales, and with increasing severity. Several studies have been undertaken in the last few years to better understand the cellular and molecular mechanisms of coral bleaching but the jigsaw puzzle is far from being complete, especially concerning the early events leading to symbiosis breakdown. The aim of the present study was to find molecular actors involved early in the mechanism leading to symbiosis collapse. Results In our experimental procedure, one set of Pocillopora damicornis nubbins was subjected to a gradual increase of water temperature from 28°C to 32°C over 15 days. A second control set kept at constant temperature (28°C). The differentially expressed mRNA between the stressed states (sampled just before the onset of bleaching) and the non stressed states (control) were isolated by Suppression Subtractive Hybridization. Transcription rates of the most interesting genes (considering their putative function) were quantified by Q-RT-PCR, which revealed a significant decrease in transcription of two candidates six days before bleaching. RACE-PCR experiments showed that one of them (PdC-Lectin) contained a C-Type-Lectin domain specific for mannose. Immunolocalisation demonstrated that this host gene mediates molecular interactions between the host and the symbionts suggesting a putative role in zooxanthellae acquisition and/or sequestration. The second gene corresponds to a gene putatively involved in calcification processes (Pdcyst-rich). Its down-regulation could reflect a trade-off mechanism leading to the arrest of the mineralization process under stress. Conclusion Under thermal stress zooxanthellae photosynthesis leads to intense oxidative stress in the two partners. This endogenous stress can lead to the perception of the symbiont as a toxic partner for the host. Consequently, we propose that the bleaching process is due in part to a decrease in zooxanthellae acquisition and/or sequestration. In addition to a new hypothesis in coral bleaching mechanisms, this study provides promising biomarkers for monitoring coral health. PMID:19653882

  14. Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms.

    PubMed

    Vidal-Dupiol, Jeremie; Adjeroud, Mehdi; Roger, Emmanuel; Foure, Laurent; Duval, David; Mone, Yves; Ferrier-Pages, Christine; Tambutte, Eric; Tambutte, Sylvie; Zoccola, Didier; Allemand, Denis; Mitta, Guillaume

    2009-08-04

    Coral bleaching can be defined as the loss of symbiotic zooxanthellae and/or their photosynthetic pigments from their cnidarian host. This major disturbance of reef ecosystems is principally induced by increases in water temperature. Since the beginning of the 1980s and the onset of global climate change, this phenomenon has been occurring at increasing rates and scales, and with increasing severity. Several studies have been undertaken in the last few years to better understand the cellular and molecular mechanisms of coral bleaching but the jigsaw puzzle is far from being complete, especially concerning the early events leading to symbiosis breakdown. The aim of the present study was to find molecular actors involved early in the mechanism leading to symbiosis collapse. In our experimental procedure, one set of Pocillopora damicornis nubbins was subjected to a gradual increase of water temperature from 28 degrees C to 32 degrees C over 15 days. A second control set kept at constant temperature (28 degrees C). The differentially expressed mRNA between the stressed states (sampled just before the onset of bleaching) and the non stressed states (control) were isolated by Suppression Subtractive Hybridization. Transcription rates of the most interesting genes (considering their putative function) were quantified by Q-RT-PCR, which revealed a significant decrease in transcription of two candidates six days before bleaching. RACE-PCR experiments showed that one of them (PdC-Lectin) contained a C-Type-Lectin domain specific for mannose. Immunolocalisation demonstrated that this host gene mediates molecular interactions between the host and the symbionts suggesting a putative role in zooxanthellae acquisition and/or sequestration. The second gene corresponds to a gene putatively involved in calcification processes (Pdcyst-rich). Its down-regulation could reflect a trade-off mechanism leading to the arrest of the mineralization process under stress. Under thermal stress zooxanthellae photosynthesis leads to intense oxidative stress in the two partners. This endogenous stress can lead to the perception of the symbiont as a toxic partner for the host. Consequently, we propose that the bleaching process is due in part to a decrease in zooxanthellae acquisition and/or sequestration. In addition to a new hypothesis in coral bleaching mechanisms, this study provides promising biomarkers for monitoring coral health.

  15. RING E3 ligases: key regulatory elements are involved in abiotic stress responses in plants

    PubMed Central

    Cho, Seok Keun; Ryu, Moon Young; Kim, Jong Hum; Hong, Jeong Soo; Oh, Tae Rin; Kim, Woo Taek; Yang, Seong Wook

    2017-01-01

    Plants are constantly exposed to a variety of abiotic stresses, such as drought, heat, cold, flood, and salinity. To survive under such unfavorable conditions, plants have evolutionarily developed their own resistant-mechanisms. For several decades, many studies have clarified specific stress response pathways of plants through various molecular and genetic studies. In particular, it was recently discovered that ubiquitin proteasome system (UPS), a regulatory mechanism for protein turn over, is greatly involved in the stress responsive pathways. In the UPS, many E3 ligases play key roles in recognizing and tethering poly-ubiquitins on target proteins for subsequent degradation by the 26S proteasome. Here we discuss the roles of RING ligases that have been defined in related to abiotic stress responses in plants. PMID:28712388

  16. Involvement of HLDF protein and anti-HLDF antibodies in the mechanisms of blood pressure regulation in healthy individuals and patients with stable hypertension and hypertensive crisis.

    PubMed

    Elistratova, E I; Gruden, M A; Sherstnev, V V

    2012-09-01

    We studied the relationships between the blood serum levels of human leukemia differentiation factor HLDF, idiotypic and anti-idiotypic antibodies to HLDF, and clinical indicators of cardiovascular function in apparently healthy individuals and patients with essential hypertension and cerebral hypertensive crisis. Markedly reduced HLDF levels and anti-HLDF antibody titers were found in the blood of the examined patients. Correlations between HLDF levels, duration of hypertension, and systolic and diastolic BP were revealed. These findings suggest that the studied molecular factors are involved in the mechanisms of BP regulation under normal conditions and during hypertension development. The protein HLDF and anti-HLDF antibodies can be considered as biomarkers for early diagnosis of hypertension and its cerebral complications.

  17. Alternative Derivations of the Statistical Mechanical Distribution Laws

    PubMed Central

    Wall, Frederick T.

    1971-01-01

    A new approach is presented for the derivation of statistical mechanical distribution laws. The derivations are accomplished by minimizing the Helmholtz free energy under constant temperature and volume, instead of maximizing the entropy under constant energy and volume. An alternative method involves stipulating equality of chemical potential, or equality of activity, for particles in different energy levels. This approach leads to a general statement of distribution laws applicable to all systems for which thermodynamic probabilities can be written. The methods also avoid use of the calculus of variations, Lagrangian multipliers, and Stirling's approximation for the factorial. The results are applied specifically to Boltzmann, Fermi-Dirac, and Bose-Einstein statistics. The special significance of chemical potential and activity is discussed for microscopic systems. PMID:16578712

  18. Alternative derivations of the statistical mechanical distribution laws.

    PubMed

    Wall, F T

    1971-08-01

    A new approach is presented for the derivation of statistical mechanical distribution laws. The derivations are accomplished by minimizing the Helmholtz free energy under constant temperature and volume, instead of maximizing the entropy under constant energy and volume. An alternative method involves stipulating equality of chemical potential, or equality of activity, for particles in different energy levels. This approach leads to a general statement of distribution laws applicable to all systems for which thermodynamic probabilities can be written. The methods also avoid use of the calculus of variations, Lagrangian multipliers, and Stirling's approximation for the factorial. The results are applied specifically to Boltzmann, Fermi-Dirac, and Bose-Einstein statistics. The special significance of chemical potential and activity is discussed for microscopic systems.

  19. Recent Developments of Versatile Photoinitiating Systems for Cationic Ring Opening Polymerization Operating at Any Wavelengths and under Low Light Intensity Sources.

    PubMed

    Lalevée, Jacques; Mokbel, Haifaa; Fouassier, Jean-Pierre

    2015-04-20

    Photoinitiators (PI) or photoinitiating systems (PIS) usable in light induced cationic polymerization (CP) and free radical promoted cationic polymerization (FRPCP) reactions (more specifically for cationic ring opening polymerization (ROP)) together with the involved mechanisms are briefly reviewed. The recent developments of novel two- and three-component PISs for CP and FRPCP upon exposure to low intensity blue to red lights is emphasized in details. Examples of such reactions under various experimental conditions are provided.

  20. Neural activity in the prelimbic and infralimbic cortices of freely moving rats during social interaction: Effect of isolation rearing.

    PubMed

    Minami, Chihiro; Shimizu, Tomoko; Mitani, Akira

    2017-01-01

    Sociability promotes a sound daily life for individuals. Reduced sociability is a central symptom of various neuropsychiatric disorders, and yet the neural mechanisms underlying reduced sociability remain unclear. The prelimbic cortex (PL) and infralimbic cortex (IL) have been suggested to play an important role in the neural mechanisms underlying sociability because isolation rearing in rats results in impairment of social behavior and structural changes in the PL and IL. One possible mechanism underlying reduced sociability involves dysfunction of the PL and IL. We made a wireless telemetry system to record multiunit activity in the PL and IL of pairs of freely moving rats during social interaction and examined the influence of isolation rearing on this activity. In group-reared rats, PL neurons increased firing when the rat showed approaching behavior and also contact behavior, especially when the rat attacked the partner. Conversely, IL neurons increased firing when the rat exhibited leaving behavior, especially when the partner left on its own accord. In social interaction, the PL may be involved in active actions toward others, whereas the IL may be involved in passive relief from cautionary subjects. Isolation rearing altered social behavior and neural activity. Isolation-reared rats showed an increased frequency and decreased duration of contact behavior. The increased firing of PL neurons during approaching and contact behavior, observed in group-reared rats, was preserved in isolation-reared rats, whereas the increased firing of IL neurons during leaving behavior, observed in group-reared rats, was suppressed in isolation-reared rats. This result indicates that isolation rearing differentially alters neural activity in the PL and IL during social behavior. The differential influence of isolation rearing on neural activity in the PL and IL may be one of the neural bases of isolation rearing-induced behavior.

  1. The effect of exogenous calcium on mitochondria, respiratory metabolism enzymes and ion transport in cucumber roots under hypoxia.

    PubMed

    He, Lizhong; Li, Bin; Lu, Xiaomin; Yuan, Lingyun; Yang, Yanjuan; Yuan, Yinghui; Du, Jing; Guo, Shirong

    2015-08-25

    Hypoxia induces plant stress, particularly in cucumber plants under hydroponic culture. In plants, calcium is involved in stress signal transmission and growth. The ultimate goal of this study was to shed light on the mechanisms underlying the effects of exogenous calcium on the mitochondrial antioxidant system, the activity of respiratory metabolism enzymes, and ion transport in cucumber (Cucumis sativus L. cv. Jinchun No. 2) roots under hypoxic conditions. Our experiments revealed that exogenous calcium reduces the level of reactive oxygen species (ROS) and increases the activity of antioxidant enzymes in mitochondria under hypoxia. Exogenous calcium also enhances the accumulation of enzymes involved in glycolysis and the tricarboxylic acid (TCA) cycle. We utilized fluorescence and ultrastructural cytochemistry methods to observe that exogenous calcium increases the concentrations of Ca(2+) and K(+) in root cells by increasing the activity of plasma membrane (PM) H(+)-ATPase and tonoplast H(+)-ATPase and H(+)-PPase. Overall, our results suggest that hypoxic stress has an immediate and substantial effect on roots. Exogenous calcium improves metabolism and ion transport in cucumber roots, thereby increasing hypoxia tolerance in cucumber.

  2. A dynamically minimalist cognitive explanation of musical preference: is familiarity everything?

    PubMed Central

    Schubert, Emery; Hargreaves, David J.; North, Adrian C.

    2014-01-01

    This paper examines the idea that attraction to music is generated at a cognitive level through the formation and activation of networks of interlinked “nodes.” Although the networks involved are vast, the basic mechanism for activating the links is relatively simple. Two comprehensive cognitive-behavioral models of musical engagement are examined with the aim of identifying the underlying cognitive mechanisms and processes involved in musical experience. A “dynamical minimalism” approach (after Nowak, 2004) is applied to re-interpret musical engagement (listening, performing, composing, or imagining any of these) and to revise the latest version of the reciprocal-feedback model (RFM) of music processing. Specifically, a single cognitive mechanism of “spreading activation” through previously associated networks is proposed as a pleasurable outcome of musical engagement. This mechanism underlies the dynamic interaction of the various components of the RFM, and can thereby explain the generation of positive affects in the listener’s musical experience. This includes determinants of that experience stemming from the characteristics of the individual engaging in the musical activity (whether listener, composer, improviser, or performer), the situation and contexts (e.g., social factors), and the music (e.g., genre, structural features). The theory calls for new directions for future research, two being (1) further investigation of the components of the RFM to better understand musical experience and (2) more rigorous scrutiny of common findings about the salience of familiarity in musical experience and preference. PMID:24567723

  3. Intestinal Insulin Signaling Encodes Two Different Molecular Mechanisms for the Shortened Longevity Induced by Graphene Oxide in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Zhao, Yunli; Yang, Ruilong; Rui, Qi; Wang, Dayong

    2016-04-01

    Graphene oxide (GO) has been shown to cause multiple toxicities in various organisms. However, the underlying molecular mechanisms for GO-induced shortened longevity are still unclear. We employed Caenorhabditis elegans to investigate the possible involvement of insulin signaling pathway in the control of GO toxicity and its underlying molecular mechanisms. Mutation of daf-2, age-1, akt-1, or akt-2 gene induced a resistant property of nematodes to GO toxicity, while mutation of daf-16 gene led to a susceptible property of nematodes to GO toxicity, suggesting that GO may dysregulate the functions of DAF-2/IGF-1 receptor, AGE-1, AKT-1 and AKT-2-mediated kinase cascade, and DAF-16/FOXO transcription factor. Genetic interaction analysis suggested the involvement of signaling cascade of DAF-2-AGE-1-AKT-1/2-DAF-16 in the control of GO toxicity on longevity. Moreover, intestinal RNA interference (RNAi) analysis demonstrated that GO reduced longevity by affecting the functions of signaling cascade of DAF-2-AGE-1-AKT-1/2-DAF-16 in the intestine. DAF-16 could also regulate GO toxicity on longevity by functioning upstream of SOD-3, which encodes an antioxidation system that prevents the accumulation of oxidative stress. Therefore, intestinal insulin signaling may encode two different molecular mechanisms responsible for the GO toxicity in inducing the shortened longevity. Our results highlight the key role of insulin signaling pathway in the control of GO toxicity in organisms.

  4. Nurse Plants vs. Nurse Objects: Effects of Woody Plants and Rocky Cavities on the Recruitment of the Pilosocereus leucocephalus Columnar Cactus

    PubMed Central

    Munguía-Rosas, Miguel Angel; Sosa, Vinicio J.

    2008-01-01

    Background and Aims Most studies on cactus recruitment have focused on the role of woody plants as seedling facilitators. Although the spatial association of cacti with objects had been described, the mechanisms underlying this association remain unknown. The aims of this study were to identify which mechanisms facilitate the establishment of a columnar cactus under the shade and protection of objects and to compare these mechanisms with those involved in plant–plant facilitation. Methods Three split-split-plot field experiments were conducted to compare the effects of two microhabitats (inside rocky cavities and beneath plant canopies) on seed removal, germination, seedling survivorship and dry weight. Flat, open spaces were used as the control. For each microhabitat, the effect of seed or seedling protection and substrate limitation were explored; aboveground microclimate and some soil properties were also characterized. Key Results The permanence of superficial seeds was greater inside rocky cavities than beneath woody plant canopies or on flat, open areas. Germination was similar in cavities and beneath plant canopies, but significantly higher than on flat, open areas. Seedling survivorship was greater beneath plant canopies than inside cavities or on flat, open spaces. Conclusions The mechanisms of plant facilitation are different from those of object facilitation. There are seed–seedling conflicts involved in the recruitment of P. leucocephalus: nurse plants favour mainly seedling survivorship by providing a suitable microenvironment, while nurse objects mainly favour seed permanence, by protecting them from predators. PMID:18056054

  5. Hypergravity-induced changes in gene expression in Arabidopsis hypocotyls

    NASA Astrophysics Data System (ADS)

    Yoshioka, R.; Soga, K.; Wakabayashi, K.; Takeba, G.; Hoson, T.

    2003-05-01

    Under hypergravity conditions, the cell wall of stem organs becomes mechanically rigid and elongation growth is suppressed, which can be recognized as the mechanism for plants to resist gravitational force. The changes in gene expression by hypergravity treatment were analyzed in Arabidopsis hypocotyls by the differential display method, for identifying genes involved in hypergravity-induced growth suppression. Sixty-two cDNA clones were expressed differentially between the control and 300 g conditions: the expression levels of 39 clones increased, whereas those of 23 clones decreased under hypergravity conditions. Sequence analysis and database searching revealed that 12 clones, 9 up-regulated and 3 down-regulated, have homology to known proteins. The expression of these genes was further analyzed using RT-PCR. Finally, six genes were confirmed to be up-regulated by hypergravity. One of such genes encoded 3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMGR), which catalyzes a reaction producing mevalonic acid, a key precursor ofterpenoids such as membrane sterols and several types of hormones. The expression of HMGR gene increased within several hours after hypergravity treatment. Also, compactin, an inhibitor of HMGR, prevented hypergravity-induced growth suppression, suggesting that HMGR is involved in suppression of Arabidopsis hypocotyl growth by hypergravity. In addition, hypergravity increased the expression levels of genes encoding CCR1 and ERD15, which were shown to take part in the signaling pathway of environmental stimuli such as temperature and water, and those of the α-tubulin gene. These genes may be involved in a series of cellular events leading to growth suppression of stem organs under hypergravity conditions.

  6. Parkinson’s disease dementia: a neural networks perspective

    PubMed Central

    Jahanshahi, Marjan; Foltynie, Thomas

    2015-01-01

    In the long-term, with progression of the illness, Parkinson’s disease dementia affects up to 90% of patients with Parkinson’s disease. With increasing life expectancy in western countries, Parkinson’s disease dementia is set to become even more prevalent in the future. However, current treatments only give modest symptomatic benefit at best. New treatments are slow in development because unlike the pathological processes underlying the motor deficits of Parkinson’s disease, the neural mechanisms underlying the dementing process and its associated cognitive deficits are still poorly understood. Recent insights from neuroscience research have begun to unravel the heterogeneous involvement of several distinct neural networks underlying the cognitive deficits in Parkinson’s disease dementia, and their modulation by both dopaminergic and non-dopaminergic transmitter systems in the brain. In this review we collate emerging evidence regarding these distinct brain networks to give a novel perspective on the pathological mechanisms underlying Parkinson’s disease dementia, and discuss how this may offer new therapeutic opportunities. PMID:25888551

  7. Parkinson's disease dementia: a neural networks perspective.

    PubMed

    Gratwicke, James; Jahanshahi, Marjan; Foltynie, Thomas

    2015-06-01

    In the long-term, with progression of the illness, Parkinson's disease dementia affects up to 90% of patients with Parkinson's disease. With increasing life expectancy in western countries, Parkinson's disease dementia is set to become even more prevalent in the future. However, current treatments only give modest symptomatic benefit at best. New treatments are slow in development because unlike the pathological processes underlying the motor deficits of Parkinson's disease, the neural mechanisms underlying the dementing process and its associated cognitive deficits are still poorly understood. Recent insights from neuroscience research have begun to unravel the heterogeneous involvement of several distinct neural networks underlying the cognitive deficits in Parkinson's disease dementia, and their modulation by both dopaminergic and non-dopaminergic transmitter systems in the brain. In this review we collate emerging evidence regarding these distinct brain networks to give a novel perspective on the pathological mechanisms underlying Parkinson's disease dementia, and discuss how this may offer new therapeutic opportunities. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  8. IBT-based quantitative proteomics identifies potential regulatory proteins involved in pigmentation of purple sea cucumber, Apostichopus japonicus.

    PubMed

    Xing, Lili; Sun, Lina; Liu, Shilin; Li, Xiaoni; Zhang, Libin; Yang, Hongsheng

    2017-09-01

    Sea cucumbers are an important economic species and exhibit high yield value among aquaculture animals. Purple sea cucumbers are very rare and beautiful and have stable hereditary patterns. In this study, isobaric tags (IBT) were first used to reveal the molecular mechanism of pigmentation in the body wall of the purple sea cucumber. We analyzed the proteomes of purple sea cucumber in early pigmentation stage (Pa), mid pigmentation stage (Pb) and late pigmentation stage (Pc), resulting in the identification of 5580 proteins, including 1099 differentially expressed proteins in Pb: Pa and 339 differentially expressed proteins in Pc: Pb. GO and KEGG analyses revealed possible differentially expressed proteins, including"melanogenesis", "melanosome", "melanoma", "pigment-biosynthetic process", "Epidermis development", "Ras-signaling pathway", "Wnt-signaling pathway", "response to UV light", and "tyrosine metabolism", involved in pigment synthesis and regulation in purple sea cucumbers. The large number of differentially expressed proteins identified here should be highly useful in further elucidating the mechanisms underlying pigmentation in sea cucumbers. Furthermore, these results may also provide the base for further identification of proteins involved in resistance mechanisms against melanoma, albinism, UV damage, and other diseases in sea cucumbers. Copyright © 2017. Published by Elsevier Inc.

  9. Involvement of PUMA in pericyte migration induced by methamphetamine.

    PubMed

    Zhang, Yanhong; Zhang, Yuan; Bai, Ying; Chao, Jie; Hu, Gang; Chen, Xufeng; Yao, Honghong

    2017-07-01

    Mounting evidence indicates that methamphetamine causes blood-brain barrier damage, with emphasis on endothelial cells. The role of pericytes in methamphetamine-induced BBB damage remains unknown. Our study demonstrated that methamphetamine increased the migration of pericytes from the endothelial basement membrane. However, the detailed mechanisms underlying this process remain poorly understood. Thus, we examined the molecular mechanisms involved in methamphetamine-induced pericyte migration. The results showed that exposure of C3H/10T1/2 cells and HBVPs to methamphetamine increased PUMA expression via activation of the sigma-1 receptor, MAPK and Akt/PI3K pathways. Moreover, methamphetamine treatment resulted in the increased migration of C3H/10T1/2 cells and HBVPs. Knockdown of PUMA in pericytes transduced with PUMA siRNA attenuated the methamphetamine-induced increase in cell migration through attenuation of integrin and tyrosine kinase mechanisms, implicating a role of PUMA in the migration of C3H/10T1/2 cells and HBVPs. This study has demonstrated that methamphetamine-mediated pericytes migration involves PUMA up-regulation. Thus, targeted studies of PUMA could provide insights to facilitate the development of a potential therapeutic approach for alleviation of methamphetamine-induced pericyte migration. Copyright © 2017. Published by Elsevier Inc.

  10. Adverse effects of perinatal nicotine exposure on reproductive outcomes.

    PubMed

    Wong, Michael K; Barra, Nicole G; Alfaidy, Nadia; Hardy, Daniel B; Holloway, Alison C

    2015-12-01

    Nicotine exposure during pregnancy through cigarette smoking, nicotine replacement therapies or e-cigarette use continues to be a widespread public health problem, impacting both fetal and postnatal health. Yet, at this time, there remains limited data regarding the safety and efficacy in using these nicotine products during pregnancy. Notably, reports assessing the effect of nicotine exposure on postnatal health outcomes in humans, including reproductive health, are severely lacking. Our current understanding regarding the consequences of nicotine exposure during pregnancy is limited to a few animal studies, which do not comprehensively address the underlying cellular mechanisms involved. This paper aims to critically review the current knowledge from human and animal studies regarding the direct and indirect effects (e.g. obesity) of maternal nicotine exposure, regardless of its source, on reproductive outcomes in pregnancy and postnatal life. Furthermore, this review highlights several key cellular mechanisms involved in these adverse reproductive deficits including oxidative stress, inflammation, and endoplasmic reticulum (ER) stress. By understanding the interplay of the cellular mechanisms involved, further strategies could be developed to prevent the reproductive abnormalities resulting from exposure to nicotine in utero and influence informed clinical guidelines for pregnant women. © 2015 Society for Reproduction and Fertility.

  11. Role of HCA₂ (GPR109A) in nicotinic acid and fumaric acid ester-induced effects on the skin.

    PubMed

    Hanson, Julien; Gille, Andreas; Offermanns, Stefan

    2012-10-01

    Nicotinic acid (NA) and fumaric acid esters (FAE) such as monomethyl fumarate or dimethyl fumarate are drugs that elicit a cutaneous reaction called flushing as a side effect. NA is used to reduce progression of atherosclerosis through its anti-dyslipidemic activity and lipid-independent mechanisms involving immune cells, whereas FAE are used to treat psoriasis via largely unknown mechanisms. Both, NA and FAE, induce flushing by the activation of the G-protein-coupled receptor (GPCR) Hydroxy-carboxylic acid receptor 2 (HCA₂, GPR109A) in cells of the epidermis. While the wanted effects of NA are at least in part also mediated by HCA₂, it is currently not clear whether this receptor is also involved in the anti-psoriatic effects of FAE. The HCA₂-mediated flushing response to these drugs involves the formation of prostaglandins D₂ and E₂ by Langerhans cells and keratinocytes via COX-1 in Langerhans cells and COX-2 in keratinocytes. This review summarizes recent progress in the understanding of the mechanisms underlying HCA₂-mediated flushing, describes strategies to mitigate it and discusses the potential link between flushing, HCA₂ and the anti-psoriatic effects of FAE. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Role of ischaemic preconditioning in liver regeneration following major liver resection and transplantation

    PubMed Central

    Gomez, D; Homer-Vanniasinkam, S; Graham, AM; Prasad, KR

    2007-01-01

    Liver ischaemic preconditioning (IPC) is known to protect the liver from the detrimental effects of ischaemic-reperfusion injury (IRI), which contributes significantly to the morbidity and mortality following major liver surgery. Recent studies have focused on the role of IPC in liver regeneration, the precise mechanism of which are not completely understood. This review discusses the current understanding of the mechanism of liver regeneration and the role of IPC in this setting. Relevant articles were reviewed from the published literature using the Medline database. The search was performed using the keywords “liver”, “ischaemic reperfusion”, “ischaemic preconditioning”, “regeneration”, “hepatectomy” and “transplantation”. The underlying mechanism of liver regeneration is a complex process involving the interaction of cytokines, growth factors and the metabolic demand of the liver. IPC, through various mediators, promotes liver regeneration by up-regulating growth-promoting factors and suppresses growth-inhibiting factors as well as damaging stresses. The increased understanding of the cellular mechanisms involved in IPC will enable the development of alternative treatment modalities aimed at promoting liver regeneration following major liver resection and transplantation. PMID:17278187

  13. A fluid–structure interaction model to characterize bone cell stimulation in parallel-plate flow chamber systems

    PubMed Central

    Vaughan, T. J.; Haugh, M. G.; McNamara, L. M.

    2013-01-01

    Bone continuously adapts its internal structure to accommodate the functional demands of its mechanical environment and strain-induced flow of interstitial fluid is believed to be the primary mediator of mechanical stimuli to bone cells in vivo. In vitro investigations have shown that bone cells produce important biochemical signals in response to fluid flow applied using parallel-plate flow chamber (PPFC) systems. However, the exact mechanical stimulus experienced by the cells within these systems remains unclear. To fully understand this behaviour represents a most challenging multi-physics problem involving the interaction between deformable cellular structures and adjacent fluid flows. In this study, we use a fluid–structure interaction computational approach to investigate the nature of the mechanical stimulus being applied to a single osteoblast cell under fluid flow within a PPFC system. The analysis decouples the contribution of pressure and shear stress on cellular deformation and for the first time highlights that cell strain under flow is dominated by the pressure in the PPFC system rather than the applied shear stress. Furthermore, it was found that strains imparted on the cell membrane were relatively low whereas significant strain amplification occurred at the cell–substrate interface. These results suggest that strain transfer through focal attachments at the base of the cell are the primary mediators of mechanical signals to the cell under flow in a PPFC system. Such information is vital in order to correctly interpret biological responses of bone cells under in vitro stimulation and elucidate the mechanisms associated with mechanotransduction in vivo. PMID:23365189

  14. Frictional healing of quartz gouge under hydrothermal conditions: 2. Quantitative interpretation with a physical model

    NASA Astrophysics Data System (ADS)

    Nakatani, Masao; Scholz, Christopher H.

    2004-07-01

    The companion paper by [2004] shows that a hydrothermal frictional healing mechanism results from local solution transfer. Here we evaluate this mechanism with the model of [1994], which assumes that the healing occurs by stress-driven asperity creep. The absence of a clear temperature dependence of the healing parameter b in the narrow tested range of 100-200°C is consistent with the model's prediction. The analysis also indicates that the mechanism involves a high stress assist parameter Ωσ = 200 kJ/mol, which is consistent with the contact stress being the indentation hardness, σ ˜ 10 GPa, and the activation volume Ω being the molar volume, both of which are reasonable. For this to be consistent with the observed temperature enhanced kinetics of healing also requires that the activation energy exceed 200 kJ/mol. This is much higher than the 20-70 kJ/mol known for low contact stress pressure solution. The analysis of several previously published studies of hydrothermal healing of hard silicates yielded the same results. Hence, if the underlying process is stress driven, it must have a different mechanism at high stress than at low stress. Alternatively, a solution transfer mechanism driven by something other than stress could be the underlying mechanism, but this is inconsistent with other aspects of our experimental results. On the other hand, the same analysis of phenomena that are independently inferred to proceed under relatively low contact stress yielded the parameter values consistent with low-stress pressure solution.

  15. When Bad Guys Become Good Ones: The Key Role of Reactive Oxygen Species and Nitric Oxide in the Plant Responses to Abiotic Stress

    PubMed Central

    Farnese, Fernanda S.; Menezes-Silva, Paulo E.; Gusman, Grasielle S.; Oliveira, Juraci A.

    2016-01-01

    The natural environment of plants is composed of a complex set of abiotic stresses and their ability to respond to these stresses is highly flexible and finely balanced through the interaction between signaling molecules. In this review, we highlight the integrated action between reactive oxygen species (ROS) and reactive nitrogen species (RNS), particularly nitric oxide (NO), involved in the acclimation to different abiotic stresses. Under stressful conditions, the biosynthesis transport and the metabolism of ROS and NO influence plant response mechanisms. The enzymes involved in ROS and NO synthesis and scavenging can be found in different cells compartments and their temporal and spatial locations are determinant for signaling mechanisms. Both ROS and NO are involved in long distances signaling (ROS wave and GSNO transport), promoting an acquired systemic acclimation to abiotic stresses. The mechanisms of abiotic stresses response triggered by ROS and NO involve some general steps, as the enhancement of antioxidant systems, but also stress-specific mechanisms, according to the stress type (drought, hypoxia, heavy metals, etc.), and demand the interaction with other signaling molecules, such as MAPK, plant hormones, and calcium. The transduction of ROS and NO bioactivity involves post-translational modifications of proteins, particularly S-glutathionylation for ROS, and S-nitrosylation for NO. These changes may alter the activity, stability, and interaction with other molecules or subcellular location of proteins, changing the entire cell dynamics and contributing to the maintenance of homeostasis. However, despite the recent advances about the roles of ROS and NO in signaling cascades, many challenges remain, and future studies focusing on the signaling of these molecules in planta are still necessary. PMID:27148300

  16. WHAMM Directs the Arp2/3 Complex to the ER for Autophagosome Biogenesis through an Actin Comet Tail Mechanism.

    PubMed

    Kast, David J; Zajac, Allison L; Holzbaur, Erika L F; Ostap, E Michael; Dominguez, Roberto

    2015-06-29

    Nucleation-promoting factors (NPFs) control the spatio-temporal activity of Arp2/3 complex in cells]. Thus, WASP and the WAVE complex direct the formation of branched actin networks at the leading edge during cell motility and endo/exocytosis, whereas the WASH complex is involved in endosomal transport. Less understood are WHAMM and JMY, two NPFs with similar domain architecture. JMY is found in the nucleus and the cytosol and is involved in transcriptional regulation, cell motility, and trans-Golgi transport. WHAMM was reported to bind microtubules and to be involved in ER to cis-Golgi transport. Here, we show that WHAMM directs the activity of Arp2/3 complex for autophagosome biogenesis through an actin-comet tail motility mechanism. Macroautophagy--the process by which cytosolic material is engulfed into autophagosomes for degradation and/or recycling--was recently shown to involve actin, but the mechanism is unknown. We found that WHAMM forms puncta that colocalize and comigrate with the autophagy markers LC3, DFCP1, and p62 through a WHAMM-dependent actin-comet tail mechanism. Under starvation, WHAMM and actin are observed at the interface between neighboring autophagosomes, whose number and size increase with WHAMM expression. Interfering with actin polymerization, inhibiting Arp2/3 complex, knocking down WHAMM, or blocking its interaction with Arp2/3 complex through mutagenesis all inhibit comet tail formation and reduce the size and number of autophagosomes. Finally, JMY shows similar localization to WHAMM and could be involved in similar processes. These results reveal a link between Arp2/3-complex-dependent actin assembly and autophagy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. When Bad Guys Become Good Ones: The Key Role of Reactive Oxygen Species and Nitric Oxide in the Plant Responses to Abiotic Stress.

    PubMed

    Farnese, Fernanda S; Menezes-Silva, Paulo E; Gusman, Grasielle S; Oliveira, Juraci A

    2016-01-01

    The natural environment of plants is composed of a complex set of abiotic stresses and their ability to respond to these stresses is highly flexible and finely balanced through the interaction between signaling molecules. In this review, we highlight the integrated action between reactive oxygen species (ROS) and reactive nitrogen species (RNS), particularly nitric oxide (NO), involved in the acclimation to different abiotic stresses. Under stressful conditions, the biosynthesis transport and the metabolism of ROS and NO influence plant response mechanisms. The enzymes involved in ROS and NO synthesis and scavenging can be found in different cells compartments and their temporal and spatial locations are determinant for signaling mechanisms. Both ROS and NO are involved in long distances signaling (ROS wave and GSNO transport), promoting an acquired systemic acclimation to abiotic stresses. The mechanisms of abiotic stresses response triggered by ROS and NO involve some general steps, as the enhancement of antioxidant systems, but also stress-specific mechanisms, according to the stress type (drought, hypoxia, heavy metals, etc.), and demand the interaction with other signaling molecules, such as MAPK, plant hormones, and calcium. The transduction of ROS and NO bioactivity involves post-translational modifications of proteins, particularly S-glutathionylation for ROS, and S-nitrosylation for NO. These changes may alter the activity, stability, and interaction with other molecules or subcellular location of proteins, changing the entire cell dynamics and contributing to the maintenance of homeostasis. However, despite the recent advances about the roles of ROS and NO in signaling cascades, many challenges remain, and future studies focusing on the signaling of these molecules in planta are still necessary.

  18. Elevated temperature biaxial fatigue

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.

    1983-01-01

    Biaxial fatigue is often encountered in the complex thermo-mechanical loadings present in gas turbine engines. Engine strain histories can involve non-constant temperature, mean stress, creep, environmental effects, both isotropic and anisotropic materials and non-proportional loading. Life prediction for the general case involving all the above factors is not a practicable research project. The current research program is limited to isothermal fatigue at room temperature and 1200 F of Hastalloy-X for both proportional and non-proportional loading. An improved method for predicting the fatigue life and deformation response under biaxial cycle loading is sought.

  19. Estimating Alarm Thresholds for Process Monitoring Data under Different Assumptions about the Data Generating Mechanism

    DOE PAGES

    Burr, Tom; Hamada, Michael S.; Howell, John; ...

    2013-01-01

    Process monitoring (PM) for nuclear safeguards sometimes requires estimation of thresholds corresponding to small false alarm rates. Threshold estimation dates to the 1920s with the Shewhart control chart; however, because possible new roles for PM are being evaluated in nuclear safeguards, it is timely to consider modern model selection options in the context of threshold estimation. One of the possible new PM roles involves PM residuals, where a residual is defined as residual = data − prediction. This paper reviews alarm threshold estimation, introduces model selection options, and considers a range of assumptions regarding the data-generating mechanism for PM residuals.more » Two PM examples from nuclear safeguards are included to motivate the need for alarm threshold estimation. The first example involves mixtures of probability distributions that arise in solution monitoring, which is a common type of PM. The second example involves periodic partial cleanout of in-process inventory, leading to challenging structure in the time series of PM residuals.« less

  20. Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells.

