Sample records for underlying planetary formation

  1. Non-chondritic iron isotope ratios in planetary mantles as a result of core formation

    NASA Astrophysics Data System (ADS)

    Elardo, Stephen M.; Shahar, Anat

    2017-02-01

    Information about the materials and conditions involved in planetary formation and differentiation in the early Solar System is recorded in iron isotope ratios. Samples from Earth, the Moon, Mars and the asteroid Vesta reveal significant variations in iron isotope ratios, but the sources of these variations remain uncertain. Here we present experiments that demonstrate that under the conditions of planetary core formation expected for the Moon, Mars and Vesta, iron isotopes fractionate between metal and silicate due to the presence of nickel, and enrich the bodies' mantles in isotopically light iron. However, the effect of nickel diminishes at higher temperatures: under conditions expected for Earth's core formation, we infer little fractionation of iron isotopes. From our experimental results and existing conceptual models of magma ocean crystallization and mantle partial melting, we find that nickel-induced fractionation can explain iron isotope variability found in planetary samples without invoking nebular or accretionary processes. We suggest that near-chondritic iron isotope ratios of basalts from Mars and Vesta, as well as the most primitive lunar basalts, were achieved by melting of isotopically light mantles, whereas the heavy iron isotope ratios of terrestrial ocean floor basalts are the result of melting of near-chondritic Earth mantle.

  2. Theory of Planetary System Formation

    NASA Technical Reports Server (NTRS)

    Cassen, Patrick

    1996-01-01

    Observations and theoretical considerations support the idea that the Solar System formed by the collapse of tenuous interstellar matter to a disk of gas and dust (the primitive solar nebula), from which the Sun and other components separated under the action of dissipative forces and by the coagulation of solid material. Thus, planets are understood to be contemporaneous byproducts of star formation. Because the circumstellar disks of new stars are easier to observe than mature planetary systems, the possibility arises that the nature and variety of planets might be studied from observations of the conditions of their birth. A useful theory of planetary system formation would therefore relate the properties of circumstellar disks both to the initial conditions of star formation and to the consequent properties of planets to those of the disk. Although the broad outlines of such a theory are in place, many aspects are either untested, controversial, or otherwise unresolved; even the degree to which such a comprehensive theory is possible remains unknown.

  3. Using Laboratory Methods to Better Understand Refractory Cloud Formation in Exoplanet Atmospheres

    NASA Astrophysics Data System (ADS)

    Kohler, E.; Ferguson, F.

    2017-12-01

    The high number of extrasolar planets found in recent years has brought a new importance to planetary atmospheres. These recently discovered planets show a large diversity in their masses, temperatures, orbital periods, and other properties. With such a diverse mix of planetary parameters, it is safe to assume that the atmospheric properties are just as varied. Recent literature suggests silicates and metals as possible condensates in extrasolar planetary atmospheres as well as the atmospheres of brown dwarfs. While theoretical studies have laid the foundation of cloud formation analysis, their findings still need to be validated via experiments. A verification of the condensation and vaporization predictions of refractory materials needs to be found in order to assist global circulation models in being as accurate as possible. The stability of minerals identified in the literature as potential candidates, will be tested in a thermogravimetric balance. The minerals will be pumped under vacuum for twenty-four hours under room temperature and then heated to a predetermined high temperature, dependent on the expected vaporization temperature of that sample. If there is apparent mass loss, then the temperature will be lowered at preset durations and mass measurements will be taken in similar measured increments. The data will be processed by a computer program in order to calculate the mass loss as a function of temperature. The current cloud formation and global circulation models are very important to the field of planetary science but their accuracy is hindered by the lack of experimental data. The aim of this work is to investigate the mineral stability of potential condensates in an effort to explain the formation of refractory clouds in the atmospheres of extrasolar planets and brown dwarfs.

  4. The effects of mass and metallicity upon planetary nebula formation

    NASA Astrophysics Data System (ADS)

    Papp, K. A.; Purton, C. R.; Kwok, S.

    1983-05-01

    A parameterized function is constructed which describes the possible dependence of planetary nebula formation upon metal abundance and stellar mass. Data on galaxies in the Local Group compared with predictions made from the parameterized function indicate that heavy element abundance is the principal agent influencing the formation of planetary nebulae; stars which are rich in heavy elements are the progenitors of planetary nebulae. This analysis, when compared with the observations, argues for a modest degree of pre-enrichment in a few of the sample galaxies. The heavy element dependence of planetary nebula formation also accounts for the deficit of planetary nebulae in the nuclei of NGC 221 and NGC 224, and in the bulge of our Galaxy.

  5. CO Fundamental Emission from V836 Tauri

    DTIC Science & Technology

    2008-11-10

    systems: formation — planetary systems: protoplanetary disks — stars: individual (V836 Tauri) — stars: pre–main-sequence Online material: color...how either of these hypothesesmay bear on our under- standing of disk dissipation in this system. Subject headinggs: circumstellar matter — planetary ...that can be modeled as an optically thick disk that has an optically thin region (a hole or a gap ) at smaller radii, have been suggested to be in the

  6. Ordinary planetary systems - Architecture and formation

    NASA Technical Reports Server (NTRS)

    Levy, E. H.

    1993-01-01

    Today we believe ordinary planetary systems to be an unremarkable consequence of star formation. The solar system, so far the only confidently known example in the universe of a planetary system, displays a set of striking structural regularities. These structural regularities provide fossil clues about the conditions and mechanisms that gave rise to the planets. The formation of our planetary system, as well as its general characteristics, resulted from the physical environment in the disk-shaped nebula that accompanied the birth of the sun. Observations of contemporary star formation indicate that the very conditions and mechanisms thought to have produced our own planetary system are widely associated with the birth of stars elsewhere. Consequently, it is reasonable to believe that planetary systems occur commonly, at least in association with single, sunlike stars. Moreover, it is reasonable to believe that many planetary systems have gross characteristics resembling those of our own solar system.

  7. Lunar and Planetary Science XXXV: Terrestrial Planets: Building Blocks and Differentiation

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Terrestrial Planets: Building Blocks and Differentiation: included the following topics:Magnesium Isotopes in the Earth, Moon, Mars, and Pallasite Parent Body: High-Precision Analysis of Olivine by Laser-Ablation Multi-Collector ICPMS; Meteoritic Constraints on Collision Rates in the Primordial Asteroid Belt and Its Origin; New Constraints on the Origin of the Highly Siderophile Elements in the Earth's Upper Mantle; Further Lu-Hf and Sm-Nd Isotopic Data on Planetary Materials and Consequences for Planetary Differentiation; A Deep Lunar Magma Ocean Based on Neodymium, Strontium and Hafnium Isotope Mass Balance Partial Resetting on Hf-W System by Giant Impacts; On the Problem of Metal-Silicate Equilibration During Planet Formation: Significance for Hf-W Chronometry ; Solid Metal-Liquid Metal Partitioning of Pt, Re, and Os: The Effect of Carbon; Siderophile Element Abundances in Fe-S-Ni-O Melts Segregated from Partially Molten Ordinary Chondrite Under Dynamic Conditions; Activity Coefficients of Silicon in Iron-Nickel Alloys: Experimental Determination and Relevance for Planetary Differentiation; Reinvestigation of the Ni and Co Metal-Silicate Partitioning; Metal/Silicate Paritioning of P, Ga, and W at High Pressures and Temperatures: Dependence on Silicate Melt Composition; and Closure of the Fe-S-Si Liquid Miscibility Gap at High Pressure and Its Implications for Planetary Core Formation.

  8. In Situ Determination of Siderophile Trace Elements in Metals and Sulfides in Enstatite Achondrites

    NASA Technical Reports Server (NTRS)

    vanAcken, D.; Humayun, M.; Brandon, A. D.; Peslier, A.

    2010-01-01

    Enstatite meteorites are identified by their extremely reduced mineralogy (1) and similar oxygen isotope composition (2). The enstatite meteorite clan incorporates both EH and EL chondrites, as well as a wide variety of enstatite achondrites, such as aubrites or anomalous enstatite meteorites (e.g. Mt. Egerton, Shallowater, Zaklodzie, NWA 2526). The role of nebular versus planetary processes in the formation of enstatite meteorites is still under debate (e.g. 3-5). Past studies showed a significant influence of metal segregation in the formation of enstatite achondrites. Casanova et al. (6) suggested incomplete metal-silicate segregation during core formation and attributed the unfractionated siderophile element patterns in aubrites metals to a lack of fractional crystallization in a planetary core. Recent studies suggest a significant role of impact melting in the formation of primitive enstatite chondrites (7) and identified NWA 2526 as a partial melt residue of an enstatite chondrite (8). To understand the nature of siderophile element-bearing phases in enstatite achondrites, establish links between enstatite achondrites and enstatite chondrites (9), and constrain planetary differentiation on their respective parent bodies and their petrogenetic histories, we present laser ablation ICP-MS measurements of metal and sulfide phases in Shallowater, Mt. Egerton, and the aubrites Aubres, Cumberland Falls, and Mayo Belwa.

  9. Planetary system formation: Effects of planet-disk tidal interaction

    NASA Astrophysics Data System (ADS)

    Bryden, Geoffrey

    The standard theory of planet formation begins with the coagulation of solid planetesimals (Safronov 1969, Wetherill & Stewart 1989) followed by the accretion of disk gas once the solid core reaches a critical mass >~10M⊕ (Perri & Cameron 1974, Mizuno 1980, Bodenheimer & Pollack 1986). The classic picture of planet formation, in which each planet's position in the nebula remain fixed, is challenged by the observed distribution of extra-solar planets (e.g. Mayor & Queloz 1995, Butler et al. 1999). The majority of these planets are on short-period orbits ( P<~10 days) very close to their central stars ( ap<~0.1 AU), suggesting that orbital migration plays an important role in the formation of planetary systems. The intent of this thesis is to explore the inclusion of protoplanetary tidal forces into the classical theory of planetary system formation. Protoplanetary interaction with the surrounding gaseous nebulae directly determines giant planets' semi-major axes, masses, gas/solid ratio, and relative spacing. In essence, the process of gap formation determines the primary observational characteristics of both individual planets and their composite systems. Detailed simulations of gap formation produce a range of planetary masses consistent with the observed distribution. Fully self-interacting models of planetary system formation can be used to create a wide variety of planetary systems, ranging from the solar system to Upsilon Andromeda (Butler et al. 1999).

  10. Kepler Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2015-01-01

    Kepler has vastly increased our knowledge of planets and planetary systems located close to stars. The new data shows surprising results for planetary abundances, planetary spacings and the distribution of planets on a mass-radius diagram. The implications of these results for theories of planet formation will be discussed.

  11. The Formation of a Planetary Nebula.

    ERIC Educational Resources Information Center

    Harpaz, Amos

    1991-01-01

    Proposes a scenario to describe the formation of a planetary nebula, a cloud of gas surrounding a very hot compact star. Describes the nature of a planetary nebula, the number observed to date in the Milky Way Galaxy, and the results of research on a specific nebula. (MDH)

  12. Significant achievements in the Planetary Geology Program. [geologic processes, comparative planetology, and solar system evolution

    NASA Technical Reports Server (NTRS)

    Head, J. W. (Editor)

    1978-01-01

    Developments reported at a meeting of principal investigators for NASA's planetology geology program are summarized. Topics covered include: constraints on solar system formation; asteriods, comets, and satellites; constraints on planetary interiors; volatiles and regoliths; instrument development techniques; planetary cartography; geological and geochemical constraints on planetary evolution; fluvial processes and channel formation; volcanic processes; Eolian processes; radar studies of planetary surfaces; cratering as a process, landform, and dating method; and the Tharsis region of Mars. Activities at a planetary geology field conference on Eolian processes are reported and techniques recommended for the presentation and analysis of crater size-frequency data are included.

  13. On the Diversity of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Young, Richard E. (Technical Monitor)

    1997-01-01

    Models of planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. Modern theories of star and planet formation, which are based upon observations of the Solar System and of young stars and their environments, predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed.

  14. The Birth of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    1997-01-01

    Models of planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. Modern theories of star and planet formation, which are based upon observations of the Solar System and of young stars and their environments, predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large- enough to gravitationally trap substantial quantities of gas. Another potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed.

  15. Geologic Mapping of the Medusae Fossae Formation, Mars, and the Northern Lowland Plains, Venus

    NASA Technical Reports Server (NTRS)

    Zimbelman, J. R.

    2010-01-01

    This report summarizes the status of mapping projects supported by NASA grant NNX07AP42G, through the Planetary Geology and Geophysics (PGG) program. The PGG grant is focused on 1:2M-scale mapping of portions of the Medusae Fossae Formation (MFF) on Mars. Also described below is the current status of two Venus geologic maps, generated under an earlier PGG mapping grant.

  16. Planet formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    1993-01-01

    Models of planetary formation are developed using the present single example of a planetary system, supplemented by limited astrophysical observations of star-forming regions and circumstellar disks. The solar nebula theory and the planetesimal hypothesis are discussed. The latter is found to provide a viable theory of the growth of the terrestrial planets, the cores of the giant planets, and the smaller bodies present in the solar system. The formation of solid bodies of planetary size should be a common event, at least around young stars which do not have binary companions orbiting at planetary distances. Stochastic impacts of large bodies provide sufficient angular momentum to produce the obliquities of the planets. The masses and bulk compositions of the planets can be understood in a gross sense as resulting from planetary growth within a disk whose temperature and surface density decreased with distance from the growing sun.

  17. Geologic Mapping of the Medusae Fossae Formation on Mars and the Northern Lowland Plains of Venus

    NASA Technical Reports Server (NTRS)

    Zimbelman, J. R.

    2009-01-01

    This report summarizes the status of mapping projects supported by NASA grant NNX07AP42G, through the Planetary Geology and Geophysics (PGG) program. The PGG grant is focused on 1:2M-scale mapping of portions of the Medusae Fossae Formation (MFF) on Mars. Also described below is the current status of two Venus geo-logic maps, generated under an earlier PGG mapping grant.

  18. Concept for a research project in early crustal genesis

    NASA Technical Reports Server (NTRS)

    Phillips, R. J. (Compiler); Ashwal, L. (Compiler)

    1983-01-01

    Planetary volatiles, physical and chemical planetary evolution, surface processes, planetary formation, metallogenesis, crustal features and their development, tectonics, and paleobiology are discussed.

  19. Jupiter's and Saturn's ice moons: geophysical aspects and opportunities of geophysical survey of the planetary geoelectrical markers and oreols of the subsurface liquid ocean on the surface ice moons

    NASA Astrophysics Data System (ADS)

    Ozorovich, Yuri; Linkin, Vacheslav; Kosov, Alexandr; Fournier-Sicre, Alain; Klimov, Stanislav; Novikov, Denis; Ivanov, Anton; Skulachev, Dmitriy; Menshenin, Yaroslav

    2016-04-01

    This paper presents a new conceptual and methodological approach for geophysical survey of the planetary geoelectrical markers and oreols of the subsurface liquid ocean on the surface ice moons on the base "conceptual design phase" of the future space missions on the ice moons. At the design stage of such projects is considered the use of various space instruments and tools for the full the complex geophysical studies of the manifestations and planetary processes of the subsurface liquid ocean on the surface ice moons. The existence of various forms of the cryolithozone on terrestrial planets and their moons: advanced Martian permafrost zone in the form of existing of the frozen polar caps, subsurface frozen horizons, geological markers and oreols of the martian ancient (relict) ocean, subsurface oceans of Jupiter's and Saturn's moons-Europe and Enceladus, with the advanced form of permafrost freezes planetary caps, it allows to develop a common methodological basis and operational geophysical instruments (tools) for the future space program and planning space missions on these unique objects of the solar system, specialized for specific scientific problems of planetary missions. Geophysical practices and methodological principles, used in 1985-2015 by aurthors [ 1-5 ], respectively, as an example of the comprehensive geophysical experiment MARSES to study of the Martian permafrost zone and the martian ancient (relict) ocean, creating the preconditions for complex experimental setting and geo-physical monitoring of operational satellites of Jupiter and Saturn- Europe and Enceladus. This range of different planetary (like) planets with its geological history and prehistory of the common planetology formation processes of the planets formation and to define the role of a liquid ocean under the ice as a climate indicator of such planets, which is extremely important for the future construction of the geological and climatic history of the Earth. Main publications: [1]https://www.researchgate.net/publication/282151921_JUPITER%27S_MOON_EUROPA_PLANETARY_GEOELECTRICAL_MARKER_AND_OREOLS_UNDER_ICE_SUBSUEFACE_OCEAN_ON_THE_SURFACE_OF_THE_JUPITER%27S_MOON_EUROPA?ev=prf_pub [2]https://www.researchgate.net/publication/281270655_YUPITERS_MOON_EUROPA_PLANETARY_GEOELECTRICAL_MARKERS_AND_OREOPLS_OF_THE_LIQUID_OCEAN_UNDER_THE_ICE_ON_THE_SURFACE_OF_THE_YUPITERS_MOON_EUROPE [3] https://www.researchgate.net/publication/276005128_Science-technology_aspects_and_opportunities_of_em_sounding_frozen_%28_permafrost%29_soil [4]https://www.researchgate.net/publication/275638508_Cryolitozone_of_Mars_-_as_the_climatic_indicator_of_the_Martian_relict_ocean [5]https://www.researchgate.net/publication/275266762_Microwave_remote_sensing_of_Martian_cryolitozone

  20. Formation of Authigenic Sulfates in Cold Dry Glaciers: Terrestrial and Planetary Implications of Sublimites

    NASA Astrophysics Data System (ADS)

    Massé, M.; Rondeau, B.; Ginot, P.; Schmitt, B.; Bourgeois, O.; Mitri, G.

    2015-12-01

    Salts are common on planetary surfaces, and sulfates have been widely observed on Earth, Mars (Gendrin et al., 2005) and on some of Jupiter's and Saturn's icy moons like Europa (Dalton et al., 2007). These minerals can form under a wide range of conditions, and the determination of sulfate formation processes can provide key elements for deciphering past planetary surface conditions. Most terrestrial sulfates form as evaporites in warm environments with high water/rock ratios, but these conditions are rarely encountered on other planets. Here we describe the formation of cryogenic sulfates in an extreme cold and dry environment: the Guanaco glacier located in the Chilean Andes (Fig.1a, Rabatel et al., 2011). Field analyses reveal that it is a cold-based glacier, its surface temperature remains below 0°C throughout the year, and ablation occurs mostly by sublimation. Ablation creates ice cliffs punctuated of pluricentimetric whitish, tapered crystals embedded in the ice (Fig.1b, c). By Raman and chemistry, they proved to be gypsum, covered by micrometric crystals of jarosite, halotrichite and native sulfur. The euhedral morphology of these soft minerals indicates that they are neoformed and have not been transported in the ice. This is supported by the absence of gypsum crystals in ice cores drilled through the glacier. We infer that the crystallization thus occurred at the glacier surface during ice sublimation and does not involve liquid water. To distinguish this original salt formation process from the more common evaporites, we name these minerals "sublimites". Though this formation process is uncommon and generates minor quantities of sulfates on Earth, it may be dominant on other bodies in the Solar System where sublimation is effective. Examples of planetary sublimites may include gypsum on the North Polar Cap of Mars (Massé et al., 2012), and other sulfates on icy moons where sublimation has been observed (Howard et al., 2008).

  1. On the abiotic formation of amino acids. I - HCN as a precursor of amino acids detected in extracts of lunar samples. II - Formation of HCN and amino acids from simulated mixtures of gases released from lunar samples

    NASA Technical Reports Server (NTRS)

    Yuasa, S.; Flory, D.; Basile, B.; Oro, J.

    1984-01-01

    Two studies on the abiotic formation of amino acids are presented. The first study demonstrates the role of hydrogen cyanide as a precursor of amino acids detected in extracts of lunar samples. The formation of several amino acids, including glycine, alanine, aspartic acid, and glutamic acid, under conditions similar to those used for the analysis of lunar samples is demonstrated. The second study investigates the formation of hydrogen cyanide as well as amino acids from lunar-sample gas mixtures under electrical discharge conditions. These results extend the possibility of synthesis of amino acids to planetary bodies with primordial atmospheres less reducing than a mixture of methane, ammonia, hydrogen and water.

  2. Formation of CaS-MgS in Enstatite Chondrites and Achondrites as a Function of Redox Conditions and Temperature: Constraints on Their Evolution in a Planetesimal and in a Proto-planet

    NASA Technical Reports Server (NTRS)

    Malavergne, Valerie; Berthet, S.; Righter, K.

    2007-01-01

    The cubic monosulfide series with the general formula (Mg,Mn,Ca,Fe)S are common phases in the enstatite chondrite (EH) and aubrite meteorite groups. In the Earth s mantle, sulfide minerals are associated with peridotites and eclogites. Study of these sulfide mineral systems is of interest for the mineralogy and petrology of planetary mantles. For example, MgS could occur in the primitive Earth and because it remains a low density phase compared to metal, would stay a separate phase during the core formation process, and thus not segregate to the core. (Mg,Ca,Mn,Fe)S sulphides might thus be important phases even in planetary differentiation processes. The importance of such minerals, and their formation, composition and textural relationships for understanding the genesis of enstatite chondrites and aubrites, has long been recognized. The main objective of this experimental study is to understand the formation and evolution of (Mg,Ca,Mn,Fe)S sulphides, particularly the oldhamite CaS and ningerite MgS, with pressure, temperature but also with redox conditions because EH and aubrites are meteorites that formed under reduced conditions. Piston-cylinder (PC) and multi-anvil (MA) experiments at high pressure (HP) and high temperature (HT) have been performed in order to simulate the evolution of these phases in a small planetary body from a planetesimal (with PC experiments) up to a proto-planet (with MA experiments).

  3. Gondola for High Altitude Planetary Science (GHAPS)

    NASA Technical Reports Server (NTRS)

    Hoffmann, Monica

    2017-01-01

    Description of the NASA Gondola for High Altitude Planetary Science (GHAPS) balloon project and its planetary science capabilities provided in a poster or fact sheet format as needed. The ability of GHAPS to provide a re-useable platform to collect planetary information is described.

  4. Experimental Behavior of Sulfur Under Primitive Planetary Differentiation Processes, the Sulfide Formations in Enstatite Meteorites and Implications for Mercury.

    NASA Technical Reports Server (NTRS)

    Malavergne, V.; Brunet, F.; Righter, K.; Zanda, B.; Avril, C.; Borensztajn, S.; Berthet, S.

    2012-01-01

    Enstatite meteorites are the most reduced naturally-occuring materials of the solar system. The cubic monosulfide series with the general formula (Mg,Mn,Ca,Fe)S are common phases in these meteorite groups. The importance of such minerals, their formation, composition and textural relationships for understanding the genesis of enstatite chondrites (EC) and aubrites, has long been recognized (e.g. [1]). However, the mechanisms of formation of these sulfides is still not well constrained certainly because of possible multiple ways to produce them. We propose to simulate different models of formation in order to check their mineralogical, chemical and textural relevancies. The solubility of sulfur in silicate melts is of primary interest for planetary mantles, particularly for the Earth and Mercury. Indeed, these two planets could have formed, at least partly, from EC materials (e.g. [2, 3, 4]). The sulfur content in silicate melts depends on the melt composition but also on pressure (P), temperature (T) and oxygen fugacity fO2. Unfortunately, there is no model of general validity in a wide range of P-T-fO2-composition which describes precisely the evolution of sulfur content in silicate melts, even if the main trends are now known. The second goal of this study is to constrain the sulfur content in silicate melts under reducing conditions and different temperatures.

  5. Characterization of exoplanets from their formation. III. The statistics of planetary luminosities

    NASA Astrophysics Data System (ADS)

    Mordasini, C.; Marleau, G.-D.; Mollière, P.

    2017-12-01

    Context. This paper continues a series in which we predict the main observable characteristics of exoplanets based on their formation. In Paper I we described our global planet formation and evolution model that is based on the core accretion paradigm. In Paper II we studied the planetary mass-radius relationship with population syntheses. Aims: In this paper we present an extensive study of the statistics of planetary luminosities during both formation and evolution. Our results can be compared with individual directly imaged extrasolar (proto)planets and with statistical results from surveys. Methods: We calculated three populations of synthetic planets assuming different efficiencies of the accretional heating by gas and planetesimals during formation. We describe the temporal evolution of the planetary mass-luminosity relation. We investigate the relative importance of the shock and internal luminosity during formation, and predict a statistical version of the post-formation mass vs. entropy "tuning fork" diagram. Because the calculations now include deuterium burning we also update the planetary mass-radius relationship in time. Results: We find significant overlap between the high post-formation luminosities of planets forming with hot and cold gas accretion because of the core-mass effect. Variations in the individual formation histories of planets can still lead to a factor 5 to 20 spread in the post-formation luminosity at a given mass. However, if the gas accretional heating and planetesimal accretion rate during the runaway phase is unknown, the post-formation luminosity may exhibit a spread of as much as 2-3 orders of magnitude at a fixed mass. As a key result we predict a flat log-luminosity distribution for giant planets, and a steep increase towards lower luminosities due to the higher occurrence rate of low-mass (M ≲ 10-40 M⊕) planets. Future surveys may detect this upturn. Conclusions: Our results indicate that during formation an estimation of the planetary mass may be possible for cold gas accretion if the planetary gas accretion rate can be estimated. If it is unknown whether the planet still accretes gas, the spread in total luminosity (internal + accretional) at a given mass may be as large as two orders of magnitude, therefore inhibiting the mass estimation. Due to the core-mass effect even planets which underwent cold accretion can have large post-formation entropies and luminosities, such that alternative formation scenarios such as gravitational instabilities do not need to be invoked. Once the number of self-luminous exoplanets with known ages and luminosities increases, the resulting luminosity distributions may be compared with our predictions.

  6. Probing planetary interiors: Shock compression of water to 700 GPa and 3.8 g/cc, and recent high precision Hugoniot measurements of deuterium

    NASA Astrophysics Data System (ADS)

    Knudson, Marcus

    2013-06-01

    The past several years have seen tremendous increase in the number of identified extra-solar planetary systems. Our understanding of the formation of these systems is tied to our understanding of the internal structure of these exoplanets, which in turn rely upon equations of state of light elements and compounds such as water and hydrogen. Here we present shock compression data for water with unprecedented accuracy that shows commonly used models for water in planetary modeling significantly overestimate the compressibility at conditions relevant to planetary interiors. Furthermore, we show that its behavior at these conditions, including reflectivity and isentropic response, is well described by a recent first-principles based equation of state. These findings advocate the use of this model as the standard for modeling Neptune, Uranus, and ``hot Neptune'' exoplanets, and should contribute to improved understanding of the interior structure of these planets, and perhaps improved understanding of formation mechanisms of planetary systems. We also present very recent experiments on deuterium that have taken advantage of continued improvements in both experimental configuration and the understanding of the quartz shock standard to obtain Hugoniot data with a significant increase in precision. These data will prove to provide a stringent test for the equation of state of hydrogen and its isotopes. Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-ACO4-94AL85000.

  7. Shock Temperatures of Major Silicates in Rocky Planets

    NASA Astrophysics Data System (ADS)

    Davies, E.; Root, S.; Spaulding, D.; Kraus, R. G.; Stewart, S. T.; Jacobsen, S. B.; Mattsson, T. R.

    2016-12-01

    Rocky extra-solar planets have been discovered with very high masses that challenge our theoretical understanding of planetary structures and notions of planet formation. In order to constrain models and understand mechanisms of both the formation and subsequent evolution of these planets, it is imperative to determine the properties of materials within the interiors of large Earth-like planets. The major minerals olivine [(Mg,Fe)2SiO4] and enstatite [(Mg,Fe)SiO3], along with Fe-rich metal (with 5% Ni), are the most abundant solids from which Earth-like planets accrete. These materials are subject to ultra-high pressures and temperatures (approaching 10TPa and 10,000 K) during planetary formation and in the present day interiors of large rocky planets. Here, we present results of shock compression experiments on the Sandia Z machine. Shock compression experiments with the Sandia Z machine use large current and field densities that generate magnetic pressures up to 650 GPa that can accelerate flyer plates up to 40 km/s. We report shock temperatures for pressures greater than 270 GPa for forsterite (Mg2SiO4) and enstatite. Our results, together with prior data, demonstrate discrepancies in shock temperatures on forsterite in the region of possible incongruent melting on the Hugoniot. Key gaps in the Hugoniot contribute to this uncertainty. EOS formalisms such as M-ANEOS, which are commonly used in planetary impact simulations, over predict temperatures above 200 GPa with significant disagreement above 500 GPa. As a result, the amount of material subject to shock-induced vaporization during giant impacts is larger than currently estimated. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. Planets around pulsars - Implications for planetary formation

    NASA Technical Reports Server (NTRS)

    Bodenheimer, Peter

    1993-01-01

    Data on planets around pulsars are summarized, and different models intended to explain the formation mechanism are described. Both theoretical and observational evidence suggest that very special circumstances are required for the formation of planetary systems around pulsars, namely, the prior presence of a millisecond pulsar with a close binary companion, probably a low mass main-sequence star. It is concluded that the discovery of two planets around PSR 1257+12 is important for better understanding the problems of dynamics and stellar evolution. The process of planetary formation should be learned through intensive studies of the properties of disks near young objects and application of techniques for detection of planets around main-sequence solar-type stars.

  9. Architectures of planetary systems and implications for their formation.

    PubMed

    Ford, Eric B

    2014-09-02

    Doppler planet searches revealed that many giant planets orbit close to their host star or in highly eccentric orbits. These and subsequent observations inspired new theories of planet formation that invoke gravitation interactions in multiple planet systems to explain the excitation of orbital eccentricities and even short-period giant planets. Recently, NASA's Kepler mission has identified over 300 systems with multiple transiting planet candidates, including many potentially rocky planets. Most of these systems include multiple planets with closely spaced orbits and sizes between that of Earth and Neptune. These systems represent yet another new and unexpected class of planetary systems and provide an opportunity to test the theories developed to explain the properties of giant exoplanets. Presently, we have limited knowledge about such planetary systems, mostly about their sizes and orbital periods. With the advent of long-term, nearly continuous monitoring by Kepler, the method of transit timing variations (TTVs) has blossomed as a new technique for characterizing the gravitational effects of mutual planetary perturbations for hundreds of planets. TTVs can provide precise, but complex, constraints on planetary masses, densities, and orbits, even for planetary systems with faint host stars. In the coming years, astronomers will translate TTV observations into increasingly powerful constraints on the formation and orbital evolution of planetary systems with low-mass planets. Between TTVs, improved Doppler surveys, high-contrast imaging campaigns, and microlensing surveys, astronomers can look forward to a much better understanding of planet formation in the coming decade.

  10. Architectures of planetary systems and implications for their formation

    PubMed Central

    Ford, Eric B.

    2014-01-01

    Doppler planet searches revealed that many giant planets orbit close to their host star or in highly eccentric orbits. These and subsequent observations inspired new theories of planet formation that invoke gravitation interactions in multiple planet systems to explain the excitation of orbital eccentricities and even short-period giant planets. Recently, NASA’s Kepler mission has identified over 300 systems with multiple transiting planet candidates, including many potentially rocky planets. Most of these systems include multiple planets with closely spaced orbits and sizes between that of Earth and Neptune. These systems represent yet another new and unexpected class of planetary systems and provide an opportunity to test the theories developed to explain the properties of giant exoplanets. Presently, we have limited knowledge about such planetary systems, mostly about their sizes and orbital periods. With the advent of long-term, nearly continuous monitoring by Kepler, the method of transit timing variations (TTVs) has blossomed as a new technique for characterizing the gravitational effects of mutual planetary perturbations for hundreds of planets. TTVs can provide precise, but complex, constraints on planetary masses, densities, and orbits, even for planetary systems with faint host stars. In the coming years, astronomers will translate TTV observations into increasingly powerful constraints on the formation and orbital evolution of planetary systems with low-mass planets. Between TTVs, improved Doppler surveys, high-contrast imaging campaigns, and microlensing surveys, astronomers can look forward to a much better understanding of planet formation in the coming decade. PMID:24778212

  11. Rings and arcs around evolved stars - I. Fingerprints of the last gasps in the formation process of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Ramos-Larios, G.; Santamaría, E.; Guerrero, M. A.; Marquez-Lugo, R. A.; Sabin, L.; Toalá, J. A.

    2016-10-01

    Evolved stars such as asymptotic giant branch stars (AGB), post-AGB stars, proto-planetary nebulae (proto-PNe), and planetary nebulae (PNe) show rings and arcs around them and their nebular shells. We have searched for these morphological features in optical Hubble Space Telescope and mid-infrared Spitzer Space Telescope images of ˜650 proto-PNe and PNe and discovered them in 29 new sources. Adding those to previous detections, we derive a frequency of occurrence ≃8 per cent. All images have been processed to remove the underlying envelope emission and enhance outer faint structures to investigate the spacing between rings and arcs and their number. The averaged time lapse between consecutive rings and arcs is estimated to be in the range 500-1200 yr. The spacing between them is found to be basically constant for each source, suggesting that the mechanism responsible for the formation of these structures in the final stages of evolved stars is stable during time periods of the order of the total duration of the ejection. In our sample, this period of time spans ≤4500 yr.

  12. Origin of the solar system

    NASA Technical Reports Server (NTRS)

    Cameron, A. G. W.

    1988-01-01

    The current status of the classical model of solar-system formation is surveyed, reviewing the results of recent observational and theoretical investigations. Topics addressed include interstellar clouds, the collapse of interstellar gas, the primitive solar nebula, the formation of the sun, planetesimal accumulation, planetary accumulation, major planetary collisions, the development of planetary atmospheres, and comets. The relative merits of conflicting theories on many key problems are indicated, with reference to more detailed reviews in the literature.

  13. Formation and Detection of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    Modern theories of star and planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. The most detailed models of planetary growth are based upon observations of planets and smaller bodies within our own Solar System and of young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed, and the methods that are being used and planned for detecting and characterizing extrasolar planets are reviewed.

  14. Geological-morphological description of the Lakshmi planum (photomap of the Venusian surface sheet B-4)

    NASA Technical Reports Server (NTRS)

    Pronin, A. A.

    1987-01-01

    The Lakshmi Planum and its surrounding area (together comprising a single structure) are described in morphological terms on the basis of Venera 15 and 16 photomap data. Plume ascent from the planetary interior and subsequent horizontal spreading represent the underlying mechanisms behind structural formation: folding and/or imbricating accompany these processes. In effect, the Laksmi structure can be regarded as a local spreading center. Its structural dimensions attest to the role that asthenospheric currents played in its formation.

  15. Numerical modelling of the formation process of planets from protoplanetary cloud

    NASA Technical Reports Server (NTRS)

    Kozlov, N. N.; Eneyev, T. M.

    1979-01-01

    Evolution of the plane protoplanetary cloud, consisting of a great number of gravitationally interacting and uniting under collision bodies (protoplanets) moving in the central field of a large mass (the Sun or a planet), is considered. It is shown that in the course of protoplanetary cloud evolution the ring zones of matter expansion and compression occur with the subsequent development leading to formation of planets, rotating about their axes mainly directly. The principal numerical results were obtained through digital simulation of planetary accumulation.

  16. A bibliography of planetary geology principal investigators and their associates, 1976-1978

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This bibliography cites publications submitted by 484 principal investigators and their associates who were supported through NASA's Office of Space Sciences Planetary Geology Program. Subject classifications include: solar system formation, comets, and asteroids; planetary satellites, planetary interiors, geological and geochemical constraints on planetary evolution; impact crater studies, volcanism, eolian studies, fluvian studies, Mars geological mapping; Mercury geological mapping; planetary cartography; and instrument development and techniques. An author/editor index is provided.

  17. Summary and abstracts of the Planetary Data Workshop, June 2012

    USGS Publications Warehouse

    Gaddis, Lisa R.; Hare, Trent; Beyer, Ross

    2014-01-01

    The recent boom in the volume of digital data returned by international planetary science missions continues to both delight and confound users of those data. In just the past decade, the Planetary Data System (PDS), NASA’s official archive of scientific results from U.S. planetary missions, has seen a nearly 50-fold increase in the amount of data and now serves nearly half a petabyte. In only a handful of years, this volume is expected to approach 1 petabyte (1,000 terabytes or 1 quadrillion bytes). Although data providers, archivists, users, and developers have done a creditable job of providing search functions, download capabilities, and analysis and visualization tools, the new wealth of data necessitates more frequent and extensive discussion among users and developers about their current capabilities and their needs for improved and new tools. A workshop to address these and other topics, “Planetary Data: A Workshop for Users and Planetary Software Developers,” was held June 25–29, 2012, at Northern Arizona University (NAU) in Flagstaff, Arizona. A goal of the workshop was to present a summary of currently available tools, along with hands-on training and how-to guides, for acquiring, processing and working with a variety of digital planetary data. The meeting emphasized presentations by data users and mission providers during days 1 and 2, and developers had the floor on days 4 and 5 using an “unconference” format for day 5. Day 3 featured keynote talks by Laurence Soderblom (U.S. Geological Survey, USGS) and Dan Crichton (Jet Propulsion Laboratory, JPL) followed by a panel discussion, and then research and technical discussions about tools and capabilities under recent or current development. Software and tool demonstrations were held in break-out sessions in parallel with the oral session. Nearly 150 data users and developers from across the globe attended, and 22 National Aeronautics and space Administration (NASA) and non-NASA data providers and missions were represented. Presentations (some in video format) and tutorials are posted on the meeting site (http://astrogeology.usgs.gov/groups/Planetary-Data-Workshop).

  18. Phase Transitions of MgO Along the Hugoniot (Invited)

    NASA Astrophysics Data System (ADS)

    Root, S.; Shulenburger, L.; Lemke, R. W.; Cochrane, K. R.; Mattsson, T. R.

    2013-12-01

    The formation of terrestrial planets and planetary structure has become of great interest because of recent exoplanet discoveries of super earths. MgO is a major constituent of Earth's mantle, the rocky cores of gas giants such as Jupiter, and likely constitutes the interiors of many exoplanets. The high pressure - high temperature behavior of MgO directly affects equation of state models for planetary structure and formation. In this work, we examine single crystal MgO under shock compression utilizing experimental and density functional theory (DFT) methods to determine phase transformations along the Hugoniot. We perform plate impact experiments using Sandia's Z - facility on MgO up to 11.6 Mbar. The plate impact experiments generate highly accurate Hugoniot state data. The experimental results show the B1 - B2 solid - solid phase transition occurs near 4 Mbar on the Hugoniot. The solid - liquid transition is determined to be near 7 Mbar with a large region of B2-liquid coexistence. Using DFT methods, we also determine melt along the B1 and B2 solid phase boundaries as well as along the Hugoniot. The combined experimental and DFT results have determined the phase boundaries along the Hugoniot, which can be implemented into new planetary and EOS models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Securities Administration under Contract No. DE-AC04-94AL85000.

  19. Planet Formation and the Characteristics of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    An overview of current theories of planetary growth, emphasizing the formation of extrasolar planets, is presented. Models of planet formation are based upon observations of the Solar System, extrasolar planets, and young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but if they become massive enough before the protoplanetary disk dissipates, then they are able to accumulate substantial amounts of gas. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed.

  20. Variety in planetary systems

    NASA Technical Reports Server (NTRS)

    Wetherill, George W.

    1993-01-01

    Observation of circumstellar disks, regular satellite systems of outer planets, and planet-size objects orbiting pulsars support the supposition that formation of planetary systems is a robust, rather than a fragile, byproduct of the formation and evolution of stars. The extent to which these systems may be expected to resemble one another and our Solar System, either in overall structure or in detail remains uncertain. When the full range of possible stellar masses, disk masses, and initial specific angular momenta are considered, the possible variety of planetary configurations is very large. Numerical modeling indicates a difference between the formation of small, inner, terrestrial planets and the outer planets.

  1. New isotopic clues to solar system formation

    NASA Technical Reports Server (NTRS)

    Lee, T.

    1979-01-01

    The presence of two new extinct nuclides Al-26 and Pd-107 with half lives of approximately one million years in the early solar system implies that there were nucleosynthetic activities involving a great many elements almost at the instant of solar system formation. Rate gas and oxygen isotopic abundance variations ('anomalies') relative to the 'cosmic' composition were observed in a variety of planetary objects, which indicates that isotopic heterogeneities caused by the incomplete mixing of distinct nucleosynthesis components permeate the entire solar system. These new results have major implications for cosmochronology, nucleosynthesis theory, star formation, planetary heating, and the genetic relationship between different planetary bodies

  2. The formation of planetary systems during the evolution of close binary stars

    NASA Astrophysics Data System (ADS)

    Tutukov, A. V.

    1991-08-01

    Modern scenarios of the formation of planetary systems around single stars and products of merging close binaries are described. The frequencies of the realization of different scenarios in the Galaxy are estimated. It is concluded that the modern theory of the early stages of the evolution of single stars and the theory of the evolution of close binaries offer several possible versions for the origin of planetary systems, while the scenario dating back to Kant and Laplace remains the likeliest.

  3. The Formation of Solid Particles from their Gas-Phase Molecular Precursors in Cosmic Environments with NASA Ames' COSmIC Facility

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2014-01-01

    We present and discuss the unique characteristics and capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory. COSmIC stands for Cosmic Simulation Chamber and is dedicated to the study of molecules and ions under the low temperature and high vacuum conditions that are required to simulate interstellar, circumstellar and planetary physical environments in space. COSmIC integrates a variety of state-of-the-art instruments that allow forming, processing and monitoring simulated space conditions for planetary, circumstellar and interstellar materials in the laboratory. COSmIC is composed of a Pulsed Discharge Nozzle (PDN) expansion that generates a free jet supersonic expansion coupled to two ultrahigh-sensitivity, complementary in situ diagnostics: a Cavity Ring Down Spectroscopy (CRDS) system for photonic detection and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection. Recent, unique, laboratory astrophysics results that were obtained using the capabilities of COSmIC will be discussed, in particular the progress that have been achieved in monitoring in the laboratory the formation of solid gains from their gas-phase molecular precursors in environments as varied as stellar/circumstellar outflow and planetary atmospheres. Plans for future, next generation, laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics will also be addressed as well as the implications of these studies for current and upcoming space missions.

  4. Reports of planetary geology program, 1976 - 1977. [abstracts

    NASA Technical Reports Server (NTRS)

    Arvidson, R. (Compiler); Wahmann, R. (Compiler); Howard, J. H., III

    1977-01-01

    One hundred seventeen investigations undertaken in the NASA Planetary Geology Program in 1976-1977 are reported in abstract form. Topics discussed include solar system formation; planetary interiors; planetary evolution; asteroids, comets and moons; cratering; volcanic, eolian, fluvial and mass wasting processes; volatiles and the Martian regolith; mapping; and instrument development and techniques. An author index is provided.

  5. Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Fonda, Mark (Technical Monitor)

    2002-01-01

    Modern theories of star and planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. The most detailed models of planetary growth are based upon observations of planets and smaller bodies within our own Solar System and of young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed, and the methods that are being used and planned for detecting and characterizing extrasolar planets are reviewed.

  6. XUV-Exposed, Non-Hydrostatic Hydrogen-Rich Upper Atmospheres of Terrestrial Planets. Part II: Hydrogen Coronae and Ion Escape

    PubMed Central

    Lammer, Helmut; Holmström, Mats; Panchenko, Mykhaylo; Odert, Petra; Erkaev, Nikolai V.; Leitzinger, Martin; Khodachenko, Maxim L.; Kulikov, Yuri N.; Güdel, Manuel; Hanslmeier, Arnold

    2013-01-01

    Abstract We studied the interactions between the stellar wind plasma flow of a typical M star, such as GJ 436, and the hydrogen-rich upper atmosphere of an Earth-like planet and a “super-Earth” with a radius of 2 REarth and a mass of 10 MEarth, located within the habitable zone at ∼0.24 AU. We investigated the formation of extended atomic hydrogen coronae under the influences of the stellar XUV flux (soft X-rays and EUV), stellar wind density and velocity, shape of a planetary obstacle (e.g., magnetosphere, ionopause), and the loss of planetary pickup ions on the evolution of hydrogen-dominated upper atmospheres. Stellar XUV fluxes that are 1, 10, 50, and 100 times higher compared to that of the present-day Sun were considered, and the formation of high-energy neutral hydrogen clouds around the planets due to the charge-exchange reaction under various stellar conditions was modeled. Charge-exchange between stellar wind protons with planetary hydrogen atoms, and photoionization, lead to the production of initially cold ions of planetary origin. We found that the ion production rates for the studied planets can vary over a wide range, from ∼1.0×1025 s−1 to ∼5.3×1030 s−1, depending on the stellar wind conditions and the assumed XUV exposure of the upper atmosphere. Our findings indicate that most likely the majority of these planetary ions are picked up by the stellar wind and lost from the planet. Finally, we estimated the long-time nonthermal ion pickup escape for the studied planets and compared them with the thermal escape. According to our estimates, nonthermal escape of picked-up ionized hydrogen atoms over a planet's lifetime within the habitable zone of an M dwarf varies between ∼0.4 Earth ocean equivalent amounts of hydrogen (EOH) to <3 EOH and usually is several times smaller in comparison to the thermal atmospheric escape rates. Key Words: Stellar activity—Low-mass stars—Early atmospheres—Earth-like exoplanets—Energetic neutral atoms—Ion escape—Habitability. Astrobiology 13, 1030–1048. PMID:24283926

  7. XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part II: hydrogen coronae and ion escape.

    PubMed

    Kislyakova, Kristina G; Lammer, Helmut; Holmström, Mats; Panchenko, Mykhaylo; Odert, Petra; Erkaev, Nikolai V; Leitzinger, Martin; Khodachenko, Maxim L; Kulikov, Yuri N; Güdel, Manuel; Hanslmeier, Arnold

    2013-11-01

    We studied the interactions between the stellar wind plasma flow of a typical M star, such as GJ 436, and the hydrogen-rich upper atmosphere of an Earth-like planet and a "super-Earth" with a radius of 2 R(Earth) and a mass of 10 M(Earth), located within the habitable zone at ∼0.24 AU. We investigated the formation of extended atomic hydrogen coronae under the influences of the stellar XUV flux (soft X-rays and EUV), stellar wind density and velocity, shape of a planetary obstacle (e.g., magnetosphere, ionopause), and the loss of planetary pickup ions on the evolution of hydrogen-dominated upper atmospheres. Stellar XUV fluxes that are 1, 10, 50, and 100 times higher compared to that of the present-day Sun were considered, and the formation of high-energy neutral hydrogen clouds around the planets due to the charge-exchange reaction under various stellar conditions was modeled. Charge-exchange between stellar wind protons with planetary hydrogen atoms, and photoionization, lead to the production of initially cold ions of planetary origin. We found that the ion production rates for the studied planets can vary over a wide range, from ∼1.0×10²⁵ s⁻¹ to ∼5.3×10³⁰ s⁻¹, depending on the stellar wind conditions and the assumed XUV exposure of the upper atmosphere. Our findings indicate that most likely the majority of these planetary ions are picked up by the stellar wind and lost from the planet. Finally, we estimated the long-time nonthermal ion pickup escape for the studied planets and compared them with the thermal escape. According to our estimates, nonthermal escape of picked-up ionized hydrogen atoms over a planet's lifetime within the habitable zone of an M dwarf varies between ∼0.4 Earth ocean equivalent amounts of hydrogen (EO(H)) to <3 EO(H) and usually is several times smaller in comparison to the thermal atmospheric escape rates.

  8. Lunar and Planetary Science XXXV: Origin of Planetary Systems

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session titled Origin of Planetary Systems" included the following reports:Convective Cooling of Protoplanetary Disks and Rapid Giant Planet Formation; When Push Comes to Shove: Gap-opening, Disk Clearing and the In Situ Formation of Giant Planets; Late Injection of Radionuclides into Solar Nebula Analogs in Orion; Growth of Dust Particles and Accumulation of Centimeter-sized Objects in the Vicinity of a Pressure enhanced Region of a Solar Nebula; Fast, Repeatable Clumping of Solid Particles in Microgravity ; Chondrule Formation by Current Sheets in Protoplanetary Disks; Radial Migration of Phyllosilicates in the Solar Nebula; Accretion of the Outer Planets: Oligarchy or Monarchy?; Resonant Capture of Irregular Satellites by a Protoplanet ; On the Final Mass of Giant Planets ; Predicting the Atmospheric Composition of Extrasolar Giant Planets; Overturn of Unstably Stratified Fluids: Implications for the Early Evolution of Planetary Mantles; and The Evolution of an Impact-generated Partially-vaporized Circumplanetary Disk.

  9. Exploring the universe through discovery science on NIF

    NASA Astrophysics Data System (ADS)

    Remington, Bruce

    2016-10-01

    New regimes of science are being experimentally studied at high energy density facilities around the world, spanning drive energies from microjoules to megajoules, and time scales from femtoseconds to microseconds. The ability to shock and ramp compress samples to very high pressures and densities allows new states of matter relevant to planetary and stellar interiors to be studied. Shock driven hydrodynamic instabilities evolving into turbulent flows relevant to the dynamics of exploding stars (such as supernovae), accreting compact objects (such as white dwarfs, neutron stars, and black holes), and planetary formation dynamics are being probed. The dynamics of magnetized plasmas relevant to astrophysics, both in collisional and collisionless systems, are starting to be studied. High temperature, high velocity interacting flows are being probed for evidence of astrophysical collisionless shock formation, the turbulent magnetic dynamo effect, magnetic reconnection, and particle acceleration. And new results from thermonuclear reactions in hot dense plasmas relevant to stellar and big bang nucleosynthesis are starting to emerge. A selection of examples providing a compelling vision for frontier science on NIF in the coming decade will be presented. This work was performed under the auspices of U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  10. Exploring the universe through Discovery Science on NIF

    NASA Astrophysics Data System (ADS)

    Remington, Bruce

    2017-10-01

    New regimes of science are being experimentally studied at high energy density facilities around the world, spanning drive energies from microjoules to megajoules, and time scales from femtoseconds to microseconds. The ability to shock and ramp compress samples to very high pressures and densities allows new states of matter relevant to planetary and stellar interiors to be studied. Shock driven hydrodynamic instabilities evolving into turbulent flows relevant to the dynamics of exploding stars (such as supernovae), accreting compact objects (such as white dwarfs, neutron stars, and black holes), and planetary formation dynamics (relevant to the exoplanets) are being probed. The dynamics of magnetized plasmas relevant to astrophysics, both in collisional and collisionless systems, are starting to be studied. High temperature, high velocity interacting flows are being probed for evidence of astrophysical collisionless shock formation, the turbulent magnetic dynamo effect, magnetic reconnection, and particle acceleration. And new results from thermonuclear reactions in hot dense plasmas relevant to stellar and big bang nucleosynthesis are starting to emerge. A selection of examples of frontier research through NIF Discovery Science in the coming decade will be presented. This work was performed under the auspices of U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  11. Discovery of two planets around a millisecond pulsar

    NASA Technical Reports Server (NTRS)

    Wolszczan, A.

    1992-01-01

    By timing the arrival of radio signals from a rapidly spinning pulsar at the Arecibo Observatory's radio/radar telescope, the most convincing evidence so far for a planetary system outside our own has been found: two or possibly three planets that orbit the neutron star called PSR1257+12. This finding indicates that planet formation may be a more common process than previously anticipated and that the formation of disks of gas and dust that are sufficiently massive to condense into Earth-sized planets orbiting their central bodies can take place under surprisingly diverse conditions.

  12. Formation of solar system analogues - I. Looking for initial conditions through a population synthesis analysis

    NASA Astrophysics Data System (ADS)

    Ronco, M. P.; Guilera, O. M.; de Elía, G. C.

    2017-11-01

    Population synthesis models of planetary systems developed during the last ˜15 yr could reproduce several of the observables of the exoplanet population, and also allowed us to constrain planetary formation models. We present our planet formation model, which calculates the evolution of a planetary system during the gaseous phase. The code incorporates relevant physical phenomena for the formation of a planetary system, like photoevaporation, planet migration, gas accretion, water delivery in embryos and planetesimals, a detailed study of the orbital evolution of the planetesimal population, and the treatment of the fusion between embryos, considering their atmospheres. The main goal of this work, unlike other works of planetary population synthesis, is to find suitable scenarios and physical parameters of the disc to form Solar system analogues. We are specially interested in the final planet distributions, and in the final surface density, eccentricity and inclination profiles for the planetesimal population. These final distributions will be used as initial conditions for N-body simulations to study the post-oligarchic formation in a second work. We then consider different formation scenarios, with different planetesimal sizes and different type I migration rates. We find that Solar system analogues are favoured in massive discs, with low type I migration rates, and small planetesimal sizes. Besides, those rocky planets within their habitables zones are dry when discs dissipate. At last, the final configurations of Solar system analogues include information about the mass and semimajor axis of the planets, water contents, and the properties of the planetesimal remnants.

  13. Formation of Planetary Satellites and Prospects for Exomoons

    NASA Astrophysics Data System (ADS)

    Barr, A.

    2014-04-01

    The formation of planetary satellites is thought to be a natural by-product of terrestrial and giant planet formation. I will discuss the proposed methods of satellite formation including fission, co-accretion, giant impact, and capture and where these modes of formation might operate in extrasolar planetary systems. Giant impacts like the event that formed Earth's Moon are thought to be common during the late stages of terrestrial planet formation; it is currently thought that Mercury, Mars, and the Earth were hit by objects of planetary size during their early history. I will discuss the effects that large impacts may have on rocky exoplanets, including moon formation and compositional changes, which can affect prospects for habitability on these worlds. The giant planets in our solar system harbor dozens of planet-size rocky and icy moons, some of which have habitats that may be dissimilar to Earth but could still be suitable for life. Because the accretion of regular satellites is thought to be a by-product of gas inflow to growing gas giants, it seems likely that many extrasolar planets may have created regular satellite systems as well. I will discuss the types of satellite systems we have in our solar system and whether those are likely to occur elsewhere. I will also discuss the conditions on the "front-runners" for habitable giant planet moons in our solar system including Europa, Enceladus, and Titan.

  14. Shock compression response of forsterite above 250 GPa

    PubMed Central

    Sekine, Toshimori; Ozaki, Norimasa; Miyanishi, Kohei; Asaumi, Yuto; Kimura, Tomoaki; Albertazzi, Bruno; Sato, Yuya; Sakawa, Youichi; Sano, Takayoshi; Sugita, Seiji; Matsui, Takafumi; Kodama, Ryosuke

    2016-01-01

    Forsterite (Mg2SiO4) is one of the major planetary materials, and its behavior under extreme conditions is important to understand the interior structure of large planets, such as super-Earths, and large-scale planetary impact events. Previous shock compression measurements of forsterite indicate that it may melt below 200 GPa, but these measurements did not go beyond 200 GPa. We report the shock response of forsterite above ~250 GPa, obtained using the laser shock wave technique. We simultaneously measured the Hugoniot and temperature of shocked forsterite and interpreted the results to suggest the following: (i) incongruent crystallization of MgO at 271 to 285 GPa, (ii) phase transition of MgO at 285 to 344 GPa, and (iii) remelting above ~470 to 500 GPa. These exothermic and endothermic reactions are seen to occur under extreme conditions of pressure and temperature. They indicate complex structural and chemical changes in the system MgO-SiO2 at extreme pressures and temperatures and will affect the way we understand the interior processes of large rocky planets as well as material transformation by impacts in the formation of planetary systems. PMID:27493993

  15. Nonlinear adaptive formation control for a class of autonomous holonomic planetary exploration rovers

    NASA Astrophysics Data System (ADS)

    Ganji, Farid

    This dissertation presents novel nonlinear adaptive formation controllers for a heterogeneous group of holonomic planetary exploration rovers navigating over flat terrains with unknown soil types and surface conditions. A leader-follower formation control architecture is employed. In the first part, using a point-mass model for robots and a Coulomb-viscous friction model for terrain resistance, direct adaptive control laws and a formation speed-adaptation strategy are developed for formation navigation over unknown and changing terrain in the presence of actuator saturation. On-line estimates of terrain frictional parameters compensate for unknown terrain resistance and its variations. In saturation events over difficult terrain, the formation speed is reduced based on the speed of the slowest saturated robot, using internal fleet communication and a speed-adaptation strategy, so that the formation error stays bounded and small. A formal proof for asymptotic stability of the formation system in non-saturated conditions is given. The performance of robot controllers are verified using a modular 3-robot formation simulator. Simulations show that the formation errors reduce to zero asymptotically under non-saturated conditions as is guaranteed by the theoretical proof. In the second part, the proposed adaptive control methodology is extended for formation control of a class of omnidirectional rovers with three independently-driven universal holonomic rigid wheels, where the rovers' rigid-body dynamics, drive-system electromechanical characteristics, and wheel-ground interaction mechanics are incorporated. Holonomic rovers have the ability to move simultaneously and independently in translation and rotation, rendering great maneuverability and agility, which makes them suitable for formation navigation. Novel nonlinear adaptive control laws are designed for the input voltages of the three wheel-drive motors. The motion resistance, which is due to the sinkage of rover wheels in soft planetary terrain, is modeled using classical terramechanics theory. The unknown system parameters for adaptive estimation pertain to the rolling resistance forces and scrubbing resistance torques at the wheel-terrain interfaces. Novel terramechanical formulas for terrain resistance forces and torques are derived via considering the universal holonomic wheels as rigid toroidal wheels moving forward and/or sideways as well as turning on soft ground. The asymptotic stability of the formation control system is rigorously proved using Lyapunov's direct method.

  16. European Workshop on Planetary Sciences, Rome, Italy, April 23-27, 1979, Proceedings. Part 1

    NASA Astrophysics Data System (ADS)

    1980-02-01

    Papers are presented on the dynamics and evolution of the solar system and its components. Specific topics include the dynamic stability of the solar system, the tidal friction theory of the earth moon system, the stability and irregularity of extrasolar planetary systems, angular momentum and magnetic braking during star formation, the collisional growth of planetesimals, the dynamics, interrelations and evolution of the asteroids and comets, the formation and stability of Saturn's rings, and the importance of nearly tangent orbits in planetary close encounters.

  17. The Kepler Dichotomy in Planetary Disks: Linking Kepler Observables to Simulations of Late-stage Planet Formation

    NASA Astrophysics Data System (ADS)

    Moriarty, John; Ballard, Sarah

    2016-11-01

    NASA’s Kepler Mission uncovered a wealth of planetary systems, many with planets on short-period orbits. These short-period systems reside around 50% of Sun-like stars and are similarly prevalent around M dwarfs. Their formation and subsequent evolution is the subject of active debate. In this paper, we simulate late-stage, in situ planet formation across a grid of planetesimal disks with varying surface density profiles and total mass. We compare simulation results with observable characteristics of the Kepler sample. We identify mixture models with different primordial planetesimal disk properties that self-consistently recover the multiplicity, radius, period and period ratio, and duration ratio distributions of the Kepler planets. We draw three main conclusions. (1) We favor a “frozen-in” narrative for systems of short-period planets, in which they are stable over long timescales, as opposed to metastable. (2) The “Kepler dichotomy,” an observed phenomenon of the Kepler sample wherein the architectures of planetary systems appear to either vary significantly or have multiple modes, can naturally be explained by formation within planetesimal disks with varying surface density profiles. Finally, (3) we quantify the nature of the “Kepler dichotomy” for both GK stars and M dwarfs, and find that it varies with stellar type. While the mode of planet formation that accounts for high multiplicity systems occurs in 24% ± 7% of planetary systems orbiting GK stars, it occurs in 63% ± 16% of planetary systems orbiting M dwarfs.

  18. Planetary Citizenship and the Ecology of Knowledges in Brazilian Universities

    ERIC Educational Resources Information Center

    Moraes, Silvia Elisabeth; de Almeida Freire, Ludmila

    2017-01-01

    This article discusses the formation of a "planetary citizenship" based on the "ecology of knowledges" perspective in Brazilian universities. It is informed by the authors' experiences and the partial results from a research project entitled "Planetary citizenship and the ecology of knowledges: Interdisciplinarity,…

  19. Dynamical Evolution of Planetary Embryos

    NASA Technical Reports Server (NTRS)

    Wetherill, George W.

    2002-01-01

    During the past decade, progress has been made by relating the 'standard model' for the formation of planetary systems to computational and observational advances. A significant contribution to this has been provided by this grant. The consequence of this is that the rigor of the physical modeling has improved considerably. This has identified discrepancies between the predictions of the standard model and recent observations of extrasolar planets. In some cases, the discrepancies can be resolved by recognition of the stochastic nature of the planetary formation process, leading to variations in the final state of a planetary system. In other cases, it seems more likely that there are major deficiencies in the standard model, requiring our identifying variations to the model that are not so strongly constrained to our Solar System.

  20. Shock-and-Release to the Liquid-Vapor Phase Boundary: Experiments and Applications to Planetary Science

    NASA Astrophysics Data System (ADS)

    Stewart, Sarah

    2017-06-01

    Shock-induced vaporization was a common process during the end stages of terrestrial planet formation and transient features in extra-solar systems are attributed to recent giant impacts. At the Sandia Z Machine, my collaborators and I are conducting experiments to study the shock Hugoniot and release to the liquid-vapor phase boundary of major minerals in rocky planets. Current work on forsterite, enstatite and bronzite and previous results on silica, iron and periclase demonstrate that shock-induced vaporization played a larger role during planet formation than previously thought. I will provide an overview of the experimental results and describe how the data have changed our views of planetary impact events in our solar system and beyond. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work is supported by the Z Fundamental Science Program at Sandia National Laboratories, DOE-NNSA Grant DE- NA0002937, NASA Grant # NNX15AH54G, and UC Multicampus-National Lab Collaborative Research and Training Grant #LFR-17-449059.

  1. Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, volume 73

    NASA Technical Reports Server (NTRS)

    Haas, Michael R. (Editor); Davidson, Jacqueline A. (Editor); Erickson, Edwin F. (Editor)

    1995-01-01

    This symposium was organized to review the science related to NASA's Airborne Astronomy Program on the occasion of the twentieth anniversary of the Kuiper Airborne Observatory (KAO). The theme selected, 'The Galactic Ecosystem: From Gas to Stars to Dust,' was considered to capture the underlying commonality of much of the research discussed. The 8 sessions were as follows: The Interstellar Medium; The Life Cycle of the ISM in Other Galaxies; Star and Planetary System Formation; Our Planetary System: The Solar System; The Enrichment of the Interstellar Medium; The Galactic Center: A Unique Region of the Galactic Ecosystem; Instrumentation for Airborne Astronomy; KAO History and Education; and Missions and the Future of Infrared Astronomy.

  2. Comets - Mementos of creation

    NASA Astrophysics Data System (ADS)

    Sagan, C.; Druyan, A.

    1989-04-01

    Consideration is given to the Kant-Laplace hypothesis that the sun once had a ring system from which the planets condensed. It is suggested that the theory is supported by the IRAS observation of an accretion disk around Vega, which implies that ordinary stars are surrounded by a disk during and immediately after formation. A model for planetary formation from a disk is presented. The possibility that cometary bodies may have been ejected into the Oort Cloud during planetary formation is examined.

  3. Formation of Non-symmetric Fractals During the First Stage of Pre-planetesimal Dust Growth

    NASA Astrophysics Data System (ADS)

    Kempf, S.; Blum, J.; Wurm, G.

    It is a generally accepted view that the genesis of a planetary system coincide s with the formation of sun-like young stellar objects surrounded by gaseous disc s. The building blocks of the planetesimals are micron-sized solid particles (the so-called dust) embedded in the gas of the disc. The relevant process for formi ng larger aggregates is the growth due to collisional sticking. For particles to c ollide and stick, a relative velocity component between the grains must be present. In the onset of dust growth, Brownian motion dominates other relative-velocity sources . However, numerically determined time scales of the pure Brownian dust growth are much too large for explaining the formation of planets within the lifetime of a proto-planetary di sc. In order to verify the validity of the theoretical models, the Cosmic Dust Aggr egation Experiment CODAG was developed. It allows to observe the growth of micron-sized dust analogs under astrophysical realistic conditions. Surprisingly, the experi ments showed that at least in the onset of the dust growth needle-like fractal aggreg ates rather than symmetric fractals are formed. Here we discuss the implication of this experimental finding for the pre-planetesimal growth models.

  4. Obtaining and Using Planetary Spatial Data into the Future: The Role of the Mapping and Planetary Spatial Infrastructure Team (MAPSIT)

    NASA Technical Reports Server (NTRS)

    Radebaugh, J.; Thomson, B. J.; Archinal, B.; Hagerty, J.; Gaddis, L.; Lawrence, S. J.; Sutton, S.

    2017-01-01

    Planetary spatial data, which include any remote sensing data or derived products with sufficient positional information such that they can be projected onto a planetary body, continue to rapidly increase in volume and complexity. These data are the hard-earned fruits of decades of planetary exploration, and are the end result of mission planning and execution. Maintaining these data using accessible formats and standards for all scientists has been necessary for the success of past, present, and future planetary missions. The Mapping and Planetary Spatial Infrastructure Team (MAPSIT) is a group of planetary community members tasked by NASA Headquarters to work with the planetary science community to identify and prioritize their planetary spatial data needs to help determine the best pathways for new data acquisition, usable product derivation, and tools/capability development that supports NASA's planetary science missions.

  5. Advances in Planetary Geology

    NASA Technical Reports Server (NTRS)

    Woronow, A. (Editor)

    1982-01-01

    Advances in Planetary Geology is a new series intended to serve the planetary geology community with a form for quick and thorough communications. There are no set lists of acceptable topics or formats, and submitted manuscripts will not undergo a formal review. All submissions should be in a camera ready form, preferably spaced, and submitted to the editor.

  6. Photochemical Formation of Aerosol in Planetary Atmospheres: Photon and Water Mediated Chemistry of SO_2

    NASA Astrophysics Data System (ADS)

    Kroll, Jay A.; Donaldson, D. J.; Vaida, Veronica

    2016-06-01

    Sulfur compounds have been observed in a number of planetary atmospheres throughout our solar system. Our current understanding of sulfur chemistry explains much of what we observe in Earth's atmosphere. However, several discrepancies between modeling and observations of the Venusian atmosphere show there are still problems in our fundamental understanding of sulfur chemistry. This is of particular concern due to the important role sulfur compounds play in the formation of aerosols, which have a direct impact on planetary climates, including Earth's. We investigate the role of water complexes in the hydration of sulfur oxides and dehydration of sulfur acids and will present spectroscopic studies to document such effects. I will present recent work investigating mixtures of SO_2 and water that generate large quantities of aerosol when irradiated with solar UV light, even in the absence of traditional OH chemistry. I will discuss a proposed mechanism for the formation of sulfurous acid (H_2SO_3) and present recent experimental work that supports this proposed mechanism. Additionally, the implications that photon-induced hydration of SO_2 has for aerosol formation in the atmosphere of earth as well as other planetary atmospheres will be discussed.

  7. Planetary formation and water delivery in the habitable zone around solar-type stars in different dynamical environments

    NASA Astrophysics Data System (ADS)

    Zain, P. S.; de Elía, G. C.; Ronco, M. P.; Guilera, O. M.

    2018-01-01

    Context. Observational and theoretical studies suggest that there are many and various planetary systems in the Universe. Aims: We study the formation and water delivery of planets in the habitable zone (HZ) around solar-type stars. In particular, we study different dynamical environments that are defined by the most massive body in the system. Methods: First of all, a semi-analytical model was used to define the mass of the protoplanetary disks that produce each of the five dynamical scenarios of our research. Then, we made use of the same semi-analytical model to describe the evolution of embryos and planetesimals during the gaseous phase. Finally, we carried out N-body simulations of planetary accretion in order to analyze the formation and water delivery of planets in the HZ in the different dynamical environments. Results: Water worlds are efficiently formed in the HZ in different dynamical scenarios. In systems with a giant planet analog to Jupiter or Saturn around the snow line, super-Earths tend to migrate into the HZ from outside the snow line as a result of interactions with other embryos and accrete water only during the gaseous phase. In systems without giant planets, Earths and super-Earths with high water by mass contents can either be formed in situ in the HZ or migrate into it from outer regions, and water can be accreted during the gaseous phase and in collisions with water-rich embryos and planetesimals. Conclusions: The formation of planets in the HZ with very high water by mass contents seems to be a common process around Sun-like stars. Our research suggests that such planets are still very efficiently produced in different dynamical environments. Moreover, our study indicates that the formation of planets in the HZ with masses and water contents similar to those of Earth seems to be a rare process around solar-type stars in the systems under consideration.

  8. Depletion of potassium and sodium in mantles of Mars, Moon and Vesta by core formation.

    PubMed

    Steenstra, E S; Agmon, N; Berndt, J; Klemme, S; Matveev, S; van Westrenen, W

    2018-05-04

    The depletions of potassium (K) and sodium (Na) in samples from planetary interiors have long been considered as primary evidence for their volatile behavior during planetary formation processes. Here, we use high-pressure experiments combined with laser ablation analyses to measure the sulfide-silicate and metal-silicate partitioning of K and Na at high pressure (P) - temperature (T) and find that their partitioning into metal strongly increases with temperature. Results indicate that the observed Vestan and Martian mantle K and Na depletions can reflect sequestration into their sulfur-rich cores in addition to their volatility during formation of Mars and Vesta. This suggests that alkali depletions are not affected solely by incomplete condensation or partial volatilization during planetary formation and differentiation, but additionally or even primarily reflect the thermal and chemical conditions during core formation. Core sequestration is also significant for the Moon, but lunar mantle depletions of K and Na cannot be reconciled by core formation only. This supports the hypothesis that measured isotopic fractionations of K in lunar samples represent incomplete condensation or extensive volatile loss during the Moon-forming giant impact.

  9. Types of Information Expected from a Photometric Search for Extra-Solar Planets

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, David; Bell, James, III; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    The current theory postulates that planets are a consequence of the formation of stars from viscous accretion disks. Condensation from the hotter, inner portion of the accretion disk favors the formation of small rocky planets in the inner portion and the formation of gas giants in the cuter, cooler part. Consequently, terrestrial-type planets in inner orbits must be commonplace (Wetheril 1991). From the geometry of the situation (Borucki and Summers 1984), it can be shown that 1% of those planetary systems that resemble our solar system should show transits for Earth-sized (or larger) planets. Thus a photometric satellite that uses a wide field of view telescope and a large CCD array to simultaneously monitor 5000 target stars should detect 50 planetary systems. To verify that regularly recurring transits are occurring rather than statistical fluctuations of the stellar flux, demands observations that extend over several orbital periods so that the constancy of the orbital period, signal amplitude, and duration can be measured. Therefore, to examine the region from Mercury's orbit to that of the Earth requires a duration of three years whereas a search out to the orbit of mars requires about six years. The results of the observations should provide estimates of the distributions of planetary size and orbital radius, and the frequency of planetary systems that have Earth-sized planets in inner orbits. Because approximately one half of the star systems observed will be binary systems, the frequency of planetary systems orbit ' ing either one or both of the stars can also be determined. Furthermore, the complexity of the photometric signature of a planet transiting a pair of stars provides enough information to estimate the eccentricities of the planetary orbits. In summary, the statistical evidence from a photometric search of solar-like stars should be able to either confirm or deny the applicability of the current theory of planet formation and provide new information about the stability of planetary orbits in binary star systems.

  10. Planetary and synoptic-scale interactions during the life cycle of a mid-latitude blocking anticyclone over the North Atlantic

    NASA Technical Reports Server (NTRS)

    Smith, Phillip J.

    1995-01-01

    The formation of a blocking anticyclone over the North Atlantic has been examined over its entire life-CyCle using the Zwack-Okossi (Z-O) equation as the diagnostic tool. This blocking anticyclone occurred in late October and early November of 1985. The data used were provided by the NASA Goddard Laboratory for Atmospheres on a global 2.O degree latitude by 2.5 degree longitudinal grid. The horizontal distribution of the atmospheric forcing mechanisms that were important to 500 mb block formation, maintenance and decay were examined. A scale-partitioned form of the Z-O equation was then used to examine the relative importance of forcing on the planetary and synoptic scales, and their interactions. As seen in previous studies, the results presented here show that upper tropospheric anticyclonic vorticity advection was the most important contributor to block formation and maintenance. However, adiabatic warming, and vorticity tilting were also important at various times during the block lifetime. In association with precursor surface cyclogenesis, the 300 mb jet streak in the downstream (upstream) from a long-wave trough (ridge) amplified significantly. This strengthening of the jet streak enhanced the anti-cyclonic vorticity advection field that aided the amplification of a 500 mb short-wave ridge. Tile partitioned height tendency results demonstrate that the interactions between the planetary and sn,noptic-scale through vorticity advection was the most important contributor to block formation. Planetary-scale, synoptic-scale. and their interactions contributed weakly to the maintenance of the blocking anticyclone with the advection of synoptic-scale vorticity by the planetary-scale flow playing a more important role. Planetary-scale decay ofthe long-wave ridge contributed to the demise of this blocking event.

  11. Cloud and ice in the planetary scale circulation and in climate

    NASA Technical Reports Server (NTRS)

    Herman, G. F.; Houghton, D. D.; Kutzbach, J. E.; Suomi, V. E.

    1984-01-01

    The roles of the cryosphere, and of cloud-radiative interactions are investigated. The effects clouds and ice have in the climate system are examined. The cloud radiation research attempts explain the modes of interaction (feedback) between raditive transfer, cloud formation, and atmospheric dynamics. The role of sea ice in weather and climate is also discussed. Models are used to describe the ice and atmospheric dynamics under study.

  12. Evolution of the Oort Cloud under Galactic Perturbations

    NASA Astrophysics Data System (ADS)

    Higuchi, A.; Kokubo, E.; Mukai, T.

    2005-08-01

    The Oort cloud is a spherical comet reservoir surrounding the solar system. There is general agreement that the Oort cloud comets are the residual planetesimals of planet formation. The standard scenario of the Oort cloud formation consists of two dynamical stages: (1) giant planets raise the aphelia of planetesimals to the outer region of the solar system and (2) the galactic tide, passing stars, and giant molecular clouds pull up their perihelia out of the planetary region and randomize their inclinations. Here we show the orbital evolution of planetesimals due to the galactic tide. Planetesimals with large aphelion distances change their perihelion distances toward the outside of the planetary region by the galactic tide and become members of the Oort cloud. We consider only the vertical component of the galactic tide because it is dominant compared to other components. Then, under such an axi-symmetric assumption, some planetesimals may show the librations around ω (argument of perihelion)=π /2 or 3π /2 (the Kozai mechanism). The alternate increases of eccentricity and inclination of the Kozai mechanism are effective to form the Oort cloud. Using the secular perturbation theory, we can understand the motion of the planetesimals analytically. We applied the Kozai mechanism to the galactic tide and found that the galactic tide raise perihelia and randomize inclinations of planetesimals with semimajor axes larger than ˜ 103 AU in 5Gyr. We take into account time evolution of the local galactic density, which is thought to be denser in the early stage of the sun than the current one. This work was supported by the 21st Century COE Program Origin and Evolution of Planetary Systems of the Ministry of Education, Culture, Sports, Science, and Technology, Japan, and JSPS Research Fellowship for Young Scientists.

  13. Ammonia clathrate hydrates as new solid phases for Titan, Enceladus, and other planetary systems.

    PubMed

    Shin, Kyuchul; Kumar, Rajnish; Udachin, Konstantin A; Alavi, Saman; Ripmeester, John A

    2012-09-11

    There is interest in the role of ammonia on Saturn's moons Titan and Enceladus as the presence of water, methane, and ammonia under temperature and pressure conditions of the surface and interior make these moons rich environments for the study of phases formed by these materials. Ammonia is known to form solid hemi-, mono-, and dihydrate crystal phases under conditions consistent with the surface of Titan and Enceladus, but has also been assigned a role as water-ice antifreeze and methane hydrate inhibitor which is thought to contribute to the outgassing of methane clathrate hydrates into these moons' atmospheres. Here we show, through direct synthesis from solution and vapor deposition experiments under conditions consistent with extraterrestrial planetary atmospheres, that ammonia forms clathrate hydrates and participates synergistically in clathrate hydrate formation in the presence of methane gas at low temperatures. The binary structure II tetrahydrofuran + ammonia, structure I ammonia, and binary structure I ammonia + methane clathrate hydrate phases synthesized have been characterized by X-ray diffraction, molecular dynamics simulation, and Raman spectroscopy methods.

  14. Ammonia clathrate hydrates as new solid phases for Titan, Enceladus, and other planetary systems

    PubMed Central

    Shin, Kyuchul; Kumar, Rajnish; Udachin, Konstantin A.; Alavi, Saman; Ripmeester, John A.

    2012-01-01

    There is interest in the role of ammonia on Saturn’s moons Titan and Enceladus as the presence of water, methane, and ammonia under temperature and pressure conditions of the surface and interior make these moons rich environments for the study of phases formed by these materials. Ammonia is known to form solid hemi-, mono-, and dihydrate crystal phases under conditions consistent with the surface of Titan and Enceladus, but has also been assigned a role as water-ice antifreeze and methane hydrate inhibitor which is thought to contribute to the outgassing of methane clathrate hydrates into these moons’ atmospheres. Here we show, through direct synthesis from solution and vapor deposition experiments under conditions consistent with extraterrestrial planetary atmospheres, that ammonia forms clathrate hydrates and participates synergistically in clathrate hydrate formation in the presence of methane gas at low temperatures. The binary structure II tetrahydrofuran + ammonia, structure I ammonia, and binary structure I ammonia + methane clathrate hydrate phases synthesized have been characterized by X-ray diffraction, molecular dynamics simulation, and Raman spectroscopy methods. PMID:22908239

  15. The excitation of a primordial cold asteroid belt as a natural outcome of the planetary instability

    NASA Astrophysics Data System (ADS)

    Deienno, Rogerio; Izidoro, André; Gomes, Rodney S.; Morbidelli, Alessandro; Nesvorny, David

    2017-10-01

    The initial dynamical state of the main asteroid belt (MB) always puzzled astronomers and it is still a hot subject under debate. For years, the currently well known Grand Tack model was considered to be the only capable of reconciling the formation of the terrestrial planets together with a well dynamically excited MB. This model, despite its success, is still not generally accepted given that it implies an invasion of Jupiter within the terrestrial region, passing through the MB twice. Other models for the terrestrial planet formation, on the other hand, always end up with a fully or partially cold MB formed. It was recently proposed that a chaotic evolution for Jupiter and Saturn before the planetary instability of the Solar System could excite an initially cold MB. However, hydrodynamical simulations predict that the orbits of those planets at the end of the gas disk phase should be characterized by resonant and regular motion. Therefore, the origin of this chaotic evolution is not fully understood. Here, assuming initial resonant and regular motion for Jupiter and Saturn, we propose a different mechanism capable of exciting a primordial cold MB during the planetary instability. For this, we assume that the planetary instability was of the jumping-Jupiter (JJ) type, and that it accounts for all the constraints already placed. Our results, which also possibly can explain the pathway to the chaotic evolution of Jupiter and Saturn, show that when Jupiter gets a temporary large enough level of excitation, both in eccentricity and inclination, it induces strong forced vectors of eccentricity and inclination within the MB region. Then, because in the JJ instability Jupiter is jumping around, such forced vectors keep changing both in magnitude and phase throughout the whole MB region. Thus, depending on the evolution of Jupiter during the JJ instability, the excitation of a primordial cold MB can indeed be achieved as a natural outcome of the planetary instability for any initial planetary configuration. Acknowledgment FAPESP 2014/02013-5.

  16. A phase angle based diagnostic scheme to planetary gear faults diagnostics under non-stationary operational conditions

    NASA Astrophysics Data System (ADS)

    Feng, Ke; Wang, Kesheng; Ni, Qing; Zuo, Ming J.; Wei, Dongdong

    2017-11-01

    Planetary gearbox is a critical component for rotating machinery. It is widely used in wind turbines, aerospace and transmission systems in heavy industry. Thus, it is important to monitor planetary gearboxes, especially for fault diagnostics, during its operational conditions. However, in practice, operational conditions of planetary gearbox are often characterized by variations of rotational speeds and loads, which may bring difficulties for fault diagnosis through the measured vibrations. In this paper, phase angle data extracted from measured planetary gearbox vibrations is used for fault detection under non-stationary operational conditions. Together with sample entropy, fault diagnosis on planetary gearbox is implemented. The proposed scheme is explained and demonstrated in both simulation and experimental studies. The scheme proves to be effective and features advantages on fault diagnosis of planetary gearboxes under non-stationary operational conditions.

  17. Planetesimal and Protoplanet Dynamics in a Turbulent Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Yang, Chao-Chin; Mac Low, M.; Menou, K.

    2010-01-01

    In core accretion scenario of planet formation, kilometer-sized planetesimals are the building blocks toward planetary cores. Their dynamics, however, are strongly influenced by their natal protoplanetary gas disks. It is generally believed that these disks are turbulent, most likely due to magnetorotational instability. The resulting density perturbations in the gas render the movement of the particles a random process. Depending on its strength, this process might cause several interesting consequences in the course of planet formation, specifically the survivability of objects under rapid inward type-I migration and/or collisional destruction. Using the local-shearing-box approximation, we conduct numerical simulations of planetesimals moving in a turbulent, magnetized gas disk, either unstratified or vertically stratified. We produce a fiducial disk model with turbulent accretion of Shakura-Sunyaev alpha about 10-2 and root-mean-square density perturbation of about 10% and statistically characterize the evolution of the orbital properties of the particles moving in the disk. These measurements result in accurate calibration of the random process of particle orbital change, indicating noticeably smaller magnitudes than predicted by global simulations, although the results may depend on the size of the shearing box. We apply these results to revisit the survivability of planetesimals under collisional destruction or protoplanets under type-I migration. Planetesimals are probably secure from collisional destruction, except for kilometer-sized objects situated in the outer regions of a young protoplanetary disk. On the other hand, we confirm earlier studies of local models in that type-I migration probably dominates diffusive migration due to stochastic torques for most planetary cores and terrestrial planets. Discrepancies in the derived magnitude of turbulence between local and global simulations of magnetorotationally unstable disks remains an open issue, with important consequences for planet formation scenarios.

  18. Application of high explosion cratering data to planetary problems

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.

    1977-01-01

    The present paper deals with the conditions of explosion or nuclear cratering required to simulate impact crater formation. Some planetary problems associated with three different aspects of crater formation are discussed, and solutions based on high-explosion data are proposed. Structures of impact craters and some selected explosion craters formed in layered media are examined and are related to the structure of lunar basins. The mode of ejection of material from impact craters is identified using explosion analogs. The ejection mode is shown to have important implications for the origin of material in crater and basin deposits. Equally important are the populations of secondary craters on lunar and planetary surfaces.

  19. Ways that our Solar System helps us understand the formation of other planetary systems and ways that it doesn't

    NASA Technical Reports Server (NTRS)

    Wetherill, G. W.

    1996-01-01

    Models of planetary formation can be tested by comparison of their ability to predict features of our Solar System in a consistent way, and then extrapolated to other hypothetical planetary systems by different choice of parameters. When this is done, it is found that the resulting systems are insensitive to direct effects of the mass of the star, but do strongly depend on the properties of the disk, principally its surface density. Major uncertainty results from lack of an adequate theoretical model that predicts the existence, size, and distribution of analogs of our Solar System, particularly the gas giants Jupiter and Saturn. Nevertheless, reasons can be found for expecting that planetary systems, including those containing biologically habitable planets similar to Earth, may be abundant in the Galaxy and Universe.

  20. Ways that our Solar System helps us understand the formation of other planetary systems and ways that it doesn't.

    PubMed

    Wetherill, G W

    1996-01-01

    Models of planetary formation can be tested by comparison of their ability to predict features of our Solar System in a consistent way, and then extrapolated to other hypothetical planetary systems by different choice of parameters. When this is done, it is found that the resulting systems are insensitive to direct effects of the mass of the star, but do strongly depend on the properties of the disk, principally its surface density. Major uncertainty results from lack of an adequate theoretical model that predicts the existence, size, and distribution of analogs of our Solar System, particularly the gas giants Jupiter and Saturn. Nevertheless, reasons can be found for expecting that planetary systems, including those containing biologically habitable planets similar to Earth, may be abundant in the Galaxy and Universe.

  1. Comprehensive planning of data archive in Japanese planetary missions

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yukio; Shinohara, Iku; Hoshino, Hirokazu; Tateno, Naoki; Hareyama, Makoto; Okada, Naoki; Ebisawa, Ken

    Comprehensive planning of data archive in Japanese planetary missions Japan Aerospace Exploration Agency (JAXA) provides HAYABUSA and KAGUYA data as planetary data archives. These data archives, however, were prepared independently. Therefore the inconsistency of data format has occurred, and the knowledge of data archiving activity is not inherited. Recently, the discussion of comprehensive planning of data archive has started to prepare up-coming planetary missions, which indicates the comprehensive plan of data archive is required in several steps. The framework of the comprehensive plan is divided into four items: Preparation, Evaluation, Preservation, and Service. 1. PREPARATION FRAMEWORK Data is classified into several types: raw data, level-0, 1, 2 processing data, ancillary data, and etc. The task of mission data preparation is responsible for instrument teams, but preparations beside mission data and support of data management are essential to make unified conventions and formats over instruments in a mission, and over missions. 2. EVALUATION FRAMEWORK There are two meanings of evaluation: format and quality. The format evaluation is often discussed in the preparation framework. The data quality evaluation which is often called quality assurance (QA) or quality control (QC) must be performed by third party apart from preparation teams. An instrument team has the initiative for the preparation itself, and the third-party group is organized to evaluate the instrument team's activity. 3. PRESERVATION FRAMEWORK The main topic of this framework is document management, archiving structure, and simple access method. The mission produces many documents in the process of the development. Instrument de-velopment is no exception. During long-term development of a mission, many documents are obsoleted and updated repeatedly. A smart system will help instrument team to reduce some troubles of document management and archiving task. JAXA attempts to follow PDS manners to do this management since PDS has highly sophisticated archiving structure. In addition, the access method to archived data must be simple and standard well over a decade. 4. SERVICE FRAMEWORK The service framework including planetary data access protocol, PDAP, has been developed to share a stored data effectively. The sophisticated service framework will work not only for publication data, but also for low-level data. JAXA's data query services is under developed based on PDAP, which means that the low-level data can be published in the same manner as level 2 data. In this presentation, we report the detail structure of these four frameworks adopting upcoming Planet-C, Venus Climate Orbiter, mission.

  2. Modeling the Shock Hugoniot in Porous Materials

    NASA Astrophysics Data System (ADS)

    Cochrane, Kyle R.; Shulenburger, Luke; Mattsson, Thomas R.; Lane, J. Matthew D.; Weck, Philippe F.; Vogler, Tracy J.; Desjarlais, Michael P.

    2017-06-01

    Porous materials are present in many scenarios from planetary science to ICF. Understanding how porosity modifies the behavior of the shock Hugoniot in an equation of state is key to being able to predictively simulate experiments. For example, modeling shocks in under-dense iron oxide can aid in understanding planetary formation and silica aerogel can be used to approximate the shock response of deuterium. Simulating the shock response of porous materials presents a variety of theoretical challenges, but by combining ab initio calculations with a surface energy and porosity model, we are able to accurately represent the shock Hugoniot. Finally, we show that this new approach can be used to calculate the Hugoniot of porous materials using existing tabular equations of state. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Planet Formation - Overview

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2005-01-01

    Modern theories of star and planet formation are based upon observations of planets and smaller bodies within our own Solar System, exoplanets &round normal stars and of young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path.

  4. The diversity of planetary system architectures: contrasting theory with observations

    NASA Astrophysics Data System (ADS)

    Miguel, Y.; Guilera, O. M.; Brunini, A.

    2011-10-01

    In order to explain the observed diversity of planetary system architectures and relate this primordial diversity to the initial properties of the discs where they were born, we develop a semi-analytical model for computing planetary system formation. The model is based on the core instability model for the gas accretion of the embryos and the oligarchic growth regime for the accretion of the solid cores. Two regimes of planetary migration are also included. With this model, we consider different initial conditions based on recent results of protoplanetary disc observations to generate a variety of planetary systems. These systems are analysed statistically, exploring the importance of several factors that define the planetary system birth environment. We explore the relevance of the mass and size of the disc, metallicity, mass of the central star and time-scale of gaseous disc dissipation in defining the architecture of the planetary system. We also test different values of some key parameters of our model to find out which factors best reproduce the diverse sample of observed planetary systems. We assume different migration rates and initial disc profiles, in the context of a surface density profile motivated by similarity solutions. According to this, and based on recent protoplanetary disc observational data, we predict which systems are the most common in the solar neighbourhood. We intend to unveil whether our Solar system is a rarity or whether more planetary systems like our own are expected to be found in the near future. We also analyse which is the more favourable environment for the formation of habitable planets. Our results show that planetary systems with only terrestrial planets are the most common, being the only planetary systems formed when considering low-metallicity discs, which also represent the best environment for the development of rocky, potentially habitable planets. We also found that planetary systems like our own are not rare in the solar neighbourhood, its formation being favoured in massive discs where there is not a large accumulation of solids in the inner region of the disc. Regarding the planetary systems that harbour hot and warm Jupiter planets, we found that these systems are born in very massive, metal-rich discs. Also a fast migration rate is required in order to form these systems. According to our results, most of the hot and warm Jupiter systems are composed of only one giant planet, which is also shown by the current observational data.

  5. Our evolving understanding of aeolian bedforms, based on observation of dunes on different worlds

    NASA Astrophysics Data System (ADS)

    Diniega, Serina; Kreslavsky, Mikhail; Radebaugh, Jani; Silvestro, Simone; Telfer, Matt; Tirsch, Daniela

    2017-06-01

    Dunes, dune fields, and ripples are unique and useful records of the interaction between wind and granular materials - finding such features on a planetary surface immediately suggests certain information about climate and surface conditions (at least during the dunes' formation and evolution). Additionally, studies of dune characteristics under non-Earth conditions allow for ;tests; of aeolian process models based primarily on observations of terrestrial features and dynamics, and refinement of the models to include consideration of a wider range of environmental and planetary conditions. To-date, the planetary aeolian community has found and studied dune fields on Mars, Venus, and the Saturnian moon Titan. Additionally, we have observed candidate ;aeolian bedforms; on Comet 67P/Churyumov-Gerasimenko, the Jovian moon Io, and - most recently - Pluto. In this paper, we hypothesize that the progression of investigations of aeolian bedforms and processes on a particular planetary body follows a consistent sequence - primarily set by the acquisition of data of particular types and resolutions, and by the maturation of knowledge about that planetary body. We define that sequence of generated knowledge and new questions (within seven investigation phases) and discuss examples from all of the studied bodies. The aim of such a sequence is to better define our past and current state of understanding about the aeolian bedforms of a particular body, to highlight the related assumptions that require re-analysis with data acquired during later investigations, and to use lessons learned from planetary and terrestrial aeolian studies to predict what types of investigations could be most fruitful in the future.

  6. Observational Research on Star and Planetary System Formation

    NASA Technical Reports Server (NTRS)

    Simpson, Janet P.

    1998-01-01

    Institute scientists collaborate with a number of NASA Ames scientists on observational studies of star and planetary system formation to their mutual benefit. As part of this collaboration, SETI scientists have, from 1988 to the present: (1) contributed to the technical studies at NASA Ames of the Stratospheric Observatory for Infrared Astronomy (SOFIA), an infrared 2.5 meter telescope in a Boeing 747, which will replace the Kuiper Airborne Observatory (KAO), a 0.9 meter telescope in a Lockheed C-141. SOFIA will be an important facility for the future exploration of the formation of stars and planetary systems, and the origins of life, and as such will be an important future facility to SETI scientists; (2) worked with the Laboratory Astrophysics Group at Ames, carrying out laboratory studies of the spectroscopic properties of ices and pre-biotic organics, which could be formed in the interstellar or interplanetary media; (3) helped develop a photometric approach for determining the Frequency of Earth-Sized Inner Planets (FRESIP) around solar-like stars, a project (now called Kepler) which complements the current efforts of the SETI Institute to find evidence for extraterrestrial intelligence; and (4) carried out independent observational research, in particular research on the formation of stars and planetary systems using both ground-based telescopes as well as the KAO.

  7. Observational Research on Star and Planetary System Formation

    NASA Astrophysics Data System (ADS)

    Simpson, Janet P.

    1998-07-01

    Institute scientists collaborate with a number of NASA Ames scientists on observational studies of star and planetary system formation to their mutual benefit. As part of this collaboration, SETI scientists have, from 1988 to the present: (1) contributed to the technical studies at NASA Ames of the Stratospheric Observatory for Infrared Astronomy (SOFIA), an infrared 2.5 meter telescope in a Boeing 747, which will replace the Kuiper Airborne Observatory (KAO), a 0.9 meter telescope in a Lockheed C-141. SOFIA will be an important facility for the future exploration of the formation of stars and planetary systems, and the origins of life, and as such will be an important future facility to SETI scientists; (2) worked with the Laboratory Astrophysics Group at Ames, carrying out laboratory studies of the spectroscopic properties of ices and pre-biotic organics, which could be formed in the interstellar or interplanetary media; (3) helped develop a photometric approach for determining the Frequency of Earth-Sized Inner Planets (FRESIP) around solar-like stars, a project (now called Kepler) which complements the current efforts of the SETI Institute to find evidence for extraterrestrial intelligence; and (4) carried out independent observational research, in particular research on the formation of stars and planetary systems using both ground-based telescopes as well as the KAO.

  8. Planetary Formation: From The Earth And Moon To Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    An overview of current theories of planetary growth, emphasizing the formation of habitable planets, is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost - to orbital decay within the protoplanetary disk. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but if they become massive enough before the protoplanetary disk dissipates, then they are able to accumulate substantial amounts of gas. Specific issues to be discussed include: (1) how do giant planets influence the formation and habitability of terrestrial planets? (2) could a giant impact leading to lunar formation have occurred - 100 million years after the condensation of the oldest meteorites?

  9. A non-ideal MHD model for structure formation

    NASA Astrophysics Data System (ADS)

    Karmakar, Pralay Kumar; Sarma, Pankaj

    2018-02-01

    The evolutionary initiation dynamics of triggered planetary structure formation is indeed a complex process yet to be well understood. We herein develop a theoretical classical model to see the gravitational fragmentation kinetics of the viscoelastic non-ideal magneto-hydro-dynamic (MHD) fabric. The inhomogeneous planetary disk is primarily composed of heavier dust grains (strongly correlated) together with relatively lighter electrons, ions and neutrals (weakly correlated) in a mean-fluidic approximation. A normal harmonic mode analysis results in a quadratic dispersion relation of a unique shape. It is demonstrated that the growth rate of the MHD fluctuations (magnetosonic) contributing to the planet formation rate, apart from the wave vector and its projection orientation, has a pure explicit dependency on the viscoelastic parameters. The analysis specifically shows that the effective generalized viscosity (χ) , viscoelastic relaxation time (τm) , and K-orientation (θ) play as destabilizing agencies against the non-local gravitational disk collapse. The relevancy is briefly indicated in the real astronomical context of bounded planetary structure formation and evolution.

  10. The Next-Generation Infrared Space Mission Spica: Project Updates

    NASA Astrophysics Data System (ADS)

    Nakagawa, Takao; Shibai, Hiroshi; Kaneda, Hidehiro; Kohno, Kotaro; Matsuhara, Hideo; Ogawa, Hiroyuki; Onaka, Takashi; Roelfsema, Peter; SPICA Team

    2017-03-01

    We present project updates of the next-generation infrared space mission SPICA (Space Infrared Telescope for Cosmology and Astrophysics) as of November 2015. SPICA is optimized for mid- and far-infrared astronomy with unprecedented sensitivity, which will be achieved with a cryogenically cooled (below 8 K), large (2.5~m) telescope. SPICA is expected to address a number of key questions in various fields of astrophysics, ranging from studies of the star-formation history in the universe to the formation and evolution of planetary systems. The international collaboration framework of SPICA has been revisited. SPICA under the new framework passed the Mission Definition Review by JAXA in 2015. A proposal under the new framework to ESA is being prepared. The target launch year in the new framework is 2027/28.

  11. NanoRocks: A Long-Term Microgravity Experiment to Stydy Planet Formation and Planetary Ring Particles

    NASA Astrophysics Data System (ADS)

    Brisset, J.; Colwell, J. E.; Dove, A.; Maukonen, D.; Brown, N.; Lai, K.; Hoover, B.

    2015-12-01

    We report on the results of the NanoRocks experiment on the International Space Station (ISS), which simulates collisions that occur in protoplanetary disks and planetary ring systems. A critical stage of the process of early planet formation is the growth of solid bodies from mm-sized chondrules and aggregates to km-sized planetesimals. To characterize the collision behavior of dust in protoplanetary conditions, experimental data is required, working hand in hand with models and numerical simulations. In addition, the collisional evolution of planetary rings takes place in the same collisional regime. The objective of the NanoRocks experiment is to study low-energy collisions of mm-sized particles of different shapes and materials. An aluminum tray (~8x8x2cm) divided into eight sample cells holding different types of particles gets shaken every 60 s providing particles with initial velocities of a few cm/s. In September 2014, NanoRocks reached ISS and 220 video files, each covering one shaking cycle, have already been downloaded from Station. The data analysis is focused on the dynamical evolution of the multi-particle systems and on the formation of cluster. We track the particles down to mean relative velocities less than 1 mm/s where we observe cluster formation. The mean velocity evolution after each shaking event allows for a determination of the mean coefficient of restitution for each particle set. These values can be used as input into protoplanetary disk and planetary rings simulations. In addition, the cluster analysis allows for a determination of the mean final cluster size and the average particle velocity of clustering onset. The size and shape of these particle clumps is crucial to understand the first stages of planet formation inside protoplanetary disks as well as many a feature of Saturn's rings. We report on the results from the ensemble of these collision experiments and discuss applications to planetesimal formation and planetary ring evolution.

  12. Interpreting HSE Contents of Planetary Basalts: The Importance of Sulfide Saturation and Under-Saturation

    NASA Technical Reports Server (NTRS)

    Righter, K.

    2000-01-01

    Highly siderophile elements provide important constraints on planetary differentiation due to their siderophile behavior. Their interpretation in terms of planetary differentiation models has so far overlooked the importance of sulfide saturation and under-saturation.

  13. The Geology of the Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    Carr, M. H. (Editor); Saunders, R. S.; Strom, R. G.; Wilhelms, D. E.

    1984-01-01

    The geologic history of the terrestrial planets is outlined in light of recent exploration and the revolution in geologic thinking. Among the topics considered are planet formation; planetary craters, basins, and general surface characteristics; tectonics; planetary atmospheres; and volcanism.

  14. A large planetary body inferred from diamond inclusions in a ureilite meteorite.

    PubMed

    Nabiei, Farhang; Badro, James; Dennenwaldt, Teresa; Oveisi, Emad; Cantoni, Marco; Hébert, Cécile; El Goresy, Ahmed; Barrat, Jean-Alix; Gillet, Philippe

    2018-04-17

    Planetary formation models show that terrestrial planets are formed by the accretion of tens of Moon- to Mars-sized planetary embryos through energetic giant impacts. However, relics of these large proto-planets are yet to be found. Ureilites are one of the main families of achondritic meteorites and their parent body is believed to have been catastrophically disrupted by an impact during the first 10 million years of the solar system. Here we studied a section of the Almahata Sitta ureilite using transmission electron microscopy, where large diamonds were formed at high pressure inside the parent body. We discovered chromite, phosphate, and (Fe,Ni)-sulfide inclusions embedded in diamond. The composition and morphology of the inclusions can only be explained if the formation pressure was higher than 20 GPa. Such pressures suggest that the ureilite parent body was a Mercury- to Mars-sized planetary embryo.

  15. Photochemical Formation of Sulfur-Containing Aerosols

    NASA Astrophysics Data System (ADS)

    Kroll, Jay A.; Vaida, Veronica

    2017-06-01

    In order to understand planetary climate systems, modeling the properties of atmospheric aerosols is vital. Aerosol formation plays an important role in planetary climates and is tied to feedback loops that can either warm or cool a planet. Sulfur compounds are known to play an important role in new particle aerosol formation and have been observed in a number of planetary atmospheres throughout our solar system. Our current understanding of sulfur chemistry explains much of what we observe in Earth's atmosphere; however, several discrepancies arise when comparing observations of the Venusian atmosphere with model predictions. This suggests that there are still problems in our fundamental understanding of sulfur chemistry. This is concerning given recent renewed interest in sulfate injections in the stratosphere for solar radiation management geo-engineering schemes. We investigate the role of sunlight as a potential driver of the formation of sulfur-containing aerosols. I will present recent work investigating the generation of large quantities of aerosol from the irradiation of mixtures of SO_2 with water and organic species, using a solar simulator that mimics the light that is available in the Earth's troposphere and the Venusian middle atmosphere. I will present on recent work done in our lab suggesting the formation of sulfurous acid, H_2SO_3, and describe experimental work that supports this proposed mechanism. Additionally I will present on new work showing the highly reactive nature of electronically excited SO_2 with saturated alkane species. The implications of this photochemically induced sulfur aerosol formation in the atmosphere of Earth and other planetary atmospheres will be discussed.

  16. The Path to Far-IR Interferometry in Space: Recent Developments, Plans, and Prospects

    NASA Technical Reports Server (NTRS)

    Leisawitz, David T.; Rinehart, Stephen A.

    2012-01-01

    The far-IR astrophysics community is eager to follow up Spitzer and Herschel observations with sensitive, highresolution imaging and spectroscopy, for such measurements are needed to understand merger-driven star formation and chemical enrichment in galaxies, star and planetary system formation, and the development and prevalence of waterbearing planets. The community is united in its support for a space-based interferometry mission. Through concerted efforts worldwide, the key enabling technologies are maturing. Two balloon-borne far-IR interferometers are presently under development. This paper reviews recent technological and programmatic developments, summarizes plans, and offers a vision for space-based far-IR interferometry involving international collaboration.

  17. Preface: New challenges for planetary protection

    NASA Astrophysics Data System (ADS)

    Kminek, Gerhard

    2016-05-01

    Planetary protection as a discipline goes back to the advent of the space age and the formation of the Committee on Space Research (COSPAR). Planetary protection constraints are in place to ensure that scientific investigations related to the search for extraterrestrial life are not compromised and that the Earth is protected from the potential hazard posed by extraterrestrial matter carried by a spacecraft returning from an interplanetary mission.

  18. Formation of spectral lines in planetary atmospheres. I - Theory for cloudy atmospheres: Application to Venus.

    NASA Technical Reports Server (NTRS)

    Hunt, G. E.

    1972-01-01

    The theory of the formation of spectral lines in a cloudy planetary atmosphere is studied in detail. It is shown that models based upon homogeneous, isotropically scattering atmospheres cannot be used to reproduce observed spectroscopic features of phase effect and the shape of spectral lines for weak and strong bands. The theory must, therefore, be developed using an inhomogeneous (gravitational) model of a planetary atmosphere, accurately incorporating all the physical processes of radiative transfer. Such a model of the lower Venus atmosphere, consistent with our present knowledge, is constructed. The results discussed in this article demonstrate the effects of the parameters that describe the atmospheric model on the spectroscopic features of spectral line profile and phase effect, at visible and near infrared wavelengths. This information enables us to develop a comprehensive theory of line formation in a Venus atmosphere.

  19. Chondrule Formation in Bow Shocks around Eccentric Planetary Embryos

    NASA Astrophysics Data System (ADS)

    Morris, Melissa A.; Boley, Aaron C.; Desch, Steven J.; Athanassiadou, Themis

    2012-06-01

    Recent isotopic studies of Martian meteorites by Dauphas & Pourmand have established that large (~3000 km radius) planetary embryos existed in the solar nebula at the same time that chondrules—millimeter-sized igneous inclusions found in meteorites—were forming. We model the formation of chondrules by passage through bow shocks around such a planetary embryo on an eccentric orbit. We numerically model the hydrodynamics of the flow and find that such large bodies retain an atmosphere with Kelvin-Helmholtz instabilities allowing mixing of this atmosphere with the gas and particles flowing past the embryo. We calculate the trajectories of chondrules flowing past the body and find that they are not accreted by the protoplanet, but may instead flow through volatiles outgassed from the planet's magma ocean. In contrast, chondrules are accreted onto smaller planetesimals. We calculate the thermal histories of chondrules passing through the bow shock. We find that peak temperatures and cooling rates are consistent with the formation of the dominant, porphyritic texture of most chondrules, assuming a modest enhancement above the likely solar nebula average value of chondrule densities (by a factor of 10), attributable to settling of chondrule precursors to the midplane of the disk or turbulent concentration. We calculate the rate at which a planetary embryo's eccentricity is damped and conclude that a single planetary embryo scattered into an eccentric orbit can, over ~105 years, produce ~1024 g of chondrules. In principle, a small number (1-10) of eccentric planetary embryos can melt the observed mass of chondrules in a manner consistent with all known constraints.

  20. TOWARD A DETERMINISTIC MODEL OF PLANETARY FORMATION. VII. ECCENTRICITY DISTRIBUTION OF GAS GIANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ida, S.; Lin, D. N. C.; Nagasawa, M., E-mail: ida@geo.titech.ac.jp, E-mail: lin@ucolick.org, E-mail: nagasawa.m.ad@m.titech.ac.jp

    2013-09-20

    The ubiquity of planets and diversity of planetary systems reveal that planet formation encompasses many complex and competing processes. In this series of papers, we develop and upgrade a population synthesis model as a tool to identify the dominant physical effects and to calibrate the range of physical conditions. Recent planet searches have led to the discovery of many multiple-planet systems. Any theoretical models of their origins must take into account dynamical interactions between emerging protoplanets. Here, we introduce a prescription to approximate the close encounters between multiple planets. We apply this method to simulate the growth, migration, and dynamicalmore » interaction of planetary systems. Our models show that in relatively massive disks, several gas giants and rocky/icy planets emerge, migrate, and undergo dynamical instability. Secular perturbation between planets leads to orbital crossings, eccentricity excitation, and planetary ejection. In disks with modest masses, two or less gas giants form with multiple super-Earths. Orbital stability in these systems is generally maintained and they retain the kinematic structure after gas in their natal disks is depleted. These results reproduce the observed planetary mass-eccentricity and semimajor axis-eccentricity correlations. They also suggest that emerging gas giants can scatter residual cores to the outer disk regions. Subsequent in situ gas accretion onto these cores can lead to the formation of distant (∼> 30 AU) gas giants with nearly circular orbits.« less

  1. Defining the Core Archive Data Standards of the International Planetary Data Alliance (IPDA)

    NASA Technical Reports Server (NTRS)

    Hughes, J. Steven; Crichton, Dan; Beebe, Reta; Guinness, Ed; Heather, David; Zender, Joe

    2007-01-01

    A goal of the International Planetary Data Alliance (lPDA) is to develop a set of archive data standards that enable the sharing of scientific data across international agencies and missions. To help achieve this goal, the IPDA steering committee initiated a six month proj ect to write requirements for and draft an information model based on the Planetary Data System (PDS) archive data standards. The project had a special emphasis on data formats. A set of use case scenarios were first developed from which a set of requirements were derived for the IPDA archive data standards. The special emphasis on data formats was addressed by identifying data formats that have been used by PDS nodes and other agencies in the creation of successful data sets for the Planetary Data System (PDS). The dependency of the IPDA information model on the PDS archive standards required the compilation of a formal specification of the archive standards currently in use by the PDS. An ontology modelling tool was chosen to capture the information model from various sources including the Planetary Science Data Dictionary [I] and the PDS Standards Reference [2]. Exports of the modelling information from the tool database were used to produce the information model document using an object-oriented notation for presenting the model. The tool exports can also be used for software development and are directly accessible by semantic web applications.

  2. Migration-induced architectures of planetary systems.

    PubMed

    Szuszkiewicz, Ewa; Podlewska-Gaca, Edyta

    2012-06-01

    The recent increase in number of known multi-planet systems gives a unique opportunity to study the processes responsible for planetary formation and evolution. Special attention is given to the occurrence of mean-motion resonances, because they carry important information about the history of the planetary systems. At the early stages of the evolution, when planets are still embedded in a gaseous disc, the tidal interactions between the disc and planets cause the planetary orbital migration. The convergent differential migration of two planets embedded in a gaseous disc may result in the capture into a mean-motion resonance. The orbital migration taking place during the early phases of the planetary system formation may play an important role in shaping stable planetary configurations. An understanding of this stage of the evolution will provide insight on the most frequently formed architectures, which in turn are relevant for determining the planet habitability. The aim of this paper is to present the observational properties of these planetary systems which contain confirmed or suspected resonant configurations. A complete list of known systems with such configurations is given. This list will be kept by us updated from now on and it will be a valuable reference for studying the dynamics of extrasolar systems and testing theoretical predictions concerned with the origin and the evolution of planets, which are the most plausible places for existence and development of life.

  3. Walking on Exoplanets: Is Star Wars Right?

    PubMed

    Ballesteros, Fernando J; Luque, B

    2016-05-01

    As the number of detected extrasolar planets increases, exoplanet databases become a valuable resource, confirming some details about planetary formation but also challenging our theories with new, unexpected properties. Exoplanets-Gravity-Planetary habitability and biosignatures. Astrobiology 16, 325-327.

  4. Single rotating stars and the formation of bipolar planetary nebula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García-Segura, G.; Villaver, E.; Langer, N.

    2014-03-10

    We have computed new stellar evolution models that include the effects of rotation and magnetic torques under different hypotheses. The goal is to test whether a single star can sustain the rotational velocities needed in the envelope for magnetohydrodynamical(MHD) simulations to shape bipolar planetary nebulae (PNe) when high mass-loss rates take place. Stellar evolution models with main sequence masses of 2.5 and 5 M {sub ☉} and initial rotational velocities of 250 km s{sup –1} have been followed through the PNe formation phase. We find that stellar cores have to be spun down using magnetic torques in order to reproducemore » the rotation rates observed for white dwarfs. During the asymptotic giant branch phase and beyond, the magnetic braking of the core has a practically null effect on increasing the rotational velocity of the envelope since the stellar angular momentum is efficiently removed by the wind. We have also tested the best possible case scenarios in rather non-physical contexts to give enough angular momentum to the envelope. We find that we cannot get the envelope of a single star to rotate at the speeds needed for MHD simulations to form bipolar PNe. We conclude that single stellar rotators are unlikely to be the progenitors of bipolar PNe under the current MHD model paradigm.« less

  5. Cosmic rays and other rpace phenomena influenced on the Earth's climate

    NASA Astrophysics Data System (ADS)

    Lev, Dorman

    2016-07-01

    We consider effects of cosmic rays (CR) and some other space phenomena on the Earth's climate change. It is well known that the system of internal and external factors formatting the Earth's climate is very unstable: decreasing of planetary average annual temperature leads to an increase of planetary snow surface, and decreasing of the total annual solar energy input into the system decreases the planetary temperature even more. And inverse: increasing planetary temperature leads to an decrease of snow surface, and increasing of the total solar energy input into the system increases the planetary temperature even more. From this follows that even energetically small factors acted long time in one direction may have a big influence on climate change. In our opinion, the most important of these factors are CR (mostly through its influence on planetary cloudiness) and space dust (SD) through their influence on the flux of solar irradiation and on formation of clouds (these actions are in one direction). It is important that CR and SD influenced on global climate change in the same direction. Increasing of CR planetary intensity leads to increasing of formation clouds (especially low clouds on altitudes smaller than 3 km), increasing annual average of raining and decreasing of annual average planetary temperature. Increasing of SD decreases of solar irradiation and increases cloudiness what leads also to decreasing of annual average planetary temperature. Moreover, interactions of CR particles with dust granules decreases their dimensions what increased effectiveness of their actions on clouds. We consider data great variations of planetary temperature much before the beginning of the Earth's technological civilization (mostly caused by moving of the solar system around our Galaxy centre and collisions with molecular-dust clouds). We consider in details not only situation during the last hundred years, but also situation in the last one thousand years (and especially situation during Maunder minimum of solar activity), during many thousand and many millions years. It is shown that very big changes in climate were caused also by some rarely phenomena as impacts of asteroids and nearby supernova explosions with great influence on biosphere. We discuss also the problem on forecasting of global climate change what is especially important for saving present civilization from great climate catastrophes.

  6. An analytical theory of planetary rotation rates

    NASA Technical Reports Server (NTRS)

    Harris, A. W.

    1977-01-01

    An approximate analytical theory is derived for the rate of rotation acquired by a planet as it grows from the solar nebula. This theory was motivated by a numerical study by Giuli, and yields fair agreement with his results. The periods of planetary rotation obtained are proportional to planetesimal encounter velocity, and appear to suggest lower values of this velocity than are commonly assumed to have existed during planetary formation.

  7. Radial velocity detection of extra-solar planetary systems

    NASA Technical Reports Server (NTRS)

    Cochran, William D.

    1991-01-01

    The goal of this program was to detect planetary systems in orbit around other stars through the ultra high precision measurement of the orbital motion of the star around the star-planet barycenter. The survey of 33 nearby solar-type stars is the essential first step in understanding the overall problem of planet formation. The program will accumulate the necessary statistics to determine the frequency of planet formation as a function of stellar mass, age, and composition.

  8. The Dynamics of Planet Formation

    NASA Astrophysics Data System (ADS)

    Chambers, J. E.

    2005-05-01

    The transformation of a protoplanetary disk of gas and dust into a system of planets is a mysterious business that is frustratingly difficult to observe in detail. For this reason, studies of planet formation are largely based on theoretical models with only a few anchor points where precious observations are available. In this talk I will give an overview of some of these theoretical models, indicating areas of uncertainty and places where the models are on firmer ground. For convenience, theorists usually divide planet formation into a series of stages: formation of solid bodies from dust, aggregation of solid bodies into protoplanets, late-stage growth and the formation of giant planets, and planetary migration. Here I will concentrate mostly on the second and third of these stages (understanding of the first and last stages is rather limited, and the author's understanding is especially so). The intermediate stages involve interplay between several physical processes: physical collisions, gravitational scattering, dynamical friction, gas drag, and the capture and collapse of atmospheres. I will describe these processes in some detail, and show using analytical models how these effects can lead to a variety of planetary outcomes. This work was supported by NASA's Planetary Geology and Geophysics and TPF Foundation Science Mission programmes.

  9. Impact-Basin Formation on Mercury: Current Observations and Outstanding Questions

    NASA Astrophysics Data System (ADS)

    Baker, D. M. H.; Head, J. W.; Fassett, C. I.

    2018-05-01

    Mercury provides an important laboratory for understanding impact-basin formation on planetary bodies. MESSENGER observations improved our understanding, but much is still unknown about the formation and evolution of basin features.

  10. Urey prize lecture: On the diversity of plausible planetary systems

    NASA Technical Reports Server (NTRS)

    Lissauer, J. J.

    1995-01-01

    Models of planet formation and of the orbital stability of planetary systems are used to predict the variety of planetary and satellite systems that may be present within our galaxy. A new approximate global criterion for orbital stability of planetary systems based on an extension of the local resonance overlap criterion is proposed. This criterion implies that at least some of Uranus' small inner moons are significantly less massive than predicted by estimates based on Voyager volumes and densities assumed to equal that of Miranda. Simple calculations (neglecting planetary gravity) suggest that giant planets which acrete substantial amounts of gas while their envelopes are extremely distended ultimately rotate rapidly in the prgrade direction.

  11. Post-main-sequence planetary system evolution.

    PubMed

    Veras, Dimitri

    2016-02-01

    The fates of planetary systems provide unassailable insights into their formation and represent rich cross-disciplinary dynamical laboratories. Mounting observations of post-main-sequence planetary systems necessitate a complementary level of theoretical scrutiny. Here, I review the diverse dynamical processes which affect planets, asteroids, comets and pebbles as their parent stars evolve into giant branch, white dwarf and neutron stars. This reference provides a foundation for the interpretation and modelling of currently known systems and upcoming discoveries.

  12. Planetary rings and astrophysical discs

    NASA Astrophysics Data System (ADS)

    Latter, Henrik

    2016-05-01

    Disks are ubiquitous in astrophysics and participate in some of its most important processes. Of special interest is their role in star, planet and moon formation, the growth of supermassive black holes, and the launching of jets. Although astrophysical disks can be up to ten orders of magnitude larger than planetary rings and differ hugely in composition, all disks share to some extent the same basic dynamics and many physical phenomena. This review explores these areas of overlap. Topics covered include disk formation, accretion, collisions, instabilities, and satellite-disk interactions.

  13. Extrasolar planets: constraints for planet formation models.

    PubMed

    Santos, Nuno C; Benz, Willy; Mayor, Michel

    2005-10-14

    Since 1995, more than 150 extrasolar planets have been discovered, most of them in orbits quite different from those of the giant planets in our own solar system. The number of discovered extrasolar planets demonstrates that planetary systems are common but also that they may possess a large variety of properties. As the number of detections grows, statistical studies of the properties of exoplanets and their host stars can be conducted to unravel some of the key physical and chemical processes leading to the formation of planetary systems.

  14. Migration & Extra-solar Terrestrial Planets: Watering the Planets

    NASA Astrophysics Data System (ADS)

    Carter-Bond, Jade C.; O'Brien, David P.; Raymond, Sean N.

    2014-04-01

    A diverse range of terrestrial planet compositions is believed to exist within known extrasolar planetary systems, ranging from those that are relatively Earth-like to those that are highly unusual, dominated by species such as refractory elements (Al and Ca) or C (as pure C, TiC and SiC)(Bond et al. 2010b). However, all prior simulations have ignored the impact that giant planet migration during planetary accretion may have on the final terrestrial planetary composition. Here, we combined chemical equilibrium models of the disk around five known planetary host stars (Solar, HD4203, HD19994, HD213240 and Gl777) with dynamical models of terrestrial planet formation incorporating various degrees of giant planet migration. Giant planet migration is found to drastically impact terrestrial planet composition by 1) increasing the amount of Mg-silicate species present in the final body; and 2) dramatically increasing the efficiency and amount of water delivered to the terrestrial bodies during their formation process.

  15. The Atmospheres of the Terrestrial Planets:Clues to the Origins and Early Evolution of Venus, Earth, and Mars

    NASA Technical Reports Server (NTRS)

    Baines, Kevin H.; Atreya, Sushil K.; Bullock, Mark A.; Grinspoon, David H,; Mahaffy, Paul; Russell, Christopher T.; Schubert, Gerald; Zahnle, Kevin

    2015-01-01

    We review the current state of knowledge of the origin and early evolution of the three largest terrestrial planets - Venus, Earth, and Mars - setting the stage for the chapters on comparative climatological processes to follow. We summarize current models of planetary formation, as revealed by studies of solid materials from Earth and meteorites from Mars. For Venus, we emphasize the known differences and similarities in planetary bulk properties and composition with Earth and Mars, focusing on key properties indicative of planetary formation and early evolution, particularly of the atmospheres of all three planets. We review the need for future in situ measurements for improving our understanding of the origin and evolution of the atmospheres of our planetary neighbors and Earth, and suggest the accuracies required of such new in situ data. Finally, we discuss the role new measurements of Mars and Venus have in understanding the state and evolution of planets found in the habitable zones of other stars.

  16. From Dust to Planets: Connecting the Dots

    NASA Astrophysics Data System (ADS)

    Weidenschilling, Stuart

    The principal objective is to construct a self-consistent model linking two key early stages of planetary origins: formation of planetesimals by collisional growth of aggregate bodies from grains in the solar nebula, and accretion of those planetesimals into planetary embryos. We will simulate these processes by using a series of numerical codes to model (i) particle settling and coagulation, using the latest and most comprehensive experimental data on collisional outcomes, (ii) detailed vertical structure of a particle layer in the nebular midplane subject to shear-generated turbulence, and possible streaming instability due to transverse particle motions, and (iii) accretion of planetary embryos from planetesimals that have grown large enough to decouple from the gas and experience Keplerian motion dominated by gravitational forces. The proposed work will clarify conditions necessary for planetesimal formation and the effects of turbulence on this process, and will bridge the gap between the dynamical regimes controlled by forces of gas drag and gravity. It will also determine how initial sizes of planetesimals affect the timescales and outcomes of planetary accretion.

  17. Rise of planetary bodies.

    NASA Astrophysics Data System (ADS)

    Czechowski, Z.; Leliwa-Kopystyński, J.; Teisseyre, R.

    Contents: 1. On the probability of the formation of planetary systems. 2. Condensation triggered by supernova explosion and tidal capture theory. 3. Foundations of accretion theory. 4. The structure and evolution of the protoplanetary disk. 5. Coagulation of orbiting bodies. 6. Collision phenomena related to planetology: accretion, fragmentation, cratering. 7. Dynamics of planetesimals: Introduction, Safronov's approach, elements of the kinetic theory of gases, Nakagawa's approach, approaches considering inelastic collisions and gravitational encounters of planetesimals, Hämeen-Anttila approach, planetesimals with different masses. 8. Growth of the planetary embryo: Basic equations, model of growth of planetary embryos. 9. Origin of the Moon and the satellites.

  18. The role of phosphorus in chemical evolution.

    PubMed

    Maciá, Enrique

    2005-08-01

    In this tutorial review we consider the role of phosphorus and its compounds within the context of chemical evolution in galaxies. Following an interdisciplinary approach we first discuss the position of P among the main biogenic elements by considering its relevance in most essential biochemical functions as well as its peculiar chemistry under different physicochemical conditions. Then we review the phosphorus distribution in different cosmic sites, such as terrestrial planets, interplanetary dust particles, cometary dust, planetary atmospheres and the interstellar medium (ISM). In this way we realize that this element is both scarce and ubiquitous in the universe. These features can be related to the complex nucleosynthesis of P nuclide in the cores of massive stars under explosive conditions favouring a wide distribution of this element through the ISM, where it would be ready to react with other available atoms. A general tendency towards more oxidized phosphorus compounds is clearly appreciated as chemical evolution proceeds from circumstellar and ISM materials to protoplanetary and planetary condensed matter phases. To conclude we discuss some possible routes allowing for the incorporation of phosphorus compounds of prebiotic interest during the earlier stages of solar system formation.

  19. Origins of Inner Solar Systems

    NASA Astrophysics Data System (ADS)

    Dawson, Rebekah Ilene

    2017-06-01

    Over the past couple decades, thousands of extra-solar planetshave been discovered orbiting other stars. The exoplanets discovered to date exhibit a wide variety of orbital and compositional properties; most are dramatically different from the planets in our own Solar System. Our classical theories for the origins of planetary systems were crafted to account for the Solar System and fail to account for the diversity of planets now known. We are working to establish a new blueprint for the origin of planetary systems and identify the key parameters of planet formation and evolution that establish the distribution of planetary properties observed today. The new blueprint must account for the properties of planets in inner solar systems, regions of planetary systems closer to their star than Earth’s separation from the Sun and home to most exoplanets detected to data. I present work combining simulations and theory with data analysis and statistics of observed planets to test theories of the origins of inner solars, including hot Jupiters, warm Jupiters, and tightly-packed systems of super-Earths. Ultimately a comprehensive blueprint for planetary systems will allow us to better situate discovered planets in the context of their system’s formation and evolution, important factors in whether the planets may harbor life.

  20. Interstellar and Planetary Analogs in the Laboratory

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2013-01-01

    We present and discuss the unique capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to investigate the interaction of ionizing radiation (UV, charged particles) with molecular species (neutral molecules, radicals and ions) and carbonaceous grains in the Solar System and in the Interstellar Medium (ISM). COSmIC stands for Cosmic Simulation Chamber, a laboratory chamber where interstellar and planetary analogs are generated, processed and analyzed. It is composed of a pulsed discharge nozzle (PDN) expansion that generates a free jet supersonic expansion in a plasma cavity coupled to two ultrahigh-sensitivity, complementary in situ diagnostics: a cavity ring down spectroscopy (CRDS) system for photonic detection and a Reflectron time-of-flight mass spectrometer (ReTOF-MS) for mass detection. This setup allows the study of molecules, ions and solids under the low temperature and high vacuum conditions that are required to simulate some interstellar, circumstellar and planetary physical environments providing new fundamental insights on the molecular level into the processes that are critical to the chemistry in the ISM, circumstellar and planet forming regions, and on icy objects in the Solar System. Recent laboratory results that were obtained using COSmIC will be discussed, in particular the progress that have been achieved in monitoring in the laboratory the formation of solid particles from their gas-phase molecular precursors in environments as varied as circumstellar outflow and planetary atmospheres.

  1. New Clues to the Mysterious Origin of Wide-Separation Planetary-Mass Companions

    NASA Astrophysics Data System (ADS)

    Bryan, Marta

    2018-01-01

    Over the past decade, direct imaging searches for young gas giant planets have revealed a new population of young planetary-mass companions with extremely wide orbital separations (>50 AU) and masses near or at the deuterium-burning limit. These companions pose significant challenges to standard formation models, including core accretion, disk instability, and turbulent fragmentation. In my talk I will discuss new results from high-contrast imaging and high-resolution infrared spectroscopy of a sample of directly imaged wide-separation companions that can be used to directly test these three competing formation mechanisms. First, I use high-contrast imaging to strongly discount scattering as a hypothesis for the origin of wide-separation companions. Second, I measure rotation rates of a subset of these companions using their near-IR spectra, and place the first constraints on the angular momentum evolution of young planetary-mass objects. Finally, I explore the ability of high-resolution spectroscopy to constrain the atmospheric C/O ratios of these companions, providing a complementary test of competing formation scenarios.

  2. Implications of the giant planets for the formation and evolution of planetary systems

    NASA Technical Reports Server (NTRS)

    Stevenson, David J.

    1989-01-01

    The giant planet region in the solar system appears to be bounded inside by the limit of water condensation, suggesting that the most abundant astrophysical condensate plays an important role in giant planet formation. Indeed, Jupiter and Saturn exhibit evidence for rock and/or ice cores or central concentrations that probably accumulated first, acting as nuclei for subsequent gas accumulation. This is a 'planetary' accumulation process, distinct from the stellar formation process, even though most of Jupiter has a similar composition to the primordial sun. Uranus and Neptune appear to exhibit evidence of an important role for giant impacts in their structure and evolution. No simple picture emerges for the temperature structure of the solar nebula from observations alone. However, it seems likely that Jupiter is the key to the planetary system, and a similar planet could be expected for other systems. The data and inferences from these data are summarized for the entire known solar system beyond the asteroid belt.

  3. Space Station Planetology Experiments (SSPEX)

    NASA Technical Reports Server (NTRS)

    Greeley, R. (Editor); Williams, R. J. (Editor)

    1986-01-01

    A meeting of 50 planetary scientists considered the uses of the Space Station to support experiments in their various disciplines. Abstracts (28) present concepts for impact and aeolian processes, particle formation and interaction, and other planetary science experiments. Summaries of the rationale, hardware concepts, accomodations, and recommendations are included.

  4. Lunar and Planetary Science XXXIII

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This CD-ROM publication contains the extended abstracts that were accepted for presentation at the 33rd Lunar and Planetary Science Conference held in Houston, TX, March 11-15, 2002. The papers are presented in PDF format and are indexed by author, keyword, meteorite, program and samples for quick reference.

  5. Lunar and Planetary Science XXXII

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This CD-ROM publication contains the extended abstracts that were accepted for presentation at the 32nd Lunar and Planetary Science Conference held at Houston, TX, March 12-16, 2001. The papers are presented in PDF format and are indexed by author, keyword, meteorite, program and samples for quick reference.

  6. The IPE facility in the ISS

    NASA Astrophysics Data System (ADS)

    Orr, Astrid

    IPE is a micro-gravity experiment that addresses planetary science. It is an ESA study in phase B and is intended to be installed on the Internaional Space Station. The goals of IPE are to: 1) understand the formation of planetesimals, or planet precursors, by studying the mutual interactions of micron-sized dust particles and their agglomeration in conditions representative of pre-planetary conditions 2) study the light scattering behavior of proto-planterary dust aggregates IPE (= ICAPS Precursor Experiment) is linked to a scientific program of ESA to study the Interactions in Cosmic and Atmospheric Particle systems under microgravity: ICAPS. The IPE collaboration includes an international Facility Science Team composed of leading scientists from France, Germany, Belgium, Canada and Spain. It also envolves a European industrial consortium. This paper will present the current status of the IPE project, the scientific objectives and the current payload configuration.

  7. Post-main-sequence planetary system evolution

    PubMed Central

    Veras, Dimitri

    2016-01-01

    The fates of planetary systems provide unassailable insights into their formation and represent rich cross-disciplinary dynamical laboratories. Mounting observations of post-main-sequence planetary systems necessitate a complementary level of theoretical scrutiny. Here, I review the diverse dynamical processes which affect planets, asteroids, comets and pebbles as their parent stars evolve into giant branch, white dwarf and neutron stars. This reference provides a foundation for the interpretation and modelling of currently known systems and upcoming discoveries. PMID:26998326

  8. The Formation and Evolution of the Solar System

    NASA Astrophysics Data System (ADS)

    Marov, Mikhail

    2018-05-01

    The formation and evolution of our solar system (and planetary systems around other stars) are among the most challenging and intriguing fields of modern science. As the product of a long history of cosmic matter evolution, this important branch of astrophysics is referred to as stellar-planetary cosmogony. Interdisciplinary by way of its content, it is based on fundamental theoretical concepts and available observational data on the processes of star formation. Modern observational data on stellar evolution, disc formation, and the discovery of extrasolar planets, as well as mechanical and cosmochemical properties of the solar system, place important constraints on the different scenarios developed, each supporting the basic cosmogony concept (as rooted in the Kant-Laplace hypothesis). Basically, the sequence of events includes fragmentation of an original interstellar molecular cloud, emergence of a primordial nebula, and accretion of a protoplanetary gas-dust disk around a parent star, followed by disk instability and break-up into primary solid bodies (planetesimals) and their collisional interactions, eventually forming a planet. Recent decades have seen major advances in the field, due to in-depth theoretical and experimental studies. Such advances have clarified a new scenario, which largely supports simultaneous stellar-planetary formation. Here, the collapse of a protosolar nebula's inner core gives rise to fusion ignition and star birth with an accretion disc left behind: its continuing evolution resulting ultimately in protoplanets and planetary formation. Astronomical observations have allowed us to resolve in great detail the turbulent structure of gas-dust disks and their dynamics in regard to solar system origin. Indeed radio isotope dating of chondrite meteorite samples has charted the age and the chronology of key processes in the formation of the solar system. Significant progress also has been made in the theoretical study and computer modeling of protoplanetary accretion disk thermal regimes; evaporation/condensation of primordial particles depending on their radial distance, mechanisms of clustering, collisions, and dynamics. However, these breakthroughs are yet insufficient to resolve many problems intrinsically related to planetary cosmogony. Significant new questions also have been posed, which require answers. Of great importance are questions on how contemporary natural conditions appeared on solar system planets: specifically, why the three neighbor inner planets—Earth, Venus, and Mars—reveal different evolutionary paths.

  9. Recent progress in exobiology and planetary biology

    NASA Technical Reports Server (NTRS)

    Jukes, T. H.

    1981-01-01

    Recent work in the fields of exobiology, the study of the possible characteristics of extraterrestrial life, and planetary biology, the study of life forms as a function of planetary conditions, is reviewed. Searches conducted for life on Mars by the Viking Landers and on Titan by Voyager 1 are considered, and the origin of life on earth is considered in relation to the question of the inorganic trace elements in living systems that are required for life. The question of the origin of terrestrial life from spores carried through the interstellar medium is examined, and the unlikelihood of the survival of such spores except within meteorites or dust particles is pointed out. Studies of organic molecules present in the interstellar medium are indicated as evidence that the conditions necessary for the formation of life can exist in various locations throughout the universe. Investigations of the molecular evolution of life on earth and of life under extreme conditions of heat, cold, drought and ultraviolet radiation, and of the organic compounds found in meteorites and comets are also discussed. The importance of a mechanism of heredity, such as terrestrial DNA, to the evolution of terrestrial and possible extraterrestrial life is pointed out.

  10. The Search for Young Planetary Systems And the Evolution of Young Stars

    NASA Technical Reports Server (NTRS)

    Beichman, Charles A.; Boden, Andrew; Ghez, Andrea; Hartman, Lee W.; Hillenbrand, Lynn; Lunine, Jonathan I.; Simon, Michael J.; Stauffer, John R.; Velusamy, Thangasamy

    2004-01-01

    The Space Interferometer Mission (SIM) will provide a census of planetary systems by con- ducting a broad survey of 2,000 stars that will be sensitive to the presence of planets with masses as small as approx. 15 Earth masses (1 Uranus mass) and a deep survey of approx. 250 of the nearest, stars with a mass limit of approx.3 Earth masses. The broad survey will include stars spanning a wide range of ages, spectral types, metallicity, and other important parameters. Within this larger context, the Young Stars and Planets Key Project will study approx. 200 stars with ages from 1 Myr to 100 Myr to understand the formation and dynamical evolution of gas giant planets. The SIM Young Stars and Planets Project will investigate both the frequency of giant planet formation and the early dynamical history of planetary systems. We will gain insight into how common the basic architecture of our solar system is compared with recently discovered systems with close-in giant planets by examining 200 of the nearest (less than 150 pc) and youngest (1-100 Myr) solar-type stars for planets. The sensitivity of the survey for stars located 140 pc away is shown in the planet mass-separation plane. We expect to find anywhere from 10 (assuming that only the presently known fraction of stars. 5-7%, has planets) to 200 (all young stars have planets) planetary systems. W-e have set our sensitivity threshold to ensure the detection of Jupiter-mass planets in the critical orbital range of 1 to 5 AU. These observations, when combined with the results of planetary searches of mature stars, will allow us to test theories of planetary formation and early solar system evolution. By searching for planets around pre-main sequence stars carefully selected to span an age range from 1 to 100 Myr, we will learn a t what epoch and with what frequency giant planets are found at the water-ice snowline where they are expected to form. This will provide insight into the physical mechanisms by which planets form and migrate from their place of birth, and about their survival rate. With these data in hand, we will provide data, for the first time, on such important questions as: What processes affect the formation and dynamical evolution of planets? When and where do planets form? What is initial mass distribution of planetary systems around young stars? How might planets be destroyed? What is the origin of the eccentricity of planetary orbits? What is the origin of the apparent dearth of companion objects between planets and brown dwarfs seen in mature stars? The observational strategy is a compromise between the desire to extend the planetary mass function as low as possible and the essential need to build up sufficient statistics on planetary occurrence. About half of the sample will be used to address the "where" and "when" of planet formation. We will study classical T Tauri stars (cTTs) which have massive accretion disks and post- accretion, weak-lined T Tauri stars (wTTs). Preliminary estimates suggest the sample will consist of approx. 30% cTTs and approx. 70% wTTs, driven in part by the difficulty of making accurate astrometric measurements toward objects with strong variability or prominent disks.

  11. Europlanet Research Infrastructure: Planetary Simulation Facilities

    NASA Astrophysics Data System (ADS)

    Davies, G. R.; Mason, N. J.; Green, S.; Gómez, F.; Prieto, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J.

    2008-09-01

    EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the second TNA; Planetary Simulation Facilities. 11 laboratory based facilities are able to recreate the conditions found in the atmospheres and on the surfaces of planetary systems with specific emphasis on Martian, Titan and Europa analogues. The strategy has been to offer some overlap in capabilities to ensure access to the highest number of users and to allow for progressive and efficient development strategies. For example initial testing of mobility capability prior to the step wise development within planetary atmospheres that can be made progressively more hostile through the introduction of extreme temperatures, radiation, wind and dust. Europlanet Research Infrastructure Facilties: Mars atmosphere simulation chambers at VUA and OU These relatively large chambers (up to 1 x 0.5 x 0.5 m) simulate Martian atmospheric conditions and the dual cooling options at VUA allows stabilised instrument temperatures while the remainder of the sample chamber can be varied between 220K and 350K. Researchers can therefore assess analytical protocols for instruments operating on Mars; e.g. effect of pCO2, temperature and material (e.g., ± ice) on spectroscopic and laser ablation techniques while monitoring the performance of detection technologies such as CCD at low T & variable p H2O & pCO2. Titan atmosphere and surface simulation chamber at OU The chamber simulates Titan's atmospheric composition under a range of pressures and temperatures and through provision of external UV light and or electrical discharge can be used to form the well known Titan Aerosol species, which can subsequently be analysed using one of several analytical techniques (UV-Vis, FTIR and mass spectrometry). Simulated surfaces can be produced (icy surfaces down to 15K) and subjected to a variety of light and particles (electron and ion) sources. Chemical and physical changes in the surface may be explored using remote spectroscopy. Planetary Simulation chamber for low density atmospheres INTA-CAB The planetary simulation chamber-ultra-high vacuum equipment (PSC-UHV) has been designed to study planetary surfaces and low dense atmospheres, space environments or any other hypothetic environment at UHV. Total pressure ranges from 7 mbar (Martian conditions) to 5x10-9 mbar. A residual gas analyzer regulates gas compositions to ppm precision. Temperature ranges from 4K to 325K and most operations are computer controlled. Radiation levels are simulated using a deuterium UV lamp, and ionization sources. 5 KV electron and noble-gas discharge UV allows measurement of IR and UV spectra and chemical compositions are determined by mass spectroscopy. Planetary Simulation chamber for high density planetary atmospheres at INTA-CAB The facility allows experimental study of planetary environments under high pressure, and was designed to include underground, seafloor and dense atmosphere environments. Analytical capabilities include Raman spectra, physicochemical properties of materials, e.a. thermal conductivity. P-T can be controlled as independent variables to allow monitoring of the tolerance of microorganisms and the stability of materials and their phase changes. Planetary Simulation chamber for icy surfaces at INTA-CAB This chamber is being developed to the growth of ice samples to simulate the chemical and physical properties of ices found on both planetary bodies and their moons. The goal is to allow measurement of the physical properties of ice samples formed under planetary conditions to assess how rheology varies with pressure and temperature and grain size to gain a far better understanding of how tectonics may operate on icy moons. Hot planetary surfaces simulation chamber at DLR The planetary simulation chamber is to study the behaviour of planetary analogue materials on the surface of hot (airless) bodies in the solar system. Samples can be heated up to temperatures of 500°C simulating conditions found on the surface of Mercury and Venus. This enables highly accurate thermal emission measurements using the integrated infrared spectrometer and calibrated sources. Thermal gradients can be applied to samples to simulate diurnal thermal cycles and examine thermal stresses in materials. The chamber can be placed under vacuum or purged with gas. In addition, to the high temperature chamber a number of further planetary simulation chambers are available equipped with LIBS and Raman-spectroscopy equipment. Dust analogue simulation chamber at INAF/OACN This facility produces and characterises dust analogues (arc discharge, laser ablation, grinding of minerals, ices) in a variety of simulation chambers under variable pressure (10-6 - 10-3 mbar), temperature (80 - 330 K) and gas composition. Dust and analogues are characterised by a variety of Spectroscopic (absorption, transmission, diffuse-specular reflectance) and imaging techniques (SEM) and can be subjected to thermal annealing, ion bombardment and UV irradiation. Dust accelerator facility at Max Planck Institüt Nuclear Physics, Heidelberg. This facility allows the investigation of hypervelocity dust impacts onto various materials. Dust grain materials from nano to micron sizes are accelerated using a 2 MV Vande- Graaff to velocities between 1 and 60 km/s comparable to the planetary rings of the giant gas planets and impact ejecta processes on the surface of small bodies (asteroids, comets) as well as moons and planetary surfaces. Potential phenomena for study include dust charging, dust magentosphere interactions, dust impact flashes and the possibility of obtaining compositional measurements of impact plasma plumes. Mars surface simulation Laboratory, Aberystwyth University. A Planetary Analogue Terrain Laboratory facilitates comprehensive mission operations emulation experiments designed to interpret and maximise scientific data return from robotic instruments. This facility includes Mars Soil Simulant and `science target' rocks that have been fully characterised. The terrain also has an area for sub-surface sampling. An Access Grid Node allows simulation of remote control operation and diminishes the need for direct onsite attendance. PAT Lab has a large selection of software tools for rover, robot arm and instrument modelling and simulation, and for the processing and visualisation of captured instrument data. Instrument motion is measured using a Vicon motion capture system with a resolution < 0.1 mm. Dusty wind tunnel at Aarhus University, Denmark The Aarhus wind tunnel simulates wind driven dust exposure on Mars. This allows study into analogue materials, dust/surface processes, meteorological condition and microbiological survival under Martian conditions. The multipurpose facility is used to quantify dust deposition (i.e. on optical surfaces, electrical or mechanical components) and examine the operation of instrumentation in dusty/windy environment under Martian conditions (pressure, gas composition & temperature). This includes calibration of wind flow instrumentation and dust sensors.

  12. Natural fracture systems on planetary surfaces: Genetic classification and pattern randomness

    NASA Technical Reports Server (NTRS)

    Rossbacher, Lisa A.

    1987-01-01

    One method for classifying natural fracture systems is by fracture genesis. This approach involves the physics of the formation process, and it has been used most frequently in attempts to predict subsurface fractures and petroleum reservoir productivity. This classification system can also be applied to larger fracture systems on any planetary surface. One problem in applying this classification system to planetary surfaces is that it was developed for ralatively small-scale fractures that would influence porosity, particularly as observed in a core sample. Planetary studies also require consideration of large-scale fractures. Nevertheless, this system offers some valuable perspectives on fracture systems of any size.

  13. Outcomes of planetary close encounters - A systematic comparison of methodologies

    NASA Technical Reports Server (NTRS)

    Greenberg, Richard; Carusi, Andrea; Valsecchi, G. B.

    1988-01-01

    Several methods for estimating the outcomes of close planetary encounters are compared on the basis of the numerical integration of a range of encounter types. An attempt is made to lay the foundation for the development of predictive rules concerning the encounter outcomes applicable to the refinement of the statistical mechanics that apply to planet-formation and similar problems concerning planetary swarms. Attention is given to Oepik's (1976) formulation of the two-body approximation, whose predicted motion differs from the correct three-body behavior.

  14. International Planetary Data Alliance (IPDA) Information Model

    NASA Technical Reports Server (NTRS)

    Hughes, John Steven; Beebe, R.; Guinness, E.; Heather, D.; Huang, M.; Kasaba, Y.; Osuna, P.; Rye, E.; Savorskiy, V.

    2007-01-01

    This document is the third deliverable of the International Planetary Data Alliance (IPDA) Archive Data Standards Requirements Identification project. The goal of the project is to identify a subset of the standards currently in use by NASAs Planetary Data System (PDS) that are appropriate for internationalization. As shown in the highlighted sections of Figure 1, the focus of this project is the Information Model component of the Data Architecture Standards, namely the object models, a data dictionary, and a set of data formats.

  15. FRESIP: A Discovery Mission Concept To Find Earth-Sized Planets Around Solar Like Stars

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, D.; Dunham, E.; Cullers, D.; Webster, L.; Granados, A.; Ford, C.; Reitsema, H.; Cochran, W.; Bell, J.; hide

    1994-01-01

    The current nebular theory postulates that planets are. a consequence of the formation of stars from viscous accretion disks. Condensation from the accretion disk favors the formation of small rocky planets in the hot inner region, and the formation of gas giants in the cool outer region. Consequently, terrestrial-type planet in inner orbits should be commonplace. From geometrical considerations , Borucki and Summers have shown that 1% of planetary systems resembling our solar system should show transits for Earth-sized (or larger) planets. Thus a photometric satellite that uses a wide field of view telescope and a large detector array to simultaneously monitor 5000 target stars should detect 50 planetary systems. To differentiate regularly recurring transits from statistical fluctuations of the stellar flux, one must observe over several orbital periods so that the false positive rate can be reduced to one event or less. A one-meter aperture telescope placed in a halo orbit about either the L1 or L2 Lagrange points and viewing perpendicular to both the orbital and ecliptic planes can view continuously for the required period because neither the Sun, Earth, or Moon would enter the field of view. Model calculations show that the observations should provide statistically significant estimates of the distributions of planetary size, orbital radius, coplanarity, and the frequency of planetary systems that have Earth-sized planets in inner orbits. Because approximately one half of the star systems observed will be binary systems, the frequency of planetary systems orbiting either one or both of the stars can also be determined.

  16. Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules

    PubMed Central

    Bollard, Jean; Connelly, James N.; Whitehouse, Martin J.; Pringle, Emily A.; Bonal, Lydie; Jørgensen, Jes K.; Nordlund, Åke; Moynier, Frédéric; Bizzarro, Martin

    2017-01-01

    The most abundant components of primitive meteorites (chondrites) are millimeter-sized glassy spherical chondrules formed by transient melting events in the solar protoplanetary disk. Using Pb-Pb dates of 22 individual chondrules, we show that primary production of chondrules in the early solar system was restricted to the first million years after the formation of the Sun and that these existing chondrules were recycled for the remaining lifetime of the protoplanetary disk. This finding is consistent with a primary chondrule formation episode during the early high-mass accretion phase of the protoplanetary disk that transitions into a longer period of chondrule reworking. An abundance of chondrules at early times provides the precursor material required to drive the efficient and rapid formation of planetary objects via chondrule accretion. PMID:28808680

  17. Trends in Planetary Data Analysis. Executive summary of the Planetary Data Workshop

    NASA Technical Reports Server (NTRS)

    Evans, N.

    1984-01-01

    Planetary data include non-imaging remote sensing data, which includes spectrometric, radiometric, and polarimetric remote sensing observations. Also included are in-situ, radio/radar data, and Earth based observation. Also discussed is development of a planetary data system. A catalog to identify observations will be the initial entry point for all levels of users into the data system. There are seven distinct data support services: encyclopedia, data index, data inventory, browse, search, sample, and acquire. Data systems for planetary science users must provide access to data, process, store, and display data. Two standards will be incorporated into the planetary data system: Standard communications protocol and Standard format data unit. The data system configuration must combine a distributed system with those of a centralized system. Fiscal constraints have made prioritization important. Activities include saving previous mission data, planning/cost analysis, and publishing of proceedings.

  18. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Chronology of surface history of Mercury. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leake, M. A.

    1982-01-01

    Phases in the history of the planet Mercury include: (1) condensation and accretion; (2) heating; (3) planetary expansion during heavy bombardment; (4) tidal spin-down and lineament formation; (5) P5 plains emplacement; (6) P4 plains emplacement; (7) peak planetary volume in P3 period; (8) scarp formation; (9) Caloris Basin formation, late class 3; (10) scarp formation and P2 plains formation; (11) smooth plains formation in and around large basins; (12) late or local tectonic stress; and (13) quiescent class 1 period. Although the cooling and contraction of the lithosphere are complete, the core remains molten as an active dynamo, producing the magnetic fields detected by Mariner 10. Plains produced since core formation (P3 to P-1) should record its magnetic activity. Cratering during the Class 2 and Class 1 periods is probably not enough to distribute ballistic materials and homogenize any color differences.

  19. Planetary Data Archiving Plan at JAXA

    NASA Astrophysics Data System (ADS)

    Shinohara, Iku; Kasaba, Yasumasa; Yamamoto, Yukio; Abe, Masanao; Okada, Tatsuaki; Imamura, Takeshi; Sobue, Shinichi; Takashima, Takeshi; Terazono, Jun-Ya

    After the successful rendezvous of Hayabusa with the small-body planet Itokawa, and the successful launch of Kaguya to the moon, Japanese planetary community has gotten their own and full-scale data. However, at this moment, these datasets are only available from the data sites managed by each mission team. The databases are individually constructed in the different formats, and the user interface of these data sites is not compatible with foreign databases. To improve the usability of the planetary archives at JAXA and to enable the international data exchange smooth, we are investigating to make a new planetary database. Within a coming decade, Japan will have fruitful datasets in the planetary science field, Venus (Planet-C), Mercury (BepiColombo), and several missions in planning phase (small-bodies). In order to strongly assist the international scientific collaboration using these mission archive data, the planned planetary data archive at JAXA should be managed in an unified manner and the database should be constructed in the international planetary database standard style. In this presentation, we will show the current status and future plans of the planetary data archiving at JAXA.

  20. Long-Period Planets in Open Clusters and the Evolution of Planetary Systems

    NASA Astrophysics Data System (ADS)

    Quinn, Samuel N.; White, Russel; Latham, David W.; Stefanik, Robert

    2018-01-01

    Recent discoveries of giant planets in open clusters confirm that they do form and migrate in relatively dense stellar groups, though overall occurrence rates are not yet well constrained because the small sample of giant planets discovered thus far predominantly have short periods. Moreover, planet formation rates and the architectures of planetary systems in clusters may vary significantly -- e.g., due to intercluster differences in the chemical properties that regulate the growth of planetary embryos or in the stellar space density and binary populations, which can influence the dynamical evolution of planetary systems. Constraints on the population of long-period Jovian planets -- those representing the reservoir from which many hot Jupiters likely form, and which are most vulnerable to intracluster dynamical interactions -- can help quantify how the birth environment affects formation and evolution, particularly through comparison of populations possessing a range of ages and chemical and dynamical properties. From our ongoing RV survey of open clusters, we present the discovery of several long-period planets and candidate substellar companions in the Praesepe, Coma Berenices, and Hyades open clusters. From these discoveries, we improve estimates of giant planet occurrence rates in clusters, and we note that high eccentricities in several of these systems support the prediction that the birth environment helps shape planetary system architectures.

  1. Planet Formation

    NASA Astrophysics Data System (ADS)

    Klahr, Hubert; Brandner, Wolfgang

    2011-02-01

    1. Historical notes on planet formation Bodenheimer; 2. The formation and evolution of planetary systems Bouwman et al.; 3. Destruction of protoplanetary disks by photoevaporation Richling, Hollenbach and Yorke; 4. Turbulence in protoplanetary accretion disks Klahr, Rozyczka, Dziourkevitch, Wunsch and Johansen; 5. The origin of solids in the early solar system Trieloff and Palme; 6. Experiments on planetesimal formation Wurm and Blum; 7. Dust coagulation in protoplanetary disks Henning, Dullemond, Wolf and Dominik; 8. The accretion of giant planet cores Thommes and Duncan; 9. Planetary transits: direct vision of extrasolar planets Lecavelier des Etangs and Vidal-Madjar; 10. The core accretion - gas capture model Hubickyj; 11. Properties of exoplanets Marcy, Fischer, Butler and Vogt; 12. Giant planet formation: theories meet observations Boss; 13. From hot Jupiters to hot Neptures … and below Lovis, Mayor and Udry; 14. Disk-planet interaction and migration Masset and Kley; 15. The Brown Dwarf - planet relation Bate; 16. From astronomy to astrobiology Brandner; 17. Overview and prospective Lin.

  2. Zodiacal Exoplanets in Time: Searching for Young Stars in K2

    NASA Astrophysics Data System (ADS)

    Morris, Nathan Ryan; Mann, Andrew; Rizzuto, Aaron

    2018-01-01

    Observations of planetary systems around young stars provide insight into the early stages of planetary system formation. Nearby young open clusters such as the Hyades, Pleiades, and Praesepe provide important benchmarks for the properties of stellar systems in general. These clusters are all known to be less than 1 Gyr old, making them ideal targets for a survey of young planetary systems. Few transiting planets have been detected around clusters stars, however, so this alone is too small of a sample. K2, the revived Kepler mission, has provided a vast number of light curves for young stars in clusters and elsewhere in the K2 field. This provides us with the opportunity to extend the sample of young systems to field stars while calibrating with cluster stars. We compute rotational periods from starspot patterns for ~36,000 K2 targets and use gyrochronological relationships derived from cluster stars to determine their ages. From there, we have begun searching for planets around young stars outside the clusters with the ultimate goal of shedding light on how planets and planetary systems evolve in their early, most formative years.

  3. Free and Open Source Software for Geospatial in the field of planetary science

    NASA Astrophysics Data System (ADS)

    Frigeri, A.

    2012-12-01

    Information technology applied to geospatial analyses has spread quickly in the last ten years. The availability of OpenData and data from collaborative mapping projects increased the interest on tools, procedures and methods to handle spatially-related information. Free Open Source Software projects devoted to geospatial data handling are gaining a good success as the use of interoperable formats and protocols allow the user to choose what pipeline of tools and libraries is needed to solve a particular task, adapting the software scene to his specific problem. In particular, the Free Open Source model of development mimics the scientific method very well, and researchers should be naturally encouraged to take part to the development process of these software projects, as this represent a very agile way to interact among several institutions. When it comes to planetary sciences, geospatial Free Open Source Software is gaining a key role in projects that commonly involve different subjects in an international scenario. Very popular software suites for processing scientific mission data (for example, ISIS) and for navigation/planning (SPICE) are being distributed along with the source code and the interaction between user and developer is often very strict, creating a continuum between these two figures. A very widely spread library for handling geospatial data (GDAL) has started to support planetary data from the Planetary Data System, and recent contributions enabled the support to other popular data formats used in planetary science, as the Vicar one. The use of Geographic Information System in planetary science is now diffused, and Free Open Source GIS, open GIS formats and network protocols allow to extend existing tools and methods developed to solve Earth based problems, also to the case of the study of solar system bodies. A day in the working life of a researcher using Free Open Source Software for geospatial will be presented, as well as benefits and solutions to possible detriments coming from the effort required by using, supporting and contributing.

  4. Stable Nd isotope variations in the inner Solar System: The effect of sulfide during differentiation?

    NASA Astrophysics Data System (ADS)

    McCoy-West, A.

    2017-12-01

    Radiogenic neodymium isotopes have been widely used in studies of planetary accretion to constrain the timescales of early planetary differention [1]. Whereas stable isotope varitaions potentially provide information on the the processes that occur during planet formation. Experimental work suggests that the Earth's core contains a significant proportion of sulfide [2], and recent experimental work shows that under reducing conditions sulfide can incorporate substantial quantities of refractory lithophile elements [including Nd; 3]. If planetary embroyos also contain sulfide-rich cores, Nd stable isotopes have the potential to trace this sulfide segregation event in highly reduced environments, because there is a significant contrast in bonding environment between sulfide and silicate, where heavy isotopes should be preferentially incorporated into high force-constant bonds involving REE3+ (i.e. the silicate mantle). Here we present 146Nd/144Nd data, obtained using a double spike TIMS technique, for a range of planetary bodies formed at variable oxidation states including samples from the Moon, Mars, the asteriod 4Vesta and the Angrite and Aubrite parent bodies. Analyses of chondritic meteorites and terrestrial igneous rocks indicate that the Earth has a Nd stable isotope composition that is indistinguishable from that of chondrites [4]. Eucrites and martian meteorites also have compositons within error of the chondritic average. Significantly more variabilty is observed in the low concentration lunar samples and diogienite meteorites with Δ146Nd = 0.16‰. Preliminary results suggest that the Nd stable isotope composition of oxidised planetary bodies are homogeneous and modifications are the result of subordinate magmatic processes. [1] Boyet & Carlson, Science 309, 576 (2005) [2] Labidi et al. Nature 501, 208 (2013); [3] Wohlers &Wood, Nature 520, 337 (2015); [4] McCoy-West et al. Goldschmidt Ab. 429 (2017).

  5. SHINE, The SpHere INfrared survey for Exoplanets

    NASA Astrophysics Data System (ADS)

    Chauvin, G.; Desidera, S.; Lagrange, A.-M.; Vigan, A.; Feldt, M.; Gratton, R.; Langlois, M.; Cheetham, A.; Bonnefoy, M.; Meyer, M.

    2017-12-01

    The SHINE survey for SPHERE High-contrast ImagiNg survey for Exoplanets, is a large near-infrared survey of 400-600 young, nearby stars and represents a significant component of the SPHERE consortium Guaranteed Time Observations consisting in 200 observing nights. The scientific goals are: i) to characterize known planetary systems (architecture, orbit, stability, luminosity, atmosphere); ii) to search for new planetary systems using SPHERE's unprecedented performance; and finally iii) to determine the occurrence and orbital and mass function properties of the wide-orbit, giant planet population as a function of the stellar host mass and age. Combined, the results will increase our understanding of planetary atmospheric physics and the processes of planetary formation and evolution.

  6. Communicating Scientific Research to Non-Specialists

    NASA Astrophysics Data System (ADS)

    Holman, Megan

    Public outreach to effectively communicate current scientific advances is an essential component of the scientific process. The challenge in making this information accessible is forming a clear, accurate, and concise version of the information from a variety of different sources, so that the information is understandable and compelling to non-specialists in the general public. We are preparing a magazine article about planetary system formation. This article will include background information about star formation and different theories and observations of planet formation to provide context. We will then discuss the latest research and theories describing how planetary systems may be forming in different areas of the universe. We demonstrate here the original professional-level scientific work alongside our public-level explanations and original graphics to demonstrate our editorial process.

  7. Formation of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    An overview of current theories of star and planet formation is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates.

  8. Growth and evolution of satellites in a Jovian massive disc

    NASA Astrophysics Data System (ADS)

    Moraes, R. A.; Kley, W.; Vieira Neto, E.

    2018-03-01

    The formation of satellite systems in circum-planetary discs is considered to be similar to the formation of rocky planets in a proto-planetary disc, especially super-Earths. Thus, it is possible to use systems with large satellites to test formation theories that are also applicable to extrasolar planets. Furthermore, a better understanding of the origin of satellites might yield important information about the environment near the growing planet during the last stages of planet formation. In this work, we investigate the formation and migration of the Jovian satellites through N-body simulations. We simulated a massive, static, low-viscosity, circum-planetary disc in agreement with the minimum mass sub-nebula model prescriptions for its total mass. In hydrodynamic simulations, we found no signs of gaps, therefore type II migration is not expected. Hence, we used analytic prescriptions for type I migration, eccentricity and inclination damping, and performed N-body simulations with damping forces added. Detailed parameter studies showed that the number of final satellites is strong influenced by the initial distribution of embryos, the disc temperature, and the initial gas density profile. For steeper initial density profiles, it is possible to form systems with multiple satellites in resonance while a flatter profile favours the formation of satellites close to the region of the Galilean satellites. We show that the formation of massive satellites such as Ganymede and Callisto can be achieved for hotter discs with an aspect ratio of H/r ˜ 0.15 for which the ice line was located around 30RJ.

  9. Testing the chondrule-rich accretion model for planetary embryos using calcium isotopes

    NASA Astrophysics Data System (ADS)

    Amsellem, Elsa; Moynier, Frédéric; Pringle, Emily A.; Bouvier, Audrey; Chen, Heng; Day, James M. D.

    2017-07-01

    Understanding the composition of raw materials that formed the Earth is a crucial step towards understanding the formation of terrestrial planets and their bulk composition. Calcium is the fifth most abundant element in terrestrial planets and, therefore, is a key element with which to trace planetary composition. However, in order to use Ca isotopes as a tracer of Earth's accretion history, it is first necessary to understand the isotopic behavior of Ca during the earliest stages of planetary formation. Chondrites are some of the oldest materials of the Solar System, and the study of their isotopic composition enables understanding of how and in what conditions the Solar System formed. Here we present Ca isotope data for a suite of bulk chondrites as well as Allende (CV) chondrules. We show that most groups of carbonaceous chondrites (CV, CI, CR and CM) are significantly enriched in the lighter Ca isotopes (δ 44 / 40 Ca = + 0.1 to + 0.93 ‰) compared with bulk silicate Earth (δ 44 / 40 Ca = + 1.05 ± 0.04 ‰, Huang et al., 2010) or Mars, while enstatite chondrites are indistinguishable from Earth in Ca isotope composition (δ 44 / 40 Ca = + 0.91 to + 1.06 ‰). Chondrules from Allende are enriched in the heavier isotopes of Ca compared to the bulk and the matrix of the meteorite (δ 44 / 40 Ca = + 1.00 to + 1.21 ‰). This implies that Earth and Mars have Ca isotope compositions that are distinct from most carbonaceous chondrites but that may be like chondrules. This Ca isotopic similarity between Earth, Mars, and chondrules is permissive of recent dynamical models of planetary formation that propose a chondrule-rich accretion model for planetary embryos.

  10. The SOAPS project - Spin-orbit alignment of planetary systems. Exoplanets' evolution histories in systems with different architectures

    NASA Astrophysics Data System (ADS)

    Faedi, F.; Gómez Maqueo Chew, Y.; Fossati, L.; Pollacco, D.; McQuillan, A.; Hebb, L.; Chaplin, W. J.; Aigrain, S.

    2013-04-01

    The wealth of information rendered by Kepler planets and planet candidates is indispensable for statistically significant studies of distinct planet populations, in both single and multiple systems. Empirical evidences suggest that Kepler's planet population shows different physical properties as compared to the bulk of known exoplanets. The SOAPS project, aims to shed light on Kepler's planets formation, their migration and architecture. By measuring v sini accurately for Kepler hosts with rotation periods measured from their high-precision light curves, we will assess the alignment of the planetary orbit with respect to the stellar spin axis. This degree of alignment traces the formation history and evolution of the planetary systems, and thus, allows to distinguish between different proposed migration theories. SOAPS will increase by a factor of 2 the number of spin-orbit alignment measurements pushing the parameters space down to the SuperEarth domain. Here we present our preliminary results.

  11. Occurrence of Earth-like bodies in planetary systems.

    PubMed

    Wetherill, G W

    1991-08-02

    Present theories of terrestrial planet formation predict the rapid ;;runaway formation'' of planetary embryos. The sizes of the embryos increase with heliocentric distance. These embryos then merge to form planets. In earlier Monte Carlo simulations of the merger of these embryos it was assumed that embryos did not form in the asteroid belt, but this assumption may not be valid. Simulations in which runaways were allowed to form in the asteroid belt show that, although the initial distributions of mass, energy, and angular momentum are different from those observed today, during the growth of the planets these distributions spontaneously evolve toward those observed, simply as a result of known solar system processes. Even when a large planet analogous to ;;Jupiter'' does not form, an Earth-sized planet is almost always found near Earth's heliocentric distance. These results suggest that occurrence of Earth-like planets may be a common feature of planetary systems.

  12. Occurrence of earth-like bodies in planetary systems

    NASA Technical Reports Server (NTRS)

    Wetherill, George W.

    1991-01-01

    Present theories of terrestrial planet formation predict the rapid 'runaway formation' of planetary embryos. The sizes of the embryos increase with heliocentric distance. These embryos then emerge to form planets. In earlier Monte Carlo simulations of the merger of these embryos it was assumed that embryos did not form in the asteroid belt, but this assumption may not be valid. Simulations in which runaways were allowed to form in the asteroid belt show that, although the initial distributions of mass, energy, and angular momentum are different from those observed today, during the growth of the planets these distributions spontaneously evolve toward those observed, simply as a result of known solar system processes. Even when a large planet analogous to 'Jupiter' does not form, an earth-sized planet is almost always found near earth's heliocentric distance. These results suggest that occurrence of earthlike planets may be a common feature of planetary systems.

  13. The (Un)Lonely Planet Guide: Formation and Evolution of Planetary Systems from a ``Blue Dots'' Perspective

    NASA Astrophysics Data System (ADS)

    Meyer, M. R.

    2010-10-01

    In this contribution I summarize some recent successes, and focus on remaining challenges, in understanding the formation and evolution of planetary systems in the context of the Blue Dots initiative. Because our understanding is incomplete, we cannot yet articulate a design reference mission engineering matrix suitable for an exploration mission where success is defined as obtaining a spectrum of a potentially habitable world around a nearby star. However, as progress accelerates, we can identify observational programs that would address fundamental scientific questions through hypothesis testing such that the null result is interesting.

  14. Evidence for dust grain growth in young circumstellar disks.

    PubMed

    Throop, H B; Bally, J; Esposito, L W; McCaughrean, M J

    2001-06-01

    Hundreds of circumstellar disks in the Orion nebula are being rapidly destroyed by the intense ultraviolet radiation produced by nearby bright stars. These young, million-year-old disks may not survive long enough to form planetary systems. Nevertheless, the first stage of planet formation-the growth of dust grains into larger particles-may have begun in these systems. Observational evidence for these large particles in Orion's disks is presented. A model of grain evolution in externally irradiated protoplanetary disks is developed and predicts rapid particle size evolution and sharp outer disk boundaries. We discuss implications for the formation rates of planetary systems.

  15. The Role of Cooling in Pahohoe Emplacement on Planetary Surfaces.

    NASA Technical Reports Server (NTRS)

    Glaze, L. S.; Baloga, S. M.

    2015-01-01

    Abundant evidence is emerging that many lavas on Mars were emplaced as slow-moving pahoehoe flows. Models for such scenarios contrast sharply with those for steep-sloped applications where gravity is the dominant force. The mode of flow emplacement on low slopes is characterized by toe formation and inflation. In the latter phase of pahoehoe flow emplacement, stagnation, inflation, and toe formation are most closely tied to the final topography, dimensions, and morphologic features. This mode of emplacement is particularly relevant to the low slopes of planetary surfaces such as the plains of Mars, Io and the Moon.

  16. Europlanet/IDIS: Combining Diverse Planetary Observations and Models

    NASA Astrophysics Data System (ADS)

    Schmidt, Walter; Capria, Maria Teresa; Chanteur, Gerard

    2013-04-01

    Planetary research involves a diversity of research fields from astrophysics and plasma physics to atmospheric physics, climatology, spectroscopy and surface imaging. Data from all these disciplines are collected from various space-borne platforms or telescopes, supported by modelling teams and laboratory work. In order to interpret one set of data often supporting data from different disciplines and other missions are needed while the scientist does not always have the detailed expertise to access and utilize these observations. The Integrated and Distributed Information System (IDIS) [1], developed in the framework of the Europlanet-RI project, implements a Virtual Observatory approach ([2] and [3]), where different data sets, stored in archives around the world and in different formats, are accessed, re-formatted and combined to meet the user's requirements without the need of familiarizing oneself with the different technical details. While observational astrophysical data from different observatories could already earlier be accessed via Virtual Observatories, this concept is now extended to diverse planetary data and related model data sets, spectral data bases etc. A dedicated XML-based Europlanet Data Model (EPN-DM) [4] was developed based on data models from the planetary science community and the Virtual Observatory approach. A dedicated editor simplifies the registration of new resources. As the EPN-DM is a super-set of existing data models existing archives as well as new spectroscopic or chemical data bases for the interpretation of atmospheric or surface observations, or even modeling facilities at research institutes in Europe or Russia can be easily integrated and accessed via a Table Access Protocol (EPN-TAP) [5] adapted from the corresponding protocol of the International Virtual Observatory Alliance [6] (IVOA-TAP). EPN-TAP allows to search catalogues, retrieve data and make them available through standard IVOA tools if the access to the archive is compatible with IVOA standards. For some major data archives with different standards adaptation tools are available to make the access transparent to the user. EuroPlaNet-IDIS has contributed to the definition of PDAP, the Planetary Data Access Protocol of the International Planetary Data Alliance (IPDA) [7] to access the major planetary data archives of NASA in the USA [8], ESA in Europe [9] and JAXA in Japan [10]. Acknowledgement: Europlanet-RI was funded by the European Commission under the 7th Framework Program, grant 228319 "Capacities Specific Programme" - Research Infrastructures Action. Reference: [1] Details to IDIS and the Europlanet-RI via Web-site: http://www.idis.europlanet-ri.eu/ [2] Demonstrator implementation for Plasma-VO AMDA: http://cdpp-amda.cesr.fr/DDHTML/index.html [3] Demonstrator implementation for the IDIS-VO: http://www.idis-dyn.europlanet-ri.eu/vodev.shtml [4] Europlanet Data Model EPN-DM: http://www.europlanet-idis.fi/documents/public_documents/EPN-DM-v2.0.pdf [5] Europlanet Table Access Protocol EPN-TAP: http://www.europlanet-idis.fi/documents/public_documents/EPN-TAPV_0.26.pdf [6] International Virtual Observatory Alliance IVOA: http://www.ivoa.net [7] International Planetary Data Alliance IPDA: http://planetarydata.org/ [8] NASA's Planetary Data System: http://pds.jpl.nasa.gov/ [9] ESA's Planetary Science Archive PSA: http://www.sciops.esa.int/index.php?project=PSA [10] JAXAs Data Archive and Transmission System DARTS: http://darts.isas.jaxa.jp/

  17. Laboratory measurements of microwave and millimeter-wave properties of planetary atmospheric constituents

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1989-01-01

    Accurate data on microwave and millimeter-wave properties of potential planetary atmospheric constituents is critical for the proper interpretation of radio occultation measurements, and of radio astronomical observations of both continuum and spectral line emissions. Such data is also needed to correct for atmospheric effects on radar studies of surface reflectivity. Since the refractive and absorptive properties of atmospheric constituents often vary drastically from theoretically-predicted profiles, especially under the extreme conditions characteristic of the planetary atmosphere, laboratory measurements under simulated planetary conditions are required. This paper reviews the instrumentation and techniques used for laboratory measurement of the refractivity and absorptivity of atmospheric constituents at wavelengths longward of 1 mm, under simulated planetary conditions (temperature, pressure, and broadening gases). Techniques for measuring both gases and condensates are considered. Also reviewed are the relative accuracies of the various techniques. Laboratory measurements are reviewed which have already been made, and additional measurements which are needed for interpretation of data from Venus and the outer planets, are highlighted.

  18. ASTEX - a study of a lander and orbiter mission to two near-Earth asteroids

    NASA Astrophysics Data System (ADS)

    Boehnhardt, Hermann; Nathues, Andreas; Harris, Alan; Astex Study Team

    ASTEX stands for a feasibility study of an exploration mission to two near-Earth asteroids. The targets should have different mineralogical constitution, more specifically one asteroid should be of ‘primitive" nature, the other one should be "evolved". The scientific goal of such a mission is to explore the physical, geological and compositional constitution of the asteroids as planetary bodies as well as to provide information and constraints on the formation and evolution history of the objects per se and of the planetary system, here the asteroid belt, as a whole. Two aspects play an important role, i.e. the search and exploration for the origin and evolution of the primordial material for the formation of life in the solar system on one side and the understanding of the processes that have led to mineralogical differentiation of planetary embryos on the other side. The mission scenario consists of an orbiting and landing phase at each target. The immediate aims of the study are (1) to identify potential targets and to develop for selected pairs more detailed mission scenarios including the best possible propulsion systems to be used, (2) to define the scientific payload of the mission, (3) to analyse the requirements and options for the spacecraft bus and the lander system, and (4) to assess and to define requirements for the operational ground segment of the mission.This eight-months study is directed by the MPI for Solar System Research under support grant by DLR Bonn-Oberkassel and is performed in close collaboration between German scientific research institutes and industry. It is considered complementary to mission studies performed elsewhere and focussing on sample return and impact hazards and their remedy from near-Earth objects.

  19. Orbital Evolution of Planetesimals by the Galactic Tide

    NASA Astrophysics Data System (ADS)

    Higuchi, A.; Kokubo, E.; Mukai, T.

    2005-05-01

    The Oort cloud is a spherical comet reservoir surrounding the solar system. There is general agreement that the Oort cloud comets are the residual planetesimals of planet formation. The standard scenario of the Oort cloud formation consists of two dynamical stages: (1) giant planets raise the aphelia of planetesimals to the outer region of the solar system and (2) the galactic tide, passing stars, and giant molecular clouds pull up their perihelia out of the planetary region. Here we show the orbital evolution of planetesimals by the galactic tide. Planetesimals with large aphelion distances change their perihelion distances toward the outside of the planetary region by the galactic tide and become members of the Oort cloud. The effect of the galactic tide on the planetesimals with semimajor axes of ˜ 104AU is about 10-3 of the solar gravity. The timescale of the orbital evolution is ˜ 108 years. We consider only the vertical component of the galactic tide. Under the axisymmetric potential, some planetesimals may show the librations around ω (argument of perihelion)=π /2 and 3π /2 (the Kozai mechanism). The alternate increases of eccentricity and inclination of the Kozai mechanism are effective to form the Oort cloud. The secular perturbation theory demonstrates the Kozai mechanism and we can understand the motion of the planetesimals analytically. We apply the Kozai mechanism to the galactic tide and discuss the property of the Oort cloud formed by the Kozai mechanizm. This work was supported by the 21st Century COE Program Origin and Evolution of Planetary Systems of the Ministry of Education, Culture, Sports, Science, and Technology, Japan, and JSPS Research Fellowship for Young Scientists.

  20. Infrared and Raman spectroscopy on synthetic glasses as analogues of planetary surfaces.

    NASA Astrophysics Data System (ADS)

    Weber, Iris; Morlok, Andreas; Klemme, Stephan; Dittmer, Isabelle; Stojic, Aleksandra N.; Hiesinger, Harald; Sohn, Martin; Helbert, Jörn

    2015-04-01

    One of the fundamental aims of space mission is to understand the physical, chemical, and geologic processes and conditions of planetary formation and evolution. For this purpose, it is important to investigate analog material to correctly interpret the returned spacecraft data, including the spectral information from remote planetary surfaces. For example, mid-infrared spectroscopy provides detailed information on the mineralogical compositions of planetary surfaces via remote sensing. Data is affected by numerous factors such as grain size, illumination geometry, space weathering, and temperature. These features need to be systematically investigated on analog material in terrestrial laboratories in order to understand the mineralogy/composition of a planetary surface. In addition, Raman spectroscopy allows non-destructive analyses of planetary surfaces in the case of a landing mission. Our work at the IRIS (Infrared spectroscopy for Interplanetary Studies) laboratory at the Institut für Planetologie produces spectra for a database of the ESA/JAXA BepiColombo mission to Mercury. Onboard is a mid-infrared spectrometer (MERTIS-Mercury Radiometer and Thermal Infrared Spectrometer). This unique instrument allows us to map spectral features in the 7-14 µm range, with a spatial resolution of ~500 m [1-5]. Comparably, using our Raman spectrometer, we are continuously contributing to the Raman database for upcoming mission, e.g., the Raman Laser Spectrometer (RLS) onboard of ExoMars [6]. Material on the surface of Mercury and the other terrestrial bodies was exposed to heavy impact cratering [4]. Depending on the P/T conditions during the impact, minerals on planetary surfaces can react with the formation of glassy material. Thus, understanding the effects of impact shock and heat on the mineral structure and the resulting corresponding change in the spectral properties is of high interest for the MERTIS project. Here, we present spectral information on the first glass produced, based on the composition of the Ca- and Mg-rich and Al-poor G1 region identified on Mercury with the X-ray spectrometer on MESSENGER [7]. For in situ mid-IR specular reflectance analyses, a Bruker Hyperion 2000 System with a (1000×1000) µm2 sized aperture was used. A Bruker Vertex 70 IR system with a MCT detector was applied for analyses of areas >>1 mm under near vacuum conditions. Raman spectra will be collected with an OceanOptics IDR-Micro-532 spectrometer. Our results show that the micro-FTIR reflectance data of two glassy regions provide a smooth feature that is typical for amorphous materials. Only very weak sharper crystalline bands occur on top of the feature at 10.1-10.2 µm and 10.5-10.6 µm. These bands are probably resulting from crystalline forsterite within a glassy matrix, because the crystalline bands at 10.1 and 10.5 µm are characteristic for nearly pure forsterite [8]. The Christiansen feature is at 8.2 µm. The spectrum of a larger region is basically a 'bulk' spectrum. Achieved under near-vacuum conditions this spectrum displays essentially similar characteristics. References: [1] Maturilli A. (2006) Planet. Space Sci. 54, 1057-1064. [2] Helbert J. and Maturilli A. (2009) Earth Planet. Sci. Lett. 285, 347-354. [3] Benkhoff, J. et al. (2010) Planet. Space Sci. 58, 2-20. [4] Hiesinger H. et al. (2010) Planet. Space Sci. 58, 144-165. [5] Maturilli J. (2008) Planet. Space Sci. 56, 420-425. [6] Vago et al. (2012) Mars Concepts, Houston. [3] Hamilton V.E. (2010) Chem. Erde, 70, 7-33. [7] Charlier B. et al. (2013) Earth Planet. Sci. Lett. 363, 50-60.

  1. Time-resolved diffraction of shock-released SiO 2 and diaplectic glass formation

    DOE PAGES

    Gleason, A. E.; Bolme, C. A.; Lee, H. J.; ...

    2017-11-14

    Understanding how rock-forming minerals transform under shock loading is critical for modeling collisions between planetary bodies, interpreting the significance of shock features in minerals and for using them as diagnostic indicators of impact conditions, such as shock pressure. To date, our understanding of the formation processes experienced by shocked materials is based exclusively on ex situ analyses of recovered samples. Formation mechanisms and origins of commonly observed mesoscale material features, such as diaplectic (i.e., shocked) glass, remain therefore controversial and unresolvable. Here in this paper we show in situ pump-probe X-ray diffraction measurements on fused silica crystallizing to stishovite onmore » shock compression and then converting to an amorphous phase on shock release in only 2.4 ns from 33.6 GPa. Recovered glass fragments suggest permanent densification. These observations of real-time diaplectic glass formation attest that it is a back-transformation product of stishovite with implications for revising traditional shock metamorphism stages.« less

  2. Time-resolved diffraction of shock-released SiO 2 and diaplectic glass formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gleason, A. E.; Bolme, C. A.; Lee, H. J.

    Understanding how rock-forming minerals transform under shock loading is critical for modeling collisions between planetary bodies, interpreting the significance of shock features in minerals and for using them as diagnostic indicators of impact conditions, such as shock pressure. To date, our understanding of the formation processes experienced by shocked materials is based exclusively on ex situ analyses of recovered samples. Formation mechanisms and origins of commonly observed mesoscale material features, such as diaplectic (i.e., shocked) glass, remain therefore controversial and unresolvable. Here in this paper we show in situ pump-probe X-ray diffraction measurements on fused silica crystallizing to stishovite onmore » shock compression and then converting to an amorphous phase on shock release in only 2.4 ns from 33.6 GPa. Recovered glass fragments suggest permanent densification. These observations of real-time diaplectic glass formation attest that it is a back-transformation product of stishovite with implications for revising traditional shock metamorphism stages.« less

  3. An overview of the cosmic dust analogue material production in reduced gravity: the STARDUST experience

    NASA Technical Reports Server (NTRS)

    Ferguson, F.; Lilleleht, L. U.; Nuth, J.; Stephens, J. R.; Bussoletti, E.; Colangeli, L.; Mennella, V.; Dell'Aversana, P.; Mirra, C.

    1993-01-01

    The formation, properties and chemical dynamics of microparticles are important in a wide variety of technical and scientific fields including synthesis of semiconductor crystals from the vapour, heterogeneous chemistry in the stratosphere and the formation of cosmic dust surrounding the stars. Gravitational effects on particle formation from vapors include gas convection and buoyancy and particle sedimentation. These processes can be significantly reduced by studying condensation and agglomeration of particles in microgravity. In addition, to accurately simulate particle formation near stars, which takes place under low gravity conditions, studies in microgravity are desired. We report here the STARDUST experience, a recent collaborative effort that brings together a successful American program of microgravity experiments on particle formation aboard NASA KC-135 Reduced Gravity Research Aircraft and several Italian research groups with expertise in microgravity research and astrophysical dust formation. The program goal is to study the formation and properties of high temperature particles and gases that are of interest in astrophysics and planetary science. To do so we are developing techniques that are generally applicable to study particle formation and properties, taking advantage of the microgravity environment to allow accurate control of system parameters.

  4. An overview of the cosmic dust analogue material production in reduced gravity: the STARDUST experience.

    PubMed

    Ferguson, F; Lilleleht, L U; Nuth, J; Stephens, J R; Bussoletti, E; Colangeli, L; Mennella, V; Dell'Aversana, P; Mirra, C

    1993-01-01

    The formation, properties and chemical dynamics of microparticles are important in a wide variety of technical and scientific fields including synthesis of semiconductor crystals from the vapour, heterogeneous chemistry in the stratosphere and the formation of cosmic dust surrounding the stars. Gravitational effects on particle formation from vapors include gas convection and buoyancy and particle sedimentation. These processes can be significantly reduced by studying condensation and agglomeration of particles in microgravity. In addition, to accurately simulate particle formation near stars, which takes place under low gravity conditions, studies in microgravity are desired. We report here the STARDUST experience, a recent collaborative effort that brings together a successful American program of microgravity experiments on particle formation aboard NASA KC-135 Reduced Gravity Research Aircraft and several Italian research groups with expertise in microgravity research and astrophysical dust formation. The program goal is to study the formation and properties of high temperature particles and gases that are of interest in astrophysics and planetary science. To do so we are developing techniques that are generally applicable to study particle formation and properties, taking advantage of the microgravity environment to allow accurate control of system parameters.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heller, René; Zuluaga, Jorge I., E-mail: rheller@physics.mcmaster.ca, E-mail: jzuluaga@fisica.udea.edu.co

    With most planets and planetary candidates detected in the stellar habitable zone (HZ) being super-Earths and gas giants rather than Earth-like planets, we naturally wonder if their moons could be habitable. The first detection of such an exomoon has now become feasible, and due to observational biases it will be at least twice as massive as Mars. However, formation models predict that moons can hardly be as massive as Earth. Hence, a giant planet's magnetosphere could be the only possibility for such a moon to be shielded from cosmic and stellar high-energy radiation. Yet, the planetary radiation belt could alsomore » have detrimental effects on exomoon habitability. Here we synthesize models for the evolution of the magnetic environment of giant planets with thresholds from the runaway greenhouse (RG) effect to assess the habitability of exomoons. For modest eccentricities, we find that satellites around Neptune-sized planets in the center of the HZ around K dwarf stars will either be in an RG state and not be habitable, or they will be in wide orbits where they will not be affected by the planetary magnetosphere. Saturn-like planets have stronger fields, and Jupiter-like planets could coat close-in habitable moons soon after formation. Moons at distances between about 5 and 20 planetary radii from a giant planet can be habitable from an illumination and tidal heating point of view, but still the planetary magnetosphere would critically influence their habitability.« less

  6. Constraints on the spin evolution of young planetary-mass companions

    NASA Astrophysics Data System (ADS)

    Bryan, Marta L.; Benneke, Björn; Knutson, Heather A.; Batygin, Konstantin; Bowler, Brendan P.

    2018-02-01

    Surveys of young star-forming regions have discovered a growing population of planetary-mass (<13 MJup) companions around young stars1. There is an ongoing debate as to whether these companions formed like planets (that is, from the circumstellar disk)2, or if they represent the low-mass tail of the star-formation process3. In this study, we utilize high-resolution spectroscopy to measure rotation rates of three young (2-300 Myr) planetary-mass companions and combine these measurements with published rotation rates for two additional companions4,5 to provide a picture of the spin distribution of these objects. We compare this distribution to complementary rotation-rate measurements for six brown dwarfs with masses <20 MJup, and show that these distributions are indistinguishable. This suggests that either these two populations formed via the same mechanism, or that processes regulating rotation rates are independent of formation mechanism. We find that rotation rates for both populations are well below their break-up velocities and do not evolve significantly during the first few hundred million years after the end of accretion. This suggests that rotation rates are set during the late stages of accretion, possibly by interactions with a circumplanetary disk. This result has important implications for our understanding of the processes regulating the angular momentum evolution of young planetary-mass objects, and of the physics of gas accretion and disk coupling in the planetary-mass regime.

  7. Carbon and sulfur budget of the silicate Earth explained by accretion of differentiated planetary embryos

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Dasgupta, Rajdeep; Tsuno, Kyusei; Monteleone, Brian; Shimizu, Nobumichi

    2016-10-01

    The abundances of volatile elements in the Earth's mantle have been attributed to the delivery of volatile-rich material after the main phase of accretion. However, no known meteorites could deliver the volatile elements, such as carbon, nitrogen, hydrogen and sulfur, at the relative abundances observed for the silicate Earth. Alternatively, Earth could have acquired its volatile inventory during accretion and differentiation, but the fate of volatile elements during core formation is known only for a limited set of conditions. Here we present constraints from laboratory experiments on the partitioning of carbon and sulfur between metallic cores and silicate mantles under conditions relevant for rocky planetary bodies. We find that carbon remains more siderophile than sulfur over a range of oxygen fugacities; however, our experiments suggest that in reduced or sulfur-rich bodies, carbon is expelled from the segregating core. Combined with previous constraints, we propose that the ratio of carbon to sulfur in the silicate Earth could have been established by differentiation of a planetary embryo that was then accreted to the proto-Earth. We suggest that the accretion of a Mercury-like (reduced) or a sulfur-rich (oxidized) differentiated body--in which carbon has been preferentially partitioned into the mantle--may explain the Earth's carbon and sulfur budgets.

  8. Atmosphere Expansion and Mass Loss of Close-orbit Giant Exoplanets Heated by Stellar XUV. I. Modeling of Hydrodynamic Escape of Upper Atmospheric Material

    NASA Astrophysics Data System (ADS)

    Shaikhislamov, I. F.; Khodachenko, M. L.; Sasunov, Yu. L.; Lammer, H.; Kislyakova, K. G.; Erkaev, N. V.

    2014-11-01

    In the present series of papers we propose a consistent description of the mass loss process. To study in a comprehensive way the effects of the intrinsic magnetic field of a close-orbit giant exoplanet (a so-called hot Jupiter) on atmospheric material escape and the formation of a planetary inner magnetosphere, we start with a hydrodynamic model of an upper atmosphere expansion in this paper. While considering a simple hydrogen atmosphere model, we focus on the self-consistent inclusion of the effects of radiative heating and ionization of the atmospheric gas with its consequent expansion in the outer space. Primary attention is paid to an investigation of the role of the specific conditions at the inner and outer boundaries of the simulation domain, under which different regimes of material escape (free and restricted flow) are formed. A comparative study is performed of different processes, such as X-ray and ultraviolet (XUV) heating, material ionization and recombination, H_3^ + cooling, adiabatic and Lyα cooling, and Lyα reabsorption. We confirm the basic consistency of the outcomes of our modeling with the results of other hydrodynamic models of expanding planetary atmospheres. In particular, we determine that, under the typical conditions of an orbital distance of 0.05 AU around a Sun-type star, a hot Jupiter plasma envelope may reach maximum temperatures up to ~9000 K with a hydrodynamic escape speed of ~9 km s-1, resulting in mass loss rates of ~(4-7) · 1010 g s-1. In the range of the considered stellar-planetary parameters and XUV fluxes, that is close to the mass loss in the energy-limited case. The inclusion of planetary intrinsic magnetic fields in the model is a subject of the follow-up paper (Paper II).

  9. The dynamical evolution of transiting planetary systems including a realistic collision prescription

    NASA Astrophysics Data System (ADS)

    Mustill, Alexander J.; Davies, Melvyn B.; Johansen, Anders

    2018-05-01

    Planet-planet collisions are a common outcome of instability in systems of transiting planets close to the star, as well as occurring during in-situ formation of such planets from embryos. Previous N-body studies of instability amongst transiting planets have assumed that collisions result in perfect merging. Here, we explore the effects of implementing a more realistic collision prescription on the outcomes of instability and in-situ formation at orbital radii of a few tenths of an au. There is a strong effect on the outcome of the growth of planetary embryos, so long as the debris thrown off in collisions is rapidly removed from the system (which happens by collisional processing to dust, and then removal by radiation forces) and embryos are small (<0.1 M⊕). If this is the case, then systems form fewer detectable (≥1 M⊕) planets than systems evolved under the assumption of perfect merging in collisions. This provides some contribution to the "Kepler Dichotomy": the observed over-abundance of single-planet systems. The effects of changing the collision prescription on unstable mature systems of super-Earths are less pronounced. Perfect mergers only account for a minority of collision outcomes in such systems, but most collisions resulting in mass loss are grazing impacts in which only a few per cent. of mass is lost. As a result, there is little impact on the final masses and multiplicities of the systems after instability when compared to systems evolved under the assumption that collisions always result in perfect merging.

  10. Dynamics of the Final Stages of Terrestrial Planet Growth and the Formation of the Earth-Moon System

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Rivera, Eugenio J.; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    An overview of current theories of star and planet formation, with emphasis on terrestrial planet accretion and the formation of the Earth-Moon system is presented. These models predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant impacts during the final stages of growth can produce large planetary satellites, such as Earth's Moon. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates.

  11. In situ measurements of the photochemical formation rates and optical properties of organic aerosols in CH4/CO2 mixtures.

    NASA Astrophysics Data System (ADS)

    Adamkovics, M.; Boering, K. A.

    2003-12-01

    The presence of photochemically-generated hazes has a significant impact on radiative transfer in planetary atmospheres. While the rates of particle formation have been inferred from photochemical or microphysical models constrained to match observations, these rates have not been determined experimentally. Thus, the fundamental kinetics of particle formation are not known and remain highly parameterized in planetary atmospheric models. We have developed instrumentation for measuring the formation rates and optical properties of organic aerosols produced by irradiating mixtures of precursor gases via in situ optical (633nm) scattering and online quadrupole mass spectrometry (1-200 amu). Results for the generation of particulate hydrocarbons from the irradiation of pure, gas-phase CH4 as well as CH4/CO2 mixtures with vacuum ultraviolet (120-160nm) light, along with simultaneous measurements of the evolution of higher gas-phase hydrocarbons will be presented.

  12. Timing of the formation and migration of giant planets as constrained by CB chondrites

    PubMed Central

    Johnson, Brandon C.; Walsh, Kevin J.; Minton, David A.; Krot, Alexander N.; Levison, Harold F.

    2016-01-01

    The presence, formation, and migration of giant planets fundamentally shape planetary systems. However, the timing of the formation and migration of giant planets in our solar system remains largely unconstrained. Simulating planetary accretion, we find that giant planet migration produces a relatively short-lived spike in impact velocities lasting ~0.5 My. These high-impact velocities are required to vaporize a significant fraction of Fe,Ni metal and silicates and produce the CB (Bencubbin-like) metal-rich carbonaceous chondrites, a unique class of meteorites that were created in an impact vapor-melt plume ~5 My after the first solar system solids. This indicates that the region where the CB chondrites formed was dynamically excited at this early time by the direct interference of the giant planets. Furthermore, this suggests that the formation of the giant planet cores was protracted and the solar nebula persisted until ~5 My. PMID:27957541

  13. Theories of Giant Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Young, Richard E. (Technical Monitor)

    1998-01-01

    An overview of current theories of planetary formation, with emphasis on giant planets, is presented. The most detailed models are based upon observations of our own Solar System and of young stars and their environments. While these models predict that rocky planets should form around most single stars, the frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Most models for extrasolar giant planets suggest that they formed as did Jupiter and Saturn (in nearly circular orbits, far enough from the star that ice could), and subsequently migrated to their current positions, although some models suggest in situ formation.

  14. Timing of the formation and migration of giant planets as constrained by CB chondrites.

    PubMed

    Johnson, Brandon C; Walsh, Kevin J; Minton, David A; Krot, Alexander N; Levison, Harold F

    2016-12-01

    The presence, formation, and migration of giant planets fundamentally shape planetary systems. However, the timing of the formation and migration of giant planets in our solar system remains largely unconstrained. Simulating planetary accretion, we find that giant planet migration produces a relatively short-lived spike in impact velocities lasting ~0.5 My. These high-impact velocities are required to vaporize a significant fraction of Fe,Ni metal and silicates and produce the CB (Bencubbin-like) metal-rich carbonaceous chondrites, a unique class of meteorites that were created in an impact vapor-melt plume ~5 My after the first solar system solids. This indicates that the region where the CB chondrites formed was dynamically excited at this early time by the direct interference of the giant planets. Furthermore, this suggests that the formation of the giant planet cores was protracted and the solar nebula persisted until ~5 My.

  15. Extended halos and intracluster light using Planetary Nebulae as tracers in nearby clusters

    NASA Astrophysics Data System (ADS)

    Arnaboldi, Magda

    Since the first detection of intracluster planetary nebulae in 1996, imaging and spectroscopic surveys identified such stars to trace the radial extent and the kinematics of diffuse light in clusters. This topic of research is tightly linked with the studies of galaxy formation and evolution in dense environment, as the spatial distribution and kinematics of planetary nebulae in the outermost regions of galaxies and in the cluster cores is relevant for setting constraints on cosmological simulations. In this sense, extragalactic planetary nebulae play a very important role in the near-field cosmology, in order to measure the integrated mass as function of radius and the orbital distribution of stars in structures placed in the densest regions of the nearby universe.

  16. Radiative Transfer Modeling in Proto-planetary Disks

    NASA Astrophysics Data System (ADS)

    Kasper, David; Jang-Condell, Hannah; Kloster, Dylan

    2016-01-01

    Young Stellar Objects (YSOs) are rich astronomical research environments. Planets form in circumstellar disks of gas and dust around YSOs. With ever increasing capabilities of the observational instruments designed to look at these proto-planetary disks, most notably GPI, SPHERE, and ALMA, more accurate interfaces must be made to connect modeling of the disks with observation. PaRTY (Parallel Radiative Transfer in YSOs) is a code developed previously to model the observable density and temperature structure of such a disk by self-consistently calculating the structure of the disk based on radiative transfer physics. We present upgrades we are implementing to the PaRTY code to improve its accuracy and flexibility. These upgrades include: creating a two-sided disk model, implementing a spherical coordinate system, and implementing wavelength-dependent opacities. These upgrades will address problems in the PaRTY code of infinite optical thickness, calculation under/over-resolution, and wavelength-independent photon penetration depths, respectively. The upgraded code will be used to better model disk perturbations resulting from planet formation.

  17. Formation of Close-in Super-Earths in an Evolving Disk Due to Disk Winds

    NASA Astrophysics Data System (ADS)

    Ogihara, Masahiro; Kokubo, Eiichiro; Suzuki, Takeru; Morbidelli, Alessandro

    2018-04-01

    Planets with masses larger than Mars mass undergo rapid inward migration (type I migration) in a standard protoplanetary disk. Recent magnetohydrodynamical simulations revealed the presence of magnetically-driven disk winds, which would alter the disk profile and the type I migration in the close-in region (r<1 au). We investigate orbital evolution of planetary embryos in a disk that viscously evolves under effects of magnetically-driven disk winds. The aim is to examine whether observed distributions of close-in super-Earths can be reproduced by simulations. We find that the type I migration is significantly suppressed in a disk with flat surface density profile. After planetary embryos undergo slow inward migration, they are captured in a resonant chain. The resonant chain undergoes late orbital instability during the gas depletion, leading to a non-resonant configuration. We also find that observed distributions of close-in super-Earths (e.g., period ratio, mass ratio) can be reproduced by results of simulations.

  18. Geostrophic balance with a full Coriolis Force: implications for low latitutde studies

    NASA Technical Reports Server (NTRS)

    Juarez, M. de la Torre

    2002-01-01

    In its standard form, geostrophic balance uses a partial representation of the Coriolis force. The resulting formation has a singularity at the equator, and violates mass and momentum conservation. When the horizontal projection of the planetary rotation vector is considered, the singularity at the equator disappears, continuity can be preserved, and quasigeostrophy can be formulated at planetary scale.

  19. Planetary geodesy. [review of research 1975-1979

    NASA Technical Reports Server (NTRS)

    Ferrari, A. J.; Bills, B. G.

    1979-01-01

    An attempt is made to review progress in planetary geodesy during the past four years. The discussion is limited to the traditional subjects of geometrical and physical geodesy, with emphasis on gravity, topography, rotation, and their physical significance. The format is kept flexible to accommodate the varied amount of information available for Mercury, Venus, the Moon, Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto.

  20. Instrumentation development for In Situ 40Ar/39Ar planetary geochronology

    USGS Publications Warehouse

    Morgan, Leah; Munk, Madicken; Davidheiser-Kroll, Brett; Warner, Nicholas H.; Gupta, Sanjeev; Slaybaugh, Rachel; Harkness, Patrick; Mark, Darren

    2017-01-01

    The chronology of the Solar System, particularly the timing of formation of extra-terrestrial bodies and their features, is an outstanding problem in planetary science. Although various chronological methods for in situ geochronology have been proposed (e.g., Rb-Sr, K-Ar), and even applied (K-Ar), the reliability, accuracy, and applicability of the 40Ar/39Ar method makes it by far the most desirable chronometer for dating extra-terrestrial bodies. The method however relies on the neutron irradiation of samples, and thus a neutron source. Herein, we discuss the challenges and feasibility of deploying a passive neutron source to planetary surfaces for the in situ application of the 40Ar/39Ar chronometer. Requirements in generating and shielding neutrons, as well as analysing samples are described, along with an exploration of limitations such as mass, power and cost. Two potential solutions for the in situ extra-terrestrial deployment of the 40Ar/39Ar method are presented. Although this represents a challenging task, developing the technology to apply the 40Ar/39Ar method on planetary surfaces would represent a major advance towards constraining the timescale of solar system formation and evolution.

  1. The contribution of the ARIEL space mission to the study of planetary formation

    NASA Astrophysics Data System (ADS)

    Turrini, D.; Miguel, Y.; Zingales, T.; Piccialli, A.; Helled, R.; Vazan, A.; Oliva, F.; Sindoni, G.; Panić, O.; Leconte, J.; Min, M.; Pirani, S.; Selsis, F.; Coudé du Foresto, V.; Mura, A.; Wolkenberg, P.

    2018-01-01

    The study of extrasolar planets and of the Solar System provides complementary pieces of the mosaic represented by the process of planetary formation. Exoplanets are essential to fully grasp the huge diversity of outcomes that planetary formation and the subsequent evolution of the planetary systems can produce. The orbital and basic physical data we currently possess for the bulk of the exoplanetary population, however, do not provide enough information to break the intrinsic degeneracy of their histories, as different evolutionary tracks can result in the same final configurations. The lessons learned from the Solar System indicate us that the solution to this problem lies in the information contained in the composition of planets. The goal of the Atmospheric Remote-Sensing Infrared Exoplanet Large-survey (ARIEL), one of the three candidates as ESA M4 space mission, is to observe a large and diversified population of transiting planets around a range of host star types to collect information on their atmospheric composition. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres, which should show minimal condensation and sequestration of high-Z materials and thus reveal their bulk composition across all main cosmochemical elements. In this work we will review the most outstanding open questions concerning the way planets form and the mechanisms that contribute to create habitable environments that the compositional information gathered by ARIEL will allow to tackle.

  2. Origin and Diversity of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Young, Richard E. (Technical Monitor)

    1997-01-01

    Modern theories of star and planet formation, which are based upon observations of the Solar System and of young stars and their environments, predict that rocky planets should form around most single stars, although it is possible that most such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Models for the formation of the giant planets found in recent radial velocity searches are discussed.

  3. Chondrules: The canonical and noncanonical views

    NASA Astrophysics Data System (ADS)

    Connolly, Harold C.; Jones, Rhian H.

    2016-10-01

    Millimeter-scale rock particles called chondrules are the principal components of the most common meteorites, chondrites. Hence, chondrules were arguably the most abundant components of the early solar system at the time of planetesimal accretion. Despite their fundamental importance, the existence of chondrules would not be predicted from current observations and models of young planetary systems. There are many different models for chondrule formation, but no single model satisfies the many constraints determined from their mineralogical and chemical properties and from chondrule analog experiments. Significant recent progress has shown that several models can satisfy first-order constraints and successfully reproduce chondrule thermal histories. However, second- and third-order constraints such as chondrule size ranges, open system behavior, oxidation states, reheating, and chemical diversity have not generally been addressed. Chondrule formation models include those based on processes that are known to occur in protoplanetary disk environments, including interactions with the early active Sun, impacts and collisions between planetary bodies, and radiative heating. Other models for chondrule heating mechanisms are based on hypothetical processes that are possible but have not been observed, like shock waves, planetesimal bow shocks, and lightning. We examine the evidence for the canonical view of chondrule formation, in which chondrules were free-floating particles in the protoplanetary disk, and the noncanonical view, in which chondrules were the by-products of planetesimal formation. The fundamental difference between these approaches has a bearing on the importance of chondrules during planet formation and the relevance of chondrules to interpreting the evolution of protoplanetary disks and planetary systems.

  4. Iron isotopic fractionation between silicate mantle and metallic core at high pressure

    PubMed Central

    Liu, Jin; Dauphas, Nicolas; Roskosz, Mathieu; Hu, Michael Y.; Yang, Hong; Bi, Wenli; Zhao, Jiyong; Alp, Esen E.; Hu, Justin Y.; Lin, Jung-Fu

    2017-01-01

    The +0.1‰ elevated 56Fe/54Fe ratio of terrestrial basalts relative to chondrites was proposed to be a fingerprint of core-mantle segregation. However, the extent of iron isotopic fractionation between molten metal and silicate under high pressure–temperature conditions is poorly known. Here we show that iron forms chemical bonds of similar strengths in basaltic glasses and iron-rich alloys, even at high pressure. From the measured mean force constants of iron bonds, we calculate an equilibrium iron isotope fractionation between silicate and iron under core formation conditions in Earth of ∼0–0.02‰, which is small relative to the +0.1‰ shift of terrestrial basalts. This result is unaffected by small amounts of nickel and candidate core-forming light elements, as the isotopic shifts associated with such alloying are small. This study suggests that the variability in iron isotopic composition in planetary objects cannot be due to core formation. PMID:28216664

  5. Prospect of life on cold planets with low atmospheric pressures

    NASA Astrophysics Data System (ADS)

    Pavlov, A. A.; Vdovina, M.

    2009-12-01

    Stable liquid water on the surface of a planet has been viewed as the major requirement for a habitable planet. Such approach would exclude planets with low atmospheric pressures and cold mean surface temperatures (like present Mars) as potential candidates for extraterrestrial life search. Here we explore a possibility of the liquid water formation in the extremely shallow (1-3 cm) subsurface layer under low atmospheric pressures (0.1-10 mbar) and low average surface temperatures (~-30 C). During brief periods of simulated daylight warming the shallow subsurface ice sublimates, the water vapor can diffuse through the porous surface layer of soil temporarily producing supersaturated conditions in the soil, which lead to the formation of liquid films. We show that non-extremophile terrestrial microorganisms (Vibrio sp.) can grow and reproduce under such conditions. The necessary conditions for metabolism and reproduction are the sublimation of ground ice through a thin layer of soil and short episodes of warm temperatures at the planetary surface.

  6. Implications for Planetary System Formation from Interstellar Object 1I/2017 U1 (‘Oumuamua)

    NASA Astrophysics Data System (ADS)

    Trilling, David E.; Robinson, Tyler; Roegge, Alissa; Chandler, Colin Orion; Smith, Nathan; Loeffler, Mark; Trujillo, Chad; Navarro-Meza, Samuel; Glaspie, Lori M.

    2017-12-01

    The recently discovered minor body 1I/2017 U1 (‘Oumuamua) is the first known object in our solar system that is not bound by the Sun’s gravity. Its hyperbolic orbit (eccentricity greater than unity) strongly suggests that it originated outside our solar system; its red color is consistent with substantial space weathering experienced over a long interstellar journey. We carry out a simple calculation of the probability of detecting such an object. We find that the observed detection rate of 1I-like objects can be satisfied if the average mass of ejected material from nearby stars during the process of planetary formation is ˜20 Earth masses, similar to the expected value for our solar system. The current detection rate of such interstellar interlopers is estimated to be 0.2 yr-1, and the expected number of detections over the past few years is almost exactly one. When the Large Synoptic Survey Telescope begins its wide, fast, deep all-sky survey, the detection rate will increase to 1 yr-1. Those expected detections will provide further constraints on nearby planetary system formation through a better estimate of the number and properties of interstellar objects.

  7. Recent Progress in Laboratory Astrophysics and Astrochemistry Achieved with the COSmIC Facility

    NASA Technical Reports Server (NTRS)

    Salama, Farid; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2017-01-01

    We describe the characteristics and the capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory. COSmIC stands for "Cosmic Simulation Chamber" and is dedicated to the study of neutral and ionized molecules and nanoparticles under the low temperature and high vacuum conditions that are required to simulate various space environments such as diffuse interstellar clouds, circumstellar outflows and planetary atmospheres. COSmIC integrates a variety of state-of-the-art instruments that allow recreating simulated space conditions to generate, process and monitor cosmic analogs in the laboratory. The COSmIC experimental setup is composed of a Pulsed Discharge Nozzle (PDN) expansion, that generates a plasma in the stream of a free supersonic jet expansion, coupled to high-sensitivity, complementary in situ diagnostics: cavity ring down spectroscopy (CRDS) and laser induced fluorescence (LIF) systems for photonic detection, and Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection. Recent results obtained using COSmIC will be highlighted. In particular, the progress that has been achieved in the domain of the diffuse interstellar bands (DIBs) and in monitoring, in the laboratory, the formation of circumstellar dust grains and planetary atmosphere aerosols from their gas-phase molecular precursors. Plans for future laboratory experiments on interstellar and planetary molecules and grains will also be addressed, as well as the implications of the studies underway for astronomical observations and past and future space mission data analysis.

  8. Collisional and dynamical processes in moon and planet formation

    NASA Technical Reports Server (NTRS)

    Chapman, C. R.; Davis, D. R.; Weidenschilling, S. J.; Hartmann, W. K.; Spaute, D.

    1987-01-01

    Research on a variety of dynamical processes relevant to the formation of planets, satellites and ring systems is discussed. The main focus is on studies of accretionary formation of early protoplanets using a numerical model, structures and evolution of ring systems and individual bodies within planetary rings, and theories of lunar origin.

  9. Laboratory Evaluation and Application of Microwave Absorption Properties Under Simulated Conditions for Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1997-01-01

    Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The use of theoretically-derived microwave absorption properties for such atmospheric constituents, or using laboratory measurements of such properties under environmental conditions which are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. Laboratory measurements completed under this grant (NAGW-533), have shown that the opacity from, SO2 under simulated Venus conditions is best described by a different lineshape than was previously used in theoretical predictions. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both radio occultation experiments and radio astronomical observations, and over a range of frequencies which correspond to those used in both radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. It has been the goal of this investigation to conduct such measurements and to apply the results to a wide range of planetary observations, both spacecraft and earth-based, in order to determine the identity and abundance profiles of constituents in those planetary atmospheres.

  10. The importance of dunes on a variety of planetary surfaces

    USGS Publications Warehouse

    Titus, Timothy N.; Zimbelman, James R.; Radebaugh, Jani

    2015-01-01

    Scientists observe aeolian bed forms, or dune-like structures, throughout the solar system in a range of locations, from bodies with only transient atmospheres, such as comets, to places with thick atmospheres, such as Venus and the Earth’s ocean floor. Determining the source of sand and the different dune formations that result are thus important to understanding solar system and planetary evolution.

  11. Implications of pebble accretion on the composition of hot and cold Jupiters

    NASA Astrophysics Data System (ADS)

    Bitsch, Bertram; Johansen, Anders; Madhusudhan, Nikku

    2016-10-01

    The formation of the planetary cores of gas giants via the accretion of planetesimals takes very long and is not compatible with the lifetime of protoplanetary discs (Levison et al. 2010). This time-scale problem can be solved through the accretion of pebbles onto a planetary seed. Contrary to planetesimals, pebbles feel the headwind from the gas which robs them of angular momentum allowing an efficient growth from the entire Hill sphere, which reduces the growth time-scale by several orders of magnitude (Lambrechts & Johansen, 2012; 2014). However, pebble accretion self-terminates when the planets start to open a partial gap in the disc, which accelerates the gas outside of the planets orbit to super-Keplerian speeds and thus stops the flow of pebbles onto the planetary core (Lambrechts et al. 2014). Typically this mass is of the order of 10-20 Earth masses, depending on the local disc properties. The planet can then start to accrete a gaseous envelope without a pollution of pebbles. During its growth, the planet migrates through the disc, which evolves in time (Bitsch et al. 2015a,b).Different volatile species like CO2 or H2O have different condensation temperatures and are thus present in either solid or gaseous form at different locations in the disc. A pebble accreting planet can thus only accrete volatiles that are in solid form, while a gas accreting planet will only accrete volatiles which are in gaseous form. Therefore the final chemical composition of the planetary atmosphere of a giant planet is strongly influenced by the formation location of the initial planetary seed and its subsequent migration path through the disc. Additionally, the envelope can be enriched through the erosion of the planetary core.I will discuss the implications of the formation of planets via pebble accretion and their subsequent migration through the disc on the composition of gas giants. In particular I will focus on the carbon to oxygen ratio of hot Jupiters around other stars and on the carbon to oxygen ratio of Jupiter in our own solar system.

  12. The role of exogenic factors in the formation of the lunar surface

    NASA Technical Reports Server (NTRS)

    Florenskiy, K. P.; Bazilevskiy, A. T.; Ivanov, A. V.

    1977-01-01

    The formation of the surface of planetary bodies is determined by the interaction of endogenic and exogenic forces. Clarification of the mutual role of these forces is one of the most important trends in the geological sciences.

  13. PLANETARY EMBRYO BOW SHOCKS AS A MECHANISM FOR CHONDRULE FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, Christopher R.; Boley, Aaron C.; Morris, Melissa A.

    2016-02-20

    We use radiation hydrodynamics with direct particle integration to explore the feasibility of chondrule formation in planetary embryo bow shocks. The calculations presented here are used to explore the consequences of a Mars-size planetary embryo traveling on a moderately excited orbit through the dusty, early environment of the solar system. The embryo’s eccentric orbit produces a range of supersonic relative velocities between the embryo and the circularly orbiting gas and dust, prompting the formation of bow shocks. Temporary atmospheres around these embryos, which can be created via volatile outgassing and gas capture from the surrounding nebula, can non-trivially affect thermalmore » profiles of solids entering the shock. We explore the thermal environment of solids that traverse the bow shock at different impact radii, the effects that planetoid atmospheres have on shock morphologies, and the stripping efficiency of planetoidal atmospheres in the presence of high relative winds. Simulations are run using adiabatic and radiative conditions, with multiple treatments for the local opacities. Shock speeds of 5, 6, and 7 km s{sup −1} are explored. We find that a high-mass atmosphere and inefficient radiative conditions can produce peak temperatures and cooling rates that are consistent with the constraints set by chondrule furnace studies. For most conditions, the derived cooling rates are potentially too high to be consistent with chondrule formation.« less

  14. Extrasolar planetary systems.

    NASA Technical Reports Server (NTRS)

    Huang, S.-S.

    1973-01-01

    The terms 'planet' and 'planet-like objects' are defined. The observational search for extrasolar planetary systems is described, as performable by earthbound optical telescopes, by space probes, by long baseline radio interferometry, and finally by inference from the reception of signals sent by intelligent beings in other worlds. It is shown that any planetary system must be preceded by a rotating disk of gas and dust around a central mass. A brief review of the theories of the formation of the solar system is given, along with a proposed scheme for classification of these theories. The evidence for magnetic activity in the early stages of stellar evolution is presented. The magnetic braking theories of solar and stellar rotation are discussed, and an estimate is made for the frequency of occurrence of planetary systems in the universe.

  15. Joint High-Order Synchrosqueezing Transform and Multi-Taper Empirical Wavelet Transform for Fault Diagnosis of Wind Turbine Planetary Gearbox under Nonstationary Conditions.

    PubMed

    Hu, Yue; Tu, Xiaotong; Li, Fucai; Meng, Guang

    2018-01-07

    Wind turbines usually operate under nonstationary conditions, such as wide-range speed fluctuation and time-varying load. Its critical component, the planetary gearbox, is prone to malfunction or failure, which leads to downtime and repair costs. Therefore, fault diagnosis and condition monitoring for the planetary gearbox in wind turbines is a vital research topic. Meanwhile, the signals measured by the vibration sensors mounted in the gearbox exhibit time-varying and nonstationary features. In this study, a novel time-frequency method based on high-order synchrosqueezing transform (SST) and multi-taper empirical wavelet transform (MTEWT) is proposed for the wind turbine planetary gearbox under nonstationary conditions. The high-order SST uses accurate instantaneous frequency approximations to obtain a sharper time-frequency representation (TFR). As the acquired signal consists of many components, like the meshing and rotating components of the gear and bearing, the fault component may be masked by other unrelated components. The MTEWT is used to separate the fault feature from the masking components. A variety of experimental signals of the wind turbine planetary gearbox under nonstationary conditions have been analyzed to demonstrate the effectiveness and robustness of the proposed method. Results show that the proposed method is effective in diagnosing both gear and bearing faults.

  16. Joint High-Order Synchrosqueezing Transform and Multi-Taper Empirical Wavelet Transform for Fault Diagnosis of Wind Turbine Planetary Gearbox under Nonstationary Conditions

    PubMed Central

    Li, Fucai; Meng, Guang

    2018-01-01

    Wind turbines usually operate under nonstationary conditions, such as wide-range speed fluctuation and time-varying load. Its critical component, the planetary gearbox, is prone to malfunction or failure, which leads to downtime and repair costs. Therefore, fault diagnosis and condition monitoring for the planetary gearbox in wind turbines is a vital research topic. Meanwhile, the signals measured by the vibration sensors mounted in the gearbox exhibit time-varying and nonstationary features. In this study, a novel time-frequency method based on high-order synchrosqueezing transform (SST) and multi-taper empirical wavelet transform (MTEWT) is proposed for the wind turbine planetary gearbox under nonstationary conditions. The high-order SST uses accurate instantaneous frequency approximations to obtain a sharper time-frequency representation (TFR). As the acquired signal consists of many components, like the meshing and rotating components of the gear and bearing, the fault component may be masked by other unrelated components. The MTEWT is used to separate the fault feature from the masking components. A variety of experimental signals of the wind turbine planetary gearbox under nonstationary conditions have been analyzed to demonstrate the effectiveness and robustness of the proposed method. Results show that the proposed method is effective in diagnosing both gear and bearing faults. PMID:29316668

  17. Interoperability In The New Planetary Science Archive (PSA)

    NASA Astrophysics Data System (ADS)

    Rios, C.; Barbarisi, I.; Docasal, R.; Macfarlane, A. J.; Gonzalez, J.; Arviset, C.; Grotheer, E.; Besse, S.; Martinez, S.; Heather, D.; De Marchi, G.; Lim, T.; Fraga, D.; Barthelemy, M.

    2015-12-01

    As the world becomes increasingly interconnected, there is a greater need to provide interoperability with software and applications that are commonly being used globally. For this purpose, the development of the new Planetary Science Archive (PSA), by the European Space Astronomy Centre (ESAC) Science Data Centre (ESDC), is focused on building a modern science archive that takes into account internationally recognised standards in order to provide access to the archive through tools from third parties, for example by the NASA Planetary Data System (PDS), the VESPA project from the Virtual Observatory of Paris as well as other international institutions. The protocols and standards currently being supported by the new Planetary Science Archive at this time are the Planetary Data Access Protocol (PDAP), the EuroPlanet-Table Access Protocol (EPN-TAP) and Open Geospatial Consortium (OGC) standards. The architecture of the PSA consists of a Geoserver (an open-source map server), the goal of which is to support use cases such as the distribution of search results, sharing and processing data through a OGC Web Feature Service (WFS) and a Web Map Service (WMS). This server also allows the retrieval of requested information in several standard output formats like Keyhole Markup Language (KML), Geography Markup Language (GML), shapefile, JavaScript Object Notation (JSON) and Comma Separated Values (CSV), among others. The provision of these various output formats enables end-users to be able to transfer retrieved data into popular applications such as Google Mars and NASA World Wind.

  18. From Disks to Planets: The Making of Planets and Their Early Atmospheres. An Introduction

    NASA Astrophysics Data System (ADS)

    Lammer, Helmut; Blanc, Michel

    2018-03-01

    This paper is an introduction to volume 56 of the Space Science Series of ISSI, "From disks to planets—the making of planets and their proto-atmospheres", a key subject in our quest for the origins and evolutionary paths of planets, and for the causes of their diversity. Indeed, as exoplanet discoveries progressively accumulated and their characterization made spectacular progress, it became evident that the diversity of observed exoplanets can in no way be reduced to the two classes of planets that we are used to identify in the solar system, namely terrestrial planets and gas or ice giants: the exoplanet reality is just much broader. This fact is no doubt the result of the exceptional diversity of the evolutionary paths linking planetary systems as a whole as well as individual exoplanets and their proto-atmospheres to their parent circumstellar disks: this diversity and its causes are exactly what this paper explores. For each of the main phases of the formation and evolution of planetary systems and of individual planets, we summarize what we believe we understand and what are the important open questions needing further in-depth examination, and offer some suggestions on ways towards solutions. We start with the formation mechanisms of circumstellar disks, with their gas and disk components in which chemical composition plays a very important role in planet formation. We summarize how dust accretion within the disk generates planet cores, while gas accretion on these cores can lead to the diversity of their fluid envelopes. The temporal evolution of the parent disk itself, and its final dissipation, put strong constraints on how and how far planetary formation can proceed. The radiation output of the central star also plays an important role in this whole story. This early phase of planet evolution, from disk formation to dissipation, is characterized by a co-evolution of the disk and its daughter planets. During this co-evolution, planets and their protoatmospheres not only grow, but they also migrate radially as a result of their interaction with the disk, thus moving progressively from their distance of formation to their final location. The formation of planetary fluid envelopes (proto-atmospheres and oceans), is an essential product of this planet formation scenario which strongly constrains their possible evolution towards habitability. We discuss the effects of the initial conditions in the disk, of the location, size and mass of the planetary core, of the disk lifetime and of the radiation output and activity of the central star, on the formation of these envelopes and on their relative extensions with respect to the planet core. Overall, a fraction of the planets retain the primary proto-atmosphere they initially accreted from the gas disk. For those which lose it in this early evolution, outgassing of volatiles from the planetary core and mantle, together with some contributions of volatiles from colliding bodies, give them a chance to form a "secondary" atmosphere, like that of our own Earth. When the disk finally dissipates, usually before 10 Million years of age, it leaves us with the combination of a planetary system and a debris disk, each with a specific radial distribution with respect to their parent star(s). Whereas the dynamics of protoplanetary disks is dominated by gas-solid dynamical coupling, debris disks are dominated by gravitational dynamics acting on diverse families of planetesimals. Solid-body collisions between them and giant impacts on young planetary surfaces generate a new population of gas and dust in those disks. Synergies between solar system and exoplanet studies are particularly fruitful and need to be stimulated even more, because they give access to different and complementary components of debris disks: whereas the different families of planetesimals can be extensively studied in the solar system, they remain unobserved in exoplanet systems. But, in those systems, long-wavelength telescopic observations of dust provide a wealth of indirect information about the unobserved population of planetesimals. Promising progress is being currently made to observe the gas component as well, using millimetre and sub-millimetre giant radio interferometers. Within planetary systems themselves, individual planets are the assembly of a solid body and a fluid envelope, including their planetary atmosphere when there is one. Their characteristics range from terrestrial planets through sub-Neptunes and Neptunes and to gas giants, each type covering most of the orbital distances probed by present-day techniques. With the continuous progress in detection and characterization techniques and the advent of major providers of new data like the Kepler mission, the architecture of these planetary systems can be studied more and more accurately in a statistically meaningful sense and compared to the one of our own solar system, which does not appear to be an exceptional case. Finally, our understanding of exoplanets atmospheres has made spectacular advances recently using the occultation spectroscopy techniques implemented on the currently operating space and ground-based observing facilities. The powerful new observing facilities planned for the near and more distant future will make it possible to address many of the most challenging current questions of the science of exoplanets and their systems. There is little doubt that, using this new generation of facilities, we will be able to reconstruct more and more accurately the complex evolutionary paths which link stellar genesis to the possible emergence of habitable worlds.

  19. Strategy of Planetary Data Archives in Japanese Missions for Planetary Data System

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Ishihara, Y.; Murakami, S. Y.

    2017-12-01

    To preserve data acquired by Japanese planetary explorations for a long time, we need a data archiving strategy in a form suitable for resources. Planetary Data System(PDS) developed by NASA is an excellent system for saving data over a long period. Especially for the current version 4 (PDS4), it is possible to create a data archive with high completeness using information technology. Historically, the Japanese planetary missions have archived data by scientists in their ways, but in the past decade, JAXA has been aiming to conform data to PDS considering long term preservation. Hayabusa, Akatsuki are archived in PDS3. Kaguya(SELENE) data have been newly converted from the original format to PDS3. Hayabusa2 and BepiColombo, and future planetary explorations will release data in PDS4. The cooperation of engineers who are familiar with information technology is indispensable to create data archives for scientists. In addition, it is essential to have experience, information sharing, and a system to support it. There is a challenge in Japan about the system.

  20. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Tiscareno, Matthew S.

    Planetary rings are the only nearby astrophysical disks and the only disks that have been investigated by spacecraft (especially the Cassini spacecraft orbiting Saturn). Although there are significant differences between rings and other disks, chiefly the large planet/ring mass ratio that greatly enhances the flatness of rings (aspect ratios as small as 10- 7), understanding of disks in general can be enhanced by understanding the dynamical processes observed at close range and in real time in planetary rings.We review the known ring systems of the four giant planets, as well as the prospects for ring systems yet to be discovered. We then review planetary rings by type. The A, B, and C rings of Saturn, plus the Cassini Division, comprise our solar system's only dense broad disk and host many phenomena of general application to disks including spiral waves, gap formation, self-gravity wakes, viscous overstability and normal modes, impact clouds, and orbital evolution of embedded moons. Dense narrow rings are found both at Uranus (where they comprise the main rings entirely) and at Saturn (where they are embedded in the broad disk) and are the primary natural laboratory for understanding shepherding and self-stability. Narrow dusty rings, likely generated by embedded source bodies, are surprisingly found to sport azimuthally confined arcs at Neptune, Saturn, and Jupiter. Finally, every known ring system includes a substantial component of diffuse dusty rings.Planetary rings have shown themselves to be useful as detectors of planetary processes around them, including the planetary magnetic field and interplanetary impactors as well as the gravity of nearby perturbing moons. Experimental rings science has made great progress in recent decades, especially numerical simulations of self-gravity wakes and other processes but also laboratory investigations of coefficient of restitution and spectroscopic ground truth. The age of self-sustained ring systems is a matter of debate; formation scenarios are most plausible in the context of the early solar system, while signs of youthfulness indicate at least that rings have never been static phenomena.

  1. Progress of Interoperability in Planetary Research for Geospatial Data Analysis

    NASA Astrophysics Data System (ADS)

    Hare, T. M.; Gaddis, L. R.

    2015-12-01

    For nearly a decade there has been a push in the planetary science community to support interoperable methods of accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (i.e., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized image formats that retain geographic information (e.g., GeoTiff, GeoJpeg2000), digital geologic mapping conventions, planetary extensions for symbols that comply with U.S. Federal Geographic Data Committee cartographic and geospatial metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they have been modified to support the planetary domain. The motivation to support common, interoperable data format and delivery standards is not only to improve access for higher-level products but also to address the increasingly distributed nature of the rapidly growing volumes of data. The strength of using an OGC approach is that it provides consistent access to data that are distributed across many facilities. While data-steaming standards are well-supported by both the more sophisticated tools used in Geographic Information System (GIS) and remote sensing industries, they are also supported by many light-weight browsers which facilitates large and small focused science applications and public use. Here we provide an overview of the interoperability initiatives that are currently ongoing in the planetary research community, examples of their successful application, and challenges that remain.

  2. Volatile element loss during planetary magma ocean phases

    NASA Astrophysics Data System (ADS)

    Dhaliwal, Jasmeet K.; Day, James M. D.; Moynier, Frédéric

    2018-01-01

    Moderately volatile elements (MVE) are key tracers of volatile depletion in planetary bodies. Zinc is an especially useful MVE because of its generally elevated abundances in planetary basalts, relative to other MVE, and limited evidence for mass-dependent isotopic fractionation under high-temperature igneous processes. Compared with terrestrial basalts, which have δ66Zn values (per mille deviation of the 66Zn/64Zn ratio from the JMC-Lyon standard) similar to some chondrite meteorites (∼+0.3‰), lunar mare basalts yield a mean δ66Zn value of +1.4 ± 0.5‰ (2 st. dev.). Furthermore, mare basalts have average Zn concentrations ∼50 times lower than in typical terrestrial basaltic rocks. Late-stage lunar magmatic products, including ferroan anorthosite, Mg- and Alkali-suite rocks have even higher δ66Zn values (+3 to +6‰). Differences in Zn abundance and isotopic compositions between lunar and terrestrial rocks have previously been interpreted to reflect evaporative loss of Zn, either during the Earth-Moon forming Giant Impact, or in a lunar magma ocean (LMO) phase. To explore the mechanisms and processes under which volatile element loss may have occurred during a LMO phase, we developed models of Zn isotopic fractionation that are generally applicable to planetary magma oceans. Our objective was to identify conditions that would yield a δ66Zn signature of ∼+1.4‰ within the lunar mantle. For the sake of simplicity, we neglect possible Zn isotopic fractionation during the Giant Impact, and assumed a starting composition equal to the composition of the present-day terrestrial mantle, assuming both the Earth and Moon had zinc 'consanguinity' following their formation. We developed two models: the first simulates evaporative fractionation of Zn only prior to LMO mixing and crystallization; the second simulates continued evaporative fractionation of Zn that persists until ∼75% LMO crystallization. The first model yields a relatively homogenous bulk solid LMO δ66Zn value, while the second results in a stratification of δ66Zn values within the LMO sequence. Loss and/or isolation mechanisms for volatiles are critical to these models; hydrodynamic escape was not a dominant process, but loss of a nascent lunar atmosphere or separation of condensates into a proto-lunar crust are possible mechanisms by which volatiles could be separated from the lunar interior. The results do not preclude models that suggest a lunar volatile depletion episode related to the Giant Impact. Conversely, LMO models for volatile loss do not require loss of volatiles prior to lunar formation. Outgassing during planetary magma ocean phases likely played a profound role in setting the volatile inventories of planets, particularly for low mass bodies that experienced the greatest volatile loss. In turn, our results suggest that the initial compositions of planets that accreted from smaller, highly differentiated planetesimals were likely to be severely volatile depleted.

  3. Formation of Planetary Populations I: Metallicity & Envelope Opacity Effects

    NASA Astrophysics Data System (ADS)

    Alessi, Matthew; Pudritz, Ralph E.

    2018-05-01

    We present a comprehensive body of simulations of the formation of exoplanetary populations that incorporate the role of planet traps in slowing planetary migration. The traps we include in our model are the water ice line, the disk heat transition, and the dead zone outer edge. We reduce our model parameter set to two physical parameters: the opacity of the accreting planetary atmospheres (κenv) and a measure of the efficiency of planetary accretion after gap opening (fmax). We perform planet population synthesis calculations based on the initial observed distributions of host star and disk properties - their disk masses, lifetimes, and stellar metallicities. We find the frequency of giant planet formation scales with disk metallicity, in agreement with the observed Jovian planet frequency-metallicity relation. We consider both X-ray and cosmic ray disk ionization models, whose differing ionization rates lead to different dead zone trap locations. In both cases, Jovian planets form in our model out to 2-3 AU, with a distribution at smaller radii dependent on the disk ionization source and the setting of envelope opacity. We find that low values of κenv (0.001-0.002 cm2 g-1) and X-ray disk ionization are necessary to obtain a separation between hot Jupiters near 0.1 AU, and warm Jupiters outside 0.6 AU, a feature present in the data. Our model also produces a large number of super Earths, but the majority are outside of 2 AU. As our model assumes a constant dust to gas ratio, we suggest that radial dust evolution must be taken into account to reproduce the observed super Earth population.

  4. ROLE OF NITROGEN OXIDES IN NONURBAN OZONE FORMATION IN THE PLANETARY BOUNDARY LAYER OVER N (NORTH) AMERICA, W (WESTERN) EUROPE AND ADJACENT AREAS OF OCEAN

    EPA Science Inventory

    The status of knowledge on photochemical ozone formation and the effects of nitrogen oxides and peroxyacyl nitrates on such formation has been evaluated. The literature is reviewed on nonurban ozone and nitrogen oxide concentration distributions, ozone lifetimes, nitrogen oxide l...

  5. N-body simulations of planet formation: understanding exoplanet system architectures

    NASA Astrophysics Data System (ADS)

    Coleman, Gavin; Nelson, Richard

    2015-12-01

    Observations have demonstrated the existence of a significant population of compact systems comprised of super-Earths and Neptune-mass planets, and a population of gas giants that appear to occur primarily in either short-period (<10 days) or longer period (>100 days) orbits. The broad diversity of system architectures raises the question of whether or not the same formation processes operating in standard disc models can explain these planets, or if different scenarios are required instead to explain the widely differing architectures. To explore this issue, we present the results from a comprehensive suite of N-body simulations of planetary system formation that include the following physical processes: gravitational interactions and collisions between planetary embryos and planetesimals; type I and II migration; gas accretion onto planetary cores; self-consistent viscous disc evolution and disc removal through photo-evaporation. Our results indicate that the formation and survival of compact systems of super-Earths and Neptune-mass planets occur commonly in disc models where a simple prescription for the disc viscosity is assumed, but such models never lead to the formation and survival of gas giant planets due to migration into the star. Inspired in part by the ALMA observations of HL Tau, and by MHD simulations that display the formation of long-lived zonal flows, we have explored the consequences of assuming that the disc viscosity varies in both time and space. We find that the radial structuring of the disc leads to conditions in which systems of giant planets are able to form and survive. Furthermore, these giants generally occupy those regions of the mass-period diagram that are densely populated by the observed gas giants, suggesting that the planet traps generated by radial structuring of protoplanetary discs may be a necessary ingredient for forming giant planets.

  6. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1987-01-01

    Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and Earth-based radio astronomical observations can be used to infer abundances of microwave absorbing atmospheric constituents in those atmospheres, as long as reliable information regarding the microwave absorping properties of potential constituents is available. The use of theoretically derived microwave absorption properties for such atmospheric constituents, or laboratory measurements of such properties under environmental conditions which are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. Laboratory measurement of the microwave properties of atmospheric gases under simulated conditions for the outer planets were conducted. Results of these measurements are discussed.

  7. Planetary Sciences: American and Soviet Research

    NASA Technical Reports Server (NTRS)

    Donahue, Thomas M. (Editor); Trivers, Kathleen Kearney (Editor); Abramson, David M. (Editor)

    1991-01-01

    Papers presented at the US-USSR Workshop on Planetary Sciences are compiled. The purpose of the workshop was to examine the current state of theoretical understanding of how the planets were formed and how they evolved to their present state. The workshop assessed the types of observations and experiments that are needed to advance understanding of the formation and evolution of the solar system based on the current theoretical framework.

  8. NASA thesaurus: Astronomy vocabulary

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A terminology of descriptors used by the NASA Scientific and Technical information effort to index documents in the area of astronomy is presented. The terms are listed in hierarchical format derived from the 1988 edition of the NASA Thesaurus Volume 1 -- Hierarchical Listing. Over 1600 terms are included. In addition to astronomy, space sciences covered include astrophysics, cosmology, lunar flight and exploration, meteors and meteorites, celestial mechanics, planetary flight and exploration, and planetary science.

  9. REVIEWS OF TOPICAL PROBLEMS: Generation of large-scale eddies and zonal winds in planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Onishchenko, O. G.; Pokhotelov, O. A.; Astafieva, N. M.

    2008-06-01

    The review deals with a theoretical description of the generation of zonal winds and vortices in a turbulent barotropic atmosphere. These large-scale structures largely determine the dynamics and transport processes in planetary atmospheres. The role of nonlinear effects on the formation of mesoscale vortical structures (cyclones and anticyclones) is examined. A new mechanism for zonal wind generation in planetary atmospheres is discussed. It is based on the parametric generation of convective cells by finite-amplitude Rossby waves. Weakly turbulent spectra of Rossby waves are considered. The theoretical results are compared to the results of satellite microwave monitoring of the Earth's atmosphere.

  10. The Blue Dot Workshop: Spectroscopic Search for Life on Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Des Marais, David J. (Editor)

    1997-01-01

    This workshop explored the key questions and challenges associated with detecting life on an extrasolar planet. The final product will be a NASA Conference Publication which includes the abstracts from 21 talks, summaries of key findings, and recommendations for future research. The workshop included sessions on three related topics: the biogeochemistry of biogenic gases in the atmosphere, the chemistry and spectroscopy of planetary atmospheres, and the remote sensing of planetary atmospheres and surfaces. With the observation that planetary formation is probably a common phenomenon, together with the advent of the technical capability to locate and describe extrasolar planets, this research area indeed has an exciting future.

  11. Properties of planetary ices in the NH3 + CO2 ± H2O ternary system using neutron diffraction and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Howard, C. M.; Wood, I. G.; Fortes, A. D.; Vocadlo, L.

    2016-12-01

    BackgroundInteractions between simple molecules are of fundamental interest across diverse areas of the physical sciences, and the ternary system NH3 + CO2 ± H2O is no exception. In the outer solar system, interaction of CO2 with aqueous ammonia is likely to occur, synthesizing `rock-forming' minerals [1], with CO2 perhaps playing a role in ammonia-water oceans and cryomagmas inside icy planetary bodies - the discovery of ammonium carbonates in a crater of Pluto's moon Charon [2] adds weight to CO2 occuring in these planetary environments. In the same context, ammonium carbonates may have some astrobiological relevance, since removal of water leads to the formation of urea. On Earth, combination of CO2 with aqueous ammonia has relevance to carbon capture schemes [3], and there is interest in using such materials for hydrogen storage in fuel cells [4]. Consequently, from earthly matters of climate change to the study of extraterrestrial ices, understanding the structures and properties of ammonium carbonates are important. Despite this, our knowledge of ammonium carbonates is limited under ambient conditions of pressure and temperature and is entirely absent at the higher pressures, severely limiting our ability to model the behaviour of NH3 + CO2 ± H2O solids and fluids in planetary environments. ResultsWe report the results of several experiments using variable pressure and temperature neutron diffraction work on ammonium carbonate monohydrate, ammonium bicarbonate and ammonium carbamate, with complementary Density Functional Theory (DFT) calculations. The excellent agreement between experiments and DFT calculations obtained so far adds weight to the accuracy of calculated material properties of ammonium sesquicarbonate monohydrate and several polymorphs of urea where little empirical data exists. These experimental and computational studies provide the structural, thermoelastic and vibrational information required for accurate planetary modelling and remote identification of these material on planetary surfaces. [1] Kargel (1991) Icarus 94 , 368-390. [2] De Sanctis et al. (2016) Nature Letters, 1-4. [3] Han et al. (2013) Int. J. Greenhouse Gas Control 14 , 270-281. [4] Lan et al. (2012) Int. J. Hydrogen Energy 37 (2), 1482-1494.

  12. Experimental Studies of Phase Equilibria of Meteorites and Planetary Bodies

    NASA Technical Reports Server (NTRS)

    Stolper, Edward M.

    2005-01-01

    The primary theme of this project was the application of experimental petrology and geochemistry to a variety of problems in meteoritics and planetary geology. The studies were designed to help develop constraints on the histories of primitive meteorites and their components, the environments in which they formed and evolved, and to understand quantitatively the processes involved in the evolution of igneous rocks on the earth and other planetary bodies. We undertook several projects relating to the origin of CAIs and chondrules. Systematics in the thermodynamic properties of CAI-like liquids were investigated and used to elucidate speciation of multi-valent cations and sulfide capacity of silicate melts and to constrain redox conditions and the vapor pressures of volatile species over molten chondrules. We experimentally determined vanadium speciation in meteoritic pyroxenes and in pyroxenes crystallized from CAI-like melts under very reducing conditions. We also found that bulk oxygen isotope compositions of chondrules in the moderately unequilibrated LL chondrites are related to the relative timing of plagioclase crystallization. We completed an experimental study on the vaporization of beta-SiC and SiO2 (glass or cristobalite) in reducing gases and established the conditions under which these presolar grains could have survived in the solar nebula. We expanded our technique for determining the thermodynamic properties of minerals and liquids to iron-bearing systems. We determined activity-composition relationships in Pt-Fe, Pt-Cr and Pt-Fe-Cr alloys. Results were used to determine the thermodynamic properties of chromite-picrochromite spinels including the free energy of formation of end-member FeCr2O4. We also established a new approach for evaluating Pt-Fe saturation experiments. We calculated the T-fO2 relationships in equilibrated ordinary chondrites and thereby constrained the conditions of metamorphism in their parent bodies.

  13. The delivery of water by impacts from planetary accretion to present

    PubMed Central

    2018-01-01

    Dynamical models and observational evidence indicate that water-rich asteroids and comets deliver water to objects throughout the solar system, but the mechanisms by which this water is captured have been unclear. New experiments reveal that impact melts and breccias capture up to 30% of the water carried by carbonaceous chondrite–like projectiles under impact conditions typical of the main asteroid belt impact and the early phases of planet formation. This impactor-derived water resides in two distinct reservoirs: in impact melts and projectile survivors. Impact melt hosts the bulk of the delivered water. Entrapment of water within impact glasses and melt-bearing breccias is therefore a plausible source of hydration features associated with craters on the Moon and elsewhere in the solar system and likely contributed to the early accretion of water during planet formation. PMID:29707636

  14. The delivery of water by impacts from planetary accretion to present.

    PubMed

    Daly, R Terik; Schultz, Peter H

    2018-04-01

    Dynamical models and observational evidence indicate that water-rich asteroids and comets deliver water to objects throughout the solar system, but the mechanisms by which this water is captured have been unclear. New experiments reveal that impact melts and breccias capture up to 30% of the water carried by carbonaceous chondrite-like projectiles under impact conditions typical of the main asteroid belt impact and the early phases of planet formation. This impactor-derived water resides in two distinct reservoirs: in impact melts and projectile survivors. Impact melt hosts the bulk of the delivered water. Entrapment of water within impact glasses and melt-bearing breccias is therefore a plausible source of hydration features associated with craters on the Moon and elsewhere in the solar system and likely contributed to the early accretion of water during planet formation.

  15. Some aspects of core formation in Mercury

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.

    1976-01-01

    Some questions dealing with the nature and history of a large metallic core within Mercury are considered. These include the existence of a core, its size, whether it is fluid or solid, the timescale for core formation, the geological consequences of core formation, and whether such consequences are consistent with the surface geology. Several indirect lines of evidence are discussed which suggest the presence of a large iron-rich core. A core-formation model is examined in which core infall is accompanied by an increase of 17 km in planetary radius, an increase of 700 K in mean internal temperature, and substantial melting of the mantle. It is argued that if the core differentiated from an originally homogeneous planet, that event must have predated the oldest geological units comprising most of the planetary surface. A convective dynamo model for the source of Mercury's magnetic field is shown to conflict with cosmochemical models that do not predict a substantial radiogenic heat source in the core.

  16. The Formation of the Earth-Moon System and the Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Young, Richard E. (Technical Monitor)

    1998-01-01

    An overview of current theories of star and planet formation, with emphasis on terrestrial planet accretion and the formation of the Earth-Moon system is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant impacts during the final stages of growth can produce large planetary satellites, such as Earth's Moon. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates.

  17. Nature vs. Nurture: The influence of OB star environments on proto-planetary disk evolution.

    NASA Astrophysics Data System (ADS)

    Bouwman, Jeroen; Feigelson, Eric; Getman, Kostantin; Henning, Thomas; Lawson, Warrick; Linz, Hendrik; Luhman, Kevin; Roccatagliata, Veronica; Sicilia Aguilar, Aurora; Townsley, Leisa; Wang, Junfeng

    2006-05-01

    A natural approach for understanding the origin and diversity of planetary systems is to study the birth sites of planetary systems under varying environmental conditions. Dust grains in protoplanetary disks, the building blocks of planets, are structurally and chemically altered, and grow through coagulation into planetesimals. The disk geometry may change from a flaring to a more flattened structure, gaps may develop under the gravitational influence of protoplanets, and eventually the disk will dissipate, terminating the planet formation process. While the infrared properties of disks in quiet cloud environments have been extensively studied, investigations under the conditions of strong UV radiation and stellar winds in the proximity of OB stars have been limited. We propose a combined IRAC/IRS study of a large, well-defined and unbiased X-ray selected sample of pre-main-sequence stars in three OB associations: Pismis 24 in NGC 6357, NGC 2244 in the Rosette Nebula, and IC 1795 in the W3 complex. The samples are based on recent Chandra X-ray Observatory studies which reliably identify hundreds of cluster members and were carefully chosen to avoid high infrared nebular background. A new Chandra exposure of IC 1795 is requested, and an optical followup to characterise the host stars is planned. Modelling the Spitzer findings will provide the composition and size of dust present as well as the geometry, mass, and gaps in the global structure of the disk. As hundreds of cluster members will be covered with IRAC and dozens with IRS, good statistics on the disk evolution and dispersal as a function of location with respect to OB stars will be obtained. Comparison of disk properties within our sample and with existing Spitzer studies of quiescent star-forming regions should significantly advance the aim of characterising the influence of the environment on the evolution of protoplanetary disks. This effort relies on a powerful synergy between the Chandra and Spitzer Great Observatories.

  18. The Ruinous Influence of Close Binary Companions on Planetary Systems

    NASA Astrophysics Data System (ADS)

    Kraus, Adam L.; Ireland, Michael; Mann, Andrew; Huber, Daniel; Dupuy, Trent J.

    2017-01-01

    The majority of solar-type stars are found in binary systems, and the dynamical influence of binary companions is expected to profoundly influence planetary systems. However, the difficulty of identifying planets in binary systems has left the magnitude of this effect uncertain; despite numerous theoretical hurdles to their formation and survival, at least some binary systems clearly host planets. We present high-resolution imaging of nearly 500 Kepler Objects of Interest (KOIs) obtained using adaptive-optics imaging and nonredundant aperture-mask interferometry on the Keck II telescope. We super-resolve some binary systems to projected separations of under 5 AU, showing that planets might form in these dynamically active environments. However, the full distribution of projected separations for our planet-host sample more broadly reveals a deep paucity of binary companions at solar-system scales. When the binary population is parametrized with a semimajor axis cutoff a cut and a suppression factor inside that cutoff S bin, we find with correlated uncertainties that inside acut = 47 +59/-23 AU, the planet occurrence rate in binary systems is only Sbin = 0.34 +0.14/-0.15 times that of wider binaries or single stars. Our results demonstrate that a fifth of all solar-type stars in the Milky Way are disallowed from hosting planetary systems due to the influence of a binary companion.

  19. The Ruinous Influence of Close Binary Companions on Planetary Systems

    NASA Astrophysics Data System (ADS)

    Kraus, Adam L.; Ireland, Michael; Mann, Andrew; Huber, Daniel; Dupuy, Trent J.

    2017-06-01

    The majority of solar-type stars are found in binary systems, and the dynamical influence of binary companions is expected to profoundly influence planetary systems. However, the difficulty of identifying planets in binary systems has left the magnitude of this effect uncertain; despite numerous theoretical hurdles to their formation and survival, at least some binary systems clearly host planets. We present high-resolution imaging of nearly 500 Kepler Objects of Interest (KOIs) obtained using adaptive-optics imaging and nonredundant aperture-mask interferometry on the Keck II telescope. We super-resolve some binary systems to projected separations of under 5 AU, showing that planets might form in these dynamically active environments. However, the full distribution of projected separations for our planet-host sample more broadly reveals a deep paucity of binary companions at solar-system scales. When the binary population is parametrized with a semimajor axis cutoff a cut and a suppression factor inside that cutoff S bin, we find with correlated uncertainties that inside acut = 47 +59/-23 AU, the planet occurrence rate in binary systems is only Sbin = 0.34+0.14/-0.15 times that of wider binaries or single stars. Our results demonstrate that a fifth of all solar-type stars in the Milky Way are disallowed from hosting planetary systems due to the influence of a binary companion.

  20. The Impact of Binary Companions on Planetary Systems

    NASA Astrophysics Data System (ADS)

    Kraus, Adam L.; Ireland, Michael; Dupuy, Trent; Mann, Andrew; Huber, Daniel

    2018-01-01

    The majority of solar-type stars are found in binary systems, and the dynamical influence of binary companions is expected to profoundly influence planetary systems. However, the difficulty of identifying planets in binary systems has left the magnitude of this effect uncertain; despite numerous theoretical hurdles to their formation and survival, at least some binary systems clearly host planets. We present high-resolution imaging of nearly 500 Kepler Objects of Interest (KOIs) obtained using adaptive-optics imaging and nonredundant aperture-mask interferometry on the Keck II telescope. We super-resolve some binary systems to projected separations of under 5 AU, showing that planets might form in these dynamically active environments. However, the full distribution of projected separations for our planet-host sample more broadly reveals a deep paucity of binary companions at solar-system scales. Our results demonstrate that a fifth of all solar-type stars in the Milky Way are disallowed from hosting planetary systems due to the influence of a binary companion. We now update these results with multi-epoch imaging to reject non-comoving background stars and securely identify even the least massive stellar companions, as well as tracing out the orbital motion of stellar companions. These results are beginning to reveal not just the fraction of binaries that do not host planets, but also potential explanations for planet survival even in some very close, dynamically active binary systems.

  1. TOPS: Toward Other Planetary Systems. A report by the solar system exploration division

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report describes a general plan and the pertinent technological requirements for TOPS (Toward Other Planetary Systems), a staged program to ascertain the prevalence and character of other planetary systems and to construct a definitive picture of the formation of stars and their planets. The first stages focus on discovering and studying a significant number of fully formed planetary systems, as well as expanding current studies of protoplanetary systems. As the TOPS Program evolves, emphasis will shift toward intensive study of the discovered systems and of individual planets. Early stages of the TOPS Program can be undertaken with ground-based observations and space missions comparable in scale to those now being performed. In the long term, however, TOPS will become an ambitious program that challenges our capabilities and provides impetus for major space initiatives and new technologies.

  2. Planetary Space Weather Services for the Europlanet 2020 Research Infrastructure

    NASA Astrophysics Data System (ADS)

    André, Nicolas; Grande, Manuel

    2016-04-01

    Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI) will include an entirely new Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this Joint Research Aactivities will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in Europe at the end of the programme. Europlanet 2020 RI has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654208.

  3. Planet Formation Imager (PFI): science vision and key requirements

    NASA Astrophysics Data System (ADS)

    Kraus, Stefan; Monnier, John D.; Ireland, Michael J.; Duchêne, Gaspard; Espaillat, Catherine; Hönig, Sebastian; Juhasz, Attila; Mordasini, Chris; Olofsson, Johan; Paladini, Claudia; Stassun, Keivan; Turner, Neal; Vasisht, Gautam; Harries, Tim J.; Bate, Matthew R.; Gonzalez, Jean-François; Matter, Alexis; Zhu, Zhaohuan; Panic, Olja; Regaly, Zsolt; Morbidelli, Alessandro; Meru, Farzana; Wolf, Sebastian; Ilee, John; Berger, Jean-Philippe; Zhao, Ming; Kral, Quentin; Morlok, Andreas; Bonsor, Amy; Ciardi, David; Kane, Stephen R.; Kratter, Kaitlin; Laughlin, Greg; Pepper, Joshua; Raymond, Sean; Labadie, Lucas; Nelson, Richard P.; Weigelt, Gerd; ten Brummelaar, Theo; Pierens, Arnaud; Oudmaijer, Rene; Kley, Wilhelm; Pope, Benjamin; Jensen, Eric L. N.; Bayo, Amelia; Smith, Michael; Boyajian, Tabetha; Quiroga-Nuñez, Luis Henry; Millan-Gabet, Rafael; Chiavassa, Andrea; Gallenne, Alexandre; Reynolds, Mark; de Wit, Willem-Jan; Wittkowski, Markus; Millour, Florentin; Gandhi, Poshak; Ramos Almeida, Cristina; Alonso Herrero, Almudena; Packham, Chris; Kishimoto, Makoto; Tristram, Konrad R. W.; Pott, Jörg-Uwe; Surdej, Jean; Buscher, David; Haniff, Chris; Lacour, Sylvestre; Petrov, Romain; Ridgway, Steve; Tuthill, Peter; van Belle, Gerard; Armitage, Phil; Baruteau, Clement; Benisty, Myriam; Bitsch, Bertram; Paardekooper, Sijme-Jan; Pinte, Christophe; Masset, Frederic; Rosotti, Giovanni

    2016-08-01

    The Planet Formation Imager (PFI) project aims to provide a strong scientific vision for ground-based optical astronomy beyond the upcoming generation of Extremely Large Telescopes. We make the case that a breakthrough in angular resolution imaging capabilities is required in order to unravel the processes involved in planet formation. PFI will be optimised to provide a complete census of the protoplanet population at all stellocentric radii and over the age range from 0.1 to 100 Myr. Within this age period, planetary systems undergo dramatic changes and the final architecture of planetary systems is determined. Our goal is to study the planetary birth on the natural spatial scale where the material is assembled, which is the "Hill Sphere" of the forming planet, and to characterise the protoplanetary cores by measuring their masses and physical properties. Our science working group has investigated the observational characteristics of these young protoplanets as well as the migration mechanisms that might alter the system architecture. We simulated the imprints that the planets leave in the disk and study how PFI could revolutionise areas ranging from exoplanet to extragalactic science. In this contribution we outline the key science drivers of PFI and discuss the requirements that will guide the technology choices, the site selection, and potential science/technology tradeoffs.

  4. The phase diagram and transport properties of MgO from theory and experiment

    NASA Astrophysics Data System (ADS)

    Shulenburger, Luke

    2013-06-01

    Planetary structure and the formation of terrestrial planets have received tremendous interest due to the discovery of so called super-earth exoplanets. MgO is a major constituent of Earth's mantle, the rocky cores of gas giants and is a likely component of the interiors of many of these exoplanets. The high pressure - high temperature behavior of MgO directly affects equation of state models for planetary structure and formation. In this work, we examine MgO under extreme conditions using experimental and theoretical methods to determine its phase diagram and transport properties. Using plate impact experiments on Sandia's Z facility the solid-solid phase transition from B1 to B2 is clearly determined. The melting transition, on the other hand, is subtle, involving little to no signal in us-up space. Theoretical work utilizing density functional theory (DFT) provides a complementary picture of the phase diagram. The solid-solid phase transition is identified through a series of quasi-harmonic phonon calculations and thermodynamic integration, while the melt boundary is found using phase coexistence calculations. One issue of particular import is the calculation of reflectivity along the Hugoniot and the influence of the ionic structure on the transport properties. Particular care is necessary because of the underestimation of the band gap and attendant overestimation of transport properties due to the use of semi-local density functional theory. We will explore the impact of this theoretical challenge and its potential solutions in this talk. The integrated use of DFT simulations and high-accuracy shock experiments together provide a comprehensive understanding of MgO under extreme conditions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. Large-Scale Flows and Magnetic Fields Produced by Rotating Convection in a Quasi-Geostrophic Model of Planetary Cores

    NASA Astrophysics Data System (ADS)

    Guervilly, C.; Cardin, P.

    2017-12-01

    Convection is the main heat transport process in the liquid cores of planets. The convective flows are thought to be turbulent and constrained by rotation (corresponding to high Reynolds numbers Re and low Rossby numbers Ro). Under these conditions, and in the absence of magnetic fields, the convective flows can produce coherent Reynolds stresses that drive persistent large-scale zonal flows. The formation of large-scale flows has crucial implications for the thermal evolution of planets and the generation of large-scale magnetic fields. In this work, we explore this problem with numerical simulations using a quasi-geostrophic approximation to model convective and zonal flows at Re 104 and Ro 10-4 for Prandtl numbers relevant for liquid metals (Pr 0.1). The formation of intense multiple zonal jets strongly affects the convective heat transport, leading to the formation of a mean temperature staircase. We also study the generation of magnetic fields by the quasi-geostrophic flows at low magnetic Prandtl numbers.

  6. The origin of comets - Implications for planetary formation

    NASA Technical Reports Server (NTRS)

    Weissman, P. R.

    1985-01-01

    Primordial and episodic theories for the origin of comets are discussed. The implications of the former type for the origin of the solar system are considered. Candidate sites for the formation of comets are compared. The possible existence of a massive inner Oort cloud is discussed.

  7. The mysterious age invariance of the planetary nebula luminosity function bright cut-off

    NASA Astrophysics Data System (ADS)

    Gesicki, K.; Zijlstra, A. A.; Miller Bertolami, M. M.

    2018-05-01

    Planetary nebulae mark the end of the active life of 90% of all stars. They trace the transition from a red giant to a degenerate white dwarf. Stellar models1,2 predicted that only stars above approximately twice the solar mass could form a bright nebula. But the ubiquitous presence of bright planetary nebulae in old stellar populations, such as elliptical galaxies, contradicts this: such high-mass stars are not present in old systems. The planetary nebula luminosity function, and especially its bright cut-off, is almost invariant between young spiral galaxies, with high-mass stars, and old elliptical galaxies, with only low-mass stars. Here, we show that new evolutionary tracks of low-mass stars are capable of explaining in a simple manner this decades-old mystery. The agreement between the observed luminosity function and computed stellar evolution validates the latest theoretical modelling. With these models, the planetary nebula luminosity function provides a powerful diagnostic to derive star formation histories of intermediate-age stars. The new models predict that the Sun at the end of its life will also form a planetary nebula, but it will be faint.

  8. Summer School on Interstellar Processes: Abstracts of contributed papers

    NASA Technical Reports Server (NTRS)

    Hollenbach, D. J. (Editor); Thronson, H. A., Jr. (Editor)

    1986-01-01

    The Summer School on Interstellar Processes was held to discuss the current understanding of the interstellar medium and to analyze the basic physical processes underlying interstellar phenomena. Extended abstracts of the contributed papers given at the meeting are presented. Many of the papers concerned the local structure and kinematics of the interstellar medium and focused on such objects as star formation regions, molecular clouds, HII regions, reflection nebulae, planetary nebulae, supernova remnants, and shock waves. Other papers studied the galactic-scale structure of the interstellar medium either in the Milky Way or other galaxies. Some emphasis was given to observations of interstellar grains and

  9. Solar wind mass-loading at Comet Halley - A lesson from Venus?

    NASA Astrophysics Data System (ADS)

    Breus, T. K.; Krymskii, A. M.; Luhmann, J. G.

    1987-05-01

    Recent observations at comet Halley show that the region within which cometary ions become the dominant component lies outside of the magnetic field-free cavity. This behavior resembles that found at Venus under conditions where the incident solar wind dynamic pressure exceeds the ionospheric pressure. On these occasions the magnetosheath magnetic field is found well inside of the region where planetary ions are observed. Although scaling and the details of formation of the inner boundary of the magnetic field are different for these two objects, the processes by which the interplanetary magnetic field penetrates into the ionospheres at Venus and at comet Halley are in many ways analogous.

  10. Laboratory Evaluation and Application of Microwave Absorption Properties Under Simulated Conditions for Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1998-01-01

    Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments, entry probe radio signal absorption measurements, and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The use of theoretically-derived microwave absorption properties for such atmospheric constituents, or using laboratory measurements of such properties taken under environmental conditions which are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. For example, laboratory measurements completed recently by Kolodner and Steffes (ICARUS 132, pp. 151-169, March 1998, attached as Appendix A) under this grant (NAGS-4190), have shown that the opacity from gaseous H2SO4 under simulated Venus conditions is best described by a different formalism than was previously used. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both spacecraft entry probe and orbiter radio occultation experiments and by radio astronomical observations, and over a range of frequencies which correspond to those used in such experiments, has led to the development of a facility at Georgia Tech which is capable of making such measurements. It has been the goal of this investigation to conduct such measurements and to apply the results to a wide range of planetary observations, both spacecraft and earth-based, in order to determine the identity and abundance profiles of constituents in those planetary atmospheres.

  11. Scattering of Planetesimals by a Planet

    NASA Astrophysics Data System (ADS)

    Higuchi, A.; Kokubo, E.; Mukai, T.

    2004-05-01

    We investigate the scattering process of planetesimals by a planet by numerical orbital integration, aiming at construction of theory for the comet (Oort) cloud formation. The standard scenario of the formation of the Oort cloud can be divided into three dynamical stages:(1)The eccentricity and the aphelion distance of planetesimals are increased by planetary perturbation. (2)The eccentricity is reduced and the perihelion distance is increased by the external forces such as the galactic tide. (3)The inclination is randomized also by the external forces. We model the first stage of this scenario as the restricted three-body problem and calculate the orbital evolution of planetesimals scattered by a planet. There are 4 kinds of outcomes for scattering of planetesimals by a planet: to collide with the planet, to fall onto the central star, to escape from the planetary system, and to remain in bound orbits. Here we consider the escape efficiency as the efficiency of formation of highly eccentric planetesimals, which are candidates for the members of the comet cloud. We obtain the dependence of the escape/collision probability on orbital parameters of the planetesimals and the planet. Using these results, we calculate the efficiencies of escaping from the planetary system and collision with the planet. For example, for the minimum-mass disk model, the inner and massive planet is more efficient to eject planetesimals and increase their eccentricities. Planetesimals with high eccentricities and low inclinations are easier to be ejected from the planetary system. We preset the empirical fitting formulae of these efficiencies as a function of the orbital parameters of the planetesimals and the planets. We apply the results to the solar system and discuss the efficiency of the outer giant planets.

  12. Robotics Technology for Planetary Missions into the 21st Century

    NASA Technical Reports Server (NTRS)

    Weisbin, C. R.; Lavery, D.; Rodriguez, G.

    1997-01-01

    This paper summarizes the objectives, current status and future thrusts of technolgy development in planetary robitics at the Jet Propulsion Laboratory, under sponsorship by the NASA Office of Space Science.

  13. Workshop on Oxygen in Asteroids and Meteorites

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Contents include the following: Constraints on the detection of solar nebula's oxidation state through asteroid observation. Oxidation/Reduction Processes in Primitive Achondrites. Low-Temperature Chemical Processing on Asteroids. On the Formation Location of Asteroids and Meteorites. The Spectral Properties of Angritic Basalts. Correlation Between Chemical and Oxygen Isotopic Compositions in Chondrites. Effect of In-Situ Aqueous Alteration on Thermal Model Heat Budgets. Oxidation-Reduction in Meteorites: The Case of High-Ni Irons. Ureilite Atmospherics: Coming up for Air on a Parent Body. High Temperature Effects Including Oxygen Fugacity, in Pre-Planetary and Planetary Meteorites and Asteroids. Oxygen Isotopic Variation of Asteroidal Materials. High-Temperature Chemical Processing on Asteroids: An Oxygen Isotope Perspective. Oxygen Isotopes and Origin of Opaque Assemblages from the Ningqiang Carbonaceous Chondrite. Water Distribution in the Asteroid Belt. Comparative Planetary Mineralogy: V Systematics in Planetary Pyroxenes and fo 2 Estimates for Basalts from Vesta.

  14. Gas-phase abundances of refractory elements in planetary nebulae - A hot-wind model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shields, G.A.

    Planetary nebulae (PN) characteristically show large gas-phase depletions of some refractory elements, with Fe/H and Ca/H concentration ratios approximately equal to -1.5. In contrast, the gas-phase abundance of carbon is large, with a C/H concentration ratio greater than approximately +0.3. This pattern is difficult to understand in terms of grain formation and destruction during PN formation. However, these abundances are consistent with a model (Kwok, Purton, and FitzGerald, 1978) in which the PN shell consists of material expelled as a wind during the red-giant phase and subsequently compressed and accelerated by the impact of a hot stellar wind from themore » central star.« less

  15. FITS Liberator: Image processing software

    NASA Astrophysics Data System (ADS)

    Lindberg Christensen, Lars; Nielsen, Lars Holm; Nielsen, Kaspar K.; Johansen, Teis; Hurt, Robert; de Martin, David

    2012-06-01

    The ESA/ESO/NASA FITS Liberator makes it possible to process and edit astronomical science data in the FITS format to produce stunning images of the universe. Formerly a plugin for Adobe Photoshop, the current version of FITS Liberator is a stand-alone application and no longer requires Photoshop. This image processing software makes it possible to create color images using raw observations from a range of telescopes; the FITS Liberator continues to support the FITS and PDS formats, preferred by astronomers and planetary scientists respectively, which enables data to be processed from a wide range of telescopes and planetary probes, including ESO's Very Large Telescope, the NASA/ESA Hubble Space Telescope, NASA's Spitzer Space Telescope, ESA's XMM-Newton Telescope and Cassini-Huygens or Mars Reconnaissance Orbiter.

  16. Cosmic setting for chondrule formation

    NASA Technical Reports Server (NTRS)

    Taylor, G. J.; Scott, E. R. D.; Keil, K.

    1983-01-01

    Chondrules are igneous-textured, millimeter-sized, spherical to irregularly-shaped silicate objects which constitute the major component of most chondrites. There is agreement that chondrules were once molten. Models for chondrule origin can be divided into two categories. One involves a 'planetary' setting, which envisages chondrules forming on the surfaces of parent bodies. Melting mechanisms include impact and volcanism. The other category is concerned with a cosmic setting in the solar nebula, prior to nebula formation. Aspects regarding the impact on planetary surfaces are considered, taking into account chondrule abundances, the abundancy of agglutinates on the moon, comminution, hypervelocity impact pits, questions of age, and chondrule compositions. Attention is also given to collisions during accretion, collisions between molten planetesimals, volcanism, and virtues of a nebular setting.

  17. The Birth of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Lissaur, Jack L.

    1997-01-01

    An overview of current theories of star and planet formation is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates.

  18. Stardust to Planetesimals: A Chondrule Connection?

    NASA Technical Reports Server (NTRS)

    Paque, Julie; Bunch, Ted

    1997-01-01

    The unique nature of chondrules has been known for nearly two centuries. Modern techniques of analysis have shown that these millimeter sized silicate objects are among the oldest objects in our solar system. Researchers have devised textural and chemical classification systems for chondrules in an effort to determine their origins. It is agreed that most chondrules were molten at some point in their history, and experimental analogs suggest that the majority of chondrules formed from temperatures below 1600 C at cooling rates in the range of hundreds of degrees per hour. Although interstellar grains are present in chondrite matrices, their contribution as precursors to chondrule formation is unknown. Models for chondrule formation focus on the pre-planetary solar nebula conditions, although planetary impact models have had proponents.

  19. Uranium isotope ratios of Muonionalusta troilite and complications for the absolute age of the IVA iron meteorite core

    NASA Astrophysics Data System (ADS)

    Brennecka, Gregory A.; Amelin, Yuri; Kleine, Thorsten

    2018-05-01

    The crystallization ages of planetary crustal material (given by basaltic meteorites) and planetary cores (given by iron meteorites) provide fiducial marks for the progress of planetary formation, and thus, the absolute ages of these objects fundamentally direct our knowledge and understanding of planet formation and evolution. The lone precise absolute age of planetary core material was previously obtained on troilite inclusions from the IVA iron meteorite Muonionalusta. This previously reported Pb-Pb age of 4565.3 ± 0.1 Ma-assuming a 238U/235U =137.88-only post-dated the start of the Solar System by approximately 2-3 million years, and mandated fast cooling of planetary core material. Since an accurate Pb-Pb age requires a known 238U/235U of the sample, we have measured both 238U/235U and Pb isotopic compositions of troilite inclusions from Muonionalusta. The measured 238U/235U of the samples range from ∼137.84 to as low as ∼137.22, however based on Pb and U systematics, terrestrial contamination appears pervasive and has affected samples to various extents for Pb and U. The cause of the relative 235U excess in one sample does not appear to be from terrestrial contamination or the decay of short-lived 247Cm, but is more likely from fractionation of U isotopes during metal-silicate separation during core formation, exacerbated by the extreme U depletion in the planetary core. Due to limited Pb isotopic variation and terrestrial disturbance, no samples of this study produced useful age information; however the clear divergence from the previously assumed 238U/235U of any troilite in Muonionalusta introduces substantial uncertainty to the previously reported absolute age of the sample without knowledge of the 238U/235U of the sample. Uncertainties associated with U isotope heterogeneity do not allow for definition of a robust age of solidification and cooling for the IVA core. However, one sample of this work-paired with previous work using short-lived radionuclides-suggests that the cooling age of the IVA core may be significantly younger than previously thought. This work indicates the metallic cores of protoplanetary bodies solidified no earlier than the first ∼5-10 million years of the Solar System.

  20. Ash Dispersal in Planetary Atmospheres: Continuum vs. Non-continuum Effects

    NASA Astrophysics Data System (ADS)

    Fagents, S. A.; Baloga, S. M.; Glaze, L. S.

    2013-12-01

    The dispersal of ash from a volcanic vent on any given planet is dictated by particle properties (density, shape, and size distribution), the intensity of the eruptive source, and the characteristics of the planetary environment (atmospheric structure, wind field, and gravity) into which the ash is erupted. Relating observations of potential pyroclastic deposits to source locations and eruption conditions requires a detailed quantitative understanding of the settling rates of individual particles under changing ambient conditions. For atmospheres that are well described by continuum mechanics, the conventional Newtonian description of particle motion allows particle settling velocities to be related to particle characteristics via a drag coefficient. However, under rarefied atmospheric conditions (i.e., on Mars and at high altitude on Earth), non-continuum effects become important for ash-sized particles, and an equation of motion based on statistical mechanics is required for calculating particle motion. We have developed a rigorous new treatment of particle settling under variable atmospheric conditions and applied it to Earth and Mars. When non-continuum effects are important (as dictated by the mean free path of atmospheric gas relative to the particle size), fall velocities are greater than those calculated by continuum mechanics. When continuum conditions (i.e., higher atmospheric densities) are reached during descent, our model switches to a conventional formulation that determines the appropriate drag coefficient as the particle transits varying atmospheric properties. The variation of settling velocity with altitude allows computation of particle trajectories, fall durations and downwind dispersal. Our theoretical and numerical analyses show that several key, competing factors strongly influence the downwind trajectories of ash particles and the extents of the resulting deposits. These factors include: the shape of the particles (non-spherical particles fall more slowly than spherical particle shapes commonly adopted in settling models); the formation of particle aggregates, which enhances settling rates; and the lagging of particle motion behind the ambient wind field, which results in less widely dispersed deposits. Above all, any particles experiencing non-continuum effects settle faster and are less widely dispersed than particles falling in an entirely continuum regime. Our model results demonstrate the complex interplay of these factors in the Martian environment, and our approach provides a basis for relating deposits observed in planetary datasets to candidate volcanic sources and eruption conditions. This allows for a critical reassessment of the potential for explosive volcanism to contribute to extremely widespread, fine-grained, layered deposits such as the Medusae Fossae Formation.

  1. Planetary image conversion task

    NASA Technical Reports Server (NTRS)

    Martin, M. D.; Stanley, C. L.; Laughlin, G.

    1985-01-01

    The Planetary Image Conversion Task group processed 12,500 magnetic tapes containing raw imaging data from JPL planetary missions and produced an image data base in consistent format on 1200 fully packed 6250-bpi tapes. The output tapes will remain at JPL. A copy of the entire tape set was delivered to US Geological Survey, Flagstaff, Ariz. A secondary task converted computer datalogs, which had been stored in project specific MARK IV File Management System data types and structures, to flat-file, text format that is processable on any modern computer system. The conversion processing took place at JPL's Image Processing Laboratory on an IBM 370-158 with existing software modified slightly to meet the needs of the conversion task. More than 99% of the original digital image data was successfully recovered by the conversion task. However, processing data tapes recorded before 1975 was destructive. This discovery is of critical importance to facilities responsible for maintaining digital archives since normal periodic random sampling techniques would be unlikely to detect this phenomenon, and entire data sets could be wiped out in the act of generating seemingly positive sampling results. Reccomended follow-on activities are also included.

  2. Influence of periodic orbits on the formation of giant planetary systems

    NASA Astrophysics Data System (ADS)

    Libert, Anne-Sophie; Sotiriadis, Sotiris; Antoniadou, Kyriaki I.

    2018-02-01

    The late-stage formation of giant planetary systems is rich in interesting dynamical mechanisms. Previous simulations of three giant planets initially on quasi-circular and quasi-coplanar orbits in the gas disc have shown that highly mutually inclined configurations can be formed, despite the strong eccentricity and inclination damping exerted by the disc. Much attention has been directed to inclination-type resonance, asking for large eccentricities to be acquired during the migration of the planets. Here we show that inclination excitation is also present at small to moderate eccentricities in two-planet systems that have previously experienced an ejection or a merging and are close to resonant commensurabilities at the end of the gas phase. We perform a dynamical analysis of these planetary systems, guided by the computation of planar families of periodic orbits and the bifurcation of families of spatial periodic orbits. We show that inclination excitation at small to moderate eccentricities can be produced by (temporary) capture in inclination-type resonance and the possible proximity of the non-coplanar systems to spatial periodic orbits contributes to maintaining their mutual inclination over long periods of time.

  3. Water and the Interior Structure of Terrestrial Planets and Icy Bodies

    NASA Astrophysics Data System (ADS)

    Monteux, J.; Golabek, G. J.; Rubie, D. C.; Tobie, G.; Young, E. D.

    2018-02-01

    Water content and the internal evolution of terrestrial planets and icy bodies are closely linked. The distribution of water in planetary systems is controlled by the temperature structure in the protoplanetary disk and dynamics and migration of planetesimals and planetary embryos. This results in the formation of planetesimals and planetary embryos with a great variety of compositions, water contents and degrees of oxidation. The internal evolution and especially the formation time of planetesimals relative to the timescale of radiogenic heating by short-lived 26Al decay may govern the amount of hydrous silicates and leftover rock-ice mixtures available in the late stages of their evolution. In turn, water content may affect the early internal evolution of the planetesimals and in particular metal-silicate separation processes. Moreover, water content may contribute to an increase of oxygen fugacity and thus affect the concentrations of siderophile elements within the silicate reservoirs of Solar System objects. Finally, the water content strongly influences the differentiation rate of the icy moons, controls their internal evolution and governs the alteration processes occurring in their deep interiors.

  4. On the Terminal Rotation Rates of Giant Planets

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin

    2018-04-01

    Within the general framework of the core-nucleated accretion theory of giant planet formation, the conglomeration of massive gaseous envelopes is facilitated by a transient period of rapid accumulation of nebular material. While the concurrent build-up of angular momentum is expected to leave newly formed planets spinning at near-breakup velocities, Jupiter and Saturn, as well as super-Jovian long-period extrasolar planets, are observed to rotate well below criticality. In this work, we demonstrate that the large luminosity of a young giant planet simultaneously leads to the generation of a strong planetary magnetic field, as well as thermal ionization of the circumplanetary disk. The ensuing magnetic coupling between the planetary interior and the quasi-Keplerian motion of the disk results in efficient braking of planetary rotation, with hydrodynamic circulation of gas within the Hill sphere playing the key role of expelling spin angular momentum to the circumstellar nebula. Our results place early-stage giant planet and stellar rotation within the same evolutionary framework, and motivate further exploration of magnetohydrodynamic phenomena in the context of the final stages of giant planet formation.

  5. Water transport to circumprimary habitable zones from icy planetesimal disks in binary star systems

    NASA Astrophysics Data System (ADS)

    Bancelin, D.; Pilat-Lohinger, E.; Maindl, T. I.; Bazsó, Á.

    2017-03-01

    So far, more than 130 extrasolar planets have been found in multiple stellar systems. Dynamical simulations show that the outcome of the planetary formation process can lead to different planetary architectures (i.e. location, size, mass, and water content) when the star system is single or double. In the late phase of planetary formation, when embryo-sized objects dominate the inner region of the system, asteroids are also present and can provide additional material for objects inside the habitable zone (HZ). In this study, we make a comparison of several binary star systems and aim to show how efficient they are at moving icy asteroids from beyond the snow line into orbits crossing the HZ. We also analyze the influence of secular and mean motion resonances on the water transport towards the HZ. Our study shows that small bodies also participate in bearing a non-negligible amount of water to the HZ. The proximity of a companion moving on an eccentric orbit increases the flux of asteroids to the HZ, which could result in a more efficient water transport on a short timescale, causing a heavy bombardment. In contrast to asteroids moving under the gravitational perturbations of one G-type star and a gas giant, we show that the presence of a companion star not only favors a faster depletion of our disk of planetesimals, but can also bring 4-5 times more water into the whole HZ. However, due to the secular resonance located either inside the HZ or inside the asteroid belt, impacts between icy planetesimals from the disk and big objects in the HZ can occur at high impact speed. Therefore, real collision modeling using a GPU 3D-SPH code show that in reality, the water content of the projectile is greatly reduced and therefore, also the water transported to planets or embryos initially inside the HZ.

  6. Sparse aperture masking at the VLT. II. Detection limits for the eight debris disks stars β Pic, AU Mic, 49 Cet, η Tel, Fomalhaut, g Lup, HD 181327 and HR 8799

    NASA Astrophysics Data System (ADS)

    Gauchet, L.; Lacour, S.; Lagrange, A.-M.; Ehrenreich, D.; Bonnefoy, M.; Girard, J. H.; Boccaletti, A.

    2016-10-01

    Context. The formation of planetary systems is a common, yet complex mechanism. Numerous stars have been identified to possess a debris disk, a proto-planetary disk or a planetary system. The understanding of such formation process requires the study of debris disks. These targets are substantial and particularly suitable for optical and infrared observations. Sparse aperture masking (SAM) is a high angular resolution technique strongly contributing to probing the region from 30 to 200 mas around the stars. This area is usually unreachable with classical imaging, and the technique also remains highly competitive compared to vortex coronagraphy. Aims: We aim to study debris disks with aperture masking to probe the close environment of the stars. Our goal is either to find low-mass companions, or to set detection limits. Methods: We observed eight stars presenting debris disks (β Pictoris, AU Microscopii, 49 Ceti, η Telescopii, Fomalhaut, g Lupi, HD 181327, and HR 8799) with SAM technique on the NaCo instrument at the Very Large Telescope (VLT). Results: No close companions were detected using closure phase information under 0.5'' of separation from the parent stars. We obtained magnitude detection limits that we converted to Jupiter masses detection limits using theoretical isochrones from evolutionary models. Conclusions: We derived upper mass limits on the presence of companions in the area of a few times the telescope's diffraction limits around each target star. Based on observations collected at the European Southern Observatory (ESO) during runs 087.C-0450(A), 087.C-0450(B) 087.C-0750(A), 088.C-0358(A).All magnitude detection limits maps are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A31

  7. New Insights on Planet Formation in WASP-47 from a Simultaneous Analysis of Radial Velocities and Transit Timing Variations

    NASA Astrophysics Data System (ADS)

    Weiss, Lauren M.; Deck, Katherine M.; Sinukoff, Evan; Petigura, Erik A.; Agol, Eric; