Sample records for underlying microscopic interactions

  1. Universality of emergent states in diverse physical systems

    NASA Astrophysics Data System (ADS)

    Guidry, Mike

    2017-12-01

    Our physics textbooks are dominated by examples of simple weakly-interacting microscopic states, but most of the real world around us is most effectively described in terms of emergent states that have no clear connection to simple textbook states. Emergent states are strongly-correlated and dominated by properties that emerge as a consequence of interactions and are not part of the description of the corresponding weakly-interacting system. This paper proposes a connection of weakly-interacting textbook states and realistic emergent states through fermion dynamical symmetries having fully-microscopic generators of the emergent states. These imply unique truncation of the Hilbert space for the weakly-interacting system to a collective subspace where the emergent states live. Universality arises because the possible symmetries under commutation of generators, which transcend the microscopic structure of the generators, are highly restricted in character and determine the basic structure of the emergent state, with the microscopic structure of the generators influencing emergent state only parametrically. In support of this idea we show explicit evidence that high-temperature superconductors, collective states in heavy atomic nuclei, and graphene quantum Hall states in strong magnetic fields exhibit a near-universal emergent behavior in their microscopically-computed total energy surfaces, even though these systems share essentially nothing in common at the microscopic level and their emergent states are characterized by fundamentally different order parameters.

  2. Engineered Potentials and Dynamics of Ultracold Quantum Gases Under the Microscope

    DTIC Science & Technology

    2014-05-09

    CONTRACT OR GRANT NUMBER: DESCRIPTION OF MATERIAL INSTITUTION: PRINCIPAL INVESTIGATOR: Paola Cappellaro TYPE REPORT: Ph.D. Dissertation PERIOD...CONTRACT NUMBER Engineered potentials and dynamics of ulu·acold quantum gases W911NF-11-1-0400 under the microscope Sb. GRANT NUMBER Sc. PROGRAM...Schnorrberger, M. Moreno- Cardoner , S. Fölling, and I. Bloch, “Counting atoms using interaction blockade in an optical superlat- tice,” Phys. Rev. Lett

  3. Deriving the nuclear shell model from first principles

    NASA Astrophysics Data System (ADS)

    Barrett, Bruce R.; Dikmen, Erdal; Vary, James P.; Maris, Pieter; Shirokov, Andrey M.; Lisetskiy, Alexander F.

    2014-09-01

    The results of an 18-nucleon No Core Shell Model calculation, performed in a large basis space using a bare, soft NN interaction, can be projected into the 0 ℏω space, i.e., the sd -shell. Because the 16 nucleons in the 16O core are frozen in the 0 ℏω space, all the correlations of the 18-nucleon system are captured by the two valence, sd -shell nucleons. By the projection, we obtain microscopically the sd -shell 2-body effective interactions, the core energy and the sd -shell s.p. energies. Thus, the input for standard shell-model calculations can be determined microscopically by this approach. If the same procedure is then applied to 19-nucleon systems, the sd -shell 3-body effective interactions can also be obtained, indicating the importance of these 3-body effective interactions relative to the 2-body effective interactions. Applications to A = 19 and heavier nuclei with different intrinsic NN interactions will be presented and discussed. The results of an 18-nucleon No Core Shell Model calculation, performed in a large basis space using a bare, soft NN interaction, can be projected into the 0 ℏω space, i.e., the sd -shell. Because the 16 nucleons in the 16O core are frozen in the 0 ℏω space, all the correlations of the 18-nucleon system are captured by the two valence, sd -shell nucleons. By the projection, we obtain microscopically the sd -shell 2-body effective interactions, the core energy and the sd -shell s.p. energies. Thus, the input for standard shell-model calculations can be determined microscopically by this approach. If the same procedure is then applied to 19-nucleon systems, the sd -shell 3-body effective interactions can also be obtained, indicating the importance of these 3-body effective interactions relative to the 2-body effective interactions. Applications to A = 19 and heavier nuclei with different intrinsic NN interactions will be presented and discussed. Supported by the US NSF under Grant No. 0854912, the US DOE under Grants Nos. DESC0008485 and DE-FG02-87ER40371, the Higher Education Council of Turkey(YOK), and the Ministry of Education and Science of Russian Fed. under contracts P521 and 14.v37.21.1297.

  4. Macroscopic model of scanning force microscope

    DOEpatents

    Guerra-Vela, Claudio; Zypman, Fredy R.

    2004-10-05

    A macroscopic version of the Scanning Force Microscope is described. It consists of a cantilever under the influence of external forces, which mimic the tip-sample interactions. The use of this piece of equipment is threefold. First, it serves as direct way to understand the parts and functions of the Scanning Force Microscope, and thus it is effectively used as an instructional tool. Second, due to its large size, it allows for simple measurements of applied forces and parameters that define the state of motion of the system. This information, in turn, serves to compare the interaction forces with the reconstructed ones, which cannot be done directly with the standard microscopic set up. Third, it provides a kinematics method to non-destructively measure elastic constants of materials, such as Young's and shear modules, with special application for brittle materials.

  5. Evolution and control of the phase competition morphology in a manganite film

    NASA Astrophysics Data System (ADS)

    Zhou, Haibiao; Wang, Lingfei; Hou, Yubin; Huang, Zhen; Lu, Qingyou; Wu, Wenbin

    2015-11-01

    The competition among different phases in perovskite manganites is pronounced since their energies are very close under the interplay of charge, spin, orbital and lattice degrees of freedom. To reveal the roles of underlying interactions, many efforts have been devoted towards directly imaging phase transitions at microscopic scales. Here we show images of the charge-ordered insulator (COI) phase transition from a pure ferromagnetic metal with reducing field or increasing temperature in a strained phase-separated manganite film, using a home-built magnetic force microscope. Compared with the COI melting transition, this reverse transition is sharp, cooperative and martensitic-like with astonishingly unique yet diverse morphologies. The COI domains show variable-dimensional growth at different temperatures and their distribution can illustrate the delicate balance of the underlying interactions in manganites. Our findings also display how phase domain engineering is possible and how the phase competition can be tuned in a controllable manner.

  6. Evolution and control of the phase competition morphology in a manganite film.

    PubMed

    Zhou, Haibiao; Wang, Lingfei; Hou, Yubin; Huang, Zhen; Lu, Qingyou; Wu, Wenbin

    2015-11-25

    The competition among different phases in perovskite manganites is pronounced since their energies are very close under the interplay of charge, spin, orbital and lattice degrees of freedom. To reveal the roles of underlying interactions, many efforts have been devoted towards directly imaging phase transitions at microscopic scales. Here we show images of the charge-ordered insulator (COI) phase transition from a pure ferromagnetic metal with reducing field or increasing temperature in a strained phase-separated manganite film, using a home-built magnetic force microscope. Compared with the COI melting transition, this reverse transition is sharp, cooperative and martensitic-like with astonishingly unique yet diverse morphologies. The COI domains show variable-dimensional growth at different temperatures and their distribution can illustrate the delicate balance of the underlying interactions in manganites. Our findings also display how phase domain engineering is possible and how the phase competition can be tuned in a controllable manner.

  7. Microscopic theory of vortex interaction in two-band superconductors and type-1.5 superconductivity

    NASA Astrophysics Data System (ADS)

    Silaev, Mihail; Babaev, Egor

    2011-03-01

    In the framework of self-consistent microscopic theory we study the structure and interaction of vortices in two-gap superconductor taking into account the interband Josephson coupling. The asymptotical behavior of order parameter densities and magnetic field is studied analytically within the microscopic theory at low temperature. At higher temperatures, results consistent with Ginzburg-Landau theory are obtained. It is shown that under quite general conditions and in a wide temperature ranges (in particular outside the validity of the Ginzburg-Landau theory) there can exist an additional characteristic length scale of the order parameter density variation which exceeds the London penetration length of magnetic field due to the multi-component nature of superconducting state. Such behavior of order parameter density variation leads to the attractive long-range and repulsive short-range interaction between vortices. Supported by NSF CAREER Award DMR-0955902, Knut and Alice Wallenberg Foundation through the Royal Swedish Academy of Sciences and Swedish Research Council, ''Dynasty'' foundation and Russian Foundation for Basic Research.

  8. Detection of biomolecular interaction between biotin and streptavidin on a self-assembled monolayer using magnetic nanoparticles.

    PubMed

    Arakaki, Atsushi; Hideshima, Sho; Nakagawa, Takahito; Niwa, Daisuke; Tanaka, Tsuyoshi; Matsunaga, Tadashi; Osaka, Tetsuya

    2004-11-20

    For developing a magnetic bioassay system, an investigation to determine the presence of a specific biomolecular interaction between biotin and streptavidin was done using magnetic nanoparticles and a silicon substrate with a self-assembled monolayer. Streptavidin was immobilized on the magnetic particles, and biotin was attached to the monolayer-modified substrate. The reaction of streptavidin-modified magnetic particles on the biotin-modified substrate was clearly observed under an optical microscope. The magnetic signals from the particles were detected using a magnetic force microscope. The results of this study demonstrate that the combination of a monolayer-modified substrate with biomolecule-modified magnetic particles is useful for detecting biomolecular interactions in medical and diagnostic analyses. (c) 2004 Wiley Periodicals, Inc

  9. Coarse-grained stochastic processes and kinetic Monte Carlo simulators for the diffusion of interacting particles

    NASA Astrophysics Data System (ADS)

    Katsoulakis, Markos A.; Vlachos, Dionisios G.

    2003-11-01

    We derive a hierarchy of successively coarse-grained stochastic processes and associated coarse-grained Monte Carlo (CGMC) algorithms directly from the microscopic processes as approximations in larger length scales for the case of diffusion of interacting particles on a lattice. This hierarchy of models spans length scales between microscopic and mesoscopic, satisfies a detailed balance, and gives self-consistent fluctuation mechanisms whose noise is asymptotically identical to the microscopic MC. Rigorous, detailed asymptotics justify and clarify these connections. Gradient continuous time microscopic MC and CGMC simulations are compared under far from equilibrium conditions to illustrate the validity of our theory and delineate the errors obtained by rigorous asymptotics. Information theory estimates are employed for the first time to provide rigorous error estimates between the solutions of microscopic MC and CGMC, describing the loss of information during the coarse-graining process. Simulations under periodic boundary conditions are used to verify the information theory error estimates. It is shown that coarse-graining in space leads also to coarse-graining in time by q2, where q is the level of coarse-graining, and overcomes in part the hydrodynamic slowdown. Operation counting and CGMC simulations demonstrate significant CPU savings in continuous time MC simulations that vary from q3 for short potentials to q4 for long potentials. Finally, connections of the new coarse-grained stochastic processes to stochastic mesoscopic and Cahn-Hilliard-Cook models are made.

  10. Analysis of disruptive events and precarious situations caused by interaction with neurosurgical microscope.

    PubMed

    Eivazi, Shahram; Afkari, Hoorieh; Bednarik, Roman; Leinonen, Ville; Tukiainen, Markku; Jääskeläinen, Juha E

    2015-07-01

    Developments in micro-neurosurgical microscopes have improved operating precision and ensured the quality of outcomes. Using the stereoscopic magnified view, however, necessitates frequent manual adjustments to the microscope during an operation. This article reports on an investigation of the interaction details concerning a state-of-the-art micro-neurosurgical microscope. The video data from detailed observations of neurosurgeons' interaction patterns with the microscope were analysed to examine disruptive events caused by adjusting the microscope. The primary findings show that interruptions caused by adjusting the microscope handgrips and mouth switch prolong the surgery time up to 10%. Surgeons, we observed, avoid interaction with the microscope's controls, settings, and configurations by working at the edge of the view, operating on a non-focused view, and assuming unergonomic body postures. The lack of an automatic method for adjusting the microscope is a major problem that causes interruptions during micro-neurosurgery. From this understanding of disruptive events, we discuss the opportunities and limitations of interactive technologies that aim to reduce the frequency or shorten the duration of interruptions caused by microscope adjustment.

  11. Microscopic origin of black hole reentrant phase transitions

    NASA Astrophysics Data System (ADS)

    Zangeneh, M. Kord; Dehyadegari, A.; Sheykhi, A.; Mann, R. B.

    2018-04-01

    Understanding the microscopic behavior of the black hole ingredients has been one of the important challenges in black hole physics during the past decades. In order to shed some light on the microscopic structure of black holes, in this paper, we explore a recently observed phenomenon for black holes namely reentrant phase transition, by employing the Ruppeiner geometry. Interestingly enough, we observe two properties for the phase behavior of small black holes that leads to reentrant phase transition. They are correlated and they are of the interaction type. For the range of pressure in which the system underlies reentrant phase transition, it transits from the large black holes phase to the small one which possesses higher correlation than the other ranges of pressures. On the other hand, the type of interaction between small black holes near the large/small transition line differs for usual and reentrant phase transitions. Indeed, for the usual case, the dominant interaction is repulsive whereas for the reentrant case we encounter an attractive interaction. We show that in the reentrant phase transition case, the small black holes behave like a bosonic gas whereas in the usual phase transition case, they behave like a quantum anyon gas.

  12. Electronic structure and microscopic model of CoNb2O6

    NASA Astrophysics Data System (ADS)

    Molla, Kaimujjaman; Rahaman, Badiur

    2018-05-01

    We present the first principle density functional calculations to figure out the underlying spin model of CoNb2O6. The first principles calculations define the main paths of superexchange interaction between Co spins in this compound. We discuss the nature of the exchange paths and provide quantitative estimates of magnetic exchange couplings. A microscopic modeling based on analysis of the electronic structure of this system puts it in the interesting class of weakly couple geometrically frustrated isosceles triangular Ising antiferromagnet.

  13. Interaction of electrons with light metal hydrides in the transmission electron microscope.

    PubMed

    Wang, Yongming; Wakasugi, Takenobu; Isobe, Shigehito; Hashimoto, Naoyuki; Ohnuki, Somei

    2014-12-01

    Transmission electron microscope (TEM) observation of light metal hydrides is complicated by the instability of these materials under electron irradiation. In this study, the electron kinetic energy dependences of the interactions of incident electrons with lithium, sodium and magnesium hydrides, as well as the constituting element effect on the interactions, were theoretically discussed, and electron irradiation damage to these hydrides was examined using in situ TEM. The results indicate that high incident electron kinetic energy helps alleviate the irradiation damage resulting from inelastic or elastic scattering of the incident electrons in the TEM. Therefore, observations and characterizations of these materials would benefit from increased, instead decreased, TEM operating voltage. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Simulation of Tip-Sample Interaction in the Atomic Force Microscope

    NASA Technical Reports Server (NTRS)

    Good, Brian S.; Banerjea, Amitava

    1994-01-01

    Recent simulations of the interaction between planar surfaces and model Atomic Force Microscope (AFM) tips have suggested that there are conditions under which the tip may become unstable and 'avalanche' toward the sample surface. Here we investigate via computer simulation the stability of a variety of model AFM tip configurations with respect to the avalanche transition for a number of fcc metals. We perform Monte-Carlo simulations at room temperature using the Equivalent Crystal Theory (ECT) of Smith and Banerjea. Results are compared with recent experimental results as well as with our earlier work on the avalanche of parallel planar surfaces. Our results on a model single-atom tip are in excellent agreement with recent experiments on tunneling through mechanically-controlled break junctions.

  15. Imaging molecular interaction of NO on Cu(110) with a scanning tunneling microscope.

    PubMed

    Okuyama, Hiroshi

    2014-10-01

    Molecular interaction on metal surfaces is one of the central issues of surface science for the microscopic understanding of heterogeneous catalysis. In this Personal Account, I review the recent studies on NO/Cu(110) employing a scanning tunneling microscope (STM) to probe and control the molecule-molecule interaction on the surface. An individual NO molecule was observed as a characteristic dumbbell-shaped protrusion, visualizing the 2π* orbital. By manipulating the intermolecular distance with the STM, the overlap of the 2π* orbital between two NO molecules was controlled. The interaction causes the formation of the bonding and antibonding orbitals below and above the Fermi level, respectively, as a function of the intermolecular distance. The 2π* orbital also plays a role in the reaction of NO with water molecules. A water molecule donates a H-bond to NO, giving rise to the down-shift of the 2π* level below the Fermi level. This causes electron transfer from the substrate to NO, weakening, and eventually rupturing, the N-O bond. The facile bond cleavage by water molecules has implications for the catalytic reduction of NO under ambient conditions. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effect of linear alkyl benzene sulfonate in skin of fish fingerlings (Cirrhina mrigala): observations with scanning electron microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misra, V.; Chawla, G.; Kumar, V.

    1987-04-01

    Pathomorphological changes in the skin was noticed under the scanning electron microscope in fish fingerlings (Cirrhina mrigala) exposed to 0.005 ppm (25% of the LC50) concentration to linear alkyl benzene sulfonate. The epithelial cells present in the epidermis of the skin were found to secrete more mucus with linear alkyl benzene sulfonate (LAS) than did controls. The presence or deposition of mucus on the surface of skin indicated likely molecular interaction between constituents of mucus and LAS.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juffmann, Thomas; Koppell, Stewart A.; Klopfer, Brannon B.

    Feynman once asked physicists to build better electron microscopes to be able to watch biology at work. While electron microscopes can now provide atomic resolution, electron beam induced specimen damage precludes high resolution imaging of sensitive materials, such as single proteins or polymers. Here, we use simulations to show that an electron microscope based on a multi-pass measurement protocol enables imaging of single proteins, without averaging structures over multiple images. While we demonstrate the method for particular imaging targets, the approach is broadly applicable and is expected to improve resolution and sensitivity for a range of electron microscopy imaging modalities,more » including, for example, scanning and spectroscopic techniques. The approach implements a quantum mechanically optimal strategy which under idealized conditions can be considered interaction-free.« less

  18. Insight into the microscopic structure of an AdS black hole from a thermodynamical phase transition.

    PubMed

    Wei, Shao-Wen; Liu, Yu-Xiao

    2015-09-11

    Comparing with an ordinary thermodynamic system, we investigate the possible microscopic structure of a charged anti-de Sitter black hole completely from the thermodynamic viewpoint. The number density of the black hole molecules is introduced to measure the microscopic degrees of freedom of the black hole. We found that the number density suffers a sudden change accompanied by a latent heat when the black hole system crosses the small-large black hole coexistence curve, while when the system passes the critical point, it encounters a second-order phase transition with a vanishing latent heat due to the continuous change of the number density. Moreover, the thermodynamic scalar curvature suggests that there is a weak attractive interaction between two black hole molecules. These phenomena might cast new insight into the underlying microscopic structure of a charged anti-de Sitter black hole.

  19. High-speed visualization of fuel spray impingement in the near-wall region using a DISI injector

    NASA Astrophysics Data System (ADS)

    Kawahara, N.; Kintaka, K.; Tomita, E.

    2017-02-01

    We used a multi-hole injector to spray isooctane under atmospheric conditions and observed droplet impingement behaviors. It is generally known that droplet impact regimes such as splashing, deposition, or bouncing are governed by the Weber number. However, owing to its complexity, little has been reported on microscopic visualization of poly-dispersed spray. During the spray impingement process, a large number of droplets approach, hit, then interact with the wall. It is therefore difficult to focus on a single droplet and observe the impingement process. We solved this difficulty using high-speed microscopic visualization. The spray/wall interaction processes were recorded by a high-speed camera (Shimadzu HPV-X2) with a long-distance microscope. We captured several impinging microscopic droplets. After optimizing the magnification and frame rate, the atomization behaviors, splashing and deposition, were recorded. Then, we processed the images obtained to determine droplet parameters such as the diameter, velocity, and impingement angle. Based on this information, the critical threshold between splashing and deposition was investigated in terms of the normal and parallel components of the Weber number with respect to the wall. The results suggested that, on a dry wall, we should set the normal critical Weber number to 300.

  20. Multi-pass transmission electron microscopy

    DOE PAGES

    Juffmann, Thomas; Koppell, Stewart A.; Klopfer, Brannon B.; ...

    2017-05-10

    Feynman once asked physicists to build better electron microscopes to be able to watch biology at work. While electron microscopes can now provide atomic resolution, electron beam induced specimen damage precludes high resolution imaging of sensitive materials, such as single proteins or polymers. Here, we use simulations to show that an electron microscope based on a multi-pass measurement protocol enables imaging of single proteins, without averaging structures over multiple images. While we demonstrate the method for particular imaging targets, the approach is broadly applicable and is expected to improve resolution and sensitivity for a range of electron microscopy imaging modalities,more » including, for example, scanning and spectroscopic techniques. The approach implements a quantum mechanically optimal strategy which under idealized conditions can be considered interaction-free.« less

  1. Reversible control of magnetic interactions by electric field in a single-phase material.

    PubMed

    Ryan, P J; Kim, J-W; Birol, T; Thompson, P; Lee, J-H; Ke, X; Normile, P S; Karapetrova, E; Schiffer, P; Brown, S D; Fennie, C J; Schlom, D G

    2013-01-01

    Intrinsic magnetoelectric coupling describes the interaction between magnetic and electric polarization through an inherent microscopic mechanism in a single-phase material. This phenomenon has the potential to control the magnetic state of a material with an electric field, an enticing prospect for device engineering. Here, we demonstrate 'giant' magnetoelectric cross-field control in a tetravalent titanate film. In bulk form, EuTiO(3), is antiferromagnetic. However, both anti and ferromagnetic interactions coexist between different nearest europium neighbours. In thin epitaxial films, strain was used to alter the relative strength of the magnetic exchange constants. We not only show that moderate biaxial compression precipitates local magnetic competition, but also demonstrate that the application of an electric field at this strain condition switches the magnetic ground state. Using first-principles density functional theory, we resolve the underlying microscopic mechanism resulting in G-type magnetic order and illustrate how it is responsible for the 'giant' magnetoelectric effect.

  2. Selective colors reflection from stratified aragonite calcium carbonate plates of mollusk shells.

    PubMed

    Lertvachirapaiboon, Chutiparn; Parnklang, Tewarak; Pienpinijtham, Prompong; Wongravee, Kanet; Thammacharoen, Chuchaat; Ekgasit, Sanong

    2015-08-01

    An interaction between the incident light and the structural architecture within the shell of Asian green mussel (Perna viridis) induces observable pearlescent colors. In this paper, we investigate the influence of the structural architecture on the expressed colors. After a removal of the organic binder, small flakes from crushed shells show vivid rainbow reflection under an optical microscope. An individual flake expresses vivid color under a bright-field illumination while become transparent under a dark-field illumination. The expressed colors of the aragonite flakes are directly associated with its structural architecture. The flakes with aragonite thickness of 256, 310, and 353 nm, respectively, appear blue, green, and red under an optical microscope. The spectral simulation corroborates the experimentally observed optical effects as the flakes with thicker aragonite layers selectively reflected color with longer wavelengths. Flakes with multiple aragonite thicknesses expressed multi-color as the upper aragonite layers allow reflected colors from the lower layers to be observed. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Effective stochastic generator with site-dependent interactions

    NASA Astrophysics Data System (ADS)

    Khamehchi, Masoumeh; Jafarpour, Farhad H.

    2017-11-01

    It is known that the stochastic generators of effective processes associated with the unconditioned dynamics of rare events might consist of non-local interactions; however, it can be shown that there are special cases for which these generators can include local interactions. In this paper, we investigate this possibility by considering systems of classical particles moving on a one-dimensional lattice with open boundaries. The particles might have hard-core interactions similar to the particles in an exclusion process, or there can be many arbitrary particles at a single site in a zero-range process. Assuming that the interactions in the original process are local and site-independent, we will show that under certain constraints on the microscopic reaction rules, the stochastic generator of an unconditioned process can be local but site-dependent. As two examples, the asymmetric zero-temperature Glauber model and the A-model with diffusion are presented and studied under the above-mentioned constraints.

  4. Bond strength and interactions of machined titanium-based alloy with dental cements.

    PubMed

    Wadhwani, Chandur; Chung, Kwok-Hung

    2015-11-01

    The most appropriate luting agent for restoring cement-retained implant restorations has yet to be determined. Leachable chemicals from some types of cement designed for teeth may affect metal surfaces. The purpose of this in vitro study was to evaluate the shear bond strength and interactions of machined titanium-based alloy with dental luting agents. Eight dental luting agents representative of 4 different compositional classes (resin, polycarboxylate, glass ionomer, and zinc oxide-based cements) were used to evaluate their effect on machined titanium-6 aluminum-4 vanadium (Ti-6Al-4V) alloy surfaces. Ninety-six paired disks were cemented together (n=12). After incubation in a 37°C water bath for 7 days, the shear bond strength was measured with a universal testing machine (Instron) and a custom fixture with a crosshead speed of 5 mm/min. Differences were analyzed statistically with 1-way ANOVA and Tukey HSD tests (α=.05). The debonded surfaces of the Ti alloy disks were examined under a light microscope at ×10 magnification to record the failure pattern, and the representative specimens were observed under a scanning electron microscope. The mean ±SD of shear failure loads ranged from 3.4 ±0.5 to 15.2 ±2.6 MPa. The retention provided by both polycarboxylate cements was significantly greater than that of all other groups (P<.05). The scanning electron microscope examination revealed surface pits only on the bonded surface cemented with the polycarboxylate cements. Cementation with polycarboxylate cement obtained higher shear bond strength. Some chemical interactions occurred between the machined Ti-6Al-4V alloy surface and polycarboxylate cements during cementation. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  5. Comparative study viruses with computer-aided phase microscope AIRYSCAN

    NASA Astrophysics Data System (ADS)

    Tychinsky, Vladimir P.; Koufal, Georgy E.; Perevedentseva, Elena V.; Vyshenskaia, Tatiana V.

    1996-12-01

    Traditionally viruses are studied with scanning electron microscopy (SEM) after complicated procedure of sample preparation without the possibility to study it under natural conditions. We obtained images of viruses (Vaccinia virus, Rotavirus) and rickettsias (Rickettsia provazekii, Coxiella burnetti) in native state with computer-aided phase microscope airyscan -- the interference microscope of Linnik layout with phase modulation of the reference wave with dissector image tube as coordinate-sensitive photodetector and computer processing of phase image. A light source was the He-Ne laser. The main result is coincidence of dimensions and shape of phase images with available information concerning their morphology obtained with SEM and other methods. The fine structure of surface and nuclei is observed. This method may be applied for virus recognition and express identification, investigation of virus structure and the analysis of cell-virus interaction.

  6. Magnetic fingerprint of individual Fe4 molecular magnets under compression by a scanning tunnelling microscope

    NASA Astrophysics Data System (ADS)

    Burgess, Jacob A. J.; Malavolti, Luigi; Lanzilotto, Valeria; Mannini, Matteo; Yan, Shichao; Ninova, Silviya; Totti, Federico; Rolf-Pissarczyk, Steffen; Cornia, Andrea; Sessoli, Roberta; Loth, Sebastian

    2015-09-01

    Single-molecule magnets (SMMs) present a promising avenue to develop spintronic technologies. Addressing individual molecules with electrical leads in SMM-based spintronic devices remains a ubiquitous challenge: interactions with metallic electrodes can drastically modify the SMM's properties by charge transfer or through changes in the molecular structure. Here, we probe electrical transport through individual Fe4 SMMs using a scanning tunnelling microscope at 0.5 K. Correlation of topographic and spectroscopic information permits identification of the spin excitation fingerprint of intact Fe4 molecules. Building from this, we find that the exchange coupling strength within the molecule's magnetic core is significantly enhanced. First-principles calculations support the conclusion that this is the result of confinement of the molecule in the two-contact junction formed by the microscope tip and the sample surface.

  7. Transmission electron microscope CCD camera

    DOEpatents

    Downing, Kenneth H.

    1999-01-01

    In order to improve the performance of a CCD camera on a high voltage electron microscope, an electron decelerator is inserted between the microscope column and the CCD. This arrangement optimizes the interaction of the electron beam with the scintillator of the CCD camera while retaining optimization of the microscope optics and of the interaction of the beam with the specimen. Changing the electron beam energy between the specimen and camera allows both to be optimized.

  8. A molecular scale perspective: Monte Carlo simulation for rupturing of ultra thin polymer film melts

    NASA Astrophysics Data System (ADS)

    Singh, Satya Pal

    2017-04-01

    Monte Carlo simulation has been performed to study the rupturing process of thin polymer film under strong confinement. The change in mean square displacement; pair correlation function; density distribution; average bond length and microscopic viscosity are sampled by varying the molecular interaction parameters such as the strength and the equilibrium positions of the bonding, non-bonding potentials and the sizes of the beads. The variation in mean square angular displacement χθ = [ < Δθ2 > - < Δθ>2 ] fits very well to a function of type y (t) = A + B *e-t/τ. This may help to study the viscous properties of the films and its dependence on different parameters. The ultra thin film annealed at high temperature gets ruptured and holes are created in the film mimicking spinodal dewetting. The pair correlation function and density profile reveal rich information about the equilibrium structure of the film. The strength and equilibrium bond length of finite extensible non-linear elastic potential (FENE) and non-bonding Morse potential have clear impact on microscopic rupturing of the film. The beads show Rouse or repetition motion forming rim like structures near the holes created inside the film. The higher order interaction as dipole-quadrupole may get prominence under strong confinement. The enhanced excluded volume interaction under strong confinement may overlap with the molecular dispersion forces. It can work to reorganize the molecules at the bottom of the scale and can imprint its signature in complex patterns evolved.

  9. Microscopic Approach to the Nonlinear Elasticity of Compressed Emulsions

    NASA Astrophysics Data System (ADS)

    Jorjadze, Ivane; Pontani, Lea-Laetitia; Brujic, Jasna

    2013-01-01

    Using confocal microscopy, we measure the packing geometry and interdroplet forces as a function of the osmotic pressure in a 3D emulsion system. We assume a harmonic interaction potential over a wide range of volume fractions and attribute the observed nonlinear elastic response of the pressure with density to the first corrections to the scaling laws of the microstructure away from the critical point. The bulk modulus depends on the excess contacts created under compression, which leads to the correction exponent α=1.5. Microscopically, the nonlinearities manifest themselves as a narrowing of the distribution of the pressure per particle as a function of the global pressure.

  10. Atomic Force Microscope Investigations of Bacterial Biofilms Treated with Gas Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Vandervoort, Kurt; Zelaya, Anna; Brelles-Marino, Graciela

    2012-02-01

    We present investigations of bacterial biofilms before and after treatment with gas discharge plasmas. Gas discharge plasmas represent a way to inactivate bacteria under conditions where conventional disinfection methods are often ineffective. These conditions involve biofilm communities, where bacteria grow embedded in an exopolysaccharide matrix, and cooperative interactions between cells make organisms less susceptible to standard inactivation methods. In this study, biofilms formed by the opportunistic bacterium Pseudomonas aeruginosa were imaged before and after plasma treatment using an atomic force microscope (AFM). Through AFM images and micromechanical measurements we observed bacterial morphological damage and reduced AFM tip-sample surface adhesion following plasma treatment.

  11. Rearrangements and Yielding in Concentrated Suspensions of Hard and Soft Colloids

    NASA Astrophysics Data System (ADS)

    Petekidis, Georgios; Carrier, Vincent; Vlassoppoulos, Dimitris; Pusey, Peter; Ballauff, Matthias

    2004-03-01

    The rheology and microscopic particle rearrangements of concentrated colloidal suspensions were studied by a combination of conventional rheology and Light Scattering under shear (LS Echo). In particular we studied the rheological response and the microscopic particle dynamics under shear near and above the glass transitions concentration. Measurements were done in model hard and soft sphere particles (sterically stabilized PMMA and PS-PNIPA microgels respectively) to assess the effect of inter-particle interactions. Creep and recovery measurements and dynamic strain sweeps showed that glasses of hard particles can tolerate surprisingly large strains, up to at least 15probes the extent of irreversible particle rearrangement under oscillatory shear, verified that within their cage particles move reversibly at least up to such a strain. Such a behavior was attributed to 'cage elasticity', the ability of a particle and its neighbors to retain their relative positions within the cage under quite large distortion [1]. The onset of irreversible rearrangements measured by LS echo decreased with decreasing frequency revealing an interplay between shear and Brownian forces. The effects of interparticle interactions were studied using soft thermoreversible migrogel particles where a glass state may be reached either increasing the particle concentration or decreasing the temperature. Here, although particle rearrangements appear to be reversible up to strains as high as 100sweep is observed at much lower strains. [1] G. Petekidis, D. Vlassopoulos and P.N. Pusey, Faraday Discuss., 123, 287 (2003)

  12. Automated adaptive inference of phenomenological dynamical models.

    PubMed

    Daniels, Bryan C; Nemenman, Ilya

    2015-08-21

    Dynamics of complex systems is often driven by large and intricate networks of microscopic interactions, whose sheer size obfuscates understanding. With limited experimental data, many parameters of such dynamics are unknown, and thus detailed, mechanistic models risk overfitting and making faulty predictions. At the other extreme, simple ad hoc models often miss defining features of the underlying systems. Here we develop an approach that instead constructs phenomenological, coarse-grained models of network dynamics that automatically adapt their complexity to the available data. Such adaptive models produce accurate predictions even when microscopic details are unknown. The approach is computationally tractable, even for a relatively large number of dynamical variables. Using simulated data, it correctly infers the phase space structure for planetary motion, avoids overfitting in a biological signalling system and produces accurate predictions for yeast glycolysis with tens of data points and over half of the interacting species unobserved.

  13. Automated adaptive inference of phenomenological dynamical models

    PubMed Central

    Daniels, Bryan C.; Nemenman, Ilya

    2015-01-01

    Dynamics of complex systems is often driven by large and intricate networks of microscopic interactions, whose sheer size obfuscates understanding. With limited experimental data, many parameters of such dynamics are unknown, and thus detailed, mechanistic models risk overfitting and making faulty predictions. At the other extreme, simple ad hoc models often miss defining features of the underlying systems. Here we develop an approach that instead constructs phenomenological, coarse-grained models of network dynamics that automatically adapt their complexity to the available data. Such adaptive models produce accurate predictions even when microscopic details are unknown. The approach is computationally tractable, even for a relatively large number of dynamical variables. Using simulated data, it correctly infers the phase space structure for planetary motion, avoids overfitting in a biological signalling system and produces accurate predictions for yeast glycolysis with tens of data points and over half of the interacting species unobserved. PMID:26293508

  14. Characterization of platelet adhesion under flow using microscopic image sequence analysis.

    PubMed

    Machin, M; Santomaso, A; Cozzi, M R; Battiston, M; Mazzuccato, M; De Marco, L; Canu, P

    2005-07-01

    A method for quantitative analysis of platelet deposition under flow is discussed here. The model system is based upon perfusion of blood platelets over an adhesive substrate immobilized on a glass coverslip acting as the lower surface of a rectangular flow chamber. The perfusion apparatus is mounted onto an inverted microscope equipped with epifluorescent illumination and intensified CCD video camera. Characterization is based on information obtained from a specific image analysis method applied to continuous sequences of microscopical images. Platelet recognition across the sequence of images is based on a time-dependent, bidimensional, gaussian-like pdf. Once a platelet is located,the variation of its position and shape as a function of time (i.e., the platelet history) can be determined. Analyzing the history we can establish if the platelet is moving on the surface, the frequency of this movement and the distance traveled before its resumes the velocity of a non-interacting cell. Therefore, we can determine how long the adhesion would last which is correlated to the resistance of the platelet-substrate bond. This algorithm enables the dynamic quantification of trajectories, as well as residence times, arrest and release frequencies for a high numbers of platelets at the same time. Statistically significant conclusions on platelet-surface interactions can then be obtained. An image analysis tool of this kind can dramatically help the investigation and characterization of the thrombogenic properties of artificial surfaces such as those used in artificial organs and biomedical devices.

  15. Uncovering Specific Electrostatic Interactions in the Denatured States of Proteins

    PubMed Central

    Shen, Jana K.

    2010-01-01

    The stability and folding of proteins are modulated by energetically significant interactions in the denatured state that is in equilibrium with the native state. These interactions remain largely invisible to current experimental techniques, however, due to the sparse population and conformational heterogeneity of the denatured-state ensemble under folding conditions. Molecular dynamics simulations using physics-based force fields can in principle offer atomistic details of the denatured state. However, practical applications are plagued with the lack of rigorous means to validate microscopic information and deficiencies in force fields and solvent models. This study presents a method based on coupled titration and molecular dynamics sampling of the denatured state starting from the extended sequence under native conditions. The resulting denatured-state pKas allow for the prediction of experimental observables such as pH- and mutation-induced stability changes. I show the capability and use of the method by investigating the electrostatic interactions in the denatured states of wild-type and K12M mutant of NTL9 protein. This study shows that the major errors in electrostatics can be identified by validating the titration properties of the fragment peptides derived from the sequence of the intact protein. Consistent with experimental evidence, our simulations show a significantly depressed pKa for Asp8 in the denatured state of wild-type, which is due to a nonnative interaction between Asp8 and Lys12. Interestingly, the simulation also shows a nonnative interaction between Asp8 and Glu48 in the denatured state of the mutant. I believe the presented method is general and can be applied to extract and validate microscopic electrostatics of the entire folding energy landscape. PMID:20682271

  16. Progress towards measurement of entanglement entropy dynamics in one-dimensional interacting systems in the presence of disorder

    NASA Astrophysics Data System (ADS)

    Lukin, Alexander; Tai, M. Eric; Rispoli, Matthew; Schittko, Robert; Menke, Tim; Kaufman, Adam; Greiner, Markus

    2017-04-01

    Many-body localized states appear at odds with thermalization as they preserve the memory of their initial state. This behavior has drawn significant theoretical and experimental attention in recent years. Real space localization has been observed on various platforms and under a number of experimental conditions, both with and without interactions. However, the characteristic logarithmic growth of entanglement entropy, which distinguishes the many-body localized state from the non-interacting Anderson localized state, has only been studied in numerics and has yet to be investigated experimentally. We are working towards the phenomenon of localization in one dimensional, interacting Bose-Hubbard system using a quantum gas microscope. With site-resolved addressing and readout, our microscope provides full control over the studied system, in particular it allows us to add disorder into our system using a Fourier plane hologram. This gives us access to both local observables, such as the occupation of individual lattice sites, as well as the entanglement entropy. I will present our progress towards measuring the dependence of the entanglement entropy grows on the disorder strength and interactions in our system. National Science Foundation, Gordon and Betty Moore Foundation's EPiQS Initiative, Air Force Office of Scientific Research MURI program, NSF Graduate Research Fellowship Program (MNR).

  17. Scanning probe microscopy of biomedical interfaces

    NASA Astrophysics Data System (ADS)

    Vansteenkiste, S. O.; Davies, M. C.; Roberts, C. J.; Tendler, S. J. B.; Williams, P. M.

    1998-02-01

    The development of the scanning probe microscopes over the past decade has provided a number of exciting new surface analytical techniques making a significant progress in the characterisation of biomedical interfaces. In this review, several examples are presented to illustrate that SPM is a powerful and promising tool for surface investigations including biomolecules, cell membranes, polymers and even living cells. The ability of the SPM instrument to monitor adhesion phenomena and provide quantitative information about intermolecular interactions is also described. Moreover, the huge potential of the scanning probe microscopes to study dynamic processes at interfaces under nearly physiological conditions is highlighted. Novel applications in the field of biochemistry, microbiology, biomaterial engineering, drug delivery and even medicine are discussed.

  18. Lagrangian description of warm plasmas

    NASA Technical Reports Server (NTRS)

    Kim, H.

    1970-01-01

    Efforts are described to extend the averaged Lagrangian method of describing small signal wave propagation and nonlinear wave interaction, developed by earlier workers for cold plasmas, to the more general conditions of warm collisionless plasmas, and to demonstrate particularly the effectiveness of the method in analyzing wave-wave interactions. The theory is developed for both the microscopic description and the hydrodynamic approximation to plasma behavior. First, a microscopic Lagrangian is formulated rigorously, and expanded in terms of perturbations about equilibrium. Two methods are then described for deriving a hydrodynamic Lagrangian. In the first of these, the Lagrangian is obtained by velocity integration of the exact microscopic Lagrangian. In the second, the expanded hydrodynamic Lagrangian is obtained directly from the expanded microscopic Lagrangian. As applications of the microscopic Lagrangian, the small-signal dispersion relations and the coupled mode equations are derived for all possible waves in a warm infinite, weakly inhomogeneous magnetoplasma, and their interactions are examined.

  19. A submersible digital in-line holographic microscope

    NASA Astrophysics Data System (ADS)

    Jericho, Manfred; Jericho, Stefan; Kreuzer, Hans Juergen; Garcia, Jeorge; Klages, Peter

    Few instruments exist that can image microscopic marine organisms in their natural environment so that their locomotion mechanisms, feeding habits and interactions with surfaces, such as bio-fouling, can be investigated in situ. In conventional optical microscopy under conditions of high magnification, only objects confined to the narrow focal plane can be imaged and processes that involve translation of the object perpendicular to this plane are not accessible. To overcome this severe limitation of optical microscopy, we developed digital in-line holographic microscopy (DIHM) as a high-resolution tool for the tracking of organisms in three dimensions. We describe here the design and performance of a very simple submersible digital in-line holographic microscope (SDIHM) that can image organisms and their motion with micron resolution and that can be deployed from small vessels. Holograms and reconstructed images of several microscopic marine organisms were successfully obtained down to a depth of 20 m. The maximum depth was limited by the length of data transmission cables available at the time and operating depth in excess of 100 m are easily possible for the instrument.

  20. Formation, Fate, and Impacts of Microscopic and Macroscopic Oil-Sediment Residues in Nearshore Marine Environments: A Critical Review

    NASA Astrophysics Data System (ADS)

    Gustitus, Sarah A.; Clement, T. Prabhakar

    2017-12-01

    Crude oil that is spilled in marine environments often interacts with suspended sediments to form residues that can impact the recovery of the affected nearshore ecosystems. When spilled oil and sediment interact, they can form either small microscopic aggregates, commonly referred to as oil-particle aggregates, or large macroscopic agglomerates, referred to as sediment-oil agglomerates or sediment-oil mats. Although these different sized oil-sediment residues have similar compositions, they are formed under different conditions and have different fates in nearshore environments; the goal of this review is to synthesize our current understanding of these two types of residues. We believe that researchers who focus solely on studying either microscopic aggregates or macroscopic agglomerates could benefit from understanding the research findings available in the other field. In this study, we compare and contrast various processes that control the formation, fate, and impacts of these two types of residues in nearshore environments and point out some of the knowledge gaps in this field. Additionally, these residues have been referred to by many names in the past, leading to confusion and misconceptions at times. In this effort, we recommend a uniform nomenclature to distinguish them based on their physical size. Our overall aim is to bridge the gap between microscopic and macroscopic oil-sediment residue literature to foster a robust exchange of ideas, which we believe can lead to the development of efficient strategies for managing oil spills that affect nearshore environments.

  1. One Step Forward, One Step Beck: A Contribution to the Ongoing Conceptual Debate in Youth Studies

    ERIC Educational Resources Information Center

    Roberts, Steven

    2012-01-01

    In a time of rapid and unprecedented social change, the concepts we use to make sense of the ways in which young people understand and interact with the world are very much under the microscope. Some researchers argue that we need to reinvigorate our conceptual repertoire, while others argue that our theoretical tool box still has the capacity to…

  2. Microscopic theory for coupled atomistic magnetization and lattice dynamics

    NASA Astrophysics Data System (ADS)

    Fransson, J.; Thonig, D.; Bessarab, P. F.; Bhattacharjee, S.; Hellsvik, J.; Nordström, L.

    2017-12-01

    A coupled atomistic spin and lattice dynamics approach is developed which merges the dynamics of these two degrees of freedom into a single set of coupled equations of motion. The underlying microscopic model comprises local exchange interactions between the electron spin and magnetic moment and the local couplings between the electronic charge and lattice displacements. An effective action for the spin and lattice variables is constructed in which the interactions among the spin and lattice components are determined by the underlying electronic structure. In this way, expressions are obtained for the electronically mediated couplings between the spin and lattice degrees of freedom, besides the well known interatomic force constants and spin-spin interactions. These former susceptibilities provide an atomistic ab initio description for the coupled spin and lattice dynamics. It is important to notice that this theory is strictly bilinear in the spin and lattice variables and provides a minimal model for the coupled dynamics of these subsystems and that the two subsystems are treated on the same footing. Questions concerning time-reversal and inversion symmetry are rigorously addressed and it is shown how these aspects are absorbed in the tensor structure of the interaction fields. By means of these results regarding the spin-lattice coupling, simple explanations of ionic dimerization in double-antiferromagnetic materials, as well as charge density waves induced by a nonuniform spin structure, are given. In the final parts, coupled equations of motion for the combined spin and lattice dynamics are constructed, which subsequently can be reduced to a form which is analogous to the Landau-Lifshitz-Gilbert equations for spin dynamics and a damped driven mechanical oscillator for the ionic motion. It is important to notice, however, that these equations comprise contributions that couple these descriptions into one unified formulation. Finally, Kubo-like expressions for the discussed exchanges in terms of integrals over the electronic structure and, moreover, analogous expressions for the damping within and between the subsystems are provided. The proposed formalism and types of couplings enable a step forward in the microscopic first principles modeling of coupled spin and lattice quantities in a consistent format.

  3. Designs for a quantum electron microscope.

    PubMed

    Kruit, P; Hobbs, R G; Kim, C-S; Yang, Y; Manfrinato, V R; Hammer, J; Thomas, S; Weber, P; Klopfer, B; Kohstall, C; Juffmann, T; Kasevich, M A; Hommelhoff, P; Berggren, K K

    2016-05-01

    One of the astounding consequences of quantum mechanics is that it allows the detection of a target using an incident probe, with only a low probability of interaction of the probe and the target. This 'quantum weirdness' could be applied in the field of electron microscopy to generate images of beam-sensitive specimens with substantially reduced damage to the specimen. A reduction of beam-induced damage to specimens is especially of great importance if it can enable imaging of biological specimens with atomic resolution. Following a recent suggestion that interaction-free measurements are possible with electrons, we now analyze the difficulties of actually building an atomic resolution interaction-free electron microscope, or "quantum electron microscope". A quantum electron microscope would require a number of unique components not found in conventional transmission electron microscopes. These components include a coherent electron beam-splitter or two-state-coupler, and a resonator structure to allow each electron to interrogate the specimen multiple times, thus supporting high success probabilities for interaction-free detection of the specimen. Different system designs are presented here, which are based on four different choices of two-state-couplers: a thin crystal, a grating mirror, a standing light wave and an electro-dynamical pseudopotential. Challenges for the detailed electron optical design are identified as future directions for development. While it is concluded that it should be possible to build an atomic resolution quantum electron microscope, we have also identified a number of hurdles to the development of such a microscope and further theoretical investigations that will be required to enable a complete interpretation of the images produced by such a microscope. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Formation of double ring patterns on Co{sub 2}MnSi Heusler alloy thin film by anodic oxidation under scanning probe microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toutam, Vijaykumar; Singh, Sandeep; Pandey, Himanshu

    Double ring formation on Co{sub 2}MnSi (CMS) films is observed at electrical breakdown voltage during local anodic oxidation (LAO) using atomic force microscope (AFM). Corona effect and segregation of cobalt in the vicinity of the rings is studied using magnetic force microscopy and energy dispersive spectroscopy. Double ring formation is attributed to the interaction of ablated material with the induced magnetic field during LAO. Steepness of forward bias transport characteristics from the unperturbed region of the CMS film suggest a non equilibrium spin contribution. Such mesoscopic textures in magnetic films by AFM tip can be potentially used for memory storagemore » applications.« less

  5. DDA3 associates with microtubule plus ends and orchestrates microtubule dynamics and directional cell migration

    PubMed Central

    Zhang, Liangyu; Shao, Hengyi; Zhu, Tongge; Xia, Peng; Wang, Zhikai; Liu, Lifang; Yan, Maomao; Hill, Donald L.; Fang, Guowei; Chen, Zhengjun; Wang, Dongmei; Yao, Xuebiao

    2013-01-01

    Cell motility and adhesion involve orchestrated interaction of microtubules (MTs) with their plus-end tracking proteins (+TIPs). However, the mechanisms underlying regulations of MT dynamics and directional cell migration are still elusive. Here, we show that DDA3-EB1 interaction orchestrates MT plus-end dynamics and facilitates directional cell migration. Biochemical characterizations reveal that DDA3 interacts with EB1 via its SxIP motif within the C-terminal Pro/Ser-rich region. Time-lapse and total internal reflection fluorescence (TIRF) microscopic assays demonstrate that DDA3 exhibits EB1-dependent, MT plus-end loading and tracking. The EB1-based loading of DDA3 is responsible for MT plus-ends stabilization at the cell cortex, which in turn orchestrates directional cell migration. Interestingly, the DDA3-EB1 interaction is potentially regulated by EB1 acetylation, which may account for physiological regulation underlying EGF-elicited cell migration. Thus, the EB1-based function of DDA3 links MT dynamics to directional cell migration. PMID:23652583

  6. Electronic structure, dielectric response, and surface charge distribution of RGD (1FUV) peptide.

    PubMed

    Adhikari, Puja; Wen, Amy M; French, Roger H; Parsegian, V Adrian; Steinmetz, Nicole F; Podgornik, Rudolf; Ching, Wai-Yim

    2014-07-08

    Long and short range molecular interactions govern molecular recognition and self-assembly of biological macromolecules. Microscopic parameters in the theories of these molecular interactions are either phenomenological or need to be calculated within a microscopic theory. We report a unified methodology for the ab initio quantum mechanical (QM) calculation that yields all the microscopic parameters, namely the partial charges as well as the frequency-dependent dielectric response function, that can then be taken as input for macroscopic theories of electrostatic, polar, and van der Waals-London dispersion intermolecular forces. We apply this methodology to obtain the electronic structure of the cyclic tripeptide RGD-4C (1FUV). This ab initio unified methodology yields the relevant parameters entering the long range interactions of biological macromolecules, providing accurate data for the partial charge distribution and the frequency-dependent dielectric response function of this peptide. These microscopic parameters determine the range and strength of the intricate intermolecular interactions between potential docking sites of the RGD-4C ligand and its integrin receptor.

  7. Interaction of intraluminal tissue and coronary sinus lead stabilized with stent placement.

    PubMed

    Balázs, Tibor; Merkely, Béla; Bognár, Eszter; Zima, Endre

    2013-04-01

    The aim of our investigation was to examine the intraluminal interaction of the vascular tissue and the implanted coronary sinus lead stabilized with stent on two human hearts removed before transplantation. The coronary sinus lumen was sectioned under operational microscope and opened carefully. The leads and stents were found separately positioned beside each other completely covered by an intact intimal tissue layer. No sign of occluding proliferative tissue was observed. Stent fixation technique and extraction of the CS lead in our cases did not have any particular damaging effect on the vascular system. © 2012 Wiley Periodicals, Inc.

  8. On the validity of microscopic calculations of double-quantum-dot spin qubits based on Fock-Darwin states

    NASA Astrophysics Data System (ADS)

    Chan, GuoXuan; Wang, Xin

    2018-04-01

    We consider two typical approximations that are used in the microscopic calculations of double-quantum dot spin qubits, namely, the Heitler-London (HL) and the Hund-Mulliken (HM) approximations, which use linear combinations of Fock-Darwin states to approximate the two-electron states under the double-well confinement potential. We compared these results to a case in which the solution to a one-dimensional Schr¨odinger equation was exactly known and found that typical microscopic calculations based on Fock-Darwin states substantially underestimate the value of the exchange interaction, which is the key parameter that controls the quantum dot spin qubits. This underestimation originates from the lack of tunneling of Fock-Darwin states, which is accurate only in the case with a single potential well. Our results suggest that the accuracies of the current two-dimensional molecular- orbit-theoretical calculations based on Fock-Darwin states should be revisited since underestimation could only deteriorate in dimensions that are higher than one.

  9. Dynamic evolutions of electron properties: A theoretical study for condensed-phase β-HMX under shock loading

    NASA Astrophysics Data System (ADS)

    He, Zheng-Hua; Chen, Jun; Wu, Qiang; Ji, Guang-Fu

    2017-11-01

    We present the density functional theory (DFT) calculations for microscopic electron properties of β-HMX under shock loading. The metallization pressure is determined to be within 30-55 GPa. The frontier molecular orbitals mainly localize on N-NO2 groups initially and disperse with pressure increase, while HOMO and LUMO orbitals trend to aggregate with each other. The deformation of N-NO2 groups and enhanced hydrogen-bonding interactions cause the electron delocalization and lower the band gap, inducing the reaction initiation finally. Our results show that using the electron properties can reliably predict the initial decomposition of energetic materials under shock loading.

  10. EUV nanosecond laser ablation of silicon carbide, tungsten and molybdenum

    NASA Astrophysics Data System (ADS)

    Frolov, Oleksandr; Kolacek, Karel; Schmidt, Jiri; Straus, Jaroslav; Choukourov, Andrei; Kasuya, Koichi

    2015-09-01

    In this paper we present results of study interaction of nanosecond EUV laser pulses at wavelength of 46.9 nm with silicon carbide (SiC), tungsten (W) and molybdenum (Mo). As a source of laser radiation was used discharge-plasma driver CAPEX (CAPillary EXperiment) based on high current capillary discharge in argon. The laser beam is focused with a spherical Si/Sc multilayer-coated mirror on samples. Experimental study has been performed with 1, 5, 10, 20 and 50 laser pulses ablation of SiC, W and Mo at various fluence values. Firstly, sample surface modification in the nanosecond time scale have been registered by optical microscope. And the secondly, laser beam footprints on the samples have been analyzed by atomic-force microscope (AFM). This work supported by the Czech Science Foundation under Contract GA14-29772S and by the Grant Agency of the Ministry of Education, Youth and Sports of the Czech Republic under Contract LG13029.

  11. Microscopic Sources of Paramagnetic Noise on α-Al2O3 Substrates for Superconducting Qubits

    NASA Astrophysics Data System (ADS)

    Dubois, Jonathan; Lee, Donghwa; Lordi, Vince

    2014-03-01

    Superconducting qubits (SQs) represent a promising route to achieving a scalable quantum computer. However, the coupling between electro-dynamic qubits and (as yet largely unidentified) ambient parasitic noise sources has so far limited the functionality of current SQs by limiting coherence times of the quantum states below a practical threshold for measurement and manipulation. Further improvement can be enabled by a detailed understanding of the various noise sources afflicting SQs. In this work, first principles density functional theory (DFT) calculations are employed to identify the microscopic origins of magnetic noise sources in SQs on an α-Al2O3 substrate. The results indicate that it is unlikely that the existence of intrinsic point defects and defect complexes in the substrate are responsible for low frequency noise in these systems. Rather, a comprehensive analysis of extrinsic defects shows that surface aluminum ions interacting with ambient molecules will form a bath of magnetic moments that can couple to the SQ paramagnetically. The microscopic origin of this magnetic noise source is discussed and strategies for ameliorating the effects of these magnetic defects are proposed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. Telescopic multi-resolution augmented reality

    NASA Astrophysics Data System (ADS)

    Jenkins, Jeffrey; Frenchi, Christopher; Szu, Harold

    2014-05-01

    To ensure a self-consistent scaling approximation, the underlying microscopic fluctuation components can naturally influence macroscopic means, which may give rise to emergent observable phenomena. In this paper, we describe a consistent macroscopic (cm-scale), mesoscopic (micron-scale), and microscopic (nano-scale) approach to introduce Telescopic Multi-Resolution (TMR) into current Augmented Reality (AR) visualization technology. We propose to couple TMR-AR by introducing an energy-matter interaction engine framework that is based on known Physics, Biology, Chemistry principles. An immediate payoff of TMR-AR is a self-consistent approximation of the interaction between microscopic observables and their direct effect on the macroscopic system that is driven by real-world measurements. Such an interdisciplinary approach enables us to achieve more than multiple scale, telescopic visualization of real and virtual information but also conducting thought experiments through AR. As a result of the consistency, this framework allows us to explore a large dimensionality parameter space of measured and unmeasured regions. Towards this direction, we explore how to build learnable libraries of biological, physical, and chemical mechanisms. Fusing analytical sensors with TMR-AR libraries provides a robust framework to optimize testing and evaluation through data-driven or virtual synthetic simulations. Visualizing mechanisms of interactions requires identification of observable image features that can indicate the presence of information in multiple spatial and temporal scales of analog data. The AR methodology was originally developed to enhance pilot-training as well as `make believe' entertainment industries in a user-friendly digital environment We believe TMR-AR can someday help us conduct thought experiments scientifically, to be pedagogically visualized in a zoom-in-and-out, consistent, multi-scale approximations.

  13. Slant Perception Under Stereomicroscopy.

    PubMed

    Horvath, Samantha; Macdonald, Kori; Galeotti, John; Klatzky, Roberta L

    2017-11-01

    Objective These studies used threshold and slant-matching tasks to assess and quantitatively measure human perception of 3-D planar images viewed through a stereomicroscope. The results are intended for use in developing augmented-reality surgical aids. Background Substantial research demonstrates that slant perception is performed with high accuracy from monocular and binocular cues, but less research concerns the effects of magnification. Viewing through a microscope affects the utility of monocular and stereo slant cues, but its impact is as yet unknown. Method Participants performed in a threshold slant-detection task and matched the slant of a tool to a surface. Different stimuli and monocular versus binocular viewing conditions were implemented to isolate stereo cues alone, stereo with perspective cues, accommodation cue only, and cues intrinsic to optical-coherence-tomography images. Results At magnification of 5x, slant thresholds with stimuli providing stereo cues approximated those reported for direct viewing, about 12°. Most participants (75%) who passed a stereoacuity pretest could match a tool to the slant of a surface viewed with stereo at 5x magnification, with mean compressive error of about 20% for optimized surfaces. Slant matching to optical coherence tomography images of the cornea viewed under the microscope was also demonstrated. Conclusion Despite the distortions and cue loss introduced by viewing under the stereomicroscope, most participants were able to detect and interact with slanted surfaces. Application The experiments demonstrated sensitivity to surface slant that supports the development of augmented-reality systems to aid microscope-aided surgery.

  14. Chronic Pancreatitis.

    PubMed

    Stram, Michelle; Liu, Shu; Singhi, Aatur D

    2016-12-01

    Chronic pancreatitis is a debilitating condition often associated with severe abdominal pain and exocrine and endocrine dysfunction. The underlying cause is multifactorial and involves complex interaction of environmental, genetic, and/or other risk factors. The pathology is dependent on the underlying pathogenesis of the disease. This review describes the clinical, gross, and microscopic findings of the main subtypes of chronic pancreatitis: alcoholic chronic pancreatitis, obstructive chronic pancreatitis, paraduodenal ("groove") pancreatitis, pancreatic divisum, autoimmune pancreatitis, and genetic factors associated with chronic pancreatitis. As pancreatic ductal adenocarcinoma may be confused with chronic pancreatitis, the main distinguishing features between these 2 diseases are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Electronic Structure, Dielectric Response, and Surface Charge Distribution of RGD (1FUV) Peptide

    PubMed Central

    Adhikari, Puja; Wen, Amy M.; French, Roger H.; Parsegian, V. Adrian; Steinmetz, Nicole F.; Podgornik, Rudolf; Ching, Wai-Yim

    2014-01-01

    Long and short range molecular interactions govern molecular recognition and self-assembly of biological macromolecules. Microscopic parameters in the theories of these molecular interactions are either phenomenological or need to be calculated within a microscopic theory. We report a unified methodology for the ab initio quantum mechanical (QM) calculation that yields all the microscopic parameters, namely the partial charges as well as the frequency-dependent dielectric response function, that can then be taken as input for macroscopic theories of electrostatic, polar, and van der Waals-London dispersion intermolecular forces. We apply this methodology to obtain the electronic structure of the cyclic tripeptide RGD-4C (1FUV). This ab initio unified methodology yields the relevant parameters entering the long range interactions of biological macromolecules, providing accurate data for the partial charge distribution and the frequency-dependent dielectric response function of this peptide. These microscopic parameters determine the range and strength of the intricate intermolecular interactions between potential docking sites of the RGD-4C ligand and its integrin receptor. PMID:25001596

  16. Thermal conductivity and dielectric functions of alkali chloride XCl (X = Li, Na, K and Rb): a first-principles study

    NASA Astrophysics Data System (ADS)

    Xu, M.; Yang, J. Y.; Liu, L. H.

    2016-07-01

    The macroscopic physical properties of solids are fundamentally determined by the interactions among microscopic electrons, phonons and photons. In this work, the thermal conductivity and infrared-visible-ultraviolet dielectric functions of alkali chlorides and their temperature dependence are fully investigated at the atomic level, seeking to unveil the microscopic quantum interactions beneath the macroscopic properties. The microscopic phonon-phonon interaction dominates the thermal conductivity which can be investigated by the anharmonic lattice dynamics in combination with Peierls-Boltzmann transport equation. The photon-phonon and electron-photon interaction intrinsically induce the infrared and visible-ultraviolet dielectric functions, respectively, and such microscopic processes can be simulated by first-principles molecular dynamics without empirical parameters. The temperature influence on dielectric functions can be effectively included by choosing the thermally equilibrated configurations as the basic input to calculate the total dipole moment and electronic band structure. The overall agreement between first-principles simulations and literature experiments enables us to interpret the macroscopic thermal conductivity and dielectric functions of solids in a comprehensive way.

  17. Synchronization invariance under network structural transformations

    NASA Astrophysics Data System (ADS)

    Arola-Fernández, Lluís; Díaz-Guilera, Albert; Arenas, Alex

    2018-06-01

    Synchronization processes are ubiquitous despite the many connectivity patterns that complex systems can show. Usually, the emergence of synchrony is a macroscopic observable; however, the microscopic details of the system, as, e.g., the underlying network of interactions, is many times partially or totally unknown. We already know that different interaction structures can give rise to a common functionality, understood as a common macroscopic observable. Building upon this fact, here we propose network transformations that keep the collective behavior of a large system of Kuramoto oscillators invariant. We derive a method based on information theory principles, that allows us to adjust the weights of the structural interactions to map random homogeneous in-degree networks into random heterogeneous networks and vice versa, keeping synchronization values invariant. The results of the proposed transformations reveal an interesting principle; heterogeneous networks can be mapped to homogeneous ones with local information, but the reverse process needs to exploit higher-order information. The formalism provides analytical insight to tackle real complex scenarios when dealing with uncertainty in the measurements of the underlying connectivity structure.

  18. Enhanced Flexibility of the O2 + N2 Interaction and Its Effect on Collisional Vibrational Energy Exchange.

    PubMed

    Garcia, E; Laganà, A; Pirani, F; Bartolomei, M; Cacciatore, M; Kurnosov, A

    2016-07-14

    Prompted by a comparison of measured and computed rate coefficients of Vibration-to-Vibration and Vibration-to-Translation energy transfer in O2 + N2 non-reactive collisions, extended semiclassical calculations of the related cross sections were performed to rationalize the role played by attractive and repulsive components of the interaction on two different potential energy surfaces. By exploiting the distributed concurrent scheme of the Grid Empowered Molecular Simulator we extended the computational work to quasiclassical techniques, investigated in this way more in detail the underlying microscopic mechanisms, singled out the interaction components facilitating the energy transfer, improved the formulation of the potential, and performed additional calculations that confirmed the effectiveness of the improvement introduced.

  19. Seeing with the nano-eye: accessing structure, function, and dynamics of matter on its natural length and time scales

    NASA Astrophysics Data System (ADS)

    Raschke, Markus

    2015-03-01

    To understand and ultimately control the properties of most functional materials, from molecular soft-matter to quantum materials, requires access to the structure, coupling, and dynamics on the elementary time and length scales that define the microscopic interactions in these materials. To gain the desired nanometer spatial resolution with simultaneous spectroscopic specificity we combine scanning probe microscopy with different optical, including coherent, nonlinear, and ultrafast spectroscopies. The underlying near-field interaction mediated by the atomic-force or scanning tunneling microscope tip provides the desired deep-sub wavelength nano-focusing enabling few-nm spatial resolution. I will introduce our generalization of the approach in terms of the near-field impedance matching to a quantum system based on special optical antenna-tip designs. The resulting enhanced and qualitatively new forms of light-matter interaction enable measurements of quantum dynamics in an interacting environment or to image the electromagnetic local density of states of thermal radiation. Other applications include the inter-molecular coupling and dynamics in soft-matter hetero-structures, surface plasmon interferometry as a probe of electronic structure and dynamics in graphene, and quantum phase transitions in correlated electron materials. These examples highlight the general applicability of the new near-field microscopy approach, complementing emergent X-ray and electron imaging tools, aiming towards the ultimate goal of probing matter on its most elementary spatio-temporal level.

  20. Particle Interactions Mediated by Dynamical Networks: Assessment of Macroscopic Descriptions

    NASA Astrophysics Data System (ADS)

    Barré, J.; Carrillo, J. A.; Degond, P.; Peurichard, D.; Zatorska, E.

    2018-02-01

    We provide a numerical study of the macroscopic model of Barré et al. (Multiscale Model Simul, 2017, to appear) derived from an agent-based model for a system of particles interacting through a dynamical network of links. Assuming that the network remodeling process is very fast, the macroscopic model takes the form of a single aggregation-diffusion equation for the density of particles. The theoretical study of the macroscopic model gives precise criteria for the phase transitions of the steady states, and in the one-dimensional case, we show numerically that the stationary solutions of the microscopic model undergo the same phase transitions and bifurcation types as the macroscopic model. In the two-dimensional case, we show that the numerical simulations of the macroscopic model are in excellent agreement with the predicted theoretical values. This study provides a partial validation of the formal derivation of the macroscopic model from a microscopic formulation and shows that the former is a consistent approximation of an underlying particle dynamics, making it a powerful tool for the modeling of dynamical networks at a large scale.

  1. Particle Interactions Mediated by Dynamical Networks: Assessment of Macroscopic Descriptions.

    PubMed

    Barré, J; Carrillo, J A; Degond, P; Peurichard, D; Zatorska, E

    2018-01-01

    We provide a numerical study of the macroscopic model of Barré et al. (Multiscale Model Simul, 2017, to appear) derived from an agent-based model for a system of particles interacting through a dynamical network of links. Assuming that the network remodeling process is very fast, the macroscopic model takes the form of a single aggregation-diffusion equation for the density of particles. The theoretical study of the macroscopic model gives precise criteria for the phase transitions of the steady states, and in the one-dimensional case, we show numerically that the stationary solutions of the microscopic model undergo the same phase transitions and bifurcation types as the macroscopic model. In the two-dimensional case, we show that the numerical simulations of the macroscopic model are in excellent agreement with the predicted theoretical values. This study provides a partial validation of the formal derivation of the macroscopic model from a microscopic formulation and shows that the former is a consistent approximation of an underlying particle dynamics, making it a powerful tool for the modeling of dynamical networks at a large scale.

  2. Why is the electrocaloric effect so small in ferroelectrics?

    NASA Astrophysics Data System (ADS)

    Guzman-Verri, Gian G.; Littlewood, Peter B.

    2015-03-01

    Ferroelectrics are attractive candidate materials for environmentally friendly solid state refrigeration free of greenhouse gases. Their thermal response upon variations of external electric fields is largest in the vicinity of their phase transitions, which may occur near room temperature. The magnitude of the effect, however, is too small for useful cooling applications even when they are driven close to dielectric breakdown. Insight from microscopic theory is therefore needed to characterize materials and provide guiding principles to search for new ones with enhanced electrocaloric performance. Here, we present meaningful figures of merit derived from well-known microscopic models of ferroelectricity which provide insight into the relation between the strength of the effect and the characteristic interactions of ferroelectrics such as dipole forces. We find that the long range nature of these interactions results in a small effect. A strategy is proposed to make it larger by shortening the correlation lengths of fluctuations of polarization. Work at Argonne is supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357.

  3. Viscosity of a multichannel one-dimensional Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeGottardi, Wade; Matveev, K. A.

    Many one-dimensional systems of experimental interest possess multiple bands arising from shallow confining potentials. In this paper, we study a gas of weakly interacting fermions and show that the bulk viscosity is dramatically altered by the occupation of more than one band. The reasons for this are twofold: a multichannel system is more easily displaced from equilibrium and the associated relaxation processes lead to more rapid equilibration than in the single channel case. We estimate the bulk viscosity in terms of the underlying microscopic interactions. The experimental relevance of this physics is discussed in the context of quantum wires andmore » trapped cold atomic gases.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosch, R.; Boutin, J. Y.; Le Breton, J. P.

    This article describes x-ray imaging with grazing-incidence microscopes, developed for the experimental program carried out on the Ligne d'Integration Laser (LIL) facility [J. P. Le Breton et al., Inertial Fusion Sciences and Applications 2001 (Elsevier, Paris, 2002), pp. 856-862] (24 kJ, UV--0.35 nm). The design includes a large target-to-microscope (400-700 mm) distance required by the x-ray ablation issues anticipated on the Laser MegaJoule facility [P. A. Holstein et al., Laser Part. Beams 17, 403 (1999)] (1.8 MJ) which is under construction. Two eight-image Kirkpatrick-Baez microscopes [P. Kirkpatrick and A. V. Baez J. Opt. Soc. Am. 38, 766 (1948)] with differentmore » spectral wavelength ranges and with a 400 mm source-to-mirror distance image the target on a custom-built framing camera (time resolution of {approx}80 ps). The soft x-ray version microscope is sensitive below 1 keV and its spatial resolution is better than 30 {mu}m over a 2-mm-diam region. The hard x-ray version microscope has a 10 {mu}m resolution over an 800-{mu}m-diam region and is sensitive in the 1-5 keV energy range. Two other x-ray microscopes based on an association of toroidal/spherical surfaces (T/S microscopes) produce an image on a streak camera with a spatial resolution better than 30 {mu}m over a 3 mm field of view in the direction of the camera slit. Both microscopes have been designed to have, respectively, a maximum sensitivity in the 0.1-1 and 1-5 keV energy range. We present the original design of these four microscopes and their test on a dc x-ray tube in the laboratory. The diagnostics were successfully used on LIL first experiments early in 2005. Results of soft x-ray imaging of a radiative jet during conical shaped laser interaction are shown.« less

  5. Clinical experience of external -route retinal detachment surgery under a surgical microscope.

    PubMed

    Xu, Hui

    2014-03-01

    To evaluate the efficacy of external-route retinal reattachment surgery under a surgical microscope. A total of 86 patients (86 eyes) with rhegmatogenous retinal detachment underwent external-route retinal detachment surgery under a surgical microscope. Drainage of subretinal fluid, transscleral cryotherapy, scleral buckling, and intravitreal injection of gas were performed intraoperatively. Among 85 patients, 81 achieved postoperative retinal re-attachment after the first surgery and 5 after two surgeries. The visual acuity was elevated in 67 patients, unchanged in 15, and decreased in 4. External-route retinal reattachment surgery under a surgical microscope is a convenient procedure for physicians to master and worthy of widespread application in clinical settings.