    PubMed

    Liu, Yan-Jun; Le Berre, Maël; Lautenschlaeger, Franziska; Maiuri, Paolo; Callan-Jones, Andrew; Heuzé, Mélina; Takaki, Tohru; Voituriez, Raphaël; Piel, Matthieu

    2015-02-12

    The mesenchymal-amoeboid transition (MAT) was proposed as a mechanism for cancer cells to adapt their migration mode to their environment. While the molecular pathways involved in this transition are well documented, the role of the microenvironment in the MAT is still poorly understood. Here, we investigated how confinement and adhesion affect this transition. We report that, in the absence of focal adhesions and under conditions of confinement, mesenchymal cells can spontaneously switch to a fast amoeboid migration phenotype. We identified two main types of fast migration--one involving a local protrusion and a second involving a myosin-II-dependent mechanical instability of the cell cortex that leads to a global cortical flow. Interestingly, transformed cells are more prone to adopt this fast migration mode. Finally, we propose a generic model that explains migration transitions and predicts a phase diagram of migration phenotypes based on three main control parameters: confinement, adhesion, and contractility. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Long Noncoding RNAs as a Key Player in Hepatocellular Carcinoma

    PubMed Central

    Mehra, Mrigaya; Chauhan, Ranjit

    2017-01-01

    Hepatocellular carcinoma (HCC) is a major malignancy in the liver and has emerged as one of the main cancers in the world with a high mortality rate. However, the molecular mechanisms of HCC are still poorly understood. Long noncoding RNAs (lncRNAs) have recently come to the forefront as functional non–protein-coding RNAs that are involved in a variety of cellular processes ranging from maintaining the structural integrity of chromosomes to gene expression regulation in a spatiotemporal manner. Many recent studies have reported the involvement of lncRNAs in HCC which has led to a better understanding of the underlying molecular mechanisms operating in HCC. Long noncoding RNAs have been shown to regulate development and progression of HCC, and thus, lncRNAs have both diagnostic and therapeutic potentials. In this review, we present an overview of the lncRNAs involved in different stages of HCC and their potential in clinical applications which have been studied so far. PMID:29147078

  2. Involvement of pterygoid venous plexus in patulous eustachian tube symptoms.

    PubMed

    Oshima, Takeshi; Ogura, Masaki; Kikuchi, Toshiaki; Hori, Yoko; Mugikura, Shunji; Higano, Shuichi; Takahashi, Shoki; Kawase, Tetsuaki; Kobayashi, Toshimitsu

    2007-07-01

    The pterygoid venous plexus (PVP) is an important factor in the mechanism of eustachian tube (ET) closure under conditions that can cause increased venous pressure in the head, such as during neck compression and postural change from the sitting/standing to the recumbent position. The symptoms of patulous ET are usually improved by neck compression or postural change (from sitting/standing to recumbent position). Venous congestion around the ET and/or gravitational change may be involved in the changing degree of symptoms, but its mechanism is not understood. This study investigated whether the PVP is involved. The dimensions of soft tissues surrounding ET were measured on magnetic resonance images before and after neck compression. The lateral pterygoid muscle became enlarged after neck compression. Simultaneously, the volume of venous plexus observed between the medial pterygoid muscle and tensor veli palatini muscle was increased. Such enlargement was probably due to blood pooling in the PVP, resulting in protrusion of the ET anterior wall to the luminal side, and decreased ET patency.

  3. Cholinergic Neuromodulation Controls Directed Temporal Communication in Neocortex in Vitro

    PubMed Central

    Roopun, Anita K.; LeBeau, Fiona E.N.; Rammell, James; Cunningham, Mark O.; Traub, Roger D.; Whittington, Miles A.

    2010-01-01

    Acetylcholine is the primary neuromodulator involved in cortical arousal in mammals. Cholinergic modulation is involved in conscious awareness, memory formation and attention – processes that involve intercommunication between different cortical regions. Such communication is achieved in part through temporal structuring of neuronal activity by population rhythms, particularly in the beta and gamma frequency ranges (12–80 Hz). Here we demonstrate, using in vitro and in silico models, that spectrally identical patterns of beta2 and gamma rhythms are generated in primary sensory areas and polymodal association areas by fundamentally different local circuit mechanisms: Glutamatergic excitation induced beta2 frequency population rhythms only in layer 5 association cortex whereas cholinergic neuromodulation induced this rhythm only in layer 5 primary sensory cortex. This region-specific sensitivity of local circuits to cholinergic modulation allowed for control of the extent of cortical temporal interactions. Furthermore, the contrasting mechanisms underlying these beta2 rhythms produced a high degree of directionality, favouring an influence of association cortex over primary auditory cortex. PMID:20407636

  4. EEG alpha power and creative ideation☆

    PubMed Central

    Fink, Andreas; Benedek, Mathias

    2014-01-01

    Neuroscientific studies revealed first insights into neural mechanisms underlying creativity, but existing findings are highly variegated and often inconsistent. Despite the disappointing picture on the neuroscience of creativity drawn in recent reviews, there appears to be robust evidence that EEG alpha power is particularly sensitive to various creativity-related demands involved in creative ideation. Alpha power varies as a function of creativity-related task demands and the originality of ideas, is positively related to an individuals’ creativity level, and has been observed to increase as a result of creativity interventions. Alpha increases during creative ideation could reflect more internally oriented attention that is characterized by the absence of external bottom-up stimulation and, thus, a form of top-down activity. Moreover, they could indicate the involvement of specific memory processes such as the efficient (re-)combination of unrelated semantic information. We conclude that increased alpha power during creative ideation is among the most consistent findings in neuroscientific research on creativity and discuss possible future directions to better understand the manifold brain mechanisms involved in creativity. PMID:23246442

  5. Physical mechanism responsible for the stretched exponential decay behavior of aging organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Féry, C.; Racine, B.; Vaufrey, D.; Doyeux, H.; Cinà, S.

    2005-11-01

    The main process responsible for the luminance degradation in organic light-emitting diodes (OLEDs) driven under constant current has not yet been identified. In this paper, we propose an approach to describe the intrinsic mechanisms involved in the OLED aging. We first show that a stretched exponential decay can be used to fit almost all the luminance versus time curves obtained under different driving conditions. In this way, we are able to prove that they can all be described by employing a single free parameter model. By using an approach based on local relaxation events, we will demonstrate that a single mechanism is responsible for the dominant aging process. Furthermore, we will demonstrate that the main relaxation event is the annihilation of one emissive center. We then use our model to fit all the experimental data measured under different driving condition, and show that by carefully fitting the accelerated luminance lifetime-curves, we can extrapolate the low-luminance lifetime needed for real display applications, with a high degree of accuracy.

  6. New insights into the role of siderophores as triggers of plant immunity: what can we learn from animals?

    PubMed

    Aznar, Aude; Dellagi, Alia

    2015-06-01

    Microorganisms use siderophores to obtain iron from the environment. In pathogenic interactions, siderophores are involved in iron acquisition from the host and are sometimes necessary for the expression of full virulence. This review summarizes the main data describing the role of these iron scavengers in animal and plant defence systems. To protect themselves against iron theft, mammalian hosts have developed a hypoferremia strategy that includes siderophore-binding molecules called siderocalins. In addition to microbial ferri-siderophore sequestration, siderocalins are involved in triggering immunity. In plants, no similar mechanisms have been described and many fewer data are available, although recent advances have shed light on the role of siderophores in plant-pathogen interactions. Siderophores can trigger immunity in plants in several contexts. The most frequently described situation involving siderophores is induced systemic resistance (ISR) triggered by plant-growth-promoting rhizobacteria. Although ISR responses have been observed after treating roots with certain siderophores, the underlying mechanisms are poorly understood. Immunity can also be triggered by siderophores in leaves. Siderophore perception in plants appears to be different from the well-known perception mechanisms of other microbial compounds, known as microbe-associated molecular patterns. Scavenging iron per se appears to be a novel mechanism of immunity activation, involving complex disturbance of metal homeostasis. Receptor-specific recognition of siderophores has been described in animals, but not in plants. The review closes with an overview of the possible mechanisms of defence activation, via iron scavenging by siderophores or specific siderophore recognition by the plant host. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Electrostatic forces govern the binding mechanism of intrinsically disordered histone chaperones

    PubMed Central

    Liu, Chuanbo; Wang, Tianshu; Bai, Yawen; Wang, Jin

    2017-01-01

    A unified picture to understand the protein recognition and function must include the native binding complex structure ensembles and the underlying binding mechanisms involved in specific biological processes. However, quantifications of both binding complex structures and dynamical mechanisms are still challenging for IDP. In this study, we have investigated the underlying molecular mechanism of the chaperone Chz1 and histone H2A.Z-H2B association by equilibrium and kinetic stopped-flow fluorescence spectroscopy. The dependence of free energy and kinetic rate constant on electrolyte mean activity coefficient and urea concentration are uncovered. Our results indicate a previous unseen binding kinetic intermediate. An initial conformation selection step of Chz1 is also revealed before the formation of this intermediate state. Based on these observations, a mixed mechanism of three steps including both conformation selection and induced fit is proposed. By combination of the ion- and denaturant-induced experiments, we demonstrate that electrostatic forces play a dominant role in the recognition of bipolar charged intrinsically disordered protein Chz1 to its preferred partner H2A.Z-H2B. Both the intra-chain and inter-chain electrostatic interactions have direct impacts on the native collapsed structure and binding mechanism. PMID:28552960

  8. Does Playing Sports Video Games Predict Increased Involvement in Real-Life Sports Over Several Years Among Older Adolescents and Emerging Adults?

    PubMed

    Adachi, Paul J C; Willoughby, Teena

    2016-02-01

    Given the extreme popularity of video games among older adolescents and emerging adults, the investigation of positive outcomes of video game play during these developmental periods is crucial. An important direction for research in this area is the investigation of a link between sports video game play and involvement in real-life sports among youth. Yet, this association has not been examined in the long-term among older adolescents and emerging adults, and thus represents an exciting new area for discovery. The primary goal of the current study, therefore, was to examine the long-term association between sports video game play and involvement in real-life sports clubs among older adolescents and emerging adults. In addition, we examined whether self-esteem was an underlying mechanism of this longitudinal association. We surveyed older adolescents and emerging adults (N = 1132; 70.6 % female; M age = 19.06 years, range of 17-25 years at the first assessment) annually over 3 years about their video game play, self-esteem, and involvement in real-life sports. We found a long-term predictive effect of sports video game play on increased involvement in real-life sports over the 3 years. Furthermore, we demonstrated that self-esteem was an underlying mechanism of this long-term association. Our findings make an important contribution to an emerging body of literature on the positive outcomes of video game play, as they suggest that sports video game play may be an effective tool to promote real-life sports participation and physical activity among older adolescents and emerging adults.

  9. Differential expression of glucose-metabolizing enzymes in multiple sclerosis lesions.

    PubMed

    Nijland, Philip G; Molenaar, Remco J; van der Pol, Susanne M A; van der Valk, Paul; van Noorden, Cornelis J F; de Vries, Helga E; van Horssen, Jack

    2015-12-04

    Demyelinated axons in multiple sclerosis (MS) lesions have an increased energy demand in order to maintain conduction. However, oxidative stress-induced mitochondrial dysfunction likely alters glucose metabolism and consequently impairs neuronal function in MS. Imaging and pathological studies indicate that glucose metabolism is altered in MS, although the underlying mechanisms and its role in neurodegeneration remain elusive. We investigated expression patterns of key enzymes involved in glycolysis, tricarboxylic acid (TCA) cycle and lactate metabolism in well-characterized MS tissue to establish which regulators of glucose metabolism are involved in MS and to identify underlying mechanisms. Expression levels of glycolytic enzymes were increased in active and inactive MS lesions, whereas expression levels of enzymes involved in the TCA cycle were upregulated in active MS lesions, but not in inactive MS lesions. We observed reduced expression and production capacity of mitochondrial α-ketoglutarate dehydrogenase (αKGDH) in demyelinated axons, which correlated with signs of axonal dysfunction. In inactive lesions, increased expression of lactate-producing enzymes was observed in astrocytes, whereas lactate-catabolising enzymes were mainly detected in axons. Our results demonstrate that the expression of various enzymes involved in glucose metabolism is increased in both astrocytes and axons in active MS lesions. In inactive MS lesions, we provide evidence that astrocytes undergo a glycolytic shift resulting in enhanced astrocyte-axon lactate shuttling, which may be pivotal for the survival of demyelinated axons. In conclusion, we show that key enzymes involved in energy metabolism are differentially expressed in active and inactive MS lesions. Our findings imply that, in addition to reduced oxidative phosphorylation activity, other bioenergetic pathways are affected as well, which may contribute to ongoing axonal degeneration in MS.

  10. Astrocyte transforming growth factor beta 1 promotes inhibitory synapse formation via CaM kinase II signaling.

    PubMed

    Diniz, Luan Pereira; Tortelli, Vanessa; Garcia, Matheus Nunes; Araújo, Ana Paula Bérgamo; Melo, Helen M; Silva, Gisele S Seixas da; Felice, Fernanda G De; Alves-Leon, Soniza Vieira; Souza, Jorge Marcondes de; Romão, Luciana Ferreira; Castro, Newton Gonçalves; Gomes, Flávia Carvalho Alcantara

    2014-12-01

    The balance between excitatory and inhibitory synaptic inputs is critical for the control of brain function. Astrocytes play important role in the development and maintenance of neuronal circuitry. Whereas astrocytes-derived molecules involved in excitatory synapses are recognized, molecules and molecular mechanisms underlying astrocyte-induced inhibitory synapses remain unknown. Here, we identified transforming growth factor beta 1 (TGF-β1), derived from human and murine astrocytes, as regulator of inhibitory synapse in vitro and in vivo. Conditioned media derived from human and murine astrocytes induce inhibitory synapse formation in cerebral cortex neurons, an event inhibited by pharmacologic and genetic manipulation of the TGF-β pathway. TGF-β1-induction of inhibitory synapse depends on glutamatergic activity and activation of CaM kinase II, which thus induces localization and cluster formation of the synaptic adhesion protein, Neuroligin 2, in inhibitory postsynaptic terminals. Additionally, intraventricular injection of TGF-β1 enhanced inhibitory synapse number in the cerebral cortex. Our results identify TGF-β1/CaMKII pathway as a novel molecular mechanism underlying astrocyte control of inhibitory synapse formation. We propose here that the balance between excitatory and inhibitory inputs might be provided by astrocyte signals, at least partly achieved via TGF-β1 downstream pathways. Our work contributes to the understanding of the GABAergic synapse formation and may be of relevance to further the current knowledge on the mechanisms underlying the development of various neurological disorders, which commonly involve impairment of inhibitory synapse transmission. © 2014 Wiley Periodicals, Inc.

  11. Role of aldehyde dehydrogenase in hypoxic vasodilator effects of nitrite in rats and humans

    PubMed Central

    Arif, Sayqa; Borgognone, Alessandra; Lin, Erica Lai-Sze; O'Sullivan, Aine G; Sharma, Vishal; Drury, Nigel E; Menon, Ashvini; Nightingale, Peter; Mascaro, Jorge; Bonser, Robert S; Horowitz, John D; Feelisch, Martin; Frenneaux, Michael P; Madhani, Melanie

    2015-01-01

    Background and Purpose Hypoxic conditions favour the reduction of nitrite to nitric oxide (NO) to elicit vasodilatation, but the mechanism(s) responsible for bioconversion remains ill defined. In the present study, we assess the role of aldehyde dehydrogenase 2 (ALDH2) in nitrite bioactivation under normoxia and hypoxia in the rat and human vasculature. Experimental Approach The role of ALDH2 in vascular responses to nitrite was studied using rat thoracic aorta and gluteal subcutaneous fat resistance vessels from patients with heart failure (HF; 16 patients) in vitro and by measurement of changes in forearm blood flow (FBF) during intra-arterial nitrite infusion (21 patients) in vivo. Specifically, we investigated the effects of (i) ALDH2 inhibition by cyanamide or propionaldehyde and the (ii) tolerance-independent inactivation of ALDH2 by glyceryl trinitrate (GTN) on the vasodilator activity of nitrite. In each setting, nitrite effects were measured via evaluation of the concentration–response relationship under normoxic and hypoxic conditions in the absence or presence of ALDH2 inhibitors. Key Results Both in rat aorta and human resistance vessels, dilatation to nitrite was diminished following ALDH2 inhibition, in particular under hypoxia. In humans there was a non-significant trend towards attenuation of nitrite-mediated increases in FBF. Conclusions and Implications In human and rat vascular tissue in vitro, hypoxic nitrite-mediated vasodilatation involves ALDH2. In patients with HF in vivo, the role of this enzyme in nitrite bioactivation is at the most, modest, suggesting the involvement of other more important mechanisms. PMID:25754766

  12. Evolution of branched regulatory genetic pathways: directional selection on pleiotropic loci accelerates developmental system drift.

    PubMed

    Johnson, Norman A; Porter, Adam H

    2007-01-01

    Developmental systems are regulated by a web of interacting loci. One common and useful approach in studying the evolution of development is to focus on classes of interacting elements within these systems. Here, we use individual-based simulations to study the evolution of traits controlled by branched developmental pathways involving three loci, where one locus regulates two different traits. We examined the system under a variety of selective regimes. In the case where one branch was under stabilizing selection and the other under directional selection, we observed "developmental system drift": the trait under stabilizing selection showed little phenotypic change even though the loci underlying that trait showed considerable evolutionary divergence. This occurs because the pleiotropic locus responds to directional selection and compensatory mutants are then favored in the pathway under stabilizing selection. Though developmental system drift may be caused by other mechanisms, it seems likely that it is accelerated by the same underlying genetic mechanism as that producing the Dobzhansky-Muller incompatibilities that lead to speciation in both linear and branched pathways. We also discuss predictions of our model for developmental system drift and how different selective regimes affect probabilities of speciation in the branched pathway system.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sotomayor, Marcos

    Hair cell mechanotransduction happens in tens of microseconds, involves forces of a few picoNewtons, and is mediated by nanometer-scale molecular conformational changes. As proteins involved in this process become identified and their high resolution structures become available, multiple tools are being used to explore their “single-molecule responses” to force. Optical tweezers and atomic force microscopy offer exquisite force and extension resolution, but cannot reach the high loading rates expected for high frequency auditory stimuli. Molecular dynamics (MD) simulations can reach these fast time scales, and also provide a unique view of the molecular events underlying protein mechanics, but its predictionsmore » must be experimentally verified. Thus a combination of simulations and experiments might be appropriate to study the molecular mechanics of hearing. Here I review the basics of MD simulations and the different methods used to apply force and study protein mechanics in silico. Simulations of tip link proteins are used to illustrate the advantages and limitations of this method.« less

  14. Impact of Leishmania metalloprotease GP63 on macrophage signaling

    PubMed Central

    Isnard, Amandine; Shio, Marina T.; Olivier, Martin

    2012-01-01

    The intramacrophage protozoan parasites of Leishmania genus have developed sophisticated ways to subvert the innate immune response permitting their infection and propagation within the macrophages of the mammalian host. Several Leishmania virulence factors have been identified and found to be of importance for the development of leishmaniasis. However, recent findings are now further reinforcing the critical role played by the zinc-metalloprotease GP63 as a virulence factor that greatly influence host cell signaling mechanisms and related functions. GP63 has been found to be involved not only in the cleavage and degradation of various kinases and transcription factors, but also to be the major molecule modulating host negative regulatory mechanisms involving for instance protein tyrosine phosphatases (PTPs). Those latter being well recognized for their pivotal role in the regulation of a great number of signaling pathways. In this review article, we are providing a complete overview about the role of Leishmania GP63 in the mechanisms underlying the subversion of macrophage signaling and functions. PMID:22919663

  15. Impact of Leishmania metalloprotease GP63 on macrophage signaling.

    PubMed

    Isnard, Amandine; Shio, Marina T; Olivier, Martin

    2012-01-01

    The intramacrophage protozoan parasites of Leishmania genus have developed sophisticated ways to subvert the innate immune response permitting their infection and propagation within the macrophages of the mammalian host. Several Leishmania virulence factors have been identified and found to be of importance for the development of leishmaniasis. However, recent findings are now further reinforcing the critical role played by the zinc-metalloprotease GP63 as a virulence factor that greatly influence host cell signaling mechanisms and related functions. GP63 has been found to be involved not only in the cleavage and degradation of various kinases and transcription factors, but also to be the major molecule modulating host negative regulatory mechanisms involving for instance protein tyrosine phosphatases (PTPs). Those latter being well recognized for their pivotal role in the regulation of a great number of signaling pathways. In this review article, we are providing a complete overview about the role of Leishmania GP63 in the mechanisms underlying the subversion of macrophage signaling and functions.

  16. The Inhibitory Effect of Shikonin on the Agonist-Induced Regulation of Vascular Contractility

    PubMed Central

    Je, Hyun Dong; Kim, Hyeong-Dong; La, Hyen-Oh

    2015-01-01

    Shikonin, a natural flavonoid found in the roots of Lithospermum erythrorhizon, has been shown to possess many biological functions. The present study was undertaken to investigate the influence of shikonin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Shikonin significantly relaxed fluoride-, thromboxane A2- or phorbol ester-induced vascular contraction suggesting as a possible anti-hypertensive on the agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, shikonin significantly inhibited fluoride-induced increases in pMYPT1 levels and phorbol ester-induced increases in pERK1/2 levels suggesting the mechanism involving the inhibition of Rho-kinase activity and the subsequent phosphorylation of MYPT1 and the inhibition of MEK activity and the subsequent phosphorylation of ERK1/2. This study provides evidence regarding the mechanism underlying the relaxation effect of shikonin on agonist-induced vascular contraction regardless of endothelial function. PMID:25995821

  17. Advances in clinical and molecular understanding of the FMR1 premutation and fragile X-associated tremor/ataxia syndrome

    PubMed Central

    Hagerman, Randi; Hagerman, Paul

    2014-01-01

    Summary Fragile X syndrome, the leading heritable form of cognitive impairment, is caused by epigenetic silencing of the fragile X (FMR1) gene consequent to large expansions (>200 repeats) of a non-coding CGG-repeat element. Smaller, “premutation” expansions (55–200 repeats) can give rise to a family of neurodevelopmental (ADHD, autism spectrum disorder, seizure disorder) and neurodegenerative (FXTAS) clinical phenotypes through an entirely distinct molecular mechanism involving increased FMR1 mRNA production and toxicity. Basic cellular, animal, and human studies have helped to elucidate the underlying RNA toxicity mechanism, while clinical research is providing a more nuanced picture of the spectrum of clinical involvement. Whereas advances on both mechanistic and clinical fronts are driving new approaches to targeted treatment, two important issues/needs are emerging: to define the extent to which the mechanisms contributing to FXTAS also contribute to other neurodegenerative and medical disorders, and to redefine FXTAS in light of its differing presentations and associated features. PMID:23867198

  18. Dynamic stress effects in technical superconductors and the ''training'' problem of superconducting magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasztor, G.; Schmidt, C.

    The behavior of NbTi superconductors under dynamic mechanical stress was investigated. A training effect was found in short-sample tests when the conductor was strained in a magnetic field and with a transport current applied. Possible mechanisms are discussed which were proposed to explain training in short samples and in magnets. A stress-induced microplastic as well as an incomplete pseudoelastic behavior of NbTi was detected by monitoring acoustic emission. The experiments support the hypothesis that microplastic or shape memory effects in NbTi involving dislocation processes are responsible for training. The minimum energy needed to induce a normal transition in short-sample testsmore » is calculated with a computer program, which gives the exact solution of the heat equation. A prestrain treatment of the conductor at room temperature is shown to be a simple method of reducing training of short samples and of magnets. This is a direct proof that the same mechanisms are involved in both cases.« less

  19. Endothelium-Independent Effect of Fisetin on the Agonist-Induced Regulation of Vascular Contractility

    PubMed Central

    Je, Hyun Dong; Sohn, Uy Dong; La, Hyen-Oh

    2016-01-01

    Fisetin, a natural flavonoid found in a variety of vegetables and fruits, has been shown to possess many biological functions. The present study was undertaken to investigate the influence of fisetin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Fisetin significantly relaxed fluoride-, thromboxane A2- or phorbol ester-induced vascular contraction suggesting as a possible anti-hypertensive on the agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, fisetin significantly inhibited fluoride-induced increases in pMYPT1 levels and phorbol ester-induced increases in pERK1/2 levels suggesting the mechanism involving the inhibition of Rho-kinase activity and the subsequent phosphorylation of MYPT1 and MEK activity and the subsequent phosphorylation of ERK1/2. This study provides evidence regarding the mechanism underlying the relaxation effect of fisetin on agonist-induced vascular contraction regardless of endothelial function. PMID:26759702

  20. Cumene oxidation by cis-[RuIV(bpy)2(py)(O)]2+, revisited.

    PubMed

    Bryant, Jasmine R; Matsuo, Takashi; Mayer, James M

    2004-02-23

    cis-[RuIV(bpy)2(py)(O)]2+ oxidizes cumene (2-phenylpropane) in acetonitrile solution primarily to cumyl alcohol (2-phenyl-2-propanol), alpha-methylstyrene, and acetophenone. Contrary to a prior report, the rate of the reaction is not accelerated by added nucleophiles. There is thus no evidence for the hydride transfer mechanism originally proposed. Instead, the results are consistent with a mechanism of initial hydrogen atom transfer from cumene to the ruthenium oxo group. This is indicated by the correlation of rate with C-H bond strength and by the various products observed. The formation of acetophenone, with one carbon less than cumene, is suggested to occur via a multistep pathway involving decarbonylation of the acyl radical from 2-phenylpropanal. An alternative mechanism involving beta-scission of cumyloxyl radical is deemed unlikely because of the difficulty of generating alkoxyl radicals under anaerobic conditions and the lack of rearranged products in the oxidation of triphenylmethane by cis-[RuIV(bpy)2(py)(O)]2+.

  1. [Learning and implicit memory: mechanisms and neuroplasticity].

    PubMed

    Machado, S; Portella, C E; Silva, J G; Velasques, B; Bastos, V H; Cunha, M; Basile, L; Cagy, M; Piedade, R A; Ribeiro, P

    Learning and memory are complex processes that researchers have been attempting to unravel for over a century in order to gain a clear view of the underlying mechanisms. To review the basic cellular and molecular mechanisms involved in the process of procedural retention, to offer an overall view of the fundamental mechanisms involved in storing information by means of theories and models of memory, and to discuss the different types of memory and the role played by the cerebellum as a modulator of procedural memory. Experimental results from recent decades have opened up new areas of study regarding the participation of the biochemical and cellular processes related to the consolidation of information in the nervous system. The neuronal circuits involved in acquiring and consolidating memory are still not fully understood and the exact location of memory in the nervous system remains unknown. A number of intrinsic and extrinsic factors interfere in these processes, such as molecular (long-term potentiation and depression) and cellular mechanisms, which respond to communication and transmission between nerve cells. There are also factors that have their origin in the outside environment, which use the association of events to bring about the formation of new memories or may divert the subject from his or her main focus. Memory is not a singular occurrence; it is sub-divided into declarative and non-declarative or, when talking about the time it lasts, into short and long-term memory. Moreover, given its relation with neuronal mechanisms of learning, memory cannot be said to constitute an isolated process.

  2. Magnetization mechanisms in ordered arrays of polycrystalline Fe{sub 100−x}Co{sub x} nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viqueira, M. S.; Bajales, N.; Urreta, S. E.

    2015-05-28

    Magnetization reversal processes and coercivity mechanisms in polycrystalline Fe{sub 100−x}Co{sub x} nanowire arrays, resulting from an AC electrodeposition process, are investigated. The array coercivity is described on the basis of polarization reversal mechanisms operating in individual wires, under the effect of inter-wire dipolar interactions described by a mean field approximation. For individual wires, a reversal mechanism involving the nucleation and further expansion of domain-wall like spin configuration is considered. The wires have a mean grain size larger than both the nanowire diameter and the exchange length, so localized and non-cooperative nucleation modes are considered. As the Co content increases, themore » alloy saturation polarization gradually decreases, but the coercive field and the relative remanence of the arrays increase, indicating that they are not controlled by the shape anisotropy in all the composition range. The coercive field dependence on the angle between the applied field and the wire long axis is not well described by reversal mechanisms involving nucleation and further displacement of neither vortex nor transverse ideal domain walls. On the contrary, the angular dependence of the coercive field observed at room temperature is well predicted by a model considering nucleation of inverse domains by localized curling, in regions smaller than the grain size, exhibiting quite small aspect ratios as compared to those of the entire nanowire. In arrays with higher Co contents, a transition from an initial (small angle) localized curling nucleation mechanism to another one, involving localized coherent rotation is observed at about π/4.« less

  3. Filling-In Models of Completion: Rejoinder to Kellman, Garrigan, Shipley, and Keane (2007) and Albert (2007)

    ERIC Educational Resources Information Center

    Anderson, Barton L.

    2007-01-01

    There has been a growing interest in understanding the computations involved in the processes underlying visual segmentation and interpolation in conditions of occlusion. P. J. Kellman, P. Garrigan, T. F. Shipley, and B. P. Keane and M. K. Albert defended the view that identical contour interpolation mechanisms underlie modal and amodal…

  4. Evaluating a Novel Sleep-Focused Mind-Body Rehabilitative Program for Veterans with mTBI and Other Polytrauma Symptoms: An RCT Study

    DTIC Science & Technology

    2015-09-01

    mindfulness, insomnia , sleep disturbance, mild Traumatic Brain Injury (mTBI), OEF/OIF 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...explore underlying mechanisms of action involved in treatment benefits resulting from MBB and SED by using both a biomarker of stress and a

  5. Math Anxiety and Math Performance in Children: The Mediating Roles of Working Memory and Math Self-Concept

    ERIC Educational Resources Information Center

    Justicia-Galiano, M. José; Martín-Puga, M. Eva; Linares, Rocío; Pelegrina, Santiago

    2017-01-01

    Background: Numerous studies, most of them involving adolescents and adults, have evidenced a moderate negative relationship between math anxiety and math performance. There are, however, a limited number of studies that have addressed the mechanisms underlying this relation. Aims: This study aimed to investigate the role of two possible…

  6. TMS over the Left Angular Gyrus Impairs the Ability to Discriminate Left from Right

    ERIC Educational Resources Information Center

    Hirnstein, Marco; Bayer, Ulrike; Ellison, Amanda; Hausmann, Markus

    2011-01-01

    The underlying cognitive and neural mechanisms of the ability to discriminate left from right are hardly explored. Clinical studies from patients with impairments of left-right discrimination (LRD) and neuroimaging data suggest that the left angular gyrus is particularly involved in LRD. Moreover, it is argued that the often reported sex…

  7. Parents' Conceptual Involvement in Their Children's Education: An Assessment-Oriented View

    ERIC Educational Resources Information Center

    Pishghadam, Reza; Sadafian, Shaghayegh Shayesteh

    2013-01-01

    Parents' underlying beliefs concerning pedagogical issues may be an indispensable key to understanding the diverse activities that parents engage in with their children. Assessment, as a multifunctional educational mechanism, has long engaged the minds of not only teachers and students but also their parents. Thus, this study sought to delve…

  8. Involvement of Protein Phosphatases in the Destabilization of Methamphetamine-Associated Contextual Memory

    ERIC Educational Resources Information Center

    Yu, Yang-Jung; Huang, Chien-Hsuan; Chang, Chih-Hua; Gean, Po-Wu

    2016-01-01

    Destabilization refers to a memory that becomes unstable when reactivated and is susceptible to disruption by amnestic agents. Here we delineated the cellular mechanism underlying the destabilization of drug memory. Mice were conditioned with methamphetamine (MeAM) for 3 d, and drug memory was assessed with a conditioned place preference (CPP)…

  9. AMPA Receptor Endocytosis in Rat Perirhinal Cortex Underlies Retrieval of Object Memory

    ERIC Educational Resources Information Center

    Cazakoff, Brittany N.; Howland, John G.

    2011-01-01

    Mechanisms consistent with long-term depression in the perirhinal cortex (PRh) play a fundamental role in object recognition memory; however, whether AMPA receptor endocytosis is involved in distinct phases of recognition memory is not known. To address this question, we used local PRh infusions of the cell membrane-permeable Tat-GluA2[subscript…

  10. Formation of non-wettable soils...involves heat transfer mechanism

    Treesearch

    Leonardo F. Debano

    1966-01-01

    After a wiIdfire, some brushland soils in southern California have been found to include a non-wettable layer. This formation may be the result of hydrophobic material volatilizing and later condensing. In burning experiments, hydrophobic substances from ceanothus litter and non-wettable soil were moved downward into an underlying wettable sand by temperature gradients...

  11. Characterization of a genomic region under selection in cultivated carrot (Daucus carota subsp. sativus) reveals a candidate domestication gene

    USDA-ARS?s Scientific Manuscript database

    Carrot is one of the most important vegetables worldwide, owing to its capability to develop fleshy, highly nutritious storage roots. It was domesticated ca. 1,100 years ago in Central Asia. No systematic knowledge about the molecular mechanisms involved in the domestication syndrome in carrot are a...

  12. Comparative proteomics illustrates the complexity of drought resistance mechanisms in two wheat (Triticum aestivum L.) cultivars under dehydration and rehydration.

    PubMed

    Cheng, Lixiang; Wang, Yuping; He, Qiang; Li, Huijun; Zhang, Xiaojing; Zhang, Feng

    2016-08-31

    Drought stress is one of the most adverse environmental constraints to plant growth and productivity. Comparative proteomics of drought-tolerant and sensitive wheat genotypes is a strategy to understand the complexity of molecular mechanism of wheat in response to drought. This study attempted to extend findings regarding the potential proteomic dynamics in wheat under drought stress and to enrich the research content of drought tolerance mechanism. A comparative proteomics approach was applied to analyze proteome change of Xihan No. 2 (a drought-tolerant cultivar) and Longchun 23 (a drought-sensitive cultivar) subjected to a range of dehydration treatments (18 h, 24 h and 48 h) and rehydration treatment (R24 h) using 2-DE, respectively. Quantitative image analysis showed a total of 172 protein spots in Xihan No. 2 and 215 spots from Longchun 23 with their abundance significantly altered (p < 0.05) more than 2.5-fold. Out of these spots, a total of 84 and 64 differentially abundant proteins were identified by MALDI-TOF/TOF MS in Xihan No. 2 and Longchun 23, respectively. Most of these identified proteins were involved in metabolism, photosynthesis, defence and protein translation/processing/degradation in both two cultivars. In addition, the proteins involved in redox homeostasis, energy, transcription, cellular structure, signalling and transport were also identified. Furthermore, the comparative analysis of drought-responsive proteome allowed for the general elucidation of the major mechanisms associated with differential responses to drought of both two cultivars. These cellular processes work more cooperatively to re-establish homeostasis in Xihan No. 2 than Longchun 23. The resistance mechanisms of Xihan No. 2 mainly included changes in the metabolism of carbohydrates and amino acids as well as in the activation of more antioxidation and defense systems and in the levels of proteins involved in ATP synthesis and protein degradation/refolding. This study revealed that the levels of a number of proteins involved in various cellular processes were affected by drought stress in two wheat cultivars with different drought tolerance. The results showed that there exist specific responses to drought in Xihan No. 2 and Longchun 23. The proposed hypothetical model would explain the interaction of these identified proteins that are associated with drought-responses in two cultivars, and help in developing strategies to improve drought tolerance in wheat.

  13. Sticholysin II-mediated cytotoxicity involves the activation of regulated intracellular responses that anticipates cell death.

