Sample records for underlying neural processes

  1. The impact of cultural differences in self-representation on the neural substrates of posttraumatic stress disorder.

    PubMed

    Liddell, Belinda J; Jobson, Laura

    2016-01-01

    A significant body of literature documents the neural mechanisms involved in the development and maintenance of posttraumatic stress disorder (PTSD). However, there is very little empirical work considering the influence of culture on these underlying mechanisms. Accumulating cultural neuroscience research clearly indicates that cultural differences in self-representation modulate many of the same neural processes proposed to be aberrant in PTSD. The objective of this review paper is to consider how culture may impact on the neural mechanisms underlying PTSD. We first outline five key affective and cognitive functions and their underlying neural correlates that have been identified as being disrupted in PTSD: (1) fear dysregulation; (2) attentional biases to threat; (3) emotion and autobiographical memory; (4) self-referential processing; and (5) attachment and interpersonal processing. Second, we consider prominent cultural theories and review the empirical research that has demonstrated the influence of cultural variations in self-representation on the neural substrates of these same five affective and cognitive functions. Finally, we propose a conceptual model that suggests that these five processes have major relevance to considering how culture may influence the neural processes underpinning PTSD.

  2. The impact of cultural differences in self-representation on the neural substrates of posttraumatic stress disorder

    PubMed Central

    Liddell, Belinda J.; Jobson, Laura

    2016-01-01

    A significant body of literature documents the neural mechanisms involved in the development and maintenance of posttraumatic stress disorder (PTSD). However, there is very little empirical work considering the influence of culture on these underlying mechanisms. Accumulating cultural neuroscience research clearly indicates that cultural differences in self-representation modulate many of the same neural processes proposed to be aberrant in PTSD. The objective of this review paper is to consider how culture may impact on the neural mechanisms underlying PTSD. We first outline five key affective and cognitive functions and their underlying neural correlates that have been identified as being disrupted in PTSD: (1) fear dysregulation; (2) attentional biases to threat; (3) emotion and autobiographical memory; (4) self-referential processing; and (5) attachment and interpersonal processing. Second, we consider prominent cultural theories and review the empirical research that has demonstrated the influence of cultural variations in self-representation on the neural substrates of these same five affective and cognitive functions. Finally, we propose a conceptual model that suggests that these five processes have major relevance to considering how culture may influence the neural processes underpinning PTSD. Highlights of the article Cultural variations in individualistic-collectivistic self-representation modulate many of the same neural and psychological processes disrupted in PTSD. These commonly affected processes include fear perception and regulation mechanisms, attentional biases (to threat), emotional and autobiographical memory systems, self-referential processing and attachment systems. A conceptual model is proposed whereby culture is considered integral to the development and maintenance of PTSD and its neural substrates. PMID:27302635

  3. Phase synchronization motion and neural coding in dynamic transmission of neural information.

    PubMed

    Wang, Rubin; Zhang, Zhikang; Qu, Jingyi; Cao, Jianting

    2011-07-01

    In order to explore the dynamic characteristics of neural coding in the transmission of neural information in the brain, a model of neural network consisting of three neuronal populations is proposed in this paper using the theory of stochastic phase dynamics. Based on the model established, the neural phase synchronization motion and neural coding under spontaneous activity and stimulation are examined, for the case of varying network structure. Our analysis shows that, under the condition of spontaneous activity, the characteristics of phase neural coding are unrelated to the number of neurons participated in neural firing within the neuronal populations. The result of numerical simulation supports the existence of sparse coding within the brain, and verifies the crucial importance of the magnitudes of the coupling coefficients in neural information processing as well as the completely different information processing capability of neural information transmission in both serial and parallel couplings. The result also testifies that under external stimulation, the bigger the number of neurons in a neuronal population, the more the stimulation influences the phase synchronization motion and neural coding evolution in other neuronal populations. We verify numerically the experimental result in neurobiology that the reduction of the coupling coefficient between neuronal populations implies the enhancement of lateral inhibition function in neural networks, with the enhancement equivalent to depressing neuronal excitability threshold. Thus, the neuronal populations tend to have a stronger reaction under the same stimulation, and more neurons get excited, leading to more neurons participating in neural coding and phase synchronization motion.

  4. Ultra-low-power and robust digital-signal-processing hardware for implantable neural interface microsystems.

    PubMed

    Narasimhan, S; Chiel, H J; Bhunia, S

    2011-04-01

    Implantable microsystems for monitoring or manipulating brain activity typically require on-chip real-time processing of multichannel neural data using ultra low-power, miniaturized electronics. In this paper, we propose an integrated-circuit/architecture-level hardware design framework for neural signal processing that exploits the nature of the signal-processing algorithm. First, we consider different power reduction techniques and compare the energy efficiency between the ultra-low frequency subthreshold and conventional superthreshold design. We show that the superthreshold design operating at a much higher frequency can achieve comparable energy dissipation by taking advantage of extensive power gating. It also provides significantly higher robustness of operation and yield under large process variations. Next, we propose an architecture level preferential design approach for further energy reduction by isolating the critical computation blocks (with respect to the quality of the output signal) and assigning them higher delay margins compared to the noncritical ones. Possible delay failures under parameter variations are confined to the noncritical components, allowing graceful degradation in quality under voltage scaling. Simulation results using prerecorded neural data from the sea-slug (Aplysia californica) show that the application of the proposed design approach can lead to significant improvement in total energy, without compromising the output signal quality under process variations, compared to conventional design approaches.

  5. A Point-process Response Model for Spike Trains from Single Neurons in Neural Circuits under Optogenetic Stimulation

    PubMed Central

    Luo, X.; Gee, S.; Sohal, V.; Small, D.

    2015-01-01

    Optogenetics is a new tool to study neuronal circuits that have been genetically modified to allow stimulation by flashes of light. We study recordings from single neurons within neural circuits under optogenetic stimulation. The data from these experiments present a statistical challenge of modeling a high frequency point process (neuronal spikes) while the input is another high frequency point process (light flashes). We further develop a generalized linear model approach to model the relationships between two point processes, employing additive point-process response functions. The resulting model, Point-process Responses for Optogenetics (PRO), provides explicit nonlinear transformations to link the input point process with the output one. Such response functions may provide important and interpretable scientific insights into the properties of the biophysical process that governs neural spiking in response to optogenetic stimulation. We validate and compare the PRO model using a real dataset and simulations, and our model yields a superior area-under-the- curve value as high as 93% for predicting every future spike. For our experiment on the recurrent layer V circuit in the prefrontal cortex, the PRO model provides evidence that neurons integrate their inputs in a sophisticated manner. Another use of the model is that it enables understanding how neural circuits are altered under various disease conditions and/or experimental conditions by comparing the PRO parameters. PMID:26411923

  6. Impaired theta phase-resetting underlying auditory N1 suppression in chronic alcoholism.

    PubMed

    Fuentemilla, Lluis; Marco-Pallarés, Josep; Gual, Antoni; Escera, Carles; Polo, Maria Dolores; Grau, Carles

    2009-02-18

    It has been suggested that chronic alcoholism may lead to altered neural mechanisms related to inhibitory processes. Here, we studied auditory N1 suppression phenomena (i.e. amplitude reduction with repetitive stimuli) in chronic alcoholic patients as an early-stage information-processing brain function involving inhibition by the analysis of the N1 event-related potential and time-frequency computation (spectral power and phase-resetting). Our results showed enhanced neural theta oscillatory phase-resetting underlying N1 generation in suppressed N1 event-related potential. The present findings suggest that chronic alcoholism alters neural oscillatory synchrony dynamics at very early stages of information processing.

  7. Neural components of altruistic punishment

    PubMed Central

    Du, Emily; Chang, Steve W. C.

    2015-01-01

    Altruistic punishment, which occurs when an individual incurs a cost to punish in response to unfairness or a norm violation, may play a role in perpetuating cooperation. The neural correlates underlying costly punishment have only recently begun to be explored. Here we review the current state of research on the neural basis of altruism from the perspectives of costly punishment, emphasizing the importance of characterizing elementary neural processes underlying a decision to punish. In particular, we emphasize three cognitive processes that contribute to the decision to altruistically punish in most scenarios: inequity aversion, cost-benefit calculation, and social reference frame to distinguish self from others. Overall, we argue for the importance of understanding the neural correlates of altruistic punishment with respect to the core computations necessary to achieve a decision to punish. PMID:25709565

  8. Neural Cross-Frequency Coupling: Connecting Architectures, Mechanisms, and Functions.

    PubMed

    Hyafil, Alexandre; Giraud, Anne-Lise; Fontolan, Lorenzo; Gutkin, Boris

    2015-11-01

    Neural oscillations are ubiquitously observed in the mammalian brain, but it has proven difficult to tie oscillatory patterns to specific cognitive operations. Notably, the coupling between neural oscillations at different timescales has recently received much attention, both from experimentalists and theoreticians. We review the mechanisms underlying various forms of this cross-frequency coupling. We show that different types of neural oscillators and cross-frequency interactions yield distinct signatures in neural dynamics. Finally, we associate these mechanisms with several putative functions of cross-frequency coupling, including neural representations of multiple environmental items, communication over distant areas, internal clocking of neural processes, and modulation of neural processing based on temporal predictions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Erotic Stimulus Processing under Amisulpride and Reboxetine: A Placebo-Controlled fMRI Study in Healthy Subjects

    PubMed Central

    Wiegers, Maike; Metzger, Coraline D.; Walter, Martin; Grön, Georg; Abler, Birgit

    2015-01-01

    Background: Impaired sexual function is increasingly recognized as a side effect of psychopharmacological treatment. However, underlying mechanisms of action of the different drugs on sexual processing are still to be explored. Using functional magnetic resonance imaging, we previously investigated effects of serotonergic (paroxetine) and dopaminergic (bupropion) antidepressants on sexual functioning (Abler et al., 2011). Here, we studied the impact of noradrenergic and antidopaminergic medication on neural correlates of visual sexual stimulation in a new sample of subjects. Methods: Nineteen healthy heterosexual males (mean age 24 years, SD 3.1) under subchronic intake (7 days) of the noradrenergic agent reboxetine (4mg/d), the antidopaminergic agent amisulpride (200mg/d), and placebo were included and studied with functional magnetic resonance imaging within a randomized, double-blind, placebo-controlled, within-subjects design during an established erotic video-clip task. Subjective sexual functioning was assessed using the Massachusetts General Hospital-Sexual Functioning Questionnaire. Results: Relative to placebo, subjective sexual functioning was attenuated under reboxetine along with diminished neural activations within the caudate nucleus. Altered neural activations correlated with decreased sexual interest. Under amisulpride, neural activations and subjective sexual functioning remained unchanged. Conclusions: In line with previous interpretations of the role of the caudate nucleus in the context of primary reward processing, attenuated caudate activation may reflect detrimental effects on motivational aspects of erotic stimulus processing under noradrenergic agents. PMID:25612894

  10. SPIDER OR NO SPIDER? NEURAL CORRELATES OF SUSTAINED AND PHASIC FEAR IN SPIDER PHOBIA.

    PubMed

    Münsterkötter, Anna Luisa; Notzon, Swantje; Redlich, Ronny; Grotegerd, Dominik; Dohm, Katharina; Arolt, Volker; Kugel, Harald; Zwanzger, Peter; Dannlowski, Udo

    2015-09-01

    Processes of phasic fear responses to threatening stimuli are thought to be distinct from sustained, anticipatory anxiety toward an unpredicted, potential threat. There is evidence for dissociable neural correlates of phasic fear and sustained anxiety. Whereas increased amygdala activity has been associated with phasic fear, sustained anxiety has been linked with activation of the bed nucleus of stria terminalis (BNST), anterior cingulate cortex (ACC), and the insula. So far, only a few studies have focused on the dissociation of neural processes related to both phasic and sustained fear in specific phobia. We suggested that first, conditions of phasic and sustained fear would involve different neural networks and, second, that overall neural activity would be enhanced in a sample of phobic compared to nonphobic participants. Pictures of spiders and neutral stimuli under conditions of either predicted (phasic) or unpredicted (sustained) fear were presented to 28 subjects with spider phobia and 28 nonphobic control subjects during functional magnetic resonance imaging (fMRI) scanning. Phobic patients revealed significantly higher amygdala activation than controls under conditions of phasic fear. Sustained fear processing was significantly related to activation in the insula and ACC, and phobic patients showed a stronger activation than controls of the BNST and the right ACC under conditions of sustained fear. Functional connectivity analysis revealed enhanced connectivity of the BNST and the amygdala in phobic subjects. Our findings support the idea of distinct neural correlates of phasic and sustained fear processes. Increased neural activity and functional connectivity in these networks might be crucial for the development and maintenance of anxiety disorders. © 2015 Wiley Periodicals, Inc.

  11. Neural dynamics underlying emotional transmissions between individuals

    PubMed Central

    Levit-Binnun, Nava; Hendler, Talma; Lerner, Yulia

    2017-01-01

    Abstract Emotional experiences are frequently shaped by the emotional responses of co-present others. Research has shown that people constantly monitor and adapt to the incoming social–emotional signals, even without face-to-face interaction. And yet, the neural processes underlying such emotional transmissions have not been directly studied. Here, we investigated how the human brain processes emotional cues which arrive from another, co-attending individual. We presented continuous emotional feedback to participants who viewed a movie in the scanner. Participants in the social group (but not in the control group) believed that the feedback was coming from another person who was co-viewing the same movie. We found that social–emotional feedback significantly affected the neural dynamics both in the core affect and in the medial pre-frontal regions. Specifically, the response time-courses in those regions exhibited increased similarity across recipients and increased neural alignment with the timeline of the feedback in the social compared with control group. Taken in conjunction with previous research, this study suggests that emotional cues from others shape the neural dynamics across the whole neural continuum of emotional processing in the brain. Moreover, it demonstrates that interpersonal neural alignment can serve as a neural mechanism through which affective information is conveyed between individuals. PMID:28575520

  12. Journey to the Edges: Social Structures and Neural Maps of Intergroup Processes

    PubMed Central

    Fiske, Susan T.

    2013-01-01

    This article explores boundaries of the intellectual map of intergroup processes, going to the macro (social structure) boundary and the micro (neural systems) boundary. Both are illustrated by with my own and others’ work on social structures and on neural structures related to intergroup processes. Analyzing the impact of social structures on intergroup processes led to insights about distinct forms of sexism and underlies current work on forms of ageism. The stereotype content model also starts with the social structure of intergroup relations (interdependence and status) and predicts images, emotions, and behaviors. Social structure has much to offer the social psychology of intergroup processes. At the other, less explored boundary, social neuroscience addresses the effects of social contexts on neural systems relevant to intergroup processes. Both social structural and neural analyses circle back to traditional social psychology as converging indicators of intergroup processes. PMID:22435843

  13. Optical-Correlator Neural Network Based On Neocognitron

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Stoner, William W.

    1994-01-01

    Multichannel optical correlator implements shift-invariant, high-discrimination pattern-recognizing neural network based on paradigm of neocognitron. Selected as basic building block of this neural network because invariance under shifts is inherent advantage of Fourier optics included in optical correlators in general. Neocognitron is conceptual electronic neural-network model for recognition of visual patterns. Multilayer processing achieved by iteratively feeding back output of feature correlator to input spatial light modulator and updating Fourier filters. Neural network trained by use of characteristic features extracted from target images. Multichannel implementation enables parallel processing of large number of selected features.

  14. Synaptic E-I Balance Underlies Efficient Neural Coding.

    PubMed

    Zhou, Shanglin; Yu, Yuguo

    2018-01-01

    Both theoretical and experimental evidence indicate that synaptic excitation and inhibition in the cerebral cortex are well-balanced during the resting state and sensory processing. Here, we briefly summarize the evidence for how neural circuits are adjusted to achieve this balance. Then, we discuss how such excitatory and inhibitory balance shapes stimulus representation and information propagation, two basic functions of neural coding. We also point out the benefit of adopting such a balance during neural coding. We conclude that excitatory and inhibitory balance may be a fundamental mechanism underlying efficient coding.

  15. Synaptic E-I Balance Underlies Efficient Neural Coding

    PubMed Central

    Zhou, Shanglin; Yu, Yuguo

    2018-01-01

    Both theoretical and experimental evidence indicate that synaptic excitation and inhibition in the cerebral cortex are well-balanced during the resting state and sensory processing. Here, we briefly summarize the evidence for how neural circuits are adjusted to achieve this balance. Then, we discuss how such excitatory and inhibitory balance shapes stimulus representation and information propagation, two basic functions of neural coding. We also point out the benefit of adopting such a balance during neural coding. We conclude that excitatory and inhibitory balance may be a fundamental mechanism underlying efficient coding. PMID:29456491

  16. Integrating automatic and controlled processes into neurocognitive models of social cognition.

    PubMed

    Satpute, Ajay B; Lieberman, Matthew D

    2006-03-24

    Interest in the neural systems underlying social perception has expanded tremendously over the past few decades. However, gaps between behavioral literatures in social perception and neuroscience are still abundant. In this article, we apply the concept of dual-process models to neural systems in an effort to bridge the gap between many of these behavioral studies and neural systems underlying social perception. We describe and provide support for a neural division between reflexive and reflective systems. Reflexive systems correspond to automatic processes and include the amygdala, basal ganglia, ventromedial prefrontal cortex, dorsal anterior cingulate cortex, and lateral temporal cortex. Reflective systems correspond to controlled processes and include lateral prefrontal cortex, posterior parietal cortex, medial prefrontal cortex, rostral anterior cingulate cortex, and the hippocampus and surrounding medial temporal lobe region. This framework is considered to be a working model rather than a finished product. Finally, the utility of this model and its application to other social cognitive domains such as Theory of Mind are discussed.

  17. Neural Parallel Engine: A toolbox for massively parallel neural signal processing.

    PubMed

    Tam, Wing-Kin; Yang, Zhi

    2018-05-01

    Large-scale neural recordings provide detailed information on neuronal activities and can help elicit the underlying neural mechanisms of the brain. However, the computational burden is also formidable when we try to process the huge data stream generated by such recordings. In this study, we report the development of Neural Parallel Engine (NPE), a toolbox for massively parallel neural signal processing on graphical processing units (GPUs). It offers a selection of the most commonly used routines in neural signal processing such as spike detection and spike sorting, including advanced algorithms such as exponential-component-power-component (EC-PC) spike detection and binary pursuit spike sorting. We also propose a new method for detecting peaks in parallel through a parallel compact operation. Our toolbox is able to offer a 5× to 110× speedup compared with its CPU counterparts depending on the algorithms. A user-friendly MATLAB interface is provided to allow easy integration of the toolbox into existing workflows. Previous efforts on GPU neural signal processing only focus on a few rudimentary algorithms, are not well-optimized and often do not provide a user-friendly programming interface to fit into existing workflows. There is a strong need for a comprehensive toolbox for massively parallel neural signal processing. A new toolbox for massively parallel neural signal processing has been created. It can offer significant speedup in processing signals from large-scale recordings up to thousands of channels. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Erotic stimulus processing under amisulpride and reboxetine: a placebo-controlled fMRI study in healthy subjects.

    PubMed

    Graf, Heiko; Wiegers, Maike; Metzger, Coraline D; Walter, Martin; Grön, Georg; Abler, Birgit

    2014-10-31

    Impaired sexual function is increasingly recognized as a side effect of psychopharmacological treatment. However, underlying mechanisms of action of the different drugs on sexual processing are still to be explored. Using functional magnetic resonance imaging, we previously investigated effects of serotonergic (paroxetine) and dopaminergic (bupropion) antidepressants on sexual functioning (Abler et al., 2011). Here, we studied the impact of noradrenergic and antidopaminergic medication on neural correlates of visual sexual stimulation in a new sample of subjects. Nineteen healthy heterosexual males (mean age 24 years, SD 3.1) under subchronic intake (7 days) of the noradrenergic agent reboxetine (4 mg/d), the antidopaminergic agent amisulpride (200mg/d), and placebo were included and studied with functional magnetic resonance imaging within a randomized, double-blind, placebo-controlled, within-subjects design during an established erotic video-clip task. Subjective sexual functioning was assessed using the Massachusetts General Hospital-Sexual Functioning Questionnaire. Relative to placebo, subjective sexual functioning was attenuated under reboxetine along with diminished neural activations within the caudate nucleus. Altered neural activations correlated with decreased sexual interest. Under amisulpride, neural activations and subjective sexual functioning remained unchanged. In line with previous interpretations of the role of the caudate nucleus in the context of primary reward processing, attenuated caudate activation may reflect detrimental effects on motivational aspects of erotic stimulus processing under noradrenergic agents. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  19. Dissociation of neural mechanisms underlying orientation processing in humans

    PubMed Central

    Ling, Sam; Pearson, Joel; Blake, Randolph

    2009-01-01

    Summary Orientation selectivity is a fundamental, emergent property of neurons in early visual cortex, and discovery of that property [1, 2] dramatically shaped how we conceptualize visual processing [3–6]. However, much remains unknown about the neural substrates of these basic building blocks of perception, and what is known primarily stems from animal physiology studies. To probe the neural concomitants of orientation processing in humans, we employed repetitive transcranial magnetic stimulation (rTMS) to attenuate neural responses evoked by stimuli presented within a local region of the visual field. Previous physiological studies have shown that rTMS can significantly suppress the neuronal spiking activity, hemodynamic responses, and local field potentials within a focused cortical region [7, 8]. By suppressing neural activity with rTMS, we were able to dissociate components of the neural circuitry underlying two distinct aspects of orientation processing: selectivity and contextual effects. Orientation selectivity gauged by masking was unchanged by rTMS, whereas an otherwise robust orientation repulsion illusion was weakened following rTMS. This dissociation implies that orientation processing relies on distinct mechanisms, only one of which was impacted by rTMS. These results are consistent with models positing that orientation selectivity is largely governed by the patterns of convergence of thalamic afferents onto cortical neurons, with intracortical activity then shaping population responses contained within those orientation-selective cortical neurons. PMID:19682905

  20. Combined contributions of feedforward and feedback inputs to bottom-up attention

    PubMed Central

    Khorsand, Peyman; Moore, Tirin; Soltani, Alireza

    2015-01-01

    In order to deal with a large amount of information carried by visual inputs entering the brain at any given point in time, the brain swiftly uses the same inputs to enhance processing in one part of visual field at the expense of the others. These processes, collectively called bottom-up attentional selection, are assumed to solely rely on feedforward processing of the external inputs, as it is implied by the nomenclature. Nevertheless, evidence from recent experimental and modeling studies points to the role of feedback in bottom-up attention. Here, we review behavioral and neural evidence that feedback inputs are important for the formation of signals that could guide attentional selection based on exogenous inputs. Moreover, we review results from a modeling study elucidating mechanisms underlying the emergence of these signals in successive layers of neural populations and how they depend on feedback from higher visual areas. We use these results to interpret and discuss more recent findings that can further unravel feedforward and feedback neural mechanisms underlying bottom-up attention. We argue that while it is descriptively useful to separate feedforward and feedback processes underlying bottom-up attention, these processes cannot be mechanistically separated into two successive stages as they occur at almost the same time and affect neural activity within the same brain areas using similar neural mechanisms. Therefore, understanding the interaction and integration of feedforward and feedback inputs is crucial for better understanding of bottom-up attention. PMID:25784883

  1. Noradrenergic modulation of neural erotic stimulus perception.

    PubMed

    Graf, Heiko; Wiegers, Maike; Metzger, Coraline Danielle; Walter, Martin; Grön, Georg; Abler, Birgit

    2017-09-01

    We recently investigated neuromodulatory effects of the noradrenergic agent reboxetine and the dopamine receptor affine amisulpride in healthy subjects on dynamic erotic stimulus processing. Whereas amisulpride left sexual functions and neural activations unimpaired, we observed detrimental activations under reboxetine within the caudate nucleus corresponding to motivational components of sexual behavior. However, broadly impaired subjective sexual functioning under reboxetine suggested effects on further neural components. We now investigated the same sample under these two agents with static erotic picture stimulation as alternative stimulus presentation mode to potentially observe further neural treatment effects of reboxetine. 19 healthy males were investigated under reboxetine, amisulpride and placebo for 7 days each within a double-blind cross-over design. During fMRI static erotic picture were presented with preceding anticipation periods. Subjective sexual functions were assessed by a self-reported questionnaire. Neural activations were attenuated within the caudate nucleus, putamen, ventral striatum, the pregenual and anterior midcingulate cortex and in the orbitofrontal cortex under reboxetine. Subjective diminished sexual arousal under reboxetine was correlated with attenuated neural reactivity within the posterior insula. Again, amisulpride left neural activations along with subjective sexual functioning unimpaired. Neither reboxetine nor amisulpride altered differential neural activations during anticipation of erotic stimuli. Our results verified detrimental effects of noradrenergic agents on neural motivational but also emotional and autonomic components of sexual behavior. Considering the overlap of neural network alterations with those evoked by serotonergic agents, our results suggest similar neuromodulatory effects of serotonergic and noradrenergic agents on common neural pathways relevant for sexual behavior. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  2. Fault detection and diagnosis using neural network approaches

    NASA Technical Reports Server (NTRS)

    Kramer, Mark A.

    1992-01-01

    Neural networks can be used to detect and identify abnormalities in real-time process data. Two basic approaches can be used, the first based on training networks using data representing both normal and abnormal modes of process behavior, and the second based on statistical characterization of the normal mode only. Given data representative of process faults, radial basis function networks can effectively identify failures. This approach is often limited by the lack of fault data, but can be facilitated by process simulation. The second approach employs elliptical and radial basis function neural networks and other models to learn the statistical distributions of process observables under normal conditions. Analytical models of failure modes can then be applied in combination with the neural network models to identify faults. Special methods can be applied to compensate for sensor failures, to produce real-time estimation of missing or failed sensors based on the correlations codified in the neural network.

  3. Neural Correlates of Symptom Dimensions in Pediatric Obsessive-Compulsive Disorder: A Functional Magnetic Resonance Imaging Study

    ERIC Educational Resources Information Center

    Gilbert, Andrew R.; Akkal, Dalila; Almeida, Jorge R. C.; Mataix-Cols, David; Kalas, Catherine; Devlin, Bernie; Birmaher, Boris; Phillips, Mary L.

    2009-01-01

    The use of functional magnetic resonance imaging on a group of pediatric subjects with obsessive compulsive disorder reveals that this group has reduced activity in neural regions underlying emotional processing, cognitive processing, and motor performance as compared to control subjects.

  4. Age-related differences in enhancement and suppression of neural activity underlying selective attention in matched young and old adults.

    PubMed

    Haring, A E; Zhuravleva, T Y; Alperin, B R; Rentz, D M; Holcomb, P J; Daffner, K R

    2013-03-07

    Selective attention reflects the top-down control of sensory processing that is mediated by enhancement or inhibition of neural activity. ERPs were used to investigate age-related differences in neural activity in an experiment examining selective attention to color under Attend and Ignore conditions, as well as under a Neutral condition in which color was task-irrelevant. We sought to determine whether differences in neural activity between old and young adult subjects were due to differences in age rather than executive capacity. Old subjects were matched to two groups of young subjects on the basis of neuropsychological test performance: one using age-appropriate norms and the other using test scores not adjusted for age. We found that old and young subject groups did not differ in the overall modulation of selective attention between Attend and Ignore conditions, as indexed by the size of the anterior Selection Positivity. However, in contrast to either young adult group, old subjects did not exhibit reduced neural activity under the Ignore relative to Neutral condition, but showed enhanced activity under the Attend condition. The onset and peak of the Selection Positivity occurred later for old than young subjects. In summary, older adults execute selective attention less efficiently than matched younger subjects, with slowed processing and failed suppression under Ignore. Increased enhancement under Attend may serve as a compensatory mechanism. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. The human body odor compound androstadienone increases neural conflict coupled to higher behavioral costs during an emotional Stroop task.

    PubMed

    Hornung, Jonas; Kogler, Lydia; Erb, Michael; Freiherr, Jessica; Derntl, Birgit

    2018-05-01

    The androgen derivative androstadienone (AND) is a substance found in human sweat and thus may act as human chemosignal. With the current experiment, we aimed to explore in which way AND affects interference processing during an emotional Stroop task which used human faces as target and emotional words as distractor stimuli. This was complemented by functional magnetic resonance imaging (fMRI) to unravel the neural mechanism of AND-action. Based on previous accounts we expected AND to increase neural activation in areas commonly implicated in evaluation of emotional face processing and to change neural activation in brain regions linked to interference processing. For this aim, a total of 80 healthy individuals (oral contraceptive users, luteal women, men) were tested twice on two consecutive days with an emotional Stroop task using fMRI. Our results suggest that AND increases interference processing in brain areas that are heavily recruited during emotional conflict. At the same time, correlation analyses revealed that this neural interference processing was paralleled by higher behavioral costs (response times) with higher interference related brain activation under AND. Furthermore, AND elicited higher activation in regions implicated in emotional face processing including right fusiform gyrus, inferior frontal gyrus and dorsomedial cortex. In this connection, neural activation was not coupled to behavioral outcome. Furthermore, despite previous accounts of increased hypothalamic activation under AND, we were not able to replicate this finding and discuss possible reasons for this discrepancy. To conclude, AND increased interference processing in regions heavily recruited during emotional conflict which was coupled to higher costs in resolving emotional conflicts with stronger interference-related brain activation under AND. At the moment it remains unclear whether these effects are due to changes in conflict detection or resolution. However, evidence most consistently suggests that AND does not draw attention to the most potent socio-emotional information (human faces) but rather highlights representations of emotional words. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. The Neural Representations Underlying Human Episodic Memory.

    PubMed

    Xue, Gui

    2018-06-01

    A fundamental question of human episodic memory concerns the cognitive and neural representations and processes that give rise to the neural signals of memory. By integrating behavioral tests, formal computational models, and neural measures of brain activity patterns, recent studies suggest that memory signals not only depend on the neural processes and representations during encoding and retrieval, but also on the interaction between encoding and retrieval (e.g., transfer-appropriate processing), as well as on the interaction between the tested events and all other events in the episodic memory space (e.g., global matching). In addition, memory signals are also influenced by the compatibility of the event with the existing long-term knowledge (e.g., schema matching). These studies highlight the interactive nature of human episodic memory. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Speaking in Multiple Languages: Neural Correlates of Language Proficiency in Multilingual Word Production

    ERIC Educational Resources Information Center

    Videsott, Gerda; Herrnberger, Barbel; Hoenig, Klaus; Schilly, Edgar; Grothe, Jo; Wiater, Werner; Spitzer, Manfred; Kiefer, Markus

    2010-01-01

    The human brain has the fascinating ability to represent and to process several languages. Although the first and further languages activate partially different brain networks, the linguistic factors underlying these differences in language processing have to be further specified. We investigated the neural correlates of language proficiency in a…

  8. Handedness is related to neural mechanisms underlying hemispheric lateralization of face processing

    PubMed Central

    Frässle, Stefan; Krach, Sören; Paulus, Frieder Michel; Jansen, Andreas

    2016-01-01

    While the right-hemispheric lateralization of the face perception network is well established, recent evidence suggests that handedness affects the cerebral lateralization of face processing at the hierarchical level of the fusiform face area (FFA). However, the neural mechanisms underlying differential hemispheric lateralization of face perception in right- and left-handers are largely unknown. Using dynamic causal modeling (DCM) for fMRI, we aimed to unravel the putative processes that mediate handedness-related differences by investigating the effective connectivity in the bilateral core face perception network. Our results reveal an enhanced recruitment of the left FFA in left-handers compared to right-handers, as evidenced by more pronounced face-specific modulatory influences on both intra- and interhemispheric connections. As structural and physiological correlates of handedness-related differences in face processing, right- and left-handers varied with regard to their gray matter volume in the left fusiform gyrus and their pupil responses to face stimuli. Overall, these results describe how handedness is related to the lateralization of the core face perception network, and point to different neural mechanisms underlying face processing in right- and left-handers. In a wider context, this demonstrates the entanglement of structurally and functionally remote brain networks, suggesting a broader underlying process regulating brain lateralization. PMID:27250879

  9. Handedness is related to neural mechanisms underlying hemispheric lateralization of face processing

    NASA Astrophysics Data System (ADS)

    Frässle, Stefan; Krach, Sören; Paulus, Frieder Michel; Jansen, Andreas

    2016-06-01

    While the right-hemispheric lateralization of the face perception network is well established, recent evidence suggests that handedness affects the cerebral lateralization of face processing at the hierarchical level of the fusiform face area (FFA). However, the neural mechanisms underlying differential hemispheric lateralization of face perception in right- and left-handers are largely unknown. Using dynamic causal modeling (DCM) for fMRI, we aimed to unravel the putative processes that mediate handedness-related differences by investigating the effective connectivity in the bilateral core face perception network. Our results reveal an enhanced recruitment of the left FFA in left-handers compared to right-handers, as evidenced by more pronounced face-specific modulatory influences on both intra- and interhemispheric connections. As structural and physiological correlates of handedness-related differences in face processing, right- and left-handers varied with regard to their gray matter volume in the left fusiform gyrus and their pupil responses to face stimuli. Overall, these results describe how handedness is related to the lateralization of the core face perception network, and point to different neural mechanisms underlying face processing in right- and left-handers. In a wider context, this demonstrates the entanglement of structurally and functionally remote brain networks, suggesting a broader underlying process regulating brain lateralization.

  10. Neural correlates of deception in social contexts in normally developing children

    PubMed Central

    Yokota, Susumu; Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Thyreau, Benjamin; Tanaka, Mari; Kawashima, Ryuta

    2013-01-01

    Deception is related to the ability to inhibit prepotent responses and to engage in mental tasks such as anticipating responses and inferring what another person knows, especially in social contexts. However, the neural correlates of deception processing, which requires mentalizing, remain unclear. Using functional magnetic resonance imaging (fMRI), we examined the neural correlates of deception, including mentalization, in social contexts in normally developing children. Healthy right-handed children (aged 8–9 years) were scanned while performing interactive games involving deception. The games varied along two dimensions: the type of reply (deception and truth) and the type of context (social and less social). Participants were instructed to deceive a witch and to tell the truth to a girl. Under the social-context conditions, participants were asked to consider what they inferred about protagonists' preferences from their facial expressions when responding to questions. Under the less-social-context conditions, participants did not need to consider others' preferences. We found a significantly greater response in the right precuneus under the social-context than under less-social-context conditions. Additionally, we found marginally greater activation in the right inferior parietal lobule (IPL) under the deception than under the truth condition. These results suggest that deception in a social context requires not only inhibition of prepotent responses but also engagement in mentalizing processes. This study provides the first evidence of the neural correlates of the mentalizing processes involved in deception in normally developing children. PMID:23730281

  11. A method for compression of intra-cortically-recorded neural signals dedicated to implantable brain-machine interfaces.

    PubMed

    Shaeri, Mohammad Ali; Sodagar, Amir M

    2015-05-01

    This paper proposes an efficient data compression technique dedicated to implantable intra-cortical neural recording devices. The proposed technique benefits from processing neural signals in the Discrete Haar Wavelet Transform space, a new spike extraction approach, and a novel data framing scheme to telemeter the recorded neural information to the outside world. Based on the proposed technique, a 64-channel neural signal processor was designed and prototyped as a part of a wireless implantable extra-cellular neural recording microsystem. Designed in a 0.13- μ m standard CMOS process, the 64-channel neural signal processor reported in this paper occupies ∼ 0.206 mm(2) of silicon area, and consumes 94.18 μW when operating under a 1.2-V supply voltage at a master clock frequency of 1.28 MHz.

  12. Contextual Processing of Abstract Concepts Reveals Neural Representations of Non-Linguistic Semantic Content

    PubMed Central

    Wilson-Mendenhall, Christine D.; Simmons, W. Kyle; Martin, Alex; Barsalou, Lawrence W.

    2014-01-01

    Concepts develop for many aspects of experience, including abstract internal states and abstract social activities that do not refer to concrete entities in the world. The current study assessed the hypothesis that, like concrete concepts, distributed neural patterns of relevant, non-linguistic semantic content represent the meanings of abstract concepts. In a novel neuroimaging paradigm, participants processed two abstract concepts (convince, arithmetic) and two concrete concepts (rolling, red) deeply and repeatedly during a concept-scene matching task that grounded each concept in typical contexts. Using a catch trial design, neural activity associated with each concept word was separated from neural activity associated with subsequent visual scenes to assess activations underlying the detailed semantics of each concept. We predicted that brain regions underlying mentalizing and social cognition (e.g., medial prefrontal cortex, superior temporal sulcus) would become active to represent semantic content central to convince, whereas brain regions underlying numerical cognition (e.g., bilateral intraparietal sulcus) would become active to represent semantic content central to arithmetic. The results supported these predictions, suggesting that the meanings of abstract concepts arise from distributed neural systems that represent concept-specific content. PMID:23363408

  13. A neural network model of foraging decisions made under predation risk.

    PubMed

    Coleman, Scott L; Brown, Vincent R; Levine, Daniel S; Mellgren, Roger L

    2005-12-01

    This article develops the cognitive-emotional forager (CEF) model, a novel application of a neural network to dynamical processes in foraging behavior. The CEF is based on a neural network known as the gated dipole, introduced by Grossberg, which is capable of representing short-term affective reactions in a manner similar to Solomon and Corbit's (1974) opponent process theory. The model incorporates a trade-off between approach toward food and avoidance of predation under varying levels of motivation induced by hunger. The results of simulations in a simple patch selection paradigm, using a lifetime fitness criterion for comparison, indicate that the CEF model is capable of nearly optimal foraging and outperforms a run-of-luck rule-of-thumb model. Models such as the one presented here can illuminate the underlying cognitive and motivational components of animal decision making.

  14. Lesion Mapping the Four-Factor Structure of Emotional Intelligence

    PubMed Central

    Operskalski, Joachim T.; Paul, Erick J.; Colom, Roberto; Barbey, Aron K.; Grafman, Jordan

    2015-01-01

    Emotional intelligence (EI) refers to an individual’s ability to process and respond to emotions, including recognizing the expression of emotions in others, using emotions to enhance thought and decision making, and regulating emotions to drive effective behaviors. Despite their importance for goal-directed social behavior, little is known about the neural mechanisms underlying specific facets of EI. Here, we report findings from a study investigating the neural bases of these specific components for EI in a sample of 130 combat veterans with penetrating traumatic brain injury. We examined the neural mechanisms underlying experiential (perceiving and using emotional information) and strategic (understanding and managing emotions) facets of EI. Factor scores were submitted to voxel-based lesion symptom mapping to elucidate their neural substrates. The results indicate that two facets of EI (perceiving and managing emotions) engage common and distinctive neural systems, with shared dependence on the social knowledge network, and selective engagement of the orbitofrontal and parietal cortex for strategic aspects of emotional information processing. The observed pattern of findings suggests that sub-facets of experiential and strategic EI can be characterized as separable but related processes that depend upon a core network of brain structures within frontal, temporal and parietal cortex. PMID:26858627

  15. The Neural Correlates Underlying Belief Reasoning for Self and for Others: Evidence from ERPs.

    PubMed

    Jiang, Qin; Wang, Qi; Li, Peng; Li, Hong

    2016-01-01

    Belief reasoning is typical mental state reasoning in theory of mind (ToM). Although previous studies have explored the neural bases of belief reasoning, the neural correlates of belief reasoning for self and for others are rarely addressed. The decoupling mechanism of distinguishing the mental state of others from one's own is essential for ToM processing. To address the electrophysiological bases underlying the decoupling mechanism, the present event-related potential study compared the time course of neural activities associated with belief reasoning for self and for others when the belief belonging to self was consistent or inconsistent with others. Results showed that during a 450-600 ms period, belief reasoning for self elicited a larger late positive component (LPC) than for others when beliefs were inconsistent with each other. The LPC divergence is assumed to reflect the categorization of agencies in ToM processes.

  16. The Neural Correlates Underlying Belief Reasoning for Self and for Others: Evidence from ERPs

    PubMed Central

    Jiang, Qin; Wang, Qi; Li, Peng; Li, Hong

    2016-01-01

    Belief reasoning is typical mental state reasoning in theory of mind (ToM). Although previous studies have explored the neural bases of belief reasoning, the neural correlates of belief reasoning for self and for others are rarely addressed. The decoupling mechanism of distinguishing the mental state of others from one’s own is essential for ToM processing. To address the electrophysiological bases underlying the decoupling mechanism, the present event-related potential study compared the time course of neural activities associated with belief reasoning for self and for others when the belief belonging to self was consistent or inconsistent with others. Results showed that during a 450–600 ms period, belief reasoning for self elicited a larger late positive component (LPC) than for others when beliefs were inconsistent with each other. The LPC divergence is assumed to reflect the categorization of agencies in ToM processes. PMID:27757093

  17. Serotonergic antidepressants decrease hedonic signals but leave learning signals in the nucleus accumbens unaffected.

    PubMed

    Graf, Heiko; Metzger, Coraline D; Walter, Martin; Abler, Birgit

    2016-01-06

    Investigating the effects of serotonergic antidepressants on neural correlates of visual erotic stimulation revealed decreased reactivity within the dopaminergic reward network along with decreased subjective sexual functioning compared with placebo. However, a global dampening of the reward system under serotonergic drugs is not intuitive considering clinical observations of their beneficial effects in the treatment of depression. Particularly, learning signals as coded in prediction error processing within the dopaminergic reward system can be assumed to be rather enhanced as antidepressant drugs have been demonstrated to facilitate the efficacy of psychotherapeutic interventions relying on learning processes. Within the same study sample, we now explored the effects of serotonergic and dopaminergic/noradrenergic antidepressants on prediction error signals compared with placebo by functional MRI. A total of 17 healthy male participants (mean age: 25.4 years) were investigated under the administration of paroxetine, bupropion and placebo for 7 days each within a randomized, double-blind, within-subject cross-over design. During functional MRI, we used an established monetary incentive task to explore neural prediction error signals within the bilateral nucleus accumbens as region of interest within the dopaminergic reward system. In contrast to diminished neural activations and subjective sexual functioning under the serotonergic agent paroxetine under visual erotic stimulation, we revealed unaffected or even enhanced neural prediction error processing within the nucleus accumbens under this antidepressant along with unaffected behavioural processing. Our study provides evidence that serotonergic antidepressants facilitate prediction error signalling and may support suggestions of beneficial effects of these agents on reinforced learning as an essential element in behavioural psychotherapy.

  18. Temporal Context in Speech Processing and Attentional Stream Selection: A Behavioral and Neural Perspective

    ERIC Educational Resources Information Center

    Golumbic, Elana M. Zion; Poeppel, David; Schroeder, Charles E.

    2012-01-01

    The human capacity for processing speech is remarkable, especially given that information in speech unfolds over multiple time scales concurrently. Similarly notable is our ability to filter out of extraneous sounds and focus our attention on one conversation, epitomized by the "Cocktail Party" effect. Yet, the neural mechanisms underlying on-line…

  19. Inattentional Deafness: Visual Load Leads to Time-Specific Suppression of Auditory Evoked Responses

    PubMed Central

    Molloy, Katharine; Griffiths, Timothy D.; Lavie, Nilli

    2015-01-01

    Due to capacity limits on perception, conditions of high perceptual load lead to reduced processing of unattended stimuli (Lavie et al., 2014). Accumulating work demonstrates the effects of visual perceptual load on visual cortex responses, but the effects on auditory processing remain poorly understood. Here we establish the neural mechanisms underlying “inattentional deafness”—the failure to perceive auditory stimuli under high visual perceptual load. Participants performed a visual search task of low (target dissimilar to nontarget items) or high (target similar to nontarget items) load. On a random subset (50%) of trials, irrelevant tones were presented concurrently with the visual stimuli. Brain activity was recorded with magnetoencephalography, and time-locked responses to the visual search array and to the incidental presence of unattended tones were assessed. High, compared to low, perceptual load led to increased early visual evoked responses (within 100 ms from onset). This was accompanied by reduced early (∼100 ms from tone onset) auditory evoked activity in superior temporal sulcus and posterior middle temporal gyrus. A later suppression of the P3 “awareness” response to the tones was also observed under high load. A behavioral experiment revealed reduced tone detection sensitivity under high visual load, indicating that the reduction in neural responses was indeed associated with reduced awareness of the sounds. These findings support a neural account of shared audiovisual resources, which, when depleted under load, leads to failures of sensory perception and awareness. SIGNIFICANCE STATEMENT The present work clarifies the neural underpinning of inattentional deafness under high visual load. The findings of near-simultaneous load effects on both visual and auditory evoked responses suggest shared audiovisual processing capacity. Temporary depletion of shared capacity in perceptually demanding visual tasks leads to a momentary reduction in sensory processing of auditory stimuli, resulting in inattentional deafness. The dynamic “push–pull” pattern of load effects on visual and auditory processing furthers our understanding of both the neural mechanisms of attention and of cross-modal effects across visual and auditory processing. These results also offer an explanation for many previous failures to find cross-modal effects in experiments where the visual load effects may not have coincided directly with auditory sensory processing. PMID:26658858

  20. Step to improve neural cryptography against flipping attacks.

    PubMed

    Zhou, Jiantao; Xu, Qinzhen; Pei, Wenjiang; He, Zhenya; Szu, Harold

    2004-12-01

    Synchronization of neural networks by mutual learning has been demonstrated to be possible for constructing key exchange protocol over public channel. However, the neural cryptography schemes presented so far are not the securest under regular flipping attack (RFA) and are completely insecure under majority flipping attack (MFA). We propose a scheme by splitting the mutual information and the training process to improve the security of neural cryptosystem against flipping attacks. Both analytical and simulation results show that the success probability of RFA on the proposed scheme can be decreased to the level of brute force attack (BFA) and the success probability of MFA still decays exponentially with the weights' level L. The synchronization time of the parties also remains polynomial with L. Moreover, we analyze the security under an advanced flipping attack.

  1. Neural Architecture of Selective Stopping Strategies: Distinct Brain Activity Patterns Are Associated with Attentional Capture But Not with Outright Stopping.

    PubMed

    Sebastian, Alexandra; Rössler, Kora; Wibral, Michael; Mobascher, Arian; Lieb, Klaus; Jung, Patrick; Tüscher, Oliver

    2017-10-04

    In stimulus-selective stop-signal tasks, the salient stop signal needs attentional processing before genuine response inhibition is completed. Differential prefrontal involvement in attentional capture and response inhibition has been linked to the right inferior frontal junction (IFJ) and ventrolateral prefrontal cortex (VLPFC), respectively. Recently, it has been suggested that stimulus-selective stopping may be accomplished by the following different strategies: individuals may selectively inhibit their response only upon detecting a stop signal (independent discriminate then stop strategy) or unselectively whenever detecting a stop or attentional capture signal (stop then discriminate strategy). Alternatively, the discrimination process of the critical signal (stop vs attentional capture signal) may interact with the go process (dependent discriminate then stop strategy). Those different strategies might differentially involve attention- and stopping-related processes that might be implemented by divergent neural networks. This should lead to divergent activation patterns and, if disregarded, interfere with analyses in neuroimaging studies. To clarify this crucial issue, we studied 87 human participants of both sexes during a stimulus-selective stop-signal task and performed strategy-dependent functional magnetic resonance imaging analyses. We found that, regardless of the strategy applied, outright stopping displayed indistinguishable brain activation patterns. However, during attentional capture different strategies resulted in divergent neural activation patterns with variable activation of right IFJ and bilateral VLPFC. In conclusion, the neural network involved in outright stopping is ubiquitous and independent of strategy, while different strategies impact on attention-related processes and underlying neural network usage. Strategic differences should therefore be taken into account particularly when studying attention-related processes in stimulus-selective stopping. SIGNIFICANCE STATEMENT Dissociating inhibition from attention has been a major challenge for the cognitive neuroscience of executive functions. Selective stopping tasks have been instrumental in addressing this question. However, recent theoretical, cognitive and behavioral research suggests that different strategies are applied in successful execution of the task. The underlying strategy-dependent neural networks might differ substantially. Here, we show evidence that, regardless of the strategy used, the neural network involved in outright stopping is ubiquitous. However, significant differences can only be found in the attention-related processes underlying those different strategies. Thus, when studying attentional processing of salient stop signals, strategic differences should be considered. In contrast, the neural networks implementing outright stopping seem less or not at all affected by strategic differences. Copyright © 2017 the authors 0270-6474/17/379786-10$15.00/0.

  2. Human cortical activity evoked by contextual processing in attentional orienting.

    PubMed

    Zhao, Shuo; Li, Chunlin; Uono, Shota; Yoshimura, Sayaka; Toichi, Motomi

    2017-06-07

    The ability to assess another person's direction of attention is paramount in social communication, many studies have reported a similar pattern between gaze and arrow cues in attention orienting. Neuroimaging research has also demonstrated no qualitative differences in attention to gaze and arrow cues. However, these studies were implemented under simple experiment conditions. Researchers have highlighted the importance of contextual processing (i.e., the semantic congruence between cue and target) in attentional orienting, showing that attentional orienting by social gaze or arrow cues could be modulated through contextual processing. Here, we examine the neural activity of attentional orienting by gaze and arrow cues in response to contextual processing using functional magnetic resonance imaging. The results demonstrated that the influence of neural activity through contextual processing to attentional orienting occurred under invalid conditions (when the cue and target were incongruent versus congruent) in the ventral frontoparietal network, although we did not identify any differences in the neural substrates of attentional orienting in contextual processing between gaze and arrow cues. These results support behavioural data of attentional orienting modulated by contextual processing based on the neurocognitive architecture.

  3. Parkinson’s disease dementia: a neural networks perspective

    PubMed Central

    Jahanshahi, Marjan; Foltynie, Thomas

    2015-01-01

    In the long-term, with progression of the illness, Parkinson’s disease dementia affects up to 90% of patients with Parkinson’s disease. With increasing life expectancy in western countries, Parkinson’s disease dementia is set to become even more prevalent in the future. However, current treatments only give modest symptomatic benefit at best. New treatments are slow in development because unlike the pathological processes underlying the motor deficits of Parkinson’s disease, the neural mechanisms underlying the dementing process and its associated cognitive deficits are still poorly understood. Recent insights from neuroscience research have begun to unravel the heterogeneous involvement of several distinct neural networks underlying the cognitive deficits in Parkinson’s disease dementia, and their modulation by both dopaminergic and non-dopaminergic transmitter systems in the brain. In this review we collate emerging evidence regarding these distinct brain networks to give a novel perspective on the pathological mechanisms underlying Parkinson’s disease dementia, and discuss how this may offer new therapeutic opportunities. PMID:25888551

  4. Parkinson's disease dementia: a neural networks perspective.

    PubMed

    Gratwicke, James; Jahanshahi, Marjan; Foltynie, Thomas

    2015-06-01

    In the long-term, with progression of the illness, Parkinson's disease dementia affects up to 90% of patients with Parkinson's disease. With increasing life expectancy in western countries, Parkinson's disease dementia is set to become even more prevalent in the future. However, current treatments only give modest symptomatic benefit at best. New treatments are slow in development because unlike the pathological processes underlying the motor deficits of Parkinson's disease, the neural mechanisms underlying the dementing process and its associated cognitive deficits are still poorly understood. Recent insights from neuroscience research have begun to unravel the heterogeneous involvement of several distinct neural networks underlying the cognitive deficits in Parkinson's disease dementia, and their modulation by both dopaminergic and non-dopaminergic transmitter systems in the brain. In this review we collate emerging evidence regarding these distinct brain networks to give a novel perspective on the pathological mechanisms underlying Parkinson's disease dementia, and discuss how this may offer new therapeutic opportunities. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  5. Neural correlates of RDoC reward constructs in adolescents with diverse psychiatric symptoms: A Reward Flanker Task pilot study.

    PubMed

    Bradley, Kailyn A L; Case, Julia A C; Freed, Rachel D; Stern, Emily R; Gabbay, Vilma

    2017-07-01

    There has been growing interest under the Research Domain Criteria initiative to investigate behavioral constructs and their underlying neural circuitry. Abnormalities in reward processes are salient across psychiatric conditions and may precede future psychopathology in youth. However, the neural circuitry underlying such deficits has not been well defined. Therefore, in this pilot, we studied youth with diverse psychiatric symptoms and examined the neural underpinnings of reward anticipation, attainment, and positive prediction error (PPE, unexpected reward gain). Clinically, we focused on anhedonia, known to reflect deficits in reward function. Twenty-two psychotropic medication-free youth, 16 with psychiatric symptoms, exhibiting a full range of anhedonia, were scanned during the Reward Flanker Task. Anhedonia severity was quantified using the Snaith-Hamilton Pleasure Scale. Functional magnetic resonance imaging analyses were false discovery rate corrected for multiple comparisons. Anticipation activated a broad network, including the medial frontal cortex and ventral striatum, while attainment activated memory and emotion-related regions such as the hippocampus and parahippocampal gyrus, but not the ventral striatum. PPE activated a right-dominant fronto-temporo-parietal network. Anhedonia was only correlated with activation of the right angular gyrus during anticipation and the left precuneus during PPE at an uncorrected threshold. Findings are preliminary due to the small sample size. This pilot characterized the neural circuitry underlying different aspects of reward processing in youth with diverse psychiatric symptoms. These results highlight the complexity of the neural circuitry underlying reward anticipation, attainment, and PPE. Furthermore, this study underscores the importance of RDoC research in youth. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. On the interpretation of weight vectors of linear models in multivariate neuroimaging.

    PubMed

    Haufe, Stefan; Meinecke, Frank; Görgen, Kai; Dähne, Sven; Haynes, John-Dylan; Blankertz, Benjamin; Bießmann, Felix

    2014-02-15

    The increase in spatiotemporal resolution of neuroimaging devices is accompanied by a trend towards more powerful multivariate analysis methods. Often it is desired to interpret the outcome of these methods with respect to the cognitive processes under study. Here we discuss which methods allow for such interpretations, and provide guidelines for choosing an appropriate analysis for a given experimental goal: For a surgeon who needs to decide where to remove brain tissue it is most important to determine the origin of cognitive functions and associated neural processes. In contrast, when communicating with paralyzed or comatose patients via brain-computer interfaces, it is most important to accurately extract the neural processes specific to a certain mental state. These equally important but complementary objectives require different analysis methods. Determining the origin of neural processes in time or space from the parameters of a data-driven model requires what we call a forward model of the data; such a model explains how the measured data was generated from the neural sources. Examples are general linear models (GLMs). Methods for the extraction of neural information from data can be considered as backward models, as they attempt to reverse the data generating process. Examples are multivariate classifiers. Here we demonstrate that the parameters of forward models are neurophysiologically interpretable in the sense that significant nonzero weights are only observed at channels the activity of which is related to the brain process under study. In contrast, the interpretation of backward model parameters can lead to wrong conclusions regarding the spatial or temporal origin of the neural signals of interest, since significant nonzero weights may also be observed at channels the activity of which is statistically independent of the brain process under study. As a remedy for the linear case, we propose a procedure for transforming backward models into forward models. This procedure enables the neurophysiological interpretation of the parameters of linear backward models. We hope that this work raises awareness for an often encountered problem and provides a theoretical basis for conducting better interpretable multivariate neuroimaging analyses. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  7. An fMRI Investigation of the Neural Correlates Underlying the Processing of Novel Metaphoric Expressions

    ERIC Educational Resources Information Center

    Mashal, N.; Faust, M.; Hendler, T.; Jung-Beeman, M.

    2007-01-01

    The neural networks associated with processing related pairs of words forming literal, novel, and conventional metaphorical expressions and unrelated pairs of words were studied in a group of 15 normal adults using fMRI. Subjects read the four types of linguistic expressions and decided which relation exists between the two words (metaphoric,…

  8. Receptive amusia: evidence for cross-hemispheric neural networks underlying music processing strategies.

    PubMed

    Schuppert, M; Münte, T F; Wieringa, B M; Altenmüller, E

    2000-03-01

    Perceptual musical functions were investigated in patients suffering from unilateral cerebrovascular cortical lesions. Using MIDI (Musical Instrument Digital Interface) technique, a standardized short test battery was established that covers local (analytical) as well as global perceptual mechanisms. These represent the principal cognitive strategies in melodic and temporal musical information processing (local, interval and rhythm; global, contour and metre). Of the participating brain-damaged patients, a total of 69% presented with post-lesional impairments in music perception. Left-hemisphere-damaged patients showed significant deficits in the discrimination of local as well as global structures in both melodic and temporal information processing. Right-hemisphere-damaged patients also revealed an overall impairment of music perception, reaching significance in the temporal conditions. Detailed analysis outlined a hierarchical organization, with an initial right-hemisphere recognition of contour and metre followed by identification of interval and rhythm via left-hemisphere subsystems. Patterns of dissociated and associated melodic and temporal deficits indicate autonomous, yet partially integrated neural subsystems underlying the processing of melodic and temporal stimuli. In conclusion, these data contradict a strong hemispheric specificity for music perception, but indicate cross-hemisphere, fragmented neural substrates underlying local and global musical information processing in the melodic and temporal dimensions. Due to the diverse profiles of neuropsychological deficits revealed in earlier investigations as well as in this study, individual aspects of musicality and musical behaviour very likely contribute to the definite formation of these widely distributed neural networks.

  9. Musical training modulates the early but not the late stage of rhythmic syntactic processing.

    PubMed

    Sun, Lijun; Liu, Fang; Zhou, Linshu; Jiang, Cunmei

    2018-02-01

    Syntactic processing is essential for musical understanding. Although the processing of harmonic syntax has been well studied, very little is known about the neural mechanisms underlying rhythmic syntactic processing. The present study investigated the neural processing of rhythmic syntax and whether and to what extent long-term musical training impacts such processing. Fourteen musicians and 14 nonmusicians listened to syntactic-regular or syntactic-irregular rhythmic sequences and judged the completeness of these sequences. Nonmusicians, as well as musicians, showed a P600 effect to syntactic-irregular endings, indicating that musical exposure and perceptual learning of music are sufficient to enable nonmusicians to process rhythmic syntax at the late stage. However, musicians, but not nonmusicians, also exhibited an early right anterior negativity (ERAN) response to syntactic-irregular endings, which suggests that musical training only modulates the early but not the late stage of rhythmic syntactic processing. These findings revealed for the first time the neural mechanisms underlying the processing of rhythmic syntax in music, which has important implications for theories of hierarchically organized music cognition and comparative studies of syntactic processing in music and language. © 2017 Society for Psychophysiological Research.

  10. Neural effects of methylphenidate and nicotine during smooth pursuit eye movements.

    PubMed

    Kasparbauer, Anna-Maria; Meyhöfer, Inga; Steffens, Maria; Weber, Bernd; Aydin, Merve; Kumari, Veena; Hurlemann, Rene; Ettinger, Ulrich

    2016-11-01

    Nicotine and methylphenidate are putative cognitive enhancers in healthy and patient populations. Although they stimulate different neurotransmitter systems, they have been shown to enhance performance on overlapping measures of attention. So far, there has been no direct comparison of the effects of these two stimulants on behavioural performance or brain function in healthy humans. Here, we directly compare the two compounds using a well-established oculomotor biomarker in order to explore common and distinct behavioural and neural effects. Eighty-two healthy male non-smokers performed a smooth pursuit eye movement task while lying in an fMRI scanner. In a between-subjects, double-blind design, subjects either received placebo (placebo patch and capsule), nicotine (7mg nicotine patch and placebo capsule), or methylphenidate (placebo patch and 40mg methylphenidate capsule). There were no significant drug effects on behavioural measures. At the neural level, methylphenidate elicited higher activation in left frontal eye field compared to nicotine, with an intermediate response under placebo. The reduced activation of task-related regions under nicotine could be associated with more efficient neural processing, while increased hemodynamic response under methylphenidate is interpretable as enhanced processing of task-relevant networks. Together, these findings suggest dissociable neural effects of these putative cognitive enhancers. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Neural correlates of math anxiety - an overview and implications.

    PubMed

    Artemenko, Christina; Daroczy, Gabriella; Nuerk, Hans-Christoph

    2015-01-01

    Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that processing efficiency is already affected in basic number processing. Overall, the neurocognitive literature suggests that (i) math anxiety elicits emotion- and pain-related activation during and before math activities, (ii) that the negative emotional response to math anxiety impairs processing efficiency, and (iii) that math deficits triggered by math anxiety may be compensated for by modulating the cognitive control or emotional regulation network. However, activation differs strongly between studies, depending on tasks, paradigms, and samples. We conclude that neural correlates can help to understand and explore the processes underlying math anxiety, but the data are not very consistent yet.

  12. Neural correlates of math anxiety – an overview and implications

    PubMed Central

    Artemenko, Christina; Daroczy, Gabriella; Nuerk, Hans-Christoph

    2015-01-01

    Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that processing efficiency is already affected in basic number processing. Overall, the neurocognitive literature suggests that (i) math anxiety elicits emotion- and pain-related activation during and before math activities, (ii) that the negative emotional response to math anxiety impairs processing efficiency, and (iii) that math deficits triggered by math anxiety may be compensated for by modulating the cognitive control or emotional regulation network. However, activation differs strongly between studies, depending on tasks, paradigms, and samples. We conclude that neural correlates can help to understand and explore the processes underlying math anxiety, but the data are not very consistent yet. PMID:26388824

  13. Using brain stimulation to disentangle neural correlates of conscious vision

    PubMed Central

    de Graaf, Tom A.; Sack, Alexander T.

    2014-01-01

    Research into the neural correlates of consciousness (NCCs) has blossomed, due to the advent of new and increasingly sophisticated brain research tools. Neuroimaging has uncovered a variety of brain processes that relate to conscious perception, obtained in a range of experimental paradigms. But methods such as functional magnetic resonance imaging or electroencephalography do not always afford inference on the functional role these brain processes play in conscious vision. Such empirical NCCs could reflect neural prerequisites, neural consequences, or neural substrates of a conscious experience. Here, we take a closer look at the use of non-invasive brain stimulation (NIBS) techniques in this context. We discuss and review how NIBS methodology can enlighten our understanding of brain mechanisms underlying conscious vision by disentangling the empirical NCCs. PMID:25295015

  14. Non-equilibrium physics of neural networks for leaning, memory and decision making: landscape and flux perspectives

    NASA Astrophysics Data System (ADS)

    Wang, Jin

    Cognitive behaviors are determined by underlying neural networks. Many brain functions, such as learning and memory, can be described by attractor dynamics. We developed a theoretical framework for global dynamics by quantifying the landscape associated with the steady state probability distributions and steady state curl flux, measuring the degree of non-equilibrium through detailed balance breaking. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. Both landscape and flux determine the kinetic paths and speed of decision making. The kinetics and global stability of decision making are explored by quantifying the landscape topography through the barrier heights and the mean first passage time. The theoretical predictions are in agreement with experimental observations: more errors occur under time pressure. We quantitatively explored two mechanisms of the speed-accuracy tradeoff with speed emphasis and further uncovered the tradeoffs among speed, accuracy, and energy cost. Our results show an optimal balance among speed, accuracy, and the energy cost in decision making. We uncovered possible mechanisms of changes of mind and how mind changes improve performance in decision processes. Our landscape approach can help facilitate an understanding of the underlying physical mechanisms of cognitive processes and identify the key elements in neural networks.

  15. Neural substrates of decision-making.

    PubMed

    Broche-Pérez, Y; Herrera Jiménez, L F; Omar-Martínez, E

    2016-06-01

    Decision-making is the process of selecting a course of action from among 2 or more alternatives by considering the potential outcomes of selecting each option and estimating its consequences in the short, medium and long term. The prefrontal cortex (PFC) has traditionally been considered the key neural structure in decision-making process. However, new studies support the hypothesis that describes a complex neural network including both cortical and subcortical structures. The aim of this review is to summarise evidence on the anatomical structures underlying the decision-making process, considering new findings that support the existence of a complex neural network that gives rise to this complex neuropsychological process. Current evidence shows that the cortical structures involved in decision-making include the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), and dorsolateral prefrontal cortex (DLPFC). This process is assisted by subcortical structures including the amygdala, thalamus, and cerebellum. Findings to date show that both cortical and subcortical brain regions contribute to the decision-making process. The neural basis of decision-making is a complex neural network of cortico-cortical and cortico-subcortical connections which includes subareas of the PFC, limbic structures, and the cerebellum. Copyright © 2014 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  16. Attention distributed across sensory modalities enhances perceptual performance

    PubMed Central

    Mishra, Jyoti; Gazzaley, Adam

    2012-01-01

    This study investigated the interaction between top-down attentional control and multisensory processing in humans. Using semantically congruent and incongruent audiovisual stimulus streams, we found target detection to be consistently improved in the setting of distributed audiovisual attention versus focused visual attention. This performance benefit was manifested as faster reaction times for congruent audiovisual stimuli, and as accuracy improvements for incongruent stimuli, resulting in a resolution of stimulus interference. Electrophysiological recordings revealed that these behavioral enhancements were associated with reduced neural processing of both auditory and visual components of the audiovisual stimuli under distributed vs. focused visual attention. These neural changes were observed at early processing latencies, within 100–300 ms post-stimulus onset, and localized to auditory, visual, and polysensory temporal cortices. These results highlight a novel neural mechanism for top-down driven performance benefits via enhanced efficacy of sensory neural processing during distributed audiovisual attention relative to focused visual attention. PMID:22933811

  17. Neural mechanisms of movement planning: motor cortex and beyond.

    PubMed

    Svoboda, Karel; Li, Nuo

    2018-04-01

    Neurons in motor cortex and connected brain regions fire in anticipation of specific movements, long before movement occurs. This neural activity reflects internal processes by which the brain plans and executes volitional movements. The study of motor planning offers an opportunity to understand how the structure and dynamics of neural circuits support persistent internal states and how these states influence behavior. Recent advances in large-scale neural recordings are beginning to decipher the relationship of the dynamics of populations of neurons during motor planning and movements. New behavioral tasks in rodents, together with quantified perturbations, link dynamics in specific nodes of neural circuits to behavior. These studies reveal a neural network distributed across multiple brain regions that collectively supports motor planning. We review recent advances and highlight areas where further work is needed to achieve a deeper understanding of the mechanisms underlying motor planning and related cognitive processes. Copyright © 2017. Published by Elsevier Ltd.

  18. Mechanisms of Long Non-Coding RNAs in the Assembly and Plasticity of Neural Circuitry.

    PubMed

    Wang, Andi; Wang, Junbao; Liu, Ying; Zhou, Yan

    2017-01-01

    The mechanisms underlying development processes and functional dynamics of neural circuits are far from understood. Long non-coding RNAs (lncRNAs) have emerged as essential players in defining identities of neural cells, and in modulating neural activities. In this review, we summarized latest advances concerning roles and mechanisms of lncRNAs in assembly, maintenance and plasticity of neural circuitry, as well as lncRNAs' implications in neurological disorders. We also discussed technical advances and challenges in studying functions and mechanisms of lncRNAs in neural circuitry. Finally, we proposed that lncRNA studies would advance our understanding on how neural circuits develop and function in physiology and disease conditions.

  19. Hybrid Cubature Kalman filtering for identifying nonlinear models from sampled recording: Estimation of neuronal dynamics.

    PubMed

    Madi, Mahmoud K; Karameh, Fadi N

    2017-01-01

    Kalman filtering methods have long been regarded as efficient adaptive Bayesian techniques for estimating hidden states in models of linear dynamical systems under Gaussian uncertainty. Recent advents of the Cubature Kalman filter (CKF) have extended this efficient estimation property to nonlinear systems, and also to hybrid nonlinear problems where by the processes are continuous and the observations are discrete (continuous-discrete CD-CKF). Employing CKF techniques, therefore, carries high promise for modeling many biological phenomena where the underlying processes exhibit inherently nonlinear, continuous, and noisy dynamics and the associated measurements are uncertain and time-sampled. This paper investigates the performance of cubature filtering (CKF and CD-CKF) in two flagship problems arising in the field of neuroscience upon relating brain functionality to aggregate neurophysiological recordings: (i) estimation of the firing dynamics and the neural circuit model parameters from electric potentials (EP) observations, and (ii) estimation of the hemodynamic model parameters and the underlying neural drive from BOLD (fMRI) signals. First, in simulated neural circuit models, estimation accuracy was investigated under varying levels of observation noise (SNR), process noise structures, and observation sampling intervals (dt). When compared to the CKF, the CD-CKF consistently exhibited better accuracy for a given SNR, sharp accuracy increase with higher SNR, and persistent error reduction with smaller dt. Remarkably, CD-CKF accuracy shows only a mild deterioration for non-Gaussian process noise, specifically with Poisson noise, a commonly assumed form of background fluctuations in neuronal systems. Second, in simulated hemodynamic models, parametric estimates were consistently improved under CD-CKF. Critically, time-localization of the underlying neural drive, a determinant factor in fMRI-based functional connectivity studies, was significantly more accurate under CD-CKF. In conclusion, and with the CKF recently benchmarked against other advanced Bayesian techniques, the CD-CKF framework could provide significant gains in robustness and accuracy when estimating a variety of biological phenomena models where the underlying process dynamics unfold at time scales faster than those seen in collected measurements.

  20. Hybrid Cubature Kalman filtering for identifying nonlinear models from sampled recording: Estimation of neuronal dynamics

    PubMed Central

    2017-01-01

    Kalman filtering methods have long been regarded as efficient adaptive Bayesian techniques for estimating hidden states in models of linear dynamical systems under Gaussian uncertainty. Recent advents of the Cubature Kalman filter (CKF) have extended this efficient estimation property to nonlinear systems, and also to hybrid nonlinear problems where by the processes are continuous and the observations are discrete (continuous-discrete CD-CKF). Employing CKF techniques, therefore, carries high promise for modeling many biological phenomena where the underlying processes exhibit inherently nonlinear, continuous, and noisy dynamics and the associated measurements are uncertain and time-sampled. This paper investigates the performance of cubature filtering (CKF and CD-CKF) in two flagship problems arising in the field of neuroscience upon relating brain functionality to aggregate neurophysiological recordings: (i) estimation of the firing dynamics and the neural circuit model parameters from electric potentials (EP) observations, and (ii) estimation of the hemodynamic model parameters and the underlying neural drive from BOLD (fMRI) signals. First, in simulated neural circuit models, estimation accuracy was investigated under varying levels of observation noise (SNR), process noise structures, and observation sampling intervals (dt). When compared to the CKF, the CD-CKF consistently exhibited better accuracy for a given SNR, sharp accuracy increase with higher SNR, and persistent error reduction with smaller dt. Remarkably, CD-CKF accuracy shows only a mild deterioration for non-Gaussian process noise, specifically with Poisson noise, a commonly assumed form of background fluctuations in neuronal systems. Second, in simulated hemodynamic models, parametric estimates were consistently improved under CD-CKF. Critically, time-localization of the underlying neural drive, a determinant factor in fMRI-based functional connectivity studies, was significantly more accurate under CD-CKF. In conclusion, and with the CKF recently benchmarked against other advanced Bayesian techniques, the CD-CKF framework could provide significant gains in robustness and accuracy when estimating a variety of biological phenomena models where the underlying process dynamics unfold at time scales faster than those seen in collected measurements. PMID:28727850

  1. Neural Global Pattern Similarity Underlies True and False Memories.

    PubMed

    Ye, Zhifang; Zhu, Bi; Zhuang, Liping; Lu, Zhonglin; Chen, Chuansheng; Xue, Gui

    2016-06-22

    The neural processes giving rise to human memory strength signals remain poorly understood. Inspired by formal computational models that posit a central role of global matching in memory strength, we tested a novel hypothesis that the strengths of both true and false memories arise from the global similarity of an item's neural activation pattern during retrieval to that of all the studied items during encoding (i.e., the encoding-retrieval neural global pattern similarity [ER-nGPS]). We revealed multiple ER-nGPS signals that carried distinct information and contributed differentially to true and false memories: Whereas the ER-nGPS in the parietal regions reflected semantic similarity and was scaled with the recognition strengths of both true and false memories, ER-nGPS in the visual cortex contributed solely to true memory. Moreover, ER-nGPS differences between the parietal and visual cortices were correlated with frontal monitoring processes. By combining computational and neuroimaging approaches, our results advance a mechanistic understanding of memory strength in recognition. What neural processes give rise to memory strength signals, and lead to our conscious feelings of familiarity? Using fMRI, we found that the memory strength of a given item depends not only on how it was encoded during learning, but also on the similarity of its neural representation with other studied items. The global neural matching signal, mainly in the parietal lobule, could account for the memory strengths of both studied and unstudied items. Interestingly, a different global matching signal, originated from the visual cortex, could distinguish true from false memories. The findings reveal multiple neural mechanisms underlying the memory strengths of events registered in the brain. Copyright © 2016 the authors 0270-6474/16/366792-11$15.00/0.

  2. Internal mechanisms underlying anticipatory language processing: Evidence from event-related-potentials and neural oscillations.

    PubMed

    Li, Xiaoqing; Zhang, Yuping; Xia, Jinyan; Swaab, Tamara Y

    2017-07-28

    Although numerous studies have demonstrated that the language processing system can predict upcoming content during comprehension, there is still no clear picture of the anticipatory stage of predictive processing. This electroencephalograph study examined the cognitive and neural oscillatory mechanisms underlying anticipatory processing during language comprehension, and the consequences of this prediction for bottom-up processing of predicted/unpredicted content. Participants read Mandarin Chinese sentences that were either strongly or weakly constraining and that contained critical nouns that were congruent or incongruent with the sentence contexts. We examined the effects of semantic predictability on anticipatory processing prior to the onset of the critical nouns and on integration of the critical nouns. The results revealed that, at the integration stage, the strong-constraint condition (compared to the weak-constraint condition) elicited a reduced N400 and reduced theta activity (4-7Hz) for the congruent nouns, but induced beta (13-18Hz) and theta (4-7Hz) power decreases for the incongruent nouns, indicating benefits of confirmed predictions and potential costs of disconfirmed predictions. More importantly, at the anticipatory stage, the strongly constraining context elicited an enhanced sustained anterior negativity and beta power decrease (19-25Hz), which indicates that strong prediction places a higher processing load on the anticipatory stage of processing. The differences (in the ease of processing and the underlying neural oscillatory activities) between anticipatory and integration stages of lexical processing were discussed with regard to predictive processing models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Subcortical processing of speech regularities underlies reading and music aptitude in children.

    PubMed

    Strait, Dana L; Hornickel, Jane; Kraus, Nina

    2011-10-17

    Neural sensitivity to acoustic regularities supports fundamental human behaviors such as hearing in noise and reading. Although the failure to encode acoustic regularities in ongoing speech has been associated with language and literacy deficits, how auditory expertise, such as the expertise that is associated with musical skill, relates to the brainstem processing of speech regularities is unknown. An association between musical skill and neural sensitivity to acoustic regularities would not be surprising given the importance of repetition and regularity in music. Here, we aimed to define relationships between the subcortical processing of speech regularities, music aptitude, and reading abilities in children with and without reading impairment. We hypothesized that, in combination with auditory cognitive abilities, neural sensitivity to regularities in ongoing speech provides a common biological mechanism underlying the development of music and reading abilities. We assessed auditory working memory and attention, music aptitude, reading ability, and neural sensitivity to acoustic regularities in 42 school-aged children with a wide range of reading ability. Neural sensitivity to acoustic regularities was assessed by recording brainstem responses to the same speech sound presented in predictable and variable speech streams. Through correlation analyses and structural equation modeling, we reveal that music aptitude and literacy both relate to the extent of subcortical adaptation to regularities in ongoing speech as well as with auditory working memory and attention. Relationships between music and speech processing are specifically driven by performance on a musical rhythm task, underscoring the importance of rhythmic regularity for both language and music. These data indicate common brain mechanisms underlying reading and music abilities that relate to how the nervous system responds to regularities in auditory input. Definition of common biological underpinnings for music and reading supports the usefulness of music for promoting child literacy, with the potential to improve reading remediation.