  6. Microrheology: Structural evolution under static and dynamic conditions by simultaneous analysis of confocal microscopy and diffusing wave spectroscopy

    NASA Astrophysics Data System (ADS)

    Nicolas, Yves; Paques, Marcel; Knaebel, Alexandra; Steyer, Alain; Munch, Jean-Pierre; Blijdenstein, Theo B. J.; van Aken, George A.

    2003-08-01

    An oscillatory shear configuration was developed to improve understanding of structural evolution during deformation. It combines an inverted confocal scanning laser microscope (CSLM) and a special sample holder that can apply to the sample specific deformation: oscillatory shear or steady strain. In this configuration, a zero-velocity plane is created in the sample by moving two plates in opposite directions, thereby providing stable observation conditions of the structural behavior under deformation. The configuration also includes diffusion wave spectroscopy (DWS) to monitor the network properties via particle mobility under static and dynamic conditions. CSLM and DWS can be performed simultaneously and three-dimensional images can be obtained under static conditions. This configuration is mainly used to study mechanistic phenomena like particle interaction, aggregation, gelation and network disintegration, interactions at interfaces under static and dynamic conditions in semisolid food materials (desserts, dressings, sauces, dairy products) and in nonfood materials (mineral emulsions, etc.). Preliminary data obtained with this new oscillatory shear configuration are described that demonstrate their capabilities and the potential contribution to other areas of application also.

  7. Diffusion-limited aggregation in two dimensions

    NASA Astrophysics Data System (ADS)

    Hurd, Alan J.; Schaefer, Dale W.

    1985-03-01

    We have studied the aggregation of silica microspheres confined to two dimensions at an air-water interface. Under microscopic observation, both monomers and clusters are seen to aggregate by a diffusion-limited process. The clusters' fractal dimension is 1.20+/-0.15, smaller than values obtained from current models of aggregation. We propose that anisotropic repulsive interactions account for the low dimensionality by more effectively repelling particles from the side of an existing dendrite than from the end.

  8. Hyperfine interactions in titanates: Study of orbital ordering and local magnetic properties

    NASA Astrophysics Data System (ADS)

    Agzamova, P. A.; Leskova, Yu. V.; Nikiforov, A. E.

    2013-05-01

    Hyperfine magnetic fields induced on the nuclei of nonmagnetic ions 139La and 89Y in LaTiO3 and YTiO3, respectively, have been microscopically calculated. The dependence of the hyperfine fields on the orbital and magnetic structures of the compounds under study has been analyzed. The comparative analysis of the calculated and known experimental data confirms the existence of the static orbital structure in lanthanum and yttrium titanates.

  9. The elusive ettringite under the high-vacuum SEM - a reflection based on natural samples, the use of Monte Carlo modelling of EDS analyses and an extension to the ettringite group minerals.

    PubMed

    Thiéry, Vincent; Trincal, Vincent; Davy, Catherine A

    2017-10-01

    Ettringite, Ca 6 Al 2 (SO 4 ) 3 (OH) 12 .26H 2 O, or C 6 AS¯ 3 H 32 as it is known in cement chemistry notation, is a major phase of interest in cement science as an hydration product and in polluted soil treatment since its structure can accommodate with many hazardous cations. Beyond those anthropogenic features, ettringite is first of all a naturally occurring mineral (although rare). An example of its behaviour under the scanning electron microscope and during energy dispersive spectroscopy (EDS) qualitative analysis is presented, based on the study of natural ettringite crystals from the N'Chwaning mine in South Africa. Monte Carlo modelling of the electron-matter interaction zone at various voltages is presented and confronted with actual, observed beam damage on crystals, which burst at the analysis spot. Finally, theoretical energy dispersive spectroscopy spectra for all the ettringite group minerals have been computed as well as Monte Carlo modelling of the electron-matter interaction zone. The knowledge of the estimation of the size of this zone may thus be helpful for the understanding of energy dispersive spectroscopy analysis in cement pastes or ettringite-remediated soils. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  10. Spectrin-ankyrin interaction mechanics: A key force balance factor in the red blood cell membrane skeleton.

    PubMed

    Saito, Masakazu; Watanabe-Nakayama, Takahiro; Machida, Shinichi; Osada, Toshiya; Afrin, Rehana; Ikai, Atsushi

    2015-01-01

    As major components of red blood cell (RBC) cytoskeleton, spectrin and F-actin form a network that covers the entire cytoplasmic surface of the plasma membrane. The cross-linked two layered structure, called the membrane skeleton, keeps the structural integrity of RBC under drastically changing mechanical environment during circulation. We performed force spectroscopy experiments on the atomic force microscope (AFM) as a means to clarify the mechanical characteristics of spectrin-ankyrin interaction, a key factor in the force balance of the RBC cytoskeletal structure. An AFM tip was functionalized with ANK1-62k and used to probe spectrin crosslinked to mica surface. A force spectroscopy study gave a mean unbinding force of ~30 pN under our experimental conditions. Two energy barriers were identified in the unbinding process. The result was related to the well-known flexibility of spectrin tetramer and participation of ankyrin 1-spectrin interaction in the overall balance of membrane skeleton dynamics. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. A Novel Method to Reconstruct the Force Curve by Higher Harmonics of the First Two Flexural Modes in Frequency Modulation Atomic Force Microscope (FM-AFM).

    PubMed

    Zhang, Suoxin; Qian, Jianqiang; Li, Yingzi; Zhang, Yingxu; Wang, Zhenyu

    2018-06-04

    Atomic force microscope (AFM) is an idealized tool to measure the physical and chemical properties of the sample surfaces by reconstructing the force curve, which is of great significance to materials science, biology, and medicine science. Frequency modulation atomic force microscope (FM-AFM) collects the frequency shift as feedback thus having high force sensitivity and it accomplishes a true noncontact mode, which means great potential in biological sample detection field. However, it is a challenge to establish the relationship between the cantilever properties observed in practice and the tip-sample interaction theoretically. Moreover, there is no existing method to reconstruct the force curve in FM-AFM combining the higher harmonics and the higher flexural modes. This paper proposes a novel method that a full force curve can be reconstructed by any order higher harmonics of the first two flexural modes under any vibration amplitude in FM-AFM. Moreover, in the small amplitude regime, short range forces are reconstructed more accurately by higher harmonics analysis compared with fundamental harmonics using the Sader-Jarvis formula.

  12. Open quantum system approach to the modeling of spin recombination reactions.

    PubMed

    Tiersch, M; Steiner, U E; Popescu, S; Briegel, H J

    2012-04-26

    In theories of spin-dependent radical pair reactions, the time evolution of the radical pair, including the effect of the chemical kinetics, is described by a master equation in the Liouville formalism. For the description of the chemical kinetics, a number of possible reaction operators have been formulated in the literature. In this work, we present a framework that allows for a unified description of the various proposed mechanisms and the forms of reaction operators for the spin-selective recombination processes. On the basis of the concept that master equations can be derived from a microscopic description of the spin system interacting with external degrees of freedom, it is possible to gain insight into the underlying microscopic processes and develop a systematic approach toward determining the specific form of the reaction operator in concrete scenarios.

  13. Reconsideration of dynamic force spectroscopy analysis of streptavidin-biotin interactions.

    PubMed

    Taninaka, Atsushi; Takeuchi, Osamu; Shigekawa, Hidemi

    2010-05-13

    To understand and design molecular functions on the basis of molecular recognition processes, the microscopic probing of the energy landscapes of individual interactions in a molecular complex and their dependence on the surrounding conditions is of great importance. Dynamic force spectroscopy (DFS) is a technique that enables us to study the interaction between molecules at the single-molecule level. However, the obtained results differ among previous studies, which is considered to be caused by the differences in the measurement conditions. We have developed an atomic force microscopy technique that enables the precise analysis of molecular interactions on the basis of DFS. After verifying the performance of this technique, we carried out measurements to determine the landscapes of streptavidin-biotin interactions. The obtained results showed good agreement with theoretical predictions. Lifetimes were also well analyzed. Using a combination of cross-linkers and the atomic force microscope that we developed, site-selective measurement was carried out, and the steps involved in bonding due to microscopic interactions are discussed using the results obtained by site-selective analysis.

  14. Long-wavelength instabilities in a system of interacting active particles

    NASA Astrophysics Data System (ADS)

    Fazli, Zahra; Najafi, Ali

    2018-02-01

    Based on a microscopic model, we develop a continuum description for a suspension of microscopic self-propelled particles. With this continuum description we study the role of long-range interactions in destabilizing macroscopic ordered phases that are developed by short-range interactions. Long-wavelength fluctuations can destabilize both isotropic and symmetry-broken polar phases in a suspension of dipolar particles. The instabilities in a suspension of pullers (pushers) arise from splay (bend) fluctuations. Such instabilities are not seen in a suspension of quadrupolar particles.

  15. A ReaxFF-based molecular dynamics study of the mechanisms of interactions between reactive oxygen plasma species and the Candida albicans cell wall

    NASA Astrophysics Data System (ADS)

    Zhao, T.; Shi, L.; Zhang, Y. T.; Zou, L.; Zhang, L.

    2017-10-01

    Atmospheric pressure non-equilibrium plasmas have attracted significant attention and have been widely used to inactivate pathogens, yet the mechanisms underlying the interactions between plasma-generated species and bio-organisms have not been elucidated clearly. In this paper, reactive molecular dynamics simulations are employed to investigate the mechanisms of interactions between reactive oxygen plasma species (O, OH, and O2) and β-1,6-glucan (a model for the C. albicans cell wall) from a microscopic point of view. Our simulations show that O and OH species can break structurally important C-C and C-O bonds, while O2 molecules exhibit only weak, non-bonded interactions with β-1,6-glucan. Hydrogen abstraction from hydroxyl or CH groups occurs first in all bond cleavage mechanisms. This is followed by a cascade of bond cleavage and double bond formation events. These lead to the destruction of the fungal cell wall. O and OH have similar effects related to their bond cleavage mechanisms. Our simulation results provide fundamental insights into the mechanisms underlying the interactions between reactive oxygen plasma species and the fungal cell wall of C. albicans at the atomic level.

  16. Periodic cracks and temperature-dependent stress in Mo/Si multilayers on Si substrates

    NASA Astrophysics Data System (ADS)

    Kravchenko, Grygoriy; Tran, Hai T.; Volinsky, Alex A.

    2018-07-01

    This work examines formation of the peculiar periodic crack patterns observed in the thermally loaded Mo/Si multilayers. Using the substrate curvature measurements, the macroscopic film stress evolution during thermal cycling was investigated. Then high-speed microscopic observation of crack propagation in the annealed Mo/Si multilayers was presented providing experimental evidence of the mechanism underlying formation of the periodic crack patterns. The origin of the peculiar periodic crack patterns was determined. They were observed to form by the slow crack propagation under quasi-static conditions as a result of the interaction between the channelling crack propagation and the advance of the delamination front.

  17. Magnetostructural Properties of Colossal Magnetoresistance Manganites Under External Magnetic Fields and Uniaxial Pressure

    NASA Astrophysics Data System (ADS)

    Kaplan, Michael; Zimmerman, George

    2002-03-01

    In the colossal magnetoresistance manganites the transport and magnetostructural properties are tightly connected [1,2]. Many magnetic field induced structural phase transitions and anomalous magnetoacoustical properties continue to be discovered in various manganite derivatives. Nevertheless the mechanism of structural transitions and microscopic theory of corresponding anomalous properties are still to be completely understood. Here we present a microscopic model of magnetic field and uniaxial pressure induced structural phase transitions in lightly doped manganites. The model is based on the cooperative Jahn-Teller effect which takes into account the Mn3+-ground doublet and excited triplet electronic states. Numerous calculations for different orientation magnetic field suggest the explanations of the origin of the structural transitions and of the measured magnetostriction data. The calculations for the two-sublattice antiferrodistortive crystals under uniaxial pressure support the idea of metaelasticity - a property typical for Jahn-Teller antiferroelastics. 1.Y. Tokura, ed. Colossal Magnetoresistance Oxides. Gordon & Breach, London, 2000. 2.M. Kaplan, G. Zimmerman, eds. Vibronic Interactions: Jahn-Teller Effect in Crystal and Molecules. NATO Science Series, Dordrecht/Boston/London, 2001

  18. Tomography of a Probe Potential Using Atomic Sensors on Graphene.

    PubMed

    Wyrick, Jonathan; Natterer, Fabian D; Zhao, Yue; Watanabe, Kenji; Taniguchi, Takashi; Cullen, William G; Zhitenev, Nikolai B; Stroscio, Joseph A

    2016-12-27

    Our ability to access and explore the quantum world has been greatly advanced by the power of atomic manipulation and local spectroscopy with scanning tunneling and atomic force microscopes, where the key technique is the use of atomically sharp probe tips to interact with an underlying substrate. Here we employ atomic manipulation to modify and quantify the interaction between the probe and the system under study that can strongly affect any measurement in low charge density systems, such as graphene. We transfer Co atoms from a graphene surface onto a probe tip to change and control the probe's physical structure, enabling us to modify the induced potential at a graphene surface. We utilize single Co atoms on a graphene field-effect device as atomic scale sensors to quantitatively map the modified potential exerted by the scanning probe over the whole relevant spatial and energy range.

  19. Quantitative force measurements using frequency modulation atomic force microscopy—theoretical foundations

    NASA Astrophysics Data System (ADS)

    Sader, John E.; Uchihashi, Takayuki; Higgins, Michael J.; Farrell, Alan; Nakayama, Yoshikazu; Jarvis, Suzanne P.

    2005-03-01

    Use of the atomic force microscope (AFM) in quantitative force measurements inherently requires a theoretical framework enabling conversion of the observed deflection properties of the cantilever to an interaction force. In this paper, the theoretical foundations of using frequency modulation atomic force microscopy (FM-AFM) in quantitative force measurements are examined and rigorously elucidated, with consideration being given to both 'conservative' and 'dissipative' interactions. This includes a detailed discussion of the underlying assumptions involved in such quantitative force measurements, the presentation of globally valid explicit formulae for evaluation of so-called 'conservative' and 'dissipative' forces, discussion of the origin of these forces, and analysis of the applicability of FM-AFM to quantitative force measurements in liquid.

  20. Examination of femtosecond laser matter interaction in multipulse regime for surface nanopatterning of vitreous substrates.

    PubMed

    Varkentina, Nadezda; Cardinal, Thierry; Moroté, Fabien; Mounaix, Patrick; André, Pascal; Deshayes, Yannick; Canioni, Lionel

    2013-12-02

    The paper presents our results on laser micro- and nanostructuring of sodium aluminosilicate glass for the permanent storage purposes and photonics applications. Surface structuring is realized by fs laser irradiation followed by the subsequent etching in a potassium hydroxide (10M@80 °C) for 1 to 10 minutes. As the energy deposited is lower than the damage and/or ablation threshold, the chemical etching permits to produce small craters in the laser modified region. The laser parameters dependent interaction regimes are revealed by microscopic analysis (SEM and AFM). The influence of etching time on craters formation is investigated under different incident energies, number of pulses and polarization states.

  1. [Remote Slit Lamp Microscope Consultation System Based on Web].

    PubMed

    Chen, Junfa; Zhuo, Yong; Liu, Zuguo; Chen, Yanping

    2015-11-01

    To realize the remote operation of the slit lamp microscope for department of ophthalmology consultation, and visual display the real-time status of remote slit lamp microscope, a remote slit lamp microscope consultation system based on B/S structure is designed and implemented. Through framing the slit lamp microscope on the website system, the realtime acquisition and transmission of remote control and image data is realized. The three dimensional model of the slit lamp microscope is established and rendered on the web by using WebGL technology. The practical application results can well show the real-time interactive of the remote consultation system.

  2. Mathematical approach to nonlocal interactions using a reaction-diffusion system.

    PubMed

    Tanaka, Yoshitaro; Yamamoto, Hiroko; Ninomiya, Hirokazu

    2017-06-01

    In recent years, spatial long range interactions during developmental processes have been introduced as a result of the integration of microscopic information, such as molecular events and signaling networks. They are often called nonlocal interactions. If the profile of a nonlocal interaction is determined by experiments, we can easily investigate how patterns generate by numerical simulations without detailed microscopic events. Thus, nonlocal interactions are useful tools to understand complex biosystems. However, nonlocal interactions are often inconvenient for observing specific mechanisms because of the integration of information. Accordingly, we proposed a new method that could convert nonlocal interactions into a reaction-diffusion system with auxiliary unknown variables. In this review, by introducing biological and mathematical studies related to nonlocal interactions, we will present the heuristic understanding of nonlocal interactions using a reaction-diffusion system. © 2017 Japanese Society of Developmental Biologists.

  3. Microscopic theory of Dzyaloshinsky-Moriya interaction in pyrochlore oxides with spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Arakawa, Naoya

    2016-10-01

    Pyrochlore oxides show several fascinating phenomena, such as the formation of heavy fermions and the thermal Hall effect. Although a key to understanding some phenomena may be the Dzyaloshinsky-Moriya (DM) interaction, its microscopic origin is unclear. To clarify the microscopic origin, we constructed a t2 g-orbital model with the kinetic energy, the trigonal-distortion potential, the multiorbital Hubbard interactions, and the L S coupling, and derived the low-energy effective Hamiltonian for a d1 Mott insulator with the weak L S coupling. We first show that lack of the inversion center of each nearest-neighbor V-V bond causes the odd-mirror interorbital hopping integrals. Those are qualitatively different from the even-mirror hopping integrals, existing even with the inversion center. We next show that the second-order perturbation using the kinetic terms leads to the ferromagnetic and the antiferromagnetic superexchange interactions, whose competition is controllable by tuning the Hubbard interactions. Then, we show the most important result: the third-order perturbation terms using the combination of the even-mirror hopping integral, the odd-mirror hopping integral, and the L S coupling causes the DM interaction due to the mirror-mixing effect, where those hopping integrals are necessary to obtain the antisymmetric kinetic exchange and the L S coupling is necessary to excite the orbital angular momentum at one of two sites. We also show that the magnitude and sign of the DM interaction can be controlled by changing the positions of the O ions and the strength of the Hubbard interactions. We discuss the advantages in comparison with the phenomenological theory and Moriya's microscopic theory, applicability of our mechanism, and the similarities and differences between our case and the strong-L S -coupling case.

  4. Formative Processes of a Sliding Zone in Pelitic Schist - Implications of Microscopic Analyses on High-quality Drilled Cores

    NASA Astrophysics Data System (ADS)

    Yamasaki, S.; Chigira, M.

    2009-04-01

    Pelitic schist has been known to be easily deformed by gravitational force to form characteristic topographic and geologic features, but little is known about how they develop. This is mainly due to the fact that deformed politic schist is so fragile that it could not be obtained from subsurface without disturbance. We analyzed high-quality undisturbed cores obtained by using a sophisticated drilling technique from two typical pelitic schist landslide sites in Japan. We made analyses on physical, chemical, mineralogical properties and observations from mesoscopic to microscopic rock textures of these cores and found that a special layering of rock-forming minerals determines the locations of shearing by gravity and that there is specific water-rock interaction processes in pelitic schist. Pelitic schist consists of thinly alternating beds of black layers and quartz-rich layers, and a black layer has numerous microscopic layers containing abundant pyrite and graphite grains (pyrite-graphite layers). Many of the black layers were observed to have microfractures connected to open cracks, suggesting that relatively thick, continuous black layers are easily sheared to form an incipient sliding layer. Thus unevenly distributed pyrite-graphite layers likely to determine the potential location of microscopic slip in a rock mass. Shear displacement along black layers occurs unevenly, depending upon the microscopic heterogeneity in mineral composition as well as undulating shape of the layers. Open micro-cracks nearly perpendicular to the schistosity were commonly observed in quartz-rich layers in contact with black layers, suggesting that the shearing occurred with heterogeneous displacements along the black layer and that it occurred under the low confining pressure. This is in the incipient stage of a fracture zone. When shearing occurs along two thick neighboring black layers, the rock in between would be fractured, rotated and pulverized. In some cases, quartz-rich layers were fractured in a brittle manner and their fragments were rearranged to form micro-folds. Rocks are thus pulverized with multiple shear surfaces. Incipient fracture zones and their surroundings have many voids because they are made under low confining pressures near the ground surface, so oxidizing surface water easily percolates through them. Oxidizing water reacts with pyrite which is contained in pelitic schist, producing sulfuric acid through. The rocks therefore become deteriorated by the water-rock interaction and would be easily deformed. Such a combination of the physical processes of deformation and fracturing and the chemical process of weathering develop a sliding zone.

  5. Macroscopic irreversibility and microscopic paradox: A Constructal law analysis of atoms as open systems

    PubMed Central

    Lucia, Umberto

    2016-01-01

    The relation between macroscopic irreversibility and microscopic reversibility is a present unsolved problem. Constructal law is introduced to develop analytically the Einstein’s, Schrödinger’s, and Gibbs’ considerations on the interaction between particles and thermal radiation (photons). The result leads to consider the atoms and molecules as open systems in continuous interaction with flows of photons from their surroundings. The consequent result is that, in any atomic transition, the energy related to the microscopic irreversibility is negligible, while when a great number of atoms (of the order of Avogadro’s number) is considered, this energy related to irreversibility becomes so large that its order of magnitude must be taken into account. Consequently, macroscopic irreversibility results related to microscopic irreversibility by flows of photons and amount of atoms involved in the processes. PMID:27762333

  6. In situ study on atomic mechanism of melting and freezing of single bismuth nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Yingxuan; Zang, Ling; Jacobs, Daniel L.; Zhao, Jie; Yue, Xiu; Wang, Chuanyi

    2017-02-01

    Experimental study of the atomic mechanism in melting and freezing processes remains a formidable challenge. We report herein on a unique material system that allows for in situ growth of bismuth nanoparticles from the precursor compound SrBi2Ta2O9 under an electron beam within a high-resolution transmission electron microscope (HRTEM). Simultaneously, the melting and freezing processes within the nanoparticles are triggered and imaged in real time by the HRTEM. The images show atomic-scale evidence for point defect induced melting, and a freezing mechanism mediated by crystallization of an intermediate ordered liquid. During the melting and freezing, the formation of nucleation precursors, nucleation and growth, and the relaxation of the system, are directly observed. Based on these observations, an interaction-relaxation model is developed towards understanding the microscopic mechanism of the phase transitions, highlighting the importance of cooperative multiscale processes.

  7. In situ study on atomic mechanism of melting and freezing of single bismuth nanoparticles.

    PubMed

    Li, Yingxuan; Zang, Ling; Jacobs, Daniel L; Zhao, Jie; Yue, Xiu; Wang, Chuanyi

    2017-02-13

    Experimental study of the atomic mechanism in melting and freezing processes remains a formidable challenge. We report herein on a unique material system that allows for in situ growth of bismuth nanoparticles from the precursor compound SrBi 2 Ta 2 O 9 under an electron beam within a high-resolution transmission electron microscope (HRTEM). Simultaneously, the melting and freezing processes within the nanoparticles are triggered and imaged in real time by the HRTEM. The images show atomic-scale evidence for point defect induced melting, and a freezing mechanism mediated by crystallization of an intermediate ordered liquid. During the melting and freezing, the formation of nucleation precursors, nucleation and growth, and the relaxation of the system, are directly observed. Based on these observations, an interaction-relaxation model is developed towards understanding the microscopic mechanism of the phase transitions, highlighting the importance of cooperative multiscale processes.

  8. Atomic scale friction of molecular adsorbates during diffusion.

    PubMed

    Lechner, B A J; de Wijn, A S; Hedgeland, H; Jardine, A P; Hinch, B J; Allison, W; Ellis, J

    2013-05-21

    Experimental observations suggest that molecular adsorbates exhibit a larger friction coefficient than atomic species of comparable mass, yet the origin of this increased friction is not well understood. We present a study of the microscopic origins of friction experienced by molecular adsorbates during surface diffusion. Helium spin-echo measurements of a range of five-membered aromatic molecules, cyclopentadienyl, pyrrole, and thiophene, on a copper(111) surface are compared with molecular dynamics simulations of the respective systems. The adsorbates have different chemical interactions with the surface and differ in bonding geometry, yet the measurements show that the friction is greater than 2 ps(-1) for all these molecules. We demonstrate that the internal and external degrees of freedom of these adsorbate species are a key factor in the underlying microscopic processes and identify the rotation modes as the ones contributing most to the total measured friction coefficient.

  9. The use of interactive technology in the classroom.

    PubMed

    Kresic, P

    1999-01-01

    This article discusses the benefits that clinical laboratory science students and instructors experienced through the use of and integration of computer technology, microscopes, and digitizing cameras. Patient specimens were obtained from the participating clinical affiliates, slides stained or wet mounts prepared, images viewed under the microscope, digitized, and after labeling, stored into an appropriate folder. The individual folders were labeled as Hematology, Microbiology, Chemistry, or Urinalysis. Students, after obtaining the necessary specimens and pertinent data, created case study presentations for class discussions. After two semesters of utilizing videomicroscopy/computer technology in the classroom, students and instructors realized the potential associated with the technology, namely, the vast increase in the amount of organized visual and scientific information accessible and the availability of collaborative and interactive learning to complement individualized instruction. The instructors, on the other hand, were able to provide a wider variety of visual information on individual bases. In conclusion, the appropriate use of technology can enhance students' learning and participation. Increased student involvement through the use of videomicroscopy and computer technology heightened their sense of pride and ownership in providing suitable information in case study presentations. Also, visualization provides students and educators with alternative methods of teaching/learning and increased retention of information.

  10. Storage duration and white blood cell content of red blood cell (RBC) products increases adhesion of stored RBCs to endothelium under flow conditions.

    PubMed

    Anniss, Angela M; Sparrow, Rosemary L

    2006-09-01

    Adherence of red blood cells (RBCs) to vascular endothelium impairs blood flow and decreases oxygen delivery. Although RBCs may be stored for up to 42 days before transfusion under current blood banking guidelines, little is known of how changes to RBCs during storage may affect their adherence properties. The influence of RBC product storage time and white blood cell (WBC) burden on the adherence of RBCs for transfusion to vascular endothelium under conditions of continuous flow was investigated in this study. RBC samples were collected from nonleukoreduced (S-RBC), buffy coat-poor (BCP-RBC), and leukofiltered (LF-RBC) products at fixed time points during storage. Samples were perfused, at controlled shear stress and temperature, across a confluent endothelial cell (EC) monolayer with a parallel-flow chamber mounted to an inverted microscope. RBC-EC interactions were recorded with a digital camera attached to the microscope. The number of RBCs adhering to the EC layer increased significantly with storage time in all RBC products; however, WBC reduction delayed this increase. LF-RBCs were also significantly less adherent than S-RBC or BCP-RBC products on Day 1 of storage (p < 0.05). The strength of RBC attachment to vascular endothelium was significantly stronger in S-RBC products compared to BCP-RBC and LF-RBC products. Our findings indicate that product storage time and WBC burden increase the number and strength of adhesion of RBCs to vascular endothelium. These results may lead to greater understanding of the interaction of transfused RBCs with recipient endothelium and the biologic consequences of this adherence.

  11. Noninvasive measurement of three-dimensional morphology of adhered animal cells employing phase-shifting laser microscope.

    PubMed

    Takagi, Mutsumi; Kitabayashi, Takayuki; Ito, Syunsuke; Fujiwara, Masashi; Tokuda, Akio

    2007-01-01

    Noninvasive measurement of 3-D morphology of adhered animal cells employing a phase-shifting laser microscope (PLM) is investigated, in which the phase shift for each pixel in the view field caused by cell height and the difference in refractive indices between the cells and the medium is determined. By employing saline with different refractive indices instead of a culture medium, the refractive index of the cells, which is necessary for the determination of cell height, is determined under PLM. The observed height of Chinese hamster ovary (CHO) cells cultivated under higher osmolarity is lower than that of the cells cultivated under physiological osmolarity, which is in agreement with previous data observed under an atomic force microscope (AFM). Maximum heights of human bone marrow mesenchymal stem cells and human umbilical cord vein endothelial cells measured under PLM and AFM agree well with each other. The maximum height of nonadherent spherical CHO cells observed under PLM is comparable to the cell diameter measured under a phase contrast inverted microscope. Laser irradiation, which is necessary for the observation under PLM, did not affect 3-D cell morphology. In conclusion, 3-D morphology of adhered animal cells can be noninvasively measured under PLM.

  12. Coarse-grained forms for equations describing the microscopic motion of particles in a fluid.

    PubMed

    Das, Shankar P; Yoshimori, Akira

    2013-10-01

    Exact equations of motion for the microscopically defined collective density ρ(x,t) and the momentum density ĝ(x,t) of a fluid have been obtained in the past starting from the corresponding Langevin equations representing the dynamics of the fluid particles. In the present work we average these exact equations of microscopic dynamics over the local equilibrium distribution to obtain stochastic partial differential equations for the coarse-grained densities with smooth spatial and temporal dependence. In particular, we consider Dean's exact balance equation for the microscopic density of a system of interacting Brownian particles to obtain the basic equation of the dynamic density functional theory with noise. Our analysis demonstrates that on thermal averaging the dependence of the exact equations on the bare interaction potential is converted to dependence on the corresponding thermodynamic direct correlation functions in the coarse-grained equations.

  13. Effect of operating microscope light on brain temperature during craniotomy.

    PubMed

    Gayatri, Parthasarathi; Menon, Girish G; Suneel, Puthuvassery R

    2013-07-01

    Operating microscopes used during neurosurgery are fitted with xenon light. Burn injuries have been reported because of xenon microscope lighting as the intensity of xenon light is 300 W. We designed this study to find out if the light of operating microscope causes an increase in temperature of the brain tissue, which is exposed underneath. Twenty-one adult patients scheduled for elective craniotomies were enrolled. Distal esophageal temperature (T Eso), brain temperature under the microscope light (T Brain), and brain temperature under dura mater (T Dura) were measured continuously at 15-minute intervals during microscope use. The irrigation fluid temperature, room temperature, intensity of the microscope light, and the distance of the microscope from the brain surface were kept constant. The average age of the patients was 44±15 years (18 males and 3 females). The mean duration of microscope use was 140±39 minutes. There were no significant changes in T Brain and T Dura and T Eso over time. T Dura was significantly lower than T Brain both at time 0 and 60 minutes but not at 90 minutes. T Brain was significantly lower than T Eso both at time 0 and 60 minutes but not at 90 minutes. The T Dura remained significantly lower than T Eso at 0, 60, and 90 minutes. Our study shows that there is no significant rise in brain temperature under xenon microscope light up to 120 minutes duration, at intensity of 60% to 70%, from a distance of 20 to 25 cm from the brain surface.

  14. Unexpected distribution of ν 1 f 7 / 2 strength in Ca 49

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, H. L.; Macchiavelli, A. O.; Fallon, P.

    Here, the calcium isotopes have emerged as a critical testing ground for new microscopically derived shell-model interactions, and a great deal of experimental and theoretical focus has been directed toward this region. We investigate the relative spectroscopic strengths associated with 1f 7/2 neutron hole states in 47,49Ca following one-neutron knockout reactions from 48,50Ca. The observed reduction of strength populating the 7/2 – 1 state in 49Ca, as compared to 47Ca, is inconsistent with shell-model calculations using both phenomenological interactions such as GXPF1, and interactions derived from microscopically based two- and three-nucleon forces. The result suggests a fragmentation of the lmore » = 3 strength to higher-lying states as suggested by the microscopic calculations, but the observed magnitude of the reduction is not reproduced in any shell-model description.« less

  15. Unexpected distribution of ν 1 f 7 / 2 strength in Ca 49

    DOE PAGES

    Crawford, H. L.; Macchiavelli, A. O.; Fallon, P.; ...

    2017-06-21

    Here, the calcium isotopes have emerged as a critical testing ground for new microscopically derived shell-model interactions, and a great deal of experimental and theoretical focus has been directed toward this region. We investigate the relative spectroscopic strengths associated with 1f 7/2 neutron hole states in 47,49Ca following one-neutron knockout reactions from 48,50Ca. The observed reduction of strength populating the 7/2 – 1 state in 49Ca, as compared to 47Ca, is inconsistent with shell-model calculations using both phenomenological interactions such as GXPF1, and interactions derived from microscopically based two- and three-nucleon forces. The result suggests a fragmentation of the lmore » = 3 strength to higher-lying states as suggested by the microscopic calculations, but the observed magnitude of the reduction is not reproduced in any shell-model description.« less

  16. Droplets and the three-phase contact line at the nano-scale. Statics and dynamics

    NASA Astrophysics Data System (ADS)

    Yatsyshin, Petr; Sibley, David; Savva, Nikos; Kalliadasis, Serafim

    2014-11-01

    Understanding the behaviour of the solid-liquid-vapour contact line at the scale of several tens of molecular diameters is important in wetting hydrodynamics with applications in micro- and nano-fluidics, including the design of lab-on-a-chip devices and surfaces with specific wetting properties. Due to the fluid inhomogeneity at the nano-scale, the application of continuum-mechanical approaches is limited, and a natural way to remedy this is to seek descriptions accounting for the non-local molecular-level interactions. Density Functional Theory (DFT) for fluids offers a statistical-mechanical framework based on expressing the free energy of the fluid-solid pair as a functional of the spatially varying fluid density. DFT allows us to investigate small drops deposited on planar substrates whilst keeping track of the microscopic structural details of the fluid. Starting from a model of intermolecular forces, we systematically obtain interfaces, surface tensions, and the microscopic contact angle. Using a dynamic extension of equilibrium DFT, we investigate the diffusion-driven evolution of the three-phase contact line to gain insight into the dynamic behaviour of the microscopic contact angle, which is still under debate.

  17. Manual stage acquisition and interactive display of digital slides in histopathology.

    PubMed

    Gherardi, Alessandro; Bevilacqua, Alessandro

    2014-07-01

    More powerful PC architectures, high-resolution cameras working at increasing frame rates, and more and more accurate motorized microscopes have boosted new applications in the field of biomedicine and medical imaging. In histopathology, the use of digital slides (DSs) imaging through dedicated hardware for digital pathology is increasing for several reasons: digital annotation of suspicious lesions, recorded clinical history, and telepathology as a collaborative environment. In this paper, we propose the first method known in the literature for real-time whole slide acquisition and displaying conceived for conventional nonautomated microscopes. Differently from DS scanner, our software enables biologists and histopathologists to build and view the DS in real time while inspecting the sample, as they are accustomed to. In addition, since our approach is compliant with existing common microscope positions, provided with camera and PC, this could contribute to disseminate the whole slide technology in the majority of small labs not endowed with DS hardware facilities. Experiments performed with different histologic specimens (referring to tumor tissues of different body parts as well as to tumor cells), acquired under different setup conditions and devices, prove the effectiveness of our approach both in terms of quality and speed performances.

  18. Integration of a Spectral Domain Optical Coherence Tomography System into a Surgical Microscope for Intraoperative Imaging

    PubMed Central

    Ehlers, Justis P.; Tao, Yuankai K.; Farsiu, Sina; Maldonado, Ramiro; Izatt, Joseph A.

    2011-01-01

    Purpose. To demonstrate an operating microscope-mounted spectral domain optical coherence tomography (MMOCT) system for human retinal and model surgery imaging. Methods. A prototype MMOCT system was developed to interface directly with an ophthalmic surgical microscope, to allow SDOCT imaging during surgical viewing. Nonoperative MMOCT imaging was performed in an Institutional Review Board–approved protocol in four healthy volunteers. The effect of surgical instrument materials on MMOCT imaging was evaluated while performing retinal surface, intraretinal, and subretinal maneuvers in cadaveric porcine eyes. The instruments included forceps, metallic and polyamide subretinal needles, and soft silicone-tipped instruments, with and without diamond dusting. Results. High-resolution images of the human retina were successfully obtained with the MMOCT system. The optical properties of surgical instruments affected the visualization of the instrument and the underlying retina. Metallic instruments (e.g., forceps and needles) showed high reflectivity with total shadowing below the instrument. Polyamide material had a moderate reflectivity with subtotal shadowing. Silicone instrumentation showed moderate reflectivity with minimal shadowing. Summed voxel projection MMOCT images provided clear visualization of the instruments, whereas the B-scans from the volume revealed details of the interactions between the tissues and the instrumentation (e.g., subretinal space cannulation, retinal elevation, or retinal holes). Conclusions. High-quality retinal imaging is feasible with an MMOCT system. Intraoperative imaging with model eyes provides high-resolution depth information including visualization of the instrument and intraoperative tissue manipulation. This study demonstrates a key component of an interactive platform that could provide enhanced information for the vitreoretinal surgeon. PMID:21282565

  19. Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging.

    PubMed

    Ehlers, Justis P; Tao, Yuankai K; Farsiu, Sina; Maldonado, Ramiro; Izatt, Joseph A; Toth, Cynthia A

    2011-05-16

    To demonstrate an operating microscope-mounted spectral domain optical coherence tomography (MMOCT) system for human retinal and model surgery imaging. A prototype MMOCT system was developed to interface directly with an ophthalmic surgical microscope, to allow SDOCT imaging during surgical viewing. Nonoperative MMOCT imaging was performed in an Institutional Review Board-approved protocol in four healthy volunteers. The effect of surgical instrument materials on MMOCT imaging was evaluated while performing retinal surface, intraretinal, and subretinal maneuvers in cadaveric porcine eyes. The instruments included forceps, metallic and polyamide subretinal needles, and soft silicone-tipped instruments, with and without diamond dusting. High-resolution images of the human retina were successfully obtained with the MMOCT system. The optical properties of surgical instruments affected the visualization of the instrument and the underlying retina. Metallic instruments (e.g., forceps and needles) showed high reflectivity with total shadowing below the instrument. Polyamide material had a moderate reflectivity with subtotal shadowing. Silicone instrumentation showed moderate reflectivity with minimal shadowing. Summed voxel projection MMOCT images provided clear visualization of the instruments, whereas the B-scans from the volume revealed details of the interactions between the tissues and the instrumentation (e.g., subretinal space cannulation, retinal elevation, or retinal holes). High-quality retinal imaging is feasible with an MMOCT system. Intraoperative imaging with model eyes provides high-resolution depth information including visualization of the instrument and intraoperative tissue manipulation. This study demonstrates a key component of an interactive platform that could provide enhanced information for the vitreoretinal surgeon.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Frank; Popp, Till; Wieczorek, Klaus

    The purposes of this paper are to review the vast amount of knowledge concerning crushed salt reconsolidation and its attendant hydraulic properties (i.e., its capability for fluid or gas transport) and to provide a sufficient basis to understand reconsolidation and healing rates under repository conditions. Topics covered include: deformation mechanisms and hydro-mechanical interactions during reconsolidation; the experimental data base pertaining to crushed salt reconsolidation; transport properties of consolidating granulated salt and provides quantitative substantiation of its evolution to characteristics emulating undisturbed rock salt; and extension of microscopic and laboratory observations and data to the applicable field scale.

  1. Self-assembly of chlorophenols in water

    PubMed Central

    Rogalska, Ewa; Rogalski, Marek; Gulik-Krzywicki, Tadeusz; Gulik, Annette; Chipot, Christophe

    1999-01-01

    In saturated solutions of some di- and trichlorophenols, structures with complex morphologies, consisting of thin, transparent sheets often coiling into helices and ultimately twisting into filaments, were observed under the optical microscope. Freeze-fracture electron microscopy, x-ray diffraction, phase diagrams, and molecular modeling were performed to elucidate the observed phenomena. Here, we present evidence that the chlorophenols studied, when interacting with water, self-assemble into bilayers. The fact that some chlorophenols form the same supramolecular structures as those described previously for structurally nonrelated surfactants sheds light on the mechanisms of self-assembly. PMID:10359753

  2. Interaction of Two Slip Planes on Extrusion Growth in Fatigue Band

    DTIC Science & Technology

    1987-01-01

    observed under microscope in fatigue specimens as indicated by Essmann et al . [23] and Mughrabi [24]. t I 1 It I I 3 @ O.OS^ = 0 1S^ lAlONG SUP... Mughrabi , et. al . [25] have suggested a model of dislocation dipoles in a single crystal as shown in Fig. 2. The initial inelastic strain e^„ due to the...interesting question which was raised by Mughrabi , and Essmann et. al . [23] was, after the extrusion has reached the amount of static extrusion , will

  3. Modeling of surface effects in crystalline materials within the framework of gradient crystal plasticity

    NASA Astrophysics Data System (ADS)

    Peng, Xiang-Long; Husser, Edgar; Huang, Gan-Yun; Bargmann, Swantje

    2018-03-01

    A finite-deformation gradient crystal plasticity theory is developed, which takes into account the interaction between dislocations and surfaces. The model captures both energetic and dissipative effects for surfaces penetrable by dislocations. By taking advantage of the principle of virtual power, the surface microscopic boundary equations are obtained naturally. Surface equations govern surface yielding and hardening. A thin film under shear deformation serves as a benchmark problem for validation of the proposed model. It is found that both energetic and dissipative surface effects significantly affect the plastic behavior.

  4. Mechanism of force mode dip-pen nanolithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Haijun, E-mail: yanghaijun@sinap.ac.cn, E-mail: swguo@sjtu.edu.cn, E-mail: wanghuabin@cigit.ac.cn; Interfacial Water Division and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, CAS, Shanghai 201800; Xie, Hui

    In this work, the underlying mechanism of the force mode dip-pen nanolithography (FMDPN) is investigated in depth by analyzing force curves, tapping mode deflection signals, and “Z-scan” voltage variations during the FMDPN. The operation parameters including the relative “trigger threshold” and “surface delay” parameters are vital to control the loading force and dwell time for ink deposition during FMDPN. A model is also developed to simulate the interactions between the atomic force microscope tip and soft substrate during FMDPN, and verified by its good performance in fitting our experimental data.

  5. Quantification of incisal tooth wear in upper anterior teeth: conventional vs new method using toolmakers microscope and a three-dimensional measuring technique.

    PubMed

    Al-Omiri, Mahmoud K; Sghaireen, Mohd G; Alzarea, Bader K; Lynch, Edward

    2013-12-01

    This study aimed to quantify tooth wear in upper anterior teeth using a new CAD-CAM Laser scanning machine, tool maker microscope and conventional tooth wear index. Fifty participants (25 males and 25 females, mean age = 25 ± 4 years) were assessed for incisal tooth wear of upper anterior teeth using Smith and Knight clinical tooth wear index (TWI) on two occasions, the study baseline and 1 year later. Stone dies for each tooth were prepared and scanned using the CAD-CAM Laser Cercon System. Scanned images were printed and examined under a toolmaker microscope to quantify tooth wear and then the dies were directly assessed under the microscope to measure tooth wear. The Wilcoxon Signed Ranks Test was used to analyze the data. TWI scores for incisal edges were 0-3 and were similar at both occasions. Score 4 was not detected. Wear values measured by directly assessing the dies under the toolmaker microscope (range = 113 - 150 μm, mean = 130 ± 20 μm) were significantly more than those measured from Cercon Digital Machine images (range=52-80 μm, mean = 68 ± 23 μm) and both showed significant differences between the two occasions. Wear progression in upper anterior teeth was effectively detected by directly measuring the dies or the images of dies under toolmaker microscope. Measuring the dies of worn dentition directly under tool maker microscope enabled detection of wear progression more accurately than measuring die images obtained with Cercon Digital Machine. Conventional method was the least sensitive for tooth wear quantification and was unable to identify wear progression in most cases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Molecular Model of a Quantum Dot Beyond the Constant Interaction Approximation

    NASA Astrophysics Data System (ADS)

    Temirov, Ruslan; Green, Matthew F. B.; Friedrich, Niklas; Leinen, Philipp; Esat, Taner; Chmielniak, Pawel; Sarwar, Sidra; Rawson, Jeff; Kögerler, Paul; Wagner, Christian; Rohlfing, Michael; Tautz, F. Stefan

    2018-05-01

    We present a physically intuitive model of molecular quantum dots beyond the constant interaction approximation. It accurately describes their charging behavior and allows the extraction of important molecular properties that are otherwise experimentally inaccessible. The model is applied to data recorded with a noncontact atomic force microscope on three different molecules that act as a quantum dot when attached to the microscope tip. The results are in excellent agreement with first-principles simulations.

  7. Quantitative Imaging In Pathology (QUIP) | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    This site hosts web accessible applications, tools and data designed to support analysis, management, and exploration of whole slide tissue images for cancer research. The following tools are included: caMicroscope: A digital pathology data management and visualization plaform that enables interactive viewing of whole slide tissue images and segmentation results. caMicroscope can be also used independently of QUIP. FeatureExplorer: An interactive tool to allow patient-level feature exploration across multiple dimensions.

  8. Safety of laser use under the dental microscope.

    PubMed

    Saegusa, Hidetoshi; Watanabe, Satoshi; Anjo, Tomoo; Ebihara, Arata; Suda, Hideaki

    2010-04-01

    The aim of this study was to investigate the safety of laser use under the dental microscope. Nd:YAG, Er:YAG and diode lasers were used. The end of the tips was positioned at a distance of 5 cm from the objective lens of a dental microscope. Each eye protector was made into a flat disc, which was fixed on the lens of the microscope. The filters were placed in front of the objective lens or behind the eye lens. Transmitted energy through the microscope with or without the filters was measured. No transmitted laser energy was detected when using matched eye protectors. Mismatched eye protectors were not effective for shutting out laser energy, especially for Nd:YAG and diode lasers. None or very little laser energy was detected through the microscope even without any laser filter. Matched filters shut out all laser energy irrespective of their positions.

  9. Local structure controls the nonaffine shear and bulk moduli of disordered solids

    NASA Astrophysics Data System (ADS)

    Schlegel, M.; Brujic, J.; Terentjev, E. M.; Zaccone, A.

    2016-01-01

    Paradigmatic model systems, which are used to study the mechanical response of matter, are random networks of point-atoms, random sphere packings, or simple crystal lattices; all of these models assume central-force interactions between particles/atoms. Each of these models differs in the spatial arrangement and the correlations among particles. In turn, this is reflected in the widely different behaviours of the shear (G) and compression (K) elastic moduli. The relation between the macroscopic elasticity as encoded in G, K and their ratio, and the microscopic lattice structure/order, is not understood. We provide a quantitative analytical connection between the local orientational order and the elasticity in model amorphous solids with different internal microstructure, focusing on the two opposite limits of packings (strong excluded-volume) and networks (no excluded-volume). The theory predicts that, in packings, the local orientational order due to excluded-volume causes less nonaffinity (less softness or larger stiffness) under compression than under shear. This leads to lower values of G/K, a well-documented phenomenon which was lacking a microscopic explanation. The theory also provides an excellent one-parameter description of the elasticity of compressed emulsions in comparison with experimental data over a broad range of packing fractions.

  10. Time lapse video recordings of highly purified human hematopoietic progenitor cells in culture.

    PubMed

    Denkers, I A; Dragowska, W; Jaggi, B; Palcic, B; Lansdorp, P M

    1993-05-01

    Major hurdles in studies of stem cell biology include the low frequency and heterogeneity of human hematopoietic precursor cells in bone marrow and the difficulty of directly studying the effect of various culture conditions and growth factors on such cells. We have adapted the cell analyzer imaging system for monitoring and recording the morphology of limited numbers of cells under various culture conditions. Hematopoietic progenitor cells with a CD34+ CD45RAlo CD71lo phenotype were purified from previously frozen organ donor bone marrow by fluorescence activated cell sorting. Cultures of such cells were analyzed with the imaging system composed of an inverted microscope contained in an incubator, a video camera, an optical memory disk recorder and a computer-controlled motorized microscope XYZ precision stage. Fully computer-controlled video images at defined XYZ positions were captured at selected time intervals and recorded at a predetermined sequence on an optical memory disk. In this study, the cell analyzer system was used to obtain descriptions and measurements of hematopoietic cell behavior, like cell motility, cell interactions, cell shape, cell division, cell cycle time and cell size changes under different culture conditions.

  11. Manipulating polymers and composites from the nanoscopic to microscopic length scales

    NASA Astrophysics Data System (ADS)

    Gupta, Suresh

    2008-10-01

    This thesis focuses on the manipulation of polymers and composites on length scales ranging from the nanoscopic to microscopic. In particular, on the microscopic length scale electric fields were used to produce instabilities at the air surface and at polymer interfaces that lead to novel three dimensional structures and patterns. On the nanoscopic length scale, the interaction of ligands attached to nanoparticles and polymer matrix were used to induce self-assembly processes that, in turn, lead to systems that self-heal, self-corral, or are patterned. For manipulation at the micron length scale, electrohydrodynamic instabilities were used in trilayer system composed of a layer of poly(methyl methacrylate) (PMMA), a second layer of polystyrene (PS) and a third layer of air. Dewetting of the polymer at the substrate at the polymer/polymer interface under an applied electric field was used to generate novel three dimensional structures. Also, electrohydrodynamic instabilities were used to pattern thin polymer films in conjunction with ultrasonic vibrations and patterned upper electrodes. Self-assembly processes involving polymers and nanoparticles offer a unique means of generating pattern materials or materials that self heal. Simple polymer/nanoparticle composites were investigated. Here, in the absence of interactions between the poly(ethylene oxide) ligands attached to the nanoparticles and PMMA polymer matrix, the opportunity to generate self-healing systems was opened. The size of the nanoparticle was varied and the effect on diffusion of nanoparticle in the polymer matrix was studied. CdSe nanorods were also assembled on a substrate templated with or guided by microphase separated diblock copolymers. The nanorods were incorporated in the diblock copolymer thin films by spin coating the co-solution of nanorods and polymer, surface adsorption of nanorods on to the patterned diblock copolymer films and surface reconstruction of PS/PMMA diblock copolymer thin film. Further, the interactions between the PMMA polymer matrix and the tri n-octyl phosphine oxide ligands attached to an anisotropic nanoparticle, i.e. nanorods, were used to influence the dispersion of the nanorods in the polymer. This led to a novel assembly, termed self-corralling where under an applied electric field highly oriented, highly ordered arrays of nanorods form. Further, self corralling of nanorods was directed by chemically patterned substrates.

  12. Linking market interaction intensity of 3D Ising type financial model with market volatility

    NASA Astrophysics Data System (ADS)

    Fang, Wen; Ke, Jinchuan; Wang, Jun; Feng, Ling

    2016-11-01

    Microscopic interaction models in physics have been used to investigate the complex phenomena of economic systems. The simple interactions involved can lead to complex behaviors and help the understanding of mechanisms in the financial market at a systemic level. This article aims to develop a financial time series model through 3D (three-dimensional) Ising dynamic system which is widely used as an interacting spins model to explain the ferromagnetism in physics. Through Monte Carlo simulations of the financial model and numerical analysis for both the simulation return time series and historical return data of Hushen 300 (HS300) index in Chinese stock market, we show that despite its simplicity, this model displays stylized facts similar to that seen in real financial market. We demonstrate a possible underlying link between volatility fluctuations of real stock market and the change in interaction strengths of market participants in the financial model. In particular, our stochastic interaction strength in our model demonstrates that the real market may be consistently operating near the critical point of the system.

  13. Electrical Manipulation of Spin Qubits in Li-doped Si

    NASA Astrophysics Data System (ADS)

    Petukhov, Andre; Pendo, Luke; Handberg, Erin; Smelyanskiy, Vadim

    2011-03-01

    We propose a complete quantum computing scheme based on Li donors in Si under external biaxial stress. The qubits are encoded on the ground state Zeeman doublets and coupled via long-range spin-spin interaction mediated by acoustic phonons. This interaction is unique for Li donors in Si due to their inverted electronic structure. Our scheme takes advantage of the fact that the energy level spacing in 1 s Li-donor manifold is comparable with the magnitude of the spin-orbit interaction. As a result the Li spin qubits can be placed 100 nm apart and manipulated by a combination of external electric field and microwave field impulses. We present a specially-designed sequence of the electric field impulses which allows for a typical time of a two-qubit gate ~ ~1~ μ s and a quality factor ~10-6 . These estimates are derived from detailed microscopic calculations of the quadratic Stark effect and electron-phonon decoherence times.

  14. High-resolution, high-throughput imaging with a multibeam scanning electron microscope.

    PubMed

    Eberle, A L; Mikula, S; Schalek, R; Lichtman, J; Knothe Tate, M L; Zeidler, D

    2015-08-01

    Electron-electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  15. Silver nanoparticle-human hemoglobin interface: time evolution of the corona formation and interaction phenomenon

    NASA Astrophysics Data System (ADS)

    Bhunia, A. K.; Kamilya, T.; Saha, S.

    2017-10-01

    In this paper, we have used spectroscopic and electron microscopic analysis to monitor the time evolution of the silver nanoparticles (Ag NP)-human hemoglobin (Hb) corona formation and to characterize the interaction of the Ag NPs with Hb. The time constants for surface plasmon resonance binding and reorganization are found to be 9.51 and 118.48 min, respectively. The drop of surface charge and the increase of the hydrodynamic diameter indicated the corona of Hb on the Ag NP surface. The auto correlation function is found to broaden with the increasing time of the corona formation. Surface zeta potential revealed that positively charged Hb interact electrostatically with negatively charged Ag NP surfaces. The change in α helix and β sheet depends on the corona formation time. The visualization of the Hb corona from HRTEM showed large number of Hb domains aggregate containing essentially Ag NPs and without Ag NPs. Emission study showed the tertiary deformation, energy transfer, nature of interaction and quenching under three different temperatures.

  16. Bacoside-A, an Indian Traditional-Medicine Substance, Inhibits β-Amyloid Cytotoxicity, Fibrillation, and Membrane Interactions.

    PubMed

    Malishev, Ravit; Shaham-Niv, Shira; Nandi, Sukhendu; Kolusheva, Sofiya; Gazit, Ehud; Jelinek, Raz

    2017-04-19

    Bacoside-A, a family of compounds extracted from the Bacopa monniera plant, is a folk-medicinal substance believed to exhibit therapeutic properties, particularly enhancing cognitive functions and improving memory. We show that bacoside-A exerted significant inhibitory effects upon cytotoxicity, fibrillation, and particularly membrane interactions of amyloid-beta (1-42) (Aβ42), the peptide playing a prominent role in Alzeheimer's disease progression and toxicity. Specifically, preincubation of bacoside-A with Aβ42 significantly reduced cell toxicity and inhibited fibril formation both in buffer solution and, more significantly, in the presence of membrane vesicles. In parallel, spectroscopic and microscopic analyses reveal that bacoside-A blocked membrane interactions of Aβ42, while formation of Aβ42 oligomers was not disrupted. These interesting phenomena suggest that inhibition of Aβ42 oligomer assembly into mature fibrils, and blocking membrane interactions of the oligomers are likely the underlying factors for ameliorating amyloid toxicity by bacoside-A and its putative physiological benefits.

  17. Direct measurement of IgM-Antigen interaction energy on individual red blood cells.

    PubMed

    Yeow, Natasha; Tabor, Rico F; Garnier, Gil

    2017-07-01

    Most blood grouping tests rely on the principle of red blood cells (RBCs) agglutination. Agglutination is triggered by the binding of specific blood grouping antibodies to the corresponding RBC surface antigen on multiple cells. The interaction energies between blood grouping antibodies and antigens have been poorly defined in immunohaematology. Here for the first time, we functionalized atomic force microscope (AFM) cantilevers with the IgM form of blood grouping antibodies to probe populations of individual RBCs of different groups under physiological conditions. The force-mapping mode of AFM allowed us to measure specific antibody - antigen interactions, and simultaneously localize and quantify antigen sites on the scanned cell surface. This study provides a new insight of the interactions between IgM antibodies and its corresponding antigen. The technique and information can be translated to develop better blood typing diagnostics and optimize target-specific drug delivery for medical applications. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  18. Silver nanoparticle-human hemoglobin interface: time evolution of the corona formation and interaction phenomenon.

    PubMed

    Bhunia, A K; Kamilya, T; Saha, S

    2017-01-01

    In this paper, we have used spectroscopic and electron microscopic analysis to monitor the time evolution of the silver nanoparticles (Ag NP)-human hemoglobin (Hb) corona formation and to characterize the interaction of the Ag NPs with Hb. The time constants for surface plasmon resonance binding and reorganization are found to be 9.51 and 118.48 min, respectively. The drop of surface charge and the increase of the hydrodynamic diameter indicated the corona of Hb on the Ag NP surface. The auto correlation function is found to broaden with the increasing time of the corona formation. Surface zeta potential revealed that positively charged Hb interact electrostatically with negatively charged Ag NP surfaces. The change in α helix and β sheet depends on the corona formation time. The visualization of the Hb corona from HRTEM showed large number of Hb domains aggregate containing essentially Ag NPs and without Ag NPs. Emission study showed the tertiary deformation, energy transfer, nature of interaction and quenching under three different temperatures.

  19. Ultrastructure of cholinergic neurons in the laterodorsal tegmental nucleus of the rat: interaction with catecholamine fibers.

    PubMed

    Kubota, Y; Leung, E; Vincent, S R

    1992-01-01

    The ultrastructure of choline acetyltransferase (ChAT)-immunoreactive neurons in the laterodorsal tegmental nucleus (TLD) of the rat was investigated by immunohistochemical techniques. The immunoreactive neurons were medium to large in size, with a few elongated dendrites, contained well-developed cytoplasm, and a nucleus with deep infoldings. They received many nonimmunoreactive, mostly asymmetric synaptic inputs on their soma and dendrites. ChAT-immunoreactive, usually myelinated, axons were occasionally seen in TLD. Only one immunoreactive axon terminal was observed within TLD, and it made synaptic contact with a nonimmunoreactive neuronal perikaryon. The synaptic interactions between ChAT-immunoreactive neurons and tyrosine hydroxylase (TH)-immunoreactive fibers in the TLD were investigated with a double immunohistochemical staining method. ChAT-immunoreactivity detected with a beta-galactosidase method was light blue-green in the light microscope and formed dot-like electron dense particles at the electron microscopic level. TH-immunoreactivity, visualized with a nickel-enhanced immunoperoxidase method, was dark blue-black in the light microscope and diffusely opaque in the electron microscope. Therefore, the difference between these two kinds of immunoreactivity could be quite easily distinguished at both light and electron microscopic levels. In the light microscope, TH-positive fibers were often closely apposed to ChAT-immunoreactive cell bodies and dendrites in TLD. In the electron microscope, the cell soma and proximal dendrites of ChAT-immunoreactive neurons received synaptic contacts from TH-immunoreactive axon terminals. These results provide a morphological basis for catecholaminergic regulation of the cholinergic reticular system.

  20. Characterization of the binding of shikonin to human immunoglobulin using scanning electron microscope, molecular modeling and multi-spectroscopic methods.

    PubMed

    He, Wenying; Ye, Xinyu; Yao, Xiaojun; Wu, Xiuli; Lin, Qiang; Huang, Guolei; Hua, Yingjie; Hui, Yang

    2015-11-05

    Shikonin, one of the active components isolated from the root of Arnebia euchroma (Royle) Johnst, have anti-tumor, anti-bacterial and anti-inflammatory activities and has been used clinically in phlebitis and vascular purpura. In the present work, the interaction of human immunoglobulin (HIg) with shikonin has been investigated by using scanning electron microscope (SEM), Fourier transform infrared (FT-IR) spectroscopy, fluorescence polarization, synchronous and 3D fluorescence spectroscopy in combination with molecular modeling techniques under physiological conditions with drug concentrations of 3.33-36.67 μM. The results of SEM exhibited visually the special effect on aggregation behavior of the complex formed between HIg and shikonin. The fluorescence polarization values indicated that shikonin molecules were found in a motionally unrestricted environment introduced by HIg. Molecular docking showed the shikonin moiety bound to the hydrophobic cavity of HIg, and there are four hydrogen-bonding interactions between shikonin and the residues of protein. The synchronous and 3D fluorescence spectra confirmed that shikonin could quench the intrinsic fluorescence of HIg and has an effect on the microenvironment around HIg in aqueous solution. The changes in the secondary structure of HIg were estimated by qualitative and quantitative FT-IR spectroscopic analysis. The binding constants and thermodynamic parameters for shikonin-HIg systems were obtained under different temperatures (300 K, 310 K and 320 K). The above results revealed the binding mechanism of shikonin and HIg at the ultrastructure and molecular level. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Macroscopic and microscopic spectral properties of brain networks during local and global synchronization

    NASA Astrophysics Data System (ADS)

    Maksimenko, Vladimir A.; Lüttjohann, Annika; Makarov, Vladimir V.; Goremyko, Mikhail V.; Koronovskii, Alexey A.; Nedaivozov, Vladimir; Runnova, Anastasia E.; van Luijtelaar, Gilles; Hramov, Alexander E.; Boccaletti, Stefano

    2017-07-01

    We introduce a practical and computationally not demanding technique for inferring interactions at various microscopic levels between the units of a network from the measurements and the processing of macroscopic signals. Starting from a network model of Kuramoto phase oscillators, which evolve adaptively according to homophilic and homeostatic adaptive principles, we give evidence that the increase of synchronization within groups of nodes (and the corresponding formation of synchronous clusters) causes also the defragmentation of the wavelet energy spectrum of the macroscopic signal. Our methodology is then applied to getting a glance into the microscopic interactions occurring in a neurophysiological system, namely, in the thalamocortical neural network of an epileptic brain of a rat, where the group electrical activity is registered by means of multichannel EEG. We demonstrate that it is possible to infer the degree of interaction between the interconnected regions of the brain during different types of brain activities and to estimate the regions' participation in the generation of the different levels of consciousness.

  2. An atomic force microscope for the study of the effects of tip sample interactions on dimensional metrology

    NASA Astrophysics Data System (ADS)

    Yacoot, Andrew; Koenders, Ludger; Wolff, Helmut

    2007-02-01

    An atomic force microscope (AFM) has been developed for studying interactions between the AFM tip and the sample. Such interactions need to be taken into account when making quantitative measurements. The microscope reported here has both the conventional beam deflection system and a fibre optical interferometer for measuring the movement of the cantilever. Both can be simultaneously used so as to not only servo control the tip movements, but also detect residual movement of the cantilever. Additionally, a high-resolution homodyne differential optical interferometer is used to measure the vertical displacement between the cantilever holder and the sample, thereby providing traceability for vertical height measurements. The instrument is compatible with an x-ray interferometer, thereby facilitating high resolution one-dimensional scans in the X-direction whose metrology is based on the silicon d220 lattice spacing (0.192 nm). This paper concentrates on the first stage of the instrument's development and presents some preliminary results validating the instrument's performance and showing its potential.

  3. Microscopic motion of particles flowing through a porous medium

    NASA Astrophysics Data System (ADS)

    Lee, Jysoo; Koplik, Joel

    1999-01-01

    Stokesian dynamics simulations are used to study the microscopic motion of particles suspended in fluids passing through porous media. Model porous media with fixed spherical particles are constructed, and mobile ones move through this fixed bed under the action of an ambient velocity field. The pore scale motion of individual suspended particles at pore junctions are first considered. The relative particle flux into different possible directions exiting from a single pore, for two- and three-dimensional model porous media is found to approximately equal the corresponding fractional channel width or area. Next the waiting time distribution for particles which are delayed in a junction due to a stagnation point caused by a flow bifurcation is considered. The waiting times are found to be controlled by two-particle interactions, and the distributions take the same form in model porous media as in two-particle systems. A simple theoretical estimate of the waiting time is consistent with the simulations. It is found that perturbing such a slow-moving particle by another nearby one leads to rather complicated behavior. Finally, the stability of geometrically trapped particles is studied. For simple model traps, it is found that particles passing nearby can "relaunch" the trapped particle through its hydrodynamic interaction, although the conditions for relaunching depend sensitively on the details of the trap and its surroundings.

  4. Low-energy excitations of a Bose-Einstein condensate of rigid rotor molecules

    NASA Astrophysics Data System (ADS)

    Smith, Joseph; Jones, Evan; Rittenhouse, Seth; Wilson, Ryan; Peden, Brandon

    2017-04-01

    We investigate the properties of the ground state and low-lying excitations of an oblate Bose-Einstein condensate composed of rigid rotor molecules in the presence of an external polarizing electric field. We build in a quantum model of molecular polarizability by including the full manifold of rotational states. The interplay between spatial and microscopic degrees of freedom via feedback between the molecular polarizability and inter-molecular dipole-dipole interactions leads to a rich quasi-particle spectrum. Under large applied fields, we reproduce the well-understood density-wave rotonization that appears in a fully polarized dipolar BEC, but under smaller applied fields, we predict the emergence of a spin wave instability and possible new stable ground state phases. We gratefully acknowledge support from the National Science Foundation under Grant No. PHYS-1516421.

  5. Ferromagnetic interaction model of activity level in workplace communication

    NASA Astrophysics Data System (ADS)

    Akitomi, Tomoaki; Ara, Koji; Watanabe, Jun-ichiro; Yano, Kazuo

    2013-03-01

    The nature of human-human interaction, specifically, how people synchronize with each other in multiple-participant conversations, is described by a ferromagnetic interaction model of people’s activity levels. We found two microscopic human interaction characteristics from a real-environment face-to-face conversation. The first characteristic is that people quite regularly synchronize their activity level with that of the other participants in a conversation. The second characteristic is that the degree of synchronization increases as the number of participants increases. Based on these microscopic ferromagnetic characteristics, a “conversation activity level” was modeled according to the Ising model. The results of a simulation of activity level based on this model well reproduce macroscopic experimental measurements of activity level. This model will give a new insight into how people interact with each other in a conversation.

  6. Anomalous plasma diffusion and the magnetopause boundary layer

    NASA Technical Reports Server (NTRS)

    Treumann, Rudolf A.; Labelle, James; Haerendel, Gerhard; Pottelette, Raymond

    1992-01-01

    An overview of the current state of anomalous diffusion research at the magnetopause and its role in the formation of the magnetopause boundary layer is presented. Plasma wave measurements in the boundary layer indicate that most of the relevant unstable wave modes contribute negligibly to the diffusion process at the magnetopause under magnetically undisturbed northward IMF conditions. The most promising instability is the lower hybrid drift instability, which may yield diffusion coefficients of the right order if the highest measured wave intensities are assumed. It is concluded that global stationary diffusion due to wave-particle interactions does not take place at the magnetopause. Microscopic wave-particle interaction and anomalous diffusion may contribute to locally break the MD frozen-in conditions and help in transporting large amounts of magnetosheath plasma across the magnetospheric boundary.

  7. Ab initio study on the molecular recognition by metalloporphyrins: CO interaction with iron porphyrin

    NASA Astrophysics Data System (ADS)

    Han, Seungwu; Cho, Kyeongjae; Ihm, Jisoon

    1999-02-01

    We have performed ab initio pseudopotential calculations to study the effects of structural deformations of iron porphyrin on the configuration of a carbon monoxide (CO) attached to it. We have considered two proximal deformations around the heme group: (i) rotation of a pyrrole ring in the iron porphyrin, and (ii) rotation of the imidazole side chain bound to the iron atom. We have identified induced changes of the atomic geometry and the electronic structure of the iron porphyrin-CO complex, and the results elucidate the microscopic nature of the CO interaction with the iron porphyrin. Implications on the controversies over the binding angle of the CO molecule on the iron porphyrin under different circumstances are discussed. A potential application to the simulation-based chemical sensor design is also discussed.

  8. Root water uptake and lateral interactions among root systems in a temperate forest

    NASA Astrophysics Data System (ADS)

    Agee, E.; He, L.; Bisht, G.; Gough, C. M.; Couvreur, V.; Matheny, A. M.; Bohrer, G.; Ivanov, V. Y.

    2016-12-01

    A growing body of research has highlighted the importance of root architecture and hydraulic properties to the maintenance of the transpiration stream under water limitation and drought. Detailed studies of single plant systems have shown the ability of root systems to adjust zones of uptake due to the redistribution of local water potential gradients, thereby delaying the onset of stress under drying conditions. An open question is how lateral interactions and competition among neighboring plants impact individual and community resilience to water stress. While computational complexity has previously hindered the implementation of microscopic root system structure and function in larger scale hydrological models, newer hybrid approaches allow for the resolution of these properties at the plot scale. Using a modified version of the PFLOTRAN model, which represents the 3-D physics of variably saturated soil, we model root water uptake in a one-hectare temperate forest plot under natural and synthetic forcings. Two characteristic hydraulic architectures, tap roots and laterally sprawling roots, are implemented in an ensemble of simulations. Variations of root architecture, their hydraulic properties, and degree of system interactions produce variable local response to water limitation and provide insights on individual and community response to changing meteorological conditions. Results demonstrate the ability of interacting systems to shift areas of active uptake based on local gradients, allowing individuals to meet water demands despite competition from their peers. These results further illustrate how inter- and intra-species variations in root properties may influence not only individual response to water stress, but also help quantify the margins of resilience for forest ecosystems under changing climate.