    PubMed

    Soto, Carmen; Bergado, Gretchen; Blanco, Rancés; Griñán, Tania; Rodríguez, Hermis; Ros, Uris; Pazos, Fabiola; Lanio, María Eliana; Hernández, Ana María; Álvarez, Carlos

    2018-05-01

    Sticholysin II (StII) is a pore-forming toxin of biomedical interest that belongs to the actinoporin protein family. Sticholysins are currently under examination as an active immunomodulating component of a vaccinal platform against tumoral cells and as a key element of a nucleic acids delivery system to cell cytosol. These proteins form pores in the plasma membrane leading to ion imbalance and cell lysis. However, the intracellular mechanisms triggered by actinoporins upon binding to membranes and its consequences for cell death are barely understood. Here, we have examined the cytotoxicity and intracellular responses induced by StII upon binding to human B-cell lymphoma Raji in vitro. StII cytotoxicity involves a functional actin cytoskeleton, induces cellular swelling, lysis and the concomitant release of cytosol content. In addition, StII induces calcium release mainly from the Endoplasmic Reticulum, activates Mitogen-Activated Protein Kinase ERK and impairs mitochondrial membrane potential. Furthermore, StII stimulates the expression of receptor interacting protein kinase 1 (RIP1), normally related to different forms of regulated cell death such as apoptosis and necroptosis. In correspondence, necrostatin-1, an inhibitor of this kinase, reduces StII cytotoxicity. However, the mechanism of cell death activated by StII does not involve caspases activation, typical molecular features of apoptosis and pyroptosis. Our results suggest that, beyond pore-formation and cell lysis, StII-induced cytotoxicity could involve other regulated intracellular mechanisms connected to RIP1-MEK1/2 -ERK1/2- pathways. This opens new perspectives and challenges the general point of view that these toxins induce a completely unregulated mechanism of necrotic cell death. This study contributes to a better understanding of the molecular mechanisms involved in toxin-cell interaction and the implications for cell functioning, with connotation for the exploitations of these toxins in clinical settings. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  14. Autophagy induced by baicalin involves downregulation of CD147 in SMMC-7721 cells in vitro

    PubMed Central

    ZHANG, XIANJIAO; TANG, XU; LIU, HANQIANG; LI, LIANXIANG; HOU, QIAN; GAO, JIANMIN

    2012-01-01

    Baicalin has been demonstrated to exert anticancer effects mainly through induction of tumor cell apoptosis and cell cycle arrest. However, the precise mechanisms underlying its anticancer role remain to be elucidated. In the present study, we investigated whether autophagy was involved in the anticancer activity of baicalin in the human hepatocellular carcinoma (HCC) cell line SMMC-7721 and the possible molecular mechanisms. Our data showed that the viability of SMMC-7721 cells was significantly inhibited by baicalin in a dose- and time-dependent manner. Alongside apoptosis, autophagy was also induced by baicalin dose- and time-dependently with the involvement of the autophagy-associated protein Beclin 1. Moreover, we demonstrated that cell death induced by baicalin was significantly inhibited by the apoptosis inhibitor z-DEVD-fmk or the autophagy inhibitor 3-MA, respectively. In addition, we found that CD147, a key molecule related both to apoptosis and autophagy, was markedly downregulated at the protein level in SMMC-7721 cells treated with baicalin. Collectively, this is the first study to suggest that baicalin induces autophagic cell death in SMMC-7721 cells, which involves the downregulation of CD147. Our study reveals a new mechanism for the anticancer effects of baicalin and puts forward a potential crucial role of CD147 in baicalin-induced cancer cell death. PMID:22200845

  15. Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling

    PubMed Central

    Diaz, Maira; Sanchez-Barrena, Maria Jose; Gonzalez-Rubio, Juana Maria; Rodriguez, Lesia; Fernandez, Daniel; Antoni, Regina; Yunta, Cristina; Belda-Palazon, Borja; Gonzalez-Guzman, Miguel; Peirats-Llobet, Marta; Menendez, Margarita; Boskovic, Jasminka; Marquez, Jose A.; Rodriguez, Pedro L.; Albert, Armando

    2016-01-01

    Regulation of ion transport in plants is essential for cell function. Abiotic stress unbalances cell ion homeostasis, and plants tend to readjust it, regulating membrane transporters and channels. The plant hormone abscisic acid (ABA) and the second messenger Ca2+ are central in such processes, as they are involved in the regulation of protein kinases and phosphatases that control ion transport activity in response to environmental stimuli. The identification and characterization of the molecular mechanisms underlying the effect of ABA and Ca2+ signaling pathways on membrane function are central and could provide opportunities for crop improvement. The C2-domain ABA-related (CAR) family of small proteins is involved in the Ca2+-dependent recruitment of the pyrabactin resistance 1/PYR1-like (PYR/PYL) ABA receptors to the membrane. However, to fully understand CAR function, it is necessary to define a molecular mechanism that integrates Ca2+ sensing, membrane interaction, and the recognition of the PYR/PYL interacting partners. We present structural and biochemical data showing that CARs are peripheral membrane proteins that functionally cluster on the membrane and generate strong positive membrane curvature in a Ca2+-dependent manner. These features represent a mechanism for the generation, stabilization, and/or specific recognition of membrane discontinuities. Such structures may act as signaling platforms involved in the recruitment of PYR/PYL receptors and other signaling components involved in cell responses to stress. PMID:26719420

  16. Mechanisms Involved in Exercise-Induced Cardioprotection: A Systematic Review

    PubMed Central

    Borges, Juliana Pereira; Lessa, Marcos Adriano

    2015-01-01

    Background Acute myocardial infarction is the leading cause of morbidity and mortality worldwide. Furthermore, research has shown that exercise, in addition to reducing cardiovascular risk factors, can also protect the heart against injury due to ischemia and reperfusion through a direct effect on the myocardium. However, the specific mechanism involved in exerciseinduced cardiac preconditioning is still under debate. Objective To perform a systematic review of the studies that have addressed the mechanisms by which aerobic exercise promotes direct cardioprotection against ischemia and reperfusion injury. Methods A search was conducted using MEDLINE, Literatura Latino-Americana e do Caribe de Informação em Ciências da Saúde, and Scientific Electronic Library Online databases. Data were extracted in a standardized manner by two independent researchers, who were responsible for assessing the methodological quality of the studies. Results The search retrieved 78 studies; after evaluating the abstracts, 30 studies were excluded. The manuscripts of the remaining 48 studies were completely read and, of these, 20 were excluded. Finally, 28 studies were included in this systematic review. Conclusion On the basis of the selected studies, the following are potentially involved in the cardioprotective response to exercise: increased heat shock protein production, nitric oxide pathway involvement, increased cardiac antioxidant capacity, improvement in ATP-dependent potassium channel function, and opioid system activation. Despite all the previous investigations, further research is still necessary to obtain more consistent conclusions. PMID:25830711

  17. Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling.

    PubMed

    Diaz, Maira; Sanchez-Barrena, Maria Jose; Gonzalez-Rubio, Juana Maria; Rodriguez, Lesia; Fernandez, Daniel; Antoni, Regina; Yunta, Cristina; Belda-Palazon, Borja; Gonzalez-Guzman, Miguel; Peirats-Llobet, Marta; Menendez, Margarita; Boskovic, Jasminka; Marquez, Jose A; Rodriguez, Pedro L; Albert, Armando

    2016-01-19

    Regulation of ion transport in plants is essential for cell function. Abiotic stress unbalances cell ion homeostasis, and plants tend to readjust it, regulating membrane transporters and channels. The plant hormone abscisic acid (ABA) and the second messenger Ca(2+) are central in such processes, as they are involved in the regulation of protein kinases and phosphatases that control ion transport activity in response to environmental stimuli. The identification and characterization of the molecular mechanisms underlying the effect of ABA and Ca(2+) signaling pathways on membrane function are central and could provide opportunities for crop improvement. The C2-domain ABA-related (CAR) family of small proteins is involved in the Ca(2+)-dependent recruitment of the pyrabactin resistance 1/PYR1-like (PYR/PYL) ABA receptors to the membrane. However, to fully understand CAR function, it is necessary to define a molecular mechanism that integrates Ca(2+) sensing, membrane interaction, and the recognition of the PYR/PYL interacting partners. We present structural and biochemical data showing that CARs are peripheral membrane proteins that functionally cluster on the membrane and generate strong positive membrane curvature in a Ca(2+)-dependent manner. These features represent a mechanism for the generation, stabilization, and/or specific recognition of membrane discontinuities. Such structures may act as signaling platforms involved in the recruitment of PYR/PYL receptors and other signaling components involved in cell responses to stress.

  18. Copper-induced deregulation of microRNA expression in the zebrafish olfactory system

    PubMed Central

    Wang, Lu; Bammler, Theo K.; Beyer, Richard P.; Gallagher, Evan P.

    2016-01-01

    Although environmental trace metals, such as copper (Cu), can disrupt normal olfactory function in fish, the underlying molecular mechanisms of metal-induced olfactory injury have not been elucidated. Current research has suggested the involvement of epigenetic modifications. To address this hypothesis, we analyzed microRNA (miRNA) profiles in the olfactory system of Cu-exposed zebrafish. Our data revealed 2, 10, and 28 differentially expressed miRNAs in a dose-response manner corresponding to three increasing Cu concentrations. Numerous deregulated miRNAs were involved in neurogenesis (e.g. let-7, miR-7a, miR-128 and miR-138), indicating a role for Cu-mediated toxicity via interference with neurogenesis processes. Putative gene targets of deregulated miRNAs were identified when interrogating our previously published microarray database, including those involved in cell growth and proliferation, cell death, and cell morphology. Moreover, several miRNAs (e.g. miR-203a, miR-199*, miR-16a, miR-16c, and miR-25) may contribute to decreased mRNA levels of their host genes involved in olfactory signal transduction pathways and other critical neurological processes via a post-transcriptional mechanism. Our findings provide novel insight into the epigenetic regulatory mechanisms of metal-induced neurotoxicity of the fish olfactory system, and identify novel miRNA biomarkers of metal exposures. PMID:23745839

  19. Unraveling the early molecular and physiological mechanisms involved in response to phenanthrene exposure.

    PubMed

    Dumas, Anne-Sophie; Taconnat, Ludivine; Barbas, Evangelos; Rigaill, Guillem; Catrice, Olivier; Bernard, Delphine; Benamar, Abdelilah; Macherel, David; El Amrani, Abdelhak; Berthomé, Richard

    2016-10-21

    Higher plants have to cope with increasing concentrations of pollutants of both natural and anthropogenic origin. Given their capacity to concentrate and metabolize various compounds including pollutants, plants can be used to treat environmental problems - a process called phytoremediation. However, the molecular mechanisms underlying the stabilization, the extraction, the accumulation and partial or complete degradation of pollutants by plants remain poorly understood. Here, we determined the molecular events involved in the early plant response to phenanthrene, used as a model of polycyclic aromatic hydrocarbons. A transcriptomic and a metabolic analysis strongly suggest that energy availability is the crucial limiting factor leading to high and rapid transcriptional reprogramming that can ultimately lead to death. We show that the accumulation of phenanthrene in leaves inhibits electron transfer and photosynthesis within a few minutes, probably disrupting energy transformation. This kinetic analysis improved the resolution of the transcriptome in the initial plant response to phenanthrene, identifying genes that are involved in primary processes set up to sense and detoxify this pollutant but also in molecular mechanisms used by the plant to cope with such harmful stress. The identification of first events involved in plant response to phenanthrene is a key step in the selection of candidates for further functional characterization, with the prospect of engineering efficient ecological detoxification systems for polycyclic aromatic hydrocarbons.

  20. Transcriptome analysis reveals regulatory networks underlying differential susceptibility to Botrytis cinerea in response to nitrogen availability in Solanum lycopersicum

    PubMed Central

    Vega, Andrea; Canessa, Paulo; Hoppe, Gustavo; Retamal, Ignacio; Moyano, Tomas C.; Canales, Javier; Gutiérrez, Rodrigo A.; Rubilar, Joselyn

    2015-01-01

    Nitrogen (N) is one of the main limiting nutrients for plant growth and crop yield. It is well documented that changes in nitrate availability, the main N source found in agricultural soils, influences a myriad of developmental programs and processes including the plant defense response. Indeed, many agronomical reports indicate that the plant N nutritional status influences their ability to respond effectively when challenged by different pathogens. However, the molecular mechanisms involved in N-modulation of plant susceptibility to pathogens are poorly characterized. In this work, we show that Solanum lycopersicum defense response to the necrotrophic fungus Botrytis cinerea is affected by plant N availability, with higher susceptibility in nitrate-limiting conditions. Global gene expression responses of tomato against B. cinerea under contrasting nitrate conditions reveals that plant primary metabolism is affected by the fungal infection regardless of N regimes. This result suggests that differential susceptibility to pathogen attack under contrasting N conditions is not only explained by a metabolic alteration. We used a systems biology approach to identify the transcriptional regulatory network implicated in plant response to the fungus infection under contrasting nitrate conditions. Interestingly, hub genes in this network are known key transcription factors involved in ethylene and jasmonic acid signaling. This result positions these hormones as key integrators of nitrate and defense against B. cinerea in tomato plants. Our results provide insights into potential crosstalk mechanisms between necrotrophic defense response and N status in plants. PMID:26583019

  1. Ovarian Cancer: Prevention, Detection and Treatment of the Disease and Its Recurrence. Molecular Mechanisms and Personalized Medicine Meeting Report

    PubMed Central

    Modugno, Francesmary; Edwards, Robert P.

    2012-01-01

    Objective To review the current understanding of the underlying molecular, biologic and genetic mechanisms involved in ovarian cancer development and how these mechanisms can be targets for prevention, detection and treatment of the disease and its recurrence. Methods In May 2012, we convened a meeting of researchers, clinicians and consumer advocates to review the state of current knowledge on molecular mechanisms and identify fruitful areas for further investigations. Results The meeting consisted of seven scientific sessions, ranging from Epidemiology, Early Detection, and Biology to Therapeutics and Quality of Life. Sessions consisted of talks and panel discussions by international leaders in ovarian cancer research. A special career-development session by the CDMRP Department of Defense Ovarian Cancer Academy as well as an oral abstract and poster session showcased promising new research by junior scientists. Conclusions Technological advances in the last decade have increased our knowledge of the molecular mechanisms involved in a host of biological activities related to ovarian cancer. Understanding the role these mechanisms play in cancer initiation and progression will help lead to the development of prevention and treatment modalities that can be personalized to each patient, thereby helping to overcome this highly-fatal malignancy. PMID:23013733

  2. Tension (re)builds: Biophysical mechanisms of embryonic wound repair.

    PubMed

    Zulueta-Coarasa, Teresa; Fernandez-Gonzalez, Rodrigo

    2017-04-01

    Embryonic tissues display an outstanding ability to rapidly repair wounds. Epithelia, in particular, serve as protective layers that line internal organs and form the skin. Thus, maintenance of epithelial integrity is of utmost importance for animal survival, particularly at embryonic stages, when an immune system has not yet fully developed. Rapid embryonic repair of epithelial tissues is conserved across species, and involves the collective migration of the cells around the wound. The migratory cell behaviours associated with wound repair require the generation and transmission of mechanical forces, not only for the cells to move, but also to coordinate their movements. Here, we review the forces involved in embryonic wound repair. We discuss how different force-generating structures are assembled at the molecular level, and the mechanisms that maintain the balance between force-generating structures as wounds close. Finally, we describe the mechanisms that cells use to coordinate the generation of mechanical forces around the wound. Collective cell movements and their misregulation have been associated with defective tissue repair, developmental abnormalities and cancer metastasis. Thus, we propose that understanding the role of mechanical forces during embryonic wound closure will be crucial to develop therapeutic interventions that promote or prevent collective cell movements under pathological conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. A Mutator Phenotype Promoting the Emergence of Spontaneous Oxidative Stress-Resistant Mutants in Campylobacter jejuni.

    PubMed

    Dai, Lei; Sahin, Orhan; Tang, Yizhi; Zhang, Qijing

    2017-12-15

    Campylobacter jejuni is a leading cause of foodborne illnesses worldwide. As a microaerophilic organism, C. jejuni must be able to defend against oxidative stress encountered both in the host and in the environment. How Campylobacter utilizes a mutation-based mechanism for adaptation to oxidative stress is still unknown. Here we present a previously undescribed phenotypic and genetic mechanism that promotes the emergence of oxidative stress-resistant mutants. Specifically, we showed that a naturally occurring mutator phenotype, resulting from a loss of function mutation in the DNA repair enzyme MutY, increased oxidative stress resistance (OX R ) in C. jejuni We further demonstrated that MutY malfunction did not directly contribute to the OX R phenotype but increased the spontaneous mutation rate in the peroxide regulator gene perR , which functions as a repressor for multiple genes involved in oxidative stress resistance. Mutations in PerR resulted in loss of its DNA binding function and derepression of PerR-controlled oxidative stress defense genes, thereby conferring an OX R phenotype and facilitating Campylobacter survival under oxidative stress. These findings reveal a new mechanism that promotes the emergence of spontaneous OX R mutants in bacterial organisms. IMPORTANCE Although a mutator phenotype has been shown to promote antibiotic resistance in many bacterial species, little is known about its contribution to the emergence of OX R mutants. This work describes the link between a mutator phenotype and the enhanced emergence of OX R mutants as well as its underlying mechanism involving DNA repair and mutations in PerR. Since DNA repair systems and PerR are well conserved in many bacterial species, especially in Gram positives, the same mechanism may operate in multiple bacterial species. Additionally, we developed a novel method that allows for rapid quantification of spontaneous OX R mutants in a bacterial population. This method represents a technical innovation and may also be applied to other bacterial species. These findings significantly advance our understanding of bacterial mechanisms for survival under oxidative stress. Copyright © 2017 American Society for Microbiology.

  4. Aspergillus fumigatus protein phosphatase PpzA is involved in iron assimilation, secondary metabolite production, and virulence.

    PubMed

    Manfiolli, Adriana Oliveira; de Castro, Patrícia Alves; Dos Reis, Thaila Fernanda; Dolan, Stephen; Doyle, Sean; Jones, Gary; Riaño Pachón, Diego M; Ulaş, Mevlüt; Noble, Luke M; Mattern, Derek J; Brakhage, Axel A; Valiante, Vito; Silva-Rocha, Rafael; Bayram, Ozgur; Goldman, Gustavo H

    2017-12-01

    Metal restriction imposed by mammalian hosts during an infection is a common mechanism of defence to reduce or avoid the pathogen infection. Metals are essential for organism survival due to its involvement in several biological processes. Aspergillus fumigatus causes invasive aspergillosis, a disease that typically manifests in immunocompromised patients. A. fumigatus PpzA, the catalytic subunit of protein phosphatase Z (PPZ), has been recently identified as associated with iron assimilation. A. fumigatus has 2 high-affinity mechanisms of iron acquisition during infection: reductive iron assimilation and siderophore-mediated iron uptake. It has been shown that siderophore production is important for A. fumigatus virulence, differently to the reductive iron uptake system. Transcriptomic and proteomic comparisons between ∆ppzA and wild-type strains under iron starvation showed that PpzA has a broad influence on genes involved in secondary metabolism. Liquid chromatography-mass spectrometry under standard and iron starvation conditions confirmed that the ΔppzA mutant had reduced production of pyripyropene A, fumagillin, fumiquinazoline A, triacetyl-fusarinine C, and helvolic acid. The ΔppzA was shown to be avirulent in a neutropenic murine model of invasive pulmonary aspergillosis. PpzA plays an important role at the interface between iron starvation, regulation of SM production, and pathogenicity in A. fumigatus. © 2017 John Wiley & Sons Ltd.

  5. Mechanism Underlying IκB Kinase Activation Mediated by the Linear Ubiquitin Chain Assembly Complex

    PubMed Central

    Fujita, Hiroaki; Akita, Mariko; Kato, Ryuichi; Sasaki, Yoshiteru; Wakatsuki, Soichi

    2014-01-01

    The linear ubiquitin chain assembly complex (LUBAC) ligase, consisting of HOIL-1L, HOIP, and SHARPIN, specifically generates linear polyubiquitin chains. LUBAC-mediated linear polyubiquitination has been implicated in NF-κB activation. NEMO, a component of the IκB kinase (IKK) complex, is a substrate of LUBAC, but the precise molecular mechanism underlying linear chain-mediated NF-κB activation has not been fully elucidated. Here, we demonstrate that linearly polyubiquitinated NEMO activates IKK more potently than unanchored linear chains. In mutational analyses based on the crystal structure of the complex between the HOIP NZF1 and NEMO CC2-LZ domains, which are involved in the HOIP-NEMO interaction, NEMO mutations that impaired linear ubiquitin recognition activity and prevented recognition by LUBAC synergistically suppressed signal-induced NF-κB activation. HOIP NZF1 bound to NEMO and ubiquitin simultaneously, and HOIP NZF1 mutants defective in interaction with either NEMO or ubiquitin could not restore signal-induced NF-κB activation. Furthermore, linear chain-mediated activation of IKK2 involved homotypic interaction of the IKK2 kinase domain. Collectively, these results demonstrate that linear polyubiquitination of NEMO plays crucial roles in IKK activation and that this modification involves the HOIP NZF1 domain and recognition of NEMO-conjugated linear ubiquitin chains by NEMO on another IKK complex. PMID:24469399

  6. Nitric oxide signaling in the development and evolution of language and cognitive circuits.

    PubMed

    Funk, Owen H; Kwan, Kenneth Y

    2014-09-01

    The neocortex underlies not only remarkable motor and sensory capabilities, but also some of our most distinctly human cognitive functions. The emergence of these higher functions during evolution was accompanied by structural changes in the neocortex, including the acquisition of areal specializations such as Broca's speech and language area. The study of these evolutionary mechanisms, which likely involve species-dependent gene expression and function, represents a substantial challenge. These species differences, however, may represent valuable opportunities to understand the molecular underpinnings of neocortical evolution. Here, we discuss nitric oxide signaling as a candidate mechanism in the assembly of neocortical circuits underlying language and higher cognitive functions. This hypothesis was based on the highly specific mid-fetal pattern of nitric oxide synthase 1 (NOS1, previously nNOS) expression in the pyramidal (projection) neurons of two human neocortical areas respectively involved in speech and language, and higher cognition; the frontal operculum (FOp) and the anterior cingulate cortex (ACC). This expression is transiently present during mid-gestation, suggesting that NOS1 may be involved in the development of these areas and the assembly of their neural circuits. As no other gene product is known to exhibit such exquisite spatiotemporal expression, NOS1 represents a remarkable candidate for these functions. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  7. Isolation of Mouse Primary Gastric Epithelial Cells to Investigate the Mechanisms of Helicobacter pylori Associated Disease.

    PubMed

    Tran, Le Son; Ferrero, Richard L

    2018-01-01

    The gastrointestinal epithelium provides the first line of defense against invading pathogens, among which Helicobacter pylori is linked to numerous gastric pathologies, including chronic gastritis and cancer. Primary gastric epithelial cells represent a useful model for the investigation of the underlying molecular and cellular mechanisms involved in these H. pylori associated diseases. In this chapter, we describe a method for the isolation of primary gastric epithelial cells from mice and detection of epithelial cell adhesion molecule (EpCAM) expression in the isolated cells.

  8. Upper intestinal lipids regulate energy and glucose homeostasis.

    PubMed

    Cheung, Grace W C; Kokorovic, Andrea; Lam, Tony K T

    2009-09-01

    Upon the entry of nutrients into the small intestine, nutrient sensing mechanisms are activated to allow the body to adapt appropriately to the incoming nutrients. To date, mounting evidence points to the existence of an upper intestinal lipid-induced gut-brain neuronal axis to regulate energy homeostasis. Moreover, a recent discovery has also revealed an upper intestinal lipid-induced gut-brain-liver neuronal axis involved in the regulation of glucose homeostasis. In this mini-review, we will focus on the mechanisms underlying the activation of these respective neuronal axes by upper intestinal lipids.

  9. [Unconscious sexual desire: fMRI and EEG evidences from self-expansion theory to mirror neurons].

    PubMed

    Ortigue, Stephanie; Bianchi-Demicheli, Francesco

    2010-03-24

    Recent advances in cognitive-social neuroscience allow a better understanding of the mechanisms underlying dyadic relationships. From a neuronal viewpoint, desire in dyadic relationships involves a specific fronto-temporo-parietal network and also a subcortical network that mediates conscious and unconscious mechanisms of reward, satisfaction, attention, self representation and self-expansion. The integration of this neuroscientific knowledge on the unconscious neurobiological activation for sexual desire in the human brain will provide physicians with new therapeutical and neuroscientific tools to apprehend sexual disorders in couple.

  10. Wavelength dependence of picosecond laser-induced periodic surface structures on copper

    NASA Astrophysics Data System (ADS)

    Maragkaki, Stella; Derrien, Thibault J.-Y.; Levy, Yoann; Bulgakova, Nadezhda M.; Ostendorf, Andreas; Gurevich, Evgeny L.

    2017-09-01

    The physical mechanisms of the laser-induced periodic surface structures (LIPSS) formation are studied in this paper for single-pulse irradiation regimes. The change in the LIPSS period with wavelength of incident laser radiation is investigated experimentally, using a picosecond laser system, which provides 7-ps pulses in near-IR, visible, and UV spectral ranges. The experimental results are compared with predictions made under the assumption that the surface-scattered waves are involved in the LIPSS formation. Considerable disagreement suggests that hydrodynamic mechanisms can be responsible for the observed pattern periodicity.

  11. The evolutionary psychology of violence.

    PubMed

    Goetz, Aaron T

    2010-02-01

    This paper reviews theory and research on the evolutionary psychology of violence. First, I examine evidence suggesting that humans have experienced an evolutionary history of violence. Next, I discuss violence as a context-sensitive strategy that might have provided benefits to our ancestors under certain circumstances. I then focus on the two most common forms of violence that plague humans -violence over status contests and intimate partner violence- outlining psychological mechanisms involved in each. Finally, I suggest that greater progress will be made by shifting the study from contexts to mechanisms.

  12. Mineral metabolism in isolated mouse long bones: Opposite effects of microgravity on mineralization and resorption

    NASA Technical Reports Server (NTRS)

    Veldhuijzen, Jean Paul; Vanloon, Jack J. W. A.

    1994-01-01

    An experiment using isolated skeletal tissues under microgravity, is reported. Fetal mouse long bones (metatarsals) were cultured for 4 days in the Biorack facility of Spacelab during the IML-1 (International Microgravity Laboratory) mission of the Space Shuttle. Overall growth was not affected, however glucose consumption was significantly reduced under microgravity. Mineralization of the diaphysis was also strongly reduced under microgravity as compared to the on-board 1 g group. In contrast, mineral resorption by osteoclasts was signficantly increased. These results indicate that these fetal mouse long bones are a sensitive and useful model to further study the cellular mechanisms involved in the changed mineral metabolism of skeletal tissues under microgravity.

  13. Universal mechanism of thermo-mechanical deformation in metallic glasses

    DOE PAGES

    Dmowski, W.; Tong, Y.; Iwashita, T.; ...

    2015-02-11

    Here we investigated the atomistic structure of metallic glasses subjected to thermo-mechanical creep deformation using high energy x-ray diffraction and molecular dynamics simulation. The experiments were performed in-situ, at high temperatures as a time dependent deformation in the elastic regime, and ex-situ on samples quenched under stress. We show that all the anisotropic structure functions of the samples undergone thermo-mechanical creep can be scaled into a single curve, regardless of the magnitude of anelastic strain, stress level and the sign of the stress, demonstrating universal behavior and pointing to unique atomistic unit of anelastic deformation. The structural changes due tomore » creep are strongly localized within the second nearest neighbors, involving only a small group of atoms.« less

  14. Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: A quantitative proteomics approach.

    PubMed

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    2016-04-14

    Marine bioadhesives have unmatched performances in wet environments, being an inspiration for biomedical applications. In sea urchins specialized adhesive organs, tube feet, mediate reversible adhesion, being composed by a disc, producing adhesive and de-adhesive secretions, and a motile stem. After tube foot detachment, the secreted adhesive remains bound to the substratum as a footprint. Sea urchin adhesive is composed by proteins and sugars, but so far only one protein, Nectin, was shown to be over-expressed as a transcript in tube feet discs, suggesting its involvement in sea urchin adhesion. Here we use high-resolution quantitative mass-spectrometry to perform the first study combining the analysis of the differential proteome of an adhesive organ, with the proteome of its secreted adhesive. This strategy allowed us to identify 163 highly over-expressed disc proteins, specifically involved in sea urchin reversible adhesion; to find that 70% of the secreted adhesive components fall within five protein groups, involved in exocytosis and microbial protection; and to provide evidences that Nectin is not only highly expressed in tube feet discs but is an actual component of the adhesive. These results give an unprecedented insight into the molecular mechanisms underlying sea urchin adhesion, and opening new doors to develop wet-reliable, reversible, and ecological biomimetic adhesives. Sea urchins attach strongly but in a reversible manner to substratum, being a valuable source of inspiration for industrial and biomedical applications. Yet, the molecular mechanisms governing reversible adhesion are still poorly studied delaying the engineering of biomimetic adhesives. We used the latest mass spectrometry techniques to analyze the differential proteome of an adhesive organ and the proteome of its secreted adhesive, allowing us to uncover the key players in sea urchin reversible adhesion. We demonstrate, that Nectin, a protein previously pointed out as potentially involved in sea urchin adhesion, is not only highly expressed in tube feet discs, but is a genuine component of the secreted adhesive. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Fragile X-associated tremor/ataxia syndrome (FXTAS): Pathology and mechanisms

    PubMed Central

    Hagerman, Paul

    2013-01-01

    Since its discovery in 2001, our understanding of fragile X-associated tremor/ataxia syndrome (FXTAS) has undergone a remarkable transformation. Initially characterized rather narrowly as an adult-onset movement disorder, the definition of FXTAS is broadening; moreover, the disorder is now recognized as only one facet of a much broader clinical pleiotropy among children and adults who carry premutation alleles of the FMR1 gene. Furthermore, the intranuclear inclusions of FXTAS, once thought to be a CNS-specific marker of the disorder, are now known to be widely distributed in multiple non-CNS tissues; this observation fundamentally changes our concept of the disease, and may provide the basis for understanding the diverse medical problems associated with the premutation. Recent work on the pathogenic mechanisms underlying FXTAS indicates that the origins of the late-onset neurodegenerative disorder actually lie in early development, raising the likelihood that all forms of clinical involvement among premutation carriers have a common underlying mechanistic basis. There has also been great progress in our understanding of the triggering event(s) in FXTAS pathogenesis, which is now thought to involve sequestration of one or more nuclear proteins involved with microRNA biogenesis. Moreover, there is mounting evidence that mitochondrial dysregulation contributes to the decreased cell function and loss of viability, evident in mice even during the neonatal period. Taken together, these recent findings offer hope for early interventions for FXTAS, well before the onset of overt disease, and for the treatment of other forms of clinical involvement among premutation carriers. PMID:23793382

  16. The epigenetic impacts of social stress: how does social adversity become biologically embedded?

    PubMed Central

    Cunliffe, Vincent T

    2016-01-01

    Epigenetic mechanisms are implicated in the processes through which social stressors erode health in humans and other animals. Here I review progress in elucidating the biological pathways underlying the social gradient in health, with particular emphasis on how behavioral stresses influence epigenomic variation linked to health. The evidence that epigenetic changes are involved in embedding of social status-linked chronic stress is reviewed in the context of current knowledge about behavior within animal dominance hierarchies and the impacts of social position on behaviors that affect health. The roles of epigenetic mechanisms in responses to trauma and the evidence for their involvement in intergenerational transmission of the biological impacts of traumatic stress are also considered. Taken together, the emerging insights have important implications for development of strategies to improve societal health and well-being. PMID:27869483

  17. Impaired proteostasis: role in the pathogenesis of diabetes mellitus.

    PubMed

    Jaisson, Stéphane; Gillery, Philippe

    2014-08-01

    In living organisms, proteins are regularly exposed to 'molecular ageing', which corresponds to a set of non-enzymatic modifications that progressively cause irreversible damage to proteins. This phenomenon is greatly amplified under pathological conditions, such as diabetes mellitus. For their survival and optimal functioning, cells have to maintain protein homeostasis, also called 'proteostasis'. This process acts to maintain a high proportion of functional and undamaged proteins. Different mechanisms are involved in proteostasis, among them degradation systems (the main intracellular proteolytic systems being proteasome and lysosomes), folding systems (including molecular chaperones), and enzymatic mechanisms of protein repair. There is growing evidence that the disruption of proteostasis may constitute a determining event in pathophysiology. The aim of this review is to demonstrate how such a dysregulation may be involved in the pathogenesis of diabetes mellitus and in the onset of its long-term complications.

  18. RING E3 ligases: key regulatory elements are involved in abiotic stress responses in plants.

    PubMed

    Cho, Seok Keun; Ryu, Moon Young; Kim, Jong Hum; Hong, Jeong Soo; Oh, Tae Rin; Kim, Woo Taek; Yang, Seong Wook

    2017-08-01

    Plants are constantly exposed to a variety of abiotic stresses, such as drought, heat, cold, flood, and salinity. To survive under such unfavorable conditions, plants have evolutionarily developed their own resistant-mechanisms. For several decades, many studies have clarified specific stress response pathways of plants through various molecular and genetic studies. In particular, it was recently discovered that ubiquitin proteasome system (UPS), a regulatory mechanism for protein turn over, is greatly involved in the stress responsive pathways. In the UPS, many E3 ligases play key roles in recognizing and tethering poly-ubiquitins on target proteins for subsequent degradation by the 26S proteasome. Here we discuss the roles of RING ligases that have been defined in related to abiotic stress responses in plants. [BMB Reports 2017; 50(8): 393-400].

  19. Regulating the Adaptive Immune Response to Blood-Stage Malaria: Role of Dendritic Cells and CD4+Foxp3+ Regulatory T Cells

    PubMed Central

    Stevenson, Mary M.; Ing, Rebecca; Berretta, Floriana; Miu, Jenny

    2011-01-01

    Although a clearer understanding of the underlying mechanisms involved in protection and immunopathology during blood-stage malaria has emerged, the mechanisms involved in regulating the adaptive immune response especially those required to maintain a balance between beneficial and deleterious responses remain unclear. Recent evidence suggests the importance of CD11c+ dendritic cells (DC) and CD4+Foxp3+ regulatory T cells in regulating immune responses during infection and autoimmune disease, but information concerning the contribution of these cells to regulating immunity to malaria is limited. Here, we review recent findings from our laboratory and others in experimental models of malaria in mice and in Plasmodium-infected humans on the roles of DC and natural regulatory T cells in regulating adaptive immunity to blood-stage malaria. PMID:22110383

  20. Autoregulation of Parkin activity through its ubiquitin-like domain

    PubMed Central

    Chaugule, Viduth K; Burchell, Lynn; Barber, Kathryn R; Sidhu, Ateesh; Leslie, Simon J; Shaw, Gary S; Walden, Helen

    2011-01-01

    Parkin is an E3-ubiquitin ligase belonging to the RBR (RING–InBetweenRING–RING family), and is involved in the neurodegenerative disorder Parkinson's disease. Autosomal recessive juvenile Parkinsonism, which is one of the most common familial forms of the disease, is directly linked to mutations in the parkin gene. However, the molecular mechanisms of Parkin dysfunction in the disease state remain to be established. We now demonstrate that the ubiquitin-like domain of Parkin functions to inhibit its autoubiquitination. Moreover pathogenic Parkin mutations disrupt this autoinhibition, resulting in a constitutively active molecule. In addition, we show that the mechanism of autoregulation involves ubiquitin binding by a C-terminal region of Parkin. Our observations provide important molecular insights into the underlying basis of Parkinson's disease, and in the regulation of RBR E3-ligase activity. PMID:21694720

  1. Molecular and cellular bases of adaptation to a changing environment in microorganisms.

    PubMed

    Bleuven, Clara; Landry, Christian R

    2016-10-26

    Environmental heterogeneity constitutes an evolutionary challenge for organisms. While evolutionary dynamics under variable conditions has been explored for decades, we still know relatively little about the cellular and molecular mechanisms involved. It is of paramount importance to examine these molecular bases because they may play an important role in shaping the course of evolution. In this review, we examine the diversity of adaptive mechanisms in the face of environmental changes. We exploit the recent literature on microbial systems because those have benefited the most from the recent emergence of genetic engineering and experimental evolution followed by genome sequencing. We identify four emerging trends: (i) an adaptive molecular change in a pathway often results in fitness trade-off in alternative environments but the effects are dependent on a mutation's genetic background; (ii) adaptive changes often modify transcriptional and signalling pathways; (iii) several adaptive changes may occur within the same molecular pathway but be associated with pleiotropy of different signs across environments; (iv) because of their large associated costs, macromolecular changes such as gene amplification and aneuploidy may be a rapid mechanism of adaptation in the short-term only. The course of adaptation in a variable environment, therefore, depends on the complexity of the environment but also on the molecular relationships among the genes involved and between the genes and the phenotypes under selection. © 2016 The Author(s).

  2. Caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress.

    PubMed

    Zhang, Qiang; Liu, Jianing; Chen, Shulan; Liu, Jing; Liu, Lijuan; Liu, Guirong; Wang, Fang; Jiang, Wenxin; Zhang, Caixia; Wang, Shuangyu; Yuan, Xiao

    2016-04-01

    It is well recognized that mandibular growth, which is caused by a variety of functional appliances, is considered to be the result of both neuromuscular and skeletal adaptations. Accumulating evidence has demonstrated that apoptosis plays an important role in the adaptation of skeletal muscle function. However, the underlying mechanism of apoptosis that is induced by stretch continues to be incompletely understood. Endoplasmic reticulum stress (ERS), a newly defined signaling pathway, initiates apoptosis. This study seeks to determine if caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress in myoblast and its underlying mechanism. Apoptosis was assessed by Hochest staining, DAPI staining and annexin V binding and PI staining. ER chaperones, such as GRP78, CHOP and caspase-12, were determined by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Furthermore, caspase-12 inhibitor was used to value the mechanism of the caspase-12 pathway. Apoptosis of myoblast, which is subjected to cyclic stretch, was observed in a time-dependent manner. We found that GRP78 mRNA and protein were significantly increased and CHOP and caspase-12 were activated in myoblast that was exposed to cyclic stretch. Caspase-12 inhibition reduced stretch-induced apoptosis, and caspase-12 activated caspase-3 to induce apoptosis. We concluded that caspase-12 played an important role in stretch-induced apoptosis that is associated by endoplasmic reticulum stress by activating caspase-3.

  3. Red blood cell dynamics: from cell deformation to ATP release.

    PubMed

    Wan, Jiandi; Forsyth, Alison M; Stone, Howard A

    2011-10-01

    The mechanisms of red blood cell (RBC) deformation under both static and dynamic, i.e., flow, conditions have been studied extensively since the mid 1960s. Deformation-induced biochemical reactions and possible signaling in RBCs, however, were proposed only fifteen years ago. Therefore, the fundamental relationship between RBC deformation and cellular signaling dynamics i.e., mechanotransduction, remains incompletely understood. Quantitative understanding of the mechanotransductive pathways in RBCs requires integrative studies of physical models of RBC deformation and cellular biochemical reactions. In this article we review the physical models of RBC deformation, spanning from continuum membrane mechanics to cellular skeleton dynamics under both static and flow conditions, and elaborate the mechanistic links involved in deformation-induced ATP release. This journal is © The Royal Society of Chemistry 2011

  4. Dissipation of contractile forces: the missing piece in cell mechanics.

    PubMed

    Kurzawa, Laetitia; Vianay, Benoit; Senger, Fabrice; Vignaud, Timothée; Blanchoin, Laurent; Théry, Manuel

    2017-07-07

    Mechanical forces are key regulators of cell and tissue physiology. The basic molecular mechanism of fiber contraction by the sliding of actin filament upon myosin leading to conformational change has been known for decades. The regulation of force generation at the level of the cell, however, is still far from elucidated. Indeed, the magnitude of cell traction forces on the underlying extracellular matrix in culture is almost impossible to predict or experimentally control. The considerable variability in measurements of cell-traction forces indicates that they may not be the optimal readout to properly characterize cell contractile state and that a significant part of the contractile energy is not transferred to cell anchorage but instead is involved in actin network dynamics. Here we discuss the experimental, numerical, and biological parameters that may be responsible for the variability in traction force production. We argue that limiting these sources of variability and investigating the dissipation of mechanical work that occurs with structural rearrangements and the disengagement of force transmission is key for further understanding of cell mechanics. © 2017 Kurzawa et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. Manipulation of primary sex ratio in birds: lessons from the homing pigeon (Columba livia domestica).

    PubMed

    Goerlich-Jansson, Vivian C; Müller, Martina S; Groothuis, Ton G G

    2013-12-01

    Across various animal taxa not only the secondary sex ratio but also the primary sex ratio (at conception) shows significant deviations from the expected equal proportions of sons and daughters. Birds are especially intriguing to study this phenomenon as avian females are the heterogametic sex (ZW); therefore sex determination might be under direct control of the mother. Avian sex ratios vary in relation to environmental or maternal condition, which can also affect the production of maternal steroids that in turn are involved in reproduction and accumulate in the developing follicle before meiosis. As the proximate mechanisms underlying biased primary sex ratio are largely elusive, we explored how, and to what extent, maternal steroid hormones may be involved in affecting primary or secondary sex ratio in clutches of various species of pigeons. First we demonstrated a clear case of seasonal change in sex ratio in first eggs both in the Rock Pigeon (Columba livia) and in a related species, the Wood Pigeon (Columba palumbus), both producing clutches of two eggs. In the Homing Pigeon (Columba livia domestica), domesticated from the Rock Pigeon, testosterone treatment of breeding females induced a clear male bias, while corticosterone induced a female bias in first eggs and we argue that this is in line with sex allocation theory. We next analyzed treatment effects on follicle formation, yolk mass, and yolk hormones, the latter both pre- and post-ovulatory, in order to test a diversity of potential mechanisms related to both primary and secondary sex ratio manipulation. We conclude that maternal plasma hormone levels may affect several pre-ovulatory mechanisms affecting primary sex ratio, whereas egg hormones are probably involved in secondary sex ratio manipulation only.

  6. Comparative genome analysis of Pediococcus damnosus LMG 28219, a strain well-adapted to the beer environment.

    PubMed

    Snauwaert, Isabel; Stragier, Pieter; De Vuyst, Luc; Vandamme, Peter

    2015-04-03

    Pediococcus damnosus LMG 28219 is a lactic acid bacterium dominating the maturation phase of Flemish acid beer productions. It proved to be capable of growing in beer, thereby resisting this environment, which is unfavorable for microbial growth. The molecular mechanisms underlying its metabolic capabilities and niche adaptations were unknown up to now. In the present study, whole-genome sequencing and comparative genome analysis were used to investigate this strain's mechanisms to reside in the beer niche, with special focus on not only stress and hop resistances but also folate biosynthesis and exopolysaccharide (EPS) production. The draft genome sequence of P. damnosus LMG 28219 harbored 183 contigs, including an intact prophage region and several coding sequences involved in plasmid replication. The annotation of 2178 coding sequences revealed the presence of many transporters and transcriptional regulators and several genes involved in oxidative stress response, hop resistance, de novo folate biosynthesis, and EPS production. Comparative genome analysis of P. damnosus LMG 28219 with Pediococcus claussenii ATCC BAA-344(T) (beer origin) and Pediococcus pentosaceus ATCC 25745 (plant origin) revealed that various hop resistance genes and genes involved in de novo folate biosynthesis were unique to the strains isolated from beer. This contrasted with the genes related to osmotic stress responses, which were shared between the strains compared. Furthermore, transcriptional regulators were enriched in the genomes of bacteria capable of growth in beer, suggesting that those cause rapid up- or down-regulation of gene expression. Genome sequence analysis of P. damnosus LMG 28219 provided insights into the underlying mechanisms of its adaptation to the beer niche. The results presented will enable analysis of the transcriptome and proteome of P. damnosus LMG 28219, which will result in additional knowledge on its metabolic activities.

  7. The mitochondrial calcium uniporter is involved in mitochondrial calcium cycle dysfunction: Underlying mechanism of hypertension associated with mitochondrial tRNA(Ile) A4263G mutation.

    PubMed

    Chen, Xi; Zhang, Yu; Xu, Bin; Cai, Zhongqi; Wang, Lin; Tian, Jinwen; Liu, Yuqi; Li, Yang

    2016-09-01

    Recent studies have shown that the mitochondrial DNA mutations are involved in the pathogenesis of hypertension. Our previous study identified mitochondrial tRNA(Ile) A4263G mutation in a large Chinese Han family with maternally-inherited hypertension. This mutation may contribute to mitochondrial Ca(2+) cycling dysfuntion, but the mechanism is unclear. Lymphoblastoid cell lines were derived from hypertensive and normotensive individuals, either with or without tRNA(Ile) A4263G mutation. The mitochondrial calcium ([Ca(2+)]m) in cells from hypertensive subjects with the tRNA(Ile) A4263G mutation, was lower than in cells from normotension or hypertension without mutation, or normotension with mutation (P<0.05). Meanwhile, cytosolic calcium ([Ca(2+)]c) in hypertensive with mutation cells was higher than another three groups. After exposure to caffeine, which could increase the [Ca(2+)]c by activating ryanodine receptor on endoplasmic reticulum, [Ca(2+)]c/[Ca(2+)]m increased higher than in hypertensive with mutation cells from another three groups. Moreover, MCU expression was decreased in hypertensive with mutation cells compared with in another three groups (P<0.05). [Ca(2+)]c increased and [Ca(2+)]m decreased after treatment with Ru360 (an inhibitor of MCU) or an siRNA against MCU. In this study we found decreased MCU expression in hypertensive with mutation cells contributed to dysregulated Ca(2+) uptake into the mitochondria, and cytoplasmic Ca(2+) overload. This abnormality might be involved in the underlying mechanisms of maternally inherited hypertension in subjects carrying the mitochondrial tRNA(Ile) A4263G mutation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Functional mechanisms of drought tolerance in subtropical maize (Zea mays L.) identified using genome-wide association mapping.

    PubMed

    Thirunavukkarasu, Nepolean; Hossain, Firoz; Arora, Kanika; Sharma, Rinku; Shiriga, Kaliyugam; Mittal, Swati; Mohan, Sweta; Namratha, Pottekatt Mohanlal; Dogga, Sreelatha; Rani, Tikka Shobha; Katragadda, Sumalini; Rathore, Abhishek; Shah, Trushar; Mohapatra, Trilochan; Gupta, Hari Shankar

    2014-12-24

    Earlier studies were focused on the genetics of temperate and tropical maize under drought. We identified genetic loci and their association with functional mechanisms in 240 accessions of subtropical maize using a high-density marker set under water stress. Out of 61 significant SNPs (11 were false-discovery-rate-corrected associations), identified across agronomic traits, models, and locations by subjecting the accessions to water stress at flowering stage, 48% were associated with drought-tolerant genes. Maize gene models revealed that SNPs mapped for agronomic traits were in fact associated with number of functional traits as follows: stomatal closure, 28; flowering, 15; root development, 5; detoxification, 4; and reduced water potential, 2. Interactions of these SNPS through the functional traits could lead to drought tolerance. The SNPs associated with ABA-dependent signalling pathways played a major role in the plant's response to stress by regulating a series of functions including flowering, root development, auxin metabolism, guard cell functions, and scavenging reactive oxygen species (ROS). ABA signalling genes regulate flowering through epigenetic changes in stress-responsive genes. ROS generated by ABA signalling are reduced by the interplay between ethylene, ABA, and detoxification signalling transductions. Integration of ABA-signalling genes with auxin-inducible genes regulates root development which in turn, maintains the water balance by regulating electrochemical gradient in plant. Several genes are directly or indirectly involved in the functioning of agronomic traits related to water stress. Genes involved in these crucial biological functions interacted significantly in order to maintain the primary as well as exclusive functions related to coping with water stress. SNPs associated with drought-tolerant genes involved in strategic biological functions will be useful to understand the mechanisms of drought tolerance in subtropical maize.

  9. Low‑level mechanical vibration enhances osteoblastogenesis via a canonical Wnt signaling‑associated mechanism.

    PubMed

    Gao, Heqi; Zhai, Mingming; Wang, Pan; Zhang, Xuhui; Cai, Jing; Chen, Xiaofei; Shen, Guanghao; Luo, Erping; Jing, Da

    2017-07-01

    Osteoporosis is a skeletal metabolic disease characterized by reduced bone mass and a high susceptibility to fractures, in which osteoblasts and osteoclasts are highly involved in the abnormal bone remodeling processes. Recently, low‑magnitude, high‑frequency whole‑body vibration has been demonstrated to significantly reduce osteopenia experimentally and clinically. However, the underlying mechanism regarding how osteoblastic activity is altered when bone tissues adapt to mechanical vibration remains elusive. The current study systematically investigated the effect and potential molecular signaling mechanisms in mediating the effects of mechanical vibration (0.5 gn, 45 Hz) on primary osteoblasts in vitro. The results of the present study demonstrated that low‑level mechanical stimulation promoted osteoblastic proliferation and extracellular matrix mineralization. In addition, it was also revealed that mechanical vibration induced improved cytoskeleton arrangement in primary osteoblasts. Furthermore, mechanical vibration resulted in significantly increased gene expression of alkaline phosphatase, bone morphogenetic protein 2 and osteoprotegerin, and suppressed sclerostin gene expression, as determined by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analyses. Mechanical vibration was observed to upregulate gene and protein expression levels of osteogenesis‑associated biomarkers, including osteocalcin and Runt‑related transcription factor 2. In addition, RT‑qPCR and western blotting analysis demonstrated that mechanical vibration promoted gene and protein expression of canonical Wnt signaling genes, including Wnt3a, low‑density lipoprotein receptor‑related protein 6 and β‑catenin. In conclusion, the present study demonstrated that mechanical vibration stimulates osteoblastic activities and may function through a potential canonical Wnt signaling‑associated mechanism. These findings provided novel information that improves the understanding of the molecular mechanisms involved in osteoblastic activities in response to mechanical vibration, which may facilitate the scientific application of mechanical vibration for the treatment of osteoporosis in the clinic.

  10. Chemomics-based marker compounds mining and mimetic processing for exploring chemical mechanisms in traditional processing of herbal medicines, a continuous study on Rehmanniae Radix.

    PubMed

    Zhou, Li; Xu, Jin-Di; Zhou, Shan-Shan; Shen, Hong; Mao, Qian; Kong, Ming; Zou, Ye-Ting; Xu, Ya-Yun; Xu, Jun; Li, Song-Lin

    2017-12-29

    Exploring processing chemistry, in particular the chemical transformation mechanisms involved, is a key step to elucidate the scientific basis in traditional processing of herbal medicines. Previously, taking Rehmanniae Radix (RR) as a case study, the holistic chemome (secondary metabolome and glycome) difference between raw and processed RR was revealed by integrating hyphenated chromatographic techniques-based targeted glycomics and untargeted metabolomics. Nevertheless, the complex chemical transformation mechanisms underpinning the holistic chemome variation in RR processing remain to be extensively clarified. As a continuous study, here a novel strategy by combining chemomics-based marker compounds mining and mimetic processing is proposed for further exploring the chemical mechanisms involved in herbal processing. First, the differential marker compounds between raw and processed herbs were rapidly discovered by untargeted chemomics-based mining approach through multivariate statistical analysis of the chemome data obtained by integrated metabolomics and glycomics analysis. Second, the marker compounds were mimetically processed under the simulated physicochemical conditions as in the herb processing, and the final reaction products were chemically characterized by targeted chemomics-based mining approach. Third, the main chemical transformation mechanisms involved were clarified by linking up the original marker compounds and their mimetic processing products. Using this strategy, a set of differential marker compounds including saccharides, glycosides and furfurals in raw and processed RR was rapidly found, and the major chemical mechanisms involved in RR processing were elucidated as stepwise transformations of saccharides (polysaccharides, oligosaccharides and monosaccharides) and glycosides (iridoid glycosides and phenethylalcohol glycosides) into furfurals (glycosylated/non-glycosylated hydroxymethylfurfurals) by deglycosylation and/or dehydration. The research deliverables indicated that the proposed strategy could advance the understanding of RR processing chemistry, and therefore may be considered a promising approach for delving into the scientific basis in traditional processing of herbal medicines. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A chloroplast thylakoid lumen protein is required for proper photosynthetic acclimation of plants under fluctuating light environments

    PubMed Central

    2017-01-01

    Despite our increasingly sophisticated understanding of mechanisms ensuring efficient photosynthesis under laboratory-controlled light conditions, less is known about the regulation of photosynthesis under fluctuating light. This is important because—in nature—photosynthetic organisms experience rapid and extreme changes in sunlight, potentially causing deleterious effects on photosynthetic efficiency and productivity. Here we report that the chloroplast thylakoid lumenal protein MAINTENANCE OF PHOTOSYSTEM II UNDER HIGH LIGHT 2 (MPH2; encoded by At4g02530) is required for growth acclimation of Arabidopsis thaliana plants under controlled photoinhibitory light and fluctuating light environments. Evidence is presented that mph2 mutant light stress susceptibility results from a defect in photosystem II (PSII) repair, and our results are consistent with the hypothesis that MPH2 is involved in disassembling monomeric complexes during regeneration of dimeric functional PSII supercomplexes. Moreover, mph2—and previously characterized PSII repair-defective mutants—exhibited reduced growth under fluctuating light conditions, while PSII photoprotection-impaired mutants did not. These findings suggest that repair is not only required for PSII maintenance under static high-irradiance light conditions but is also a regulatory mechanism facilitating photosynthetic adaptation under fluctuating light environments. This work has implications for improvement of agricultural plant productivity through engineering PSII repair. PMID:28874535

  12. A chloroplast thylakoid lumen protein is required for proper photosynthetic acclimation of plants under fluctuating light environments.

    PubMed

    Liu, Jun; Last, Robert L

    2017-09-19

    Despite our increasingly sophisticated understanding of mechanisms ensuring efficient photosynthesis under laboratory-controlled light conditions, less is known about the regulation of photosynthesis under fluctuating light. This is important because-in nature-photosynthetic organisms experience rapid and extreme changes in sunlight, potentially causing deleterious effects on photosynthetic efficiency and productivity. Here we report that the chloroplast thylakoid lumenal protein MAINTENANCE OF PHOTOSYSTEM II UNDER HIGH LIGHT 2 (MPH2; encoded by At4g02530 ) is required for growth acclimation of Arabidopsis thaliana plants under controlled photoinhibitory light and fluctuating light environments. Evidence is presented that mph2 mutant light stress susceptibility results from a defect in photosystem II (PSII) repair, and our results are consistent with the hypothesis that MPH2 is involved in disassembling monomeric complexes during regeneration of dimeric functional PSII supercomplexes. Moreover, mph2 -and previously characterized PSII repair-defective mutants-exhibited reduced growth under fluctuating light conditions, while PSII photoprotection-impaired mutants did not. These findings suggest that repair is not only required for PSII maintenance under static high-irradiance light conditions but is also a regulatory mechanism facilitating photosynthetic adaptation under fluctuating light environments. This work has implications for improvement of agricultural plant productivity through engineering PSII repair.

  13. Mechanisms of Osteoarthritic Pain. Studies in Humans and Experimental Models

    PubMed Central

    Eitner, Annett; Hofmann, Gunther O.; Schaible, Hans-Georg

    2017-01-01

    Pain due to osteoarthritis (OA) is one of the most frequent causes of chronic pain. However, the mechanisms of OA pain are poorly understood. This review addresses the mechanisms which are thought to be involved in OA pain, derived from studies on pain mechanisms in humans and in experimental models of OA. Three areas will be considered, namely local processes in the joint associated with OA pain, neuronal mechanisms involved in OA pain, and general factors which influence OA pain. Except the cartilage all structures of the joints are innervated by nociceptors. Although the hallmark of OA is the degradation of the cartilage, OA joints show multiple structural alterations of cartilage, bone and synovial tissue. In particular synovitis and bone marrow lesions have been proposed to determine OA pain whereas the contribution of the other pathologies to pain generation has been studied less. Concerning the peripheral neuronal mechanisms of OA pain, peripheral nociceptive sensitization was shown, and neuropathic mechanisms may be involved at some stages. Structural changes of joint innervation such as local loss and/or sprouting of nerve fibers were shown. In addition, central sensitization, reduction of descending inhibition, descending excitation and cortical atrophies were observed in OA. The combination of different neuronal mechanisms may define the particular pain phenotype in an OA patient. Among mediators involved in OA pain, nerve growth factor (NGF) is in the focus because antibodies against NGF significantly reduce OA pain. Several studies show that neutralization of interleukin-1β and TNF may reduce OA pain. Many patients with OA exhibit comorbidities such as obesity, low grade systemic inflammation and diabetes mellitus. These comorbidities can significantly influence the course of OA, and pain research just began to study the significance of such factors in pain generation. In addition, psychologic and socioeconomic factors may aggravate OA pain, and in some cases genetic factors influencing OA pain were found. Considering the local factors in the joint, the neuronal processes and the comorbidities, a better definition of OA pain phenotypes may become possible. Studies are under way in order to improve OA and OA pain monitoring. PMID:29163027

  14. Paradigms and mechanisms of inhalational anesthetics mediated neuroprotection against cerebral ischemic stroke.

    PubMed

    Wang, Hailian; Li, Peiying; Xu, Na; Zhu, Ling; Cai, Mengfei; Yu, Weifeng; Gao, Yanqin

    2016-01-01

    Cerebral ischemic stroke is a leading cause of serious long-term disability and cognitive dysfunction. The high mortality and disability of cerebral ischemic stroke is urging the health providers, including anesthesiologists and other perioperative professioners, to seek effective protective strategies, which are extremely limited, especially for those perioperative patients. Intriguingly, several commonly used inhalational anesthetics are recently suggested to possess neuroprotective effects against cerebral ischemia. This review introduces multiple paradigms of inhalational anesthetic treatments that have been investigated in the setting of cerebral ischemia, such as preconditioning, proconditioning and postconditioning with a variety of inhalational anesthetics. The pleiotropic mechanisms underlying these inhalational anesthetics-afforded neuroprotection against stroke are also discussed in detail, including the common pathways shared by most of the inhalational anesthetic paradigms, such as anti-excitotoxicity, anti-apoptosis and anti-inflammation. There are also distinct mechanisms involved in specific paradigms, such as preserving blood brain barrier integrity, regulating cerebral blood flow and catecholamine release. The ready availability of these inhalational anesthetics bedside and renders them a potentially translatable stroke therapy attracting great efforts for understanding of the underlying mechanisms.

  15. Paradigms and mechanisms of inhalational anesthetics mediated neuroprotection against cerebral ischemic stroke

    PubMed Central

    Wang, Hailian; Li, Peiying; Xu, Na; Zhu, Ling; Cai, Mengfei; Yu, Weifeng; Gao, Yanqin

    2016-01-01

    Cerebral ischemic stroke is a leading cause of serious long-term disability and cognitive dysfunction. The high mortality and disability of cerebral ischemic stroke is urging the health providers, including anesthesiologists and other perioperative professioners, to seek effective protective strategies, which are extremely limited, especially for those perioperative patients. Intriguingly, several commonly used inhalational anesthetics are recently suggested to possess neuroprotective effects against cerebral ischemia. This review introduces multiple paradigms of inhalational anesthetic treatments that have been investigated in the setting of cerebral ischemia, such as preconditioning, proconditioning and postconditioning with a variety of inhalational anesthetics. The pleiotropic mechanisms underlying these inhalational anesthetics-afforded neuroprotection against stroke are also discussed in detail, including the common pathways shared by most of the inhalational anesthetic paradigms, such as anti-excitotoxicity, anti-apoptosis and anti-inflammation. There are also distinct mechanisms involved in specific paradigms, such as preserving blood brain barrier integrity, regulating cerebral blood flow and catecholamine release. The ready availability of these inhalational anesthetics bedside and renders them a potentially translatable stroke therapy attracting great efforts for understanding of the underlying mechanisms. PMID:28217291

  16. Hyperosmotic stress stimulates autophagy via polycystin-2.

    PubMed

    Peña-Oyarzun, Daniel; Troncoso, Rodrigo; Kretschmar, Catalina; Hernando, Cecilia; Budini, Mauricio; Morselli, Eugenia; Lavandero, Sergio; Criollo, Alfredo

    2017-08-22

    Various intracellular mechanisms are activated in response to stress, leading to adaptation or death. Autophagy, an intracellular process that promotes lysosomal degradation of proteins, is an adaptive response to several types of stress. Osmotic stress occurs under both physiological and pathological conditions, provoking mechanical stress and activating various osmoadaptive mechanisms. Polycystin-2 (PC2), a membrane protein of the polycystin family, is a mechanical sensor capable of activating the cell signaling pathways required for cell adaptation and survival. Here we show that hyperosmotic stress provoked by treatment with hyperosmolar concentrations of sorbitol or mannitol induces autophagy in HeLa and HCT116 cell lines. In addition, we show that mTOR and AMPK, two stress sensor proteins involved modulating autophagy, are downregulated and upregulated, respectively, when cells are subjected to hyperosmotic stress. Finally, our findings show that PC2 is required to promote hyperosmotic stress-induced autophagy. Downregulation of PC2 prevents inhibition of hyperosmotic stress-induced mTOR pathway activation. In conclusion, our data provide new insight into the role of PC2 as a mechanosensor that modulates autophagy under hyperosmotic stress conditions.

  17. Hyperosmotic stress stimulates autophagy via polycystin-2

    PubMed Central

    Kretschmar, Catalina; Hernando, Cecilia; Budini, Mauricio; Morselli, Eugenia; Lavandero, Sergio; Criollo, Alfredo

    2017-01-01

    Various intracellular mechanisms are activated in response to stress, leading to adaptation or death. Autophagy, an intracellular process that promotes lysosomal degradation of proteins, is an adaptive response to several types of stress. Osmotic stress occurs under both physiological and pathological conditions, provoking mechanical stress and activating various osmoadaptive mechanisms. Polycystin-2 (PC2), a membrane protein of the polycystin family, is a mechanical sensor capable of activating the cell signaling pathways required for cell adaptation and survival. Here we show that hyperosmotic stress provoked by treatment with hyperosmolar concentrations of sorbitol or mannitol induces autophagy in HeLa and HCT116 cell lines. In addition, we show that mTOR and AMPK, two stress sensor proteins involved modulating autophagy, are downregulated and upregulated, respectively, when cells are subjected to hyperosmotic stress. Finally, our findings show that PC2 is required to promote hyperosmotic stress-induced autophagy. Downregulation of PC2 prevents inhibition of hyperosmotic stress-induced mTOR pathway activation. In conclusion, our data provide new insight into the role of PC2 as a mechanosensor that modulates autophagy under hyperosmotic stress conditions. PMID:28915568

  18. Potential Mechanisms of Cancer Prevention by Weight Control

    NASA Astrophysics Data System (ADS)

    Jiang, Yu; Wang, Weiqun

    Weight control via dietary caloric restriction and/or physical activity has been demonstrated in animal models for cancer prevention. However, the underlying mechanisms are not fully understood. Body weight loss due to negative energy balance significantly reduces some metabolic growth factors and endocrinal hormones such as IGF-1, leptin, and adiponectin, but enhances glucocorticoids, that may be associated with anti-cancer mechanisms. In this review, we summarized the recent studies related to weight control and growth factors. The potential molecular targets focused on those growth factors- and hormones-dependent cellular signaling pathways are further discussed. It appears that multiple factors and multiple signaling cascades, especially for Ras-MAPK-proliferation and PI3K-Akt-anti-apoptosis, could be involved in response to weight change by dietary calorie restriction and/or exercise training. Considering prevalence of obesity or overweight that becomes apparent over the world, understanding the underlying mechanisms among weight control, endocrine change and cancer risk is critically important. Future studies using "-omics" technologies will be warrant for a broader and deeper mechanistic information regarding cancer prevention by weight control.

  19. Translational new approaches for investigating mood disorders in rodents and what they may reveal about the underlying neurobiology of major depressive disorder

    PubMed Central

    2018-01-01

    Mood disorders represent one of society's most costly and challenging health burdens. The drug treatments used today were initially discovered serendipitously in the 1950s. Animal models were then developed based on the ability of these drugs to alter specific behaviours. These models have played a major role in the development of the second generation of antidepressants. However, their use has been heavily criticized, particularly in relation to whether they recapitulate similar underlying biology to the psychiatric disorder they are proposed to represent. This article considers our work in the field of affective bias and the development of a translational research programme to try to develop and validate better animal models. We discuss whether the new data that have arisen from these studies support an alternative perspective on the underlying neurobiological processes that lead to major depressive disorder (MDD). Specifically, this article will consider whether a neuropsychological mechanism involving affective biases plays a causal role in the development of MDD and its associated emotional and behavioural symptoms. These animal studies also raise the possibility that neuropsychological mechanisms involving affective biases are a precursor to, rather than a consequence of, the neurotrophic changes linked to MDD. This article is part of a discussion meeting issue ‘Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists’. PMID:29352034

  20. Mechanisms underlying the attachment and spreading of human osteoblasts: from transient interactions to focal adhesions on vitronectin-grafted bioactive surfaces.

    PubMed

    Brun, Paola; Scorzeto, Michele; Vassanelli, Stefano; Castagliuolo, Ignazio; Palù, Giorgio; Ghezzo, Francesca; Messina, Grazia M L; Iucci, Giovanna; Battaglia, Valentina; Sivolella, Stefano; Bagno, Andrea; Polzonetti, Giovanni; Marletta, Giovanni; Dettin, Monica

    2013-04-01

    The features of implant devices and the reactions of bone-derived cells to foreign surfaces determine implant success during osseointegration. In an attempt to better understand the mechanisms underlying osteoblasts attachment and spreading, in this study adhesive peptides containing the fibronectin sequence motif for integrin binding (Arg-Gly-Asp, RGD) or mapping the human vitronectin protein (HVP) were grafted on glass and titanium surfaces with or without chemically induced controlled immobilization. As shown by total internal reflection fluorescence microscopy, human osteoblasts develop adhesion patches only on specifically immobilized peptides. Indeed, cells quickly develop focal adhesions on RGD-grafted surfaces, while HVP peptide promotes filopodia, structures involved in cellular spreading. As indicated by immunocytochemistry and quantitative polymerase chain reaction, focal adhesions kinase activation is delayed on HVP peptides with respect to RGD while an osteogenic phenotypic response appears within 24h on osteoblasts cultured on both peptides. Cellular pathways underlying osteoblasts attachment are, however, different. As demonstrated by adhesion blocking assays, integrins are mainly involved in osteoblast adhesion to RGD peptide, while HVP selects osteoblasts for attachment through proteoglycan-mediated interactions. Thus an interfacial layer of an endosseous device grafted with specifically immobilized HVP peptide not only selects the attachment and supports differentiation of osteoblasts but also promotes cellular migration. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Translational new approaches for investigating mood disorders in rodents and what they may reveal about the underlying neurobiology of major depressive disorder.

    PubMed

    Robinson, Emma S J

    2018-03-19

    Mood disorders represent one of society's most costly and challenging health burdens. The drug treatments used today were initially discovered serendipitously in the 1950s. Animal models were then developed based on the ability of these drugs to alter specific behaviours. These models have played a major role in the development of the second generation of antidepressants. However, their use has been heavily criticized, particularly in relation to whether they recapitulate similar underlying biology to the psychiatric disorder they are proposed to represent. This article considers our work in the field of affective bias and the development of a translational research programme to try to develop and validate better animal models. We discuss whether the new data that have arisen from these studies support an alternative perspective on the underlying neurobiological processes that lead to major depressive disorder (MDD). Specifically, this article will consider whether a neuropsychological mechanism involving affective biases plays a causal role in the development of MDD and its associated emotional and behavioural symptoms. These animal studies also raise the possibility that neuropsychological mechanisms involving affective biases are a precursor to, rather than a consequence of, the neurotrophic changes linked to MDD.This article is part of a discussion meeting issue 'Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists'. © 2018 The Authors.

  2. IGF-1R Promotes Symmetric Self-Renewal and Migration of Alkaline Phosphatase+ Germ Stem Cells through HIF-2α-OCT4/CXCR4 Loop under Hypoxia.

    PubMed

    Kuo, Yung-Che; Au, Heng-Kien; Hsu, Jue-Liang; Wang, Hsiao-Feng; Lee, Chiung-Ju; Peng, Syue-Wei; Lai, Ssu-Chuan; Wu, Yu-Chih; Ho, Hong-Nerng; Huang, Yen-Hua

    2018-02-13

    Hypoxia cooperates with endocrine signaling to maintain the symmetric self-renewal proliferation and migration of embryonic germline stem cells (GSCs). However, the lack of an appropriate in vitro cell model has dramatically hindered the understanding of the mechanism underlying this cooperation. Here, using a serum-free system, we demonstrated that hypoxia significantly induced the GSC mesenchymal transition, increased the expression levels of the pluripotent transcription factor OCT4 and migration-associated proteins (SDF-1, CXCR4, IGF-1, and IGF-1R), and activated the cellular expression and translocalization of the CXCR4-downstream proteins ARP3/pFAK. The underlying mechanism involved significant IGF-1/IGF-1R activation of OCT4/CXCR4 expression through HIF-2α regulation. Picropodophyllin-induced inhibition of IGF-1R phosphorylation significantly suppressed hypoxia-induced SDF-1/CXCR4 expression and cell migration. Furthermore, transactivation between IGF-1R and CXCR4 was involved. In summary, we demonstrated that niche hypoxia synergistically cooperates with its associated IGF-1R signaling to regulate the symmetric division (self-renewal proliferation) and cell migration of alkaline phosphatase-positive GSCs through HIF-2α-OCT4/CXCR4 during embryogenesis. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. The New Neurobiology of Autism

    PubMed Central

    Minshew, Nancy J.; Williams, Diane L.

    2008-01-01

    This review covers a fraction of the new research developments in autism but establishes the basic elements of the new neurobiologic understanding of autism. Autism is a polygenetic developmental neurobiologic disorder with multiorgan system involvement, though it predominantly involves central nervous system dysfunction. The evidence supports autism as a disorder of the association cortex, both its neurons and their projections. In particular, it is a disorder of connectivity, which appears, from current evidence, to primarily involve intrahemispheric connectivity. The focus of connectivity studies thus far has been on white matter, but alterations in functional magnetic resonance imaging activation suggest that intracortical connectivity is also likely to be disturbed. Furthermore, the disorder has a broad impact on cognitive and neurologic functioning. Deficits in high-functioning individuals occur in processing that places high demands on integration of information and coordination of multiple neural systems. Intact or enhanced abilities share a dependence on low information-processing demands and local neural connections. This multidomain model with shared characteristics predicts an underlying pathophysiologic mechanism that impacts the brain broadly, according to a common neurobiologic principle. The multiorgan system involvement and diversity of central nervous system findings suggest an epigenetic mechanism. PMID:17620483

  4. Induction of Osmoadaptive Mechanisms and Modulation of Cellular Physiology Help Bacillus licheniformis Strain SSA 61 Adapt to Salt Stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Sangeeta; Aggarwal, Chetana; Thakur, Jyoti Kumar

    Bacillus licheniformis strain SSA 61, originally isolated from Sambhar salt lake, was observed to grow even in the presence of 25 % salt stress. Osmoadaptive mechanisms of this halotolerant B. licheniformis strain SSA 61, for long-term survival and growth under salt stress, were determined. Proline was the preferentially accumulated compatible osmolyte. There was also increased accumulation of antioxidants ascorbic acid and glutathione. Among the different antioxidative enzymes assayed, superoxide dismutase played the most crucial role in defense against salt-induced stress in the organism. Adaptation to stress by the organism involved modulation of cellular physiology at various levels. There was enhancedmore » expression of known proteins playing essential roles in stress adaptation, such as chaperones DnaK and GroEL, and general stress protein YfkM and polynucleotide phosphorylase/polyadenylase. Proteins involved in amino acid biosynthetic pathway, ribosome structure, and peptide elongation were also overexpressed. Salt stress-induced modulation of expression of enzymes involved in carbon metabolism was observed. There was up-regulation of a number of enzymes involved in generation of NADH and NADPH, indicating increased cellular demand for both energy and reducing power.« less

  5. Involvement of Dynein and Spectrin with Early Melanosome Transport and Melanosomal Protein Trafficking

    PubMed Central

    Watabe, Hidenori; Valencia, Julio C.; Le Pape, Elodie; Yamaguchi, Yuji; Nakamura, Masayuki; Rouzaud, François; Hoashi, Toshihiko; Kawa, Yoko; Mizoguchi, Masako; Hearing, Vincent J.