  4. Higher-order cognitive training effects on processing speed-related neural activity: a randomized trial.

    PubMed

    Motes, Michael A; Yezhuvath, Uma S; Aslan, Sina; Spence, Jeffrey S; Rypma, Bart; Chapman, Sandra B

    2018-02-01

    Higher-order cognitive training has shown to enhance performance in older adults, but the neural mechanisms underlying performance enhancement have yet to be fully disambiguated. This randomized trial examined changes in processing speed and processing speed-related neural activity in older participants (57-71 years of age) who underwent cognitive training (CT, N = 12) compared with wait-listed (WLC, N = 15) or exercise-training active (AC, N = 14) controls. The cognitive training taught cognitive control functions of strategic attention, integrative reasoning, and innovation over 12 weeks. All 3 groups worked through a functional magnetic resonance imaging processing speed task during 3 sessions (baseline, mid-training, and post-training). Although all groups showed faster reaction times (RTs) across sessions, the CT group showed a significant increase, and the WLC and AC groups showed significant decreases across sessions in the association between RT and BOLD signal change within the left prefrontal cortex (PFC). Thus, cognitive training led to a change in processing speed-related neural activity where faster processing speed was associated with reduced PFC activation, fitting previously identified neural efficiency profiles. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Neuromechanical principles underlying movement modularity and their implications for rehabilitation

    PubMed Central

    Ting, Lena H.; Chiel, Hillel J.; Trumbower, Randy D.; Allen, Jessica L.; McKay, J. Lucas; Hackney, Madeleine E.; Kesar, Trisha M.

    2015-01-01

    Summary Neuromechanical principles define the properties and problems that shape neural solutions for movement. Although the theoretical and experimental evidence is debated, we present arguments for consistent structures in motor patterns, i.e. motor modules, that are neuromechanical solutions for movement particular to an individual and shaped by evolutionary, developmental, and learning processes. As a consequence, motor modules may be useful in assessing sensorimotor deficits specific to an individual, and define targets for the rational development of novel rehabilitation therapies that enhance neural plasticity and sculpt motor recovery. We propose that motor module organization is disrupted and may be improved by therapy in spinal cord injury, stroke, and Parkinson’s disease. Recent studies provide insights into the yet unknown underlying neural mechanisms of motor modules, motor impairment and motor learning, and may lead to better understanding of the causal nature of modularity and its underlying neural substrates. PMID:25856485

  6. Influence of neural adaptation on dynamics and equilibrium state of neural activities in a ring neural network

    NASA Astrophysics Data System (ADS)

    Takiyama, Ken

    2017-12-01

    How neural adaptation affects neural information processing (i.e. the dynamics and equilibrium state of neural activities) is a central question in computational neuroscience. In my previous works, I analytically clarified the dynamics and equilibrium state of neural activities in a ring-type neural network model that is widely used to model the visual cortex, motor cortex, and several other brain regions. The neural dynamics and the equilibrium state in the neural network model corresponded to a Bayesian computation and statistically optimal multiple information integration, respectively, under a biologically inspired condition. These results were revealed in an analytically tractable manner; however, adaptation effects were not considered. Here, I analytically reveal how the dynamics and equilibrium state of neural activities in a ring neural network are influenced by spike-frequency adaptation (SFA). SFA is an adaptation that causes gradual inhibition of neural activity when a sustained stimulus is applied, and the strength of this inhibition depends on neural activities. I reveal that SFA plays three roles: (1) SFA amplifies the influence of external input in neural dynamics; (2) SFA allows the history of the external input to affect neural dynamics; and (3) the equilibrium state corresponds to the statistically optimal multiple information integration independent of the existence of SFA. In addition, the equilibrium state in a ring neural network model corresponds to the statistically optimal integration of multiple information sources under biologically inspired conditions, independent of the existence of SFA.

  7. Comparison of different artificial neural network architectures in modeling of Chlorella sp. flocculation.

    PubMed

    Zenooz, Alireza Moosavi; Ashtiani, Farzin Zokaee; Ranjbar, Reza; Nikbakht, Fatemeh; Bolouri, Oberon

    2017-07-03

    Biodiesel production from microalgae feedstock should be performed after growth and harvesting of the cells, and the most feasible method for harvesting and dewatering of microalgae is flocculation. Flocculation modeling can be used for evaluation and prediction of its performance under different affective parameters. However, the modeling of flocculation in microalgae is not simple and has not performed yet, under all experimental conditions, mostly due to different behaviors of microalgae cells during the process under different flocculation conditions. In the current study, the modeling of microalgae flocculation is studied with different neural network architectures. Microalgae species, Chlorella sp., was flocculated with ferric chloride under different conditions and then the experimental data modeled using artificial neural network. Neural network architectures of multilayer perceptron (MLP) and radial basis function architectures, failed to predict the targets successfully, though, modeling was effective with ensemble architecture of MLP networks. Comparison between the performances of the ensemble and each individual network explains the ability of the ensemble architecture in microalgae flocculation modeling.

  8. Positive mood enhances reward-related neural activity

    PubMed Central

    Nusslock, Robin

    2016-01-01

    Although behavioral research has shown that positive mood leads to desired outcomes in nearly every major life domain, no studies have directly examined the effects of positive mood on the neural processes underlying reward-related affect and goal-directed behavior. To address this gap, participants in the present fMRI study experienced either a positive (n = 20) or neutral (n = 20) mood induction and subsequently completed a monetary incentive delay task that assessed reward and loss processing. Consistent with prediction, positive mood elevated activity specifically during reward anticipation in corticostriatal neural regions that have been implicated in reward processing and goal-directed behavior, including the nucleus accumbens, caudate, lateral orbitofrontal cortex and putamen, as well as related paralimbic regions, including the anterior insula and ventromedial prefrontal cortex. These effects were not observed during reward outcome, loss anticipation or loss outcome. Critically, this is the first study to report that positive mood enhances reward-related neural activity. Our findings have implications for uncovering the neural mechanisms by which positive mood enhances goal-directed behavior, understanding the malleability of reward-related neural activity, and developing targeted treatments for psychiatric disorders characterized by deficits in reward processing. PMID:26833919

  9. Dynamic Organization of Hierarchical Memories

    PubMed Central

    Kurikawa, Tomoki; Kaneko, Kunihiko

    2016-01-01

    In the brain, external objects are categorized in a hierarchical way. Although it is widely accepted that objects are represented as static attractors in neural state space, this view does not take account interaction between intrinsic neural dynamics and external input, which is essential to understand how neural system responds to inputs. Indeed, structured spontaneous neural activity without external inputs is known to exist, and its relationship with evoked activities is discussed. Then, how categorical representation is embedded into the spontaneous and evoked activities has to be uncovered. To address this question, we studied bifurcation process with increasing input after hierarchically clustered associative memories are learned. We found a “dynamic categorization”; neural activity without input wanders globally over the state space including all memories. Then with the increase of input strength, diffuse representation of higher category exhibits transitions to focused ones specific to each object. The hierarchy of memories is embedded in the transition probability from one memory to another during the spontaneous dynamics. With increased input strength, neural activity wanders over a narrower state space including a smaller set of memories, showing more specific category or memory corresponding to the applied input. Moreover, such coarse-to-fine transitions are also observed temporally during transient process under constant input, which agrees with experimental findings in the temporal cortex. These results suggest the hierarchy emerging through interaction with an external input underlies hierarchy during transient process, as well as in the spontaneous activity. PMID:27618549

  10. An initial fMRI study on neural correlates of prayer in members of Alcoholics Anonymous.

    PubMed

    Galanter, Marc; Josipovic, Zoran; Dermatis, Helen; Weber, Jochen; Millard, Mary Alice

    2017-01-01

    Many individuals with alcohol-use disorders who had experienced alcohol craving before joining Alcoholics Anonymous (AA) report little or no craving after becoming long-term members. Their use of AA prayers may contribute to this. Neural mechanisms underlying this process have not been delineated. To define experiential and neural correlates of diminished alcohol craving following AA prayers among members with long-term abstinence. Twenty AA members with long-term abstinence participated. Self-report measures and functional magnetic resonance imaging of differential neural response to alcohol-craving-inducing images were obtained in three conditions: after reading of AA prayers, after reading irrelevant news, and with passive viewing. Random-effects robust regressions were computed for the main effect (prayer > passive + news) and for estimating the correlations between the main effect and the self-report measures. Compared to the other two conditions, the prayer condition was characterized by: less self-reported craving; increased activation in left-anterior middle frontal gyrus, left superior parietal lobule, bilateral precuneus, and bilateral posterior middle temporal gyrus. Craving following prayer was inversely correlated with activation in brain areas associated with self-referential processing and the default mode network, and with characteristics reflecting AA program involvement. AA members' prayer was associated with a relative reduction in self-reported craving and with concomitant engagement of neural mechanisms that reflect control of attention and emotion. These findings suggest neural processes underlying the apparent effectiveness of AA prayer.

  11. Perception for Outdoor Navigation

    DTIC Science & Technology

    1990-11-01

    without lane marktings. Our perception modules use a variety of techniques for video processing (clusering theory, symbolic feature detection, neural nets...on gravel and dirt roads, as expected. The most difficult case involved a dirt road in a forest, which was mainly distinguishable in the video images...in that estimate. u bIsrshigl Neural Nets. Under separate funding, we have driven the Naviab using neural nets to track the road in video iages. We ame

  12. Early neural activation during facial affect processing in adolescents with Autism Spectrum Disorder.

    PubMed

    Leung, Rachel C; Pang, Elizabeth W; Cassel, Daniel; Brian, Jessica A; Smith, Mary Lou; Taylor, Margot J

    2015-01-01

    Impaired social interaction is one of the hallmarks of Autism Spectrum Disorder (ASD). Emotional faces are arguably the most critical visual social stimuli and the ability to perceive, recognize, and interpret emotions is central to social interaction and communication, and subsequently healthy social development. However, our understanding of the neural and cognitive mechanisms underlying emotional face processing in adolescents with ASD is limited. We recruited 48 adolescents, 24 with high functioning ASD and 24 typically developing controls. Participants completed an implicit emotional face processing task in the MEG. We examined spatiotemporal differences in neural activation between the groups during implicit angry and happy face processing. While there were no differences in response latencies between groups across emotions, adolescents with ASD had lower accuracy on the implicit emotional face processing task when the trials included angry faces. MEG data showed atypical neural activity in adolescents with ASD during angry and happy face processing, which included atypical activity in the insula, anterior and posterior cingulate and temporal and orbitofrontal regions. Our findings demonstrate differences in neural activity during happy and angry face processing between adolescents with and without ASD. These differences in activation in social cognitive regions may index the difficulties in face processing and in comprehension of social reward and punishment in the ASD group. Thus, our results suggest that atypical neural activation contributes to impaired affect processing, and thus social cognition, in adolescents with ASD.

  13. Genetic and Anatomical Basis of the Barrier Separating Wakefulness and Anesthetic-Induced Unresponsiveness

    PubMed Central

    Hung, Hsiao-Tung; Koh, Kyunghee; Sowcik, Mallory; Sehgal, Amita; Kelz, Max B.

    2013-01-01

    A robust, bistable switch regulates the fluctuations between wakefulness and natural sleep as well as those between wakefulness and anesthetic-induced unresponsiveness. We previously provided experimental evidence for the existence of a behavioral barrier to transitions between these states of arousal, which we call neural inertia. Here we show that neural inertia is controlled by processes that contribute to sleep homeostasis and requires four genes involved in electrical excitability: Sh, sss, na and unc79. Although loss of function mutations in these genes can increase or decrease sensitivity to anesthesia induction, surprisingly, they all collapse neural inertia. These effects are genetically selective: neural inertia is not perturbed by loss-of-function mutations in all genes required for the sleep/wake cycle. These effects are also anatomically selective: sss acts in different neurons to influence arousal-promoting and arousal-suppressing processes underlying neural inertia. Supporting the idea that anesthesia and sleep share some, but not all, genetic and anatomical arousal-regulating pathways, we demonstrate that increasing homeostatic sleep drive widens the neural inertial barrier. We propose that processes selectively contributing to sleep homeostasis and neural inertia may be impaired in pathophysiological conditions such as coma and persistent vegetative states. PMID:24039590

  14. Dynamic cultural influences on neural representations of the self.

    PubMed

    Chiao, Joan Y; Harada, Tokiko; Komeda, Hidetsugu; Li, Zhang; Mano, Yoko; Saito, Daisuke; Parrish, Todd B; Sadato, Norihiro; Iidaka, Tetsuya

    2010-01-01

    People living in multicultural environments often encounter situations which require them to acquire different cultural schemas and to switch between these cultural schemas depending on their immediate sociocultural context. Prior behavioral studies show that priming cultural schemas reliably impacts mental processes and behavior underlying self-concept. However, less well understood is whether or not cultural priming affects neurobiological mechanisms underlying the self. Here we examined whether priming cultural values of individualism and collectivism in bicultural individuals affects neural activity in cortical midline structures underlying self-relevant processes using functional magnetic resonance imaging. Biculturals primed with individualistic values showed increased activation within medial prefrontal cortex (MPFC) and posterior cingulate cortex (PCC) during general relative to contextual self-judgments, whereas biculturals primed with collectivistic values showed increased response within MPFC and PCC during contextual relative to general self-judgments. Moreover, degree of cultural priming was positively correlated with degree of MPFC and PCC activity during culturally congruent self-judgments. These findings illustrate the dynamic influence of culture on neural representations underlying the self and, more broadly, suggest a neurobiological basis by which people acculturate to novel environments.

  15. An integrative neural model of social perception, action observation, and theory of mind.

    PubMed

    Yang, Daniel Y-J; Rosenblau, Gabriela; Keifer, Cara; Pelphrey, Kevin A

    2015-04-01

    In the field of social neuroscience, major branches of research have been instrumental in describing independent components of typical and aberrant social information processing, but the field as a whole lacks a comprehensive model that integrates different branches. We review existing research related to the neural basis of three key neural systems underlying social information processing: social perception, action observation, and theory of mind. We propose an integrative model that unites these three processes and highlights the posterior superior temporal sulcus (pSTS), which plays a central role in all three systems. Furthermore, we integrate these neural systems with the dual system account of implicit and explicit social information processing. Large-scale meta-analyses based on Neurosynth confirmed that the pSTS is at the intersection of the three neural systems. Resting-state functional connectivity analysis with 1000 subjects confirmed that the pSTS is connected to all other regions in these systems. The findings presented in this review are specifically relevant for psychiatric research especially disorders characterized by social deficits such as autism spectrum disorder. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. An integrative neural model of social perception, action observation, and theory of mind

    PubMed Central

    Yang, Daniel Y.-J.; Rosenblau, Gabriela; Keifer, Cara; Pelphrey, Kevin A.

    2016-01-01

    In the field of social neuroscience, major branches of research have been instrumental in describing independent components of typical and aberrant social information processing, but the field as a whole lacks a comprehensive model that integrates different branches. We review existing research related to the neural basis of three key neural systems underlying social information processing: social perception, action observation, and theory of mind. We propose an integrative model that unites these three processes and highlights the posterior superior temporal sulcus (pSTS), which plays a central role in all three systems. Furthermore, we integrate these neural systems with the dual system account of implicit and explicit social information processing. Large-scale meta-analyses based on Neurosynth confirmed that the pSTS is at the intersection of the three neural systems. Resting-state functional connectivity analysis with 1000 subjects confirmed that the pSTS is connected to all other regions in these systems. The findings presented in this review are specifically relevant for psychiatric research especially disorders characterized by social deficits such as autism spectrum disorder. PMID:25660957

  17. Dissociated neural processing for decisions in managers and non-managers.

    PubMed

    Caspers, Svenja; Heim, Stefan; Lucas, Marc G; Stephan, Egon; Fischer, Lorenz; Amunts, Katrin; Zilles, Karl

    2012-01-01

    Functional neuroimaging studies of decision-making so far mainly focused on decisions under uncertainty or negotiation with other persons. Dual process theory assumes that, in such situations, decision making relies on either a rapid intuitive, automated or a slower rational processing system. However, it still remains elusive how personality factors or professional requirements might modulate the decision process and the underlying neural mechanisms. Since decision making is a key task of managers, we hypothesized that managers, facing higher pressure for frequent and rapid decisions than non-managers, prefer the heuristic, automated decision strategy in contrast to non-managers. Such different strategies may, in turn, rely on different neural systems. We tested managers and non-managers in a functional magnetic resonance imaging study using a forced-choice paradigm on word-pairs. Managers showed subcortical activation in the head of the caudate nucleus, and reduced hemodynamic response within the cortex. In contrast, non-managers revealed the opposite pattern. With the head of the caudate nucleus being an initiating component for process automation, these results supported the initial hypothesis, hinting at automation during decisions in managers. More generally, the findings reveal how different professional requirements might modulate cognitive decision processing.

  18. Dissociated Neural Processing for Decisions in Managers and Non-Managers

    PubMed Central

    Caspers, Svenja; Heim, Stefan; Lucas, Marc G.; Stephan, Egon; Fischer, Lorenz; Amunts, Katrin; Zilles, Karl

    2012-01-01

    Functional neuroimaging studies of decision-making so far mainly focused on decisions under uncertainty or negotiation with other persons. Dual process theory assumes that, in such situations, decision making relies on either a rapid intuitive, automated or a slower rational processing system. However, it still remains elusive how personality factors or professional requirements might modulate the decision process and the underlying neural mechanisms. Since decision making is a key task of managers, we hypothesized that managers, facing higher pressure for frequent and rapid decisions than non-managers, prefer the heuristic, automated decision strategy in contrast to non-managers. Such different strategies may, in turn, rely on different neural systems. We tested managers and non-managers in a functional magnetic resonance imaging study using a forced-choice paradigm on word-pairs. Managers showed subcortical activation in the head of the caudate nucleus, and reduced hemodynamic response within the cortex. In contrast, non-managers revealed the opposite pattern. With the head of the caudate nucleus being an initiating component for process automation, these results supported the initial hypothesis, hinting at automation during decisions in managers. More generally, the findings reveal how different professional requirements might modulate cognitive decision processing. PMID:22927984

  19. Cooperating attackers in neural cryptography.

    PubMed

    Shacham, Lanir N; Klein, Einat; Mislovaty, Rachel; Kanter, Ido; Kinzel, Wolfgang

    2004-06-01

    A successful attack strategy in neural cryptography is presented. The neural cryptosystem, based on synchronization of neural networks by mutual learning, has been recently shown to be secure under different attack strategies. The success of the advanced attacker presented here, called the "majority-flipping attacker," does not decay with the parameters of the model. This attacker's outstanding success is due to its using a group of attackers which cooperate throughout the synchronization process, unlike any other attack strategy known. An analytical description of this attack is also presented, and fits the results of simulations.

  20. Interfacing to the brain’s motor decisions

    PubMed Central

    2017-01-01

    It has been long known that neural activity, recorded with electrophysiological methods, contains rich information about a subject’s motor intentions, sensory experiences, allocation of attention, action planning, and even abstract thoughts. All these functions have been the subject of neurophysiological investigations, with the goal of understanding how neuronal activity represents behavioral parameters, sensory inputs, and cognitive functions. The field of brain-machine interfaces (BMIs) strives for a somewhat different goal: it endeavors to extract information from neural modulations to create a communication link between the brain and external devices. Although many remarkable successes have been already achieved in the BMI field, questions remain regarding the possibility of decoding high-order neural representations, such as decision making. Could BMIs be employed to decode the neural representations of decisions underlying goal-directed actions? In this review we lay out a framework that describes the computations underlying goal-directed actions as a multistep process performed by multiple cortical and subcortical areas. We then discuss how BMIs could connect to different decision-making steps and decode the neural processing ongoing before movements are initiated. Such decision-making BMIs could operate as a system with prediction that offers many advantages, such as shorter reaction time, better error processing, and improved unsupervised learning. To present the current state of the art, we review several recent BMIs incorporating decision-making components. PMID:28003406

  1. Biophoton signal transmission and processing in the brain.

    PubMed

    Tang, Rendong; Dai, Jiapei

    2014-10-05

    The transmission and processing of neural information in the nervous system plays a key role in neural functions. It is well accepted that neural communication is mediated by bioelectricity and chemical molecules via the processes called bioelectrical and chemical transmission, respectively. Indeed, the traditional theories seem to give valuable explanations for the basic functions of the nervous system, but difficult to construct general accepted concepts or principles to provide reasonable explanations of higher brain functions and mental activities, such as perception, learning and memory, emotion and consciousness. Therefore, many unanswered questions and debates over the neural encoding and mechanisms of neuronal networks remain. Cell to cell communication by biophotons, also called ultra-weak photon emissions, has been demonstrated in several plants, bacteria and certain animal cells. Recently, both experimental evidence and theoretical speculation have suggested that biophotons may play a potential role in neural signal transmission and processing, contributing to the understanding of the high functions of nervous system. In this paper, we review the relevant experimental findings and discuss the possible underlying mechanisms of biophoton signal transmission and processing in the nervous system. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. The neural correlates of beauty comparison

    PubMed Central

    Mussweiler, Thomas; Mullins, Paul; Linden, David E. J.

    2014-01-01

    Beauty is in the eye of the beholder. How attractive someone is perceived to be depends on the individual or cultural standards to which this person is compared. But although comparisons play a central role in the way people judge the appearance of others, the brain processes underlying attractiveness comparisons remain unknown. In the present experiment, we tested the hypothesis that attractiveness comparisons rely on the same cognitive and neural mechanisms as comparisons of simple nonsocial magnitudes such as size. We recorded brain activity with functional magnetic resonance imaging (fMRI) while participants compared the beauty or height of two women or two dogs. Our data support the hypothesis of a common process underlying these different types of comparisons. First, we demonstrate that the distance effect characteristic of nonsocial comparisons also holds for attractiveness comparisons. Behavioral results indicated, for all our comparisons, longer response times for near than far distances. Second, the neural correlates of these distance effects overlapped in a frontoparietal network known for its involvement in processing simple nonsocial quantities. These results provide evidence for overlapping processes in the comparison of physical attractiveness and nonsocial magnitudes. PMID:23508477

  3. The neural correlates of beauty comparison.

    PubMed

    Kedia, Gayannée; Mussweiler, Thomas; Mullins, Paul; Linden, David E J

    2014-05-01

    Beauty is in the eye of the beholder. How attractive someone is perceived to be depends on the individual or cultural standards to which this person is compared. But although comparisons play a central role in the way people judge the appearance of others, the brain processes underlying attractiveness comparisons remain unknown. In the present experiment, we tested the hypothesis that attractiveness comparisons rely on the same cognitive and neural mechanisms as comparisons of simple nonsocial magnitudes such as size. We recorded brain activity with functional magnetic resonance imaging (fMRI) while participants compared the beauty or height of two women or two dogs. Our data support the hypothesis of a common process underlying these different types of comparisons. First, we demonstrate that the distance effect characteristic of nonsocial comparisons also holds for attractiveness comparisons. Behavioral results indicated, for all our comparisons, longer response times for near than far distances. Second, the neural correlates of these distance effects overlapped in a frontoparietal network known for its involvement in processing simple nonsocial quantities. These results provide evidence for overlapping processes in the comparison of physical attractiveness and nonsocial magnitudes.

  4. The neural correlates of agrammatism: Evidence from aphasic and healthy speakers performing an overt picture description task

    PubMed Central

    Schönberger, Eva; Heim, Stefan; Meffert, Elisabeth; Pieperhoff, Peter; da Costa Avelar, Patricia; Huber, Walter; Binkofski, Ferdinand; Grande, Marion

    2014-01-01

    Functional brain imaging studies have improved our knowledge of the neural localization of language functions and the functional reorganization after a lesion. However, the neural correlates of agrammatic symptoms in aphasia remain largely unknown. The present fMRI study examined the neural correlates of morpho-syntactic encoding and agrammatic errors in continuous language production by combining three approaches. First, the neural mechanisms underlying natural morpho-syntactic processing in a picture description task were analyzed in 15 healthy speakers. Second, agrammatic-like speech behavior was induced in the same group of healthy speakers to study the underlying functional processes by limiting the utterance length. In a third approach, five agrammatic participants performed the picture description task to gain insights in the neural correlates of agrammatism and the functional reorganization of language processing after stroke. In all approaches, utterances were analyzed for syntactic completeness, complexity, and morphology. Event-related data analysis was conducted by defining every clause-like unit (CLU) as an event with its onset-time and duration. Agrammatic and correct CLUs were contrasted. Due to the small sample size as well as heterogeneous lesion sizes and sites with lesion foci in the insula lobe, inferior frontal, superior temporal and inferior parietal areas the activation patterns in the agrammatic speakers were analyzed on a single subject level. In the group of healthy speakers, posterior temporal and inferior parietal areas were associated with greater morpho-syntactic demands in complete and complex CLUs. The intentional manipulation of morpho-syntactic structures and the omission of function words were associated with additional inferior frontal activation. Overall, the results revealed that the investigation of the neural correlates of agrammatic language production can be reasonably conducted with an overt language production paradigm. PMID:24711802

  5. Tuning Neural Phase Entrainment to Speech.

    PubMed

    Falk, Simone; Lanzilotti, Cosima; Schön, Daniele

    2017-08-01

    Musical rhythm positively impacts on subsequent speech processing. However, the neural mechanisms underlying this phenomenon are so far unclear. We investigated whether carryover effects from a preceding musical cue to a speech stimulus result from a continuation of neural phase entrainment to periodicities that are present in both music and speech. Participants listened and memorized French metrical sentences that contained (quasi-)periodic recurrences of accents and syllables. Speech stimuli were preceded by a rhythmically regular or irregular musical cue. Our results show that the presence of a regular cue modulates neural response as estimated by EEG power spectral density, intertrial coherence, and source analyses at critical frequencies during speech processing compared with the irregular condition. Importantly, intertrial coherences for regular cues were indicative of the participants' success in memorizing the subsequent speech stimuli. These findings underscore the highly adaptive nature of neural phase entrainment across fundamentally different auditory stimuli. They also support current models of neural phase entrainment as a tool of predictive timing and attentional selection across cognitive domains.

  6. The roles of cannabinoid and dopamine receptor systems in neural emotional learning circuits: implications for schizophrenia and addiction.

    PubMed

    Laviolette, S R; Grace, A A

    2006-07-01

    Cannabinoids represent one of the most widely used hallucinogenic drugs and induce profound alterations in sensory perception and emotional processing. Similarly, the dopamine (DA) neurotransmitter system is critical for the central processing of emotion and motivation. Functional disturbances in either of these neurotransmitter systems are well-established correlates of the psychopathological symptoms and behavioral manifestations observed in addiction and schizophrenia. Increasing evidence from the anatomical, pharmacological and behavioral neuroscience fields points to complex functional interactions between these receptor systems at the anatomical, pharmacological and neural systems levels. An important question relates to whether these systems act in an orchestrated manner to produce the emotional processing and sensory perception deficits underlying addiction and schizophrenia. This review describes evidence for functional neural interactions between cannabinoid and DA receptor systems and how disturbances in this neural circuitry may underlie the aberrant emotional learning and processing observed in disorders such as addiction and schizophrenia.

  7. Alpha band event-related desynchronization underlying social situational context processing during irony comprehension: A magnetoencephalography source localization study.

    PubMed

    Akimoto, Yoritaka; Takahashi, Hidetoshi; Gunji, Atsuko; Kaneko, Yuu; Asano, Michiko; Matsuo, Junko; Ota, Miho; Kunugi, Hiroshi; Hanakawa, Takashi; Mazuka, Reiko; Kamio, Yoko

    2017-12-01

    Irony comprehension requires integration of social contextual information. Previous studies have investigated temporal aspects of irony processing and its neural substrates using psychological/electroencephalogram or functional magnetic resonance imaging methods, but have not clarified the temporospatial neural mechanisms of irony comprehension. Therefore, we used magnetoencephalography to investigate the neural generators of alpha-band (8-13Hz) event-related desynchronization (ERD) occurring from 600 to 900ms following the onset of a critical sentence at which social situational contexts activated ironic representation. We found that the right anterior temporal lobe, which is involved in processing social knowledge and evaluating others' intentions, exhibited stronger alpha ERD following an ironic statement than following a literal statement. We also found that alpha power in the left anterior temporal lobe correlated with the participants' communication abilities. These results elucidate the temporospatial neural mechanisms of language comprehension in social contexts, including non-literal processing. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Prefrontal cortex, dopamine, and jealousy endophenotype.

    PubMed

    Marazziti, Donatella; Poletti, Michele; Dell'Osso, Liliana; Baroni, Stefano; Bonuccelli, Ubaldo

    2013-02-01

    Jealousy is a complex emotion characterized by the perception of a threat of loss of something that the person values,particularly in reference to a relationship with a loved one, which includes affective, cognitive, and behavioral components. Neural systems and cognitive processes underlying jealousy are relatively unclear, and only a few neuroimaging studies have investigated them. The current article discusses recent empirical findings on delusional jealousy, which is the most severe form of this feeling, in neurodegenerative diseases. After reviewing empirical findings on neurological and psychiatric disorders with delusional jealousy, and after considering its high prevalence in patients with Parkinson's disease under dopamine agonist treatment, we propose a core neural network and core cognitive processes at the basis of (delusional) jealousy, characterizing this symptom as possible endophenotype. In any case,empirical investigation of the neural bases of jealousy is just beginning, and further studies are strongly needed to elucidate the biological roots of this complex emotion.

  9. Neural and Computational Mechanisms of Action Processing: Interaction between Visual and Motor Representations.

    PubMed

    Giese, Martin A; Rizzolatti, Giacomo

    2015-10-07

    Action recognition has received enormous interest in the field of neuroscience over the last two decades. In spite of this interest, the knowledge in terms of fundamental neural mechanisms that provide constraints for underlying computations remains rather limited. This fact stands in contrast with a wide variety of speculative theories about how action recognition might work. This review focuses on new fundamental electrophysiological results in monkeys, which provide constraints for the detailed underlying computations. In addition, we review models for action recognition and processing that have concrete mathematical implementations, as opposed to conceptual models. We think that only such implemented models can be meaningfully linked quantitatively to physiological data and have a potential to narrow down the many possible computational explanations for action recognition. In addition, only concrete implementations allow judging whether postulated computational concepts have a feasible implementation in terms of realistic neural circuits. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. A Biologically Realistic Cortical Model of Eye Movement Control in Reading

    ERIC Educational Resources Information Center

    Heinzle, Jakob; Hepp, Klaus; Martin, Kevan A. C.

    2010-01-01

    Reading is a highly complex task involving a precise integration of vision, attention, saccadic eye movements, and high-level language processing. Although there is a long history of psychological research in reading, it is only recently that imaging studies have identified some neural correlates of reading. Thus, the underlying neural mechanisms…

  11. Neural Correlates of Explicit versus Implicit Facial Emotion Processing in ASD

    ERIC Educational Resources Information Center

    Luckhardt, Christina; Kröger, Anne; Cholemkery, Hannah; Bender, Stephan; Freitag, Christine M.

    2017-01-01

    The underlying neural mechanisms of implicit and explicit facial emotion recognition (FER) were studied in children and adolescents with autism spectrum disorder (ASD) compared to matched typically developing controls (TDC). EEG was obtained from N = 21 ASD and N = 16 TDC. Task performance, visual (P100, N170) and cognitive (late positive…

  12. Brain Activations Associated with Sign Production Using Word and Picture Inputs in Deaf Signers

    ERIC Educational Resources Information Center

    Hu, Zhiguo; Wang, Wenjing; Liu, Hongyan; Peng, Danling; Yang, Yanhui; Li, Kuncheng; Zhang, John X.; Ding, Guosheng

    2011-01-01

    Effective literacy education in deaf students calls for psycholinguistic research revealing the cognitive and neural mechanisms underlying their written language processing. When learning a written language, deaf students are often instructed to sign out printed text. The present fMRI study was intended to reveal the neural substrates associated…

  13. Dysfunctional Neural Network of Spatial Working Memory Contributes to Developmental Dyscalculia

    ERIC Educational Resources Information Center

    Rotzer, S.; Loenneker, T.; Kucian, K.; Martin, E.; Klaver, P.; von Aster, M.

    2009-01-01

    The underlying neural mechanisms of developmental dyscalculia (DD) are still far from being clearly understood. Even the behavioral processes that generate or influence this heterogeneous disorder are a matter of controversy. To date, the few studies examining functional brain activation in children with DD mainly focus on number and counting…

  14. Neural Correlates of Perceptual Narrowing in Cross-Species Face-Voice Matching

    ERIC Educational Resources Information Center

    Grossmann, Tobias; Missana, Manuela; Friederici, Angela D.; Ghazanfar, Asif A.

    2012-01-01

    Integrating the multisensory features of talking faces is critical to learning and extracting coherent meaning from social signals. While we know much about the development of these capacities at the behavioral level, we know very little about the underlying neural processes. One prominent behavioral milestone of these capacities is the perceptual…

  15. A specialized face-processing model inspired by the organization of monkey face patches explains several face-specific phenomena observed in humans.

    PubMed

    Farzmahdi, Amirhossein; Rajaei, Karim; Ghodrati, Masoud; Ebrahimpour, Reza; Khaligh-Razavi, Seyed-Mahdi

    2016-04-26

    Converging reports indicate that face images are processed through specialized neural networks in the brain -i.e. face patches in monkeys and the fusiform face area (FFA) in humans. These studies were designed to find out how faces are processed in visual system compared to other objects. Yet, the underlying mechanism of face processing is not completely revealed. Here, we show that a hierarchical computational model, inspired by electrophysiological evidence on face processing in primates, is able to generate representational properties similar to those observed in monkey face patches (posterior, middle and anterior patches). Since the most important goal of sensory neuroscience is linking the neural responses with behavioral outputs, we test whether the proposed model, which is designed to account for neural responses in monkey face patches, is also able to predict well-documented behavioral face phenomena observed in humans. We show that the proposed model satisfies several cognitive face effects such as: composite face effect and the idea of canonical face views. Our model provides insights about the underlying computations that transfer visual information from posterior to anterior face patches.

  16. A specialized face-processing model inspired by the organization of monkey face patches explains several face-specific phenomena observed in humans

    PubMed Central

    Farzmahdi, Amirhossein; Rajaei, Karim; Ghodrati, Masoud; Ebrahimpour, Reza; Khaligh-Razavi, Seyed-Mahdi

    2016-01-01

    Converging reports indicate that face images are processed through specialized neural networks in the brain –i.e. face patches in monkeys and the fusiform face area (FFA) in humans. These studies were designed to find out how faces are processed in visual system compared to other objects. Yet, the underlying mechanism of face processing is not completely revealed. Here, we show that a hierarchical computational model, inspired by electrophysiological evidence on face processing in primates, is able to generate representational properties similar to those observed in monkey face patches (posterior, middle and anterior patches). Since the most important goal of sensory neuroscience is linking the neural responses with behavioral outputs, we test whether the proposed model, which is designed to account for neural responses in monkey face patches, is also able to predict well-documented behavioral face phenomena observed in humans. We show that the proposed model satisfies several cognitive face effects such as: composite face effect and the idea of canonical face views. Our model provides insights about the underlying computations that transfer visual information from posterior to anterior face patches. PMID:27113635

  17. Short-term synaptic plasticity and heterogeneity in neural systems

    NASA Astrophysics Data System (ADS)

    Mejias, J. F.; Kappen, H. J.; Longtin, A.; Torres, J. J.

    2013-01-01

    We review some recent results on neural dynamics and information processing which arise when considering several biophysical factors of interest, in particular, short-term synaptic plasticity and neural heterogeneity. The inclusion of short-term synaptic plasticity leads to enhanced long-term memory capacities, a higher robustness of memory to noise, and irregularity in the duration of the so-called up cortical states. On the other hand, considering some level of neural heterogeneity in neuron models allows neural systems to optimize information transmission in rate coding and temporal coding, two strategies commonly used by neurons to codify information in many brain areas. In all these studies, analytical approximations can be made to explain the underlying dynamics of these neural systems.

  18. Parameter diagnostics of phases and phase transition learning by neural networks

    NASA Astrophysics Data System (ADS)

    Suchsland, Philippe; Wessel, Stefan

    2018-05-01

    We present an analysis of neural network-based machine learning schemes for phases and phase transitions in theoretical condensed matter research, focusing on neural networks with a single hidden layer. Such shallow neural networks were previously found to be efficient in classifying phases and locating phase transitions of various basic model systems. In order to rationalize the emergence of the classification process and for identifying any underlying physical quantities, it is feasible to examine the weight matrices and the convolutional filter kernels that result from the learning process of such shallow networks. Furthermore, we demonstrate how the learning-by-confusing scheme can be used, in combination with a simple threshold-value classification method, to diagnose the learning parameters of neural networks. In particular, we study the classification process of both fully-connected and convolutional neural networks for the two-dimensional Ising model with extended domain wall configurations included in the low-temperature regime. Moreover, we consider the two-dimensional XY model and contrast the performance of the learning-by-confusing scheme and convolutional neural networks trained on bare spin configurations to the case of preprocessed samples with respect to vortex configurations. We discuss these findings in relation to similar recent investigations and possible further applications.

  19. Effects of Spike Anticipation on the Spiking Dynamics of Neural Networks

    PubMed Central

    de Santos-Sierra, Daniel; Sanchez-Jimenez, Abel; Garcia-Vellisca, Mariano A.; Navas, Adrian; Villacorta-Atienza, Jose A.

    2015-01-01

    Synchronization is one of the central phenomena involved in information processing in living systems. It is known that the nervous system requires the coordinated activity of both local and distant neural populations. Such an interplay allows to merge different information modalities in a whole processing supporting high-level mental skills as understanding, memory, abstraction, etc. Though, the biological processes underlying synchronization in the brain are not fully understood there have been reported a variety of mechanisms supporting different types of synchronization both at theoretical and experimental level. One of the more intriguing of these phenomena is the anticipating synchronization, which has been recently reported in a pair of unidirectionally coupled artificial neurons under simple conditions (Pyragiene and Pyragas, 2013), where the slave neuron is able to anticipate in time the behavior of the master one. In this paper, we explore the effect of spike anticipation over the information processing performed by a neural network at functional and structural level. We show that the introduction of intermediary neurons in the network enhances spike anticipation and analyse how these variations in spike anticipation can significantly change the firing regime of the neural network according to its functional and structural properties. In addition we show that the interspike interval (ISI), one of the main features of the neural response associated with the information coding, can be closely related to spike anticipation by each spike, and how synaptic plasticity can be modulated through that relationship. This study has been performed through numerical simulation of a coupled system of Hindmarsh–Rose neurons. PMID:26648863

  20. Effects of Spike Anticipation on the Spiking Dynamics of Neural Networks.

    PubMed

    de Santos-Sierra, Daniel; Sanchez-Jimenez, Abel; Garcia-Vellisca, Mariano A; Navas, Adrian; Villacorta-Atienza, Jose A

    2015-01-01

    Synchronization is one of the central phenomena involved in information processing in living systems. It is known that the nervous system requires the coordinated activity of both local and distant neural populations. Such an interplay allows to merge different information modalities in a whole processing supporting high-level mental skills as understanding, memory, abstraction, etc. Though, the biological processes underlying synchronization in the brain are not fully understood there have been reported a variety of mechanisms supporting different types of synchronization both at theoretical and experimental level. One of the more intriguing of these phenomena is the anticipating synchronization, which has been recently reported in a pair of unidirectionally coupled artificial neurons under simple conditions (Pyragiene and Pyragas, 2013), where the slave neuron is able to anticipate in time the behavior of the master one. In this paper, we explore the effect of spike anticipation over the information processing performed by a neural network at functional and structural level. We show that the introduction of intermediary neurons in the network enhances spike anticipation and analyse how these variations in spike anticipation can significantly change the firing regime of the neural network according to its functional and structural properties. In addition we show that the interspike interval (ISI), one of the main features of the neural response associated with the information coding, can be closely related to spike anticipation by each spike, and how synaptic plasticity can be modulated through that relationship. This study has been performed through numerical simulation of a coupled system of Hindmarsh-Rose neurons.

  1. Future trends in Neuroimaging: Neural processes as expressed within real-life contexts

    PubMed Central

    Hasson, Uri; Honey, Christopher J.

    2012-01-01

    Human neuroscience research has changed dramatically with the proliferation and refinement of functional magnetic resonance imaging (fMRI) technologies. The early years of the technique were largely devoted to methods development and validation, and to the coarse-grained mapping of functional topographies. This paper will cover three emerging trends that we believe will be central to fMRI research in the coming decade. In the first section of this paper, we argue in favor of a shift from fine-grained functional labeling toward the characterization of underlying neural processes. In the second section, we examine three methodological developments that have improved our ability to characterize underlying neural processes using fMRI. In the last section, we highlight the trend towards more ecologically valid fMRI experiments, which engage neural circuits in real life conditions. We note that many of our cognitive faculties emerge from interpersonal interactions, and that a complete understanding of the cognitive processes within a single individual's brain cannot be achieved without understanding the interactions among individuals. Looking forward to the future of human fMRI, we conclude that the major constraint on new discoveries will not be related to the spatiotemporal resolution of the BOLD signal, which is constantly improving, but rather to the precision of our hypotheses and the creativity of our methods for testing them. PMID:22348879

  2. Suggestion-Induced Modulation of Semantic Priming during Functional Magnetic Resonance Imaging

    PubMed Central

    Ulrich, Martin; Kiefer, Markus; Bongartz, Walter; Grön, Georg; Hoenig, Klaus

    2015-01-01

    Using functional magnetic resonance imaging during a primed visual lexical decision task, we investigated the neural and functional mechanisms underlying modulations of semantic word processing through hypnotic suggestions aimed at altering lexical processing of primes. The priming task was to discriminate between target words and pseudowords presented 200 ms after the prime word which was semantically related or unrelated to the target. In a counterbalanced study design, each participant performed the task once at normal wakefulness and once after the administration of hypnotic suggestions to perceive the prime as a meaningless symbol of a foreign language. Neural correlates of priming were defined as significantly lower activations upon semantically related compared to unrelated trials. We found significant suggestive treatment-induced reductions in neural priming, albeit irrespective of the degree of suggestibility. Neural priming was attenuated upon suggestive treatment compared with normal wakefulness in brain regions supporting automatic (fusiform gyrus) and controlled semantic processing (superior and middle temporal gyri, pre- and postcentral gyri, and supplementary motor area). Hence, suggestions reduced semantic word processing by conjointly dampening both automatic and strategic semantic processes. PMID:25923740

  3. Cracking the Neural Code for Sensory Perception by Combining Statistics, Intervention, and Behavior.

    PubMed

    Panzeri, Stefano; Harvey, Christopher D; Piasini, Eugenio; Latham, Peter E; Fellin, Tommaso

    2017-02-08

    The two basic processes underlying perceptual decisions-how neural responses encode stimuli, and how they inform behavioral choices-have mainly been studied separately. Thus, although many spatiotemporal features of neural population activity, or "neural codes," have been shown to carry sensory information, it is often unknown whether the brain uses these features for perception. To address this issue, we propose a new framework centered on redefining the neural code as the neural features that carry sensory information used by the animal to drive appropriate behavior; that is, the features that have an intersection between sensory and choice information. We show how this framework leads to a new statistical analysis of neural activity recorded during behavior that can identify such neural codes, and we discuss how to combine intersection-based analysis of neural recordings with intervention on neural activity to determine definitively whether specific neural activity features are involved in a task. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. How learning to abstract shapes neural sound representations

    PubMed Central

    Ley, Anke; Vroomen, Jean; Formisano, Elia

    2014-01-01

    The transformation of acoustic signals into abstract perceptual representations is the essence of the efficient and goal-directed neural processing of sounds in complex natural environments. While the human and animal auditory system is perfectly equipped to process the spectrotemporal sound features, adequate sound identification and categorization require neural sound representations that are invariant to irrelevant stimulus parameters. Crucially, what is relevant and irrelevant is not necessarily intrinsic to the physical stimulus structure but needs to be learned over time, often through integration of information from other senses. This review discusses the main principles underlying categorical sound perception with a special focus on the role of learning and neural plasticity. We examine the role of different neural structures along the auditory processing pathway in the formation of abstract sound representations with respect to hierarchical as well as dynamic and distributed processing models. Whereas most fMRI studies on categorical sound processing employed speech sounds, the emphasis of the current review lies on the contribution of empirical studies using natural or artificial sounds that enable separating acoustic and perceptual processing levels and avoid interference with existing category representations. Finally, we discuss the opportunities of modern analyses techniques such as multivariate pattern analysis (MVPA) in studying categorical sound representations. With their increased sensitivity to distributed activation changes—even in absence of changes in overall signal level—these analyses techniques provide a promising tool to reveal the neural underpinnings of perceptually invariant sound representations. PMID:24917783

  5. Neural responses during the anticipation and receipt of olfactory reward and punishment in human.

    PubMed

    Zou, Lai-Quan; Zhou, Han-Yu; Zhuang, Yuan; van Hartevelt, Tim J; Lui, Simon S Y; Cheung, Eric F C; Møller, Arne; Kringelbach, Morten L; Chan, Raymond C K

    2018-03-01

    Pleasure experience is an important part of normal healthy life and is essential for general and mental well-being. Many neuroimaging studies have investigated the underlying neural processing of verbal and visual modalities of reward. However, how the brain processes rewards in the olfactory modality is not fully understood. This study aimed to examine the neural basis of olfactory rewards in 25 healthy participants using functional magnetic resonance imaging (fMRI). We developed an Olfactory Incentive Delay (OLID) imaging task distinguishing between the anticipation and receipt of olfactory rewards and punishments. We found that the pallidum was activated during the anticipation of both olfactory rewards and punishments. The bilateral insula was activated independently from the odours' hedonic valence during the receipt phase. In addition, right caudate activation during the anticipation of unpleasant odours was correlated with self-reported anticipatory hedonic traits, whereas bilateral insular activation during the receipt of pleasant odours was correlated with self-reported consummatory hedonic traits. These findings suggest that activity in the insula and the caudate may be biomarkers of anhedonia. These findings also highlight a useful and valid paradigm to study the neural circuitry underlying reward processing in people with anhedonia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Towards a model-based cognitive neuroscience of stopping - a neuroimaging perspective.

    PubMed

    Sebastian, Alexandra; Forstmann, Birte U; Matzke, Dora

    2018-07-01

    Our understanding of the neural correlates of response inhibition has greatly advanced over the last decade. Nevertheless the specific function of regions within this stopping network remains controversial. The traditional neuroimaging approach cannot capture many processes affecting stopping performance. Despite the shortcomings of the traditional neuroimaging approach and a great progress in mathematical and computational models of stopping, model-based cognitive neuroscience approaches in human neuroimaging studies are largely lacking. To foster model-based approaches to ultimately gain a deeper understanding of the neural signature of stopping, we outline the most prominent models of response inhibition and recent advances in the field. We highlight how a model-based approach in clinical samples has improved our understanding of altered cognitive functions in these disorders. Moreover, we show how linking evidence-accumulation models and neuroimaging data improves the identification of neural pathways involved in the stopping process and helps to delineate these from neural networks of related but distinct functions. In conclusion, adopting a model-based approach is indispensable to identifying the actual neural processes underlying stopping. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Subcortical processing of speech regularities underlies reading and music aptitude in children

    PubMed Central

    2011-01-01

    Background Neural sensitivity to acoustic regularities supports fundamental human behaviors such as hearing in noise and reading. Although the failure to encode acoustic regularities in ongoing speech has been associated with language and literacy deficits, how auditory expertise, such as the expertise that is associated with musical skill, relates to the brainstem processing of speech regularities is unknown. An association between musical skill and neural sensitivity to acoustic regularities would not be surprising given the importance of repetition and regularity in music. Here, we aimed to define relationships between the subcortical processing of speech regularities, music aptitude, and reading abilities in children with and without reading impairment. We hypothesized that, in combination with auditory cognitive abilities, neural sensitivity to regularities in ongoing speech provides a common biological mechanism underlying the development of music and reading abilities. Methods We assessed auditory working memory and attention, music aptitude, reading ability, and neural sensitivity to acoustic regularities in 42 school-aged children with a wide range of reading ability. Neural sensitivity to acoustic regularities was assessed by recording brainstem responses to the same speech sound presented in predictable and variable speech streams. Results Through correlation analyses and structural equation modeling, we reveal that music aptitude and literacy both relate to the extent of subcortical adaptation to regularities in ongoing speech as well as with auditory working memory and attention. Relationships between music and speech processing are specifically driven by performance on a musical rhythm task, underscoring the importance of rhythmic regularity for both language and music. Conclusions These data indicate common brain mechanisms underlying reading and music abilities that relate to how the nervous system responds to regularities in auditory input. Definition of common biological underpinnings for music and reading supports the usefulness of music for promoting child literacy, with the potential to improve reading remediation. PMID:22005291

  8. Neural Mechanisms Underlying Musical Pitch Perception and Clinical Applications including Developmental Dyselxia

    PubMed Central

    Yuskaitis, Christopher J.; Parviz, Mahsa; Loui, Psyche; Wan, Catherine Y.; Pearl, Phillip L.

    2017-01-01

    Music production and perception invoke a complex set of cognitive functions that rely on the integration of sensory-motor, cognitive, and emotional pathways. Pitch is a fundamental perceptual attribute of sound and a building block for both music and speech. Although the cerebral processing of pitch is not completely understood, recent advances in imaging and electrophysiology have provided insight into the functional and anatomical pathways of pitch processing. This review examines the current understanding of pitch processing, behavioral and neural variations that give rise to difficulties in pitch processing, and potential applications of music education for language processing disorders such as dyslexia. PMID:26092314

  9. Data fusion with artificial neural networks (ANN) for classification of earth surface from microwave satellite measurements

    NASA Technical Reports Server (NTRS)

    Lure, Y. M. Fleming; Grody, Norman C.; Chiou, Y. S. Peter; Yeh, H. Y. Michael

    1993-01-01

    A data fusion system with artificial neural networks (ANN) is used for fast and accurate classification of five earth surface conditions and surface changes, based on seven SSMI multichannel microwave satellite measurements. The measurements include brightness temperatures at 19, 22, 37, and 85 GHz at both H and V polarizations (only V at 22 GHz). The seven channel measurements are processed through a convolution computation such that all measurements are located at same grid. Five surface classes including non-scattering surface, precipitation over land, over ocean, snow, and desert are identified from ground-truth observations. The system processes sensory data in three consecutive phases: (1) pre-processing to extract feature vectors and enhance separability among detected classes; (2) preliminary classification of Earth surface patterns using two separate and parallely acting classifiers: back-propagation neural network and binary decision tree classifiers; and (3) data fusion of results from preliminary classifiers to obtain the optimal performance in overall classification. Both the binary decision tree classifier and the fusion processing centers are implemented by neural network architectures. The fusion system configuration is a hierarchical neural network architecture, in which each functional neural net will handle different processing phases in a pipelined fashion. There is a total of around 13,500 samples for this analysis, of which 4 percent are used as the training set and 96 percent as the testing set. After training, this classification system is able to bring up the detection accuracy to 94 percent compared with 88 percent for back-propagation artificial neural networks and 80 percent for binary decision tree classifiers. The neural network data fusion classification is currently under progress to be integrated in an image processing system at NOAA and to be implemented in a prototype of a massively parallel and dynamically reconfigurable Modular Neural Ring (MNR).

  10. Animal, but Not Human, Faces Engage the Distributed Face Network in Adolescents with Autism

    ERIC Educational Resources Information Center

    Whyte, Elisabeth M.; Behrmann, Marlene; Minshew, Nancy J.; Garcia, Natalie V.; Scherf, K. Suzanne

    2016-01-01

    Multiple hypotheses have been offered to explain the impaired face-processing behavior and the accompanying underlying disruptions in neural circuitry among individuals with autism. We explored the specificity of atypical face-processing activation and potential alterations to fusiform gyrus (FG) morphology as potential underlying mechanisms.…

  11. GABA and glutamate immunoreactivity in tentacles of the sea anemone Phymactis papillosa (LESSON 1830).

    PubMed

    Delgado, Luz M; Couve, Eduardo; Schmachtenberg, Oliver

    2010-07-01

    Sea anemones have a structurally simple nervous system that controls behaviors like feeding, locomotion, aggression, and defense. Specific chemical and tactile stimuli are transduced by ectodermal sensory cells and transmitted via a neural network to cnidocytes and epithelio-muscular cells, but the nature of the neurotransmitters operating in these processes is still under discussion. Previous studies demonstrated an important role of peptidergic transmission in cnidarians, but during the last decade the contribution of conventional neurotransmitters became increasingly evident. Here, we used immunohistochemistry on light and electron microscopical preparations to investigate the localization of glutamate and GABA in tentacle cross-sections of the sea anemone Phymactis papillosa. Our results demonstrate strong glutamate immunoreactivity in the nerve plexus, while GABA labeling was most prominent in the underlying epithelio-muscular layer. Immunoreactivity for both molecules was also found in glandular epithelial cells, and putative sensory cells were GABA positive. Under electron microscopy, both glutamate and GABA immunogold labeling was found in putative neural processes within the neural plexus. These data support a function of glutamate and GABA as signaling molecules in the nervous system of sea anemones.

  12. Systematic review of the neural basis of social cognition in patients with mood disorders.

    PubMed

    Cusi, Andrée M; Nazarov, Anthony; Holshausen, Katherine; Macqueen, Glenda M; McKinnon, Margaret C

    2012-05-01

    This review integrates neuroimaging studies of 2 domains of social cognition--emotion comprehension and theory of mind (ToM)--in patients with major depressive disorder and bipolar disorder. The influence of key clinical and method variables on patterns of neural activation during social cognitive processing is also examined. Studies were identified using PsycINFO and PubMed (January 1967 to May 2011). The search terms were "fMRI," "emotion comprehension," "emotion perception," "affect comprehension," "affect perception," "facial expression," "prosody," "theory of mind," "mentalizing" and "empathy" in combination with "major depressive disorder," "bipolar disorder," "major depression," "unipolar depression," "clinical depression" and "mania." Taken together, neuroimaging studies of social cognition in patients with mood disorders reveal enhanced activation in limbic and emotion-related structures and attenuated activity within frontal regions associated with emotion regulation and higher cognitive functions. These results reveal an overall lack of inhibition by higher-order cognitive structures on limbic and emotion-related structures during social cognitive processing in patients with mood disorders. Critically, key variables, including illness burden, symptom severity, comorbidity, medication status and cognitive load may moderate this pattern of neural activation. Studies that did not include control tasks or a comparator group were included in this review. Further work is needed to examine the contribution of key moderator variables and to further elucidate the neural networks underlying altered social cognition in patients with mood disorders. The neural networks under lying higher-order social cognitive processes, including empathy, remain unexplored in patients with mood disorders.

  13. Neural correlates of sexual cue reactivity in individuals with and without compulsive sexual behaviours.

    PubMed

    Voon, Valerie; Mole, Thomas B; Banca, Paula; Porter, Laura; Morris, Laurel; Mitchell, Simon; Lapa, Tatyana R; Karr, Judy; Harrison, Neil A; Potenza, Marc N; Irvine, Michael

    2014-01-01

    Although compulsive sexual behaviour (CSB) has been conceptualized as a "behavioural" addiction and common or overlapping neural circuits may govern the processing of natural and drug rewards, little is known regarding the responses to sexually explicit materials in individuals with and without CSB. Here, the processing of cues of varying sexual content was assessed in individuals with and without CSB, focusing on neural regions identified in prior studies of drug-cue reactivity. 19 CSB subjects and 19 healthy volunteers were assessed using functional MRI comparing sexually explicit videos with non-sexual exciting videos. Ratings of sexual desire and liking were obtained. Relative to healthy volunteers, CSB subjects had greater desire but similar liking scores in response to the sexually explicit videos. Exposure to sexually explicit cues in CSB compared to non-CSB subjects was associated with activation of the dorsal anterior cingulate, ventral striatum and amygdala. Functional connectivity of the dorsal anterior cingulate-ventral striatum-amygdala network was associated with subjective sexual desire (but not liking) to a greater degree in CSB relative to non-CSB subjects. The dissociation between desire or wanting and liking is consistent with theories of incentive motivation underlying CSB as in drug addictions. Neural differences in the processing of sexual-cue reactivity were identified in CSB subjects in regions previously implicated in drug-cue reactivity studies. The greater engagement of corticostriatal limbic circuitry in CSB following exposure to sexual cues suggests neural mechanisms underlying CSB and potential biological targets for interventions.

  14. Dopamine controls the neural dynamics of memory signals and retrieval accuracy.

    PubMed

    Apitz, Thore; Bunzeck, Nico

    2013-11-01

    The human brain is capable of differentiating between new and already stored information rapidly to allow optimal behavior and decision-making. Although the neural mechanisms of novelty discrimination were often described as temporally constant (ie, with specific latencies), recent electrophysiological studies have demonstrated that the onset of neural novelty signals (ie, differences in event-related responses to new and old items) can be accelerated by reward motivation. While the precise physiological mechanisms underlying this acceleration remain unclear, the involvement of the neurotransmitter dopamine in both novelty and reward processing suggests that enhanced dopamine levels in the context of reward prospect may have a role. To investigate this hypothesis, we used magnetoencephalography (MEG) in combination with an old/new recognition memory task in which correct discrimination between old and new items was rewarded. Importantly, before the task, human subjects received either 150 mg of the dopamine precursor levodopa or placebo. For the placebo group, old/new signals peaked at ∼100 ms after stimulus onset over left temporal/occipital sensors. In contrast, after levodopa administration earliest old/new effects only emerged after ∼400 ms and retrieval accuracy was reduced as expressed in lower d' values. As such, our results point towards a previously unreported role of dopamine in controlling the chronometry of neural processes underlying the distinction between old and new information. They also suggest that this relationship follows a nonlinear function whereby slightly enhanced dopamine levels accelerate neural/cognitive processes and excessive dopamine levels impair them.

  15. Neural Correlates of Sexual Cue Reactivity in Individuals with and without Compulsive Sexual Behaviours

    PubMed Central

    Voon, Valerie; Mole, Thomas B.; Banca, Paula; Porter, Laura; Morris, Laurel; Mitchell, Simon; Lapa, Tatyana R.; Karr, Judy; Harrison, Neil A.; Potenza, Marc N.; Irvine, Michael

    2014-01-01

    Although compulsive sexual behaviour (CSB) has been conceptualized as a “behavioural” addiction and common or overlapping neural circuits may govern the processing of natural and drug rewards, little is known regarding the responses to sexually explicit materials in individuals with and without CSB. Here, the processing of cues of varying sexual content was assessed in individuals with and without CSB, focusing on neural regions identified in prior studies of drug-cue reactivity. 19 CSB subjects and 19 healthy volunteers were assessed using functional MRI comparing sexually explicit videos with non-sexual exciting videos. Ratings of sexual desire and liking were obtained. Relative to healthy volunteers, CSB subjects had greater desire but similar liking scores in response to the sexually explicit videos. Exposure to sexually explicit cues in CSB compared to non-CSB subjects was associated with activation of the dorsal anterior cingulate, ventral striatum and amygdala. Functional connectivity of the dorsal anterior cingulate-ventral striatum-amygdala network was associated with subjective sexual desire (but not liking) to a greater degree in CSB relative to non-CSB subjects. The dissociation between desire or wanting and liking is consistent with theories of incentive motivation underlying CSB as in drug addictions. Neural differences in the processing of sexual-cue reactivity were identified in CSB subjects in regions previously implicated in drug-cue reactivity studies. The greater engagement of corticostriatal limbic circuitry in CSB following exposure to sexual cues suggests neural mechanisms underlying CSB and potential biological targets for interventions. PMID:25013940

  16. Iris double recognition based on modified evolutionary neural network

    NASA Astrophysics Data System (ADS)

    Liu, Shuai; Liu, Yuan-Ning; Zhu, Xiao-Dong; Huo, Guang; Liu, Wen-Tao; Feng, Jia-Kai

    2017-11-01

    Aiming at multicategory iris recognition under illumination and noise interference, this paper proposes a method of iris double recognition based on a modified evolutionary neural network. An equalization histogram and Laplace of Gaussian operator are used to process the iris to suppress illumination and noise interference and Haar wavelet to convert the iris feature to binary feature encoding. Calculate the Hamming distance for the test iris and template iris , and compare with classification threshold, determine the type of iris. If the iris cannot be identified as a different type, there needs to be a secondary recognition. The connection weights in back-propagation (BP) neural network use modified evolutionary neural network to adaptively train. The modified neural network is composed of particle swarm optimization with mutation operator and BP neural network. According to different iris libraries in different circumstances of experimental results, under illumination and noise interference, the correct recognition rate of this algorithm is higher, the ROC curve is closer to the coordinate axis, the training and recognition time is shorter, and the stability and the robustness are better.

  17. The neural basis of emotions varies over time: different regions go with onset- and offset-bound processes underlying emotion intensity.

    PubMed

    Résibois, Maxime; Verduyn, Philippe; Delaveau, Pauline; Rotgé, Jean-Yves; Kuppens, Peter; Van Mechelen, Iven; Fossati, Philippe

    2017-08-01

    According to theories of emotion dynamics, emotions unfold across two phases in which different types of processes come to the fore: emotion onset and emotion offset. Differences in onset-bound processes are reflected by the degree of explosiveness or steepness of the response at onset, and differences in offset-bound processes by the degree of accumulation or intensification of the subsequent response. Whether onset- and offset-bound processes have distinctive neural correlates and, hence, whether the neural basis of emotions varies over time, still remains unknown. In the present fMRI study, we address this question using a recently developed paradigm that allows to disentangle explosiveness and accumulation. Thirty-one participants were exposed to neutral and negative social feedback, and asked to reflect on its contents. Emotional intensity while reading and thinking about the feedback was measured with an intensity profile tracking approach. Using non-negative matrix factorization, the resulting profile data were decomposed in explosiveness and accumulation components, which were subsequently entered as continuous regressors of the BOLD response. It was found that the neural basis of emotion intensity shifts as emotions unfold over time with emotion explosiveness and accumulation having distinctive neural correlates. © The Author (2017). Published by Oxford University Press.

  18. The neural basis of emotions varies over time: different regions go with onset- and offset-bound processes underlying emotion intensity

    PubMed Central

    Verduyn, Philippe; Delaveau, Pauline; Rotgé, Jean-Yves; Kuppens, Peter; Van Mechelen, Iven; Fossati, Philippe

    2017-01-01

    Abstract According to theories of emotion dynamics, emotions unfold across two phases in which different types of processes come to the fore: emotion onset and emotion offset. Differences in onset-bound processes are reflected by the degree of explosiveness or steepness of the response at onset, and differences in offset-bound processes by the degree of accumulation or intensification of the subsequent response. Whether onset- and offset-bound processes have distinctive neural correlates and, hence, whether the neural basis of emotions varies over time, still remains unknown. In the present fMRI study, we address this question using a recently developed paradigm that allows to disentangle explosiveness and accumulation. Thirty-one participants were exposed to neutral and negative social feedback, and asked to reflect on its contents. Emotional intensity while reading and thinking about the feedback was measured with an intensity profile tracking approach. Using non-negative matrix factorization, the resulting profile data were decomposed in explosiveness and accumulation components, which were subsequently entered as continuous regressors of the BOLD response. It was found that the neural basis of emotion intensity shifts as emotions unfold over time with emotion explosiveness and accumulation having distinctive neural correlates. PMID:28402478

  19. Neural Signatures of Number Processing in Human Infants: Evidence for Two Core Systems Underlying Numerical Cognition

    ERIC Educational Resources Information Center

    Hyde, Daniel C.; Spelke, Elizabeth S.

    2011-01-01

    Behavioral research suggests that two cognitive systems are at the foundations of numerical thinking: one for representing 1-3 objects in parallel and one for representing and comparing large, approximate numerical magnitudes. We tested for dissociable neural signatures of these systems in preverbal infants by recording event-related potentials…

  20. Eyeblink Conditioning: A Non-Invasive Biomarker for Neurodevelopmental Disorders

    ERIC Educational Resources Information Center

    Reeb-Sutherland, Bethany C.; Fox, Nathan A.

    2015-01-01

    Eyeblink conditioning (EBC) is a classical conditioning paradigm typically used to study the underlying neural processes of learning and memory. EBC has a well-defined neural circuitry, is non-invasive, and can be employed in human infants shortly after birth making it an ideal tool to use in both developing and special populations. In addition,…

  1. Associating Neural Alterations and Genotype in Autism and Fragile X Syndrome: Incorporating Perceptual Phenotypes in Causal Modeling

    ERIC Educational Resources Information Center

    Bertone, Armando; Hanck, Julie; Kogan, Cary; Chaudhuri, Avi; Cornish, Kim

    2010-01-01

    We have previously described (see companion paper, this issue) the utility of using perceptual signatures for defining and dissociating condition-specific neural functioning underlying early visual processes in autism and FXS. These perceptually-driven hypotheses are based on differential performance evidenced only at the earliest stages of visual…

  2. Neural Entrainment in Drum Rhythms with Silent Breaks: Evidence from Steady-state Evoked and Event-related Potentials.

    PubMed

    Stupacher, Jan; Witte, Matthias; Hove, Michael J; Wood, Guilherme

    2016-12-01

    The fusion of rhythm, beat perception, and movement is often summarized under the term "entrainment" and becomes obvious when we effortlessly tap our feet or snap our fingers to the pulse of music. Entrainment to music involves a large network of brain structures, and neural oscillations at beat-related frequencies can help elucidate how this network is connected. Here, we used EEG to investigate steady-state evoked potentials (SSEPs) and event-related potentials (ERPs) during listening and tapping to drum clips with different rhythmic structures that were interrupted by silent breaks of 2-6 sec. This design allowed us to address the question of whether neural entrainment processes persist after the physical presence of musical rhythms and to link neural oscillations and event-related neural responses. During stimulus presentation, SSEPs were elicited in both tasks (listening and tapping). During silent breaks, SSEPs were only present in the tapping task. Notably, the amplitude of the N1 ERP component was more negative after longer silent breaks, and both N1 and SSEP results indicate that neural entrainment was increased when listening to drum rhythms compared with an isochronous metronome. Taken together, this suggests that neural entrainment to music is not solely driven by the physical input but involves endogenous timing processes. Our findings break ground for a tighter linkage between steady-state and transient evoked neural responses in rhythm processing. Beyond music perception, they further support the crucial role of entrained oscillatory activity in shaping sensory, motor, and cognitive processes in general.

  3. The implicit processing of categorical and dimensional strategies: an fMRI study of facial emotion perception

    PubMed Central

    Matsuda, Yoshi-Taka; Fujimura, Tomomi; Katahira, Kentaro; Okada, Masato; Ueno, Kenichi; Cheng, Kang; Okanoya, Kazuo

    2013-01-01

    Our understanding of facial emotion perception has been dominated by two seemingly opposing theories: the categorical and dimensional theories. However, we have recently demonstrated that hybrid processing involving both categorical and dimensional perception can be induced in an implicit manner (Fujimura etal., 2012). The underlying neural mechanisms of this hybrid processing remain unknown. In this study, we tested the hypothesis that separate neural loci might intrinsically encode categorical and dimensional processing functions that serve as a basis for hybrid processing. We used functional magnetic resonance imaging to measure neural correlates while subjects passively viewed emotional faces and performed tasks that were unrelated to facial emotion processing. Activity in the right fusiform face area (FFA) increased in response to psychologically obvious emotions and decreased in response to ambiguous expressions, demonstrating the role of the FFA in categorical processing. The amygdala, insula and medial prefrontal cortex exhibited evidence of dimensional (linear) processing that correlated with physical changes in the emotional face stimuli. The occipital face area and superior temporal sulcus did not respond to these changes in the presented stimuli. Our results indicated that distinct neural loci process the physical and psychological aspects of facial emotion perception in a region-specific and implicit manner. PMID:24133426

  4. Static and transient performance prediction for CFB boilers using a Bayesian-Gaussian Neural Network

    NASA Astrophysics Data System (ADS)

    Ye, Haiwen; Ni, Weidou

    1997-06-01

    A Bayesian-Gaussian Neural Network (BGNN) is put forward in this paper to predict the static and transient performance of Circulating Fluidized Bed (CFB) boilers. The advantages of this network over Back-Propagation Neural Networks (BPNNs), easier determination of topology, simpler and time saving in training process as well as self-organizing ability, make this network more practical in on-line performance prediction for complicated processes. Simulation shows that this network is comparable to the BPNNs in predicting the performance of CFB boilers. Good and practical on-line performance predictions are essential for operation guide and model predictive control of CFB boilers, which are under research by the authors.

  5. Chaotic patterns of autonomic activity during hypnotic recall.

    PubMed

    Bob, Petr; Siroka, Ivana; Susta, Marek

    2009-01-01

    Chaotic neural dynamics likely emerge in cognitive processes and may present time periods that are extremely sensitive to influences affecting the neural system. Recent findings suggest that this sensitivity may increase during retrieval of stressful emotional experiences reflecting underlying mechanism related to consolidation of traumatic memories. In this context, hypnotic recall of anxiety memories in 10 patients, simultaneously with ECG measurement was performed. The same measurement was performed during control cognitive task in 8 anxiety patients and 22 healthy controls. Nonlinear data analysis of ECG records indicates significant increase in the degree of chaos during retrieval of stressful memory in all the patients. The results suggest a role of chaotic neural dynamics during processing of anxiety-related stressful memories.

  6. Neural mechanisms underlying urgent and evaluative behaviors: An fMRI study on the interaction of automatic and controlled processes.

    PubMed

    Megías, Alberto; Navas, Juan Francisco; Petrova, Dafina; Cándido, Antonio; Maldonado, Antonio; Garcia-Retamero, Rocio; Catena, Andrés

    2015-08-01

    Dual-process theories have dominated the study of risk perception and risk-taking over the last two decades. However, there is a lack of objective brain-level evidence supporting the two systems of processing in every-day risky behavior. To address this issue, we propose the dissociation between evaluative and urgent behaviors as evidence of dual processing in risky driving situations. Our findings show a dissociation of evaluative and urgent behavior both at the behavioral and neural level. fMRI data showed an increase of activation in areas implicated in motor programming, emotional processing, and visuomotor integration in urgent behavior compared to evaluative behavior. These results support a more automatic processing of risk in urgent tasks, relying mainly on heuristics and experiential appraisal. The urgent task, which is characterized by strong time pressure and the possibility for negative consequences among others factors, creates a suitable context for the experiential-affective system to guide the decision-making process. Moreover, we observed greater frontal activation in the urgent task, suggesting the participation of cognitive control in safe behaviors. The findings of this research are relevant for the study of the neural mechanisms underlying dual process models in risky perception and decision-making, especially because of their proximity to everyday activities. © 2015 Wiley Periodicals, Inc.

  7. Neural activation toward erotic stimuli in homosexual and heterosexual males.

    PubMed

    Kagerer, Sabine; Klucken, Tim; Wehrum, Sina; Zimmermann, Mark; Schienle, Anne; Walter, Bertram; Vaitl, Dieter; Stark, Rudolf

    2011-11-01

    Studies investigating sexual arousal exist, yet there are diverging findings on the underlying neural mechanisms with regard to sexual orientation. Moreover, sexual arousal effects have often been confounded with general arousal effects. Hence, it is still unclear which structures underlie the sexual arousal response in homosexual and heterosexual men. Neural activity and subjective responses were investigated in order to disentangle sexual from general arousal. Considering sexual orientation, differential and conjoint neural activations were of interest. The functional magnetic resonance imaging (fMRI) study focused on the neural networks involved in the processing of sexual stimuli in 21 male participants (11 homosexual, 10 heterosexual). Both groups viewed pictures with erotic content as well as aversive and neutral stimuli. The erotic pictures were subdivided into three categories (most sexually arousing, least sexually arousing, and rest) based on the individual subjective ratings of each participant. Blood oxygen level-dependent responses measured by fMRI and subjective ratings. A conjunction analysis revealed conjoint neural activation related to sexual arousal in thalamus, hypothalamus, occipital cortex, and nucleus accumbens. Increased insula, amygdala, and anterior cingulate gyrus activation could be linked to general arousal. Group differences emerged neither when viewing the most sexually arousing pictures compared with highly arousing aversive pictures nor compared with neutral pictures. Results suggest that a widespread neural network is activated by highly sexually arousing visual stimuli. A partly distinct network of structures underlies sexual and general arousal effects. The processing of preferred, highly sexually arousing stimuli recruited similar structures in homosexual and heterosexual males. © 2011 International Society for Sexual Medicine.

  8. A critical appraisal of neuroimaging studies of bipolar disorder: toward a new conceptualization of underlying neural circuitry and roadmap for future research

    PubMed Central

    Phillips, Mary L; Swartz, Holly A.

    2014-01-01

    Objective This critical review appraises neuroimaging findings in bipolar disorder in emotion processing, emotion regulation, and reward processing neural circuitry, to synthesize current knowledge of the neural underpinnings of bipolar disorder, and provide a neuroimaging research “roadmap” for future studies. Method We examined findings from all major studies in bipolar disorder that used fMRI, volumetric analyses, diffusion imaging, and resting state techniques, to inform current conceptual models of larger-scale neural circuitry abnormalities in bipolar disorder Results Bipolar disorder can be conceptualized in neural circuitry terms as parallel dysfunction in bilateral prefrontal cortical (especially ventrolateral prefrontal cortical)-hippocampal-amygdala emotion processing and emotion regulation neural circuitries, together with an “overactive” left-sided ventral striatal-ventrolateral and orbitofrontal cortical reward processing circuitry, that result in characteristic behavioral abnormalities associated with bipolar disorder: emotional lability, emotional dysregulation and heightened reward sensitivity. A potential structural basis for these functional abnormalities are gray matter decreases in prefrontal and temporal cortices, amygdala and hippocampus, and fractional anisotropy decreases in white matter tracts connecting prefrontal and subcortical regions. Conclusion Neuroimaging studies of bipolar disorder clearly demonstrate abnormalities in neural circuitries supporting emotion processing, emotion regulation and reward processing, although there are several limitations to these studies. Future neuroimaging research in bipolar disorder should include studies adopting dimensional approaches; larger studies examining neurodevelopmental trajectories in bipolar disorder and at-risk youth; multimodal neuroimaging studies using integrated systems approaches; and studies using pattern recognition approaches to provide clinically useful, individual-level data. Such studies will help identify clinically-relevant biomarkers to guide diagnosis and treatment decision-making for individuals with bipolar disorder. PMID:24626773

  9. Neural processes underlying cultural differences in cognitive persistence.

    PubMed

    Telzer, Eva H; Qu, Yang; Lin, Lynda C

    2017-08-01

    Self-improvement motivation, which occurs when individuals seek to improve upon their competence by gaining new knowledge and improving upon their skills, is critical for cognitive, social, and educational adjustment. While many studies have delineated the neural mechanisms supporting extrinsic motivation induced by monetary rewards, less work has examined the neural processes that support intrinsically motivated behaviors, such as self-improvement motivation. Because cultural groups traditionally vary in terms of their self-improvement motivation, we examined cultural differences in the behavioral and neural processes underlying motivated behaviors during cognitive persistence in the absence of extrinsic rewards. In Study 1, 71 American (47 females, M=19.68 years) and 68 Chinese (38 females, M=19.37 years) students completed a behavioral cognitive control task that required cognitive persistence across time. In Study 2, 14 American and 15 Chinese students completed the same cognitive persistence task during an fMRI scan. Across both studies, American students showed significant declines in cognitive performance across time, whereas Chinese participants demonstrated effective cognitive persistence. These behavioral effects were explained by cultural differences in self-improvement motivation and paralleled by increasing activation and functional coupling between the inferior frontal gyrus (IFG) and ventral striatum (VS) across the task among Chinese participants, neural activation and coupling that remained low in American participants. These findings suggest a potential neural mechanism by which the VS and IFG work in concert to promote cognitive persistence in the absence of extrinsic rewards. Thus, frontostriatal circuitry may be a neurobiological signal representing intrinsic motivation for self-improvement that serves an adaptive function, increasing Chinese students' motivation to engage in cognitive persistence. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Specific aspects of cognitive and language proficiency account for variability in neural indices of semantic and syntactic processing in children.