  9. Direct numerical simulations of agglomeration of circular colloidal particles in two-dimensional shear flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Young Joon, E-mail: yjchoi@uvic.ca; Djilali, Ned, E-mail: ndjilali@uvic.ca

    2016-01-15

    Colloidal agglomeration of nanoparticles in shear flow is investigated by solving the fluid-particle and particle-particle interactions in a 2D system. We use an extended finite element method in which the dynamics of the particles is solved in a fully coupled manner with the flow, allowing an accurate description of the fluid-particle interfaces without the need of boundary-fitted meshes or of empirical correlations to account for the hydrodynamic interactions between the particles. Adaptive local mesh refinement using a grid deformation method is incorporated with the fluid-structure interaction algorithm, and the particle-particle interaction at the microscopic level is modeled using the Lennard-Jonesmore » potential. Motivated by the process used in fabricating fuel cell catalysts from a colloidal ink, the model is applied to investigate agglomeration of colloidal particles under external shear flow in a sliding bi-periodic Lees-Edwards frame with varying shear rates and particle fraction ratios. Both external shear and particle fraction are found to have a crucial impact on the structure formation of colloidal particles in a suspension. Segregation intensity and graph theory are used to analyze the underlying agglomeration patterns and structures, and three agglomeration regimes are identified.« less

  10. [Strategy of molecular design of drugs: the unification of macro-properties and micro-structures of a molecule].

    PubMed

    Guo, Zong-Ru

    2008-03-01

    The interaction of a drug with the organism involves both the disposition of a drug by the organism and the action of a drug on the organism. The disposition of various exogenous substances, including drugs, complies with general rules. The underlying physical and chemical changes to different drugs in view of time and space, i. e. pharmacokinetics, share common characteristics, that is the tout ensemble of a molecule and its macroscopic properties convey direct effect on the pharmacokinetic behavior as the tendency and consequence of biological evolution. The action of a drug on the organism, on the other hand, implicates the physico-chemical binding of a drug molecule to the target protein, which induces pharmacological and toxicological effects. The biological reactions, no matter beneficial or adverse, are all specific and individual manifestation of the drug molecule and determined by the interactive binding between definitive atoms or groups of the drug molecule and the macromolecular target in three-dimension. Such critical atoms, groups, or fragments responsible for the interaction reflect the microscopic structures of drug molecules and are called pharmacophore. In this context, a drug molecule is presumed as an assembly of macroscopic property and microscopic structure, with the macroscopic properties determining the absorption, distribution, metabolism and elimination of drugs and the microscopic structure coining pharmacological action. The knowledge of the internal relationship between macroscopy/microscopy and PK/PD conduces to comprehension of drug action and guides molecular drug design, because this conception facilitates the identification of structural features necessary for biological response, and the determination of factors modulating the physico-chemical and pharmacokinetic properties. The factors determining macro-properties include molecular weight, solubility, charge, lipophilicity (partition), and polar surface area, etc., which are destined by molecular scaffolds and/or side chain(s) apart from pharmacophore. The features of micro-structures contributing to specific activity contain hydrogen bonding donor and acceptor, positive and negative charge centers, hydrophobic centers and centers of aromatic rings. Different combinations and spacial arrangements of these features determine the distinct activity presented. The macro-property and micro-structure are integrated into a single molecule, and are inseparable. The macro-property reflects overall contribution of atoms and groups in the micro-structure. On the other hand, structural changes aimed to adjust macroscopic property usually alter the relative position of the microscopic structure. The goal of molecular drug design is to integrate the macroscopic and microscopic factors in optimized manner. In the early stage of molecular design, both macroscopic property and microscopic structure should be considered to make pharmacodynamics, pharmacokinetics, and physico-chemical properties in optimal match. Therefore, it required the existence of structural overlapping among acceptable pharmacokinetics, visible developing potential and specific pharmacodynamics. The larger the scope of overlapping, the higher the possibility to be a drug.

  11. A microscopic evaluation of collagen-bilirubin interactions: in vitro surface phenomenon.

    PubMed

    Usharani, N; Jayakumar, G C; Rao, J R; Chandrasekaran, B; Nair, B U

    2014-02-01

    This study is carried out to understand the morphology variations of collagen I matrices influenced by bilirubin. The characteristics of bilirubin interaction with collagen ascertained using various techniques like XRD, CLSM, fluorescence, SEM and AFM. These techniques are used to understand the distribution, expression and colocalization patterns of collagen-bilirubin complexes. The present investigation mimic the in vivo mechanisms created during the disorder condition like jaundice. Fluorescence technique elucidates the crucial role played by bilirubin deposition and interaction during collagen organization. Influence of bilirubin during collagen fibrillogenesis and banding patterns are clearly visualize using SEM. As a result, collagen-bilirubin complex provides different reconstructed patterns because of the influence of bilirubin concentration. Selectivity, specificity and spatial organization of collagen-bilirubin are determined through AFM imaging. Consequently, it is observed that the morphology and quantity of the bilirubin binding to collagen varied by the concentrations and the adsorption rate in protein solutions. Microscopic studies of collagen-bilirubin interaction confirms that bilirubin influence the fibrillogenesis and alter the rate of collagen organization depending on the bilirubin concentration. This knowledge helps to develop a novel drug to inhibit the interface point of interaction between collagen and bilirubin. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  12. Two-probe atomic-force microscope manipulator and its applications.

    PubMed

    Zhukov, A A; Stolyarov, V S; Kononenko, O V

    2017-06-01

    We report on a manipulator based on a two-probe atomic force microscope (AFM) with an individual feedback system for each probe. This manipulator works under an upright optical microscope with 3 mm focal distance. The design of the microscope helps us tomanipulate nanowires using the microscope probes as a two-prong fork. The AFM feedback is realized based on the dynamic full-time contact mode. The applications of the manipulator and advantages of its two-probe design are presented.

  13. Enhanced mechanical properties of hydrothermal carbamated cellulose nanocomposite film reinforced with graphene oxide.

    PubMed

    Gan, Sinyee; Zakaria, Sarani; Syed Jaafar, Sharifah Nabihah

    2017-09-15

    Cellulose carbamate (CC) was synthesized via hydrothermal process and mixed with graphene oxide (GO) to form a homogeneous cellulose matrix nanocomposite films. The properties of CC/GO nanocomposite films fabricated using simple solution-mixing method with different GO loadings were studied. Transmission electron microscope analysis showed the exfoliation of self-synthesized GO nanosheets within the CC matrix. X-ray diffraction results confirmed the crystalline structure of CC/GO films as the CC/GO mass ratio increased from 100/0 to 100/4. The mechanical properties of CC/GO film were significantly improved as compared to neat CC film. From thermogravimetric analysis result, the introduction of GO enhanced the thermal stability and carbon yields. The 3D homogeneous porous structures of the CC/GO films were observed under Field emission scanning electron microscope. These improvements in nanocomposite film properties could be confirmed by Fourier transform infrared spectroscopy due to the strong and good interactions between CC and GO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Solving The Longstanding Problem Of Low-Energy Nuclear Reactions At the Highest Microscopic Level - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quaglioni, S.

    2016-09-22

    A 2011 DOE-NP Early Career Award (ECA) under Field Work Proposal (FWP) SCW1158 supported the project “Solving the Long-Standing Problem of Low-Energy Nuclear Reactions at the Highest Microscopic Level” in the five-year period from June 15, 2011 to June 14, 2016. This project, led by PI S. Quaglioni, aimed at developing a comprehensive and computationally efficient framework to arrive at a unified description of structural properties and reactions of light nuclei in terms of constituent protons and neutrons interacting through nucleon-nucleon (NN) and three-nucleon (3N) forces. Specifically, the project had three main goals: 1) arriving at the accurate predictions formore » fusion reactions that power stars and Earth-based fusion facilities; 2) realizing a comprehensive description of clustering and continuum effects in exotic nuclei, including light Borromean systems; and 3) achieving fundamental understanding of the role of the 3N force in nuclear reactions and nuclei at the drip line.« less

  15. eduSPIM: Light Sheet Microscopy in the Museum

    PubMed Central

    Schmid, Benjamin; Weber, Michael; Huisken, Jan

    2016-01-01

    Light Sheet Microscopy in the Museum Light sheet microscopy (or selective plane illumination microscopy) is an important imaging technique in the life sciences. At the same time, this technique is also ideally suited for community outreach projects, because it produces visually appealing, highly dynamic images of living organisms and its working principle can be understood with basic optics knowledge. Still, the underlying concepts are widely unknown to the non-scientific public. On the occasion of the UNESCO International Year of Light, a technical museum in Dresden, Germany, launched a special, interactive exhibition. We built a fully functional, educational selective plane illumination microscope (eduSPIM) to demonstrate how developments in microscopy promote discoveries in biology. Design Principles of an Educational Light Sheet Microscope To maximize educational impact, we radically reduced a standard light sheet microscope to its essential components without compromising functionality and incorporated stringent safety concepts beyond those needed in the lab. Our eduSPIM system features one illumination and one detection path and a sealed sample chamber. We image fixed zebrafish embryos with fluorescent vasculature, because the structure is meaningful to laymen and visualises the optical principles of light sheet microscopy. Via a simplified interface, visitors acquire fluorescence and transmission data simultaneously. The eduSPIM Design Is Tailored Easily to Fit Numerous Applications The universal concepts presented here may also apply to other scientific approaches that are communicated to laymen in interactive settings. The specific eduSPIM design is adapted easily for various outreach and teaching activities. eduSPIM may even prove useful for labs needing a simple SPIM. A detailed parts list and schematics to rebuild eduSPIM are provided. PMID:27560188

  16. Mechanical interactions between ice crystals and red blood cells during directional solidification.

    PubMed

    Ishiguro, H; Rubinsky, B

    1994-10-01

    Experiments in which red blood cells were frozen on a directional solidification stage under a microscope show that there is a mechanical interaction between ice crystals and cells in which cells are pushed and deformed by the ice crystals. The mechanical interaction occurs during freezing of cells in physiological saline and is significantly inhibited by the addition of 20% v/v glycerol to the solution. The addition of osmotically insignificant quantities of antifreeze proteins from the winter flounder or ocean pout to the physiological saline with 20% v/v glycerol generates strong mechanical interactions between the ice and the cells. The cells were destroyed during freezing in physiological saline, survived freezing in physiological saline with glycerol, and were completely destroyed by the addition of antifreeze proteins to the solution with glycerol. The difference in cell survival through freezing and thawing appears to be related, in part, to the habit of ice crystal growing in the suspension of red blood cells and the nature of mechanical interaction between the ice crystal and the cells. This suggests that mechanical damage may be a factor during cryopreservation of cells.

  17. Safety of Microsurgery Under Loupes Versus Microscope: A Head-to-Head Comparison of 2 Surgeons With Similar Experiences.

    PubMed

    Ehanire, Tosan; Singhal, Dhruv; Mast, Bruce; Leyngold, Mark

    2018-01-24

    Microsurgery is performed using either the operating microscope or loupe magnification. Use of the operating microscope is considered the "criterion standard"; however, loupes are emerging as a safe and reliable technique to perform microsurgery. The purpose of this study was to analyze the safety of microsurgery under loupe magnification compared with the microscope. Previous studies discussing the safety of loupe magnification during microsurgery have been published; however, this is the first study to compare free flap outcomes from 2 surgeons at the same institution, each using their respective technique. The outcomes were compared by retrospective chart review of 116 patients, and 148 microvascular free tissue transfers were performed between January 1, 2013, and July 15, 2016, by 2 surgeons (D.S.) and (M.L.). Patients' demographics, free flap failure rate, and other surgical complications were analyzed. Statistical significance was determined by unpaired t test, and χ analysis was used to determine statistical significance in proportions between groups. Thirty-eight percent of flaps were performed under ×3.5 loupe magnification and 62% under the operating microscope. Most free flaps used were deep inferior epigastric perforator or muscle sparing transverse rectus abdominis flaps (52%) for breast reconstruction, remainder of free flaps included ALT, radial forearm, and latissimus dorsi for a variety of reconstructive applications. There was no significant difference between the loupes and microscope groups in intraoperative anastomotic revision rate (27% vs 17%), postoperative arterial or venous thrombosis (4.4% vs 2.6%, 5.4% vs 2.2%), flap loss (3.6% vs 2.2%), or median length of stay (6 days vs 6.5 days). The loupe magnification group had statistically significant shorter setup time (20 minutes, P < 0.01). Consistent with previously reported studies, we found no statistical difference in free flap outcomes and safety under loupe magnification compared with the operating microscope. This is the first study to demonstrate these findings with 2 microsurgeons both in their first 3 years in practice, with similar training and experience, operating at the same institution and given the same resources, each using either microscopes or loupes for microsurgery.

  18. Quantification of tooth wear: conventional vs new method using toolmakers microscope and a three-dimensional measuring technique.

    PubMed

    Al-Omiri, Mahmoud K; Harb, Rousan; Abu Hammad, Osama A; Lamey, Philip-John; Lynch, Edward; Clifford, Thomas J

    2010-07-01

    This study aimed to evaluate the reliability of a new CAD-CAM Laser scanning machine in detection of incisal tooth wear through a 6-month period and to compare the accuracy of using this new machine against measuring tooth wear using tool maker microscope and conventional tooth wear index. Twenty participants (11 males and 9 females, mean age=22.7 years, SD=2.0) were assessed for incisal tooth wear of lower anterior teeth using Smith and Knight clinical tooth wear index (TWI) on two occasions, the study baseline and 6 months later. Stone dies for each tooth were prepared and scanned using the CAD-CAM Laser Cercon System (Cercon Smart Ceramics, DeguDent, Germany). Scanned images were printed and examined under a toolmaker microscope (Stedall-Dowding Machine Tool Company, Optique et Mecanique de Precision, Marcel Aubert SA, Switzerland) to quantify tooth wear and then the dies were directly assessed under the microscope to measure tooth wear. The Wilcoxon Signed Ranks Test was used to analyse the data. TWI scores for incisal edges were 0, 1, and 2 and were similar at both occasions. Scores 3 and 4 were not detected. Wear values measured by directly assessing the dies under the tool maker microscope (range=517-656microm, mean=582microm, and SD=50) were significantly more than those measured from the Cercon digital machine images (range=132-193microm, mean =165microm, and SD=27) and both showed significant differences between the two occasions. Measuring images obtained with Cercon digital machine under tool maker microscope allowed detection of wear progression over the 6-month period. However, measuring the dies of worn dentition directly under the tool maker microscope enabled detection of wear progression more accurately. Conventional method was the least sensitive for tooth wear quantification and was unable to identify wear progression in most cases. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. CENP-E Kinesin Interacts with SKAP Protein to Orchestrate Accurate Chromosome Segregation in Mitosis*

    PubMed Central

    Huang, Yuejia; Wang, Wenwen; Yao, Phil; Wang, Xiwei; Liu, Xing; Zhuang, Xiaoxuan; Yan, Feng; Zhou, Jinhua; Du, Jian; Ward, Tarsha; Zou, Hanfa; Zhang, Jiancun; Fang, Guowei; Ding, Xia; Dou, Zhen; Yao, Xuebiao

    2012-01-01

    Mitotic chromosome segregation is orchestrated by the dynamic interaction of spindle microtubules with the kinetochore. Although previous studies show that the mitotic kinesin CENP-E forms a link between attachment of the spindle microtubule to the kinetochore and the mitotic checkpoint signaling cascade, the molecular mechanism underlying dynamic kinetochore-microtubule interactions in mammalian cells remains elusive. Here, we identify a novel interaction between CENP-E and SKAP that functions synergistically in governing dynamic kinetochore-microtubule interactions. SKAP binds to the C-terminal tail of CENP-E in vitro and is essential for an accurate kinetochore-microtubule attachment in vivo. Immunoelectron microscopic analysis indicates that SKAP is a constituent of the kinetochore corona fibers of mammalian centromeres. Depletion of SKAP or CENP-E by RNA interference results in a dramatic reduction of inter-kinetochore tension, which causes chromosome mis-segregation with a prolonged delay in achieving metaphase alignment. Importantly, SKAP binds to microtubules in vitro, and this interaction is synergized by CENP-E. Based on these findings, we propose that SKAP cooperates with CENP-E to orchestrate dynamic kinetochore-microtubule interaction for faithful chromosome segregation. PMID:22110139

  20. Agent-based spin model for financial markets on complex networks: Emergence of two-phase phenomena

    NASA Astrophysics Data System (ADS)

    Kim, Yup; Kim, Hong-Joo; Yook, Soon-Hyung

    2008-09-01

    We study a microscopic model for financial markets on complex networks, motivated by the dynamics of agents and their structure of interaction. The model consists of interacting agents (spins) with local ferromagnetic coupling and global antiferromagnetic coupling. In order to incorporate more realistic situations, we also introduce an external field which changes in time. From numerical simulations, we find that the model shows two-phase phenomena. When the local ferromagnetic interaction is balanced with the global antiferromagnetic interaction, the resulting return distribution satisfies a power law having a single peak at zero values of return, which corresponds to the market equilibrium phase. On the other hand, if local ferromagnetic interaction is dominant, then the return distribution becomes double peaked at nonzero values of return, which characterizes the out-of-equilibrium phase. On random networks, the crossover between two phases comes from the competition between two different interactions. However, on scale-free networks, not only the competition between the different interactions but also the heterogeneity of underlying topology causes the two-phase phenomena. Possible relationships between the critical phenomena of spin system and the two-phase phenomena are discussed.

  1. Resolving dual binding conformations of cellulosome cohesin-dockerin complexes using single-molecule force spectroscopy.

    PubMed

    Jobst, Markus A; Milles, Lukas F; Schoeler, Constantin; Ott, Wolfgang; Fried, Daniel B; Bayer, Edward A; Gaub, Hermann E; Nash, Michael A

    2015-10-31

    Receptor-ligand pairs are ordinarily thought to interact through a lock and key mechanism, where a unique molecular conformation is formed upon binding. Contrary to this paradigm, cellulosomal cohesin-dockerin (Coh-Doc) pairs are believed to interact through redundant dual binding modes consisting of two distinct conformations. Here, we combined site-directed mutagenesis and single-molecule force spectroscopy (SMFS) to study the unbinding of Coh:Doc complexes under force. We designed Doc mutations to knock out each binding mode, and compared their single-molecule unfolding patterns as they were dissociated from Coh using an atomic force microscope (AFM) cantilever. Although average bulk measurements were unable to resolve the differences in Doc binding modes due to the similarity of the interactions, with a single-molecule method we were able to discriminate the two modes based on distinct differences in their mechanical properties. We conclude that under native conditions wild-type Doc from Clostridium thermocellum exocellulase Cel48S populates both binding modes with similar probabilities. Given the vast number of Doc domains with predicted dual binding modes across multiple bacterial species, our approach opens up new possibilities for understanding assembly and catalytic properties of a broad range of multi-enzyme complexes.

  2. Use of interactive live digital imaging to enhance histology learning in introductory level anatomy and physiology classes.

    PubMed

    Higazi, Tarig B

    2011-01-01

    Histology is one of the main subjects in introductory college-level Human Anatomy and Physiology classes. Institutions are moving toward the replacement of traditional microscope-based histology learning with virtual microscopy learning amid concerns of losing the valuable learning experience of traditional microscopy. This study used live digital imaging (LDI) of microscopic slides on a SMART board to enhance Histology laboratory teaching. The interactive LDI system consists of a digital camera-equipped microscope that projects live images on a wall-mounted SMART board via a computer. This set-up allows real-time illustration of microscopic slides with highlighted key structural components, as well as the ability to provide the students with relevant study and review material. The impact of interactive LDI on student learning of Histology was then measured based on performance in subsequent laboratory tests before and after its implementation. Student grades increased from a mean of 76% (70.3-82.0, 95% CI) before to 92% (88.8-95.3, 95% CI) after integration of LDI indicating highly significant (P < 0.001) enhancement in students' Histology laboratory performance. In addition, student ratings of the impact of the interactive LDI on their Histology learning were strongly positive, suggesting that a majority of students who valued this learning approach also improved learning and understanding of the material as a result. The interactive LDI technique is an innovative, highly efficient and affordable tool to enhance student Histology learning, which is likely to expand knowledge and student perception of the subject and in turn enrich future science careers. Copyright © 2011 American Association of Anatomists.

  3. Green's function integral equation method for propagation of electromagnetic waves in an anisotropic dielectric-magnetic slab

    NASA Astrophysics Data System (ADS)

    Shu, Weixing; Lv, Xiaofang; Luo, Hailu; Wen, Shuangchun

    2010-08-01

    We extend the Green's function integral method to investigate the propagation of electromagnetic waves through an anisotropic dielectric-magnetic slab. From a microscopic perspective, we analyze the interaction of wave with the slab and derive the propagation characteristics by self-consistent analyses. Applying the results, we find an alternative explanation to the general mechanism for the photon tunneling. The results are confirmed by numerical simulations and disclose the underlying physics of wave propagation through slab. The method extended is applicable to other problems of propagation in dielectric-magnetic materials, including metamaterials.

  4. System analysis of force feedback microscopy

    NASA Astrophysics Data System (ADS)

    Rodrigues, Mario S.; Costa, Luca; Chevrier, Joël; Comin, Fabio

    2014-02-01

    It was shown recently that the Force Feedback Microscope (FFM) can avoid the jump-to-contact in Atomic force Microscopy even when the cantilevers used are very soft, thus increasing force resolution. In this letter, we explore theoretical aspects of the associated real time control of the tip position. We take into account lever parameters such as the lever characteristics in its environment, spring constant, mass, dissipation coefficient, and the operating conditions such as controller gains and interaction force. We show how the controller parameters are determined so that the FFM functions at its best and estimate the bandwidth of the system under these conditions.

  5. Mechanical Properties of Cu-Cr-Nb Alloys

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    1997-01-01

    The chemical compositions of the alloys are listed. The alloying levels were near the values for stochiometric Cr2Nb. A slight excess of Cr was chosen for increased hydrogen embrittlement resistance. The microstructures of all Cu-Cr-Nb alloys were very similar. Two typical transmission electron microscope (TEM) micrographs are presented. The images show the presence of large mount of Cr2Nb precipitates in a nearly pure Cu matrix. The interactions between dislocations and precipitates are currently under investigations, but as the images demonstrates, the extremely fine (less then 15 nm) Cr2Nb are the primary strengtheners for the alloy.

  6. Tip-induced reduction of the resonant tunneling current on semiconductor surfaces.

    PubMed

    Jelínek, Pavel; Svec, Martin; Pou, Pablo; Perez, Ruben; Cháb, Vladimír

    2008-10-24

    We report scanning tunneling microscope measurements showing a substantial decrease of the current, almost to zero, on the Si(111)-(7x7) reconstruction in the near-to-contact region under low bias conditions. First principles simulations for the tip-sample interaction and transport calculations show that this effect is driven by the substantial local modification of the atomic and electronic structure of the surface. The chemical reactivity of the adatom dangling bond states that dominate the electronic density of states close to the Fermi level and their spatial localization result in a strong modification of the electronic current.

  7. Solid-state-based analog of optomechanics

    DOE PAGES

    Naumann, Nicolas L.; Droenner, Leon; Carmele, Alexander; ...

    2016-09-01

    In this study, we investigate a semiconductor quantum dot as a microscopic analog of a basic optomechanical setup. We show that optomechanical features can be reproduced by the solid-state platform, arising from parallels of the underlying interaction processes, which in the optomechanical case is the radiation pressure coupling and in the semiconductor case the electron–phonon coupling. We discuss bistabilities, lasing, and phonon damping, and recover the same qualitative behaviors for the semiconductor and the optomechanical cases expected for low driving strengths. However, in contrast to the optomechanical case, distinct signatures of higher order processes arise in the semiconductor model.

  8. Generic distortion model for metrology under optical microscopes

    NASA Astrophysics Data System (ADS)

    Liu, Xingjian; Li, Zhongwei; Zhong, Kai; Chao, YuhJin; Miraldo, Pedro; Shi, Yusheng

    2018-04-01

    For metrology under optical microscopes, lens distortion is the dominant source of error. Previous distortion models and correction methods mostly rely on the assumption that parametric distortion models require a priori knowledge of the microscopes' lens systems. However, because of the numerous optical elements in a microscope, distortions can be hardly represented by a simple parametric model. In this paper, a generic distortion model considering both symmetric and asymmetric distortions is developed. Such a model is obtained by using radial basis functions (RBFs) to interpolate the radius and distortion values of symmetric distortions (image coordinates and distortion rays for asymmetric distortions). An accurate and easy to implement distortion correction method is presented. With the proposed approach, quantitative measurement with better accuracy can be achieved, such as in Digital Image Correlation for deformation measurement when used with an optical microscope. The proposed technique is verified by both synthetic and real data experiments.

  9. Static and sliding contact of rough surfaces: Effect of asperity-scale properties and long-range elastic interactions

    NASA Astrophysics Data System (ADS)

    Hulikal, Srivatsan; Lapusta, Nadia; Bhattacharya, Kaushik

    2018-07-01

    Friction in static and sliding contact of rough surfaces is important in numerous physical phenomena. We seek to understand macroscopically observed static and sliding contact behavior as the collective response of a large number of microscopic asperities. To that end, we build on Hulikal et al. (2015) and develop an efficient numerical framework that can be used to investigate how the macroscopic response of multiple frictional contacts depends on long-range elastic interactions, different constitutive assumptions about the deforming contacts and their local shear resistance, and surface roughness. We approximate the contact between two rough surfaces as that between a regular array of discrete deformable elements attached to a elastic block and a rigid rough surface. The deformable elements are viscoelastic or elasto/viscoplastic with a range of relaxation times, and the elastic interaction between contacts is long-range. We find that the model reproduces the main macroscopic features of evolution of contact and friction for a range of constitutive models of the elements, suggesting that macroscopic frictional response is robust with respect to the microscopic behavior. Viscoelasticity/viscoplasticity contributes to the increase of friction with contact time and leads to a subtle history dependence. Interestingly, long-range elastic interactions only change the results quantitatively compared to the meanfield response. The developed numerical framework can be used to study how specific observed macroscopic behavior depends on the microscale assumptions. For example, we find that sustained increase in the static friction coefficient during long hold times suggests viscoelastic response of the underlying material with multiple relaxation time scales. We also find that the experimentally observed proportionality of the direct effect in velocity jump experiments to the logarithm of the velocity jump points to a complex material-dependent shear resistance at the microscale.

  10. Characterization of Particle Translocation through Mucin Hydrogels

    PubMed Central

    Lieleg, Oliver; Vladescu, Ioana; Ribbeck, Katharina

    2010-01-01

    Abstract Biological functional entities surround themselves with selective barriers that control the passage of certain classes of macromolecules while rejecting others. A prominent example of such a selective permeability barrier is given by mucus. Mucus is a biopolymer-based hydrogel that lines all wet epithelial surfaces of the human body. It regulates the uptake of nutrients from our gastrointestinal system, adjusts itself with the menstrual cycle to control the passage of sperm, and shields the underlying cells from pathogens such as bacteria and viruses. In the case of drug delivery, the mucus barrier needs to be overcome for successful medical treatment. Despite its importance for both physiology and medical applications, the underlying principles which regulate the permeability of mucus remain enigmatic. Here, we analyze the mobility of microscopic particles in reconstituted mucin hydrogels. We show that electrostatic interactions between diffusing particles and mucin polymers regulate the permeability properties of reconstituted mucin hydrogels. As a consequence, various parameters such as particle surface charge and mucin density, and buffer conditions such as pH and ionic strength, can modulate the microscopic barrier function of the mucin hydrogel. Our findings suggest that the permeability of a biopolymer-based hydrogel such as native mucus can be tuned to a wide range of settings in different compartments of our bodies. PMID:20441741

  11. Reorientation Motion and Preferential Interactions of a Peptide in Denaturants and Osmolyte.

    PubMed

    Jas, Gouri S; Rentchler, Eric C; Słowicka, Agnieszka M; Hermansen, John R; Johnson, Carey K; Middaugh, C Russell; Kuczera, Krzysztof

    2016-03-31

    Fluorescence anisotropy decay measurements and all atom molecular dynamics simulations are used to characterize the orientational motion and preferential interaction of a peptide, N-acetyl-tryptophan-amide (NATA) containing two peptide bonds, in aqueous, urea, guanidinium chloride (GdmCl), and proline solution. Anisotropy decay measurements as a function of temperature and concentration showed moderate slowing of reorientations in urea and GdmCl and very strong slowing in proline solution, relative to water. These effects deviate significantly from simple proportionality of peptide tumbling time to solvent viscosity, leading to the investigation of microscopic preferential interaction behavior through molecular dynamics simulations. Examination of the interactions of denaturants and osmolyte with the peptide backbone uncovers the presence of strongest interaction with urea, intermediate with proline, and weakest with GdmCl. In contrast, the strongest preferential solvation of the peptide side chain is by the nonpolar part of the proline zwitterion, followed by urea, and GdmCl. Interestingly, the local density of urea around the side chain is higher, but the GdmCl distribution is more organized. Thus, the computed preferential solvation of the side chain by the denaturants and osmolyte can account for the trend in reorientation rates. Analysis of water structure and its dynamics uncovered underlying differences between urea, GdmCl, and proline. Urea exerted the smallest perturbation of water behavior. GdmCl had a larger effect on water, slowing kinetics and stabilizing interactions. Proline had the largest overall interactions, exhibiting a strong stabilizing effect on both water-water and water-peptide hydrogen bonds. The results for this elementary peptide system demonstrate significant differences in microscopic behavior of the examined solvent environments. For the commonly used denaturants, urea tends to form disorganized local aggregates around the peptide groups and has little influence on water, while GdmCl only forms specific interactions with the side chain and tends to destabilize water structure. The protective osmolyte proline has the strongest and most specific interactions with the tryptophan side chain, and also stabilizes both water-water and water-peptide hydrogen bonds. Our results strongly suggest protein or peptide denaturation triggered by urea occurs by direct interaction, whereas GdmCl interacts favorably with side chains and destabilizes peptide-water hydrogen bonds. The stabilization of biopolymers by an osmolyte such as proline is governed by favorable preferential interaction with the side chains and stabilization of water.

  12. Virtual reality microscope versus conventional microscope regarding time to diagnosis: an experimental study.

    PubMed

    Randell, Rebecca; Ruddle, Roy A; Mello-Thoms, Claudia; Thomas, Rhys G; Quirke, Phil; Treanor, Darren

    2013-01-01

      To create and evaluate a virtual reality (VR) microscope that is as efficient as the conventional microscope, seeking to support the introduction of digital slides into routine practice.   A VR microscope was designed and implemented by combining ultra-high-resolution displays with VR technology, techniques for fast interaction, and high usability. It was evaluated using a mixed factorial experimental design with technology and task as within-participant variables and grade of histopathologist as a between-participant variable. Time to diagnosis was similar for the conventional and VR microscopes. However, there was a significant difference in the mean magnification used between the two technologies, with participants working at a higher level of magnification on the VR microscope.   The results suggest that, with the right technology, efficient use of digital pathology for routine practice is a realistic possibility. Further work is required to explore what magnification is required on the VR microscope for histopathologists to identify diagnostic features, and the effect on this of the digital slide production process. © 2012 Blackwell Publishing Limited.

  13. TEMHD Effects on Solidification Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Kao, Andrew; Pericleous, Koulis

    2012-01-01

    An unexplored potential exists to control microstructure evolution through the use of external DC magnetic fields. Thermoelectric currents form during solidification and interact with this external field to drive microscopic fluid dynamics within the inter-dendritic region. The convective heat and mass transport can lead to profound changes on the dendritic structure. In this paper the effect of high magnetic fields is demonstrated through the use of both 3-dimensional and 2-dimensional numerical models. The results show that the application of a magnetic field causes significant disruption to the dendritic morphology. Investigation into the underlying mechanism gives initial indicators of how external magnetic fields can either lead to unexpected growth behaviour, or alternatively can be used to control the evolution of microstructure in undercooled melts as encountered in levitated droplet solidification.

  14. Estimation of actomyosin active force maintained by tropomyosin and troponin complex under vertical forces in the in vitro motility assay system

    PubMed Central

    Ishii, Shuya; Kawai, Masataka; Ishiwata, Shin'ichi

    2018-01-01

    The interaction between actin filaments and myosin molecular motors is a power source of a variety of cellular functions including cell division, cell motility, and muscular contraction. In vitro motility assay examines actin filaments interacting with myosin molecules that are adhered to a substrate (e.g., glass surface). This assay has been the standard method of studying the molecular mechanisms of contraction under an optical microscope. While the force generation has been measured through an optically trapped bead to which an actin filament is attached, a force vector vertical to the glass surface has been largely ignored with the in vitro motility assay. The vertical vector is created by the gap (distance) between the trapped bead and the glass surface. In this report, we propose a method to estimate the angle between the actin filament and the glass surface by optically determining the gap size. This determination requires a motorized stage in a standard epi-fluorescence microscope equipped with optical tweezers. This facile method is applied to force measurements using both pure actin filaments, and thin filaments reconstituted from actin, tropomyosin and troponin. We find that the angle-corrected force per unit filament length in the active condition (pCa = 5.0) decreases as the angle between the filament and the glass surface increases; i.e. as the force in the vertical direction increases. At the same time, we demonstrate that the force on reconstituted thin filaments is approximately 1.5 times larger than that on pure actin filaments. The range of angles we tested was between 11° and 36° with the estimated measurement error less than 6°. These results suggest the ability of cytoplasmic tropomyosin isoforms maintaining actomyosin active force to stabilize cytoskeletal architecture. PMID:29420610

  15. Superfluid drag in the two-component Bose-Hubbard model

    NASA Astrophysics Data System (ADS)

    Sellin, Karl; Babaev, Egor

    2018-03-01

    In multicomponent superfluids and superconductors, co- and counterflows of components have, in general, different properties. A. F. Andreev and E. P. Bashkin [Sov. Phys. JETP 42, 164 (1975)] discussed, in the context of He3/He4 superfluid mixtures, that interparticle interactions produce a dissipationless drag. The drag can be understood as a superflow of one component induced by phase gradients of the other component. Importantly, the drag can be both positive (entrainment) and negative (counterflow). The effect is known to have crucial importance for many properties of diverse physical systems ranging from the dynamics of neutron stars and rotational responses of Bose mixtures of ultracold atoms to magnetic responses of multicomponent superconductors. Although substantial literature exists that includes the drag interaction phenomenologically, only a few regimes are covered by quantitative studies of the microscopic origin of the drag and its dependence on microscopic parameters. Here we study the microscopic origin and strength of the drag interaction in a quantum system of two-component bosons on a lattice with short-range interaction. By performing quantum Monte Carlo simulations of a two-component Bose-Hubbard model we obtain dependencies of the drag strength on the boson-boson interactions and properties of the optical lattice. Of particular interest are the strongly correlated regimes where the ratio of coflow and counterflow superfluid stiffnesses can diverge, corresponding to the case of saturated drag.

  16. Combination of hand-held probe and microscopy for fluorescence guided surgery in the brain tumor marginal zone.

    PubMed

    Richter, Johan C O; Haj-Hosseini, Neda; Hallbeck, Martin; Wårdell, Karin

    2017-06-01

    Visualization of the tumor is crucial for differentiating malignant tissue from healthy brain during surgery, especially in the tumor marginal zone. The aim of the study was to introduce a fluorescence spectroscopy-based hand-held probe (HHF-probe) for tumor identification in combination with the fluorescence guided resection surgical microscope (FGR-microscope), and evaluate them in terms of diagnostic performance and practical aspects of fluorescence detection. Eighteen operations were performed on 16 patients with suspected high-grade glioma. The HHF-probe and the FGR-microscope were used for detection of protoporphyrin (PpIX) fluorescence induced by 5-aminolevulinic acid (5-ALA) and evaluated against histopathological analysis and visual grading done through the FGR-microscope by the surgeon. A ratio of PpIX fluorescence intensity to the autofluorescence intensity (fluorescence ratio) was used to quantify the spectra detected by the probe. Fluorescence ratio medians (range 0 - 40) measured by the probe were related to the intensity of the fluorescence in the FGR-microscope, categorized as "none" (0.3, n=131), "weak" (1.6, n=34) and "strong" (5.4, n=28). Of 131 "none" points in the FGR-microscope, 88 (67%) exhibited fluorescence with the HHF-probe. For the tumor marginal zone, the area under the receiver operator characteristics (ROC) curve was 0.49 for the FGR-microscope and 0.65 for the HHF-probe. The probe was integrated in the established routine of tumor resection using the FGR-microscope. The HHF-probe was superior to the FGR-microscope in sensitivity; it detected tumor remnants after debulking under the FGR-microscope. The combination of the HHF-probe and the FGR-microscope was beneficial especially in the tumor marginal zone. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Stability and diversity in collective adaptation

    NASA Astrophysics Data System (ADS)

    Sato, Yuzuru; Akiyama, Eizo; Crutchfield, James P.

    2005-10-01

    We derive a class of macroscopic differential equations that describe collective adaptation, starting from a discrete-time stochastic microscopic model. The behavior of each agent is a dynamic balance between adaptation that locally achieves the best action and memory loss that leads to randomized behavior. We show that, although individual agents interact with their environment and other agents in a purely self-interested way, macroscopic behavior can be interpreted as game dynamics. Application to several familiar, explicit game interactions shows that the adaptation dynamics exhibits a diversity of collective behaviors. The simplicity of the assumptions underlying the macroscopic equations suggests that these behaviors should be expected broadly in collective adaptation. We also analyze the adaptation dynamics from an information-theoretic viewpoint and discuss self-organization induced by the dynamics of uncertainty, giving a novel view of collective adaptation.

  18. Modeling of electron-specimen interaction in scanning electron microscope for e-beam metrology and inspection: challenges and perspectives

    NASA Astrophysics Data System (ADS)

    Suzuki, Makoto; Kameda, Toshimasa; Doi, Ayumi; Borisov, Sergey; Babin, Sergey

    2018-03-01

    The interpretation of scanning electron microscopy (SEM) images of the latest semiconductor devices is not intuitive and requires comparison with computed images based on theoretical modeling and simulations. For quantitative image prediction and geometrical reconstruction of the specimen structure, the accuracy of the physical model is essential. In this paper, we review the current models of electron-solid interaction and discuss their accuracy. We perform the comparison of the simulated results with our experiments of SEM overlay of under-layer, grain imaging of copper interconnect, and hole bottom visualization by angular selective detectors, and show that our model well reproduces the experimental results. Remaining issues for quantitative simulation are also discussed, including the accuracy of the charge dynamics, treatment of beam skirt, and explosive increase in computing time.

  19. Preparing and Restoring Composite Resin Restorations. The Advantage of High Magnification Loupes or the Dental Surgical Operating Microscope.

    PubMed

    Mamoun, John

    2015-01-01

    Use of magnification, such as 6x to 8x binocular surgical loupes or the surgical operating microscope, combined with co-axial illumination, may facilitate the creation of stable composite resin restorations that are less likely to develop caries, cracks or margin stains over years of service. Microscopes facilitate observation of clinically relevant microscopic visual details, such as microscopic amounts of demineralization or caries at preparation margins; microscopic areas of soft, decayed tooth structure; microscopic amounts of moisture contamination of the preparation during bonding; or microscopic marginal gaps in the composite. Preventing microscope-level errors in composite fabrication can result in a composite restoration that, at initial placement, appears perfect when viewed under 6x to 8x magnification and which also is free of secondary caries, marginal staining or cracks at multi-year follow-up visits.

  20. A unifying approach to lattice dynamical and electronic properties of solids

    NASA Astrophysics Data System (ADS)

    Falter, C.

    1988-06-01

    A unified analysis of lattice dynamical and electronic properties of solids with special emphasis on the interaction between electrons and phonons is presented. The article is roughly divided into two parts reflecting different points of view. The density response of the electrons provides the link between these parts. In the first part, the microscopic theory in terms of the density response in crystals is discussed. Relations are pointed out between the density response approach and the density functional theory. The latter is used for a representation of the exchange-correlation interaction and the microscopic force constants. Relevant methods, as recently proposed by various authors for the calculation of the density response in inhomogeneous solids are discussed. Particular attention is paid to the development of a renormalized response description. Applications of this method to lattice dynamical and electronic properties are presented. In the second part an alternative physical concept, the quasi-ion approach, is outlined. This concept is shown to provide a microscopic basis for electronic charge localization in crystals and proves the importance of the correlation between crystal symmetry and many-body effects. Is is derived that within linear response theory an appropriate decomposition of the valence charge density leads uniquely to a spatially localized density contribution at the individual ion which follows its motion rigidly. The composite consisting of this partial density and the ion core is taken to be an individual entity, denoted as quasi-ion, from which the crystal is built up. In a certain sense this is a generalization of Ziman's concept of neutral pseudo-atoms being approximately valid in simple metals. New insight into the bonding mechanism and charge relaxation processes is shown to follow from this concept. In particular, we discuss the covalent, ionic and metallic bonding mechanisms, using the localized picture provided by the partial densities, on the same basis. The quasi-ion approach is also applied to the calculation of phonon-induced charge density redistributions and to the construction of a simplified formulation of microscopic lattice dynamics. Investigations of the phonon dispersion for different bonding types are given within a rigid quasi-ion model and extensions of this model are outlined. Among other things, these calculations indicate that bonding dynamics of (covalent) molecules and crystals can be described by relative rotations of the quasi-ions under the condition of rotational invariance of the system. Finally, possible applications of the quasi-ion concept to an approximate formulation of anharmonic lattice dynamics and the interaction between electrons and phonons are discussed. A numerical investigation of this interaction is presented and compared with the results from the rigid-ion model. As a consequence of the quasi-ion concept a consistent calculation of the phonon dispersion, the electronic band structure and the electron-phonon interaction becomes possible.

  1. Development of HiLo Microscope and its use in In-Vivo Applications

    NASA Astrophysics Data System (ADS)

    Patel, Shreyas J.

    The functionality of achieving optical sectioning in biomedical research is invaluable as it allows for visualization of a biological sample at different depths while being free of background scattering. Most current microscopy techniques that offer optical sectioning, unfortunately, require complex instrumentation and thus are generally costly. HiLo microscopy, on the other hand, offers the same functionality and advantage at a relatively low cost. Hence, the work described in this thesis involves the design, build, and application of a HiLo microscope. More specifically, a standalone HiLo microscope was built in addition to implementing HiLo microscopy on a standard fluorescence microscope. In HiLo microscopy, optical sectioning is achieved by acquiring two different types of images per focal plane. One image is acquired under uniform illumination and the other is acquired under speckle illumination. These images are processed using an algorithm that extracts in-focus information and removes features and glare that occur as a result of background fluorescence. To show the benefits of the HiLo microscopy, several imaging experiments on various samples were performed under a HiLo microscope and compared against a traditional fluorescence microscope and a confocal microscope, which is considered the gold standard in optical imaging. In-vitro and ex-vivo imaging was performed on a set of pollen grains, and optically cleared mouse brain and heart slices. Each of these experiments showed great reduction in background scattering at different depths under HiLo microscopy. More importantly, HiLo imaging of optically cleared heart slice demonstrated emergence of different vasculature at different depths. Reduction of out-of-focus light increased the spatial resolution and allowed better visualization of capillary vessels. Furthermore, HiLo imaging was tested in an in-vivo model of a rodent dorsal window chamber model. When imaging the same sample under confocal microscope, the results were comparable between the two modalities. Additionally, a method of achieving blood flow maps at different depth using a combination of HiLo and LSI imaging is also discussed. The significance of this combined technique could help categorize blood flow to particular depths; this can help improve outcomes of medical treatments such pulse dye laser and photodynamic therapy treatments.

  2. Universal rescaling of flow curves for yield-stress fluids close to jamming

    NASA Astrophysics Data System (ADS)

    Dinkgreve, M.; Paredes, J.; Michels, M. A. J.; Bonn, D.

    2015-07-01

    The experimental flow curves of four different yield-stress fluids with different interparticle interactions are studied near the jamming concentration. By appropriate scaling with the distance to jamming all rheology data can be collapsed onto master curves below and above jamming that meet in the shear-thinning regime and satisfy the Herschel-Bulkley and Cross equations, respectively. In spite of differing interactions in the different systems, master curves characterized by universal scaling exponents are found for the four systems. A two-state microscopic theory of heterogeneous dynamics is presented to rationalize the observed transition from Herschel-Bulkley to Cross behavior and to connect the rheological exponents to microscopic exponents for the divergence of the length and time scales of the heterogeneous dynamics. The experimental data and the microscopic theory are compared with much of the available literature data for yield-stress systems.

  3. Nanostructure formation and regulation during low-energy ion beam sputtering of fused silica surfaces

    NASA Astrophysics Data System (ADS)

    Liao, Wenlin; Dai, Yi-Fan; Nie, Xutao; Nie, Xuqing; Xu, Mingjin

    2017-12-01

    Ion beam sputtering (IBS) possesses strong surface nanostructuring behaviors, where dual microscopic phenomenon can be aroused to induce the formation of ultrasmooth surfaces or regular nanostructures. Low-energy IBS of fused silica surfaces is investigated to discuss the formation mechanism and the regulation of the IBS-induced nanostructures. The research results indicate that these microscopic phenomena can be attributed to the interaction of the IBS-induced surface roughening and smoothing effects, and the interaction process strongly depends on the sputtering conditions. Alternatively, ultrasmooth surface or regular nanostructure can be selectively generated through the regulation of the nanostructuring process, and the features of the generated nanostructures, such as amplitude and period, also can be regulated. Consequently, two different technology aims of nanofabrication, including nanometer-scale and nanometer-precision fabrication, can be realized, respectively. These dual microscopic mechanisms distinguish IBS as a promising nanometer manufacturing technology for the optical surfaces.

  4. Strong influence of polaron-polaron interaction on the magnetoresistance effect in La0.7A0.3MnO3 thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Haijuan; Wang, Kuidong; Zhang, Yuanyuan; Dong, Wenxia; Chen, Long; Tang, Xiaodong; Chen, Jie

    2017-11-01

    The colossal magnetoresistance effect endows La0.7A0.3MnO3 manganites distinctive fascination. Both theoretical and experimental studies demonstrated that the interplay among polarons could significantly influence magnetoresistance. However, the underlying microscopic mechanism of the influence remains elusive due to the lack of experimental evidences. Utilizing ultrafast optical spectroscopy to track the polaron dynamics around Curie temperatures, we observed a diverse two-step recovery process in three sibling manganite thin films with various magnetoresistance effects and Curie temperatures, while the slow step was proposed to be the formation evolution of correlated polarons through the polaron-polaron interaction. Polarons in La0.7Ca0.3MnO3 equilibrate much faster than those in La0.7(Ca0.58Sr0.42)0.3MnO3 and La0.7Sr0.3MnO3, indicating a comparatively tighter interaction between polarons and subsequently a stronger magnetoresistance effect.

  5. Bacoside-A, an anti-amyloid natural substance, inhibits membrane disruption by the amyloidogenic determinant of prion protein through accelerating fibril formation.

    PubMed

    Malishev, Ravit; Nandi, Sukhendu; Kolusheva, Sofiya; Shaham-Niv, Shira; Gazit, Ehud; Jelinek, Raz

    2016-09-01

    Bacosides, class of compounds extracted from the Bacopa monniera plant, exhibit interesting therapeutic properties, particularly enhancing cognitive functions and putative anti-amyloid activity. We show that bacoside-A exerted significant effects upon fibrillation and membrane interactions of the amyloidogenic fragment of the prion protein [PrP(106-126)]. Specifically, when co-incubated with PrP(106-126), bacoside-A accelerated fibril formation in the presence of lipid bilayers and in parallel inhibited bilayer interactions of the peptide aggregates formed in solution. These interesting phenomena were studied by spectroscopic and microscopic techniques, which suggest that bacoside A-promoted fibrillation reduced the concentration of membrane-active pre-fibrillar species of the prion fragment. This study suggests that induction of fibril formation and corresponding inhibition of membrane interactions are likely the underlying factors for ameliorating amyloid protein toxicity by bacoside-A. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Reliability investigation of high-k/metal gate in nMOSFETs by three-dimensional kinetic Monte-Carlo simulation with multiple trap interactions

    NASA Astrophysics Data System (ADS)

    Li, Yun; Jiang, Hai; Lun, Zhiyuan; Wang, Yijiao; Huang, Peng; Hao, Hao; Du, Gang; Zhang, Xing; Liu, Xiaoyan

    2016-04-01

    Degradation behaviors in the high-k/metal gate stacks of nMOSFETs are investigated by three-dimensional (3D) kinetic Monte-Carlo (KMC) simulation with multiple trap coupling. Novel microscopic mechanisms are simultaneously considered in a compound system: (1) trapping/detrapping from/to substrate/gate; (2) trapping/detrapping to other traps; (3) trap generation and recombination. Interacting traps can contribute to random telegraph noise (RTN), bias temperature instability (BTI), and trap-assisted tunneling (TAT). Simulation results show that trap interaction induces higher probability and greater complexity in trapping/detrapping processes and greatly affects the characteristics of RTN and BTI. Different types of trap distribution cause largely different behaviors of RTN, BTI, and TAT. TAT currents caused by multiple trap coupling are sensitive to the gate voltage. Moreover, trap generation and recombination have great effects on the degradation of HfO2-based nMOSFETs under a large stress.

  7. Scientists View Battery Under Microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-04-10

    PNNL researchers use a special microscope setup that shows the inside of a battery as it charges and discharges. This battery-watching microscope is located at EMSL, DOE's Environmental Molecular Sciences Laboratory that resides at PNNL. Researchers the world over can visit EMSL and use special instruments like this, many of which are the only one of their kind available to scientists.

  8. Compact, single-tube scanning tunneling microscope with thermoelectric cooling.

    PubMed

    Jobbins, Matthew M; Agostino, Christopher J; Michel, Jolai D; Gans, Ashley R; Kandel, S Alex

    2013-10-01

    We have designed and built a scanning tunneling microscope with a compact inertial-approach mechanism that fits inside the piezoelectric scanner tube. Rigid construction allows the microscope to be operated without the use of external vibration isolators or acoustic enclosures. Thermoelectric cooling and a water-ice bath are used to increase temperature stability when scanning under ambient conditions.

  9. Scientists View Battery Under Microscope

    ScienceCinema

    None

    2018-01-16

    PNNL researchers use a special microscope setup that shows the inside of a battery as it charges and discharges. This battery-watching microscope is located at EMSL, DOE's Environmental Molecular Sciences Laboratory that resides at PNNL. Researchers the world over can visit EMSL and use special instruments like this, many of which are the only one of their kind available to scientists.

  10. A Study of the Nature of Students' Models of Microscopic Processes in the Context of Modern Physics Experiments.

    ERIC Educational Resources Information Center

    Thacker, Beth Ann

    2003-01-01

    Interviews university students in modern physics about their understanding of three fundamental experiments. Explores their development of models of microscopic processes. Uses interactive demonstrations to probe student understanding of modern physics experiments in two high school physics classes. Analyzes the nature of students' models and the…

  11. Refined tip preparation by electrochemical etching and ultrahigh vacuum treatment to obtain atomically sharp tips for scanning tunneling microscope and atomic force microscope.

    PubMed

    Hagedorn, Till; El Ouali, Mehdi; Paul, William; Oliver, David; Miyahara, Yoichi; Grütter, Peter

    2011-11-01

    A modification of the common electrochemical etching setup is presented. The described method reproducibly yields sharp tungsten tips for usage in the scanning tunneling microscope and tuning fork atomic force microscope. In situ treatment under ultrahigh vacuum (p ≤10(-10) mbar) conditions for cleaning and fine sharpening with minimal blunting is described. The structure of the microscopic apex of these tips is atomically resolved with field ion microscopy and cross checked with field emission. © 2011 American Institute of Physics

  12. Terrestrial Clay under Microscope

    NASA Image and Video Library

    2008-09-30

    A scanning electron microscope captured this image of terresterial soil containing a phyllosilicate mineral from Koua Bocca, Ivory Coast, West Africa. This soil shares some similarities with Martian soil scooped by NASA Phoenix Lander.

  13. Force Field Accelerated Density Functional Theory Molecular Dynamics for Simulation of Reactive Systems at Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Lindsey, Rebecca; Goldman, Nir; Fried, Laurence

    Understanding chemistry at extreme conditions is crucial in fields including geochemistry, astrobiology, and alternative energy. First principles methods can provide valuable microscopic insights into such systems while circumventing the risks of physical experiments, however the time and length scales associated with chemistry at extreme conditions (ns and μm, respectively) largely preclude extension of such models to molecular dynamics. In this work, we develop a simulation approach that retains the accuracy of density functional theory (DFT) while decreasing computational effort by several orders of magnitude. We generate n-body descriptions for atomic interactions by mapping forces arising from short density functional theory (DFT) trajectories on to simple Chebyshev polynomial series. We examine the importance of including greater than 2-body interactions, model transferability to different state points, and discuss approaches to ensure smooth and reasonable model shape outside of the distance domain sampled by the DFT training set. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. Atomic force microscopy of starch systems.

    PubMed

    Zhu, Fan

    2017-09-22

    Atomic force microscopy (AFM) generates information on topography, adhesion, and elasticity of sample surface by touching with a tip. Under suitable experimental settings, AFM can image biopolymers of few nanometers. Starch is a major food and industrial component. AFM has been used to probe the morphology, properties, modifications, and interactions of starches from diverse botanical origins at both micro- and nano-structural levels. The structural information obtained by AFM supports the blocklet structure of the granules, and provides qualitative and quantitative basis for some physicochemical properties of diverse starch systems. It becomes evident that AFM can complement other microscopic techniques to provide novel structural insights for starch systems.

  15. Refining Students' Explanations of an Unfamiliar Physical Phenomenon-Microscopic Friction

    NASA Astrophysics Data System (ADS)

    Corpuz, Edgar De Guzman; Rebello, N. Sanjay

    2017-08-01

    The first phase of this multiphase study involves modeling of college students' thinking of friction at the microscopic level. Diagnostic interviews were conducted with 11 students with different levels of physics backgrounds. A phenomenographic approach of data analysis was used to generate categories of responses which subsequently were used to generate a model of explanation. Most of the students interviewed consistently used mechanical interactions in explaining microscopic friction. According to these students, friction is due to the interlocking or rubbing of atoms. Our data suggest that students' explanations of microscopic friction are predominantly influenced by their macroscopic experiences. In the second phase of the research, teaching experiment was conducted with 18 college students to investigate how students' explanations of microscopic friction can be refined by a series of model-building activities. Data were analyzed using Redish's two-level transfer framework. Our results show that through sequences of hands-on and minds-on activities, including cognitive dissonance and resolution, it is possible to facilitate the refinement of students' explanations of microscopic friction. The activities seemed to be productive in helping students activate associations that refine their ideas about microscopic friction.

  16. 21 CFR 184.1375 - Iron, elemental.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... microscope, it appears as an amorphous powder free from particles having a crystalline structure. It is... pentacarbonyl. It occurs as a dark gray powder. When viewed under a microscope, it appears as spheres built up...

  17. Adirondack Under the Microscope-2

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This overhead look at the martian rock dubbed Adirondack was captured by the Mars Exploration Rover Spirit's panoramic camera. It shows the approximate region where the rover's microscopic imager began its first close-up inspection.

  18. Micro axial tomography: A miniaturized, versatile stage device to overcome resolution anisotropy in fluorescence light microscopy

    NASA Astrophysics Data System (ADS)

    Staier, Florian; Eipel, Heinz; Matula, Petr; Evsikov, Alexei V.; Kozubek, Michal; Cremer, Christoph; Hausmann, Michael

    2011-09-01

    With the development of novel fluorescence techniques, high resolution light microscopy has become a challenging technique for investigations of the three-dimensional (3D) micro-cosmos in cells and sub-cellular components. So far, all fluorescence microscopes applied for 3D imaging in biosciences show a spatially anisotropic point spread function resulting in an anisotropic optical resolution or point localization precision. To overcome this shortcoming, micro axial tomography was suggested which allows object tilting on the microscopic stage and leads to an improvement in localization precision and spatial resolution. Here, we present a miniaturized device which can be implemented in a motor driven microscope stage. The footprint of this device corresponds to a standard microscope slide. A special glass fiber can manually be adjusted in the object space of the microscope lens. A stepwise fiber rotation can be controlled by a miniaturized stepping motor incorporated into the device. By means of a special mounting device, test particles were fixed onto glass fibers, optically localized with high precision, and automatically rotated to obtain views from different perspective angles under which distances of corresponding pairs of objects were determined. From these angle dependent distance values, the real 3D distance was calculated with a precision in the ten nanometer range (corresponding here to an optical resolution of 10-30 nm) using standard microscopic equipment. As a proof of concept, the spindle apparatus of a mature mouse oocyte was imaged during metaphase II meiotic arrest under different perspectives. Only very few images registered under different rotation angles are sufficient for full 3D reconstruction. The results indicate the principal advantage of the micro axial tomography approach for many microscopic setups therein and also those of improved resolutions as obtained by high precision localization determination.

  19. Sodium Fluorescein-Guided Resection under the YELLOW 560 nm Surgical Microscope Filter in Malignant Gliomas: Our First 38 Cases Experience.

    PubMed

    Zhang, Ningning; Tian, Hailong; Huang, Dezhang; Meng, Xianbing; Guo, Wenqiang; Wang, Chaochao; Yin, Xin; Zhang, Hongying; Jiang, Bin; He, Zheng; Wang, Zhigang

    2017-01-01

    Sodium fluorescein (FL) had been safely used in fluorescence-guided microsurgery for imaging various brain tumors. Under the YELLOW 560 nm surgical microscope filter, low-dose FL as a fluorescent dye helps in visualization. Our study investigated the safety and efficacy of this innovative technique in malignant glioma (MG) patients. 38 patients suffering from MGs confirmed by pathology underwent FL-guided resection under YELLOW 560 nm surgical microscope filter. We retrospectively analyzed the clinical characters, microsurgery procedure, extent of resection, pathology of MGs, progression-free survival (PFS), and overall survival (OS). Thirty-eight patients had MGs (10 WHO grade III, 28 WHO grade IV). With YELLOW 560 nm surgical microscope filter combined with neuronavigation, sodium fluorescein-guided gross total resection (GTR) was achieved in 35 (92.1%) patients and subtotal resection in 3 (7.69%). The sensitivity and specificity of FL were 94.4% and 88.6% regardless of radiographic localization. Intraoperatively, 10 biopsies (10/28 FL[+]) showed "low" or "high" fluorescence in non-contrast-enhancement region and are also confirmed by pathology. Our data showed 6-month PFS of 92.3% and median survival of 11 months. FL-guided resection of MGs under the YELLOW 560 nm surgical microscope filter combined with neuronavigation was safe and effective, especially in non-contrast-MRI regions. It is feasible for improving the extent of resection in MGs especially during emergency cases.

  20. Resolving dual binding conformations of cellulosome cohesin-dockerin complexes using single-molecule force spectroscopy

    PubMed Central

    Jobst, Markus A; Milles, Lukas F; Schoeler, Constantin; Ott, Wolfgang; Fried, Daniel B; Bayer, Edward A; Gaub, Hermann E; Nash, Michael A

    2015-01-01

    Receptor-ligand pairs are ordinarily thought to interact through a lock and key mechanism, where a unique molecular conformation is formed upon binding. Contrary to this paradigm, cellulosomal cohesin-dockerin (Coh-Doc) pairs are believed to interact through redundant dual binding modes consisting of two distinct conformations. Here, we combined site-directed mutagenesis and single-molecule force spectroscopy (SMFS) to study the unbinding of Coh:Doc complexes under force. We designed Doc mutations to knock out each binding mode, and compared their single-molecule unfolding patterns as they were dissociated from Coh using an atomic force microscope (AFM) cantilever. Although average bulk measurements were unable to resolve the differences in Doc binding modes due to the similarity of the interactions, with a single-molecule method we were able to discriminate the two modes based on distinct differences in their mechanical properties. We conclude that under native conditions wild-type Doc from Clostridium thermocellum exocellulase Cel48S populates both binding modes with similar probabilities. Given the vast number of Doc domains with predicteddual binding modes across multiple bacterial species, our approach opens up newpossibilities for understanding assembly and catalytic properties of a broadrange of multi-enzyme complexes. DOI: http://dx.doi.org/10.7554/eLife.10319.001 PMID:26519733

  1. Microscopic theory of longitudinal sound velocity in charge ordered manganites.

    PubMed

    Rout, G C; Panda, S

    2009-10-14

    A microscopic theory of longitudinal sound velocity in a manganite system is reported here. The manganite system is described by a model Hamiltonian consisting of charge density wave (CDW) interaction in the e(g) band, an exchange interaction between spins of the itinerant e(g) band electrons and the core t(2g) electrons, and the Heisenberg interaction of the core level spins. The magnetization and the CDW order parameters are considered within mean-field approximations. The phonon Green's function was calculated by Zubarev's technique and hence the longitudinal velocity of sound was finally calculated for the manganite system. The results show that the elastic spring involved in the velocity of sound exhibits strong stiffening in the CDW phase with a decrease in temperature as observed in experiments.

  2. Computer Simulation of the Forces Acting on a Submerged Polystyrene Probe as it Approaches the Succinonitrile Melt-Solid Interface

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Kaukler, William; Whitaker, Ann (Technical Monitor)

    2001-01-01

    A Modeling approach to simulate both mesoscale and microscopic forces acting in a typical AFM experiment is presented. A mesoscale level interaction between the cantilever tip and the sample surface is primarily described by the balance of attractive Van der Waals and repulsive forces. Ultimately, the goal is to measure the forces between a particle and the crystal-melt interface. Two modes of AFM operation are considered in this paper - a stationary and a "tapping" one. The continuous mechanics approach to model tip-surface interaction is presented. At microscopic levels, tip contamination and details of tip-surface interaction are modeled using a molecular dynamics approach for the case of polystyrene - succinonitrile contact. Integration of the mesoscale model with a molecular dynamic model is discussed.

  3. Hyperlens-array-implemented optical microscopy

    NASA Astrophysics Data System (ADS)

    Iwanaga, Masanobu

    2014-08-01

    Limit of resolution of conventional optical microscopes has never reached below 100 nm under visible light illumination. We show that numerically designed high-transmittance hyperlens array (HLA) is implemented in an optical microscope and works in practice for achieving one-shot-recording optical images of in-situ placed objects with sub 50 nm resolution in lateral direction. Direct resolution test employing well-defined nanopatterns proves that the HLA-implemented imaging is super-resolution optical microscopy, which works even under nW/mm2 visible illumination for objects. The HLA implementation makes the resolution of conventional microscopes one-scale higher, leading to the 1/10 illumination wavelength range, that is, mesoscopic range.

  4. Understanding gas-surface interactions from direct force measurements using a specialized torsion balance

    NASA Technical Reports Server (NTRS)

    Cook, S. R.; Hoffbauer, M. A.

    1996-01-01

    The first comprehensive measurements of the magnitude and direction of the forces exerted on surfaces by molecular beams are discussed and used to obtain information about the microscopic properties of the gas-surface interactions. This unique approach is not based on microscopic measurements of the scattered molecules. The reduced force coefficients are introduced as a new set of parameters that completely describe the macroscopic average momentum transfer to a surface by an incident molecular beam. By using a specialized torsion balance and molecular beams of N2, CO, CO2, and H2, the reduced force coefficients are determined from direct measurements of the force components exerted on surface of a solar panel array material, Kapton, SiO2-coated Kapton, and Z-93 as a function of the angle of incidence ranging from 0 degrees to 85 degrees. The absolute flux densities of the molecular beams were measured using a different torsion balance with a beam-stop that nullified the force of the scattered molecules. Standard time-of-flight techniques were used to determine the flux-weighted average velocities of the various molecular beams ranging from 1600 m/s to 4600 m/s. The reduced force coefficients can be used to directly obtain macroscopic average properties of the scattered molecules, such as the flux-weighted average velocity and translational energy, that can then be used to determine microscopic details concerning gas-surface interactions without the complications associated with averaging microscopic measurements.

  5. Angle-resolved photoemission spectroscopy with quantum gas microscopes

    NASA Astrophysics Data System (ADS)

    Bohrdt, A.; Greif, D.; Demler, E.; Knap, M.; Grusdt, F.

    2018-03-01

    Quantum gas microscopes are a promising tool to study interacting quantum many-body systems and bridge the gap between theoretical models and real materials. So far, they were limited to measurements of instantaneous correlation functions of the form 〈O ̂(t ) 〉 , even though extensions to frequency-resolved response functions 〈O ̂(t ) O ̂(0 ) 〉 would provide important information about the elementary excitations in a many-body system. For example, single-particle spectral functions, which are usually measured using photoemission experiments in electron systems, contain direct information about fractionalization and the quasiparticle excitation spectrum. Here, we propose a measurement scheme to experimentally access the momentum and energy-resolved spectral function in a quantum gas microscope with currently available techniques. As an example for possible applications, we numerically calculate the spectrum of a single hole excitation in one-dimensional t -J models with isotropic and anisotropic antiferromagnetic couplings. A sharp asymmetry in the distribution of spectral weight appears when a hole is created in an isotropic Heisenberg spin chain. This effect slowly vanishes for anisotropic spin interactions and disappears completely in the case of pure Ising interactions. The asymmetry strongly depends on the total magnetization of the spin chain, which can be tuned in experiments with quantum gas microscopes. An intuitive picture for the observed behavior is provided by a slave-fermion mean-field theory. The key properties of the spectra are visible at currently accessible temperatures.

  6. Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics.

    PubMed

    Hayashi, Shinichi; Okada, Yasushi

    2015-05-01

    Most current superresolution (SR) microscope techniques surpass the diffraction limit at the expense of temporal resolution, compromising their applications to live-cell imaging. Here we describe a new SR fluorescence microscope based on confocal microscope optics, which we name the spinning disk superresolution microscope (SDSRM). Theoretically, the SDSRM is equivalent to a structured illumination microscope (SIM) and achieves a spatial resolution of 120 nm, double that of the diffraction limit of wide-field fluorescence microscopy. However, the SDSRM is 10 times faster than a conventional SIM because SR signals are recovered by optical demodulation through the stripe pattern of the disk. Therefore a single SR image requires only a single averaged image through the rotating disk. On the basis of this theory, we modified a commercial spinning disk confocal microscope. The improved resolution around 120 nm was confirmed with biological samples. The rapid dynamics of micro-tubules, mitochondria, lysosomes, and endosomes were observed with temporal resolutions of 30-100 frames/s. Because our method requires only small optical modifications, it will enable an easy upgrade from an existing spinning disk confocal to a SR microscope for live-cell imaging. © 2015 Hayashi and Okada. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Probing Electron-Phonon Interaction through Two-Photon Interference in Resonantly Driven Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Reigue, Antoine; Iles-Smith, Jake; Lux, Fabian; Monniello, Léonard; Bernard, Mathieu; Margaillan, Florent; Lemaitre, Aristide; Martinez, Anthony; McCutcheon, Dara P. S.; Mørk, Jesper; Hostein, Richard; Voliotis, Valia

    2017-06-01

    We investigate the temperature dependence of photon coherence properties through two-photon interference (TPI) measurements from a single quantum dot (QD) under resonant excitation. We show that the loss of indistinguishability is related only to the electron-phonon coupling and is not affected by spectral diffusion. Through these measurements and a complementary microscopic theory, we identify two independent separate decoherence processes, both of which are associated with phonons. Below 10 K, we find that the relaxation of the vibrational lattice is the dominant contribution to the loss of TPI visibility. This process is non-Markovian in nature and corresponds to real phonon transitions resulting in a broad phonon sideband in the QD emission spectra. Above 10 K, virtual phonon transitions to higher lying excited states in the QD become the dominant dephasing mechanism, this leads to a broadening of the zero phonon line, and a corresponding rapid decay in the visibility. The microscopic theory we develop provides analytic expressions for the dephasing rates for both virtual phonon scattering and non-Markovian lattice relaxation.

  8. Microscopic origins of the terahertz carrier relaxation and cooling dynamics in graphene

    PubMed Central

    Mihnev, Momchil T.; Kadi, Faris; Divin, Charles J.; Winzer, Torben; Lee, Seunghyun; Liu, Che-Hung; Zhong, Zhaohui; Berger, Claire; de Heer, Walt A.; Malic, Ermin; Knorr, Andreas; Norris, Theodore B.

    2016-01-01

    The ultrafast dynamics of hot carriers in graphene are key to both understanding of fundamental carrier–carrier interactions and carrier–phonon relaxation processes in two-dimensional materials, and understanding of the physics underlying novel high-speed electronic and optoelectronic devices. Many recent experiments on hot carriers using terahertz spectroscopy and related techniques have interpreted the variety of observed signals within phenomenological frameworks, and sometimes invoke extrinsic effects such as disorder. Here, we present an integrated experimental and theoretical programme, using ultrafast time-resolved terahertz spectroscopy combined with microscopic modelling, to systematically investigate the hot-carrier dynamics in a wide array of graphene samples having varying amounts of disorder and with either high or low doping levels. The theory reproduces the observed dynamics quantitatively without the need to invoke any fitting parameters, phenomenological models or extrinsic effects such as disorder. We demonstrate that the dynamics are dominated by the combined effect of efficient carrier–carrier scattering, which maintains a thermalized carrier distribution, and carrier–optical–phonon scattering, which removes energy from the carrier liquid. PMID:27221060

  9. Influence of Cyclic Straining on Fatigue, Deformation, and Fracture Behavior of High-Strength Alloy Steel

    NASA Astrophysics Data System (ADS)

    Manigandan, K.; Srivatsan, T. S.; Vasudevan, V. K.; Tammana, D.; Poorganji, B.

    2016-01-01

    In this paper, the results of a study on microstructural influences on mechanical behavior of the high-strength alloy steel Tenax™ 310 are presented and discussed. Under the influence of fully reversed strain cycling, the stress response of this alloy steel revealed softening from the onset of deformation. Cyclic strain resistance exhibited a linear trend for the variation of both elastic strain amplitude with reversals-to-failure, and plastic strain amplitude with reversals-to-failure. Fracture morphology was essentially the same at the macroscopic level over the entire range of cyclic strain amplitudes examined. However, at the fine microscopic level, this high-strength alloy steel revealed fracture to be mixed-mode with features reminiscent of "locally" ductile and brittle mechanisms. The macroscopic mechanisms governing stress response at the fine microscopic level, resultant fatigue life, and final fracture behavior are presented and discussed in light of the mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the microstructural constituents during fully reversed strain cycling, cyclic strain amplitude, and resultant response stress.

  10. Tunneling magnetic force microscopy

    NASA Technical Reports Server (NTRS)

    Burke, Edward R.; Gomez, Romel D.; Adly, Amr A.; Mayergoyz, Isaak D.

    1993-01-01

    We have developed a powerful new tool for studying the magnetic patterns on magnetic recording media. This was accomplished by modifying a conventional scanning tunneling microscope. The fine-wire probe that is used to image surface topography was replaced with a flexible magnetic probe. Images obtained with these probes reveal both the surface topography and the magnetic structure. We have made a thorough theoretical analysis of the interaction between the probe and the magnetic fields emanating from a typical recorded surface. Quantitative data about the constituent magnetic fields can then be obtained. We have employed these techniques in studies of two of the most important issues of magnetic record: data overwrite and maximizing data-density. These studies have shown: (1) overwritten data can be retrieved under certain conditions; and (2) improvements in data-density will require new magnetic materials. In the course of these studies we have developed new techniques to analyze magnetic fields of recorded media. These studies are both theoretical and experimental and combined with the use of our magnetic force scanning tunneling microscope should lead to further breakthroughs in the field of magnetic recording.

  11. A living mesoscopic cellular automaton made of skin scales.

    PubMed

    Manukyan, Liana; Montandon, Sophie A; Fofonjka, Anamarija; Smirnov, Stanislav; Milinkovitch, Michel C

    2017-04-12

    In vertebrates, skin colour patterns emerge from nonlinear dynamical microscopic systems of cell interactions. Here we show that in ocellated lizards a quasi-hexagonal lattice of skin scales, rather than individual chromatophore cells, establishes a green and black labyrinthine pattern of skin colour. We analysed time series of lizard scale colour dynamics over four years of their development and demonstrate that this pattern is produced by a cellular automaton (a grid of elements whose states are iterated according to a set of rules based on the states of neighbouring elements) that dynamically computes the colour states of individual mesoscopic skin scales to produce the corresponding macroscopic colour pattern. Using numerical simulations and mathematical derivation, we identify how a discrete von Neumann cellular automaton emerges from a continuous Turing reaction-diffusion system. Skin thickness variation generated by three-dimensional morphogenesis of skin scales causes the underlying reaction-diffusion dynamics to separate into microscopic and mesoscopic spatial scales, the latter generating a cellular automaton. Our study indicates that cellular automata are not merely abstract computational systems, but can directly correspond to processes generated by biological evolution.

  12. Microscopic Evolution of Laboratory Volcanic Hybrid Earthquakes

    PubMed Central

    Ghaffari, H. O.; Griffith, W. A.; Benson, P. M.

    2017-01-01

    Characterizing the interaction between fluids and microscopic defects is one of the long-standing challenges in understanding a broad range of cracking processes, in part because they are so difficult to study experimentally. We address this issue by reexamining records of emitted acoustic phonon events during rock mechanics experiments under wet and dry conditions. The frequency spectrum of these events provides direct information regarding the state of the system. Such events are typically subdivided into high frequency (HF) and low frequency (LF) events, whereas intermediate “Hybrid” events, have HF onsets followed by LF ringing. At a larger scale in volcanic terranes, hybrid events are used empirically to predict eruptions, but their ambiguous physical origin limits their diagnostic use. By studying acoustic phonon emissions from individual microcracking events we show that the onset of a secondary instability–related to the transition from HF to LF–occurs during the fast equilibration phase of the system, leading to sudden increase of fluid pressure in the process zone. As a result of this squeezing process, a secondary instability akin to the LF event occurs. This mechanism is consistent with observations of hybrid earthquakes. PMID:28074878

  13. A living mesoscopic cellular automaton made of skin scales

    NASA Astrophysics Data System (ADS)

    Manukyan, Liana; Montandon, Sophie A.; Fofonjka, Anamarija; Smirnov, Stanislav; Milinkovitch, Michel C.

    2017-04-01

    In vertebrates, skin colour patterns emerge from nonlinear dynamical microscopic systems of cell interactions. Here we show that in ocellated lizards a quasi-hexagonal lattice of skin scales, rather than individual chromatophore cells, establishes a green and black labyrinthine pattern of skin colour. We analysed time series of lizard scale colour dynamics over four years of their development and demonstrate that this pattern is produced by a cellular automaton (a grid of elements whose states are iterated according to a set of rules based on the states of neighbouring elements) that dynamically computes the colour states of individual mesoscopic skin scales to produce the corresponding macroscopic colour pattern. Using numerical simulations and mathematical derivation, we identify how a discrete von Neumann cellular automaton emerges from a continuous Turing reaction-diffusion system. Skin thickness variation generated by three-dimensional morphogenesis of skin scales causes the underlying reaction-diffusion dynamics to separate into microscopic and mesoscopic spatial scales, the latter generating a cellular automaton. Our study indicates that cellular automata are not merely abstract computational systems, but can directly correspond to processes generated by biological evolution.

  14. Laser-assisted electron tunneling in a STM junction

    NASA Astrophysics Data System (ADS)

    Chang, Shunhua Thomas

    2000-10-01

    Since its introduction in 1981, the Nobel prize-winning scanning tunneling microscope (STM) has been developed into a powerful yet conceptually simple instrument, replacing traditional scanning and transmission electron microscopes (SEM/TEM) in many of the microscopic surface phenomenon studies. The strength of the STM stems from the sensitive tunneling current-potential barrier width relationship of the electron tunneling process, and has been used to re-examine the frequency-mixing and harmonic generation properties of an non-linear metal- oxide-metal (MOM) tunneling junction. In this research, electron-tunneling events under polarized laser radiation at 514.5-nm argon and 10.6-μm carbon dioxide laser wavelengths were investigated. The objective is to understand the underlying interactive mechanisms between the tunneling junction and the external laser excitation. A commercial scanning tunneling microscope head and controller were incorporated into the experimental setup. Operation characteristics and the electrical properties of the STM junction were determined. Tunneling current and distance responses with respect to different laser polarization, modulation frequency, incident power, and tunneling distance were also conducted. From the experimental results it is shown that thermal expansion effect was the dominant source of response for laser modulation frequency up to about 100 kHz, in quantitative agreement with theoretical calculations. Different laser polarizations as the experiments demonstrated did not contribute significantly to the STM response in the investigated frequency range. The electric field induced by the laser beam was calculated to be one to two order of magnitudes lower than the field required to initiate field emission where the tunneling junction I- V curve is most non-linear. Also, the electrical coupling of the incident laser at the STM junction was determined to be non-critical at visible laser wavelength, and the reflected laser energy from the sample re-entering the junction was shown to be weak and did not influence the ongoing electron tunneling process. In conclusion, the thermal expansion of the physical tunneling junction was found to be responsible to the tunneling current modulation in a laser - STM setup for laser modulation frequencies in the lower frequency range.

  15. The relationship between morphological changes of lens epithelial cells and intraocular lens optic material.

    PubMed

    Majima, K

    1998-01-01

    To examine the morphological changes of lens epithelial cells (LECs) occurring directly beneath and at regions contacting various intraocular lens (IOL) optic materials, human LECs were cultured on human anterior lens capsules and were further incubated upon placing above the cells lens optics made of polymethylmethacrylate, silicone, and soft acrylic material. Observations as to the morphological changes of LECs under phase-contrast microscope and scanning electron microscope were performed on the 14th day of incubation. Gatherings of LECs were observed at regions contacting the soft acrylic material under phase-contrast microscope, and gatherings of LECs were observed accurately at the same regions mentioned above under scanning electron microscope. On the other hand, LECs in contact with two other optic materials did not show morphological changes. The results suggest that LECs attached to and proliferated on not only the anterior lens capsules but also the soft acrylic IOL optics. The model used in this study may be useful in studying the relationship between cellular movement of LECs and IOL optic material.

  16. Particle-hole symmetry in generalized seniority, microscopic interacting boson (fermion) model, nucleon-pair approximation, and other models

    NASA Astrophysics Data System (ADS)

    Jia, L. Y.

    2016-06-01

    The particle-hole symmetry (equivalence) of the full shell-model Hilbert space is straightforward and routinely used in practical calculations. In this work I show that this symmetry is preserved in the subspace truncated up to a certain generalized seniority and give the explicit transformation between the states in the two types (particle and hole) of representations. Based on the results, I study particle-hole symmetry in popular theories that could be regarded as further truncations on top of the generalized seniority, including the microscopic interacting boson (fermion) model, the nucleon-pair approximation, and other models.

  17. Computer Simulation of the Forces Acting on the Polystyrene Probe Submerged into the Succinonitrile Near Phase Transition

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Kaukler, William F.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Modeling approach to simulate both mesoscale and microscopic forces acting in a typical AFM experiment is presented. At mesoscale level interaction between the cantilever tip and the sample surface is primarily described by the balance of attractive Van der Waals and repulsive forces. The model of cantilever oscillations is applicable to both non-contact and "tapping" AFM. This model can be farther enhanced to describe nanoparticle manipulation by cantilever. At microscopic level tip contamination and details of tip-surface interaction can be simulated using molecular dynamics approach. Integration of mesoscale model with molecular dynamic model is discussed.

  18. Microscopic Lagrangian description of warm plasmas. IV - Macroscopic approximation

    NASA Technical Reports Server (NTRS)

    Kim, H.; Crawford, F. W.

    1983-01-01

    The averaged-Lagrangian method is applied to linear wave propagation and nonlinear three-wave interaction in a warm magnetoplasma, in the macroscopic approximation. The microscopic Lagrangian treated by Kim and Crawford (1977) and by Galloway and Crawford (1977) is first expanded to third order in perturbation. Velocity integration is then carried out, before applying Hamilton's principle to obtain a general description of wave propagation and coupling. The results are specialized to the case of interaction between two electron plasma waves and an Alfven wave. The method is shown to be more powerful than the alternative possibility of working from the beginning with a macroscopic Lagrangian density.

  19. Dynamics and Emergent Structures in Active Fluids

    NASA Astrophysics Data System (ADS)

    Baskaran, Aparna

    2014-03-01

    In this talk, we consider an active fluid of colloidal sized particles, with the primary manifestation of activity being a self-replenishing velocity along one body axis of the particle. This is a minimal model for varied systems such as bacterial colonies, cytoskeletal filament motility assays vibrated granular particles and self propelled diffusophoretic colloids, depending on the nature of interaction among the particles. Using microscopic Brownian dynamics simulations, coarse-graining using the tools of non-equilibrium statistical mechanics and analysis of macroscopic hydrodynamic theories, we characterize emergent structures seen in these systems, which are determined by the symmetry of the interactions among the active units, such as propagating density waves, dense stationary bands, asters and phase separated isotropic clusters. We identify a universal mechanism, termed ``self-regulation,'' as the underlying physics that leads to these structures in diverse systems. Support from NSF through DMR-1149266 and DMR-0820492.

  20. Infrared and Ultraviolet Spectroscopy of Gas-Phase Imidazolium and Pyridinium Ionic Liquids.

    NASA Astrophysics Data System (ADS)

    Young, Justin W.; Booth, Ryan S.; Annesley, Christopher; Stearns, Jaime A.

    2015-06-01

    Ionic liquids (ILs) are a highly variable and potentially game-changing class of molecules for a number of Air Force applications such as satellite propulsion, but the complex nature of IL structure and intermolecular interactions makes it difficult to adequately predict structure-property relationships in order to make new IL-based technology a reality. For example, methylation of imidazolium ionic liquids leads to a substantial increase in viscosity but the underlying physical mechanism is not understood. In addition, the role of hydrogen bonding in ILs, and especially its relationship to macroscopic properties, is a matter of ongoing research. Here we describe the gas-phase spectroscopy of a series of imidazolium- and pyridinium-based ILs, using a combination of infrared spectroscopy and density functional theory to establish the intermolecular interactions present in various ILs, to assess how well they are described by theory, and to relate microscopic structure to macroscopic properties.

  1. Detecting Friedel oscillations in ultracold Fermi gases

    NASA Astrophysics Data System (ADS)

    Riechers, Keno; Hueck, Klaus; Luick, Niclas; Lompe, Thomas; Moritz, Henning

    2017-09-01

    Investigating Friedel oscillations in ultracold gases would complement the studies performed on solid state samples with scanning-tunneling microscopes. In atomic quantum gases interactions and external potentials can be tuned freely and the inherently slower dynamics allow to access non-equilibrium dynamics following a potential or interaction quench. Here, we examine how Friedel oscillations can be observed in current ultracold gas experiments under realistic conditions. To this aim we numerically calculate the amplitude of the Friedel oscillations which are induced by a potential barrier in a 1D Fermi gas and compare it to the expected atomic and photonic shot noise in a density measurement. We find that to detect Friedel oscillations the signal from several thousand one-dimensional systems has to be averaged. However, as up to 100 parallel one-dimensional systems can be prepared in a single run with present experiments, averaging over about 100 images is sufficient.

  2. Monopole antenna in quantitative near-field microwave microscopy of planar structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reznik, Alexander N.; Korolyov, Sergey A.

    We have developed an analytical model of a near-field microwave microscope based on a coaxial resonator with a sharpened tip probe. The probe interacts with a layered sample that features an arbitrary depth distribution of permittivity. The microscopic tip end with the accumulated charge is regarded as a monopole antenna radiating an electric field in near zone. The impedance of such an antenna is determined within a quasi-static approximation. The proposed model is used for calculating the sample-sensitive parameters of the microscope, specifically, resonance frequency f{sub 0} and quality factor Q{sub 0}, as a function of probe-sample distance h. Themore » theory has been verified experimentally in studies of semiconductor structures, both bulk and thin films. For measurements, we built a ∼2.1 GHz microscope with an effective tip radius of about 100 μm. The theoretical and experimental dependences f{sub 0}(h) and Q{sub 0}(h) were found to be in a good agreement. The developed theory underlies the method for determining sheet resistance R{sub sh} of a semiconductor film on a dielectric substrate proposed in this article. Studies were performed on doped n-GaN films on an Al{sub 2}O{sub 3} substrate. The effective radius and height of the probe determined from calibration measurements of etalon samples were used as the model fitting parameters. For etalon samples, we employed homogeneous sapphire and doped silicon plates. We also performed four-probe dc measurements of R{sub sh}. The corresponding values for samples with R{sub sh} > 1 kΩ were found to be 50% to 100% higher than the microwave results, which are attributed to the presence of microdefects in semiconductor films.« less

  3. Novel instrumentation for multifield time-lapse cinemicrography.

    PubMed

    Kallman, R F; Blevins, N; Coyne, M A; Prionas, S D

    1990-04-01

    The most significant feature of the system that is described is its ability to image essentially simultaneously the growth of up to 99 single cells into macroscopic colonies, each in its own microscope field. Operationally, fields are first defined and programmed by a trained observer. All subsequent steps are automatic and under computer control. Salient features of the hardware are stepper motor-controlled movement of the stage and fine adjustment of an inverted microscope, a high-quality 16-mm cine camera with light meter and controls, and a miniature incubator in which cells may be grown under defined conditions directly on the microscope stage. This system, termed MUTLAS, necessitates reordering of the primary images by rephotographing them on fresh film. Software developed for the analysis of cell and colony growth requires frame-by-frame examination of the secondary film and the use of a mouse-driven cursor to trace microscopically visible (4X objective magnification) events.

  4. Considering High-Tech Exhibits?

    ERIC Educational Resources Information Center

    Routman, Emily

    1994-01-01

    Discusses a variety of high-tech exhibit media used in The Living World, an educational facility operated by The Saint Louis Zoo. Considers the strengths and weaknesses of holograms, video, animatronics, video-equipped microscopes, and computer interactives. Computer interactives are treated with special attention. (LZ)

  5. [Laboratory analysis of the first case of imported oval malaria in Rizhao City].

    PubMed

    Chao, Li; Ying, Zhang; Ting, Xiao

    2016-01-25

    To diagnose the first imported case of Plasmodium ovale infection by laboratory detection. The epidemiological data and blood samples of the case were collected, and the samples were detected by the microscopic examination, rapid diagnostic test (RDT) and nested PCR. The patient was a construction worker backing from Congo, Africa. He experienced the symptoms of irregular fever and weakness one month after returning in Lingyang Town, Junxian County. The results of RDT only suggested no- Plasmodium falciparum infection. Under the microscope, it was seen that the infected RBC were obviously disfigured and in irregular shape, the ring forms were thick and big, and also thick granulas in big trophozoite stage and schizont stage were found. The results of PCR showed that the size of amplified product was about 800 bp, which was conformed to that of P. ovale . Though microscopic examination is the golden standard for malaria diagnosis, as P. ovale is difficult to be identified under microscope, the microscopic method combined with PCR test can be used for definite diagnosis.

  6. Frequency of second mesiobuccal canal in permanent maxillary first molars using the operating microscope and selective dentin removal: A clinical study.

    PubMed

    Das, Suroopa; Warhadpande, Manjusha M; Redij, Saurabh A; Jibhkate, N G; Sabir, Husain

    2015-01-01

    The aim of this study was to investigate whether the combination of operating microscope and selective dentin removal increased the frequency of second mesiobuccal (MB2) canal detection in permanent maxillary first molar teeth. One hundred fifty permanent maxillary first molars indicated for root canal treatment were randomly selected from patients belonging to the age group of 18-45 years irrespective of gender. After access cavity preparation and location of main canals, the MB2 canal orifice was sought in all teeth with an endodontic explorer under direct vision (Stage I), then under magnification with the aid of operating microscope (Stage II) and finally with the combined use of operating microscope and selective dentin removal (Stage III). MB2 canals were detected in 36%, 54% and 72% of the teeth in Stages I-III, respectively. This study demonstrated that dental operating microscope when used along with adjunctive aids such as selective dentin removal/troughing and good clinical knowledge will increase the ability of dental clinician to locate MB2 canals.

  7. Enhancing extracellular electron transfer between Pseudomonas aeruginosa PAO1 and light driven semiconducting birnessite.

    PubMed

    Ren, Guiping; Sun, Yuan; Ding, Yang; Lu, Anhuai; Li, Yan; Wang, Changqiu; Ding, Hongrui

    2018-06-02

    In recent years, considerable research effort has explored the interaction between semiconducting minerals and microorganisms, such relationship is a promising way to increase the efficiency of bioelectrochemical systems. Herein, the enhancement of electron transfer between birnessite photoanodes and Pseudomonas aeruginosa PAO1 under visible light was investigated. Under light illumination and positive bias, the light-birnessite-PAO1 electrochemical system generated a photocurrent of 279.57 μA/cm 2 , which is 322% and 170% higher than those in the abiotic control and dead culture, suggesting photoenhanced electrochemical interaction between birnessite and Pseudomonas. The I-t curves presented repeatable responses to light on/off cycles, and multi-conditions analyses indicated that the enhanced photocurrent was attributed to the additional redox species associated with P. aeruginosa PAO1 and with the biofilm on birnessite. Electroconductibility analysis was conducted on the biofilm cellularly by conductive atomic force microscope. Pyocyanin was isolated as the biosynthesized extracellular shuttle and characterized by cyclic voltammetry and surface-enhanced Raman spectroscopy. Rapid bioelectron transfer driven by light was observed. The results suggest new opportunities for designing photo-bioelectronic devices and expanding our understanding of extracellular electron transfer with semiconducting minerals under light in nature environments. Copyright © 2018. Published by Elsevier B.V.

  8. Spore associated bacteria regulates maize root K+/Na+ ion homeostasis to promote salinity tolerance during arbuscular mycorrhizal symbiosis.

    PubMed

    Selvakumar, Gopal; Shagol, Charlotte C; Kim, Kiyoon; Han, Seunggab; Sa, Tongmin

    2018-06-05

    The interaction between arbuscular mycorrhizal fungi (AMF) and AMF spore associated bacteria (SAB) were previously found to improve mycorrhizal symbiotic efficiency under saline stress, however, the information about the molecular basis of this interaction remain unknown. Therefore, the present study aimed to investigate the response of maize plants to co-inoculation of AMF and SAB under salinity stress. The co-inoculation of AMF and SAB significantly improved plant dry weight, nutrient content of shoot and root tissues under 25 or 50 mM NaCl. Importantly, co-inoculation significantly reduced the accumulation of proline in shoots and Na + in roots. Co-inoculated maize plants also exhibited high K + /Na + ratios in roots at 25 mM NaCl concentration. Mycorrhizal colonization significantly positively altered the expression of ZmAKT2, ZmSOS1, and ZmSKOR genes, to maintain K + and Na + ion homeostasis. Confocal laser scanning microscope (CLSM) view showed that SAB were able to move and localize into inter- and intracellular spaces of maize roots and were closely associated with the spore outer hyaline layer. These new findings indicate that co-inoculation of AMF and SAB effectively alleviates the detrimental effects of salinity through regulation of SOS pathway gene expression and K + /Na + homeostasis to improve maize plant growth.

  9. Vacancy Transport and Interactions on Metal Surfaces

    DTIC Science & Technology

    2014-03-06

    prevent obtaining systematical pictures with atomic scale resolution. Thus the experiments on adatom and mono -vacancy surface diffusion on Ag(110) were...vacuum conditions with atomic scale resolution with Scanning Tunneling Microscope (STM) and Field Ion Microscope (FIM). For each investigated material...experimental conditions for creation of surface vacancies on Au(100) has been determined and observations of surface diffusion of mono vacancies has been

  10. Polar nature of stress-induced twin walls in ferroelastic CaTiO3

    NASA Astrophysics Data System (ADS)

    Yokota, H.; Niki, S.; Haumont, R.; Hicher, P.; Uesu, Y.

    2017-08-01

    A compressive uniaxial mechanical stress is applied on ferroelastic CaTiO3 (CTO), and a change in the domain structure is observed under a polarization microscope and a second harmonic generation (SHG) microscope. New twin walls (TWs) appear perpendicular to the original TWs under stress. The SHG microscope observations and analyses confirm that this type of stress-induced TWs is polar, similar to the original TWs, and is crystallographically prominent with monoclinic symmetry m. A quantitative estimation of this stress-induced effect reveals that CTO is hard ferroelastic in the sense that the TW movement requires a large stress. A possible application of this phenomenon is discussed.

  11. Imaging the microscopic structure of shear thinning and thickening colloidal suspensions.

    PubMed

    Cheng, Xiang; McCoy, Jonathan H; Israelachvili, Jacob N; Cohen, Itai

    2011-09-02

    The viscosity of colloidal suspensions varies with shear rate, an important effect encountered in many natural and industrial processes. Although this non-Newtonian behavior is believed to arise from the arrangement of suspended particles and their mutual interactions, microscopic particle dynamics are difficult to measure. By combining fast confocal microscopy with simultaneous force measurements, we systematically investigate a suspension's structure as it transitions through regimes of different flow signatures. Our measurements of the microscopic single-particle dynamics show that shear thinning results from the decreased relative contribution of entropic forces and that shear thickening arises from particle clustering induced by hydrodynamic lubrication forces. This combination of techniques illustrates an approach that complements current methods for determining the microscopic origins of non-Newtonian flow behavior in complex fluids.

  12. Sodium Fluorescein-Guided Resection under the YELLOW 560 nm Surgical Microscope Filter in Malignant Gliomas: Our First 38 Cases Experience

    PubMed Central

    Tian, Hailong; Huang, Dezhang; Meng, Xianbing; Guo, Wenqiang; Wang, Chaochao; Yin, Xin; Zhang, Hongying; Jiang, Bin; He, Zheng

    2017-01-01

    Objective Sodium fluorescein (FL) had been safely used in fluorescence-guided microsurgery for imaging various brain tumors. Under the YELLOW 560 nm surgical microscope filter, low-dose FL as a fluorescent dye helps in visualization. Our study investigated the safety and efficacy of this innovative technique in malignant glioma (MG) patients. Patients and Method 38 patients suffering from MGs confirmed by pathology underwent FL-guided resection under YELLOW 560 nm surgical microscope filter. We retrospectively analyzed the clinical characters, microsurgery procedure, extent of resection, pathology of MGs, progression-free survival (PFS), and overall survival (OS). Results Thirty-eight patients had MGs (10 WHO grade III, 28 WHO grade IV). With YELLOW 560 nm surgical microscope filter combined with neuronavigation, sodium fluorescein-guided gross total resection (GTR) was achieved in 35 (92.1%) patients and subtotal resection in 3 (7.69%). The sensitivity and specificity of FL were 94.4% and 88.6% regardless of radiographic localization. Intraoperatively, 10 biopsies (10/28 FL[+]) showed “low” or “high” fluorescence in non-contrast-enhancement region and are also confirmed by pathology. Our data showed 6-month PFS of 92.3% and median survival of 11 months. Conclusion FL-guided resection of MGs under the YELLOW 560 nm surgical microscope filter combined with neuronavigation was safe and effective, especially in non-contrast-MRI regions. It is feasible for improving the extent of resection in MGs especially during emergency cases. PMID:29124069

  13. Enhanced optical coupling and Raman scattering via microscopic interface engineering

    NASA Astrophysics Data System (ADS)

    Thompson, Jonathan V.; Hokr, Brett H.; Kim, Wihan; Ballmann, Charles W.; Applegate, Brian E.; Jo, Javier A.; Yamilov, Alexey; Cao, Hui; Scully, Marlan O.; Yakovlev, Vladislav V.

    2017-11-01

    Spontaneous Raman scattering is an extremely powerful tool for the remote detection and identification of various chemical materials. However, when those materials are contained within strongly scattering or turbid media, as is the case in many biological and security related systems, the sensitivity and range of Raman signal generation and detection is severely limited. Here, we demonstrate that through microscopic engineering of the optical interface, the optical coupling of light into a turbid material can be substantially enhanced. This improved coupling facilitates the enhancement of the Raman scattering signal generated by molecules within the medium. In particular, we detect at least two-orders of magnitude more spontaneous Raman scattering from a sample when the pump laser light is focused into a microscopic hole in the surface of the sample. Because this approach enhances both the interaction time and interaction region of the laser light within the material, its use will greatly improve the range and sensitivity of many spectroscopic techniques, including Raman scattering and fluorescence emission detection, inside highly scattering environments.

  14. Evidence of a rolling motion of a microparticle on a silicon wafer in a liquid environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiwek, Simon; Stark, Robert W., E-mail: stark@csi.tu-darmstadt.de, E-mail: dietz@csi.tu-darmstadt.de; Dietz, Christian, E-mail: stark@csi.tu-darmstadt.de, E-mail: dietz@csi.tu-darmstadt.de

    2016-05-21

    The interaction of micro- and nanometer-sized particles with surfaces plays a crucial role when small-scale structures are built in a bottom-up approach or structured surfaces are cleaned in the semiconductor industry. For a reliable quantification of the interaction between individual particles and a specific surface, however, the motion type of the particle must be known. We developed an approach to unambiguously distinguish between sliding and rolling particles. To this end, fluorescent particles were partially bleached in a confocal laser scanning microscope to tailor an optical inhomogeneity, which allowed for the identification of the characteristic motion pattern. For the manipulation, themore » water flow generated by a fast moving cantilever-tip of an atomic force microscope enabled the contactless pushing of the particle. We thus experimentally evidenced a rolling motion of a micrometer-sized particle directly with a fluorescence microscope. A similar approach could help to discriminate between rolling and sliding particles in liquid flows of microfluidic systems.« less

  15. Precise Orientation of a Single C60 Molecule on the Tip of a Scanning Probe Microscope

    NASA Astrophysics Data System (ADS)

    Chiutu, C.; Sweetman, A. M.; Lakin, A. J.; Stannard, A.; Jarvis, S.; Kantorovich, L.; Dunn, J. L.; Moriarty, P.

    2012-06-01

    We show that the precise orientation of a C60 molecule which terminates the tip of a scanning probe microscope can be determined with atomic precision from submolecular contrast images of the fullerene cage. A comparison of experimental scanning tunneling microscopy data with images simulated using computationally inexpensive Hückel theory provides a robust method of identifying molecular rotation and tilt at the end of the probe microscope tip. Noncontact atomic force microscopy resolves the atoms of the C60 cage closest to the surface for a range of molecular orientations at tip-sample separations where the molecule-substrate interaction potential is weakly attractive. Measurements of the C60C60 pair potential acquired using a fullerene-terminated tip are in excellent agreement with theoretical predictions based on a pairwise summation of the van der Waals interactions between C atoms in each cage, i.e., the Girifalco potential [L. Girifalco, J. Phys. Chem. 95, 5370 (1991)JPCHAX0022-365410.1021/j100167a002].

  16. Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film.

    PubMed

    Nishiyama, Hidetoshi; Suga, Mitsuo; Ogura, Toshihiko; Maruyama, Yuusuke; Koizumi, Mitsuru; Mio, Kazuhiro; Kitamura, Shinichi; Sato, Chikara

    2010-03-01

    Direct observation of subcellular structures and their characterization is essential for understanding their physiological functions. To observe them in open environment, we have developed an inverted scanning electron microscope with a detachable, open-culture dish, capable of 8 nm resolution, and combined with a fluorescence microscope quasi-simultaneously observing the same area from the top. For scanning electron microscopy from the bottom, a silicon nitride film window in the base of the dish maintains a vacuum between electron gun and open sample dish while allowing electrons to pass through. Electrons are backscattered from the sample and captured by a detector under the dish. Cells cultured on the open dish can be externally manipulated under optical microscopy, fixed, and observed using scanning electron microscopy. Once fine structures have been revealed by scanning electron microscopy, their component proteins may be identified by comparison with separately prepared fluorescence-labeled optical microscopic images of the candidate proteins, with their heavy-metal-labeled or stained ASEM images. Furthermore, cell nuclei in a tissue block stained with platinum-blue were successfully observed without thin-sectioning, which suggests the applicability of this inverted scanning electron microscope to cancer diagnosis. This microscope visualizes mesoscopic-scale structures, and is also applicable to non-bioscience fields including polymer chemistry. (c) 2010 Elsevier Inc. All rights reserved.

  17. Low-energy nuclear spectroscopy in a microscopic multiphonon approach

    NASA Astrophysics Data System (ADS)

    Lo Iudice, N.; Ponomarev, V. Yu; Stoyanov, Ch; Sushkov, A. V.; Voronov, V. V.

    2012-04-01

    The low-lying spectra of heavy nuclei are investigated within the quasiparticle-phonon model. This microscopic approach goes beyond the quasiparticle random-phase approximation by treating a Hamiltonian of separable form in a microscopic multiphonon basis. It is therefore able to describe the anharmonic features of collective modes as well as the multiphonon states, whose experimental evidence is continuously growing. The method can be put in close correspondence with the proton-neutron interacting boson model. By associating the microscopic isoscalar and isovector quadrupole phonons with proton-neutron symmetric and mixed-symmetry quadrupole bosons, respectively, the microscopic states can be classified, just as in the algebraic model, according to their phonon content and their symmetry. In addition, these states disclose the nuclear properties which are to be ascribed to genuine shell effects, not included in the algebraic approach. Due to its flexibility, the method can be implemented numerically for systematic studies of spectroscopic properties throughout entire regions of vibrational nuclei. The spectra and multipole transition strengths so computed are in overall good agreement with the experimental data. By exploiting the correspondence of the method with the interacting boson model, it is possible to embed the microscopic states into this algebraic frame and, therefore, face the study of nuclei far from shell closures, not directly accessible to merely microscopic approaches. Here, it is shown how this task is accomplished through systematic investigations of magnetic dipole and, especially, electric dipole modes along paths moving from the vibrational to the transitional regions. The method is very well suited to the study of well-deformed nuclei. It provides reliable descriptions of low-lying magnetic as well as electric multipole modes of nuclei throughout the rare-earth and actinide regions. Attention is focused here on the low-lying 0+ states produced in large abundance in recent experiments. The analysis shows that the quasiparticle-phonon model accounts for the occurrence of so many 0+ levels and discloses their nature.

  18. eduSPIM: Light Sheet Microscopy in the Museum.

    PubMed

    Jahr, Wiebke; Schmid, Benjamin; Weber, Michael; Huisken, Jan

    2016-01-01

    Light sheet microscopy (or selective plane illumination microscopy) is an important imaging technique in the life sciences. At the same time, this technique is also ideally suited for community outreach projects, because it produces visually appealing, highly dynamic images of living organisms and its working principle can be understood with basic optics knowledge. Still, the underlying concepts are widely unknown to the non-scientific public. On the occasion of the UNESCO International Year of Light, a technical museum in Dresden, Germany, launched a special, interactive exhibition. We built a fully functional, educational selective plane illumination microscope (eduSPIM) to demonstrate how developments in microscopy promote discoveries in biology. To maximize educational impact, we radically reduced a standard light sheet microscope to its essential components without compromising functionality and incorporated stringent safety concepts beyond those needed in the lab. Our eduSPIM system features one illumination and one detection path and a sealed sample chamber. We image fixed zebrafish embryos with fluorescent vasculature, because the structure is meaningful to laymen and visualises the optical principles of light sheet microscopy. Via a simplified interface, visitors acquire fluorescence and transmission data simultaneously. The universal concepts presented here may also apply to other scientific approaches that are communicated to laymen in interactive settings. The specific eduSPIM design is adapted easily for various outreach and teaching activities. eduSPIM may even prove useful for labs needing a simple SPIM. A detailed parts list and schematics to rebuild eduSPIM are provided.

  19. Switched capacitor charge pump used for low-distortion imaging in atomic force microscope.

    PubMed

    Zhang, Jie; Zhang, Lian Sheng; Feng, Zhi Hua

    2015-01-01

    The switched capacitor charge pump (SCCP) is an effective method of linearizing charges on piezoelectric actuators and therefore constitute a significant approach to nano-positioning. In this work, it was for the first time implemented in an atomic force microscope for low-distortion imaging. Experimental results showed that the image quality was improved evidently under the SCCP drive compared with that under traditional linear voltage drive. © Wiley Periodicals, Inc.

  20. The Enhanced Driver’s License: Collateral Gains or Collateral Damage?

    DTIC Science & Technology

    2012-12-01

    fact, are only detectible under a high- powered electron microscope. The indication, thus, is that the improvements made to the driver’s license...security environment, say airport security, there is no time to analyze driver’s licenses under a high- powered electron microscope to ensure they are...95 Advancements in recent decades have reduced the size and cost of RFID technology and as such, have increased the number of purposes ( supply

  1. Direct atomic force microscopic evidence of hydrogen bonding interaction in phosphatidic acid Langmuir-Blodgett bilayer

    NASA Astrophysics Data System (ADS)

    Chunbo, Yuan; Ying, Wu; Yueming, Sun; Zuhong, Lu; Juzheng, Liu

    1997-12-01

    Molecularly resolved atomic force microscopic images of phosphatidic acid Langmuir-Blodgett bilayers show that phosphate groups in polar region of the films are packing in a distorted hexagonal organization with long-range orientational and positional order. Intermolecular hydrogen bonding interactions, which should be responsible for the ordering and stability of bilayers, are visualized directly between adjacent phosphate groups in the polar region of the bilayer. Some adjacent phosphatidic acid molecules link each other through the formation of intermolecular hydrogen bonds between phosphate groups in polar region to form local supramolecules, which provide the bilayer's potential as a functionized film in the investigation on the lateral conductions of protons in the biological bilayers.

  2. Investigating Cell-Material Interactions of Magnetospirillum magneticum as an Approach for Probing Submerged Surface Structural Integrity

    DTIC Science & Technology

    2012-07-01

    developed a microscope- based , offset Helmholtz coil system with a custom-designed microcontroller. We have developed a microfabrication approach for...implemented an experimental model system using ferromagnetic beads. We have applied direct and frequency based magnetic fields for controlling magnetotactic...fields. Expanded Accomplishments We have developed a microscope- based , offset Helmholtz coil system with a custom- designed microcontroller. To be

  3. Noise induced chaos in optically driven colloidal rings.

    NASA Astrophysics Data System (ADS)

    Roichman, Yael; Zaslavsky, George; Grier, David G.

    2007-03-01

    Given a constant flux of energy, many driven dissipative systems rapidly organize themselves into configurations that support steady state motion. Examples include swarming of bacterial colonies, convection in shaken sandpiles, and synchronization in flowing traffic. How simple objects interacting in simple ways self-organize generally is not understood, mainly because so few of the available experimental systems afford the necessary access to their microscopic degrees of freedom. This talk introduces a new class of model driven dissipative systems typified by three colloidal spheres circulating around a ring-like optical trap known as an optical vortex. By controlling the interplay between hydrodynamic interactions and fixed disorder we are able to drive a transition from a previously predicted periodic steady state to fully developed chaos. In addition, by tracking both microscopic trajectories and macroscopic collective fluctuations the relation between the onset of microscopic weak chaos and the evolution of space-time self-similarity in macroscopic transport properties is revealed. In a broader scope, several optical vortices can be coupled to create a large dissipative system where each building block has internal degrees of freedom. In such systems the little understood dynamics of processes like frustration and jamming, fluctuation-dissipation relations and the propagation of collective motion can be tracked microscopically.

  4. Chemotactic and hydrodynamic effects on collective dynamics of self-diffusiophoretic Janus motors

    NASA Astrophysics Data System (ADS)

    Huang, Mu-Jie; Schofield, Jeremy; Kapral, Raymond

    2017-12-01

    Collective motion in nonequilibrium steady state suspensions of self-propelled Janus motors driven by chemical reactions can arise due to interactions coming from direct intermolecular forces, hydrodynamic flow effects, or chemotactic effects mediated by chemical gradients. The relative importance of these interactions depends on the reactive characteristics of the motors, the way in which the system is maintained in a steady state, and properties of the suspension, such as the volume fraction. From simulations of a microscopic hard collision model for the interaction of fluid particles with the Janus motor we show that dynamic cluster states exist and determine the interaction mechanisms that are responsible for their formation. The relative importance of chemotactic and hydrodynamic effects is identified by considering a microscopic model in which chemotactic effects are turned off while the full hydrodynamic interactions are retained. The system is maintained in a steady state by means of a bulk reaction in which product particles are reconverted into fuel particles. The influence of the bulk reaction rate on the collective dynamics is also studied.

  5. Universality away from critical points in a thermostatistical model

    NASA Astrophysics Data System (ADS)

    Lapilli, C. M.; Wexler, C.; Pfeifer, P.

    Nature uses phase transitions as powerful regulators of processes ranging from climate to the alteration of phase behavior of cell membranes to protect cells from cold, building on the fact that thermodynamic properties of a solid, liquid, or gas are sensitive fingerprints of intermolecular interactions. The only known exceptions from this sensitivity are critical points. At a critical point, two phases become indistinguishable and thermodynamic properties exhibit universal behavior: systems with widely different intermolecular interactions behave identically. Here we report a major counterexample. We show that different members of a family of two-dimensional systems —the discrete p-state clock model— with different Hamiltonians describing different microscopic interactions between molecules or spins, may exhibit identical thermodynamic behavior over a wide range of temperatures. The results generate a comprehensive map of the phase diagram of the model and, by virtue of the discrete rotors behaving like continuous rotors, an emergent symmetry, not present in the Hamiltonian. This symmetry, or many-to-one map of intermolecular interactions onto thermodynamic states, demonstrates previously unknown limits for macroscopic distinguishability of different microscopic interactions.

  6. Resonant difference-frequency atomic force ultrasonic microscope

    NASA Technical Reports Server (NTRS)

    Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)

    2010-01-01

    A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.

  7. Floquet prethermalization and regimes of heating in a periodically driven, interacting quantum system

    NASA Astrophysics Data System (ADS)

    Weidinger, Simon; Knap, Michael

    We study the regimes of heating in the periodically driven O (N) -model, which represents a generic model for interacting quantum many-body systems. By computing the absorbed energy with a non-equilibrium Keldysh Green's function approach, we establish three dynamical regimes: at short times a single-particle dominated regime, at intermediate times a stable Floquet prethermal regime in which the system ceases to absorb, and at parametrically late times a thermalizing regime. Our simulations suggest that in the thermalizing regime the absorbed energy grows algebraically in time with an the exponent that approaches the universal value of 1 / 2 , and is thus significantly slower than linear Joule heating. Our results demonstrate the parametric stability of prethermal states in a generic many-body system driven at frequencies that are comparable to its microscopic scales. This paves the way for realizing exotic quantum phases, such as time crystals or interacting topological phases, in the prethermal regime of interacting Floquet systems. We acknowledge support from the Technical University of Munich - Institute for Advanced Study, funded by the German Excellence Initiative and the European Union FP7 under Grant agreement 291763, and from the DFG Grant No. KN 1254/1-1.

  8. Adsorption, Aggregation, and Deposition Behaviors of Carbon Dots on Minerals.

    PubMed

    Liu, Xia; Li, Jiaxing; Huang, Yongshun; Wang, Xiangxue; Zhang, Xiaodong; Wang, Xiangke

    2017-06-06

    The increased production of carbon dots (CDs) and the release and accumulation of CDs in both surface and groundwater has resulted in the increasing interest in their research. To assess the environmental behavior of CDs, the interaction between CDs and goethite was studied under different environmental conditions. Electrokinetic characterization of CDs suggested that the ζ-potential and size distribution of CDs were affected by pH and electrolyte species, indicating that these factors influenced the stability of CDs in aqueous solutions. Traditional Derjaguin-Landau-Verwey-Overbeek theory did not fit well the aggregation process of CDs. Results of the effects of pH and ionic strength suggested that electronic attraction dominated the aggregation of CDs. Compared with other minerals, hydrogen-bonding interactions and Lewis acid-base interactions contributed to the aggregation of CDs, in addition to van der Waals and electrical double-layer forces. Adsorption isotherms and microscopic Fourier transformed infrared spectroscopy indicated that chemical bonds were formed between CDs and goethite. These findings are useful to understand the interaction of CDs with minerals, as well as the potential fate and toxicity of CDs in the natural environment, especially in soils and sediments.

  9. Generation of dense statistical connectomes from sparse morphological data

    PubMed Central

    Egger, Robert; Dercksen, Vincent J.; Udvary, Daniel; Hege, Hans-Christian; Oberlaender, Marcel

    2014-01-01

    Sensory-evoked signal flow, at cellular and network levels, is primarily determined by the synaptic wiring of the underlying neuronal circuitry. Measurements of synaptic innervation, connection probabilities and subcellular organization of synaptic inputs are thus among the most active fields of research in contemporary neuroscience. Methods to measure these quantities range from electrophysiological recordings over reconstructions of dendrite-axon overlap at light-microscopic levels to dense circuit reconstructions of small volumes at electron-microscopic resolution. However, quantitative and complete measurements at subcellular resolution and mesoscopic scales to obtain all local and long-range synaptic in/outputs for any neuron within an entire brain region are beyond present methodological limits. Here, we present a novel concept, implemented within an interactive software environment called NeuroNet, which allows (i) integration of sparsely sampled (sub)cellular morphological data into an accurate anatomical reference frame of the brain region(s) of interest, (ii) up-scaling to generate an average dense model of the neuronal circuitry within the respective brain region(s) and (iii) statistical measurements of synaptic innervation between all neurons within the model. We illustrate our approach by generating a dense average model of the entire rat vibrissal cortex, providing the required anatomical data, and illustrate how to measure synaptic innervation statistically. Comparing our results with data from paired recordings in vitro and in vivo, as well as with reconstructions of synaptic contact sites at light- and electron-microscopic levels, we find that our in silico measurements are in line with previous results. PMID:25426033

  10. Multi-scale Imaging of Cellular and Sub-cellular Structures using Scanning Probe Recognition Microscopy.

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Rice, A. F.

    2005-03-01

    Scanning Probe Recognition Microscopy is a new scanning probe capability under development within our group to reliably return to and directly interact with a specific nanobiological feature of interest. In previous work, we have successfully recognized and classified tubular versus globular biological objects from experimental atomic force microscope images using a method based on normalized central moments [ref. 1]. In this paper we extend this work to include recognition schemes appropriate for cellular and sub-cellular structures. Globular cells containing tubular actin filaments are under investigation. Thus there are differences in external/internal shapes and scales. Continuous Wavelet Transform with a differential Gaussian mother wavelet is employed for multi- scale analysis. [ref. 1] Q. Chen, V. Ayres and L. Udpa, ``Biological Investigation Using Scanning Probe Recognition Microscopy,'' Proceedings 3rd IEEE Conference on Nanotechnology, vol. 2, p 863-865 (2003).

  11. Many-body design of highly strained GaInNAs electroabsorption modulators on GaInAs ternary substrates

    NASA Astrophysics Data System (ADS)

    Fujisawa, Takeshi; Arai, Masakazu; Kano, Fumiyoshi

    2010-05-01

    Electroabsorption in highly strained GaInAs and GaInNAs quantum wells (QWs) grown on GaInAs or quasi-GaInAs substrates is investigated by using microscopic many-body theory. The effects of various parameters, such as strain, barrier height, substrate composition, and temperature are thoroughly examined. It is shown that the value of the absorption coefficient strongly depends on the depth of the QWs under large bias electric field due to the small overlap integral of wave functions between the conduction and valence bands. The use of GaInNAs QWs makes the strain in the well layer very small. Further, the effective quantum-well depth is increased in GaInNAs QWs due to the anticrossing interaction between the conduction and N-resonant bands, making it possible to obtain larger absorption coefficient under large bias electric fields without using wide-band gap materials for barriers.

  12. Life under the Microscope: Single-Molecule Fluorescence Highlights the RNA World.

    PubMed

    Ray, Sujay; Widom, Julia R; Walter, Nils G

    2018-04-25

    The emergence of single-molecule (SM) fluorescence techniques has opened up a vast new toolbox for exploring the molecular basis of life. The ability to monitor individual biomolecules in real time enables complex, dynamic folding pathways to be interrogated without the averaging effect of ensemble measurements. In parallel, modern biology has been revolutionized by our emerging understanding of the many functions of RNA. In this comprehensive review, we survey SM fluorescence approaches and discuss how the application of these tools to RNA and RNA-containing macromolecular complexes in vitro has yielded significant insights into the underlying biology. Topics covered include the three-dimensional folding landscapes of a plethora of isolated RNA molecules, their assembly and interactions in RNA-protein complexes, and the relation of these properties to their biological functions. In all of these examples, the use of SM fluorescence methods has revealed critical information beyond the reach of ensemble averages.

  13. Temporal scaling in information propagation.

    PubMed

    Huang, Junming; Li, Chao; Wang, Wen-Qiang; Shen, Hua-Wei; Li, Guojie; Cheng, Xue-Qi

    2014-06-18

    For the study of information propagation, one fundamental problem is uncovering universal laws governing the dynamics of information propagation. This problem, from the microscopic perspective, is formulated as estimating the propagation probability that a piece of information propagates from one individual to another. Such a propagation probability generally depends on two major classes of factors: the intrinsic attractiveness of information and the interactions between individuals. Despite the fact that the temporal effect of attractiveness is widely studied, temporal laws underlying individual interactions remain unclear, causing inaccurate prediction of information propagation on evolving social networks. In this report, we empirically study the dynamics of information propagation, using the dataset from a population-scale social media website. We discover a temporal scaling in information propagation: the probability a message propagates between two individuals decays with the length of time latency since their latest interaction, obeying a power-law rule. Leveraging the scaling law, we further propose a temporal model to estimate future propagation probabilities between individuals, reducing the error rate of information propagation prediction from 6.7% to 2.6% and improving viral marketing with 9.7% incremental customers.

  14. Temporal scaling in information propagation

    NASA Astrophysics Data System (ADS)

    Huang, Junming; Li, Chao; Wang, Wen-Qiang; Shen, Hua-Wei; Li, Guojie; Cheng, Xue-Qi

    2014-06-01

    For the study of information propagation, one fundamental problem is uncovering universal laws governing the dynamics of information propagation. This problem, from the microscopic perspective, is formulated as estimating the propagation probability that a piece of information propagates from one individual to another. Such a propagation probability generally depends on two major classes of factors: the intrinsic attractiveness of information and the interactions between individuals. Despite the fact that the temporal effect of attractiveness is widely studied, temporal laws underlying individual interactions remain unclear, causing inaccurate prediction of information propagation on evolving social networks. In this report, we empirically study the dynamics of information propagation, using the dataset from a population-scale social media website. We discover a temporal scaling in information propagation: the probability a message propagates between two individuals decays with the length of time latency since their latest interaction, obeying a power-law rule. Leveraging the scaling law, we further propose a temporal model to estimate future propagation probabilities between individuals, reducing the error rate of information propagation prediction from 6.7% to 2.6% and improving viral marketing with 9.7% incremental customers.

  15. Creep-Fatigue Interaction and Cyclic Strain Analysis in P92 Steel Based on Test

    NASA Astrophysics Data System (ADS)

    Ji, Dongmei; Zhang, Lai-Chang; Ren, Jianxing; Wang, Dexian

    2015-04-01

    This work focused on the interaction of creep and fatigue and cyclic strain analysis in high-chromium ferritic P92 steel based on load-controlled creep-fatigue (CF) tests and conventional creep test at 873 K. Mechanical testing shows that the cyclic load inhibits the propagation of creep damage in the P92 steel and CF interaction becomes more severe with the decrease in the holding period duration and stress ratio. These results are also verified by the analysis of cyclic strain. The fatigue lifetime reduces with the increasing of the holding period duration and it does not reduce much with the increasing stress ratio especially under the conditions of long holding period duration. The cyclic strains (i.e., the strain range and creep strain) of CF tests consist of three stages, which is the same as those for the conventional creep behavior. The microscopic fracture surface observations illustrated that two different kinds of voids are observed at the fracture surfaces and Laves phase precipitates at the bottom of the voids.

  16. The scaling of human interactions with city size

    PubMed Central

    Schläpfer, Markus; Bettencourt, Luís M. A.; Grauwin, Sébastian; Raschke, Mathias; Claxton, Rob; Smoreda, Zbigniew; West, Geoffrey B.; Ratti, Carlo

    2014-01-01

    The size of cities is known to play a fundamental role in social and economic life. Yet, its relation to the structure of the underlying network of human interactions has not been investigated empirically in detail. In this paper, we map society-wide communication networks to the urban areas of two European countries. We show that both the total number of contacts and the total communication activity grow superlinearly with city population size, according to well-defined scaling relations and resulting from a multiplicative increase that affects most citizens. Perhaps surprisingly, however, the probability that an individual's contacts are also connected with each other remains largely unaffected. These empirical results predict a systematic and scale-invariant acceleration of interaction-based spreading phenomena as cities get bigger, which is numerically confirmed by applying epidemiological models to the studied networks. Our findings should provide a microscopic basis towards understanding the superlinear increase of different socioeconomic quantities with city size, that applies to almost all urban systems and includes, for instance, the creation of new inventions or the prevalence of certain contagious diseases. PMID:24990287

  17. 3D interferometric microscope: color visualization of engineered surfaces for industrial applications

    NASA Astrophysics Data System (ADS)

    Schmit, Joanna; Novak, Matt; Bui, Son

    2015-09-01

    3D microscopes based on white light interference (WLI) provide precise measurement for the topography of engineering surfaces. However, the display of an object in its true colors as observed under white illumination is often desired; this traditionally has presented a challenge for WLI-based microscopes. Such 3D color display is appealing to the eye and great for presentations, and also provides fast evaluation of certain characteristics like defects, delamination, or deposition of different materials. Determination of color as observed by interferometric objectives is not straightforward; we will present how color imaging capabilities similar to an ordinary microscope can be obtained in interference microscopes based on WLI and we will give measurement and imaging examples of a few industrial samples.

  18. Evolution of cooperation driven by incremental learning

    NASA Astrophysics Data System (ADS)

    Li, Pei; Duan, Haibin

    2015-02-01

    It has been shown that the details of microscopic rules in structured populations can have a crucial impact on the ultimate outcome in evolutionary games. So alternative formulations of strategies and their revision processes exploring how strategies are actually adopted and spread within the interaction network need to be studied. In the present work, we formulate the strategy update rule as an incremental learning process, wherein knowledge is refreshed according to one's own experience learned from the past (self-learning) and that gained from social interaction (social-learning). More precisely, we propose a continuous version of strategy update rules, by introducing the willingness to cooperate W, to better capture the flexibility of decision making behavior. Importantly, the newly gained knowledge including self-learning and social learning is weighted by the parameter ω, establishing a strategy update rule involving innovative element. Moreover, we quantify the macroscopic features of the emerging patterns to inspect the underlying mechanisms of the evolutionary process using six cluster characteristics. In order to further support our results, we examine the time evolution course for these characteristics. Our results might provide insights for understanding cooperative behaviors and have several important implications for understanding how individuals adjust their strategies under real-life conditions.

  19. Deep two-photon microscopic imaging through brain tissue using the second singlet state from fluorescent agent chlorophyll α in spinach leaf

    NASA Astrophysics Data System (ADS)

    Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; An Nguyen, Thien; Alfano, Robert R.

    2014-06-01

    Two-photon (2P) excitation of the second singlet (S) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S2 state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.

  20. Deep two-photon microscopic imaging through brain tissue using the second singlet state from fluorescent agent chlorophyll α in spinach leaf.

    PubMed

    Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; Nguyen, Thien An; Alfano, Robert R

    2014-06-01

    Two-photon (2P) excitation of the second singlet (S₂) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S₂ state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S₂ state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.

  1. Modeling of Macroscopic/Microscopic Transport and Growth Phenomena in Zeolite Crystal Solutions Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Gatsonis, Nikos A.; Alexandrou, Andreas; Shi, Hui; Ongewe, Bernard; Sacco, Albert, Jr.

    1999-01-01

    Crystals grown from liquid solutions have important industrial applications. Zeolites, for instance, a class of crystalline aluminosilicate materials, form the backbone of the chemical process industry worldwide, as they are used as adsorbents and catalysts. Many of the phenomena associated with crystal growth processes are not well understood due to complex microscopic and macroscopic interactions. Microgravity could help elucidate these phenomena and allow the control of defect locations, concentration, as well as size of crystals. Microgravity in an orbiting spacecraft could help isolate the possible effects of natural convection (which affects defect formation) and minimize sedimentation. In addition, crystals will stay essentially suspended in the nutrient pool under a diffusion-limited growth condition. This is expected to promote larger crystals by allowing a longer residence time in a high-concentration nutrient field. Among other factors, the crystal size distribution depends on the nucleation rate and crystallization. These two are also related to the "gel" polymerization/depolymerization rate. Macroscopic bulk mass and flow transport and especially gravity, force the crystals down to the bottom of the reactor, thus forming a sedimentation layer. In this layer, the growth rate of the crystals slows down as crystals compete for a limited amount of nutrients. The macroscopic transport phenomena under certain conditions can, however, enhance the nutrient supply and therefore, accelerate crystal growth. Several zeolite experiments have been performed in space with mixed results. The results from our laboratory have indicated an enhancement in size of 30 to 70 percent compared to the best ground based controls, and a reduction of lattice defects in many of the space grown crystals. Such experiments are difficult to interpret, and cannot be easily used to derive empirical or other laws since many physical parameters are simultaneously involved in the process. At the same time, however, there is increased urgency to develop such an understanding in order to more accurately quantify the process. In order to better understand the results obtained from our prior space experiments, and design future experiments, a detailed fluid dynamic model simulating the crystal growth mechanism is required. This will not only add to the fundamental knowledge on the crystallization of zeolites, but also be useful in predicting the limits of size and growth of these important industrial materials. Our objective is to develop macro/microscopic theoretical and computational models to study the effect of transport phenomena in the growth of crystals grown in solutions. Our effort has concentrated so far in the development of separate macroscopic and microscopic models. The major highlights of our accomplishments are described.

  2. Mesoscopic interactions and species coexistence in evolutionary game dynamics of cyclic competitions.

    PubMed

    Cheng, Hongyan; Yao, Nan; Huang, Zi-Gang; Park, Junpyo; Do, Younghae; Lai, Ying-Cheng

    2014-12-15

    Evolutionary dynamical models for cyclic competitions of three species (e.g., rock, paper, and scissors, or RPS) provide a paradigm, at the microscopic level of individual interactions, to address many issues in coexistence and biodiversity. Real ecosystems often involve competitions among more than three species. By extending the RPS game model to five (rock-paper-scissors-lizard-Spock, or RPSLS) mobile species, we uncover a fundamental type of mesoscopic interactions among subgroups of species. In particular, competitions at the microscopic level lead to the emergence of various local groups in different regions of the space, each involving three species. It is the interactions among the groups that fundamentally determine how many species can coexist. In fact, as the mobility is increased from zero, two transitions can occur: one from a five- to a three-species coexistence state and another from the latter to a uniform, single-species state. We develop a mean-field theory to show that, in order to understand the first transition, group interactions at the mesoscopic scale must be taken into account. Our findings suggest, more broadly, the importance of mesoscopic interactions in coexistence of great many species.

  3. Gait synchronization in Caenorhabditis elegans

    PubMed Central

    Yuan, Jinzhou; Raizen, David M.; Bau, Haim H.

    2014-01-01

    Collective motion is observed in swarms of swimmers of various sizes, ranging from self-propelled nanoparticles to fish. The mechanisms that govern interactions among individuals are debated, and vary from one species to another. Although the interactions among relatively large animals, such as fish, are controlled by their nervous systems, the interactions among microorganisms, which lack nervous systems, are controlled through physical and chemical pathways. Little is known, however, regarding the mechanism of collective movements in microscopic organisms with nervous systems. To attempt to remedy this, we studied collective swimming behavior in the nematode Caenorhabditis elegans, a microorganism with a compact nervous system. We evaluated the contributions of hydrodynamic forces, contact forces, and mechanosensory input to the interactions among individuals. We devised an experiment to examine pair interactions as a function of the distance between the animals and observed that gait synchronization occurred only when the animals were in close proximity, independent of genes required for mechanosensation. Our measurements and simulations indicate that steric hindrance is the dominant factor responsible for motion synchronization in C. elegans, and that hydrodynamic interactions and genotype do not play a significant role. We infer that a similar mechanism may apply to other microscopic swimming organisms and self-propelled particles. PMID:24778261

  4. Following aptamer-ricin specific binding by single molecule recognition and force spectroscopy measurements

    USDA-ARS?s Scientific Manuscript database

    The atomic force microscope (AFM) recognition and dynamic force spectroscopy (DFS) experiments provide both morphology and interaction information of the aptamer and protein, which can be used for the future study on the thermodynamics and kinetics properties of ricin-aptamer/antibody interactions. ...

  5. A new insight into the interaction of ZnO with calf thymus DNA through surface defects.

    PubMed

    Das, Sumita; Chatterjee, Sabyasachi; Pramanik, Srikrishna; Devi, Parukuttyamma Sujatha; Kumar, Gopinatha Suresh

    2018-01-01

    Experimental evidences on the binding interaction of ZnO and Calf Thymus (CT) DNA using several biophysical techniques are the centre of interest of the present study. The interaction of ZnO with CT DNA has been investigated in detail by absorption spectral study, fluorescence titration, Raman analysis, zeta potential measurement, viscometric experiment along with thermal melting study and microscopic analysis. Steady-state fluorescence study revealed the quenching (48%) of the surface defect related peak intensity of ZnO on interaction with DNA. The optimized concentration of ZnO and DNA to obtain this level of quenching has been found to be 0.049mM and 1.027μM, respectively. Additional fluorescence study with 8-hydroxy-5-quinoline (HQ) as a fluorescence probe for Zn 2+ ruled out the dissolution effect of ZnO under the experimental conditions. DNA conjugation on the surface of ZnO was also supported by Raman study. The quantitative variation in conductivity as well as electrophoretic mobility indicated significant interaction of ZnO with the DNA molecule. Circular dichroism (CD) and viscometry titrations provided clear evidence in support of the conformational retention of the DNA on interaction with ZnO. The binding interaction was found to be predominantly entropy driven in nature. The bio-physical studies presented in this paper exploring ZnO-CT DNA interaction could add a new horizon to understand the interaction between metal oxide and DNA. Copyright © 2017. Published by Elsevier B.V.

  6. Engineering of frustration in colloidal artificial ices realized on microfeatured grooved lattices

    PubMed Central

    Ortiz-Ambriz, Antonio; Tierno, Pietro

    2016-01-01

    Artificial spin ice systems, namely lattices of interacting single domain ferromagnetic islands, have been used to date as microscopic models of frustration induced by lattice topology, allowing for the direct visualization of spin arrangements and textures. However, the engineering of frustrated ice states in which individual spins can be manipulated in situ and the real-time observation of their collective dynamics remain both challenging tasks. Inspired by recent theoretical advances, here we realize a colloidal version of an artificial spin ice system using interacting polarizable particles confined to lattices of bistable gravitational traps. We show quantitatively that ice-selection rules emerge in this frustrated soft matter system by tuning the strength of the pair interactions between the microscopic units. Via independent control of particle positioning and dipolar coupling, we introduce monopole-like defects and strings and use loops with defined chirality as an elementary unit to store binary information. PMID:26830629

  7. Engineering of frustration in colloidal artificial ices realized on microfeatured grooved lattices.

    PubMed

    Ortiz-Ambriz, Antonio; Tierno, Pietro

    2016-02-01

    Artificial spin ice systems, namely lattices of interacting single domain ferromagnetic islands, have been used to date as microscopic models of frustration induced by lattice topology, allowing for the direct visualization of spin arrangements and textures. However, the engineering of frustrated ice states in which individual spins can be manipulated in situ and the real-time observation of their collective dynamics remain both challenging tasks. Inspired by recent theoretical advances, here we realize a colloidal version of an artificial spin ice system using interacting polarizable particles confined to lattices of bistable gravitational traps. We show quantitatively that ice-selection rules emerge in this frustrated soft matter system by tuning the strength of the pair interactions between the microscopic units. Via independent control of particle positioning and dipolar coupling, we introduce monopole-like defects and strings and use loops with defined chirality as an elementary unit to store binary information.

  8. Engineering of frustration in colloidal artificial ices realized on microfeatured grooved lattices

    NASA Astrophysics Data System (ADS)

    Tierno, Pietro

    Artificial spin-ice systems, namely lattices of interacting single domain ferromagnetic islands, have been used to date as microscopic models of frustration induced by lattice topology, allowing for the direct visualization of spin arrangements and textures. However, the engineering of frustrated ice states in which individual spins can be manipulated in situ and the real-time observation of their collective dynamics remain both challenging tasks. Inspired by recent theoretical advances, we realize a colloidal version of an artificial spin ice system using interacting polarizable particles confined to lattices of bistable gravitational traps. We show quantitatively that ice-selection rules emerge in this frustrated soft matter system by tuning the strength of the pair-interactions between the microscopic units. Via independent control of particle positioning and dipolar coupling, we introduce monopole-like defects and strings and use loops with defined chirality as an elementary unit to store binary information.

  9. Engineering of frustration in colloidal artificial ices realized on microfeatured grooved lattices

    NASA Astrophysics Data System (ADS)

    Ortiz-Ambriz, Antonio; Tierno, Pietro

    2016-02-01

    Artificial spin ice systems, namely lattices of interacting single domain ferromagnetic islands, have been used to date as microscopic models of frustration induced by lattice topology, allowing for the direct visualization of spin arrangements and textures. However, the engineering of frustrated ice states in which individual spins can be manipulated in situ and the real-time observation of their collective dynamics remain both challenging tasks. Inspired by recent theoretical advances, here we realize a colloidal version of an artificial spin ice system using interacting polarizable particles confined to lattices of bistable gravitational traps. We show quantitatively that ice-selection rules emerge in this frustrated soft matter system by tuning the strength of the pair interactions between the microscopic units. Via independent control of particle positioning and dipolar coupling, we introduce monopole-like defects and strings and use loops with defined chirality as an elementary unit to store binary information.

  10. The interaction with gold suppresses fiber-like conformations of the amyloid β (16-22) peptide

    NASA Astrophysics Data System (ADS)

    Bellucci, Luca; Ardèvol, Albert; Parrinello, Michele; Lutz, Helmut; Lu, Hao; Weidner, Tobias; Corni, Stefano

    2016-04-01

    Inorganic surfaces and nanoparticles can accelerate or inhibit the fibrillation process of proteins and peptides, including the biomedically relevant amyloid β peptide. However, the microscopic mechanisms that determine such an effect are still poorly understood. By means of large-scale, state-of-the-art enhanced sampling molecular dynamics simulations, here we identify an interaction mechanism between the segments 16-22 of the amyloid β peptide, known to be fibrillogenic by itself, and the Au(111) surface in water that leads to the suppression of fiber-like conformations from the peptide conformational ensemble. Moreover, thanks to advanced simulation analysis techniques, we characterize the conformational selection vs. induced fit nature of the gold effect. Our results disclose an inhibition mechanism that is rooted in the details of the microscopic peptide-surface interaction rather than in general phenomena such as peptide sequestration from the solution.Inorganic surfaces and nanoparticles can accelerate or inhibit the fibrillation process of proteins and peptides, including the biomedically relevant amyloid β peptide. However, the microscopic mechanisms that determine such an effect are still poorly understood. By means of large-scale, state-of-the-art enhanced sampling molecular dynamics simulations, here we identify an interaction mechanism between the segments 16-22 of the amyloid β peptide, known to be fibrillogenic by itself, and the Au(111) surface in water that leads to the suppression of fiber-like conformations from the peptide conformational ensemble. Moreover, thanks to advanced simulation analysis techniques, we characterize the conformational selection vs. induced fit nature of the gold effect. Our results disclose an inhibition mechanism that is rooted in the details of the microscopic peptide-surface interaction rather than in general phenomena such as peptide sequestration from the solution. Electronic supplementary information (ESI) available: Representative structures for the most populated conformational structures of Aβ16-22 on bulk and on the metal surface. Normalized distribution of the variable s defined as the sum of internal dihedral angles of the peptide in solution and at the gold/water interface. See DOI: 10.1039/C6NR01539E

  11. The interplay of covalency, hydrogen bonding, and dispersion leads to a long range chiral network: The example of 2-butanol

    NASA Astrophysics Data System (ADS)

    Liriano, Melissa L.; Carrasco, Javier; Lewis, Emily A.; Murphy, Colin J.; Lawton, Timothy J.; Marcinkowski, Matthew D.; Therrien, Andrew J.; Michaelides, Angelos; Sykes, E. Charles H.

    2016-03-01

    The assembly of complex structures in nature is driven by an interplay between several intermolecular interactions, from strong covalent bonds to weaker dispersion forces. Understanding and ultimately controlling the self-assembly of materials requires extensive study of how these forces drive local nanoscale interactions and how larger structures evolve. Surface-based self-assembly is particularly amenable to modeling and measuring these interactions in well-defined systems. This study focuses on 2-butanol, the simplest aliphatic chiral alcohol. 2-butanol has recently been shown to have interesting properties as a chiral modifier of surface chemistry; however, its mode of action is not fully understood and a microscopic understanding of the role non-covalent interactions play in its adsorption and assembly on surfaces is lacking. In order to probe its surface properties, we employed high-resolution scanning tunneling microscopy and density functional theory (DFT) simulations. We found a surprisingly rich degree of enantiospecific adsorption, association, chiral cluster growth and ultimately long range, highly ordered chiral templating. Firstly, the chiral molecules acquire a second chiral center when adsorbed to the surface via dative bonding of one of the oxygen atom lone pairs. This interaction is controlled via the molecule's intrinsic chiral center leading to monomers of like chirality, at both chiral centers, adsorbed on the surface. The monomers then associate into tetramers via a cyclical network of hydrogen bonds with an opposite chirality at the oxygen atom. The evolution of these square units is surprising given that the underlying surface has a hexagonal symmetry. Our DFT calculations, however, reveal that the tetramers are stable entities that are able to associate with each other by weaker van der Waals interactions and tessellate in an extended square network. This network of homochiral square pores grows to cover the whole Au(111) surface. Our data reveal that the chirality of a simple alcohol can be transferred to its surface binding geometry, drive the directionality of hydrogen-bonded networks and ultimately extended structure. Furthermore, this study provides the first microscopic insight into the surface properties of this important chiral modifier and provides a well-defined system for studying the network's enantioselective interaction with other molecules.

  12. Development of an ultrasound microscope combined with optical microscope for multiparametric characterization of a single cell.

    PubMed

    Arakawa, Mototaka; Shikama, Joe; Yoshida, Koki; Nagaoka, Ryo; Kobayashi, Kazuto; Saijo, Yoshifumi

    2015-09-01

    Biomechanics of the cell has been gathering much attention because it affects the pathological status in atherosclerosis and cancer. In the present study, an ultrasound microscope system combined with optical microscope for characterization of a single cell with multiple ultrasound parameters was developed. The central frequency of the transducer was 375 MHz and the scan area was 80 × 80 μm with up to 200 × 200 sampling points. An inverted optical microscope was incorporated in the design of the system, allowing for simultaneous optical observations of cultured cells. Two-dimensional mapping of multiple ultrasound parameters, such as sound speed, attenuation, and acoustic impedance, as well as the thickness, density, and bulk modulus of specimen/cell under investigation, etc., was realized by the system. Sound speed and thickness of a 3T3-L1 fibroblast cell were successfully obtained by the system. The ultrasound microscope system combined with optical microscope further enhances our understanding of cellular biomechanics.

  13. X-ray laser microscope apparatus

    DOEpatents

    Suckewer, Szymon; DiCicco, Darrell S.; Hirschberg, Joseph G.; Meixler, Lewis D.; Sathre, Robert; Skinner, Charles H.

    1990-01-01

    A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

  14. Reprint of: Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film.

    PubMed

    Nishiyama, Hidetoshi; Suga, Mitsuo; Ogura, Toshihiko; Maruyama, Yuusuke; Koizumi, Mitsuru; Mio, Kazuhiro; Kitamura, Shinichi; Sato, Chikara

    2010-11-01

    Direct observation of subcellular structures and their characterization is essential for understanding their physiological functions. To observe them in open environment, we have developed an inverted scanning electron microscope with a detachable, open-culture dish, capable of 8 nm resolution, and combined with a fluorescence microscope quasi-simultaneously observing the same area from the top. For scanning electron microscopy from the bottom, a silicon nitride film window in the base of the dish maintains a vacuum between electron gun and open sample dish while allowing electrons to pass through. Electrons are backscattered from the sample and captured by a detector under the dish. Cells cultured on the open dish can be externally manipulated under optical microscopy, fixed, and observed using scanning electron microscopy. Once fine structures have been revealed by scanning electron microscopy, their component proteins may be identified by comparison with separately prepared fluorescence-labeled optical microscopic images of the candidate proteins, with their heavy-metal-labeled or stained ASEM images. Furthermore, cell nuclei in a tissue block stained with platinum-blue were successfully observed without thin-sectioning, which suggests the applicability of this inverted scanning electron microscope to cancer diagnosis. This microscope visualizes mesoscopic-scale structures, and is also applicable to non-bioscience fields including polymer chemistry. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Interactions of Small-Scale Physical Mixing Processes with the Structure, Morphology and Bloom Dynamics and Optics of Non-Spheroid Phytoplankton

    DTIC Science & Technology

    2001-09-30

    microscopic imaging techniques, and microscopic video- cinematography protocols for both phytoplankton and zooplankton for use in current laboratory...phytoplankton, zooplankton and bioluminescence papers, and examined data/figures for layered structures. Imaging and Cinematography : Off-the-shelf...to preview it as a work-in-progress, email me (jrines@gso.uri.edu), and I will provide you with a temporary URL. Imaging and Cinematography

  16. Chiral Nucleon-Nucleus Potentials at N3LO

    NASA Astrophysics Data System (ADS)

    Finelli, Paolo; Vorabbi, Matteo; Giusti, Carlotta

    2018-03-01

    Elastic scattering is probably one of the most relevant tools to study nuclear interactions. In this contribution we study the domain of applicability of microscopic two-body chiral potentials in the construction of an optical potential. A microscopic complex optical potential is derived and tested performing calculations on 16O at different energies. Good agreement with empirical data is obtained if a Lippmann-Schwinger cutoff at relatively high energies (above 500 MeV) is employed.

  17. Precise observation of C. elegans dynamic behaviours under controlled thermal stimulus using a mobile phone-based microscope.

    PubMed

    Yoon, T; Shin, D-M; Kim, S; Lee, S; Lee, T G; Kim, K

    2017-04-01

    We investigated the temperature-dependent locomotion of Caenorhabditis elegans by using the mobile phone-based microscope. We developed the customized imaging system with mini incubator and smartphone to effectively control the thermal stimulation for precisely observing the temperature-dependent locomotory behaviours of C. elegans. Using the mobile phone-based microscope, we successfully followed the long-term progress of specimens of C. elegans in real time as they hatched and explored their temperature-dependent locomotory behaviour. We are convinced that the mobile phone-based microscope is a useful device for real time and long-term observations of biological samples during incubation, and can make it possible to carry out live observations via wireless communications regardless of location. In addition, this microscope has the potential for widespread use owing to its low cost and compact design. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  18. Foveal light exposure is increased at the time of removal of silicone oil with the potential for phototoxicity.

    PubMed

    Dogramaci, Mahmut; Williams, Katie; Lee, Ed; Williamson, Tom H

    2013-01-01

    There is sudden and dramatic visual function deterioration in 1-10 % of eyes filled with silicone oil at the time of removal of silicon oil. Transmission of high-energy blue light is increased in eyes filled with silicone oil. We sought to identify if increased foveal light exposure is a potential factor in the pathophysiology of the visual loss at the time of removal of silicone oil. A graphic ray tracing computer program and laboratory models were used to determine the effect of the intraocular silicone oil bubble size on the foveal illuminance at the time of removal of silicone oil under direct microscope light. The graphic ray tracing computer program revealed a range of optical vignetting effects created by different sizes of silicone oil bubble within the vitreous cavity giving rise to an uneven macular illumination. The laboratory model was used to quantify the variation of illuminance at the foveal region with different sizes of silicone oil bubble with in the vitreous cavity at the time of removal of silicon oil under direct microscope light. To substantiate the hypothesis of the light toxicity during removal of silicone oil, The outcome of oil removal procedures performed under direct microscope illumination in compared to those performed under blocked illumination. The computer program showed that the optical vignetting effect at the macula was dependent on the size of the intraocular silicone oil bubble. The laboratory eye model showed that the foveal illuminance followed a bell-shaped curve with 70 % greater illuminance demonstrated at with 50-60 % silicone oil fill. The clinical data identified five eyes with unexplained vision loss out of 114 eyes that had the procedure performed under direct microscope illumination compared to none out of 78 eyes that had the procedure under blocked illumination. Foveal light exposure, and therefore the potential for phototoxicity, is transiently increased at the time of removal of silicone oil. This is due to uneven macular illumination resulting from the optical vignetting effect of different silicone oil bubble sizes. The increase in foveal light exposure may be significant when the procedure is performed under bright operating microscope light on already stressed photoreceptors of an eye filled with silicon oil. We advocate the use of precautions, such as central shadow filter on the operating microscope light source to reduce foveal light exposure and the risk of phototoxicity at the time of removal of silicone oil. The graphic ray tracing computer program used in this study shows promise in eye modeling for future studies.

  19. Investigating Intermolecular Interactions via Scanning Tunneling Microscopy: An Experiment for the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Pullman, David; Peterson, Karen I.

    2004-01-01

    A scanning tunneling microscope (STM) project designed as a module for the undergraduate physical chemistry laboratory is described. The effects of van der Waals interactions on the condensed-phase structure are examined by the analysis of the pattern of the monolayer structures.

  20. National Plant Diagnostic Network, Taxonomic training videos: Aphids under the microscope - overview

    USDA-ARS?s Scientific Manuscript database

    Training is a critical part of aphid (Hemiptera: Aphididae) identification. This training video provides provides an overview of general aphid morphology by using a compound microscope. The narrator discusses and highlights structures on the aphid that are important to make a species identification....

  1. National Plant Diagnostic Network, Taxonomic training videos: Aphids under the microscope - Cerataphis brasiliensis

    USDA-ARS?s Scientific Manuscript database

    Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides provides training to identify the palm aphid, Cerataphis brasiliensis, using a compound microscope and an electronic identification key called “LUCID.” The video demonstrates key morphological structures...

  2. Current Approach to the Evaluation and Management of Microscopic Colitis.

    PubMed

    Cotter, Thomas G; Pardi, Darrell S

    2017-02-01

    Microscopic colitis is a common cause of chronic watery diarrhea, particularly in the elderly. The accompanying symptoms, which include abdominal pain and fatigue, can markedly impair patients' quality of life. Diagnosis is based upon characteristic histologic findings of the colonic mucosa. This review focuses on the current approach to evaluation and management of patients with microscopic colitis. Although the incidence of microscopic colitis has been increasing over time, recent epidemiological studies show stabilization at 21.0-24.7 cases per 100,000 person-years. Recent research has further expanded our knowledge of the underlying pathophysiology and emphasized the entity of drug-induced microscopic colitis and the association with celiac disease. Two recent randomized studies have confirmed the effectiveness of oral budesonide for both induction and maintenance treatment of microscopic colitis and is now endorsed by the American Gastroenterological Association as first-line treatment. The incidence of microscopic colitis has stabilized at just over 20 cases per 100,000 person-years. Celiac disease and drug-induced microscopic colitis should be considered in all patients diagnosed with microscopic colitis. There are a number of treatments available for patients with microscopic colitis; however, budesonide is the only option well studied in controlled trials and is effective for both induction and maintenance treatment.

  3. Fiber-based confocal microscope for cryogenic spectroscopy.

    PubMed

    Högele, Alexander; Seidl, Stefan; Kroner, Martin; Karrai, Khaled; Schulhauser, Christian; Sqalli, Omar; Scrimgeour, Jan; Warburton, Richard J

    2008-02-01

    We describe the design and performance of a fiber-based confocal microscope for cryogenic operation. The microscope combines positioning at low temperatures along three space coordinates of millimeter translation and nanometer precision with high stability and optical performance at the diffraction limit. It was successfully tested under ambient conditions as well as at liquid nitrogen (77 K) and liquid helium (4 K) temperatures. The compact nonmagnetic design provides for long term position stability against helium refilling transfers, temperature sweeps, as well as magnetic field variation between -9 and 9 T. As a demonstration of the microscope performance, applications in the spectroscopy of single semiconductor quantum dots are presented.

  4. Penny for Your Reference

    NASA Technical Reports Server (NTRS)

    2004-01-01

    15 April 2004 This close-up image of a penny shows the degree to which the microscopic imager on the Mars Exploration Rover Spirit can zoom in on a target. The penny is seen exactly as it would be on Mars if it were placed under the microscopic imager. This picture was taken by the imager during testing at JPL.

    [figure removed for brevity, see original site] Spirit's Microscopic Vision Demonstrated

    This close-up image of a penny shows the power of the microscopic imager onboard the Mars Exploration Rover Spirit to see fine details. The picture was taken by the imager during testing at JPL.

  5. Interference experiment with asymmetric double slit by using 1.2-MV field emission transmission electron microscope.

    PubMed

    Harada, Ken; Akashi, Tetsuya; Niitsu, Kodai; Shimada, Keiko; Ono, Yoshimasa A; Shindo, Daisuke; Shinada, Hiroyuki; Mori, Shigeo

    2018-01-17

    Advanced electron microscopy technologies have made it possible to perform precise double-slit interference experiments. We used a 1.2-MV field emission electron microscope providing coherent electron waves and a direct detection camera system enabling single-electron detections at a sub-second exposure time. We developed a method to perform the interference experiment by using an asymmetric double-slit fabricated by a focused ion beam instrument and by operating the microscope under a "pre-Fraunhofer" condition, different from the Fraunhofer condition of conventional double-slit experiments. Here, pre-Fraunhofer condition means that each single-slit observation was performed under the Fraunhofer condition, while the double-slit observations were performed under the Fresnel condition. The interference experiments with each single slit and with the asymmetric double slit were carried out under two different electron dose conditions: high-dose for calculation of electron probability distribution and low-dose for each single electron distribution. Finally, we exemplified the distribution of single electrons by color-coding according to the above three types of experiments as a composite image.

  6. Charge heterogeneity of surfaces: mapping and effects on surface forces.

    PubMed

    Drelich, Jaroslaw; Wang, Yu U

    2011-07-11

    The DLVO theory treats the total interaction force between two surfaces in a liquid medium as an arithmetic sum of two components: Lifshitz-van der Waals and electric double layer forces. Despite the success of the DLVO model developed for homogeneous surfaces, a vast majority of surfaces of particles and materials in technological systems are of a heterogeneous nature with a mosaic structure composed of microscopic and sub-microscopic domains of different surface characteristics. In such systems, the heterogeneity of the surface can be more important than the average surface character. Attractions can be stronger, by orders of magnitude, than would be expected from the classical mean-field DLVO model when area-averaged surface charge or potential is employed. Heterogeneity also introduces anisotropy of interactions into colloidal systems, vastly ignored in the past. To detect surface heterogeneities, analytical tools which provide accurate and spatially resolved information about material surface chemistry and potential - particularly at microscopic and sub-microscopic resolutions - are needed. Atomic force microscopy (AFM) offers the opportunity to locally probe not only changes in material surface characteristic but also charges of heterogeneous surfaces through measurements of force-distance curves in electrolyte solutions. Both diffuse-layer charge densities and potentials can be calculated by fitting the experimental data with a DLVO theoretical model. The surface charge characteristics of the heterogeneous substrate as recorded by AFM allow the charge variation to be mapped. Based on the obtained information, computer modeling and simulation can be performed to study the interactions among an ensemble of heterogeneous particles and their collective motions. In this paper, the diffuse-layer charge mapping by the AFM technique is briefly reviewed, and a new Diffuse Interface Field Approach to colloid modeling and simulation is briefly discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. The Effect of Post-heat Treatment on the Microstructures of Single Crystal DD6 Superalloy

    NASA Astrophysics Data System (ADS)

    Li, Dongfan; Gao, Hangshan; Wen, Zhixun; Li, Zhenwei; Yue, Zhufeng

    2016-09-01

    Various thermal cycles at the end of solution heat treatment and their influences on microstructure of single crystal superalloy DD6 were studied by experiments. During various thermal cycles, the qualitative and quantitative microstructure of samples quenched of the transformations is microscopically characterized. This completely includes the large changes in volume fraction, size distribution and morphology of gamma prime precipitate experienced in the upper temperature transformation. Noticeable deviation from the equilibrium volume fraction of γ' phase is detected in both the dissolution and precipitation processes above 1,120°C for both moderate cooling and heating rate; differences were mainly attributed to the unsteady nature of the turbulent flow. The growth and alignment of the γ' precipitates are deeply influenced by several factors, e.g. ageing time, cooling rate and quenching temperature. In addition, interesting findings such as "labyrinth" and "cluster" morphologies were observed by scanning electron microscope. During precipitation processes, the complicated microstructure evolution is illustrated by considering the consecutive equilibrium shapes of a coherent precipitate, which grows under the interaction with its neighbors and the coherency of the precipitates improves their potential to resist dissolution.

  8. Asynchronous cracking with dissimilar paths in multilayer graphene.

    PubMed

    Jang, Bongkyun; Kim, Byungwoon; Kim, Jae-Hyun; Lee, Hak-Joo; Sumigawa, Takashi; Kitamura, Takayuki

    2017-11-16

    Multilayer graphene consists of a stack of single-atomic-thick monolayer graphene sheets bound with π-π interactions and is a fascinating model material opening up a new field of fracture mechanics. In this study, fracture behavior of single-crystalline multilayer graphene was investigated using an in situ mode I fracture test under a scanning electron microscope, and abnormal crack propagation in multilayer graphene was identified for the first time. The fracture toughness of graphene was determined from the measured load-displacement curves and the realistic finite element modelling of specimen geometries. Nonlinear fracture behavior of the multilayer graphene is discussed based on nonlinear elastic fracture mechanics. In situ scanning electron microscope images obtained during the fracture test showed asynchronous crack propagation along independent paths, causing interlayer shear stress and slippages. We also found that energy dissipation by interlayer slippages between the graphene layers is the reason for the enhanced fracture toughness of multilayer graphene. The asynchronous cracking with independent paths is a unique cracking and toughening mechanism for single-crystalline multilayer graphene, which is not observed for the monolayer graphene. This could provide a useful insight for the design and development of graphene-based composite materials for structural applications.

  9. Three-Dimensional Microstructure of Biological Tissues during Freezing and Thawing

    NASA Astrophysics Data System (ADS)

    Ishiguro, Hiroshi; Horimizu, Takashi; Kataori, Akinobu; Kajigaya, Hiroshi

    Three-dimensional behavior of ice crystals and cells during the freezing and thawing of biological tissues was investigated microscopically in real time by using a confocal laser scanning microscope(CLSM) and a fluorescent dye, acridine orange (AO). Fresh tender meat (2nd pectoral muscles) of chicken was stained with the AO in physiological saline to distinguish ice crystals and cells by their different colors, and then frozen and thawed under two different thermal protocols: a) slow-cooling and rapid-warming and b) rapid-cooling and rapid-warming. The CLSM noninvasively produced optical tomograms of the tissues to clarify the pattern of freezing, morphology of ice crystals in the tissues, and the interaction between ice crystals and cells. Also, the tissues were morphologically investigated by pathological means after the freezing and thawing. Typical freezing pattern during the slow-cooling was extracellular-freezing, and those during the rapid-cooling were extracellular-freezing and intracellular freezing with a lot of fine ice crystals in the cells. Cracks caused by the extracellular and intracellular ice crystals remained in the muscle tissues after the thawing. The results obtained by using the CLSM/dye method were consistent with pathologically morphological changes in the tissues through freezing and thawing.

  10. Radiation and matter: Electrodynamics postulates and Lorenz gauge

    NASA Astrophysics Data System (ADS)

    Bobrov, V. B.; Trigger, S. A.; van Heijst, G. J.; Schram, P. P.

    2016-11-01

    In general terms, we have considered matter as the system of charged particles and quantized electromagnetic field. For consistent description of the thermodynamic properties of matter, especially in an extreme state, the problem of quantization of the longitudinal and scalar potentials should be solved. In this connection, we pay attention that the traditional postulates of electrodynamics, which claim that only electric and magnetic fields are observable, is resolved by denial of the statement about validity of the Maxwell equations for microscopic fields. The Maxwell equations, as the generalization of experimental data, are valid only for averaged values. We show that microscopic electrodynamics may be based on postulation of the d'Alembert equations for four-vector of the electromagnetic field potential. The Lorenz gauge is valid for the averages potentials (and provides the implementation of the Maxwell equations for averages). The suggested concept overcomes difficulties under the electromagnetic field quantization procedure being in accordance with the results of quantum electrodynamics. As a result, longitudinal and scalar photons become real rather than virtual and may be observed in principle. The longitudinal and scalar photons provide not only the Coulomb interaction of charged particles, but also allow the electrical Aharonov-Bohm effect.

  11. The HOME tutor: a new tool for training in microscope skills.

    PubMed

    Gray, E; Sowter, C

    1995-10-01

    AxioHOME is a new concept in microscope design. It is a microscope with a visual display unit mounted in the head permitting computer generated displays to be projected on to the real microscope image when viewed down the eyepieces. This allows the annotation of the microscope image with both text and graphics. The AxioHOME system was used for the construction of complex interactive tutorials for the training and assessment of students. The basis of a tutorial is that features of interest on a microscope slide are indicated to the student who is then provided with either information or questions about those features. In turn the student can also annotate the slide with comments for later discussion with the teacher. The system therefore allows a dialogue between teacher and student. The creation of tutorials is time consuming. It takes approximately 10 min of teacher time to create 1 min of student time. However since the same tutorial can be used by numerous students this releases the teacher from repetitive training. The student response to this teaching method has been very positive. The main criticism being that insufficient teaching material was available.

  12. Track reconstruction in the emulsion-lead target of the OPERA experiment using the ESS microscope

    NASA Astrophysics Data System (ADS)

    Arrabito, L.; Bozza, C.; Buontempo, S.; Consiglio, L.; Cozzi, M.; D'Ambrosio, N.; DeLellis, G.; DeSerio, M.; Di Capua, F.; Di Ferdinando, D.; Di Marco, N.; Ereditato, A.; Esposito, L. S.; Fini, R. A.; Giacomelli, G.; Giorgini, M.; Grella, G.; Ieva, M.; Janicsko Csathy, J.; Juget, F.; Kreslo, I.; Laktineh, I.; Manai, K.; Mandrioli, G.; Marotta, A.; Migliozzi, P.; Monacelli, P.; Moser, U.; Muciaccia, M. T.; Pastore, A.; Patrizii, L.; Petukhov, Y.; Pistillo, C.; Pozzato, M.; Romano, G.; Rosa, G.; Russo, A.; Savvinov, N.; Schembri, A.; Scotto Lavina, L.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Strolin, P.; Tioukov, V.; Waelchli, T.

    2007-05-01

    The OPERA experiment, designed to conclusively prove the existence of νμ→ντ oscillations in the atmospheric sector, makes use of a massive lead-nuclear emulsion target to observe the appearance of ντ's in the CNGS νμ beam. The location and analysis of the neutrino interactions in quasi real-time required the development of fast computer-controlled microscopes able to reconstruct particle tracks with sub-micron precision and high efficiency at a speed of ~20 cm2/h. This paper describes the performance in particle track reconstruction of the European Scanning System, a novel automatic microscope for the measurement of emulsion films developed for OPERA.

  13. Two-Photon Fluorescence Correlation Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Fischer, David G.

    2002-01-01

    We will describe a two-photon microscope currently under development at the NASA Glenn Research Center. It is composed of a Coherent Mira 900 tunable, pulsed Titanium:Sapphire laser system, an Olympus Fluoview 300 confocal scanning head, and a Leica DM IRE inverted microscope. It will be used in conjunction with a technique known as fluorescence correlation spectroscopy (FCS) to study intracellular protein dynamics. We will briefly explain the advantages of the two-photon system over a conventional confocal microscope, and provide some preliminary experimental results.

  14. Microscale Mechanism of Age Dependent Wetting Properties of Prickly Pear Cacti (Opuntia).

    PubMed

    Rykaczewski, Konrad; Jordan, Jacob S; Linder, Rubin; Woods, Erik T; Sun, Xiaoda; Kemme, Nicholas; Manning, Kenneth C; Cherry, Brian R; Yarger, Jeffery L; Majure, Lucas C

    2016-09-13

    Cacti thrive in xeric environments through specialized water storage and collection tactics such as a shallow, widespread root system that maximizes rainwater absorption and spines adapted for fog droplet collection. However, in many cacti, the epidermis, not the spines, dominates the exterior surface area. Yet, little attention has been dedicated to studying interactions of the cactus epidermis with water drops. Surprisingly, the epidermis of plants in the genus Opuntia, also known as prickly pear cacti, has water-repelling characteristics. In this work, we report that surface properties of cladodes of 25 taxa of Opuntia grown in an arid Sonoran climate switch from water-repelling to superwetting under water impact over the span of a single season. We show that the old cladode surfaces are not superhydrophilic, but have nearly vanishing receding contact angle. We study water drop interactions with, as well as nano/microscale topology and chemistry of, the new and old cladodes of two Opuntia species and use this information to uncover the microscopic mechanism underlying this phenomenon. We demonstrate that composition of extracted wax and its contact angle do not change significantly with time. Instead, we show that the reported age dependent wetting behavior primarily stems from pinning of the receding contact line along multilayer surface microcracks in the epicuticular wax that expose the underlying highly hydrophilic layers.

  15. 75 FR 23272 - Government-Owned Inventions; Availability for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-03

    ...) Protection in Sunscreen Products Description of Invention: There are different types of ultraviolet (UV) rays..., PhD at 301-435-3131 or [email protected] for more information. Laser Scanning Microscopy for Three... data from a high-speed laser-scanning microscope and compute motion of the sample under the microscope...

  16. National Plant Diagnostic Network, Taxonomic training videos: Aphids under the microscope - Myzus persicae

    USDA-ARS?s Scientific Manuscript database

    Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides provides training to identify the green peach aphid, Myzus persicae, using a compound microscope and an electronic identification key called “LUCID.” The video demonstrates key morphological structures t...

  17. National Plant Diagnostic Network, Taxonomic training videos: Aphids under the microscope - Aphis gossypii

    USDA-ARS?s Scientific Manuscript database

    Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides provides training to identify the cotton aphid, Aphis gossypii, using a compound microscope and an electronic identification key called “LUCID.” The video demonstrates key morphological structures that ca...

  18. "Breath figures" on leaf surfaces-formation and effects of microscopic leaf wetness.

    PubMed

    Burkhardt, Juergen; Hunsche, Mauricio

    2013-01-01

    "Microscopic leaf wetness" means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 μm, microscopic leaf wetness is about two orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the type and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g., ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past.

  19. A coral-on-a-chip microfluidic platform enabling live-imaging microscopy of reef-building corals

    PubMed Central

    Shapiro, Orr H.; Kramarsky-Winter, Esti; Gavish, Assaf R.; Stocker, Roman; Vardi, Assaf

    2016-01-01

    Coral reefs, and the unique ecosystems they support, are facing severe threats by human activities and climate change. Our understanding of these threats is hampered by the lack of robust approaches for studying the micro-scale interactions between corals and their environment. Here we present an experimental platform, coral-on-a-chip, combining micropropagation and microfluidics to allow direct microscopic study of live coral polyps. The small and transparent coral micropropagates are ideally suited for live-imaging microscopy, while the microfluidic platform facilitates long-term visualization under controlled environmental conditions. We demonstrate the usefulness of this approach by imaging coral micropropagates at previously unattainable spatio-temporal resolutions, providing new insights into several micro-scale processes including coral calcification, coral–pathogen interaction and the loss of algal symbionts (coral bleaching). Coral-on-a-chip thus provides a powerful method for studying coral physiology in vivo at the micro-scale, opening new vistas in coral biology. PMID:26940983

  20. Characterising protein, salt and water interactions with combined vibrational spectroscopic techniques.

    PubMed

    Perisic, Nebojsa; Afseth, Nils Kristian; Ofstad, Ragni; Hassani, Sahar; Kohler, Achim

    2013-05-01

    In this paper a combination of NIR spectroscopy and FTIR and Raman microspectroscopy was used to elucidate the effects of different salts (NaCl, KCl and MgSO(4)) on structural proteins and their hydration in muscle tissue. Multivariate multi-block technique Consensus Principal Component Analysis enabled integration of different vibrational spectroscopic techniques: macroscopic information obtained by NIR spectroscopy is directly related to microscopic information obtained by FTIR and Raman microspectroscopy. Changes in protein secondary structure observed at different concentrations of salts were linked to changes in protein hydration affinity. The evidence for this was given by connecting the underlying FTIR bands of the amide I region (1700-1600 cm(-1)) and the water region (3500-3000 cm(-1)) with water vibrations obtained by NIR spectroscopy. In addition, Raman microspectroscopy demonstrated that different cations affected structures of aromatic amino acid residues differently, which indicates that cation-π interactions play an important role in determination of the final structure of protein molecules. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond

    NASA Astrophysics Data System (ADS)

    Epstein, R. J.; Mendoza, F. M.; Kato, Y. K.; Awschalom, D. D.

    2005-11-01

    Experiments on single nitrogen-vacancy (N-V) centres in diamond, which include electron spin resonance, Rabi oscillations, single-shot spin readout and two-qubit operations with a nearby13C nuclear spin, show the potential of this spin system for solid-state quantum information processing. Moreover, N-V centre ensembles can have spin-coherence times exceeding 50 μs at room temperature. We have developed an angle-resolved magneto-photoluminescence microscope apparatus to investigate the anisotropic electron-spin interactions of single N-V centres at room temperature. We observe negative peaks in the photoluminescence as a function of both magnetic-field magnitude and angle that are explained by coherent spin precession and anisotropic relaxation at spin-level anti-crossings. In addition, precise field alignment unmasks the resonant coupling to neighbouring `dark' nitrogen spins, otherwise undetected by photoluminescence. These results demonstrate the capability of our spectroscopic technique for measuring small numbers of dark spins by means of a single bright spin under ambient conditions.

  2. A coral-on-a-chip microfluidic platform enabling live-imaging microscopy of reef-building corals.

    PubMed

    Shapiro, Orr H; Kramarsky-Winter, Esti; Gavish, Assaf R; Stocker, Roman; Vardi, Assaf

    2016-03-04

    Coral reefs, and the unique ecosystems they support, are facing severe threats by human activities and climate change. Our understanding of these threats is hampered by the lack of robust approaches for studying the micro-scale interactions between corals and their environment. Here we present an experimental platform, coral-on-a-chip, combining micropropagation and microfluidics to allow direct microscopic study of live coral polyps. The small and transparent coral micropropagates are ideally suited for live-imaging microscopy, while the microfluidic platform facilitates long-term visualization under controlled environmental conditions. We demonstrate the usefulness of this approach by imaging coral micropropagates at previously unattainable spatio-temporal resolutions, providing new insights into several micro-scale processes including coral calcification, coral-pathogen interaction and the loss of algal symbionts (coral bleaching). Coral-on-a-chip thus provides a powerful method for studying coral physiology in vivo at the micro-scale, opening new vistas in coral biology.

  3. Multivalent-Ion-Activated Protein Adsorption Reflecting Bulk Reentrant Behavior.

    PubMed

    Fries, Madeleine R; Stopper, Daniel; Braun, Michal K; Hinderhofer, Alexander; Zhang, Fajun; Jacobs, Robert M J; Skoda, Maximilian W A; Hansen-Goos, Hendrik; Roth, Roland; Schreiber, Frank

    2017-12-01

    Protein adsorption at the solid-liquid interface is an important phenomenon that often can be observed as a first step in biological processes. Despite its inherent importance, still relatively little is known about the underlying microscopic mechanisms. Here, using multivalent ions, we demonstrate the control of the interactions and the corresponding adsorption of net-negatively charged proteins (bovine serum albumin) at a solid-liquid interface. This is demonstrated by ellipsometry and corroborated by neutron reflectivity and quartz-crystal microbalance experiments. We show that the reentrant condensation observed within the rich bulk phase behavior of the system featuring a nonmonotonic dependence of the second virial coefficient on salt concentration c_{s} is reflected in an intriguing way in the protein adsorption d(c_{s}) at the interface. Our findings are successfully described and understood by a model of ion-activated patchy interactions within the framework of the classical density functional theory. In addition to the general challenge of connecting bulk and interface behavior, our work has implications for, inter alia, nucleation at interfaces.

  4. Multivalent-Ion-Activated Protein Adsorption Reflecting Bulk Reentrant Behavior

    NASA Astrophysics Data System (ADS)

    Fries, Madeleine R.; Stopper, Daniel; Braun, Michal K.; Hinderhofer, Alexander; Zhang, Fajun; Jacobs, Robert M. J.; Skoda, Maximilian W. A.; Hansen-Goos, Hendrik; Roth, Roland; Schreiber, Frank

    2017-12-01

    Protein adsorption at the solid-liquid interface is an important phenomenon that often can be observed as a first step in biological processes. Despite its inherent importance, still relatively little is known about the underlying microscopic mechanisms. Here, using multivalent ions, we demonstrate the control of the interactions and the corresponding adsorption of net-negatively charged proteins (bovine serum albumin) at a solid-liquid interface. This is demonstrated by ellipsometry and corroborated by neutron reflectivity and quartz-crystal microbalance experiments. We show that the reentrant condensation observed within the rich bulk phase behavior of the system featuring a nonmonotonic dependence of the second virial coefficient on salt concentration cs is reflected in an intriguing way in the protein adsorption d (cs) at the interface. Our findings are successfully described and understood by a model of ion-activated patchy interactions within the framework of the classical density functional theory. In addition to the general challenge of connecting bulk and interface behavior, our work has implications for, inter alia, nucleation at interfaces.

  5. LyP-1 ultrasonic microbubbles targeting to cancer cell as tumor bio-acoustics markers or drug carriers: targeting efficiency evaluation in, microfluidic channels.

    PubMed

    Li, Xiang; Jin, Qiaofeng; Chen, Tan; Zhang, Baoyue; Zheng, Rongqin; Wang, Zhanhui; Zheng, Hairong

    2009-01-01

    Using ultrasonic contrast microbubbles as acoustic biomarkers and drug carrier vehicles by conjugating tumor specific antibody to microbubbles has shown great potential in ultrasonic tumor molecular imaging or drug-delivery and therapy. Microbubble probe targeting efficiency is one of the major challenges. In this study, we developed a novel method to evaluate the targeting capability and efficiency of microbubbles to cells, and more specifically, microbubbles binding LyP-1 (a cyclic nonapeptide acid peptide) target to cancer cell within a microfluidic system. The micro cell sieves within the microfludic channels could trap the tumor cells and enhance the microbubble's interaction with the cell. Assisted with the controllable fluid shear stress, the microbubble's targeting to the cell and the corresponding affinity efficiency could be quantitatively evaluated under a florescent microscope. The system provides a useful low-cost high efficient in vitro platform for studying microbubble-cell interaction for ultrasonic tumor molecular imaging or drug-delivery and therapy.

  6. Interaction of Mitochondria with the Endoplasmic Reticulum and Plasma Membrane in Calcium Homeostasis, Lipid Trafficking and Mitochondrial Structure.

    PubMed

    Szymański, Jędrzej; Janikiewicz, Justyna; Michalska, Bernadeta; Patalas-Krawczyk, Paulina; Perrone, Mariasole; Ziółkowski, Wiesław; Duszyński, Jerzy; Pinton, Paolo; Dobrzyń, Agnieszka; Więckowski, Mariusz R

    2017-07-20

    Studying organelles in isolation has been proven to be indispensable for deciphering the underlying mechanisms of molecular cell biology. However, observing organelles in intact cells with the use of microscopic techniques reveals a new set of different junctions and contact sites between them that contribute to the control and regulation of various cellular processes, such as calcium and lipid exchange or structural reorganization of the mitochondrial network. In recent years, many studies focused their attention on the structure and function of contacts between mitochondria and other organelles. From these studies, findings emerged showing that these contacts are involved in various processes, such as lipid synthesis and trafficking, modulation of mitochondrial morphology, endoplasmic reticulum (ER) stress, apoptosis, autophagy, inflammation and Ca 2 + handling. In this review, we focused on the physical interactions of mitochondria with the endoplasmic reticulum and plasma membrane and summarized present knowledge regarding the role of mitochondria-associated membranes in calcium homeostasis and lipid metabolism.

  7. Incubation and application of transgenic green fluorescent nude mice in visualization studies on glioma tissue remodeling.

    PubMed

    Dong, Jun; Dai, Xing-liang; Lu, Zhao-hui; Fei, Xi-feng; Chen, Hua; Zhang, Quan-bin; Zhao, Yao-dong; Wang, Zhi-min; Wang, Ai-dong; Lan, Qing; Huang, Qiang

    2012-12-01

    The primary reasons for local recurrence and therapeutic failure in the treatment of malignant gliomas are the invasion and interactions of tumor cells with surrounding normal brain cells. However, these tumor cells are hard to be visualized directly in histopathological preparations, or in experimental glioma models. Therefore, we developed an experimental human dual-color in vivo glioma model, which made tracking solitary invasive glioma cells possible, for the purpose of visualizing the interactions between red fluorescence labeled human glioma cells and host brain cells. This may offer references for further studying the roles of tumor microenvironment during glioma tissue remodeling. Transgenic female C57BL/6 mice expressing enhanced green fluorescent protein (EGFP) were crossed with male Balb/c nude mice. Then sib mating was allowed to occur continuously in order to establish an inbred nude mice strain with 50% of their offspring that are EGFP positive. Human glioma cell lines U87-MG and SU3 were transfected with red fluorescent protein (RFP) gene, and a rat C6 glioma cell line was stained directly with CM-DiI, to establish three glioma cell lines emitting red fluorescence (SU3-RFP, U87-RFP, and C6-CM-DiI). Red fluorescence tumor cells were inoculated via intra-cerebral injection into caudate nucleus of the EGFP nude mice. Tumor-bearing mice were sacrificed when their clinical symptoms appeared, and the whole brain was harvested and snap frozen for further analysis. Confocal laser scanning microscopy was performed to monitor the mutual interactions between tumor cells and host brain cells. Almost all the essential tissues of the established EGFP athymic Balb/c nude mice, except hair and erythrocytes, fluoresced green under excitation using a blue light-emitting flashlight with a central peak of 470 nm, approximately 50% of the offsprings were nu/nu EGFP+. SU3-RFP, U87-RFP, and C6-CM-DiI almost 100% expressed red fluorescence under the fluorescence microscope. Under fluorescence microscopic view, RFP+ cells were observed growing wherever they arrived at, locating in the brain parenchyma, ventricles, and para-vascular region. The interactions between the transplanted tumor cells and host adjacent cells could be classified into three types: (1) interweaving; (2) mergence; and (3) fusion. Interweaving was observed in the early stage of tumor remodeling, in which both transplantable tumor cells and host cells were observed scattered in the tumor invading and spreading area without organic connections. Mergence was defined as mutual interactions between tumor cells and host stroma during tumorigenesis. Direct cell fusion between transplantable tumor cells and host cells could be observed occasionally. This study showed that self-established EGFP athymic nude mice offered the possibility of visualizing tumorigenesis of human xenograft tumor, and the dual-color xenograft glioma model was of considerable utility in studying the process of tumor remodeling. Based on this platform, mutual interactions between glioma cells and host tissues could be observed directly to further elucidate the development of tumor microenvironment.

  8. Influence of bedding type on mucosal immune responses.

    PubMed

    Sanford, Amy N; Clark, Stephanie E; Talham, Gwen; Sidelsky, Michael G; Coffin, Susan E

    2002-10-01

    The mucosal immune system interacts with the external environment. In the study reported here, we found that bedding materials can influence the intestinal immune responses of mice. We observed that mice housed on wood, compared with cotton bedding, had increased numbers of Peyer's patches (PP) visible under a dissecting microscope. In addition, culture of lymphoid organs revealed increased production of total and virus-specific IgA by PP and mesenteric lymph node (MLN) lymphocytes from mice housed on wood, compared with cotton bedding. However, bedding type did not influence serum virus-specific antibody responses. These observations indicate that bedding type influences the intestinal immune system and suggest that this issue should be considered by mucosal immunologists and personnel at animal care facilities.

  9. Counting malaria parasites with a two-stage EM based algorithm using crowsourced data.

    PubMed

    Cabrera-Bean, Margarita; Pages-Zamora, Alba; Diaz-Vilor, Carles; Postigo-Camps, Maria; Cuadrado-Sanchez, Daniel; Luengo-Oroz, Miguel Angel

    2017-07-01

    Malaria eradication of the worldwide is currently one of the main WHO's global goals. In this work, we focus on the use of human-machine interaction strategies for low-cost fast reliable malaria diagnostic based on a crowdsourced approach. The addressed technical problem consists in detecting spots in images even under very harsh conditions when positive objects are very similar to some artifacts. The clicks or tags delivered by several annotators labeling an image are modeled as a robust finite mixture, and techniques based on the Expectation-Maximization (EM) algorithm are proposed for accurately counting malaria parasites on thick blood smears obtained by microscopic Giemsa-stained techniques. This approach outperforms other traditional methods as it is shown through experimentation with real data.

  10. Pump-probe optical microscopy for imaging nonfluorescent chromophores.

    PubMed

    Wei, Lu; Min, Wei

    2012-06-01

    Many chromophores absorb light intensely but have undetectable fluorescence. Hence microscopy techniques other than fluorescence are highly desirable for imaging these chromophores inside live cells, tissues, and organisms. The recently developed pump-probe optical microscopy techniques provide fluorescence-free contrast mechanisms by employing several fundamental light-molecule interactions including excited state absorption, stimulated emission, ground state depletion, and the photothermal effect. By using the pump pulse to excite molecules and the subsequent probe pulse to interrogate the created transient states on a laser scanning microscope, pump-probe microscopy offers imaging capability with high sensitivity and specificity toward nonfluorescent chromophores. Single-molecule sensitivity has even been demonstrated. Here we review and summarize the underlying principles of this emerging class of molecular imaging techniques.

  11. Passive Films, Surface Structure and Stress Corrosion and Crevice Corrosion Susceptibility. Part I. A Qualitative Ellipsometric-Electrochemical Approach for the Study of Film Growth under Organic Coatings. Part II. Hydrogen Interactions with Stressed Titanium-Palladium Alloys and Stressed Vanadium Explored with Field Ion Microscopy.

    DTIC Science & Technology

    1980-08-01

    vs. time for Fe with collodion in 0.05 N NaCl. 8. A, 6 p, pH and 0Fe vs. time for Fe with collodion and CrO 4 " 2 islands in 0.05 N NaCl. REFERENCES...hydrogen embrittlement with the field ion microscope, and to compare the results with those previously obtained with pure titanium [ 4 ]. 2.2. Specimen...percent pure, and was used in the previous field ion microscopy study of titanium [ 4 ], where it was found that strain annealing titanium wire markedly

  12. Origins of phase contrast in the atomic force microscope in liquids

    PubMed Central

    Melcher, John; Carrasco, Carolina; Xu, Xin; Carrascosa, José L.; Gómez-Herrero, Julio; José de Pablo, Pedro; Raman, Arvind

    2009-01-01

    We study the physical origins of phase contrast in dynamic atomic force microscopy (dAFM) in liquids where low-stiffness microcantilever probes are often used for nanoscale imaging of soft biological samples with gentle forces. Under these conditions, we show that the phase contrast derives primarily from a unique energy flow channel that opens up in liquids due to the momentary excitation of higher eigenmodes. Contrary to the common assumption, phase-contrast images in liquids using soft microcantilevers are often maps of short-range conservative interactions, such as local elastic response, rather than tip-sample dissipation. The theory is used to demonstrate variations in local elasticity of purple membrane and bacteriophage ϕ29 virions in buffer solutions using the phase-contrast images. PMID:19666560

  13. Origins of phase contrast in the atomic force microscope in liquids.

    PubMed

    Melcher, John; Carrasco, Carolina; Xu, Xin; Carrascosa, José L; Gómez-Herrero, Julio; José de Pablo, Pedro; Raman, Arvind

    2009-08-18

    We study the physical origins of phase contrast in dynamic atomic force microscopy (dAFM) in liquids where low-stiffness microcantilever probes are often used for nanoscale imaging of soft biological samples with gentle forces. Under these conditions, we show that the phase contrast derives primarily from a unique energy flow channel that opens up in liquids due to the momentary excitation of higher eigenmodes. Contrary to the common assumption, phase-contrast images in liquids using soft microcantilevers are often maps of short-range conservative interactions, such as local elastic response, rather than tip-sample dissipation. The theory is used to demonstrate variations in local elasticity of purple membrane and bacteriophage 29 virions in buffer solutions using the phase-contrast images.

  14. Microscopic Theoretical Modeling of the Chemical and Tribological Properties of Ceramic Surfaces and Interfaces

    DTIC Science & Technology

    1991-09-01

    small R ( Pauli orthogonalization) for all nonbonded 15 electrons. Referred to as van der Waals interactions, these interactions are generally as- sumed...on AFOSR Project 1. Professor William A. Goddard III 2. Postdoctoral Fellows: Dr. Siddharth Dasgupta Dr. Chih-mai Kao (departed June 1988) Dr. Jung

  15. Continuum mesoscopic framework for multiple interacting species and processes on multiple site types and/or crystallographic planes.

    PubMed

    Chatterjee, Abhijit; Vlachos, Dionisios G

    2007-07-21

    While recently derived continuum mesoscopic equations successfully bridge the gap between microscopic and macroscopic physics, so far they have been derived only for simple lattice models. In this paper, general deterministic continuum mesoscopic equations are derived rigorously via nonequilibrium statistical mechanics to account for multiple interacting surface species and multiple processes on multiple site types and/or different crystallographic planes. Adsorption, desorption, reaction, and surface diffusion are modeled. It is demonstrated that contrary to conventional phenomenological continuum models, microscopic physics, such as the interaction potential, determines the final form of the mesoscopic equation. Models of single component diffusion and binary diffusion of interacting particles on single-type site lattice and of single component diffusion on complex microporous materials' lattices consisting of two types of sites are derived, as illustrations of the mesoscopic framework. Simplification of the diffusion mesoscopic model illustrates the relation to phenomenological models, such as the Fickian and Maxwell-Stefan transport models. It is demonstrated that the mesoscopic equations are in good agreement with lattice kinetic Monte Carlo simulations for several prototype examples studied.

  16. LudusScope: Accessible Interactive Smartphone Microscopy for Life-Science Education.

    PubMed

    Kim, Honesty; Gerber, Lukas Cyrill; Chiu, Daniel; Lee, Seung Ah; Cira, Nate J; Xia, Sherwin Yuyang; Riedel-Kruse, Ingmar H

    2016-01-01

    For centuries, observational microscopy has greatly facilitated biology education, but we still cannot easily and playfully interact with the microscopic world we see. We therefore developed the LudusScope, an accessible, interactive do-it-yourself smartphone microscopy platform that promotes exploratory stimulation and observation of microscopic organisms, in a design that combines the educational modalities of build, play, and inquire. The LudusScope's touchscreen and joystick allow the selection and stimulation of phototactic microorganisms such as Euglena gracilis with light. Organismal behavior is tracked and displayed in real time, enabling open and structured game play as well as scientific inquiry via quantitative experimentation. Furthermore, we used the Scratch programming language to incorporate biophysical modeling. This platform is designed as an accessible, low-cost educational kit for easy construction and expansion. User testing with both teachers and students demonstrates the educational potential of the LudusScope, and we anticipate additional synergy with the maker movement. Transforming observational microscopy into an interactive experience will make microbiology more tangible to society, and effectively support the interdisciplinary learning required by the Next Generation Science Standards.

  17. LudusScope: Accessible Interactive Smartphone Microscopy for Life-Science Education

    PubMed Central

    Kim, Honesty; Gerber, Lukas Cyrill; Chiu, Daniel; Lee, Seung Ah; Cira, Nate J.; Xia, Sherwin Yuyang; Riedel-Kruse, Ingmar H.

    2016-01-01

    For centuries, observational microscopy has greatly facilitated biology education, but we still cannot easily and playfully interact with the microscopic world we see. We therefore developed the LudusScope, an accessible, interactive do-it-yourself smartphone microscopy platform that promotes exploratory stimulation and observation of microscopic organisms, in a design that combines the educational modalities of build, play, and inquire. The LudusScope’s touchscreen and joystick allow the selection and stimulation of phototactic microorganisms such as Euglena gracilis with light. Organismal behavior is tracked and displayed in real time, enabling open and structured game play as well as scientific inquiry via quantitative experimentation. Furthermore, we used the Scratch programming language to incorporate biophysical modeling. This platform is designed as an accessible, low-cost educational kit for easy construction and expansion. User testing with both teachers and students demonstrates the educational potential of the LudusScope, and we anticipate additional synergy with the maker movement. Transforming observational microscopy into an interactive experience will make microbiology more tangible to society, and effectively support the interdisciplinary learning required by the Next Generation Science Standards. PMID:27706189

  18. NeuroMap: A Spline-Based Interactive Open-Source Software for Spatiotemporal Mapping of 2D and 3D MEA Data

    PubMed Central

    Abdoun, Oussama; Joucla, Sébastien; Mazzocco, Claire; Yvert, Blaise

    2010-01-01

    A major characteristic of neural networks is the complexity of their organization at various spatial scales, from microscopic local circuits to macroscopic brain-scale areas. Understanding how neural information is processed thus entails the ability to study them at multiple scales simultaneously. This is made possible using microelectrodes array (MEA) technology. Indeed, high-density MEAs provide large-scale coverage (several square millimeters) of whole neural structures combined with microscopic resolution (about 50 μm) of unit activity. Yet, current options for spatiotemporal representation of MEA-collected data remain limited. Here we present NeuroMap, a new interactive Matlab-based software for spatiotemporal mapping of MEA data. NeuroMap uses thin plate spline interpolation, which provides several assets with respect to conventional mapping methods used currently. First, any MEA design can be considered, including 2D or 3D, regular or irregular, arrangements of electrodes. Second, spline interpolation allows the estimation of activity across the tissue with local extrema not necessarily at recording sites. Finally, this interpolation approach provides a straightforward analytical estimation of the spatial Laplacian for better current sources localization. In this software, coregistration of 2D MEA data on the anatomy of the neural tissue is made possible by fine matching of anatomical data with electrode positions using rigid-deformation-based correction of anatomical pictures. Overall, NeuroMap provides substantial material for detailed spatiotemporal analysis of MEA data. The package is distributed under GNU General Public License and available at http://sites.google.com/site/neuromapsoftware. PMID:21344013

  19. NeuroMap: A Spline-Based Interactive Open-Source Software for Spatiotemporal Mapping of 2D and 3D MEA Data.

    PubMed

    Abdoun, Oussama; Joucla, Sébastien; Mazzocco, Claire; Yvert, Blaise

    2011-01-01

    A major characteristic of neural networks is the complexity of their organization at various spatial scales, from microscopic local circuits to macroscopic brain-scale areas. Understanding how neural information is processed thus entails the ability to study them at multiple scales simultaneously. This is made possible using microelectrodes array (MEA) technology. Indeed, high-density MEAs provide large-scale coverage (several square millimeters) of whole neural structures combined with microscopic resolution (about 50 μm) of unit activity. Yet, current options for spatiotemporal representation of MEA-collected data remain limited. Here we present NeuroMap, a new interactive Matlab-based software for spatiotemporal mapping of MEA data. NeuroMap uses thin plate spline interpolation, which provides several assets with respect to conventional mapping methods used currently. First, any MEA design can be considered, including 2D or 3D, regular or irregular, arrangements of electrodes. Second, spline interpolation allows the estimation of activity across the tissue with local extrema not necessarily at recording sites. Finally, this interpolation approach provides a straightforward analytical estimation of the spatial Laplacian for better current sources localization. In this software, coregistration of 2D MEA data on the anatomy of the neural tissue is made possible by fine matching of anatomical data with electrode positions using rigid-deformation-based correction of anatomical pictures. Overall, NeuroMap provides substantial material for detailed spatiotemporal analysis of MEA data. The package is distributed under GNU General Public License and available at http://sites.google.com/site/neuromapsoftware.

  20. Invasive vulvar carcinoma and the question of the surgical margin.

    PubMed

    Palaia, Innocenza; Bellati, Filippo; Calcagno, Marco; Musella, Angela; Perniola, Giorgia; Panici, Pierluigi B

    2011-08-01

    To assess the discrepancy between width of surgical margin measured with the naked eye/ruler by a surgeon before removing an invasive vulvar carcinoma, and width of margin measured under microscope by pathologist after fixation of the resected lesion with formalin. Potential relationships between discrepancy and disease recurrence were also investigated. This prospective study was conducted with resected lesions from 86 women who underwent surgery for primary/recurrent invasive vulvar carcinoma. After the surgeon removed the lesions surrounded by 1-2-cm margins, the pathologist determined margin width at the 4 cardinal points of 86 lesions (for a total of 344 margin assessments), first macroscopically and then under the microscope. A safety margin of 0.8 cm on microscopic view was achieved in 83% of cases (112 of 135) when the macroscopic measurement was 1cm, in 91% of cases (58 of 64) when it was 1.5 cm, and 98% of cases (105 of 107) when it was 2 cm. There was a small discrepancy between the surgeon's intent and the microscopic margin measurement, mostly related to tissue shrinkage. A 1-cm surgical margin corresponded to a 0.8-cm margin in microscopic view (the "safe margin") in most cases. Copyright © 2011 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Understanding Imaging and Metrology with the Helium Ion Microscope

    NASA Astrophysics Data System (ADS)

    Postek, Michael T.; Vladár, András E.; Ming, Bin

    2009-09-01

    One barrier to innovation confronting all phases of nanotechnology is the lack of accurate metrology for the characterization of nanomaterials. Ultra-high resolution microscopy is a key technology needed to achieve this goal. But, current microscope technology is being pushed to its limits. The scanning and transmission electron microscopes have incrementally improved in performance and other scanned probe technologies such as atomic force microscopy, scanning tunneling microscopy and focused ion beam microscopes have all been applied to nanotechnology with various levels of success. A relatively new tool for nanotechnology is the scanning helium ion microscope (HIM). The HIM is a new complementary imaging and metrology technology for nanotechnology which may be able to push the current resolution barrier lower. But, successful imaging and metrology with this instrument entails new ion beam/specimen interaction physics which must be fully understood. As a new methodology, HIM is beginning to show promise and the abundance of potentially advantageous applications for nanotechnology have yet to be fully exploited. This presentation will discuss some of the progress made at NIST in understanding the science behind this new technique.

  2. Study of factors affecting the appearance of colors under microscopes

    NASA Astrophysics Data System (ADS)

    Zakizadeh, Roshanak; Martinez-Garcia, Juan; Raja, Kiran B.; Siakidis, Christos

    2013-11-01

    The variation of colors in microscopy systems can be quite critical for some users. To address this problem, a study is conducted to analyze how different factors such as size of the sample, intensity of the microscope's light source and the characteristics of the material like chroma and saturation can affect the color appearance through the eyepiece of the microscope. To study the changes in colors considering these factors, the spectral reflectance of 24 colors of GretagMacbeth Classic ColorChecker® and Mini ColorChecker® which are placed under a Nikon ECLIPSE MA200 microscope®2 using dark filed and bright field illuminations which result in different intensity levels, is measured using a spectroradiometer®3 which was placed in front of the eyepiece of the microscope. The results are compared with the original data from N. Ohta1. The evaluation is done by observing the shift in colors in the CIE 1931 Chromaticity Diagram and the CIELAB space, also by applying a wide set of color-difference formulas, namely: CIELAB, CMC, BFD, CIE94, CIEDE2000, DIN99d and DIN99b. Furthermore, to emphasize on the color regions in which the highest difference is observed, the authors have obtained the results from another microscope; Olympus SZX10®4, which in this case the measurement is done by mounting the spectroradiometer to the camera port of the microscope. The experiment leads to some interesting results, among which is the consistency in the highest difference observed considering different factors or how the change in saturation of the samples of the same hue can affect the results.

  3. Dynamic Switching of Helical Microgel Ribbons.

    PubMed

    Zhang, Hang; Mourran, Ahmed; Möller, Martin

    2017-03-08

    We report on a microscopic poly(N-isopropylacrylamide) hydrogel ribbon, coated by a thin gold layer, that shows helical coiling. Confined swelling and shrinkage of the hydrogel below and above its characteristic volume phase transition leads to a temperature actuated reversal of the sense of the helix. The extent and the shape of the winding are controlled by the dimensions and mechanical properties of the bilayer ribbon. We focus on a cylindrical helix geometry and monitor the morphing under equilibrium and nonequilibrium conditions, that is, when the temperature changes faster than the volume (millisecond range). For slow temperature variations, the water release and uptake follow the equilibrium transition trajectory determined by the time needed for the diffusion of water into and out of the microscopic gel. Much faster variations of the temperature are accomplished by internal heating of embedded gold nanorods by IR-light irradiation. This causes elastic stresses that strongly affect the motions. This method enables well-reproducible deviations from the equilibrium transition path and allows us to control rather precisely the spatiotemporal transformation in a cyclic repetitive process. Actuation and response are sensitive to small variations of temperature and composition of the aqueous sol in which the gel is immersed. The principle as described may be used to detect specific analytes that bind either to the surface of the gold layer or within the gel and can modify the interaction between the water and the gel. The reported nonequilibrium morphing implies that the system dissipates energy and may also be able to perform work as required for a microscopic motor.

  4. Spreading dynamics of 2D dipolar Langmuir monolayer phases.

    PubMed

    Heinig, P; Wurlitzer, S; Fischer, Th M

    2004-07-01

    We study the spreading of a liquid 2D dipolar droplet in a Langmuir monolayer. Interfacial tensions (line tensions) and microscopic contact angles depend on the scale on which they are probed and obey a scaling law. Assuming rapid equilibration of the microscopic contact angle and ideal slippage of the 2D solid/liquid and solid/gas boundary, the driving force of spreading is merely expressed by the shape-dependent long-range interaction integrals. We obtain good agreement between experiment and numerical simulations using this theory.

  5. Development of x-ray laminography under an x-ray microscopic condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoshino, Masato; Uesugi, Kentaro; Takeuchi, Akihisa

    2011-07-15

    An x-ray laminography system under an x-ray microscopic condition was developed to obtain a three-dimensional structure of laterally-extended planar objects which were difficult to observe by x-ray tomography. An x-ray laminography technique was introduced to an x-ray transmission microscope with zone plate optics. Three prototype sample holders were evaluated for x-ray imaging laminography. Layered copper grid sheets were imaged as a laminated sample. Diatomite powder on a silicon nitride membrane was measured to confirm the applicability of this method to non-planar micro-specimens placed on the membrane. The three-dimensional information of diatom shells on the membrane was obtained at a spatialmore » resolution of sub-micron. Images of biological cells on the membrane were also obtained by using a Zernike phase contrast technique.« less

  6. Atomic force microscope characterization of self-assembly behaviors of cyclo[8] pyrrole on solid substrates

    NASA Astrophysics Data System (ADS)

    Xu, Hai; Zhao, Siqi; Xiong, Xiang; Jiang, Jinzhi; Xu, Wei; Zhu, Daoben; Zhang, Yi; Liang, Wenjie; Cai, Jianfeng

    2017-04-01

    Cyclo [8] pyrrole (CP) is a porphyrin analogue containing eight α-conjugated pyrrole units which are arranged in a nearly coplanar conformation. The π-π interactions between CP molecules lead to regular aggregations through a solution casting process. Using tapping mode atomic force microscope (AFM), we investigated the morphology of self-assembled aggregates formed by deposition of different CP solutions on different substrates. We found that in the n-butanol solution, nanofibrous structures could be formed on the silicon or mica surface. Interestingly, on the highly oriented pyrolytic graphite (HOPG) surface, or silicon and mica surface with a toluene solution, only irregular spherical structures were identified. The difference in the nanomorphology may be attributed to distinct interactions between molecule-molecule, molecule-solvent and molecule-substrate.

  7. Nuclear half-lives for {alpha}-radioactivity of elements with 100 {<=} Z {<=} 130

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, P. Roy; Samanta, C.; Physics Department, Gottwald Science Center, University of Richmond, Richmond, VA 23173

    2008-11-15

    Theoretical estimates for the half-lives of about 1700 isotopes of heavy elements with 100 {<=} Z {<=} 130 are tabulated using theoretical Q-values. The quantum mechanical tunneling probabilities are calculated within a WKB framework using microscopic nuclear potentials. The microscopic nucleus-nucleus potentials are obtained by folding the densities of interacting nuclei with a density-dependent M3Y effective nucleon-nucleon interaction. The {alpha}-decay half-lives calculated in this formalism using the experimental Q-values were found to be in good agreement over a wide range of experimental data spanning about 20 orders of magnitude. The theoretical Q-values used for the present calculations are extracted frommore » three different mass estimates viz. Myers-Swiatecki, Muntian-Hofmann-Patyk-Sobiczewski, and Koura-Tachibana-Uno-Yamada.« less

  8. Ion photon emission microscope

    DOEpatents

    Doyle, Barney L.

    2003-04-22

    An ion beam analysis system that creates microscopic multidimensional image maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the ion-induced photons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted photons are collected in the lens system of a conventional optical microscope, and projected on the image plane of a high resolution single photon position sensitive detector. Position signals from this photon detector are then correlated in time with electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these photons initially.

  9. A Tissue Engineered Model of Aging: Interdependence and Cooperative Effects in Failing Tissues.

    PubMed

    Acun, A; Vural, D C; Zorlutuna, P

    2017-07-11

    Aging remains a fundamental open problem in modern biology. Although there exist a number of theories on aging on the cellular scale, nearly nothing is known about how microscopic failures cascade to macroscopic failures of tissues, organs and ultimately the organism. The goal of this work is to bridge microscopic cell failure to macroscopic manifestations of aging. We use tissue engineered constructs to control the cellular-level damage and cell-cell distance in individual tissues to establish the role of complex interdependence and interactions between cells in aging tissues. We found that while microscopic mechanisms drive aging, the interdependency between cells plays a major role in tissue death, providing evidence on how cellular aging is connected to its higher systemic consequences.

  10. Proton scattering by short lived sulfur isotopes

    NASA Astrophysics Data System (ADS)

    Maréchal, F.; Suomijärvi, T.; Blumenfeld, Y.; Azhari, A.; Bauge, E.; Bazin, D.; Brown, J. A.; Cottle, P. D.; Delaroche, J. P.; Fauerbach, M.; Girod, M.; Glasmacher, T.; Hirzebruch, S. E.; Jewell, J. K.; Kelley, J. H.; Kemper, K. W.; Mantica, P. F.; Morrissey, D. J.; Riley, L. A.; Scarpaci, J. A.; Scheit, H.; Steiner, M.

    1999-09-01

    Elastic and inelastic proton scattering has been measured in inverse kinematics on the unstable nucleus 40S. A phenomenological distorted wave Born approximation analysis yields a quadrupole deformation parameter β2=0.35+/-0.05 for the 2+1 state. Consistent phenomenological and microscopic proton scattering analyses have been applied to all even-even sulfur isotopes from A=32 to A=40. The second analysis used microscopic collective model densities and a modified Jeukenne-Lejeune-Mahaux nucleon-nucleon effective interaction. This microscopic analysis suggests the presence of a neutron skin in the heavy sulfur isotopes. The analysis is consistent with normalization values for λv and λw of 0.95 for both the real and imaginary parts of the Jeukenne-Lejeune-Mahaux potential.

  11. Ballistic-Electron-Emission Microscope

    NASA Technical Reports Server (NTRS)

    Kaiser, William J.; Bell, L. Douglas

    1990-01-01

    Ballistic-electron-emission microscope (BEEM) employs scanning tunneling-microscopy (STM) methods for nondestructive, direct electrical investigation of buried interfaces, such as interface between semiconductor and thin metal film. In BEEM, there are at least three electrodes: emitting tip, biasing electrode, and collecting electrode, receiving current crossing interface under investigation. Signal-processing device amplifies electrode signals and converts them into form usable by computer. Produces spatial images of surface by scanning tip; in addition, provides high-resolution images of buried interface under investigation. Spectroscopic information extracted by measuring collecting-electrode current as function of one of interelectrode voltages.

  12. Transfer of monolayer TMD WS2 and Raman study of substrate effects

    PubMed Central

    Mlack, Jerome T.; Masih Das, Paul; Danda, Gopinath; Chou, Yung-Chien; Naylor, Carl H.; Lin, Zhong; López, Néstor Perea; Zhang, Tianyi; Terrones, Mauricio; Johnson, A. T. Charlie; Drndić, Marija

    2017-01-01

    A facile transfer process for transition metal dichalcogenide WS2 flakes is reported and the effect of the underlying substrate on the flake properties is investigated using Raman spectroscopy. The flakes are transferred from their growth substrate using polymethyl methacrylate (PMMA) and a wet etch to allow the user to transfer the flakes to a final substrate using a microscope and micromanipulator combined with semi-transparent Kapton tape. The substrates used range from insulators such as industry standard high-k dielectric HfO2 and “green polymer” parylene-C, to conducting chemical vapor deposition (CVD) grown graphene. Raman spectroscopy is used first to confirm the material quality of the transferred flakes to the substrates and subsequently to analyze and separate the effects arising from material transfer from those arising from interactions with the substrate. We observe changes in the Raman spectra associated with the interactions between the substrates in the flakes. These interactions affect both in-plane and out-of-plane modes in different ways depending on their sources, for example strain or surface charge. These changes vary with final substrate, with the strongest effects being observed for WS2 transferred onto graphene and HfO2, demonstrating the importance of understanding substrate interaction for fabrication of future devices. PMID:28220852

  13. Autonomous quantum to classical transitions and the generalized imaging theorem

    NASA Astrophysics Data System (ADS)

    Briggs, John S.; Feagin, James M.

    2016-03-01

    The mechanism of the transition of a dynamical system from quantum to classical mechanics is of continuing interest. Practically it is of importance for the interpretation of multi-particle coincidence measurements performed at macroscopic distances from a microscopic reaction zone. Here we prove the generalized imaging theorem which shows that the spatial wave function of any multi-particle quantum system, propagating over distances and times large on an atomic scale but still microscopic, and subject to deterministic external fields and particle interactions, becomes proportional to the initial momentum wave function where the position and momentum coordinates define a classical trajectory. Currently, the quantum to classical transition is considered to occur via decoherence caused by stochastic interaction with an environment. The imaging theorem arises from unitary Schrödinger propagation and so is valid without any environmental interaction. It implies that a simultaneous measurement of both position and momentum will define a unique classical trajectory, whereas a less complete measurement of say position alone can lead to quantum interference effects.

  14. Mechanics of Individual, Isolated Vortices in a Cuprate Superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auslaender, M.

    2010-05-25

    Superconductors often contain quantized microscopic whirlpools of electrons, called vortices, that can be modeled as one-dimensional elastic objects. Vortices are a diverse playground for condensed matter because of the interplay between thermal fluctuations, vortex-vortex interactions, and the interaction of the vortex core with the three-dimensional disorder landscape. While vortex matter has been studied extensively, the static and dynamic properties of an individual vortex have not. Here we employ magnetic force microscopy (MFM) to image and manipulate individual vortices in detwinned, single crystal YBa{sub 2}Cu{sub 3}O{sub 6.991} (YBCO), directly measuring the interaction of a moving vortex with the local disorder potential.more » We find an unexpected and dramatic enhancement of the response of a vortex to pulling when we wiggle it transversely. In addition, we find enhanced vortex pinning anisotropy that suggests clustering of oxygen vacancies in our sample and demonstrates the power of MFM to probe vortex structure and microscopic defects that cause pinning.« less

  15. Autonomous quantum to classical transitions and the generalized imaging theorem

    DOE PAGES

    Briggs, John S.; Feagin, James M.

    2016-03-16

    The mechanism of the transition of a dynamical system from quantum to classical mechanics is of continuing interest. Practically it is of importance for the interpretation of multi-particle coincidence measurements performed at macroscopic distances from a microscopic reaction zone. We prove the generalized imaging theorem which shows that the spatial wave function of any multi-particle quantum system, propagating over distances and times large on an atomic scale but still microscopic, and subject to deterministic external fields and particle interactions, becomes proportional to the initial momentum wave function where the position and momentum coordinates define a classical trajectory. Now, the quantummore » to classical transition is considered to occur via decoherence caused by stochastic interaction with an environment. The imaging theorem arises from unitary Schrödinger propagation and so is valid without any environmental interaction. It implies that a simultaneous measurement of both position and momentum will define a unique classical trajectory, whereas a less complete measurement of say position alone can lead to quantum interference effects.« less

  16. Engineering of frustration in colloidal artificial ice (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ortiz-Ambriz, Antonio; Tierno, Pietro

    2016-09-01

    Artificial spin-ice systems have been used to date as microscopic models of frustration induced by lattice topology, as they allow for the direct visualization of spin arrangements and textures. However, the engineering of frustrated ice states in which individual spins can be manipulated in situ and the real-time observation of their collective dynamics remain both challenging tasks. Recently, an analogue system has been proposed theoretically, where an optical landscape confined colloidal particles that interacted electrostatically. Here we realize experimentally another version of a colloidal artificial ice system using interacting magnetically polarizable particles confined to lattices of bistable gravitational traps. We show quantitatively that ice-selection rules emerge in this frustrated soft matter system by tuning the strength of the pair-interactions between the microscopic units. By using optical tweezers, we can control particle positioning and dipolar coupling, we introduce monopole-like defects and strings and use loops with defined chirality as an elementary unit to store binary information.

  17. A Numerical Method for Simulating the Microscopic Damage Evolution in Composites Under Uniaxial Transverse Tension

    NASA Astrophysics Data System (ADS)

    Zhi, Jie; Zhao, Libin; Zhang, Jianyu; Liu, Zhanli

    2016-06-01

    In this paper, a new numerical method that combines a surface-based cohesive model and extended finite element method (XFEM) without predefining the crack paths is presented to simulate the microscopic damage evolution in composites under uniaxial transverse tension. The proposed method is verified to accurately capture the crack kinking into the matrix after fiber/matrix debonding. A statistical representative volume element (SRVE) under periodic boundary conditions is used to approximate the microstructure of the composites. The interface parameters of the cohesive models are investigated, in which the initial interface stiffness has a great effect on the predictions of the fiber/matrix debonding. The detailed debonding states of SRVE with strong and weak interfaces are compared based on the surface-based and element-based cohesive models. The mechanism of damage in composites under transverse tension is described as the appearance of the interface cracks and their induced matrix micro-cracking, both of which coalesce into transversal macro-cracks. Good agreement is found between the predictions of the model and the in situ experimental observations, demonstrating the efficiency of the presented model for simulating the microscopic damage evolution in composites.

  18. Metabolomics analysis of Lactobacillus plantarum ATCC 14917 adhesion activity under initial acid and alkali stress.

    PubMed

    Wang, Wenwen; He, Jiayi; Pan, Daodong; Wu, Zhen; Guo, Yuxing; Zeng, Xiaoqun; Lian, Liwei

    2018-01-01

    The adhesion ability of Lactobacillus plantarum affects retention time in the human gastro-intestinal tract, as well as influencing the interaction with their host. In this study, the relationship between the adhesion activity of, and metabolic changes in, L. plantarum ATCC 14917 under initial acid and alkali stress was evaluated by analyzing auto-aggregation, protein adhesion and cell adhesion in vitro. Based on scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis, the morphology of the bacteria became thickset and the thickness of their cell walls decreased under initial alkali stress. The fold changes of auto-aggregation, adhere to mucin and HT-29 cell lines of L. plantarum ATCC 14917 in the acid group were increased by 1.141, 1.125 and 1.156, respectively. But decreased significantly in the alkali group (fold changes with 0.842, 0.728 and 0.667). Adhesion-related protein increased in the acid group but declined in the alkali group at the mRNA expression level according to real time polymerase chain reaction (RT-PCR) analysis. The changes in the metabolite profiles of L. plantarum ATCC 14917 were characterized using Ultra-Performance Liquid Chromatography-Electrospray ionization-Quadrupole-Time of Flight-mass spectrometry (UPLS-ESI-Q-TOF-MS). In the alkali group, the content of a lot of substances involved in the energy and amino acid metabolism decreased, but the content of some substances involved in the energy metabolism was slightly increased in the acid group. These findings demonstrate that energy metabolism is positively correlated with the adhesion ability of L. plantarum ATCC 14917. The amino-acids metabolism, especially the amino acids related to pH-homeostasis mechanisms (lysine, aspartic acid, arginine, proline and glutamic acid), showed an obvious effect on the adhesion ability of L. plantarum ATCC 14917. This investigation provides a better understanding of L. plantarum's adhesion mechanisms under initial pH stress.

  19. Metabolomics analysis of Lactobacillus plantarum ATCC 14917 adhesion activity under initial acid and alkali stress

    PubMed Central

    Wang, Wenwen; He, Jiayi; Wu, Zhen; Guo, Yuxing; Zeng, Xiaoqun; Lian, Liwei

    2018-01-01

    The adhesion ability of Lactobacillus plantarum affects retention time in the human gastro-intestinal tract, as well as influencing the interaction with their host. In this study, the relationship between the adhesion activity of, and metabolic changes in, L. plantarum ATCC 14917 under initial acid and alkali stress was evaluated by analyzing auto-aggregation, protein adhesion and cell adhesion in vitro. Based on scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis, the morphology of the bacteria became thickset and the thickness of their cell walls decreased under initial alkali stress. The fold changes of auto-aggregation, adhere to mucin and HT-29 cell lines of L. plantarum ATCC 14917 in the acid group were increased by 1.141, 1.125 and 1.156, respectively. But decreased significantly in the alkali group (fold changes with 0.842, 0.728 and 0.667). Adhesion—related protein increased in the acid group but declined in the alkali group at the mRNA expression level according to real time polymerase chain reaction (RT-PCR) analysis. The changes in the metabolite profiles of L. plantarum ATCC 14917 were characterized using Ultra-Performance Liquid Chromatography-Electrospray ionization-Quadrupole-Time of Flight-mass spectrometry (UPLS-ESI-Q-TOF-MS). In the alkali group, the content of a lot of substances involved in the energy and amino acid metabolism decreased, but the content of some substances involved in the energy metabolism was slightly increased in the acid group. These findings demonstrate that energy metabolism is positively correlated with the adhesion ability of L. plantarum ATCC 14917. The amino-acids metabolism, especially the amino acids related to pH-homeostasis mechanisms (lysine, aspartic acid, arginine, proline and glutamic acid), showed an obvious effect on the adhesion ability of L. plantarum ATCC 14917. This investigation provides a better understanding of L. plantarum’s adhesion mechanisms under initial pH stress. PMID:29795550

  20. Cross-Over Between Different Symmetries

    NASA Astrophysics Data System (ADS)

    Frauendorf, S.

    2014-09-01

    The yrast states of even even vibrational and transitional nuclei are interpreted as a rotating condensate of interacting d-bosons. The corresponding semi-classical tidal wave concept is used for microscopic calculations of energies and E2 transition probabilities. The strong octupole correlations in the light rare earth and actinide nuclides are interpreted as rotation-induced condensation of interacting f-bosons.

  1. WETTABILITY AND IMBIBITION: MICROSCOPIC DISTRIBUTION OF WETTING AND ITS CONSEQUENCES AT THE CORE AND FIELD SCALES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jill S. Buckley; Norman R. Morrow; Chris Palmer

    2003-02-01

    The questions of reservoir wettability have been approached in this project from three directions. First, we have studied the properties of crude oils that contribute to wetting alteration in a reservoir. A database of more than 150 different crude oil samples has been established to facilitate examination of the relationships between crude oil chemical and physical properties and their influence on reservoir wetting. In the course of this work an improved SARA analysis technique was developed and major advances were made in understanding asphaltene stability including development of a thermodynamic Asphaltene Solubility Model (ASM) and empirical methods for predicting themore » onset of instability. The CO-Wet database is a resource that will be used to guide wettability research in the future. The second approach is to study crude oil/brine/rock interactions on smooth surfaces. Contact angle measurements were made under controlled conditions on mica surfaces that had been exposed to many of the oils in the CO-Wet database. With this wealth of data, statistical tests can now be used to examine the relationships between crude oil properties and the tendencies of those oils to alter wetting. Traditionally, contact angles have been used as the primary wetting assessment tool on smooth surfaces. A new technique has been developed using an atomic forces microscope that adds a new dimension to the ability to characterize oil-treated surfaces. Ultimately we aim to understand wetting in porous media, the focus of the third approach taken in this project. Using oils from the CO-Wet database, experimental advances have been made in scaling the rate of imbibition, a sensitive measure of core wetting. Application of the scaling group to mixed-wet systems has been demonstrated for a range of core conditions. Investigations of imbibition in gas/liquid systems provided the motivation for theoretical advances as well. As a result of this project we have many new tools for studying wetting at microscopic and macroscopic scales and a library of well-characterized fluids for use in studies of crude oil/brine/rock interactions.« less

  2. [An experimental study of mesenchymal stem cells in tissue engineering scaffolds implanted in rabbit corneal lamellae to increase keratoprosthesis biointegration].

    PubMed

    Bai, H; Wang, L L; Huang, Y F; Huang, J X

    2016-03-01

    To complete a preliminary evaluation of the feasibility of implanting the complex of mouse bone marrow mesenchymal stem cells (BMSC) and a tissue engineering scaffold into rabbit corneal lamellae, based on which a solution may be proposed to consolidate the keratoprosthesis and the recipient surface, and to reduce the risk of complications. This experimental study was composed of two parts. (1) In vitro: some mouse BMSC were marked with red fluorescent proteins (RFP) and integrated with a decellularized pig articular cartilage extracellular matrix (ECM) scaffold. The cell survival was observed under a fluorescence microscope at 4 and 8 weeks. The cell distribution was examined by toluidine blue staining. The pore structure and the cell adhesion were observed under a scanning electron microscope. (2) in vivo: the complex of mouse BMSC and a decellularized scaffold was implanted into the lamellar cornea of 8 rabbit eyes with the fellow eyes as the controls. The eyes were sampled for observation using HE staining under a light microscope at 2, 4 and 8 weeks, respectively. The cell survival was examined under a fluorescence microscope, and the intracorneal cell survival at 8 weeks was observed using in vivo imaging. The conditions of ocular anterior segment of all the experimental animals were recorded. (1) Under the scanning electron microscope, the ECM scaffolds showed satisfactory porosity required for the adhesion and growth of cells and tissues, and the cell distribution over the cell-scaffold complex can be observed by toluidine blue staining. (2) Under the immunofluorescence microscope, cell proliferation was observed in vitro and in the interlamellar space (the maximum observation time was 8 weeks) after the RFP-marked mouse BMSC were integrated in vitro with ECM scaffolds. (3) Under the light microscope (HE staining), the stromal cells were detected to increase at each timepoint. A small number of monocytes and some mouse BMSC were observed in the superficial layer of corneal stroma, with sparsely and orderly arranged collagenous fibers and no neovascularization. All the epithelial cells appeared as mononuclear, columnar and undamaged, and the shape of ECM scaffolds, which were fused with the collagens, became unclear. (4) By in vivo imaging, it was found that the mouse BMSC survived for 8 weeks after being integrated with scaffolds and implanted into the interlamellar space of rabbit cornea. (5) After the implantation of cell-scaffold complex, severe postoperative inflammatory reactions, obvious conjunctival congestion and neovascularization were not observed. The corneal tissues surrounding the recipient area were transparent. One week later, mild inflammatory reactions were barely observed, and the cornea was transparent enough to observe the scaffold in the stromal layers. Four weeks later, the scaffolds became thinner. Eight weeks later, the scaffolds became extremely thin with normal vascular system in the corneal limbus. The ECM scaffold is a solid and biocompatible carrier for the growth and proliferation of BMSC. The mouse BMSC can grow and proliferate in the microenvironment of the interlamellar space of cornea.

  3. The scaling of human interactions with city size.

    PubMed

    Schläpfer, Markus; Bettencourt, Luís M A; Grauwin, Sébastian; Raschke, Mathias; Claxton, Rob; Smoreda, Zbigniew; West, Geoffrey B; Ratti, Carlo

    2014-09-06

    The size of cities is known to play a fundamental role in social and economic life. Yet, its relation to the structure of the underlying network of human interactions has not been investigated empirically in detail. In this paper, we map society-wide communication networks to the urban areas of two European countries. We show that both the total number of contacts and the total communication activity grow superlinearly with city population size, according to well-defined scaling relations and resulting from a multiplicative increase that affects most citizens. Perhaps surprisingly, however, the probability that an individual's contacts are also connected with each other remains largely unaffected. These empirical results predict a systematic and scale-invariant acceleration of interaction-based spreading phenomena as cities get bigger, which is numerically confirmed by applying epidemiological models to the studied networks. Our findings should provide a microscopic basis towards understanding the superlinear increase of different socioeconomic quantities with city size, that applies to almost all urban systems and includes, for instance, the creation of new inventions or the prevalence of certain contagious diseases. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  4. An adaptive extended finite element method for the analysis of agglomeration of colloidal particles in a flowing fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Young Joon; Jorshari, Razzi Movassaghi; Djilali, Ned

    2015-03-10

    Direct numerical simulations of the flow-nanoparticle interaction in a colloidal suspension are presented using an extended finite element method (XFEM) in which the dynamics of the nanoparticles is solved in a fully-coupled manner with the flow. The method is capable of accurately describing solid-fluid interfaces without the need of boundary-fitted meshes to investigate the dynamics of particles in complex flows. In order to accurately compute the high interparticle shear stresses and pressures while minimizing computing costs, an adaptive meshing technique is incorporated with the fluid-structure interaction algorithm. The particle-particle interaction at the microscopic level is modeled using the Lennard-Jones (LJ)more » potential and the corresponding potential parameters are determined by a scaling procedure. The study is relevant to the preparation of inks used in the fabrication of catalyst layers for fuel cells. In this paper, we are particularly interested in investigating agglomeration of the nanoparticles under external shear flow in a sliding bi-periodic Lees-Edwards frame. The results indicate that the external shear has a crucial impact on the structure formation of colloidal particles in a suspension.« less

  5. Harmonic force spectroscopy reveals a force-velocity curve from a single human beta cardiac myosin motor

    NASA Astrophysics Data System (ADS)

    Sung, Jongmin; Nag, Suman; Vestergaard, Christian; Mortensen, Kim; Flyvbjerg, Henrik; Spudich, James

    2014-03-01

    A muscle contracts rapidly under low load, but slowly under high load. Its molecular mechanisms remain to be elucidated, however. During contraction, myosins in thick filaments interact with actin in thin filaments in the sarcomere, cycling between a strongly bound (force producing) state and a weakly bound (relaxed) state. Huxley et al. have previously proposed that the transition from the strong to the weak interaction can be modulated by a load. We use a new method we call ``harmonic force spectroscopy'' to extract a load-velocity curve from a single human beta cardiac myosin II motor. With a dual-beam optical trap, we hold an actin dumbbell over a myosin molecule anchored to the microscope stage that oscillates sinusoidally. Upon binding, the motor experiences an oscillatory load with a mean that is directed forward or backward, depending on binding location We find that the bound time at saturating [ATP] is exponentially correlated with the mean load, which is explained by Arrhenius transition theory. With a stroke size measurement, we obtained a load-velocity curve from a single myosin. We compare the curves for wild-type motors with mutants that cause hypertrophic cardiomyopathies, to understand the effects on the contractile cycle

  6. Coherent interaction with two-level fluctuators using near field scanning microwave microscopy.

    PubMed

    de Graaf, S E; Danilov, A V; Kubatkin, S E

    2015-11-24

    Near field Scanning Microwave Microscopy (NSMM) is a scanning probe technique that non-invasively can obtain material properties on the nano-scale at microwave frequencies. While focus has been on developing room-temperature systems it was recently shown that this technique can potentially reach the quantum regime, opening up for applications in materials science and device characterization in solid state quantum information processing. In this paper we theoretically investigate this new regime of NSMM. Specifically we show that interaction between a resonant NSMM probe and certain types of two-level systems become possible when the NSMM probe operates in the (sub-) single photon regime, and we expect a high signal-to-noise ratio if operated under the right conditions. This would allow to detect single atomic material defects with energy splittings in the GHz range with nano-scale resolution, provided that individual defects in the material under study are well enough separated. We estimate that this condition is fulfilled for materials with loss tangents below tan δ ∼ 10(-3) which holds for materials used in today's quantum circuits and devices where typically tan δ < 10(-5). We also propose several extensions to a resonant NSMM that could improve sensitivity and functionality also for microscopes operating in a high power regime.

  7. [Electron microscope analysis of cardiomyocytes in the rat left ventricle under simulation of weightlessness effects and artificial gravitation].

    PubMed

    Varenik, E N; Lipina, T V; Shornikova, M V; Krasnov, I B; Chentsov, Iu S

    2012-01-01

    Electron microscopic study of left ventricle cardiomyocytes and quantitative analysis of their mitochondriom was performed in rats exposed to tail-suspension, as a model of weightlessness effects, to artificial gravity produced by intermittent 2G centrifugation and a combination of these effects. It was found that the cardiomyocytes ultrastructure changed slightly after tail-suspension and after intermittent 2G influence, as well as under a combination of these effects. However, the number of intermitochondrial junctions increased significantly in the interfibrillar zone of cardiomyocytes under a combination of tail-suspension and intermittent 2G influence, which agrees with the cell hypertrophy described earlier.

  8. Frameless Stereotactic Insertion of Viewsite Brain Access System with Microscope-Mounted Tracking Device for Resection of Deep Brain Lesions: Technical Report

    PubMed Central

    Chakraborty, Shamik; Lall, Rohan; Fanous, Andrew A; Boockvar, John; Langer, David J

    2017-01-01

    The surgical management of deep brain tumors is often challenging due to the limitations of stereotactic needle biopsies and the morbidity associated with transcortical approaches. We present a novel microscopic navigational technique utilizing the Viewsite Brain Access System (VBAS) (Vycor Medical, Boca Raton, FL, USA) for resection of a deep parietal periventricular high-grade glioma as well as another glioma and a cavernoma with no related morbidity. The approach utilized a navigational tracker mounted on a microscope, which was set to the desired trajectory and depth. It allowed gentle continuous insertion of the VBAS directly to a deep lesion under continuous microscopic visualization, increasing safety by obviating the need to look up from the microscope and thus avoiding loss of trajectory. This technique has broad value for the resection of a variety of deep brain lesions. PMID:28331774

  9. Frameless Stereotactic Insertion of Viewsite Brain Access System with Microscope-Mounted Tracking Device for Resection of Deep Brain Lesions: Technical Report.

    PubMed

    White, Tim; Chakraborty, Shamik; Lall, Rohan; Fanous, Andrew A; Boockvar, John; Langer, David J

    2017-02-04

    The surgical management of deep brain tumors is often challenging due to the limitations of stereotactic needle biopsies and the morbidity associated with transcortical approaches. We present a novel microscopic navigational technique utilizing the Viewsite Brain Access System (VBAS) (Vycor Medical, Boca Raton, FL, USA) for resection of a deep parietal periventricular high-grade glioma as well as another glioma and a cavernoma with no related morbidity. The approach utilized a navigational tracker mounted on a microscope, which was set to the desired trajectory and depth. It allowed gentle continuous insertion of the VBAS directly to a deep lesion under continuous microscopic visualization, increasing safety by obviating the need to look up from the microscope and thus avoiding loss of trajectory. This technique has broad value for the resection of a variety of deep brain lesions.

  10. Scanning electron microscope observation of dislocations in semiconductor and metal materials.

    PubMed

    Kuwano, Noriyuki; Itakura, Masaru; Nagatomo, Yoshiyuki; Tachibana, Shigeaki

    2010-08-01

    Scanning electron microscope (SEM) image contrasts have been investigated for dislocations in semiconductor and metal materials. It is revealed that single dislocations can be observed in a high contrast in SEM images formed by backscattered electrons (BSE) under the condition of a normal configuration of SEM. The BSE images of dislocations were compared with those of the transmission electron microscope and scanning transmission electron microscope (STEM) and the dependence of BSE image contrast on the tilting of specimen was examined to discuss the origin of image contrast. From the experimental results, it is concluded that the BSE images of single dislocations are attributed to the diffraction effect and related with high-angle dark-field images of STEM.

  11. Life under the Microscope: Children's Ideas about Microbes

    ERIC Educational Resources Information Center

    Allen, Michael; Bridle, Georgina; Briten, Elizabeth

    2015-01-01

    Microbes (by definition) are tiny living things that are only visible through a microscope and include bacteria, viruses, fungi, and protoctists (mainly single-celled life forms such as amoebae and algae). Although people are familiar with the effects of microbes, such as infectious disease and food spoilage, because of their lack of visibility,…

  12. Reflection soft X-ray microscope and method

    DOEpatents

    Suckewer, Szymon; Skinner, Charles H.; Rosser, Roy

    1993-01-01

    A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

  13. Reflection soft X-ray microscope and method

    DOEpatents

    Suckewer, S.; Skinner, C.H.; Rosser, R.

    1993-01-05

    A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

  14. Sodium chloride stress induced morphological and ultrastructural changes in Aspergillus repens.

    PubMed

    Kelavkar, U; Rao, K S; Ghhatpar, H S

    1993-06-01

    Halotolerant fungus, A. repens, showed a considerable difference in its growth rate, morphology, ultrastructural and molecular composition under NaCl stress as compared to control i.e. non-stressed condition. Light microscopic observations revealed significant differences in their mycelial thickness, their branching and septa. Transmission electron microscopic observations of both the conditions depicted significant differences in the qualitative and quantitative changes in mitochondria. Frequent pinocytotic vesiculation (vacuoles) of plasma membrane was observed in fungus under stress but no such vesiculation in control. The multivesiculate structures observed under stress with their origin from the cell membranes and subsequent release into vacuoles have not been reported in fungi under normal physiological conditions. The observations on pinocytosis are discussed in relation to ion compartmentation and salt tolerance in A. repens.

  15. Energy density functional on a microscopic basis

    NASA Astrophysics Data System (ADS)

    Baldo, M.; Robledo, L.; Schuck, P.; Viñas, X.

    2010-06-01

    In recent years impressive progress has been made in the development of highly accurate energy density functionals, which allow us to treat medium-heavy nuclei. In this approach one tries to describe not only the ground state but also the first relevant excited states. In general, higher accuracy requires a larger set of parameters, which must be carefully chosen to avoid redundancy. Following this line of development, it is unavoidable that the connection of the functional with the bare nucleon-nucleon interaction becomes more and more elusive. In principle, the construction of a density functional from a density matrix expansion based on the effective nucleon-nucleon interaction is possible, and indeed the approach has been followed by few authors. However, to what extent a density functional based on such a microscopic approach can reach the accuracy of the fully phenomenological ones remains an open question. A related question is to establish which part of a functional can be actually derived by a microscopic approach and which part, in contrast, must be left as purely phenomenological. In this paper we discuss the main problems that are encountered when the microscopic approach is followed. To this purpose we will use the method we have recently introduced to illustrate the different aspects of these problems. In particular we will discuss the possible connection of the density functional with the nuclear matter equation of state and the distinct features of finite-size effect typical of nuclei.

  16. Protective effects of Sapindus mukorossi Gaertn against fatty liver disease induced by high fat diet in rats.

    PubMed

    Peng, Qiuxian; Zhang, Qin; Xiao, Wei; Shao, Meng; Fan, Qin; Zhang, Hongwei; Zou, Yukai; Li, Xin; Xu, Wenxue; Mo, Zhixian; Cai, Hongbing

    2014-07-18

    Study the effects of alcohol extract of Sapindus mukorossi Gaertn (AESM) on the metabolism of blood fat, morphology of fenestrated liver sinusoidal endothelial cells (LSEC), and the ultrastructure of liver cells of the rats with non-alcoholic fatty liver disease (NAFLD). Divide SD rats into control group, model group, simvastatin (7.2 mg/kg) group, and S.mukorossi Gaertn group with high dosage (0.5 g/kg), moderate dosage (0.1 g/kg), and low dosage (0.05 g/kg). After feeding with fat-rich nutrients for 3 weeks and establishing the model of hepatic adipose, conduct intragastric administration and provide the rats with fat-rich nutrients at the same time. At the 43rd day, take blood sample and measure aminotransferase and different indexes of blood fat; take hepatic tissue for pathological section, and observe the hepatic morphological patterns under light microscope; obtain and fix the hepatic tissue after injecting perfusate into the body, and observe the changes of fenestrated LSEC under scanning electron microscope; observe the ultrastructure of liver cells under transmission electron microscope. High-dosage alcohol extracts of S.mukorossi Gaertn can alleviate the AST, ALT, TC, TG, LDL, γ-GT, and ALP level, as well as raise the HDL and APN level in the serum of NAFLD-rat model. In addition, through the observation from light microscope and electron microscopes, the morphology of the hepatic tissue and liver cells as well as the recovery of the fenestrated LSEC in the treatment group has become normal. Alcohol extracts of S.mukorossi Gaertn can regulate the level of blood fat and improve the pathological changes of the hepatic tissues in NAFLD-rat model, which demonstrates the effects of down-regulating fat level and protecting liver. Copyright © 2014. Published by Elsevier Inc.

  17. Microscopic Statistical Characterisation of the Congested Traffic Flow and Some Salient Empirical Features

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Yoon, Ji Wei; Monterola, Christopher

    We present large scale, detailed analysis of the microscopic empirical data of the congested traffic flow, focusing on the non-linear interactions between the components of the many-body traffic system. By implementing a systematic procedure that averages over relatively unimportant factors, we extract the effective dependence of the acceleration on the gap between the vehicles, velocity and relative velocity. Such relationship is characterised not just by a few vehicles but the traffic system as a whole. Several interesting features of the detailed vehicle-to-vehicle interactions are revealed, including the stochastic distribution of the human responses, relative importance of the non-linear terms in different density regimes, symmetric response to the relative velocity, and the insensitivity of the acceleration to the velocity within a certain gap and velocity range. The latter leads to a multitude of steady-states without a fundamental diagram. The empirically constructed functional dependence of the acceleration on the important dynamical quantities not only gives the detailed collective driving behaviours of the traffic system, it also serves as the fundamental reference for the validations of the deterministic and stochastic microscopic traffic models in the literature.

  18. Agent-based model with multi-level herding for complex financial systems

    NASA Astrophysics Data System (ADS)

    Chen, Jun-Jie; Tan, Lei; Zheng, Bo

    2015-02-01

    In complex financial systems, the sector structure and volatility clustering are respectively important features of the spatial and temporal correlations. However, the microscopic generation mechanism of the sector structure is not yet understood. Especially, how to produce these two features in one model remains challenging. We introduce a novel interaction mechanism, i.e., the multi-level herding, in constructing an agent-based model to investigate the sector structure combined with volatility clustering. According to the previous market performance, agents trade in groups, and their herding behavior comprises the herding at stock, sector and market levels. Further, we propose methods to determine the key model parameters from historical market data, rather than from statistical fitting of the results. From the simulation, we obtain the sector structure and volatility clustering, as well as the eigenvalue distribution of the cross-correlation matrix, for the New York and Hong Kong stock exchanges. These properties are in agreement with the empirical ones. Our results quantitatively reveal that the multi-level herding is the microscopic generation mechanism of the sector structure, and provide new insight into the spatio-temporal interactions in financial systems at the microscopic level.

  19. Agent-based model with multi-level herding for complex financial systems

    PubMed Central

    Chen, Jun-Jie; Tan, Lei; Zheng, Bo

    2015-01-01

    In complex financial systems, the sector structure and volatility clustering are respectively important features of the spatial and temporal correlations. However, the microscopic generation mechanism of the sector structure is not yet understood. Especially, how to produce these two features in one model remains challenging. We introduce a novel interaction mechanism, i.e., the multi-level herding, in constructing an agent-based model to investigate the sector structure combined with volatility clustering. According to the previous market performance, agents trade in groups, and their herding behavior comprises the herding at stock, sector and market levels. Further, we propose methods to determine the key model parameters from historical market data, rather than from statistical fitting of the results. From the simulation, we obtain the sector structure and volatility clustering, as well as the eigenvalue distribution of the cross-correlation matrix, for the New York and Hong Kong stock exchanges. These properties are in agreement with the empirical ones. Our results quantitatively reveal that the multi-level herding is the microscopic generation mechanism of the sector structure, and provide new insight into the spatio-temporal interactions in financial systems at the microscopic level. PMID:25669427

  20. Utilization of Open Source Technology to Create Cost-Effective Microscope Camera Systems for Teaching.

    PubMed

    Konduru, Anil Reddy; Yelikar, Balasaheb R; Sathyashree, K V; Kumar, Ankur

    2018-01-01

    Open source technologies and mobile innovations have radically changed the way people interact with technology. These innovations and advancements have been used across various disciplines and already have a significant impact. Microscopy, with focus on visually appealing contrasting colors for better appreciation of morphology, forms the core of the disciplines such as Pathology, microbiology, and anatomy. Here, learning happens with the aid of multi-head microscopes and digital camera systems for teaching larger groups and in organizing interactive sessions for students or faculty of other departments. The cost of the original equipment manufacturer (OEM) camera systems in bringing this useful technology at all the locations is a limiting factor. To avoid this, we have used the low-cost technologies like Raspberry Pi, Mobile high definition link and 3D printing for adapters to create portable camera systems. Adopting these open source technologies enabled us to convert any binocular or trinocular microscope be connected to a projector or HD television at a fraction of the cost of the OEM camera systems with comparable quality. These systems, in addition to being cost-effective, have also provided the added advantage of portability, thus providing the much-needed flexibility at various teaching locations.

  1. Dissipation and entropy production in open quantum systems

    NASA Astrophysics Data System (ADS)

    Majima, H.; Suzuki, A.

    2010-11-01

    A microscopic description of an open system is generally expressed by the Hamiltonian of the form: Htot = Hsys + Henviron + Hsys-environ. We developed a microscopic theory of entropy and derived a general formula, so-called "entropy-Hamiltonian relation" (EHR), that connects the entropy of the system to the interaction Hamiltonian represented by Hsys-environ for a nonequilibrium open quantum system. To derive the EHR formula, we mapped the open quantum system to the representation space of the Liouville-space formulation or thermo field dynamics (TFD), and thus worked on the representation space Script L := Script H otimes , where Script H denotes the ordinary Hilbert space while the tilde Hilbert space conjugates to Script H. We show that the natural transformation (mapping) of nonequilibrium open quantum systems is accomplished within the theoretical structure of TFD. By using the obtained EHR formula, we also derived the equation of motion for the distribution function of the system. We demonstrated that by knowing the microscopic description of the interaction, namely, the specific form of Hsys-environ on the representation space Script L, the EHR formulas enable us to evaluate the entropy of the system and to gain some information about entropy for nonequilibrium open quantum systems.

  2. A surface science compatible epifluorescence microscope for inspection of samples under ultra high vacuum and cryogenic conditions.

    PubMed

    Marquardt, Christian; Paulheim, Alexander; Rohbohm, Nils; Merkel, Rudolf; Sokolowski, Moritz

    2017-08-01

    We modified an epi-illumination light microscope and mounted it on an ultra high vacuum chamber for investigating samples used in a surface science experiment. For easy access and bake out, all optical components are placed outside the vacuum and the sample is imaged through a glass window. The microscope can be operated in reflection brightfield or epifluorescence mode to image the sample surface or fluorescent dye molecules adsorbed on it. The homemade sample mounting was made compatible for the use under the microscope; sample temperatures as low as 6 K can be achieved. The performance of the microscope is demonstrated on two model samples: Brightfield-images of a well-prepared Ag(100) surface show a macroscopic corrugation of the surface, although low energy electron diffraction data indicate a highly ordered crystalline surface. The surface shows macroscopic protrusions with flat regions, about 20-200 μm in diameter, in between. Fluorescence images of diluted 3,4,9,10-perylene tetracarboxylicacid dianhydride (PTCDA) molecules adsorbed on an ultrathin epitaxial KCl film on the Ag(100) surface show a shading effect at surface protrusions due to an inclined angle of incidence of the PTCDA beam during deposition. For some preparations, the distribution of the fluorescence intensity is inhomogeneous and shows a dense network of bright patches about 5 μm in diameter related to the macroscopic corrugation of the surface. We propose that such a light microscope can aid many surface science experiments, especially those dealing with epitaxial growth or fluorescent materials.

  3. Fossil Microorganisms and Formation of Early Precambrian Weathering Profiles

    NASA Technical Reports Server (NTRS)

    Rozanov, A. Yu; Astafieva, M. M.; Vrevsky, A. B.; Alfimova, N. A.; Matrenichev, V. A.; Hoover, R. B.

    2009-01-01

    Weathering crusts are the only reliable evidences of the existence of continental conditions. Often they are the only source of information about exogenous processes and subsequently about conditions under which the development of the biosphere occurred. A complex of diverse fossil microorganisms was discovered as a result of Scanning Electron Microscope investigations. The chemical composition of the discovered fossils is identical to that of the host rocks and is represented by Si, Al, Fe, Ca and Mg. Probably, the microorganisms fixed in rocks played the role of catalyst. The decomposition of minerals comprising the rocks and their transformation into clayey (argillaceous) minerals, most likely occurred under the influence of microorganisms. And may be unique weathering crusts of Early Precambrian were formed due to interaction between specific composition of microorganism assemblage and conditions of hypergene transformations. So it is possible to speak about colonization of land by microbes already at that time and about existence of single raw from weathering crusts (Primitive soils) to real soils.

  4. Stress Transmission in Granular Packings: Localization and Cooperative Response

    NASA Astrophysics Data System (ADS)

    Ramola, Kabir

    We develop a framework for stress transmission in two dimensional granular media that respects vector force balance at the microscopic level. For a packing of grains interacting via pairwise contact forces, we introduce local gauge degrees of freedom that determine the response of the system to external perturbations. This allows us to construct unique force-balanced solutions that determine the change in contact forces as a response to external stress. By mapping this response to diffusion in the underlying contact network, we show that this naturally leads to spatial localization of forces. We present numerical evidence for stress localization using exact diagonalization studies of network Laplacians associated with soft disk packings. We use this formalism to characterize the deviation from elastic behaviour as the amount of disorder in the underlying network is varied. We discuss generalizations to systems with large friction between grains and other networks that display topological disorder. This work has been supported by NSF-DMR 1409093 and the W. M. Keck Foundation.

  5. A method to determine residue-specific unfolded-state pKa values from analysis of stability changes in single mutant cycles.

    PubMed

    Shen, Jana K

    2010-06-02

    It is now widely recognized that the unfolded state of a protein in equilibrium with the native state under folding conditions may contain significant residual structures. However, due to technical difficulties residue-specific interactions in the unfolded state remain elusive. Here we introduce a method derived from the Wyman-Tanford theory to determine residue-specific pK(a)'s in the unfolded state. This method requires equilibrium stability measurements of the wild type and single-point mutants in which titrable residues are replaced with charge-neutral ones under two pH conditions. Application of the proposed approach reveals a highly depressed pK(a) for Asp8 in the unfolded state of the NTL9 protein. Knowledge of unfolded-state pK(a)'s enables quantitative estimation of the unfolded-state electrostatic effects on protein stability. It also provides valuable benchmarks for the improvement of force fields and validation of microscopic information from molecular dynamics simulations.

  6. Non-thermal equilibrium plasma-liquid interactions with femtolitre droplets

    NASA Astrophysics Data System (ADS)

    Maguire, Paul; Mahony, Charles; Bingham, Andrew; Patel, Jenish; Rutherford, David; McDowell, David; Mariotti, Davide; Bennet, Euan; Potts, Hugh; Diver, Declan

    2014-10-01

    Plasma-induced non-equilibrium liquid chemistry is little understood. It depends on a complex interplay of interface and near surface processes, many involving energy-dependent electron-induced reactions and the transport of transient species such as hydrated electrons. Femtolitre liquid droplets, with an ultra-high ratio of surface area to volume, were transported through a low-temperature atmospheric pressure RF microplasma with transit times of 1--10 ms. Under a range of plasma operating conditions, we observe a number of non-equilibrium chemical processes that are dominated by energetic electron bombardment. Gas temperature and plasma parameters (ne ~ 1013 cm-3, Te < 4 eV) were determined while size and droplet velocity profiles were obtained using a microscope coupled to a fast ICCD camera under low light conditions. Laminar mixed-phase droplet flow is achieved and the plasma is seen to significantly deplete only the slower, smaller droplet component due possibly to the interplay between evaporation, Rayleigh instabilities and charge emission. Funding from EPSRC acknowledged (Grants EP/K006088/1 and EP/K006142/1).

  7. Development of an environmental high-voltage electron microscope for reaction science.

    PubMed

    Tanaka, Nobuo; Usukura, Jiro; Kusunoki, Michiko; Saito, Yahachi; Sasaki, Katuhiro; Tanji, Takayoshi; Muto, Shunsuke; Arai, Shigeo

    2013-02-01

    Environmental transmission electron microscopy and ultra-high resolution electron microscopic observation using aberration correctors have recently emerged as topics of great interest. The former method is an extension of the so-called in situ electron microscopy that has been performed since the 1970s. Current research in this area has been focusing on dynamic observation with atomic resolution under gaseous atmospheres and in liquids. Since 2007, Nagoya University has been developing a new 1-MV high voltage (scanning) transmission electron microscope that can be used to observe nanomaterials under conditions that include the presence of gases, liquids and illuminating lights, and it can be also used to perform mechanical operations to nanometre-sized areas as well as electron tomography and elemental analysis by electron energy loss spectroscopy. The new instrument has been used to image and analyse various types of samples including biological ones.

  8. Variations in contrast of scanning electron microscope images for microstructure analysis of Si-based semiconductor materials.

    PubMed

    Itakura, Masaru; Kuwano, Noriyuki; Sato, Kaoru; Tachibana, Shigeaki

    2010-08-01

    Image contrasts of Si-based semiconducting materials have been investigated by using the latest scanning electron microscope with various detectors under a range of experimental conditions. Under a very low accelerating voltage (500 V), we obtained a good image contrast between crystalline SiGe whiskers and the amorphous matrix using an in-lens secondary electron (SE) detector, while the conventional topographic SE image and the compositional backscattered electron (BSE) image gave no distinct contrast. By using an angular-selective BSE (AsB) detector for wide-angle scattered BSE, on the other hand, the crystal grains in amorphous matrix can be clearly visualized as 'channelling contrast'. The image contrast is very similar to that of their transmission electron microscope image. The in-lens SE (true SE falling dots SE1) and the AsB (channelling) contrasts are quite useful to distinguish crystalline parts from amorphous ones.

  9. Design and Construction of a Multi-wavelength, Micromirror Total Internal Reflectance Fluorescence Microscope

    PubMed Central

    Larson, Joshua; Kirk, Matt; Drier, Eric A.; O’Brien, William; MacKay, James F.; Friedman, Larry; Hoskins, Aaron

    2015-01-01

    Colocalization Single Molecule Spectroscopy (CoSMoS) has proven to be a useful method for studying the composition, kinetics, and mechanisms of complex cellular machines. Key to the technique is the ability to simultaneously monitor multiple proteins and/or nucleic acids as they interact with one another. Here we describe a protocol for constructing a CoSMoS micromirror Total Internal Reflection Fluorescence Microscope (mmTIRFM). Design and construction of a scientific microscope often requires a number of custom components and a significant time commitment. In our protocol, we have streamlined this process by implementation of a commercially available microscopy platform designed to accommodate the optical components necessary for a mmTIRFM. The mmTIRF system eliminates the need for machining custom parts by the end-user and facilitates optical alignment. Depending on the experience-level of the microscope builder, these time-savings and the following protocol can enable mmTIRF construction to be completed within two months. PMID:25188633

  10. Design and construction of a multiwavelength, micromirror total internal reflectance fluorescence microscope.

    PubMed

    Larson, Joshua; Kirk, Matt; Drier, Eric A; O'Brien, William; MacKay, James F; Friedman, Larry J; Hoskins, Aaron A

    2014-10-01

    Colocalization single-molecule spectroscopy (CoSMoS) has proven to be a useful method for studying the composition, kinetics and mechanisms of complex cellular machines. Key to the technique is the ability to simultaneously monitor multiple proteins and/or nucleic acids as they interact with one another. Here we describe a protocol for constructing a CoSMoS micromirror total internal reflection fluorescence microscope (mmTIRFM). Design and construction of a scientific microscope often requires a number of custom components and a substantial time commitment. In our protocol, we have streamlined this process by implementation of a commercially available microscopy platform designed to accommodate the optical components necessary for an mmTIRFM. The mmTIRF system eliminates the need for machining custom parts by the end user and facilitates optical alignment. Depending on the experience level of the microscope builder, these time savings and the following protocol can enable mmTIRF construction to be completed within 2 months.

  11. Apparatus and methods for controlling electron microscope stages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duden, Thomas

    Methods and apparatus for generating an image of a specimen with a microscope (e.g., TEM) are disclosed. In one aspect, the microscope may generally include a beam generator, a stage, a detector, and an image generator. A plurality of crystal parameters, which describe a plurality of properties of a crystal sample, are received. In a display associated with the microscope, an interactive control sphere based at least in part on the received crystal parameters and that is rotatable by a user to different sphere orientations is presented. The sphere includes a plurality of stage coordinates that correspond to a pluralitymore » of positions of the stage and a plurality of crystallographic pole coordinates that correspond to a plurality of polar orientations of the crystal sample. Movement of the sphere causes movement of the stage, wherein the stage coordinates move in conjunction with the crystallographic coordinates represented by pole positions so as to show a relationship between stage positions and the pole positions.« less

  12. Methyl green and nitrotetrazolium blue chloride co-expression in colon tissue: A hyperspectral microscopic imaging analysis

    NASA Astrophysics Data System (ADS)

    Li, Qingli; Liu, Hongying; Wang, Yiting; Sun, Zhen; Guo, Fangmin; Zhu, Jianzhong

    2014-12-01

    Histological observation of dual-stained colon sections is usually performed by visual observation under a light microscope, or by viewing on a computer screen with the assistance of image processing software in both research and clinical settings. These traditional methods are usually not sufficient to reliably differentiate spatially overlapping chromogens generated by different dyes. Hyperspectral microscopic imaging technology offers a solution for these constraints as the hyperspectral microscopic images contain information that allows differentiation between spatially co-located chromogens with similar but different spectra. In this paper, a hyperspectral microscopic imaging (HMI) system is used to identify methyl green and nitrotetrazolium blue chloride in dual-stained colon sections. Hyperspectral microscopic images are captured and the normalized score algorithm is proposed to identify the stains and generate the co-expression results. Experimental results show that the proposed normalized score algorithm can generate more accurate co-localization results than the spectral angle mapper algorithm. The hyperspectral microscopic imaging technology can enhance the visualization of dual-stained colon sections, improve the contrast and legibility of each stain using their spectral signatures, which is helpful for pathologist performing histological analyses.

  13. Relationship between the cohesion of guest particles on the flow behaviour of interactive mixtures.

    PubMed

    Mangal, Sharad; Gengenbach, Thomas; Millington-Smith, Doug; Armstrong, Brian; Morton, David A V; Larson, Ian

    2016-05-01

    In this study, we aimed to investigate the effects cohesion of small surface-engineered guest binder particles on the flow behaviour of interactive mixtures. Polyvinylpyrrolidone (PVP) - a model pharmaceutical binder - was spray-dried with varying l-leucine feed concentrations to create small surface-engineered binder particles with varying cohesion. These spray-dried formulations were characterised by their particle size distribution, morphology and cohesion. Interactive mixtures were produced by blending these spray-dried formulations with paracetamol. The resultant blends were visualised under scanning electron microscope to confirm formation of interactive mixtures. Surface coverage of paracetamol by guest particles as well as the flow behaviour of these mixtures were examined. The flow performance of interactive mixtures was evaluated using measurements of conditioned bulk density, basic flowability energy, aeration energy and compressibility. With higher feed l-leucine concentrations, the surface roughness of small binder particles increased, while their cohesion decreased. Visual inspection of the SEM images of the blends indicated that the guest particles adhered to the surface of paracetamol resulting in effective formation of interactive mixtures. These images also showed that the low-cohesion guest particles were better de-agglomerated that consequently formed a more homogeneous interactive mixture with paracetamol compared with high-cohesion formulations. The flow performance of interactive mixtures changed as a function of the cohesion of the guest particles. Interactive mixtures with low-cohesion guest binder particles showed notably improved bulk flow performance compared with those containing high-cohesion guest binder particles. Thus, our study suggests that the cohesion of guest particles dictates the flow performance of interactive mixtures. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  14. Theoretical investigation on the magnetic and electric properties in TbSb compound through an anisotropic microscopic model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranke, P. J. von, E-mail: von.ranke@uol.com.br; Ribeiro, P. O.; Alho, B. P.

    2016-05-14

    We report the strong correlations between the magnetoresistivity and the magnetic entropy change in the cubic antiferromagnetic TbSb compound. The theoretical investigation was performed through a microscopic model which takes into account the crystalline electrical field anisotropy, exchange coupling interactions between the up and down magnetic sublattices, and the Zeeman interaction. The easy magnetization directions changes from 〈001〉 to 〈110〉 and then to 〈111〉 observed experimentally was successfully theoretically described. Also, the calculation of the temperature dependence of electric resistivity showed good agreement with the experimental data. Theoretical predictions were calculated for the temperature dependence of the magnetic entropy andmore » resistivity changes upon magnetic field variation. Besides, the difference in the spin up and down sublattices resistivity was investigated.« less

  15. The generalization of the Mermin-Wagner theorem and the possibility of long-range order in the isotropic discrete one-dimensional quantum Heisenberg model

    NASA Astrophysics Data System (ADS)

    Rudoy, Yu. G.; Kotelnikova, O. A.

    2012-10-01

    The problem of existence of long-range order in the isotropic quantum Heisenberg model on the D=1 lattice is reconsidered in view of the possibility of sufficiently slow decaying exchange interaction with infinite effective radius. It is shown that the macrosopic arguments given by Landau and Lifshitz and then supported microscopically by Mermin and Wagner fail for this case so that the non-zero spontaneous magnetization may yet exist. This result was anticipated by Thouless on the grounds of phenomenological analysis, and we give its microscopic foundation, which amounts to the generalization of Mermin-Wagner theorem for the case of the infinite second moment of the exchange interaction. Two well known in lattice statistics models - i.e., Kac-I and Kac-II - illustrate our results.

  16. New approaches in agent-based modeling of complex financial systems

    NASA Astrophysics Data System (ADS)

    Chen, Ting-Ting; Zheng, Bo; Li, Yan; Jiang, Xiong-Fei

    2017-12-01

    Agent-based modeling is a powerful simulation technique to understand the collective behavior and microscopic interaction in complex financial systems. Recently, the concept for determining the key parameters of agent-based models from empirical data instead of setting them artificially was suggested. We first review several agent-based models and the new approaches to determine the key model parameters from historical market data. Based on the agents' behaviors with heterogeneous personal preferences and interactions, these models are successful in explaining the microscopic origination of the temporal and spatial correlations of financial markets. We then present a novel paradigm combining big-data analysis with agent-based modeling. Specifically, from internet query and stock market data, we extract the information driving forces and develop an agent-based model to simulate the dynamic behaviors of complex financial systems.

  17. Microscopic Lagrangian description of warm plasmas. I - Linear wave propagation. II - Nonlinear wave interactions

    NASA Technical Reports Server (NTRS)

    Kim, H.; Crawford, F. W.

    1977-01-01

    It is pointed out that the conventional iterative analysis of nonlinear plasma wave phenomena, which involves a direct use of Maxwell's equations and the equations describing the particle dynamics, leads to formidable theoretical and algebraic complexities, especially for warm plasmas. As an effective alternative, the Lagrangian method may be applied. It is shown how this method may be used in the microscopic description of small-signal wave propagation and in the study of nonlinear wave interactions. The linear theory is developed for an infinite, homogeneous, collisionless, warm magnetoplasma. A summary is presented of a perturbation expansion scheme described by Galloway and Kim (1971), and Lagrangians to third order in perturbation are considered. Attention is given to the averaged-Lagrangian density, the action-transfer and coupled-mode equations, and the general solution of the coupled-mode equations.

  18. A numerical analysis of the Born approximation for image formation modeling of differential interference contrast microscopy for human embryos

    NASA Astrophysics Data System (ADS)

    Trattner, Sigal; Feigin, Micha; Greenspan, Hayit; Sochen, Nir

    2008-03-01

    The differential interference contrast (DIC) microscope is commonly used for the visualization of live biological specimens. It enables the view of the transparent specimens while preserving their viability, being a non-invasive modality. Fertility clinics often use the DIC microscope for evaluation of human embryos quality. Towards quantification and reconstruction of the visualized specimens, an image formation model for DIC imaging is sought and the interaction of light waves with biological matter is examined. In many image formation models the light-matter interaction is expressed via the first Born approximation. The validity region of this approximation is defined in a theoretical bound which limits its use to very small specimens with low dielectric contrast. In this work the Born approximation is investigated via the Helmholtz equation, which describes the interaction between the specimen and light. A solution on the lens field is derived using the Gaussian Legendre quadrature formulation. This numerical scheme is considered both accurate and efficient and has shortened significantly the computation time as compared to integration methods that required a great amount of sampling for satisfying the Whittaker - Shannon sampling theorem. By comparing the numerical results with the theoretical values it is shown that the theoretical bound is not directly relevant to microscopic imaging and is far too limiting. The numerical exhaustive experiments show that the Born approximation is inappropriate for modeling the visualization of thick human embryos.

  19. Computational design of microscopic swimmers and capsules: From directed motion to collective behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolov, Svetoslav V.; Shum, Henry; Balazs, Anna C.

    Systems of motile microscopic particles can exhibit behaviors that resemble those of living microorganisms, including cooperative motion, self-organization, and adaptability to changing environments. Using mesoscale computational modeling, we design synthetic microswimmers and microcapsules that undergo controllable, self-propelled motion in solution. Stimuli-responsive hydrogels are used to actuate the microswimmers and to enable their navigation and chemotaxing behavior. The self-propelled motion of microcapsules on solid surfaces is achieved by the release of encapsulated solutes that alter the surface adhesiveness. These signaling solutes also enable interactions among multiple microcapsules that lead to complex, cooperative behavior. Our findings provide guidelines for creating microscopic devicesmore » and machines able to autonomously move and mimic the communication and chemotaxis of biological microorganisms.« less

  20. PtyNAMi: ptychographic nano-analytical microscope at PETRA III: interferometrically tracking positions for 3D x-ray scanning microscopy using a ball-lens retroreflector

    NASA Astrophysics Data System (ADS)

    Schroer, Christian G.; Seyrich, Martin; Kahnt, Maik; Botta, Stephan; Döhrmann, Ralph; Falkenberg, Gerald; Garrevoet, Jan; Lyubomirskiy, Mikhail; Scholz, Maria; Schropp, Andreas; Wittwer, Felix

    2017-09-01

    In recent years, ptychography has revolutionized x-ray microscopy in that it is able to overcome the diffraction limit of x-ray optics, pushing the spatial resolution limit down to a few nanometers. However, due to the weak interaction of x rays with matter, the detection of small features inside a sample requires a high coherent fluence on the sample, a high degree of mechanical stability, and a low background signal from the x-ray microscope. The x-ray scanning microscope PtyNAMi at PETRA III is designed for high-spatial-resolution 3D imaging with high sensitivity. The design concept is presented with a special focus on real-time metrology of the sample position during tomographic scanning microscopy.

  1. Hyperspectral stimulated emission depletion microscopy and methods of use thereof

    DOEpatents

    Timlin, Jerilyn A; Aaron, Jesse S

    2014-04-01

    A hyperspectral stimulated emission depletion ("STED") microscope system for high-resolution imaging of samples labeled with multiple fluorophores (e.g., two to ten fluorophores). The hyperspectral STED microscope includes a light source, optical systems configured for generating an excitation light beam and a depletion light beam, optical systems configured for focusing the excitation and depletion light beams on a sample, and systems for collecting and processing data generated by interaction of the excitation and depletion light beams with the sample. Hyperspectral STED data may be analyzed using multivariate curve resolution analysis techniques to deconvolute emission from the multiple fluorophores. The hyperspectral STED microscope described herein can be used for multi-color, subdiffraction imaging of samples (e.g., materials and biological materials) and for analyzing a tissue by Forster Resonance Energy Transfer ("FRET").

  2. Steady-state shear flows via nonequilibrium molecular dynamics and smooth-particle applied mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Posch, H.A.; Hoover, W.G.; Kum, O.

    1995-08-01

    We simulate both microscopic and macroscopic shear flows in two space dimensions using nonequilibrium molecular dynamics and smooth-particle applied mechanics. The time-reversible {ital microscopic} equations of motion are isomorphic to the smooth-particle description of inviscid {ital macroscopic} continuum mechanics. The corresponding microscopic particle interactions are relatively weak and long ranged. Though conventional Green-Kubo theory suggests instability or divergence in two-dimensional flows, we successfully define and measure a finite shear viscosity coefficient by simulating stationary plane Couette flow. The special nature of the weak long-ranged smooth-particle functions corresponds to an unusual kind of microscopic transport. This microscopic analog is mainly kinetic,more » even at high density. For the soft Lucy potential which we use in the present work, nearly all the system energy is potential, but the resulting shear viscosity is nearly all kinetic. We show that the measured shear viscosities can be understood, in terms of a simple weak-scattering model, and that this understanding is useful in assessing the usefulness of continuum simulations using the smooth-particle method. We apply that method to the Rayleigh-Benard problem of thermally driven convection in a gravitational field.« less

  3. Multidimensional approaches for studying plant defence against insects: from ecology to omics and synthetic biology.

    PubMed

    Barah, Pankaj; Bones, Atle M

    2015-02-01

    The biggest challenge for modern biology is to integrate multidisciplinary approaches towards understanding the organizational and functional complexity of biological systems at different hierarchies, starting from the subcellular molecular mechanisms (microscopic) to the functional interactions of ecological communities (macroscopic). The plant-insect interaction is a good model for this purpose with the availability of an enormous amount of information at the molecular and the ecosystem levels. Changing global climatic conditions are abruptly resetting plant-insect interactions. Integration of discretely located heterogeneous information from the ecosystem to genes and pathways will be an advantage to understand the complexity of plant-insect interactions. This review will present the recent developments in omics-based high-throughput experimental approaches, with particular emphasis on studying plant defence responses against insect attack. The review highlights the importance of using integrative systems approaches to study plant-insect interactions from the macroscopic to the microscopic level. We analyse the current efforts in generating, integrating and modelling multiomics data to understand plant-insect interaction at a systems level. As a future prospect, we highlight the growing interest in utilizing the synthetic biology platform for engineering insect-resistant plants. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Lyapunov exponents of stochastic systems—from micro to macro

    NASA Astrophysics Data System (ADS)

    Laffargue, Tanguy; Tailleur, Julien; van Wijland, Frédéric

    2016-03-01

    Lyapunov exponents of dynamical systems are defined from the rates of divergence of nearby trajectories. For stochastic systems, one typically assumes that these trajectories are generated under the ‘same noise realization’. The purpose of this work is to critically examine what this expression means. For Brownian particles, we consider two natural interpretations of the noise: intrinsic to the particles or stemming from the fluctuations of the environment. We show how they lead to different distributions of the largest Lyapunov exponent as well as different fluctuating hydrodynamics for the collective density field. We discuss, both at microscopic and macroscopic levels, the limits in which these noise prescriptions become equivalent. We close this paper by providing an estimate of the largest Lyapunov exponent and of its fluctuations for interacting particles evolving with Dean-Kawasaki dynamics.

  5. Energy profile of nanobody-GFP complex under force.

    PubMed

    Klamecka, Kamila; Severin, Philip M; Milles, Lukas F; Gaub, Hermann E; Leonhardt, Heinrich

    2015-09-10

    Nanobodies (Nbs)-the smallest known fully functional and naturally occuring antigen-binding fragments-have attracted a lot of attention throughout the last two decades. Exploring their potential beyond the current use requires more detailed characterization of their binding forces as those cannot be directly derived from the binding affinities. Here we used atomic force microscope to measure rupture force of the Nb-green fluorescent protein (GFP) complex in various pulling geometries and derived the energy profile characterizing the interaction along the direction of the pulling force. We found that-despite identical epitopes-the Nb binds stronger (41-56 pN) to enhanced GFP than to wild-type GFP (28-45 pN). Measured forces make the Nb-GFP pair a potent reference for investigating molecular forces in living systems both in and ex vivo.

  6. High pressure research using muons at the Paul Scherrer Institute

    NASA Astrophysics Data System (ADS)

    Khasanov, R.; Guguchia, Z.; Maisuradze, A.; Andreica, D.; Elender, M.; Raselli, A.; Shermadini, Z.; Goko, T.; Knecht, F.; Morenzoni, E.; Amato, A.

    2016-04-01

    Pressure, together with temperature and magnetic field, is an important thermodynamical parameter in physics. Investigating the response of a compound or of a material to pressure allows to elucidate ground states, investigate their interplay and interactions and determine microscopic parameters. Pressure tuning is used to establish phase diagrams, study phase transitions and identify critical points. Muon spin rotation/relaxation (μSR) is now a standard technique making increasing significant contribution in condensed matter physics, material science research and other fields. In this review, we will discuss specific requirements and challenges to perform μSR experiments under pressure, introduce the high pressure muon facility at the Paul Scherrer Institute (PSI, Switzerland) and present selected results obtained by combining the sensitivity of the μSR technique with pressure.

  7. Ultrafast Doublon Dynamics in Photoexcited 1 T -TaS2

    NASA Astrophysics Data System (ADS)

    Ligges, M.; Avigo, I.; Golež, D.; Strand, H. U. R.; Beyazit, Y.; Hanff, K.; Diekmann, F.; Stojchevska, L.; Kalläne, M.; Zhou, P.; Rossnagel, K.; Eckstein, M.; Werner, P.; Bovensiepen, U.

    2018-04-01

    Strongly correlated materials exhibit intriguing properties caused by intertwined microscopic interactions that are hard to disentangle in equilibrium. Employing nonequilibrium time-resolved photoemission spectroscopy on the quasi-two-dimensional transition-metal dichalcogenide 1 T -Ta S2 , we identify a spectroscopic signature of doubly occupied sites (doublons) that reflects fundamental Mott physics. Doublon-hole recombination is estimated to occur on timescales of electronic hopping ℏ/J ≈14 fs . Despite strong electron-phonon coupling, the dynamics can be explained by purely electronic effects captured by the single-band Hubbard model under the assumption of weak hole doping, in agreement with our static sample characterization. This sensitive interplay of static doping and vicinity to the metal-insulator transition suggests a way to modify doublon relaxation on the few-femtosecond timescale.

  8. Inflammation in irritable bowel syndrome: Myth or new treatment target?

    PubMed Central

    Sinagra, Emanuele; Pompei, Giancarlo; Tomasello, Giovanni; Cappello, Francesco; Morreale, Gaetano Cristian; Amvrosiadis, Georgios; Rossi, Francesca; Lo Monte, Attilio Ignazio; Rizzo, Aroldo Gabriele; Raimondo, Dario

    2016-01-01

    Low-grade intestinal inflammation plays a key role in the pathophysiology of irritable bowel syndrome (IBS), and this role is likely to be multifactorial. The aim of this review was to summarize the evidence on the spectrum of mucosal inflammation in IBS, highlighting the relationship of this inflammation to the pathophysiology of IBS and its connection to clinical practice. We carried out a bibliographic search in Medline and the Cochrane Library for the period of January 1966 to December 2014, focusing on publications describing an interaction between inflammation and IBS. Several evidences demonstrate microscopic and molecular abnormalities in IBS patients. Understanding the mechanisms underlying low-grade inflammation in IBS may help to design clinical trials to test the efficacy and safety of drugs that target this pathophysiologic mechanism. PMID:26900287

  9. Defect-induced wetting on BaF 2(111) and CaF 2(111) at ambient conditions

    NASA Astrophysics Data System (ADS)

    Cardellach, M.; Verdaguer, A.; Fraxedas, J.

    2011-12-01

    The interaction of water with freshly cleaved (111) surfaces of isostructural BaF2 and CaF2 single crystals at ambient conditions (room temperature and under controlled humidity) has been studied using scanning force microscopy in different operation modes and optical microscopy. Such surfaces exhibit contrasting behaviors for both materials: while on BaF2(111) two-dimensional water layers are formed after accumulation at step edges, CaF2(111) does not promote the formation of such layers. We attribute such opposed behavior to lattice match (mismatch) between hexagonal water ice and the hexagonal (111) surfaces of BaF2(CaF2). Optical microscope images reveal that this behavior also determines the way the surfaces become wetted at a macroscopic level.

  10. Translation of time-reversal violation in the neutral K-meson system into a table-top mechanical system

    NASA Astrophysics Data System (ADS)

    Reiser, Andreas; Schubert, Klaus R.; Stiewe, Jürgen

    2012-08-01

    Weak interactions break time-reversal (T) symmetry in the two-state system of neutral K-mesons. We present and discuss a two-state mechanical system, i.e. a Foucault-type pendulum on a rotating table, for a full representation of {K^0}{{\\overlineK}{}^0} transitions by the pendulum motions including T violation. The pendulum moves with two different oscillation frequencies and two different magnetic dampings. Its equation of motion is identical to the differential equation for the real part of the CPT-symmetric K-meson wavefunction. The pendulum is able to represent microscopic CP and T violation with CPT symmetry owing to the macroscopic Coriolis force, which breaks the symmetry under reversal-of-motion. Video clips of the pendulum motions are given as supplementary material.

  11. Use of single scatter electron monte carlo transport for medical radiation sciences

    DOEpatents

    Svatos, Michelle M.

    2001-01-01

    The single scatter Monte Carlo code CREEP models precise microscopic interactions of electrons with matter to enhance physical understanding of radiation sciences. It is designed to simulate electrons in any medium, including materials important for biological studies. It simulates each interaction individually by sampling from a library which contains accurate information over a broad range of energies.

  12. High-speed, random-access fluorescence microscopy: I. High-resolution optical recording with voltage-sensitive dyes and ion indicators.

    PubMed

    Bullen, A; Patel, S S; Saggau, P

    1997-07-01

    The design and implementation of a high-speed, random-access, laser-scanning fluorescence microscope configured to record fast physiological signals from small neuronal structures with high spatiotemporal resolution is presented. The laser-scanning capability of this nonimaging microscope is provided by two orthogonal acousto-optic deflectors under computer control. Each scanning point can be randomly accessed and has a positioning time of 3-5 microseconds. Sampling time is also computer-controlled and can be varied to maximize the signal-to-noise ratio. Acquisition rates up to 200k samples/s at 16-bit digitizing resolution are possible. The spatial resolution of this instrument is determined by the minimal spot size at the level of the preparation (i.e., 2-7 microns). Scanning points are selected interactively from a reference image collected with differential interference contrast optics and a video camera. Frame rates up to 5 kHz are easily attainable. Intrinsic variations in laser light intensity and scanning spot brightness are overcome by an on-line signal-processing scheme. Representative records obtained with this instrument by using voltage-sensitive dyes and calcium indicators demonstrate the ability to make fast, high-fidelity measurements of membrane potential and intracellular calcium at high spatial resolution (2 microns) without any temporal averaging.

  13. New light on ion channel imaging by total internal reflection fluorescence (TIRF) microscopy.

    PubMed

    Yamamura, Hisao; Suzuki, Yoshiaki; Imaizumi, Yuji

    2015-05-01

    Ion channels play pivotal roles in a wide variety of cellular functions; therefore, their physiological characteristics, pharmacological responses, and molecular structures have been extensively investigated. However, the mobility of an ion channel itself in the cell membrane has not been examined in as much detail. A total internal reflection fluorescence (TIRF) microscope allows fluorophores to be imaged in a restricted region within an evanescent field of less than 200 nm from the interface of the coverslip and plasma membrane in living cells. Thus the TIRF microscope is useful for selectively visualizing the plasmalemmal surface and subplasmalemmal zone. In this review, we focused on a single-molecule analysis of the dynamic movement of ion channels in the plasma membrane using TIRF microscopy. We also described two single-molecule imaging techniques under TIRF microscopy: fluorescence resonance energy transfer (FRET) for the identification of molecules that interact with ion channels, and subunit counting for the determination of subunit stoichiometry in a functional channel. TIRF imaging can also be used to analyze spatiotemporal Ca(2+) events in the subplasmalemma. Single-molecule analyses of ion channels and localized Ca(2+) signals based on TIRF imaging provide beneficial pharmacological and physiological information concerning the functions of ion channels. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  14. Spatial and temporal single-cell volume estimation by a fluorescence imaging technique with application to astrocytes in primary culture

    NASA Astrophysics Data System (ADS)

    Khatibi, Siamak; Allansson, Louise; Gustavsson, Tomas; Blomstrand, Fredrik; Hansson, Elisabeth; Olsson, Torsten

    1999-05-01

    Cell volume changes are often associated with important physiological and pathological processes in the cell. These changes may be the means by which the cell interacts with its surrounding. Astroglial cells change their volume and shape under several circumstances that affect the central nervous system. Following an incidence of brain damage, such as a stroke or a traumatic brain injury, one of the first events seen is swelling of the astroglial cells. In order to study this and other similar phenomena, it is desirable to develop technical instrumentation and analysis methods capable of detecting and characterizing dynamic cell shape changes in a quantitative and robust way. We have developed a technique to monitor and to quantify the spatial and temporal volume changes in a single cell in primary culture. The technique is based on two- and three-dimensional fluorescence imaging. The temporal information is obtained from a sequence of microscope images, which are analyzed in real time. The spatial data is collected in a sequence of images from the microscope, which is automatically focused up and down through the specimen. The analysis of spatial data is performed off-line and consists of photobleaching compensation, focus restoration, filtering, segmentation and spatial volume estimation.

  15. A microarray immunoassay for simultaneous detection of proteins and bacteria

    NASA Technical Reports Server (NTRS)

    Delehanty, James B.; Ligler, Frances S.

    2002-01-01

    We report the development and characterization of an antibody microarray biosensor for the rapid detection of both protein and bacterial analytes under flow conditions. Using a noncontact microarray printer, biotinylated capture antibodies were immobilized at discrete locations on the surface of an avidin-coated glass microscope slide. Preservation of capture antibody function during the deposition process was accomplished with the use of a low-salt buffer containing sucrose and bovine serum albumin. The slide was fitted with a six-channel flow module that conducted analyte-containing solutions over the array of capture antibody microspots. Detection of bound analyte was subsequently achieved using fluorescent tracer antibodies. The pattern of fluorescent complexes was interrogated using a scanning confocal microscope equipped with a 635-nm laser. This microarray system was employed to detect protein and bacterial analytes both individually and in samples containing mixtures of analytes. Assays were completed in 15 min, and detection of cholera toxin, staphylococcal enterotoxin B, ricin, and Bacillus globigii was demonstrated at levels as low as 8 ng/mL, 4 ng/mL, 10 ng/mL, and 6.2 x 10(4) cfu/mL, respectively. The assays presented here are very fast, as compared to previously published methods for measuring antibody-antigen interactions using microarrays (minutes versus hours).

  16. High-speed, random-access fluorescence microscopy: I. High-resolution optical recording with voltage-sensitive dyes and ion indicators.

    PubMed Central

    Bullen, A; Patel, S S; Saggau, P

    1997-01-01

    The design and implementation of a high-speed, random-access, laser-scanning fluorescence microscope configured to record fast physiological signals from small neuronal structures with high spatiotemporal resolution is presented. The laser-scanning capability of this nonimaging microscope is provided by two orthogonal acousto-optic deflectors under computer control. Each scanning point can be randomly accessed and has a positioning time of 3-5 microseconds. Sampling time is also computer-controlled and can be varied to maximize the signal-to-noise ratio. Acquisition rates up to 200k samples/s at 16-bit digitizing resolution are possible. The spatial resolution of this instrument is determined by the minimal spot size at the level of the preparation (i.e., 2-7 microns). Scanning points are selected interactively from a reference image collected with differential interference contrast optics and a video camera. Frame rates up to 5 kHz are easily attainable. Intrinsic variations in laser light intensity and scanning spot brightness are overcome by an on-line signal-processing scheme. Representative records obtained with this instrument by using voltage-sensitive dyes and calcium indicators demonstrate the ability to make fast, high-fidelity measurements of membrane potential and intracellular calcium at high spatial resolution (2 microns) without any temporal averaging. Images FIGURE 6 PMID:9199810

  17. Characterization of microscopic deformation through two-point spatial correlation functions

    NASA Astrophysics Data System (ADS)

    Huang, Guan-Rong; Wu, Bin; Wang, Yangyang; Chen, Wei-Ren

    2018-01-01

    The molecular rearrangements of most fluids under flow and deformation do not directly follow the macroscopic strain field. In this work, we describe a phenomenological method for characterizing such nonaffine deformation via the anisotropic pair distribution function (PDF). We demonstrate how the microscopic strain can be calculated in both simple shear and uniaxial extension, by perturbation expansion of anisotropic PDF in terms of real spherical harmonics. Our results, given in the real as well as the reciprocal space, can be applied in spectrum analysis of small-angle scattering experiments and nonequilibrium molecular dynamics simulations of soft matter under flow.

  18. Characterization of microscopic deformation through two-point spatial correlation functions.

    PubMed

    Huang, Guan-Rong; Wu, Bin; Wang, Yangyang; Chen, Wei-Ren

    2018-01-01

    The molecular rearrangements of most fluids under flow and deformation do not directly follow the macroscopic strain field. In this work, we describe a phenomenological method for characterizing such nonaffine deformation via the anisotropic pair distribution function (PDF). We demonstrate how the microscopic strain can be calculated in both simple shear and uniaxial extension, by perturbation expansion of anisotropic PDF in terms of real spherical harmonics. Our results, given in the real as well as the reciprocal space, can be applied in spectrum analysis of small-angle scattering experiments and nonequilibrium molecular dynamics simulations of soft matter under flow.

  19. Detection and measurement of electroreflectance on quantum cascade laser device using Fourier transform infrared microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enobio, Eli Christopher I.; Ohtani, Keita; Ohno, Yuzo

    2013-12-02

    We demonstrate the use of a Fourier Transform Infrared microscope system to detect and measure electroreflectance (ER) from mid-infrared quantum cascade laser (QCL) device. To characterize intersubband transition (ISBT) energies in a functioning QCL device, a microscope is used to focus the probe on the QCL cleaved mirror. The measured ER spectra exhibit resonance features associated to ISBTs under applied electric field in agreement with the numerical calculations and comparable to observed photocurrent, and emission peaks. The method demonstrates the potential as a characterization tool for QCL devices.

  20. Microscopic Lagrangian description of warm plasmas. III - Nonlinear wave-particle interaction

    NASA Technical Reports Server (NTRS)

    Galloway, J. J.; Crawford, F. W.

    1977-01-01

    The averaged-Lagrangian method is applied to nonlinear wave-particle interactions in an infinite, homogeneous, magnetic-field-free plasma. The specific example of Langmuir waves is considered, and the combined effects of four-wave interactions and wave-particle interactions are treated. It is demonstrated how the latter lead to diffusion in velocity space, and the quasilinear diffusion equation is derived. The analysis is generalized to the random phase approximation. The paper concludes with a summary of the method as applied in Parts 1-3 of the paper.

  1. Dual Approach to Vibrational Spectra in Solution: Microscopic Influence of Hydrogen Bonding to the State of Motion of Glycine in Water.

    PubMed

    Kitamura, Yukichi; Takenaka, Norio; Koyano, Yoshiyuki; Nagaoka, Masataka

    2014-08-12

    We have proposed a new theoretical methodology to clarify the microscopic nature of the vibrational properties in solution, which consists of a combination of the vibrational frequency analyses (VFAs) with two kinds of Hessian matrices, that is, the effective Hessian on the free energy surface (free energy Hessian: "FE-Hessian") and the instantaneous one (instantaneous normal mode Hessian: "INM-Hessian") within QM/MM framework. In these VFAs, the Hessians were obtained by the analytical approach, having the advantages from the aspect of both the computational efficiency and accuracy in comparison to those obtained by the numerical one. In the present study, we have applied them to the glycine aqueous solution. First, by using the VFA with the FE-Hessian (VFA-FEH), we estimated the vibrational frequency shifts induced by solvent water molecules. The calculated values were quantitatively in agreement with experimental ones. It was clearly demonstrated that such vibrational shifts are attributed to not only the structural relaxation but also the explicit solute-solvent interactions (i.e., interatomic interactions). Second, by using the VFA with the INM-Hessian (VFA-INMH), the vibrational spectra in solution were investigated through the vibrational INM densities of states (DOS). By the comparison between the spectroscopic features and the microscopic solvation structure around glycine molecule, it was found that the frequency shifts and bandwidths in IR spectra are closely correlated with the hydrogen bonding (HB) network formations. In particular, the instantaneous changes of vibrational states of the hydroxyl group and carbonyl one, showing apparently inverse tendency on the strength of the HB interaction, can be explained very well on the basis of two different mechanisms, that is, the direct change of electron density in the bonding orbitals and the indirect one due to hyperconjugation between the lone electron pair and the antibonding orbitals, respectively. In conclusion, the present dual VFA approach is a quite useful strategy to interpret the microscopic origin of the experimental vibrational spectra.

  2. A Low-Cost Digital Microscope with Real-Time Fluorescent Imaging Capability.

    PubMed

    Hasan, Md Mehedi; Alam, Mohammad Wajih; Wahid, Khan A; Miah, Sayem; Lukong, Kiven Erique

    2016-01-01

    This paper describes the development of a prototype of a low-cost digital fluorescent microscope built from commercial off-the-shelf (COTS) components. The prototype was tested to detect malignant tumor cells taken from a living organism in a preclinical setting. This experiment was accomplished by using Alexa Fluor 488 conjugate dye attached to the cancer cells. Our prototype utilizes a torch along with an excitation filter as a light source for fluorophore excitation, a dichroic mirror to reflect the excitation and pass the emitted green light from the sample under test and a barrier filter to permit only appropriate wavelength. The system is designed out of a microscope using its optical zooming property and an assembly of exciter filter, dichroic mirror and transmitter filter. The microscope is connected to a computer or laptop through universal serial bus (USB) that allows real-time transmission of captured florescence images; this also offers real-time control of the microscope. The designed system has comparable features of high-end commercial fluorescent microscopes while reducing cost, power, weight and size.

  3. A Low-Cost Digital Microscope with Real-Time Fluorescent Imaging Capability

    PubMed Central

    Hasan, Md. Mehedi; Wahid, Khan A.; Miah, Sayem; Lukong, Kiven Erique

    2016-01-01

    This paper describes the development of a prototype of a low-cost digital fluorescent microscope built from commercial off-the-shelf (COTS) components. The prototype was tested to detect malignant tumor cells taken from a living organism in a preclinical setting. This experiment was accomplished by using Alexa Fluor 488 conjugate dye attached to the cancer cells. Our prototype utilizes a torch along with an excitation filter as a light source for fluorophore excitation, a dichroic mirror to reflect the excitation and pass the emitted green light from the sample under test and a barrier filter to permit only appropriate wavelength. The system is designed out of a microscope using its optical zooming property and an assembly of exciter filter, dichroic mirror and transmitter filter. The microscope is connected to a computer or laptop through universal serial bus (USB) that allows real-time transmission of captured florescence images; this also offers real-time control of the microscope. The designed system has comparable features of high-end commercial fluorescent microscopes while reducing cost, power, weight and size. PMID:27977709

  4. Design of small confocal endo-microscopic probe working under multiwavelength environment

    NASA Astrophysics Data System (ADS)

    Kim, Young-Duk; Ahn, MyoungKi; Gweon, Dae-Gab

    2010-02-01

    Recently, optical imaging system is widely used in medical purpose. By using optical imaging system specific diseases can be easily diagnosed at early stage because optical imaging system has high resolution performance and various imaging method. These methods are used to get high resolution image of human body and can be used to verify whether the cell is infected by virus. Confocal microscope is one of the famous imaging systems which is used for in-vivo imaging. Because most of diseases are accompanied with cellular level changes, doctors can diagnosis at early stage by observing the cellular image of human organ. Current research is focused in the development of endo-microscope that has great advantage in accessibility to human body. In this research, I designed small probe that is connected to confocal microscope through optical fiber bundle and work as endo-microscope. And this small probe is mainly designed to correct chromatic aberration to use various laser sources for both fluorescence type and reflection type confocal images. By using two kinds of laser sources at the same time we demonstrated multi-modality confocal endo-microscope.

  5. Macro-microscopic anatomy: obtaining a composite view of barrier zone formation in Acer saccharum

    Treesearch

    Kenneth Dudzik

    1988-01-01

    The technique for constructing a montage of large wood sections cut on a sliding microtome is discussed. Briefly, the technique involves photographing many serial micrographs in a pattern under a light microscope similar to the way flight lines are run in aerial photography. Assembly of the resulting overlapping photographs requires careful trimming. A composite of...

  6. Microscopic theory of cation exchange in CdSe nanocrystals.

    PubMed

    Ott, Florian D; Spiegel, Leo L; Norris, David J; Erwin, Steven C

    2014-10-10

    Although poorly understood, cation-exchange reactions are increasingly used to dope or transform colloidal semiconductor nanocrystals (quantum dots). We use density-functional theory and kinetic Monte Carlo simulations to develop a microscopic theory that explains structural, optical, and electronic changes observed experimentally in Ag-cation-exchanged CdSe nanocrystals. We find that Coulomb interactions, both between ionized impurities and with the polarized nanocrystal surface, play a key role in cation exchange. Our theory also resolves several experimental puzzles related to photoluminescence and electrical behavior in CdSe nanocrystals doped with Ag.

  7. Micro- and macro-behaviour of fluid flow through rock fractures: an experimental study

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenyu; Nemcik, Jan; Ma, Shuqi

    2013-12-01

    Microscopic and macroscopic behaviour of fluid flow through rough-walled rock fractures was experimentally investigated. Advanced microfluidic technology was introduced to examine the microscopic viscous and inertial effects of water flow through rock fractures in the vicinity of voids under different flow velocities, while the macroscopic behaviour of fracture flow was investigated by carrying out triaxial flow tests through fractured sandstone under confining stresses ranging from 0.5 to 3.0 MPa. The flow tests show that the microscopic inertial forces increase with the flow velocity with significant effects on the local flow pattern near the voids. With the increase in flow velocity, the deviation of the flow trajectories is reduced but small eddies appear inside the cavities. The results of the macroscopic flow tests show that the linear Darcy flow occurs for mated rock fractures due to small aperture, while a nonlinear deviation of the flow occurs at relatively high Reynolds numbers in non-mated rock fracture (Re > 32). The microscopic experiments suggest that the pressure loss consumed by the eddies inside cavities could contribute to the nonlinear fluid flow behaviour through rock joints. It is found that such nonlinear flow behaviour is best matched with the quadratic-termed Forchheimer equation.

  8. The impact of the condenser on cytogenetic image quality in digital microscope system.

    PubMed

    Ren, Liqiang; Li, Zheng; Li, Yuhua; Zheng, Bin; Li, Shibo; Chen, Xiaodong; Liu, Hong

    2013-01-01

    Optimizing operational parameters of the digital microscope system is an important technique to acquire high quality cytogenetic images and facilitate the process of karyotyping so that the efficiency and accuracy of diagnosis can be improved. This study investigated the impact of the condenser on cytogenetic image quality and system working performance using a prototype digital microscope image scanning system. Both theoretical analysis and experimental validations through objectively evaluating a resolution test chart and subjectively observing large numbers of specimen were conducted. The results show that the optimal image quality and large depth of field (DOF) are simultaneously obtained when the numerical aperture of condenser is set as 60%-70% of the corresponding objective. Under this condition, more analyzable chromosomes and diagnostic information are obtained. As a result, the system shows higher working stability and less restriction for the implementation of algorithms such as autofocusing especially when the system is designed to achieve high throughput continuous image scanning. Although the above quantitative results were obtained using a specific prototype system under the experimental conditions reported in this paper, the presented evaluation methodologies can provide valuable guidelines for optimizing operational parameters in cytogenetic imaging using the high throughput continuous scanning microscopes in clinical practice.

  9. Normal modes of weak colloidal gels

    NASA Astrophysics Data System (ADS)

    Varga, Zsigmond; Swan, James W.

    2018-01-01

    The normal modes and relaxation rates of weak colloidal gels are investigated in calculations using different models of the hydrodynamic interactions between suspended particles. The relaxation spectrum is computed for freely draining, Rotne-Prager-Yamakawa, and accelerated Stokesian dynamics approximations of the hydrodynamic mobility in a normal mode analysis of a harmonic network representing several colloidal gels. We find that the density of states and spatial structure of the normal modes are fundamentally altered by long-ranged hydrodynamic coupling among the particles. Short-ranged coupling due to hydrodynamic lubrication affects only the relaxation rates of short-wavelength modes. Hydrodynamic models accounting for long-ranged coupling exhibit a microscopic relaxation rate for each normal mode, λ that scales as l-2, where l is the spatial correlation length of the normal mode. For the freely draining approximation, which neglects long-ranged coupling, the microscopic relaxation rate scales as l-γ, where γ varies between three and two with increasing particle volume fraction. A simple phenomenological model of the internal elastic response to normal mode fluctuations is developed, which shows that long-ranged hydrodynamic interactions play a central role in the viscoelasticity of the gel network. Dynamic simulations of hard spheres that gel in response to short-ranged depletion attractions are used to test the applicability of the density of states predictions. For particle concentrations up to 30% by volume, the power law decay of the relaxation modulus in simulations accounting for long-ranged hydrodynamic interactions agrees with predictions generated by the density of states of the corresponding harmonic networks as well as experimental measurements. For higher volume fractions, excluded volume interactions dominate the stress response, and the prediction from the harmonic network density of states fails. Analogous to the Zimm model in polymer physics, our results indicate that long-ranged hydrodynamic interactions play a crucial role in determining the microscopic dynamics and macroscopic properties of weak colloidal gels.

  10. Nuclear shape evolution based on microscopic level densities

    DOE PAGES

    Ward, D. E.; Carlsson, B. G.; Døssing, T.; ...

    2017-02-27

    Here, by combining microscopically calculated level densities with the Metropolis walk method, we develop a consistent framework for treating the energy and angular-momentum dependence of the nuclear shape evolution in the fission process. For each nucleus under consideration, the level density is calculated microscopically for each of more than five million shapes with a recently developed combinatorial method. The method employs the same single-particle levels as those used for the extraction of the pairing and shell contributions to the macroscopic-microscopic deformation-energy surface. Containing no new parameters, the treatment is suitable for elucidating the energy dependence of the dynamics of warmmore » nuclei on pairing and shell effects. It is illustrated for the fission fragment mass distribution for several uranium and plutonium isotopes of particular interest.« less

  11. A new apparatus for electron tomography in the scanning electron microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morandi, V., E-mail: morandi@bo.imm.cnr.it; Maccagnani, P.; Masini, L.

    2015-06-23

    The three-dimensional reconstruction of a microscopic specimen has been obtained by applying the tomographic algorithm to a set of images acquired in a Scanning Electron Microscope. This result was achieved starting from a series of projections obtained by stepwise rotating the sample under the beam raster. The Scanning Electron Microscope was operated in the scanning-transmission imaging mode, where the intensity of the transmitted electron beam is a monotonic function of the local mass-density and thickness of the specimen. The detection strategy has been implemented and tailored in order to maintain the projection requirement over the large tilt range, as requiredmore » by the tomographic workflow. A Si-based electron detector and an eucentric-rotation specimen holder have been specifically developed for the purpose.« less

  12. Scanning laser microscope for imaging nanostructured superconductors

    NASA Astrophysics Data System (ADS)

    Ishida, Takekazu; Arai, Kohei; Akita, Yukio; Miyanari, Mitsunori; Minami, Yusuke; Yotsuya, Tsutomu; Kato, Masaru; Satoh, Kazuo; Uno, Mayumi; Shimakage, Hisashi; Miki, Shigehito; Wang, Zhen

    2010-10-01

    The nanofabrication of superconductors yields various interesting features in superconducting properties. A variety of different imaging techniques have been developed for probing the local superconducting profiles. A scanning pulsed laser microscope has been developed by the combination of the XYZ piezo-driven stages and an optical fiber with an aspheric focusing lens. The scanning laser microscope is used to understand the position-dependent properties of a superconducting MgB 2 stripline of length 100 μm and width of 3 μm under constant bias current. Our results show that the superconducting stripline can clearly be seen in the contour image of the scanning laser microscope on the signal voltage. It is suggested from the observed image that the inhomogeneity is relevant in specifying the operating conditions such as detection efficiency of the sensor.

  13. Four canals in the mesial root of a mandibular first molar. A case report under the operating microscope.

    PubMed

    Kontakiotis, Evangelos G; Tzanetakis, Giorgos N

    2007-08-01

    In this era of microscope-assisted endodontics, finding variations in root canal system anatomy is not uncommon. Operating microscopes combined with careful clinical examination and radiographic interpretation can aid the clinician to successfully treat cases with such internal anatomy. The understanding of this view enables the possible location of additional canals in any tooth requiring endodontic treatment. The present clinical article demonstrates a rare anatomical complexity in the mesial root of a mandibular first molar. Four independent root canal orifices were found in this root by clinical detection with the aid of a dental operating microscope. This case shows that additional canals can be located in any root undergoing endodontic treatment and clinicians should always be aware of aberrant internal anatomy.

  14. Microscopic Behavior Of Colloidal Particles Under The Effect Of Acoustic Stimulations In The Ultrasonic To Megasonic Range

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, Amr I.; Roberts, Peter M.

    2006-05-01

    It is well known that colloid attachment and detachment at solid surfaces are influenced strongly by physico-chemical conditions controlling electric double layer (EDL) and solvation-layer effects. We present experimental observations demonstrating that, in addition, acoustic waves can produce strong effects on colloid/surface interactions that can alter the behavior of colloid and fluid transport in porous media. Microscopic colloid visualization experiments were performed with polystyrene micro-spheres suspended in water in a parallel-plate glass flow cell. When acoustic energy was applied to the cell at frequencies from 500 kHz to 5 MHz, changes in colloid attachment to and detachment from the glass cell surfaces were observed. Quantitative measurements of acoustically-induced detachment of 300-nm microspheres in 0.1M NaCl solution demonstrated that roughly 30% of the colloids that were attached to the glass cell wall during flow alone could be detached rapidly by applying acoustics at frequencies in the range of 0.7 to 1.2 MHz. The remaining attached colloids could not be detached by acoustics. This implies the existence of both "strong" and "weak" attachment sites at the cell surface. Subsequent re-attachment of colloids with acoustics turned off occurred only at new, previously unoccupied sites. Thus, acoustics appears to accelerate simultaneously both the deactivation of existing weak sites where colloids are already attached, and the activation of new weak sites where future attachments can occur. Our observations indicate that acoustics (and, in general, dynamic stress) can influence colloid-colloid and colloid-surface interactions in ways that could cause significant changes in porous-media permeability and mass transport. This would occur due to either buildup or release of colloids present in the porous matrix.

  15. μ-PIV/Shadowgraphy measurements to elucidate dynamic physicochemical interactions in a multiphase model of pulmonary airway reopening

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Eiichiro

    2010-10-01

    We employ micro-particle image velocimetry (μ-PIV) and shadowgraphy to measure the ensemble-averaged fluid-phase velocity field and interfacial geometry during pulsatile bubble propagation that includes a reverse-flow phase under influence of exogenous lung surfactant (Infasurf). Disease states such as respiratory distress syndrome (RDS) are characterized by insufficient pulmonary surfactant concentrations that enhance airway occlusion and collapse. Subsequent airway reopening, driven by mechanical ventilation, may generate damaging stresses that cause ventilator-induced lung injury (VILI). It is hypothesized that reverse flow may enhance surfactant uptake and protect the lung from VILI. The microscale observations conducted in this study will provide us with a significant understanding of dynamic physicochemical interactions that can be manipulated to reduce the magnitude of this damaging mechanical stimulus during airway reopening. Bubble propagation through a liquid-occluded fused glass capillary tube is controlled by linear-motor-driven syringe pumps that provide mean and sinusoidal velocity components. A translating microscope stage mechanically subtracts the mean velocity of the bubble tip in order to hold the progressing bubble tip in the microscope field of view. To optimize the signal-to-noise ratio near the bubble tip, μ-PIV and shadow images are recorded in separate trials then combined during post-processing with help of a custom-designed micro scale marker. Non-specific binding of Infasurf proteins to the channel wall is controlled by oxidation and chemical treatment of the glass surface. The colloidal stability and dynamic/static surface properties of the Infasurf-PIV particle solution are carefully adjusted based on Langmuir trough measurements. The Finite Time Lyapunov Exponent (FTLE) is computed to provide a Lagrangian perspective for comparison with our boundary element predictions.

  16. Preliminary Study of Late Pleistocene to Early Holocene Plant Food Strategies in China

    NASA Astrophysics Data System (ADS)

    Hayashi Tang, M.; Liu, X.; Fritz, G.; Zhao, Z.

    2017-12-01

    In recent decades, studies on the domestication and early cultivation of seed crops have contributed significantly to how we understand human-plant interactions, and their impact on human social organisation and the environment. It is becoming clear, however, that plants have been critical to the human diet for much longer and in more diverse ways than previously assumed. This paper is a preliminary attempt at identifying and addressing early prehistoric plant food strategies in China. In particular, very little is known about the use of vegetatively propagated plants, despite their significant representation in modern crops. Many ingredients of Chinese medicine are also roots and tubers (or vegetative storage organs, VSOs). Unlike seed crops, however, we lack a systematic criterion for examining diagnostic characters of different VSO taxa in the archaeological record. To address this issue, we characterized commonly consumed and historically significant VSOs in China, by studying experimentally charred modern samples under the optical microscope and scanning electron microscope. We then compared the characteristics of these modern VSO samples against plant remains from Late Pleistocene to early Holocene archaeological sites in China, such as Zengpiyan (Guangxi), Zhaoguodong (Guizhou), and Jiahu (Henan) sites. We found that different taxa of VSOs can be differentiated by using multiple lines of evidence, including: shape and size of various cells, texture and arrangement of cell walls, as well as anatomical arrangements of organs, especially the vascular bundles. Though identification can be difficult when fragile cell structures have collapsed or deteriorated, more robust features are often preserved for diagnosis. Our results suggest that the potential for studying the role of vegetatively propagated plants in early human-environmental interactions is overlooked, and can be expanded significantly with further investment in their systematic identification.

  17. Plant Responses to Brief Touching: A Mechanism for Early Neighbour Detection?

    PubMed

    Markovic, Dimitrije; Nikolic, Neda; Glinwood, Robert; Seisenbaeva, Gulaim; Ninkovic, Velemir

    2016-01-01

    In natural habitats plants can be exposed to brief and light contact with neighbouring plants. This mechanical stimulus may represent a cue that induces responses to nearby plants. However, little is known about the effect of touching on plant growth and interaction with insect herbivores. To simulate contact between plants, a soft brush was used to apply light and brief mechanical stimuli to terminal leaves of potato Solanum tuberosum L. The number of non-glandular trichomes on the leaf surface was counted on images made by light microscope while glandular trichomes and pavement cells were counted on images made under scanning electronic microscope. Volatile compounds were identified and quantified using coupled gas chromatography-mass spectrometry (GC-MS). Treated plants changed their pattern of biomass distribution; they had lower stem mass fraction and higher branch and leaf mass fraction than untouched plants. Size, weight and number of tubers were not significantly affected. Touching did not cause trichome damage nor change their total number on touched terminal leaves. However, on primary leaves the number of glandular trichomes and pavement cells was significantly increased. Touching altered the volatile emission of treated plants; they released higher quantities of the sesquiterpenes (E)-β-caryophyllene, germacrene D-4-ol and (E)-nerolidol, and lower quantities of the terpenes (E)-ocimene and linalool, indicating a systemic effect of the treatment. The odour of touched plants was significantly less preferred by the aphids Macrosiphum euphorbiae and Myzus persicae compared to odour of untouched plants. The results suggest that light contact may have a potential role in the detection of neighbouring plants and may affect plant-insect interactions.

  18. Plant Responses to Brief Touching: A Mechanism for Early Neighbour Detection?

    PubMed Central

    Markovic, Dimitrije; Nikolic, Neda; Glinwood, Robert; Seisenbaeva, Gulaim; Ninkovic, Velemir

    2016-01-01

    In natural habitats plants can be exposed to brief and light contact with neighbouring plants. This mechanical stimulus may represent a cue that induces responses to nearby plants. However, little is known about the effect of touching on plant growth and interaction with insect herbivores. To simulate contact between plants, a soft brush was used to apply light and brief mechanical stimuli to terminal leaves of potato Solanum tuberosum L. The number of non-glandular trichomes on the leaf surface was counted on images made by light microscope while glandular trichomes and pavement cells were counted on images made under scanning electronic microscope. Volatile compounds were identified and quantified using coupled gas chromatography–mass spectrometry (GC-MS). Treated plants changed their pattern of biomass distribution; they had lower stem mass fraction and higher branch and leaf mass fraction than untouched plants. Size, weight and number of tubers were not significantly affected. Touching did not cause trichome damage nor change their total number on touched terminal leaves. However, on primary leaves the number of glandular trichomes and pavement cells was significantly increased. Touching altered the volatile emission of treated plants; they released higher quantities of the sesquiterpenes (E)-β-caryophyllene, germacrene D-4-ol and (E)-nerolidol, and lower quantities of the terpenes (E)-ocimene and linalool, indicating a systemic effect of the treatment. The odour of touched plants was significantly less preferred by the aphids Macrosiphum euphorbiae and Myzus persicae compared to odour of untouched plants. The results suggest that light contact may have a potential role in the detection of neighbouring plants and may affect plant-insect interactions. PMID:27828995

  19. The current status of microscopical hair comparisons.

    PubMed

    Rowe, W F

    2001-12-08

    Although the microscopical comparison of human hairs has been accepted in courts of law for over a century, recent advances in DNA technology have called this type of forensic examination into question. In a number of cases, post-conviction DNA testing has exonerated defendants who were convicted in part on the results of microscopical hair comparisons. A federal judge has held a Daubert hearing on the microscopical comparison of human hairs and has concluded that this type of examination does not meet the criteria for admission of scientific evidence in federal courts. A review of the available scientific literature on microscopical hair comparisons (including studies conducted by the Royal Canadian Mounted Police and the Federal Bureau of Investigation) leads to three conclusions: (1) microscopical comparisons of human hairs can yield scientifically defensible conclusions that can contribute to criminal investigations and criminal prosecutions, (2) the reliability of microscopical hair comparisons is strongly affected by the training of the forensic hair examiner, (3) forensic hair examiners cannot offer estimates of the probability of a match of a questioned hair with a hair from a randomly selected person. In order for microscopical hair examinations to survive challenges under the U.S. Supreme Court's Daubert decision, hair microscopists must be better trained and undergo frequent proficiency testing. More research on the error rates of microscopical hair comparisons should be undertaken, and guidelines for the permissible interpretations of such comparisons should be established. Until these issues have been addressed and satisfactorily resolved, microscopical hair comparisons should be regarded by law enforcement agencies and courts of law as merely presumptive in nature, and all microscopical hair comparisons should be confirmed by nuclear DNA profiling or mitochondrial DNA sequencing.

  20. Microscopic information processing and communication in crowd dynamics

    NASA Astrophysics Data System (ADS)

    Henein, Colin Marc; White, Tony

    2010-11-01

    Due, perhaps, to the historical division of crowd dynamics research into psychological and engineering approaches, microscopic crowd models have tended toward modelling simple interchangeable particles with an emphasis on the simulation of physical factors. Despite the fact that people have complex (non-panic) behaviours in crowd disasters, important human factors in crowd dynamics such as information discovery and processing, changing goals and communication have not yet been well integrated at the microscopic level. We use our Microscopic Human Factors methodology to fuse a microscopic simulation of these human factors with a popular microscopic crowd model. By tightly integrating human factors with the existing model we can study the effects on the physical domain (movement, force and crowd safety) when human behaviour (information processing and communication) is introduced. In a large-room egress scenario with ample exits, information discovery and processing yields a crowd of non-interchangeable individuals who, despite close proximity, have different goals due to their different beliefs. This crowd heterogeneity leads to complex inter-particle interactions such as jamming transitions in open space; at high crowd energies, we found a freezing by heating effect (reminiscent of the disaster at Central Lenin Stadium in 1982) in which a barrier formation of naïve individuals trying to reach blocked exits prevented knowledgeable ones from exiting. Communication, when introduced, reduced this barrier formation, increasing both exit rates and crowd safety.

  1. Evaluation of a miniature microscope objective designed for fluorescence array microscopy detection of Mycobacterium tuberculosis.

    PubMed

    McCall, Brian; Olsen, Randall J; Nelles, Nicole J; Williams, Dawn L; Jackson, Kevin; Richards-Kortum, Rebecca; Graviss, Edward A; Tkaczyk, Tomasz S

    2014-03-01

    A prototype miniature objective that was designed for a point-of-care diagnostic array microscope for detection of Mycobacterium tuberculosis and previously fabricated and presented in a proof of concept is evaluated for its effectiveness in detecting acid-fast bacteria. To evaluate the ability of the microscope to resolve submicron features and details in the image of acid-fast microorganisms stained with a fluorescent dye, and to evaluate the accuracy of clinical diagnoses made with digital images acquired with the objective. The lens prescription data for the microscope design are presented. A test platform is built by combining parts of a standard microscope, a prototype objective, and a digital single-lens reflex camera. Counts of acid-fast bacteria made with the prototype objective are compared to counts obtained with a standard microscope over matched fields of view. Two sets of 20 smears, positive and negative, are diagnosed by 2 pathologists as sputum smear positive or sputum smear negative, using both a standard clinical microscope and the prototype objective under evaluation. The results are compared to a reference diagnosis of the same sample. More bacteria are counted in matched fields of view in digital images taken with the prototype objective than with the standard clinical microscope. All diagnostic results are found to be highly concordant. An array microscope built with this miniature lens design will be able to detect M tuberculosis with high sensitivity and specificity.

  2. A tribological and biomimetic study of potential bone joint repair materials

    NASA Astrophysics Data System (ADS)

    Ribeiro, Rahul

    This research investigates materials for bone-joint failure repair using tribological and biomimicking approaches. The materials investigated represent three different repairing strategies. Refractory metals with and without treatment are candidates for total joint replacements due to their mechanical strength, high corrosion resistance and biocompatibility. A composite of biodegradable polytrimethylene carbonate, hydroxyl apatite, and nanotubes was investigated for application as a tissue engineering scaffold. Non-biodegradable polymer polyimide combined with various concentrations of nanotubes was investigated as a cartilage replacement material. A series of experimental approaches were used in this research. These include analysis of material surfaces and debris using high-resolution techniques and tribological experiments, as well as evaluation of nanomechanical properties. Specifically, the surface structure and wear mechanisms were investigated using a scanning electron microscope and an atomic force microscope. Debris morphology and structure was investigated using a transmission electron microscope. The debris composition was analyzed using an X-ray diffractometer. Nanoindentation was incorporated to investigate the surface nanomechanical properties. Polytrimythelene carbonate combined with hydroxyapatite and nanotubes exhibited a friction coefficient lower than UHMWPE. The nanoindentation response mimicked cartilage more closely than UHMWPE. A composite formed with PI and nanotubes showed a varying friction coefficient and varying nanoindentation response with variation in nanotube concentration. Low friction coefficients corresponded with low modulus values. A theory was proposed to explain this behavior based on surface interactions between nanotubes and between nanotubes and PI. A model was developed to simulate the modulus as a function of nanotube concentration. The boronized refractory metals exhibited brittleness and cracking. Higher friction coefficients were associated with the formation of amorphous debris. The friction coefficient for boronized Cr (˜0.06) under simulated body fluid conditions was in the range found in natural joints.

  3. Steady-state force-velocity relation in the ATP-dependent sliding movement of myosin-coated beads on actin cables in vitro studied with a centrifuge microscope.

    PubMed Central

    Oiwa, K; Chaen, S; Kamitsubo, E; Shimmen, T; Sugi, H

    1990-01-01

    To eliminate the gap between the biochemistry of actomyosin in solution and the physiology of contracting muscle, we developed an in vitro force-movement assay system in which the steady-state force-velocity relation in the actin-myosin interaction can be studied. The assay system consists of the internodal cells of an alga, Nitellopsis obtusa, containing well-organized actin filament arrays (actin cables); tosyl-activated polystyrene beads (diameter, 2.8 microns; specific gravity, 1.3) coated with skeletal muscle myosin; and a centrifuge microscope equipped with a stroboscopic light source and a video system. The internodal cell preparation was mounted on the rotor of the centrifuge microscope, so that centrifugal forces were applied to the myosin-coated beads moving along the actin cables in the presence of ATP. Under constant centrifugal forces directed opposite to the bead movement ("positive" loads), the beads continued to move with constant velocities, which decreased with increasing centrifugal forces. The steady-state force-velocity curve thus obtained was analogous to the double-hyperbolic force-velocity curve of single muscle fibers. The unloaded velocity of bead movement was 1.6-3.6 microns/s (20-23 degrees C), while the maximum "isometric" force generated by the myosin molecules on the bead was 1.9-39 pN. If, on the other hand, the beads were subjected to constant centrifugal forces in the direction of bead movement ("negative" loads), the bead also moved with constant velocities. Unexpectedly, the velocity of bead movement did not increase with increasing negative loads but first decreased by 20-60% and then increased towards the initial unloaded velocity until the beads were eventually detached from the actin cables. Images PMID:2236007

  4. Steady-state force-velocity relation in the ATP-dependent sliding movement of myosin-coated beads on actin cables in vitro studied with a centrifuge microscope.

    PubMed

    Oiwa, K; Chaen, S; Kamitsubo, E; Shimmen, T; Sugi, H

    1990-10-01

    To eliminate the gap between the biochemistry of actomyosin in solution and the physiology of contracting muscle, we developed an in vitro force-movement assay system in which the steady-state force-velocity relation in the actin-myosin interaction can be studied. The assay system consists of the internodal cells of an alga, Nitellopsis obtusa, containing well-organized actin filament arrays (actin cables); tosyl-activated polystyrene beads (diameter, 2.8 microns; specific gravity, 1.3) coated with skeletal muscle myosin; and a centrifuge microscope equipped with a stroboscopic light source and a video system. The internodal cell preparation was mounted on the rotor of the centrifuge microscope, so that centrifugal forces were applied to the myosin-coated beads moving along the actin cables in the presence of ATP. Under constant centrifugal forces directed opposite to the bead movement ("positive" loads), the beads continued to move with constant velocities, which decreased with increasing centrifugal forces. The steady-state force-velocity curve thus obtained was analogous to the double-hyperbolic force-velocity curve of single muscle fibers. The unloaded velocity of bead movement was 1.6-3.6 microns/s (20-23 degrees C), while the maximum "isometric" force generated by the myosin molecules on the bead was 1.9-39 pN. If, on the other hand, the beads were subjected to constant centrifugal forces in the direction of bead movement ("negative" loads), the bead also moved with constant velocities. Unexpectedly, the velocity of bead movement did not increase with increasing negative loads but first decreased by 20-60% and then increased towards the initial unloaded velocity until the beads were eventually detached from the actin cables.

  5. Pareto-Zipf law in growing systems with multiplicative interactions

    NASA Astrophysics Data System (ADS)

    Ohtsuki, Toshiya; Tanimoto, Satoshi; Sekiyama, Makoto; Fujihara, Akihiro; Yamamoto, Hiroshi

    2018-06-01

    Numerical simulations of multiplicatively interacting stochastic processes with weighted selections were conducted. A feedback mechanism to control the weight w of selections was proposed. It becomes evident that when w is moderately controlled around 0, such systems spontaneously exhibit the Pareto-Zipf distribution. The simulation results are universal in the sense that microscopic details, such as parameter values and the type of control and weight, are irrelevant. The central ingredient of the Pareto-Zipf law is argued to be the mild control of interactions.

  6. Spherical solid model system: Exact evaluation of the van der Waals interaction between a microscopic or submacroscopic spherical solid and a deformable fluid interface

    NASA Astrophysics Data System (ADS)

    Wang, Y. Z.; Wang, B.; Xiong, X. M.; Zhang, J. X.

    2011-03-01

    In many previous research work associated with studying the deformation of the fluid interface interacting with a solid, the theoretical calculation of the surface energy density on the deformed fluid interface (or its interaction surface pressure) is often approximately obtained by using the expression for the interaction energy per unit area (or pressure) between two parallel macroscopic plates, e.g. σ(D) = - A / 12 πD2or π(D) = - A / 6 πD3for the van der Waals (vdW) interaction, through invoking the Derjaguin approximation (DA). This approximation however would result in over- or even inaccurate-prediction of the interaction force and the corresponding deformation of the fluid interface due to the invalidation of Derjaguin approximation in cases of microscopic or submacroscopic solids. To circumvent the above limitations existing in the previous DA-based theoretical work, a more accurate and quantitative theoretical model, available for exactly calculating the vdW-induced deformation of a planar fluid interface interacting with a sphere, and the interaction forces taking into account its change, is presented in this paper. The validity and advantage of the new mathematical and physical technique is rigorously verified by comparison with the numerical results on basis of the previous Paraboloid solid (PS) model and the Hamaker's sphere-flat expression (viz. F = - 2 Aa3 / (3 D2( D + 2 a) 2)), as well as its well-known DA-based general form of F / a = - A / 6z p02.

  7. ScanImage: flexible software for operating laser scanning microscopes.

    PubMed

    Pologruto, Thomas A; Sabatini, Bernardo L; Svoboda, Karel

    2003-05-17

    Laser scanning microscopy is a powerful tool for analyzing the structure and function of biological specimens. Although numerous commercial laser scanning microscopes exist, some of the more interesting and challenging applications demand custom design. A major impediment to custom design is the difficulty of building custom data acquisition hardware and writing the complex software required to run the laser scanning microscope. We describe a simple, software-based approach to operating a laser scanning microscope without the need for custom data acquisition hardware. Data acquisition and control of laser scanning are achieved through standard data acquisition boards. The entire burden of signal integration and image processing is placed on the CPU of the computer. We quantitate the effectiveness of our data acquisition and signal conditioning algorithm under a variety of conditions. We implement our approach in an open source software package (ScanImage) and describe its functionality. We present ScanImage, software to run a flexible laser scanning microscope that allows easy custom design.

  8. Mössbauer study of Brazilian soapstone

    NASA Astrophysics Data System (ADS)

    Gonçalves, M. A.; de Jesus Filho, M. F.; Garg, V. K.

    1991-11-01

    Steatite mineral rocks, soapstone, have been studied by X-ray diffraction, optical microscopic analysis (modal analysis), electron probe micro analysis and Mössbauer spectroscopy for characterization, mineral percentages and chemical composition. Mössbauer spectra show both, magnetic interactions corresponding to magnetite and doublets corresponding to talc. chlorite, dolomite and tremolite. The temperature dependence of the quadrupole splitting in dolomite has been explained in terms of crystal field interaction.

  9. Histopathology slide projector: a simple improvisation.

    PubMed

    Agarwal, Akhilesh K R; Bhattacharya, Nirjhar

    2008-07-01

    The ability to examine histopathology and other hematological slides under microscope is a necessary and important service which should be available in every health facility. The slides need to be projected on to a screen. We describe an inexpensive and easily constructed technique for projecting magnified images of slides using a simple microscope. It is effective both for making observations and for use as a teaching aid.

  10. A novel material of cross-linked styrylpyridinium salt intercalated montmorillonite for drug delivery

    PubMed Central

    2014-01-01

    A facile synthesis of a styrylpyridinium salt (SbQ)/montmorillonite (MMT) via cationic exchange interactions between styrylpyridinium species (specifically SbQ) and MMT platelets is reported in this work. The SbQ-MMT solutions were irradiated under ultraviolet (UV) light for a specific time to obtain the cross-linked SbQ-MMT materials. Scanning electron microscopy and atomic force microscopy analyses revealed the structures and morphologies of MMT and modified MMT. X-ray diffraction and transmission electron microscope analyses indicated that the basal spacing increased from 1.24 to 1.53 nm compared with the pristine MMT, which proved that SbQ had interacted with MMT. Thermal gravimetric analysis curves showed that the amount of SbQ in the MMT interlayers was 35.71 meq/100 g. Fourier transform infrared spectroscopy also confirmed the intercalation of SbQ species into MMT interlayers, and UV spectroscopy was used to follow up the cross-linking of SbQ-MMT. This novel material has potential applications in drug delivery, and it can also be used as an additive to improve the mechanical properties of polymers. PMID:25170328

  11. Theory of plasmonic effects in nonlinear optics: the case of graphene

    NASA Astrophysics Data System (ADS)

    Rostami, Habib; Katsnelson, Mikhail I.; Polini, Marco; Mikhail I. Katsnelson Collaboration; Habib Rostami; Marco Polini Collaboration

    The nonlinear optical properties of two-dimensional electronic systems are beginning to attract considerable interest both in the theoretical and experimental sectors. Recent experiments on the nonlinear optical properties of graphene reveal considerably strong third harmonic generation and four-wave mixing of this single-atomic-layer electronic system. We develop a large-N theory of electron-electron interaction corrections to multi-legged Feynman diagrams describing second- and third-order nonlinear response functions. Our theory is completely general and is useful to understand all second- and third-order nonlinear effects, including harmonic generation, wave mixing, and photon drag. We apply our theoretical framework to the case of graphene, by carrying out microscopic calculations of the second- and third-order nonlinear response functions of an interacting two-dimensional gas of massless Dirac fermions. We compare our results with recent measurements, where all-optical launching of graphene plasmons has been achieved. This work was supported by Fondazione Istituto Italiano di Tecnologia, the European Union's Horizon 2020 research and innovation programme under Grant agreement No. 696656 GrapheneCore, and the ERC Advanced Grant 338957 FEMTO/NANO (M.I.K.).

  12. pH dependence of the dissociation of multimeric hemoglobin probed by high hydrostatic pressure.

    PubMed

    Bispo, Jose A C; Santos, Jose L R; Landini, Gustavo F; Goncalves, Juliana M; Bonafe, Carlos F S

    2007-02-01

    We investigated the thermodynamic features of the classic alkaline dissociation of multimeric hemoglobin (3.1 MDa) from Glossoscolex paulistus (Annelidea) using high hydrostatic pressure. Light scattering measurements up to microscopic thermodynamic equilibrium indicated a high pH dependency of dissociation and association. Electron microscopy and gel filtration corroborated these findings. The volume change of dissociation decreased in absolute values from -48.0 mL/mol of subunit at pH 6.0 to -19.2 mL/mol at pH 9.0, suggesting a lack of protein interactions under alkaline conditions. Concomitantly, an increase in pH reduced the Gibbs free energy of dissociation from 37.7 to 27.5 kJ/mol of subunit. The stoichiometry of proton release calculated from the pressure-induced dissociation curves was +0.602 mol of H(+)/mol of subunit. These results provide a direct quantification of proton participation in stabilizing the aggregated state of the hemoglobin, and contribute to our understanding of protein-protein interactions and of the surrounding conditions that modulate the process of aggregation.

  13. Room temperature Zinc-metallation of cationic porphyrin at graphene surface and enhanced photoelectrocatalytic activity

    NASA Astrophysics Data System (ADS)

    Zeng, Rongjin; Chen, Guoliang; Xiong, Chungang; Li, Gengxian; Zheng, Yinzhi; Chen, Jian; Long, Yunfei; Chen, Shu

    2018-03-01

    A stable zincporphyrin functionalized graphene nanocomposite was prepared by using positively charged cationic porphyrin (5,10,15,20-tetra(4-propyl pyridinio) porphyrin, TPPyP) and successive reduced graphene oxide (rGO) with tuned negative charge. The nanocomposite preparation was accompanied first by distinct electrostatic interactions and π-π stacking between TPPyP and rGO, and followed by fast Zinc-metallation at room temperature. In contrast to free TPPyP with Zn2+, the incorporation reaction is very slow at room temperature and heating or reflux conditions are required to increase the metallation rate. While at the surface of rGO nanosheet, the Zinc-metallation of TPPyP was greatly accelerated to 30 min at 25 °C in aqueous solution. The interaction process and composites formation were fully revealed by significant variations in UV-vis absorption spectra, X-ray photoelectron spectra (XPS) measurements, atomic force microscope (AFM) images, and fluorescence spectra. Furthermore, photoelectrochemical activity of resultant rGO/TPPyP-Zn nanocomposites was evaluated under visible-light irradiation, and enhancement of the photoelectrocatalytic reduction of CO2 was achieved.

  14. A novel marine bacterium algicidal to the toxic dinoflagellate Alexandrium tamarense.

    PubMed

    Wang, B X; Zhou, Y Y; Bai, S J; Su, J Q; Tian, Y; Zheng, T L; Yang, X R

    2010-11-01

    This work is aiming at investigating algicidal characterization of a bacterium isolate DHQ25 against harmful alga Alexandrium tamarense. 16S rDNA sequence analysis showed that the most probable affiliation of DHQ25 belongs to the γ-proteobacteria subclass and the genus Vibrio. Bacterial isolate DHQ25 showed algicidal activity through an indirect attack. Xenic culture of A. tamarense was susceptible to the culture filtrate of DHQ25 by algicidal activity assay. Algicidal process demonstrated that the alga cell lysed and cellular substances released under the visual field of microscope. DHQ25 was a challenge controller of A. tamarense by the above characterizations of algicidal activity assay and algicidal process. Interactions between bacteria and harmful algal bloom (HAB) species proved to be an important factor regulating the population of these algae. This is the first report of a Vibrio sp. bacterium algicidal to the toxic dinoflagellate A. tamarense. The findings increase our knowledge of the role of bacteria in algal-bacterial interaction. © 2010 The Authors. © 2010 The Society for Applied Microbiology.

  15. Molecular Mechanism Underlying the Entomotoxic Effect of Colocasia esculenta Tuber Agglutinin against Dysdercus cingulatus

    PubMed Central

    Roy, Amit; Das, Sampa

    2015-01-01

    Colocasia esculenta tuber agglutinin (CEA), a mannose binding lectin, exhibits insecticidal efficacy against different hemipteran pests. Dysdercus cingulatus, red cotton bug (RCB), has also shown significant susceptibility to CEA intoxication. However, the molecular basis behind such entomotoxicity of CEA has not been addressed adequately. The present study elucidates the mechanism of insecticidal efficacy of CEA against RCB. Confocal and scanning electron microscopic analyses documented CEA binding to insect midgut tissue, resulting in an alteration of perimicrovillar membrane (PMM) morphology. Internalization of CEA into insect haemolymph and ovary was documented by western blotting analyses. Ligand blot followed by mass spectrometric identification revealed the cognate binding partners of CEA as actin, ATPase and cytochrome P450. Deglycosylation and mannose inhibition assays indicated the interaction to probably be mannose mediated. Bioinformatic identification of putative glycosylation or mannosylation sites in the binding partners further supports the sugar mediated interaction. Correlating entomotoxicity of CEA with immune histological and binding assays to the insect gut contributes to a better understanding of the insecticidal potential of CEA and endorses its future biotechnological application.

  16. Topology, localization, and quantum information in atomic, molecular and optical systems

    NASA Astrophysics Data System (ADS)

    Yao, Norman Ying

    The scientific interface between atomic, molecular and optical (AMO) physics, condensed matter, and quantum information science has recently led to the development of new insights and tools that bridge the gap between macroscopic quantum behavior and detailed microscopic intuition. While the dialogue between these fields has sharpened our understanding of quantum theory, it has also raised a bevy of new questions regarding the out-of-equilibrium dynamics and control of many-body systems. This thesis is motivated by experimental advances that make it possible to produce and probe isolated, strongly interacting ensembles of disordered particles, as found in systems ranging from trapped ions and Rydberg atoms to ultracold polar molecules and spin defects in the solid state. The presence of strong interactions in these systems underlies their potential for exploring correlated many-body physics and this thesis presents recent results on realizing fractionalization and localization. From a complementary perspective, the controlled manipulation of individual quanta can also enable the bottom-up construction of quantum devices. To this end, this thesis also describes blueprints for a room-temperature quantum computer, quantum credit cards and nanoscale quantum thermometry.

  17. Single-Molecule Tribology: Force Microscopy Manipulation of a Porphyrin Derivative on a Copper Surface.

    PubMed

    Pawlak, Rémy; Ouyang, Wengen; Filippov, Alexander E; Kalikhman-Razvozov, Lena; Kawai, Shigeki; Glatzel, Thilo; Gnecco, Enrico; Baratoff, Alexis; Zheng, Quanshui; Hod, Oded; Urbakh, Michael; Meyer, Ernst

    2016-01-26

    The low-temperature mechanical response of a single porphyrin molecule attached to the apex of an atomic force microscope (AFM) tip during vertical and lateral manipulations is studied. We find that approach-retraction cycles as well as surface scanning with the terminated tip result in atomic-scale friction patterns induced by the internal reorientations of the molecule. With a joint experimental and computational effort, we identify the dicyanophenyl side groups of the molecule interacting with the surface as the dominant factor determining the observed frictional behavior. To this end, we developed a generalized Prandtl-Tomlinson model parametrized using density functional theory calculations that includes the internal degrees of freedom of the side group with respect to the core and its interactions with the underlying surface. We demonstrate that the friction pattern results from the variations of the bond length and bond angles between the dicyanophenyl side group and the porphyrin backbone as well as those of the CN group facing the surface during the lateral and vertical motion of the AFM tip.

  18. Pulsed Magnetic Field Improves the Transport of Iron Oxide Nanoparticles through Cell Barriers

    PubMed Central

    Min, Kyoung Ah; Shin, Meong Cheol; Yu, Faquan; Yang, Meizhu; David, Allan E.; Yang, Victor C.; Rosania, Gus R.

    2013-01-01

    Understanding how a magnetic field affects the interaction of magnetic nanoparticles (MNPs) with cells is fundamental to any potential downstream applications of MNPs as gene and drug delivery vehicles. Here, we present a quantitative analysis of how a pulsed magnetic field influences the manner in which MNPs interact with, and penetrate across a cell monolayer. Relative to a constant magnetic field, the rate of MNP uptake and transport across cell monolayers was enhanced by a pulsed magnetic field. MNP transport across cells was significantly inhibited at low temperature under both constant and pulsed magnetic field conditions, consistent with an active mechanism (i.e. endocytosis) mediating MNP transport. Microscopic observations and biochemical analysis indicated that, in a constant magnetic field, transport of MNPs across the cells was inhibited due to the formation of large (>2 μm) magnetically-induced MNP aggregates, which exceeded the size of endocytic vesicles. Thus, a pulsed magnetic field enhances the cellular uptake and transport of MNPs across cell barriers relative to a constant magnetic field by promoting accumulation while minimizing magnetically-induced MNP aggregates at the cell surface. PMID:23373613

  19. Knowledge Extraction from Atomically Resolved Images.

    PubMed

    Vlcek, Lukas; Maksov, Artem; Pan, Minghu; Vasudevan, Rama K; Kalinin, Sergei V

    2017-10-24

    Tremendous strides in experimental capabilities of scanning transmission electron microscopy and scanning tunneling microscopy (STM) over the past 30 years made atomically resolved imaging routine. However, consistent integration and use of atomically resolved data with generative models is unavailable, so information on local thermodynamics and other microscopic driving forces encoded in the observed atomic configurations remains hidden. Here, we present a framework based on statistical distance minimization to consistently utilize the information available from atomic configurations obtained from an atomically resolved image and extract meaningful physical interaction parameters. We illustrate the applicability of the framework on an STM image of a FeSe x Te 1-x superconductor, with the segregation of the chalcogen atoms investigated using a nonideal interacting solid solution model. This universal method makes full use of the microscopic degrees of freedom sampled in an atomically resolved image and can be extended via Bayesian inference toward unbiased model selection with uncertainty quantification.

  20. Dynamics of intracellular processes in live-cell systems unveiled by fluorescence correlation microscopy.

    PubMed

    González Bardeci, Nicolás; Angiolini, Juan Francisco; De Rossi, María Cecilia; Bruno, Luciana; Levi, Valeria

    2017-01-01

    Fluorescence fluctuation-based methods are non-invasive microscopy tools especially suited for the study of dynamical aspects of biological processes. These methods examine spontaneous intensity fluctuations produced by fluorescent molecules moving through the small, femtoliter-sized observation volume defined in confocal and multiphoton microscopes. The quantitative analysis of the intensity trace provides information on the processes producing the fluctuations that include diffusion, binding interactions, chemical reactions and photophysical phenomena. In this review, we present the basic principles of the most widespread fluctuation-based methods, discuss their implementation in standard confocal microscopes and briefly revise some examples of their applications to address relevant questions in living cells. The ultimate goal of these methods in the Cell Biology field is to observe biomolecules as they move, interact with targets and perform their biological action in the natural context. © 2016 IUBMB Life, 69(1):8-15, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  1. Linear relationship between water wetting behavior and microscopic interactions of super-hydrophilic surfaces.

    PubMed

    Liu, Jian; Wang, Chunlei; Guo, Pan; Shi, Guosheng; Fang, Haiping

    2013-12-21

    Using molecular dynamics simulations, we show a fine linear relationship between surface energies and microscopic Lennard-Jones parameters of super-hydrophilic surfaces. The linear slope of the super-hydrophilic surfaces is consistent with the linear slope of the super-hydrophobic, hydrophobic, and hydrophilic surfaces where stable water droplets can stand, indicating that there is a universal linear behavior of the surface energies with the water-surface van der Waals interaction that extends from the super-hydrophobic to super-hydrophilic surfaces. Moreover, we find that the linear relationship exists for various substrate types, and the linear slopes of these different types of substrates are dependent on the surface atom density, i.e., higher surface atom densities correspond to larger linear slopes. These results enrich our understanding of water behavior on solid surfaces, especially the water wetting behaviors on uncharged super-hydrophilic metal surfaces.

  2. Shapes formed by interacting cracks

    NASA Astrophysics Data System (ADS)

    Daniels, Karen

    2012-02-01

    Brittle failure through multiple cracks occurs in a wide variety of contexts, from microscopic failures in dental enamel and cleaved silicon to geological faults and planetary ice crusts. In each of these situations, with complicated stress geometries and different microscopic mechanisms, pairwise interactions between approaching cracks nonetheless produce characteristically curved fracture paths. We investigate the origins of this widely observed ``en passant'' crack pattern by fracturing a rectangular slab which is notched on each long side and subjected to quasi-static uniaxial strain from the short side. The two cracks propagate along approximately straight paths until they pass each other, after which they curve and release a lens-shaped fragment. We find that, for materials with diverse mechanical properties, each curve has an approximately square-root shape, and that the length of each fragment is twice its width. We are able to explain the origins of this universal shape with a simple geometrical model.

  3. Interacting Boson Model and nucleons

    NASA Astrophysics Data System (ADS)

    Otsuka, Takaharu

    2012-10-01

    An overview on the recent development of the microscopic derivation of the Interacting Boson Model is presented with some remarks not found elsewhere. The OAI mapping is reviewed very briefly, including the basic correspondence from nucleon-pair to boson. The new fermionboson mapping method is introduced, where intrinsic states of nucleons and bosons for a wide variation of shapes play an important role. Nucleon intrinsic states are obtained from mean field models, which is Skyrme model in examples to be shown. This method generates IBM-2 Hamiltonian which can describe and predict various situations of quadrupole collective states, including U(5), SU(3), O(6) and E(5) limits. The method is extended so that rotational response (cranking) can be handled, which enables us to describe rotational bands of strongly deformed nuclei. Thus, we have obtained a unified framework for the microscopic derivation of the IBM covering all known situations of quadrupole collectivity at low energy.

  4. The new finite temperature Schrödinger equations with strong or weak interaction

    NASA Astrophysics Data System (ADS)

    Li, Heling; Yang, Bin; Shen, Hongjun

    2017-07-01

    Implanting the thoughtway of thermostatistics into quantum mechanics, we formulate new Schrödinger equations of multi-particle and single-particle respectively at finite temperature. To get it, the pure-state free energies and the microscopic entropy operators are introduced and meantime the pure-state free energies take the places of mechanical energies at finite temperature. The definition of microscopic entropy introduced by Wu was also revised, and the strong or weak interactions dependent on temperature are considered in multi-particle Schrödinger Equations. Based on the new Schrödinger equation at finite temperature, two simple cases were analyzed. The first one is concerning some identical harmonic oscillators in N lattice points and the other one is about N unrelated particles in three dimensional in finite potential well. From the results gotten, we conclude that the finite temperature Schrödinger equation is particularly important for mesoscopic systems.

  5. Novel Starch-PVA Polymer for Microparticle Preparation and Optimization Using Factorial Design Study

    PubMed Central

    Chattopadhyay, Helen; De, Amit Kumar; Datta, Sriparna

    2015-01-01

    The aim of our present work was to optimize the ratio of a very novel polymer, starch-polyvinyl alcohol (PVA), for controlled delivery of Ornidazole. Polymer-coated drug microparticles were prepared by emulsion method. Microscopic study, scanning electron microscopic study, and atomic force microscopic study revealed that the microparticles were within 10 micrometers of size with smooth spherical shape. The Fourier transform infrared spectroscopy showed absence of drug polymer interaction. A statistical 32 full factorial design was used to study the effect of different concentration of starch and PVA on the drug release profile. The three-dimensional plots gave us an idea about the contribution of each factor on the release kinetics. Hence this novel polymer of starch and polyvinyl alcohol can be utilized for control release of the drug from a targeted delivery device. PMID:27347511

  6. In-situ investigation of laser surface modifications of WC-Co hard metals inside a scanning electron microscope

    NASA Astrophysics Data System (ADS)

    Mueller, H.; Wetzig, K.; Schultrich, B.; Pompe, Wolfgang; Chapliev, N. I.; Konov, Vitaly I.; Pimenov, S. M.; Prokhorov, Alexander M.

    1989-05-01

    The investigation of laser interaction with solid surfaces and of the resulting mechanism of surface modification are of technical interest to optimize technological processes, and they are also of fundamental scientific importance. Most instructive indormation is available with the ail of the in-situ techniques. For instance, measuring of the photon emission of the irradiated surface ane the plasma torch (if it is produced) simultaneously to laser action, makes it possible to gain a global characterization of the laser-solid interaction. In order to obtain additional information about surface and structure modifications in microscopic detail , a laser and scanning electron microscope were combined in to a tandem equipment (LASEM). Inside this eqiipment the microscopic observation is carried out directly at the laser irradiated area without any displacement of the sample. In this way, the stepwise development of surface modification during multipulse irradiation is visible in microscopic details and much more reliable information about the surface modification process is obtainable in comparison to an external laser irradiation. Such kind of equipments were realized simultaneously and independently in the Institut of General Physics (Moscow) and the Central Institute of Solid State Physics and Material Research (Dresden) using a CO2 and a LTd-glass-laser, respectively. In the following the advantages and possibilities of a LASEM shall be demonstrated by some selected investigations of WC-CO hardmeta. The results were obtained in collaboration by both groups with the aid of the pulsed CO2-laser. The TEA CO2 laser was transmitted through a ZnSe-window into the sample chamber of the SEM and focused ofAo tfte sample surface. It was operated in TEM - oo mode with a repetition rate of about 1 pulse per second. A peak power density of about 160 MW/cm2 was achieved in front of the sample surface.

  7. Effects of nano-LaF3 on the friction and wear behaviors of PTFE-based bonded solid lubricating coatings under different lubrication conditions

    NASA Astrophysics Data System (ADS)

    Jia, Yulong; Wan, Hongqi; Chen, Lei; Zhou, Huidi; Chen, Jianmin

    2016-09-01

    Influence of nanometer lanthanum fluoride (nano-LaF3) on the tribological behaviors of polytetrafluoroethylene (PTFE) bonded solid lubricating coatings were investigated using a ring-on-block friction-wear tester under dry friction and RP-3 jet fuel lubrication conditions. The worn surfaces and transfer films formed on the counterpart steel rings were observed by scanning electron microscope (SEM) and optical microscope (OM), respectively. The microstructures of the nano-LaF3 modified coatings and the distribution states of nano-LaF3 were studied by field-emission scanning electron microscope (FESEM) and transmission electron microscopy (TEM), respectively. The results show that incorporation of nano-LaF3 improves the microhardness and the friction-reduced and anti-wear abilities of PTFE bonded solid lubricating coatings. The wear life of the modified coating is about 6 times longer than that of the coating without nano-LaF3 filler at a relatively low applied load (200 N) and rotary speed (1000 rev/min) under dry friction condition. The friction coefficient and wear life of the modified coating decrease with increase of applied load under dry friction, but the friction coefficient has hardly any variation and wear life decreases under RP-3 jet fuel lubrication condition. In addition, the friction coefficient of the modified coating reduces with the rotary speed increasing under dry sliding but has little change under RP-3 lubrication, the wear life increases firstly and then decreases. The results indicated that the wear failure mechanism is dominated by applied load, which plays an important role in guidance of application of nano-LaF3 modified PTFE bonded coating under different working environment.

  8. [Pathological features and clinical manifestations in 313 children with nephropathy under 6].

    PubMed

    Dang, Xi-qiang; Cao, Yan; Yi, Zhu-wen; Xu, Zi-chuan; He, Xiao-jie; Huang, Dan-lin

    2008-03-01

    To explore the relationship between pathological features and clinical manifestations in children with nephropathy under 6 years old. Renal biopsy by rapid percutaneous puncturation was performed on 313 children under 6 who were all diagnosed clinically as kidney diseases of 14 different kinds. The specimens were divided into 3 parts for microscope, electron microscope and immuno fluorescence examination respectively and processed by HE, PAS, PASM, and Masson staining. Immunofluorescence was used to detect the deposition of IgG, IgM, IgA, C3, C4, C1q, and Fb in the renal tissues. Additional examinations were done to detect HBs-Ag, HBeAg and HBcAg deposition in some cases with positive serum HBs-Ag. Altogether 290 of the specimens (290/313, 92.65%) were examined by electron microscope. All the renal biopsy performances were successful. The clinical manifestations comprised of persistent haematuria (32.92%, 103/313), idiopathic nephritic syndrome (26.1%, 82/313), acute nephritic syndrome (20.14%, 63/313), Henoch Schonlein purpura nephritis (8.32%, 26/313), HBV-nephritis (4.79%, 15/313), and isolated proteinuria (2.56%, 8/313). The main pathological patterns of glomerular disease were identified as mesangial proliferation (51.75%, 162/313), IgM nephropathy (8.31%,26/313), minor and minimal change (7.99%, 25/313), IgA nephropathy (7.35%, 23/313), endocapillary proliferative glomerulonephritis (5.11%, 16/313), focus segmental glomerulosclerosis (4.47%, 14/313), thin basement membrane nephropathy (4.47%, 14/313), and membrane nephropathy (4.47%, 14/313). Alport syndrome, congenital nephrotic syndrome, and thin basement membrane nephropathy can be diagnosed by electron microscope, white IgA nephropathy, IgM nephropathy and C1q nephropathy by immunopathology. Similar clinical manifestations may differ in the pathology and the clinical features of one pathological diagnosis may vary greatly. Renal biopsy is of great help to the diagnosis, treatment and the prognosis evaluation for children with nephropathy under 6. Electron microscopes also play an important role in the diagnosis of nephropathy.

  9. Development of scanning electron and x-ray microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumura, Tomokazu, E-mail: tomokzau.matsumura@etd.hpk.co.jp; Hirano, Tomohiko, E-mail: tomohiko.hirano@etd.hpk.co.jp; Suyama, Motohiro, E-mail: suyama@etd.hpk.co.jp

    We have developed a new type of microscope possessing a unique feature of observing both scanning electron and X-ray images under one unit. Unlike former X-ray microscopes using SEM [1, 2], this scanning electron and X-ray (SELX) microscope has a sample in vacuum, thus it enables one to observe a surface structure of a sample by SEM mode, to search the region of interest, and to observe an X-ray image which transmits the region. For the X-ray observation, we have been focusing on the soft X-ray region from 280 eV to 3 keV to observe some bio samples and softmore » materials. The resolutions of SEM and X-ray modes are 50 nm and 100 nm, respectively, at the electron energy of 7 keV.« less

  10. Observation of a brine layer on an ice surface with an environmental scanning electron microscope at higher pressures and temperatures.

    PubMed

    Krausko, Ján; Runštuk, Jiří; Neděla, Vilém; Klán, Petr; Heger, Dominik

    2014-05-20

    Observation of a uranyl-salt brine layer on an ice surface using backscattered electron detection and ice surface morphology using secondary-electron detection under equilibrium conditions was facilitated using an environmental scanning electron microscope (ESEM) at temperatures above 250 K and pressures of hundreds of Pa. The micrographs of a brine layer over ice grains prepared by either slow or shock freezing provided a complementary picture of the contaminated ice grain boundaries. Fluorescence spectroscopy of the uranyl ions in the brine layer confirmed that the species exists predominately in the solvated state under experimental conditions of ESEM.

  11. [Grape seed extract induces morphological changes of prostate cancer PC-3 cells].

    PubMed

    Shang, Xue-Jun; Yin, Hong-Lin; Ge, Jing-Ping; Sun, Yi; Teng, Wen-Hui; Huang, Yu-Feng

    2008-12-01

    To observe the morphological changes of prostate cancer PC-3 cells induced by grape seed extract (GSE). PC-3 cells were incubated with different concentrations of GSE (100, 200 and 300 microg/ml) for 24, 48 and 72 hours, and then observed for morphological changes by invert microscopy, HE staining and transmission electron microscopy. The incubated PC-3 cells appeared round, small, wrinkled and broken under the invert microscope and exhibited the classical morphological characteristics of cell death under the electron microscope, including cell atrophy, increased vacuoles, crumpled nuclear membrane, and chromosome aggregation. GSE can cause morphological changes and induce necrosis and apoptosis of PC-3 cells.

  12. Microscopic Theory for the Role of Attractive Forces in the Dynamics of Supercooled Liquids.

    PubMed

    Dell, Zachary E; Schweizer, Kenneth S

    2015-11-13

    We formulate a microscopic, no adjustable parameter, theory of activated relaxation in supercooled liquids directly in terms of the repulsive and attractive forces within the framework of pair correlations. Under isochoric conditions, attractive forces can nonperturbatively modify slow dynamics, but at high enough density their influence vanishes. Under isobaric conditions, attractive forces play a minor role. High temperature apparent Arrhenius behavior and density-temperature scaling are predicted. Our results are consistent with recent isochoric simulations and isobaric experiments on a deeply supercooled molecular liquid. The approach can be generalized to treat colloidal gelation and glass melting, and other soft matter slow dynamics problems.

  13. Efficacious cellular codelivery of doxorubicin and EGFP siRNA mediated by the composition of PLGA and PEI protected gold nanoparticles.

    PubMed

    Kumar, Krishan; Vulugundam, Gururaja; Jaiswal, Pradeep Kumar; Shyamlal, Bharti Rajesh Kumar; Chaudhary, Sandeep

    2017-09-15

    This study reports the simultaneous delivery of EGFP siRNA and the chemotherapeutic drug, doxorubicin by means of the composition that results from the electrostatic interaction between positively charged siRNA-complexes of gold nanoparticles (AuNPs) capped with PEI, 25kDa (P25-AuNPs) and negatively charged carboxymethyl cellulose formulated PLGA nanoparticles loaded with doxorubicin. The nanoparticles and their facile interaction were studied by means of dynamic light scattering (DLS), zeta potential, transmission electron microscopic (TEM) measurements. The flow cytometric and confocal microscopic analysis evidenced the simultaneous internalization of both labelled siRNA and doxorubin into around 55% of the HeLa cancer cell population. Fluorescence microscopic studies enabled the visual analysis of EGFP expressing HeLa cells which suggested that the composition mediated codelivery resulted in a substantial downregulation of EGFP expression and intracellular accumulation of doxorubicin. Interestingly, codelivery treatment resulted in an increased cellular delivery of doxorubicin when compared to PLGA-DOX alone treatment. On the other hand, the activity of siRNA complexes of PEI-AuNPs was completely retained even when they were part of composition. The results suggest that this formulation can serve as promising tool for delivery applications in combinatorial anticancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Nanothermodynamics in the strong coupling regime

    NASA Astrophysics Data System (ADS)

    Jarzynski, Christopher

    In macroscopic thermodynamics, energy gained by a system is lost by its surroundings (or vice-versa), in accordance with the first law of thermodynamics. However, if the system-environment interaction energy cannot be neglected - as in the case of a microscopic system such as a single molecule in solution - then it is not immediately clear where to draw the line between the energy of the system and that of the environment. To which subsystem does the interaction energy belong? I will describe a microscopic formulation of both the first and second laws of thermodynamics that applies to this situation. In this framework, seven key thermodynamic quantities - internal energy, entropy, volume, enthalpy, Gibbs free energy, heat and work - are given precise microscopic definitions, and the first and second laws are preserved without requiring corrections due to finite system-environment coupling. Furthermore, these definitions reduce to the usual ones in the limit of macroscopic systems of interest. This condition establishes that a unifying framework can be developed, encompassing stochastic thermodynamics at one end and macroscopic thermodynamics at the other. A central element of this framework is a thermodynamic definition of the volume of the system of interest, which converges to the usual geometric definition when the system is large. This research was supported by the U.S. National Science Foundation through Grant No. DMR-1506969.

  15. Nonlocal effects in nonisothermal hydrodynamics from the perspective of beyond-equilibrium thermodynamics.

    PubMed

    Hütter, Markus; Brader, Joseph M

    2009-06-07

    We examine the origins of nonlocality in a nonisothermal hydrodynamic formulation of a one-component fluid of particles that exhibit long-range correlations, e.g., due to a spherically symmetric, long-range interaction potential. In order to furnish the continuum modeling with physical understanding of the microscopic interactions and dynamics, we make use of systematic coarse graining from the microscopic to the continuum level. We thus arrive at a thermodynamically admissible and closed set of evolution equations for the densities of momentum, mass, and internal energy. From the consideration of an illustrative special case, the following main conclusions emerge. There are two different source terms in the momentum balance. The first is a body force, which in special circumstances can be related to the functional derivative of a nonlocal Helmholtz free energy density with respect to the mass density. The second source term is proportional to the temperature gradient, multiplied by the nonlocal entropy density. These two source terms combine into a pressure gradient only in the absence of long-range effects. In the irreversible contributions to the time evolution, the nonlocal contributions arise since the self-correlations of the stress tensor and heat flux, respectively, are nonlocal as a result of the microscopic nonlocal correlations. Finally, we point out specific points that warrant further discussions.

  16. Auricular burns associated with operating microscope use during otologic surgery.

    PubMed

    Latuska, Richard F; Carlson, Matthew L; Neff, Brian A; Driscoll, Colin L; Wanna, George B; Haynes, David S

    2014-02-01

    To raise awareness of the potential hazard of auricular burns associated with operating microscope use during otologic surgery. Retrospective case series and summary of the Food and Drug Administration's (FDA) Manufacturer and User Facility Device Experience (MAUDE) database of voluntary adverse event reports pertaining to microscope related auricular thermal injuries. All patients who sustained auricular burns while using the operating microscope during otologic surgery at 2 tertiary academic referral centers. Surgical procedure, microscope model, intensity of illumination, length of procedure, focal length, location and severity of burn, and patient outcome. A total of 4 microscope-related auricular thermal injuries were identified from the authors' institutions. Additionally, 82 unique cases of soft tissue burns associated with the use of an operative microscope have been voluntarily reported to the FDA since 2004. A disproportionately large percent (∼ 30%) of these occurred within the field of otology, the majority of which were during tympanoplasty or tympanomastoidectomy procedures at focal length distances of 300 mm or less with xenon light source microscopes. Simultaneous advancements in light delivery technologies and lens optics have continued to improve the efficiency of the operating microscope; however, these improvements also increase the potential for thermal injuries. Although rare, a review of the FDA MAUDE database suggests that microscope-related soft tissue burns occur more frequently in otology than any other surgical specialty. A variety of factors may help explain this finding, including the unique anatomy of the external ear with thin skin and limited underlying adipose tissue. Preventative measures should be taken to decrease the risk of thermal injuries including use of the lowest comfortable light intensity, adjusting the aperture width to match the operative field, frequent wound irrigation, and covering exposed portions of the pinna with a moist surgical sponge.

  17. Fermi Gas Microscope

    NASA Astrophysics Data System (ADS)

    Setiawan, Widagdo

    Recent advances in using microscopes in ultracold atom experiment have allowed experimenters for the first time to directly observe and manipulate individual atoms in individual lattice sites. This technique enhances our capability to simulate strongly correlated systems such as Mott insulator and high temperature superconductivity. Currently, all ultracold atom experiments with high resolution imaging capability use bosonic atoms. In this thesis, I present our progress towards creating the fermionic version of the microscope experiment which is more suitable for simulating real condensed matter systems. Lithium is ideal due to the existence of both fermionic and bosonic isotopes, its light mass, which means faster experiment time scales that suppresses many sources of technical noise, and also due to the existence of a broad Feshbach resonance, which can be used to tune the inter-particle interaction strength over a wide range from attractive, non-interacting, and repulsive interactions. A high numerical aperture objective will be used to image and manipulate the atoms with single lattice site resolution. This setup should allow us to implement the Hubbard hamiltonian which could describe interesting quantum phases such as antiferromagnetism, d-wave superfluidity, and high temperature superconductivity. I will also discuss the feasibility of the Raman sideband cooling method for cooling the atoms during the imaging process. We have also developed a new electronic control system to control the sequence of the experiment. This electronic system is very scalable in order to keep up with the increasing complexity of atomic physics experiments. Furthermore, the system is also designed to be more precise in order to keep up with the faster time scale of lithium experiment.

  18. Microscopically based energy density functionals for nuclei using the density matrix expansion: Implementation and pre-optimization

    NASA Astrophysics Data System (ADS)

    Stoitsov, M.; Kortelainen, M.; Bogner, S. K.; Duguet, T.; Furnstahl, R. J.; Gebremariam, B.; Schunck, N.

    2010-11-01

    In a recent series of articles, Gebremariam, Bogner, and Duguet derived a microscopically based nuclear energy density functional by applying the density matrix expansion (DME) to the Hartree-Fock energy obtained from chiral effective field theory two- and three-nucleon interactions. Owing to the structure of the chiral interactions, each coupling in the DME functional is given as the sum of a coupling constant arising from zero-range contact interactions and a coupling function of the density arising from the finite-range pion exchanges. Because the contact contributions have essentially the same structure as those entering empirical Skyrme functionals, a microscopically guided Skyrme phenomenology has been suggested in which the contact terms in the DME functional are released for optimization to finite-density observables to capture short-range correlation energy contributions from beyond Hartree-Fock. The present article is the first attempt to assess the ability of the newly suggested DME functional, which has a much richer set of density dependencies than traditional Skyrme functionals, to generate sensible and stable results for nuclear applications. The results of the first proof-of-principle calculations are given, and numerous practical issues related to the implementation of the new functional in existing Skyrme codes are discussed. Using a restricted singular value decomposition optimization procedure, it is found that the new DME functional gives numerically stable results and exhibits a small but systematic reduction of our test χ2 function compared to standard Skyrme functionals, thus justifying its suitability for future global optimizations and large-scale calculations.

  19. Investigation of the interactions between 1-butyl-3-methylimidazolium-based ionic liquids and isobutylene using density functional theory.

    PubMed

    Li, Xiaoning; Guo, Wenli; Wu, Yibo; Li, Wei; Gong, Liangfa; Zhang, Xiaoqian; Li, Shuxin; Shang, Yuwei; Yang, Dan; Wang, Hao

    2018-03-06

    To identify ionic liquids (ILs) that could be used as solvents in isobutylene (IB) polymerization, the interactions between IB and eight different ILs based on the 1-butyl-3-methylimidazolium cation ([Bmim] + ) were investigated using density functional theory (DFT). The anions in the ILs were chloride, hexafluorophosphate, tetrafluoroborate, bis[(trifluoromethyl)sulfonyl]imide, tetrachloroaluminate ([AlCl 4 ] - ), tetrachloroferrate, acetate, and trifluoroacetate. The interaction geometries were explained by changes in the total energy, intermolecular distances, Hirshfeld charges, and the electrostatic potential surface. The IL solvents were screened by comparing their interaction intensities with IB to the interaction intensities of reference ILs ([AlCl 4 ] - -based ILs) with IB. The microscopic mechanism for IB dissolution was rationalized by invoking a previously reported microscopic mechanism for the dissolution of gases in ILs. Computation results revealed that hydrogen (H) bonding between C2-H on the imidazolium ring and the anions plays a key role in ion pair (IP) formation. The addition of IB leads to slight changes in the dominant interactions of the IP. IB molecules occupied cavities created by small angular rearrangements of the anions, just as CO 2 does when it is dissolved in an IL. The limited total free space in the ILs and the much larger size of IB than CO 2 were found to be responsible for the poor solubility of IB compared with that of CO 2 in the ILs.

  20. 9Be scattering with microscopic wave functions and the continuum-discretized coupled-channel method

    NASA Astrophysics Data System (ADS)

    Descouvemont, P.; Itagaki, N.

    2018-01-01

    We use microscopic 9Be wave functions defined in a α +α +n multicluster model to compute 9Be+target scattering cross sections. The parameter sets describing 9Be are generated in the spirit of the stochastic variational method, and the optimal solution is obtained by superposing Slater determinants and by diagonalizing the Hamiltonian. The 9Be three-body continuum is approximated by square-integral wave functions. The 9Be microscopic wave functions are then used in a continuum-discretized coupled-channel (CDCC) calculation of 9Be+208Pb and of 9Be+27Al elastic scattering. Without any parameter fitting, we obtain a fair agreement with experiment. For a heavy target, the influence of 9Be breakup is important, while it is weaker for light targets. This result confirms previous nonmicroscopic CDCC calculations. One of the main advantages of the microscopic CDCC is that it is based on nucleon-target interactions only; there is no adjustable parameter. The present work represents a first step towards more ambitious calculations involving heavier Be isotopes.

  1. Effect of double layers on magnetosphere-ionosphere coupling

    NASA Technical Reports Server (NTRS)

    Lysak, Robert L.; Hudson, Mary K.

    1987-01-01

    The Earth's auroral zone contains dynamic processes occurring on scales from the length of an auroral zone field line which characterizes Alfven wave propagation to the scale of microscopic processes which occur over a few Debye lengths. These processes interact in a time-dependent fashion since the current carried by the Alfven waves can excite microscopic turbulence which can in turn provide dissipation of the Alfven wave energy. This review will first describe the dynamic aspects of auroral current structures with emphasis on consequences for models of microscopic turbulence. A number of models of microscopic turbulence will be introduced into a large-scale model of Alfven wave propagation to determine the effect of various models on the overall structure of auroral currents. In particular, the effects of a double layer electric field which scales with the plasma temperature and Debye length is compared with the effect of anomalous resistivity due to electrostatic ion cyclotron turbulence in which the electric field scales with the magnetic field strength. It is found that the double layer model is less diffusive than in the resistive model leading to the possibility of narrow, intense current structures.

  2. FluoroSim: A Visual Problem-Solving Environment for Fluorescence Microscopy

    PubMed Central

    Quammen, Cory W.; Richardson, Alvin C.; Haase, Julian; Harrison, Benjamin D.; Taylor, Russell M.; Bloom, Kerry S.

    2010-01-01

    Fluorescence microscopy provides a powerful method for localization of structures in biological specimens. However, aspects of the image formation process such as noise and blur from the microscope's point-spread function combine to produce an unintuitive image transformation on the true structure of the fluorescing molecules in the specimen, hindering qualitative and quantitative analysis of even simple structures in unprocessed images. We introduce FluoroSim, an interactive fluorescence microscope simulator that can be used to train scientists who use fluorescence microscopy to understand the artifacts that arise from the image formation process, to determine the appropriateness of fluorescence microscopy as an imaging modality in an experiment, and to test and refine hypotheses of model specimens by comparing the output of the simulator to experimental data. FluoroSim renders synthetic fluorescence images from arbitrary geometric models represented as triangle meshes. We describe three rendering algorithms on graphics processing units for computing the convolution of the specimen model with a microscope's point-spread function and report on their performance. We also discuss several cases where the microscope simulator has been used to solve real problems in biology. PMID:20431698

  3. Non-intrusive practitioner pupil detection for unmodified microscope oculars.

    PubMed

    Fuhl, Wolfgang; Santini, Thiago; Reichert, Carsten; Claus, Daniel; Herkommer, Alois; Bahmani, Hamed; Rifai, Katharina; Wahl, Siegfried; Kasneci, Enkelejda

    2016-12-01

    Modern microsurgery is a long and complex task requiring the surgeon to handle multiple microscope controls while performing the surgery. Eye tracking provides an additional means of interaction for the surgeon that could be used to alleviate this situation, diminishing surgeon fatigue and surgery time, thus decreasing risks of infection and human error. In this paper, we introduce a novel algorithm for pupil detection tailored for eye images acquired through an unmodified microscope ocular. The proposed approach, the Hough transform, and six state-of-the-art pupil detection algorithms were evaluated on over 4000 hand-labeled images acquired from a digital operating microscope with a non-intrusive monitoring system for the surgeon eyes integrated. Our results show that the proposed method reaches detection rates up to 71% for an error of ≈3% w.r.t the input image diagonal; none of the state-of-the-art pupil detection algorithms performed satisfactorily. The algorithm and hand-labeled data set can be downloaded at:: www.ti.uni-tuebingen.de/perception. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Biocytin-Derived MRI Contrast Agent for Longitudinal Brain Connectivity Studies

    PubMed Central

    2011-01-01

    To investigate the connectivity of brain networks noninvasively and dynamically, we have developed a new strategy to functionalize neuronal tracers and designed a biocompatible probe that can be visualized in vivo using magnetic resonance imaging (MRI). Furthermore, the multimodal design used allows combined ex vivo studies with microscopic spatial resolution by conventional histochemical techniques. We present data on the functionalization of biocytin, a well-known neuronal tract tracer, and demonstrate the validity of the approach by showing brain networks of cortical connectivity in live rats under MRI, together with the corresponding microscopic details, such as fibers and neuronal morphology under light microscopy. We further demonstrate that the developed molecule is the first MRI-visible probe to preferentially trace retrograde connections. Our study offers a new platform for the development of multimodal molecular imaging tools of broad interest in neuroscience, that capture in vivo the dynamics of large scale neural networks together with their microscopic characteristics, thereby spanning several organizational levels. PMID:22860157

  5. Detection of pathogenic Leptospira from selected environment in Kelantan and Terengganu, Malaysia.

    PubMed

    Ridzlan, F R; Bahaman, A R; Khairani-Bejo, S; Mutalib, A R

    2010-12-01

    Leptospirosis is recognized as one of the important zoonotic diseases in the world including Malaysia. A total of 145 soil and water samples were collected from selected National Service Training Centres (NSTC) in Kelantan and Terengganu. The samples were inoculated into modified semisolid Ellinghausen McCullough Johnson Harris (EMJH) medium, incubated at room temperature for 1 month and examined under the dark-field microscope. Positive growth of the leptospiral isolates were then confirmed with 8-Azaguanine Test, Polymerase Chain Reaction (PCR) assay and Microscopic Agglutination Test (MAT). Fifteen cultures (10.34%) exhibited positive growths which were seen under dark field microscope whilst only 20% (3/15) were confirmed as pathogenic species. based on 8-Azaguanine Test and PCR. Serological identification of the isolates with MAT showed that hebdomadis was the dominant serovar in Terengganu. Pathogenic leptospires can be detected in Malaysian environment and this has the potential to cause an outbreak. Therefore, precautionary steps against leptospirosis should be taken by camp authorities to ensure the safety of trainees.

  6. A diamond-based scanning probe spin sensor operating at low temperature in ultra-high vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer-Nolte, E.; Wrachtrup, J.; 3rd Institute of Physics and Research Center SCoPE, University Stuttgart, 70569 Stuttgart

    2014-01-15

    We present the design and performance of an ultra-high vacuum (UHV) low temperature scanning probe microscope employing the nitrogen-vacancy color center in diamond as an ultrasensitive magnetic field sensor. Using this center as an atomic-size scanning probe has enabled imaging of nanoscale magnetic fields and single spins under ambient conditions. In this article we describe an experimental setup to operate this sensor in a cryogenic UHV environment. This will extend the applicability to a variety of molecular systems due to the enhanced target spin lifetimes at low temperature and the controlled sample preparation under UHV conditions. The instrument combines amore » tuning-fork based atomic force microscope (AFM) with a high numeric aperture confocal microscope and the facilities for application of radio-frequency (RF) fields for spin manipulation. We verify a sample temperature of <50 K even for strong laser and RF excitation and demonstrate magnetic resonance imaging with a magnetic AFM tip.« less

  7. Imaging and three-dimensional reconstruction of chemical groups inside a protein complex using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Duckhoe; Sahin, Ozgur

    2015-03-01

    Scanning probe microscopes can be used to image and chemically characterize surfaces down to the atomic scale. However, the localized tip-sample interactions in scanning probe microscopes limit high-resolution images to the topmost atomic layer of surfaces, and characterizing the inner structures of materials and biomolecules is a challenge for such instruments. Here, we show that an atomic force microscope can be used to image and three-dimensionally reconstruct chemical groups inside a protein complex. We use short single-stranded DNAs as imaging labels that are linked to target regions inside a protein complex, and T-shaped atomic force microscope cantilevers functionalized with complementary probe DNAs allow the labels to be located with sequence specificity and subnanometre resolution. After measuring pairwise distances between labels, we reconstruct the three-dimensional structure formed by the target chemical groups within the protein complex using simple geometric calculations. Experiments with the biotin-streptavidin complex show that the predicted three-dimensional loci of the carboxylic acid groups of biotins are within 2 Å of their respective loci in the corresponding crystal structure, suggesting that scanning probe microscopes could complement existing structural biological techniques in solving structures that are difficult to study due to their size and complexity.

  8. Language Learning Enhanced by Massive Multiple Online Role-Playing Games (MMORPGs) and the Underlying Behavioral and Neural Mechanisms.

    PubMed

    Zhang, Yongjun; Song, Hongwen; Liu, Xiaoming; Tang, Dinghong; Chen, Yue-E; Zhang, Xiaochu

    2017-01-01

    Massive Multiple Online Role-Playing Games (MMORPGs) have increased in popularity among children, juveniles, and adults since MMORPGs' appearance in this digital age. MMORPGs can be applied to enhancing language learning, which is drawing researchers' attention from different fields and many studies have validated MMORPGs' positive effect on language learning. However, there are few studies on the underlying behavioral or neural mechanism of such effect. This paper reviews the educational application of the MMORPGs based on relevant macroscopic and microscopic studies, showing that gamers' overall language proficiency or some specific language skills can be enhanced by real-time online interaction with peers and game narratives or instructions embedded in the MMORPGs. Mechanisms underlying the educational assistant role of MMORPGs in second language learning are discussed from both behavioral and neural perspectives. We suggest that attentional bias makes gamers/learners allocate more cognitive resources toward task-related stimuli in a controlled or an automatic way. Moreover, with a moderating role played by activation of reward circuit, playing the MMORPGs may strengthen or increase functional connectivity from seed regions such as left anterior insular/frontal operculum (AI/FO) and visual word form area to other language-related brain areas.

  9. The Microstructural Evolution and Mechanical Properties of Zr-Based Metallic Glass under Different Strain Rate Compressions

    PubMed Central

    Chen, Tao-Hsing; Tsai, Chih-Kai

    2015-01-01

    In this study, the high strain rate deformation behavior and the microstructure evolution of Zr-Cu-Al-Ni metallic glasses under various strain rates were investigated. The influence of strain and strain rate on the mechanical properties and fracture behavior, as well as microstructural properties was also investigated. Before mechanical testing, the structure and thermal stability of the Zr-Cu-Al-Ni metallic glasses were studied with X-ray diffraction (XRD) and differential scanning calorimeter. The mechanical property experiments and microstructural observations of Zr-Cu-Al-Ni metallic glasses under different strain rates ranging from 10−3 to 5.1 × 103 s−1 and at temperatures of 25 °C were investigated using compressive split-Hopkinson bar (SHPB) and an MTS tester. An in situ transmission electron microscope (TEM) nanoindenter was used to carry out compression tests and investigate the deformation behavior arising at nanopillars of the Zr-based metallic glass. The formation and interaction of shear band during the plastic deformation were investigated. Moreover, it was clearly apparent that the mechanical strength and ductility could be enhanced by impeding the penetration of shear bands with reinforced particles. PMID:28788034

  10. [Separation of gamma linolenic acid from evening primrose oil with urea inclusion--orthogonal experiment of optimizing technological parameters and observation of urea inclusion compound I].

    PubMed

    Wang, Hua; Ling, Man; Xue, Gang; Liu, Fengxia; Guo, Shuxian

    2010-05-01

    The influence on the urea inclusion compound under different conditions (allocated proportion, time of inclusion, temperature of inclusion) were studied through the orthogonal test, and theoretical reference of urea inclusion process for further optimization wound be offered. The orthogonal experiment was adopted, and microscope was used to observe the shape, aperture size of the urea inclusion compound under different technological parameters, the GC was employed to inspect the purity of GLA. The results indicated that the ratio of fatty acids and urea, inclusion of temperature, time of inclusion had great effect on urea inclusion compound. The three factors and its interactions significantly affected the purity of GLA. The results also showed that the best process was that the ratio of fatty acids and urea was 1 : 3, temperature of inclusion was--15 degrees C, time of inclusion was 24 h. Under the best condition, the purity of GLA reach up to 95.575 9%; and it is feasible to observe the shape and the amount of the urea inclusion compound to reflect and guide the urea inclusion technology.

  11. Microscopic observation of magnetic bacteria in the magnetic field of a rotating permanent magnet.

    PubMed

    Smid, Pieter; Shcherbakov, Valeriy; Petersen, Nikolai

    2015-09-01

    Magnetotactic bacteria are ubiquitous and can be found in both freshwater and marine environments. Due to intracellular chains of magnetic single domain particles, they behave like swimming compass needles. In external magnetic fields like the Earth's magnetic field, a torque is acting on the chain. This will cause the bacterium to be rotated and aligned with the external field. The swimming direction of magnetotactic bacteria can be controlled with external magnetic fields, which makes it convenient to study them under a light microscope. Usually, a special set of coils arranged around a light microscope is used to control the swimming magnetotactic bacteria. Here, we present a simple mechanical system with a permanent magnet, which produces a rotating magnetic field of nearly constant amplitude in the focal plane of a light microscope. The device is placed beside the light microscope and easily adaptable to almost any microscope and thus convenient for field experiments. To describe the trajectories qualitatively, a theoretical model of the trajectories is presented. This device can be used to control the swimming direction of magnetotactic bacteria and also for studying their magnetic and hydrodynamic properties.

  12. Effects of drug-resistant mutations on the dynamic properties of HIV-1 protease and inhibition by Amprenavir and Darunavir

    PubMed Central

    Yu, Yuqi; Wang, Jinan; Shao, Qiang; Shi, Jiye; Zhu, Weiliang

    2015-01-01

    Molecular dynamics simulations are performed to investigate the dynamic properties of wild-type HIV-1 protease and its two multi-drug-resistant variants (Flap + (L10I/G48V/I54V/V82A) and Act (V82T/I84V)) as well as their binding with APV and DRV inhibitors. The hydrophobic interactions between flap and 80 s (80’s) loop residues (mainly I50-I84’ and I50’-I84) play an important role in maintaining the closed conformation of HIV-1 protease. The double mutation in Act variant weakens the hydrophobic interactions, leading to the transition from closed to semi-open conformation of apo Act. APV or DRV binds with HIV-1 protease via both hydrophobic and hydrogen bonding interactions. The hydrophobic interactions from the inhibitor is aimed to the residues of I50 (I50’), I84 (I84’), and V82 (V82’) which create hydrophobic core clusters to further stabilize the closed conformation of flaps, and the hydrogen bonding interactions are mainly focused with the active site of HIV-1 protease. The combined change in the two kinds of protease-inhibitor interactions is correlated with the observed resistance mutations. The present study sheds light on the microscopic mechanism underlying the mutation effects on the dynamics of HIV-1 protease and the inhibition by APV and DRV, providing useful information to the design of more potent and effective HIV-1 protease inhibitors. PMID:26012849

  13. AN EXACT METHOD FOR RELATING ZWITTERIONIC MICROSCOPIC TO MACROSCOPIC ACIDITY CONSTANTS

    EPA Science Inventory

    Zwitterions are aqueous solvated molecules simultaneously possessing one negatively and one positively charged site. Although electroneutral, the environmental interaction of zwitterions with other ionic species is likely to differ significantly from the behavior of comparable e...

  14. Segmenting, Grouping and Tracking Vehicles in LIDAR Data

    DOT National Transportation Integrated Search

    2016-01-01

    This report presents the methodology and results from a study to extract empirical microscopic vehicular interactions from an instrumented probe vehicle. The contributions of this work are twofold: first, the general method and approach to seek a cos...

  15. Scanning Microscopes Using X Rays and Microchannels

    NASA Technical Reports Server (NTRS)

    Wang, Yu

    2003-01-01

    Scanning microscopes that would be based on microchannel filters and advanced electronic image sensors and that utilize x-ray illumination have been proposed. Because the finest resolution attainable in a microscope is determined by the wavelength of the illumination, the xray illumination in the proposed microscopes would make it possible, in principle, to achieve resolutions of the order of nanometers about a thousand times as fine as the resolution of a visible-light microscope. Heretofore, it has been necessary to use scanning electron microscopes to obtain such fine resolution. In comparison with scanning electron microscopes, the proposed microscopes would likely be smaller, less massive, and less expensive. Moreover, unlike in scanning electron microscopes, it would not be necessary to place specimens under vacuum. The proposed microscopes are closely related to the ones described in several prior NASA Tech Briefs articles; namely, Miniature Microscope Without Lenses (NPO-20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43; and Reflective Variants of Miniature Microscope Without Lenses (NPO-20610), NASA Tech Briefs, Vol. 26, No. 9 (September 2002) page 6a. In all of these microscopes, the basic principle of design and operation is the same: The focusing optics of a conventional visible-light microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. A microchannel plate containing parallel, microscopic-cross-section holes much longer than they are wide is placed between a specimen and an image sensor, which is typically the CCD. The microchannel plate must be made of a material that absorbs the illuminating radiation reflected or scattered from the specimen. The microchannels must be positioned and dimensioned so that each one is registered with a pixel on the image sensor. Because most of the radiation incident on the microchannel walls becomes absorbed, the radiation that reaches the image sensor consists predominantly of radiation that was launched along the longitudinal direction of the microchannels. Therefore, most of the radiation arriving at each pixel on the sensor must have traveled along a straight line from a corresponding location on the specimen. Thus, there is a one-to-one mapping from a point on a specimen to a pixel in the image sensor, so that the output of the image sensor contains image information equivalent to that from a microscope.

  16. [Microscopic observation on mycorrhiza of rare herb Dysosma versipellis].

    PubMed

    Tan, Xiao-Ming; Yu, Li-Ying; Zhou, Ya-Qin; Zhou, Xiao-Lei; Wei, Ying

    2013-12-01

    Endophytic fungi played an important role in the growth of its host plant. To investigate the mycorrhizal characteristics and the distribution of fungi in the root, an endangered wild plant-Dysosma versipellis was collected and observed by electron microscope. The results showed that the host was closely associated with endophytic fungi. The fungi were mainly distributed in the epidermis and cortex. The aseptate and septate fungi with swollen hyphae were observed in some cell of the cortex. The result provides a reference for the study of mycorrhizal structure of Dysosma genus and the interaction between the fungi and its host.

  17. Scanning Electron Microscope Studies of Interactions between Agaricus bisporus (Lang) Sing Hyphae and Bacteria in Casing Soil

    PubMed Central

    Masaphy, Segula; Levanon, D.; Tchelet, R.; Henis, Y.

    1987-01-01

    Relationships between the hyphae of Agaricus bisporus (Lang) Sing and bacteria from the mushroom bed casing layer were examined with a scanning electron microscope. Hyphae growing in the casing layer differed morphologically from compost-grown hyphae. Whereas the compost contained thin single hyphae surrounded by calcium oxalate crystals, the casing layer contained mainly wide hyphae or mycelial strands without crystals. The bacterial population in the hyphal environment consisted of several types, some attached to the hyphae with filamentlike structures. This attachment may be important in stimulation of pinhead initiation. Images PMID:16347340

  18. The Scanning Electron Microscope As An Accelerator For The Undergraduate Advanced Physics Laboratory

    NASA Astrophysics Data System (ADS)

    Peterson, Randolph S.; Berggren, Karl K.; Mondol, Mark

    2011-06-01

    Few universities or colleges have an accelerator for use with advanced physics laboratories, but many of these institutions have a scanning electron microscope (SEM) on site, often in the biology department. As an accelerator for the undergraduate, advanced physics laboratory, the SEM is an excellent substitute for an ion accelerator. Although there are no nuclear physics experiments that can be performed with a typical 30 kV SEM, there is an opportunity for experimental work on accelerator physics, atomic physics, electron-solid interactions, and the basics of modern e-beam lithography.

  19. Nanoscale Subsurface Imaging via Resonant Difference-Frequency Atomic Force Ultrasonic Microscopy

    NASA Technical Reports Server (NTRS)

    Cantrell, Sean A.; Cantrell, John H.; Lilehei, Peter T.

    2007-01-01

    A novel scanning probe microscope methodology has been developed that employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by the fundamental resonance frequency of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever fundamental resonance. The resonance-enhanced difference-frequency signals are used to create images of embedded nanoscale features.

  20. Estimation of polarization distribution on gold nanorods system from hierarchical features of optical near-field

    NASA Astrophysics Data System (ADS)

    Uchiyama, Kazuharu; Nishikawa, Naoki; Nakagomi, Ryo; Kobayashi, Kiyoshi; Hori, Hirokazu

    2018-02-01

    To design optoelectronic functionalities in nanometer scale based on interactions of electronic system with optical near-fields, it is essential to evaluate the relationship between optical near-fields and their sources. Several theoretical studies have been performed, so far, to analyze such complex relationship to design the interaction fields of several specific scales. In this study, we have performed detailed and high-precision measurements of optical near-field structures woven by a large number of independent polarizations generated in the gold nanorods array under laser light irradiation at the resonant frequency. We have accumulated the multi-layered data of optical near-field imaging at different heights above the planar surface with the resolution of several nm by a STM-assisted scanning near-field optical microscope. Based on these data, we have performed an inverse calculation to estimate the position, direction, and strength of the local polarization buried under the flat surface of the sample. As a result of the inverse operation, we have confirmed that the complexities in the nanometer scale optical near-fields could be reconstructed by combinations of induced polarization in each gold nanorod. We have demonstrated the hierarchical properties of optical near-fields based on spatial frequency expansion and superposition of dipole fields to provide insightful information for applications such for secure multi-layered information storage.

  1. Evolutionary games on cycles with strong selection

    NASA Astrophysics Data System (ADS)

    Altrock, P. M.; Traulsen, A.; Nowak, M. A.

    2017-02-01

    Evolutionary games on graphs describe how strategic interactions and population structure determine evolutionary success, quantified by the probability that a single mutant takes over a population. Graph structures, compared to the well-mixed case, can act as amplifiers or suppressors of selection by increasing or decreasing the fixation probability of a beneficial mutant. Properties of the associated mean fixation times can be more intricate, especially when selection is strong. The intuition is that fixation of a beneficial mutant happens fast in a dominance game, that fixation takes very long in a coexistence game, and that strong selection eliminates demographic noise. Here we show that these intuitions can be misleading in structured populations. We analyze mean fixation times on the cycle graph under strong frequency-dependent selection for two different microscopic evolutionary update rules (death-birth and birth-death). We establish exact analytical results for fixation times under strong selection and show that there are coexistence games in which fixation occurs in time polynomial in population size. Depending on the underlying game, we observe inherence of demographic noise even under strong selection if the process is driven by random death before selection for birth of an offspring (death-birth update). In contrast, if selection for an offspring occurs before random removal (birth-death update), then strong selection can remove demographic noise almost entirely.

  2. Concepts and tools for predictive modeling of microbial dynamics.

    PubMed

    Bernaerts, Kristel; Dens, Els; Vereecken, Karen; Geeraerd, Annemie H; Standaert, Arnout R; Devlieghere, Frank; Debevere, Johan; Van Impe, Jan F

    2004-09-01

    Description of microbial cell (population) behavior as influenced by dynamically changing environmental conditions intrinsically needs dynamic mathematical models. In the past, major effort has been put into the modeling of microbial growth and inactivation within a constant environment (static models). In the early 1990s, differential equation models (dynamic models) were introduced in the field of predictive microbiology. Here, we present a general dynamic model-building concept describing microbial evolution under dynamic conditions. Starting from an elementary model building block, the model structure can be gradually complexified to incorporate increasing numbers of influencing factors. Based on two case studies, the fundamentals of both macroscopic (population) and microscopic (individual) modeling approaches are revisited. These illustrations deal with the modeling of (i) microbial lag under variable temperature conditions and (ii) interspecies microbial interactions mediated by lactic acid production (product inhibition). Current and future research trends should address the need for (i) more specific measurements at the cell and/or population level, (ii) measurements under dynamic conditions, and (iii) more comprehensive (mechanistically inspired) model structures. In the context of quantitative microbial risk assessment, complexity of the mathematical model must be kept under control. An important challenge for the future is determination of a satisfactory trade-off between predictive power and manageability of predictive microbiology models.

  3. Reversible electrochemical modification of the surface of a semiconductor by an atomic-force microscope probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozhukhov, A. S., E-mail: antonkozhukhov@yandex.ru; Sheglov, D. V.; Latyshev, A. V.

    A technique for reversible surface modification with an atomic-force-microscope (AFM) probe is suggested. In this method, no significant mechanical or topographic changes occur upon a local variation in the surface potential of a sample under the AFM probe. The method allows a controlled relative change in the ohmic resistance of a channel in a Hall bridge within the range 20–25%.

  4. Charge frustration in complex fluids and in electronic systems

    NASA Astrophysics Data System (ADS)

    Carraro, Carlo

    1997-02-01

    The idea of charge frustration is applied to describe the properties of such diverse physical systems as oil-water-surfactant mixtures and metal-ammonia solutions. The minimalist charge-frustrated model possesses one energy scale and two length scales. For oil-water-surfactant mixtures, these parameters have been determined starting from the microscopic properties of the physical systems under study. Thus, microscopic properties are successfully related to the observed mesoscopic structure.

  5. The Impact of the Condenser on Cytogenetic Image Quality in Digital Microscope System

    PubMed Central

    Ren, Liqiang; Li, Zheng; Li, Yuhua; Zheng, Bin; Li, Shibo; Chen, Xiaodong; Liu, Hong

    2013-01-01

    Background: Optimizing operational parameters of the digital microscope system is an important technique to acquire high quality cytogenetic images and facilitate the process of karyotyping so that the efficiency and accuracy of diagnosis can be improved. OBJECTIVE: This study investigated the impact of the condenser on cytogenetic image quality and system working performance using a prototype digital microscope image scanning system. Methods: Both theoretical analysis and experimental validations through objectively evaluating a resolution test chart and subjectively observing large numbers of specimen were conducted. Results: The results show that the optimal image quality and large depth of field (DOF) are simultaneously obtained when the numerical aperture of condenser is set as 60%–70% of the corresponding objective. Under this condition, more analyzable chromosomes and diagnostic information are obtained. As a result, the system shows higher working stability and less restriction for the implementation of algorithms such as autofocusing especially when the system is designed to achieve high throughput continuous image scanning. Conclusions: Although the above quantitative results were obtained using a specific prototype system under the experimental conditions reported in this paper, the presented evaluation methodologies can provide valuable guidelines for optimizing operational parameters in cytogenetic imaging using the high throughput continuous scanning microscopes in clinical practice. PMID:23676284

  6. Application of Environmental Scanning Electron Microscope-Nanomanipulation System on Spheroplast Yeast Cells Surface Observation.

    PubMed

    Rad, Maryam Alsadat; Ahmad, Mohd Ridzuan; Nakajima, Masahiro; Kojima, Seiji; Homma, Michio; Fukuda, Toshio

    2017-01-01

    The preparation and observations of spheroplast W303 cells are described with Environmental Scanning Electron Microscope (ESEM). The spheroplasting conversion was successfully confirmed qualitatively, by the evaluation of the morphological change between the normal W303 cells and the spheroplast W303 cells, and quantitatively, by determining the spheroplast conversion percentage based on the OD 800 absorbance data. From the optical microscope observations as expected, the normal cells had an oval shape whereas spheroplast cells resemble a spherical shape. This was also confirmed under four different mediums, that is, yeast peptone-dextrose (YPD), sterile water, sorbitol-EDTA-sodium citrate buffer (SCE), and sorbitol-Tris-Hcl-CaCl 2 (CaS). It was also observed that the SCE and CaS mediums had a higher number of spheroplast cells as compared to the YPD and sterile water mediums. The OD 800 absorbance data also showed that the whole W303 cells were fully converted to the spheroplast cells after about 15 minutes. The observations of the normal and the spheroplast W303 cells were then performed under an environmental scanning electron microscope (ESEM). The normal cells showed a smooth cell surface whereas the spheroplast cells had a bleb-like surface after the loss of its integrity when removing the cell wall.

  7. Atomic force microscopy evaluation of aqueous interfaces of immobilized hyaluronan.

    PubMed

    Morra, Marco; Cassinelli, Clara; Pavesio, Alessandra; Renier, Davide

    2003-03-15

    Hyaluronan (HA) was immobilized on aminated glass surfaces in three different ways: by simple ionic interaction and by covalent linking at low density and at full density. In agreement with previous reports, in vitro experiments show that the outcome of fibroblast adhesion tests is markedly affected by the details of the coupling procedure, suggesting that different interfacial forces are operating at the aqueous/HA interface in the three cases investigated. The interfacial properties of the HA-coated surfaces were probed by force-distance curves obtained with the atomic force microscope (AFM). This approach readily shows significant differences among the tested samples, which are directly related to the coupling strategy and to results of cell adhesion tests. In particular, the range of interaction between the tip and the surface is much lower when HA is covalently linked than when it is ionically coupled, suggesting a more compact surface structure in the former case. Increasing HA surface density minimizes the interaction force between the surface and the AFM tip, likely reflecting more complete shielding by the HA chains of the underlying substrate. In summary, these measurements clearly show the different nature of the aqueous interfaces tested, and underline the role of this analytical approach in the development and control of finely tuned biomaterial surfaces.

  8. Interaction of Burning Metal Particles

    NASA Technical Reports Server (NTRS)

    Dreizin, Edward L.; Berman, Charles H.; Hoffmann, Vern K.

    1999-01-01

    Physical characteristics of the combustion of metal particle groups have been addressed in this research. The combustion behavior and interaction effects of multiple metal particles has been studied using a microgravity environment, which presents a unique opportunity to create an "aerosol" consisting of relatively large particles, i.e., 50-300 micrometer diameter. Combustion behavior of such an aerosol could be examined using methods adopted from well-developed single particle combustion research. The experiment included fluidizing relatively large (order of 100 micrometer diameter) uniform metal particles under microgravity and igniting such an "aerosol" using a hot wire igniter. The flame propagation and details of individual particle combustion and particle interaction have been studied using a high speed movie and video-imaging with cameras coupled with microscope lenses to resolve individual particles. Interference filters were used to separate characteristic metal and metal oxide radiation bands form the thermal black body radiation. Recorded flame images were digitized and employed to understand the processes occurring in the burning aerosol. The development of individual particle flames, merging or separation, and extinguishing as well as induced particle motion have been analyzed to identify the mechanisms governing these processes. Size distribution, morphology, and elemental compositions of combustion products were characterized and used to link the observed in this project aerosol combustion phenomena with the recently expanded mechanism of single metal particle combustion.

  9. Liquid-Liquid Phase Separation in a Dual Variable Domain Immunoglobulin Protein Solution: Effect of Formulation Factors and Protein-Protein Interactions.

    PubMed

    Raut, Ashlesha S; Kalonia, Devendra S

    2015-09-08

    Dual variable domain immunoglobulin proteins (DVD-Ig proteins) are large molecules (MW ∼ 200 kDa) with increased asymmetry because of their extended Y-like shape, which results in increased formulation challenges. Liquid-liquid phase separation (LLPS) of protein solutions into protein-rich and protein-poor phases reduces solution stability at intermediate concentrations and lower temperatures, and is a serious concern in formulation development as therapeutic proteins are generally stored at refrigerated conditions. In the current work, LLPS was studied for a DVD-Ig protein molecule as a function of solution conditions by measuring solution opalescence. LLPS of the protein was confirmed by equilibrium studies and by visually observing under microscope. The protein does not undergo any structural change after phase separation. Protein-protein interactions were measured by light scattering (kD) and Tcloud (temperature that marks the onset of phase separation). There is a good agreement between kD measured in dilute solution with Tcloud measured in the critical concentration range. Results indicate that the increased complexity of the molecule (with respect to size, shape, and charge distribution on the molecule) increases contribution of specific and nonspecific interactions in solution, which are affected by formulation factors, resulting in LLPS for DVD-Ig protein.

  10. Quantum gas microscopy of the interacting Harper-Hofstadter system

    NASA Astrophysics Data System (ADS)

    Tai, M. Eric; Lukin, Alex; Preiss, Philipp; Rispoli, Matthew; Schittko, Robert; Kaufman, Adam; Greiner, Markus

    2016-05-01

    At the heart of many topological states is the underlying gauge field. One example of a gauge field is the magnetic field which causes the deflection of a moving charged particle. This behavior can be understood through the Aharonov-Bohm phase that a particle acquires upon traversing a closed path. Gauge fields give rise to novel states of matter that cannot be described with symmetry breaking. Instead, these states, e.g. fractional quantum Hall (FQH) states, are characterized by topological invariants, such as the Chern number. In this talk, we report on experimental results upon introducing a gauge field in a system of strongly-interacting ultracold Rb87 atoms confined to a 2D optical lattice. With single-site resolution afforded by a quantum gas microscope, we can prepare a fixed atom number and project hard walls. With an artificial gauge field, this quantum simulator realizes the Harper-Hofstadter Hamiltonian. We can independently control the two tunneling strengths as well as dynamically change the flux. This flexibility enables studies of topological phenomena from many perspectives, e.g. site-resolved images of edge currents. With the strong on-site interactions possible in our system, these experiments will pave the way to observing FQH-like states in a lattice.

  11. Experimental Characterization and Simulation of Slip Transfer at Grain Boundaries and Microstructurally-Sensitive Crack Propagation

    NASA Technical Reports Server (NTRS)

    Gupta, Vipul; Hochhalter, Jacob; Yamakov, Vesselin; Scott, Willard; Spear, Ashley; Smith, Stephen; Glaessgen, Edward

    2013-01-01

    A systematic study of crack tip interaction with grain boundaries is critical for improvement of multiscale modeling of microstructurally-sensitive fatigue crack propagation and for the computationally-assisted design of more durable materials. In this study, single, bi- and large-grain multi-crystal specimens of an aluminum-copper alloy are fabricated, characterized using electron backscattered diffraction (EBSD), and deformed under tensile loading and nano-indentation. 2D image correlation (IC) in an environmental scanning electron microscope (ESEM) is used to measure displacements near crack tips, grain boundaries and within grain interiors. The role of grain boundaries on slip transfer is examined using nano-indentation in combination with high-resolution EBSD. The use of detailed IC and EBSD-based experiments are discussed as they relate to crystal-plasticity finite element (CPFE) model calibration and validation.

  12. Collaborative Research: failure of RockMasses from Nucleation and Growth of Microscopic Defects and Disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, William

    Over the 21 years of funding we have pursued several projects related to earthquakes, damage and nucleation. We developed simple models of earthquake faults which we studied to understand Gutenburg-Richter scaling, foreshocks and aftershocks, the effect of spatial structure of the faults and its interaction with underlying self organization and phase transitions. In addition we studied the formation of amorphous solids via the glass transition. We have also studied nucleation with a particular concentration on transitions in systems with a spatial symmetry change. In addition we investigated the nucleation process in models that mimic rock masses. We obtained the structuremore » of the droplet in both homogeneous and heterogeneous nucleation. We also investigated the effect of defects or asperities on the nucleation of failure in simple models of earthquake faults.« less

  13. [Development of an incubation system for an inverted microscopy for long-term observation of cell cultures using chamber slides].

    PubMed

    Feicht, W; Buchner, A; Riesenberg, R

    2001-05-01

    Trifunctional bispecific antibodies open up new immunological possibilities in tumour treatment. Prior to clinical application, comprehensive investigations using animal models and in vitro examinations need to be done. To investigate long-term interactions between various immunologically active blood cells and individual tumour cells in the presence of antibodies, we developed an incubation system for experimental cell cultures on an inverted microscope. The system consists of a perspex box with a central moisture chamber with integrated water reservoir, external air circulation heating, and a CO2 supply. The sterile cell cultures are located in the wells of a slide positioned within a depression in the water reservoir. The newly developed incubation system enables continuous observation over the long term of experiments under optimal cell cultures conditions in combination with modern video techniques.

  14. In situ nanomanipulators as a tool to separate individual tobermorite crystals for AFM studies.

    PubMed

    Yang, Tianhe; Holzer, Lorenz; Kägi, Ralf; Winnefeld, Frank; Keller, Bruno

    2007-10-01

    Atomic force microscopy (AFM) studies of cementitious materials are limited, mainly due to the lack of appropriate sample preparation techniques. In porous autoclaved aerated concrete (AAC), calcium silicate hydrate (C-S-H) is produced in its crystalline form, tobermorite. The crystals are lath-like with a length of several micrometers. In this work, we demonstrate the application of nanomanipulators to separate an individual tobermorite crystal from the bulk AAC for subsequent AFM investigations. The nanomanipulators are operated directly in an environmental scanning electron microscope (ESEM). We studied the interaction between moisture and the tobermorite surface under controlled relative humidity (RH). The results of topography and adhesion force measurements with AFM suggest that the surface of tobermorite is hydrophobic, which contrasts the macroscopic material properties (e.g. moisture transport in capillary pores).

  15. Dynamics of correlations in long-range quantum systems follwing a quantum quench

    NASA Astrophysics Data System (ADS)

    Cevolani, Lorenzo; Carleo, Giuseppe; Sanchez-Palencia, Laurent

    We study how and how fast correlations can spread in a quantum system abruptly driven out of equilibrium by a quantum quench. This protocol can be experimentally realized and it allow to address fundamental questions concerning the quasi-locality principle in isolated quantum systems with both short- and long-range interactions. We focus on two different models describing, respectively, lattice bosons, and spins. Our study is based on a combined approach, based on one hand on accurate many-body numerical calculations and on the other hand on a quasi-particle microscopic theory. We find that, for sufficiently fast decaying interaction potential the propagation is ballistic and the Lieb-Robinson bounds for long-range interactions are never attained. When the interactions are really long-range, the scenario is completely different in the two cases. In the bosonic system the locality is preserved and a ballistic propagation is still present while in the spin system an instantaneous propagation of correlations completely destroys locality. Using the microscopic point of view we can quantitatively describe all the different regimes, from instantaneous to ballistic, found in the spin model and we explain how locality is protected in the bosonic model leading to a ballistic propagation. ERC (FP7/2007-2013 No. 256294), QUIC (H2020 No. 641122).

  16. Correction of image drift and distortion in a scanning electron microscopy.

    PubMed

    Jin, P; Li, X

    2015-12-01

    Continuous research on small-scale mechanical structures and systems has attracted strong demand for ultrafine deformation and strain measurements. Conventional optical microscope cannot meet such requirements owing to its lower spatial resolution. Therefore, high-resolution scanning electron microscope has become the preferred system for high spatial resolution imaging and measurements. However, scanning electron microscope usually is contaminated by distortion and drift aberrations which cause serious errors to precise imaging and measurements of tiny structures. This paper develops a new method to correct drift and distortion aberrations of scanning electron microscope images, and evaluates the effect of correction by comparing corrected images with scanning electron microscope image of a standard sample. The drift correction is based on the interpolation scheme, where a series of images are captured at one location of the sample and perform image correlation between the first image and the consequent images to interpolate the drift-time relationship of scanning electron microscope images. The distortion correction employs the axial symmetry model of charged particle imaging theory to two images sharing with the same location of one object under different imaging fields of view. The difference apart from rigid displacement between the mentioned two images will give distortion parameters. Three-order precision is considered in the model and experiment shows that one pixel maximum correction is obtained for the employed high-resolution electron microscopic system. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  17. A mini-microscope for in situ monitoring of cells.

    PubMed

    Kim, Sang Bok; Koo, Kyo-in; Bae, Hojae; Dokmeci, Mehmet R; Hamilton, Geraldine A; Bahinski, Anthony; Kim, Sun Min; Ingber, Donald E; Khademhosseini, Ali

    2012-10-21

    A mini-microscope was developed for in situ monitoring of cells by modifying off-the-shelf components of a commercial webcam. The mini-microscope consists of a CMOS imaging module, a small plastic lens and a white LED illumination source. The CMOS imaging module was connected to a laptop computer through a USB port for image acquisition and analysis. Due to its compact size, 8 × 10 × 9 cm, the present microscope is portable and can easily fit inside a conventional incubator, and enables real-time monitoring of cellular behaviour. Moreover, the mini-microscope can be used for imaging cells in conventional cell culture flasks, such as Petri dishes and multi-well plates. To demonstrate the operation of the mini-microscope, we monitored the cellular migration of mouse 3T3 fibroblasts in a scratch assay in medium containing three different concentrations of fetal bovine serum (5, 10, and 20%) and demonstrated differential responses depending on serum levels. In addition, we seeded embryonic stem cells inside poly(ethylene glycol) microwells and monitored the formation of stem cell aggregates in real time using the mini-microscope. Furthermore, we also combined a lab-on-a-chip microfluidic device for microdroplet generation and analysis with the mini-microscope and observed the formation of droplets under different flow conditions. Given its cost effectiveness, robust imaging and portability, the presented platform may be useful for a range of applications for real-time cellular imaging using lab-on-a-chip devices at low cost.

  18. A mini-microscope for in situ monitoring of cells†‡

    PubMed Central

    Kim, Sang Bok; Koo, Kyo-in; Bae, Hojae; Dokmeci, Mehmet R.; Hamilton, Geraldine A.; Bahinski, Anthony; Kim, Sun Min; Ingber, Donald E.

    2013-01-01

    A mini-microscope was developed for in situ monitoring of cells by modifying off-the-shelf components of a commercial webcam. The mini-microscope consists of a CMOS imaging module, a small plastic lens and a white LED illumination source. The CMOS imaging module was connected to a laptop computer through a USB port for image acquisition and analysis. Due to its compact size, 8 × 10 × 9 cm, the present microscope is portable and can easily fit inside a conventional incubator, and enables real-time monitoring of cellular behaviour. Moreover, the mini-microscope can be used for imaging cells in conventional cell culture flasks, such as Petri dishes and multi-well plates. To demonstrate the operation of the mini-microscope, we monitored the cellular migration of mouse 3T3 fibroblasts in a scratch assay in medium containing three different concentrations of fetal bovine serum (5, 10, and 20%) and demonstrated differential responses depending on serum levels. In addition, we seeded embryonic stem cells inside poly(ethylene glycol) microwells and monitored the formation of stem cell aggregates in real time using the mini-microscope. Furthermore, we also combined a lab-on-a-chip microfluidic device for microdroplet generation and analysis with the mini-microscope and observed the formation of droplets under different flow conditions. Given its cost effectiveness, robust imaging and portability, the presented platform may be useful for a range of applications for real-time cellular imaging using lab-on-a-chip devices at low cost. PMID:22911426

  19. Spectroscopy of reflection-asymmetric nuclei with relativistic energy density functionals

    NASA Astrophysics Data System (ADS)

    Xia, S. Y.; Tao, H.; Lu, Y.; Li, Z. P.; Nikšić, T.; Vretenar, D.

    2017-11-01

    Quadrupole and octupole deformation energy surfaces, low-energy excitation spectra, and transition rates in 14 isotopic chains: Xe, Ba, Ce, Nd, Sm, Gd, Rn, Ra, Th, U, Pu, Cm, Cf, and Fm, are systematically analyzed using a theoretical framework based on a quadrupole-octupole collective Hamiltonian (QOCH), with parameters determined by constrained reflection-asymmetric and axially symmetric relativistic mean-field calculations. The microscopic QOCH model based on the PC-PK1 energy density functional and δ -interaction pairing is shown to accurately describe the empirical trend of low-energy quadrupole and octupole collective states, and predicted spectroscopic properties are consistent with recent microscopic calculations based on both relativistic and nonrelativistic energy density functionals. Low-energy negative-parity bands, average octupole deformations, and transition rates show evidence for octupole collectivity in both mass regions, for which a microscopic mechanism is discussed in terms of evolution of single-nucleon orbitals with deformation.

  20. Microscopic properties of ionic liquid/organic semiconductor interfaces revealed by molecular dynamics simulations.

    PubMed

    Yokota, Yasuyuki; Miyamoto, Hiroo; Imanishi, Akihito; Takeya, Jun; Inagaki, Kouji; Morikawa, Yoshitada; Fukui, Ken-Ichi

    2018-05-09

    Electric double-layer transistors based on ionic liquid/organic semiconductor interfaces have been extensively studied during the past decade because of their high carrier densities at low operation voltages. Microscopic structures and the dynamics of ionic liquids likely determine the device performance; however, knowledge of these is limited by a lack of appropriate experimental tools. In this study, we investigated ionic liquid/organic semiconductor interfaces using molecular dynamics to reveal the microscopic properties of ionic liquids. The organic semiconductors include pentacene, rubrene, fullerene, and 7,7,8,8-tetracyanoquinodimethane (TCNQ). While ionic liquids close to the substrate always form the specific layered structures, the surface properties of organic semiconductors drastically alter the ionic dynamics. Ionic liquids at the fullerene interface behave as a two-dimensional ionic crystal because of the energy gain derived from the favorable electrostatic interaction on the corrugated periodic substrate.

  1. Investigating students' mental models and knowledge construction of microscopic friction. II. Implications for curriculum design and development

    NASA Astrophysics Data System (ADS)

    Corpuz, Edgar D.; Rebello, N. Sanjay

    2011-12-01

    Our previous research showed that students’ mental models of friction at the atomic level are significantly influenced by their macroscopic ideas. For most students, friction is due to the meshing of bumps and valleys and rubbing of atoms. The aforementioned results motivated us to further investigate how students can be helped to improve their present models of microscopic friction. Teaching interviews were conducted to study the dynamics of their model construction as they interacted with the interviewer, the scaffolding activities, and/or with each other. In this paper, we present the different scaffolding activities and the variation in the ideas that students generated as they did the hands-on and minds-on scaffolding activities. Results imply that through a series of carefully designed scaffolding activities, it is possible to facilitate the refinement of students’ ideas of microscopic friction.

  2. Giardia Infection Treatment

    MedlinePlus

    ... Illness & Symptoms Diagnosis & Detection Treatment Sources of Infection & Risk ... Giardia trophozoites under scanning electron microscope. Credit: Waterborne Disease Prevention Branch, CDC Several drugs can ...

  3. A versatile atomic force microscope integrated with a scanning electron microscope.

    PubMed

    Kreith, J; Strunz, T; Fantner, E J; Fantner, G E; Cordill, M J

    2017-05-01

    A versatile atomic force microscope (AFM), which can be installed in a scanning electron microscope (SEM), is introduced. The flexible design of the instrument enables correlated analysis for different experimental configurations, such as AFM imaging directly after nanoindentation in vacuum. In order to demonstrate the capabilities of the specially designed AFM installed inside a SEM, slip steps emanating around nanoindents in single crystalline brass were examined. This example showcases how the combination of AFM and SEM imaging can be utilized for quantitative dislocation analysis through the measurement of the slip step heights without the hindrance of oxide formation. Finally, an in situ nanoindentation technique is introduced, illustrating the use of AFM imaging during indentation experiments to examine plastic deformation occurring under the indenter tip. The mechanical indentation data are correlated to the SEM and AFM images to estimate the number of dislocations emitted to the surface.

  4. High-resolution, high-throughput imaging with a multibeam scanning electron microscope

    PubMed Central

    EBERLE, AL; MIKULA, S; SCHALEK, R; LICHTMAN, J; TATE, ML KNOTHE; ZEIDLER, D

    2015-01-01

    Electron–electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. Lay Description The composition of our world and our bodies on the very small scale has always fascinated people, making them search for ways to make this visible to the human eye. Where light microscopes reach their resolution limit at a certain magnification, electron microscopes can go beyond. But their capability of visualizing extremely small features comes at the cost of a very small field of view. Some of the questions researchers seek to answer today deal with the ultrafine structure of brains, bones or computer chips. Capturing these objects with electron microscopes takes a lot of time – maybe even exceeding the time span of a human being – or new tools that do the job much faster. A new type of scanning electron microscope scans with 61 electron beams in parallel, acquiring 61 adjacent images of the sample at the same time a conventional scanning electron microscope captures one of these images. In principle, the multibeam scanning electron microscope’s field of view is 61 times larger and therefore coverage of the sample surface can be accomplished in less time. This enables researchers to think about large-scale projects, for example in the rather new field of connectomics. A very good introduction to imaging a brain at nanometre resolution can be found within course material from Harvard University on http://www.mcb80x.org/# as featured media entitled ‘connectomics’. PMID:25627873

  5. Effects of ΛΛ ‑ ΞN mixing in the decay of {}_{{\\rm{\\Lambda }}{\\rm{\\Lambda }}}{}^{6}{\\rm{H}}{\\rm{e}}

    NASA Astrophysics Data System (ADS)

    Maneu, J.; Parreño, A.; Ramos, A.

    2018-05-01

    A one-meson exchange model including the ground state of the pseudoscalar octet is used to describe the weak two-body interactions responsible for the decay of {}{{Λ }{{Λ }}}{}6{{H}}{{e}}. Strong interaction effects are taken into account by a microscopic study based on the solution of G-matrix and T-matrix equations for the initial and final interacting pairs respectively. Results for the decay induced by {{Λ }}{{Λ }}\\to {{Λ }}N({{Σ }}N) transitions are given.

  6. Lagrangian methods in nonlinear plasma wave interaction

    NASA Technical Reports Server (NTRS)

    Crawford, F. W.

    1980-01-01

    Analysis of nonlinear plasma wave interactions is usually very complicated, and simplifying mathematical approaches are highly desirable. The application of averaged-Lagrangian methods offers a considerable reduction in effort, with improved insight into synchronism and conservation (Manley-Rowe) relations. This chapter indicates how suitable Lagrangian densities have been defined, expanded, and manipulated to describe nonlinear wave-wave and wave-particle interactions in the microscopic, macroscopic and cold plasma models. Recently, further simplifications have been introduced by the use of techniques derived from Lie algebra. These and likely future developments are reviewed briefly.

  7. The Kardar-Parisi-Zhang Equation as Scaling Limit of Weakly Asymmetric Interacting Brownian Motions

    NASA Astrophysics Data System (ADS)

    Diehl, Joscha; Gubinelli, Massimiliano; Perkowski, Nicolas

    2017-09-01

    We consider a system of infinitely many interacting Brownian motions that models the height of a one-dimensional interface between two bulk phases. We prove that the large scale fluctuations of the system are well approximated by the solution to the KPZ equation provided the microscopic interaction is weakly asymmetric. The proof is based on the martingale solutions of Gonçalves and Jara (Arch Ration Mech Anal 212(2):597-644, 2014) and the corresponding uniqueness result of Gubinelli and Perkowski (Energy solutions of KPZ are unique, 2015).

  8. Excitation of propagating surface plasmons with a scanning tunnelling microscope.

    PubMed

    Wang, T; Boer-Duchemin, E; Zhang, Y; Comtet, G; Dujardin, G

    2011-04-29

    Inelastic electron tunnelling excitation of propagating surface plasmon polaritons (SPPs) on a thin gold film is demonstrated. This is done by combining a scanning tunnelling microscope (STM) with an inverted optical microscope. Analysis of the leakage radiation in both the image and Fourier planes unambiguously shows that the majority (up to 99.5%) of the detected photons originate from propagating SPPs with propagation lengths of the order of 10  µm. The remaining photon emission is localized under the STM tip and is attributed to a tip-gold film coupled plasmon resonance as evidenced by the bimodal spectral distribution and enhanced emission intensity observed using a silver STM tip for excitation.

  9. Features of microscopic pedestrian movement in a panic situation based on cellular automata model

    NASA Astrophysics Data System (ADS)

    Ibrahim, Najihah; Hassan, Fadratul Hafinaz

    2017-10-01

    Pedestrian movement is the one of the subset for the crowd management under simulation objective. During panic situation, pedestrian usually will create a microscopic movement that lead towards the self-organization. During self-organizing, the behavioral and physical factors had caused the mass effect on the pedestrian movement. The basic CA model will create a movement path for each pedestrian over a time step. However, due to the factors immerge, the CA model needs some enhancement that will establish a real simulation state. Hence, this concept paper will discuss on the enhanced features of CA model for microscopic pedestrian movement during panic situation for a better pedestrian simulation.

  10. Thermoelectric Transport in Surface- and Antimony-Doped Bismuth Telluride Nanoplates

    DTIC Science & Technology

    2016-07-25

    0.50) using two different electron microscopes with two different high sensitivity energy dispersive x-ray spectroscopy (EDS) detectors (FEI Nova...Figure 1(b)) using an electrochemically sharpened probe. Transfer was performed in ambient conditions under an optical microscope . Samples were then...attributed to additional alloy scattering in the (Bi1−xSbx)2Te3 samples studied here. Additionally, the room temperature κlattice for bulk compounds Reuse of

  11. Ab initio many-body calculations of nucleon scattering on ^16O

    NASA Astrophysics Data System (ADS)

    Navratil, Petr; Quaglioni, Sofia; Roth, Robert

    2008-10-01

    We develop a new ab initio many-body approachootnotetextS. Quaglioni and P. Navratil, arXiv:0804.1560. capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group methodootnotetextY. C. Tang et al., Phys. Rep. 47, 167 (1978); K. Langanke and H. Friedrich, Advances in Nuclear Physics, Plenum, New York, 1987. with the ab initio no-core shell model (NCSM).ootnotetextP. Navratil, J. P. Vary, and B. R. Barrett, Phys. Rev. Lett. 84, 5728 (2000); Phys. Rev. C 62, 054311 (2000). In this way, we complement a microscopic-cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters, while preserving Pauli principle and translational symmetry. We will present results for low-energy nucleon scattering on ^16O and for A=17 bound states obtained using realistic nucleon-nucleon potentials. The ^16O wave functions are calculated within the importance-truncated NCSMootnotetextR. Roth and P. Navratil, Phys. Rev. Lett. 99, 092501 (2007). that allows the use of model spaces up to 18φ and ultimately enables to reach convergence of phase-shifts and other observables. Prepared by LLNL under Contract DE-AC52-07NA27344. Support from the U.S. DOE/SC/NP (Work Proposal No. SCW0498), and from the U. S. Department of Energy Grant DE-FC02-07ER41457 is acknowledged.

  12. Visible upconversion emission and non-radiative direct Yb 3+ to Er 3+ energy transfer processes in nanocrystalline ZrO 2:Yb 3+,Er 3+

    NASA Astrophysics Data System (ADS)

    Diaz-Torres, L. A.; Meza, O.; Solis, D.; Salas, P.; De la Rosa, E.

    2011-06-01

    Wide band gap Yb 3+ and Er 3+ codoped ZrO 2 nanocrystals have been synthesized by a modified sol-gel method. Under 967 nm excitation strong green and red upconversion emission is observed for several Er 3+ to Yb 3+ ions concentration ratios. A simple microscopic rate equation model is used to study the effects of non-radiative direct Yb 3+ to Er 3+ energy transfer processes on the visible and near infrared fluorescence decay trends of both Er 3+ and Yb 3+ ions. The microscopic rate equation model takes into account the crystalline phase as well as the size of nanocrystals. Nanocrystals phase and size were estimated from XRD patterns. The rate equation model succeeds to fit simultaneously all visible and near infrared fluorescence decay profiles. The dipole-dipole interaction parameters that drive the non-radiative energy transfer processes depend on doping concentration due to crystallite phase changes. In addition the non-radiative relaxation rate ( 4I11/2→ 4I13/2) is found to be greater than that estimated by the Judd-Ofelt parameters due to the action of surface impurities. Results suggest that non-radiative direct Yb 3+ to Er 3+ energy transfer processes in ZrO 2:Yb,Er are extremely efficient.

  13. Ultra-fast bright field and fluorescence imaging of the dynamics of micrometer-sized objects

    NASA Astrophysics Data System (ADS)

    Chen, Xucai; Wang, Jianjun; Versluis, Michel; de Jong, Nico; Villanueva, Flordeliza S.

    2013-06-01

    High speed imaging has application in a wide area of industry and scientific research. In medical research, high speed imaging has the potential to reveal insight into mechanisms of action of various therapeutic interventions. Examples include ultrasound assisted thrombolysis, drug delivery, and gene therapy. Visual observation of the ultrasound, microbubble, and biological cell interaction may help the understanding of the dynamic behavior of microbubbles and may eventually lead to better design of such delivery systems. We present the development of a high speed bright field and fluorescence imaging system that incorporates external mechanical waves such as ultrasound. Through collaborative design and contract manufacturing, a high speed imaging system has been successfully developed at the University of Pittsburgh Medical Center. We named the system "UPMC Cam," to refer to the integrated imaging system that includes the multi-frame camera and its unique software control, the customized modular microscope, the customized laser delivery system, its auxiliary ultrasound generator, and the combined ultrasound and optical imaging chamber for in vitro and in vivo observations. This system is capable of imaging microscopic bright field and fluorescence movies at 25 × 106 frames per second for 128 frames, with a frame size of 920 × 616 pixels. Example images of microbubble under ultrasound are shown to demonstrate the potential application of the system.

  14. Direct Numerical Simulations of Microstructure Effects During High-Rate Loading of Additively Manufactured Metals

    NASA Astrophysics Data System (ADS)

    Battaile, Corbett; Owen, Steven; Moore, Nathan

    2017-06-01

    The properties of most engineering materials depend on the characteristics of internal microstructures and defects. In additively manufactured (AM) metals, these can include polycrystalline grains, impurities, phases, and significant porosity that qualitatively differ from conventional engineering materials. The microscopic details of the interactions between these internal defects, and the propagation of applied loads through the body, act in concert to dictate macro-observable properties like strength and compressibility. In this work, we used Sandia's ALEGRA finite element software to simulate the high-strain-rate loading of AM metals from laser engineered net shaping (LENS) and thermal spraying. The microstructural details of the material were represented explicitly, such that internal features like second phases and pores are captured and meshed as individual entities in the computational domain. We will discuss the dependence of the high-strain-rate mechanical properties on microstructural characteristics such as the shapes, sizes, and volume fractions of second phases and pores. In addition, we will examine how the details of the microstructural representation affect the microscopic material response to dynamic loads, and the effects of using ``stair-step'' versus conformal interfaces smoothed via the SCULPT tool in Sandia's CUBIT software. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US DOE NNSA under contract DE-AC04-94AL85000.

  15. Ultra-fast bright field and fluorescence imaging of the dynamics of micrometer-sized objects

    PubMed Central

    Chen, Xucai; Wang, Jianjun; Versluis, Michel; de Jong, Nico; Villanueva, Flordeliza S.

    2013-01-01

    High speed imaging has application in a wide area of industry and scientific research. In medical research, high speed imaging has the potential to reveal insight into mechanisms of action of various therapeutic interventions. Examples include ultrasound assisted thrombolysis, drug delivery, and gene therapy. Visual observation of the ultrasound, microbubble, and biological cell interaction may help the understanding of the dynamic behavior of microbubbles and may eventually lead to better design of such delivery systems. We present the development of a high speed bright field and fluorescence imaging system that incorporates external mechanical waves such as ultrasound. Through collaborative design and contract manufacturing, a high speed imaging system has been successfully developed at the University of Pittsburgh Medical Center. We named the system “UPMC Cam,” to refer to the integrated imaging system that includes the multi-frame camera and its unique software control, the customized modular microscope, the customized laser delivery system, its auxiliary ultrasound generator, and the combined ultrasound and optical imaging chamber for in vitro and in vivo observations. This system is capable of imaging microscopic bright field and fluorescence movies at 25 × 106 frames per second for 128 frames, with a frame size of 920 × 616 pixels. Example images of microbubble under ultrasound are shown to demonstrate the potential application of the system. PMID:23822346

  16. One-step synthesis of hybrid inorganic-organic nanocomposite coatings by novel laser adaptive ablation deposition technique

    NASA Astrophysics Data System (ADS)

    Serbezov, Valery; Sotirov, Sotir

    2013-03-01

    A novel approach for one-step synthesis of hybrid inorganic-organic nanocomposite coatings by new modification of Pulsed Laser Deposition technology called Laser Adaptive Ablation Deposition (LAAD) is presented. Hybrid nanocomposite coatings including Mg- Rapamycin and Mg- Desoximetasone were produced by UV TEA N2 laser under low vacuum (0.1 Pa) and room temperature onto substrates from SS 316L, KCl and NaCl. The laser fluence for Mg alloy was 1, 8 J/cm2 and for Desoximetasone 0,176 J/cm2 and for Rapamycin 0,118 J/cm2 were respectively. The threedimensional two-segmented single target was used to adapt the interaction of focused laser beam with inorganic and organic material. Magnesium alloy nanoparticles with sizes from 50 nm to 250 nm were obtained in organic matrices. The morphology of nanocomposites films were studied by Bright field / Fluorescence optical microscope and Scanning Electron Microscope (SEM). Fourier Transform Infrared (FTIR) spectroscopy measurements were applied in order to study the functional properties of organic component before and after the LAAD process. Energy Dispersive X-ray Spectroscopy (EDX) was used for identification of Mg alloy presence in hybrid nanocomposites coatings. The precise control of process parameters and particularly of the laser fluence adjustment enables transfer on materials with different physical chemical properties and one-step synthesis of complex inorganic- organic nanocomposites coatings.

  17. Identification of malaria infected red blood samples by digital holographic quantitative phase microscope

    NASA Astrophysics Data System (ADS)

    Patel, Nimit R.; Chhaniwal, Vani K.; Javidi, Bahram; Anand, Arun

    2015-07-01

    Development of devices for automatic identification of diseases is desired especially in developing countries. In the case of malaria, even today the gold standard is the inspection of chemically treated blood smears through a microscope. This requires a trained technician/microscopist to identify the cells in the field of view, with which the labeling chemicals gets attached. Bright field microscopes provide only low contrast 2D images of red blood cells and cell thickness distribution cannot be obtained. Quantitative phase contrast microscopes can provide both intensity and phase profiles of the cells under study. The phase information can be used to determine thickness profile of the cell. Since cell morphology is available, many parameters pertaining to the 3D shape of the cell can be computed. These parameters in turn could be used to decide about the state of health of the cell leading to disease diagnosis. Here the investigations done on digital holographic microscope, which provides quantitative phase images, for comparison of parameters obtained from the 3D shape profile of objects leading to identification of diseased samples is described.

  18. Development of a SEM-based low-energy in-line electron holography microscope for individual particle imaging.

    PubMed

    Adaniya, Hidehito; Cheung, Martin; Cassidy, Cathal; Yamashita, Masao; Shintake, Tsumoru

    2018-05-01

    A new SEM-based in-line electron holography microscope has been under development. The microscope utilizes conventional SEM and BF-STEM functionality to allow for rapid searching of the specimen of interest, seamless interchange between SEM, BF-STEM and holographic imaging modes, and makes use of coherent low-energy in-line electron holography to obtain low-dose, high-contrast images of light element materials. We report here an overview of the instrumentation and first experimental results on gold nano-particles and carbon nano-fibers for system performance tests. Reconstructed images obtained from the holographic imaging mode of the new microscope show substantial image contrast and resolution compared to those acquired by SEM and BF-STEM modes, demonstrating the feasibility of high-contrast imaging via low-energy in-line electron holography. The prospect of utilizing the new microscope to image purified biological specimens at the individual particle level is discussed and electron optical issues and challenges to further improve resolution and contrast are considered. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Transcanal microscope-assisted endoscopic myringoplasty in children.

    PubMed

    Migirov, Lela; Wolf, Michael

    2015-04-01

    Myringoplasty can be technically difficult in the pediatric patients due to the narrowness of the external auditory canal and the generally small size of the ear. Moreover, temporalis fascia grafts and myringoplasties for anterior perforations are more likely to fail in children. Surgical management of anterior perforations requires total exposure of the anterior angle however a microscope may fail to provide a view of the anterior edge in most of perforations. Recently, different endoscopes are used in the performance of ear surgery in general and myringoplasty in particular. Current study aimed to investigate the outcome of transcanal microscope-assisted endoscopic myringoplasty in homogenous group of children. The medical records of 22 children were retrospectively reviewed for age, perforation size and location, surgical and audiological findings, and outcome. All myringoplasties were performed by first author with a chondro-perichondrial graft that has been harvested from the tragus and placed medial to the tympanic membrane remnants, utilizing the underlay technique and 14-mm length, 3-mm diameter, 0° and 30° endoscopes. A microscope was occasionally used for removal of the sclerotic plaques and releasing adhesions surrounding the ossicles when bimanual manipulations were needed. Surgical success was defined as a tympanic membrane with no perforation, retraction, or graft lateralization for at least 18 months following surgery. Thirteen large-, 8 medium- and 1 small-sized perforations (defined as 75, 50 or 25%, respectively, of the tympanic membrane area), of which 14 were anterior, 2 central and 6 posterior marginal, were repaired. The edges of the defect could not be visualized under a microscope due to bone overhanging or a curved or narrow EAC in 8 anterior perforations. Intact tympanic membranes and dry ears were achieved in all operated children. The audiometric air conduction level (average of 0.5-3 kHz) for the entire cohort ranged between 10-51.3 dB (mean 32.8) preoperatively and between 5-35 dB (mean 18.2) postoperatively. The transcanal microscope-assisted endoscopic myringoplasty had a 100% rate of surgical success in children. This technique can be especially appropriate for patients with narrow external canals, anterior defects and bone overhang making the perforation margins barely visible under a microscope.

  20. Extraction Protocols for Individual Zebrafish's Ventricle Myosin and Skeletal Muscle Actin for In vitro Motility Assays

    PubMed Central

    Scheid, Lisa-Mareike; Weber, Cornelia; Bopp, Nasrin; Mosqueira, Matias; Fink, Rainer H. A.

    2017-01-01

    The in vitro motility assay (IVMA) is a technique that enables the measurement of the interaction between actin and myosin providing a relatively simple model to understand the mechanical muscle function. For actin-myosin IVMA, myosin is immobilized in a measurement chamber, where it converts chemical energy provided by ATP hydrolysis into mechanical energy. The result is the movement of fluorescently labeled actin filaments that can be recorded microscopically and analyzed quantitatively. Resulting sliding speeds and patterns help to characterize the underlying actin-myosin interaction that can be affected by different factors such as mutations or active compounds. Additionally, modulatory actions of the regulatory proteins tropomyosin and troponin in the presence of calcium on actin-myosin interaction can be studied with the IVMA. Zebrafish is considered a suitable model organism for cardiovascular and skeletal muscle research. In this context, straightforward protocols for the isolation and use of zebrafish muscle proteins in the IVMA would provide a useful tool in molecular studies. Currently, there are no protocols available for the mentioned purpose. Therefore, we developed fast and easy protocols for characterization of zebrafish proteins in the IVMA. Our protocols enable the interested researcher to (i) isolate actin from zebrafish skeletal muscle and (ii) extract functionally intact myosin from cardiac and skeletal muscle of individual adult zebrafish. Zebrafish tail muscle actin is isolated after acetone powder preparation, polymerized, and labeled with Rhodamine-Phalloidin. Myosin from ventricles of adult zebrafish is extracted directly into IVMA flow-cells. The same extraction protocol is applicable for comparably small tissue pieces as from zebrafish tail, mouse and frog muscle. After addition of the fluorescently labeled F-actin from zebrafish—or other origin—and ATP, sliding movement can be visualized using a fluorescence microscope and an intensified CCD camera. Taken together, we introduce a method for functional analysis in zebrafish cardiac and skeletal muscle research to study mutations at the molecular level of thick or thin filament proteins. Additionally, preliminary data indicate the usefulness of the presented method to perform the IVMA with myosin extracted from muscles of other animal models. PMID:28620318

Top