    2007-01-01

    Melanosomes are unique membrane-bound organelles specialized for the synthesis and distribution of melanin. Mechanisms involved in the trafficking of proteins to melanosomes and in the transport of mature pigmented melanosomes to the dendrites of melanocytic cells are being characterized but details about those processes during early stages of melanosome maturation are not well understood. Early melanosomes must remain in the perinuclear area until critical components are assembled. In this study, we characterized the processing of two distinct melanosomal proteins, TYR and Pmel17, to elucidate protein processing in early or late steps of the secretory pathway, respectively, and to determine mechanisms underlying the subcellular localization and transport of early melanosomes. We used immunological, biochemical and molecular approaches to demonstrate that the movement of early melanosomes in the perinuclear area depends primarily on microtubules but not on actin filaments. In contrast, the trafficking of TYR and Pmel17 depends on cytoplasmic dynein and its interaction with the spectrin/ankyrin system which is involved with the sorting of cargo from the plasma membrane. These results provide important clues towards understanding the processes involved with early events in melanosome formation and transport. PMID:17687388

  6. The pricing of credit default swaps under a generalized mixed fractional Brownian motion

    NASA Astrophysics Data System (ADS)

    He, Xinjiang; Chen, Wenting

    2014-06-01

    In this paper, we consider the pricing of the CDS (credit default swap) under a GMFBM (generalized mixed fractional Brownian motion) model. As the name suggests, the GMFBM model is indeed a generalization of all the FBM (fractional Brownian motion) models used in the literature, and is proved to be able to effectively capture the long-range dependence of the stock returns. To develop the pricing mechanics of the CDS, we firstly derive a sufficient condition for the market modeled under the GMFBM to be arbitrage free. Then under the risk-neutral assumption, the CDS is fairly priced by investigating the two legs of the cash flow involved. The price we obtained involves elementary functions only, and can be easily implemented for practical purpose. Finally, based on numerical experiments, we analyze quantitatively the impacts of different parameters on the prices of the CDS. Interestingly, in comparison with all the other FBM models documented in the literature, the results produced from the GMFBM model are in a better agreement with those calculated from the classical Black-Scholes model.

  7. Evolution of strength and physical properties of carbonate and ultramafic rocks under hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Lisabeth, Harrison Paul

    Interaction of rocks with fluids can significantly change mineral assemblage and structure. This so-called hydrothermal alteration is ubiquitous in the Earth's crust. Though the behavior of hydrothermally altered rocks can have planet-scale consequences, such as facilitating oceanic spreading along slow ridge segments and recycling volatiles into the mantle at subduction zones, the mechanisms involved in the hydrothermal alteration are often microscopic. Fluid-rock interactions take place where the fluid and rock meet. Fluid distribution, flux rate and reactive surface area control the efficiency and extent of hydrothermal alteration. Fluid-rock interactions, such as dissolution, precipitation and fluid mediated fracture and frictional sliding lead to changes in porosity and pore structure that feed back into the hydraulic and mechanical behavior of the bulk rock. Examining the nature of this highly coupled system involves coordinating observations of the mineralogy and structure of naturally altered rocks and laboratory investigation of the fine scale mechanisms of transformation under controlled conditions. In this study, I focus on fluid-rock interactions involving two common lithologies, carbonates and ultramafics, in order to elucidate the coupling between mechanical, hydraulic and chemical processes in these rocks. I perform constant strain-rate triaxial deformation and constant-stress creep tests on several suites of samples while monitoring the evolution of sample strain, permeability and physical properties. Subsequent microstructures are analyzed using optical and scanning electron microscopy. This work yields laboratory-based constraints on the extent and mechanisms of water weakening in carbonates and carbonation reactions in ultramafic rocks. I find that inundation with pore fluid thereby reducing permeability. This effect is sensitive to pore fluid saturation with respect to calcium carbonate. Fluid inundation weakens dunites as well. The addition of carbon dioxide to pore fluid enhances compaction and partial recovery of strength compared to pure water samples. Enhanced compaction in CO2-rich fluid samples is not accompanied by enhanced permeability reduction. Analysis of sample microstructures indicates that precipitation of carbonates along fracture surfaces is responsible for the partial restrengthening and channelized dissolution of olivine is responsible for permeability maintenance.

  8. New developments on the neurobiological and pharmaco-genetic mechanisms underlying internet and videogame addiction.

    PubMed

    Weinstein, Aviv; Lejoyeux, Michel

    2015-03-01

    There is emerging evidence that the psychobiological mechanisms underlying behavioral addictions such as internet and videogame addiction resemble those of addiction for substances of abuse. Review of brain imaging, treatment and genetic studies on videogame and internet addiction. Literature search of published articles between 2009 and 2013 in Pubmed using "internet addiction" and "videogame addiction" as the search word. Twenty-nine studies have been selected and evaluated under the criteria of brain imaging, treatment, and genetics. Brain imaging studies of the resting state have shown that long-term internet game playing affected brain regions responsible for reward, impulse control and sensory-motor coordination. Brain activation studies have shown that videogame playing involved changes in reward and loss of control and that gaming pictures have activated regions similarly to those activated by cue-exposure to drugs. Structural studies have shown alterations in the volume of the ventral striatum possible as result of changes in reward. Furthermore, videogame playing was associated with dopamine release similar in magnitude to those of drugs of abuse and that there were faulty inhibitory control and reward mechanisms videogame addicted individuals. Finally, treatment studies using fMRI have shown reduction in craving for videogames and reduced associated brain activity. Videogame playing may be supported by similar neural mechanisms underlying drug abuse. Similar to drug and alcohol abuse, internet addiction results in sub-sensitivity of dopamine reward mechanisms. Given the fact that this research is in its early stage it is premature to conclude that internet addiction is equivalent to substance addictions. © American Academy of Addiction Psychiatry.

  9. Probing the Role of HDACs and Mechanisms of Chromatin-Mediated Neuroplasticity

    PubMed Central

    Haggarty, Stephen J.; Tsai, Li-Huei

    2011-01-01

    Advancing our understanding of neuroplasticity and the development of novel therapeutics based upon this knowledge is critical in order to improve the treatment and prevention of a myriad of nervous system disorders. Epigenetic mechanisms of neuroplasticity involve the post-translational modification of chromatin and the recruitment or loss of macromolecular complexes that control neuronal activity-dependent gene expression. While over a century after Ramón y Cajal first described nuclear subcompartments and foci that we now know correspond to sites of active transcription with acetylated histones that are under epigenetic control, the rate and extent to which epigenetic processes act in a dynamic and combinatorial fashion to shape experience-dependent phenotypic and behavioral plasticity in response to various types of neuronal stimuli over a range of time scales is only now coming into focus. With growing recognition that a subset of human diseases involving cognitive dysfunction can be classified as ‘chromatinopathies’, in which aberrant chromatin-mediated neuroplasticity plays a causal role in the underlying disease pathophysiology, understanding the molecular nature of epigenetic mechanisms in the nervous system may provide important new avenues for the development of novel therapeutics. In this review, we discuss the chemistry and neurobiology of the histone deacetylase (HDAC) family of chromatin-modifying enzymes, outline the role of HDACs in the epigenetic control of neuronal function, and discuss the potential relevance of these epigenetic mechanisms to the development of therapeutics aiming to enhance memory and neuroplasticity. Finally, open questions, challenges, and critical needs for the field of ‘neuroepigenetics’ in the years to come will be summarized. PMID:21545841

  10. Hypothermia protects against oxygen-glucose deprivation-induced neuronal injury by down-regulating the reverse transport of glutamate by astrocytes as mediated by neurons.

    PubMed

    Wang, D; Zhao, Y; Zhang, Y; Zhang, T; Shang, X; Wang, J; Liu, Y; Kong, Q; Sun, B; Mu, L; Liu, X; Wang, G; Li, H

    2013-05-01

    Glutamate is the major mediator of excitotoxic neuronal death following cerebral ischemia. Under severe ischemic conditions, glutamate transporters can functionally reverse to release glutamate, thereby inducing further neuronal injury. Hypothermia has been shown to protect neurons from brain ischemia. However, the mechanism(s) involved remain unclear. Therefore, the aim of this study was to investigate the mechanism(s) mediating glutamate release during brain ischemia-reperfusion injury under hypothermic conditions. Neuron/astrocyte co-cultures were exposed to oxygen-glucose deprivation (OGD) at various temperatures for 2h, and cell viability was assayed 12h after reoxygenation. PI and MAP-2 staining demonstrated that hypothermia significantly decreased neuronal injury. Furthermore, [(3)H]-glutamate uptake assays showed that hypothermia protected rat primary cortical cultures against OGD reoxygenation-induced injury. Protein levels of the astrocytic glutamate transporter, GLT-1, which is primarily responsible for the clearance of extracellular glutamate, were also found to be reduced in a temperature-dependent manner. In contrast, expression of GLT-1 in astrocyte-enriched cultures was found to significantly increase following the addition of neuron-conditioned medium maintained at 37 °C, and to a lesser extent with neuron-conditioned medium at 33 °C. In conclusion, the neuroprotective effects of hypothermia against brain ischemia-reperfusion injury involve down-regulation of astrocytic GLT-1, which mediates the reverse transport of glutamate. Moreover, this process may be regulated by molecules secreted by stressed neurons. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Disturbed hypoxic responses as a pathogenic mechanism of diabetic foot ulcers.

    PubMed

    Catrina, Sergiu-Bogdan; Zheng, Xiaowei

    2016-01-01

    Diabetic foot ulceration (DFU) is a chronic complication of diabetes that is characterized by impaired wound healing in the lower extremities. DFU remains a major clinical challenge because of poor understanding of its pathogenic mechanisms. Impaired wound healing in diabetes is characterized by decreased angiogenesis, reduced bone marrow-derived endothelial progenitor cell (EPC) recruitment, and decreased fibroblast and keratinocyte proliferation and migration. Recently, increasing evidence has suggested that increased hypoxic conditions and impaired cellular responses to hypoxia are essential pathogenic factors of delayed wound healing in DFU. Hypoxia-inducible factor-1 (HIF-1, a heterodimer of HIF-1α and HIF-1β) is a master regulator of oxygen homeostasis that mediates the adaptive cellular responses to hypoxia by regulating the expression of genes involved in angiogenesis, metabolic changes, proliferation, migration, and cell survival. However, HIF-1 signalling is inhibited in diabetes as a result of hyperglycaemia-induced HIF-1α destabilization and functional repression. Increasing HIF-1α expression and activity using various approaches promotes angiogenesis, EPC recruitment, and granulation, thereby improving wound healing in experimental diabetes. The mechanisms underlying HIF-1α regulation in diabetes and the therapeutic strategies targeting HIF-1 signalling for the treatment of diabetic wounds are discussed in this review. Further investigations of the pathways involved in HIF-1α regulation in diabetes are required to advance our understanding of the mechanisms underlying impaired wound healing in diabetes and to provide a foundation for developing novel therapeutic approaches to treat DFU. Copyright © 2016 John Wiley & Sons, Ltd.

  12. A novel initiation mechanism of death in Streptococcus pneumoniae induced by the human milk protein-lipid complex HAMLET and activated during physiological death.

    PubMed

    Clementi, Emily A; Marks, Laura R; Duffey, Michael E; Hakansson, Anders P

    2012-08-03

    To cause colonization or infection, most bacteria grow in biofilms where differentiation and death of subpopulations is critical for optimal survival of the whole population. However, little is known about initiation of bacterial death under physiological conditions. Membrane depolarization has been suggested, but never shown to be involved, due to the difficulty of performing such studies in bacteria and the paucity of information that exists regarding ion transport mechanisms in prokaryotes. In this study, we performed the first extensive investigation of ion transport and membrane depolarization in a bacterial system. We found that HAMLET, a human milk protein-lipid complex, kills Streptococcus pneumoniae (the pneumococcus) in a manner that shares features with activation of physiological death from starvation. Addition of HAMLET to pneumococci dissipated membrane polarity, but depolarization per se was not enough to trigger death. Rather, both HAMLET- and starvation-induced death of pneumococci specifically required a sodium-dependent calcium influx, as shown using calcium and sodium transport inhibitors. This mechanism was verified under low sodium conditions, and in the presence of ionomycin or monensin, which enhanced pneumococcal sensitivity to HAMLET- and starvation-induced death. Pneumococcal death was also inhibited by kinase inhibitors, and indicated the involvement of Ser/Thr kinases in these processes. The importance of this activation mechanism was made evident, as dysregulation and manipulation of physiological death was detrimental to biofilm formation, a hallmark of bacterial colonization. Overall, our findings provide novel information on the role of ion transport during bacterial death, with the potential to uncover future antimicrobial targets.

  13. A Novel Initiation Mechanism of Death in Streptococcus pneumoniae Induced by the Human Milk Protein-Lipid Complex HAMLET and Activated during Physiological Death*

    PubMed Central

    Clementi, Emily A.; Marks, Laura R.; Duffey, Michael E.; Hakansson, Anders P.

    2012-01-01

    To cause colonization or infection, most bacteria grow in biofilms where differentiation and death of subpopulations is critical for optimal survival of the whole population. However, little is known about initiation of bacterial death under physiological conditions. Membrane depolarization has been suggested, but never shown to be involved, due to the difficulty of performing such studies in bacteria and the paucity of information that exists regarding ion transport mechanisms in prokaryotes. In this study, we performed the first extensive investigation of ion transport and membrane depolarization in a bacterial system. We found that HAMLET, a human milk protein-lipid complex, kills Streptococcus pneumoniae (the pneumococcus) in a manner that shares features with activation of physiological death from starvation. Addition of HAMLET to pneumococci dissipated membrane polarity, but depolarization per se was not enough to trigger death. Rather, both HAMLET- and starvation-induced death of pneumococci specifically required a sodium-dependent calcium influx, as shown using calcium and sodium transport inhibitors. This mechanism was verified under low sodium conditions, and in the presence of ionomycin or monensin, which enhanced pneumococcal sensitivity to HAMLET- and starvation-induced death. Pneumococcal death was also inhibited by kinase inhibitors, and indicated the involvement of Ser/Thr kinases in these processes. The importance of this activation mechanism was made evident, as dysregulation and manipulation of physiological death was detrimental to biofilm formation, a hallmark of bacterial colonization. Overall, our findings provide novel information on the role of ion transport during bacterial death, with the potential to uncover future antimicrobial targets. PMID:22700972

  14. Sex Differences in Trauma-Related Psychopathology: a Critical Review of Neuroimaging Literature (2014-2017).

    PubMed

    Helpman, Liat; Zhu, Xi; Suarez-Jimenez, Benjamin; Lazarov, Amit; Monk, Catherine; Neria, Yuval

    2017-11-08

    Sex differences in the epidemiology and clinical presentation of trauma-related psychopathology have long been documented. Multiple underlying mechanisms have been examined, both psychosocial and biological. Among the most promising biological mechanisms are neural substrates of trauma-related psychopathology that have been uncovered in recent years. Neuroimaging studies of sex-related heterogeneity published over the past 3 years (2014-2017) demonstrate an interaction between sex and type, timing, and load of trauma exposure. These studies suggest that, for males, early trauma exposure may involve a loss of gray matter in the limbic system, including the prefrontal cortex (PFC), amygdala, and hippocampus, and an over-activity and increased connectivity of salience hubs, and particularly dorsal anterior cingulate cortex (dACC). For females, however, early trauma exposure may involve overactive and possibly an enlarged amygdala, as well as decreased connectivity of salience hubs such as the dACC. Underlying mechanisms may include interaction with several endocrine systems and result in differential neural response to naturally occurring and added endocrine ligands, as well as sex-specific genetic and epigenetic risk and resilience factors. This complex interaction between multiple biological systems may be associated with sex-specific behavioral patterns, in turn associated with trauma-related psychopathology. While substantial number of published studies present preliminary evidence for neural mechanisms of sex-specific posttraumatic responses, there is a paucity of research directly designed to examine sex as a biological factor in trauma-related psychopathology. Specific foci for future studies aiming to bridge current gaps in the literature are discussed.

  15. Transcriptome profiling of petal abscission zone and functional analysis of AUX/IAA family genes reveal that RhIAA16 is involved in petal shedding in rose

    USDA-ARS?s Scientific Manuscript database

    Rose is one of the most important cut flowers among ornamental plants. Rose flower longevity is largely dependent on the timing of petal shedding occurrence. To understand the molecular mechanism underlying petal abscission in rose, we performed transcriptome profiling of the petal abscission zone d...

  16. Heteroclinic switching between chimeras

    NASA Astrophysics Data System (ADS)

    Bick, Christian

    2018-05-01

    Functional oscillator networks, such as neuronal networks in the brain, exhibit switching between metastable states involving many oscillators. We give exact results how such global dynamics can arise in paradigmatic phase oscillator networks: Higher-order network interactions give rise to metastable chimeras—localized frequency synchrony patterns—which are joined by heteroclinic connections. Moreover, we illuminate the mechanisms that underly the switching dynamics in these experimentally accessible networks.

  17. What does productivity really mean? Towards an integrative paradigm in the search for biodiversity-productivity relationships

    Treesearch

    Liangjun Hu; Qinfeng Guo

    2013-01-01

    How species diversity relates to productivity remains a major debate. To date, however, the underlying mechanisms that regulate the ecological processes involved are still poorly understood. Three major issues persist in early efforts at resolution. First, in the context that productivity drives species diversity, how the pathways operate is poorly-explained. Second,...

  18. Updating Existing Emotional Memories Involves the Frontopolar/Orbito-frontal Cortex in Ways that Acquiring New Emotional Memories Does Not

    ERIC Educational Resources Information Center

    Sakaki, Michiko; Niki, Kazuhisa; Mather, Mara

    2011-01-01

    In life, we must often learn new associations to people, places, or things we already know. The current fMRI study investigated the neural mechanisms underlying emotional memory updating. Nineteen participants first viewed negative and neutral pictures and learned associations between those pictures and other neutral stimuli, such as neutral…

  19. Implementing the Project Approach: A Case Study of Hybrid Pedagogy in a Hong Kong Kindergarten

    ERIC Educational Resources Information Center

    Chen, Jennifer J.; Li, Hui; Wang, Jing-ying

    2017-01-01

    The Project Approach has been promoted in Hong Kong kindergartens since the 1990s. However, the dynamic processes and underlying mechanisms involved in the teachers' implementation of this pedagogical method there have not yet been fully investigated. This case study of one typical kindergarten in Hong Kong documented how and why eight teachers…

  20. Method to study cell migration under uniaxial compression

    PubMed Central

    Srivastava, Nishit; Kay, Robert R.; Kabla, Alexandre J.

    2017-01-01

    The chemical, physical, and mechanical properties of the extracellular environment have a strong effect on cell migration. Aspects such as pore size or stiffness of the matrix influence the selection of the mechanism used by cells to propel themselves, including by pseudopods or blebbing. How a cell perceives its environment and how such a cue triggers a change in behavior are largely unknown, but mechanics is likely to be involved. Because mechanical conditions are often controlled by modifying the composition of the environment, separating chemical and physical contributions is difficult and requires multiple controls. Here we propose a simple method to impose a mechanical compression on individual cells without altering the composition of the matrix. Live imaging during compression provides accurate information about the cell's morphology and migratory phenotype. Using Dictyostelium as a model, we observe that a compression of the order of 500 Pa flattens the cells under gel by up to 50%. This uniaxial compression directly triggers a transition in the mode of migration from primarily pseudopodial to bleb driven in <30 s. This novel device is therefore capable of influencing cell migration in real time and offers a convenient approach with which to systematically study mechanotransduction in confined environments. PMID:28122819

  1. The Role of Corticostriatal Systems in Speech Category Learning

    PubMed Central

    Yi, Han-Gyol; Maddox, W. Todd; Mumford, Jeanette A.; Chandrasekaran, Bharath

    2016-01-01

    One of the most difficult category learning problems for humans is learning nonnative speech categories. While feedback-based category training can enhance speech learning, the mechanisms underlying these benefits are unclear. In this functional magnetic resonance imaging study, we investigated neural and computational mechanisms underlying feedback-dependent speech category learning in adults. Positive feedback activated a large corticostriatal network including the dorsolateral prefrontal cortex, inferior parietal lobule, middle temporal gyrus, caudate, putamen, and the ventral striatum. Successful learning was contingent upon the activity of domain-general category learning systems: the fast-learning reflective system, involving the dorsolateral prefrontal cortex that develops and tests explicit rules based on the feedback content, and the slow-learning reflexive system, involving the putamen in which the stimuli are implicitly associated with category responses based on the reward value in feedback. Computational modeling of response strategies revealed significant use of reflective strategies early in training and greater use of reflexive strategies later in training. Reflexive strategy use was associated with increased activation in the putamen. Our results demonstrate a critical role for the reflexive corticostriatal learning system as a function of response strategy and proficiency during speech category learning. Keywords: category learning, fMRI, corticostriatal systems, speech, putamen PMID:25331600

  2. Activation of sirtuin 1/3 improves vascular hyporeactivity in severe hemorrhagic shock by alleviation of mitochondrial damage

    PubMed Central

    Li, Pengyun; Meng, Xianzhong; Bian, Huining; Burns, Nana; Zhao, Ke-seng; Song, Rui

    2015-01-01

    Vascular hyporeactivity is one of the major causes responsible for refractory hypotension and associated mortality in severe hemorrhagic shock. Mitochondrial permeability transition (mPT) pore opening in arteriolar smooth muscle cells (ASMCs) is involved in the pathogenesis of vascular hyporeactivity. However, the molecular mechanism underlying mitochondrial injury in ASMCs during hemorrhagic shock is not well understood. Here we produced an in vivo model of severe hemorrhagic shock in adult Wistar rats. We found that sirtuin (SIRT)1/3 protein levels and deacetylase activities were decreased in ASMCs following severe shock. Immunofluorescence staining confirmed reduced levels of SIRT1 in the nucleus and SIRT3 in the mitochondria, respectively. Acetylation of cyclophilin D (CyPD), a component of mPT pore, was increased. SIRT1 activators suppressed mPT pore opening and ameliorated mitochondrial injury in ASMCs after severe shock. Furthermore, administration of SIRT1 activators improved vasoreactivity in rats under severe shock. Our data suggest that epigenetic mechanisms, namely histone post-translational modifications, are involved in regulation of mPT by SIRT1/SIRT3- mediated deacetylation of CyPD. SIRT1/3 is a promising therapeutic target for the treatment of severe hemorrhagic shock. PMID:26473372

  3. The cell envelope stress response of Bacillus subtilis: from static signaling devices to dynamic regulatory network.

    PubMed

    Radeck, Jara; Fritz, Georg; Mascher, Thorsten

    2017-02-01

    The cell envelope stress response (CESR) encompasses all regulatory events that enable a cell to protect the integrity of its envelope, an essential structure of any bacterial cell. The underlying signaling network is particularly well understood in the Gram-positive model organism Bacillus subtilis. It consists of a number of two-component systems (2CS) and extracytoplasmic function σ factors that together regulate the production of both specific resistance determinants and general mechanisms to protect the envelope against antimicrobial peptides targeting the biogenesis of the cell wall. Here, we summarize the current picture of the B. subtilis CESR network, from the initial identification of the corresponding signaling devices to unraveling their interdependence and the underlying regulatory hierarchy within the network. In the course of detailed mechanistic studies, a number of novel signaling features could be described for the 2CSs involved in mediating CESR. This includes a novel class of so-called intramembrane-sensing histidine kinases (IM-HKs), which-instead of acting as stress sensors themselves-are activated via interprotein signal transfer. Some of these IM-HKs are involved in sensing the flux of antibiotic resistance transporters, a unique mechanism of responding to extracellular antibiotic challenge.

  4. Mixed mechanisms of multi-site phosphorylation

    PubMed Central

    Suwanmajo, Thapanar; Krishnan, J.

    2015-01-01

    Multi-site phosphorylation is ubiquitous in cell biology and has been widely studied experimentally and theoretically. The underlying chemical modification mechanisms are typically assumed to be distributive or processive. In this paper, we study the behaviour of mixed mechanisms that can arise either because phosphorylation and dephosphorylation involve different mechanisms or because phosphorylation and/or dephosphorylation can occur through a combination of mechanisms. We examine a hierarchy of models to assess chemical information processing through different mixed mechanisms, using simulations, bifurcation analysis and analytical work. We demonstrate how mixed mechanisms can show important and unintuitive differences from pure distributive and processive mechanisms, in some cases resulting in monostable behaviour with simple dose–response behaviour, while in other cases generating new behaviour-like oscillations. Our results also suggest patterns of information processing that are relevant as the number of modification sites increases. Overall, our work creates a framework to examine information processing arising from complexities of multi-site modification mechanisms and their impact on signal transduction. PMID:25972433

  5. Can sociocultural and historical mechanisms influence the development of borderline personality disorder?

    PubMed

    Paris, Joel; Lis, Eric

    2013-02-01

    Borderline personality disorder (BPD) is a common and severe clinical problem. While cross-cultural research suggests that this condition can be identified in different societies, indirect evidence suggests that BPD and some of its associated symptoms (suicidality and self-harm) have a higher prevalence in developed countries. If so, sociocultural and historical mechanisms may have influenced the development of the disorder. While the vulnerabilities underlying BPD are broad and nonspecific, specific symptoms can be shaped by culture. The mechanisms involve the influence of a "symptom bank," as well as the role of social contagion. These trends may be related to a decrease in social cohesion and social capital in modern societies.

  6. Mechanism for transient migration of xenon in UO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X.-Y.; Uberuaga, B. P.; Andersson, D. A.

    2011-04-11

    In this letter, we report recent work on atomistic modeling of diffusion migration events of the fission gas product xenon in UO{sub 2} nuclear fuel. Under nonequilibrium conditions, Xe atoms can occupy the octahedral interstitial site, in contrast to the thermodynamically most stable uranium substitutional site. A transient migration mechanism involving Xe and two oxygen atoms is identified using basin constrained molecular dynamics employing a Buckingham type interatomic potential. This mechanism is then validated using density functional theory calculations using the nudged elastic band method. An overall reduction in the migration barrier of 1.6-2.7 eV is obtained compared to vacancy-mediatedmore » diffusion on the uranium sublattice.« less

  7. Unveiling the mechanisms of dressed-photon-phonon etching based on hierarchical surface roughness measure

    NASA Astrophysics Data System (ADS)

    Naruse, Makoto; Yatsui, Takashi; Nomura, Wataru; Kawazoe, Tadashi; Aida, Masaki; Ohtsu, Motoichi

    2013-02-01

    Dressed-photon-phonon (DPP) etching is a disruptive technology in planarizing material surfaces because it completely eliminates mechanical contact processes. However, adequate metrics for evaluating the surface roughness and the underlying physical mechanisms are still not well understood. Here, we propose a two-dimensional hierarchical surface roughness measure, inspired by the Allan variance, that represents the effectiveness of DPP etching while conserving the original two-dimensional surface topology. Also, we build a simple physical model of DPP etching that agrees well with the experimental observations, which clearly shows the involvement of the intrinsic hierarchical properties of dressed photons, or optical near-fields, in the surface processing.

  8. [Antifungals cellular targets and mechanisms of resistance].

    PubMed

    Accoceberry, Isabelle; Noël, Thierry

    2006-01-01

    Antifungals of systemic use for the treatment of invasive fungal infections belong to four main chemical families which have globally three cellular targets in fungal cells: fluorinated pyrimidines act on deoxyribonucleic acid (DNA) replication and protein synthesis; polyenes and azoles are toxic for ergosterol and its biosynthetic pathway; lipopeptides inhibit the synthesis of cell wall beta glucans. The resistance mechanisms that are developed by some fungi begin to be well understood particularly in Candida yeasts. The underlying bases of these mechanisms are either mutations that modify the antifungal target, or that block access to the target, and, on the other hand, the overexpression of genes encoding the target, or some membrane proteins involved in the active efflux of antifungal drugs.

  9. Picosecond amorphization of SiO2 stishovite under tension.

    PubMed

    Misawa, Masaaki; Ryuo, Emina; Yoshida, Kimiko; Kalia, Rajiv K; Nakano, Aiichiro; Nishiyama, Norimasa; Shimojo, Fuyuki; Vashishta, Priya; Wakai, Fumihiro

    2017-05-01

    It is extremely difficult to realize two conflicting properties-high hardness and toughness-in one material. Nano-polycrystalline stishovite, recently synthesized from Earth-abundant silica glass, proved to be a super-hard, ultra-tough material, which could provide sustainable supply of high-performance ceramics. Our quantum molecular dynamics simulations show that stishovite amorphizes rapidly on the order of picosecond under tension in front of a crack tip. We find a displacive amorphization mechanism that only involves short-distance collective motions of atoms, thereby facilitating the rapid transformation. The two-step amorphization pathway involves an intermediate state akin to experimentally suggested "high-density glass polymorphs" before eventually transforming to normal glass. The rapid amorphization can catch up with, screen, and self-heal a fast-moving crack. This new concept of fast amorphization toughening likely operates in other pressure-synthesized hard solids.

  10. A virus in a fungus in a plant: Three-way symbiosis required for thermal tolerance

    USGS Publications Warehouse

    Marquez, L.M.; Redman, R.S.; Rodriguez, R.J.; Roossinck, M.J.

    2007-01-01

    A mutualistic association between a fungal endophyte and a tropical panic grass allows both organisms to grow at high soil temperatures. We characterized a virus from this fungus that is involved in the mutualistic interaction. Fungal isolates cured of the virus are unable to confer heat tolerance, but heat tolerance is restored after the virus is reintroduced. The virus-infected fungus confers heat tolerance not only to its native monocot host but also to a eudicot host, which suggests that the underlying mechanism involves pathways conserved between these two groups of plants.

  11. ERK-GluR1 phosphorylation in trigeminal spinal subnucleus caudalis neurons is involved in pain associated with dry tongue.

    PubMed

    Nakaya, Yuka; Tsuboi, Yoshiyuki; Okada-Ogawa, Akiko; Shinoda, Masamichi; Kubo, Asako; Chen, Jui Yen; Noma, Noboru; Batbold, Dulguun; Imamura, Yoshiki; Sessle, Barry J; Iwata, Koichi

    2016-01-01

    Dry mouth is known to cause severe pain in the intraoral structures, and many dry mouth patients have been suffering from intraoral pain. In development of an appropriate treatment, it is crucial to study the mechanisms underlying intraoral pain associated with dry mouth, yet the detailed mechanisms are not fully understood. To evaluate the mechanisms underlying pain related to dry mouth, the dry-tongue rat model was developed. Hence, the mechanical or heat nocifensive reflex, the phosphorylated extracellular signal-regulated kinase and phosphorylated GluR1-IR immunohistochemistries, and the single neuronal activity were examined in the trigeminal spinal subnucleus caudalis of dry-tongue rats. The head-withdrawal reflex threshold to mechanical, but not heat, stimulation of the tongue was significantly decreased on day 7 after tongue drying. The mechanical, but not heat, responses of trigeminal spinal subnucleus caudalis nociceptive neurons were significantly enhanced in dry-tongue rats compared to sham rats on day 7. The number of phosphorylated extracellular signal-regulated kinase-immunoreactive cells was also significantly increased in the trigeminal spinal subnucleus caudalis following noxious stimulation of the tongue in dry-tongue rats compared to sham rats on day 7. The decrement of the mechanical head-withdrawal reflex threshold (HWT) was reversed during intracisternal administration of the mitogen-activated protein kinase kinase 1 inhibitor, PD98059. The trigeminal spinal subnucleus caudalis neuronal activities and the number of phosphorylated extracellular signal-regulated kinase-immunoreactive cells following noxious mechanical stimulation of dried tongue were also significantly decreased following intracisternal administration of PD98059 compared to vehicle-administrated rats. Increased number of the phosphorylated GluR1-IR cells was observed in the trigeminal spinal subnucleus caudalis of dry-tongue rats, and the number of phosphorylated GluR1-IR cells was significantly reduced in PD98059-administrated rats compared to the vehicle-administrated tongue-dry rats. These findings suggest that the pERK-pGluR1 cascade is involved in central sensitization of trigeminal spinal subnucleus caudalis nociceptive neurons, thus resulting in tongue mechanical hyperalgesia associated with tongue drying. © The Author(s) 2016.

  12. The effect of exogenous calcium on mitochondria, respiratory metabolism enzymes and ion transport in cucumber roots under hypoxia

    PubMed Central

    He, Lizhong; Li, Bin; Lu, Xiaomin; Yuan, Lingyun; Yang, Yanjuan; Yuan, Yinghui; Du, Jing; Guo, Shirong

    2015-01-01

    Hypoxia induces plant stress, particularly in cucumber plants under hydroponic culture. In plants, calcium is involved in stress signal transmission and growth. The ultimate goal of this study was to shed light on the mechanisms underlying the effects of exogenous calcium on the mitochondrial antioxidant system, the activity of respiratory metabolism enzymes, and ion transport in cucumber (Cucumis sativus L. cv. Jinchun No. 2) roots under hypoxic conditions. Our experiments revealed that exogenous calcium reduces the level of reactive oxygen species (ROS) and increases the activity of antioxidant enzymes in mitochondria under hypoxia. Exogenous calcium also enhances the accumulation of enzymes involved in glycolysis and the tricarboxylic acid (TCA) cycle. We utilized fluorescence and ultrastructural cytochemistry methods to observe that exogenous calcium increases the concentrations of Ca2+ and K+ in root cells by increasing the activity of plasma membrane (PM) H+-ATPase and tonoplast H+-ATPase and H+-PPase. Overall, our results suggest that hypoxic stress has an immediate and substantial effect on roots. Exogenous calcium improves metabolism and ion transport in cucumber roots, thereby increasing hypoxia tolerance in cucumber. PMID:26304855

  13. Whole Transcriptome Analysis Provides Insights into Molecular Mechanisms for Molting in Litopenaeus vannamei

    PubMed Central

    Gao, Yi; Zhang, Xiaojun; Wei, Jiankai; Sun, Xiaoqing; Yuan, Jianbo; Li, Fuhua; Xiang, Jianhai

    2015-01-01

    Molting is one of the most important biological processes in shrimp growth and development. All shrimp undergo cyclic molting periodically to shed and replace their exoskeletons. This process is essential for growth, metamorphosis, and reproduction in shrimp. However, the molecular mechanisms underlying shrimp molting remain poorly understood. In this study, we investigated global expression changes in the transcriptomes of the Pacific white shrimp, Litopenaeus vannamei, the most commonly cultured shrimp species worldwide. The transcriptome of whole L. vannamei was investigated by RNA-sequencing (RNA-seq) throughout the molting cycle, including the inter-molt (C), pre-molt (D0, D1, D2, D3, D4), and post-molt (P1 and P2) stages, and 93,756 unigenes were identified. Among these genes, we identified 5,117 genes differentially expressed (log2ratio ≥1 and FDR ≤0.001) in adjacent molt stages. The results were compared against the National Center for Biotechnology Information (NCBI) non-redundant protein/nucleotide sequence database, Swiss-Prot, PFAM database, the Gene Ontology database, and the Kyoto Encyclopedia of Genes and Genomes database in order to annotate gene descriptions, associate them with gene ontology terms, and assign them to pathways. The expression patterns for genes involved in several molecular events critical for molting, such as hormone regulation, triggering events, implementation phases, skelemin, immune responses were characterized and considered as mechanisms underlying molting in L. vannamei. Comparisons with transcriptomic analyses in other arthropods were also performed. The characterization of major transcriptional changes in genes involved in the molting cycle provides candidates for future investigation of the molecular mechanisms. The data generated in this study will serve as an important transcriptomic resource for the shrimp research community to facilitate gene and genome annotation and to characterize key molecular processes underlying shrimp development. PMID:26650402

  14. Early and long-standing rheumatoid arthritis: distinct molecular signatures identified by gene-expression profiling in synovia

    PubMed Central

    Lequerré, Thierry; Bansard, Carine; Vittecoq, Olivier; Derambure, Céline; Hiron, Martine; Daveau, Maryvonne; Tron, François; Ayral, Xavier; Biga, Norman; Auquit-Auckbur, Isabelle; Chiocchia, Gilles; Le Loët, Xavier; Salier, Jean-Philippe

    2009-01-01

    Introduction Rheumatoid arthritis (RA) is a heterogeneous disease and its underlying molecular mechanisms are still poorly understood. Because previous microarray studies have only focused on long-standing (LS) RA compared to osteoarthritis, we aimed to compare the molecular profiles of early and LS RA versus control synovia. Methods Synovial biopsies were obtained by arthroscopy from 15 patients (4 early untreated RA, 4 treated LS RA and 7 controls, who had traumatic or mechanical lesions). Extracted mRNAs were used for large-scale gene-expression profiling. The different gene-expression combinations identified by comparison of profiles of early, LS RA and healthy synovia were linked to the biological processes involved in each situation. Results Three combinations of 719, 116 and 52 transcripts discriminated, respectively, early from LS RA, and early or LS RA from healthy synovia. We identified several gene clusters and distinct molecular signatures specifically expressed during early or LS RA, thereby suggesting the involvement of different pathophysiological mechanisms during the course of RA. Conclusions Early and LS RA have distinct molecular signatures with different biological processes participating at different times during the course of the disease. These results suggest that better knowledge of the main biological processes involved at a given RA stage might help to choose the most appropriate treatment. PMID:19563633

  15. Embryo Microinjection of Selenomethionine Reduces Hatchability and Modifies Oxidant Responsive Gene Expression in Zebrafish

    NASA Astrophysics Data System (ADS)

    Thomas, J. K.; Janz, D. M.

    2016-05-01

    In previous studies we demonstrated that exposure to selenomethionine (SeMet) causes developmental toxicities in zebrafish (Danio rerio). The objectives of this study were to establish a dose-response relationship for developmental toxicities in zebrafish after embryo microinjection of Se (8, 16 or 32 μg/g dry mass of eggs) in the form of SeMet, and to investigate potential underlying mechanism(s) of SeMet-induced developmental toxicities. A dose-dependent increase in frequencies of mortality and total deformities, and reduced hatchability were observed in zebrafish exposed to excess Se via embryo microinjection. The egg Se concentration causing 20% mortality was then used to investigate transcript abundance of proteins involved in antioxidant protection and methylation. Excess Se exposure modified gene expression of oxidant-responsive transcription factors (nuclear factor erythroid 2-related factor nrf2a and nrf2b), and enzymes involved in cellular methylation (methionine adenosyltransferase mat1a and mat2ab) in zebrafish larvae. Notably, excess Se exposure up-regulated transcript abundance of aryl hydrocarbon receptor 2 (ahr2), a signalling pathway involved in the toxicity of dioxin-related compounds. Our findings suggest that oxidative stress or modification of methylation, or a combination of these mechanisms, might be responsible for Se-induced developmental toxicities in fishes.

  16. Zinc and the modulation of redox homeostasis

    PubMed Central

    Oteiza, Patricia I.

    2012-01-01

    Zinc, a redox inactive metal, has been long viewed as a component of the antioxidant network, and growing evidence points to its involvement in redox-regulated signaling. These actions are exerted through several mechanisms based on the unique chemical and functional properties of zinc. Overall, zinc contributes to maintain the cell redox balance through different mechanisms including: i) the regulation of oxidant production and metal-induced oxidative damage; ii) the dynamic association of zinc with sulfur in protein cysteine clusters, from which the metal can be released by nitric oxide, peroxides, oxidized glutathione and other thiol oxidant species; iii) zinc-mediated induction of the zinc-binding protein metallothionein, which releases the metal under oxidative conditions and act per se scavenging oxidants; iv) the involvement of zinc in the regulation of glutathione metabolism and of the overall protein thiol redox status; and v) a direct or indirect regulation of redox signaling. Findings of oxidative stress, altered redox signaling, and associated cell/tissue disfunction in cell and animal models of zinc deficiency, stress the relevant role of zinc in the preservation of cell redox homeostasis. However, while the participation of zinc in antioxidant protection, redox sensing, and redox-regulated signaling is accepted, the involved molecules, targets and mechanisms are still partially known and the subject of active research. PMID:22960578

  17. Nitric oxide regulation of calcitonin gene-related peptide gene expression in rat trigeminal ganglia neurons

    PubMed Central

    Bellamy, Jamie; Bowen, Elizabeth J.; Russo, Andrew F.; Durham, Paul L.

    2006-01-01

    Calcitonin gene-related peptide (CGRP) and nitric oxide are involved in the underlying pathophysiology of migraine and other diseases involving neurogenic inflammation. We have tested the hypothesis that nitric oxide might trigger signaling mechanisms within the trigeminal ganglia neurons that would coordinately stimulate CGRP synthesis and release. Treatment of primary trigeminal ganglia cultures with nitric oxide donors caused a greater than four-fold increase in CGRP release compared with unstimulated cultures. Similarly, CGRP promoter activity was also stimulated by nitric oxide donors and overexpression of inducible nitric oxide synthase (iNOS). Cotreatment with the antimigraine drug sumatriptan greatly repressed nitric oxide stimulation of CGRP promoter activity and secretion. Somewhat surprisingly, the mechanisms of nitric oxide stimulation of CGRP secretion did not require cGMP or PI3-kinase signaling pathways, but rather, nitric oxide action required extracellular calcium and likely involves T-type calcium channels. Furthermore, nitric oxide was shown to increase expression of the active forms of the mitogen-activated protein kinases Jun amino-terminal kinase and p38 but not extracellular signal-related kinase in trigeminal neurons. In summary, our results provide new insight into the cellular mechanisms by which nitric oxide induces CGRP synthesis and secretion from trigeminal neurons. PMID:16630053

  18. Role of exercise in maintaining the integrity of the neuromuscular junction.

    PubMed

    Nishimune, Hiroshi; Stanford, John A; Mori, Yasuo

    2014-03-01

    Physical activity plays an important role in preventing chronic disease in adults and the elderly. Exercise has beneficial effects on the nervous system, including at the neuromuscular junction (NMJ). Exercise causes hypertrophy of NMJs and improves recovery from peripheral nerve injuries, whereas decreased physical activity causes degenerative changes in NMJs. Recent studies have begun to elucidate molecular mechanisms underlying the beneficial effects of exercise. These mechanisms involve Bassoon, neuregulin-1, peroxisome proliferator-activated receptor gamma coactivator 1α, insulin-like growth factor-1, glial cell line-derived neurotrophic factor, neurotrophin 4, Homer, and nuclear factor of activated T cells c1. For example, NMJ denervation and active zone decreases have been observed in aged NMJs, but these age-dependent degenerative changes can be ameliorated by exercise. In this review we assess the effects of exercise on the maintenance and regeneration of NMJs and highlight recent insights into the molecular mechanisms underlying these exercise effects. Copyright © 2013 Wiley Periodicals, Inc.

  19. Timescales and Mechanisms of Sigh-Like Bursting and Spiking in Models of Rhythmic Respiratory Neurons.

    PubMed

    Wang, Yangyang; Rubin, Jonathan E

    2017-12-01

    Neural networks generate a variety of rhythmic activity patterns, often involving different timescales. One example arises in the respiratory network in the pre-Bötzinger complex of the mammalian brainstem, which can generate the eupneic rhythm associated with normal respiration as well as recurrent low-frequency, large-amplitude bursts associated with sighing. Two competing hypotheses have been proposed to explain sigh generation: the recruitment of a neuronal population distinct from the eupneic rhythm-generating subpopulation or the reconfiguration of activity within a single population. Here, we consider two recent computational models, one of which represents each of the hypotheses. We use methods of dynamical systems theory, such as fast-slow decomposition, averaging, and bifurcation analysis, to understand the multiple-timescale mechanisms underlying sigh generation in each model. In the course of our analysis, we discover that a third timescale is required to generate sighs in both models. Furthermore, we identify the similarities of the underlying mechanisms in the two models and the aspects in which they differ.

  20. Elucidating the molecular mechanisms underlying cellular response to biophysical cues using synthetic biology approaches

    PubMed Central

    Denning, Denise; Roos, Wouter H.

    2016-01-01

    ABSTRACT The use of synthetic surfaces and materials to influence and study cell behavior has vastly progressed our understanding of the underlying molecular mechanisms involved in cellular response to physicochemical and biophysical cues. Reconstituting cytoskeletal proteins and interfacing them with a defined microenvironment has also garnered deep insight into the engineering mechanisms existing within the cell. This review presents recent experimental findings on the influence of several parameters of the extracellular environment on cell behavior and fate, such as substrate topography, stiffness, chemistry and charge. In addition, the use of synthetic environments to measure physical properties of the reconstituted cytoskeleton and their interaction with intracellular proteins such as molecular motors is discussed, which is relevant for understanding cell migration, division and structural integrity, as well as intracellular transport. Insight is provided regarding the next steps to be taken in this interdisciplinary field, in order to achieve the global aim of artificially directing cellular response. PMID:27266767

  1. The lantern shark's light switch: turning shallow water crypsis into midwater camouflage

    PubMed Central

    Claes, Julien M.; Mallefet, Jérôme

    2010-01-01

    Bioluminescence is a common feature in the permanent darkness of the deep-sea. In fishes, light is emitted by organs containing either photogenic cells (intrinsic photophores), which are under direct nervous control, or symbiotic luminous bacteria (symbiotic photophores), whose light is controlled by secondary means such as mechanical occlusion or physiological suppression. The intrinsic photophores of the lantern shark Etmopterus spinax were recently shown as an exception to this rule since they appear to be under hormonal control. Here, we show that hormones operate what amounts to a unique light switch, by acting on a chromatophore iris, which regulates light emission by pigment translocation. This result strongly suggests that this shark's luminescence control originates from the mechanism for physiological colour change found in shallow water sharks that also involves hormonally controlled chromatophores: the lantern shark would have turned the initial shallow water crypsis mechanism into a midwater luminous camouflage, more efficient in the deep-sea environment. PMID:20410033

  2. Underlying neural mechanisms of mirror therapy: Implications for motor rehabilitation in stroke.

    PubMed

    Arya, Kamal Narayan

    2016-01-01

    Mirror therapy (MT) is a valuable method for enhancing motor recovery in poststroke hemiparesis. The technique utilizes the mirror-illusion created by the movement of sound limb that is perceived as the paretic limb. MT is a simple and economical technique than can stimulate the brain noninvasively. The intervention unquestionably has neural foundation. But the underlying neural mechanisms inducing motor recovery are still unclear. In this review, the neural-modulation due to MT has been explored. Multiple areas of the brain such as the occipital lobe, dorsal frontal area and corpus callosum are involved during the simple MT regime. Bilateral premotor cortex, primary motor cortex, primary somatosensory cortex, and cerebellum also get reorganized to enhance the function of the damaged brain. The motor areas of the lesioned hemisphere receive visuo-motor processing information through the parieto-occipital lobe. The damaged motor cortex responds variably to the MT and may augment true motor recovery. Mirror neurons may also play a possible role in the cortico-stimulatory mechanisms occurring due to the MT.

  3. Immunoglobulin class-switch recombination deficiencies.

    PubMed

    Durandy, Anne; Kracker, Sven

    2012-07-30

    Immunoglobulin class-switch recombination deficiencies (Ig-CSR-Ds) are rare primary immunodeficiencies characterized by defective switched isotype (IgG/IgA/IgE) production. Depending on the molecular defect in question, the Ig-CSR-D may be combined with an impairment in somatic hypermutation (SHM). Some of the mechanisms underlying Ig-CSR and SHM have been described by studying natural mutants in humans. This approach has revealed that T cell-B cell interaction (resulting in CD40-mediated signaling), intrinsic B-cell mechanisms (activation-induced cytidine deaminase-induced DNA damage), and complex DNA repair machineries (including uracil-N-glycosylase and mismatch repair pathways) are all involved in class-switch recombination and SHM. However, several of the mechanisms required for full antibody maturation have yet to be defined. Elucidation of the molecular defects underlying the diverse set of Ig-CSR-Ds is essential for understanding Ig diversification and has prompted better definition of the clinical spectrum of diseases and the development of increasingly accurate diagnostic and therapeutic approaches.

  4. Immunoglobulin class-switch recombination deficiencies

    PubMed Central

    2012-01-01

    Immunoglobulin class-switch recombination deficiencies (Ig-CSR-Ds) are rare primary immunodeficiencies characterized by defective switched isotype (IgG/IgA/IgE) production. Depending on the molecular defect in question, the Ig-CSR-D may be combined with an impairment in somatic hypermutation (SHM). Some of the mechanisms underlying Ig-CSR and SHM have been described by studying natural mutants in humans. This approach has revealed that T cell-B cell interaction (resulting in CD40-mediated signaling), intrinsic B-cell mechanisms (activation-induced cytidine deaminase-induced DNA damage), and complex DNA repair machineries (including uracil-N-glycosylase and mismatch repair pathways) are all involved in class-switch recombination and SHM. However, several of the mechanisms required for full antibody maturation have yet to be defined. Elucidation of the molecular defects underlying the diverse set of Ig-CSR-Ds is essential for understanding Ig diversification and has prompted better definition of the clinical spectrum of diseases and the development of increasingly accurate diagnostic and therapeutic approaches. PMID:22894609

  5. Cellular and genetic regulation of the development of the cerebellar system.

    PubMed

    Sotelo, Constantino

    2004-04-01

    Recent advances in molecular biology have drastically changed our vision on the development of the nervous system, the cerebellum in particular. After a classical descriptive period, we are now in a modern mechanistic epoch as we begin to answer crucial questions in our quest to understand the mechanisms underlying the emergence of brain complexity. This review begins with an analysis of the role of the "isthmic organizer" in the induction and specification of the cerebellar territory and progresses through cerebellar development to the formation of cerebellar maps. It gathers information about the control of the proliferation of granule cell precursors by Purkinje cells and the role of Shh/Gli-patched signaling. The migratory routes for cerebellar and precerebellar neurons, together with the long-range and short-range cues guiding gliophilic and, particularly, neurophilic migrations, are also discussed. Because these cues are similar to those involved in axon guidance, both processes are under the same molecular constraints. Finally, using primarily the olivocerebellar projection as a model, the cellular and molecular mechanisms involved in the formation of cerebellar maps are discussed. During embryonic development, Purkinje cells in the cerebellum and neurons in the inferior olive follow a simultaneous, but independent, process of intrinsic parcellation, giving rise to subsets of biochemically different cortical compartments. The occurrence of positional information shared between olivary axons and their postsynaptic targets, the Purkinje cells, provides a molecular code for the formation of coarse-grained maps. Activity-dependent mechanisms are required for the transition from crude to fine-grained maps. This important refinement, which confers ultimate specificity to the maps, is under the regulation of parallel fiber-Purkinje cell synaptic activity.

  6. Bilateral primary motor cortex circuitry is modulated due to theta burst stimulation to left dorsal premotor cortex and bimanual training.

    PubMed

    Neva, Jason L; Vesia, Michael; Singh, Amaya M; Staines, W Richard

    2015-08-27

    Motor preparatory and execution activity is enhanced after a single session of bimanual visuomotor training (BMT). Recently, we have shown that increased primary motor cortex (M1) excitability occurs when BMT involves simultaneous activation of homologous muscles and these effects are enhanced when BMT is preceded by intermittent theta burst stimulation (iTBS) to the left dorsal premotor cortex (lPMd). The neural mechanisms underlying these modulations are unclear, but may include interhemispheric interactions between homologous M1s and connectivity with premotor regions. The purpose of this study was to investigate the possible intracortical and interhemispheric modulations of the extensor carpi radials (ECR) representation in M1 bilaterally due to: (1) BMT, (2) iTBS to lPMd, and (3) iTBS to lPMd followed by BMT. This study tests three related hypotheses: (1) BMT will enhance excitability within and between M1 bilaterally, (2) iTBS to lPMd will primarily enhance left M1 (lM1) excitability, and (3) the combination of these interventions will cause a greater enhancement of bilateral M1 excitability. We used single and paired-pulse transcranial magnetic stimulation (TMS) to quantify M1 circuitry bilaterally. The results demonstrate the neural mechanisms underlying the early markers of rapid functional plasticity associated with BMT and iTBS to lPMd primarily relate to modulations of long-interval inhibitory (i.e. GABAB-mediated) circuitry within and between M1s. This work provides novel insight into the underlying neural mechanisms involved in M1 excitability changes associated with BMT and iTBS to lPMd. Critically, this work may inform rehabilitation training and stimulation techniques that modulate cortical plasticity after brain injury. Copyright © 2015. Published by Elsevier B.V.

  7. Synergistic Tumor-Killing Effect of Radiation and Berberine Combined Treatment in Lung Cancer: The Contribution of Autophagic Cell Death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng Peiling; Division of Gastroenterology, Armed Forces Taichung Hospital, Taichung, Taiwan; Kuo, W.-H.

    2008-02-01

    Purpose: Radiotherapy is the most efficacious strategies for lung cancer. The radiation-enhancing effects and the underlying mechanisms of berberine were investigated both in vitro and in vivo. Methods and Materials: Clonogenic survival assays were used to evaluate the radio-sensitivity of berberine on non-small-cell lung cancer. Electron microscopic observation of the features of cell death, flow cytometry of acidic vascular organelles formation, mitochondria membrane potential and cell-cycle progression, and Western blotting of caspase 3, PARP, and LC3 were performed to identify the mechanisms underlying the enhancing effects. Lewis lung carcinoma model in mice was conducted to evaluate the possible application ofmore » berberine in synergistic treatment with irradiation. Results: Compared with radiation alone (SF2 = 0.423; D{sub 0} = 5.29 Gy), berberine at 5 and 10 {mu}M concentrations in combination with radiation showed significant enhancement on radiation-induced clonogenic inhibition (SF2 = 0.215: D{sub 0} = 2.70 Gy and SF2 = 0.099: D{sub 0} = 1.24 Gy) on A549 cells. The cellular ultrastructure showed the presence of autophagosome and an increased proportion of acridine orange stain-positive cells, demonstrating that berberine enhanced radiosensitivity via autophagy. The process involved LC3 modification and mitochondrial disruption. The animal model verified the synergistic cytotoxic effect of berberine and irradiation resulting in a substantial shrinkage of tumor volume. Conclusion: Supplement of berberine enhanced the cytotoxicity of radiation in both in vivo and in vitro models of lung cancer. The mechanisms underlying this synergistic effect involved the induction of autophagy. It suggests that berberine could be used as adjuvant therapy to treat lung cancer.« less

  8. Single turnover studies of oxidative halophenol dehalogenation by horseradish peroxidase reveal a mechanism involving two consecutive one electron steps: toward a functional halophenol bioremediation catalyst.

    PubMed

    Sumithran, Suganya; Sono, Masanori; Raner, Gregory M; Dawson, John H

    2012-12-01

    Horseradish peroxidase (HRP) catalyzes the oxidative para-dechlorination of the environmental pollutant/carcinogen 2,4,6-trichlorophenol (2,4,6-TCP). A possible mechanism for this reaction is a direct oxygen atom transfer from HRP compound I (HRP I) to trichlorophenol to generate 2,6-dichloro 1,4-benzoquinone, a two-electron transfer process. An alternative mechanism involves two consecutive one-electron transfer steps in which HRP I is reduced to compound II (HRP II) and then to the ferric enzyme as first proposed by Wiese et al. [F.W. Wiese, H.C. Chang, R.V. Lloyd, J.P. Freeman, V.M. Samokyszyn, Arch. Environ. Contam. Toxicol. 34 (1998) 217-222]. To probe the mechanism of oxidative halophenol dehalogenation, the reactions between 2,4,6-TCP and HRP compounds I or II have been investigated under single turnover conditions (i.e., without excess H(2)O(2)) using rapid scan stopped-flow spectroscopy. Addition of 2,4,6-TCP to HRP I leads rapidly to HRP II and then more slowly to the ferric resting state, consistent with a mechanism involving two consecutive one-electron oxidations of the substrate via a phenoxy radical intermediate. HRP II can also directly dechlorinate 2,4,6-TCP as judged by rapid scan stopped-flow and mass spectrometry. This observation is particularly significant since HRP II can only carry out one-electron oxidations. A more detailed understanding of the mechanism of oxidative halophenol dehalogenation will facilitate the use of HRP as a halophenol bioremediation catalyst. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Conversion of Stationary to Invasive Tumor Initiating Cells (TICs): Role of Hypoxia in Membrane Type 1-Matrix Metalloproteinase (MT1-MMP) Trafficking

    PubMed Central

    Li, Jian; Zucker, Stanley; Pulkoski-Gross, Ashleigh; Kuscu, Cem; Karaayvaz, Mihriban; Ju, Jingfang; Yao, Herui; Song, Erwei; Cao, Jian

    2012-01-01

    Emerging evidence has implicated the role of tumor initiating cells (TICs) in the process of cancer metastasis. The mechanism underlying the conversion of TICs from stationary to invasive remains to be characterized. In this report, we employed less invasive breast cancer TICs, SK-3rd, that displays CD44high/CD24low with high mammosphere-forming and tumorigenic capacities, to investigate the mechanism by which stationary TICs are converted to invasive TICs. Invasive ability of SK-3rd TICs was markedly enhanced when the cells were cultured under hypoxic conditions. Given the role of membrane type 1-matrix metalloproteinase (MT1-MMP) in cancer invasion/metastasis, we explored a possible involvement of MT1-MMP in hypoxia-induced TIC invasion. Silencing of MT1-MMP by a shRNA approach resulted in diminution of hypoxia-induced cell invasion in vitro and metastasis in vivo. Under hypoxic conditions, MT1-MMP redistributed from cytoplasmic storage pools to the cell surface of TICs, which coincides with the increased cell invasion. In addition, CD44, a cancer stem-like cell marker, inversely correlated with increased cell surface MT1-MMP. Interestingly, cell surface MT1-MMP gradually disappeared when the hypoxia-treated cells were switched to normoxia, suggesting the plasticity of TICs in response to oxygen content. Furthermore, we dissected the pathways leading to upregulated MT1-MMP in cytoplasmic storage pools under normoxic conditions, by demonstrating a cascade involving Twist1-miR10b-HoxD10 leading to enhanced MT1-MMP expression in SK-3rd TICs. These observations suggest that MT1-MMP is a key molecule capable of executing conversion of stationary TICs to invasive TICs under hypoxic conditions and thereby controlling metastasis. PMID:22679501

  10. Insecticide Resistance and Metabolic Mechanisms Involved in Larval and Adult Stages of Aedes aegypti Insecticide-Resistant Reference Strains from Cuba.

    PubMed

    Bisset, Juan Andrés; Rodríguez, María Magdalena; French, Leydis; Severson, David W; Gutiérrez, Gladys; Hurtado, Daymi; Fuentes, Ilario

    2014-12-01

    Studies were conducted to compare levels of insecticide resistance and to determine the metabolic resistance mechanisms in larval and adult stages of Aedes aegypti from Cuba. Three insecticide-resistant reference strains of Ae. aegypti from Cuba were examined. These strains were derived from a Santiago de Cuba strain isolated in 1997; it was previously subjected to a strong selection for resistance to temephos (SAN-F6), deltamethrin (SAN-F12), and propoxur (SAN-F13) and routinely maintained in the laboratory under selection pressure up to the present time, when the study was carried out. In addition, an insecticide-susceptible strain was used for comparison. The insecticide resistance in larvae and adults was determined using standard World Health Organization methodologies. Insecticide resistance mechanisms were determined by biochemical assays. The esterases (α EST and β EST) and mixed function oxidase (MFO) activities were significantly higher in adults than in the larvae of the three resistant strains studied. The association of resistance level with the biochemical mechanism for each insecticide was established for each stage. The observed differences between larval and adult stages of Ae. aegypti in their levels of insecticide resistance and the biochemical mechanisms involved should be included as part of monitoring and surveillance activities in Ae. aegypti vector control programs.

  11. Mechanism Underlying the Weight Loss and Complications of Roux-en-Y Gastric Bypass. Review.

    PubMed

    Abdeen, G; le Roux, C W

    2016-02-01

    Various bariatric surgical procedures are effective at improving health in patients with obesity associated co-morbidities, but the aim of this review is to specifically describe the mechanisms through which Roux-en-Y gastric bypass (RYGB) surgery enables weight loss for obese patients using observations from both human and animal studies. Perhaps most but not all clinicians would agree that the beneficial effects outweigh the harm of RYGB; however, the mechanisms for both the beneficial and deleterious (for example postprandial hypoglycaemia, vitamin deficiency and bone loss) effects are ill understood. The exaggerated release of the satiety gut hormones, such as GLP-1 and PYY, with their central and peripheral effects on food intake has given new insight into the physiological changes that happen after surgery. The initial enthusiasm after the discovery of the role of the gut hormones following RYGB may need to be tempered as the magnitude of the effects of these hormonal responses on weight loss may have been overestimated. The physiological changes after RYGB are unlikely to be due to a single hormone, or single mechanism, but most likely involve complex gut-brain signalling. Understanding the mechanisms involved with the beneficial and deleterious effects of RYGB will speed up the development of effective, cheaper and safer surgical and non-surgical treatments for obesity.

  12. Mechanism study of humic acid functional groups for Cr(VI) retention: Two-dimensional FTIR and 13C CP/MAS NMR correlation spectroscopic analysis.

    PubMed

    Zhang, Jia; Chen, Linpeng; Yin, Huilin; Jin, Song; Liu, Fei; Chen, Honghan

    2017-06-01

    Undissolved humic acid (HA) is known to substantially effect the migration and transformation of hexavalent chromium [Cr(VI)] in soils. The mechanisms of Cr(VI) retention in soils by undissolved HA have been reported; however, past studies are inconclusive about the types of HA functional groups that are involved in Cr(VI) retention and the retention mechanisms. Utilizing a two-dimensional correlation spectroscopy (2DCOS) analysis for FTIR and 13 C CP/MAS NMR, this study investigated the variations of HA function groups and molecular structures after reactions with aqueous Cr(VI) under different pH conditions. Based on the changing sequence of functional groups interpreted from the 2DCOS results, a four-step mechanism for Cr(VI) retention was determined as follows: (1) electrostatic adsorption of Cr(VI) to HA surface, (2) complexation of adsorbed Cr(VI) by carboxyl and ester, (3) reduction of complexed Cr(VI) to Cr(III) by phenol and polysaccharide, and (4) complexation of reduced Cr(III) by carboxylic groups. These functional groups that are involved in Cr(VI) retention were determined to occur in aromatic domains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Neuromodulatory treatments for chronic pain: efficacy and mechanisms

    PubMed Central

    Jensen, Mark P.; Day, Melissa A.; Miró, Jordi

    2017-01-01

    Chronic pain is common, and the available treatments do not provide adequate relief for most patients. Neuromodulatory interventions that modify brain processes underlying the experience of pain have the potential to provide substantial relief for some of these patients. The purpose of this Review is to summarize the state of knowledge regarding the efficacy and mechanisms of noninvasive neuromodulatory treatments for chronic pain. The findings provide support for the efficacy and positive side-effect profile of hypnosis, and limited evidence for the potential efficacy of meditation training, noninvasive electrical stimulation procedures, and neurofeedback procedures. Mechanisms research indicates that hypnosis influences multiple neurophysiological processes involved in the experience of pain. Evidence also indicates that mindfulness meditation has both immediate and long-term effects on cortical structures and activity involved in attention, emotional responding and pain. Less is known about the mechanisms of other neuromodulatory treatments. On the basis of the data discussed in this Review, training in the use of self-hypnosis might be considered a viable ‘first-line’ approach to treat chronic pain. More-definitive research regarding the benefits and costs of meditation training, noninvasive brain stimulation and neurofeedback is needed before these treatments can be recommended for the treatment of chronic pain. PMID:24535464

  14. Understanding Neurological Disease Mechanisms in the Era of Epigenetics

    PubMed Central

    Qureshi, Irfan A.; Mehler, Mark F.

    2015-01-01

    The burgeoning field of epigenetics is making a significant impact on our understanding of brain evolution, development, and function. In fact, it is now clear that epigenetic mechanisms promote seminal neurobiological processes, ranging from neural stem cell maintenance and differentiation to learning and memory. At the molecular level, epigenetic mechanisms regulate the structure and activity of the genome in response to intracellular and environmental cues, including the deployment of cell type–specific gene networks and those underlying synaptic plasticity. Pharmacological and genetic manipulation of epigenetic factors can, in turn, induce remarkable changes in neural cell identity and cognitive and behavioral phenotypes. Not surprisingly, it is also becoming apparent that epigenetics is intimately involved in neurological disease pathogenesis. Herein, we highlight emerging paradigms for linking epigenetic machinery and processes with neurological disease states, including how (1) mutations in genes encoding epigenetic factors cause disease, (2) genetic variation in genes encoding epigenetic factors modify disease risk, (3) abnormalities in epigenetic factor expression, localization, or function are involved in disease pathophysiology, (4) epigenetic mechanisms regulate disease-associated genomic loci, gene products, and cellular pathways, and (5) differential epigenetic profiles are present in patient-derived central and peripheral tissues. PMID:23571666

  15. Epigenetic regulation of inflammation in stroke

    PubMed Central

    Ng, Gavin Yong-Quan; Yun-An, Lim; Sobey, Christopher G.; Dheen, Thameem; Fann, David Yang-Wei; Arumugam, Thiruma V.

    2018-01-01

    Despite extensive research, treatments for clinical stroke are still limited only to the administration of tissue plasminogen activator and the recent introduction of mechanical thrombectomy, which can be used in only a limited proportion of patients due to time constraints. A plethora of inflammatory events occur during stroke, arising in part due to the body’s immune response to brain injury. Neuroinflammation contributes significantly to neuronal cell death and the development of functional impairment and death in stroke patients. Therefore, elucidating the molecular and cellular mechanisms underlying inflammatory damage following stroke injury will be essential for the development of useful therapies. Research findings increasingly point to the likelihood that epigenetic mechanisms play a role in the pathophysiology of stroke. Epigenetics involves the differential regulation of gene expression, including those involved in brain inflammation and remodelling after stroke. Hence, it is conceivable that epigenetic mechanisms may contribute to differential interindividual vulnerability and injury responses to cerebral ischaemia. In this review, we summarize recent findings on the emerging role of epigenetics in the regulation of neuroinflammation in stroke. We also discuss potential epigenetic targets that may be assessed for the development of stroke therapies. PMID:29774056

  16. Neuromodulatory treatments for chronic pain: efficacy and mechanisms.

    PubMed

    Jensen, Mark P; Day, Melissa A; Miró, Jordi

    2014-03-01

    Chronic pain is common, and the available treatments do not provide adequate relief for most patients. Neuromodulatory interventions that modify brain processes underlying the experience of pain have the potential to provide substantial relief for some of these patients. The purpose of this Review is to summarize the state of knowledge regarding the efficacy and mechanisms of noninvasive neuromodulatory treatments for chronic pain. The findings provide support for the efficacy and positive side-effect profile of hypnosis, and limited evidence for the potential efficacy of meditation training, noninvasive electrical stimulation procedures, and neurofeedback procedures. Mechanisms research indicates that hypnosis influences multiple neurophysiological processes involved in the experience of pain. Evidence also indicates that mindfulness meditation has both immediate and long-term effects on cortical structures and activity involved in attention, emotional responding and pain. Less is known about the mechanisms of other neuromodulatory treatments. On the basis of the data discussed in this Review, training in the use of self-hypnosis might be considered a viable 'first-line' approach to treat chronic pain. More-definitive research regarding the benefits and costs of meditation training, noninvasive brain stimulation and neurofeedback is needed before these treatments can be recommended for the treatment of chronic pain.

  17. A critical review of the arsenic uptake mechanisms and phytoremediation potential of Pteris vittata.

    PubMed

    Danh, Luu Thai; Truong, Paul; Mammucari, Raffaella; Foster, Neil

    2014-01-01

    The discovery of the arsenic hyperaccumulator, Pteris vittata (Chinese brake fern), has contributed to the promotion of its application as a means of phytoremediation for arsenic removal from contaminated soils and water. Understanding the mechanisms involved in arsenic tolerance and accumulation of this plant provides valuable tools to improve the phytoremediation efficiency. In this review, the current knowledge about the physiological and molecular mechanisms of arsenic tolerance and accumulation in P. vittata is summarized, and an attempt has been made to clarify some of the unresolved questions related to these mechanisms. In addition, the capacity of P. vittata for remediation of arsenic-contaminated soils is evaluated under field conditions for the first time, and possible solutions to improve the remediation capacity of Pteris vittata are also discussed.

  18. Decentralized control mechanism underlying interlimb coordination of millipedes.

    PubMed

    Kano, Takeshi; Sakai, Kazuhiko; Yasui, Kotaro; Owaki, Dai; Ishiguro, Akio

    2017-04-04

    Legged animals exhibit adaptive and resilient locomotion through interlimb coordination. The long-term goal of this study is to clarify the relationship between the number of legs and the inherent decentralized control mechanism for interlimb coordination. As a preliminary step, the study focuses on millipedes as they represent the species with the greatest number of legs among various animal species. A decentralized control mechanism involving local force feedback was proposed based on the qualitative findings of behavioural experiments in which responses to the removal of part of the terrain and leg amputation were observed. The proposed mechanism was implemented in a developed millipede-like robot to demonstrate that the robot can adapt to the removal of the part of the terrain and leg amputation in a manner similar to that in behavioural experiments.

  19. Quantification of Age-Related Lung Tissue Mechanics under Mechanical Ventilation.

    PubMed

    Kim, JongWon; Heise, Rebecca L; Reynolds, Angela M; Pidaparti, Ramana M

    2017-09-29

    Elderly patients with obstructive lung diseases often receive mechanical ventilation to support their breathing and restore respiratory function. However, mechanical ventilation is known to increase the severity of ventilator-induced lung injury (VILI) in the elderly. Therefore, it is important to investigate the effects of aging to better understand the lung tissue mechanics to estimate the severity of ventilator-induced lung injuries. Two age-related geometric models involving human bronchioles from generation G10 to G23 and alveolar sacs were developed. The first is for a 50-year-old (normal) and second is for an 80-year old (aged) model. Lung tissue mechanics of normal and aged models were investigated under mechanical ventilation through computational simulations. Results obtained indicated that lung tissue strains during inhalation (t = 0.2 s) decreased by about 40% in the alveolar sac (G23) and 27% in the bronchiole (G20), respectively, for the 80-year-old as compared to the 50-year-old. The respiratory mechanics parameters (work of breathing per unit volume and maximum tissue strain) over G20 and G23 for the 80-year-old decreased by about 64% (three-fold) and 80% (four-fold), respectively, during the mechanical ventilation breathing cycle. However, there was a significant increase (by about threefold) in lung compliance for the 80-year-old in comparison to the 50-year-old. These findings from the computational simulations demonstrated that lung mechanical characteristics are significantly compromised in aging tissues, and these effects were quantified in this study.

  20. Studies of electromagnetic ion cyclotron waves using AMPTE/CCE and Dynamics Explorer

    NASA Technical Reports Server (NTRS)

    Erlandson, Robert E.

    1993-01-01

    The principal activity during the past six months has involved the analysis of ion cyclotron waves recorded from DE-2 using the magnetic field experiment and electric field experiment. The results of this study have been published in the Geophysical Research Letters (GRL). The primary finding of this paper is that ion cyclotron waves were found to heat electrons, as observed in the DE-2 Langmuir probe data, through a Landau damping process. A second activity, which was started during the last six months, involves the study of large amplitude approximately one Hz electric and magnetic field oscillations recorded in the nightside auroral zone at substorm onset. Work is under way to determine the properties of these waves and investigate any association these waves may have with the substorm initiation process. A third activity under way involves a comprehensive study of ion cyclotron waves recorded at ionospheric altitudes by DE-2. This study will be an extension of the work reported in the GRL paper and will involve a larger sampling of wave events. This paper will focus on wave properties at ionospheric altitudes. A fourth activity involves a more in-depth analysis of the acceleration mechanisms and the resulting electron distributions based on the observations presented in the GRL paper.

  1. Effects of state recovery on creep buckling under variable loading

    NASA Technical Reports Server (NTRS)

    Robinson, D. N.; Arnold, S. M.

    1986-01-01

    Structural alloys embody internal mechanisms that allow recovery of state with varying stress and elevated temperature, i.e., they can return to a softer state following periods of hardening. Such material behavior is known to strongly influence structural response under some important thermomechanical loadings, for example, that involving thermal ratchetting. The influence of dynamic and thermal recovery on the creep buckling of a column under variable loading is investigated. The column is taken as the idealized (Shanley) sandwich column. The constitutive model, unlike the commonly employed Norton creep model, incorporates a representation of both dynamic and thermal (state) recovery. The material parameters of the constitutive model are chosen to characterize Narloy Z, a representative copper alloy used in thrust nozzle liners of reusable rocket engines. Variable loading histories include rapid cyclic unloading/reloading sequences and intermittent reductions of load for extended periods of time; these are superimposed on a constant load. The calculated results show that state recovery significantly affects creep buckling under variable loading. Structural alloys embody internal mechanisms that allow recovery of state with varying stress and time.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkow N. D.; Wang G.; Volkow, N.D.

    The ability to resist the urge to eat requires the proper functioning of neuronal circuits involved in top-down control to oppose the conditioned responses that predict reward from eating the food and the desire to eat the food. Imaging studies show that obese subjects might have impairments in dopaminergic pathways that regulate neuronal systems associated with reward sensitivity, conditioning and control. It is known that the neuropeptides that regulate energy balance (homeostatic processes) through the hypothalamus also modulate the activity of dopamine cells and their projections into regions involved in the rewarding processes underlying food intake. It is postulated thatmore » this could also be a mechanism by which overeating and the resultant resistance to homoeostatic signals impairs the function of circuits involved in reward sensitivity, conditioning and cognitive control.« less

  3. Detoxification strategies and regulation of oxygen production and flowering of Platanus acerifolia under lead (Pb) stress by transcriptome analysis.

    PubMed

    Wang, Limin; Yang, Haijiao; Liu, Rongning; Fan, Guoqiang

    2015-08-01

    Toxic metal pollution is a major environmental problem that has received wide attention. Platanus acerifolia (London plane tree) is an important greening tree species that can adapt to environmental pollution. The genetic basis and molecular mechanisms associated with the ability of P. acerifolia to respond lead (Pb) stress have not been reported so far. In this study, 16,246 unigenes differentially expressed unigenes that were obtained from P. acerifolia under Pb stress using next-generation sequencing. Essential pathways such as photosynthesis, and gibberellins and glutathione metabolism were enriched among the differentially expressed unigenes. Furthermore, many important unigenes, including antioxidant enzymes, plants chelate compounds, and metal transporters involved in defense and detoxification mechanisms, were differentially expressed in response to Pb stress. The unigenes encoding the oxygen-evolving enhancer Psb and OEE protein families were downregulated in Pb-stressed plants, implying that oxygen production might decrease in plants under Pb stress. The relationship between gibberellin and P. acerifolia flowering is also discussed. The information and new insights obtained in this study will contribute to further investigations into the molecular regulation mechanisms of Pb accumulation and tolerance in greening tree species.

  4. Zinc as a Gatekeeper of Immune Function

    PubMed Central

    Wessels, Inga; Maywald, Martina; Rink, Lothar

    2017-01-01

    After the discovery of zinc deficiency in the 1960s, it soon became clear that zinc is essential for the function of the immune system. Zinc ions are involved in regulating intracellular signaling pathways in innate and adaptive immune cells. Zinc homeostasis is largely controlled via the expression and action of zinc “importers” (ZIP 1–14), zinc “exporters” (ZnT 1–10), and zinc-binding proteins. Anti-inflammatory and anti-oxidant properties of zinc have long been documented, however, underlying mechanisms are still not entirely clear. Here, we report molecular mechanisms underlying the development of a pro-inflammatory phenotype during zinc deficiency. Furthermore, we describe links between altered zinc homeostasis and disease development. Consequently, the benefits of zinc supplementation for a malfunctioning immune system become clear. This article will focus on underlying mechanisms responsible for the regulation of cellular signaling by alterations in zinc homeostasis. Effects of fast zinc flux, intermediate “zinc waves”, and late homeostatic zinc signals will be discriminated. Description of zinc homeostasis-related effects on the activation of key signaling molecules, as well as on epigenetic modifications, are included to emphasize the role of zinc as a gatekeeper of immune function. PMID:29186856

  5. The impact of cultural differences in self-representation on the neural substrates of posttraumatic stress disorder.

    PubMed

    Liddell, Belinda J; Jobson, Laura

    2016-01-01

    A significant body of literature documents the neural mechanisms involved in the development and maintenance of posttraumatic stress disorder (PTSD). However, there is very little empirical work considering the influence of culture on these underlying mechanisms. Accumulating cultural neuroscience research clearly indicates that cultural differences in self-representation modulate many of the same neural processes proposed to be aberrant in PTSD. The objective of this review paper is to consider how culture may impact on the neural mechanisms underlying PTSD. We first outline five key affective and cognitive functions and their underlying neural correlates that have been identified as being disrupted in PTSD: (1) fear dysregulation; (2) attentional biases to threat; (3) emotion and autobiographical memory; (4) self-referential processing; and (5) attachment and interpersonal processing. Second, we consider prominent cultural theories and review the empirical research that has demonstrated the influence of cultural variations in self-representation on the neural substrates of these same five affective and cognitive functions. Finally, we propose a conceptual model that suggests that these five processes have major relevance to considering how culture may influence the neural processes underpinning PTSD.

  6. Respiratory mechanics in brain injury: A review.

    PubMed

    Koutsoukou, Antonia; Katsiari, Maria; Orfanos, Stylianos E; Kotanidou, Anastasia; Daganou, Maria; Kyriakopoulou, Magdalini; Koulouris, Nikolaos G; Rovina, Nikoletta

    2016-02-04

    Several clinical and experimental studies have shown that lung injury occurs shortly after brain damage. The responsible mechanisms involve neurogenic pulmonary edema, inflammation, the harmful action of neurotransmitters, or autonomic system dysfunction. Mechanical ventilation, an essential component of life support in brain-damaged patients (BD), may be an additional traumatic factor to the already injured or susceptible to injury lungs of these patients thus worsening lung injury, in case that non lung protective ventilator settings are applied. Measurement of respiratory mechanics in BD patients, as well as assessment of their evolution during mechanical ventilation, may lead to preclinical lung injury detection early enough, allowing thus the selection of the appropriate ventilator settings to avoid ventilator-induced lung injury. The aim of this review is to explore the mechanical properties of the respiratory system in BD patients along with the underlying mechanisms, and to translate the evidence of animal and clinical studies into therapeutic implications regarding the mechanical ventilation of these critically ill patients.

  7. Afferent control mechanisms involved in the development of soleus fiber alterations in simulated hypogravity

    NASA Astrophysics Data System (ADS)

    Shenkman, B. S.; Nemirovskaya, T. L.; Shapovalova, K. B.; Podlubnaya, Z. A.; Vikhliantsev, I. M.; Moukhina, A. M.; Kozlovskaya, I. B.

    2007-02-01

    It was recently established that support withdrawal (withdrawal of support reaction force) in microgravity provokes a sequence of functional shifts in the activity of motor units (inactivation of slow ones) and peripheral muscle apparatus which lead to the decline of postural muscle contractility and alterations in fiber characteristics. However, mechanisms involved in inactivation of the slow motor units and appropriate slow-twitch muscle fiber disuse under the supportless conditions remained unknown. We show here that artificial inactivation of muscles-antagonists (which are known to be hyperactive during unloading) counteracts some of the unloading-induced events in the rat soleus (fiber size reduction, slow-to-fast fiber-type transition and decline of titin and nebulin content). It was also demonstrated that direct activation of the muscarinic receptors of the neostriatum neurons prevented slow-to-fast fiber-type transformation in soleus of hindlimb suspended rats.

  8. A comparative study on the direct deposition of μc-Si:H and plasma-induced recrystallization of a-Si:H: Insight into Si crystallization in a high-density plasma

    NASA Astrophysics Data System (ADS)

    Zhou, H. P.; Xu, M.; Xu, S.; Feng, Y. Y.; Xu, L. X.; Wei, D. Y.; Xiao, S. Q.

    2018-03-01

    Deep insight into the crystallization mechanism of amorphous silicon is of theoretical and technological significance for the preparation of high-quality microcrystalline/polycrystalline silicon. In this work, we intensively compare the present two plasma-involved routes, i.e., the direct deposition and recrystallization of precursor amorphous silicon (a-Si) films, to fabricate microcrystalline silicon. Both the directly deposited and recrystallized samples show multi-layered structures as revealed by electronic microscopy. High-density hydrogen plasma involved recrystallization process, which is mediated by the hydrogen diffusion into the deep region of the precursor a-Si film, displays significantly different nucleation configuration, interface properties, and crystallite shape. The underlying mechanisms are analyzed in combination with the interplay of high-density plasma and growing or treated surface.

  9. Mammalian Pheromones

    PubMed Central

    Liberles, Stephen D.

    2015-01-01

    Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d ) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors. PMID:23988175

  10. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review.

    PubMed

    Tang, Wang-Wang; Zeng, Guang-Ming; Gong, Ji-Lai; Liang, Jie; Xu, Piao; Zhang, Chang; Huang, Bin-Bin

    2014-01-15

    Nowadays nanomaterials have been widely used to remove heavy metals from water/wastewater due to their large surface area and high reactivity. Humic acid (HA) and fulvic acid (FA) exist ubiquitously in aquatic environments and have a variety of functional groups which allow them to complex with metal ions and interact with nanomaterials. These interactions can not only alter the environmental behavior of nanomaterials, but also influence the removal and transportation of heavy metals by nanomaterials. Thus, the interactions and the underlying mechanisms involved warrant specific investigations. This review outlined the effects of HA/FA on the removal of heavy metals from aqueous solutions by various nanomaterials, mainly including carbon-based nanomaterials, iron-based nanomaterials and photocatalytic nanomaterials. Moreover, mechanisms involved in the interactions were discussed and potential environmental implications of HA/FA to nanomaterials and heavy metals were evaluated. © 2013.

  11. Collaboration between specialties for respiratory allergies in the International Classification of Diseases (ICD)-11.

    PubMed

    Tanno, Luciana Kase; Calderon, Moises; Linzer, Jeffrey F; Chalmers, Robert J G; Demoly, Pascal

    2017-02-10

    The International Classification of Diseases (ICD) has been grouping the allergic and hypersensitivity disorders involving the respiratory tract under topographic distribution, regardless of the underlying mechanisms, triggers or concepts currently in use for allergic and hypersensitivity conditions. In order to strengthen awareness and deliberate the creation of the new "Allergic or hypersensitivity disorders involving the respiratory tract" section of the ICD-11, we here propose make the building process public. The new frame has been constructed to cover the gaps previously identified and was based on consensus academic reports and ICD-11 principles. Constant and bilateral discussion was kept with relevant groups representing specialties and resulted in proposals submission into the ICD-11 online platform. The "Allergic or hypersensitivity disorders involving the respiratory tract" section covers 64 entities distributed across five main categories. All the 79 proposals submitted resulted from an intensive collaboration of the Allergy working group, relevant Expert working groups and the WHO ICD governance. The establishment of the ICD-11 "Allergic or hypersensitivity disorders involving the respiratory tract" section will allow the dissemination of the updated concepts to be used in clinical practice by many different specialties and health professionals.

  12. Pathophysiological analyses of leptomeningeal heterotopia using gyrencephalic mammals.

    PubMed

    Matsumoto, Naoyuki; Kobayashi, Naoki; Uda, Natsu; Hirota, Miwako; Kawasaki, Hiroshi

    2018-03-15

    Leptomeningeal glioneuronal heterotopia (LGH) is a focal malformation of the cerebral cortex and frequently found in patients with thanatophoric dysplasia (TD). The pathophysiological mechanisms underlying LGH formation are still largely unclear because of difficulties in obtaining brain samples from human TD patients. Recently, we established a new animal model for analysing cortical malformations of human TD by utilizing our genetic manipulation technique for gyrencephalic carnivore ferrets. Here we investigated the pathophysiological mechanisms underlying the formation of LGH using our TD ferrets. We found that LGH was formed during corticogenesis in TD ferrets. Interestingly, we rarely found Ki-67-positive and phospho-histone H3-positive cells in LGH, suggesting that LGH formation does not involve cell proliferation. We uncovered that vimentin-positive radial glial fibers and doublecortin-positive migrating neurons were accumulated in LGH. This result may indicate that preferential cell migration into LGH underlies LGH formation. Our findings provide novel mechanistic insights into the pathogenesis of LGH in TD.

  13. Epigenomics and human adaptation to high altitude.

    PubMed

    Julian, Colleen G

    2017-11-01

    Over the past decade, major technological and analytical advancements have propelled efforts toward identifying the molecular mechanisms that govern human adaptation to high altitude. Despite remarkable progress with respect to the identification of adaptive genomic signals that are strongly associated with the "hypoxia-tolerant" physiological characteristics of high-altitude populations, many questions regarding the fundamental biological processes underlying human adaptation remain unanswered. Vital to address these enduring questions will be determining the role of epigenetic processes, or non-sequence-based features of the genome, that are not only critical for the regulation of transcriptional responses to hypoxia but heritable across generations. This review proposes that epigenomic processes are involved in shaping patterns of adaptation to high altitude by influencing adaptive potential and phenotypic variability under conditions of limited oxygen supply. Improved understanding of the interaction between genetic, epigenetic, and environmental factors holds great promise to provide deeper insight into the mechanisms underlying human adaptive potential, and clarify its implications for biomedical research. Copyright © 2017 the American Physiological Society.

  14. Aiptasia sp. larvae as a model to reveal mechanisms of symbiont selection in cnidarians

    NASA Astrophysics Data System (ADS)

    Wolfowicz, Iliona; Baumgarten, Sebastian; Voss, Philipp A.; Hambleton, Elizabeth A.; Voolstra, Christian R.; Hatta, Masayuki; Guse, Annika

    2016-09-01

    Symbiosis, defined as the persistent association between two distinct species, is an evolutionary and ecologically critical phenomenon facilitating survival of both partners in diverse habitats. The biodiversity of coral reef ecosystems depends on a functional symbiosis with photosynthetic dinoflagellates of the highly diverse genus Symbiodinium, which reside in coral host cells and continuously support their nutrition. The mechanisms underlying symbiont selection to establish a stable endosymbiosis in non-symbiotic juvenile corals are unclear. Here we show for the first time that symbiont selection patterns for larvae of two Acropora coral species and the model anemone Aiptasia are similar under controlled conditions. We find that Aiptasia larvae distinguish between compatible and incompatible symbionts during uptake into the gastric cavity and phagocytosis. Using RNA-Seq, we identify a set of candidate genes potentially involved in symbiosis establishment. Together, our data complement existing molecular resources to mechanistically dissect symbiont phagocytosis in cnidarians under controlled conditions, thereby strengthening the role of Aiptasia larvae as a powerful model for cnidarian endosymbiosis establishment.

  15. Evidence for Rhythmicity Pacemaker in the Calcification Process of Scleractinian Coral

    NASA Astrophysics Data System (ADS)

    Gutner-Hoch, Eldad; Schneider, Kenneth; Stolarski, Jaroslaw; Domart-Coulon, Isabelle; Yam, Ruth; Meibom, Anders; Shemesh, Aldo; Levy, Oren

    2016-02-01

    Reef-building scleractinian (stony) corals are among the most efficient bio-mineralizing organisms in nature. The calcification rate of scleractinian corals oscillates under ambient light conditions, with a cyclic, diurnal pattern. A fundamental question is whether this cyclic pattern is controlled by exogenous signals or by an endogenous ‘biological-clock’ mechanism, or both. To address this problem, we have studied calcification patterns of the Red Sea scleractinian coral Acropora eurystoma with frequent measurements of total alkalinity (AT) under different light conditions. Additionally, skeletal extension and ultra-structure of newly deposited calcium carbonate were elucidated with 86Sr isotope labeling analysis, combined with NanoSIMS ion microprobe and scanning electron microscope imaging. Our results show that the calcification process persists with its cyclic pattern under constant light conditions while dissolution takes place within one day of constant dark conditions, indicating that an intrinsic, light-entrained mechanism may be involved in controlling the calcification process in photosymbiotic corals.

  16. From bacteria to mollusks: the principles underlying the biomineralization of iron oxide materials.

    PubMed

    Faivre, Damien; Godec, Tina Ukmar

    2015-04-13

    Various organisms possess a genetic program that enables the controlled formation of a mineral, a process termed biomineralization. The variety of biological material architectures is mind-boggling and arises from the ability of organisms to exert control over crystal nucleation and growth. The structure and composition of biominerals equip biomineralizing organisms with properties and functionalities that abiotically formed materials, made of the same mineral, usually lack. Therefore, elucidating the mechanisms underlying biomineralization and morphogenesis is of interdisciplinary interest to extract design principles that will enable the biomimetic formation of functional materials with similar capabilities. Herein, we summarize what is known about iron oxides formed by bacteria and mollusks for their magnetic and mechanical properties. We describe the chemical and biological machineries that are involved in controlling mineral precipitation and organization and show how these organisms are able to form highly complex structures under physiological conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Multiple two-polymerase mechanisms in mammalian translesion DNA synthesis.

    PubMed

    Livneh, Zvi; Ziv, Omer; Shachar, Sigal

    2010-02-15

    The encounter of replication forks with DNA lesions may lead to fork arrest and/or the formation of single-stranded gaps. A major strategy to cope with these replication irregularities is translesion DNA synthesis (TLS), in which specialized error-prone DNA polymerases bypass the blocking lesions. Recent studies suggest that TLS across a particular DNA lesion may involve as many as four different TLS polymerases, acting in two-polymerase reactions in which insertion by a particular polymerase is followed by extension by another polymerase. Insertion determines the accuracy and mutagenic specificity of the TLS reaction, and is carried out by one of several polymerases such as poleta, polkappa or poliota. In contrast, extension is carried out primarily by polzeta. In cells from XPV patients, which are deficient in TLS across cyclobutane pyrimidine dimers (CPD) due to a deficiency in poleta, TLS is carried out by at least two backup reactions each involving two polymerases: One reaction involves polkappa and polzeta, and the other poliota and polzeta. These mechanisms may also assist poleta in normal cells under an excessive amount of UV lesions.

  18. Head trauma in sport and neurodegenerative disease: an issue whose time has come?

    PubMed

    Pearce, Neil; Gallo, Valentina; McElvenny, Damien

    2015-03-01

    A number of small studies and anecdotal reports have been suggested that sports involving repeated head trauma may have long-term risks of neurodegenerative disease. There are now plausible mechanisms for these effects, and a recognition that these problems do not just occur in former boxers, but in a variety of sports involving repeated concussions, and possibly also in sports in which low-level head trauma is common. These neurodegenerative effects potentially include increased risks of impaired cognitive function and dementia, Parkinson's disease, and amyotrophic lateral sclerosis. Many would argue for taking a precautionary approach and immediately banning or restricting sports such as boxing. However, there are important public health issues in terms of how wide the net should be cast in terms of other sports, and what remedial measures could be taken? This in turn requires a major research effort involving both clinical and basic research to understand the underlying mechanisms, leading from head trauma to neurodegenerative disease and epidemiologic studies to assess the long-term consequences. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Involvement of respiratory processes in the transient knockout of net CO2 uptake in Mimosa pudica upon heat stimulation.

    PubMed

    Lautner, Silke; Stummer, Michaela; Matyssek, Rainer; Fromm, Jörg; Grams, Thorsten E E

    2014-01-01

    Leaf photosynthesis of the sensitive plant Mimosa pudica displays a transient knockout in response to electrical signals induced by heat stimulation. This study aims at clarifying the underlying mechanisms, in particular, the involvement of respiration. To this end, leaf gas exchange and light reactions of photosynthesis were assessed under atmospheric conditions largely eliminating photorespiration by either elevated atmospheric CO2 or lowered O2 concentration (i.e. 2000 μmol mol(-1) or 1%, respectively). In addition, leaf gas exchange was studied in the absence of light. Under darkness, heat stimulation caused a transient increase of respiratory CO2 release simultaneously with stomatal opening, hence reflecting direct involvement of respiratory stimulation in the drop of the net CO2 uptake rate. However, persistence of the transient decline in net CO2 uptake rate under illumination and elevated CO2 or 1% O2 makes it unlikely that photorespiration is the metabolic origin of the respiratory CO2 release. In conclusion, the transient knockout of net CO2 uptake is at least partially attributed to an increased CO2 release through mitochondrial respiration as stimulated by electrical signals. Putative CO2 limitation of Rubisco due to decreased activity of carbonic anhydrase was ruled out as the photosynthesis effect was not prevented by elevated CO2 . © 2013 John Wiley & Sons Ltd.

  20. Variational processes and stochastic versions of mechanics

    NASA Astrophysics Data System (ADS)

    Zambrini, J. C.

    1986-09-01

    The dynamical structure of any reasonable stochastic version of classical mechanics is investigated, including the version created by Nelson [E. Nelson, Quantum Fluctuations (Princeton U.P., Princeton, NJ, 1985); Phys. Rev. 150, 1079 (1966)] for the description of quantum phenomena. Two different theories result from this common structure. One of them is the imaginary time version of Nelson's theory, whose existence was unknown, and yields a radically new probabilistic interpretation of the heat equation. The existence and uniqueness of all the involved stochastic processes is shown under conditions suggested by the variational approach of Yasue [K. Yasue, J. Math. Phys. 22, 1010 (1981)].

  1. Kinetic analysis of a Michaelis-Menten mechanism in which the enzyme is unstable.

    PubMed Central

    Garrido-del Solo, C; García-Cánovas, F; Havsteen, B H; Varón-Castellanos, R

    1993-01-01

    A kinetic analysis of the Michaelis-Menten mechanism is made for the cases in which the free enzyme, or the enzyme-substrate complex, or both, are unstable, either spontaneously or as a result of the addition of a reagent. The explicit time-course equations of all of the species involved has been derived under conditions of limiting enzyme concentration. The validity of these equations has been checked by using numerical simulations. An experimental design and a kinetic data analysis allowing the evaluation of the parameters and kinetic constants are recommended. PMID:8373361

  2. Retinoic Acid Signaling Affects Cortical Synchrony During Sleep

    NASA Astrophysics Data System (ADS)

    Maret, Stéphanie; Franken, Paul; Dauvilliers, Yves; Ghyselinck, Norbert B.; Chambon, Pierre; Tafti, Mehdi

    2005-10-01

    Delta oscillations, characteristic of the electroencephalogram (EEG) of slow wave sleep, estimate sleep depth and need and are thought to be closely linked to the recovery function of sleep. The cellular mechanisms underlying the generation of delta waves at the cortical and thalamic levels are well documented, but the molecular regulatory mechanisms remain elusive. Here we demonstrate in the mouse that the gene encoding the retinoic acid receptor beta determines the contribution of delta oscillations to the sleep EEG. Thus, retinoic acid signaling, which is involved in the patterning of the brain and dopaminergic pathways, regulates cortical synchrony in the adult.

  3. Changes in gastrointestinal tract function and structure in functional dyspepsia.

    PubMed

    Vanheel, Hanne; Farré, Ricard

    2013-03-01

    Functional dyspepsia is an extremely common disorder of gastrointestinal function. The disorder is thought to be heterogeneous, with different pathophysiological mechanisms underlying varied symptom patterns. A diversity of changes in gastrointestinal tract function and structure has been described in functional dyspepsia. These involve alterations in the stomach, such as impaired accommodation, delayed gastric emptying and hypersensitivity, and alterations in the duodenum, such as increased sensitivity to duodenal acid and/or lipids and low-grade inflammation. In this Review, we summarize all these abnormalities in an attempt to provide an integrated overview of the pathophysiological mechanisms in functional dyspepsia.

  4. Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms

    PubMed Central

    Holzinger, Andreas; Karsten, Ulf

    2013-01-01

    Although most green algae typically occur in aquatic ecosystems, many species also live partly or permanently under aeroterrestrial conditions, where the cells are exposed to the atmosphere and hence regularly experience dehydration. The ability of algal cells to survive in an air-dried state is termed desiccation tolerance. The mechanisms involved in desiccation tolerance of green algae are still poorly understood, and hence the aim of this review is to summarize recent findings on the effects of desiccation and osmotic water loss. Starting from structural changes, physiological, and biochemical consequences of desiccation will be addressed in different green-algal lineages. The available data clearly indicate a range of strategies, which are rather different in streptophycean and non-streptophycean green algae. While members of the Trebouxiophyceae exhibit effective water loss-prevention mechanisms based on the biosynthesis and accumulation of particular organic osmolytes such as polyols, these compounds are so far not reported in representatives of the Streptophyta. In members of the Streptophyta such as Klebsormidium, the most striking observation is the appearance of cross-walls in desiccated samples, which are strongly undulating, suggesting a high degree of mechanical flexibility. This aids in maintaining structural integrity in the dried state and allows the cell to maintain turgor pressure for a prolonged period of time during the dehydration process. Physiological strategies in aeroterrestrial green algae generally include a rapid reduction of photosynthesis during desiccation, but also a rather quick recovery after rewetting, whereas aquatic species are sensitive to drying. The underlying mechanisms such as the affected molecular components of the photosynthetic machinery are poorly understood in green algae. Therefore, modern approaches based on transcriptomics, proteomics, and/or metabolomics are urgently needed to better understand the molecular mechanisms involved in desiccation-stress physiology of these organisms. The very limited existing information is described in the present review. PMID:23986769

  5. Highly efficient decomposition of organic dye by aqueous-solid phase transfer and in situ photocatalysis using hierarchical copper phthalocyanine hollow spheres.

    PubMed

    Zhang, Mingyi; Shao, Changlu; Guo, Zengcai; Zhang, Zhenyi; Mu, Jingbo; Zhang, Peng; Cao, Tieping; Liu, Yichun

    2011-07-01

    The hierarchical tetranitro copper phthalocyanine (TNCuPc) hollow spheres were fabricated by a simple solvothermal method. The formation mechanism was proposed based on the evolution of morphology as a function of solvothermal time, which involved the initial formation of nanoparticles followed by their self-aggregation to microspheres and transformation into hierarchical hollow spheres by Ostwald ripening. Furthermore, the hierarchical TNCuPc hollow spheres exhibited high adsorption capacity and excellent simultaneously visible-light-driven photocatalytic performance for Rhodamine B (RB) under visible light. A possible mechanism for the "aqueous-solid phase transfer and in situ photocatalysis" was suggested. Repetitive tests showed that the hierarchical TNCuPc hollow spheres maintained high catalytic activity over several cycles, and it had a better regeneration capability under mild conditions.

  6. Rapid hyperosmotic-induced Ca 2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

    DOE PAGES

    Stephan, Aaron B.; Kunz, Hans-Henning; Yang, Eric; ...

    2016-08-15

    How plant roots initially sense osmotic stress in an environment of dynamic water availabilities remains largely unknown. Plants can perceive water limitation imposed by soil salinity or, potentially, by drought in the form of osmotic stress. Rapid osmotic stress-induced intracellular calcium transients provide the opportunity to dissect quantitatively the sensory mechanisms that transmit osmotic stress under environmental and genetic perturbations in plants. Here, we describe a phenomenon whereby prior exposure to osmotic stress increases the sensitivity of the rapid calcium responses to subsequent stress. Furthermore, mutations in plastidial K + exchange antiporter (KEA)1/2 and KEA3 transporters were unexpectedly found tomore » reduce the rapid osmotic stress-induced calcium elevation. These findings advance the understanding of the mechanisms underlying the rapid osmotic stress response in plants.« less

  7. Nonlinear mechanics of composite materials with periodic microstructure

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.; Walker, K. P.

    1991-01-01

    This report summarizes the result of research done under NASA NAG3-882 Nonlinear Mechanics of Composites with Periodic Microstructure. The effort involved the development of non-finite element methods to calculate local stresses around fibers in composite materials. The theory was developed and some promising numerical results were obtained. It is expected that when this approach is fully developed, it will provide an important tool for calculating local stresses and averaged constitutive behavior in composites. NASA currently has a major contractual effort (NAS3-24691) to bring the approach developed under this grant to application readiness. The report has three sections. One, the general theory that appeared as a NASA TM, a second section that gives greater details about the theory connecting Greens functions and Fourier series approaches, and a final section shows numerical results.

  8. Mixing, Noise and Thrust Benefits Using Corrugated Designs

    NASA Technical Reports Server (NTRS)

    White, Samuel G.; Gilinsky, Mikhail M.

    1998-01-01

    This project was conducted as a support for effective research, training and teaching of Hampton University students in Fluid Mechanics and Acoustics. Basically, this work is organized and implemented by the new Fluid Mechanics and Acoustics Laboratory (FM & AL) which was established at Hampton University in the School of Engineering and Technology (E & T) in 1996. In addition, FM & AL in cooperation with NASA LaRC jointly conducts research with the Central AeroHydrodynamics Institute (TSAGI, Moscow) in Russia under a 2 year Civilian Research and Development Foundation (CRDF). This project is also conducted under control of NASA HQ. For fulfillment of the current project, several researchers were involved as was shown in the proposal to NASA in 1996. This work is the development and support for projects solve problems with the goal of reducing jet noise and increasing nozzle thrust.

  9. Rapid hyperosmotic-induced Ca 2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephan, Aaron B.; Kunz, Hans-Henning; Yang, Eric

    How plant roots initially sense osmotic stress in an environment of dynamic water availabilities remains largely unknown. Plants can perceive water limitation imposed by soil salinity or, potentially, by drought in the form of osmotic stress. Rapid osmotic stress-induced intracellular calcium transients provide the opportunity to dissect quantitatively the sensory mechanisms that transmit osmotic stress under environmental and genetic perturbations in plants. Here, we describe a phenomenon whereby prior exposure to osmotic stress increases the sensitivity of the rapid calcium responses to subsequent stress. Furthermore, mutations in plastidial K + exchange antiporter (KEA)1/2 and KEA3 transporters were unexpectedly found tomore » reduce the rapid osmotic stress-induced calcium elevation. These findings advance the understanding of the mechanisms underlying the rapid osmotic stress response in plants.« less

  10. The shear response of copper bicrystals with Σ11 symmetric and asymmetric tilt grain boundaries by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Lu, Cheng; Tieu, Kiet; Zhao, Xing; Pei, Linqing

    2015-04-01

    Grain boundaries (GBs) are important microstructure features and can significantly affect the properties of nanocrystalline materials. Molecular dynamics simulation was carried out in this study to investigate the shear response and deformation mechanisms of symmetric and asymmetric Σ11<1 1 0> tilt GBs in copper bicrystals. Different deformation mechanisms were reported, depending on GB inclination angles and equilibrium GB structures, including GB migration coupled to shear deformation, GB sliding caused by local atomic shuffling, and dislocation nucleation from GB. The simulation showed that migrating Σ11(1 1 3) GB under shear can be regarded as sliding of GB dislocations and their combination along the boundary plane. A non-planar structure with dissociated intrinsic stacking faults was prevalent in Σ11 asymmetric GBs of Cu. This type of structure can significantly increase the ductility of bicrystal models under shear deformation. A grain boundary can be a source of dislocation and migrate itself at different stress levels. The intrinsic free volume involved in the grain boundary area was correlated with dislocation nucleation and GB sliding, while the dislocation nucleation mechanism can be different for a grain boundary due to its different equilibrium structures.Grain boundaries (GBs) are important microstructure features and can significantly affect the properties of nanocrystalline materials. Molecular dynamics simulation was carried out in this study to investigate the shear response and deformation mechanisms of symmetric and asymmetric Σ11<1 1 0> tilt GBs in copper bicrystals. Different deformation mechanisms were reported, depending on GB inclination angles and equilibrium GB structures, including GB migration coupled to shear deformation, GB sliding caused by local atomic shuffling, and dislocation nucleation from GB. The simulation showed that migrating Σ11(1 1 3) GB under shear can be regarded as sliding of GB dislocations and their combination along the boundary plane. A non-planar structure with dissociated intrinsic stacking faults was prevalent in Σ11 asymmetric GBs of Cu. This type of structure can significantly increase the ductility of bicrystal models under shear deformation. A grain boundary can be a source of dislocation and migrate itself at different stress levels. The intrinsic free volume involved in the grain boundary area was correlated with dislocation nucleation and GB sliding, while the dislocation nucleation mechanism can be different for a grain boundary due to its different equilibrium structures. Electronic supplementary information (ESI) available: Movies show the evolution of different grain boundaries under shear deformation: S-0, S-54.74, S-70.53-A, S-70.53-B, S-90. See DOI: 10.1039/c4nr07496c

  11. Transcriptome profiling of Pinus radiata juvenile wood with contrasting stiffness identifies putative candidate genes involved in microfibril orientation and cell wall mechanics

    PubMed Central

    2011-01-01

    Background The mechanical properties of wood are largely determined by the orientation of cellulose microfibrils in secondary cell walls. Several genes and their allelic variants have previously been found to affect microfibril angle (MFA) and wood stiffness; however, the molecular mechanisms controlling microfibril orientation and mechanical strength are largely uncharacterised. In the present study, cDNA microarrays were used to compare gene expression in developing xylem with contrasting stiffness and MFA in juvenile Pinus radiata trees in order to gain further insights into the molecular mechanisms underlying microfibril orientation and cell wall mechanics. Results Juvenile radiata pine trees with higher stiffness (HS) had lower MFA in the earlywood and latewood of each ring compared to low stiffness (LS) trees. Approximately 3.4 to 14.5% out of 3, 320 xylem unigenes on cDNA microarrays were differentially regulated in juvenile wood with contrasting stiffness and MFA. Greater variation in MFA and stiffness was observed in earlywood compared to latewood, suggesting earlywood contributes most to differences in stiffness; however, 3-4 times more genes were differentially regulated in latewood than in earlywood. A total of 108 xylem unigenes were differentially regulated in juvenile wood with HS and LS in at least two seasons, including 43 unigenes with unknown functions. Many genes involved in cytoskeleton development and secondary wall formation (cellulose and lignin biosynthesis) were preferentially transcribed in wood with HS and low MFA. In contrast, several genes involved in cell division and primary wall synthesis were more abundantly transcribed in LS wood with high MFA. Conclusions Microarray expression profiles in Pinus radiata juvenile wood with contrasting stiffness has shed more light on the transcriptional control of microfibril orientation and the mechanical properties of wood. The identified candidate genes provide an invaluable resource for further gene function and association genetics studies aimed at deepening our understanding of cell wall biomechanics with a view to improving the mechanical properties of wood. PMID:21962175

  12. Photoperiodic responses of depression-like behavior, the brain serotonergic system, and peripheral metabolism in laboratory mice.

    PubMed

    Otsuka, Tsuyoshi; Kawai, Misato; Togo, Yuki; Goda, Ryosei; Kawase, Takahiro; Matsuo, Haruka; Iwamoto, Ayaka; Nagasawa, Mao; Furuse, Mitsuhiro; Yasuo, Shinobu

    2014-02-01

    Seasonal affective disorder (SAD) is characterized by depression during specific seasons, generally winter. The pathophysiological mechanisms underlying SAD remain elusive due to a limited number of animal models with high availability and validity. Here we show that laboratory C57BL/6J mice display photoperiodic changes in depression-like behavior and brain serotonin content. C57BL/6J mice maintained under short-day conditions, as compared to those under long-day conditions, demonstrated prolonged immobility times in the forced swimming test with lower brain levels of serotonin and its precursor l-tryptophan. Furthermore, photoperiod altered multiple parameters reflective of peripheral metabolism, including the ratio of plasma l-tryptophan to the sum of other large neutral amino acids that compete for transport across the blood-brain barrier, responses of circulating glucose and insulin to glucose load, sucrose intake under restricted feeding condition, and sensitivity of the brain serotonergic system to peripherally administered glucose. These data suggest that the mechanisms underlying SAD involve the brain-peripheral tissue network, and C57BL/6J mice can serve as a powerful tool for investigating the link between seasons and mood. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Surface charge accumulation of solid insulator under nanosecond pulse in vacuum: 3D distribution features and mechanism

    NASA Astrophysics Data System (ADS)

    Qi, Bo; Gao, Chunjia; Sun, Zelai; Li, Chengrong

    2017-11-01

    Surface charge accumulation can incur changes in electric field distribution, involved in the electron propagation process, and result in a significant decrease in the surface flashover voltage. The existing 2D surface charge measurement fails to meet the actual needs in real engineering applications that usually adopt the 45° conical frustum insulators. The present research developed a novel 3D measurement platform to capture surface charge distribution on solid insulation under nanosecond pulse in a vacuum. The results indicate that all surface charges are positive under a positive pulse and negative under a negative pulse. Surface charges tend to accumulate more near the upper electrode. Surface charge density increases significantly with the increase in pulse counts and amplitudes. Accumulation of surface charge results in a certain decrease of flashover voltage. Taking consideration of the secondary electron emission for the surface charge accumulation, four materials were obtained to demonstrate the effects on surface charge. Combining the effect incurred by secondary electron emission and the weighty action taken by surface charge accumulation on the flashover phenomena, the discharge mechanism along the insulator surface under nanosecond pulse voltage was proposed.

  14. Which Type of Risk Information to Use for Whom? Moderating Role of Outcome-Relevant Involvement in the Effects of Statistical and Exemplified Risk Information on Risk Perceptions.

    PubMed

    So, Jiyeon; Jeong, Se-Hoon; Hwang, Yoori

    2017-04-01

    The extant empirical research examining the effectiveness of statistical and exemplar-based health information is largely inconsistent. Under the premise that the inconsistency may be due to an unacknowledged moderator (O'Keefe, 2002), this study examined a moderating role of outcome-relevant involvement (Johnson & Eagly, 1989) in the effects of statistical and exemplified risk information on risk perception. Consistent with predictions based on elaboration likelihood model (Petty & Cacioppo, 1984), findings from an experiment (N = 237) concerning alcohol consumption risks showed that statistical risk information predicted risk perceptions of individuals with high, rather than low, involvement, while exemplified risk information predicted risk perceptions of those with low, rather than high, involvement. Moreover, statistical risk information contributed to negative attitude toward drinking via increased risk perception only for highly involved individuals, while exemplified risk information influenced the attitude through the same mechanism only for individuals with low involvement. Theoretical and practical implications for health risk communication are discussed.

  15. The Rachitic Tooth

    PubMed Central

    Nociti, Francisco H.; Somerman, Martha J.

    2014-01-01

    Teeth are mineralized organs composed of three unique hard tissues, enamel, dentin, and cementum, and supported by the surrounding alveolar bone. Although odontogenesis differs from osteogenesis in several respects, tooth mineralization is susceptible to similar developmental failures as bone. Here we discuss conditions fitting under the umbrella of rickets, which traditionally referred to skeletal disease associated with vitamin D deficiency but has been more recently expanded to include newly identified factors involved in endocrine regulation of vitamin D, phosphate, and calcium, including phosphate-regulating endopeptidase homolog, X-linked, fibroblast growth factor 23, and dentin matrix protein 1. Systemic mineral metabolism intersects with local regulation of mineralization, and factors including tissue nonspecific alkaline phosphatase are necessary for proper mineralization, where rickets can result from loss of activity of tissue nonspecific alkaline phosphatase. Individuals suffering from rickets often bear the additional burden of a defective dentition, and transgenic mouse models have aided in understanding the nature and mechanisms involved in tooth defects, which may or may not parallel rachitic bone defects. This report reviews dental effects of the range of rachitic disorders, including discussion of etiologies of hereditary forms of rickets, a survey of resulting bone and tooth mineralization disorders, and a discussion of mechanisms, known and hypothesized, involved in the observed dental pathologies. Descriptions of human pathology are augmented by analysis of transgenic mouse models, and new interpretations are brought to bear on questions of how teeth are affected under conditions of rickets. In short, the rachitic tooth will be revealed. PMID:23939820

  16. Involvement of all-trans-retinal in acute light-induced retinopathy of mice.

    PubMed

    Maeda, Akiko; Maeda, Tadao; Golczak, Marcin; Chou, Steven; Desai, Amar; Hoppel, Charles L; Matsuyama, Shigemi; Palczewski, Krzysztof

    2009-05-29

    Exposure to bright light can cause visual dysfunction and retinal photoreceptor damage in humans and experimental animals, but the mechanism(s) remain unclear. We investigated whether the retinoid cycle (i.e. the series of biochemical reactions required for vision through continuous generation of 11-cis-retinal and clearance of all-trans-retinal, respectively) might be involved. Previously, we reported that mice lacking two enzymes responsible for clearing all-trans-retinal, namely photoreceptor-specific ABCA4 (ATP-binding cassette transporter 4) and RDH8 (retinol dehydrogenase 8), manifested retinal abnormalities exacerbated by light and associated with accumulation of diretinoid-pyridinium-ethanolamine (A2E), a condensation product of all-trans-retinal and a surrogate marker for toxic retinoids. Now we show that these mice develop an acute, light-induced retinopathy. However, cross-breeding these animals with lecithin:retinol acyltransferase knock-out mice lacking retinoids within the eye produced progeny that did not exhibit such light-induced retinopathy until gavaged with the artificial chromophore, 9-cis-retinal. No significant ocular accumulation of A2E occurred under these conditions. These results indicate that this acute light-induced retinopathy requires the presence of free all-trans-retinal and not, as generally believed, A2E or other retinoid condensation products. Evidence is presented that the mechanism of toxicity may include plasma membrane permeability and mitochondrial poisoning that lead to caspase activation and mitochondria-associated cell death. These findings further understanding of the mechanisms involved in light-induced retinal degeneration.

  17. Potential sites for the perception of gravity in the acellular slime mold Physarum polycephalum.

    PubMed

    Block, I; Briegleb, W

    1989-01-01

    Recently a gravisensitivity of the acellular slime mold Physarum polycephalum, which possesses no specialized gravireceptor, could be established by conducting experiments under simulated and under real near weightlessness. In these experiments macroplasmodia showed a modulation of their contraction rhythm followed by regulation phenomena. Until now the perception mechanism for the gravistimulus is unknown, but several findings indicate the involvement of mitochondria: A) During the impediment of respiration the 0g-reaction is inhibited and the regulation is reduced. B) The response to a light stimulus and the following regulation phenomena strongly resemble the behavior during exposure to 0g, the only difference is that the two reactions are directed into opposite directions. In the blue-light reaction a flavin of the mitochondrial matrix seems to be involved in the light perception. C) The contraction rhythm as well as its modulations are coupled to rhythmic changes in the levels of ATP and calcium ions, involving the mitochondria as sites of energy production and of Ca(++)-storage. So the mitochondria could be the site of the regulation and they possibly are the receptor sites for the light and gravity stimuli. Also the observation of a morphologic polarity of the slime mold's plasmodial strands has to be considered: Cross-sections reveal that the ectoplasmic wall surrounding the streaming endoplasm is much thinner on the physically lower side than on the upper side of the strand--this applies to strands lying on or hanging on a horizontal surface. So, in addition to the mitochondria, also the morphologic polarity may be involved in the perception mechanism of the observed gravisensitivity and of the recently established geotaxis. The potential role of the nuclei and of the contractile elements in the perception of gravity is also discussed.

  18. Gynecomastia.

    PubMed

    Leung, A K

    1989-04-01

    Gynecomastia may be physiologic, familial, pathologic, drug-induced or, in many cases, of unknown etiology. Breast enlargement is usually unilateral and asymptomatic. Mechanisms of gynecomastia involve increased estrogen stimulation, decreased testosterone levels or a decreased androgen/estrogen ratio. Hyperprolactinemia is not a cause. Treatment of gynecomastia should be directed at the underlying cause when one can be identified. Most cases are benign and can be managed by explanation, reassurance and observation.

  19. Excitotoxicity in the pathogenesis of neurological and psychiatric disorders: Therapeutic implications.

    PubMed

    Olloquequi, Jordi; Cornejo-Córdova, Elizabeth; Verdaguer, Ester; Soriano, Francesc X; Binvignat, Octavio; Auladell, Carme; Camins, Antoni

    2018-03-01

    Neurological and psychiatric disorders are leading contributors to the global disease burden, having a serious impact on the quality of life of both patients and their relatives. Although the molecular events underlying these heterogeneous diseases remain poorly understood, some studies have raised the idea of common mechanisms involved. In excitotoxicity, there is an excessive activation of glutamate receptors by excitatory amino acids, leading to neuronal damage. Thus, the excessive release of glutamate can lead to a dysregulation of Ca 2+ homeostasis, triggering the production of free radicals and oxidative stress, mitochondrial dysfunction and eventually cell death. Although there is a consensus in considering excitotoxicity as a hallmark in most neurodegenerative diseases, increasing evidence points to the relevant role of this pathological mechanism in other illnesses affecting the central nervous system. Consequently, antagonists of glutamate receptors are used in current treatments or in clinical trials in both neurological and psychiatric disorders. However, drugs modulating other aspects of the excitotoxic mechanism could be more beneficial. This review discusses how excitotoxicity is involved in the pathogenesis of different neurological and psychiatric disorders and the promising strategies targeting the excitotoxic insult.

  20. Diversified Structural Basis of a Conserved Molecular Mechanism for pH-Dependent Dimerization in Spider Silk N-Terminal Domains.

    PubMed

    Otikovs, Martins; Chen, Gefei; Nordling, Kerstin; Landreh, Michael; Meng, Qing; Jörnvall, Hans; Kronqvist, Nina; Rising, Anna; Johansson, Jan; Jaudzems, Kristaps

    2015-08-17

    Conversion of spider silk proteins from soluble dope to insoluble fibers involves pH-dependent dimerization of the N-terminal domain (NT). This conversion is tightly regulated to prevent premature precipitation and enable rapid silk formation at the end of the duct. Three glutamic acid residues that mediate this process in the NT from Euprosthenops australis major ampullate spidroin 1 are well conserved among spidroins. However, NTs of minor ampullate spidroins from several species, including Araneus ventricosus ((Av)MiSp NT), lack one of the glutamic acids. Here we investigate the pH-dependent structural changes of (Av)MiSp NT, revealing that it uses the same mechanism but involves a non-conserved glutamic acid residue instead. Homology modeling of the structures of other MiSp NTs suggests that these harbor different compensatory residues. This indicates that, despite sequence variations, the molecular mechanism underlying pH-dependent dimerization of NT is conserved among different silk types. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Perception of the Body in Space: Mechanisms

    NASA Technical Reports Server (NTRS)

    Young, Laurence R.

    1991-01-01

    The principal topic is the perception of body orientation and motion in space and the extent to which these perceptual abstraction can be related directly to the knowledge of sensory mechanisms, particularly for the vestibular apparatus. Spatial orientation is firmly based on the underlying sensory mechanisms and their central integration. For some of the simplest situations, like rotation about a vertical axis in darkness, the dynamic response of the semicircular canals furnishes almost enough information to explain the sensations of turning and stopping. For more complex conditions involving multiple sensory systems and possible conflicts among their messages, a mechanistic response requires significant speculative assumptions. The models that exist for multisensory spatial orientation are still largely of the non-rational parameter variety. They are capable of predicting relationships among input motions and output perceptions of motion, but they involve computational functions that do not now and perhaps never will have their counterpart in central nervous system machinery. The challenge continues to be in the iterative process of testing models by experiment, correcting them where necessary, and testing them again.

  2. Neuroanatomical abnormalities in chronic tinnitus in the human brain

    PubMed Central

    Adjamian, Peyman; Hall, Deborah A.; Palmer, Alan R.; Allan, Thomas W.; Langers, Dave R.M.

    2014-01-01

    In this paper, we review studies that have investigated brain morphology in chronic tinnitus in order to better understand the underlying pathophysiology of the disorder. Current consensus is that tinnitus is a disorder involving a distributed network of peripheral and central pathways in the nervous system. However, the precise mechanism remains elusive and it is unclear which structures are involved. Given that brain structure and function are highly related, identification of anatomical differences may shed light upon the mechanism of tinnitus generation and maintenance. We discuss anatomical changes in the auditory cortex, the limbic system, and prefrontal cortex, among others. Specifically, we discuss the gating mechanism of tinnitus and evaluate the evidence in support of the model from studies of brain anatomy. Although individual studies claim significant effects related to tinnitus, outcomes are divergent and even contradictory across studies. Moreover, results are often confounded by the presence of hearing loss. We conclude that, at present, the overall evidence for structural abnormalities specifically related to tinnitus is poor. As this area of research is expanding, we identify some key considerations for research design and propose strategies for future research. PMID:24892904

  3. Telomeres and mechanisms of Robertsonian fusion.

    PubMed

    Slijepcevic, P

    1998-05-01

    The Robertsonian (Rb) fusion, a chromosome rearrangement involving centric fusion of two acro-(telo)centric chromosomes to form a single metacentric, is one of the most frequent events in mammalian karyotype evolution. Since one of the functions of telomeres is to preserve chromosome integrity, a prerequisite for the formation of Rb fusions should be either telomere loss or telomere inactivation. Possible mechanisms underlying the formation of various types of Rb fusion are discussed here. For example, Rb fusion in wild mice involves complete loss of p-arm telomeres by chromosome breakage within minor satellite sequences. By contrast, interstitial telomeric sites are found in the pericentromeric regions of chromosomes originating from a number of vertebrate species, suggesting the occurrence of Rb-like fusion without loss of telomeres, a possibility consistent with some form of telomere inactivation. Finally, a recent study suggests that telomere shortening induced by the deletion of the telomerase RNA gene in the mouse germ-line leads to telomere loss and high frequencies of Rb fusion in mouse somatic cells. Thus, at least three mechanisms in mammalian cells lead to the formation of Rb fusions.

  4. Hydrodynamic liver gene transfer mechanism involves transient sinusoidal blood stasis and massive hepatocyte endocytic vesicles.

    PubMed

    Crespo, A; Peydró, A; Dasí, F; Benet, M; Calvete, J J; Revert, F; Aliño, S F

    2005-06-01

    The present study contributes to clarify the mechanism underlying the high efficacy of hepatocyte gene transfer mediated by hydrodynamic injection. Gene transfer experiments were performed employing the hAAT gene, and the efficacy and differential identification in mouse plasma of human transgene versus mouse gene was assessed by ELISA and proteomic procedures, respectively. By applying different experimental strategies such as cumulative dose-response efficacy, hemodynamic changes reflected by venous pressures, intravital microscopy, and morphological changes established by transmission electron microscopy, we found that: (a) cumulative multiple doses of transgene by hydrodynamic injection are efficient and well tolerated, resulting in therapeutic plasma levels of hAAT; (b) hydrodynamic injection mediates a transient inversion of intrahepatic blood flow, with circulatory stasis for a few minutes mainly in pericentral vein sinusoids; (c) transmission electron microscopy shows hydrodynamic injection to promote massive megafluid endocytic vesicles among hepatocytes around the central vein but not in hepatocytes around the periportal vein. We suggest that the mechanism of hydrodynamic liver gene transfer involves transient inversion of intrahepatic flow, sinusoidal blood stasis, and massive fluid endocytic vesicles in pericentral vein hepatocytes.

  5. A Combinatorial Kin Discrimination System in Bacillus subtilis.

    PubMed

    Lyons, Nicholas A; Kraigher, Barbara; Stefanic, Polonca; Mandic-Mulec, Ines; Kolter, Roberto

    2016-03-21

    Multicellularity inherently involves a number of cooperative behaviors that are potentially susceptible to exploitation but can be protected by mechanisms such as kin discrimination. Discrimination of kin from non-kin has been observed in swarms of the bacterium Bacillus subtilis, but the underlying molecular mechanism has been unknown. We used genetic, transcriptomic, and bioinformatic analyses to uncover kin recognition factors in this organism. Our results identified many molecules involved in cell-surface modification and antimicrobial production and response. These genes varied significantly in expression level and mutation phenotype among B. subtilis strains, suggesting interstrain variation in the exact kin discrimination mechanism used. Genome analyses revealed a substantial diversity of antimicrobial genes present in unique combinations in different strains, with many likely acquired by horizontal gene transfer. The dynamic combinatorial effect derived from this plethora of kin discrimination genes creates a tight relatedness cutoff for cooperation that has likely led to rapid diversification within the species. Our data suggest that genes likely originally selected for competitive purposes also generate preferential interactions among kin, thus stabilizing multicellular lifestyles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Emergence of airway smooth muscle mechanical behavior through dynamic reorganization of contractile units and force transmission pathways

    PubMed Central

    2014-01-01

    Airway hyperresponsiveness (AHR) in asthma remains poorly understood despite significant research effort to elucidate relevant underlying mechanisms. In particular, a significant body of experimental work has focused on the effect of tidal fluctuations on airway smooth muscle (ASM) cells, tissues, lung slices, and whole airways to understand the bronchodilating effect of tidal breathing and deep inspirations. These studies have motivated conceptual models that involve dynamic reorganization of both cytoskeletal components as well as contractile machinery. In this article, a biophysical model of the whole ASM cell is presented that combines 1) crossbridge cycling between actin and myosin; 2) actin-myosin disconnectivity, under imposed length changes, to allow dynamic reconfiguration of “force transmission pathways”; and 3) dynamic parallel-to-serial transitions of contractile units within these pathways that occur through a length fluctuation. Results of this theoretical model suggest that behavior characteristic of experimentally observed force-length loops of maximally activated ASM strips can be explained by interactions among the three mechanisms. Crucially, both sustained disconnectivity and parallel-to-serial transitions are necessary to explain the nature of hysteresis and strain stiffening observed experimentally. The results provide strong evidence that dynamic rearrangement of contractile machinery is a likely mechanism underlying many of the phenomena observed at timescales associated with tidal breathing. This theoretical cell-level model captures many of the salient features of mechanical behavior observed experimentally and should provide a useful starting block for a bottom-up approach to understanding tissue-level mechanical behavior. PMID:24481961

  7. Comparative transcriptome analysis of duckweed (Landoltia punctata) in response to cadmium provides insights into molecular mechanisms underlying hyperaccumulation.

    PubMed

    Xu, Hua; Yu, Changjiang; Xia, Xinli; Li, Mingliang; Li, Huiguang; Wang, Yu; Wang, Shumin; Wang, Congpeng; Ma, Yubin; Zhou, Gongke

    2018-01-01

    Cadmium (Cd) is a detrimental environmental pollutant. Duckweeds have been considered promising candidates for Cd phytoremediation. Although many physiological studies have been conducted, the molecular mechanisms underlying Cd hyperaccumulation in duckweeds are largely unknown. In this study, clone 6001 of Landoltia punctata, which showed high Cd tolerance, was obtained by large-scale screening of over 200 duckweed clones. Subsequently, its growth, Cd flux, Cd accumulation, and Cd distribution characteristics were investigated. To further explore the global molecular mechanism, a comprehensive transcriptome analysis was performed. For RNA-Seq, samples were treated with 20 μM CdCl 2 for 0, 1, 3, and 6 days. In total, 9,461, 9,847, and 9615 differentially expressed unigenes (DEGs) were discovered between Cd-treated and control (0 day) samples. DEG clustering and enrichment analysis identified several biological processes for coping with Cd stress. Genes involved in DNA repair acted as an early response to Cd, while RNA and protein metabolism would be likely to respond as well. Furthermore, the carbohydrate metabolic flux tended to be modulated in response to Cd stress, and upregulated genes involved in sulfur and ROS metabolism might cause high Cd tolerance. Vacuolar sequestration most likely played an important role in Cd detoxification in L. punctata 6001. These novel findings provided important clues for molecular assisted screening and breeding of Cd hyperaccumulating cultivars for phytoremediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Unscrambling butterfly oogenesis

    PubMed Central

    2013-01-01

    Background Butterflies are popular model organisms to study physiological mechanisms underlying variability in oogenesis and egg provisioning in response to environmental conditions. Nothing is known, however, about; the developmental mechanisms governing butterfly oogenesis, how polarity in the oocyte is established, or which particular maternal effect genes regulate early embryogenesis. To gain insights into these developmental mechanisms and to identify the conserved and divergent aspects of butterfly oogenesis, we analysed a de novo ovarian transcriptome of the Speckled Wood butterfly Pararge aegeria (L.), and compared the results with known model organisms such as Drosophila melanogaster and Bombyx mori. Results A total of 17306 contigs were annotated, with 30% possibly novel or highly divergent sequences observed. Pararge aegeria females expressed 74.5% of the genes that are known to be essential for D. melanogaster oogenesis. We discuss the genes involved in all aspects of oogenesis, including vitellogenesis and choriogenesis, plus those implicated in hormonal control of oogenesis and transgenerational hormonal effects in great detail. Compared to other insects, a number of significant differences were observed in; the genes involved in stem cell maintenance and differentiation in the germarium, establishment of oocyte polarity, and in several aspects of maternal regulation of zygotic development. Conclusions This study provides valuable resources to investigate a number of divergent aspects of butterfly oogenesis requiring further research. In order to fully unscramble butterfly oogenesis, we also now also have the resources to investigate expression patterns of oogenesis genes under a range of environmental conditions, and to establish their function. PMID:23622113

  9. Length adaptation of airway smooth muscle.

    PubMed

    Bossé, Ynuk; Sobieszek, Apolinary; Paré, Peter D; Seow, Chun Y

    2008-01-01

    Many types of smooth muscle, including airway smooth muscle (ASM), are capable of generating maximal force over a large length range due to length adaptation, which is a relatively rapid process in which smooth muscle regains contractility after experiencing a force decrease induced by length fluctuation. Although the underlying mechanism is unclear, it is believed that structural malleability of smooth muscle cells is essential for the adaptation to occur. The process is triggered by strain on the cell cytoskeleton that results in a series of yet undefined biochemical and biophysical events leading to restructuring of the cytoskeleton and contractile apparatus and consequently optimization of the overlap between the myosin and actin filaments. Although length adaptability is an intrinsic property of smooth muscle, maladaptation of ASM could result in excessive constriction of the airways and the inability of deep inspirations to dilate them. In this article, we describe the phenomenon of length adaptation in ASM and some possible underlying mechanisms that involve the myosin filament assembly and disassembly. We discuss a possible role of maladaptation of ASM in the pathogenesis of asthma. We believe that length adaptation in ASM is mediated by specific proteins and their posttranslational regulations involving covalent modifications, such as phosphorylation. The discovery of these molecules and the processes that regulate their activity will greatly enhance our understanding of the basic mechanisms of ASM contraction and will suggest molecular targets to alleviate asthma exacerbation related to excessive constriction of the airways.

  10. Can motor imagery and hypnotic susceptibility explain Conversion Disorder with motor symptoms?

    PubMed

    Srzich, Alexander J; Byblow, Winston D; Stinear, James W; Cirillo, John; Anson, J Greg

    2016-08-01

    Marked distortions in sense of agency can be induced by hypnosis in susceptible individuals, including alterations in subjective awareness of movement initiation and control. These distortions, with associated disability, are similar to those experienced with Conversion Disorder (CD), an observation that has led to the hypothesis that hypnosis and CD share causal mechanisms. The purpose of this review is to explore the relationships among motor imagery (MI), hypnotic susceptibility, and CD, then to propose how MI ability may contribute to hypnotic responding and CD. Studies employing subjective assessments of mental imagery have found little association between imagery abilities and hypnotic susceptibility. A positive association between imagery abilities and hypnotic susceptibility becomes apparent when objective measures of imagery ability are employed. A candidate mechanism to explain motor responses during hypnosis is kinaesthetic MI, which engages a strategy that involves proprioception or the "feel" of movement when no movement occurs. Motor suppression imagery (MSI), a strategy involving inhibition of movement, may provide an alternate objective measurable phenomenon that underlies both hypnotic susceptibility and CD. Evidence to date supports the idea that there may be a positive association between kinaesthetic MI ability and hypnotic susceptibility. Additional evidence supports a positive association between hypnotic susceptibility and CD. Disturbances in kinaesthetic MI performance in CD patients indicate that MI mechanisms may also underlie CD symptoms. Further investigation of the above relationships is warranted to explain these phenomena, and establish theoretical explanations underlying sense of agency. Copyright © 2016. Published by Elsevier Ltd.

  11. Salt-Stress Response Mechanisms Using de Novo Transcriptome Sequencing of Salt-Tolerant and Sensitive Corchorus spp. Genotypes

    PubMed Central

    Yang, Zemao; Lu, Ruike; Dai, Zhigang; Yan, An; Tang, Qing; Cheng, Chaohua; Xu, Ying; Yang, Wenting; Su, Jianguang

    2017-01-01

    High salinity is a major environmental stressor for crops. To understand the regulatory mechanisms underlying salt tolerance, we conducted a comparative transcriptome analysis between salt-tolerant and salt-sensitive jute (Corchorus spp.) genotypes in leaf and root tissues under salt stress and control conditions. In total, 68,961 unigenes were identified. Additionally, 11,100 unigenes (including 385 transcription factors (TFs)) exhibited significant differential expression in salt-tolerant or salt-sensitive genotypes. Numerous common and unique differentially expressed unigenes (DEGs) between the two genotypes were discovered. Fewer DEGs were observed in salt-tolerant jute genotypes whether in root or leaf tissues. These DEGs were involved in various pathways, such as ABA signaling, amino acid metabolism, etc. Among the enriched pathways, plant hormone signal transduction (ko04075) and cysteine/methionine metabolism (ko00270) were the most notable. Eight common DEGs across both tissues and genotypes with similar expression profiles were part of the PYL-ABA-PP2C (pyrabactin resistant-like/regulatory components of ABA receptors-abscisic acid-protein phosphatase 2C). The methionine metabolism pathway was only enriched in salt-tolerant jute root tissue. Twenty-three DEGs were involved in methionine metabolism. Overall, numerous common and unique salt-stress response DEGs and pathways between salt-tolerant and salt-sensitive jute have been discovered, which will provide valuable information regarding salt-stress response mechanisms and help improve salt-resistance molecular breeding in jute. PMID:28927022

  12. Redox sensing: Orthogonal control in cell cycle and apoptosis signaling

    PubMed Central

    Jones, Dean P.

    2010-01-01

    Living systems have three major types of cell signaling systems that are dependent upon high-energy chemicals, redox environment and transmembranal ion gating mechanisms. Development of integrated systems biology descriptions of cell signaling require conceptual models incorporating all three. Recent advances in redox biology show that thiol/disulfide redox systems are regulated under dynamic, non-equilibrium conditions, progressively oxidized with the life cycle of cells and distinct in terms of redox potentials among subcellular compartments. The present article uses these observations as a basis to distinguish “redox-sensing” mechanisms, which are more global biologic redox control mechanisms, from “redox signaling”, which involves conveyance of discrete activating or inactivating signals. Both redox sensing and redox signaling use sulfur switches, especially cysteine (Cys) residues in proteins which are sensitive to reversible oxidation, nitrosylation, glutathionylation, acylation, sulfhydration or metal binding. Unlike specific signaling mechanisms, the redox-sensing mechanisms provide means to globally affect the rates and activities of the high-energy, ion gating and redox-signaling systems by controlling sensitivity, distribution, macromolecular interactions and mobility of signaling proteins. Effects mediated through Cys residues not directly involved in signaling means redox-sensing control can be orthogonal to the signaling mechanisms. This provides a capability to integrate signals according to cell cycle and physiologic state without fundamentally altering the signaling mechanisms. Recent findings that thiol/disulfide pools in humans are oxidized with age, environmental exposures and disease risk suggest that redox-sensing thiols could provide a central mechanistic link in disease development and progression. PMID:20964735

  13. Fear-Conditioning Mechanisms Associated with Trait Vulnerability to Anxiety in Humans

    PubMed Central

    Indovina, Iole; Robbins, Trevor W.; Núñez-Elizalde, Anwar O.; Dunn, Barnaby D.; Bishop, Sonia J.

    2011-01-01

    Summary Investigations of fear conditioning in rodents and humans have illuminated the neural mechanisms underlying cued and contextual fear. A critical question is how personality dimensions such as trait anxiety act through these mechanisms to confer vulnerability to anxiety disorders, and whether humans' ability to overcome acquired fears depends on regulatory skills not characterized in animal models. In a neuroimaging study of fear conditioning in humans, we found evidence for two independent dimensions of neurocognitive function associated with trait vulnerability to anxiety. The first entailed increased amygdala responsivity to phasic fear cues. The second involved impoverished ventral prefrontal cortical (vPFC) recruitment to downregulate both cued and contextual fear prior to omission (extinction) of the aversive unconditioned stimulus. These two dimensions may contribute to symptomatology differences across anxiety disorders; the amygdala mechanism affecting the development of phobic fear and the frontal mechanism influencing the maintenance of both specific fears and generalized anxiety. PMID:21315265

  14. Axonal conduction block as a novel mechanism of prepulse inhibition

    PubMed Central

    Lee, A. H.; Megalou, E. V.; Wang, J.; Frost, W.N.

    2012-01-01

    In prepulse inhibition (PPI), the startle response to a strong, unexpected stimulus is diminished if shortly preceded by the onset of a different stimulus. Because deficits in this inhibitory gating process are a hallmark feature of schizophrenia and certain other psychiatric disorders, the mechanisms underlying PPI are of significant interest. We previously used the invertebrate model system Tritonia diomedea to identify the first cellular mechanism for PPI–presynaptic inhibition of transmitter release from the afferent neurons (S-cells) mediating the startle response. Here we report the involvement of a second, more powerful PPI mechanism in Tritonia: prepulse-elicited conduction block of action potentials traveling in the startle pathway caused by identified inhibitory interneurons activated by the prepulse. This example of axo-axonic conduction block–neurons in one pathway inhibiting the propagation of action potentials in another–represents a novel and potent mechanism of sensory gating in prepulse inhibition. PMID:23115164

  15. Sensitive periods in epigenetics: bringing us closer to complex behavioral phenotypes.

    PubMed

    Nagy, Corina; Turecki, Gustavo

    2012-08-01

    Genetic studies have attempted to elucidate causal mechanisms for the development of complex disease, but genome-wide associations have been largely unsuccessful in establishing these links. As an alternative link between genes and disease, recent efforts have focused on mechanisms that alter the function of genes without altering the underlying DNA sequence. Known as epigenetic mechanisms, these include DNA methylation, chromatin conformational changes through histone modifications, ncRNAs and, most recently, 5-hydroxymethylcytosine. Although DNA methylation is involved in normal development, aging and gene regulation, altered methylation patterns have been associated with disease. It is generally believed that early life constitutes a period during which there is increased sensitivity to the regulatory effects of epigenetic mechanisms. The purpose of this review is to outline the contribution of epigenetic mechanisms to genomic function, particularly in the development of complex behavioral phenotypes, focusing on the sensitive periods.

  16. Sensitive Periods in Epigenetics: bringing us closer to complex behavioral phenotypes

    PubMed Central

    Nagy, Corina; Turecki, Gustavo

    2017-01-01

    Genetic studies have attempted to elucidate causal mechanisms for the development of complex disease but genome-wide associations have been largely unsuccessful in establishing these links. As an alternative link between genes and disease, recent efforts have focused on mechanisms that alter the function of genes without altering the underlying DNA sequence. Known as epigenetic mechanisms, these include: DNA methylation, chromatin conformational changes through histone modifications, non-coding RNAs, and most recently, 5-hydroxymethylcytosine. Though DNA methylation is involved in normal development, aging and gene regulation, altered methylation patterns have been associated with disease. It is generally believed that early life constitutes a period during which there is increased sensitivity to the regulatory effects of epigenetic mechanisms. The purpose of this review is to outline the contribution of epigenetic mechanisms to genomic function, particularly in the development of complex behavioral phenotypes, focusing on the sensitive periods. PMID:22920183

  17. Autism spectrum disorder causes, mechanisms, and treatments: focus on neuronal synapses

    PubMed Central

    Won, Hyejung; Mah, Won; Kim, Eunjoon

    2013-01-01

    Autism spectrum disorder (ASD) is a group of developmental disabilities characterized by impairments in social interaction and communication and restricted and repetitive interests/behaviors. Advances in human genomics have identified a large number of genetic variations associated with ASD. These associations are being rapidly verified by a growing number of studies using a variety of approaches, including mouse genetics. These studies have also identified key mechanisms underlying the pathogenesis of ASD, many of which involve synaptic dysfunctions, and have investigated novel, mechanism-based therapeutic strategies. This review will try to integrate these three key aspects of ASD research: human genetics, animal models, and potential treatments. Continued efforts in this direction should ultimately reveal core mechanisms that account for a larger fraction of ASD cases and identify neural mechanisms associated with specific ASD symptoms, providing important clues to efficient ASD treatment. PMID:23935565

  18. Mechanosensitive subcellular rheostasis drives emergent single-cell mechanical homeostasis

    NASA Astrophysics Data System (ADS)

    Weng, Shinuo; Shao, Yue; Chen, Weiqiang; Fu, Jianping

    2016-09-01

    Mechanical homeostasis--a fundamental process by which cells maintain stable states under environmental perturbations--is regulated by two subcellular mechanotransducers: cytoskeleton tension and integrin-mediated focal adhesions (FAs). Here, we show that single-cell mechanical homeostasis is collectively driven by the distinct, graduated dynamics (rheostasis) of subcellular cytoskeleton tension and FAs. Such rheostasis involves a mechanosensitive pattern wherein ground states of cytoskeleton tension and FA determine their distinct reactive paths through either relaxation or reinforcement. Pharmacological perturbations of the cytoskeleton and molecularly modulated integrin catch-slip bonds biased the rheostasis and induced non-homeostasis of FAs, but not of cytoskeleton tension, suggesting a unique sensitivity of FAs in regulating homeostasis. Theoretical modelling revealed myosin-mediated cytoskeleton contractility and catch-slip-bond-like behaviours in FAs and the cytoskeleton as sufficient and necessary mechanisms for quantitatively recapitulating mechanosensitive rheostasis. Our findings highlight the previously underappreciated physical nature of the mechanical homeostasis of cells.

  19. Evaluation of the upconversion mechanisms in Ho3+-doped crystals: Experiment and theoretical modeling

    NASA Astrophysics Data System (ADS)

    Osiac, E.; Sokólska, I.; Kück, S.

    2002-06-01

    The paper compares the mechanisms that enable the upconverted green emission (5S2-->5I8) of the Ho3+ ion under infrared excitation (700-920 nm) in several crystalline hosts (YAlO3, YLiF4, Y3Sc2Ga3O12, and BaY2F8). Parameters involved in the upconversion such as excited-state absorption and cross-relaxation rates were determined from spectroscopic measurements. A system of differential equation (rate equations) was used to describe the upconversion mechanism and was numerically solved. The results were compared with experimental data. A reduction of this system to a three-level ``simplified system'' is presented, which includes only the ground level, the emitting level, and the intermediate level. The differences between the photon-avalanche mechanism and the looping mechanism are discussed and analyzed according to this simplified system.

  20. Prevalence and proposed mechanisms of chronic low back pain in baseball: part i

    PubMed Central

    Wasser, Joseph G.; Zaremski, Jason L.; Herman, Daniel C.; Vincent, Heather K.

    2017-01-01

    The prevalence of low back pain (LBP) among active baseball players ranges between 3 and 15%. The execution of baseball-specific manoeuvres, such as pitching or batting, may be related to the onset of LBP. These baseball motions are complex and require appropriate activation of the core musculature to produce a well-timed motion with forces minimized at the extremities. The spine, core and back musculature are involved with acceleration and deceleration of rotational motions. This narrative review synopsizes the available evidence of the prevalence of and mechanical factors underlying LBP in the baseball population. Possible mechanical mechanisms linking baseball play to LBP include aberrant motion, improper timing, high lumbar stress due to mechanical loading and lumbopelvic strength deficits. Potential clinical implications relating to these possible mechanical mechanisms will also be highlighted. The state of the evidence suggests that there are deficits in understanding the role of baseball motion and playing history in the development of spine conditions. PMID:28128007

Top