    PubMed

    Hampton Wray, Amanda; Weber-Fox, Christine

    2013-07-01

    The neural activity mediating language processing in young children is characterized by large individual variability that is likely related in part to individual strengths and weakness across various cognitive abilities. The current study addresses the following question: How does proficiency in specific cognitive and language functions impact neural indices mediating language processing in children? Thirty typically developing seven- and eight-year-olds were divided into high-normal and low-normal proficiency groups based on performance on nonverbal IQ, auditory word recall, and grammatical morphology tests. Event-related brain potentials (ERPs) were elicited by semantic anomalies and phrase structure violations in naturally spoken sentences. The proficiency for each of the specific cognitive and language tasks uniquely contributed to specific aspects (e.g., timing and/or resource allocation) of neural indices underlying semantic (N400) and syntactic (P600) processing. These results suggest that distinct aptitudes within broader domains of cognition and language, even within the normal range, influence the neural signatures of semantic and syntactic processing. Furthermore, the current findings have important implications for the design and interpretation of developmental studies of ERPs indexing language processing, and they highlight the need to take into account cognitive abilities both within and outside the classic language domain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Neural basis of individualistic and collectivistic views of self.

    PubMed

    Chiao, Joan Y; Harada, Tokiko; Komeda, Hidetsugu; Li, Zhang; Mano, Yoko; Saito, Daisuke; Parrish, Todd B; Sadato, Norihiro; Iidaka, Tetsuya

    2009-09-01

    Individualism and collectivism refer to cultural values that influence how people construe themselves and their relation to the world. Individualists perceive themselves as stable entities, autonomous from other people and their environment, while collectivists view themselves as dynamic entities, continually defined by their social context and relationships. Despite rich understanding of how individualism and collectivism influence social cognition at a behavioral level, little is known about how these cultural values modulate neural representations underlying social cognition. Using cross-cultural functional magnetic resonance imaging (fMRI), we examined whether the cultural values of individualism and collectivism modulate neural activity within medial prefrontal cortex (MPFC) during processing of general and contextual self judgments. Here, we show that neural activity within the anterior rostral portion of the MPFC during processing of general and contextual self judgments positively predicts how individualistic or collectivistic a person is across cultures. These results reveal two kinds of neural representations of self (eg, a general self and a contextual self) within MPFC and demonstrate how cultural values of individualism and collectivism shape these neural representations. 2008 Wiley-Liss, Inc.

  12. Beta/Gamma Oscillations and Event-Related Potentials Indicate Aberrant Multisensory Processing in Schizophrenia

    PubMed Central

    Balz, Johanna; Roa Romero, Yadira; Keil, Julian; Krebber, Martin; Niedeggen, Michael; Gallinat, Jürgen; Senkowski, Daniel

    2016-01-01

    Recent behavioral and neuroimaging studies have suggested multisensory processing deficits in patients with schizophrenia (SCZ). Thus far, the neural mechanisms underlying these deficits are not well understood. Previous studies with unisensory stimulation have shown altered neural oscillations in SCZ. As such, altered oscillations could contribute to aberrant multisensory processing in this patient group. To test this assumption, we conducted an electroencephalography (EEG) study in 15 SCZ and 15 control participants in whom we examined neural oscillations and event-related potentials (ERPs) in the sound-induced flash illusion (SIFI). In the SIFI multiple auditory stimuli that are presented alongside a single visual stimulus can induce the illusory percept of multiple visual stimuli. In SCZ and control participants we compared ERPs and neural oscillations between trials that induced an illusion and trials that did not induce an illusion. On the behavioral level, SCZ (55.7%) and control participants (55.4%) did not significantly differ in illusion rates. The analysis of ERPs revealed diminished amplitudes and altered multisensory processing in SCZ compared to controls around 135 ms after stimulus onset. Moreover, the analysis of neural oscillations revealed altered 25–35 Hz power after 100 to 150 ms over occipital scalp for SCZ compared to controls. Our findings extend previous observations of aberrant neural oscillations in unisensory perception paradigms. They suggest that altered ERPs and altered occipital beta/gamma band power reflect aberrant multisensory processing in SCZ. PMID:27999553

  13. Bottom-up driven involuntary auditory evoked field change: constant sound sequencing amplifies but does not sharpen neural activity.

    PubMed

    Okamoto, Hidehiko; Stracke, Henning; Lagemann, Lothar; Pantev, Christo

    2010-01-01

    The capability of involuntarily tracking certain sound signals during the simultaneous presence of noise is essential in human daily life. Previous studies have demonstrated that top-down auditory focused attention can enhance excitatory and inhibitory neural activity, resulting in sharpening of frequency tuning of auditory neurons. In the present study, we investigated bottom-up driven involuntary neural processing of sound signals in noisy environments by means of magnetoencephalography. We contrasted two sound signal sequencing conditions: "constant sequencing" versus "random sequencing." Based on a pool of 16 different frequencies, either identical (constant sequencing) or pseudorandomly chosen (random sequencing) test frequencies were presented blockwise together with band-eliminated noises to nonattending subjects. The results demonstrated that the auditory evoked fields elicited in the constant sequencing condition were significantly enhanced compared with the random sequencing condition. However, the enhancement was not significantly different between different band-eliminated noise conditions. Thus the present study confirms that by constant sound signal sequencing under nonattentive listening the neural activity in human auditory cortex can be enhanced, but not sharpened. Our results indicate that bottom-up driven involuntary neural processing may mainly amplify excitatory neural networks, but may not effectively enhance inhibitory neural circuits.

  14. Incentive Processing in Persistent Disruptive Behavior and Psychopathic Traits: A Functional Magnetic Resonance Imaging Study in Adolescents.

    PubMed

    Cohn, Moran D; Veltman, Dick J; Pape, Louise E; van Lith, Koen; Vermeiren, Robert R J M; van den Brink, Wim; Doreleijers, Theo A H; Popma, Arne

    2015-11-01

    Children with early-onset disruptive behavior disorder (DBD), especially those with callous-unemotional traits, are at risk of developing persistent and severe adult antisocial behavior. One possible underlying mechanism for persistence is deficient reward and loss sensitivity, i.e., deficient incentive processing. However, little is known about the relation between deficient incentive processing and persistence of antisocial behavior into adulthood or its relation with callous-unemotional and other psychopathic traits. In this study, we investigate the relationship between the neural correlates of incentive processing and both DBD persistence and psychopathic traits. In a sample of 128 adolescents (mean age 17.7) with a history of criminal offending before age 12, functional magnetic resonance imaging was performed during a monetary incentive delay task designed to assess neural responses during incentive processing. Neural activation during incentive processing was then associated with DBD persistence and psychopathic traits, measured with the Youth Psychopathic Traits Inventory. Compared with both healthy control subjects and youths who had desisted from DBD, persistent DBD subjects showed lower neural responses in the ventral striatum during reward outcomes and higher neural responses in the amygdala during loss outcomes. Callous-unemotional traits were related to lower neural responses in the amygdala during reward outcomes, while other psychopathic traits were not related to incentive processing. In the current study, aberrant incentive processing is related to persistence of childhood antisocial behavior into late adolescence and to callous-unemotional traits. This mechanism may underlie treatment resistance in a subgroup of antisocial youth and provide a target for intervention. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. High level cognitive information processing in neural networks

    NASA Technical Reports Server (NTRS)

    Barnden, John A.; Fields, Christopher A.

    1992-01-01

    Two related research efforts were addressed: (1) high-level connectionist cognitive modeling; and (2) local neural circuit modeling. The goals of the first effort were to develop connectionist models of high-level cognitive processes such as problem solving or natural language understanding, and to understand the computational requirements of such models. The goals of the second effort were to develop biologically-realistic model of local neural circuits, and to understand the computational behavior of such models. In keeping with the nature of NASA's Innovative Research Program, all the work conducted under the grant was highly innovative. For instance, the following ideas, all summarized, are contributions to the study of connectionist/neural networks: (1) the temporal-winner-take-all, relative-position encoding, and pattern-similarity association techniques; (2) the importation of logical combinators into connection; (3) the use of analogy-based reasoning as a bridge across the gap between the traditional symbolic paradigm and the connectionist paradigm; and (4) the application of connectionism to the domain of belief representation/reasoning. The work on local neural circuit modeling also departs significantly from the work of related researchers. In particular, its concentration on low-level neural phenomena that could support high-level cognitive processing is unusual within the area of biological local circuit modeling, and also serves to expand the horizons of the artificial neural net field.

  16. Cadherin-6B is proteolytically processed during epithelial-to-mesenchymal transitions of the cranial neural crest

    PubMed Central

    Schiffmacher, Andrew T.; Padmanabhan, Rangarajan; Jhingory, Sharon; Taneyhill, Lisa A.

    2014-01-01

    The epithelial-to-mesenchymal transition (EMT) is a highly coordinated process underlying both development and disease. Premigratory neural crest cells undergo EMT, migrate away from the neural tube, and differentiate into diverse cell types during vertebrate embryogenesis. Adherens junction disassembly within premigratory neural crest cells is one component of EMT and, in chick cranial neural crest cells, involves cadherin-6B (Cad6B) down-regulation. Whereas Cad6B transcription is repressed by Snail2, the rapid loss of Cad6B protein during EMT is suggestive of posttranslational mechanisms that promote Cad6B turnover. For the first time in vivo, we demonstrate Cad6B proteolysis during neural crest cell EMT, which generates a Cad6B N-terminal fragment (NTF) and two C-terminal fragments (CTF1/2). Coexpression of relevant proteases with Cad6B in vitro shows that a disintegrin and metalloproteinases (ADAMs) ADAM10 and ADAM19, together with γ-secretase, cleave Cad6B to produce the NTF and CTFs previously observed in vivo. Of importance, both ADAMs and γ-secretase are expressed in the appropriate spatiotemporal pattern in vivo to proteolytically process Cad6B. Overexpression or depletion of either ADAM within premigratory neural crest cells prematurely reduces or maintains Cad6B, respectively. Collectively these results suggest a dual mechanism for Cad6B proteolysis involving two ADAMs, along with γ-secretase, during cranial neural crest cell EMT. PMID:24196837

  17. Linking ADHD to the Neural Circuitry of Attention

    PubMed Central

    Mueller, Adrienne; Hong, David S.; Shepard, Steven; Moore, Tirin

    2017-01-01

    ADHD is a complex condition with a heterogeneous presentation. Current diagnosis is primarily based on subjective experience and observer reports of behavioral symptoms – an approach that has significant limitations. Many studies show that individuals with ADHD exhibit poorer performance on cognitive tasks than neurotypical controls, and at least seven main functional domains appear implicated in ADHD. We discuss the underlying neural mechanisms of cognitive functions associated with ADHD with emphasis on the neural basis of selective attention, demonstrating the feasibility of basic research approaches for further understanding cognitive behavioral processes as they relate to human psychopathology. The study of circuit-level mechanisms underlying executive functions in nonhuman primates holds promise for advancing our understanding, and ultimately the treatment, of ADHD. PMID:28483638

  18. Simulation and prediction of the thuringiensin abiotic degradation processes in aqueous solution by a radius basis function neural network model.

    PubMed

    Zhou, Jingwen; Xu, Zhenghong; Chen, Shouwen

    2013-04-01

    The thuringiensin abiotic degradation processes in aqueous solution under different conditions, with a pH range of 5.0-9.0 and a temperature range of 10-40°C, were systematically investigated by an exponential decay model and a radius basis function (RBF) neural network model, respectively. The half-lives of thuringiensin calculated by the exponential decay model ranged from 2.72 d to 16.19 d under the different conditions mentioned above. Furthermore, an RBF model with accuracy of 0.1 and SPREAD value 5 was employed to model the degradation processes. The results showed that the model could simulate and predict the degradation processes well. Both the half-lives and the prediction data showed that thuringiensin was an easily degradable antibiotic, which could be an important factor in the evaluation of its safety. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Lead decreases cell survival, proliferation, and neuronal differentiation of primary cultured adult neural precursor cells through activation of the JNK and p38 MAP kinases

    PubMed Central

    Engstrom, Anna; Wang, Hao; Xia, Zhengui

    2015-01-01

    Adult hippocampal neurogenesis is the process whereby adult neural precursor cells (aNPCs) in the subgranular zone (SGZ) of the dentate gyrus (DG) generate adult-born, functional neurons in the hippocampus. This process is modulated by various extracellular and intracellular stimuli, and the adult-born neurons have been implicated in hippocampus-dependent learning and memory. However, studies on how neurotoxic agents affect this process and the underlying mechanisms are limited. The goal of this study was to determine whether lead, a heavy metal, directly impairs critical processes in adult neurogenesis and to characterize the underlying signaling pathways using primary cultured SGZ-aNPCs isolated from adult mice. We report here that lead significantly increases apoptosis and inhibits proliferation in SGZ-aNPCs. In addition, lead significantly impairs spontaneous neuronal differentiation and maturation. Furthermore, we found that activation of the c-Jun NH2-terminal kinase (JNK) and p38 mitogen activated protein (MAP) kinase signaling pathways are important for lead cytotoxicity. Our data suggest that lead can directly act on adult neural stem cells and impair critical processes in adult hippocampal neurogenesis, which may contribute to its neurotoxicity and adverse effects on cognition in adults. PMID:25967738

  20. Lead decreases cell survival, proliferation, and neuronal differentiation of primary cultured adult neural precursor cells through activation of the JNK and p38 MAP kinases.

    PubMed

    Engstrom, Anna; Wang, Hao; Xia, Zhengui

    2015-08-01

    Adult hippocampal neurogenesis is the process whereby adult neural precursor cells (aNPCs) in the subgranular zone (SGZ) of the dentate gyrus (DG) generate adult-born, functional neurons in the hippocampus. This process is modulated by various extracellular and intracellular stimuli, and the adult-born neurons have been implicated in hippocampus-dependent learning and memory. However, studies on how neurotoxic agents affect this process and the underlying mechanisms are limited. The goal of this study was to determine whether lead, a heavy metal, directly impairs critical processes in adult neurogenesis and to characterize the underlying signaling pathways using primary cultured SGZ-aNPCs isolated from adult mice. We report here that lead significantly increases apoptosis and inhibits proliferation in SGZ-aNPCs. In addition, lead significantly impairs spontaneous neuronal differentiation and maturation. Furthermore, we found that activation of the c-Jun NH2-terminal kinase (JNK) and p38 mitogen activated protein (MAP) kinase signaling pathways are important for lead cytotoxicity. Our data suggest that lead can directly act on adult neural stem cells and impair critical processes in adult hippocampal neurogenesis, which may contribute to its neurotoxicity and adverse effects on cognition in adults. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Neural correlate of the construction of sentence meaning

    PubMed Central

    Fedorenko, Evelina; Brunner, Peter; Pritchett, Brianna; Kanwisher, Nancy

    2016-01-01

    The neural processes that underlie your ability to read and understand this sentence are unknown. Sentence comprehension occurs very rapidly, and can only be understood at a mechanistic level by discovering the precise sequence of underlying computational and neural events. However, we have no continuous and online neural measure of sentence processing with high spatial and temporal resolution. Here we report just such a measure: intracranial recordings from the surface of the human brain show that neural activity, indexed by γ-power, increases monotonically over the course of a sentence as people read it. This steady increase in activity is absent when people read and remember nonword-lists, despite the higher cognitive demand entailed, ruling out accounts in terms of generic attention, working memory, and cognitive load. Response increases are lower for sentence structure without meaning (“Jabberwocky” sentences) and word meaning without sentence structure (word-lists), showing that this effect is not explained by responses to syntax or word meaning alone. Instead, the full effect is found only for sentences, implicating compositional processes of sentence understanding, a striking and unique feature of human language not shared with animal communication systems. This work opens up new avenues for investigating the sequence of neural events that underlie the construction of linguistic meaning. PMID:27671642

  2. A neural network model for credit risk evaluation.

    PubMed

    Khashman, Adnan

    2009-08-01

    Credit scoring is one of the key analytical techniques in credit risk evaluation which has been an active research area in financial risk management. This paper presents a credit risk evaluation system that uses a neural network model based on the back propagation learning algorithm. We train and implement the neural network to decide whether to approve or reject a credit application, using seven learning schemes and real world credit applications from the Australian credit approval datasets. A comparison of the system performance under the different learning schemes is provided, furthermore, we compare the performance of two neural networks; with one and two hidden layers following the ideal learning scheme. Experimental results suggest that neural networks can be effectively used in automatic processing of credit applications.

  3. Neural Correlates of Attentional Flexibility during Approach and Avoidance Motivation

    PubMed Central

    Calcott, Rebecca D.; Berkman, Elliot T.

    2015-01-01

    Dynamic, momentary approach or avoidance motivational states have downstream effects on eventual goal success and overall well being, but there is still uncertainty about how those states affect the proximal neurocognitive processes (e.g., attention) that mediate the longer-term effects. Attentional flexibility, or the ability to switch between different attentional foci, is one such neurocognitive process that influences outcomes in the long run. The present study examined how approach and avoidance motivational states affect the neural processes involved in attentional flexibility using fMRI with the aim of determining whether flexibility operates via different neural mechanisms under these different states. Attentional flexibility was operationalized as subjects’ ability to switch between global and local stimulus features. In addition to subjects’ motivational state, the task context was manipulated by varying the ratio of global to local trials in a block in light of recent findings about the moderating role of context on motivation-related differences in attentional flexibility. The neural processes involved in attentional flexibility differ under approach versus avoidance states. First, differences in the preparatory activity in key brain regions suggested that subjects’ preparedness to switch was influenced by motivational state (anterior insula) and the interaction between motivation and context (superior temporal gyrus, inferior parietal lobule). Additionally, we observed motivation-related differences the anterior cingulate cortex during switching. These results provide initial evidence that motivation-induced behavioral changes may arise via different mechanisms in approach versus avoidance motivational states. PMID:26000735

  4. Neural Correlates of Attentional Flexibility during Approach and Avoidance Motivation.

    PubMed

    Calcott, Rebecca D; Berkman, Elliot T

    2015-01-01

    Dynamic, momentary approach or avoidance motivational states have downstream effects on eventual goal success and overall well being, but there is still uncertainty about how those states affect the proximal neurocognitive processes (e.g., attention) that mediate the longer-term effects. Attentional flexibility, or the ability to switch between different attentional foci, is one such neurocognitive process that influences outcomes in the long run. The present study examined how approach and avoidance motivational states affect the neural processes involved in attentional flexibility using fMRI with the aim of determining whether flexibility operates via different neural mechanisms under these different states. Attentional flexibility was operationalized as subjects' ability to switch between global and local stimulus features. In addition to subjects' motivational state, the task context was manipulated by varying the ratio of global to local trials in a block in light of recent findings about the moderating role of context on motivation-related differences in attentional flexibility. The neural processes involved in attentional flexibility differ under approach versus avoidance states. First, differences in the preparatory activity in key brain regions suggested that subjects' preparedness to switch was influenced by motivational state (anterior insula) and the interaction between motivation and context (superior temporal gyrus, inferior parietal lobule). Additionally, we observed motivation-related differences the anterior cingulate cortex during switching. These results provide initial evidence that motivation-induced behavioral changes may arise via different mechanisms in approach versus avoidance motivational states.

  5. Adolescent transformations of behavioral and neural processes as potential targets for prevention.

    PubMed

    Eldreth, Dana; Hardin, Michael G; Pavletic, Nevia; Ernst, Monique

    2013-06-01

    Adolescence is a transitional period in development that is marked by a distinct, typical behavioral profile of high rates of exploration, novelty-seeking, and emotional lability. While these behaviors generally assist the adolescent transition to independence, they can also confer vulnerability for excessive risk-taking and psychopathology, particularly in the context of specific environmental or genetic influences. As prevention research depends on the identification of targets of vulnerability, the following review will discuss the interplay among motivational systems including reward-related, avoidance-related, and regulatory processes in typical and atypical adolescent development. Each set of processes will be discussed in relation to their underlying neural correlates and distinct developmental trajectories. Evidence suggests that typical adolescent behavior and the risk for atypical development are mediated by heightened adolescent responsiveness of reward-related and avoidance-related systems under specific conditions, concurrent with poor modulation by immature regulatory processes. Finally, we will propose strategies to exploit heightened reward processing to reinforce inhibitory control, which is an essential component of regulatory processes in prevention interventions.

  6. Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system.

    PubMed

    Aronov, Dmitriy; Tank, David W

    2014-10-22

    Virtual reality (VR) enables precise control of an animal's environment and otherwise impossible experimental manipulations. Neural activity in rodents has been studied on virtual 1D tracks. However, 2D navigation imposes additional requirements, such as the processing of head direction and environment boundaries, and it is unknown whether the neural circuits underlying 2D representations can be sufficiently engaged in VR. We implemented a VR setup for rats, including software and large-scale electrophysiology, that supports 2D navigation by allowing rotation and walking in any direction. The entorhinal-hippocampal circuit, including place, head direction, and grid cells, showed 2D activity patterns similar to those in the real world. Furthermore, border cells were observed, and hippocampal remapping was driven by environment shape, suggesting functional processing of virtual boundaries. These results illustrate that 2D spatial representations can be engaged by visual and rotational vestibular stimuli alone and suggest a novel VR tool for studying rat navigation.

  7. Effect of Explicit Evaluation on Neural Connectivity Related to Listening to Unfamiliar Music

    PubMed Central

    Liu, Chao; Brattico, Elvira; Abu-jamous, Basel; Pereira, Carlos S.; Jacobsen, Thomas; Nandi, Asoke K.

    2017-01-01

    People can experience different emotions when listening to music. A growing number of studies have investigated the brain structures and neural connectivities associated with perceived emotions. However, very little is known about the effect of an explicit act of judgment on the neural processing of emotionally-valenced music. In this study, we adopted the novel consensus clustering paradigm, called binarisation of consensus partition matrices (Bi-CoPaM), to study whether and how the conscious aesthetic evaluation of the music would modulate brain connectivity networks related to emotion and reward processing. Participants listened to music under three conditions – one involving a non-evaluative judgment, one involving an explicit evaluative aesthetic judgment, and one involving no judgment at all (passive listening only). During non-evaluative attentive listening we obtained auditory-limbic connectivity whereas when participants were asked to decide explicitly whether they liked or disliked the music excerpt, only two clusters of intercommunicating brain regions were found: one including areas related to auditory processing and action observation, and the other comprising higher-order structures involved with visual processing. Results indicate that explicit evaluative judgment has an impact on the neural auditory-limbic connectivity during affective processing of music. PMID:29311874

  8. The graph neural network model.

    PubMed

    Scarselli, Franco; Gori, Marco; Tsoi, Ah Chung; Hagenbuchner, Markus; Monfardini, Gabriele

    2009-01-01

    Many underlying relationships among data in several areas of science and engineering, e.g., computer vision, molecular chemistry, molecular biology, pattern recognition, and data mining, can be represented in terms of graphs. In this paper, we propose a new neural network model, called graph neural network (GNN) model, that extends existing neural network methods for processing the data represented in graph domains. This GNN model, which can directly process most of the practically useful types of graphs, e.g., acyclic, cyclic, directed, and undirected, implements a function tau(G,n) is an element of IR(m) that maps a graph G and one of its nodes n into an m-dimensional Euclidean space. A supervised learning algorithm is derived to estimate the parameters of the proposed GNN model. The computational cost of the proposed algorithm is also considered. Some experimental results are shown to validate the proposed learning algorithm, and to demonstrate its generalization capabilities.

  9. Nutritional controls of food reward.

    PubMed

    Fernandes, Maria F; Sharma, Sandeep; Hryhorczuk, Cecile; Auguste, Stephanie; Fulton, Stephanie

    2013-08-01

    The propensity to select and consume palatable nutrients is strongly influenced by the rewarding effects of food. Neural processes integrating reward, emotional states and decision-making can supersede satiety signals to promote excessive caloric intake and weight gain. While nutritional habits are influenced by reward-based neural mechanisms, nutrition and its impact on energy metabolism, in turn, plays an important role in the control of food reward. Feeding modulates the release of metabolic hormones that have an important influence on central controls of appetite. Nutrients themselves are also an essential source of energy fuel, while serving as key metabolites and acting as signalling molecules in the neural pathways that control feeding and food reward. Along these lines, this review discusses the impact of nutritionally regulated hormones and select macronutrients on the behavioural and neural processes underlying the rewarding effects of food. Copyright © 2013 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  10. The neural processing of foreign-accented speech and its relationship to listener bias

    PubMed Central

    Yi, Han-Gyol; Smiljanic, Rajka; Chandrasekaran, Bharath

    2014-01-01

    Foreign-accented speech often presents a challenging listening condition. In addition to deviations from the target speech norms related to the inexperience of the nonnative speaker, listener characteristics may play a role in determining intelligibility levels. We have previously shown that an implicit visual bias for associating East Asian faces and foreignness predicts the listeners' perceptual ability to process Korean-accented English audiovisual speech (Yi et al., 2013). Here, we examine the neural mechanism underlying the influence of listener bias to foreign faces on speech perception. In a functional magnetic resonance imaging (fMRI) study, native English speakers listened to native- and Korean-accented English sentences, with or without faces. The participants' Asian-foreign association was measured using an implicit association test (IAT), conducted outside the scanner. We found that foreign-accented speech evoked greater activity in the bilateral primary auditory cortices and the inferior frontal gyri, potentially reflecting greater computational demand. Higher IAT scores, indicating greater bias, were associated with increased BOLD response to foreign-accented speech with faces in the primary auditory cortex, the early node for spectrotemporal analysis. We conclude the following: (1) foreign-accented speech perception places greater demand on the neural systems underlying speech perception; (2) face of the talker can exaggerate the perceived foreignness of foreign-accented speech; (3) implicit Asian-foreign association is associated with decreased neural efficiency in early spectrotemporal processing. PMID:25339883

  11. Effects of Oxytocin and Vasopressin on Preferential Brain Responses to Negative Social Feedback.

    PubMed

    Gozzi, Marta; Dashow, Erica M; Thurm, Audrey; Swedo, Susan E; Zink, Caroline F

    2017-06-01

    Receiving negative social feedback can be detrimental to emotional, cognitive, and physical well-being, and fear of negative social feedback is a prominent feature of mental illnesses that involve social anxiety. A large body of evidence has implicated the neuropeptides oxytocin and vasopressin in the modulation of human neural activity underlying social cognition, including negative emotion processing; however, the influence of oxytocin and vasopressin on neural activity elicited during negative social evaluation remains unknown. Here 21 healthy men underwent functional magnetic resonance imaging in a double-blind, placebo-controlled, crossover design to determine how intranasally administered oxytocin and vasopressin modulated neural activity when receiving negative feedback on task performance from a study investigator. We found that under placebo, a preferential response to negative social feedback compared with positive social feedback was evoked in brain regions putatively involved in theory of mind (temporoparietal junction), pain processing (anterior insula and supplementary motor area), and identification of emotionally important visual cues in social perception (right fusiform). These activations weakened with oxytocin and vasopressin administration such that neural responses to receiving negative social feedback were not significantly greater than positive social feedback. Our results show effects of both oxytocin and vasopressin on the brain network involved in negative social feedback, informing the possible use of a pharmacological approach targeting these regions in multiple disorders with impairments in social information processing.

  12. Mental training enhances attentional stability: Neural and behavioral evidence

    PubMed Central

    Lutz, Antoine; Slagter, Heleen A.; Rawlings, Nancy B.; Francis, Andrew D.; Greischar, Lawrence L.; Davidson, Richard J.

    2009-01-01

    The capacity to stabilize the content of attention over time varies among individuals and its impairment is a hallmark of several mental illnesses. Impairments in sustained attention in patients with attention disorders have been associated with increased trial-to-trial variability in reaction time and event-related potential (ERP) deficits during attention tasks. At present, it is unclear whether the ability to sustain attention and its underlying brain circuitry are transformable through training. Here, we show, with dichotic listening task performance and electroencephalography (EEG), that training attention, as cultivated by meditation, can improve the ability to sustain attention. Three months of intensive meditation training reduced variability in attentional processing of target tones, as indicated by both enhanced theta-band phase consistency of oscillatory neural responses over anterior brain areas and reduced reaction time variability. Furthermore, those individuals who showed the greatest increase in neural response consistency showed the largest decrease in behavioral response variability. Notably, we also observed reduced variability in neural processing, in particular in low-frequency bands, regardless of whether the deviant tone was attended or unattended. Focused attention meditation may thus affect both distracter and target processing, perhaps by enhancing entrainment of neuronal oscillations to sensory input rhythms; a mechanism important for controlling the content of attention. These novel findings highlight the mechanisms underlying focused attention meditation, and support the notion that mental training can significantly affect attention and brain function. PMID:19846729

  13. A convolutional neural network-based screening tool for X-ray serial crystallography

    PubMed Central

    Ke, Tsung-Wei; Brewster, Aaron S.; Yu, Stella X.; Ushizima, Daniela; Yang, Chao; Sauter, Nicholas K.

    2018-01-01

    A new tool is introduced for screening macromolecular X-ray crystallography diffraction images produced at an X-ray free-electron laser light source. Based on a data-driven deep learning approach, the proposed tool executes a convolutional neural network to detect Bragg spots. Automatic image processing algorithms described can enable the classification of large data sets, acquired under realistic conditions consisting of noisy data with experimental artifacts. Outcomes are compared for different data regimes, including samples from multiple instruments and differing amounts of training data for neural network optimization. PMID:29714177

  14. A convolutional neural network-based screening tool for X-ray serial crystallography.

    PubMed

    Ke, Tsung Wei; Brewster, Aaron S; Yu, Stella X; Ushizima, Daniela; Yang, Chao; Sauter, Nicholas K

    2018-05-01

    A new tool is introduced for screening macromolecular X-ray crystallography diffraction images produced at an X-ray free-electron laser light source. Based on a data-driven deep learning approach, the proposed tool executes a convolutional neural network to detect Bragg spots. Automatic image processing algorithms described can enable the classification of large data sets, acquired under realistic conditions consisting of noisy data with experimental artifacts. Outcomes are compared for different data regimes, including samples from multiple instruments and differing amounts of training data for neural network optimization. open access.

  15. A convolutional neural network-based screening tool for X-ray serial crystallography

    DOE PAGES

    Ke, Tsung-Wei; Brewster, Aaron S.; Yu, Stella X.; ...

    2018-04-24

    A new tool is introduced for screening macromolecular X-ray crystallography diffraction images produced at an X-ray free-electron laser light source. Based on a data-driven deep learning approach, the proposed tool executes a convolutional neural network to detect Bragg spots. Automatic image processing algorithms described can enable the classification of large data sets, acquired under realistic conditions consisting of noisy data with experimental artifacts. Outcomes are compared for different data regimes, including samples from multiple instruments and differing amounts of training data for neural network optimization.

  16. A convolutional neural network-based screening tool for X-ray serial crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ke, Tsung-Wei; Brewster, Aaron S.; Yu, Stella X.

    A new tool is introduced for screening macromolecular X-ray crystallography diffraction images produced at an X-ray free-electron laser light source. Based on a data-driven deep learning approach, the proposed tool executes a convolutional neural network to detect Bragg spots. Automatic image processing algorithms described can enable the classification of large data sets, acquired under realistic conditions consisting of noisy data with experimental artifacts. Outcomes are compared for different data regimes, including samples from multiple instruments and differing amounts of training data for neural network optimization.

  17. Identifying Emotions on the Basis of Neural Activation

    PubMed Central

    Kassam, Karim S.; Markey, Amanda R.; Cherkassky, Vladimir L.; Loewenstein, George; Just, Marcel Adam

    2013-01-01

    We attempt to determine the discriminability and organization of neural activation corresponding to the experience of specific emotions. Method actors were asked to self-induce nine emotional states (anger, disgust, envy, fear, happiness, lust, pride, sadness, and shame) while in an fMRI scanner. Using a Gaussian Naïve Bayes pooled variance classifier, we demonstrate the ability to identify specific emotions experienced by an individual at well over chance accuracy on the basis of: 1) neural activation of the same individual in other trials, 2) neural activation of other individuals who experienced similar trials, and 3) neural activation of the same individual to a qualitatively different type of emotion induction. Factor analysis identified valence, arousal, sociality, and lust as dimensions underlying the activation patterns. These results suggest a structure for neural representations of emotion and inform theories of emotional processing. PMID:23840392

  18. Identifying Emotions on the Basis of Neural Activation.

    PubMed

    Kassam, Karim S; Markey, Amanda R; Cherkassky, Vladimir L; Loewenstein, George; Just, Marcel Adam

    2013-01-01

    We attempt to determine the discriminability and organization of neural activation corresponding to the experience of specific emotions. Method actors were asked to self-induce nine emotional states (anger, disgust, envy, fear, happiness, lust, pride, sadness, and shame) while in an fMRI scanner. Using a Gaussian Naïve Bayes pooled variance classifier, we demonstrate the ability to identify specific emotions experienced by an individual at well over chance accuracy on the basis of: 1) neural activation of the same individual in other trials, 2) neural activation of other individuals who experienced similar trials, and 3) neural activation of the same individual to a qualitatively different type of emotion induction. Factor analysis identified valence, arousal, sociality, and lust as dimensions underlying the activation patterns. These results suggest a structure for neural representations of emotion and inform theories of emotional processing.

  19. Dissociable neural correlates of contour completion and contour representation in illusory contour perception.

    PubMed

    Wu, Xiang; He, Sheng; Bushara, Khalaf; Zeng, Feiyan; Liu, Ying; Zhang, Daren

    2012-10-01

    Object recognition occurs even when environmental information is incomplete. Illusory contours (ICs), in which a contour is perceived though the contour edges are incomplete, have been extensively studied as an example of such a visual completion phenomenon. Despite the neural activity in response to ICs in visual cortical areas from low (V1 and V2) to high (LOC: the lateral occipital cortex) levels, the details of the neural processing underlying IC perception are largely not clarified. For example, how do the visual areas function in IC perception and how do they interact to archive the coherent contour perception? IC perception involves the process of completing the local discrete contour edges (contour completion) and the process of representing the global completed contour information (contour representation). Here, functional magnetic resonance imaging was used to dissociate contour completion and contour representation by varying each in opposite directions. The results show that the neural activity was stronger to stimuli with more contour completion than to stimuli with more contour representation in V1 and V2, which was the reverse of that in the LOC. When inspecting the neural activity change across the visual pathway, the activation remained high for the stimuli with more contour completion and increased for the stimuli with more contour representation. These results suggest distinct neural correlates of contour completion and contour representation, and the possible collaboration between the two processes during IC perception, indicating a neural connection between the discrete retinal input and the coherent visual percept. Copyright © 2011 Wiley Periodicals, Inc.

  20. Effective connectivity in the neural network underlying coarse-to-fine categorization of visual scenes. A dynamic causal modeling study.

    PubMed

    Kauffmann, Louise; Chauvin, Alan; Pichat, Cédric; Peyrin, Carole

    2015-10-01

    According to current models of visual perception scenes are processed in terms of spatial frequencies following a predominantly coarse-to-fine processing sequence. Low spatial frequencies (LSF) reach high-order areas rapidly in order to activate plausible interpretations of the visual input. This triggers top-down facilitation that guides subsequent processing of high spatial frequencies (HSF) in lower-level areas such as the inferotemporal and occipital cortices. However, dynamic interactions underlying top-down influences on the occipital cortex have never been systematically investigated. The present fMRI study aimed to further explore the neural bases and effective connectivity underlying coarse-to-fine processing of scenes, particularly the role of the occipital cortex. We used sequences of six filtered scenes as stimuli depicting coarse-to-fine or fine-to-coarse processing of scenes. Participants performed a categorization task on these stimuli (indoor vs. outdoor). Firstly, we showed that coarse-to-fine (compared to fine-to-coarse) sequences elicited stronger activation in the inferior frontal gyrus (in the orbitofrontal cortex), the inferotemporal cortex (in the fusiform and parahippocampal gyri), and the occipital cortex (in the cuneus). Dynamic causal modeling (DCM) was then used to infer effective connectivity between these regions. DCM results revealed that coarse-to-fine processing resulted in increased connectivity from the occipital cortex to the inferior frontal gyrus and from the inferior frontal gyrus to the inferotemporal cortex. Critically, we also observed an increase in connectivity strength from the inferior frontal gyrus to the occipital cortex, suggesting that top-down influences from frontal areas may guide processing of incoming signals. The present results support current models of visual perception and refine them by emphasizing the role of the occipital cortex as a cortical site for feedback projections in the neural network underlying coarse-to-fine processing of scenes. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Using High Performance Computing to Examine the Processes of Neurogenesis Underlying Pattern Separation/Completion of Episodic Information.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aimone, James Bradley; Betty, Rita

    Using High Performance Computing to Examine the Processes of Neurogenesis Underlying Pattern Separation/Completion of Episodic Information - Sandia researchers developed novel methods and metrics for studying the computational function of neurogenesis, thus generating substantial impact to the neuroscience and neural computing communities. This work could benefit applications in machine learning and other analysis activities.

  2. Individual differences in risk-taking tendencies modulate the neural processing of risky and ambiguous decision-making in adolescence.

    PubMed

    Blankenstein, N E; Schreuders, E; Peper, J S; Crone, E A; van Duijvenvoorde, A C K

    2018-05-15

    Although many neuroimaging studies have investigated adolescent risk taking, few studies have dissociated between decision-making under risk (known probabilities) and ambiguity (unknown probabilities). Furthermore, which brain regions are sensitive to individual differences in task-related and self-reported risk taking remains elusive. We presented 198 adolescents (11-24 years, an age-range in which individual differences in risk taking are prominent) with an fMRI paradigm that separated decision-making (choosing to gamble or not) and reward outcome processing (gains, no gains) under risky and ambiguous conditions, and related this to task-related and self-reported risk taking. We observed distinct neural mechanisms underlying risky and ambiguous gambling, with risk more prominently associated with activation in parietal cortex, and ambiguity more prominently with dorsolateral prefrontal cortex (PFC), as well as medial PFC during outcome processing. Individual differences in task-related risk taking were positively associated with ventral striatum activation in the decision phase, specifically for risk, and negatively associated with insula and dorsomedial PFC activation, specifically for ambiguity. Moreover, dorsolateral PFC activation in the outcome phase seemed a prominent marker for individual differences in task-related risk taking under ambiguity as well as self-reported daily-life risk taking, in which greater risk taking was associated with reduced activation in dorsolateral PFC. Together, this study demonstrates the importance of considering multiple risk-taking measures, and contextual moderators, in understanding the neural mechanisms underlying adolescent risk taking. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. The Neural Substrates Associated with Attentional Resources and Difficulty of Concurrent Processing of the Two Verbal Tasks

    ERIC Educational Resources Information Center

    Mizuno, Kei; Tanaka, Masaaki; Tanabe, Hiroki C.; Sadato, Norihiro; Watanabe, Yasuyoshi

    2012-01-01

    The kana pick-out test has been widely used in Japan to evaluate the ability to divide attention in both adult and pediatric patients. However, the neural substrates underlying the ability to divide attention using the kana pick-out test, which requires participants to pick out individual letters (vowels) in a story while also reading for…

  4. Auditory-neurophysiological responses to speech during early childhood: Effects of background noise

    PubMed Central

    White-Schwoch, Travis; Davies, Evan C.; Thompson, Elaine C.; Carr, Kali Woodruff; Nicol, Trent; Bradlow, Ann R.; Kraus, Nina

    2015-01-01

    Early childhood is a critical period of auditory learning, during which children are constantly mapping sounds to meaning. But learning rarely occurs under ideal listening conditions—children are forced to listen against a relentless din. This background noise degrades the neural coding of these critical sounds, in turn interfering with auditory learning. Despite the importance of robust and reliable auditory processing during early childhood, little is known about the neurophysiology underlying speech processing in children so young. To better understand the physiological constraints these adverse listening scenarios impose on speech sound coding during early childhood, auditory-neurophysiological responses were elicited to a consonant-vowel syllable in quiet and background noise in a cohort of typically-developing preschoolers (ages 3–5 yr). Overall, responses were degraded in noise: they were smaller, less stable across trials, slower, and there was poorer coding of spectral content and the temporal envelope. These effects were exacerbated in response to the consonant transition relative to the vowel, suggesting that the neural coding of spectrotemporally-dynamic speech features is more tenuous in noise than the coding of static features—even in children this young. Neural coding of speech temporal fine structure, however, was more resilient to the addition of background noise than coding of temporal envelope information. Taken together, these results demonstrate that noise places a neurophysiological constraint on speech processing during early childhood by causing a breakdown in neural processing of speech acoustics. These results may explain why some listeners have inordinate difficulties understanding speech in noise. Speech-elicited auditory-neurophysiological responses offer objective insight into listening skills during early childhood by reflecting the integrity of neural coding in quiet and noise; this paper documents typical response properties in this age group. These normative metrics may be useful clinically to evaluate auditory processing difficulties during early childhood. PMID:26113025

  5. The brain's resting-state activity is shaped by synchronized cross-frequency coupling of neural oscillations

    PubMed Central

    Florin, Esther; Baillet, Sylvain

    2015-01-01

    Functional imaging of the resting brain consistently reveals broad motifs of correlated blood oxygen level dependent (BOLD) activity that engage cerebral regions from distinct functional systems. Yet, the neurophysiological processes underlying these organized, large-scale fluctuations remain to be uncovered. Using magnetoencephalography (MEG) imaging during rest in 12 healthy subjects we analyse the resting state networks and their underlying neurophysiology. We first demonstrate non-invasively that cortical occurrences of high-frequency oscillatory activity are conditioned to the phase of slower spontaneous fluctuations in neural ensembles. We further show that resting-state networks emerge from synchronized phase-amplitude coupling across the brain. Overall, these findings suggest a unified principle of local-to-global neural signaling for long-range brain communication. PMID:25680519

  6. Age-related differences in brain activity during implicit and explicit processing of fearful facial expressions.

    PubMed

    Zsoldos, Isabella; Cousin, Emilie; Klein-Koerkamp, Yanica; Pichat, Cédric; Hot, Pascal

    2016-11-01

    Age-related differences in neural correlates underlying implicit and explicit emotion processing are unclear. Within the framework of the Frontoamygdalar Age-related Differences in Emotion model (St Jacques et al., 2009), our objectives were to examine the behavioral and neural modifications that occur with age for both processes. During explicit and implicit processing of fearful faces, we expected to observe less amygdala activity in older adults (OA) than in younger adults (YA), associated with poorer recognition performance in the explicit task, and more frontal activity during implicit processing, suggesting compensation. At a behavioral level, explicit recognition of fearful faces was impaired in OA compared with YA. We did not observe any cerebral differences between OA and YA during the implicit task, whereas in the explicit task, OA recruited more frontal, parietal, temporal, occipital, and cingulate areas. Our findings suggest that automatic processing of emotion may be preserved during aging, whereas deliberate processing is impaired. Additional neural recruitment in OA did not appear to compensate for their behavioral deficits. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Do neural nets learn statistical laws behind natural language?

    PubMed

    Takahashi, Shuntaro; Tanaka-Ishii, Kumiko

    2017-01-01

    The performance of deep learning in natural language processing has been spectacular, but the reasons for this success remain unclear because of the inherent complexity of deep learning. This paper provides empirical evidence of its effectiveness and of a limitation of neural networks for language engineering. Precisely, we demonstrate that a neural language model based on long short-term memory (LSTM) effectively reproduces Zipf's law and Heaps' law, two representative statistical properties underlying natural language. We discuss the quality of reproducibility and the emergence of Zipf's law and Heaps' law as training progresses. We also point out that the neural language model has a limitation in reproducing long-range correlation, another statistical property of natural language. This understanding could provide a direction for improving the architectures of neural networks.

  8. Theory of Mind: A Neural Prediction Problem

    PubMed Central

    Koster-Hale, Jorie; Saxe, Rebecca

    2014-01-01

    Predictive coding posits that neural systems make forward-looking predictions about incoming information. Neural signals contain information not about the currently perceived stimulus, but about the difference between the observed and the predicted stimulus. We propose to extend the predictive coding framework from high-level sensory processing to the more abstract domain of theory of mind; that is, to inferences about others’ goals, thoughts, and personalities. We review evidence that, across brain regions, neural responses to depictions of human behavior, from biological motion to trait descriptions, exhibit a key signature of predictive coding: reduced activity to predictable stimuli. We discuss how future experiments could distinguish predictive coding from alternative explanations of this response profile. This framework may provide an important new window on the neural computations underlying theory of mind. PMID:24012000

  9. Do neural nets learn statistical laws behind natural language?

    PubMed Central

    Takahashi, Shuntaro

    2017-01-01

    The performance of deep learning in natural language processing has been spectacular, but the reasons for this success remain unclear because of the inherent complexity of deep learning. This paper provides empirical evidence of its effectiveness and of a limitation of neural networks for language engineering. Precisely, we demonstrate that a neural language model based on long short-term memory (LSTM) effectively reproduces Zipf’s law and Heaps’ law, two representative statistical properties underlying natural language. We discuss the quality of reproducibility and the emergence of Zipf’s law and Heaps’ law as training progresses. We also point out that the neural language model has a limitation in reproducing long-range correlation, another statistical property of natural language. This understanding could provide a direction for improving the architectures of neural networks. PMID:29287076

  10. Network complexity as a measure of information processing across resting-state networks: evidence from the Human Connectome Project

    PubMed Central

    McDonough, Ian M.; Nashiro, Kaoru

    2014-01-01

    An emerging field of research focused on fluctuations in brain signals has provided evidence that the complexity of those signals, as measured by entropy, conveys important information about network dynamics (e.g., local and distributed processing). While much research has focused on how neural complexity differs in populations with different age groups or clinical disorders, substantially less research has focused on the basic understanding of neural complexity in populations with young and healthy brain states. The present study used resting-state fMRI data from the Human Connectome Project (Van Essen et al., 2013) to test the extent that neural complexity in the BOLD signal, as measured by multiscale entropy (1) would differ from random noise, (2) would differ between four major resting-state networks previously associated with higher-order cognition, and (3) would be associated with the strength and extent of functional connectivity—a complementary method of estimating information processing. We found that complexity in the BOLD signal exhibited different patterns of complexity from white, pink, and red noise and that neural complexity was differentially expressed between resting-state networks, including the default mode, cingulo-opercular, left and right frontoparietal networks. Lastly, neural complexity across all networks was negatively associated with functional connectivity at fine scales, but was positively associated with functional connectivity at coarse scales. The present study is the first to characterize neural complexity in BOLD signals at a high temporal resolution and across different networks and might help clarify the inconsistencies between neural complexity and functional connectivity, thus informing the mechanisms underlying neural complexity. PMID:24959130

  11. Language production and working memory in classic galactosemia from a cognitive neuroscience perspective: future research directions.

    PubMed

    Timmers, Inge; van den Hurk, Job; Di Salle, Francesco; Rubio-Gozalbo, M Estela; Jansma, Bernadette M

    2011-04-01

    Most humans are social beings and we express our thoughts and feelings through language. In contrast to the ease with which we speak, the underlying cognitive and neural processes of language production are fairly complex and still little understood. In the hereditary metabolic disease classic galactosemia, failures in language production processes are among the most reported difficulties. It is unclear, however, what the underlying neural cause of this cognitive problem is. Modern brain imaging techniques allow us to look into the brain of a thinking patient online - while she or he is performing a task, such as speaking. We can measure indirectly neural activity related to the output side of a process (e.g. articulation). But most importantly, we can look into the planning phase prior to an overt response, hence tapping into subcomponents of speech planning. These components include verbal memory, intention to speak, and the planning of meaning, syntax, and phonology. This paper briefly introduces cognitive theories on language production and methods used in cognitive neuroscience. It reviews the possibilities of applying them in experimental paradigms to investigate language production and verbal memory in galactosemia.

  12. Sentential Negation Might Share Neurophysiological Mechanisms with Action Inhibition. Evidence from Frontal Theta Rhythm.

    PubMed

    de Vega, Manuel; Morera, Yurena; León, Inmaculada; Beltrán, David; Casado, Pilar; Martín-Loeches, Manuel

    2016-06-01

    According to the literature, negations such as "not" or "don't" reduce the accessibility in memory of the concepts under their scope. Moreover, negations applied to action contents (e.g., "don't write the letter") impede the activation of motor processes in the brain, inducing "disembodied" representations. These facts provide important information on the behavioral and neural consequences of negations. However, how negations themselves are processed in the brain is still poorly understood. In two electrophysiological experiments, we explored whether sentential negation shares neural mechanisms with action monitoring or inhibition. Human participants read action-related sentences in affirmative or negative form ("now you will cut the bread" vs "now you will not cut the bread") while performing a simultaneous Go/NoGo task. The analysis of the EEG rhythms revealed that theta oscillations were significantly reduced for NoGo trials in the context of negative sentences compared with affirmative sentences. Given the fact that theta oscillations are often considered as neural markers of response inhibition processes, their modulation by negative sentences strongly suggests that negation uses neural resources of response inhibition. We propose a new approach that views the syntactic operator of negation as relying on the neural machinery of high-order action-monitoring processes. Previous studies have shown that linguistic negation reduces the accessibility of the negated concepts and suppresses the activation of specific brain regions that operate in affirmative statements. Although these studies focus on the consequences of negation on cognitive and neural processes, the proper neural mechanisms of negation have not yet been explored. In the present EEG study, we tested the hypothesis that negation uses the neural network of action inhibition. Using a Go/NoGo task embedded in a sentence comprehension task, we found that negation in the context of NoGo trials modulates frontal theta rhythm, which is usually considered a signature of action inhibition and control mechanisms. Copyright © 2016 the authors 0270-6474/16/366002-09$15.00/0.

  13. Neural correlates of processing "self-conscious" vs. "basic" emotions.

    PubMed

    Gilead, Michael; Katzir, Maayan; Eyal, Tal; Liberman, Nira

    2016-01-29

    Self-conscious emotions are prevalent in our daily lives and play an important role in both normal and pathological behavior. Despite their immense significance, the neural substrates that are involved in the processing of such emotions are surprisingly under-studied. In light of this, we conducted an fMRI study in which participants thought of various personal events which elicited feelings of negative and positive self-conscious (i.e., guilt, pride) or basic (i.e., anger, joy) emotions. We performed a conjunction analysis to investigate the neural correlates associated with processing events that are related to self-conscious vs. basic emotions, irrespective of valence. The results show that processing self-conscious emotions resulted in activation within frontal areas associated with self-processing and self-control, namely, the mPFC extending to the dACC, and within the lateral-dorsal prefrontal cortex. Processing basic emotions resulted in activation throughout relatively phylogenetically-ancient regions of the cortex, namely in visual and tactile processing areas and in the insular cortex. Furthermore, self-conscious emotions differentially activated the mPFC such that the negative self-conscious emotion (guilt) was associated with a more dorsal activation, and the positive self-conscious emotion (pride) was associated with a more ventral activation. We discuss how these results shed light on the nature of mental representations and neural systems involved in self-reflective and affective processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Assembly and remodeling of the fibrillar fibronectin extracellular matrix during gastrulation and neurulation in Xenopus laevis.

    PubMed

    Davidson, Lance A; Keller, Raymond; DeSimone, Douglas W

    2004-12-01

    Fibronectin, a major component of the extracellular matrix is critical for processes of cell traction and cell motility. Whole-mount confocal imaging of the three-dimensional architecture of the extracellular matrix is used to describe dynamic assembly and remodeling of fibronectin fibrils during gastrulation and neurulation in the early frog embryo. As previously reported, fibrils first appear under the prospective ectoderm. We describe here the first evidence for regulated assembly of fibrils along the somitic mesoderm/endoderm boundary as well as at the notochord/somitic mesoderm boundary and clearing of fibrils from the dorsal and ventral surfaces of the notochord that occurs over the course of a few hours. As gastrulation proceeds, fibrils are restored to the dorsal surface of the notochord, where the notochord contacts the prospective floor plate. As the neural folds form, fibrils are again remodeled as deep neural plate cells move medially. The process of neural tube closure leaves a region of the ectoderm overlying the neural crest transiently bare of fibrils. Fibrils are assembled surrounding the dorsal surface of the neural tube as the neural tube lumen is restored. Copyright (c) 2004 Wiley-Liss, Inc.

  15. A Spiking Neural Simulator Integrating Event-Driven and Time-Driven Computation Schemes Using Parallel CPU-GPU Co-Processing: A Case Study.

    PubMed

    Naveros, Francisco; Luque, Niceto R; Garrido, Jesús A; Carrillo, Richard R; Anguita, Mancia; Ros, Eduardo

    2015-07-01

    Time-driven simulation methods in traditional CPU architectures perform well and precisely when simulating small-scale spiking neural networks. Nevertheless, they still have drawbacks when simulating large-scale systems. Conversely, event-driven simulation methods in CPUs and time-driven simulation methods in graphic processing units (GPUs) can outperform CPU time-driven methods under certain conditions. With this performance improvement in mind, we have developed an event-and-time-driven spiking neural network simulator suitable for a hybrid CPU-GPU platform. Our neural simulator is able to efficiently simulate bio-inspired spiking neural networks consisting of different neural models, which can be distributed heterogeneously in both small layers and large layers or subsystems. For the sake of efficiency, the low-activity parts of the neural network can be simulated in CPU using event-driven methods while the high-activity subsystems can be simulated in either CPU (a few neurons) or GPU (thousands or millions of neurons) using time-driven methods. In this brief, we have undertaken a comparative study of these different simulation methods. For benchmarking the different simulation methods and platforms, we have used a cerebellar-inspired neural-network model consisting of a very dense granular layer and a Purkinje layer with a smaller number of cells (according to biological ratios). Thus, this cerebellar-like network includes a dense diverging neural layer (increasing the dimensionality of its internal representation and sparse coding) and a converging neural layer (integration) similar to many other biologically inspired and also artificial neural networks.

  16. A Systematic Review of fMRI Reward Paradigms in Adolescents versus Adults: The Impact of Task Design and Implications for Understanding Neurodevelopment

    PubMed Central

    Richards, Jessica M.; Plate, Rista C.; Ernst, Monique

    2013-01-01

    The neural systems underlying reward-related behaviors across development have recently generated a great amount of interest. Yet, the neurodevelopmental literature on reward processing is marked by inconsistencies due to the heterogeneity of the reward paradigms used, the complexity of the behaviors being studied, and the developing brain itself as a moving target. The present review will examine task design as one source of variability across findings by compiling this literature along three dimensions: (1) task structures, (2) cognitive processes, and (3) neural systems. We start with the presentation of a heuristic neural systems model, the Triadic Model, as a way to provide a theoretical framework for the neuroscience research on motivated behaviors. We then discuss the principles guiding reward task development. Finally, we review the extant developmental neuroimaging literature on reward-related processing, organized by reward task type. We hope that this approach will help to clarify the literature on the functional neurodevelopment of reward-related neural systems, and to identify the role of the experimental parameters that significantly influence these findings. PMID:23518270

  17. Initial Wave-Type Identification with Neural Networks and its Contribution to Automated Processing in IMS Version 3.0

    DTIC Science & Technology

    1993-12-10

    applied to the 3-component IRIS/IDA data under simulated operational conditions. The result was a reduction in the number false-alarms produced by the automated processing and interpretation system by about 60%

  18. Perceptual Learning: Use-Dependent Cortical Plasticity.

    PubMed

    Li, Wu

    2016-10-14

    Our perceptual abilities significantly improve with practice. This phenomenon, known as perceptual learning, offers an ideal window for understanding use-dependent changes in the adult brain. Different experimental approaches have revealed a diversity of behavioral and cortical changes associated with perceptual learning, and different interpretations have been given with respect to the cortical loci and neural processes responsible for the learning. Accumulated evidence has begun to put together a coherent picture of the neural substrates underlying perceptual learning. The emerging view is that perceptual learning results from a complex interplay between bottom-up and top-down processes, causing a global reorganization across cortical areas specialized for sensory processing, engaged in top-down attentional control, and involved in perceptual decision making. Future studies should focus on the interactions among cortical areas for a better understanding of the general rules and mechanisms underlying various forms of skill learning.

  19. Epigenetic Principles and Mechanisms Underlying Nervous System Functions in Health and Disease

    PubMed Central

    Mehler, Mark F.

    2009-01-01

    Epigenetics and epigenomic medicine encompass a new science of brain and behavior that are already providing unique insights into the mechanisms underlying brain development, evolution, neuronal and network plasticity and homeostasis, senescence, the etiology of diverse neurological diseases and neural regenerative processes. Epigenetic mechanisms include DNA methylation, histone modifications, nucleosome repositioning, higher-order chromatin remodeling, non-coding RNAs, and RNA and DNA editing. RNA is centrally involved in directing these processes, implying that the transcriptional state of the cell is the primary determinant of epigenetic memory. This transcriptional state can be modified by internal and external cues affecting gene expression and post-transcriptional processing, but also by RNA and DNA editing through activity-dependent intracellular transport and modulation of RNAs and RNA regulatory supercomplexes, and through trans-neuronal and systemic trafficking of functional RNA subclasses. These integrated processes promote dynamic reorganization of nuclear architecture and the genomic landscape to modulate functional gene and neural networks with complex temporal and spatial trajectories. Epigenetics represents the long sought after molecular interface mediating gene-environmental interactions during critical periods throughout the lifecycle. The discipline of environmental epigenomics has begun to identify combinatorial profiles of environmental stressors modulating the latency, initiation and progression of specific neurological disorders, and more selective disease biomarkers and graded molecular responses to emerging therapeutic interventions. Pharmacoepigenomic therapies will promote accelerated recovery of impaired and seemingly irrevocably lost cognitive, behavioral, sensorimotor functions through epigenetic reprogramming of endogenous regional neural stem cell fate decisions, targeted tissue remodeling and restoration of neural network integrity, plasticity and connectivity. PMID:18940229

  20. Sensorimotor Learning: Neurocognitive Mechanisms and Individual Differences.

    PubMed

    Seidler, R D; Carson, R G

    2017-07-13

    Here we provide an overview of findings and viewpoints on the mechanisms of sensorimotor learning presented at the 2016 Biomechanics and Neural Control of Movement (BANCOM) conference in Deer Creek, OH. This field has shown substantial growth in the past couple of decades. For example it is now well accepted that neural systems outside of primary motor pathways play a role in learning. Frontoparietal and anterior cingulate networks contribute to sensorimotor adaptation, reflecting strategic aspects of exploration and learning. Longer term training results in functional and morphological changes in primary motor and somatosensory cortices. Interestingly, re-engagement of strategic processes once a skill has become well learned may disrupt performance. Efforts to predict individual differences in learning rate have enhanced our understanding of the neural, behavioral, and genetic factors underlying skilled human performance. Access to genomic analyses has dramatically increased over the past several years. This has enhanced our understanding of cellular processes underlying the expression of human behavior, including involvement of various neurotransmitters, receptors, and enzymes. Surprisingly our field has been slow to adopt such approaches in studying neural control, although this work does require much larger sample sizes than are typically used to investigate skill learning. We advocate that individual differences approaches can lead to new insights into human sensorimotor performance. Moreover, a greater understanding of the factors underlying the wide range of performance capabilities seen across individuals can promote personalized medicine and refinement of rehabilitation strategies, which stand to be more effective than "one size fits all" treatments.

  1. Sex differences in cerebellar mechanisms involved in pain-related safety learning.

    PubMed

    Labrenz, Franziska; Icenhour, Adriane; Thürling, Markus; Schlamann, Marc; Forsting, Michael; Timmann, Dagmar; Elsenbruch, Sigrid

    2015-09-01

    Recent studies have suggested that the cerebellum contributes to the central processing of pain, including pain-related learning and memory processes. As a complex experience with multiple emotional and cognitive facets, the response to pain and its underlying neural correlates differ between men and women. However, it remains poorly understood whether and to what extent sex differences exist in the cerebellar contribution to pain-related associative learning processes. In the present conditioning study with experimental abdominal pain as unconditioned stimuli (US), we assessed sex-dependent differences in behavioral and neural responses to conditioned warning and safety cues in healthy volunteers. The results revealed that in response to visual stimuli signaling safety from abdominal pain (CS(-)), women showed enhanced cerebellar activation in lobules I-IV, V, VI, VIIIa, IX and X as well as Crus II and the dentate nucleus, which are mostly representative of somatomotor networks. On the other hand, men showed enhanced neural activation in lobules I-IV, VI, VIIb, VIIIb, IX as well as Crus I and II in response to CS(-), which are representative of frontoparietal and ventral attention networks. No sex differences were observed in response to pain-predictive warning signals (CS(+)). Similarly, men and women did not differ in behavioral measures of conditioning, including conditioned changes in CS valence and contingency awareness. Together, we could demonstrate that the cerebellum is involved in associative learning processes of conditioned anticipatory safety from pain and mediates sex differences in the underlying neural processes. Given the high prevalence of chronic pain conditions in women, these results may contribute to improve our understanding of the acquisition and manifestation of chronic abdominal pain syndromes. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Cognitive and Neural Effects of Vision-Based Speed-of-Processing Training in Older Adults with Amnestic Mild Cognitive Impairment: A Pilot Study.

    PubMed

    Lin, Feng; Heffner, Kathi L; Ren, Ping; Tivarus, Madalina E; Brasch, Judith; Chen, Ding-Geng; Mapstone, Mark; Porsteinsson, Anton P; Tadin, Duje

    2016-06-01

    To examine the cognitive and neural effects of vision-based speed-of-processing (VSOP) training in older adults with amnestic mild cognitive impairment (aMCI) and contrast those effects with an active control (mental leisure activities (MLA)). Randomized single-blind controlled pilot trial. Academic medical center. Individuals with aMCI (N = 21). Six-week computerized VSOP training. Multiple cognitive processing measures, instrumental activities of daily living (IADLs), and two resting state neural networks regulating cognitive processing: central executive network (CEN) and default mode network (DMN). VSOP training led to significantly greater improvements in trained (processing speed and attention: F1,19  = 6.61, partial η(2)  = 0.26, P = .02) and untrained (working memory: F1,19  = 7.33, partial η(2)  = 0.28, P = .01; IADLs: F1,19  = 5.16, partial η(2)  = 0.21, P = .03) cognitive domains than MLA and protective maintenance in DMN (F1, 9  = 14.63, partial η(2)  = 0.62, P = .004). VSOP training, but not MLA, resulted in a significant improvement in CEN connectivity (Z = -2.37, P = .02). Target and transfer effects of VSOP training were identified, and links between VSOP training and two neural networks associated with aMCI were found. These findings highlight the potential of VSOP training to slow cognitive decline in individuals with aMCI. Further delineation of mechanisms underlying VSOP-induced plasticity is necessary to understand in which populations and under what conditions such training may be most effective. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  3. Underlying neural mechanisms of mirror therapy: Implications for motor rehabilitation in stroke.

    PubMed

    Arya, Kamal Narayan

    2016-01-01

    Mirror therapy (MT) is a valuable method for enhancing motor recovery in poststroke hemiparesis. The technique utilizes the mirror-illusion created by the movement of sound limb that is perceived as the paretic limb. MT is a simple and economical technique than can stimulate the brain noninvasively. The intervention unquestionably has neural foundation. But the underlying neural mechanisms inducing motor recovery are still unclear. In this review, the neural-modulation due to MT has been explored. Multiple areas of the brain such as the occipital lobe, dorsal frontal area and corpus callosum are involved during the simple MT regime. Bilateral premotor cortex, primary motor cortex, primary somatosensory cortex, and cerebellum also get reorganized to enhance the function of the damaged brain. The motor areas of the lesioned hemisphere receive visuo-motor processing information through the parieto-occipital lobe. The damaged motor cortex responds variably to the MT and may augment true motor recovery. Mirror neurons may also play a possible role in the cortico-stimulatory mechanisms occurring due to the MT.

  4. Design of neural network model-based controller in a fed-batch microbial electrolysis cell reactor for bio-hydrogen gas production

    NASA Astrophysics Data System (ADS)

    Azwar; Hussain, M. A.; Abdul-Wahab, A. K.; Zanil, M. F.; Mukhlishien

    2018-03-01

    One of major challenge in bio-hydrogen production process by using MEC process is nonlinear and highly complex system. This is mainly due to the presence of microbial interactions and highly complex phenomena in the system. Its complexity makes MEC system difficult to operate and control under optimal conditions. Thus, precise control is required for the MEC reactor, so that the amount of current required to produce hydrogen gas can be controlled according to the composition of the substrate in the reactor. In this work, two schemes for controlling the current and voltage of MEC were evaluated. The controllers evaluated are PID and Inverse neural network (NN) controller. The comparative study has been carried out under optimal condition for the production of bio-hydrogen gas wherein the controller output is based on the correlation of optimal current and voltage to the MEC. Various simulation tests involving multiple set-point changes and disturbances rejection have been evaluated and the performances of both controllers are discussed. The neural network-based controller results in fast response time and less overshoots while the offset effects are minimal. In conclusion, the Inverse neural network (NN)-based controllers provide better control performance for the MEC system compared to the PID controller.

  5. Mirroring and beyond: coupled dynamics as a generalized framework for modelling social interactions

    PubMed Central

    Hasson, Uri; Frith, Chris D.

    2016-01-01

    When people observe one another, behavioural alignment can be detected at many levels, from the physical to the mental. Likewise, when people process the same highly complex stimulus sequences, such as films and stories, alignment is detected in the elicited brain activity. In early sensory areas, shared neural patterns are coupled to the low-level properties of the stimulus (shape, motion, volume, etc.), while in high-order brain areas, shared neural patterns are coupled to high-levels aspects of the stimulus, such as meaning. Successful social interactions require such alignments (both behavioural and neural), as communication cannot occur without shared understanding. However, we need to go beyond simple, symmetric (mirror) alignment once we start interacting. Interactions are dynamic processes, which involve continuous mutual adaptation, development of complementary behaviour and division of labour such as leader–follower roles. Here, we argue that interacting individuals are dynamically coupled rather than simply aligned. This broader framework for understanding interactions can encompass both processes by which behaviour and brain activity mirror each other (neural alignment), and situations in which behaviour and brain activity in one participant are coupled (but not mirrored) to the dynamics in the other participant. To apply these more sophisticated accounts of social interactions to the study of the underlying neural processes we need to develop new experimental paradigms and novel methods of data analysis PMID:27069044

  6. Neural Underpinnings of Decision Strategy Selection: A Review and a Theoretical Model.

    PubMed

    Wichary, Szymon; Smolen, Tomasz

    2016-01-01

    In multi-attribute choice, decision makers use decision strategies to arrive at the final choice. What are the neural mechanisms underlying decision strategy selection? The first goal of this paper is to provide a literature review on the neural underpinnings and cognitive models of decision strategy selection and thus set the stage for a neurocognitive model of this process. The second goal is to outline such a unifying, mechanistic model that can explain the impact of noncognitive factors (e.g., affect, stress) on strategy selection. To this end, we review the evidence for the factors influencing strategy selection, the neural basis of strategy use and the cognitive models of this process. We also present the Bottom-Up Model of Strategy Selection (BUMSS). The model assumes that the use of the rational Weighted Additive strategy and the boundedly rational heuristic Take The Best can be explained by one unifying, neurophysiologically plausible mechanism, based on the interaction of the frontoparietal network, orbitofrontal cortex, anterior cingulate cortex and the brainstem nucleus locus coeruleus. According to BUMSS, there are three processes that form the bottom-up mechanism of decision strategy selection and lead to the final choice: (1) cue weight computation, (2) gain modulation, and (3) weighted additive evaluation of alternatives. We discuss how these processes might be implemented in the brain, and how this knowledge allows us to formulate novel predictions linking strategy use and neural signals.

  7. Developing Dynamic Field Theory Architectures for Embodied Cognitive Systems with cedar.

    PubMed

    Lomp, Oliver; Richter, Mathis; Zibner, Stephan K U; Schöner, Gregor

    2016-01-01

    Embodied artificial cognitive systems, such as autonomous robots or intelligent observers, connect cognitive processes to sensory and effector systems in real time. Prime candidates for such embodied intelligence are neurally inspired architectures. While components such as forward neural networks are well established, designing pervasively autonomous neural architectures remains a challenge. This includes the problem of tuning the parameters of such architectures so that they deliver specified functionality under variable environmental conditions and retain these functions as the architectures are expanded. The scaling and autonomy problems are solved, in part, by dynamic field theory (DFT), a theoretical framework for the neural grounding of sensorimotor and cognitive processes. In this paper, we address how to efficiently build DFT architectures that control embodied agents and how to tune their parameters so that the desired cognitive functions emerge while such agents are situated in real environments. In DFT architectures, dynamic neural fields or nodes are assigned dynamic regimes, that is, attractor states and their instabilities, from which cognitive function emerges. Tuning thus amounts to determining values of the dynamic parameters for which the components of a DFT architecture are in the specified dynamic regime under the appropriate environmental conditions. The process of tuning is facilitated by the software framework cedar , which provides a graphical interface to build and execute DFT architectures. It enables to change dynamic parameters online and visualize the activation states of any component while the agent is receiving sensory inputs in real time. Using a simple example, we take the reader through the workflow of conceiving of DFT architectures, implementing them on embodied agents, tuning their parameters, and assessing performance while the system is coupled to real sensory inputs.

  8. Systematic review of the neural basis of social cognition in patients with mood disorders

    PubMed Central

    Cusi, Andrée M.; Nazarov, Anthony; Holshausen, Katherine; MacQueen, Glenda M.; McKinnon, Margaret C.

    2012-01-01

    Background This review integrates neuroimaging studies of 2 domains of social cognition — emotion comprehension and theory of mind (ToM) — in patients with major depressive disorder and bipolar disorder. The influence of key clinical and method variables on patterns of neural activation during social cognitive processing is also examined. Methods Studies were identified using PsycINFO and PubMed (January 1967 to May 2011). The search terms were “fMRI,” “emotion comprehension,” “emotion perception,” “affect comprehension,” “affect perception,” “facial expression,” “prosody,” “theory of mind,” “mentalizing” and “empathy” in combination with “major depressive disorder,” “bipolar disorder,” “major depression,” “unipolar depression,” “clinical depression” and “mania.” Results Taken together, neuroimaging studies of social cognition in patients with mood disorders reveal enhanced activation in limbic and emotion-related structures and attenuated activity within frontal regions associated with emotion regulation and higher cognitive functions. These results reveal an overall lack of inhibition by higher-order cognitive structures on limbic and emotion-related structures during social cognitive processing in patients with mood disorders. Critically, key variables, including illness burden, symptom severity, comorbidity, medication status and cognitive load may moderate this pattern of neural activation. Limitations Studies that did not include control tasks or a comparator group were included in this review. Conclusion Further work is needed to examine the contribution of key moderator variables and to further elucidate the neural networks underlying altered social cognition in patients with mood disorders. The neural networks underlying higher-order social cognitive processes, including empathy, remain unexplored in patients with mood disorders. PMID:22297065

  9. Developing Dynamic Field Theory Architectures for Embodied Cognitive Systems with cedar

    PubMed Central

    Lomp, Oliver; Richter, Mathis; Zibner, Stephan K. U.; Schöner, Gregor

    2016-01-01

    Embodied artificial cognitive systems, such as autonomous robots or intelligent observers, connect cognitive processes to sensory and effector systems in real time. Prime candidates for such embodied intelligence are neurally inspired architectures. While components such as forward neural networks are well established, designing pervasively autonomous neural architectures remains a challenge. This includes the problem of tuning the parameters of such architectures so that they deliver specified functionality under variable environmental conditions and retain these functions as the architectures are expanded. The scaling and autonomy problems are solved, in part, by dynamic field theory (DFT), a theoretical framework for the neural grounding of sensorimotor and cognitive processes. In this paper, we address how to efficiently build DFT architectures that control embodied agents and how to tune their parameters so that the desired cognitive functions emerge while such agents are situated in real environments. In DFT architectures, dynamic neural fields or nodes are assigned dynamic regimes, that is, attractor states and their instabilities, from which cognitive function emerges. Tuning thus amounts to determining values of the dynamic parameters for which the components of a DFT architecture are in the specified dynamic regime under the appropriate environmental conditions. The process of tuning is facilitated by the software framework cedar, which provides a graphical interface to build and execute DFT architectures. It enables to change dynamic parameters online and visualize the activation states of any component while the agent is receiving sensory inputs in real time. Using a simple example, we take the reader through the workflow of conceiving of DFT architectures, implementing them on embodied agents, tuning their parameters, and assessing performance while the system is coupled to real sensory inputs. PMID:27853431

  10. Deficits in context-dependent adaptive coding of reward in schizophrenia

    PubMed Central

    Kirschner, Matthias; Hager, Oliver M; Bischof, Martin; Hartmann-Riemer, Matthias N; Kluge, Agne; Seifritz, Erich; Tobler, Philippe N; Kaiser, Stefan

    2016-01-01

    Theoretical principles of information processing and empirical findings suggest that to efficiently represent all possible rewards in the natural environment, reward-sensitive neurons have to adapt their coding range dynamically to the current reward context. Adaptation ensures that the reward system is most sensitive for the most likely rewards, enabling the system to efficiently represent a potentially infinite range of reward information. A deficit in neural adaptation would prevent precise representation of rewards and could have detrimental effects for an organism’s ability to optimally engage with its environment. In schizophrenia, reward processing is known to be impaired and has been linked to different symptom dimensions. However, despite the fundamental significance of coding reward adaptively, no study has elucidated whether adaptive reward processing is impaired in schizophrenia. We therefore studied patients with schizophrenia (n=27) and healthy controls (n=25), using functional magnetic resonance imaging in combination with a variant of the monetary incentive delay task. Compared with healthy controls, patients with schizophrenia showed less efficient neural adaptation to the current reward context, which leads to imprecise neural representation of reward. Importantly, the deficit correlated with total symptom severity. Our results suggest that some of the deficits in reward processing in schizophrenia might be due to inefficient neural adaptation to the current reward context. Furthermore, because adaptive coding is a ubiquitous feature of the brain, we believe that our findings provide an avenue in defining a general impairment in neural information processing underlying this debilitating disorder. PMID:27430009

  11. Precision about the automatic emotional brain.

    PubMed

    Vuilleumier, Patrik

    2015-01-01

    The question of automaticity in emotion processing has been debated under different perspectives in recent years. Satisfying answers to this issue will require a better definition of automaticity in terms of relevant behavioral phenomena, ecological conditions of occurrence, and a more precise mechanistic account of the underlying neural circuits.

  12. Psychological and Neural Mechanisms of Experimental Extinction: A Selective Review

    PubMed Central

    Delamater, Andrew R.; Westbrook, R. Frederick

    2013-01-01

    The present review examines key psychological concepts in the study of experimental extinction and implications these have for an understanding of the underlying neurobiology of extinction learning. We suggest that many of the signature characteristics of extinction learning (spontaneous recovery, renewal, reinstatement, rapid reacquisition) can be accommodated by the standard associative learning theory assumption that extinction results in partial erasure of the original learning together with new inhibitory learning. Moreover, we consider recent behavioral and neural evidence that supports the partial erasure view of extinction, but also note shortcomings in our understanding of extinction circuits as these relate to the negative prediction error concept. Recent work suggests that common prediction error and stimulus-specific prediction error terms both may be required to explain neural plasticity both in acquisition and extinction learning. In addition, we suggest that many issues in the content of extinction learning have not been fully addressed in current research, but that neurobiological approaches should be especially helpful in addressing such issues. These include questions about the nature of extinction learning (excitatory CS-No US, inhibitory CS-US learning, occasion setting processes), especially as this relates to studies of the micro-circuitry of extinction, as well as its representational content (sensory, motivational, response). An additional understudied problem in extinction research is the role played by attention processes and their underlying neural networks, although some research and theory converge on the idea that extinction is accompanied by attention decrements (i.e., habituation-like processes). PMID:24104049

  13. Psychological and neural mechanisms of experimental extinction: a selective review.

    PubMed

    Delamater, Andrew R; Westbrook, R Frederick

    2014-02-01

    The present review examines key psychological concepts in the study of experimental extinction and implications these have for an understanding of the underlying neurobiology of extinction learning. We suggest that many of the signature characteristics of extinction learning (spontaneous recovery, renewal, reinstatement, rapid reacquisition) can be accommodated by the standard associative learning theory assumption that extinction results in partial erasure of the original learning together with new inhibitory learning. Moreover, we consider recent behavioral and neural evidence that supports the partial erasure view of extinction, but also note shortcomings in our understanding of extinction circuits as these relate to the negative prediction error concept. Recent work suggests that common prediction error and stimulus-specific prediction error terms both may be required to explain neural plasticity both in acquisition and extinction learning. In addition, we suggest that many issues in the content of extinction learning have not been fully addressed in current research, but that neurobiological approaches should be especially helpful in addressing such issues. These include questions about the nature of extinction learning (excitatory CS-No US, inhibitory CS-US learning, occasion setting processes), especially as this relates to studies of the micro-circuitry of extinction, as well as its representational content (sensory, motivational, response). An additional understudied problem in extinction research is the role played by attention processes and their underlying neural networks, although some research and theory converge on the idea that extinction is accompanied by attention decrements (i.e., habituation-like processes). Copyright © 2013 Elsevier Inc. All rights reserved.

  14. The neural substrates of social influence on decision making.

    PubMed

    Tomlin, Damon; Nedic, Andrea; Prentice, Deborah A; Holmes, Philip; Cohen, Jonathan D

    2013-01-01

    The mechanisms that govern human learning and decision making under uncertainty have been the focus of intense behavioral and, more recently, neuroscientific investigation. Substantial progress has been made in building models of the processes involved, and identifying underlying neural mechanisms using simple, two-alternative forced choice decision tasks. However, less attention has been given to how social information influences these processes, and the neural systems that mediate this influence. Here we sought to address these questions by using tasks similar to ones that have been used to study individual decision making behavior, and adding conditions in which participants were given trial-by-trial information about the performance of other individuals (their choices and/or their rewards) simultaneously playing the same tasks. We asked two questions: How does such information about the behavior of others influence performance in otherwise simple decision tasks, and what neural systems mediate this influence? We found that bilateral insula exhibited a parametric relationship to the degree of misalignment of the individual's performance with those of others in the group. Furthermore, activity in the bilateral insula significantly predicted participants' subsequent choices to align their behavior with others in the group when they were misaligned either in their choices (independent of success) or their degree of success (independent of specific choices). These findings add to the growing body of empirical data suggesting that the insula participates in an important way in social information processing and decision making.

  15. Neural Mechanisms Underlying Risk and Ambiguity Attitudes.

    PubMed

    Blankenstein, Neeltje E; Peper, Jiska S; Crone, Eveline A; van Duijvenvoorde, Anna C K

    2017-11-01

    Individual differences in attitudes to risk (a taste for risk, known probabilities) and ambiguity (a tolerance for uncertainty, unknown probabilities) differentially influence risky decision-making. However, it is not well understood whether risk and ambiguity are coded differently within individuals. Here, we tested whether individual differences in risk and ambiguity attitudes were reflected in distinct neural correlates during choice and outcome processing of risky and ambiguous gambles. To these ends, we developed a neuroimaging task in which participants ( n = 50) chose between a sure gain and a gamble, which was either risky or ambiguous, and presented decision outcomes (gains, no gains). From a separate task in which the amount, probability, and ambiguity level were varied, we estimated individuals' risk and ambiguity attitudes. Although there was pronounced neural overlap between risky and ambiguous gambling in a network typically related to decision-making under uncertainty, relatively more risk-seeking attitudes were associated with increased activation in valuation regions of the brain (medial and lateral OFC), whereas relatively more ambiguity-seeking attitudes were related to temporal cortex activation. In addition, although striatum activation was observed during reward processing irrespective of a prior risky or ambiguous gamble, reward processing after an ambiguous gamble resulted in enhanced dorsomedial PFC activation, possibly functioning as a general signal of uncertainty coding. These findings suggest that different neural mechanisms reflect individual differences in risk and ambiguity attitudes and that risk and ambiguity may impact overt risk-taking behavior in different ways.

  16. Neural changes associated with semantic processing in healthy aging despite intact behavioral performance.

    PubMed

    Lacombe, Jacinthe; Jolicoeur, Pierre; Grimault, Stephan; Pineault, Jessica; Joubert, Sven

    2015-10-01

    Semantic memory recruits an extensive neural network including the left inferior prefrontal cortex (IPC) and the left temporoparietal region, which are involved in semantic control processes, as well as the anterior temporal lobe region (ATL) which is considered to be involved in processing semantic information at a central level. However, little is known about the underlying neuronal integrity of the semantic network in normal aging. Young and older healthy adults carried out a semantic judgment task while their cortical activity was recorded using magnetoencephalography (MEG). Despite equivalent behavioral performance, young adults activated the left IPC to a greater extent than older adults, while the latter group recruited the temporoparietal region bilaterally and the left ATL to a greater extent than younger adults. Results indicate that significant neuronal changes occur in normal aging, mainly in regions underlying semantic control processes, despite an apparent stability in performance at the behavioral level. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Action recognition is sensitive to the identity of the actor.

    PubMed

    Ferstl, Ylva; Bülthoff, Heinrich; de la Rosa, Stephan

    2017-09-01

    Recognizing who is carrying out an action is essential for successful human interaction. The cognitive mechanisms underlying this ability are little understood and have been subject of discussions in embodied approaches to action recognition. Here we examine one solution, that visual action recognition processes are at least partly sensitive to the actor's identity. We investigated the dependency between identity information and action related processes by testing the sensitivity of neural action recognition processes to clothing and facial identity information with a behavioral adaptation paradigm. Our results show that action adaptation effects are in fact modulated by both clothing information and the actor's facial identity. The finding demonstrates that neural processes underlying action recognition are sensitive to identity information (including facial identity) and thereby not exclusively tuned to actions. We suggest that such response properties are useful to help humans in knowing who carried out an action. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  18. More than Skin Deep: Body Representation beyond Primary Somatosensory Cortex

    ERIC Educational Resources Information Center

    Longo, Matthew R.; Azanon, Elena; Haggard, Patrick

    2010-01-01

    The neural circuits underlying initial sensory processing of somatic information are relatively well understood. In contrast, the processes that go beyond primary somatosensation to create more abstract representations related to the body are less clear. In this review, we focus on two classes of higher-order processing beyond Somatosensation.…

  19. Verbal Labels Modulate Perceptual Object Processing in 1-Year-Old Children

    ERIC Educational Resources Information Center

    Gliga, Teodora; Volein, Agnes; Csibra, Gergely

    2010-01-01

    Whether verbal labels help infants visually process and categorize objects is a contentious issue. Using electroencephalography, we investigated whether possessing familiar or novel labels for objects directly enhances 1-year-old children's neural processes underlying the perception of those objects. We found enhanced gamma-band (20-60 Hz)…

  20. The Neural Basis of Event Simulation: An fMRI Study

    PubMed Central

    Yomogida, Yukihito; Sugiura, Motoaki; Akimoto, Yoritaka; Miyauchi, Carlos Makoto; Kawashima, Ryuta

    2014-01-01

    Event simulation (ES) is the situational inference process in which perceived event features such as objects, agents, and actions are associated in the brain to represent the whole situation. ES provides a common basis for various cognitive processes, such as perceptual prediction, situational understanding/prediction, and social cognition (such as mentalizing/trait inference). Here, functional magnetic resonance imaging was used to elucidate the neural substrates underlying important subdivisions within ES. First, the study investigated whether ES depends on different neural substrates when it is conducted explicitly and implicitly. Second, the existence of neural substrates specific to the future-prediction component of ES was assessed. Subjects were shown contextually related object pictures implying a situation and performed several picture–word-matching tasks. By varying task goals, subjects were made to infer the implied situation implicitly/explicitly or predict the future consequence of that situation. The results indicate that, whereas implicit ES activated the lateral prefrontal cortex and medial/lateral parietal cortex, explicit ES activated the medial prefrontal cortex, posterior cingulate cortex, and medial/lateral temporal cortex. Additionally, the left temporoparietal junction plays an important role in the future-prediction component of ES. These findings enrich our understanding of the neural substrates of the implicit/explicit/predictive aspects of ES-related cognitive processes. PMID:24789353

  1. Parallel Computations in Insect and Mammalian Visual Motion Processing

    PubMed Central

    Clark, Damon A.; Demb, Jonathan B.

    2016-01-01

    Sensory systems use receptors to extract information from the environment and neural circuits to perform subsequent computations. These computations may be described as algorithms composed of sequential mathematical operations. Comparing these operations across taxa reveals how different neural circuits have evolved to solve the same problem, even when using different mechanisms to implement the underlying math. In this review, we compare how insect and mammalian neural circuits have solved the problem of motion estimation, focusing on the fruit fly Drosophila and the mouse retina. Although the two systems implement computations with grossly different anatomy and molecular mechanisms, the underlying circuits transform light into motion signals with strikingly similar processing steps. These similarities run from photoreceptor gain control and spatiotemporal tuning to ON and OFF pathway structures, motion detection, and computed motion signals. The parallels between the two systems suggest that a limited set of algorithms for estimating motion satisfies both the needs of sighted creatures and the constraints imposed on them by metabolism, anatomy, and the structure and regularities of the visual world. PMID:27780048

  2. Parallel Computations in Insect and Mammalian Visual Motion Processing.

    PubMed

    Clark, Damon A; Demb, Jonathan B

    2016-10-24

    Sensory systems use receptors to extract information from the environment and neural circuits to perform subsequent computations. These computations may be described as algorithms composed of sequential mathematical operations. Comparing these operations across taxa reveals how different neural circuits have evolved to solve the same problem, even when using different mechanisms to implement the underlying math. In this review, we compare how insect and mammalian neural circuits have solved the problem of motion estimation, focusing on the fruit fly Drosophila and the mouse retina. Although the two systems implement computations with grossly different anatomy and molecular mechanisms, the underlying circuits transform light into motion signals with strikingly similar processing steps. These similarities run from photoreceptor gain control and spatiotemporal tuning to ON and OFF pathway structures, motion detection, and computed motion signals. The parallels between the two systems suggest that a limited set of algorithms for estimating motion satisfies both the needs of sighted creatures and the constraints imposed on them by metabolism, anatomy, and the structure and regularities of the visual world. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Neural response to reward anticipation under risk is nonlinear in probabilities.

    PubMed

    Hsu, Ming; Krajbich, Ian; Zhao, Chen; Camerer, Colin F

    2009-02-18

    A widely observed phenomenon in decision making under risk is the apparent overweighting of unlikely events and the underweighting of nearly certain events. This violates standard assumptions in expected utility theory, which requires that expected utility be linear (objective) in probabilities. Models such as prospect theory have relaxed this assumption and introduced the notion of a "probability weighting function," which captures the key properties found in experimental data. This study reports functional magnetic resonance imaging (fMRI) data that neural response to expected reward is nonlinear in probabilities. Specifically, we found that activity in the striatum during valuation of monetary gambles are nonlinear in probabilities in the pattern predicted by prospect theory, suggesting that probability distortion is reflected at the level of the reward encoding process. The degree of nonlinearity reflected in individual subjects' decisions is also correlated with striatal activity across subjects. Our results shed light on the neural mechanisms of reward processing, and have implications for future neuroscientific studies of decision making involving extreme tails of the distribution, where probability weighting provides an explanation for commonly observed behavioral anomalies.

  4. Utilising reinforcement learning to develop strategies for driving auditory neural implants.

    PubMed

    Lee, Geoffrey W; Zambetta, Fabio; Li, Xiaodong; Paolini, Antonio G

    2016-08-01

    In this paper we propose a novel application of reinforcement learning to the area of auditory neural stimulation. We aim to develop a simulation environment which is based off real neurological responses to auditory and electrical stimulation in the cochlear nucleus (CN) and inferior colliculus (IC) of an animal model. Using this simulator we implement closed loop reinforcement learning algorithms to determine which methods are most effective at learning effective acoustic neural stimulation strategies. By recording a comprehensive set of acoustic frequency presentations and neural responses from a set of animals we created a large database of neural responses to acoustic stimulation. Extensive electrical stimulation in the CN and the recording of neural responses in the IC provides a mapping of how the auditory system responds to electrical stimuli. The combined dataset is used as the foundation for the simulator, which is used to implement and test learning algorithms. Reinforcement learning, utilising a modified n-Armed Bandit solution, is implemented to demonstrate the model's function. We show the ability to effectively learn stimulation patterns which mimic the cochlea's ability to covert acoustic frequencies to neural activity. Time taken to learn effective replication using neural stimulation takes less than 20 min under continuous testing. These results show the utility of reinforcement learning in the field of neural stimulation. These results can be coupled with existing sound processing technologies to develop new auditory prosthetics that are adaptable to the recipients current auditory pathway. The same process can theoretically be abstracted to other sensory and motor systems to develop similar electrical replication of neural signals.

  5. Adaptive optimal input design and parametric estimation of nonlinear dynamical systems: application to neuronal modeling.

    PubMed

    Madi, Mahmoud K; Karameh, Fadi N

    2018-05-11

    Many physical models of biological processes including neural systems are characterized by parametric nonlinear dynamical relations between driving inputs, internal states, and measured outputs of the process. Fitting such models using experimental data (data assimilation) is a challenging task since the physical process often operates in a noisy, possibly non-stationary environment; moreover, conducting multiple experiments under controlled and repeatable conditions can be impractical, time consuming or costly. The accuracy of model identification, therefore, is dictated principally by the quality and dynamic richness of collected data over single or few experimental sessions. Accordingly, it is highly desirable to design efficient experiments that, by exciting the physical process with smart inputs, yields fast convergence and increased accuracy of the model. We herein introduce an adaptive framework in which optimal input design is integrated with Square root Cubature Kalman Filters (OID-SCKF) to develop an online estimation procedure that first, converges significantly quicker, thereby permitting model fitting over shorter time windows, and second, enhances model accuracy when only few process outputs are accessible. The methodology is demonstrated on common nonlinear models and on a four-area neural mass model with noisy and limited measurements. Estimation quality (speed and accuracy) is benchmarked against high-performance SCKF-based methods that commonly employ dynamically rich informed inputs for accurate model identification. For all the tested models, simulated single-trial and ensemble averages showed that OID-SCKF exhibited (i) faster convergence of parameter estimates and (ii) lower dependence on inter-trial noise variability with gains up to around 1000 msec in speed and 81% increase in variability for the neural mass models. In terms of accuracy, OID-SCKF estimation was superior, and exhibited considerably less variability across experiments, in identifying model parameters of (a) systems with challenging model inversion dynamics and (b) systems with fewer measurable outputs that directly relate to the underlying processes. Fast and accurate identification therefore carries particular promise for modeling of transient (short-lived) neuronal network dynamics using a spatially under-sampled set of noisy measurements, as is commonly encountered in neural engineering applications. © 2018 IOP Publishing Ltd.

  6. Taking one’s time in feeling other-race pain: an event-related potential investigation on the time-course of cross-racial empathy

    PubMed Central

    Meconi, Federica; Castelli, Luigi; Dell’Acqua, Roberto

    2014-01-01

    Using the event-related potential (ERP) approach, we tracked the time-course of white participants’ empathic reactions to white (own-race) and black (other-race) faces displayed in a painful condition (i.e. with a needle penetrating the skin) and in a nonpainful condition (i.e. with Q-tip touching the skin). In a 280–340 ms time-window, neural responses to the pain of own-race individuals under needle penetration conditions were amplified relative to neural responses to the pain of other-race individuals displayed under analogous conditions. This ERP reaction to pain, whose source was localized in the inferior frontal gyrus, correlated with the empathic concern ratings of the Interpersonal Reactivity Index questionnaire. In a 400–750 ms time-window, the difference between neural reactions to the pain of own-race individuals, localized in the middle frontal gyrus and other-race individuals, localized in the temporoparietal junction was reduced to nil. These findings support a functional, neural and temporal distinction between two sequential processing stages underlying empathy, namely, a race-biased stage of pain sharing/mirroring followed by a race-unbiased stage of cognitive evaluation of pain. PMID:23314008

  7. Information-geometric measures estimate neural interactions during oscillatory brain states

    PubMed Central

    Nie, Yimin; Fellous, Jean-Marc; Tatsuno, Masami

    2014-01-01

    The characterization of functional network structures among multiple neurons is essential to understanding neural information processing. Information geometry (IG), a theory developed for investigating a space of probability distributions has recently been applied to spike-train analysis and has provided robust estimations of neural interactions. Although neural firing in the equilibrium state is often assumed in these studies, in reality, neural activity is non-stationary. The brain exhibits various oscillations depending on cognitive demands or when an animal is asleep. Therefore, the investigation of the IG measures during oscillatory network states is important for testing how the IG method can be applied to real neural data. Using model networks of binary neurons or more realistic spiking neurons, we studied how the single- and pairwise-IG measures were influenced by oscillatory neural activity. Two general oscillatory mechanisms, externally driven oscillations and internally induced oscillations, were considered. In both mechanisms, we found that the single-IG measure was linearly related to the magnitude of the external input, and that the pairwise-IG measure was linearly related to the sum of connection strengths between two neurons. We also observed that the pairwise-IG measure was not dependent on the oscillation frequency. These results are consistent with the previous findings that were obtained under the equilibrium conditions. Therefore, we demonstrate that the IG method provides useful insights into neural interactions under the oscillatory condition that can often be observed in the real brain. PMID:24605089

  8. Information-geometric measures estimate neural interactions during oscillatory brain states.

    PubMed

    Nie, Yimin; Fellous, Jean-Marc; Tatsuno, Masami

    2014-01-01

    The characterization of functional network structures among multiple neurons is essential to understanding neural information processing. Information geometry (IG), a theory developed for investigating a space of probability distributions has recently been applied to spike-train analysis and has provided robust estimations of neural interactions. Although neural firing in the equilibrium state is often assumed in these studies, in reality, neural activity is non-stationary. The brain exhibits various oscillations depending on cognitive demands or when an animal is asleep. Therefore, the investigation of the IG measures during oscillatory network states is important for testing how the IG method can be applied to real neural data. Using model networks of binary neurons or more realistic spiking neurons, we studied how the single- and pairwise-IG measures were influenced by oscillatory neural activity. Two general oscillatory mechanisms, externally driven oscillations and internally induced oscillations, were considered. In both mechanisms, we found that the single-IG measure was linearly related to the magnitude of the external input, and that the pairwise-IG measure was linearly related to the sum of connection strengths between two neurons. We also observed that the pairwise-IG measure was not dependent on the oscillation frequency. These results are consistent with the previous findings that were obtained under the equilibrium conditions. Therefore, we demonstrate that the IG method provides useful insights into neural interactions under the oscillatory condition that can often be observed in the real brain.

  9. Neural processing of musical meter in musicians and non-musicians.

    PubMed

    Zhao, T Christina; Lam, H T Gloria; Sohi, Harkirat; Kuhl, Patricia K

    2017-11-01

    Musical sounds, along with speech, are the most prominent sounds in our daily lives. They are highly dynamic, yet well structured in the temporal domain in a hierarchical manner. The temporal structures enhance the predictability of musical sounds. Western music provides an excellent example: while time intervals between musical notes are highly variable, underlying beats can be realized. The beat-level temporal structure provides a sense of regular pulses. Beats can be further organized into units, giving the percept of alternating strong and weak beats (i.e. metrical structure or meter). Examining neural processing at the meter level offers a unique opportunity to understand how the human brain extracts temporal patterns, predicts future stimuli and optimizes neural resources for processing. The present study addresses two important questions regarding meter processing, using the mismatch negativity (MMN) obtained with electroencephalography (EEG): 1) how tempo (fast vs. slow) and type of metrical structure (duple: two beats per unit vs. triple: three beats per unit) affect the neural processing of metrical structure in non-musically trained individuals, and 2) how early music training modulates the neural processing of metrical structure. Metrical structures were established by patterns of consecutive strong and weak tones (Standard) with occasional violations that disrupted and reset the structure (Deviant). Twenty non-musicians listened passively to these tones while their neural activities were recorded. MMN indexed the neural sensitivity to the meter violations. Results suggested that MMNs were larger for fast tempo and for triple meter conditions. Further, 20 musically trained individuals were tested using the same methods and the results were compared to the non-musicians. While tempo and meter type similarly influenced MMNs in both groups, musicians overall exhibited significantly reduced MMNs, compared to their non-musician counterparts. Further analyses indicated that the reduction was driven by responses to sounds that defined the structure (Standard), not by responses to Deviants. We argue that musicians maintain a more accurate and efficient mental model for metrical structures, which incorporates occasional disruptions using significantly fewer neural resources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The influence of emotion regulation on decision-making under risk.

    PubMed

    Martin, Laura N; Delgado, Mauricio R

    2011-09-01

    Cognitive strategies typically involved in regulating negative emotions have recently been shown to also be effective with positive emotions associated with monetary rewards. However, it is less clear how these strategies influence behavior, such as preferences expressed during decision-making under risk, and the underlying neural circuitry. That is, can the effective use of emotion regulation strategies during presentation of a reward-conditioned stimulus influence decision-making under risk and neural structures involved in reward processing such as the striatum? To investigate this question, we asked participants to engage in imagery-focused regulation strategies during the presentation of a cue that preceded a financial decision-making phase. During the decision phase, participants then made a choice between a risky and a safe monetary lottery. Participants who successfully used cognitive regulation, as assessed by subjective ratings about perceived success and facility in implementation of strategies, made fewer risky choices in comparison with trials where decisions were made in the absence of cognitive regulation. Additionally, BOLD responses in the striatum were attenuated during decision-making as a function of successful emotion regulation. These findings suggest that exerting cognitive control over emotional responses can modulate neural responses associated with reward processing (e.g., striatum) and promote more goal-directed decision-making (e.g., less risky choices), illustrating the potential importance of cognitive strategies in curbing risk-seeking behaviors before they become maladaptive (e.g., substance abuse).

  11. Correlation of neural activity with behavioral kinematics reveals distinct sensory encoding and evidence accumulation processes during active tactile sensing.

    PubMed

    Delis, Ioannis; Dmochowski, Jacek P; Sajda, Paul; Wang, Qi

    2018-07-15

    Many real-world decisions rely on active sensing, a dynamic process for directing our sensors (e.g. eyes or fingers) across a stimulus to maximize information gain. Though ecologically pervasive, limited work has focused on identifying neural correlates of the active sensing process. In tactile perception, we often make decisions about an object/surface by actively exploring its shape/texture. Here we investigate the neural correlates of active tactile decision-making by simultaneously measuring electroencephalography (EEG) and finger kinematics while subjects interrogated a haptic surface to make perceptual judgments. Since sensorimotor behavior underlies decision formation in active sensing tasks, we hypothesized that the neural correlates of decision-related processes would be detectable by relating active sensing to neural activity. Novel brain-behavior correlation analysis revealed that three distinct EEG components, localizing to right-lateralized occipital cortex (LOC), middle frontal gyrus (MFG), and supplementary motor area (SMA), respectively, were coupled with active sensing as their activity significantly correlated with finger kinematics. To probe the functional role of these components, we fit their single-trial-couplings to decision-making performance using a hierarchical-drift-diffusion-model (HDDM), revealing that the LOC modulated the encoding of the tactile stimulus whereas the MFG predicted the rate of information integration towards a choice. Interestingly, the MFG disappeared from components uncovered from control subjects performing active sensing but not required to make perceptual decisions. By uncovering the neural correlates of distinct stimulus encoding and evidence accumulation processes, this study delineated, for the first time, the functional role of cortical areas in active tactile decision-making. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Neural Correlates of Personalized Spiritual Experiences.

    PubMed

    Miller, Lisa; Balodis, Iris M; McClintock, Clayton H; Xu, Jiansong; Lacadie, Cheryl M; Sinha, Rajita; Potenza, Marc N

    2018-05-29

    Across cultures and throughout history, human beings have reported a variety of spiritual experiences and the concomitant perceived sense of union that transcends one's ordinary sense of self. Nevertheless, little is known about the underlying neural mechanisms of spiritual experiences, particularly when examined across different traditions and practices. By adapting an individualized guided-imagery task, we investigated neural correlates of personally meaningful spiritual experiences as compared with stressful and neutral-relaxing experiences. We observed in the spiritual condition, as compared with the neutral-relaxing condition, reduced activity in the left inferior parietal lobule (IPL), a result that suggests the IPL may contribute importantly to perceptual processing and self-other representations during spiritual experiences. Compared with stress cues, responses to spiritual cues showed reduced activity in the medial thalamus and caudate, regions associated with sensory and emotional processing. Overall, the study introduces a novel method for investigating brain correlates of personally meaningful spiritual experiences and suggests neural mechanisms associated with broadly defined and personally experienced spirituality.

  13. Machine learning in sentiment reconstruction of the simulated stock market

    NASA Astrophysics Data System (ADS)

    Goykhman, Mikhail; Teimouri, Ali

    2018-02-01

    In this paper we continue the study of the simulated stock market framework defined by the driving sentiment processes. We focus on the market environment driven by the buy/sell trading sentiment process of the Markov chain type. We apply the methodology of the Hidden Markov Models and the Recurrent Neural Networks to reconstruct the transition probabilities matrix of the Markov sentiment process and recover the underlying sentiment states from the observed stock price behavior. We demonstrate that the Hidden Markov Model can successfully recover the transition probabilities matrix for the hidden sentiment process of the Markov Chain type. We also demonstrate that the Recurrent Neural Network can successfully recover the hidden sentiment states from the observed simulated stock price time series.

  14. Factors Released from Endothelial Cells Exposed to Flow Impact Adhesion, Proliferation, and Fate Choice in the Adult Neural Stem Cell Lineage.

    PubMed

    Dumont, Courtney M; Piselli, Jennifer M; Kazi, Nadeem; Bowman, Evan; Li, Guoyun; Linhardt, Robert J; Temple, Sally; Dai, Guohao; Thompson, Deanna M

    2017-08-15

    The microvasculature within the neural stem cell (NSC) niche promotes self-renewal and regulates lineage progression. Previous work identified endothelial-produced soluble factors as key regulators of neural progenitor cell (NPC) fate and proliferation; however, endothelial cells (ECs) are sensitive to local hemodynamics, and the effect of this key physiological process has not been defined. In this study, we evaluated adult mouse NPC response to soluble factors isolated from static or dynamic (flow) EC cultures. Endothelial factors generated under dynamic conditions significantly increased neuronal differentiation, while those released under static conditions stimulated oligodendrocyte differentiation. Flow increases EC release of neurogenic factors and of heparin sulfate glycosaminoglycans that increase their bioactivity, likely underlying the enhanced neuronal differentiation. Additionally, endothelial factors, especially from static conditions, promoted adherent growth. Together, our data suggest that blood flow may impact proliferation, adhesion, and the neuron-glial fate choice of adult NPCs, with implications for diseases and aging that reduce flow.

  15. Signal Processing in Periodically Forced Gradient Frequency Neural Networks

    PubMed Central

    Kim, Ji Chul; Large, Edward W.

    2015-01-01

    Oscillatory instability at the Hopf bifurcation is a dynamical phenomenon that has been suggested to characterize active non-linear processes observed in the auditory system. Networks of oscillators poised near Hopf bifurcation points and tuned to tonotopically distributed frequencies have been used as models of auditory processing at various levels, but systematic investigation of the dynamical properties of such oscillatory networks is still lacking. Here we provide a dynamical systems analysis of a canonical model for gradient frequency neural networks driven by a periodic signal. We use linear stability analysis to identify various driven behaviors of canonical oscillators for all possible ranges of model and forcing parameters. The analysis shows that canonical oscillators exhibit qualitatively different sets of driven states and transitions for different regimes of model parameters. We classify the parameter regimes into four main categories based on their distinct signal processing capabilities. This analysis will lead to deeper understanding of the diverse behaviors of neural systems under periodic forcing and can inform the design of oscillatory network models of auditory signal processing. PMID:26733858

  16. Probabilistic inference under time pressure leads to a cortical-to-subcortical shift in decision evidence integration.

    PubMed

    Oh-Descher, Hanna; Beck, Jeffrey M; Ferrari, Silvia; Sommer, Marc A; Egner, Tobias

    2017-11-15

    Real-life decision-making often involves combining multiple probabilistic sources of information under finite time and cognitive resources. To mitigate these pressures, people "satisfice", foregoing a full evaluation of all available evidence to focus on a subset of cues that allow for fast and "good-enough" decisions. Although this form of decision-making likely mediates many of our everyday choices, very little is known about the way in which the neural encoding of cue information changes when we satisfice under time pressure. Here, we combined human functional magnetic resonance imaging (fMRI) with a probabilistic classification task to characterize neural substrates of multi-cue decision-making under low (1500 ms) and high (500 ms) time pressure. Using variational Bayesian inference, we analyzed participants' choices to track and quantify cue usage under each experimental condition, which was then applied to model the fMRI data. Under low time pressure, participants performed near-optimally, appropriately integrating all available cues to guide choices. Both cortical (prefrontal and parietal cortex) and subcortical (hippocampal and striatal) regions encoded individual cue weights, and activity linearly tracked trial-by-trial variations in the amount of evidence and decision uncertainty. Under increased time pressure, participants adaptively shifted to using a satisficing strategy by discounting the least informative cue in their decision process. This strategic change in decision-making was associated with an increased involvement of the dopaminergic midbrain, striatum, thalamus, and cerebellum in representing and integrating cue values. We conclude that satisficing the probabilistic inference process under time pressure leads to a cortical-to-subcortical shift in the neural drivers of decisions. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Stress and decision making: neural correlates of the interaction between stress, executive functions, and decision making under risk.

    PubMed

    Gathmann, Bettina; Schulte, Frank P; Maderwald, Stefan; Pawlikowski, Mirko; Starcke, Katrin; Schäfer, Lena C; Schöler, Tobias; Wolf, Oliver T; Brand, Matthias

    2014-03-01

    Stress and additional load on the executive system, produced by a parallel working memory task, impair decision making under risk. However, the combination of stress and a parallel task seems to preserve the decision-making performance [e.g., operationalized by the Game of Dice Task (GDT)] from decreasing, probably by a switch from serial to parallel processing. The question remains how the brain manages such demanding decision-making situations. The current study used a 7-tesla magnetic resonance imaging (MRI) system in order to investigate the underlying neural correlates of the interaction between stress (induced by the Trier Social Stress Test), risky decision making (GDT), and a parallel executive task (2-back task) to get a better understanding of those behavioral findings. The results show that on a behavioral level, stressed participants did not show significant differences in task performance. Interestingly, when comparing the stress group (SG) with the control group, the SG showed a greater increase in neural activation in the anterior prefrontal cortex when performing the 2-back task simultaneously with the GDT than when performing each task alone. This brain area is associated with parallel processing. Thus, the results may suggest that in stressful dual-tasking situations, where a decision has to be made when in parallel working memory is demanded, a stronger activation of a brain area associated with parallel processing takes place. The findings are in line with the idea that stress seems to trigger a switch from serial to parallel processing in demanding dual-tasking situations.

  18. A Mechanism for Graded, Dynamically Routable Current Propagation in Pulse-Gated Synfire Chains and Implications for Information Coding

    PubMed Central

    Sornborger, Andrew T.; Wang, Zhuo; Tao, Louis

    2015-01-01

    Neural oscillations can enhance feature recognition [1], modulate interactions between neurons [2], and improve learning and memory [3]. Numerical studies have shown that coherent spiking can give rise to windows in time during which information transfer can be enhanced in neuronal networks [4–6]. Unanswered questions are: 1) What is the transfer mechanism? And 2) how well can a transfer be executed? Here, we present a pulse-based mechanism by which a graded current amplitude may be exactly propagated from one neuronal population to another. The mechanism relies on the downstream gating of mean synaptic current amplitude from one population of neurons to another via a pulse. Because transfer is pulse-based, information may be dynamically routed through a neural circuit with fixed connectivity. We demonstrate the transfer mechanism in a realistic network of spiking neurons and show that it is robust to noise in the form of pulse timing inaccuracies, random synaptic strengths and finite size effects. We also show that the mechanism is structurally robust in that it may be implemented using biologically realistic pulses. The transfer mechanism may be used as a building block for fast, complex information processing in neural circuits. We show that the mechanism naturally leads to a framework wherein neural information coding and processing can be considered as a product of linear maps under the active control of a pulse generator. Distinct control and processing components combine to form the basis for the binding, propagation, and processing of dynamically routed information within neural pathways. Using our framework, we construct example neural circuits to 1) maintain a short-term memory, 2) compute time-windowed Fourier transforms, and 3) perform spatial rotations. We postulate that such circuits, with automatic and stereotyped control and processing of information, are the neural correlates of Crick and Koch’s zombie modes. PMID:26227067

  19. Application of machine learning methods for traffic signs recognition

    NASA Astrophysics Data System (ADS)

    Filatov, D. V.; Ignatev, K. V.; Deviatkin, A. V.; Serykh, E. V.

    2018-02-01

    This paper focuses on solving a relevant and pressing safety issue on intercity roads. Two approaches were considered for solving the problem of traffic signs recognition; the approaches involved neural networks to analyze images obtained from a camera in the real-time mode. The first approach is based on a sequential image processing. At the initial stage, with the help of color filters and morphological operations (dilatation and erosion), the area containing the traffic sign is located on the image, then the selected and scaled fragment of the image is analyzed using a feedforward neural network to determine the meaning of the found traffic sign. Learning of the neural network in this approach is carried out using a backpropagation method. The second approach involves convolution neural networks at both stages, i.e. when searching and selecting the area of the image containing the traffic sign, and when determining its meaning. Learning of the neural network in the second approach is carried out using the intersection over union function and a loss function. For neural networks to learn and the proposed algorithms to be tested, a series of videos from a dash cam were used that were shot under various weather and illumination conditions. As a result, the proposed approaches for traffic signs recognition were analyzed and compared by key indicators such as recognition rate percentage and the complexity of neural networks’ learning process.

  20. Neural processing of visual information under interocular suppression: a critical review

    PubMed Central

    Sterzer, Philipp; Stein, Timo; Ludwig, Karin; Rothkirch, Marcus; Hesselmann, Guido

    2014-01-01

    When dissimilar stimuli are presented to the two eyes, only one stimulus dominates at a time while the other stimulus is invisible due to interocular suppression. When both stimuli are equally potent in competing for awareness, perception alternates spontaneously between the two stimuli, a phenomenon called binocular rivalry. However, when one stimulus is much stronger, e.g., due to higher contrast, the weaker stimulus can be suppressed for prolonged periods of time. A technique that has recently become very popular for the investigation of unconscious visual processing is continuous flash suppression (CFS): High-contrast dynamic patterns shown to one eye can render a low-contrast stimulus shown to the other eye invisible for up to minutes. Studies using CFS have produced new insights but also controversies regarding the types of visual information that can be processed unconsciously as well as the neural sites and the relevance of such unconscious processing. Here, we review the current state of knowledge in regard to neural processing of interocularly suppressed information. Focusing on recent neuroimaging findings, we discuss whether and to what degree such suppressed visual information is processed at early and more advanced levels of the visual processing hierarchy. We review controversial findings related to the influence of attention on early visual processing under interocular suppression, the putative differential roles of dorsal and ventral areas in unconscious object processing, and evidence suggesting privileged unconscious processing of emotional and other socially relevant information. On a more general note, we discuss methodological and conceptual issues, from practical issues of how unawareness of a stimulus is assessed to the overarching question of what constitutes an adequate operational definition of unawareness. Finally, we propose approaches for future research to resolve current controversies in this exciting research area. PMID:24904469

  1. Nonequilibrium landscape theory of neural networks.

    PubMed

    Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin

    2013-11-05

    The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape-flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments.

  2. Nonequilibrium landscape theory of neural networks

    PubMed Central

    Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin

    2013-01-01

    The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape–flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments. PMID:24145451

  3. Automatic Speech Recognition from Neural Signals: A Focused Review.

    PubMed

    Herff, Christian; Schultz, Tanja

    2016-01-01

    Speech interfaces have become widely accepted and are nowadays integrated in various real-life applications and devices. They have become a part of our daily life. However, speech interfaces presume the ability to produce intelligible speech, which might be impossible due to either loud environments, bothering bystanders or incapabilities to produce speech (i.e., patients suffering from locked-in syndrome). For these reasons it would be highly desirable to not speak but to simply envision oneself to say words or sentences. Interfaces based on imagined speech would enable fast and natural communication without the need for audible speech and would give a voice to otherwise mute people. This focused review analyzes the potential of different brain imaging techniques to recognize speech from neural signals by applying Automatic Speech Recognition technology. We argue that modalities based on metabolic processes, such as functional Near Infrared Spectroscopy and functional Magnetic Resonance Imaging, are less suited for Automatic Speech Recognition from neural signals due to low temporal resolution but are very useful for the investigation of the underlying neural mechanisms involved in speech processes. In contrast, electrophysiologic activity is fast enough to capture speech processes and is therefor better suited for ASR. Our experimental results indicate the potential of these signals for speech recognition from neural data with a focus on invasively measured brain activity (electrocorticography). As a first example of Automatic Speech Recognition techniques used from neural signals, we discuss the Brain-to-text system.

  4. How age of bilingual exposure can change the neural systems for language in the developing brain: a functional near infrared spectroscopy investigation of syntactic processing in monolingual and bilingual children.

    PubMed

    Jasinska, K K; Petitto, L A

    2013-10-01

    Is the developing bilingual brain fundamentally similar to the monolingual brain (e.g., neural resources supporting language and cognition)? Or, does early-life bilingual language experience change the brain? If so, how does age of first bilingual exposure impact neural activation for language? We compared how typically-developing bilingual and monolingual children (ages 7-10) and adults recruit brain areas during sentence processing using functional Near Infrared Spectroscopy (fNIRS) brain imaging. Bilingual participants included early-exposed (bilingual exposure from birth) and later-exposed individuals (bilingual exposure between ages 4-6). Both bilingual children and adults showed greater neural activation in left-hemisphere classic language areas, and additionally, right-hemisphere homologues (Right Superior Temporal Gyrus, Right Inferior Frontal Gyrus). However, important differences were observed between early-exposed and later-exposed bilinguals in their earliest-exposed language. Early bilingual exposure imparts fundamental changes to classic language areas instead of alterations to brain regions governing higher cognitive executive functions. However, age of first bilingual exposure does matter. Later-exposed bilinguals showed greater recruitment of the prefrontal cortex relative to early-exposed bilinguals and monolinguals. The findings provide fascinating insight into the neural resources that facilitate bilingual language use and are discussed in terms of how early-life language experiences can modify the neural systems underlying human language processing. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Dissociable neural modulation underlying lasting first impressions, changing your mind for the better, and changing it for the worse.

    PubMed

    Bhanji, Jamil P; Beer, Jennifer S

    2013-05-29

    Unattractive job candidates face a disadvantage when interviewing for a job. Employers' evaluations are colored by the candidate's physical attractiveness even when they take job interview performance into account. This example illustrates unexplored questions about the neural basis of social evaluation in humans. What neural regions support the lasting effects of initial impressions (even after getting to know someone)? How does the brain process information that changes our minds about someone? Job candidates' competence was evaluated from photographs and again after seeing snippets of job interviews. Left lateral orbitofrontal cortex modulation serves as a warning signal for initial reactions that ultimately undermine evaluations even when additional information is taken into account. The neural basis of changing one's mind about a candidate is not a simple matter of computing the amount of competence-affirming information in their job interview. Instead, seeing a candidate for the better is somewhat distinguishable at the neural level from seeing a candidate for the worse. Whereas amygdala modulation marks the extremity of evaluation change, favorable impression change additionally draws on parametric modulation of lateral prefrontal cortex and unfavorable impression change additionally draws on parametric modulation of medial prefrontal cortex, temporal cortex, and striatum. Investigating social evaluation as a dynamic process (rather than a one-time impression) paints a new picture of its neural basis and highlights the partially dissociable processes that contribute to changing your mind about someone for the better or the worse.

  6. Nonlinear inversion of electrical resistivity imaging using pruning Bayesian neural networks

    NASA Astrophysics Data System (ADS)

    Jiang, Fei-Bo; Dai, Qian-Wei; Dong, Li

    2016-06-01

    Conventional artificial neural networks used to solve electrical resistivity imaging (ERI) inversion problem suffer from overfitting and local minima. To solve these problems, we propose to use a pruning Bayesian neural network (PBNN) nonlinear inversion method and a sample design method based on the K-medoids clustering algorithm. In the sample design method, the training samples of the neural network are designed according to the prior information provided by the K-medoids clustering results; thus, the training process of the neural network is well guided. The proposed PBNN, based on Bayesian regularization, is used to select the hidden layer structure by assessing the effect of each hidden neuron to the inversion results. Then, the hyperparameter α k , which is based on the generalized mean, is chosen to guide the pruning process according to the prior distribution of the training samples under the small-sample condition. The proposed algorithm is more efficient than other common adaptive regularization methods in geophysics. The inversion of synthetic data and field data suggests that the proposed method suppresses the noise in the neural network training stage and enhances the generalization. The inversion results with the proposed method are better than those of the BPNN, RBFNN, and RRBFNN inversion methods as well as the conventional least squares inversion.

  7. Normalization regulates competition for visual awareness

    PubMed Central

    Ling, Sam; Blake, Randolph

    2012-01-01

    Summary Signals in our brain are in a constant state of competition, including those that vie for motor control, sensory dominance and awareness. To shed light on the mechanisms underlying neural competition, we exploit binocular rivalry, a phenomenon that allows us to probe the competitive process that ordinarily transpires outside of our awareness. By measuring psychometric functions under different states of rivalry, we discovered a pattern of gain changes that are consistent with a model of competition in which attention interacts with normalization processes, thereby driving the ebb and flow between states of awareness. Moreover, we reveal that attention plays a crucial role in modulating competition; without attention, rivalry suppression for high-contrast stimuli is negligible. We propose a framework whereby our visual awareness of competing sensory representations is governed by a common neural computation: normalization. PMID:22884335

  8. Approaches to the study of neural coding of sound source location and sound envelope in real environments

    PubMed Central

    Kuwada, Shigeyuki; Bishop, Brian; Kim, Duck O.

    2012-01-01

    The major functions of the auditory system are recognition (what is the sound) and localization (where is the sound). Although each of these has received considerable attention, rarely are they studied in combination. Furthermore, the stimuli used in the bulk of studies did not represent sound location in real environments and ignored the effects of reverberation. Another ignored dimension is the distance of a sound source. Finally, there is a scarcity of studies conducted in unanesthetized animals. We illustrate a set of efficient methods that overcome these shortcomings. We use the virtual auditory space method (VAS) to efficiently present sounds at different azimuths, different distances and in different environments. Additionally, this method allows for efficient switching between binaural and monaural stimulation and alteration of acoustic cues singly or in combination to elucidate neural mechanisms underlying localization and recognition. Such procedures cannot be performed with real sound field stimulation. Our research is designed to address the following questions: Are IC neurons specialized to process what and where auditory information? How does reverberation and distance of the sound source affect this processing? How do IC neurons represent sound source distance? Are neural mechanisms underlying envelope processing binaural or monaural? PMID:22754505

  9. Functional identification of spike-processing neural circuits.

    PubMed

    Lazar, Aurel A; Slutskiy, Yevgeniy B

    2014-02-01

    We introduce a novel approach for a complete functional identification of biophysical spike-processing neural circuits. The circuits considered accept multidimensional spike trains as their input and comprise a multitude of temporal receptive fields and conductance-based models of action potential generation. Each temporal receptive field describes the spatiotemporal contribution of all synapses between any two neurons and incorporates the (passive) processing carried out by the dendritic tree. The aggregate dendritic current produced by a multitude of temporal receptive fields is encoded into a sequence of action potentials by a spike generator modeled as a nonlinear dynamical system. Our approach builds on the observation that during any experiment, an entire neural circuit, including its receptive fields and biophysical spike generators, is projected onto the space of stimuli used to identify the circuit. Employing the reproducing kernel Hilbert space (RKHS) of trigonometric polynomials to describe input stimuli, we quantitatively describe the relationship between underlying circuit parameters and their projections. We also derive experimental conditions under which these projections converge to the true parameters. In doing so, we achieve the mathematical tractability needed to characterize the biophysical spike generator and identify the multitude of receptive fields. The algorithms obviate the need to repeat experiments in order to compute the neurons' rate of response, rendering our methodology of interest to both experimental and theoretical neuroscientists.

  10. Functional neuroimaging of psychotherapeutic processes in anxiety and depression: from mechanisms to predictions.

    PubMed

    Lueken, Ulrike; Hahn, Tim

    2016-01-01

    The review provides an update of functional neuroimaging studies that identify neural processes underlying psychotherapy and predict outcomes following psychotherapeutic treatment in anxiety and depressive disorders. Following current developments in this field, studies were classified as 'mechanistic' or 'predictor' studies (i.e., informing neurobiological models about putative mechanisms versus aiming to provide predictive information). Mechanistic evidence points toward a dual-process model of psychotherapy in anxiety disorders with abnormally increased limbic activation being decreased, while prefrontal activity is increased. Partly overlapping findings are reported for depression, albeit with a stronger focus on prefrontal activation following treatment. No studies directly comparing neural pathways of psychotherapy between anxiety and depression were detected. Consensus is accumulating for an overarching role of the anterior cingulate cortex in modulating treatment response across disorders. When aiming to quantify clinical utility, the need for single-subject predictions is increasingly recognized and predictions based on machine learning approaches show high translational potential. Present findings encourage the search for predictors providing clinically meaningful information for single patients. However, independent validation as a crucial prerequisite for clinical use is still needed. Identifying nonresponders a priori creates the need for alternative treatment options that can be developed based on an improved understanding of those neural mechanisms underlying effective interventions.

  11. On the Role of Situational Stressors in the Disruption of Global Neural Network Stability during Problem Solving.

    PubMed

    Liu, Mengting; Amey, Rachel C; Forbes, Chad E

    2017-12-01

    When individuals are placed in stressful situations, they are likely to exhibit deficits in cognitive capacity over and above situational demands. Despite this, individuals may still persevere and ultimately succeed in these situations. Little is known, however, about neural network properties that instantiate success or failure in both neutral and stressful situations, particularly with respect to regions integral for problem-solving processes that are necessary for optimal performance on more complex tasks. In this study, we outline how hidden Markov modeling based on multivoxel pattern analysis can be used to quantify unique brain states underlying complex network interactions that yield either successful or unsuccessful problem solving in more neutral or stressful situations. We provide evidence that brain network stability and states underlying synchronous interactions in regions integral for problem-solving processes are key predictors of whether individuals succeed or fail in stressful situations. Findings also suggested that individuals utilize discriminate neural patterns in successfully solving problems in stressful or neutral situations. Findings overall highlight how hidden Markov modeling can provide myriad possibilities for quantifying and better understanding the role of global network interactions in the problem-solving process and how the said interactions predict success or failure in different contexts.

  12. Systemic lipopolysaccharide administration impairs retrieval of context-object discrimination, but not spatial, memory: Evidence for selective disruption of specific hippocampus-dependent memory functions during acute neuroinflammation

    PubMed Central

    Czerniawski, Jennifer; Miyashita, Teiko; Lewandowski, Gail; Guzowski, John F.

    2014-01-01

    Neuroinflammation is implicated in impairments in neuronal function and cognition that arise with aging, trauma, and/or disease. Therefore, understanding the underlying basis of the effect of immune system activation on neural function could lead to therapies for treating cognitive decline. Although neuroinflammation is widely thought to preferentially impair hippocampus-dependent memory, data on the effects of cytokines on cognition are mixed. One possible explanation for these inconsistent results is that cytokines may disrupt specific neural processes underlying some forms of memory but not others. In an earlier study, we tested the effect of systemic administration of bacterial lipopolysaccharide (LPS) on retrieval of hippocampus-dependent context memory and neural circuit function in CA3 and CA1 (Czerniawski and Guzowski, 2014). Paralleling impairment in context discrimination memory, we observed changes in neural circuit function consistent with disrupted pattern separation function. In the current study we tested the hypothesis that acute neuroinflammation selectively disrupts memory retrieval in tasks requiring hippocampal pattern separation processes. Male Sprague-Dawley rats given LPS systemically prior to testing exhibited intact performance in tasks that do not require hippocampal pattern separation processes: novel object recognition and spatial memory in the water maze. By contrast, memory retrieval in a task thought to require hippocampal pattern separation, context-object discrimination, was strongly impaired in LPS-treated rats in the absence of any gross effects on exploratory activity or motivation. These data show that LPS administration does not impair memory retrieval in all hippocampus-dependent tasks, and support the hypothesis that acute neuroinflammation impairs context discrimination memory via disruption of pattern separation processes in hippocampus. PMID:25451612

  13. Systemic lipopolysaccharide administration impairs retrieval of context-object discrimination, but not spatial, memory: Evidence for selective disruption of specific hippocampus-dependent memory functions during acute neuroinflammation.

    PubMed

    Czerniawski, Jennifer; Miyashita, Teiko; Lewandowski, Gail; Guzowski, John F

    2015-02-01

    Neuroinflammation is implicated in impairments in neuronal function and cognition that arise with aging, trauma, and/or disease. Therefore, understanding the underlying basis of the effect of immune system activation on neural function could lead to therapies for treating cognitive decline. Although neuroinflammation is widely thought to preferentially impair hippocampus-dependent memory, data on the effects of cytokines on cognition are mixed. One possible explanation for these inconsistent results is that cytokines may disrupt specific neural processes underlying some forms of memory but not others. In an earlier study, we tested the effect of systemic administration of bacterial lipopolysaccharide (LPS) on retrieval of hippocampus-dependent context memory and neural circuit function in CA3 and CA1 (Czerniawski and Guzowski, 2014). Paralleling impairment in context discrimination memory, we observed changes in neural circuit function consistent with disrupted pattern separation function. In the current study we tested the hypothesis that acute neuroinflammation selectively disrupts memory retrieval in tasks requiring hippocampal pattern separation processes. Male Sprague-Dawley rats given LPS systemically prior to testing exhibited intact performance in tasks that do not require hippocampal pattern separation processes: novel object recognition and spatial memory in the water maze. By contrast, memory retrieval in a task thought to require hippocampal pattern separation, context-object discrimination, was strongly impaired in LPS-treated rats in the absence of any gross effects on exploratory activity or motivation. These data show that LPS administration does not impair memory retrieval in all hippocampus-dependent tasks, and support the hypothesis that acute neuroinflammation impairs context discrimination memory via disruption of pattern separation processes in hippocampus. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. EEG Theta and Alpha Responses Reveal Qualitative Differences in Processing Taxonomic versus Thematic Semantic Relationships

    ERIC Educational Resources Information Center

    Maguire, Mandy J.; Brier, Matthew R.; Ferree, Thomas C.

    2010-01-01

    Despite the importance of semantic relationships to our understanding of semantic knowledge, the nature of the neural processes underlying these abilities are not well understood. In order to investigate these processes, 20 healthy adults listened to thematically related (e.g., leash-dog), taxonomically related (e.g., horse-dog), or unrelated…

  15. Clinical, Imaging and Pathological Correlates of a Hereditary Deficit in Verb and Action Processing

    ERIC Educational Resources Information Center

    Bak, Thomas H.; Yancopoulou, Despina; Nestor, Peter J.; Xuereb, John H.; Spillantini, Maria G.; Pulvermuller, Friedemann; Hodges, John R.

    2006-01-01

    Selective verb and noun deficits have been observed in a number of neurological conditions and their occurrence has been interpreted as evidence for different neural networks underlying the processing of specific word categories. We describe the first case of a familial occurrence of a selective deficit of verb processing. Father (Individual I)…

  16. Excitatory, inhibitory and facilitatory frequency response areas in the inferior colliculus of hearing impaired mice.

    PubMed

    Felix, Richard A; Portfors, Christine V

    2007-06-01

    Individuals with age-related hearing loss often have difficulty understanding complex sounds such as basic speech. The C57BL/6 mouse suffers from progressive sensorineural hearing loss and thus is an effective tool for dissecting the neural mechanisms underlying changes in complex sound processing observed in humans. Neural mechanisms important for processing complex sounds include multiple tuning and combination sensitivity, and these responses are common in the inferior colliculus (IC) of normal hearing mice. We examined neural responses in the IC of C57Bl/6 mice to single and combinations of tones to examine the extent of spectral integration in the IC after age-related high frequency hearing loss. Ten percent of the neurons were tuned to multiple frequency bands and an additional 10% displayed non-linear facilitation to the combination of two different tones (combination sensitivity). No combination-sensitive inhibition was observed. By comparing these findings to spectral integration properties in the IC of normal hearing CBA/CaJ mice, we suggest that high frequency hearing loss affects some of the neural mechanisms in the IC that underlie the processing of complex sounds. The loss of spectral integration properties in the IC during aging likely impairs the central auditory system's ability to process complex sounds such as speech.

  17. The role of cannabinoids in adult neurogenesis

    PubMed Central

    Prenderville, Jack A; Kelly, Áine M; Downer, Eric J

    2015-01-01

    The processes underpinning post-developmental neurogenesis in the mammalian brain continue to be defined. Such processes involve the proliferation of neural stem cells and neural progenitor cells (NPCs), neuronal migration, differentiation and integration into a network of functional synapses within the brain. Both intrinsic (cell signalling cascades) and extrinsic (neurotrophins, neurotransmitters, cytokines, hormones) signalling molecules are intimately associated with adult neurogenesis and largely dictate the proliferative activity and differentiation capacity of neural cells. Cannabinoids are a unique class of chemical compounds incorporating plant-derived cannabinoids (the active components of Cannabis sativa), the endogenous cannabinoids and synthetic cannabinoid ligands, and these compounds are becoming increasingly recognized for their roles in neural developmental processes. Indeed, cannabinoids have clear modulatory roles in adult neurogenesis, probably through activation of both CB1 and CB2 receptors. In recent years, a large body of literature has deciphered the signalling networks involved in cannabinoid-mediated regulation of neurogenesis. This timely review summarizes the evidence that the cannabinoid system is intricately associated with neuronal differentiation and maturation of NPCs and highlights intrinsic/extrinsic signalling mechanisms that are cannabinoid targets. Overall, these findings identify the central role of the cannabinoid system in adult neurogenesis in the hippocampus and the lateral ventricles and hence provide insight into the processes underlying post-developmental neurogenesis in the mammalian brain. PMID:25951750

  18. Neural Underpinnings of Decision Strategy Selection: A Review and a Theoretical Model

    PubMed Central

    Wichary, Szymon; Smolen, Tomasz

    2016-01-01

    In multi-attribute choice, decision makers use decision strategies to arrive at the final choice. What are the neural mechanisms underlying decision strategy selection? The first goal of this paper is to provide a literature review on the neural underpinnings and cognitive models of decision strategy selection and thus set the stage for a neurocognitive model of this process. The second goal is to outline such a unifying, mechanistic model that can explain the impact of noncognitive factors (e.g., affect, stress) on strategy selection. To this end, we review the evidence for the factors influencing strategy selection, the neural basis of strategy use and the cognitive models of this process. We also present the Bottom-Up Model of Strategy Selection (BUMSS). The model assumes that the use of the rational Weighted Additive strategy and the boundedly rational heuristic Take The Best can be explained by one unifying, neurophysiologically plausible mechanism, based on the interaction of the frontoparietal network, orbitofrontal cortex, anterior cingulate cortex and the brainstem nucleus locus coeruleus. According to BUMSS, there are three processes that form the bottom-up mechanism of decision strategy selection and lead to the final choice: (1) cue weight computation, (2) gain modulation, and (3) weighted additive evaluation of alternatives. We discuss how these processes might be implemented in the brain, and how this knowledge allows us to formulate novel predictions linking strategy use and neural signals. PMID:27877103

  19. Engaged listeners: shared neural processing of powerful political speeches

    PubMed Central

    Häcker, Frank E. K.; Honey, Christopher J.; Hasson, Uri

    2015-01-01

    Powerful speeches can captivate audiences, whereas weaker speeches fail to engage their listeners. What is happening in the brains of a captivated audience? Here, we assess audience-wide functional brain dynamics during listening to speeches of varying rhetorical quality. The speeches were given by German politicians and evaluated as rhetorically powerful or weak. Listening to each of the speeches induced similar neural response time courses, as measured by inter-subject correlation analysis, in widespread brain regions involved in spoken language processing. Crucially, alignment of the time course across listeners was stronger for rhetorically powerful speeches, especially for bilateral regions of the superior temporal gyri and medial prefrontal cortex. Thus, during powerful speeches, listeners as a group are more coupled to each other, suggesting that powerful speeches are more potent in taking control of the listeners’ brain responses. Weaker speeches were processed more heterogeneously, although they still prompted substantially correlated responses. These patterns of coupled neural responses bear resemblance to metaphors of resonance, which are often invoked in discussions of speech impact, and contribute to the literature on auditory attention under natural circumstances. Overall, this approach opens up possibilities for research on the neural mechanisms mediating the reception of entertaining or persuasive messages. PMID:25653012

  20. Objective assessment of MPEG-2 video quality

    NASA Astrophysics Data System (ADS)

    Gastaldo, Paolo; Zunino, Rodolfo; Rovetta, Stefano

    2002-07-01

    The increasing use of video compression standards in broadcasting television systems has required, in recent years, the development of video quality measurements that take into account artifacts specifically caused by digital compression techniques. In this paper we present a methodology for the objective quality assessment of MPEG video streams by using circular back-propagation feedforward neural networks. Mapping neural networks can render nonlinear relationships between objective features and subjective judgments, thus avoiding any simplifying assumption on the complexity of the model. The neural network processes an instantaneous set of input values, and yields an associated estimate of perceived quality. Therefore, the neural-network approach turns objective quality assessment into adaptive modeling of subjective perception. The objective features used for the estimate are chosen according to the assessed relevance to perceived quality and are continuously extracted in real time from compressed video streams. The overall system mimics perception but does not require any analytical model of the underlying physical phenomenon. The capability to process compressed video streams represents an important advantage over existing approaches, like avoiding the stream-decoding process greatly enhances real-time performance. Experimental results confirm that the system provides satisfactory, continuous-time approximations for actual scoring curves concerning real test videos.

  1. Neural circuits and motivational processes for hunger

    PubMed Central

    Sternson, Scott M; Betley, J Nicholas; Huang Cao, Zhen Fang

    2014-01-01

    How does an organism’s internal state direct its actions? At one moment an animal forages for food with acrobatic feats such as tree climbing and jumping between branches. At another time, it travels along the ground to find water or a mate, exposing itself to predators along the way. These behaviors are costly in terms of energy or physical risk, and the likelihood of performing one set of actions relative to another is strongly modulated by internal state. For example, an animal in energy deficit searches for food and a dehydrated animal looks for water. The crosstalk between physiological state and motivational processes influences behavioral intensity and intent, but the underlying neural circuits are poorly understood. Molecular genetics along with optogenetic and pharmacogenetic tools for perturbing neuron function have enabled cell type-selective dissection of circuits that mediate behavioral responses to physiological state changes. Here, we review recent progress into neural circuit analysis of hunger in the mouse by focusing on a starvation-sensitive neuron population in the hypothalamus that is sufficient to promote voracious eating. We also consider research into the motivational processes that are thought to underlie hunger in order to outline considerations for bridging the gap between homeostatic and motivational neural circuits. PMID:23648085

  2. Something to sink your teeth into: The presence of teeth augments ERPs to mouth expressions.

    PubMed

    daSilva, Elizabeth B; Crager, Kirsten; Geisler, Danika; Newbern, Powell; Orem, Benjamin; Puce, Aina

    2016-02-15

    If the whites of the sclera can impact neural processing of eye expressions (Hardee, Thompson, & Puce, 2008; Whalen et al., 1998), do seen teeth affect neural responses to mouth expressions? Twenty participants (10 females; ages 22-31) viewed avatar mouth images depicting grimaces, smiles and open mouth expressions that were presented with and without teeth. A continuous 256 channel electroencephalogram (EEG) was recorded while subjects completed two tasks: an implicit task evaluating stimulus color and an explicit task evaluating mouth expression valence. Event related potential (ERP) peak amplitudes and latencies and area under the curve (AUC) were measured in individual subject averaged ERPs. Statistical testing revealed a main effect of the presence of Teeth for P100, N170, and vertex positive potential (VPP) amplitudes and for slow positive wave (SPW) AUC. Task by teeth interactions occurred for P250 amplitude, underscoring how explicit task demands can influence neural processing. Arousal ratings co-varied with teeth presence, suggesting that low-level visual features such as teeth may drive the saliency of emotional expressions, and lie at the core of differences in neural processing to different emotional expressions. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. A systematic review of fMRI reward paradigms used in studies of adolescents vs. adults: the impact of task design and implications for understanding neurodevelopment.

    PubMed

    Richards, Jessica M; Plate, Rista C; Ernst, Monique

    2013-06-01

    The neural systems underlying reward-related behaviors across development have recently generated a great amount of interest. Yet, the neurodevelopmental literature on reward processing is marked by inconsistencies due to the heterogeneity of the reward paradigms used, the complexity of the behaviors being studied, and the developing brain itself as a moving target. The present review will examine task design as one source of variability across findings by compiling this literature along three dimensions: (1) task structures, (2) cognitive processes, and (3) neural systems. We start with the presentation of a heuristic neural systems model, the Triadic Model, as a way to provide a theoretical framework for the neuroscience research on motivated behaviors. We then discuss the principles guiding reward task development. Finally, we review the extant developmental neuroimaging literature on reward-related processing, organized by reward task type. We hope that this approach will help to clarify the literature on the functional neurodevelopment of reward-related neural systems, and to identify the role of the experimental parameters that significantly influence these findings. Published by Elsevier Ltd.

  4. Neural networks underlying language and social cognition during self-other processing in Autism spectrum disorders.

    PubMed

    Kana, Rajesh K; Sartin, Emma B; Stevens, Carl; Deshpande, Hrishikesh D; Klein, Christopher; Klinger, Mark R; Klinger, Laura Grofer

    2017-07-28

    The social communication impairments defining autism spectrum disorders (ASD) may be built upon core deficits in perspective-taking, language processing, and self-other representation. Self-referential processing entails the ability to incorporate self-awareness, self-judgment, and self-memory in information processing. Very few studies have examined the neural bases of integrating self-other representation and semantic processing in individuals with ASD. The main objective of this functional MRI study is to examine the role of language and social brain networks in self-other processing in young adults with ASD. Nineteen high-functioning male adults with ASD and 19 age-sex-and-IQ-matched typically developing (TD) control participants made "yes" or "no" judgments of whether an adjective, presented visually, described them (self) or their favorite teacher (other). Both ASD and TD participants showed significantly increased activity in the medial prefrontal cortex (MPFC) during self and other processing relative to letter search. Analyses of group differences revealed significantly reduced activity in left inferior frontal gyrus (LIFG), and left inferior parietal lobule (LIPL) in ASD participants, relative to TD controls. ASD participants also showed significantly weaker functional connectivity of the anterior cingulate cortex (ACC) with several brain areas while processing self-related words. The LIFG and IPL are important regions functionally at the intersection of language and social roles; reduced recruitment of these regions in ASD participants may suggest poor level of semantic and social processing. In addition, poor connectivity of the ACC may suggest the difficulty in meeting the linguistic and social demands of this task in ASD. Overall, this study provides new evidence of the altered recruitment of the neural networks underlying language and social cognition in ASD. Published by Elsevier Ltd.

  5. Perceiving nonverbal behavior: neural correlates of processing movement fluency and contingency in dyadic interactions.

    PubMed

    Georgescu, Alexandra L; Kuzmanovic, Bojana; Santos, Natacha S; Tepest, Ralf; Bente, Gary; Tittgemeyer, Marc; Vogeley, Kai

    2014-04-01

    Despite the fact that nonverbal dyadic social interactions are abundant in the environment, the neural mechanisms underlying their processing are not yet fully understood. Research in the field of social neuroscience has suggested that two neural networks appear to be involved in social understanding: (1) the action observation network (AON) and (2) the social neural network (SNN). The aim of this study was to determine the differential contributions of the AON and the SNN to the processing of nonverbal behavior as observed in dyadic social interactions. To this end, we used short computer animation sequences displaying dyadic social interactions between two virtual characters and systematically manipulated two key features of movement activity, which are known to influence the perception of meaning in nonverbal stimuli: (1) movement fluency and (2) contingency of movement patterns. A group of 21 male participants rated the "naturalness" of the observed scenes on a four-point scale while undergoing fMRI. Behavioral results showed that both fluency and contingency significantly influenced the "naturalness" experience of the presented animations. Neurally, the AON was preferentially engaged when processing contingent movement patterns, but did not discriminate between different degrees of movement fluency. In contrast, regions of the SNN were engaged more strongly when observing dyads with disturbed movement fluency. In conclusion, while the AON is involved in the general processing of contingent social actions, irrespective of their kinematic properties, the SNN is preferentially recruited when atypical kinematic properties prompt inferences about the agents' intentions. Copyright © 2013 Wiley Periodicals, Inc.

  6. Musical experience strengthens the neural representation of sounds important for communication in middle-aged adults

    PubMed Central

    Parbery-Clark, Alexandra; Anderson, Samira; Hittner, Emily; Kraus, Nina

    2012-01-01

    Older adults frequently complain that while they can hear a person talking, they cannot understand what is being said; this difficulty is exacerbated by background noise. Peripheral hearing loss cannot fully account for this age-related decline in speech-in-noise ability, as declines in central processing also contribute to this problem. Given that musicians have enhanced speech-in-noise perception, we aimed to define the effects of musical experience on subcortical responses to speech and speech-in-noise perception in middle-aged adults. Results reveal that musicians have enhanced neural encoding of speech in quiet and noisy settings. Enhancements include faster neural response timing, higher neural response consistency, more robust encoding of speech harmonics, and greater neural precision. Taken together, we suggest that musical experience provides perceptual benefits in an aging population by strengthening the underlying neural pathways necessary for the accurate representation of important temporal and spectral features of sound. PMID:23189051

  7. Cross-Cultural Effects of Cannabis Use Disorder: Evidence to Support a Cultural Neuroscience Approach

    PubMed Central

    Prashad, Shikha; Milligan, Amber L.; Cousijn, Janna; Filbey, Francesca M.

    2017-01-01

    Purpose of review Cannabis use disorders (CUDs) are prevalent worldwide. Current epidemiological studies underscore differences in behaviors that contribute to cannabis use across cultures that can be leveraged towards prevention and treatment of CUDs. This review proposes a framework for understanding the effects of cross-cultural differences on psychological, neural, and genomic processes underlying CUDs that has the potential to inform global policies and impact global public health. Recent findings We found that cultural factors may influence (1) the willingness to acknowledge CUD-related symptoms among populations of different countries, and (2) neural responses related to the sense of self, perception, emotion, and attention. These findings leverage the potential effects of culture on neural mechanisms underlying CUDs. Summary As the number of individuals seeking treatment for CUDs increases globally, it is imperative to incorporate cultural considerations to better understand and serve differing populations and develop more targeted treatment strategies and interventions. PMID:29062679

  8. Cross-Cultural Effects of Cannabis Use Disorder: Evidence to Support a Cultural Neuroscience Approach.

    PubMed

    Prashad, Shikha; Milligan, Amber L; Cousijn, Janna; Filbey, Francesca M

    2017-06-01

    Cannabis use disorders (CUDs) are prevalent worldwide. Current epidemiological studies underscore differences in behaviors that contribute to cannabis use across cultures that can be leveraged towards prevention and treatment of CUDs. This review proposes a framework for understanding the effects of cross-cultural differences on psychological, neural, and genomic processes underlying CUDs that has the potential to inform global policies and impact global public health. We found that cultural factors may influence (1) the willingness to acknowledge CUD-related symptoms among populations of different countries, and (2) neural responses related to the sense of self, perception, emotion, and attention. These findings leverage the potential effects of culture on neural mechanisms underlying CUDs. As the number of individuals seeking treatment for CUDs increases globally, it is imperative to incorporate cultural considerations to better understand and serve differing populations and develop more targeted treatment strategies and interventions.

  9. Wnt-1 Signaling in Mammary Carcinogenesis

    DTIC Science & Technology

    2000-04-01

    and the notochord (4), Wnt-5A/LRP6 or LRP6 (higher doses) alone induced trunk axis duplication with muscle and neural tissues but lacking head or the... notochord (Fig. lb). It remains unclear whether this is due to quantitative or qualitative differences between Wnt-5a/LRP6 and Wnt-5a/hFz5 co...injections under these experimental conditions. We also analyzed LRP6 effect on neural crest formation, which is another Wnt- dependent developmental process

  10. An fMRI-Based Neural Signature of Decisions to Smoke Cannabis.

    PubMed

    Bedi, Gillinder; Lindquist, Martin A; Haney, Margaret

    2015-11-01

    Drug dependence may be at its core a pathology of choice, defined by continued decisions to use drugs irrespective of negative consequences. Despite evidence of dysregulated decision making in addiction, little is known about the neural processes underlying the most clinically relevant decisions drug users make: decisions to use drugs. Here, we combined functional magnetic resonance imaging (fMRI), machine learning, and human laboratory drug administration to investigate neural activation underlying decisions to smoke cannabis. Nontreatment-seeking daily cannabis smokers completed an fMRI choice task, making repeated decisions to purchase or decline 1-12 placebo or active cannabis 'puffs' ($0.25-$5/puff). One randomly selected decision was implemented. If the selected choice had been bought, the cost was deducted from study earnings and the purchased cannabis smoked in the laboratory; alternatively, the participant remained in the laboratory without cannabis. Machine learning with leave-one-subject-out cross-validation identified distributed neural activation patterns discriminating decisions to buy cannabis from declined offers. A total of 21 participants were included in behavioral analyses; 17 purchased cannabis and were thus included in fMRI analyses. Purchasing varied lawfully with dose and cost. The classifier discriminated with 100% accuracy between fMRI activation patterns for purchased vs declined cannabis at the level of the individual. Dorsal striatum, insula, posterior parietal regions, anterior and posterior cingulate, and dorsolateral prefrontal cortex all contributed reliably to this neural signature of decisions to smoke cannabis. These findings provide the basis for a brain-based characterization of drug-related decision making in drug abuse, including effects of psychological and pharmacological interventions on these processes.

  11. Dynamic neural activity during stress signals resilient coping

    PubMed Central

    Sinha, Rajita; Lacadie, Cheryl M.; Constable, R. Todd; Seo, Dongju

    2016-01-01

    Active coping underlies a healthy stress response, but neural processes supporting such resilient coping are not well-known. Using a brief, sustained exposure paradigm contrasting highly stressful, threatening, and violent stimuli versus nonaversive neutral visual stimuli in a functional magnetic resonance imaging (fMRI) study, we show significant subjective, physiologic, and endocrine increases and temporally related dynamically distinct patterns of neural activation in brain circuits underlying the stress response. First, stress-specific sustained increases in the amygdala, striatum, hypothalamus, midbrain, right insula, and right dorsolateral prefrontal cortex (DLPFC) regions supported the stress processing and reactivity circuit. Second, dynamic neural activation during stress versus neutral runs, showing early increases followed by later reduced activation in the ventrolateral prefrontal cortex (VLPFC), dorsal anterior cingulate cortex (dACC), left DLPFC, hippocampus, and left insula, suggested a stress adaptation response network. Finally, dynamic stress-specific mobilization of the ventromedial prefrontal cortex (VmPFC), marked by initial hypoactivity followed by increased VmPFC activation, pointed to the VmPFC as a key locus of the emotional and behavioral control network. Consistent with this finding, greater neural flexibility signals in the VmPFC during stress correlated with active coping ratings whereas lower dynamic activity in the VmPFC also predicted a higher level of maladaptive coping behaviors in real life, including binge alcohol intake, emotional eating, and frequency of arguments and fights. These findings demonstrate acute functional neuroplasticity during stress, with distinct and separable brain networks that underlie critical components of the stress response, and a specific role for VmPFC neuroflexibility in stress-resilient coping. PMID:27432990

  12. USC orthogonal multiprocessor for image processing with neural networks

    NASA Astrophysics Data System (ADS)

    Hwang, Kai; Panda, Dhabaleswar K.; Haddadi, Navid

    1990-07-01

    This paper presents the architectural features and imaging applications of the Orthogonal MultiProcessor (OMP) system, which is under construction at the University of Southern California with research funding from NSF and assistance from several industrial partners. The prototype OMP is being built with 16 Intel i860 RISC microprocessors and 256 parallel memory modules using custom-designed spanning buses, which are 2-D interleaved and orthogonally accessed without conflicts. The 16-processor OMP prototype is targeted to achieve 430 MIPS and 600 Mflops, which have been verified by simulation experiments based on the design parameters used. The prototype OMP machine will be initially applied for image processing, computer vision, and neural network simulation applications. We summarize important vision and imaging algorithms that can be restructured with neural network models. These algorithms can efficiently run on the OMP hardware with linear speedup. The ultimate goal is to develop a high-performance Visual Computer (Viscom) for integrated low- and high-level image processing and vision tasks.

  13. Heterogeneity in the development of the vertebra.

    PubMed

    Monsoro-Burq, A H; Bontoux, M; Teillet, M A; Le Douarin, N M

    1994-10-25

    Vertebrae are derived from the sclerotomal moities of the somites. Sclerotomal cells migrate ventrally to surround the notochord, where they form the vertebral body, and dorsolaterally to form the neural arch, which is dorsally closed by the spinous process. Precursor cells of the spinous process as well as superficial ectoderm and roof plate express homeobox genes of the Msh family from embryonic day 2 (E2) to E6. The notochord has been shown to be responsible for the dorsoventral polarization of the somites and for the induction of sclerotomal cells into cartilage. Indeed, supernumerary notochord grafted laterally to the neural tube induces the conversion of the entire somite into cartilage. We report here that a mediodorsal graft of notochord prevents the sclerotomal cells migrating dorsally to the roof plate from differentiating into cartilage. Under these experimental conditions, expression of Msx genes is abolished. We thus demonstrate that cartilaginous, differentiation is differentially controlled in the dorsal part of the vertebra (spinous process) and in the neural arch and vertebral body.

  14. Music modulation of pain perception and pain-related activity in the brain, brain stem, and spinal cord: a functional magnetic resonance imaging study.

    PubMed

    Dobek, Christine E; Beynon, Michaela E; Bosma, Rachael L; Stroman, Patrick W

    2014-10-01

    The oldest known method for relieving pain is music, and yet, to date, the underlying neural mechanisms have not been studied. Here, we investigate these neural mechanisms by applying a well-defined painful stimulus while participants listened to their favorite music or to no music. Neural responses in the brain, brain stem, and spinal cord were mapped with functional magnetic resonance imaging spanning the cortex, brain stem, and spinal cord. Subjective pain ratings were observed to be significantly lower when pain was administered with music than without music. The pain stimulus without music elicited neural activity in brain regions that are consistent with previous studies. Brain regions associated with pleasurable music listening included limbic, frontal, and auditory regions, when comparing music to non-music pain conditions. In addition, regions demonstrated activity indicative of descending pain modulation when contrasting the 2 conditions. These regions include the dorsolateral prefrontal cortex, periaqueductal gray matter, rostral ventromedial medulla, and dorsal gray matter of the spinal cord. This is the first imaging study to characterize the neural response of pain and how pain is mitigated by music, and it provides new insights into the neural mechanism of music-induced analgesia within the central nervous system. This article presents the first investigation of neural processes underlying music analgesia in human participants. Music modulates pain responses in the brain, brain stem, and spinal cord, and neural activity changes are consistent with engagement of the descending analgesia system. Copyright © 2014 American Pain Society. Published by Elsevier Inc. All rights reserved.

  15. Toward an understanding of the neural mechanisms underlying dual-task performance: Contribution of comparative approaches using animal models.

    PubMed

    Watanabe, Kei; Funahashi, Shintaro

    2018-01-01

    The study of dual-task performance in human subjects has received considerable interest in cognitive neuroscience because it can provide detailed insights into the neural mechanisms underlying higher-order cognitive control. Despite many decades of research, our understanding of the neurobiological basis of dual-task performance is still limited, and some critical questions are still under debate. Recently, behavioral and neurophysiological studies of dual-task performance in animals have begun to provide intriguing evidence regarding how dual-task information is processed in the brain. In this review, we first summarize key evidence in neuroimaging and neuropsychological studies in humans and discuss possible reasons for discrepancies across studies. We then provide a comprehensive review of the literature on dual-task studies in animals and provide a novel working hypothesis that may reconcile the divergent results in human studies toward a unified view of the mechanisms underlying dual-task processing. Finally, we propose possible directions for future dual-task experiments in the framework of comparative cognitive neuroscience. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Prior perceptual processing enhances the effect of emotional arousal on the neural correlates of memory retrieval

    PubMed Central

    Dew, Ilana T. Z.; Ritchey, Maureen; LaBar, Kevin S.; Cabeza, Roberto

    2014-01-01

    A fundamental idea in memory research is that items are more likely to be remembered if encoded with a semantic, rather than perceptual, processing strategy. Interestingly, this effect has been shown to reverse for emotionally arousing materials, such that perceptual processing enhances memory for emotional information or events. The current fMRI study investigated the neural mechanisms of this effect by testing how neural activations during emotional memory retrieval are influenced by the prior encoding strategy. Participants incidentally encoded emotional and neutral pictures under instructions to attend to either semantic or perceptual properties of each picture. Recognition memory was tested two days later. fMRI analyses yielded three main findings. First, right amygdalar activity associated with emotional memory strength was enhanced by prior perceptual processing. Second, prior perceptual processing of emotional pictures produced a stronger effect on recollection- than familiarity-related activations in the right amygdala and left hippocampus. Finally, prior perceptual processing enhanced amygdalar connectivity with regions strongly associated with retrieval success, including hippocampal/parahippocampal regions, visual cortex, and ventral parietal cortex. Taken together, the results specify how encoding orientations yield alterations in brain systems that retrieve emotional memories. PMID:24380867

  17. The neural circuits for arithmetic principles.

    PubMed

    Liu, Jie; Zhang, Han; Chen, Chuansheng; Chen, Hui; Cui, Jiaxin; Zhou, Xinlin

    2017-02-15

    Arithmetic principles are the regularities underlying arithmetic computation. Little is known about how the brain supports the processing of arithmetic principles. The current fMRI study examined neural activation and functional connectivity during the processing of verbalized arithmetic principles, as compared to numerical computation and general language processing. As expected, arithmetic principles elicited stronger activation in bilateral horizontal intraparietal sulcus and right supramarginal gyrus than did language processing, and stronger activation in left middle temporal lobe and left orbital part of inferior frontal gyrus than did computation. In contrast, computation elicited greater activation in bilateral horizontal intraparietal sulcus (extending to posterior superior parietal lobule) than did either arithmetic principles or language processing. Functional connectivity analysis with the psychophysiological interaction approach (PPI) showed that left temporal-parietal (MTG-HIPS) connectivity was stronger during the processing of arithmetic principle and language than during computation, whereas parietal-occipital connectivities were stronger during computation than during the processing of arithmetic principles and language. Additionally, the left fronto-parietal (orbital IFG-HIPS) connectivity was stronger during the processing of arithmetic principles than during computation. The results suggest that verbalized arithmetic principles engage a neural network that overlaps but is distinct from the networks for computation and language processing. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Neural Correlates of the Lombard Effect in Primate Auditory Cortex

    PubMed Central

    Eliades, Steven J.

    2012-01-01

    Speaking is a sensory-motor process that involves constant self-monitoring to ensure accurate vocal production. Self-monitoring of vocal feedback allows rapid adjustment to correct perceived differences between intended and produced vocalizations. One important behavior in vocal feedback control is a compensatory increase in vocal intensity in response to noise masking during vocal production, commonly referred to as the Lombard effect. This behavior requires mechanisms for continuously monitoring auditory feedback during speaking. However, the underlying neural mechanisms are poorly understood. Here we show that when marmoset monkeys vocalize in the presence of masking noise that disrupts vocal feedback, the compensatory increase in vocal intensity is accompanied by a shift in auditory cortex activity toward neural response patterns seen during vocalizations under normal feedback condition. Furthermore, we show that neural activity in auditory cortex during a vocalization phrase predicts vocal intensity compensation in subsequent phrases. These observations demonstrate that the auditory cortex participates in self-monitoring during the Lombard effect, and may play a role in the compensation of noise masking during feedback-mediated vocal control. PMID:22855821

  19. Neural Regulation of Lacrimal Gland Secretory Processes: Relevance in Dry Eye Diseases

    PubMed Central

    Dartt, Darlene A.

    2013-01-01

    The lacrimal gland is the major contributor to the aqueous layer of the tear film which consists of water, electrolytes and proteins. The amount and composition of this layer is critical for the health, maintenance, and protection of the cells of the cornea and conjunctiva (the ocular surface). Small changes in the concentration of tear electrolytes have been correlated with dry eye syndrome. While the mechanisms of secretion of water, electrolytes and proteins from the lacrimal gland differ, all three are under tight neural control. This allows for a rapid response to meet the needs of the cells of the ocular surface in response to environmental conditions. The neural response consists of the activation of the afferent sensory nerves in the cornea and conjunctiva to stimulate efferent parasympathetic and sympathetic nerves that innervate the lacrimal gland. Neurotransmitters are released from the stimulated parasympathetic and sympathetic nerves that cause secretion of water, electrolytes, and proteins from the lacrimal gland and onto the ocular surface. This review focuses on the neural regulation of lacrimal gland secretion under normal and dry eye conditions. PMID:19376264

  20. Congenital prosopagnosia: face-blind from birth.

    PubMed

    Behrmann, Marlene; Avidan, Galia

    2005-04-01

    Congenital prosopagnosia refers to the deficit in face processing that is apparent from early childhood in the absence of any underlying neurological basis and in the presence of intact sensory and intellectual function. Several such cases have been described recently and elucidating the mechanisms giving rise to this impairment should aid our understanding of the psychological and neural mechanisms mediating face processing. Fundamental questions include: What is the nature and extent of the face-processing deficit in congenital prosopagnosia? Is the deficit related to a more general perceptual deficit such as the failure to process configural information? Are any neural alterations detectable using fMRI, ERP or structural analyses of the anatomy of the ventral visual cortex? We discuss these issues in relation to the existing literature and suggest directions for future research.

  1. Neural Differentiation of Embryonic Stem Cells In Vitro: A Road Map to Neurogenesis in the Embryo

    PubMed Central

    Abranches, Elsa; Silva, Margarida; Pradier, Laurent; Schulz, Herbert; Hummel, Oliver; Henrique, Domingos; Bekman, Evguenia

    2009-01-01

    Background The in vitro generation of neurons from embryonic stem (ES) cells is a promising approach to produce cells suitable for neural tissue repair and cell-based replacement therapies of the nervous system. Available methods to promote ES cell differentiation towards neural lineages attempt to replicate, in different ways, the multistep process of embryonic neural development. However, to achieve this aim in an efficient and reproducible way, a better knowledge of the cellular and molecular events that are involved in the process, from the initial specification of neuroepithelial progenitors to their terminal differentiation into neurons and glial cells, is required. Methodology/Principal Findings In this work, we characterize the main stages and transitions that occur when ES cells are driven into a neural fate, using an adherent monolayer culture system. We established improved conditions to routinely produce highly homogeneous cultures of neuroepithelial progenitors, which organize into neural tube-like rosettes when they acquire competence for neuronal production. Within rosettes, neuroepithelial progenitors display morphological and functional characteristics of their embryonic counterparts, namely, apico-basal polarity, active Notch signalling, and proper timing of production of neurons and glia. In order to characterize the global gene activity correlated with each particular stage of neural development, the full transcriptome of different cell populations that arise during the in vitro differentiation protocol was determined by microarray analysis. By using embryo-oriented criteria to cluster the differentially expressed genes, we define five gene expression signatures that correlate with successive stages in the path from ES cells to neurons. These include a gene signature for a primitive ectoderm-like stage that appears after ES cells enter differentiation, and three gene signatures for subsequent stages of neural progenitor development, from an early stage that follows neural induction to a final stage preceding terminal differentiation. Conclusions/Significance Overall, our work confirms and extends the cellular and molecular parallels between monolayer ES cell neural differentiation and embryonic neural development, revealing in addition novel aspects of the genetic network underlying the multistep process that leads from uncommitted cells to differentiated neurons. PMID:19621087

  2. The ugly truth: negative gossip about celebrities and positive gossip about self entertain people in different ways.

    PubMed

    Peng, Xiaozhe; Li, You; Wang, Pengfei; Mo, Lei; Chen, Qi

    2015-01-01

    In contrast to abstract trait words which describe people's general personality, gossip is about personal affairs of others. Although neural correlates underlying processing self-related trait words have been well documented, it remains poorly understood how the human brain processes gossip. In the present fMRI study, participants were instructed to rate their online emotional states upon hearing positive and negative gossip about celebrities, themselves, and their best friends. Explicit behavioral ratings suggested that participants were happier to hear positive gossip and more annoyed to hear negative gossip about themselves than about celebrities and best friends. At the neural level, dissociated neural networks were involved in processing the positive gossip about self and the negative gossip about celebrities. On the one hand, the superior medial prefrontal cortex responded not only to self-related gossip but also to moral transgressions, and neural activity in the orbital prefrontal cortex increased linearly with pleasure ratings on positive gossip about self. On the other hand, although participants' ratings did not show they were particularly happy on hearing negative gossip about celebrities, the significantly enhanced neural activity in the reward system suggested that they were indeed amused. Moreover, via enhanced functional connectivity, the prefrontal executive control network was involved in regulating the reward system by giving explicit pleasure ratings according to social norm compliance, rather than natural true feelings.

  3. Neural Trade-Offs between Recognizing and Categorizing Own- and Other-Race Faces

    PubMed Central

    Liu, Jiangang; Wang, Zhe; Feng, Lu; Li, Jun; Tian, Jie; Lee, Kang

    2015-01-01

    Behavioral research has suggested a trade-off relationship between individual recognition and race categorization of own- and other-race faces, which is an important behavioral marker of face processing expertise. However, little is known about the neural mechanisms underlying this trade-off. Using functional magnetic resonance imaging (fMRI) methodology, we concurrently asked participants to recognize and categorize own- and other-race faces to examine the neural correlates of this trade-off relationship. We found that for other-race faces, the fusiform face area (FFA) and occipital face area (OFA) responded more to recognition than categorization, whereas for own-race faces, the responses were equal for the 2 tasks. The right superior temporal sulcus (STS) responses were the opposite to those of the FFA and OFA. Further, recognition enhanced the functional connectivity from the right FFA to the right STS, whereas categorization enhanced the functional connectivity from the right OFA to the right STS. The modulatory effects of these 2 couplings were negatively correlated. Our findings suggested that within the core face processing network, although recognizing and categorizing own- and other-race faces activated the same neural substrates, there existed neural trade-offs whereby their activations and functional connectivities were modulated by face race type and task demand due to one's differential processing expertise with own- and other-race faces. PMID:24591523

  4. Multi-Connection Pattern Analysis: Decoding the representational content of neural communication.

    PubMed

    Li, Yuanning; Richardson, Robert Mark; Ghuman, Avniel Singh

    2017-11-15

    The lack of multivariate methods for decoding the representational content of interregional neural communication has left it difficult to know what information is represented in distributed brain circuit interactions. Here we present Multi-Connection Pattern Analysis (MCPA), which works by learning mappings between the activity patterns of the populations as a factor of the information being processed. These maps are used to predict the activity from one neural population based on the activity from the other population. Successful MCPA-based decoding indicates the involvement of distributed computational processing and provides a framework for probing the representational structure of the interaction. Simulations demonstrate the efficacy of MCPA in realistic circumstances. In addition, we demonstrate that MCPA can be applied to different signal modalities to evaluate a variety of hypothesis associated with information coding in neural communications. We apply MCPA to fMRI and human intracranial electrophysiological data to provide a proof-of-concept of the utility of this method for decoding individual natural images and faces in functional connectivity data. We further use a MCPA-based representational similarity analysis to illustrate how MCPA may be used to test computational models of information transfer among regions of the visual processing stream. Thus, MCPA can be used to assess the information represented in the coupled activity of interacting neural circuits and probe the underlying principles of information transformation between regions. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Relationships between impulsivity, anxiety, and risk-taking and neural correlates of attention in adolescents

    PubMed Central

    Elsey, James W. B.; Crowley, Michael J.; Mencl, W. Einar; Lacadie, Cheryl M.; Mayes, Linda C.; Potenza, Marc N.

    2016-01-01

    Although impulsivity, anxiety, and risk-taking may relate to attentional processes, little research has directly investigated how each may be associated with specific facets of attentional processes and their underlying neural correlates. Nineteen adolescents performed an fMRI task involving simple, selective and divided attention. Out-of-scanner-assessed impulsivity, anxiety and risk-taking scores were not correlated with each other and showed task-phase-specific patterns of association. Results are discussed in light of research and theory suggesting a relationship between these domains and attention and may serve to focus future research aiming to understand these relationships. PMID:27135550

  6. From emotion resonance to empathic understanding: a social developmental neuroscience account.

    PubMed

    Decety, Jean; Meyer, Meghan

    2008-01-01

    The psychological construct of empathy refers to an intersubjective induction process by which positive and negative emotions are shared, without losing sight of whose feelings belong to whom. Empathy can lead to personal distress or to empathic concern (sympathy). The goal of this paper is to address the underlying cognitive processes and their neural underpinnings that constitute empathy within a developmental neuroscience perspective. In addition, we focus on how these processes go awry in developmental disorders marked by impairments in social cognition, such as autism spectrum disorder, and conduct disorder. We argue that empathy involves both bottom-up and top-down information processing, underpinned by specific and interacting neural systems. We discuss data from developmental psychology as well as cognitive neuroscience in support of such a model, and highlight the impact of neural dysfunctions on social cognitive developmental behavior. Altogether, bridging developmental science and cognitive neuroscience helps approach a more complete understanding of social cognition. Synthesizing these two domains also contributes to a better characterization of developmental psychopathologies that impacts the development of effective treatment strategies.

  7. How Social Ties Influence Consumer: Evidence from Event-Related Potentials.

    PubMed

    Luan, Jing; Yao, Zhong; Bai, Yan

    2017-01-01

    A considerable amount of marketing research has reported that consumers are more saliently influenced by friends (strong social ties) than by acquaintances and strangers (weak social ties). To shed light on the neural and psychological processes underlying such phenomenon, in this study we designed an amended S1-S2 paradigm (product-[reviewer-review]) that is based on realistic consumer purchase experiences. After incoming all given information (product, reviewer, review), participants were required to state their purchase intentions. The neurocognitive and emotional processes related to friend and stranger stimuli were delineated to suggest how social ties influence consumers during their shopping processes. Larger P2 (fronto-central scalp areas) and P3 (central and posterior-parietal scalp areas) components under stranger condition were elicited successfully. These findings demonstrate that the cognitive and emotional processing of friend and stranger stimuli occurs at stages of neural activity, and can be indicated by the P2 and P3 components. Electrophysiological data also support the hypothesis that different neural and emotional processing magnitude and strength underlie friend and stranger effect in the context of consumer purchase. During this process, the perception of stimuli evoked P2, subsequently emotional processing and attention modulation were activated and indicated by P2 and P3. The friend dominated phenomenon can be interpreted as the result of distinctive neurocognitive and emotional processing magnitude, which suggests that psychological and emotional factors can guide consumer decision making. This study consolidates that event related potential (ERP) methodology is likely to be a more sensitive method for investigating consumer behaviors. From the perspectives of management and marketing, our findings show that the P2 and P3 components can be employed as an indicator to probe the influential factors of consumer purchase intentions.

  8. How Social Ties Influence Consumer: Evidence from Event-Related Potentials

    PubMed Central

    Yao, Zhong

    2017-01-01

    A considerable amount of marketing research has reported that consumers are more saliently influenced by friends (strong social ties) than by acquaintances and strangers (weak social ties). To shed light on the neural and psychological processes underlying such phenomenon, in this study we designed an amended S1-S2 paradigm (product-[reviewer-review]) that is based on realistic consumer purchase experiences. After incoming all given information (product, reviewer, review), participants were required to state their purchase intentions. The neurocognitive and emotional processes related to friend and stranger stimuli were delineated to suggest how social ties influence consumers during their shopping processes. Larger P2 (fronto-central scalp areas) and P3 (central and posterior-parietal scalp areas) components under stranger condition were elicited successfully. These findings demonstrate that the cognitive and emotional processing of friend and stranger stimuli occurs at stages of neural activity, and can be indicated by the P2 and P3 components. Electrophysiological data also support the hypothesis that different neural and emotional processing magnitude and strength underlie friend and stranger effect in the context of consumer purchase. During this process, the perception of stimuli evoked P2, subsequently emotional processing and attention modulation were activated and indicated by P2 and P3. The friend dominated phenomenon can be interpreted as the result of distinctive neurocognitive and emotional processing magnitude, which suggests that psychological and emotional factors can guide consumer decision making. This study consolidates that event related potential (ERP) methodology is likely to be a more sensitive method for investigating consumer behaviors. From the perspectives of management and marketing, our findings show that the P2 and P3 components can be employed as an indicator to probe the influential factors of consumer purchase intentions. PMID:28081196

  9. The Influence of Emotion Regulation on Decision-making under Risk

    PubMed Central

    Martin, Laura N.; Delgado, Mauricio R.

    2011-01-01

    Cognitive strategies typically involved in regulating negative emotions have recently been shown to also be effective with positive emotions associated with monetary rewards. However, it is less clear how these strategies influence behavior, such as preferences expressed during decision-making under risk, and the underlying neural circuitry. That is, can the effective use of emotion regulation strategies during presentation of a reward-conditioned stimulus influence decision-making under risk and neural structures involved in reward processing such as the striatum? To investigate this question, we asked participants to engage in imagery-focused regulation strategies during the presentation of a cue that preceded a financial decision-making phase. During the decision phase, participants then made a choice between a risky and a safe monetary lottery. Participants who successfully used cognitive regulation, as assessed by subjective ratings about perceived success and facility in implementation of strategies, made fewer risky choices in comparison to trials where decisions were made in the absence of cognitive regulation. Additionally, blood-oxygen-level-dependent (BOLD) responses in the striatum were attenuated during decision-making as a function of successful emotion regulation. These findings suggest that exerting cognitive control over emotional responses can modulate neural responses associated with reward processing (e.g., striatum), and promote more goal-directed decision-making (e.g., less risky choices), illustrating the potential importance of cognitive strategies in curbing risk-seeking behaviors before they become maladaptive (e.g., substance abuse). PMID:21254801

  10. Age-Related Changes to the Neural Correlates of Social Evaluation

    PubMed Central

    Cassidy, Brittany S.; Shih, Joanne Y.; Gutchess, Angela H.

    2012-01-01

    Recent work suggests the existence of a specialized neural system underlying social processing that may be relatively spared with age, unlike pervasive aging-related decline occurring in many cognitive domains. We investigated how neural mechanisms underlying social evaluation are engaged with age, and how age-related changes to socioemotional goals affect recruitment of regions within this network. In a functional MRI study, fifteen young and fifteen older adults formed behavior-based impressions of individuals. They also responded to a prompt that was interpersonally meaningful, social but interpersonally irrelevant, or non-social. Both age groups engaged regions implicated in mentalizing and impression formation when making social relative to non-social evaluations, including dorsal and ventral medial prefrontal cortices, precuneus, and temporoparietal junction. Older adults had increased activation over young in right temporal pole when making social relative to non-social evaluations, suggesting reliance on past experiences when evaluating others. Young had greater activation than old in posterior cingulate gyrus when making interpersonally irrelevant, compared to interpersonally meaningful, evaluations, potentially reflecting enhanced valuation of this information. The findings demonstrate the age-related preservation of the neural correlates underlying social evaluation, and suggest that functioning in these regions might be mediated by age-related changes in socioemotional goals. PMID:22439896

  11. Neural correlates of empathic accuracy in adolescence

    PubMed Central

    Kral, Tammi R A; Solis, Enrique; Mumford, Jeanette A; Schuyler, Brianna S; Flook, Lisa; Rifken, Katharine; Patsenko, Elena G

    2017-01-01

    Abstract Empathy, the ability to understand others’ emotions, can occur through perspective taking and experience sharing. Neural systems active when adults empathize include regions underlying perspective taking (e.g. medial prefrontal cortex; MPFC) and experience sharing (e.g. inferior parietal lobule; IPL). It is unknown whether adolescents utilize networks implicated in both experience sharing and perspective taking when accurately empathizing. This question is critical given the importance of accurately understanding others’ emotions for developing and maintaining adaptive peer relationships during adolescence. We extend the literature on empathy in adolescence by determining the neural basis of empathic accuracy, a behavioral assay of empathy that does not bias participants toward the exclusive use of perspective taking or experience sharing. Participants (N = 155, aged 11.1–15.5 years) watched videos of ‘targets’ describing emotional events and continuously rated the targets’ emotions during functional magnetic resonance imaging scanning. Empathic accuracy related to activation in regions underlying perspective taking (MPFC, temporoparietal junction and superior temporal sulcus), while activation in regions underlying experience sharing (IPL, anterior cingulate cortex and anterior insula) related to lower empathic accuracy. These results provide novel insight into the neural basis of empathic accuracy in adolescence and suggest that perspective taking processes may be effective for increasing empathy. PMID:28981837

  12. Towards a neural basis of music perception.

    PubMed

    Koelsch, Stefan; Siebel, Walter A

    2005-12-01

    Music perception involves complex brain functions underlying acoustic analysis, auditory memory, auditory scene analysis, and processing of musical syntax and semantics. Moreover, music perception potentially affects emotion, influences the autonomic nervous system, the hormonal and immune systems, and activates (pre)motor representations. During the past few years, research activities on different aspects of music processing and their neural correlates have rapidly progressed. This article provides an overview of recent developments and a framework for the perceptual side of music processing. This framework lays out a model of the cognitive modules involved in music perception, and incorporates information about the time course of activity of some of these modules, as well as research findings about where in the brain these modules might be located.

  13. Are corporations people too? The neural correlates of moral judgments about companies and individuals.

    PubMed

    Plitt, Mark; Savjani, Ricky R; Eagleman, David M

    2015-04-01

    To investigate whether the legal concept of "corporate personhood" mirrors an inherent similarity in the neural processing of the actions of corporations and people, we measured brain responses to vignettes about corporations and people while participants underwent functional magnetic resonance imaging. We found that anti-social actions of corporations elicited more intense negative emotions and that pro-social actions of people elicited more intense positive emotions. However, the networks underlying the moral decisions about corporations and people are strikingly similar, including regions of the canonical theory of mind network. In analyzing the activity in these networks, we found differences in the emotional processing of these two types of vignettes: neutral actions of corporations showed neural correlates that more closely resembled negative actions than positive actions. Collectively, these findings indicate that our brains understand and analyze the actions of corporations and people very similarly, with a small emotional bias against corporations.

  14. Extracellular matrix and its receptors in Drosophila neural development

    PubMed Central

    Broadie, Kendal; Baumgartner, Stefan; Prokop, Andreas

    2011-01-01

    Extracellular matrix (ECM) and matrix receptors are intimately involved in most biological processes. The ECM plays fundamental developmental and physiological roles in health and disease, including processes underlying the development, maintenance and regeneration of the nervous system. To understand the principles of ECM-mediated functions in the nervous system, genetic model organisms like Drosophila provide simple, malleable and powerful experimental platforms. This article provides an overview of ECM proteins and receptors in Drosophila. It then focuses on their roles during three progressive phases of neural development: 1) neural progenitor proliferation, 2) axonal growth and pathfinding and 3) synapse formation and function. Each section highlights known ECM and ECM-receptor components and recent studies done in mutant conditions to reveal their in vivo functions, all illustrating the enormous opportunities provided when merging work on the nervous system with systematic research into ECM-related gene functions. PMID:21688401

  15. Sex differences in the development of brain mechanisms for processing biological motion.

    PubMed

    Anderson, L C; Bolling, D Z; Schelinski, S; Coffman, M C; Pelphrey, K A; Kaiser, M D

    2013-12-01

    Disorders related to social functioning including autism and schizophrenia differ drastically in incidence and severity between males and females. Little is known about the neural systems underlying these sex-linked differences in risk and resiliency. Using functional magnetic resonance imaging and a task involving the visual perception of point-light displays of coherent and scrambled biological motion, we discovered sex differences in the development of neural systems for basic social perception. In adults, we identified enhanced activity during coherent biological motion perception in females relative to males in a network of brain regions previously implicated in social perception including amygdala, medial temporal gyrus, and temporal pole. These sex differences were less pronounced in our sample of school-age youth. We hypothesize that the robust neural circuitry supporting social perception in females, which diverges from males beginning in childhood, may underlie sex differences in disorders related to social processing. © 2013 Elsevier Inc. All rights reserved.

  16. Altered topology of neural circuits in congenital prosopagnosia.

    PubMed

    Rosenthal, Gideon; Tanzer, Michal; Simony, Erez; Hasson, Uri; Behrmann, Marlene; Avidan, Galia

    2017-08-21

    Using a novel, fMRI-based inter-subject functional correlation (ISFC) approach, which isolates stimulus-locked inter-regional correlation patterns, we compared the cortical topology of the neural circuit for face processing in participants with an impairment in face recognition, congenital prosopagnosia (CP), and matched controls. Whereas the anterior temporal lobe served as the major network hub for face processing in controls, this was not the case for the CPs. Instead, this group evinced hyper-connectivity in posterior regions of the visual cortex, mostly associated with the lateral occipital and the inferior temporal cortices. Moreover, the extent of this hyper-connectivity was correlated with the face recognition deficit. These results offer new insights into the perturbed cortical topology in CP, which may serve as the underlying neural basis of the behavioral deficits typical of this disorder. The approach adopted here has the potential to uncover altered topologies in other neurodevelopmental disorders, as well.

  17. Hippocampal-cortical interaction in decision making

    PubMed Central

    Yu, Jai Y.; Frank, Loren M.

    2014-01-01

    When making a decision it is often necessary to consider the available alternatives in order to choose the most appropriate option. This deliberative process, where the pros and cons of each option are considered, relies on memories of past actions and outcomes. The hippocampus and prefrontal cortex are required for memory encoding, memory retrieval and decision making, but it is unclear how these areas support deliberation. Here we examine the potential neural substrates of these processes in the rat. The rat is a powerful model to investigate the network mechanisms underlying deliberation in the mammalian brain given the anatomical and functional conservation of its hippocampus and prefrontal cortex to other mammalian systems. Importantly, it is amenable to large scale neural recording while performing laboratory tasks that exploit its natural decisionmaking behavior. Focusing on findings in the rat, we discuss how hippocampal-cortical interactions could provide a neural substrate for deliberative decision making. PMID:24530374

  18. Sex Differences in the Development of Brain Mechanisms for Processing Biological Motion

    PubMed Central

    Anderson, L.C.; Bolling, D.Z.; Schelinski, S.; Coffman, M.C.; Pelphrey, K.A.; Kaiser, M.D.

    2013-01-01

    Disorders related to social functioning including autism and schizophrenia differ drastically in incidence and severity between males and females. Little is known about the neural systems underlying these sex-linked differences in risk and resiliency. Using functional magnetic resonance imaging and a task involving the visual perception of point-light displays of coherent and scrambled biological motion, we discovered sex differences in the development of neural systems for basic social perception. In adults, we identified enhanced activity during coherent biological motion perception in females relative to males in a network of brain regions previously implicated in social perception including amygdala, medial temporal gyrus, and temporal pole. These sex differences were less pronounced in our sample of school-age youth. We hypothesize that the robust neural circuitry supporting social perception in females, which diverges from males beginning in childhood, may underlie sex differences in disorders related to social processing. PMID:23876243

  19. A decision-making model based on a spiking neural circuit and synaptic plasticity.

    PubMed

    Wei, Hui; Bu, Yijie; Dai, Dawei

    2017-10-01

    To adapt to the environment and survive, most animals can control their behaviors by making decisions. The process of decision-making and responding according to cues in the environment is stable, sustainable, and learnable. Understanding how behaviors are regulated by neural circuits and the encoding and decoding mechanisms from stimuli to responses are important goals in neuroscience. From results observed in Drosophila experiments, the underlying decision-making process is discussed, and a neural circuit that implements a two-choice decision-making model is proposed to explain and reproduce the observations. Compared with previous two-choice decision making models, our model uses synaptic plasticity to explain changes in decision output given the same environment. Moreover, biological meanings of parameters of our decision-making model are discussed. In this paper, we explain at the micro-level (i.e., neurons and synapses) how observable decision-making behavior at the macro-level is acquired and achieved.

  20. A Neurobehavioral Model of Flexible Spatial Language Behaviors

    PubMed Central

    Lipinski, John; Schneegans, Sebastian; Sandamirskaya, Yulia; Spencer, John P.; Schöner, Gregor

    2012-01-01

    We propose a neural dynamic model that specifies how low-level visual processes can be integrated with higher level cognition to achieve flexible spatial language behaviors. This model uses real-word visual input that is linked to relational spatial descriptions through a neural mechanism for reference frame transformations. We demonstrate that the system can extract spatial relations from visual scenes, select items based on relational spatial descriptions, and perform reference object selection in a single unified architecture. We further show that the performance of the system is consistent with behavioral data in humans by simulating results from 2 independent empirical studies, 1 spatial term rating task and 1 study of reference object selection behavior. The architecture we present thereby achieves a high degree of task flexibility under realistic stimulus conditions. At the same time, it also provides a detailed neural grounding for complex behavioral and cognitive processes. PMID:21517224

  1. Motivation alters impression formation and related neural systems

    PubMed Central

    Zaki, Jamil; Ambady, Nalini

    2017-01-01

    Abstract Observers frequently form impressions of other people based on complex or conflicting information. Rather than being objective, these impressions are often biased by observers’ motives. For instance, observers often downplay negative information they learn about ingroup members. Here, we characterize the neural systems associated with biased impression formation. Participants learned positive and negative information about ingroup and outgroup social targets. Following this information, participants worsened their impressions of outgroup, but not ingroup, targets. This tendency was associated with a failure to engage neural structures including lateral prefrontal cortex, dorsal anterior cingulate cortex, temporoparietal junction, Insula and Precuneus when processing negative information about ingroup (but not outgroup) targets. To the extent that participants engaged these regions while learning negative information about ingroup members, they exhibited less ingroup bias in their impressions. These data are consistent with a model of ‘effortless bias’, under which perceivers fail to process goal-inconsistent information in order to maintain desired conclusions. PMID:27798250

  2. Synaptic plasticity functions in an organic electrochemical transistor

    NASA Astrophysics Data System (ADS)

    Gkoupidenis, Paschalis; Schaefer, Nathan; Strakosas, Xenofon; Fairfield, Jessamyn A.; Malliaras, George G.

    2015-12-01

    Synaptic plasticity functions play a crucial role in the transmission of neural signals in the brain. Short-term plasticity is required for the transmission, encoding, and filtering of the neural signal, whereas long-term plasticity establishes more permanent changes in neural microcircuitry and thus underlies memory and learning. The realization of bioinspired circuits that can actually mimic signal processing in the brain demands the reproduction of both short- and long-term aspects of synaptic plasticity in a single device. Here, we demonstrate the implementation of neuromorphic functions similar to biological memory, such as short- to long-term memory transition, in non-volatile organic electrochemical transistors (OECTs). Depending on the training of the OECT, the device displays either short- or long-term plasticity, therefore, exhibiting non von Neumann characteristics with merged processing and storing functionalities. These results are a first step towards the implementation of organic-based neuromorphic circuits.

  3. A Dynamic Causal Modeling Analysis of the Effective Connectivities Underlying Top-Down Letter Processing

    ERIC Educational Resources Information Center

    Liu, Jiangang; Li, Jun; Rieth, Cory A.; Huber, David E.; Tian, Jie; Lee, Kang

    2011-01-01

    The present study employed dynamic causal modeling to investigate the effective functional connectivity between regions of the neural network involved in top-down letter processing. We used an illusory letter detection paradigm in which participants detected letters while viewing pure noise images. When participants detected letters, the response…

  4. Music and emotions: from enchantment to entrainment.

    PubMed

    Vuilleumier, Patrik; Trost, Wiebke

    2015-03-01

    Producing and perceiving music engage a wide range of sensorimotor, cognitive, and emotional processes. Emotions are a central feature of the enjoyment of music, with a large variety of affective states consistently reported by people while listening to music. However, besides joy or sadness, music often elicits feelings of wonder, nostalgia, or tenderness, which do not correspond to emotion categories typically studied in neuroscience and whose neural substrates remain largely unknown. Here we review the similarities and differences in the neural substrates underlying these "complex" music-evoked emotions relative to other more "basic" emotional experiences. We suggest that these emotions emerge through a combination of activation in emotional and motivational brain systems (e.g., including reward pathways) that confer its valence to music, with activation in several other areas outside emotional systems, including motor, attention, or memory-related regions. We then discuss the neural substrates underlying the entrainment of cognitive and motor processes by music and their relation to affective experience. These effects have important implications for the potential therapeutic use of music in neurological or psychiatric diseases, particularly those associated with motor, attention, or affective disturbances. © 2015 New York Academy of Sciences.

  5. Toward Model Building for Visual Aesthetic Perception

    PubMed Central

    Lughofer, Edwin; Zeng, Xianyi

    2017-01-01

    Several models of visual aesthetic perception have been proposed in recent years. Such models have drawn on investigations into the neural underpinnings of visual aesthetics, utilizing neurophysiological techniques and brain imaging techniques including functional magnetic resonance imaging, magnetoencephalography, and electroencephalography. The neural mechanisms underlying the aesthetic perception of the visual arts have been explained from the perspectives of neuropsychology, brain and cognitive science, informatics, and statistics. Although corresponding models have been constructed, the majority of these models contain elements that are difficult to be simulated or quantified using simple mathematical functions. In this review, we discuss the hypotheses, conceptions, and structures of six typical models for human aesthetic appreciation in the visual domain: the neuropsychological, information processing, mirror, quartet, and two hierarchical feed-forward layered models. Additionally, the neural foundation of aesthetic perception, appreciation, or judgement for each model is summarized. The development of a unified framework for the neurobiological mechanisms underlying the aesthetic perception of visual art and the validation of this framework via mathematical simulation is an interesting challenge in neuroaesthetics research. This review aims to provide information regarding the most promising proposals for bridging the gap between visual information processing and brain activity involved in aesthetic appreciation. PMID:29270194

  6. Neural mechanisms of eye contact when listening to another person talking

    PubMed Central

    Borowiak, Kamila; Tudge, Luke; Otto, Carolin; von Kriegstein, Katharina

    2017-01-01

    Abstract Eye contact occurs frequently and voluntarily during face-to-face verbal communication. However, the neural mechanisms underlying eye contact when it is accompanied by spoken language remain unexplored to date. Here we used a novel approach, fixation-based event-related functional magnetic resonance imaging (fMRI), to simulate the listener making eye contact with a speaker during verbal communication. Participants’ eye movements and fMRI data were recorded simultaneously while they were freely viewing a pre-recorded speaker talking. The eye tracking data were then used to define events for the fMRI analyses. The results showed that eye contact in contrast to mouth fixation involved visual cortical areas (cuneus, calcarine sulcus), brain regions related to theory of mind/intentionality processing (temporoparietal junction, posterior superior temporal sulcus, medial prefrontal cortex) and the dorsolateral prefrontal cortex. In addition, increased effective connectivity was found between these regions for eye contact in contrast to mouth fixations. The results provide first evidence for neural mechanisms underlying eye contact when watching and listening to another person talking. The network we found might be well suited for processing the intentions of communication partners during eye contact in verbal communication. PMID:27576745

  7. Self-organizing linear output map (SOLO): An artificial neural network suitable for hydrologic modeling and analysis

    NASA Astrophysics Data System (ADS)

    Hsu, Kuo-Lin; Gupta, Hoshin V.; Gao, Xiaogang; Sorooshian, Soroosh; Imam, Bisher

    2002-12-01

    Artificial neural networks (ANNs) can be useful in the prediction of hydrologic variables, such as streamflow, particularly when the underlying processes have complex nonlinear interrelationships. However, conventional ANN structures suffer from network training issues that significantly limit their widespread application. This paper presents a multivariate ANN procedure entitled self-organizing linear output map (SOLO), whose structure has been designed for rapid, precise, and inexpensive estimation of network structure/parameters and system outputs. More important, SOLO provides features that facilitate insight into the underlying processes, thereby extending its usefulness beyond forecast applications as a tool for scientific investigations. These characteristics are demonstrated using a classic rainfall-runoff forecasting problem. Various aspects of model performance are evaluated in comparison with other commonly used modeling approaches, including multilayer feedforward ANNs, linear time series modeling, and conceptual rainfall-runoff modeling.

  8. Combinations of stroke neurorehabilitation to facilitate motor recovery: perspectives on Hebbian plasticity and homeostatic metaplasticity

    PubMed Central

    Takeuchi, Naoyuki; Izumi, Shin-Ichi

    2015-01-01

    Motor recovery after stroke involves developing new neural connections, acquiring new functions, and compensating for impairments. These processes are related to neural plasticity. Various novel stroke rehabilitation techniques based on basic science and clinical studies of neural plasticity have been developed to aid motor recovery. Current research aims to determine whether using combinations of these techniques can synergistically improve motor recovery. When different stroke neurorehabilitation therapies are combined, the timing of each therapeutic program must be considered to enable optimal neural plasticity. Synchronizing stroke rehabilitation with voluntary neural and/or muscle activity can lead to motor recovery by targeting Hebbian plasticity. This reinforces the neural connections between paretic muscles and the residual motor area. Homeostatic metaplasticity, which stabilizes the activity of neurons and neural circuits, can either augment or reduce the synergic effect depending on the timing of combination therapy and types of neurorehabilitation that are used. Moreover, the possibility that the threshold and degree of induced plasticity can be altered after stroke should be noted. This review focuses on the mechanisms underlying combinations of neurorehabilitation approaches and their future clinical applications. We suggest therapeutic approaches for cortical reorganization and maximal functional gain in patients with stroke, based on the processes of Hebbian plasticity and homeostatic metaplasticity. Few of the possible combinations of stroke neurorehabilitation have been tested experimentally; therefore, further studies are required to determine the appropriate combination for motor recovery. PMID:26157374

  9. Magnetoencephalographic Signals Identify Stages in Real-Life Decision Processes

    PubMed Central

    Braeutigam, Sven; Stins, John F.; Rose, Steven P. R.; Swithenby, Stephen J.; Ambler, Tim

    2001-01-01

    We used magnetoencephalography (MEG) to study the dynamics of neural responses in eight subjects engaged in shopping for day-to-day items from supermarket shelves. This behavior not only has personal and economic importance but also provides an example of an experience that is both personal and shared between individuals. The shopping experience enables the exploration of neural mechanisms underlying choice based on complex memories. Choosing among different brands of closely related products activated a robust sequence of signals within the first second after the presentation of the choice images. This sequence engaged first the visual cortex (80-100 ms), then as the images were analyzed, predominantly the left temporal regions (310-340 ms). At longer latency, characteristic neural activetion was found in motor speech areas (500-520 ms) for images requiring low salience choices with respect to previous (brand) memory, and in right parietal cortex for high salience choices (850-920 ms). We argue that the neural processes associated with the particular brand-choice stimulus can be separated into identifiable stages through observation of MEG responses and knowledge of functional anatomy. PMID:12018772

  10. Human high intelligence is involved in spectral redshift of biophotonic activities in the brain

    PubMed Central

    Wang, Niting; Li, Zehua; Xiao, Fangyan; Dai, Jiapei

    2016-01-01

    Human beings hold higher intelligence than other animals on Earth; however, it is still unclear which brain properties might explain the underlying mechanisms. The brain is a major energy-consuming organ compared with other organs. Neural signal communications and information processing in neural circuits play an important role in the realization of various neural functions, whereas improvement in cognitive function is driven by the need for more effective communication that requires less energy. Combining the ultraweak biophoton imaging system (UBIS) with the biophoton spectral analysis device (BSAD), we found that glutamate-induced biophotonic activities and transmission in the brain, which has recently been demonstrated as a novel neural signal communication mechanism, present a spectral redshift from animals (in order of bullfrog, mouse, chicken, pig, and monkey) to humans, even up to a near-infrared wavelength (∼865 nm) in the human brain. This brain property may be a key biophysical basis for explaining high intelligence in humans because biophoton spectral redshift could be a more economical and effective measure of biophotonic signal communications and information processing in the human brain. PMID:27432962

  11. Perceived stress predicts altered reward and loss feedback processing in medial prefrontal cortex

    PubMed Central

    Treadway, Michael T.; Buckholtz, Joshua W.; Zald, David H.

    2013-01-01

    Stress is a significant risk factor for the development of psychopathology, particularly symptoms related to reward processing. Importantly, individuals display marked variation in how they perceive and cope with stressful events, and such differences are strongly linked to risk for developing psychiatric symptoms following stress exposure. However, many questions remain regarding the neural architecture that underlies inter-subject variability in perceptions of stressors. Using functional magnetic resonance imaging (fMRI) during a Monetary Incentive Delay (MID) paradigm, we examined the effects of self-reported perceived stress levels on neural activity during reward anticipation and feedback in a sample of healthy individuals. We found that subjects reporting more uncontrollable and overwhelming stressors displayed blunted neural responses in medial prefrontal cortex (mPFC) following feedback related to monetary gains as well monetary losses. This is consistent with preclinical models that implicate the mPFC as a key site of vulnerability to the noxious effects of uncontrollable stressors. Our data help translate these findings to humans, and elucidate some of the neural mechanisms that may underlie stress-linked risk for developing reward-related psychiatric symptoms. PMID:23730277

  12. Distinct Neural Circuits Subserve Interpersonal and Non-interpersonal Emotions

    PubMed Central

    Landa, Alla; Wang, Zhishun; Russell, James A.; Posner, Jonathan; Duan, Yunsuo; Kangarlu, Alayar; Huo, Yuankai; Fallon, Brian A.; Peterson, Bradley S.

    2013-01-01

    Emotions elicited by interpersonal versus non-interpersonal experiences have different effects on neurobiological functioning in both animals and humans. However, the extent to which the brain circuits underlying interpersonal and non-interpersonal emotions are distinct still remains unclear. The goal of our study was to assess whether different neural circuits are implicated in the processing of arousal and valence of interpersonal versus non-interpersonal emotions. During functional magnetic resonance imaging, participants imagined themselves in emotion-eliciting interpersonal or non-interpersonal situations and then rated the arousal and valence of emotions they experienced. We identified (a) separate neural circuits that are implicated in the arousal and valence dimensions of interpersonal versus non-interpersonal emotions, (b) circuits that are implicated in arousal and valence for both types of emotion, and (c) circuits that are responsive to the type of emotion, regardless of the valence or arousal level of the emotion. We found extensive recruitment of limbic (for arousal) and temporal-parietal (for valence) systems associated with processing of specifically interpersonal emotions compared to non-interpersonal ones. The neural bases of interpersonal and non-interpersonal emotions may, therefore, be largely distinct. PMID:24028312

  13. The predictive roles of neural oscillations in speech motor adaptability.

    PubMed

    Sengupta, Ranit; Nasir, Sazzad M

    2016-06-01

    The human speech system exhibits a remarkable flexibility by adapting to alterations in speaking environments. While it is believed that speech motor adaptation under altered sensory feedback involves rapid reorganization of speech motor networks, the mechanisms by which different brain regions communicate and coordinate their activity to mediate adaptation remain unknown, and explanations of outcome differences in adaption remain largely elusive. In this study, under the paradigm of altered auditory feedback with continuous EEG recordings, the differential roles of oscillatory neural processes in motor speech adaptability were investigated. The predictive capacities of different EEG frequency bands were assessed, and it was found that theta-, beta-, and gamma-band activities during speech planning and production contained significant and reliable information about motor speech adaptability. It was further observed that these bands do not work independently but interact with each other suggesting an underlying brain network operating across hierarchically organized frequency bands to support motor speech adaptation. These results provide novel insights into both learning and disorders of speech using time frequency analysis of neural oscillations. Copyright © 2016 the American Physiological Society.

  14. Discrete Neural Correlates for the Recognition of Negative Emotions: Insights from Frontotemporal Dementia

    PubMed Central

    Kumfor, Fiona; Irish, Muireann; Hodges, John R.; Piguet, Olivier

    2013-01-01

    Patients with frontotemporal dementia have pervasive changes in emotion recognition and social cognition, yet the neural changes underlying these emotion processing deficits remain unclear. The multimodal system model of emotion proposes that basic emotions are dependent on distinct brain regions, which undergo significant pathological changes in frontotemporal dementia. As such, this syndrome may provide important insight into the impact of neural network degeneration upon the innate ability to recognise emotions. This study used voxel-based morphometry to identify discrete neural correlates involved in the recognition of basic emotions (anger, disgust, fear, sadness, surprise and happiness) in frontotemporal dementia. Forty frontotemporal dementia patients (18 behavioural-variant, 11 semantic dementia, 11 progressive nonfluent aphasia) and 27 healthy controls were tested on two facial emotion recognition tasks: The Ekman 60 and Ekman Caricatures. Although each frontotemporal dementia group showed impaired recognition of negative emotions, distinct associations between emotion-specific task performance and changes in grey matter intensity emerged. Fear recognition was associated with the right amygdala; disgust recognition with the left insula; anger recognition with the left middle and superior temporal gyrus; and sadness recognition with the left subcallosal cingulate, indicating that discrete neural substrates are necessary for emotion recognition in frontotemporal dementia. The erosion of emotion-specific neural networks in neurodegenerative disorders may produce distinct profiles of performance that are relevant to understanding the neurobiological basis of emotion processing. PMID:23805313

  15. Neural circuitry of emotional and cognitive conflict revealed through facial expressions.

    PubMed

    Chiew, Kimberly S; Braver, Todd S

    2011-03-09

    Neural systems underlying conflict processing have been well studied in the cognitive realm, but the extent to which these overlap with those underlying emotional conflict processing remains unclear. A novel adaptation of the AX Continuous Performance Task (AX-CPT), a stimulus-response incompatibility paradigm, was examined that permits close comparison of emotional and cognitive conflict conditions, through the use of affectively-valenced facial expressions as the response modality. Brain activity was monitored with functional magnetic resonance imaging (fMRI) during performance of the emotional AX-CPT. Emotional conflict was manipulated on a trial-by-trial basis, by requiring contextually pre-cued facial expressions to emotional probe stimuli (IAPS images) that were either affectively compatible (low-conflict) or incompatible (high-conflict). The emotion condition was contrasted against a matched cognitive condition that was identical in all respects, except that probe stimuli were emotionally neutral. Components of the brain cognitive control network, including dorsal anterior cingulate cortex (ACC) and lateral prefrontal cortex (PFC), showed conflict-related activation increases in both conditions, but with higher activity during emotion conditions. In contrast, emotion conflict effects were not found in regions associated with affective processing, such as rostral ACC. These activation patterns provide evidence for a domain-general neural system that is active for both emotional and cognitive conflict processing. In line with previous behavioural evidence, greatest activity in these brain regions occurred when both emotional and cognitive influences additively combined to produce increased interference.

  16. Neural Circuitry of Emotional and Cognitive Conflict Revealed through Facial Expressions

    PubMed Central

    Chiew, Kimberly S.; Braver, Todd S.

    2011-01-01

    Background Neural systems underlying conflict processing have been well studied in the cognitive realm, but the extent to which these overlap with those underlying emotional conflict processing remains unclear. A novel adaptation of the AX Continuous Performance Task (AX-CPT), a stimulus-response incompatibility paradigm, was examined that permits close comparison of emotional and cognitive conflict conditions, through the use of affectively-valenced facial expressions as the response modality. Methodology/Principal Findings Brain activity was monitored with functional magnetic resonance imaging (fMRI) during performance of the emotional AX-CPT. Emotional conflict was manipulated on a trial-by-trial basis, by requiring contextually pre-cued facial expressions to emotional probe stimuli (IAPS images) that were either affectively compatible (low-conflict) or incompatible (high-conflict). The emotion condition was contrasted against a matched cognitive condition that was identical in all respects, except that probe stimuli were emotionally neutral. Components of the brain cognitive control network, including dorsal anterior cingulate cortex (ACC) and lateral prefrontal cortex (PFC), showed conflict-related activation increases in both conditions, but with higher activity during emotion conditions. In contrast, emotion conflict effects were not found in regions associated with affective processing, such as rostral ACC. Conclusions/Significance These activation patterns provide evidence for a domain-general neural system that is active for both emotional and cognitive conflict processing. In line with previous behavioural evidence, greatest activity in these brain regions occurred when both emotional and cognitive influences additively combined to produce increased interference. PMID:21408006

  17. Temporal lobe abnormalities in semantic processing by criminal psychopaths as revealed by functional magnetic resonance imaging.

    PubMed

    Kiehl, Kent A; Smith, Andra M; Mendrek, Adrianna; Forster, Bruce B; Hare, Robert D; Liddle, Peter F

    2004-04-30

    We tested the hypothesis that psychopathy is associated with abnormalities in semantic processing of linguistic information. Functional magnetic resonance imaging (fMRI) was used to elucidate and characterize the neural architecture underlying lexico-semantic processes in criminal psychopathic individuals and in a group of matched control participants. Participants performed a lexical decision task in which blocks of linguistic stimuli alternated with a resting baseline condition. In each lexical decision block, the stimuli were either concrete words and pseudowords or abstract words and pseudowords. Consistent with our hypothesis, psychopathic individuals, relative to controls, showed poorer behavioral performance for processing abstract words. Analysis of the fMRI data for both groups indicated that processing of word stimuli, compared with the resting baseline condition, was associated with neural activation in bilateral fusiform gyrus, anterior cingulate, left middle temporal gyrus, right posterior superior temporal gyrus, and left and right inferior frontal gyrus. Analyses confirmed our prediction that psychopathic individuals would fail to show the appropriate neural differentiation between abstract and concrete stimuli in the right anterior temporal gyrus and surrounding cortex. The results are consistent with other studies of semantic processing in psychopathy and support the theory that psychopathy is associated with right hemisphere abnormalities for processing conceptually abstract material.

  18. Temporal lobe abnormalities in semantic processing by criminal psychopaths as revealed by functional magnetic resonance imaging.

    PubMed

    Kiehl, Kent A; Smith, Andra M; Mendrek, Adrianna; Forster, Bruce B; Hare, Robert D; Liddle, Peter F

    2004-01-15

    We tested the hypothesis that psychopathy is associated with abnormalities in semantic processing of linguistic information. Functional magnetic resonance imaging (fMRI) was used to elucidate and characterize the neural architecture underlying lexico-semantic processes in criminal psychopathic individuals and in a group of matched control participants. Participants performed a lexical decision task in which blocks of linguistic stimuli alternated with a resting baseline condition. In each lexical decision block, the stimuli were either concrete words and pseudowords or abstract words and pseudowords. Consistent with our hypothesis, psychopathic individuals, relative to controls, showed poorer behavioral performance for processing abstract words. Analysis of the fMRI data for both groups indicated that processing of word stimuli, compared with the resting baseline condition, was associated with neural activation in bilateral fusiform gyrus, anterior cingulate, left middle temporal gyrus, right posterior superior temporal gyrus, and left and right inferior frontal gyrus. Analyses confirmed our prediction that psychopathic individuals would fail to show the appropriate neural differentiation between abstract and concrete stimuli in the right anterior temporal gyrus and surrounding cortex. The results are consistent with other studies of semantic processing in psychopathy and support the theory that psychopathy is associated with right hemisphere abnormalities for processing conceptually abstract material.

  19. Three Pillars for the Neural Control of Appetite.

    PubMed

    Sternson, Scott M; Eiselt, Anne-Kathrin

    2017-02-10

    The neural control of appetite is important for understanding motivated behavior as well as the present rising prevalence of obesity. Over the past several years, new tools for cell type-specific neuron activity monitoring and perturbation have enabled increasingly detailed analyses of the mechanisms underlying appetite-control systems. Three major neural circuits strongly and acutely influence appetite but with notably different characteristics. Although these circuits interact, they have distinct properties and thus appear to contribute to separate but interlinked processes influencing appetite, thereby forming three pillars of appetite control. Here, we summarize some of the key characteristics of appetite circuits that are emerging from recent work and synthesize the findings into a provisional framework that can guide future studies.

  20. Mapping Common Aphasia Assessments to Underlying Cognitive Processes and Their Neural Substrates.

    PubMed

    Lacey, Elizabeth H; Skipper-Kallal, Laura M; Xing, Shihui; Fama, Mackenzie E; Turkeltaub, Peter E

    2017-05-01

    Understanding the relationships between clinical tests, the processes they measure, and the brain networks underlying them, is critical in order for clinicians to move beyond aphasia syndrome classification toward specification of individual language process impairments. To understand the cognitive, language, and neuroanatomical factors underlying scores of commonly used aphasia tests. Twenty-five behavioral tests were administered to a group of 38 chronic left hemisphere stroke survivors and a high-resolution magnetic resonance image was obtained. Test scores were entered into a principal components analysis to extract the latent variables (factors) measured by the tests. Multivariate lesion-symptom mapping was used to localize lesions associated with the factor scores. The principal components analysis yielded 4 dissociable factors, which we labeled Word Finding/Fluency, Comprehension, Phonology/Working Memory Capacity, and Executive Function. While many tests loaded onto the factors in predictable ways, some relied heavily on factors not commonly associated with the tests. Lesion symptom mapping demonstrated discrete brain structures associated with each factor, including frontal, temporal, and parietal areas extending beyond the classical language network. Specific functions mapped onto brain anatomy largely in correspondence with modern neural models of language processing. An extensive clinical aphasia assessment identifies 4 independent language functions, relying on discrete parts of the left middle cerebral artery territory. A better understanding of the processes underlying cognitive tests and the link between lesion and behavior may lead to improved aphasia diagnosis, and may yield treatments better targeted to an individual's specific pattern of deficits and preserved abilities.

  1. Timing of Moderate Level Prenatal Alcohol Exposure Influences Gene Expression of Sensory Processing Behavior in Rhesus Monkeys

    PubMed Central

    Schneider, Mary L.; Moore, Colleen F.; Larson, Julie A.; Barr, Christina S.; DeJesus, Onofre T.; Roberts, Andrew D.

    2009-01-01

    Sensory processing disorder, characterized by over- or under-responsivity to non-noxious environmental stimuli, is a common but poorly understood disorder. We examined the role of prenatal alcohol exposure, serotonin transporter gene polymorphic region variation (rh5-HTTLPR), and striatal dopamine (DA) function on behavioral measures of sensory responsivity to repeated non-noxious sensory stimuli in macaque monkeys. Results indicated that early gestation alcohol exposure induced behavioral under-responsivity to environmental stimuli in monkeys carrying the short (s) rh5-HTTLPR allele compared to both early-exposed monkeys homozygous for the long (l) allele and monkeys from middle-to-late exposed pregnancies and controls, regardless of genotype. Moreover, prenatal timing of alcohol exposure altered the relationship between sensory scores and DA D2R availability. In early-exposed monkeys, a positive relationship was shown between sensory scores and DA D2R availability, with low or blunted DA function associated with under-responsive sensory function. The opposite pattern was found for the middle-to-late gestation alcohol-exposed group. These findings raise questions about how the timing of prenatal perturbation and genotype contributes to effects on neural processing and possibly alters neural connections. PMID:19936317

  2. Recall Performance for Content-Addressable Memory Using Adiabatic Quantum Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imam, Neena; Humble, Travis S.; McCaskey, Alex

    A content-addressable memory (CAM) stores key-value associations such that the key is recalled by providing its associated value. While CAM recall is traditionally performed using recurrent neural network models, we show how to solve this problem using adiabatic quantum optimization. Our approach maps the recurrent neural network to a commercially available quantum processing unit by taking advantage of the common underlying Ising spin model. We then assess the accuracy of the quantum processor to store key-value associations by quantifying recall performance against an ensemble of problem sets. We observe that different learning rules from the neural network community influence recallmore » accuracy but performance appears to be limited by potential noise in the processor. The strong connection established between quantum processors and neural network problems supports the growing intersection of these two ideas.« less

  3. Social anhedonia is associated with neural abnormalities during face emotion processing.

    PubMed

    Germine, Laura T; Garrido, Lucia; Bruce, Lori; Hooker, Christine

    2011-10-01

    Human beings are social organisms with an intrinsic desire to seek and participate in social interactions. Social anhedonia is a personality trait characterized by a reduced desire for social affiliation and reduced pleasure derived from interpersonal interactions. Abnormally high levels of social anhedonia prospectively predict the development of schizophrenia and contribute to poorer outcomes for schizophrenia patients. Despite the strong association between social anhedonia and schizophrenia, the neural mechanisms that underlie individual differences in social anhedonia have not been studied and are thus poorly understood. Deficits in face emotion recognition are related to poorer social outcomes in schizophrenia, and it has been suggested that face emotion recognition deficits may be a behavioral marker for schizophrenia liability. In the current study, we used functional magnetic resonance imaging (fMRI) to see whether there are differences in the brain networks underlying basic face emotion processing in a community sample of individuals low vs. high in social anhedonia. We isolated the neural mechanisms related to face emotion processing by comparing face emotion discrimination with four other baseline conditions (identity discrimination of emotional faces, identity discrimination of neutral faces, object discrimination, and pattern discrimination). Results showed a group (high/low social anhedonia) × condition (emotion discrimination/control condition) interaction in the anterior portion of the rostral medial prefrontal cortex, right superior temporal gyrus, and left somatosensory cortex. As predicted, high (relative to low) social anhedonia participants showed less neural activity in face emotion processing regions during emotion discrimination as compared to each control condition. The findings suggest that social anhedonia is associated with abnormalities in networks responsible for basic processes associated with social cognition, and provide a starting point for understanding the neural basis of social motivation and our drive to seek social affiliation. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Abnormal neural hierarchy in processing of verbal information in patients with schizophrenia.

    PubMed

    Lerner, Yulia; Bleich-Cohen, Maya; Solnik-Knirsh, Shimrit; Yogev-Seligmann, Galit; Eisenstein, Tamir; Madah, Waheed; Shamir, Alon; Hendler, Talma; Kremer, Ilana

    2018-01-01

    Previous research indicates abnormal comprehension of verbal information in patients with schizophrenia. Yet the neural mechanism underlying the breakdown of verbal information processing in schizophrenia is poorly understood. Imaging studies in healthy populations have shown a network of brain areas involved in hierarchical processing of verbal information over time. Here, we identified critical aspects of this hierarchy, examining patients with schizophrenia. Using functional magnetic resonance imaging, we examined various levels of information comprehension elicited by naturally presented verbal stimuli; from a set of randomly shuffled words to an intact story. Specifically, patients with first episode schizophrenia ( N  = 15), their non-manifesting siblings ( N  = 14) and healthy controls ( N  = 15) listened to a narrated story and randomly scrambled versions of it. To quantify the degree of dissimilarity between the groups, we adopted an inter-subject correlation (inter-SC) approach, which estimates differences in synchronization of neural responses within and between groups. The temporal topography found in healthy and siblings groups were consistent with our previous findings - high synchronization in responses from early sensory toward high order perceptual and cognitive areas. In patients with schizophrenia, stimuli with short and intermediate temporal scales evoked a typical pattern of reliable responses, whereas story condition (long temporal scale) revealed robust and widespread disruption of the inter-SCs. In addition, the more similar the neural activity of patients with schizophrenia was to the average response in the healthy group, the less severe the positive symptoms of the patients. Our findings suggest that system-level neural indication of abnormal verbal information processing in schizophrenia reflects disease manifestations.

  5. Neural Systems Underlying Emotional and Non-emotional Interference Processing: An ALE Meta-Analysis of Functional Neuroimaging Studies

    PubMed Central

    Xu, Min; Xu, Guiping; Yang, Yang

    2016-01-01

    Understanding how the nature of interference might influence the recruitments of the neural systems is considered as the key to understanding cognitive control. Although, interference processing in the emotional domain has recently attracted great interest, the question of whether there are separable neural patterns for emotional and non-emotional interference processing remains open. Here, we performed an activation likelihood estimation meta-analysis of 78 neuroimaging experiments, and examined common and distinct neural systems for emotional and non-emotional interference processing. We examined brain activation in three domains of interference processing: emotional verbal interference in the face-word conflict task, non-emotional verbal interference in the color-word Stroop task, and non-emotional spatial interference in the Simon, SRC and Flanker tasks. Our results show that the dorsal anterior cingulate cortex (ACC) was recruited for both emotional and non-emotional interference. In addition, the right anterior insula, presupplementary motor area (pre-SMA), and right inferior frontal gyrus (IFG) were activated by interference processing across both emotional and non-emotional domains. In light of these results, we propose that the anterior insular cortex may serve to integrate information from different dimensions and work together with the dorsal ACC to detect and monitor conflicts, whereas pre-SMA and right IFG may be recruited to inhibit inappropriate responses. In contrast, the dorsolateral prefrontal cortex (DLPFC) and posterior parietal cortex (PPC) showed different degrees of activation and distinct lateralization patterns for different processing domains, which suggests that these regions may implement cognitive control based on the specific task requirements. PMID:27895564

  6. Auditory priming improves neural synchronization in auditory-motor entrainment.

    PubMed

    Crasta, Jewel E; Thaut, Michael H; Anderson, Charles W; Davies, Patricia L; Gavin, William J

    2018-05-22

    Neurophysiological research has shown that auditory and motor systems interact during movement to rhythmic auditory stimuli through a process called entrainment. This study explores the neural oscillations underlying auditory-motor entrainment using electroencephalography. Forty young adults were randomly assigned to one of two control conditions, an auditory-only condition or a motor-only condition, prior to a rhythmic auditory-motor synchronization condition (referred to as combined condition). Participants assigned to the auditory-only condition auditory-first group) listened to 400 trials of auditory stimuli presented every 800 ms, while those in the motor-only condition (motor-first group) were asked to tap rhythmically every 800 ms without any external stimuli. Following their control condition, all participants completed an auditory-motor combined condition that required tapping along with auditory stimuli every 800 ms. As expected, the neural processes for the combined condition for each group were different compared to their respective control condition. Time-frequency analysis of total power at an electrode site on the left central scalp (C3) indicated that the neural oscillations elicited by auditory stimuli, especially in the beta and gamma range, drove the auditory-motor entrainment. For the combined condition, the auditory-first group had significantly lower evoked power for a region of interest representing sensorimotor processing (4-20 Hz) and less total power in a region associated with anticipation and predictive timing (13-16 Hz) than the motor-first group. Thus, the auditory-only condition served as a priming facilitator of the neural processes in the combined condition, more so than the motor-only condition. Results suggest that even brief periods of rhythmic training of the auditory system leads to neural efficiency facilitating the motor system during the process of entrainment. These findings have implications for interventions using rhythmic auditory stimulation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Neural network application for thermal image recognition of low-resolution objects

    NASA Astrophysics Data System (ADS)

    Fang, Yi-Chin; Wu, Bo-Wen

    2007-02-01

    In the ever-changing situation on a battle field, accurate recognition of a distant object is critical to a commander's decision-making and the general public's safety. Efficiently distinguishing between an enemy's armoured vehicles and ordinary civilian houses under all weather conditions has become an important research topic. This study presents a system for recognizing an armoured vehicle by distinguishing marks and contours. The characteristics of 12 different shapes and 12 characters are used to explore thermal image recognition under the circumstance of long distance and low resolution. Although the recognition capability of human eyes is superior to that of artificial intelligence under normal conditions, it tends to deteriorate substantially under long-distance and low-resolution scenarios. This study presents an effective method for choosing features and processing images. The artificial neural network technique is applied to further improve the probability of accurate recognition well beyond the limit of the recognition capability of human eyes.

  8. The Neuroendocrinology of Thirst and Salt Appetite: Visceral Sensory Signals and Mechanisms of Central Integration

    NASA Technical Reports Server (NTRS)

    Johnson, Alan Kim; Thunhorst, Robert L.

    1997-01-01

    This review examines recent advances in the study of the behavioral responses to deficits of body water and body sodium that in humans are accompanied by the sensations of thirst and salt appetite. Thirst and salt appetite are satisfied by ingesting water and salty substances. These behavioral responses to losses of body fluids, together with reflex endocrine and neural responses, are critical for reestablishing homeostasis. Like their endocrine and neural counterparts, these behaviors are under the control of both excitatory and inhibitory influences arising from changes in osmolality, endocrine factors such as angiotensin and aldosterone, and neural signals from low and high pressure baroreceptors. The excitatory and inhibitory influences reaching the brain require the integrative capacity of a neural network which includes the structures of the lamina terminalis, the amygdala, the perifornical area, and the paraventricular nucleus in the forebrain, and the lateral parabrachial nucleus (LPBN), the nucleus tractus solitarius (NTS), and the area postrema in the hindbrain. These regions are discussed in terms of their roles in receiving afferent sensory input and in processing information related to hydromineral balance. Osmoreceptors controlling thirst are located in systemic Viscera and in central structures that lack the blood-brain barrier. Angiotensin and aldosterone act on and through structures of the lamina terminalis and the amygdala to stimulate thirst and sodium appetite under conditions of hypovolemia. The NTS and LPBN receive neural signals from baroreceptors and are responsible for inhibiting the ingestion of fluids under conditions of increased volume and pressure and for stimulating thirst under conditions of bypovolemia and hypotension. The interplay of multiple facilitory influences within the brain may take the form of interactions between descending angiotensinergic systems originating in the forebrain and ascending adrenergic systems emanating from the hindbrain. Oxytocin and serotonin are additional candidate neuro- chemicals with postulated inhibitory central actions and with essential roles in the overall integration of sensory input within the neural network devoted to maintaining hydromineral balance.

  9. Neural alterations of fronto-striatal circuitry during reward anticipation in euthymic bipolar disorder.

    PubMed

    Schreiter, S; Spengler, S; Willert, A; Mohnke, S; Herold, D; Erk, S; Romanczuk-Seiferth, N; Quinlivan, E; Hindi-Attar, C; Banzhaf, C; Wackerhagen, C; Romund, L; Garbusow, M; Stamm, T; Heinz, A; Walter, H; Bermpohl, F

    2016-11-01

    Bipolar disorder (BD), with the hallmark symptoms of elevated and depressed mood, is thought to be characterized by underlying alterations in reward-processing networks. However, to date the neural circuitry underlying abnormal responses during reward processing in BD remains largely unexplored. The aim of this study was to investigate whether euthymic BD is characterized by aberrant ventral striatal (VS) activation patterns and altered connectivity with the prefrontal cortex in response to monetary gains and losses. During functional magnetic resonance imaging 20 euthymic BD patients and 20 age-, gender- and intelligence quotient-matched healthy controls completed a monetary incentive delay paradigm, to examine neural processing of reward and loss anticipation. A priori defined regions of interest (ROIs) included the VS and the anterior prefrontal cortex (aPFC). Psychophysiological interactions (PPIs) between these ROIs were estimated and tested for group differences for reward and loss anticipation separately. BD participants, relative to healthy controls, displayed decreased activation selectively in the left and right VS during anticipation of reward, but not during loss anticipation. PPI analyses showed decreased functional connectivity between the left VS and aPFC in BD patients compared with healthy controls during reward anticipation. This is the first study showing decreased VS activity and aberrant connectivity in the reward-processing circuitry in euthymic, medicated BD patients during reward anticipation. Our findings contrast with research supporting a reward hypersensitivity model of BD, and add to the body of literature suggesting that blunted activation of reward processing circuits may be a vulnerability factor for mood disorders.

  10. Unraveling the neural basis of insect navigation.

    PubMed

    Heinze, Stanley

    2017-12-01

    One of the defining features of animals is their ability to navigate their environment. Using behavioral experiments this topic has been under intense investigation for nearly a century. In insects, this work has largely focused on the remarkable homing abilities of ants and bees. More recently, the neural basis of navigation shifted into the focus of attention. Starting with revealing the neurons that process the sensory signals used for navigation, in particular polarized skylight, migratory locusts became the key species for delineating navigation-relevant regions of the insect brain. Over the last years, this work was used as a basis for research in the fruit fly Drosophila and extraordinary progress has been made in illuminating the neural underpinnings of navigational processes. With increasingly detailed understanding of navigation circuits, we can begin to ask whether there is a fundamentally shared concept underlying all navigation behavior across insects. This review highlights recent advances and puts them into the context of the behavioral work on ants and bees, as well as the circuits involved in polarized-light processing. A region of the insect brain called the central complex emerges as the common substrate for guiding navigation and its highly organized neuroarchitecture provides a framework for future investigations potentially suited to explain all insect navigation behavior at the level of identified neurons. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Involvement of the Extrageniculate System in the Perception of Optical Illusions: A Functional Magnetic Resonance Imaging Study

    PubMed Central

    Tabei, Ken-ichi; Satoh, Masayuki; Kida, Hirotaka; Kizaki, Moeni; Sakuma, Haruno; Sakuma, Hajime; Tomimoto, Hidekazu

    2015-01-01

    Research on the neural processing of optical illusions can provide clues for understanding the neural mechanisms underlying visual perception. Previous studies have shown that some visual areas contribute to the perception of optical illusions such as the Kanizsa triangle and Müller-Lyer figure; however, the neural mechanisms underlying the processing of these and other optical illusions have not been clearly identified. Using functional magnetic resonance imaging (fMRI), we determined which brain regions are active during the perception of optical illusions. For our study, we enrolled 18 participants. The illusory optical stimuli consisted of many kana letters, which are Japanese phonograms. During the shape task, participants stated aloud whether they perceived the shapes of two optical illusions as being the same or not. During the word task, participants read aloud the kana letters in the stimuli. A direct comparison between the shape and word tasks showed activation of the right inferior frontal gyrus, left medial frontal gyrus, and right pulvinar. It is well known that there are two visual pathways, the geniculate and extrageniculate systems, which belong to the higher-level and primary visual systems, respectively. The pulvinar belongs to the latter system, and the findings of the present study suggest that the extrageniculate system is involved in the cognitive processing of optical illusions. PMID:26083375

  12. Neural mechanisms underlying sound-induced visual motion perception: An fMRI study.

    PubMed

    Hidaka, Souta; Higuchi, Satomi; Teramoto, Wataru; Sugita, Yoichi

    2017-07-01

    Studies of crossmodal interactions in motion perception have reported activation in several brain areas, including those related to motion processing and/or sensory association, in response to multimodal (e.g., visual and auditory) stimuli that were both in motion. Recent studies have demonstrated that sounds can trigger illusory visual apparent motion to static visual stimuli (sound-induced visual motion: SIVM): A visual stimulus blinking at a fixed location is perceived to be moving laterally when an alternating left-right sound is also present. Here, we investigated brain activity related to the perception of SIVM using a 7T functional magnetic resonance imaging technique. Specifically, we focused on the patterns of neural activities in SIVM and visually induced visual apparent motion (VIVM). We observed shared activations in the middle occipital area (V5/hMT), which is thought to be involved in visual motion processing, for SIVM and VIVM. Moreover, as compared to VIVM, SIVM resulted in greater activation in the superior temporal area and dominant functional connectivity between the V5/hMT area and the areas related to auditory and crossmodal motion processing. These findings indicate that similar but partially different neural mechanisms could be involved in auditory-induced and visually-induced motion perception, and neural signals in auditory, visual, and, crossmodal motion processing areas closely and directly interact in the perception of SIVM. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Who was the agent? The neural correlates of reanalysis processes during sentence comprehension.

    PubMed

    Hirotani, Masako; Makuuchi, Michiru; Rüschemeyer, Shirley-Ann; Friederici, Angela D

    2011-11-01

    Sentence comprehension is a complex process. Besides identifying the meaning of each word and processing the syntactic structure of a sentence, it requires the computation of thematic information, that is, information about who did what to whom. The present fMRI study investigated the neural basis for thematic reanalysis (reanalysis of the thematic roles initially assigned to noun phrases in a sentence) and its interplay with syntactic reanalysis (reanalysis of the underlying syntactic structure originally constructed for a sentence). Thematic reanalysis recruited a network consisting of Broca's area, that is, the left pars triangularis (LPT), and the left posterior superior temporal gyrus, whereas only LPT showed greater sensitivity to syntactic reanalysis. These data provide direct evidence for a functional neuroanatomical basis for two linguistically motivated reanalysis processes during sentence comprehension. Copyright © 2010 Wiley-Liss, Inc.

  14. Dissociating sensory from decision processes in human perceptual decision making.

    PubMed

    Mostert, Pim; Kok, Peter; de Lange, Floris P

    2015-12-15

    A key question within systems neuroscience is how the brain translates physical stimulation into a behavioral response: perceptual decision making. To answer this question, it is important to dissociate the neural activity underlying the encoding of sensory information from the activity underlying the subsequent temporal integration into a decision variable. Here, we adopted a decoding approach to empirically assess this dissociation in human magnetoencephalography recordings. We used a functional localizer to identify the neural signature that reflects sensory-specific processes, and subsequently traced this signature while subjects were engaged in a perceptual decision making task. Our results revealed a temporal dissociation in which sensory processing was limited to an early time window and consistent with occipital areas, whereas decision-related processing became increasingly pronounced over time, and involved parietal and frontal areas. We found that the sensory processing accurately reflected the physical stimulus, irrespective of the eventual decision. Moreover, the sensory representation was stable and maintained over time when it was required for a subsequent decision, but unstable and variable over time when it was task-irrelevant. In contrast, decision-related activity displayed long-lasting sustained components. Together, our approach dissects neuro-anatomically and functionally distinct contributions to perceptual decisions.

  15. Dissociating sensory from decision processes in human perceptual decision making

    PubMed Central

    Mostert, Pim; Kok, Peter; de Lange, Floris P.

    2015-01-01

    A key question within systems neuroscience is how the brain translates physical stimulation into a behavioral response: perceptual decision making. To answer this question, it is important to dissociate the neural activity underlying the encoding of sensory information from the activity underlying the subsequent temporal integration into a decision variable. Here, we adopted a decoding approach to empirically assess this dissociation in human magnetoencephalography recordings. We used a functional localizer to identify the neural signature that reflects sensory-specific processes, and subsequently traced this signature while subjects were engaged in a perceptual decision making task. Our results revealed a temporal dissociation in which sensory processing was limited to an early time window and consistent with occipital areas, whereas decision-related processing became increasingly pronounced over time, and involved parietal and frontal areas. We found that the sensory processing accurately reflected the physical stimulus, irrespective of the eventual decision. Moreover, the sensory representation was stable and maintained over time when it was required for a subsequent decision, but unstable and variable over time when it was task-irrelevant. In contrast, decision-related activity displayed long-lasting sustained components. Together, our approach dissects neuro-anatomically and functionally distinct contributions to perceptual decisions. PMID:26666393

  16. Investigating the effect of respiratory bodily threat on the processing of emotional pictures.

    PubMed

    Juravle, Georgiana; Stoeckel, Maria Cornelia; Rose, Michael; Gamer, Matthias; Büchel, Christian; Wieser, Matthias Johannes; von Leupoldt, Andreas

    2014-12-01

    It has been demonstrated that emotions can substantially impact the perception and neural processing of breathlessness, but little is known about the reverse interaction. Here, we examined the impact of breathlessness on emotional picture processing. The continuous EEG was recorded while volunteers viewed positive/neutral/negative emotional pictures under conditions of resistive-load-induced breathlessness, auditory noise, and an unloaded baseline. Breathlessness attenuated P1 and early posterior negativity (EPN) ERP amplitudes, irrespective of picture valence. Moreover, as expected, larger amplitudes for positive and negative pictures relative to neutral pictures were found for EPN and the late positive potential (LPP) ERPs, which were not affected by breathlessness. The results suggest that breathlessness impacts on the early attention-related neural processing of picture stimuli without influencing the later cognitive processing of emotional contents. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. A Neural Dynamic Model Generates Descriptions of Object-Oriented Actions.

    PubMed

    Richter, Mathis; Lins, Jonas; Schöner, Gregor

    2017-01-01

    Describing actions entails that relations between objects are discovered. A pervasively neural account of this process requires that fundamental problems are solved: the neural pointer problem, the binding problem, and the problem of generating discrete processing steps from time-continuous neural processes. We present a prototypical solution to these problems in a neural dynamic model that comprises dynamic neural fields holding representations close to sensorimotor surfaces as well as dynamic neural nodes holding discrete, language-like representations. Making the connection between these two types of representations enables the model to describe actions as well as to perceptually ground movement phrases-all based on real visual input. We demonstrate how the dynamic neural processes autonomously generate the processing steps required to describe or ground object-oriented actions. By solving the fundamental problems of neural pointing, binding, and emergent discrete processing, the model may be a first but critical step toward a systematic neural processing account of higher cognition. Copyright © 2017 The Authors. Topics in Cognitive Science published by Wiley Periodicals, Inc. on behalf of Cognitive Science Society.

  18. Efficacy of an artificial neural network-based approach to endoscopic ultrasound elastography in diagnosis of focal pancreatic masses.

    PubMed

    Săftoiu, Adrian; Vilmann, Peter; Gorunescu, Florin; Janssen, Jan; Hocke, Michael; Larsen, Michael; Iglesias-Garcia, Julio; Arcidiacono, Paolo; Will, Uwe; Giovannini, Marc; Dietrich, Cristoph F; Havre, Roald; Gheorghe, Cristian; McKay, Colin; Gheonea, Dan Ionuţ; Ciurea, Tudorel

    2012-01-01

    By using strain assessment, real-time endoscopic ultrasound (EUS) elastography provides additional information about a lesion's characteristics in the pancreas. We assessed the accuracy of real-time EUS elastography in focal pancreatic lesions using computer-aided diagnosis by artificial neural network analysis. We performed a prospective, blinded, multicentric study at of 258 patients (774 recordings from EUS elastography) who were diagnosed with chronic pancreatitis (n = 47) or pancreatic adenocarcinoma (n = 211) from 13 tertiary academic medical centers in Europe (the European EUS Elastography Multicentric Study Group). We used postprocessing software analysis to compute individual frames of elastography movies recorded by retrieving hue histogram data from a dynamic sequence of EUS elastography into a numeric matrix. The data then were analyzed in an extended neural network analysis, to automatically differentiate benign from malignant patterns. The neural computing approach had 91.14% training accuracy (95% confidence interval [CI], 89.87%-92.42%) and 84.27% testing accuracy (95% CI, 83.09%-85.44%). These results were obtained using the 10-fold cross-validation technique. The statistical analysis of the classification process showed a sensitivity of 87.59%, a specificity of 82.94%, a positive predictive value of 96.25%, and a negative predictive value of 57.22%. Moreover, the corresponding area under the receiver operating characteristic curve was 0.94 (95% CI, 0.91%-0.97%), which was significantly higher than the values obtained by simple mean hue histogram analysis, for which the area under the receiver operating characteristic was 0.85. Use of the artificial intelligence methodology via artificial neural networks supports the medical decision process, providing fast and accurate diagnoses. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.

  19. FMRI Study of Neural Responses to Implicit Infant Emotion in Anorexia Nervosa

    PubMed Central

    Leppanen, Jenni; Cardi, Valentina; Paloyelis, Yannis; Simmons, Andy; Tchanturia, Kate; Treasure, Janet

    2017-01-01

    Difficulties in social–emotional processing have been proposed to play an important role in the development and maintenance of anorexia nervosa (AN). Few studies, thus far, have investigated neural processes that underlie these difficulties, including processing emotional facial expressions. However, the majority of these studies have investigated neural responses to adult emotional display, which may be confounded by elevated sensitivity to social rank and threat in AN. Therefore, the aim of this study was to investigate the neural processes underlying implicit processing of positively and negatively valenced infant emotional display in AN. Twenty-one adult women with AN and twenty-six healthy comparison (HC) women were presented with images of positively valenced, negatively valenced, and neutral infant faces during a fMRI scan. Significant differences between the groups in positive > neutral and negative > neutral contrasts were investigated in a priori regions of interest, including the bilateral amygdala, insula, and lateral prefrontal cortex (PFC). The findings revealed that the AN participants showed relatively increased recruitment while the HC participants showed relatively reduced recruitment of the bilateral amygdala and the right dorsolateral PFC in the positive > neutral contrast. In the negative > neutral contrast, the AN group showed relatively increased recruitment of the left posterior insula while the HC groups showed relatively reduced recruitment of this region. These findings suggest that people with AN may engage in implicit prefrontal down-regulation of elevated limbic reactivity to positively social–emotional stimuli. PMID:28567026

  20. Engaged listeners: shared neural processing of powerful political speeches.

    PubMed

    Schmälzle, Ralf; Häcker, Frank E K; Honey, Christopher J; Hasson, Uri

    2015-08-01

    Powerful speeches can captivate audiences, whereas weaker speeches fail to engage their listeners. What is happening in the brains of a captivated audience? Here, we assess audience-wide functional brain dynamics during listening to speeches of varying rhetorical quality. The speeches were given by German politicians and evaluated as rhetorically powerful or weak. Listening to each of the speeches induced similar neural response time courses, as measured by inter-subject correlation analysis, in widespread brain regions involved in spoken language processing. Crucially, alignment of the time course across listeners was stronger for rhetorically powerful speeches, especially for bilateral regions of the superior temporal gyri and medial prefrontal cortex. Thus, during powerful speeches, listeners as a group are more coupled to each other, suggesting that powerful speeches are more potent in taking control of the listeners' brain responses. Weaker speeches were processed more heterogeneously, although they still prompted substantially correlated responses. These patterns of coupled neural responses bear resemblance to metaphors of resonance, which are often invoked in discussions of speech impact, and contribute to the literature on auditory attention under natural circumstances. Overall, this approach opens up possibilities for research on the neural mechanisms mediating the reception of entertaining or persuasive messages. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  1. Dissociable Electroencephalograph Correlates of Visual Awareness and Feature-Based Attention

    PubMed Central

    Chen, Yifan; Wang, Xiaochun; Yu, Yanglan; Liu, Ying

    2017-01-01

    Background: The relationship between awareness and attention is complex and controversial. A growing body of literature has shown that the neural bases of consciousness and endogenous attention (voluntary attention) are independent. The important role of exogenous attention (reflexive attention) on conscious experience has been noted in several studies. However, exogenous attention can also modulate subliminal processing, suggesting independence between the two processes. The question of whether visual awareness and exogenous attention rely on independent mechanisms under certain circumstances remains unanswered. Methods: In the current study, electroencephalograph recordings were conducted using 64 channels from 16 subjects while subjects attempted to detect faint speed changes of colored rotating dots. Awareness and attention were manipulated throughout trials in order to test whether exogenous attention and visual awareness rely on independent mechanisms. Results: Neural activity related to consciousness was recorded in the following cue-locked time-windows (event related potential, cluster- based permutation test): 0–50, 150–200, and 750–800 ms. With a more liberal threshold, the inferior occipital lobe was found to be the source of awareness-related activity in the 0–50 ms range. In the later 150–200 ms range, activity in the fusiform and post-central gyrus was related to awareness. Awareness-related activation in the later 750–800 ms range was more widely distributed. This awareness-related activation pattern was quite different from that of attention. Attention-related neural activity was emphasized in the 750–800 ms time window and the main source of attention-related activity was localized to the right angular gyrus. These results suggest that exogenous attention and visual consciousness correspond to different and relatively independent neural mechanisms and are distinct processes under certain conditions. PMID:29180950

  2. Neural theory for the perception of causal actions.

    PubMed

    Fleischer, Falk; Christensen, Andrea; Caggiano, Vittorio; Thier, Peter; Giese, Martin A

    2012-07-01

    The efficient prediction of the behavior of others requires the recognition of their actions and an understanding of their action goals. In humans, this process is fast and extremely robust, as demonstrated by classical experiments showing that human observers reliably judge causal relationships and attribute interactive social behavior to strongly simplified stimuli consisting of simple moving geometrical shapes. While psychophysical experiments have identified critical visual features that determine the perception of causality and agency from such stimuli, the underlying detailed neural mechanisms remain largely unclear, and it is an open question why humans developed this advanced visual capability at all. We created pairs of naturalistic and abstract stimuli of hand actions that were exactly matched in terms of their motion parameters. We show that varying critical stimulus parameters for both stimulus types leads to very similar modulations of the perception of causality. However, the additional form information about the hand shape and its relationship with the object supports more fine-grained distinctions for the naturalistic stimuli. Moreover, we show that a physiologically plausible model for the recognition of goal-directed hand actions reproduces the observed dependencies of causality perception on critical stimulus parameters. These results support the hypothesis that selectivity for abstract action stimuli might emerge from the same neural mechanisms that underlie the visual processing of natural goal-directed action stimuli. Furthermore, the model proposes specific detailed neural circuits underlying this visual function, which can be evaluated in future experiments.

  3. Predicting tool life in turning operations using neural networks and image processing

    NASA Astrophysics Data System (ADS)

    Mikołajczyk, T.; Nowicki, K.; Bustillo, A.; Yu Pimenov, D.

    2018-05-01

    A two-step method is presented for the automatic prediction of tool life in turning operations. First, experimental data are collected for three cutting edges under the same constant processing conditions. In these experiments, the parameter of tool wear, VB, is measured with conventional methods and the same parameter is estimated using Neural Wear, a customized software package that combines flank wear image recognition and Artificial Neural Networks (ANNs). Second, an ANN model of tool life is trained with the data collected from the first two cutting edges and the subsequent model is evaluated on two different subsets for the third cutting edge: the first subset is obtained from the direct measurement of tool wear and the second is obtained from the Neural Wear software that estimates tool wear using edge images. Although the complete-automated solution, Neural Wear software for tool wear recognition plus the ANN model of tool life prediction, presented a slightly higher error than the direct measurements, it was within the same range and can meet all industrial requirements. These results confirm that the combination of image recognition software and ANN modelling could potentially be developed into a useful industrial tool for low-cost estimation of tool life in turning operations.

  4. The Repetition Paradigm: Enhancement of Novel Metaphors and Suppression of Conventional Metaphors in the Left Inferior Parietal Lobe

    ERIC Educational Resources Information Center

    Subramaniam, Karuna; Faust, Miriam; Beeman, Mark; Mashal, Nira

    2012-01-01

    The neural mechanisms underlying the process of understanding novel and conventional metaphoric expressions remain unclear largely because the specific brain regions that support the formation of novel semantic relations are still unknown. A well established way to study distinct cognitive processes specifically associated with an event of…

  5. Processing counterfactual and hypothetical conditionals: an fMRI investigation.

    PubMed

    Kulakova, Eugenia; Aichhorn, Markus; Schurz, Matthias; Kronbichler, Martin; Perner, Josef

    2013-05-15

    Counterfactual thinking is ubiquitous in everyday life and an important aspect of cognition and emotion. Although counterfactual thought has been argued to differ from processing factual or hypothetical information, imaging data which elucidate these differences on a neural level are still scarce. We investigated the neural correlates of processing counterfactual sentences under visual and aural presentation. We compared conditionals in subjunctive mood which explicitly contradicted previously presented facts (i.e. counterfactuals) to conditionals framed in indicative mood which did not contradict factual world knowledge and thus conveyed a hypothetical supposition. Our results show activation in right occipital cortex (cuneus) and right basal ganglia (caudate nucleus) during counterfactual sentence processing. Importantly the occipital activation is not only present under visual presentation but also with purely auditory stimulus presentation, precluding a visual processing artifact. Thus our results can be interpreted as reflecting the fact that counterfactual conditionals pragmatically imply the relevance of keeping in mind both factual and supposed information whereas the hypothetical conditionals imply that real world information is irrelevant for processing the conditional and can be omitted. The need to sustain representations of factual and suppositional events during counterfactual sentence processing requires increased mental imagery and integration efforts. Our findings are compatible with predictions based on mental model theory. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Effects of Nerve Injury and Segmental Regeneration on the Cellular Correlates of Neural Morphallaxis

    PubMed Central

    Martinez, Veronica G.; Manson, Josiah M.B.; Zoran, Mark J.

    2009-01-01

    Functional recovery of neural networks after injury requires a series of signaling events similar to the embryonic processes that governed initial network construction. Neural morphallaxis, a form of nervous system regeneration, involves reorganization of adult neural connectivity patterns. Neural morphallaxis in the worm, Lumbriculus variegatus, occurs during asexual reproduction and segmental regeneration, as body fragments acquire new positional identities along the anterior–posterior axis. Ectopic head (EH) formation, induced by ventral nerve cord lesion, generated morphallactic plasticity including the reorganization of interneuronal sensory fields and the induction of a molecular marker of neural morphallaxis. Morphallactic changes occurred only in segments posterior to an EH. Neither EH formation, nor neural morphallaxis was observed after dorsal body lesions, indicating a role for nerve cord injury in morphallaxis induction. Furthermore, a hierarchical system of neurobehavioral control was observed, where anterior heads were dominant and an EH controlled body movements only in the absence of the anterior head. Both suppression of segmental regeneration and blockade of asexual fission, after treatment with boric acid, disrupted the maintenance of neural morphallaxis, but did not block its induction. Therefore, segmental regeneration (i.e., epimorphosis) may not be required for the induction of morphallactic remodeling of neural networks. However, on-going epimorphosis appears necessary for the long-term consolidation of cellular and molecular mechanisms underlying the morphallaxis of neural circuitry. PMID:18561185

  7. Neural Network Based Modeling and Analysis of LP Control Surface Allocation

    NASA Technical Reports Server (NTRS)

    Langari, Reza; Krishnakumar, Kalmanje; Gundy-Burlet, Karen

    2003-01-01

    This paper presents an approach to interpretive modeling of LP based control allocation in intelligent flight control. The emphasis is placed on a nonlinear interpretation of the LP allocation process as a static map to support analytical study of the resulting closed loop system, albeit in approximate form. The approach makes use of a bi-layer neural network to capture the essential functioning of the LP allocation process. It is further shown via Lyapunov based analysis that under certain relatively mild conditions the resulting closed loop system is stable. Some preliminary conclusions from a study at Ames are stated and directions for further research are given at the conclusion of the paper.

  8. The Social Regulation of Emotion: An Integrative, Cross-Disciplinary Model.

    PubMed

    Reeck, Crystal; Ames, Daniel R; Ochsner, Kevin N

    2016-01-01

    Research in emotion regulation has largely focused on how people manage their own emotions, but there is a growing recognition that the ways in which we regulate the emotions of others also are important. Drawing on work from diverse disciplines, we propose an integrative model of the psychological and neural processes supporting the social regulation of emotion. This organizing framework, the 'social regulatory cycle', specifies at multiple levels of description the act of regulating another person's emotions as well as the experience of being a target of regulation. The cycle describes the processing stages that lead regulators to attempt to change the emotions of a target person, the impact of regulation on the processes that generate emotions in the target, and the underlying neural systems. Copyright © 2015. Published by Elsevier Ltd.

  9. The Social Regulation of Emotion: An Integrative, Cross-Disciplinary Model

    PubMed Central

    Reeck, Crystal; Ames, Daniel R.; Ochsner, Kevin N.

    2018-01-01

    Research in emotion regulation has largely focused on how people manage their own emotions, but there is a growing recognition that the ways in which we regulate the emotions of others also are important. Drawing on work from diverse disciplines, we propose an integrative model of the psychological and neural processes supporting the social regulation of emotion. This organizing framework, the ‘social regulatory cycle’, specifies at multiple levels of description the act of regulating another person’s emotions as well as the experience of being a target of regulation. The cycle describes the processing stages that lead regulators to attempt to change the emotions of a target person, the impact of regulation on the processes that generate emotions in the target, and the underlying neural systems. PMID:26564248

  10. A cortical network model of cognitive and emotional influences in human decision making.

    PubMed

    Nazir, Azadeh Hassannejad; Liljenström, Hans

    2015-10-01

    Decision making (DM)(2) is a complex process that appears to involve several brain structures. In particular, amygdala, orbitofrontal cortex (OFC) and lateral prefrontal cortex (LPFC) seem to be essential in human decision making, where both emotional and cognitive aspects are taken into account. In this paper, we present a computational network model representing the neural information processing of DM, from perception to behavior. We model the population dynamics of the three neural structures (amygdala, OFC and LPFC), as well as their interaction. In our model, the neurodynamic activity of amygdala and OFC represents the neural correlates of secondary emotion, while the activity of certain neural populations in OFC alone represents the outcome expectancy of different options. The cognitive/rational aspect of DM is associated with LPFC. Our model is intended to give insights on the emotional and cognitive processes involved in DM under various internal and external contexts. Different options for actions are represented by the oscillatory activity of cell assemblies, which may change due to experience and learning. Knowledge and experience of the outcome of our decisions and actions can eventually result in changes in our neural structures, attitudes and behaviors. Simulation results may have implications for how we make decisions for our individual actions, as well as for societal choices, where we take examples from transport and its impact on CO2 emissions and climate change. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Differences in neural responses to reward and punishment processing between anorexia nervosa subtypes: An fMRI study.

    PubMed

    Murao, Ema; Sugihara, Genichi; Isobe, Masanori; Noda, Tomomi; Kawabata, Michiko; Matsukawa, Noriko; Takahashi, Hidehiko; Murai, Toshiya; Noma, Shun'ichi

    2017-09-01

    Anorexia nervosa (AN) includes the restricting (AN-r) and binge-eating/purging (AN-bp) subtypes, which have been reported to differ regarding their underlying pathophysiologies as well as their behavioral patterns. However, the differences in neural mechanisms of reward systems between AN subtypes remain unclear. The aim of the present study was to explore differences in the neural processing of reward and punishment between AN subtypes. Twenty-three female patients with AN (11 AN-r and 12 AN-bp) and 20 healthy women underwent functional magnetic resonance imaging while performing a monetary incentive delay task. Whole-brain one-way analysis of variance was conducted to test between-group differences. There were significant group differences in brain activation in the rostral anterior cingulate cortex and right posterior insula during loss anticipation, with increased brain activation in the AN-bp group relative to the AN-r and healthy women groups. No significant differences were found during gain anticipation. AN-bp patients showed altered neural responses to punishment in brain regions implicated in emotional arousal. Our findings suggest that individuals with AN-bp are more sensitive to potential punishment than individuals with AN-r and healthy individuals at the neural level. The present study provides preliminary evidence that there are neurobiological differences between AN subtypes with regard to the reward system, especially punishment processing. © 2017 The Authors. Psychiatry and Clinical Neurosciences © 2017 Japanese Society of Psychiatry and Neurology.

  12. Regulation of cell protrusions by small GTPases during fusion of the neural folds

    PubMed Central

    Rolo, Ana; Savery, Dawn; Escuin, Sarah; de Castro, Sandra C; Armer, Hannah EJ; Munro, Peter MG; Molè, Matteo A; Greene, Nicholas DE; Copp, Andrew J

    2016-01-01

    Epithelial fusion is a crucial process in embryonic development, and its failure underlies several clinically important birth defects. For example, failure of neural fold fusion during neurulation leads to open neural tube defects including spina bifida. Using mouse embryos, we show that cell protrusions emanating from the apposed neural fold tips, at the interface between the neuroepithelium and the surface ectoderm, are required for completion of neural tube closure. By genetically ablating the cytoskeletal regulators Rac1 or Cdc42 in the dorsal neuroepithelium, or in the surface ectoderm, we show that these protrusions originate from surface ectodermal cells and that Rac1 is necessary for the formation of membrane ruffles which typify late closure stages, whereas Cdc42 is required for the predominance of filopodia in early neurulation. This study provides evidence for the essential role and molecular regulation of membrane protrusions prior to fusion of a key organ primordium in mammalian development. DOI: http://dx.doi.org/10.7554/eLife.13273.001 PMID:27114066

  13. Decoding the Charitable Brain: Empathy, Perspective Taking, and Attention Shifts Differentially Predict Altruistic Giving.

    PubMed

    Tusche, Anita; Böckler, Anne; Kanske, Philipp; Trautwein, Fynn-Mathis; Singer, Tania

    2016-04-27

    Altruistic behavior varies considerably across people and decision contexts. The relevant computational and motivational mechanisms that underlie its heterogeneity, however, are poorly understood. Using a charitable giving task together with multivariate decoding techniques, we identified three distinct psychological mechanisms underlying altruistic decision-making (empathy, perspective taking, and attentional reorienting) and linked them to dissociable neural computations. Neural responses in the anterior insula (AI) (but not temporoparietal junction [TPJ]) encoded trial-wise empathy for beneficiaries, whereas the TPJ (but not AI) predicted the degree of perspective taking. Importantly, the relative influence of both socio-cognitive processes differed across individuals: participants whose donation behavior was heavily influenced by affective empathy exhibited higher predictive accuracies for generosity in AI, whereas those who strongly relied on cognitive perspective taking showed improved predictions of generous donations in TPJ. Furthermore, subject-specific contributions of both processes for donations were reflected in participants' empathy and perspective taking responses in a separate fMRI task (EmpaToM), suggesting that process-specific inputs into altruistic choices may reflect participants' general propensity to either empathize or mentalize. Finally, using independent attention task data, we identified shared neural codes for attentional reorienting and generous donations in the posterior superior temporal sulcus, suggesting that domain-general attention shifts also contribute to generous behavior (but not in TPJ or AI). Overall, our findings demonstrate highly specific roles of AI for affective empathy and TPJ for cognitive perspective taking as precursors of prosocial behavior and suggest that these discrete routes of social cognition differentially drive intraindividual and interindividual differences in altruistic behavior. Human societies depend on the altruistic behavior of their members, but teasing apart its underlying motivations and neural mechanisms poses a serious challenge. Using multivariate decoding techniques, we delineated three distinct processes for altruistic decision-making (affective empathy, cognitive perspective taking, and domain-general attention shifts), linked them to dissociable neural computations, and identified their relative influence across individuals. Distinguishing process-specific computations both behaviorally and neurally is crucial for developing complete theoretical and neuroscientific accounts of altruistic behavior and more effective means of increasing it. Moreover, information on the relative influence of subprocesses across individuals and its link to people's more general propensity to engage empathy or perspective taking can inform training programs to increase prosociality, considering their "fit" with different individuals. Copyright © 2016 the authors 0270-6474/16/364719-14$15.00/0.

  14. Facing changes and changing faces in adolescence: A new model for investigating adolescent-specific interactions between pubertal, brain and behavioral development

    PubMed Central

    Scherf, K. Suzanne; Behrmann, Marlene; Dahl, Ronald E.

    2015-01-01

    Adolescence is a time of dramatic physical, cognitive, emotional, and social changes as well as a time for the development of many social-emotional problems. These characteristics raise compelling questions about accompanying neural changes that are unique to this period of development. Here, we propose that studying adolescent-specific changes in face processing and its underlying neural circuitry provides an ideal model for addressing these questions. We also use this model to formulate new hypotheses. Specifically, pubertal hormones are likely to increase motivation to master new peer-oriented developmental tasks, which will in turn, instigate the emergence of new social/affective components of face processing. We also predict that pubertal hormones have a fundamental impact on the reorganization of neural circuitry supporting face processing and propose, in particular, that, the functional connectivity, or temporal synchrony, between regions of the face-processing network will change with the emergence of these new components of face processing in adolescence. Finally, we show how this approach will help reveal why adolescence may be a period of vulnerability in brain development and suggest how it could lead to prevention and intervention strategies that facilitate more adaptive functional interactions between regions within the broader social information processing network. PMID:22483070

  15. Developmental dyscalculia: compensatory mechanisms in left intraparietal regions in response to nonsymbolic magnitudes.

    PubMed

    Kaufmann, Liane; Vogel, Stephan E; Starke, Marc; Kremser, Christian; Schocke, Michael; Wood, Guilherme

    2009-08-05

    Functional magnetic resonance imaging (fMRI) studies investigating the neural mechanisms underlying developmental dyscalculia are scarce and results are thus far inconclusive. Main aim of the present study is to investigate the neural correlates of nonsymbolic number magnitude processing in children with and without dyscalculia. 18 children (9 with dyscalculia) were asked to solve a non-symbolic number magnitude comparison task (finger patterns) during brain scanning. For the spatial control task identical stimuli were employed, instructions varying only (judgment of palm rotation). This design enabled us to present identical stimuli with identical visual processing requirements in the experimental and the control task. Moreover, because numerical and spatial processing relies on parietal brain regions, task-specific contrasts are expected to reveal true number-specific activations. Behavioral results during scanning reveal that despite comparable (almost at ceiling) performance levels, task-specific activations were stronger in dyscalculic children in inferior parietal cortices bilaterally (intraparietal sulcus, supramarginal gyrus, extending to left angular gyrus). Interestingly, fMRI signal strengths reflected a group x task interaction: relative to baseline, controls produced significant deactivations in (intra)parietal regions bilaterally in response to number but not spatial processing, while the opposite pattern emerged in dyscalculics. Moreover, beta weights in response to number processing differed significantly between groups in left - but not right - (intra)parietal regions (becoming even positive in dyscalculic children). Overall, findings are suggestive of (a) less consistent neural activity in right (intra)parietal regions upon processing nonsymbolic number magnitudes; and (b) compensatory neural activity in left (intra)parietal regions in developmental dyscalculia.

  16. Developmental dyscalculia: compensatory mechanisms in left intraparietal regions in response to nonsymbolic magnitudes

    PubMed Central

    Kaufmann, Liane; Vogel, Stephan E; Starke, Marc; Kremser, Christian; Schocke, Michael; Wood, Guilherme

    2009-01-01

    Background Functional magnetic resonance imaging (fMRI) studies investigating the neural mechanisms underlying developmental dyscalculia are scarce and results are thus far inconclusive. Main aim of the present study is to investigate the neural correlates of nonsymbolic number magnitude processing in children with and without dyscalculia. Methods 18 children (9 with dyscalculia) were asked to solve a non-symbolic number magnitude comparison task (finger patterns) during brain scanning. For the spatial control task identical stimuli were employed, instructions varying only (judgment of palm rotation). This design enabled us to present identical stimuli with identical visual processing requirements in the experimental and the control task. Moreover, because numerical and spatial processing relies on parietal brain regions, task-specific contrasts are expected to reveal true number-specific activations. Results Behavioral results during scanning reveal that despite comparable (almost at ceiling) performance levels, task-specific activations were stronger in dyscalculic children in inferior parietal cortices bilaterally (intraparietal sulcus, supramarginal gyrus, extending to left angular gyrus). Interestingly, fMRI signal strengths reflected a group × task interaction: relative to baseline, controls produced significant deactivations in (intra)parietal regions bilaterally in response to number but not spatial processing, while the opposite pattern emerged in dyscalculics. Moreover, beta weights in response to number processing differed significantly between groups in left – but not right – (intra)parietal regions (becoming even positive in dyscalculic children). Conclusion Overall, findings are suggestive of (a) less consistent neural activity in right (intra)parietal regions upon processing nonsymbolic number magnitudes; and (b) compensatory neural activity in left (intra)parietal regions in developmental dyscalculia. PMID:19653919

  17. Unsatisfied relatedness, not competence or autonomy, increases trait anger through the right amygdala.

    PubMed

    Wang, Yinan; Kong, Feng; Kong, Xiangzhen; Zhao, Yuanfang; Lin, Danhua; Liu, Jia

    2017-10-01

    Anger is a common negative emotion in social life. Behavioral research suggests that unsatisfied relatedness, autonomy, and competence are related to anger. However, it remains unclear whether these unsatisfied needs all contribute to anger or just a particular unsatisfied need is the main source of anger. In addition, little is known about the neural substrate between unsatisfied needs and anger. To address these two questions, we used voxel-based morphometry (VBM) to explore the neural substrate underlying the relation between unsatisfied needs and trait anger. Behaviorally, we found that although all three unsatisfied needs were correlated with trait anger, unsatisfied relatedness was the only factor that was uniquely related to trait anger. Neurally, the gray matter volume of the right amygdala was correlated with trait anger, which fits nicely with the role of the amygdala as a core region for processing anger. Importantly, the right amygdala mediated the total effect of unsatisfied relatedness on trait anger, even after controlling for general personality dispositions. Our results contribute to the theoretical conceptualization of anger by elucidating the unique role of unsatisfied relatedness in anger and the neural substrate underlying such relation.

  18. Income, neural executive processes, and preschool children's executive control.

    PubMed

    Ruberry, Erika J; Lengua, Liliana J; Crocker, Leanna Harris; Bruce, Jacqueline; Upshaw, Michaela B; Sommerville, Jessica A

    2017-02-01

    This study aimed to specify the neural mechanisms underlying the link between low household income and diminished executive control in the preschool period. Specifically, we examined whether individual differences in the neural processes associated with executive attention and inhibitory control accounted for income differences observed in performance on a neuropsychological battery of executive control tasks. The study utilized a sample of preschool-aged children (N = 118) whose families represented the full range of income, with 32% of families at/near poverty, 32% lower income, and 36% middle to upper income. Children completed a neuropsychological battery of executive control tasks and then completed two computerized executive control tasks while EEG data were collected. We predicted that differences in the event-related potential (ERP) correlates of executive attention and inhibitory control would account for income differences observed on the executive control battery. Income and ERP measures were related to performance on the executive control battery. However, income was unrelated to ERP measures. The findings suggest that income differences observed in executive control during the preschool period might relate to processes other than executive attention and inhibitory control.

  19. The olfactory system as the gateway to the neural correlates of consciousness

    PubMed Central

    Merrick, Christina; Godwin, Christine A.; Geisler, Mark W.; Morsella, Ezequiel

    2014-01-01

    How consciousness is generated by the nervous system remains one of the greatest mysteries in science. Investigators from diverse fields have begun to unravel this puzzle by contrasting conscious and unconscious processes. In this way, it has been revealed that the two kinds of processes differ in terms of the underlying neural events and associated cognitive mechanisms. We propose that, for several reasons, the olfactory system provides a unique portal through which to examine this contrast. For this purpose, the olfactory system is beneficial in terms of its (a) neuroanatomical aspects, (b) phenomenological and cognitive/mechanistic properties, and (c) neurodynamic (e.g., brain oscillations) properties. In this review, we discuss how each of these properties and aspects of the olfactory system can illuminate the contrast between conscious and unconscious processing in the brain. We conclude by delineating the most fruitful avenues of research and by entertaining hypotheses that, in order for an olfactory content to be conscious, that content must participate in a network that is large-scale, both in terms of the neural systems involved and the scope of information integration. PMID:24454300

  20. Neural mechanisms underlying cognitive control of men with lifelong antisocial behavior.

    PubMed

    Schiffer, Boris; Pawliczek, Christina; Mu Ller, Bernhard; Forsting, Michael; Gizewski, Elke; Leygraf, Norbert; Hodgins, Sheilagh

    2014-04-30

    Results of meta-analyses suggested subtle deficits in cognitive control among antisocial individuals. Because almost all studies focused on children with conduct problems or adult psychopaths, however, little is known about cognitive control mechanisms among the majority of persistent violent offenders who present an antisocial personality disorder (ASPD). The present study aimed to determine whether offenders with ASPD, relative to non-offenders, display dysfunction in the neural mechanisms underlying cognitive control and to assess the extent to which these dysfunctions are associated with psychopathic traits and trait impulsivity. Participants comprised 21 violent offenders and 23 non-offenders who underwent event-related functional magnetic resonance imaging while performing a non-verbal Stroop task. The offenders, relative to the non-offenders, exhibited reduced response time interference and a different pattern of conflict- and error-related activity in brain areas involved in cognitive control, attention, language, and emotion processing, that is, the anterior cingulate, dorsolateral prefrontal, superior temporal and postcentral cortices, putamen, thalamus, and amygdala. Moreover, between-group differences in behavioural and neural responses revealed associations with core features of psychopathy and attentional impulsivity. Thus, the results of the present study confirmed the hypothesis that offenders with ASPD display alterations in the neural mechanisms underlying cognitive control and that those alterations relate, at least in part, to personality characteristics. Copyright © 2014. Published by Elsevier Ireland Ltd.

  1. Using deep neural networks to augment NIF post-shot analysis

    NASA Astrophysics Data System (ADS)

    Humbird, Kelli; Peterson, Luc; McClarren, Ryan; Field, John; Gaffney, Jim; Kruse, Michael; Nora, Ryan; Spears, Brian

    2017-10-01

    Post-shot analysis of National Ignition Facility (NIF) experiments is the process of determining which simulation inputs yield results consistent with experimental observations. This analysis is typically accomplished by running suites of manually adjusted simulations, or Monte Carlo sampling surrogate models that approximate the response surfaces of the physics code. These approaches are expensive and often find simulations that match only a small subset of observables simultaneously. We demonstrate an alternative method for performing post-shot analysis using inverse models, which map directly from experimental observables to simulation inputs with quantified uncertainties. The models are created using a novel machine learning algorithm which automates the construction and initialization of deep neural networks to optimize predictive accuracy. We show how these neural networks, trained on large databases of post-shot simulations, can rigorously quantify the agreement between simulation and experiment. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. Music listening after stroke: beneficial effects and potential neural mechanisms.

    PubMed

    Särkämö, Teppo; Soto, David

    2012-04-01

    Music is an enjoyable leisure activity that also engages many emotional, cognitive, and motor processes in the brain. Here, we will first review previous literature on the emotional and cognitive effects of music listening in healthy persons and various clinical groups. Then we will present findings about the short- and long-term effects of music listening on the recovery of cognitive function in stroke patients and the underlying neural mechanisms of these music effects. First, our results indicate that listening to pleasant music can have a short-term facilitating effect on visual awareness in patients with visual neglect, which is associated with functional coupling between emotional and attentional brain regions. Second, daily music listening can improve auditory and verbal memory, focused attention, and mood as well as induce structural gray matter changes in the early poststroke stage. The psychological and neural mechanisms potentially underlying the rehabilitating effect of music after stroke are discussed. © 2012 New York Academy of Sciences.

  3. The neural circuit and synaptic dynamics underlying perceptual decision-making

    NASA Astrophysics Data System (ADS)

    Liu, Feng

    2015-03-01

    Decision-making with several choice options is central to cognition. To elucidate the neural mechanisms of multiple-choice motion discrimination, we built a continuous recurrent network model to represent a local circuit in the lateral intraparietal area (LIP). The network is composed of pyramidal cells and interneurons, which are directionally tuned. All neurons are reciprocally connected, and the synaptic connectivity strength is heterogeneous. Specifically, we assume two types of inhibitory connectivity to pyramidal cells: opposite-feature and similar-feature inhibition. The model accounted for both physiological and behavioral data from monkey experiments. The network is endowed with slow excitatory reverberation, which subserves the buildup and maintenance of persistent neural activity, and predominant feedback inhibition, which underlies the winner-take-all competition and attractor dynamics. The opposite-feature and opposite-feature inhibition have different effects on decision-making, and only their combination allows for a categorical choice among 12 alternatives. Together, our work highlights the importance of structured synaptic inhibition in multiple-choice decision-making processes.

  4. The role of symmetry in neural networks and their Laplacian spectra.

    PubMed

    de Lange, Siemon C; van den Heuvel, Martijn P; de Reus, Marcel A

    2016-11-01

    Human and animal nervous systems constitute complexly wired networks that form the infrastructure for neural processing and integration of information. The organization of these neural networks can be analyzed using the so-called Laplacian spectrum, providing a mathematical tool to produce systems-level network fingerprints. In this article, we examine a characteristic central peak in the spectrum of neural networks, including anatomical brain network maps of the mouse, cat and macaque, as well as anatomical and functional network maps of human brain connectivity. We link the occurrence of this central peak to the level of symmetry in neural networks, an intriguing aspect of network organization resulting from network elements that exhibit similar wiring patterns. Specifically, we propose a measure to capture the global level of symmetry of a network and show that, for both empirical networks and network models, the height of the main peak in the Laplacian spectrum is strongly related to node symmetry in the underlying network. Moreover, examination of spectra of duplication-based model networks shows that neural spectra are best approximated using a trade-off between duplication and diversification. Taken together, our results facilitate a better understanding of neural network spectra and the importance of symmetry in neural networks. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Inhibitory Control and Emotional Stress Regulation: Neuroimaging Evidence for Frontal-Limbic Dysfunction in Psycho-stimulant Addiction

    PubMed Central

    Ray Li, Chiang-shan; Sinha, Rajita

    2008-01-01

    This review focuses on neuroimaging studies that examined stress processing and regulation and cognitive inhibitory control in patients with psycho-stimulant addiction. We provide an overview of these studies, summarizing converging evidence and discrepancies as they occur in the literature. We also adopt an analytic perspective and dissect these psychological processes into their sub-components, to identify the neural pathways specific to each component process and those that are more specifically involved in psycho-stimulant addiction. To this aim we refer frequently to studies conducted in healthy individuals. Despite the separate treatment of stress/affect regulation, stress-related craving or compulsive drug seeking, and inhibitory control, neural underpinnings of these processes overlap significantly. In particular, the ventromedial prefrontal regions including the anterior cingulate cortex, amygdala and the striatum are implicated in psychostimulant dependence. Our overarching thesis is that prefrontal activity ensures intact emotional stress regulation and inhibitory control. Altered prefrontal activity along with heightened striatal responses to addicted drug and drug-related salient stimuli perpetuates habitual drug seeking. Further studies that examine the functional relationships of these neural systems will likely provide the key to understanding the mechanisms underlying compulsive drug use behaviors in psycho-stimulant dependence. PMID:18164058

  6. Neurophysiological correlates of anhedonia in feedback processing

    PubMed Central

    Mies, Gabry W.; Van den Berg, Ivo; Franken, Ingmar H. A.; Smits, Marion; Van der Molen, Maurits W.; Van der Veen, Frederik M.

    2013-01-01

    Disturbances in feedback processing and a dysregulation of the neural circuit in which the cingulate cortex plays a key role have been frequently observed in depression. Since depression is a heterogeneous disease, instead of focusing on the depressive state in general, this study investigated the relations between the two core symptoms of depression, i.e., depressed mood and anhedonia, and the neural correlates of feedback processing using fMRI. The focus was on the different subdivisions of the anterior cingulate cortex (ACC). Undergraduates with varying levels of depressed mood and anhedonia performed a time-estimation task in which they received positive and negative feedback that was either valid or invalid (i.e., related vs. unrelated to actual performance). The rostral cingulate zone (RCZ), corresponding to the dorsal part of the ACC, was less active in response to feedback in more anhedonic individuals, after correcting for the influence of depressed mood, whereas the subgenual ACC was more active in these individuals. Task performance was not affected by anhedonia, however. No statistically significant effects were found for depressed mood above and beyond the effects of anhedonia. This study therefore implies that increasing levels of anhedonia involve changes in the neural circuitry underlying feedback processing. PMID:23532800

  7. Toward a Neural Chronometry for the Aesthetic Experience of Music

    PubMed Central

    Brattico, Elvira; Bogert, Brigitte; Jacobsen, Thomas

    2013-01-01

    Music is often studied as a cognitive domain alongside language. The emotional aspects of music have also been shown to be important, but views on their nature diverge. For instance, the specific emotions that music induces and how they relate to emotional expression are still under debate. Here we propose a mental and neural chronometry of the aesthetic experience of music initiated and mediated by external and internal contexts such as intentionality, background mood, attention, and expertise. The initial stages necessary for an aesthetic experience of music are feature analysis, integration across modalities, and cognitive processing on the basis of long-term knowledge. These stages are common to individuals belonging to the same musical culture. The initial emotional reactions to music include the startle reflex, core “liking,” and arousal. Subsequently, discrete emotions are perceived and induced. Presumably somatomotor processes synchronizing the body with the music also come into play here. The subsequent stages, in which cognitive, affective, and decisional processes intermingle, require controlled cross-modal neural processes to result in aesthetic emotions, aesthetic judgments, and conscious liking. These latter aesthetic stages often require attention, intentionality, and expertise for their full actualization. PMID:23641223

  8. Food can lift mood by affecting mood-regulating neurocircuits via a serotonergic mechanism.

    PubMed

    Kroes, Marijn C W; van Wingen, Guido A; Wittwer, Jonas; Mohajeri, M Hasan; Kloek, Joris; Fernández, Guillén

    2014-01-01

    It is commonly assumed that food can affect mood. One prevalent notion is that food containing tryptophan increases serotonin levels in the brain and alters neural processing in mood-regulating neurocircuits. However, tryptophan competes with other long-neutral-amino-acids (LNAA) for transport across the blood-brain-barrier, a limitation that can be mitigated by increasing the tryptophan/LNAA ratio. We therefore tested in a double-blind, placebo-controlled crossover study (N=32) whether a drink with a favourable tryptophan/LNAA ratio improves mood and modulates specific brain processes as assessed by functional magnetic resonance imaging (fMRI). We show that one serving of this drink increases the tryptophan/LNAA ratio in blood plasma, lifts mood in healthy young women and alters task-specific and resting-state processing in brain regions implicated in mood regulation. Specifically, Test-drink consumption reduced neural responses of the dorsal caudate nucleus during reward anticipation, increased neural responses in the dorsal cingulate cortex during fear processing, and increased ventromedial prefrontal-lateral prefrontal connectivity under resting-state conditions. Our results suggest that increasing tryptophan/LNAA ratios can lift mood by affecting mood-regulating neurocircuits. © 2013 Elsevier Inc. All rights reserved.

  9. Updated energy budgets for neural computation in the neocortex and cerebellum

    PubMed Central

    Howarth, Clare; Gleeson, Padraig; Attwell, David

    2012-01-01

    The brain's energy supply determines its information processing power, and generates functional imaging signals. The energy use on the different subcellular processes underlying neural information processing has been estimated previously for the grey matter of the cerebral and cerebellar cortex. However, these estimates need reevaluating following recent work demonstrating that action potentials in mammalian neurons are much more energy efficient than was previously thought. Using this new knowledge, this paper provides revised estimates for the energy expenditure on neural computation in a simple model for the cerebral cortex and a detailed model of the cerebellar cortex. In cerebral cortex, most signaling energy (50%) is used on postsynaptic glutamate receptors, 21% is used on action potentials, 20% on resting potentials, 5% on presynaptic transmitter release, and 4% on transmitter recycling. In the cerebellar cortex, excitatory neurons use 75% and inhibitory neurons 25% of the signaling energy, and most energy is used on information processing by non-principal neurons: Purkinje cells use only 15% of the signaling energy. The majority of cerebellar signaling energy use is on the maintenance of resting potentials (54%) and postsynaptic receptors (22%), while action potentials account for only 17% of the signaling energy use. PMID:22434069

  10. Neural correlates of social decision-making in severely antisocial adolescents.

    PubMed

    van den Bos, Wouter; Vahl, Pauline; Güroğlu, Berna; van Nunspeet, Félice; Colins, Olivier; Markus, Monica; Rombouts, Serge A R B; van der Wee, Nic; Vermeiren, Robert; Crone, Eveline A

    2014-12-01

    Neurobiological and behavioral findings suggest that the development of delinquent behavior is associated with atypical social-affective processing. However, to date, no study has examined neural processes associated with social interactions in severely antisocial adolescents. In this study we investigated the behavioral and neural processes underlying social interactions of juvenile delinquents and a matched control group. Participants played the mini-Ultimatum Game as a responder while in the MRI scanner. Participants rejected unfair offers significantly less when the other player had 'no alternative' compared with a 'fair' alternative, suggesting that they took the intentions of the other player into account. However, this effect was reduced in the juvenile delinquents. The neuroimaging results revealed that juvenile delinquents showed less activation in the temporal parietal junction (TPJ) and inferior frontal gyrus (IFG). However, the groups showed similar activation levels in the dorsal anterior cingulate cortex (dACC) and the right anterior insula (AI) when norms were violated. These results indicate that juvenile delinquents with severe antisocial behavior process norm violations adequately, but may have difficulties with attending spontaneously to relevant features of the social context during interactions. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  11. Bayesian neural adjustment of inhibitory control predicts emergence of problem stimulant use.

    PubMed

    Harlé, Katia M; Stewart, Jennifer L; Zhang, Shunan; Tapert, Susan F; Yu, Angela J; Paulus, Martin P

    2015-11-01

    Bayesian ideal observer models quantify individuals' context- and experience-dependent beliefs and expectations about their environment, which provides a powerful approach (i) to link basic behavioural mechanisms to neural processing; and (ii) to generate clinical predictors for patient populations. Here, we focus on (ii) and determine whether individual differences in the neural representation of the need to stop in an inhibitory task can predict the development of problem use (i.e. abuse or dependence) in individuals experimenting with stimulants. One hundred and fifty-seven non-dependent occasional stimulant users, aged 18-24, completed a stop-signal task while undergoing functional magnetic resonance imaging. These individuals were prospectively followed for 3 years and evaluated for stimulant use and abuse/dependence symptoms. At follow-up, 38 occasional stimulant users met criteria for a stimulant use disorder (problem stimulant users), while 50 had discontinued use (desisted stimulant users). We found that those individuals who showed greater neural responses associated with Bayesian prediction errors, i.e. the difference between actual and expected need to stop on a given trial, in right medial prefrontal cortex/anterior cingulate cortex, caudate, anterior insula, and thalamus were more likely to exhibit problem use 3 years later. Importantly, these computationally based neural predictors outperformed clinical measures and non-model based neural variables in predicting clinical status. In conclusion, young adults who show exaggerated brain processing underlying whether to 'stop' or to 'go' are more likely to develop stimulant abuse. Thus, Bayesian cognitive models provide both a computational explanation and potential predictive biomarkers of belief processing deficits in individuals at risk for stimulant addiction. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Cognitive Neural Prosthetics

    PubMed Central

    Andersen, Richard A.; Hwang, Eun Jung; Mulliken, Grant H.

    2010-01-01

    The cognitive neural prosthetic (CNP) is a very versatile method for assisting paralyzed patients and patients with amputations. The CNP records the cognitive state of the subject, rather than signals strictly related to motor execution or sensation. We review a number of high-level cortical signals and their application for CNPs, including intention, motor imagery, decision making, forward estimation, executive function, attention, learning, and multi-effector movement planning. CNPs are defined by the cognitive function they extract, not the cortical region from which the signals are recorded. However, some cortical areas may be better than others for particular applications. Signals can also be extracted in parallel from multiple cortical areas using multiple implants, which in many circumstances can increase the range of applications of CNPs. The CNP approach relies on scientific understanding of the neural processes involved in cognition, and many of the decoding algorithms it uses also have parallels to underlying neural circuit functions. PMID:19575625

  13. From sensation to perception: Using multivariate classification of visual illusions to identify neural correlates of conscious awareness in space and time.

    PubMed

    Hogendoorn, Hinze

    2015-01-01

    An important goal of cognitive neuroscience is understanding the neural underpinnings of conscious awareness. Although the low-level processing of sensory input is well understood in most modalities, it remains a challenge to understand how the brain translates such input into conscious awareness. Here, I argue that the application of multivariate pattern classification techniques to neuroimaging data acquired while observers experience perceptual illusions provides a unique way to dissociate sensory mechanisms from mechanisms underlying conscious awareness. Using this approach, it is possible to directly compare patterns of neural activity that correspond to the contents of awareness, independent from changes in sensory input, and to track these neural representations over time at high temporal resolution. I highlight five recent studies using this approach, and provide practical considerations and limitations for future implementations.

  14. A novel word spotting method based on recurrent neural networks.

    PubMed

    Frinken, Volkmar; Fischer, Andreas; Manmatha, R; Bunke, Horst

    2012-02-01

    Keyword spotting refers to the process of retrieving all instances of a given keyword from a document. In the present paper, a novel keyword spotting method for handwritten documents is described. It is derived from a neural network-based system for unconstrained handwriting recognition. As such it performs template-free spotting, i.e., it is not necessary for a keyword to appear in the training set. The keyword spotting is done using a modification of the CTC Token Passing algorithm in conjunction with a recurrent neural network. We demonstrate that the proposed systems outperform not only a classical dynamic time warping-based approach but also a modern keyword spotting system, based on hidden Markov models. Furthermore, we analyze the performance of the underlying neural networks when using them in a recognition task followed by keyword spotting on the produced transcription. We point out the advantages of keyword spotting when compared to classic text line recognition.

  15. Enhancement of Spike Synchrony in Hindmarsh-Rose Neural Networks by Randomly Rewiring Connections

    NASA Astrophysics Data System (ADS)

    Yang, Renhuan; Song, Aiguo; Yuan, Wujie

    Spike synchrony of the neural system is thought to have very dichotomous roles. On the one hand, it is ubiquitously present in the healthy brain and is thought to underlie feature binding during information processing. On the other hand, large scale synchronization is an underlying mechanism of epileptic seizures. In this paper, we investigate the spike synchrony of Hindmarsh-Rose (HR) neural networks. Our focus is the influence of the network connections on the spike synchrony of the neural networks. The simulations show that desynchronization in the nearest-neighbor coupled network evolves into accurate synchronization with connection-rewiring probability p increasing. We uncover a phenomenon of enhancement of spike synchrony by randomly rewiring connections. With connection strength c and average connection number m increasing spike synchrony is enhanced but it is not the whole story. Furthermore, the possible mechanism behind such synchronization is also addressed.

  16. Memristor-based neural networks: Synaptic versus neuronal stochasticity

    NASA Astrophysics Data System (ADS)

    Naous, Rawan; AlShedivat, Maruan; Neftci, Emre; Cauwenberghs, Gert; Salama, Khaled Nabil

    2016-11-01

    In neuromorphic circuits, stochasticity in the cortex can be mapped into the synaptic or neuronal components. The hardware emulation of these stochastic neural networks are currently being extensively studied using resistive memories or memristors. The ionic process involved in the underlying switching behavior of the memristive elements is considered as the main source of stochasticity of its operation. Building on its inherent variability, the memristor is incorporated into abstract models of stochastic neurons and synapses. Two approaches of stochastic neural networks are investigated. Aside from the size and area perspective, the impact on the system performance, in terms of accuracy, recognition rates, and learning, among these two approaches and where the memristor would fall into place are the main comparison points to be considered.

  17. Neural network technologies

    NASA Technical Reports Server (NTRS)

    Villarreal, James A.

    1991-01-01

    A whole new arena of computer technologies is now beginning to form. Still in its infancy, neural network technology is a biologically inspired methodology which draws on nature's own cognitive processes. The Software Technology Branch has provided a software tool, Neural Execution and Training System (NETS), to industry, government, and academia to facilitate and expedite the use of this technology. NETS is written in the C programming language and can be executed on a variety of machines. Once a network has been debugged, NETS can produce a C source code which implements the network. This code can then be incorporated into other software systems. Described here are various software projects currently under development with NETS and the anticipated future enhancements to NETS and the technology.

  18. The cognitive structural approach for image restoration

    NASA Astrophysics Data System (ADS)

    Mardare, Igor; Perju, Veacheslav; Casasent, David

    2008-03-01

    It is analyzed the important and actual problem of the defective images of scenes restoration. The proposed approach provides restoration of scenes by a system on the basis of human intelligence phenomena reproduction used for restoration-recognition of images. The cognitive models of the restoration process are elaborated. The models are realized by the intellectual processors constructed on the base of neural networks and associative memory using neural network simulator NNToolbox from MATLAB 7.0. The models provides restoration and semantic designing of images of scenes under defective images of the separate objects.

  19. An information theory account of cognitive control.

    PubMed

    Fan, Jin

    2014-01-01

    Our ability to efficiently process information and generate appropriate responses depends on the processes collectively called cognitive control. Despite a considerable focus in the literature on the cognitive control of information processing, neural mechanisms underlying control are still unclear, and have not been characterized by considering the quantity of information to be processed. A novel and comprehensive account of cognitive control is proposed using concepts from information theory, which is concerned with communication system analysis and the quantification of information. This account treats the brain as an information-processing entity where cognitive control and its underlying brain networks play a pivotal role in dealing with conditions of uncertainty. This hypothesis and theory article justifies the validity and properties of such an account and relates experimental findings to the frontoparietal network under the framework of information theory.

  20. The insula: a critical neural substrate for craving and drug seeking under conflict and risk

    PubMed Central

    Naqvi, Nasir H.; Gaznick, Natassia; Tranel, Daniel; Bechara, Antoine

    2014-01-01

    Drug addiction is characterized by the inability to control drug use when it results in negative consequences or conflicts with more adaptive goals. Our previous work showed that damage to the insula disrupted addiction to cigarette smoking—the first time that the insula was shown to be a critical neural substrate for addiction. Here, we review those findings, as well as more recent studies that corroborate and extend them, demonstrating the role of the insula in (1) incentive motivational processes that drive addictive behavior, (2) control processes that moderate or inhibit addictive behavior, and (3) interoceptive processes that represent bodily states associated with drug use. We then describe a theoretical framework that attempts to integrate these seemingly disparate findings. In this framework, the insula functions in the recall of interoceptive drug effects during craving and drug seeking under specific conditions where drug taking is perceived as risky and/or where there is conflict between drug taking and more adaptive goals. We describe this framework in an evolutionary context and discuss its implications for understanding the mechanisms of behavior change in addiction treatments. PMID:24690001

  1. Neural substrates of context- and person-dependent altruistic punishment.

    PubMed

    Wang, Lili; Lu, Xiaping; Gu, Ruolei; Zhu, Ruida; Xu, Rui; Broster, Lucas S; Feng, Chunliang

    2017-11-01

    Human altruistic behaviors are heterogeneous across both contexts and people, whereas the neural signatures underlying the heterogeneity remain to be elucidated. To address this issue, we examined the neural signatures underlying the context- and person-dependent altruistic punishment, conjoining event-related fMRI with both task-based and resting-state functional connectivity (RSFC). Acting as an impartial third party, participants decided how to punish norm violators either alone or in the presence of putative others. We found that the presence of others decreased altruistic punishment due to diffusion of responsibility. Those behavioral effects paralleled altered neural responses in the dorsal anterior cingulate cortex (dACC) and putamen. Further, we identified modulation of responsibility diffusion on task-based functional connectivity of dACC with the brain regions implicated in reward processing (i.e., posterior cingulate cortex and amygdala/orbital frontal cortex). Finally, the RSFC results revealed that (i) increased intrinsic connectivity strengths of the putamen with temporoparietal junction and dorsolateral PFC were associated with attenuated responsibility diffusion in altruistic punishment and (ii) increased putamen-dorsomedial PFC connectivity strengths were associated with reduced responsibility diffusion in self-reported responsibility. Taken together, our findings elucidate the context- and person-dependent altruistic behaviors as well as associated neural substrates and thus provide a potential neurocognitive mechanism of heterogeneous human altruistic behaviors. Hum Brain Mapp 38:5535-5550, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Cocaine, Appetitive Memory and Neural Connectivity

    PubMed Central

    Ray, Suchismita

    2013-01-01

    This review examines existing cognitive experimental and brain imaging research related to cocaine addiction. In section 1, previous studies that have examined cognitive processes, such as implicit and explicit memory processes in cocaine users are reported. Next, in section 2, brain imaging studies are reported that have used chronic users of cocaine as study participants. In section 3, several conclusions are drawn. They are: (a) in cognitive experimental literature, no study has examined both implicit and explicit memory processes involving cocaine related visual information in the same cocaine user, (b) neural mechanisms underlying implicit and explicit memory processes for cocaine-related visual cues have not been directly investigated in cocaine users in the imaging literature, and (c) none of the previous imaging studies has examined connectivity between the memory system and craving system in the brain of chronic users of cocaine. Finally, future directions in the field of cocaine addiction are suggested. PMID:25009766

  3. Neural mechanisms of eye contact when listening to another person talking.

    PubMed

    Jiang, Jing; Borowiak, Kamila; Tudge, Luke; Otto, Carolin; von Kriegstein, Katharina

    2017-02-01

    Eye contact occurs frequently and voluntarily during face-to-face verbal communication. However, the neural mechanisms underlying eye contact when it is accompanied by spoken language remain unexplored to date. Here we used a novel approach, fixation-based event-related functional magnetic resonance imaging (fMRI), to simulate the listener making eye contact with a speaker during verbal communication. Participants' eye movements and fMRI data were recorded simultaneously while they were freely viewing a pre-recorded speaker talking. The eye tracking data were then used to define events for the fMRI analyses. The results showed that eye contact in contrast to mouth fixation involved visual cortical areas (cuneus, calcarine sulcus), brain regions related to theory of mind/intentionality processing (temporoparietal junction, posterior superior temporal sulcus, medial prefrontal cortex) and the dorsolateral prefrontal cortex. In addition, increased effective connectivity was found between these regions for eye contact in contrast to mouth fixations. The results provide first evidence for neural mechanisms underlying eye contact when watching and listening to another person talking. The network we found might be well suited for processing the intentions of communication partners during eye contact in verbal communication. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  4. A cortical neural prosthesis for restoring and enhancing memory

    NASA Astrophysics Data System (ADS)

    Berger, Theodore W.; Hampson, Robert E.; Song, Dong; Goonawardena, Anushka; Marmarelis, Vasilis Z.; Deadwyler, Sam A.

    2011-08-01

    A primary objective in developing a neural prosthesis is to replace neural circuitry in the brain that no longer functions appropriately. Such a goal requires artificial reconstruction of neuron-to-neuron connections in a way that can be recognized by the remaining normal circuitry, and that promotes appropriate interaction. In this study, the application of a specially designed neural prosthesis using a multi-input/multi-output (MIMO) nonlinear model is demonstrated by using trains of electrical stimulation pulses to substitute for MIMO model derived ensemble firing patterns. Ensembles of CA3 and CA1 hippocampal neurons, recorded from rats performing a delayed-nonmatch-to-sample (DNMS) memory task, exhibited successful encoding of trial-specific sample lever information in the form of different spatiotemporal firing patterns. MIMO patterns, identified online and in real-time, were employed within a closed-loop behavioral paradigm. Results showed that the model was able to predict successful performance on the same trial. Also, MIMO model-derived patterns, delivered as electrical stimulation to the same electrodes, improved performance under normal testing conditions and, more importantly, were capable of recovering performance when delivered to animals with ensemble hippocampal activity compromised by pharmacologic blockade of synaptic transmission. These integrated experimental-modeling studies show for the first time that, with sufficient information about the neural coding of memories, a neural prosthesis capable of real-time diagnosis and manipulation of the encoding process can restore and even enhance cognitive, mnemonic processes.

  5. Cognitive Flexibility through Metastable Neural Dynamics Is Disrupted by Damage to the Structural Connectome.

    PubMed

    Hellyer, Peter J; Scott, Gregory; Shanahan, Murray; Sharp, David J; Leech, Robert

    2015-06-17

    Current theory proposes that healthy neural dynamics operate in a metastable regime, where brain regions interact to simultaneously maximize integration and segregation. Metastability may confer important behavioral properties, such as cognitive flexibility. It is increasingly recognized that neural dynamics are constrained by the underlying structural connections between brain regions. An important challenge is, therefore, to relate structural connectivity, neural dynamics, and behavior. Traumatic brain injury (TBI) is a pre-eminent structural disconnection disorder whereby traumatic axonal injury damages large-scale connectivity, producing characteristic cognitive impairments, including slowed information processing speed and reduced cognitive flexibility, that may be a result of disrupted metastable dynamics. Therefore, TBI provides an experimental and theoretical model to examine how metastable dynamics relate to structural connectivity and cognition. Here, we use complementary empirical and computational approaches to investigate how metastability arises from the healthy structural connectome and relates to cognitive performance. We found reduced metastability in large-scale neural dynamics after TBI, measured with resting-state functional MRI. This reduction in metastability was associated with damage to the connectome, measured using diffusion MRI. Furthermore, decreased metastability was associated with reduced cognitive flexibility and information processing. A computational model, defined by empirically derived connectivity data, demonstrates how behaviorally relevant changes in neural dynamics result from structural disconnection. Our findings suggest how metastable dynamics are important for normal brain function and contingent on the structure of the human connectome. Copyright © 2015 the authors 0270-6474/15/359050-14$15.00/0.

  6. Consciousness, information integration, and the brain.

    PubMed

    Tononi, Giulio

    2005-01-01

    Clinical observations have established that certain parts of the brain are essential for consciousness whereas other parts are not. For example, different areas of the cerebral cortex contribute different modalities and submodalities of consciousness, whereas the cerebellum does not, despite having even more neurons. It is also well established that consciousness depends on the way the brain functions. For example, consciousness is much reduced during slow wave sleep and generalized seizures, even though the levels of neural activity are comparable or higher than in wakefulness. To understand why this is so, empirical observations on the neural correlates of consciousness need to be complemented by a principled theoretical approach. Otherwise, it is unlikely that we could ever establish to what extent consciousness is present in neurological conditions such as akinetic mutism, psychomotor seizures, or sleepwalking, and to what extent it is present in newborn babies and animals. A principled approach is provided by the information integration theory of consciousness. This theory claims that consciousness corresponds to a system's capacity to integrate information, and proposes a way to measure such capacity. The information integration theory can account for several neurobiological observations concerning consciousness, including: (i) the association of consciousness with certain neural systems rather than with others; (ii) the fact that neural processes underlying consciousness can influence or be influenced by neural processes that remain unconscious; (iii) the reduction of consciousness during dreamless sleep and generalized seizures; and (iv) the time requirements on neural interactions that support consciousness.

  7. Compact VLSI neural computer integrated with active pixel sensor for real-time ATR applications

    NASA Astrophysics Data System (ADS)

    Fang, Wai-Chi; Udomkesmalee, Gabriel; Alkalai, Leon

    1997-04-01

    A compact VLSI neural computer integrated with an active pixel sensor has been under development to mimic what is inherent in biological vision systems. This electronic eye- brain computer is targeted for real-time machine vision applications which require both high-bandwidth communication and high-performance computing for data sensing, synergy of multiple types of sensory information, feature extraction, target detection, target recognition, and control functions. The neural computer is based on a composite structure which combines Annealing Cellular Neural Network (ACNN) and Hierarchical Self-Organization Neural Network (HSONN). The ACNN architecture is a programmable and scalable multi- dimensional array of annealing neurons which are locally connected with their local neurons. Meanwhile, the HSONN adopts a hierarchical structure with nonlinear basis functions. The ACNN+HSONN neural computer is effectively designed to perform programmable functions for machine vision processing in all levels with its embedded host processor. It provides a two order-of-magnitude increase in computation power over the state-of-the-art microcomputer and DSP microelectronics. A compact current-mode VLSI design feasibility of the ACNN+HSONN neural computer is demonstrated by a 3D 16X8X9-cube neural processor chip design in a 2-micrometers CMOS technology. Integration of this neural computer as one slice of a 4'X4' multichip module into the 3D MCM based avionics architecture for NASA's New Millennium Program is also described.

  8. Interoception and stress

    PubMed Central

    Schulz, André; Vögele, Claus

    2015-01-01

    Afferent neural signals are continuously transmitted from visceral organs to the brain. Interoception refers to the processing of visceral-afferent neural signals by the central nervous system, which can finally result in the conscious perception of bodily processes. Interoception can, therefore, be described as a prominent example of information processing on the ascending branch of the brain–body axis. Stress responses involve a complex neuro-behavioral cascade, which is elicited when the organism is confronted with a potentially harmful stimulus. As this stress cascade comprises a range of neural and endocrine pathways, stress can be conceptualized as a communication process on the descending branch of the brain–body axis. Interoception and stress are, therefore, associated via the bi-directional transmission of information on the brain–body axis. It could be argued that excessive and/or enduring activation (e.g., by acute or chronic stress) of neural circuits, which are responsible for successful communication on the brain–body axis, induces malfunction and dysregulation of these information processes. As a consequence, interoceptive signal processing may be altered, resulting in physical symptoms contributing to the development and/or maintenance of body-related mental disorders, which are associated with stress. In the current paper, we summarize findings on psychobiological processes underlying acute and chronic stress and their interaction with interoception. While focusing on the role of the physiological stress axes (hypothalamic-pituitary-adrenocortical axis and autonomic nervous system), psychological factors in acute and chronic stress are also discussed. We propose a positive feedback model involving stress (in particular early life or chronic stress, as well as major adverse events), the dysregulation of physiological stress axes, altered perception of bodily sensations, and the generation of physical symptoms, which may in turn facilitate stress. PMID:26257668

  9. Nicotine increases neural response to unpleasant stimuli and anxiety in non-smokers.

    PubMed

    Kobiella, Andrea; Ulshöfer, Dorothea E; Vollmert, Christian; Vollstädt-Klein, Sabine; Bühler, Mira; Esslinger, Christine; Smolka, Michael N

    2011-04-01

    Studies in smokers suggest that nicotine might exert anxiolytic, stress-dampening and mood-enhancing effects and beneficially influences neural processing of affective information. Regarding non-smokers, results are inconsistent, and no data exist on the effect of nicotine on neural emotion processing. We applied functional magnetic resonance imaging (fMRI) to assess the influence of nicotine on brain activation during processing of emotional stimuli in 31 non-smokers with a maximum lifetime cigarette consumption of 20 cigarettes. Participants were subjected to two fMRI scans with event-related presentations of images taken from the International Affective Picture System, receiving nicotine (2 mg) and placebo gums in a double-blinded, randomized cross-over design. Furthermore, subjective affect was assessed. Nicotine increased brain activity in response to unpleasant stimuli in the amygdala, anterior cingulate cortex (ACC) and basal ganglia, whereas processing of pleasant stimuli was not altered. Psychophysiological interaction (PPI) analyses revealed that nicotine increased connectivity between the amygdala and the perigenual ACC (pACC) during processing of unpleasant stimuli and decreased connectivity between those structures during processing of pleasant stimuli. Participants reported higher state anxiety under nicotine than placebo. A single dose of nicotine acted as a stressor in non-smokers, leading to increased anxiety and neural activation elicited by unpleasant stimuli as well as altered connectivity within the amygdala-pACC circuit. Besides the possibility that reactions to nicotine may differ between non-smokers and smokers due to tolerance and neuroadaptive processes that occur during prolonged nicotine use, a priori differences in smokers and non-smokers might potentially explain diverse effects of nicotine on affect and emotional reactivity. © 2010 The Authors, Addiction Biology © 2010 Society for the Study of Addiction.

  10. Cortical Neural Computation by Discrete Results Hypothesis

    PubMed Central

    Castejon, Carlos; Nuñez, Angel

    2016-01-01

    One of the most challenging problems we face in neuroscience is to understand how the cortex performs computations. There is increasing evidence that the power of the cortical processing is produced by populations of neurons forming dynamic neuronal ensembles. Theoretical proposals and multineuronal experimental studies have revealed that ensembles of neurons can form emergent functional units. However, how these ensembles are implicated in cortical computations is still a mystery. Although cell ensembles have been associated with brain rhythms, the functional interaction remains largely unclear. It is still unknown how spatially distributed neuronal activity can be temporally integrated to contribute to cortical computations. A theoretical explanation integrating spatial and temporal aspects of cortical processing is still lacking. In this Hypothesis and Theory article, we propose a new functional theoretical framework to explain the computational roles of these ensembles in cortical processing. We suggest that complex neural computations underlying cortical processing could be temporally discrete and that sensory information would need to be quantized to be computed by the cerebral cortex. Accordingly, we propose that cortical processing is produced by the computation of discrete spatio-temporal functional units that we have called “Discrete Results” (Discrete Results Hypothesis). This hypothesis represents a novel functional mechanism by which information processing is computed in the cortex. Furthermore, we propose that precise dynamic sequences of “Discrete Results” is the mechanism used by the cortex to extract, code, memorize and transmit neural information. The novel “Discrete Results” concept has the ability to match the spatial and temporal aspects of cortical processing. We discuss the possible neural underpinnings of these functional computational units and describe the empirical evidence supporting our hypothesis. We propose that fast-spiking (FS) interneuron may be a key element in our hypothesis providing the basis for this computation. PMID:27807408

  11. Cortical Neural Computation by Discrete Results Hypothesis.

    PubMed

    Castejon, Carlos; Nuñez, Angel

    2016-01-01

    One of the most challenging problems we face in neuroscience is to understand how the cortex performs computations. There is increasing evidence that the power of the cortical processing is produced by populations of neurons forming dynamic neuronal ensembles. Theoretical proposals and multineuronal experimental studies have revealed that ensembles of neurons can form emergent functional units. However, how these ensembles are implicated in cortical computations is still a mystery. Although cell ensembles have been associated with brain rhythms, the functional interaction remains largely unclear. It is still unknown how spatially distributed neuronal activity can be temporally integrated to contribute to cortical computations. A theoretical explanation integrating spatial and temporal aspects of cortical processing is still lacking. In this Hypothesis and Theory article, we propose a new functional theoretical framework to explain the computational roles of these ensembles in cortical processing. We suggest that complex neural computations underlying cortical processing could be temporally discrete and that sensory information would need to be quantized to be computed by the cerebral cortex. Accordingly, we propose that cortical processing is produced by the computation of discrete spatio-temporal functional units that we have called "Discrete Results" (Discrete Results Hypothesis). This hypothesis represents a novel functional mechanism by which information processing is computed in the cortex. Furthermore, we propose that precise dynamic sequences of "Discrete Results" is the mechanism used by the cortex to extract, code, memorize and transmit neural information. The novel "Discrete Results" concept has the ability to match the spatial and temporal aspects of cortical processing. We discuss the possible neural underpinnings of these functional computational units and describe the empirical evidence supporting our hypothesis. We propose that fast-spiking (FS) interneuron may be a key element in our hypothesis providing the basis for this computation.

  12. Perceptual consequences of disrupted auditory nerve activity.

    PubMed

    Zeng, Fan-Gang; Kong, Ying-Yee; Michalewski, Henry J; Starr, Arnold

    2005-06-01

    Perceptual consequences of disrupted auditory nerve activity were systematically studied in 21 subjects who had been clinically diagnosed with auditory neuropathy (AN), a recently defined disorder characterized by normal outer hair cell function but disrupted auditory nerve function. Neurological and electrophysical evidence suggests that disrupted auditory nerve activity is due to desynchronized or reduced neural activity or both. Psychophysical measures showed that the disrupted neural activity has minimal effects on intensity-related perception, such as loudness discrimination, pitch discrimination at high frequencies, and sound localization using interaural level differences. In contrast, the disrupted neural activity significantly impairs timing related perception, such as pitch discrimination at low frequencies, temporal integration, gap detection, temporal modulation detection, backward and forward masking, signal detection in noise, binaural beats, and sound localization using interaural time differences. These perceptual consequences are the opposite of what is typically observed in cochlear-impaired subjects who have impaired intensity perception but relatively normal temporal processing after taking their impaired intensity perception into account. These differences in perceptual consequences between auditory neuropathy and cochlear damage suggest the use of different neural codes in auditory perception: a suboptimal spike count code for intensity processing, a synchronized spike code for temporal processing, and a duplex code for frequency processing. We also proposed two underlying physiological models based on desynchronized and reduced discharge in the auditory nerve to successfully account for the observed neurological and behavioral data. These methods and measures cannot differentiate between these two AN models, but future studies using electric stimulation of the auditory nerve via a cochlear implant might. These results not only show the unique contribution of neural synchrony to sensory perception but also provide guidance for translational research in terms of better diagnosis and management of human communication disorders.

  13. A Candidate for the Attentional Bottleneck: Set-Size Specific Modulation of the Right TPJ during Attentive Enumeration

    ERIC Educational Resources Information Center

    Vetter, Petra; Butterworth, Brian; Bahrami, Bahador

    2011-01-01

    Several recent behavioral studies have shown that the enumeration of a small number of items (a process termed "subitizing") depends on the availability of attentional resources and is not a preattentive process as previously thought. Here we studied the neural correlates of visual enumeration under different attentional loads in a dual-task…

  14. Annotation: Development of facial expression recognition from childhood to adolescence: behavioural and neurological perspectives.

    PubMed

    Herba, Catherine; Phillips, Mary

    2004-10-01

    Intact emotion processing is critical for normal emotional development. Recent advances in neuroimaging have facilitated the examination of brain development, and have allowed for the exploration of the relationships between the development of emotion processing abilities, and that of associated neural systems. A literature review was performed of published studies examining the development of emotion expression recognition in normal children and psychiatric populations, and of the development of neural systems important for emotion processing. Few studies have explored the development of emotion expression recognition throughout childhood and adolescence. Behavioural studies suggest continued development throughout childhood and adolescence (reflected by accuracy scores and speed of processing), which varies according to the category of emotion displayed. Factors such as sex, socio-economic status, and verbal ability may also affect this development. Functional neuroimaging studies in adults highlight the role of the amygdala in emotion processing. Results of the few neuroimaging studies in children have focused on the role of the amygdala in the recognition of fearful expressions. Although results are inconsistent, they provide evidence throughout childhood and adolescence for the continued development of and sex differences in amygdalar function in response to fearful expressions. Studies exploring emotion expression recognition in psychiatric populations of children and adolescents suggest deficits that are specific to the type of disorder and to the emotion displayed. Results from behavioural and neuroimaging studies indicate continued development of emotion expression recognition and neural regions important for this process throughout childhood and adolescence. Methodological inconsistencies and disparate findings make any conclusion difficult, however. Further studies are required examining the relationship between the development of emotion expression recognition and that of underlying neural systems, in particular subcortical and prefrontal cortical structures. These will inform understanding of the neural bases of normal and abnormal emotional development, and aid the development of earlier interventions for children and adolescents with psychiatric disorders.

  15. Different roads to the same destination - The impact of impulsivity on decision-making processes under risk within a rewarding context in a healthy male sample.

    PubMed

    Dinu-Biringer, Ramona; Nees, Frauke; Falquez, Rosalux; Berger, Moritz; Barnow, Sven

    2016-02-28

    The results of research about the influences of impulsivity on decision-making in situations of risk have been inconsistent. In this study, we used functional magnetic resonance imaging to examine the neural correlates of decision-making under risk in 12 impulsive, as defined by the Barratt Impulsiveness Scale-11, and 13 normal men. Although both groups showed similar decision-making behavior, neural activation regarding decision-making processes differed significantly. Impulsive persons revealed stronger activation in the (ventro-) medial prefrontal cortex and less deactivation of the orbitofrontal cortex while playing for potential gains. These brain regions might be associated with the emotional components of decision-making processes. Significant differences in brain areas linked to cognitive decision-making components were not found. This activation pattern might be seen as an indication for a hypersensitivity to rewarding cues in impulsive persons and might be linked to the propensity for inappropriate risk-taking behavior in persons with more extreme impulsivity levels, especially in situations in which they have a strong emotional involvement in the decision process. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Abnormal Neural Activation to Faces in the Parents of Children with Autism

    PubMed Central

    Yucel, G. H.; Belger, A.; Bizzell, J.; Parlier, M.; Adolphs, R.; Piven, J.

    2015-01-01

    Parents of children with an autism spectrum disorder (ASD) show subtle deficits in aspects of social behavior and face processing, which resemble those seen in ASD, referred to as the “Broad Autism Phenotype ” (BAP). While abnormal activation in ASD has been reported in several brain structures linked to social cognition, little is known regarding patterns in the BAP. We compared autism parents with control parents with no family history of ASD using 2 well-validated face-processing tasks. Results indicated increased activation in the autism parents to faces in the amygdala (AMY) and the fusiform gyrus (FG), 2 core face-processing regions. Exploratory analyses revealed hyper-activation of lateral occipital cortex (LOC) bilaterally in autism parents with aloof personality (“BAP+”). Findings suggest that abnormalities of the AMY and FG are related to underlying genetic liability for ASD, whereas abnormalities in the LOC and right FG are more specific to behavioral features of the BAP. Results extend our knowledge of neural circuitry underlying abnormal face processing beyond those previously reported in ASD to individuals with shared genetic liability for autism and a subset of genetically related individuals with the BAP. PMID:25056573

  17. A crossmodal crossover: opposite effects of visual and auditory perceptual load on steady-state evoked potentials to irrelevant visual stimuli.

    PubMed

    Jacoby, Oscar; Hall, Sarah E; Mattingley, Jason B

    2012-07-16

    Mechanisms of attention are required to prioritise goal-relevant sensory events under conditions of stimulus competition. According to the perceptual load model of attention, the extent to which task-irrelevant inputs are processed is determined by the relative demands of discriminating the target: the more perceptually demanding the target task, the less unattended stimuli will be processed. Although much evidence supports the perceptual load model for competing stimuli within a single sensory modality, the effects of perceptual load in one modality on distractor processing in another is less clear. Here we used steady-state evoked potentials (SSEPs) to measure neural responses to irrelevant visual checkerboard stimuli while participants performed either a visual or auditory task that varied in perceptual load. Consistent with perceptual load theory, increasing visual task load suppressed SSEPs to the ignored visual checkerboards. In contrast, increasing auditory task load enhanced SSEPs to the ignored visual checkerboards. This enhanced neural response to irrelevant visual stimuli under auditory load suggests that exhausting capacity within one modality selectively compromises inhibitory processes required for filtering stimuli in another. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Mapping common aphasia assessments to underlying cognitive processes and their neural substrates

    PubMed Central

    Lacey, Elizabeth H.; Skipper-Kallal, LM; Xing, S; Fama, ME; Turkeltaub, PE

    2017-01-01

    Background Understanding the relationships between clinical tests, the processes they measure, and the brain networks underlying them, is critical in order for clinicians to move beyond aphasia syndrome classification toward specification of individual language process impairments. Objective To understand the cognitive, language, and neuroanatomical factors underlying scores of commonly used aphasia tests. Methods 25 behavioral tests were administered to a group of 38 chronic left hemisphere stroke survivors and a high resolution MRI was obtained. Test scores were entered into a principal components analysis to extract the latent variables (factors) measured by the tests. Multivariate lesion-symptom mapping was used to localize lesions associated with the factor scores. Results The principal components analysis yielded four dissociable factors, which we labeled Word Finding/Fluency, Comprehension, Phonology/Working Memory Capacity, and Executive Function. While many tests loaded onto the factors in predictable ways, some relied heavily on factors not commonly associated with the tests. Lesion symptom mapping demonstrated discrete brain structures associated with each factor, including frontal, temporal, and parietal areas extending beyond the classical language network. Specific functions mapped onto brain anatomy largely in correspondence with modern neural models of language processing. Conclusions An extensive clinical aphasia assessment identifies four independent language functions, relying on discrete parts of the left middle cerebral artery territory. A better understanding of the processes underlying cognitive tests and the link between lesion and behavior may lead to improved aphasia diagnosis, and may yield treatments better targeted to an individual’s specific pattern of deficits and preserved abilities. PMID:28135902

  19. Gender-specific modulation of neural mechanisms underlying social reward processing by Autism Quotient

    PubMed Central

    Barman, Adriana; Richter, Sylvia; Soch, Joram; Deibele, Anna; Richter, Anni; Assmann, Anne; Wüstenberg, Torsten; Walter, Henrik; Seidenbecher, Constanze I.

    2015-01-01

    Autism spectrum disorder refers to a neurodevelopmental condition primarily characterized by deficits in social cognition and behavior. Subclinically, autistic features are supposed to be present in healthy humans and can be quantified using the Autism Quotient (AQ). Here, we investigated a potential relationship between AQ and neural correlates of social and monetary reward processing, using functional magnetic resonance imaging in young, healthy participants. In an incentive delay task with either monetary or social reward, reward anticipation elicited increased ventral striatal activation, which was more pronounced during monetary reward anticipation. Anticipation of social reward elicited activation in the default mode network (DMN), a network previously implicated in social processing. Social reward feedback was associated with bilateral amygdala and fusiform face area activation. The relationship between AQ and neural correlates of social reward processing varied in a gender-dependent manner. In women and, to a lesser extent in men, higher AQ was associated with increased posterior DMN activation during social reward anticipation. During feedback, we observed a negative correlation of AQ and right amygdala activation in men only. Our results suggest that social reward processing might constitute an endophenotype for autism-related traits in healthy humans that manifests in a gender-specific way. PMID:25944965

  20. Neural correlates of heart-focused interoception: a functional magnetic resonance imaging meta-analysis

    PubMed Central

    2016-01-01

    Interoception is the ability to perceive one's internal body state including visceral sensations. Heart-focused interoception has received particular attention, in part due to a readily available task for behavioural assessment, but also due to accumulating evidence for a significant role in emotional experience, decision-making and clinical disorders such as anxiety and depression. Improved understanding of the underlying neural correlates is important to promote development of anatomical-functional models and suitable intervention strategies. In the present meta-analysis, nine studies reporting neural activity associated with interoceptive attentiveness (i.e. focused attention to a particular interoceptive signal for a given time interval) to one's heartbeat were submitted to a multilevel kernel density analysis. The findings corroborated an extended network associated with heart-focused interoceptive attentiveness including the posterior right and left insula, right claustrum, precentral gyrus and medial frontal gyrus. Right-hemispheric dominance emphasizes non-verbal information processing with the posterior insula presumably serving as the major gateway for cardioception. Prefrontal neural activity may reflect both top-down attention deployment and processing of feed-forward cardioceptive information, possibly orchestrated via the claustrum. This article is part of the themed issue ‘Interoception beyond homeostasis: affect, cognition and mental health’. PMID:28080975

  1. Sex-Related Differences in Neural Activity during Risk Taking: An fMRI Study

    PubMed Central

    Chan, Chetwyn C. H.; Leung, Ada W. S.; Fox, Peter T.; Gao, Jia-Hong

    2009-01-01

    This study explored sex effects on the process of risk-taking. We observed that the female participants (n = 10) showed stronger activation in the right insula and bilateral orbitofrontal cortex (OFC) than did the male participants (n = 12) while they were performing in the Risky-Gains task. The female participants also showed stronger activations in the precentral, postcentral, and paracentral regions after receiving punishment feedback. In addition, the strength of neural activity in the insula correlated with the rate of risky behaviors for the female participants but not for the male participants. Similarly, the percent signal changes in the right OFC correlated negatively with the rate of selecting risky choices for the female group. These findings strongly suggest a sex-related influence modulating brain activity during risk-taking tasks. When taking the same level of risk, relative to men, women tend to engage in more neural processing involving the insula and the OFC to update and valuate possible uncertainty associated with risk-taking decision making. These results are consistent with the value-based decision-making model and offer insights into the possible neural mechanisms underlying the different risk-taking attitudes of men and women. PMID:18842666

  2. Optogenetic dissection of neural circuits underlying emotional valence and motivated behaviors

    PubMed Central

    Nieh, Edward H.; Kim, Sung-Yon; Namburi, Praneeth; Tye, Kay M.

    2014-01-01

    The neural circuits underlying emotional valence and motivated behaviors are several synapses away from both defined sensory inputs and quantifiable motor outputs. Electrophysiology has provided us with a suitable means for observing neural activity during behavior, but methods for controlling activity for the purpose of studying motivated behaviors have been inadequate: electrical stimulation lacks cellular specificity and pharmacological manipulation lacks temporal resolution. The recent emergence of optogenetic tools provides a new means for establishing causal relationships between neural activity and behavior. Optogenetics, the use of genetically-encodable light-activated proteins, permits the modulation of specific neural circuit elements with millisecond precision. The ability to control individual cell types, and even projections between distal regions, allows us to investigate functional connectivity in a causal manner. The greatest consequence of controlling neural activity with finer precision has been the characterization of individual neural circuits within anatomical brain regions as defined functional units. Within the mesolimbic dopamine system, optogenetics has helped separate subsets of dopamine neurons with distinct functions for reward, aversion and salience processing, elucidated GABA neuronal effects on behavior, and characterized connectivity with forebrain and cortical structures. Within the striatum, optogenetics has confirmed the opposing relationship between direct and indirect pathway medium spiny neurons (MSNs), in addition to characterizing the inhibition of MSNs by cholinergic interneurons. Within the hypothalamus, optogenetics has helped overcome the heterogeneity in neuronal cell-type and revealed distinct circuits mediating aggression and feeding. Within the amygdala, optogenetics has allowed the study of intra-amygdala microcircuitry as well as interconnections with distal regions involved in fear and anxiety. In this review, we will present the body of optogenetic studies that has significantly enhanced our understanding of emotional valence and motivated behaviors. PMID:23142759

  3. Integrating probabilistic models of perception and interactive neural networks: a historical and tutorial review

    PubMed Central

    McClelland, James L.

    2013-01-01

    This article seeks to establish a rapprochement between explicitly Bayesian models of contextual effects in perception and neural network models of such effects, particularly the connectionist interactive activation (IA) model of perception. The article is in part an historical review and in part a tutorial, reviewing the probabilistic Bayesian approach to understanding perception and how it may be shaped by context, and also reviewing ideas about how such probabilistic computations may be carried out in neural networks, focusing on the role of context in interactive neural networks, in which both bottom-up and top-down signals affect the interpretation of sensory inputs. It is pointed out that connectionist units that use the logistic or softmax activation functions can exactly compute Bayesian posterior probabilities when the bias terms and connection weights affecting such units are set to the logarithms of appropriate probabilistic quantities. Bayesian concepts such the prior, likelihood, (joint and marginal) posterior, probability matching and maximizing, and calculating vs. sampling from the posterior are all reviewed and linked to neural network computations. Probabilistic and neural network models are explicitly linked to the concept of a probabilistic generative model that describes the relationship between the underlying target of perception (e.g., the word intended by a speaker or other source of sensory stimuli) and the sensory input that reaches the perceiver for use in inferring the underlying target. It is shown how a new version of the IA model called the multinomial interactive activation (MIA) model can sample correctly from the joint posterior of a proposed generative model for perception of letters in words, indicating that interactive processing is fully consistent with principled probabilistic computation. Ways in which these computations might be realized in real neural systems are also considered. PMID:23970868

  4. Preclinical Analysis of Fetal Human Mesencephalic Neural Progenitor Cell Lines: Characterization and Safety In Vitro and In Vivo

    PubMed Central

    Moon, Jisook; Schwarz, Sigrid C.; Lee, Hyun‐Seob; Kang, Jun Mo; Lee, Young‐Eun; Kim, Bona; Sung, Mi‐Young; Höglinger, Günter; Wegner, Florian; Kim, Jin Su; Chung, Hyung‐Min; Chang, Sung Woon; Cha, Kwang Yul; Kim, Kwang‐Soo

    2016-01-01

    Abstract We have developed a good manufacturing practice for long‐term cultivation of fetal human midbrain‐derived neural progenitor cells. The generation of human dopaminergic neurons may serve as a tool of either restorative cell therapies or cellular models, particularly as a reference for phenotyping region‐specific human neural stem cell lines such as human embryonic stem cells and human inducible pluripotent stem cells. We cultivated 3 different midbrain neural progenitor lines at 10, 12, and 14 weeks of gestation for more than a year and characterized them in great detail, as well as in comparison with Lund mesencephalic cells. The whole cultivation process of tissue preparation, cultivation, and cryopreservation was developed using strict serum‐free conditions and standardized operating protocols under clean‐room conditions. Long‐term‐cultivated midbrain‐derived neural progenitor cells retained stemness, midbrain fate specificity, and floorplate markers. The potential to differentiate into authentic A9‐specific dopaminergic neurons was markedly elevated after prolonged expansion, resulting in large quantities of functional dopaminergic neurons without genetic modification. In restorative cell therapeutic approaches, midbrain‐derived neural progenitor cells reversed impaired motor function in rodents, survived well, and did not exhibit tumor formation in immunodeficient nude mice in the short or long term (8 and 30 weeks, respectively). We conclude that midbrain‐derived neural progenitor cells are a promising source for human dopaminergic neurons and suitable for long‐term expansion under good manufacturing practice, thus opening the avenue for restorative clinical applications or robust cellular models such as high‐content or high‐throughput screening. Stem Cells Translational Medicine 2017;6:576–588 PMID:28191758

  5. Integrating probabilistic models of perception and interactive neural networks: a historical and tutorial review.

    PubMed

    McClelland, James L

    2013-01-01

    This article seeks to establish a rapprochement between explicitly Bayesian models of contextual effects in perception and neural network models of such effects, particularly the connectionist interactive activation (IA) model of perception. The article is in part an historical review and in part a tutorial, reviewing the probabilistic Bayesian approach to understanding perception and how it may be shaped by context, and also reviewing ideas about how such probabilistic computations may be carried out in neural networks, focusing on the role of context in interactive neural networks, in which both bottom-up and top-down signals affect the interpretation of sensory inputs. It is pointed out that connectionist units that use the logistic or softmax activation functions can exactly compute Bayesian posterior probabilities when the bias terms and connection weights affecting such units are set to the logarithms of appropriate probabilistic quantities. Bayesian concepts such the prior, likelihood, (joint and marginal) posterior, probability matching and maximizing, and calculating vs. sampling from the posterior are all reviewed and linked to neural network computations. Probabilistic and neural network models are explicitly linked to the concept of a probabilistic generative model that describes the relationship between the underlying target of perception (e.g., the word intended by a speaker or other source of sensory stimuli) and the sensory input that reaches the perceiver for use in inferring the underlying target. It is shown how a new version of the IA model called the multinomial interactive activation (MIA) model can sample correctly from the joint posterior of a proposed generative model for perception of letters in words, indicating that interactive processing is fully consistent with principled probabilistic computation. Ways in which these computations might be realized in real neural systems are also considered.

  6. What Do You Mean by That?! An Electrophysiological Study of Emotional and Attitudinal Prosody.

    PubMed

    Wickens, Steven; Perry, Conrad

    2015-01-01

    The use of prosody during verbal communication is pervasive in everyday language and whilst there is a wealth of research examining the prosodic processing of emotional information, much less is known about the prosodic processing of attitudinal information. The current study investigated the online neural processes underlying the prosodic processing of non-verbal emotional and attitudinal components of speech via the analysis of event-related brain potentials related to the processing of anger and sarcasm. To examine these, sentences with prosodic expectancy violations created by cross-splicing a prosodically neutral head ('he has') and a prosodically neutral, angry, or sarcastic ending (e.g., 'a serious face') were used. Task demands were also manipulated, with participants in one experiment performing prosodic classification and participants in another performing probe-verification. Overall, whilst minor differences were found across the tasks, the results suggest that angry and sarcastic prosodic expectancy violations follow a similar processing time-course underpinned by similar neural resources.

  7. Well-being and Anticipation for Future Positive Events: Evidences from an fMRI Study.

    PubMed

    Luo, Yangmei; Chen, Xuhai; Qi, Senqing; You, Xuqun; Huang, Xiting

    2017-01-01

    Anticipation for future confers great benefits to human well-being and mental health. However, previous work focus on how people's well-being correlate with brain activities during perception of emotional stimuli, rather than anticipation for the future events. Here, the current study investigated how well-being relates to neural circuitry underlying the anticipating process of future desired events. Using event-related functional magnetic resonance imaging, 40 participants were scanned while they were performing an emotion anticipation task, in which they were instructed to anticipate the positive or neutral events. The results showed that bilateral medial prefrontal cortex (MPFC) were activated during anticipation for positive events relative to neutral events, and the enhanced brain activation in MPFC was associated with higher level of well-being. The findings suggest a neural mechanism by which the anticipation process to future desired events correlates to human well-being, which provide a future-oriented view on the neural sources of well-being.

  8. Well-being and Anticipation for Future Positive Events: Evidences from an fMRI Study

    PubMed Central

    Luo, Yangmei; Chen, Xuhai; Qi, Senqing; You, Xuqun; Huang, Xiting

    2018-01-01

    Anticipation for future confers great benefits to human well-being and mental health. However, previous work focus on how people’s well-being correlate with brain activities during perception of emotional stimuli, rather than anticipation for the future events. Here, the current study investigated how well-being relates to neural circuitry underlying the anticipating process of future desired events. Using event-related functional magnetic resonance imaging, 40 participants were scanned while they were performing an emotion anticipation task, in which they were instructed to anticipate the positive or neutral events. The results showed that bilateral medial prefrontal cortex (MPFC) were activated during anticipation for positive events relative to neutral events, and the enhanced brain activation in MPFC was associated with higher level of well-being. The findings suggest a neural mechanism by which the anticipation process to future desired events correlates to human well-being, which provide a future-oriented view on the neural sources of well-being. PMID:29375415

  9. Motivation alters impression formation and related neural systems.

    PubMed

    Hughes, Brent L; Zaki, Jamil; Ambady, Nalini

    2017-01-01

    Observers frequently form impressions of other people based on complex or conflicting information. Rather than being objective, these impressions are often biased by observers' motives. For instance, observers often downplay negative information they learn about ingroup members. Here, we characterize the neural systems associated with biased impression formation. Participants learned positive and negative information about ingroup and outgroup social targets. Following this information, participants worsened their impressions of outgroup, but not ingroup, targets. This tendency was associated with a failure to engage neural structures including lateral prefrontal cortex, dorsal anterior cingulate cortex, temporoparietal junction, Insula and Precuneus when processing negative information about ingroup (but not outgroup) targets. To the extent that participants engaged these regions while learning negative information about ingroup members, they exhibited less ingroup bias in their impressions. These data are consistent with a model of 'effortless bias', under which perceivers fail to process goal-inconsistent information in order to maintain desired conclusions. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  10. Pedophilia is linked to reduced activation in hypothalamus and lateral prefrontal cortex during visual erotic stimulation.

    PubMed

    Walter, Martin; Witzel, Joachim; Wiebking, Christine; Gubka, Udo; Rotte, Michael; Schiltz, Kolja; Bermpohl, Felix; Tempelmann, Claus; Bogerts, Bernhard; Heinze, Hans Jochen; Northoff, Georg

    2007-09-15

    Although pedophilia is of high public concern, little is known about underlying neural mechanisms. Although pedophilic patients are sexually attracted to prepubescent children, they show no sexual interest toward adults. This study aimed to investigate the neural correlates of deficits of sexual and emotional arousal in pedophiles. Thirteen pedophilic patients and 14 healthy control subjects were tested for differential neural activity during visual stimulation with emotional and erotic pictures with functional magnetic resonance imaging. Regions showing differential activations during the erotic condition comprised the hypothalamus, the periaqueductal gray, and dorsolateral prefrontal cortex, the latter correlating with a clinical measure. Alterations of emotional processing concerned the amygdala-hippocampus and dorsomedial prefrontal cortex. Hypothesized regions relevant for processing of erotic stimuli in healthy individuals showed reduced activations during visual erotic stimulation in pedophilic patients. This suggests an impaired recruitment of key structures that might contribute to an altered sexual interest of these patients toward adults.

  11. Neural pathway in the right hemisphere underlies verbal insight problem solving.

    PubMed

    Zhao, Q; Zhou, Z; Xu, H; Fan, W; Han, L

    2014-01-03

    Verbal insight problem solving means to break mental sets, to select the novel semantic information and to form novel, task-related associations. Although previous studies have identified the brain regions associated with these key processes, the interaction among these regions during insight is still unclear. In the present study, we explored the functional connectivity between the key regions during solving Chinese 'chengyu' riddles by using event-related functional magnetic resonance imaging. Results showed that both insight and noninsight solutions activated the bilateral inferior frontal gyri, middle temporal gyri and hippocampi, and these regions constituted a frontal to temporal to hippocampal neural pathway. Compared with noninsight solution, insight solution had a stronger functional connectivity between the inferior frontal gyrus and middle temporal gyrus in the right hemisphere. Our study reveals the neural pathway of information processing during verbal insight problem solving, and supports the right-hemisphere advantage theory of insight. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Face Recognition in Humans and Machines

    NASA Astrophysics Data System (ADS)

    O'Toole, Alice; Tistarelli, Massimo

    The study of human face recognition by psychologists and neuroscientists has run parallel to the development of automatic face recognition technologies by computer scientists and engineers. In both cases, there are analogous steps of data acquisition, image processing, and the formation of representations that can support the complex and diverse tasks we accomplish with faces. These processes can be understood and compared in the context of their neural and computational implementations. In this chapter, we present the essential elements of face recognition by humans and machines, taking a perspective that spans psychological, neural, and computational approaches. From the human side, we overview the methods and techniques used in the neurobiology of face recognition, the underlying neural architecture of the system, the role of visual attention, and the nature of the representations that emerges. From the computational side, we discuss face recognition technologies and the strategies they use to overcome challenges to robust operation over viewing parameters. Finally, we conclude the chapter with a look at some recent studies that compare human and machine performances at face recognition.

  13. The neural correlates of cognitive effort in anxiety: effects on processing efficiency.

    PubMed

    Ansari, Tahereh L; Derakshan, Nazanin

    2011-03-01

    We investigated the neural correlates of cognitive effort/pre-target preparation (Contingent Negative Variation activity; CNV) in anxiety using a mixed antisaccade task that manipulated the interval between offset of instructional cue and onset of target (CTI). According to attentional control theory (Eysenck et al., 2007) we predicted that anxiety should result in increased levels of compensatory effort, as indicated by greater frontal CNV, to maintain comparable levels of performance under competing task demands. Our results showed that anxiety resulted in faster antisaccade latencies during medium compared with short and long CTIs. Accordingly, high-anxious individuals compared with low-anxious individuals showed greater levels of CNV activity at frontal sites during medium CTI suggesting that they exerted greater cognitive effort and invested more attentional resources in preparation for the task goal. Our results are the first to demonstrate the neural correlates of processing efficiency and compensatory effort in anxiety and are discussed within the framework of attentional control theory. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Intranasal oxytocin enhances neural processing of monetary reward and loss in post-traumatic stress disorder and traumatized controls.

    PubMed

    Nawijn, Laura; van Zuiden, Mirjam; Koch, Saskia B J; Frijling, Jessie L; Veltman, Dick J; Olff, Miranda

    2016-04-01

    Anhedonia is a significant clinical problem in post-traumatic stress disorder (PTSD). PTSD patients show reduced motivational approach behavior, which may underlie anhedonic symptoms. Oxytocin administration is known to increase reward sensitivity and approach behavior. We therefore investigated whether oxytocin administration affected neural responses during motivational processing in PTSD patients and trauma-exposed controls. 35 police officers with PTSD (21 males) and 37 trauma-exposed police officers without PTSD (19 males) were included in a within-subjects, randomized, placebo-controlled fMRI study. Neural responses during anticipation of monetary reward and loss were investigated with a monetary incentive delay task (MID) after placebo and oxytocin (40 IU) administration. Oxytocin increased neural responses during reward and loss anticipation in PTSD patients and controls in the striatum, dorsal anterior cingulate cortex and insula, key regions in the reward pathway. Although PTSD patients did not differ from controls in motivational processing under placebo, anhedonia severity in PTSD patients was negatively related to reward responsiveness in the ventral striatum. Furthermore, oxytocin effects on reward processing in the ventral striatum were positively associated with anhedonia. Oxytocin administration increased reward pathway sensitivity during reward and loss anticipation in PTSD patients and trauma-exposed controls. Thus, oxytocin administration may increase motivation for goal-directed approach behavior in PTSD patients and controls, providing evidence for a neurobiological pathway through which oxytocin could potentially increase motivation and reward sensitivity in PTSD patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Neurocognitive mechanisms underlying deceptive hazard evaluation: An event-related potentials investigation.

    PubMed

    Fu, Huijian; Qiu, Wenwei; Ma, Haiying; Ma, Qingguo

    2017-01-01

    Deceptive behavior is common in human social interactions. Researchers have been trying to uncover the cognitive process and neural basis underlying deception due to its theoretical and practical significance. We used Event-related potentials (ERPs) to investigate the neural correlates of deception when the participants completed a hazard judgment task. Pictures conveying or not conveying hazard information were presented to the participants who were then requested to discriminate the hazard content (safe or hazardous) and make a response corresponding to the cues (truthful or deceptive). Behavioral and electrophysiological data were recorded during the entire experiment. Results showed that deceptive responses, compared to truthful responses, were associated with longer reaction time (RT), lower accuracy, increased N2 and reduced late positive potential (LPP), suggesting a cognitively more demanding process to respond deceptively. The decrement in LPP correlated negatively with the increment in RT for deceptive relative to truthful responses, regardless of hazard content. In addition, hazardous information evoked larger N1 and P300 than safe information, reflecting an early processing bias and a later evaluative categorization process based on motivational significance, respectively. Finally, the interaction between honesty (truthful/deceptive) and safety (safe/hazardous) on accuracy and LPP indicated that deceptive responses towards safe information required more effort than deceptive responses towards hazardous information. Overall, these results demonstrate the neurocognitive substrates underlying deception about hazard information.

  16. Neurocognitive mechanisms underlying deceptive hazard evaluation: An event-related potentials investigation

    PubMed Central

    Qiu, Wenwei; Ma, Haiying; Ma, Qingguo

    2017-01-01

    Deceptive behavior is common in human social interactions. Researchers have been trying to uncover the cognitive process and neural basis underlying deception due to its theoretical and practical significance. We used Event-related potentials (ERPs) to investigate the neural correlates of deception when the participants completed a hazard judgment task. Pictures conveying or not conveying hazard information were presented to the participants who were then requested to discriminate the hazard content (safe or hazardous) and make a response corresponding to the cues (truthful or deceptive). Behavioral and electrophysiological data were recorded during the entire experiment. Results showed that deceptive responses, compared to truthful responses, were associated with longer reaction time (RT), lower accuracy, increased N2 and reduced late positive potential (LPP), suggesting a cognitively more demanding process to respond deceptively. The decrement in LPP correlated negatively with the increment in RT for deceptive relative to truthful responses, regardless of hazard content. In addition, hazardous information evoked larger N1 and P300 than safe information, reflecting an early processing bias and a later evaluative categorization process based on motivational significance, respectively. Finally, the interaction between honesty (truthful/deceptive) and safety (safe/hazardous) on accuracy and LPP indicated that deceptive responses towards safe information required more effort than deceptive responses towards hazardous information. Overall, these results demonstrate the neurocognitive substrates underlying deception about hazard information. PMID:28793344

  17. Multi-voxel Patterns Reveal Functionally Differentiated Networks Underlying Auditory Feedback Processing of Speech

    PubMed Central

    Zheng, Zane Z.; Vicente-Grabovetsky, Alejandro; MacDonald, Ewen N.; Munhall, Kevin G.; Cusack, Rhodri; Johnsrude, Ingrid S.

    2013-01-01

    The everyday act of speaking involves the complex processes of speech motor control. An important component of control is monitoring, detection and processing of errors when auditory feedback does not correspond to the intended motor gesture. Here we show, using fMRI and converging operations within a multi-voxel pattern analysis framework, that this sensorimotor process is supported by functionally differentiated brain networks. During scanning, a real-time speech-tracking system was employed to deliver two acoustically different types of distorted auditory feedback or unaltered feedback while human participants were vocalizing monosyllabic words, and to present the same auditory stimuli while participants were passively listening. Whole-brain analysis of neural-pattern similarity revealed three functional networks that were differentially sensitive to distorted auditory feedback during vocalization, compared to during passive listening. One network of regions appears to encode an ‘error signal’ irrespective of acoustic features of the error: this network, including right angular gyrus, right supplementary motor area, and bilateral cerebellum, yielded consistent neural patterns across acoustically different, distorted feedback types, only during articulation (not during passive listening). In contrast, a fronto-temporal network appears sensitive to the speech features of auditory stimuli during passive listening; this preference for speech features was diminished when the same stimuli were presented as auditory concomitants of vocalization. A third network, showing a distinct functional pattern from the other two, appears to capture aspects of both neural response profiles. Taken together, our findings suggest that auditory feedback processing during speech motor control may rely on multiple, interactive, functionally differentiated neural systems. PMID:23467350

  18. Visual gravity cues in the interpretation of biological movements: neural correlates in humans.

    PubMed

    Maffei, Vincenzo; Indovina, Iole; Macaluso, Emiliano; Ivanenko, Yuri P; A Orban, Guy; Lacquaniti, Francesco

    2015-01-01

    Our visual system takes into account the effects of Earth gravity to interpret biological motion (BM), but the neural substrates of this process remain unclear. Here we measured functional magnetic resonance (fMRI) signals while participants viewed intact or scrambled stick-figure animations of walking, running, hopping, and skipping recorded at normal or reduced gravity. We found that regions sensitive to BM configuration in the occipito-temporal cortex (OTC) were more active for reduced than normal gravity but with intact stimuli only. Effective connectivity analysis suggests that predictive coding of gravity effects underlies BM interpretation. This process might be implemented by a family of snapshot neurons involved in action monitoring. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Analysis of the Growth Process of Neural Cells in Culture Environment Using Image Processing Techniques

    NASA Astrophysics Data System (ADS)

    Mirsafianf, Atefeh S.; Isfahani, Shirin N.; Kasaei, Shohreh; Mobasheri, Hamid

    Here we present an approach for processing neural cells images to analyze their growth process in culture environment. We have applied several image processing techniques for: 1- Environmental noise reduction, 2- Neural cells segmentation, 3- Neural cells classification based on their dendrites' growth conditions, and 4- neurons' features Extraction and measurement (e.g., like cell body area, number of dendrites, axon's length, and so on). Due to the large amount of noise in the images, we have used feed forward artificial neural networks to detect edges more precisely.

  20. Cortisol alters reward processing in the human brain.

    PubMed

    Kinner, Valerie L; Wolf, Oliver T; Merz, Christian J

    2016-08-01

    Dysfunctional reward processing is known to play a central role for the development of psychiatric disorders. Glucocorticoids that are secreted in response to stress have been shown to attenuate reward sensitivity and thereby might promote the onset of psychopathology. However, the underlying neurobiological mechanisms mediating stress hormone effects on reward processing as well as potential sex differences remain elusive. In this neuroimaging study, we administered 30mg cortisol or a placebo to 30 men and 30 women and subsequently tested them in the Monetary Incentive Delay Task. Cortisol attenuated anticipatory neural responses to a verbal and a monetary reward in the left pallidum and the right anterior parahippocampal gyrus. Furthermore, in men, activation in the amygdala, the precuneus, the anterior cingulate, and in hippocampal regions was reduced under cortisol, whereas in cortisol-treated women a signal increase was observed in these regions. Behavioral performance also indicated that reward learning in men is impaired under high cortisol concentrations, while it is augmented in women. These findings illustrate that the stress hormone cortisol substantially diminishes reward anticipation and provide first evidence that cortisol effects on the neural reward system are sensitive to sex differences, which might translate into different vulnerabilities for psychiatric disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Attention Genes

    ERIC Educational Resources Information Center

    Posner, Michael I.; Rothbart, Mary K.; Sheese, Brad E.

    2007-01-01

    A major problem for developmental science is understanding how the cognitive and emotional networks important in carrying out mental processes can be related to individual differences. The last five years have seen major advances in establishing links between alleles of specific genes and the neural networks underlying aspects of attention. These…

  2. Sensory neural pathways revisited to unravel the temporal dynamics of the Simon effect: A model-based cognitive neuroscience approach.

    PubMed

    Salzer, Yael; de Hollander, Gilles; Forstmann, Birte U

    2017-06-01

    The Simon task is one of the most prominent interference tasks and has been extensively studied in experimental psychology and cognitive neuroscience. Despite years of research, the underlying mechanism driving the phenomenon and its temporal dynamics are still disputed. Within the framework of the review, we adopt a model-based cognitive neuroscience approach. We first go over key findings in the literature of the Simon task, discuss competing qualitative cognitive theories and the difficulty of testing them empirically. We then introduce sequential sampling models, a particular class of mathematical cognitive process models. Finally, we argue that the brain architecture accountable for the processing of spatial ('where') and non-spatial ('what') information, could constrain these models. We conclude that there is a clear need to bridge neural and behavioral measures, and that mathematical cognitive models may facilitate the construction of this bridge and work towards revealing the underlying mechanisms of the Simon effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Temporal Context in Speech Processing and Attentional Stream Selection: A Behavioral and Neural perspective

    PubMed Central

    Zion Golumbic, Elana M.; Poeppel, David; Schroeder, Charles E.

    2012-01-01

    The human capacity for processing speech is remarkable, especially given that information in speech unfolds over multiple time scales concurrently. Similarly notable is our ability to filter out of extraneous sounds and focus our attention on one conversation, epitomized by the ‘Cocktail Party’ effect. Yet, the neural mechanisms underlying on-line speech decoding and attentional stream selection are not well understood. We review findings from behavioral and neurophysiological investigations that underscore the importance of the temporal structure of speech for achieving these perceptual feats. We discuss the hypothesis that entrainment of ambient neuronal oscillations to speech’s temporal structure, across multiple time-scales, serves to facilitate its decoding and underlies the selection of an attended speech stream over other competing input. In this regard, speech decoding and attentional stream selection are examples of ‘active sensing’, emphasizing an interaction between proactive and predictive top-down modulation of neuronal dynamics and bottom-up sensory input. PMID:22285024

  4. Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat—Turkey)

    NASA Astrophysics Data System (ADS)

    Yilmaz, Işık

    2009-06-01

    The purpose of this study is to compare the landslide susceptibility mapping methods of frequency ratio (FR), logistic regression and artificial neural networks (ANN) applied in the Kat County (Tokat—Turkey). Digital elevation model (DEM) was first constructed using GIS software. Landslide-related factors such as geology, faults, drainage system, topographical elevation, slope angle, slope aspect, topographic wetness index (TWI) and stream power index (SPI) were used in the landslide susceptibility analyses. Landslide susceptibility maps were produced from the frequency ratio, logistic regression and neural networks models, and they were then compared by means of their validations. The higher accuracies of the susceptibility maps for all three models were obtained from the comparison of the landslide susceptibility maps with the known landslide locations. However, respective area under curve (AUC) values of 0.826, 0.842 and 0.852 for frequency ratio, logistic regression and artificial neural networks showed that the map obtained from ANN model is more accurate than the other models, accuracies of all models can be evaluated relatively similar. The results obtained in this study also showed that the frequency ratio model can be used as a simple tool in assessment of landslide susceptibility when a sufficient number of data were obtained. Input process, calculations and output process are very simple and can be readily understood in the frequency ratio model, however logistic regression and neural networks require the conversion of data to ASCII or other formats. Moreover, it is also very hard to process the large amount of data in the statistical package.

  5. Neural correlates of perceptual narrowing in cross-species face-voice matching.

    PubMed

    Grossmann, Tobias; Missana, Manuela; Friederici, Angela D; Ghazanfar, Asif A

    2012-11-01

    Integrating the multisensory features of talking faces is critical to learning and extracting coherent meaning from social signals. While we know much about the development of these capacities at the behavioral level, we know very little about the underlying neural processes. One prominent behavioral milestone of these capacities is the perceptual narrowing of face-voice matching, whereby young infants match faces and voices across species, but older infants do not. In the present study, we provide neurophysiological evidence for developmental decline in cross-species face-voice matching. We measured event-related brain potentials (ERPs) while 4- and 8-month-old infants watched and listened to congruent and incongruent audio-visual presentations of monkey vocalizations and humans mimicking monkey vocalizations. The ERP results indicated that younger infants distinguished between the congruent and the incongruent faces and voices regardless of species, whereas in older infants, the sensitivity to multisensory congruency was limited to the human face and voice. Furthermore, with development, visual and frontal brain processes and their functional connectivity became more sensitive to the congruence of human faces and voices relative to monkey faces and voices. Our data show the neural correlates of perceptual narrowing in face-voice matching and support the notion that postnatal experience with species identity is associated with neural changes in multisensory processing (Lewkowicz & Ghazanfar, 2009). © 2012 Blackwell Publishing Ltd.

  6. Neural dissociation of food- and money-related reward processing using an abstract incentive delay task.

    PubMed

    Simon, Joe J; Skunde, Mandy; Wu, Mudan; Schnell, Knut; Herpertz, Sabine C; Bendszus, Martin; Herzog, Wolfgang; Friederich, Hans-Christoph

    2015-08-01

    Food is an innate reward stimulus related to energy homeostasis and survival, whereas money is considered a more general reward stimulus that gains a rewarding value through learning experiences. Although the underlying neural processing for both modalities of reward has been investigated independently from one another, a more detailed investigation of neural similarities and/or differences between food and monetary reward is still missing. Here, we investigated the neural processing of food compared with monetary-related rewards in 27 healthy, normal-weight women using functional magnetic resonance imaging. We developed a task distinguishing between the anticipation and the receipt of either abstract food or monetary reward. Both tasks activated the ventral striatum during the expectation of a reward. Compared with money, greater food-related activations were observed in prefrontal, parietal and central midline structures during the anticipation and lateral orbitofrontal cortex (lOFC) during the receipt of food reward. Furthermore, during the receipt of food reward, brain activation in the secondary taste cortex was positively related to the body mass index. These results indicate that food-dependent activations encompass to a greater extent brain regions involved in self-control and self-reflection during the anticipation and phylogenetically older parts of the lOFC during the receipt of reward. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  7. Hearing, feeling or seeing a beat recruits a supramodal network in the auditory dorsal stream.

    PubMed

    Araneda, Rodrigo; Renier, Laurent; Ebner-Karestinos, Daniela; Dricot, Laurence; De Volder, Anne G

    2017-06-01

    Hearing a beat recruits a wide neural network that involves the auditory cortex and motor planning regions. Perceiving a beat can potentially be achieved via vision or even touch, but it is currently not clear whether a common neural network underlies beat processing. Here, we used functional magnetic resonance imaging (fMRI) to test to what extent the neural network involved in beat processing is supramodal, that is, is the same in the different sensory modalities. Brain activity changes in 27 healthy volunteers were monitored while they were attending to the same rhythmic sequences (with and without a beat) in audition, vision and the vibrotactile modality. We found a common neural network for beat detection in the three modalities that involved parts of the auditory dorsal pathway. Within this network, only the putamen and the supplementary motor area (SMA) showed specificity to the beat, while the brain activity in the putamen covariated with the beat detection speed. These results highlighted the implication of the auditory dorsal stream in beat detection, confirmed the important role played by the putamen in beat detection and indicated that the neural network for beat detection is mostly supramodal. This constitutes a new example of convergence of the same functional attributes into one centralized representation in the brain. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. Neural suppression of irrelevant information underlies optimal working memory performance.

    PubMed

    Zanto, Theodore P; Gazzaley, Adam

    2009-03-11

    Our ability to focus attention on task-relevant information and ignore distractions is reflected by differential enhancement and suppression of neural activity in sensory cortex (i.e., top-down modulation). Such selective, goal-directed modulation of activity may be intimately related to memory, such that the focus of attention biases the likelihood of successfully maintaining relevant information by limiting interference from irrelevant stimuli. Despite recent studies elucidating the mechanistic overlap between attention and memory, the relationship between top-down modulation of visual processing during working memory (WM) encoding, and subsequent recognition performance has not yet been established. Here, we provide neurophysiological evidence in healthy, young adults that top-down modulation of early visual processing (< 200 ms from stimulus onset) is intimately related to subsequent WM performance, such that the likelihood of successfully remembering relevant information is associated with limiting interference from irrelevant stimuli. The consequences of a failure to ignore distractors on recognition performance was replicated for two types of feature-based memory, motion direction and color. Moreover, attention to irrelevant stimuli was reflected neurally during the WM maintenance period as an increased memory load. These results suggest that neural enhancement of relevant information is not the primary determinant of high-level performance, but rather optimal WM performance is dependent on effectively filtering irrelevant information through neural suppression to prevent overloading a limited memory capacity.

  9. Selective attention on representations in working memory: cognitive and neural mechanisms.

    PubMed

    Ku, Yixuan

    2018-01-01

    Selective attention and working memory are inter-dependent core cognitive functions. It is critical to allocate attention on selected targets during the capacity-limited working memory processes to fulfill the goal-directed behavior. The trends of research on both topics are increasing exponentially in recent years, and it is considered that selective attention and working memory share similar underlying neural mechanisms. Different types of attention orientation in working memory are introduced by distinctive cues, and the means using retrospective cues are strengthened currently as it is manipulating the representation in memory, instead of the perceptual representation. The cognitive and neural mechanisms of the retro-cue effects are further reviewed, as well as the potential molecular mechanism. The frontal-parietal network that is involved in both attention and working memory is also the neural candidate for attention orientation during working memory. Neural oscillations in the gamma and alpha/beta oscillations may respectively be employed for the feedforward and feedback information transfer between the sensory cortices and the association cortices. Dopamine and serotonin systems might interact with each other subserving the communication between memory and attention. In conclusion, representations which attention shifts towards are strengthened, while representations which attention moves away from are degraded. Studies on attention orientation during working memory indicates the flexibility of the processes of working memory, and the beneficial way that overcome the limited capacity of working memory.

  10. Selective attention on representations in working memory: cognitive and neural mechanisms

    PubMed Central

    2018-01-01

    Selective attention and working memory are inter-dependent core cognitive functions. It is critical to allocate attention on selected targets during the capacity-limited working memory processes to fulfill the goal-directed behavior. The trends of research on both topics are increasing exponentially in recent years, and it is considered that selective attention and working memory share similar underlying neural mechanisms. Different types of attention orientation in working memory are introduced by distinctive cues, and the means using retrospective cues are strengthened currently as it is manipulating the representation in memory, instead of the perceptual representation. The cognitive and neural mechanisms of the retro-cue effects are further reviewed, as well as the potential molecular mechanism. The frontal-parietal network that is involved in both attention and working memory is also the neural candidate for attention orientation during working memory. Neural oscillations in the gamma and alpha/beta oscillations may respectively be employed for the feedforward and feedback information transfer between the sensory cortices and the association cortices. Dopamine and serotonin systems might interact with each other subserving the communication between memory and attention. In conclusion, representations which attention shifts towards are strengthened, while representations which attention moves away from are degraded. Studies on attention orientation during working memory indicates the flexibility of the processes of working memory, and the beneficial way that overcome the limited capacity of working memory. PMID:29629245

  11. Alterations of decision making and underlying neural correlates after resection of a mediofrontal cortical dysplasia: A single case study.

    PubMed

    Labudda, Kirsten; Brand, Matthias; Mertens, Markus; Ebner, Alois; Markowitsch, Hans J; Woermann, Friedrich G

    2010-02-01

    We investigated the impact of a congenital prefrontal lesion and its resection on decision making under risk and under ambiguity in a patient with right mediofrontal cortical dysplasia. Both kinds of decision making are normally associated with the medial prefrontal cortex. We additionally studied pre- and postsurgical fMRI activations when processing information relevant for risky decision making. Results indicate selective impairments of ambiguous decision making pre- and postsurgically. Decision making under risk was intact. In contrast to healthy subjects the patient exhibited no activation within the dysplastic anterior cingulate cortex but left-sided orbitofrontal activation on the fMRI task suggesting early reorganization processes.

  12. Detecting emotion in others: increased insula and decreased medial prefrontal cortex activation during emotion processing in elite adventure racers

    PubMed Central

    Johnson, Douglas C.; Flagan, Taru; Simmons, Alan N.; Kotturi, Sante A.; Van Orden, Karl F.; Potterat, Eric G.; Swain, Judith L.; Paulus, Martin P.

    2014-01-01

    Understanding the neural processes that characterize elite performers is a first step to develop a neuroscience model that can be used to improve performance in stressful circumstances. Adventure racers are elite athletes that operate in small teams in the context of environmental and physical extremes. In particular, awareness of team member’s emotional status is critical to the team’s ability to navigate high-magnitude stressors. Thus, this functional magnetic resonance imaging (fMRI) study examined the hypothesis that adventure racers would show altered emotion processing in brain areas that are important for resilience and social awareness. Elite adventure racers (n = 10) were compared with healthy volunteers (n = 12) while performing a simple emotion face-processing (modified Hariri) task during fMRI. Across three types of emotional faces, adventure racers showed greater activation in right insula, left amygdala and dorsal anterior cingulate. Additionally, compared with healthy controls adventure racers showed attenuated right medial prefrontal cortex activation. These results are consistent with previous studies showing elite performers differentially activate neural substrates underlying interoception. Thus, adventure racers differentially deploy brain resources in an effort to recognize and process the internal sensations associated with emotions in others, which could be advantageous for team-based performance under stress. PMID:23171614

  13. Biological neural networks as model systems for designing future parallel processing computers

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.

    1991-01-01

    One of the more interesting debates of the present day centers on whether human intelligence can be simulated by computer. The author works under the premise that neurons individually are not smart at all. Rather, they are physical units which are impinged upon continuously by other matter that influences the direction of voltage shifts across the units membranes. It is only the action of a great many neurons, billions in the case of the human nervous system, that intelligent behavior emerges. What is required to understand even the simplest neural system is painstaking analysis, bit by bit, of the architecture and the physiological functioning of its various parts. The biological neural network studied, the vestibular utricular and saccular maculas of the inner ear, are among the most simple of the mammalian neural networks to understand and model. While there is still a long way to go to understand even this most simple neural network in sufficient detail for extrapolation to computers and robots, a start was made. Moreover, the insights obtained and the technologies developed help advance the understanding of the more complex neural networks that underlie human intelligence.

  14. Object-processing neural efficiency differentiates object from spatial visualizers.

    PubMed

    Motes, Michael A; Malach, Rafael; Kozhevnikov, Maria

    2008-11-19

    The visual system processes object properties and spatial properties in distinct subsystems, and we hypothesized that this distinction might extend to individual differences in visual processing. We conducted a functional MRI study investigating the neural underpinnings of individual differences in object versus spatial visual processing. Nine participants of high object-processing ability ('object' visualizers) and eight participants of high spatial-processing ability ('spatial' visualizers) were scanned, while they performed an object-processing task. Object visualizers showed lower bilateral neural activity in lateral occipital complex and lower right-lateralized neural activity in dorsolateral prefrontal cortex. The data indicate that high object-processing ability is associated with more efficient use of visual-object resources, resulting in less neural activity in the object-processing pathway.

  15. 5-Mehtyltetrahydrofolate rescues alcohol-induced neural crest cell migration abnormalities.

    PubMed

    Shi, Yu; Li, Jiejing; Chen, Chunjiang; Gong, Manzi; Chen, Yuan; Liu, Youxue; Chen, Jie; Li, Tingyu; Song, Weihong

    2014-09-16

    Alcohol is detrimental to early development. Fetal alcohol spectrum disorders (FASD) due to maternal alcohol abuse results in a series of developmental abnormalities including cranial facial dysmorphology, ocular anomalies, congenital heart defects, microcephaly and intellectual disabilities. Previous studies have been shown that ethanol exposure causes neural crest (NC) apoptosis and perturbation of neural crest migration. However, the underlying mechanism remains elusive. In this report we investigated the fetal effect of alcohol on the process of neural crest development in the Xenopus leavis. Pre-gastrulation exposure of 2-4% alcohol induces apoptosis in Xenopus embryo whereas 1% alcohol specifically impairs neural crest migration without observing discernible apoptosis. Additionally, 1% alcohol treatment considerably increased the phenotype of small head (43.4% ± 4.4%, total embryo n = 234), and 1.5% and 2.0% dramatically augment the deformation to 81.2% ± 6.5% (n = 205) and 91.6% ± 3.0% (n = 235), respectively (P < 0.05). Significant accumulation of Homocysteine was caused by alcohol treatment in embryos and 5-mehtyltetrahydrofolate restores neural crest migration and alleviates homocysteine accumulation, resulting in inhibition of the alcohol-induced neurocristopathies. Our study demonstrates that prenatal alcohol exposure causes neural crest cell migration abnormality and 5-mehtyltetrahydrofolate could be beneficial for treating FASD.

  16. Effects of the popular food additive sodium benzoate on neural tube development in the chicken embryo.

    PubMed

    Emon, Selin Tural; Orakdogen, Metin; Uslu, Serap; Somay, Hakan

    2015-01-01

    Many more additives have been introduced with the development of processed foods. Neural tube defects are congenital malformations of the central nervous system. More than 300 000 children are born with neural tube defects every year and surviving children remain disabled for life. Sodium benzoate is used intensively in our daily lives. We therefore aimed to evaluate the effects of sodium benzoate on neural tube defects in chicken embryos. Fertile, specific pathogen-free eggs were used. The study was conducted on five groups. After 30 hours of incubation, the eggs were opened under 4x optical magnification. The embryonic disc was identified and sodium benzoate solution was injected. Eggs were closed with sterile adhesive strips and incubation was continued till the end of the 72nd hour. All eggs were then reopened and embryos were dissected from embryonic membranes and evaluated histopathologically. We found that the development of all embryos was consistent with the stage. We detected neural tube obstruction in one embryo. Neural tube defects were not detected in any embryos. This study showed that sodium benzoate as one of the widely used food preservatives has no effect to neural tube defect development in chicken embryos even at high doses.

  17. Facing changes and changing faces in adolescence: a new model for investigating adolescent-specific interactions between pubertal, brain and behavioral development.

    PubMed

    Scherf, K Suzanne; Behrmann, Marlene; Dahl, Ronald E

    2012-04-01

    Adolescence is a time of dramatic physical, cognitive, emotional, and social changes as well as a time for the development of many social-emotional problems. These characteristics raise compelling questions about accompanying neural changes that are unique to this period of development. Here, we propose that studying adolescent-specific changes in face processing and its underlying neural circuitry provides an ideal model for addressing these questions. We also use this model to formulate new hypotheses. Specifically, pubertal hormones are likely to increase motivation to master new peer-oriented developmental tasks, which will in turn, instigate the emergence of new social/affective components of face processing. We also predict that pubertal hormones have a fundamental impact on the re-organization of neural circuitry supporting face processing and propose, in particular, that, the functional connectivity, or temporal synchrony, between regions of the face-processing network will change with the emergence of these new components of face processing in adolescence. Finally, we show how this approach will help reveal why adolescence may be a period of vulnerability in brain development and suggest how it could lead to prevention and intervention strategies that facilitate more adaptive functional interactions between regions within the broader social information processing network. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions

    PubMed Central

    Luijten, Maartje; Machielsen, Marise W.J.; Veltman, Dick J.; Hester, Robert; de Haan, Lieuwe; Franken, Ingmar H.A.

    2014-01-01

    Background Several current theories emphasize the role of cognitive control in addiction. The present review evaluates neural deficits in the domains of inhibitory control and error processing in individuals with substance dependence and in those showing excessive addiction-like behaviours. The combined evaluation of event-related potential (ERP) and functional magnetic resonance imaging (fMRI) findings in the present review offers unique information on neural deficits in addicted individuals. Methods We selected 19 ERP and 22 fMRI studies using stop-signal, go/no-go or Flanker paradigms based on a search of PubMed and Embase. Results The most consistent findings in addicted individuals relative to healthy controls were lower N2, error-related negativity and error positivity amplitudes as well as hypoactivation in the anterior cingulate cortex (ACC), inferior frontal gyrus and dorsolateral prefrontal cortex. These neural deficits, however, were not always associated with impaired task performance. With regard to behavioural addictions, some evidence has been found for similar neural deficits; however, studies are scarce and results are not yet conclusive. Differences among the major classes of substances of abuse were identified and involve stronger neural responses to errors in individuals with alcohol dependence versus weaker neural responses to errors in other substance-dependent populations. Limitations Task design and analysis techniques vary across studies, thereby reducing comparability among studies and the potential of clinical use of these measures. Conclusion Current addiction theories were supported by identifying consistent abnormalities in prefrontal brain function in individuals with addiction. An integrative model is proposed, suggesting that neural deficits in the dorsal ACC may constitute a hallmark neurocognitive deficit underlying addictive behaviours, such as loss of control. PMID:24359877

  19. Event- and Time-Driven Techniques Using Parallel CPU-GPU Co-processing for Spiking Neural Networks

    PubMed Central

    Naveros, Francisco; Garrido, Jesus A.; Carrillo, Richard R.; Ros, Eduardo; Luque, Niceto R.

    2017-01-01

    Modeling and simulating the neural structures which make up our central neural system is instrumental for deciphering the computational neural cues beneath. Higher levels of biological plausibility usually impose higher levels of complexity in mathematical modeling, from neural to behavioral levels. This paper focuses on overcoming the simulation problems (accuracy and performance) derived from using higher levels of mathematical complexity at a neural level. This study proposes different techniques for simulating neural models that hold incremental levels of mathematical complexity: leaky integrate-and-fire (LIF), adaptive exponential integrate-and-fire (AdEx), and Hodgkin-Huxley (HH) neural models (ranged from low to high neural complexity). The studied techniques are classified into two main families depending on how the neural-model dynamic evaluation is computed: the event-driven or the time-driven families. Whilst event-driven techniques pre-compile and store the neural dynamics within look-up tables, time-driven techniques compute the neural dynamics iteratively during the simulation time. We propose two modifications for the event-driven family: a look-up table recombination to better cope with the incremental neural complexity together with a better handling of the synchronous input activity. Regarding the time-driven family, we propose a modification in computing the neural dynamics: the bi-fixed-step integration method. This method automatically adjusts the simulation step size to better cope with the stiffness of the neural model dynamics running in CPU platforms. One version of this method is also implemented for hybrid CPU-GPU platforms. Finally, we analyze how the performance and accuracy of these modifications evolve with increasing levels of neural complexity. We also demonstrate how the proposed modifications which constitute the main contribution of this study systematically outperform the traditional event- and time-driven techniques under increasing levels of neural complexity. PMID:28223930

  20. An information theory account of cognitive control

    PubMed Central

    Fan, Jin

    2014-01-01

    Our ability to efficiently process information and generate appropriate responses depends on the processes collectively called cognitive control. Despite a considerable focus in the literature on the cognitive control of information processing, neural mechanisms underlying control are still unclear, and have not been characterized by considering the quantity of information to be processed. A novel and comprehensive account of cognitive control is proposed using concepts from information theory, which is concerned with communication system analysis and the quantification of information. This account treats the brain as an information-processing entity where cognitive control and its underlying brain networks play a pivotal role in dealing with conditions of uncertainty. This hypothesis and theory article justifies the validity and properties of such an account and relates experimental findings to the frontoparietal network under the framework of information theory. PMID:25228875

  1. Neurocognitive Mechanisms of Learning to Read: Print Tuning in Beginning Readers Related to Word-Reading Fluency and Semantics but Not Phonology

    ERIC Educational Resources Information Center

    Eberhard-Moscicka, Aleksandra K.; Jost, Lea B.; Raith, Margit; Maurer, Urs

    2015-01-01

    During reading acquisition children learn to recognize orthographic stimuli and link them to phonology and semantics. The present study investigated neurocognitive processes of learning to read after one year of schooling. We aimed to elucidate the cognitive processes underlying neural tuning for print that has been shown to play an important role…

  2. B-Catenin Stability in Breast Cancer

    DTIC Science & Technology

    1996-07-01

    like age or family history. In this grim scenario, a basic understanding of the cellular processes underlying breast cancer is mandated before...the ventral region of Xenopus embryos induces a secondary dorso-anterior body axis, giving rise to two heads, notochords , and neural tubes (24). Wnt...pathway is involved in the processing and rapid degradation of many short-lived regulatory proteins. Mitotic cyclins, cyclin-dependent kinase

  3. Neurophysiological Influence of Musical Training on Speech Perception

    PubMed Central

    Shahin, Antoine J.

    2011-01-01

    Does musical training affect our perception of speech? For example, does learning to play a musical instrument modify the neural circuitry for auditory processing in a way that improves one's ability to perceive speech more clearly in noisy environments? If so, can speech perception in individuals with hearing loss (HL), who struggle in noisy situations, benefit from musical training? While music and speech exhibit some specialization in neural processing, there is evidence suggesting that skills acquired through musical training for specific acoustical processes may transfer to, and thereby improve, speech perception. The neurophysiological mechanisms underlying the influence of musical training on speech processing and the extent of this influence remains a rich area to be explored. A prerequisite for such transfer is the facilitation of greater neurophysiological overlap between speech and music processing following musical training. This review first establishes a neurophysiological link between musical training and speech perception, and subsequently provides further hypotheses on the neurophysiological implications of musical training on speech perception in adverse acoustical environments and in individuals with HL. PMID:21716639

  4. Neurophysiological influence of musical training on speech perception.

    PubMed

    Shahin, Antoine J

    2011-01-01

    Does musical training affect our perception of speech? For example, does learning to play a musical instrument modify the neural circuitry for auditory processing in a way that improves one's ability to perceive speech more clearly in noisy environments? If so, can speech perception in individuals with hearing loss (HL), who struggle in noisy situations, benefit from musical training? While music and speech exhibit some specialization in neural processing, there is evidence suggesting that skills acquired through musical training for specific acoustical processes may transfer to, and thereby improve, speech perception. The neurophysiological mechanisms underlying the influence of musical training on speech processing and the extent of this influence remains a rich area to be explored. A prerequisite for such transfer is the facilitation of greater neurophysiological overlap between speech and music processing following musical training. This review first establishes a neurophysiological link between musical training and speech perception, and subsequently provides further hypotheses on the neurophysiological implications of musical training on speech perception in adverse acoustical environments and in individuals with HL.

  5. Distributed Neural Processing Predictors of Multi-dimensional Properties of Affect

    PubMed Central

    Bush, Keith A.; Inman, Cory S.; Hamann, Stephan; Kilts, Clinton D.; James, G. Andrew

    2017-01-01

    Recent evidence suggests that emotions have a distributed neural representation, which has significant implications for our understanding of the mechanisms underlying emotion regulation and dysregulation as well as the potential targets available for neuromodulation-based emotion therapeutics. This work adds to this evidence by testing the distribution of neural representations underlying the affective dimensions of valence and arousal using representational models that vary in both the degree and the nature of their distribution. We used multi-voxel pattern classification (MVPC) to identify whole-brain patterns of functional magnetic resonance imaging (fMRI)-derived neural activations that reliably predicted dimensional properties of affect (valence and arousal) for visual stimuli viewed by a normative sample (n = 32) of demographically diverse, healthy adults. Inter-subject leave-one-out cross-validation showed whole-brain MVPC significantly predicted (p < 0.001) binarized normative ratings of valence (positive vs. negative, 59% accuracy) and arousal (high vs. low, 56% accuracy). We also conducted group-level univariate general linear modeling (GLM) analyses to identify brain regions whose response significantly differed for the contrasts of positive versus negative valence or high versus low arousal. Multivoxel pattern classifiers using voxels drawn from all identified regions of interest (all-ROIs) exhibited mixed performance; arousal was predicted significantly better than chance but worse than the whole-brain classifier, whereas valence was not predicted significantly better than chance. Multivoxel classifiers derived using individual ROIs generally performed no better than chance. Although performance of the all-ROI classifier improved with larger ROIs (generated by relaxing the clustering threshold), performance was still poorer than the whole-brain classifier. These findings support a highly distributed model of neural processing for the affective dimensions of valence and arousal. Finally, joint error analyses of the MVPC hyperplanes encoding valence and arousal identified regions within the dimensional affect space where multivoxel classifiers exhibited the greatest difficulty encoding brain states – specifically, stimuli of moderate arousal and high or low valence. In conclusion, we highlight new directions for characterizing affective processing for mechanistic and therapeutic applications in affective neuroscience. PMID:28959198

  6. Are the carrot and the stick the two sides of same coin? A neural examination of approach/avoidance motivation during cognitive performance.

    PubMed

    Belayachi, Sanaâ; Majerus, Steve; Gendolla, Guido; Salmon, Eric; Peters, Frédéric; Van der Linden, Martial

    2015-10-15

    The present study examined neural circuit activity in a working memory (WM) task under conditions of approach and avoidance motivation. Eighteen participants were scanned with functional MRI while they performed a 3-back WM task under three conditions: in an avoidance condition incorrect responses were punished with monetary loss; in an approach condition correct responses were rewarded with monetary gain; in a neutral control condition there was no monetary incentive. Compared with the control condition, activation in fronto-parietal areas - which are associated with WM processing - was increased in both the approach and avoidance conditions. The results suggest that both approach and avoidance motivation increase task-related cognitive activation. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. ERP Correlates of Verbal and Numerical Probabilities in Risky Choices: A Two-Stage Probability Processing View

    PubMed Central

    Li, Shu; Du, Xue-Lei; Li, Qi; Xuan, Yan-Hua; Wang, Yun; Rao, Li-Lin

    2016-01-01

    Two kinds of probability expressions, verbal and numerical, have been used to characterize the uncertainty that people face. However, the question of whether verbal and numerical probabilities are cognitively processed in a similar manner remains unresolved. From a levels-of-processing perspective, verbal and numerical probabilities may be processed differently during early sensory processing but similarly in later semantic-associated operations. This event-related potential (ERP) study investigated the neural processing of verbal and numerical probabilities in risky choices. The results showed that verbal probability and numerical probability elicited different N1 amplitudes but that verbal and numerical probabilities elicited similar N2 and P3 waveforms in response to different levels of probability (high to low). These results were consistent with a levels-of-processing framework and suggest some internal consistency between the cognitive processing of verbal and numerical probabilities in risky choices. Our findings shed light on possible mechanism underlying probability expression and may provide the neural evidence to support the translation of verbal to numerical probabilities (or vice versa). PMID:26834612

  8. Neural Correlates of Sex/Gender Differences in Humor Processing for Different Joke Types.

    PubMed

    Chan, Yu-Chen

    2016-01-01

    Humor operates through a variety of techniques, which first generate surprise and then amusement and laughter once the unexpected incongruity is resolved. As different types of jokes use different techniques, the corresponding humor processes also differ. The present study builds on the framework of the 'tri-component theory of humor,' which details the mechanisms involved in cognition (comprehension), affect (appreciation), and laughter (expression). This study seeks to identify differences among joke types and between sexes/genders in the neural mechanisms underlying humor processing. Three types of verbal jokes, bridging-inference jokes (BJs), exaggeration jokes (EJs), and ambiguity jokes (AJs), were used as stimuli. The findings revealed differences in brain activity for an interaction between sex/gender and joke type. For BJs, women displayed greater activation in the temporoparietal-mesocortical-motor network than men, demonstrating the importance of the temporoparietal junction (TPJ) presumably for 'theory of mind' processing, the orbitofrontal cortex for motivational functions and reward coding, and the supplementary motor area for laughter. Women also showed greater activation than men in the frontal-mesolimbic network associated with EJs, including the anterior (frontopolar) prefrontal cortex (aPFC, BA 10) for executive control processes, and the amygdala and midbrain for reward anticipation and salience processes. Conversely, AJs elicited greater activation in men than women in the frontal-paralimbic network, including the dorsal prefrontal cortex (dPFC) and parahippocampal gyrus. All joke types elicited greater activation in the aPFC of women than of men, whereas men showed greater activation than women in the dPFC. To confirm the findings related to sex/gender differences, random group analysis and within group variance analysis were also performed. These findings help further establish the mechanisms underlying the processing of different joke types for the sexes/genders and provide a neural foundation for a theory of sex/gender differences in humor.

  9. Neural Correlates of Sex/Gender Differences in Humor Processing for Different Joke Types

    PubMed Central

    Chan, Yu-Chen

    2016-01-01

    Humor operates through a variety of techniques, which first generate surprise and then amusement and laughter once the unexpected incongruity is resolved. As different types of jokes use different techniques, the corresponding humor processes also differ. The present study builds on the framework of the ‘tri-component theory of humor,’ which details the mechanisms involved in cognition (comprehension), affect (appreciation), and laughter (expression). This study seeks to identify differences among joke types and between sexes/genders in the neural mechanisms underlying humor processing. Three types of verbal jokes, bridging-inference jokes (BJs), exaggeration jokes (EJs), and ambiguity jokes (AJs), were used as stimuli. The findings revealed differences in brain activity for an interaction between sex/gender and joke type. For BJs, women displayed greater activation in the temporoparietal–mesocortical-motor network than men, demonstrating the importance of the temporoparietal junction (TPJ) presumably for ‘theory of mind’ processing, the orbitofrontal cortex for motivational functions and reward coding, and the supplementary motor area for laughter. Women also showed greater activation than men in the frontal-mesolimbic network associated with EJs, including the anterior (frontopolar) prefrontal cortex (aPFC, BA 10) for executive control processes, and the amygdala and midbrain for reward anticipation and salience processes. Conversely, AJs elicited greater activation in men than women in the frontal-paralimbic network, including the dorsal prefrontal cortex (dPFC) and parahippocampal gyrus. All joke types elicited greater activation in the aPFC of women than of men, whereas men showed greater activation than women in the dPFC. To confirm the findings related to sex/gender differences, random group analysis and within group variance analysis were also performed. These findings help further establish the mechanisms underlying the processing of different joke types for the sexes/genders and provide a neural foundation for a theory of sex/gender differences in humor. PMID:27199791

  10. Toward an Interdisciplinary Understanding of Sensory Dysfunction in Autism Spectrum Disorder: An Integration of the Neural and Symptom Literatures

    PubMed Central

    Schauder, Kimberly B.; Bennetto, Loisa

    2016-01-01

    Sensory processing differences have long been associated with autism spectrum disorder (ASD), and they have recently been added to the diagnostic criteria for the disorder. The focus on sensory processing in ASD research has increased substantially in the last decade. This research has been approached from two different perspectives: the first focuses on characterizing the symptoms that manifest in response to real world sensory stimulation, and the second focuses on the neural pathways and mechanisms underlying sensory processing. The purpose of this paper is to integrate the empirical literature on sensory processing in ASD from the last decade, including both studies characterizing sensory symptoms and those that investigate neural response to sensory stimuli. We begin with a discussion of definitions to clarify some of the inconsistencies in terminology that currently exist in the field. Next, the sensory symptoms literature is reviewed with a particular focus on developmental considerations and the relationship of sensory symptoms to other core features of the disorder. Then, the neuroscience literature is reviewed with a focus on methodological approaches and specific sensory modalities. Currently, these sensory symptoms and neuroscience perspectives are largely developing independently from each other leading to multiple, but separate, theories and methods, thus creating a multidisciplinary approach to sensory processing in ASD. In order to progress our understanding of sensory processing in ASD, it is now critical to integrate these two research perspectives and move toward an interdisciplinary approach. This will inevitably aid in a better understanding of the underlying biological basis of these symptoms and help realize the translational value through its application to early identification and treatment. The review ends with specific recommendations for future research to help bridge these two research perspectives in order to advance our understanding of sensory processing in ASD. PMID:27378838

  11. Using repetitive transcranial magnetic stimulation to study the underlying neural mechanisms of human motor learning and memory.

    PubMed

    Censor, Nitzan; Cohen, Leonardo G

    2011-01-01

    In the last two decades, there has been a rapid development in the research of the physiological brain mechanisms underlying human motor learning and memory. While conventional memory research performed on animal models uses intracellular recordings, microfusion of protein inhibitors to specific brain areas and direct induction of focal brain lesions, human research has so far utilized predominantly behavioural approaches and indirect measurements of neural activity. Repetitive transcranial magnetic stimulation (rTMS), a safe non-invasive brain stimulation technique, enables the study of the functional role of specific cortical areas by evaluating the behavioural consequences of selective modulation of activity (excitation or inhibition) on memory generation and consolidation, contributing to the understanding of the neural substrates of motor learning. Depending on the parameters of stimulation, rTMS can also facilitate learning processes, presumably through purposeful modulation of excitability in specific brain regions. rTMS has also been used to gain valuable knowledge regarding the timeline of motor memory formation, from initial encoding to stabilization and long-term retention. In this review, we summarize insights gained using rTMS on the physiological and neural mechanisms of human motor learning and memory. We conclude by suggesting possible future research directions, some with direct clinical implications.

  12. Near real-time analysis of extrinsic Fabry-Perot interferometric sensors under damped vibration using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Dua, Rohit; Watkins, Steve E.

    2009-03-01

    Strain analysis due to vibration can provide insight into structural health. An Extrinsic Fabry-Perot Interferometric (EFPI) sensor under vibrational strain generates a non-linear modulated output. Advanced signal processing techniques, to extract important information such as absolute strain, are required to demodulate this non-linear output. Past research has employed Artificial Neural Networks (ANN) and Fast Fourier Transforms (FFT) to demodulate the EFPI sensor for limited conditions. These demodulation systems could only handle variations in absolute value of strain and frequency of actuation during a vibration event. This project uses an ANN approach to extend the demodulation system to include the variation in the damping coefficient of the actuating vibration, in a near real-time vibration scenario. A computer simulation provides training and testing data for the theoretical output of the EFPI sensor to demonstrate the approaches. FFT needed to be performed on a window of the EFPI output data. A small window of observation is obtained, while maintaining low absolute-strain prediction errors, heuristically. Results are obtained and compared from employing different ANN architectures including multi-layered feedforward ANN trained using Backpropagation Neural Network (BPNN), and Generalized Regression Neural Networks (GRNN). A two-layered algorithm fusion system is developed and tested that yields better results.

  13. A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaouachi, Aymen; Kamel, Rashad M.; Nagasaka, Ken

    This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three multi-layered feed forwarded Artificial Neural Networks (ANN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated ANN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology,more » comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and nonlinear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network and the Perturb and Observe (P and O) algorithm dispositive. (author)« less

  14. Theory of mind and decision-making processes are impaired in Parkinson's disease.

    PubMed

    Xi, Chunhua; Zhu, Youling; Mu, Yanfang; Chen, Bing; Dong, Bin; Cheng, Huaidong; Hu, Panpan; Zhu, Chunyan; Wang, Kai

    2015-02-15

    Prefrontal cortex plays a vital role in the theory of mind (ToM) and decision making, as shown in functional brain imaging and lesion studies. Considering the primary neuropathology of Parkinson's disease (PD) involving the frontal lobe system, patients with PD are expected to exhibit deficits in ToM and social decision making. The aim of this study was to investigate affective ToM and decision making in patients with PD and healthy controls (HC) in a task assessing affective ToM (Reading the Mind in the Eyes, RME) and two decision-making tasks (Iowa Gambling Task, IGT; Game of Dice Task, GDT). Consistent with previous findings, patients with PD were impaired in the affective ToM task, and when making decisions under ambiguity and in risk situations. The score of emotion recognition in the RME task was negatively correlated with the severity of the disease and positively correlated with the total number of advantageous cards chosen in the IGT. However, the final capital in the GDT was correlated with memory impairment. The present study implies that affective ToM and decision making under ambiguity may share similar neural mechanisms, while decision making under ambiguity and decision making under risk may involve processing within different neural networks. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. A Rotational Motion Perception Neural Network Based on Asymmetric Spatiotemporal Visual Information Processing.

    PubMed

    Hu, Bin; Yue, Shigang; Zhang, Zhuhong

    All complex motion patterns can be decomposed into several elements, including translation, expansion/contraction, and rotational motion. In biological vision systems, scientists have found that specific types of visual neurons have specific preferences to each of the three motion elements. There are computational models on translation and expansion/contraction perceptions; however, little has been done in the past to create computational models for rotational motion perception. To fill this gap, we proposed a neural network that utilizes a specific spatiotemporal arrangement of asymmetric lateral inhibited direction selective neural networks (DSNNs) for rotational motion perception. The proposed neural network consists of two parts-presynaptic and postsynaptic parts. In the presynaptic part, there are a number of lateral inhibited DSNNs to extract directional visual cues. In the postsynaptic part, similar to the arrangement of the directional columns in the cerebral cortex, these direction selective neurons are arranged in a cyclic order to perceive rotational motion cues. In the postsynaptic network, the delayed excitation from each direction selective neuron is multiplied by the gathered excitation from this neuron and its unilateral counterparts depending on which rotation, clockwise (cw) or counter-cw (ccw), to perceive. Systematic experiments under various conditions and settings have been carried out and validated the robustness and reliability of the proposed neural network in detecting cw or ccw rotational motion. This research is a critical step further toward dynamic visual information processing.All complex motion patterns can be decomposed into several elements, including translation, expansion/contraction, and rotational motion. In biological vision systems, scientists have found that specific types of visual neurons have specific preferences to each of the three motion elements. There are computational models on translation and expansion/contraction perceptions; however, little has been done in the past to create computational models for rotational motion perception. To fill this gap, we proposed a neural network that utilizes a specific spatiotemporal arrangement of asymmetric lateral inhibited direction selective neural networks (DSNNs) for rotational motion perception. The proposed neural network consists of two parts-presynaptic and postsynaptic parts. In the presynaptic part, there are a number of lateral inhibited DSNNs to extract directional visual cues. In the postsynaptic part, similar to the arrangement of the directional columns in the cerebral cortex, these direction selective neurons are arranged in a cyclic order to perceive rotational motion cues. In the postsynaptic network, the delayed excitation from each direction selective neuron is multiplied by the gathered excitation from this neuron and its unilateral counterparts depending on which rotation, clockwise (cw) or counter-cw (ccw), to perceive. Systematic experiments under various conditions and settings have been carried out and validated the robustness and reliability of the proposed neural network in detecting cw or ccw rotational motion. This research is a critical step further toward dynamic visual information processing.

  16. Enabling the First Ever Measurement of Coherent Neutrino Scattering Through Background Neutron Measurements.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reyna, David; Betty, Rita

    Using High Performance Computing to Examine the Processes of Neurogenesis Underlying Pattern Separation/Completion of Episodic Information - Sandia researchers developed novel methods and metrics for studying the computational function of neurogenesis,thus generating substantial impact to the neuroscience and neural computing communities. This work could benefit applications in machine learning and other analysis activities. The purpose of this project was to computationally model the impact of neural population dynamics within the neurobiological memory system in order to examine how subareas in the brain enable pattern separation and completion of information in memory across time as associated experiences.

  17. Hybrid information privacy system: integration of chaotic neural network and RSA coding

    NASA Astrophysics Data System (ADS)

    Hsu, Ming-Kai; Willey, Jeff; Lee, Ting N.; Szu, Harold H.

    2005-03-01

    Electronic mails are adopted worldwide; most are easily hacked by hackers. In this paper, we purposed a free, fast and convenient hybrid privacy system to protect email communication. The privacy system is implemented by combining private security RSA algorithm with specific chaos neural network encryption process. The receiver can decrypt received email as long as it can reproduce the specified chaos neural network series, so called spatial-temporal keys. The chaotic typing and initial seed value of chaos neural network series, encrypted by the RSA algorithm, can reproduce spatial-temporal keys. The encrypted chaotic typing and initial seed value are hidden in watermark mixed nonlinearly with message media, wrapped with convolution error correction codes for wireless 3rd generation cellular phones. The message media can be an arbitrary image. The pattern noise has to be considered during transmission and it could affect/change the spatial-temporal keys. Since any change/modification on chaotic typing or initial seed value of chaos neural network series is not acceptable, the RSA codec system must be robust and fault-tolerant via wireless channel. The robust and fault-tolerant properties of chaos neural networks (CNN) were proved by a field theory of Associative Memory by Szu in 1997. The 1-D chaos generating nodes from the logistic map having arbitrarily negative slope a = p/q generating the N-shaped sigmoid was given first by Szu in 1992. In this paper, we simulated the robust and fault-tolerance properties of CNN under additive noise and pattern noise. We also implement a private version of RSA coding and chaos encryption process on messages.

  18. Neural bases of antisocial behavior: a voxel-based meta-analysis

    PubMed Central

    Inokuchi, Ryota; Nakao, Tomohiro; Yamasue, Hidenori

    2014-01-01

    Individuals with antisocial behavior place a great physical and economic burden on society. Deficits in emotional processing have been recognized as a fundamental cause of antisocial behavior. Emerging evidence also highlights a significant contribution of attention allocation deficits to such behavior. A comprehensive literature search identified 12 studies that were eligible for inclusion in the meta-analysis, which compared 291 individuals with antisocial problems and 247 controls. Signed Differential Mapping revealed that compared with controls, gray matter volume (GMV) in subjects with antisocial behavior was reduced in the right lentiform nucleus (P < 0.0001), left insula (P = 0.0002) and left frontopolar cortex (FPC) (P = 0.0006), and was increased in the right fusiform gyrus (P < 0.0001), right inferior parietal lobule (P = 0.0003), right superior parietal lobule (P = 0.0004), right cingulate gyrus (P = 0.0004) and the right postcentral gyrus (P = 0.0004). Given the well-known contributions of limbic and paralimbic areas to emotional processing, the observed reductions in GMV in these regions might represent neural correlates of disturbance in emotional processing underlying antisocial behavior. Previous studies have suggested an FPC role in attention allocation during emotional processing. Therefore, GMV deviations in this area may constitute a neural basis of deficits in attention allocation linked with antisocial behavior. PMID:23926170

  19. Neurocognitive processes of linguistic cues related to death.

    PubMed

    Han, Shihui; Qin, Jungang; Ma, Yina

    2010-10-01

    Consciousness of the finiteness of one's personal existence influences human thoughts and behaviors tremendously. However, the neural substrates underlying the processing of death-related information remain unclear. The current study addressed this issue by scanning 20 female adults, using functional magnetic resonance imaging, in a modified Stroop task that required naming colors of death-related, negative-valence, and neutral-valence words. We found that, while both death-related and negative-valence words increased activity in the precuneus/posterior cingulate and lateral frontal cortex relative to neutral-valence words, the neural correlate of the processing of death-related words was characterized by decreased activity in bilateral insula relative to both negative-valence and neutral-valence words. Moreover, the decreased activity in the left insula correlated with subjective ratings of death relevance of death-related words and the decreased activity in the right insula correlated with subjective ratings of arousal induced by death-related words. Our fMRI findings suggest that, while both death-related and negative-valence words are associated with enhanced arousal and emotion regulation, the processing of linguistic cues related to death is associated with modulations of the activity in the insula that mediates neural representation of the sentient self. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. COMT val108/158 met genotype affects neural but not cognitive processing in healthy individuals.

    PubMed

    Dennis, Nancy A; Need, Anna C; LaBar, Kevin S; Waters-Metenier, Sheena; Cirulli, Elizabeth T; Kragel, James; Goldstein, David B; Cabeza, Roberto

    2010-03-01

    The relationship between cognition and a functional polymorphism in the catechol-O-methlytransferase (COMT) gene, val108/158met, is one of debate in the literature. Furthermore, based on the dopaminergic differences associated with the COMT val108/158met genotype, neural differences during cognition may be present, regardless of genotypic differences in cognitive performance. To investigate these issues the current study aimed to 1) examine the effects of COMT genotype using a large sample of healthy individuals (n = 496-1218) and multiple cognitive measures, and using a subset of the sample (n = 22), 2) examine whether COMT genotype effects medial temporal lobe (MTL) and frontal activity during successful relational memory processing, and 3) investigate group differences in functional connectivity associated with successful relational memory processing. Results revealed no significant group difference in cognitive performance between COMT genotypes in any of the 19 cognitive measures. However, in the subset sample, COMT val homozygotes exhibited significantly decreased MTL and increased prefrontal activity during both successful relational encoding and retrieval, and reduced connectivity between these regions compared with met homozygotes. Taken together, the results suggest that although the COMT val108/158met genotype has no effect on cognitive behavioral measures in healthy individuals, it is associated with differences in neural process underlying cognitive output.

  1. Self-affirmation activates brain systems associated with self-related processing and reward and is reinforced by future orientation

    PubMed Central

    O’Donnell, Matthew Brook; Tinney, Francis J.; Lieberman, Matthew D.; Taylor, Shelley E.; Strecher, Victor J.; Falk, Emily B.

    2016-01-01

    Self-affirmation theory posits that people are motivated to maintain a positive self-view and that threats to perceived self-competence are met with resistance. When threatened, self-affirmations can restore self-competence by allowing individuals to reflect on sources of self-worth, such as core values. Many questions exist, however, about the underlying mechanisms associated with self-affirmation. We examined the neural mechanisms of self-affirmation with a task developed for use in a functional magnetic resonance imaging environment. Results of a region of interest analysis demonstrated that participants who were affirmed (compared with unaffirmed participants) showed increased activity in key regions of the brain’s self-processing (medial prefrontal cortex + posterior cingulate cortex) and valuation (ventral striatum + ventral medial prefrontal cortex) systems when reflecting on future-oriented core values (compared with everyday activities). Furthermore, this neural activity went on to predict changes in sedentary behavior consistent with successful affirmation in response to a separate physical activity intervention. These results highlight neural processes associated with successful self-affirmation, and further suggest that key pathways may be amplified in conjunction with prospection. PMID:26541373

  2. Modification of existing human motor memories is enabled by primary cortical processing during memory reactivation.

    PubMed

    Censor, Nitzan; Dimyan, Michael A; Cohen, Leonardo G

    2010-09-14

    One of the most challenging tasks of the brain is to constantly update the internal neural representations of existing memories. Animal studies have used invasive methods such as direct microfusion of protein inhibitors to designated brain areas, in order to study the neural mechanisms underlying modification of already existing memories after their reactivation during recall [1-4]. Because such interventions are not possible in humans, it is not known how these neural processes operate in the human brain. In a series of experiments we show here that when an existing human motor memory is reactivated during recall, modification of the memory is blocked by virtual lesion [5] of the related primary cortical human brain area. The virtual lesion was induced by noninvasive repetitive transcranial magnetic stimulation guided by a frameless stereotactic brain navigation system and each subject's brain image. The results demonstrate that primary cortical processing in the human brain interacting with pre-existing reactivated memory traces is critical for successful modification of the existing related memory. Modulation of reactivated memories by noninvasive cortical stimulation may have important implications for human memory research and have far-reaching clinical applications. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Stress affects the neural ensemble for integrating new information and prior knowledge.

    PubMed

    Vogel, Susanne; Kluen, Lisa Marieke; Fernández, Guillén; Schwabe, Lars

    2018-06-01

    Prior knowledge, represented as a schema, facilitates memory encoding. This schema-related learning is assumed to rely on the medial prefrontal cortex (mPFC) that rapidly integrates new information into the schema, whereas schema-incongruent or novel information is encoded by the hippocampus. Stress is a powerful modulator of prefrontal and hippocampal functioning and first studies suggest a stress-induced deficit of schema-related learning. However, the underlying neural mechanism is currently unknown. To investigate the neural basis of a stress-induced schema-related learning impairment, participants first acquired a schema. One day later, they underwent a stress induction or a control procedure before learning schema-related and novel information in the MRI scanner. In line with previous studies, learning schema-related compared to novel information activated the mPFC, angular gyrus, and precuneus. Stress, however, affected the neural ensemble activated during learning. Whereas the control group distinguished between sets of brain regions for related and novel information, stressed individuals engaged the hippocampus even when a relevant schema was present. Additionally, stressed participants displayed aberrant functional connectivity between brain regions involved in schema processing when encoding novel information. The failure to segregate functional connectivity patterns depending on the presence of prior knowledge was linked to impaired performance after stress. Our results show that stress affects the neural ensemble underlying the efficient use of schemas during learning. These findings may have relevant implications for clinical and educational settings. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Explicit and implicit emotion regulation: a multi-level framework

    PubMed Central

    Braunstein, Laura Martin; Gross, James J

    2017-01-01

    Abstract The ability to adaptively regulate emotion is essential for mental and physical well-being. How should we organize the myriad ways people attempt to regulate their emotions? We explore the utility of a framework that distinguishes among four fundamental classes of emotion regulation strategies. The framework describes each strategy class in terms their behavioral characteristics, underlying psychological processes and supporting neural systems. A key feature of this multi-level framework is its conceptualization of the psychological processes in terms of two orthogonal dimensions that describe (i) the nature of the emotion regulation goal (ranging from to implicit to explicit) and (ii) the nature of the emotion change process (ranging from more automatic to more controlled). After describing the core elements of the framework, we use it to review human and animal research on the neural bases of emotion regulation and to suggest key directions for future research on emotion regulation. PMID:28981910

  5. Simulating Biological and Non-Biological Motion

    ERIC Educational Resources Information Center

    Bruzzo, Angela; Gesierich, Benno; Wohlschlager, Andreas

    2008-01-01

    It is widely accepted that the brain processes biological and non-biological movements in distinct neural circuits. Biological motion, in contrast to non-biological motion, refers to active movements of living beings. Aim of our experiment was to investigate the mechanisms underlying mental simulation of these two movement types. Subjects had to…

  6. Rats in Virtual Space: The development and implementation of a multimodal virtual reality system for small animals

    NASA Astrophysics Data System (ADS)

    Aharoni, Daniel Benjamin

    The integration of multimodal sensory information into a common neural code is a critical function of all complex nervous systems. This process is required for adaptive responding to incoming stimuli as well as the formation of a cognitive map of the external sensory environment. The underlying neural mechanisms of multimodal integration are poorly understood due, in part, to the technical difficulties of manipulating multimodal sensory information in combination with simultaneous in-vivo electrophysiological recording in awake behaving animals. We therefore developed a non-invasive multimodal virtual reality system that is conducive to wired electrophysiological recording techniques. This system allows for the dynamic presentation of highly immersive audiovisual virtual environments to rats maintained in a body fixed position on top of a quiet spherical treadmill. Notably, this allows the rats to remain at the same spatial location in the real world without the need for head fixation. This method opens the door for a wide array of future studies aimed at elucidating the underlying neural mechanisms of multimodal integration.

  7. Cortico-basal ganglia networks subserving goal-directed behavior mediated by conditional visuo-goal association

    PubMed Central

    Hoshi, Eiji

    2013-01-01

    Action is often executed according to information provided by a visual signal. As this type of behavior integrates two distinct neural representations, perception and action, it has been thought that identification of the neural mechanisms underlying this process will yield deeper insights into the principles underpinning goal-directed behavior. Based on a framework derived from conditional visuomotor association, prior studies have identified neural mechanisms in the dorsal premotor cortex (PMd), dorsolateral prefrontal cortex (dlPFC), ventrolateral prefrontal cortex (vlPFC), and basal ganglia (BG). However, applications resting solely on this conceptualization encounter problems related to generalization and flexibility, essential processes in executive function, because the association mode involves a direct one-to-one mapping of each visual signal onto a particular action. To overcome this problem, we extend this conceptualization and postulate a more general framework, conditional visuo-goal association. According to this new framework, the visual signal identifies an abstract behavioral goal, and an action is subsequently selected and executed to meet this goal. Neuronal activity recorded from the four key areas of the brains of monkeys performing a task involving conditional visuo-goal association revealed three major mechanisms underlying this process. First, visual-object signals are represented primarily in the vlPFC and BG. Second, all four areas are involved in initially determining the goals based on the visual signals, with the PMd and dlPFC playing major roles in maintaining the salience of the goals. Third, the cortical areas play major roles in specifying action, whereas the role of the BG in this process is restrictive. These new lines of evidence reveal that the four areas involved in conditional visuomotor association contribute to goal-directed behavior mediated by conditional visuo-goal association in an area-dependent manner. PMID:24155692

  8. A meta-analysis of fMRI studies on Chinese orthographic, phonological, and semantic processing.

    PubMed

    Wu, Chiao-Yi; Ho, Moon-Ho Ringo; Chen, Shen-Hsing Annabel

    2012-10-15

    A growing body of neuroimaging evidence has shown that Chinese character processing recruits differential activation from alphabetic languages due to its unique linguistic features. As more investigations on Chinese character processing have recently become available, we applied a meta-analytic approach to summarize previous findings and examined the neural networks for orthographic, phonological, and semantic processing of Chinese characters independently. The activation likelihood estimation (ALE) method was used to analyze eight studies in the orthographic task category, eleven in the phonological and fifteen in the semantic task categories. Converging activation among three language-processing components was found in the left middle frontal gyrus, the left superior parietal lobule and the left mid-fusiform gyrus, suggesting a common sub-network underlying the character recognition process regardless of the task nature. With increasing task demands, the left inferior parietal lobule and the right superior temporal gyrus were specialized for phonological processing, while the left middle temporal gyrus was involved in semantic processing. Functional dissociation was identified in the left inferior frontal gyrus, with the posterior dorsal part for phonological processing and the anterior ventral part for semantic processing. Moreover, bilateral involvement of the ventral occipito-temporal regions was found for both phonological and semantic processing. The results provide better understanding of the neural networks underlying Chinese orthographic, phonological, and semantic processing, and consolidate the findings of additional recruitment of the left middle frontal gyrus and the right fusiform gyrus for Chinese character processing as compared with the universal language network that has been based on alphabetic languages. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Enhanced corticobulbar excitability in chronic smokers during visual exposure to cigarette smoking cues

    PubMed Central

    Vicario, Carmelo M.; Komeilipoor, Naeem; Cesari, Paola; Rafal, Robert D.; Nitsche, Michael A.

    2014-01-01

    Background Neuroimaging studies of chronic smokers report altered activity of several neural regions involved in the processing of rewarding outcomes. Neuroanatomical evidence suggests that these regions are directly connected to the tongue muscle through the corticobulbar pathways. Accordingly, we examined whether corticobulbar excitability might be considered a somatic marker for nicotine craving. Methods We compared motor-evoked potential (MEP) amplitudes recorded from the tongue and the extensor carpi radialis (control muscle) of chronic smokers under drug withdrawal and intake conditions as well as a nonsmoker group. All participants were tested during passive exposure to pictures showing a smoking cue or a meaningless stimulus. In the intake condition, chronic smokers were asked to smoke a real cigarette (CSn: group 1) or a placebo (CSp: group 2). Results Results show that MEP amplitudes recorded from the tongues of participants in the CSn and CSp groups under the withdrawal condition were selectively enhanced during exposure to a smoking cue. However, this effect on tongue MEP amplitudes disappeared in the intake condition for both the CSn and CSp groups. Limitations Limitations include the fact that the study was conducted in 2 different laboratories, the small sample size, the absence of data on chronic smoker craving strength and the different tastes of the real and placebo cigarettes. Conclusion These results suggest that, in chronic smokers, tongue muscle MEP amplitudes are sensitive to neural processes active under the physiological status of nicotine craving. This finding implicates a possible functional link between neural excitability of the corticobulbar pathway and the reward system in chronic smokers. PMID:24485386

  10. Genetic influences on phase synchrony of brain oscillations supporting response inhibition.

    PubMed

    Müller, Viktor; Anokhin, Andrey P; Lindenberger, Ulman

    2017-05-01

    Phase synchronization of neuronal oscillations is a fundamental mechanism underlying cognitive processing and behavior, including context-dependent response production and inhibition. Abnormalities in neural synchrony can lead to abnormal information processing and contribute to cognitive and behavioral deficits in neuropsychiatric disorders. However, little is known about genetic and environmental contributions to individual differences in cortical oscillatory dynamics underlying response inhibition. This study examined heritability of event-related phase synchronization of brain oscillations in 302 young female twins including 94 MZ and 57 DZ pairs performing a cued Go/No-Go version of the Continuous Performance Test (CPT). We used the Phase Locking Index (PLI) to assess inter-trial phase clustering (synchrony) in several frequency bands in two time intervals after stimulus onset (0-300 and 301-600ms). Response inhibition (i.e., successful response suppression in No-Go trials) was characterized by a transient increase in phase synchronization of delta- and theta-band oscillations in the fronto-central midline region. Genetic analysis showed significant heritability of the phase locking measures related to response inhibition, with 30 to 49% of inter-individual variability being accounted for by genetic factors. This is the first study providing evidence for heritability of task-related neural synchrony. The present results suggest that PLI can serve as an indicator of genetically transmitted individual differences in neural substrates of response inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Neural sensitivity to statistical regularities as a fundamental biological process that underlies auditory learning: the role of musical practice.

    PubMed

    François, Clément; Schön, Daniele

    2014-02-01

    There is increasing evidence that humans and other nonhuman mammals are sensitive to the statistical structure of auditory input. Indeed, neural sensitivity to statistical regularities seems to be a fundamental biological property underlying auditory learning. In the case of speech, statistical regularities play a crucial role in the acquisition of several linguistic features, from phonotactic to more complex rules such as morphosyntactic rules. Interestingly, a similar sensitivity has been shown with non-speech streams: sequences of sounds changing in frequency or timbre can be segmented on the sole basis of conditional probabilities between adjacent sounds. We recently ran a set of cross-sectional and longitudinal experiments showing that merging music and speech information in song facilitates stream segmentation and, further, that musical practice enhances sensitivity to statistical regularities in speech at both neural and behavioral levels. Based on recent findings showing the involvement of a fronto-temporal network in speech segmentation, we defend the idea that enhanced auditory learning observed in musicians originates via at least three distinct pathways: enhanced low-level auditory processing, enhanced phono-articulatory mapping via the left Inferior Frontal Gyrus and Pre-Motor cortex and increased functional connectivity within the audio-motor network. Finally, we discuss how these data predict a beneficial use of music for optimizing speech acquisition in both normal and impaired populations. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Image processing and analysis using neural networks for optometry area

    NASA Astrophysics Data System (ADS)

    Netto, Antonio V.; Ferreira de Oliveira, Maria C.

    2002-11-01

    In this work we describe the framework of a functional system for processing and analyzing images of the human eye acquired by the Hartmann-Shack technique (HS), in order to extract information to formulate a diagnosis of eye refractive errors (astigmatism, hypermetropia and myopia). The analysis is to be carried out using an Artificial Intelligence system based on Neural Nets, Fuzzy Logic and Classifier Combination. The major goal is to establish the basis of a new technology to effectively measure ocular refractive errors that is based on methods alternative those adopted in current patented systems. Moreover, analysis of images acquired with the Hartmann-Shack technique may enable the extraction of additional information on the health of an eye under exam from the same image used to detect refraction errors.

  13. Learning robot actions based on self-organising language memory.

    PubMed

    Wermter, Stefan; Elshaw, Mark

    2003-01-01

    In the MirrorBot project we examine perceptual processes using models of cortical assemblies and mirror neurons to explore the emergence of semantic representations of actions, percepts and concepts in a neural robot. The hypothesis under investigation is whether a neural model will produce a life-like perception system for actions. In this context we focus in this paper on how instructions for actions can be modeled in a self-organising memory. Current approaches for robot control often do not use language and ignore neural learning. However, our approach uses language instruction and draws from the concepts of regional distributed modularity, self-organisation and neural assemblies. We describe a self-organising model that clusters actions into different locations depending on the body part they are associated with. In particular, we use actual sensor readings from the MIRA robot to represent semantic features of the action verbs. Furthermore, we outline a hierarchical computational model for a self-organising robot action control system using language for instruction.

  14. Readout from iconic memory and selective spatial attention involve similar neural processes.

    PubMed

    Ruff, Christian C; Kristjánsson, Arni; Driver, Jon

    2007-10-01

    Iconic memory and spatial attention are often considered separately, but they may have functional similarities. Here we provide functional magnetic resonance imaging evidence for some common underlying neural effects. Subjects judged three visual stimuli in one hemifield of a bilateral array comprising six stimuli. The relevant hemifield for partial report was indicated by an auditory cue, administered either before the visual array (precue, spatial attention) or shortly after the array (postcue, iconic memory). Pre- and postcues led to similar activity modulations in lateral occipital cortex contralateral to the cued side. This finding indicates that readout from iconic memory can have some neural effects similar to those of spatial attention. We also found common bilateral activation of a fronto-parietal network for postcue and precue trials. These neuroimaging data suggest that some common neural mechanisms underlie selective spatial attention and readout from iconic memory. Some differences were also found; compared with precues, postcues led to higher activity in the right middle frontal gyrus.

  15. Readout From Iconic Memory and Selective Spatial Attention Involve Similar Neural Processes

    PubMed Central

    Ruff, Christian C; Kristjánsson, Árni; Driver, Jon

    2007-01-01

    Iconic memory and spatial attention are often considered separately, but they may have functional similarities. Here we provide functional magnetic resonance imaging evidence for some common underlying neural effects. Subjects judged three visual stimuli in one hemifield of a bilateral array comprising six stimuli. The relevant hemifield for partial report was indicated by an auditory cue, administered either before the visual array (precue, spatial attention) or shortly after the array (postcue, iconic memory). Pre- and postcues led to similar activity modulations in lateral occipital cortex contralateral to the cued side. This finding indicates that readout from iconic memory can have some neural effects similar to those of spatial attention. We also found common bilateral activation of a fronto-parietal network for postcue and precue trials. These neuroimaging data suggest that some common neural mechanisms underlie selective spatial attention and readout from iconic memory. Some differences were also found; compared with precues, postcues led to higher activity in the right middle frontal gyrus. PMID:17894608

  16. Capturing the temporal evolution of choice across prefrontal cortex

    PubMed Central

    Hunt, Laurence T; Behrens, Timothy EJ; Hosokawa, Takayuki; Wallis, Jonathan D; Kennerley, Steven W

    2015-01-01

    Activity in prefrontal cortex (PFC) has been richly described using economic models of choice. Yet such descriptions fail to capture the dynamics of decision formation. Describing dynamic neural processes has proven challenging due to the problem of indexing the internal state of PFC and its trial-by-trial variation. Using primate neurophysiology and human magnetoencephalography, we here recover a single-trial index of PFC internal states from multiple simultaneously recorded PFC subregions. This index can explain the origins of neural representations of economic variables in PFC. It describes the relationship between neural dynamics and behaviour in both human and monkey PFC, directly bridging between human neuroimaging data and underlying neuronal activity. Moreover, it reveals a functionally dissociable interaction between orbitofrontal cortex, anterior cingulate cortex and dorsolateral PFC in guiding cost-benefit decisions. We cast our observations in terms of a recurrent neural network model of choice, providing formal links to mechanistic dynamical accounts of decision-making. DOI: http://dx.doi.org/10.7554/eLife.11945.001 PMID:26653139

  17. DISRUPTION OF LARGE-SCALE NEURAL NETWORKS IN NON-FLUENT/AGRAMMATIC VARIANT PRIMARY PROGRESSIVE APHASIA ASSOCIATED WITH FRONTOTEMPORAL DEGENERATION PATHOLOGY

    PubMed Central

    Grossman, Murray; Powers, John; Ash, Sherry; McMillan, Corey; Burkholder, Lisa; Irwin, David; Trojanowski, John Q.

    2012-01-01

    Non-fluent/agrammatic primary progressive aphasia (naPPA) is a progressive neurodegenerative condition most prominently associated with slowed, effortful speech. A clinical imaging marker of naPPA is disease centered in the left inferior frontal lobe. We used multimodal imaging to assess large-scale neural networks underlying effortful expression in 15 patients with sporadic naPPA due to frontotemporal lobar degeneration (FTLD) spectrum pathology. Effortful speech in these patients is related in part to impaired grammatical processing, and to phonologic speech errors. Gray matter (GM) imaging shows frontal and anterior-superior temporal atrophy, most prominently in the left hemisphere. Diffusion tensor imaging reveals reduced fractional anisotropy in several white matter (WM) tracts mediating projections between left frontal and other GM regions. Regression analyses suggest disruption of three large-scale GM-WM neural networks in naPPA that support fluent, grammatical expression. These findings emphasize the role of large-scale neural networks in language, and demonstrate associated language deficits in naPPA. PMID:23218686

  18. Physical Exercise Promotes Recovery of Neurological Function after Ischemic Stroke in Rats

    PubMed Central

    Zheng, Hai-Qing; Zhang, Li-Ying; Luo, Jing; Li, Li-Li; Li, Menglin; Zhang, Qingjie; Hu, Xi-Quan

    2014-01-01

    Although physical exercise is an effective strategy for treatment of ischemic stroke, the underlying protective mechanisms are still not well understood. It has been recently demonstrated that neural progenitor cells play a vital role in the recovery of neurological function (NF) through differentiation into mature neurons. In the current study, we observed that physical exercise significantly reduced the infarct size and improved damaged neural functional recovery after an ischemic stroke. Furthermore, we found that the treatment not only exhibited a significant increase in the number of neural progenitor cells and neurons but also decreased the apoptotic cells in the peri-infarct region, compared to a control in the absence of exercise. Importantly, the insulin-like growth factor-1 (IGF-1)/Akt signaling pathway was dramatically activated in the peri-infarct region of rats after physical exercise training. Therefore, our findings suggest that physical exercise directly influences the NF recovery process by increasing neural progenitor cell count via activation of the IGF-1/Akt signaling pathway. PMID:24945308

  19. Convergence and rate analysis of neural networks for sparse approximation.

    PubMed

    Balavoine, Aurèle; Romberg, Justin; Rozell, Christopher J

    2012-09-01

    We present an analysis of the Locally Competitive Algorithm (LCA), which is a Hopfield-style neural network that efficiently solves sparse approximation problems (e.g., approximating a vector from a dictionary using just a few nonzero coefficients). This class of problems plays a significant role in both theories of neural coding and applications in signal processing. However, the LCA lacks analysis of its convergence properties, and previous results on neural networks for nonsmooth optimization do not apply to the specifics of the LCA architecture. We show that the LCA has desirable convergence properties, such as stability and global convergence to the optimum of the objective function when it is unique. Under some mild conditions, the support of the solution is also proven to be reached in finite time. Furthermore, some restrictions on the problem specifics allow us to characterize the convergence rate of the system by showing that the LCA converges exponentially fast with an analytically bounded convergence rate. We support our analysis with several illustrative simulations.

  20. Methylene Blue (Tetramethylthionine Chloride) Influences the Mobility of Adult Neural Stem Cells: A Potentially Novel Therapeutic Mechanism of a Therapeutic Approach in the Treatment of Alzheimer's Disease.

    PubMed

    van der Ven, Amelie T; Pape, Julius C; Hermann, Dirk; Schloesser, Robert; Genius, Just; Fischer, Nadine; Mößner, Rainald; Scherbaum, Norbert; Wiltfang, Jens; Rujescu, Dan; Benninghoff, Jens

    2017-01-01

    An interest in neurogenesis in the adult human brain as a relevant and targetable process has emerged as a potential treatment option for Alzheimer's disease and other neurodegenerative conditions. The aim of this study was to investigate the effects of tetramethylthionine chloride (methylene blue, MB) on properties of adult murine neural stem cells. Based on recent clinical studies, MB has increasingly been discussed as a potential treatment for Alzheimer's disease. While no differences in the proliferative capacity were identified, a general potential of MB in modulating the migratory capacity of adult neural stem cells was indicated in a cell mobility assay. To our knowledge, this is the first time that MB could be associated with neural mobility. The results of this study add insight to the spectrum of features of MB within the central nervous system and may be helpful for understanding the molecular mechanisms underlying a potential therapeutic effect of MB.

  1. The neural bases of feeling understood and not understood

    PubMed Central

    Torre, Jared B.; Eisenberger, Naomi I.

    2014-01-01

    Past research suggests that feeling understood enhances both personal and social well-being. However, little research has examined the neurobiological bases of feeling understood and not understood. We addressed these gaps by experimentally inducing felt understanding and not understanding as participants underwent functional magnetic resonance imaging. The results demonstrated that feeling understood activated neural regions previously associated with reward and social connection (i.e. ventral striatum and middle insula), while not feeling understood activated neural regions previously associated with negative affect (i.e. anterior insula). Both feeling understood and not feeling understood activated different components of the mentalizing system (feeling understood: precuneus and temporoparietal junction; not feeling understood: dorsomedial prefrontal cortex). Neural responses were associated with subsequent feelings of social connection and disconnection and were modulated by individual differences in rejection sensitivity. Thus, this study provides insight into the psychological processes underlying feeling understood (or not) and may suggest new avenues for targeted interventions that amplify the benefits of feeling understood or buffer individuals from the harmful consequences of not feeling understood. PMID:24396002

  2. Adaptation to conflict via context-driven anticipatory signals in the dorsomedial prefrontal cortex.

    PubMed

    Horga, Guillermo; Maia, Tiago V; Wang, Pengwei; Wang, Zhishun; Marsh, Rachel; Peterson, Bradley S

    2011-11-09

    Behavioral interference elicited by competing response tendencies adapts to contextual changes. Recent nonhuman primate research suggests a key mnemonic role of distinct prefrontal cells in supporting such context-driven behavioral adjustments by maintaining conflict information across trials, but corresponding prefrontal functions have yet to be probed in humans. Using event-related functional magnetic resonance imaging, we investigated the human neural substrates of contextual adaptations to conflict. We found that a neural system comprising the rostral dorsomedial prefrontal cortex and portions of the dorsolateral prefrontal cortex specifically encodes the history of previously experienced conflict and influences subsequent adaptation to conflict on a trial-by-trial basis. This neural system became active in anticipation of stimulus onsets during preparatory periods and interacted with a second neural system engaged during the processing of conflict. Our findings suggest that a dynamic interaction between a system that represents conflict history and a system that resolves conflict underlies the contextual adaptation to conflict.

  3. Adaptation to Conflict via Context-Driven Anticipatory Signals in the Dorsomedial Prefrontal Cortex

    PubMed Central

    Horga, Guillermo; Maia, Tiago V.; Wang, Pengwei; Wang, Zhishun; Marsh, Rachel; Peterson, Bradley S.

    2011-01-01

    Behavioral interference elicited by competing response tendencies adapts to contextual changes. Recent nonhuman primate research suggests a key mnemonic role of distinct prefrontal cells in supporting such context-driven behavioral adjustments by maintaining conflict information across trials, but corresponding prefrontal functions have yet to be probed in humans. Using event-related functional magnetic resonance imaging (fMRI), we investigated the human neural substrates of contextual adaptations to conflict. We found that a neural system comprising the rostral dorsomedial prefrontal cortex and portions of the dorsolateral prefrontal cortex specifically encodes the history of previously experienced conflict and influences subsequent adaptation to conflict on a trial-by-trial basis. This neural system became active in anticipation of stimulus onsets during preparatory periods and interacted with a second neural system engaged during the processing of conflict. Our findings suggest that a dynamic interaction between a system that represents conflict history and a system that resolves conflict underlies the contextual adaptation to conflict. PMID:22072672

  4. SYNAPTIC DEPRESSION IN DEEP NEURAL NETWORKS FOR SPEECH PROCESSING.

    PubMed

    Zhang, Wenhao; Li, Hanyu; Yang, Minda; Mesgarani, Nima

    2016-03-01

    A characteristic property of biological neurons is their ability to dynamically change the synaptic efficacy in response to variable input conditions. This mechanism, known as synaptic depression, significantly contributes to the formation of normalized representation of speech features. Synaptic depression also contributes to the robust performance of biological systems. In this paper, we describe how synaptic depression can be modeled and incorporated into deep neural network architectures to improve their generalization ability. We observed that when synaptic depression is added to the hidden layers of a neural network, it reduces the effect of changing background activity in the node activations. In addition, we show that when synaptic depression is included in a deep neural network trained for phoneme classification, the performance of the network improves under noisy conditions not included in the training phase. Our results suggest that more complete neuron models may further reduce the gap between the biological performance and artificial computing, resulting in networks that better generalize to novel signal conditions.

  5. Differential neural circuitry and self-interest in real vs hypothetical moral decisions

    PubMed Central

    Dalgleish, Tim; Thompson, Russell; Evans, Davy; Schweizer, Susanne; Mobbs, Dean

    2012-01-01

    Classic social psychology studies demonstrate that people can behave in ways that contradict their intentions—especially within the moral domain. We measured brain activity while subjects decided between financial self-benefit (earning money) and preventing physical harm (applying an electric shock) to a confederate under both real and hypothetical conditions. We found a shared neural network associated with empathic concern for both types of decisions. However, hypothetical and real moral decisions also recruited distinct neural circuitry: hypothetical moral decisions mapped closely onto the imagination network, while real moral decisions elicited activity in the bilateral amygdala and anterior cingulate—areas essential for social and affective processes. Moreover, during real moral decision-making, distinct regions of the prefrontal cortex (PFC) determined whether subjects make selfish or pro-social moral choices. Together, these results reveal not only differential neural mechanisms for real and hypothetical moral decisions but also that the nature of real moral decisions can be predicted by dissociable networks within the PFC. PMID:22711879

  6. A neural network model to predict the wastewater inflow incorporating rainfall events.

    PubMed

    El-Din, Ahmed Gamal; Smith, Daniel W

    2002-03-01

    Under steady-state conditions, a wastewater treatment plant usually has a satisfactory performance because these conditions are similar to design conditions. However, load variations constitute a large portion of the operating life of a treatment facility and most of the observed problems in complying with permit requirements occur during these load transients. During storm events upsets to the different physical and biological processes may take place in a wastewater treatment plant, and therefore, the ability to predict the hydraulic load to a treatment facility during such events is very beneficial for the optimization of the treatment process. Most of the hydrologic and hydraulic models describing sewage collection systems are deterministic. Such models require detailed knowledge of the system and usually rely on a large number of parameters, some of which are uncertain or difficult to determine. Presented in this paper, an artificial neural network (ANN) model that is used to make short-term predictions of wastewater inflow rate that enters the Gold Bar Wastewater Treatment Plant (GBWWTP), the largest plant in the Edmonton area (Alberta, Canada). The neural model uses rainfall data, observed in the collection system discharging to the plant, as inputs. The building process of the model was conducted in a systematic way that allowed the identification of a parsimonious model that is able to learn (and not memorize) from past data and generalize very well to unseen data that was used to validate the model. The neural network model gave excellent results. The potential of using the model as part of a real-time process control system is also discussed.

  7. Brain correlates of recognition of communicative interactions from biological motion in schizophrenia.

    PubMed

    Okruszek, Ł; Wordecha, M; Jarkiewicz, M; Kossowski, B; Lee, J; Marchewka, A

    2017-11-27

    Recognition of communicative interactions is a complex social cognitive ability which is associated with a specific neural activity in healthy individuals. However, neural correlates of communicative interaction processing from whole-body motion have not been known in patients with schizophrenia (SCZ). Therefore, the current study aims to examine the neural activity associated with recognition of communicative interactions in SCZ by using displays of the dyadic interactions downgraded to minimalistic point-light presentations. Twenty-six healthy controls (HC) and 25 SCZ were asked to judge whether two agents presented only by point-light displays were communicating or acting independently. Task-related activity and functional connectivity of brain structures were examined with General Linear Model and Generalized Psychophysiological Interaction approach, respectively. HC were significantly more efficient in recognizing each type of action than SCZ. At the neural level, the activity of the right posterior superior temporal sulcus (pSTS) was observed to be higher in HC compared with SCZ for communicative v. individual action processing. Importantly, increased connectivity of the right pSTS with structures associated with mentalizing (left pSTS) and mirroring networks (left frontal areas) was observed in HC, but not in SCZ, during the presentation of social interactions. Under-recruitment of the right pSTS, a structure known to have a pivotal role in social processing, may also be of importance for higher-order social cognitive deficits in SCZ. Furthermore, decreased task-related connectivity of the right pSTS may result in reduced use of additional sources of information (for instance motor resonance signals) during social cognitive processing in schizophrenia.

  8. Electroencephalogram oscillations support the involvement of task-unrelated thoughts in the mechanism of boredom: A pilot study.

    PubMed

    Miyauchi, Eri; Kawasaki, Masahiro

    2018-06-11

    Boredom is a universal experience; however, the neural mechanisms underlying the phenomenon remain unclear. Previous research suggests that boredom is related to attentional failure and derives a possible explanation for the cognitive processes of boredom as a product of appraisals made about task-unrelated thoughts. There are little published data regarding proposed processes from neuroscientific perspectives. Therefore, the authors aimed to examine whether cognitive processes of boredom with task-unrelated thoughts followed by appraisals of them can be explained by examining oscillatory correlates. Electroencephalography was used to measure changes in neural oscillatory activity during subjective experiences of boredom or dislike in healthy subjects. Using this approach, temporal information of brain activity particular to the boredom experience was acquired. Additionally, the Adult Attention-Deficit Hyperactivity Disorder Self-Report Scale was used to evaluate the effects of attentional deficits in the neural processing of boredom. Tonic increase in theta and transient increases in alpha activity were exhibited before the key press response for experiencing boredom; however, only tonic increases in theta amplitudes were boredom specific. The results of this pilot study suggest that the boredom experience is possibly associated with cognitive processes involved in task-unrelated thoughts, followed by their appraisals to be bored, mediated by alpha and theta activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. The neural time course of art perception: an ERP study on the processing of style versus content in art.

    PubMed

    Augustin, M Dorothee; Defranceschi, Birgit; Fuchs, Helene K; Carbon, Claus-Christian; Hutzler, Florian

    2011-06-01

    A central prerequisite to understand the phenomenon of art in psychological terms is to investigate the nature of the underlying perceptual and cognitive processes. Building on a study by Augustin, Leder, Hutzler, and Carbon (2008) the current ERP study examined the neural time course of two central aspects of representational art, one of which is closely related to object- and scene perception, the other of which is art-specific: content and style. We adapted a paradigm that has repeatedly been employed in psycholinguistics and that allows one to examine the neural time course of two processes in terms of when sufficient information is available to allow successful classification. Twenty-two participants viewed pictures that systematically varied in style and content and conducted a combined go/nogo dual choice task. The dependent variables of interest were the Lateralised Readiness Potential (LRP) and the N200 effect. Analyses of both measures support the notion that in the processing of art style follows content, with style-related information being available at around 224 ms or between 40 and 94 ms later than content-related information. The paradigm used here offers a promising approach to further explore the time course of art perception, thus helping to unravel the perceptual and cognitive processes that underlie the phenomenon of art and the fascination it exerts. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Attractiveness Modulates Neural Processing of Infant Faces Differently in Males and Females.

    PubMed

    Yin, Lijun; Fan, Mingxia; Lin, Lijia; Sun, Delin; Wang, Zhaoxin

    2017-01-01

    Consistent attention and proper processing of infant faces by adults are essential for infant survival. Previous behavioral studies showed gender differences in processing infant cues (e.g., crying, laughing or facial attractiveness) and more importantly, the efforts invested in nurturing offspring. The underlying neural mechanisms of processing unknown infant faces provide hints for understanding behavioral differences. This functional magnetic resonance imaging (fMRI) study recruited 32 unmarried adult (16 females and 16 males) participants to view unfamiliar infant faces and rate the attractiveness. Adult faces were also included. Behaviorally, despite that females and males showed no differences in attractiveness ratings of infant faces, a positive correlation was found between female's (but not male's) subjective liking for infants and attractiveness ratings of the infant faces. Functionally, brain activations to infant faces were modulated by attractiveness differently in males and females. Specifically, in female participants, activities in the ventromedial prefrontal cortex (vmPFC) and striatum/Nucleus Accumbens (NAcc) were positively modulated by infant facial attractiveness, and the modulation coefficients of these two regions were positively correlated. In male participants, infant facial attractiveness negatively modulated the activity in the dorsomedial prefrontal cortex (dmPFC). Our findings reveal that different neural mechanisms are involved in the processing of infant faces, which might lead to observed behavioral differences between males and females towards the baby.

  11. Forecasting financial asset processes: stochastic dynamics via learning neural networks.

    PubMed

    Giebel, S; Rainer, M

    2010-01-01

    Models for financial asset dynamics usually take into account their inherent unpredictable nature by including a suitable stochastic component into their process. Unknown (forward) values of financial assets (at a given time in the future) are usually estimated as expectations of the stochastic asset under a suitable risk-neutral measure. This estimation requires the stochastic model to be calibrated to some history of sufficient length in the past. Apart from inherent limitations, due to the stochastic nature of the process, the predictive power is also limited by the simplifying assumptions of the common calibration methods, such as maximum likelihood estimation and regression methods, performed often without weights on the historic time series, or with static weights only. Here we propose a novel method of "intelligent" calibration, using learning neural networks in order to dynamically adapt the parameters of the stochastic model. Hence we have a stochastic process with time dependent parameters, the dynamics of the parameters being themselves learned continuously by a neural network. The back propagation in training the previous weights is limited to a certain memory length (in the examples we consider 10 previous business days), which is similar to the maximal time lag of autoregressive processes. We demonstrate the learning efficiency of the new algorithm by tracking the next-day forecasts for the EURTRY and EUR-HUF exchange rates each.

  12. Attractiveness Modulates Neural Processing of Infant Faces Differently in Males and Females

    PubMed Central

    Yin, Lijun; Fan, Mingxia; Lin, Lijia; Sun, Delin; Wang, Zhaoxin

    2017-01-01

    Consistent attention and proper processing of infant faces by adults are essential for infant survival. Previous behavioral studies showed gender differences in processing infant cues (e.g., crying, laughing or facial attractiveness) and more importantly, the efforts invested in nurturing offspring. The underlying neural mechanisms of processing unknown infant faces provide hints for understanding behavioral differences. This functional magnetic resonance imaging (fMRI) study recruited 32 unmarried adult (16 females and 16 males) participants to view unfamiliar infant faces and rate the attractiveness. Adult faces were also included. Behaviorally, despite that females and males showed no differences in attractiveness ratings of infant faces, a positive correlation was found between female’s (but not male’s) subjective liking for infants and attractiveness ratings of the infant faces. Functionally, brain activations to infant faces were modulated by attractiveness differently in males and females. Specifically, in female participants, activities in the ventromedial prefrontal cortex (vmPFC) and striatum/Nucleus Accumbens (NAcc) were positively modulated by infant facial attractiveness, and the modulation coefficients of these two regions were positively correlated. In male participants, infant facial attractiveness negatively modulated the activity in the dorsomedial prefrontal cortex (dmPFC). Our findings reveal that different neural mechanisms are involved in the processing of infant faces, which might lead to observed behavioral differences between males and females towards the baby. PMID:29184490

  13. Estimating the functional dimensionality of neural representations.

    PubMed

    Ahlheim, Christiane; Love, Bradley C

    2018-06-07

    Recent advances in multivariate fMRI analysis stress the importance of information inherent to voxel patterns. Key to interpreting these patterns is estimating the underlying dimensionality of neural representations. Dimensions may correspond to psychological dimensions, such as length and orientation, or involve other coding schemes. Unfortunately, the noise structure of fMRI data inflates dimensionality estimates and thus makes it difficult to assess the true underlying dimensionality of a pattern. To address this challenge, we developed a novel approach to identify brain regions that carry reliable task-modulated signal and to derive an estimate of the signal's functional dimensionality. We combined singular value decomposition with cross-validation to find the best low-dimensional projection of a pattern of voxel-responses at a single-subject level. Goodness of the low-dimensional reconstruction is measured as Pearson correlation with a test set, which allows to test for significance of the low-dimensional reconstruction across participants. Using hierarchical Bayesian modeling, we derive the best estimate and associated uncertainty of underlying dimensionality across participants. We validated our method on simulated data of varying underlying dimensionality, showing that recovered dimensionalities match closely true dimensionalities. We then applied our method to three published fMRI data sets all involving processing of visual stimuli. The results highlight three possible applications of estimating the functional dimensionality of neural data. Firstly, it can aid evaluation of model-based analyses by revealing which areas express reliable, task-modulated signal that could be missed by specific models. Secondly, it can reveal functional differences across brain regions. Thirdly, knowing the functional dimensionality allows assessing task-related differences in the complexity of neural patterns. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Neural dynamics based on the recognition of neural fingerprints

    PubMed Central

    Carrillo-Medina, José Luis; Latorre, Roberto

    2015-01-01

    Experimental evidence has revealed the existence of characteristic spiking features in different neural signals, e.g., individual neural signatures identifying the emitter or functional signatures characterizing specific tasks. These neural fingerprints may play a critical role in neural information processing, since they allow receptors to discriminate or contextualize incoming stimuli. This could be a powerful strategy for neural systems that greatly enhances the encoding and processing capacity of these networks. Nevertheless, the study of information processing based on the identification of specific neural fingerprints has attracted little attention. In this work, we study (i) the emerging collective dynamics of a network of neurons that communicate with each other by exchange of neural fingerprints and (ii) the influence of the network topology on the self-organizing properties within the network. Complex collective dynamics emerge in the network in the presence of stimuli. Predefined inputs, i.e., specific neural fingerprints, are detected and encoded into coexisting patterns of activity that propagate throughout the network with different spatial organization. The patterns evoked by a stimulus can survive after the stimulation is over, which provides memory mechanisms to the network. The results presented in this paper suggest that neural information processing based on neural fingerprints can be a plausible, flexible, and powerful strategy. PMID:25852531

  15. Neural correlates of the popular music phenomenon: evidence from functional MRI and PET imaging.

    PubMed

    Chen, Qiaozhen; Zhang, Ying; Hou, Haifeng; Du, Fenglei; Wu, Shuang; Chen, Lin; Shen, Yehua; Chao, Fangfang; Chung, June-Key; Zhang, Hong; Tian, Mei

    2017-06-01

    Music can induce different emotions. However, its neural mechanism remains unknown. The aim of this study was to use functional magnetic resonance imaging (fMRI) and position emission tomography (PET) imaging for mapping of neural changes under the most popular music in healthy volunteers. Blood-oxygen-level-dependent (BOLD) fMRI and monoamine receptor PET imaging with 11 C-N-methylspiperone ( 11 C-NMSP) were conducted under the popular music Gangnam Style and light music A Comme Amour in healthy subjects. PET and fMRI images were analyzed by using the Statistical Parametric Mapping software (SPM). Significantly increased fMRI BOLD signals were found in the bilateral superior temporal cortices, left cerebellum, left putamen and right thalamus cortex. Monoamine receptor availability was increased significantly in the left superior temporal gyrus and left putamen, but decreased in the bilateral superior occipital cortices under the Gangnam Style compared with the light music condition. Significant positive correlation was found between 11 C-NMSP binding and fMRI BOLD signals in the left temporal cortex. Furthermore, increased 11 C-NMSP binding in the left putamen was positively correlated with the mood arousal level score under the Gangnam Style condition. Popular music Gangnam Style can arouse pleasure experience and strong emotional response. The left putamen is positively correlated with the mood arousal level score under the Gangnam Style condition. Our results revealed characteristic patterns of brain activity associated with Gangnam Style, and may also provide more general insights into the music-induced emotional processing.

  16. Neural mechanisms underlying the integration of situational information into attribution outcomes.

    PubMed

    Brosch, Tobias; Schiller, Daniela; Mojdehbakhsh, Rachel; Uleman, James S; Phelps, Elizabeth A

    2013-08-01

    When forming impressions and trying to figure out why other people behave the way they do, we should take into account not only dispositional factors (i.e., personality traits) but also situational constraints as potential causes for a behavior. However, in their attributions, people often ignore the importance of situational factors. To investigate the neural mechanisms underlying the integration of situational information into attributions, we decomposed the attribution process by separately presenting information about behaviors and about the situational circumstances in which they occur. After reading the information, participants judged whether dispositional or situational causes explained the behavior (attribution), and how much they liked the person described in the scenario (affective evaluation). The dorsolateral prefrontal cortex showed increased blood oxygenation-level-dependent activation during the encoding of situational information when the resulting attribution was situational, relative to when the attribution was dispositional, potentially reflecting a controlled process that integrates situational information into attributions. Interestingly, attributions were strongly linked to subsequent affective evaluations, with the dorsomedial prefrontal cortex emerging as potential substrate of the integration of attributions and affective evaluations. Our findings demonstrate how top-down control processes regulate impression formation when situational information is taken into account to understand others.

  17. Attitude toward money modulates outcome processing: an ERP study.

    PubMed

    Jia, Shiwei; Zhang, Wenxin; Li, Peng; Feng, Tingyong; Li, Hong

    2013-01-01

    Love of money (LOM) is concerned with the attitude toward money, which can be measured by the LOM scale through affective, behavioral, and cognitive dimensions. Research has observed that monetary attitude was tightly related to reward processing and could affect economic behavior. This study examined how monetary attitude modulated risky behavior and the underlying neural mechanisms of reward processing using event-related potential (ERP) technique. We compared both the risk level and brain responses of a high-level LOM (HLOM) group to a low-level LOM (LLOM) group using a simple gambling task. The behavioral results showed that the HLOM group was more risky than the LLOM group, particularly after loss. The feedback-related negativity (FRN) was measured as the difference wave (gain-related ERP was subtracted from loss-related ERP). The FRN difference wave was larger in the HLOM group than that in the LLOM group. The P3 in the HLOM group was more positive than that in the LLOM group. These results suggest that monetary attitude can modulate both the underlying neural mechanisms and behavioral performance in a reward-related task. The HLOM participants are more sensitive to gain/loss than the LLOM participants.

  18. Neural mechanisms underlying the integration of situational information into attribution outcomes

    PubMed Central

    Brosch, Tobias; Schiller, Daniela; Mojdehbakhsh, Rachel; Uleman, James S.; Phelps, Elizabeth A.

    2013-01-01

    When forming impressions and trying to figure out why other people behave the way they do, we should take into account not only dispositional factors (i.e. personality traits) but also situational constraints as potential causes for a behavior. However, in their attributions, people often ignore the importance of situational factors. To investigate the neural mechanisms underlying the integration of situational information into attributions, we decomposed the attribution process by separately presenting information about behaviors and about the situational circumstances in which they occur. After reading the information, participants judged whether dispositional or situational causes explained the behavior (attribution), and how much they liked the person described in the scenario (affective evaluation). The dorsolateral prefrontal cortex showed increased blood oxygenation-level-dependent activation during the encoding of situational information when the resulting attribution was situational, relative to when the attribution was dispositional, potentially reflecting a controlled process that integrates situational information into attributions. Interestingly, attributions were strongly linked to subsequent affective evaluations, with the dorsomedial prefrontal cortex emerging as potential substrate of the integration of attributions and affective evaluations. Our findings demonstrate how top-down control processes regulate impression formation when situational information is taken into account to understand others. PMID:23446840

  19. Advanced miniature processing handware for ATR applications

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Daud, Taher (Inventor); Thakoor, Anikumar (Inventor)

    2003-01-01

    A Hybrid Optoelectronic Neural Object Recognition System (HONORS), is disclosed, comprising two major building blocks: (1) an advanced grayscale optical correlator (OC) and (2) a massively parallel three-dimensional neural-processor. The optical correlator, with its inherent advantages in parallel processing and shift invariance, is used for target of interest (TOI) detection and segmentation. The three-dimensional neural-processor, with its robust neural learning capability, is used for target classification and identification. The hybrid optoelectronic neural object recognition system, with its powerful combination of optical processing and neural networks, enables real-time, large frame, automatic target recognition (ATR).

  20. A novel computational model to probe visual search deficits during motor performance

    PubMed Central

    Singh, Tarkeshwar; Fridriksson, Julius; Perry, Christopher M.; Tryon, Sarah C.; Ross, Angela; Fritz, Stacy

    2016-01-01

    Successful execution of many motor skills relies on well-organized visual search (voluntary eye movements that actively scan the environment for task-relevant information). Although impairments of visual search that result from brain injuries are linked to diminished motor performance, the neural processes that guide visual search within this context remain largely unknown. The first objective of this study was to examine how visual search in healthy adults and stroke survivors is used to guide hand movements during the Trail Making Test (TMT), a neuropsychological task that is a strong predictor of visuomotor and cognitive deficits. Our second objective was to develop a novel computational model to investigate combinatorial interactions between three underlying processes of visual search (spatial planning, working memory, and peripheral visual processing). We predicted that stroke survivors would exhibit deficits in integrating the three underlying processes, resulting in deteriorated overall task performance. We found that normal TMT performance is associated with patterns of visual search that primarily rely on spatial planning and/or working memory (but not peripheral visual processing). Our computational model suggested that abnormal TMT performance following stroke is associated with impairments of visual search that are characterized by deficits integrating spatial planning and working memory. This innovative methodology provides a novel framework for studying how the neural processes underlying visual search interact combinatorially to guide motor performance. NEW & NOTEWORTHY Visual search has traditionally been studied in cognitive and perceptual paradigms, but little is known about how it contributes to visuomotor performance. We have developed a novel computational model to examine how three underlying processes of visual search (spatial planning, working memory, and peripheral visual processing) contribute to visual search during a visuomotor task. We show that deficits integrating spatial planning and working memory underlie abnormal performance in stroke survivors with frontoparietal damage. PMID:27733596

  1. Prefrontal cortex activity during response selection predicts processing speed impairment in schizophrenia

    PubMed Central

    Woodward, Neil D.; Duffy-Alberto, Brittney; Karbasforoushan, Haleh

    2014-01-01

    Processing speed is the most impaired neuropsychological domain in schizophrenia and a robust predictor of functional outcome. Determining the specific cognitive operations underlying processing speed dysfunction and indentifying their neural correlates may assist in developing pro-cognitive interventions. Response selection, the process of mapping stimuli onto motor responses, correlates with neuropsychological tests of processing speed and may contribute to processing speed impairment in schizophrenia. This study investigated the relationship between behavioral and neural measures of response selection, and a neuropsychological index of processing speed in schizophrenia. 26 patients with schizophrenia and 21 healthy subjects underwent fMRI scanning during performance of 2 and 4-choice-reaction time (RT) tasks and completed the Wechsler Adult Intelligence Scale-III (WAIS) Processing Speed Index (PSI). Response selection, defined as RT slowing between 2 and 4-choice RT, was impaired in schizophrenia and correlated with psychometric processing speed. Greater activation of the dorsolateral prefrontal cortex (PFC) was observed in schizophrenia and correlated with poorer WAIS PSI scores. Deficient response selection and abnormal recruitment of the dorsolateral PFC during response selection contribute to processing speed impairment in schizophrenia. Interventions that improve response selection and normalize dorsolateral PFC function may improve processing speed in schizophrenia. PMID:23816240

  2. Resolving the neural dynamics of visual and auditory scene processing in the human brain: a methodological approach

    PubMed Central

    Teng, Santani

    2017-01-01

    In natural environments, visual and auditory stimulation elicit responses across a large set of brain regions in a fraction of a second, yielding representations of the multimodal scene and its properties. The rapid and complex neural dynamics underlying visual and auditory information processing pose major challenges to human cognitive neuroscience. Brain signals measured non-invasively are inherently noisy, the format of neural representations is unknown, and transformations between representations are complex and often nonlinear. Further, no single non-invasive brain measurement technique provides a spatio-temporally integrated view. In this opinion piece, we argue that progress can be made by a concerted effort based on three pillars of recent methodological development: (i) sensitive analysis techniques such as decoding and cross-classification, (ii) complex computational modelling using models such as deep neural networks, and (iii) integration across imaging methods (magnetoencephalography/electroencephalography, functional magnetic resonance imaging) and models, e.g. using representational similarity analysis. We showcase two recent efforts that have been undertaken in this spirit and provide novel results about visual and auditory scene analysis. Finally, we discuss the limits of this perspective and sketch a concrete roadmap for future research. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044019

  3. Like mother like daughter: putamen activation as a mechanism underlying intergenerational risk for depression.

    PubMed

    Colich, Natalie L; Ho, Tiffany C; Ellwood-Lowe, Monica E; Foland-Ross, Lara C; Sacchet, Matthew D; LeMoult, Joelle L; Gotlib, Ian H

    2017-09-01

    Having a depressed mother is one of the strongest predictors for developing depression in adolescence. Given the role of aberrant reward processing in the onset and maintenance of depression, we examined the association between mothers' and their daughters' neural response to the anticipation of reward and loss. Fifteen non-depressed mothers with a history of recurrent depression and their never-disordered daughters, and 23 mothers without past or current depression and their never-disordered daughters, underwent functional magnetic resonance imaging while performing the monetary incentive delay task. To assess mother-daughter concordance, we first identified ROIs involved in the anticipation of reward and loss across all mother-daughter pairs. Within each of these ROIs, we examined the association between mothers' and daughters' neural response, and the interaction between group status and mothers' neural response in predicting daughters' neural response. We found a significant association between mothers' and daughters' putamen response to the anticipation of loss, regardless of mother's depression history. Furthermore, pubertal stage moderated the association between mother-daughter putamen concordance. Our findings suggest a unique role of the putamen in the maternal transmission of reward learning and have important implications for understanding disorders characterized by disturbances in reward learning and processing, such as major depression. © The Author (2017). Published by Oxford University Press.

  4. Like mother like daughter: putamen activation as a mechanism underlying intergenerational risk for depression

    PubMed Central

    Ho, Tiffany C.; Ellwood-Lowe, Monica E.; Foland-Ross, Lara C.; Sacchet, Matthew D.; LeMoult, Joelle L.; Gotlib, Ian H.

    2017-01-01

    Abstract Having a depressed mother is one of the strongest predictors for developing depression in adolescence. Given the role of aberrant reward processing in the onset and maintenance of depression, we examined the association between mothers’ and their daughters’ neural response to the anticipation of reward and loss. Fifteen non-depressed mothers with a history of recurrent depression and their never-disordered daughters, and 23 mothers without past or current depression and their never-disordered daughters, underwent functional magnetic resonance imaging while performing the monetary incentive delay task. To assess mother-daughter concordance, we first identified ROIs involved in the anticipation of reward and loss across all mother-daughter pairs. Within each of these ROIs, we examined the association between mothers’ and daughters’ neural response, and the interaction between group status and mothers’ neural response in predicting daughters’ neural response. We found a significant association between mothers’ and daughters’ putamen response to the anticipation of loss, regardless of mother’s depression history. Furthermore, pubertal stage moderated the association between mother-daughter putamen concordance. Our findings suggest a unique role of the putamen in the maternal transmission of reward learning and have important implications for understanding disorders characterized by disturbances in reward learning and processing, such as major depression. PMID:28575505

  5. Cell behaviors underlying notochord formation and extension in avian embryos: quantitative and immunocytochemical studies.

    PubMed

    Sausedo, R A; Schoenwolf, G C

    1993-09-01

    Formation and extension of the notochord is one of the earliest and most obvious events of axis development in vertebrate embryos. In birds, prospective notochord cells arise from Hensen's node and come to lie beneath the midline of the neural plate, where they assist in the process of neurulation and initiate the dorsoventral patterning of the neural tube through sequential inductive interactions. In the present study, we examined notochord development in avian embryos with quantitative and immunological procedures. Extension of the notochord occurs principally through accretion, that is, the addition of cells to its caudal end, a process that involves considerable cell rearrangement at the notochord-Hensen's node interface. In addition, cell division and cell rearrangement within the notochord proper contribute to notochord extension. Thus, extension of the notochord occurs in a manner that is significantly different from that of the adjacent, overlying, midline region of the neural plate (i.e., the median hinge-point region or future floor plate of the neural tube), which as shown in one of the previous studies from our laboratory (Schoenwolf and Alvarez: Development 106:427-439, 1989), extends caudally as its cells undergo two rounds of mediolateral cell-cell intercalation and two-three rounds of cell division.

  6. Resolving the neural dynamics of visual and auditory scene processing in the human brain: a methodological approach.

    PubMed

    Cichy, Radoslaw Martin; Teng, Santani

    2017-02-19

    In natural environments, visual and auditory stimulation elicit responses across a large set of brain regions in a fraction of a second, yielding representations of the multimodal scene and its properties. The rapid and complex neural dynamics underlying visual and auditory information processing pose major challenges to human cognitive neuroscience. Brain signals measured non-invasively are inherently noisy, the format of neural representations is unknown, and transformations between representations are complex and often nonlinear. Further, no single non-invasive brain measurement technique provides a spatio-temporally integrated view. In this opinion piece, we argue that progress can be made by a concerted effort based on three pillars of recent methodological development: (i) sensitive analysis techniques such as decoding and cross-classification, (ii) complex computational modelling using models such as deep neural networks, and (iii) integration across imaging methods (magnetoencephalography/electroencephalography, functional magnetic resonance imaging) and models, e.g. using representational similarity analysis. We showcase two recent efforts that have been undertaken in this spirit and provide novel results about visual and auditory scene analysis. Finally, we discuss the limits of this perspective and sketch a concrete roadmap for future research.This article is part of the themed issue 'Auditory and visual scene analysis'. © 2017 The Authors.

  7. Neural systems for social cognition in Klinefelter syndrome (47,XXY): evidence from fMRI.

    PubMed

    van Rijn, Sophie; Swaab, Hanna; Baas, Daan; de Haan, Edward; Kahn, René S; Aleman, André

    2012-08-01

    Klinefelter syndrome (KS) is a chromosomal condition (47, XXY) that may help us to unravel gene-brain behavior pathways to psychopathology. The phenotype includes social cognitive impairments and increased risk for autism traits. We used functional MRI to study neural mechanisms underlying social information processing. Eighteen nonclinical controls and thirteen men with XXY were scanned during judgments of faces with regard to trustworthiness and age. While judging faces as untrustworthy in comparison to trustworthy, men with XXY displayed less activation than controls in (i) the amygdala, which plays a key role in screening information for socio-emotional significance, (ii) the insula, which plays a role in subjective emotional experience, as well as (iii) the fusiform gyrus and (iv) the superior temporal sulcus, which are both involved in the perceptual processing of faces and which were also less involved during age judgments in men with XXY. This is the first study showing that KS can be associated with reduced involvement of the neural network subserving social cognition. Studying KS may increase our understanding of the genetic and hormonal basis of neural dysfunctions contributing to abnormalities in social cognition and behavior, which are considered core abnormalities in psychiatric disorders such as autism and schizophrenia.

  8. B-Catenin Stability in Breast Cancer

    DTIC Science & Technology

    1997-07-01

    basic understanding of the cellular processes underlying breast cancer is mandated before effective therapies can be developed or even attempted. P3...Z dorso-anterior body axis, giving rise to two heads, notochords , and neural tubes (24). Wnt-1, dsh dsh hanqgg the vertebrate homologue of wingless is...stability by the ubiquitin-proteasome pathway. The ubiquitin-proteasome pathway is involved in the processing and rapid degradation of many short-lived

  9. On the rationale for hysteresis in economic decisions

    NASA Astrophysics Data System (ADS)

    Rios, Luis A.; Rachinskii, Dmitrii; Cross, Rod

    2017-02-01

    In the social sciences there are plausible reasons to postulate that hysteresis effects are important. The available evidence, however, is predominantly at the macro level. In this paper we review the evidence regarding hysteresis in the neural processes underlying human behavior. We argue that there is a need for experimental and neuroimaging studies to fill the gap in knowledge about hysteresis processes at the micro level in the social sciences.

  10. Abnormal Neural Activation to Faces in the Parents of Children with Autism.

    PubMed

    Yucel, G H; Belger, A; Bizzell, J; Parlier, M; Adolphs, R; Piven, J

    2015-12-01

    Parents of children with an autism spectrum disorder (ASD) show subtle deficits in aspects of social behavior and face processing, which resemble those seen in ASD, referred to as the "Broad Autism Phenotype " (BAP). While abnormal activation in ASD has been reported in several brain structures linked to social cognition, little is known regarding patterns in the BAP. We compared autism parents with control parents with no family history of ASD using 2 well-validated face-processing tasks. Results indicated increased activation in the autism parents to faces in the amygdala (AMY) and the fusiform gyrus (FG), 2 core face-processing regions. Exploratory analyses revealed hyper-activation of lateral occipital cortex (LOC) bilaterally in autism parents with aloof personality ("BAP+"). Findings suggest that abnormalities of the AMY and FG are related to underlying genetic liability for ASD, whereas abnormalities in the LOC and right FG are more specific to behavioral features of the BAP. Results extend our knowledge of neural circuitry underlying abnormal face processing beyond those previously reported in ASD to individuals with shared genetic liability for autism and a subset of genetically related individuals with the BAP. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Automatic Classification of volcano-seismic events based on Deep Neural Networks.

    NASA Astrophysics Data System (ADS)

    Titos Luzón, M.; Bueno Rodriguez, A.; Garcia Martinez, L.; Benitez, C.; Ibáñez, J. M.

    2017-12-01

    Seismic monitoring of active volcanoes is a popular remote sensing technique to detect seismic activity, often associated to energy exchanges between the volcano and the environment. As a result, seismographs register a wide range of volcano-seismic signals that reflect the nature and underlying physics of volcanic processes. Machine learning and signal processing techniques provide an appropriate framework to analyze such data. In this research, we propose a new classification framework for seismic events based on deep neural networks. Deep neural networks are composed by multiple processing layers, and can discover intrinsic patterns from the data itself. Internal parameters can be initialized using a greedy unsupervised pre-training stage, leading to an efficient training of fully connected architectures. We aim to determine the robustness of these architectures as classifiers of seven different types of seismic events recorded at "Volcán de Fuego" (Colima, Mexico). Two deep neural networks with different pre-training strategies are studied: stacked denoising autoencoder and deep belief networks. Results are compared to existing machine learning algorithms (SVM, Random Forest, Multilayer Perceptron). We used 5 LPC coefficients over three non-overlapping segments as training features in order to characterize temporal evolution, avoid redundancy and encode the signal, regardless of its duration. Experimental results show that deep architectures can classify seismic events with higher accuracy than classical algorithms, attaining up to 92% recognition accuracy. Pre-training initialization helps these models to detect events that occur simultaneously in time (such explosions and rockfalls), increase robustness against noisy inputs, and provide better generalization. These results demonstrate deep neural networks are robust classifiers, and can be deployed in real-environments to monitor the seismicity of restless volcanoes.

  12. Altered neural responses to heat pain in drug-naive patients with Parkinson disease.

    PubMed

    Forkmann, Katarina; Grashorn, Wiebke; Schmidt, Katharina; Fründt, Odette; Buhmann, Carsten; Bingel, Ulrike

    2017-08-01

    Pain is a frequent but still neglected nonmotor symptom of Parkinson disease (PD). However, neural mechanisms underlying pain in PD are poorly understood. Here, we explored whether the high prevalence of pain in PD might be related to dysfunctional descending pain control. Using functional magnetic resonance imaging we explored neural responses during the anticipation and processing of heat pain in 21 PD patients (Hoehn and Yahr I-III) and 23 healthy controls (HC). Parkinson disease patients were naive to dopaminergic medication to avoid confounding drug effects. Fifteen heat pain stimuli were applied to the participants' forearm. Intensity and unpleasantness ratings were provided for each stimulus. Subjective pain perception was comparable for PD patients and HC. Neural processing, however, differed between groups: PD patients showed lower activity in several descending pain modulation regions (dorsal anterior cingulate cortex [dACC], subgenual anterior cingulate cortex, and dorsolateral prefrontal cortex [DLPFC]) and lower functional connectivity between dACC and DLPFC during pain anticipation. Parkinson disease symptom severity was negatively correlated with dACC-DLPFC connectivity indicating impaired functional coupling of pain modulatory regions with disease progression. During pain perception PD patients showed higher midcingulate cortex activity compared with HC, which also scaled with PD severity. Interestingly, dACC-DLPFC connectivity during pain anticipation was negatively associated with midcingulate cortex activity during the receipt of pain in PD patients. This study indicates altered neural processing during the anticipation and receipt of experimental pain in drug-naive PD patients. It provides first evidence for a progressive decline in descending pain modulation in PD, which might be related to the high prevalence of pain in later stages of PD.

  13. Neuropsychology of humor: an introduction. Part II. Humor and the brain.

    PubMed

    Derouesné, Christian

    2016-09-01

    Impairment of the perception or comprehension of humor is observed in patients with focal brain lesions in both hemispheres, but mainly in the right frontal lobe. Studies by functional magnetic resonance imaging in healthy subjects show that humor is associated with activation of two main neural systems in both hemispheres. The detection and resolution of incongruity, cognitive groundings of humor, are associated with activation of the medial prefrontal and temporoparietal cortex, and the humor appreciation with activation of the orbito-frontal and insular cortex, amygdala and the brain reward system. However, activation of these areas is not humor-specific and can be observed in various cognitive or emotional processes. Event-related potential studies confirm the involvement of both hemispheres in humor processing, and suggest that left prefrontal area is associated with joke comprehension and right prefrontal area with the resolution stage. Humor thus appears to be a complex and dynamic functional process involving, on one hand, two specialized but not specific neural systems linked to humor apprehension and appreciation, and, on the other hand, multiple interconnected functional brain networks including neural patterns underlying the moral framework and belief system, acquired by conditioning or imitation during the cognitive development and social interactions of the individual, and more distributed systems associated with the analysis of the current context of humor occurrence. Disturbances of the sense of humor could then result from focal brain alterations localized in one or two of the specialized areas underlying the comprehension or appreciation of humor, or from perturbations of the network interconnectivity in non-focal brain disorders such as Alzheimer's disease or schizophrenia.

  14. Expectations impact short-term memory through changes in connectivity between attention- and task-related brain regions.

    PubMed

    Sinke, Christopher; Forkmann, Katarina; Schmidt, Katharina; Wiech, Katja; Bingel, Ulrike

    2016-05-01

    Over the recent years, neuroimaging studies have investigated the neural mechanisms underlying the influence of expectations on perception. However, it seems equally reasonable to assume that expectations impact cognitive functions. Here we used fMRI to explore the role of expectations on task performance and its underlying neural mechanisms. 43 healthy participants were randomly assigned to two groups. Using verbal instructions, group 1 was led to believe that pain enhances task performance while group 2 was instructed that pain hampers their performance. All participants performed a Rapid-Serial-Visual-Presentation (RSVP) Task (target detection and short-term memory component) with or without concomitant painful heat stimulation during 3T fMRI scanning. As hypothesized, short-term memory performance showed an interaction between painful stimulation and expectation. Positive expectations induced stronger neural activation in the right inferior parietal cortex (IPC) during painful stimulation than negative expectation. Moreover, IPC displayed differential functional coupling with the left inferior occipital cortex under pain as a function of expectancy. Our data show that an individual's expectation can influence cognitive performance in a visual short-term memory task which is associated with activity and connectivity changes in brain areas implicated in attentional processing and task performance. Copyright © 2016. Published by Elsevier Ltd.

  15. A Neurocomputational Model of Goal-Directed Navigation in Insect-Inspired Artificial Agents

    PubMed Central

    Goldschmidt, Dennis; Manoonpong, Poramate; Dasgupta, Sakyasingha

    2017-01-01

    Despite their small size, insect brains are able to produce robust and efficient navigation in complex environments. Specifically in social insects, such as ants and bees, these navigational capabilities are guided by orientation directing vectors generated by a process called path integration. During this process, they integrate compass and odometric cues to estimate their current location as a vector, called the home vector for guiding them back home on a straight path. They further acquire and retrieve path integration-based vector memories globally to the nest or based on visual landmarks. Although existing computational models reproduced similar behaviors, a neurocomputational model of vector navigation including the acquisition of vector representations has not been described before. Here we present a model of neural mechanisms in a modular closed-loop control—enabling vector navigation in artificial agents. The model consists of a path integration mechanism, reward-modulated global learning, random search, and action selection. The path integration mechanism integrates compass and odometric cues to compute a vectorial representation of the agent's current location as neural activity patterns in circular arrays. A reward-modulated learning rule enables the acquisition of vector memories by associating the local food reward with the path integration state. A motor output is computed based on the combination of vector memories and random exploration. In simulation, we show that the neural mechanisms enable robust homing and localization, even in the presence of external sensory noise. The proposed learning rules lead to goal-directed navigation and route formation performed under realistic conditions. Consequently, we provide a novel approach for vector learning and navigation in a simulated, situated agent linking behavioral observations to their possible underlying neural substrates. PMID:28446872

  16. Resource constrained design of artificial neural networks using comparator neural network

    NASA Technical Reports Server (NTRS)

    Wah, Benjamin W.; Karnik, Tanay S.

    1992-01-01

    We present a systematic design method executed under resource constraints for automating the design of artificial neural networks using the back error propagation algorithm. Our system aims at finding the best possible configuration for solving the given application with proper tradeoff between the training time and the network complexity. The design of such a system is hampered by three related problems. First, there are infinitely many possible network configurations, each may take an exceedingly long time to train; hence, it is impossible to enumerate and train all of them to completion within fixed time, space, and resource constraints. Second, expert knowledge on predicting good network configurations is heuristic in nature and is application dependent, rendering it difficult to characterize fully in the design process. A learning procedure that refines this knowledge based on examples on training neural networks for various applications is, therefore, essential. Third, the objective of the network to be designed is ill-defined, as it is based on a subjective tradeoff between the training time and the network cost. A design process that proposes alternate configurations under different cost-performance tradeoff is important. We have developed a Design System which schedules the available time, divided into quanta, for testing alternative network configurations. Its goal is to select/generate and test alternative network configurations in each quantum, and find the best network when time is expended. Since time is limited, a dynamic schedule that determines the network configuration to be tested in each quantum is developed. The schedule is based on relative comparison of predicted training times of alternative network configurations using comparator network paradigm. The comparator network has been trained to compare training times for a large variety of traces of TSSE-versus-time collected during back-propagation learning of various applications.

  17. A Neurocomputational Model of Goal-Directed Navigation in Insect-Inspired Artificial Agents.

    PubMed

    Goldschmidt, Dennis; Manoonpong, Poramate; Dasgupta, Sakyasingha

    2017-01-01

    Despite their small size, insect brains are able to produce robust and efficient navigation in complex environments. Specifically in social insects, such as ants and bees, these navigational capabilities are guided by orientation directing vectors generated by a process called path integration. During this process, they integrate compass and odometric cues to estimate their current location as a vector, called the home vector for guiding them back home on a straight path. They further acquire and retrieve path integration-based vector memories globally to the nest or based on visual landmarks. Although existing computational models reproduced similar behaviors, a neurocomputational model of vector navigation including the acquisition of vector representations has not been described before. Here we present a model of neural mechanisms in a modular closed-loop control-enabling vector navigation in artificial agents. The model consists of a path integration mechanism, reward-modulated global learning, random search, and action selection. The path integration mechanism integrates compass and odometric cues to compute a vectorial representation of the agent's current location as neural activity patterns in circular arrays. A reward-modulated learning rule enables the acquisition of vector memories by associating the local food reward with the path integration state. A motor output is computed based on the combination of vector memories and random exploration. In simulation, we show that the neural mechanisms enable robust homing and localization, even in the presence of external sensory noise. The proposed learning rules lead to goal-directed navigation and route formation performed under realistic conditions. Consequently, we provide a novel approach for vector learning and navigation in a simulated, situated agent linking behavioral observations to their possible underlying neural substrates.

  18. Neural processing of high and low spatial frequency information in faces changes across development: qualitative changes in face processing during adolescence.

    PubMed

    Peters, Judith C; Vlamings, Petra; Kemner, Chantal

    2013-05-01

    Face perception in adults depends on skilled processing of interattribute distances ('configural' processing), which is disrupted for faces presented in inverted orientation (face inversion effect or FIE). Children are not proficient in configural processing, and this might relate to an underlying immaturity to use facial information in low spatial frequency (SF) ranges, which capture the coarse information needed for configural processing. We hypothesized that during adolescence a shift from use of high to low SF information takes place. Therefore, we studied the influence of SF content on neural face processing in groups of children (9-10 years), adolescents (14-15 years) and young adults (21-29 years) by measuring event-related potentials (ERPs) to upright and inverted faces which varied in SF content. Results revealed that children show a neural FIE in early processing stages (i.e. P1; generated in early visual areas), suggesting a superficial, global facial analysis. In contrast, ERPs of adults revealed an FIE at later processing stages (i.e. N170; generated in face-selective, higher visual areas). Interestingly, adolescents showed FIEs in both processing stages, suggesting a hybrid developmental stage. Furthermore, adolescents and adults showed FIEs for stimuli containing low SF information, whereas such effects were driven by both low and high SF information in children. These results indicate that face processing has a protracted maturational course into adolescence, and is dependent on changes in SF processing. During adolescence, sensitivity to configural cues is developed, which aids the fast and holistic processing that is so special for faces. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. Rapid Processing of a Global Feature in the ON Visual Pathways of Behaving Monkeys.

    PubMed

    Huang, Jun; Yang, Yan; Zhou, Ke; Zhao, Xudong; Zhou, Quan; Zhu, Hong; Yang, Yingshan; Zhang, Chunming; Zhou, Yifeng; Zhou, Wu

    2017-01-01

    Visual objects are recognized by their features. Whereas, some features are based on simple components (i.e., local features, such as orientation of line segments), some features are based on the whole object (i.e., global features, such as an object having a hole in it). Over the past five decades, behavioral, physiological, anatomical, and computational studies have established a general model of vision, which starts from extracting local features in the lower visual pathways followed by a feature integration process that extracts global features in the higher visual pathways. This local-to-global model is successful in providing a unified account for a vast sets of perception experiments, but it fails to account for a set of experiments showing human visual systems' superior sensitivity to global features. Understanding the neural mechanisms underlying the "global-first" process will offer critical insights into new models of vision. The goal of the present study was to establish a non-human primate model of rapid processing of global features for elucidating the neural mechanisms underlying differential processing of global and local features. Monkeys were trained to make a saccade to a target in the black background, which was different from the distractors (white circle) in color (e.g., red circle target), local features (e.g., white square target), a global feature (e.g., white ring with a hole target) or their combinations (e.g., red square target). Contrary to the predictions of the prevailing local-to-global model, we found that (1) detecting a distinction or a change in the global feature was faster than detecting a distinction or a change in color or local features; (2) detecting a distinction in color was facilitated by a distinction in the global feature, but not in the local features; and (3) detecting the hole was interfered by the local features of the hole (e.g., white ring with a squared hole). These results suggest that monkey ON visual systems have a subsystem that is more sensitive to distinctions in the global feature than local features. They also provide the behavioral constraints for identifying the underlying neural substrates.

  20. Processing speed enhances model-based over model-free reinforcement learning in the presence of high working memory functioning

    PubMed Central

    Schad, Daniel J.; Jünger, Elisabeth; Sebold, Miriam; Garbusow, Maria; Bernhardt, Nadine; Javadi, Amir-Homayoun; Zimmermann, Ulrich S.; Smolka, Michael N.; Heinz, Andreas; Rapp, Michael A.; Huys, Quentin J. M.

    2014-01-01

    Theories of decision-making and its neural substrates have long assumed the existence of two distinct and competing valuation systems, variously described as goal-directed vs. habitual, or, more recently and based on statistical arguments, as model-free vs. model-based reinforcement-learning. Though both have been shown to control choices, the cognitive abilities associated with these systems are under ongoing investigation. Here we examine the link to cognitive abilities, and find that individual differences in processing speed covary with a shift from model-free to model-based choice control in the presence of above-average working memory function. This suggests shared cognitive and neural processes; provides a bridge between literatures on intelligence and valuation; and may guide the development of process models of different valuation components. Furthermore, it provides a rationale for individual differences in the tendency to deploy valuation systems, which may be important for understanding the manifold neuropsychiatric diseases associated with malfunctions of valuation. PMID:25566131

Top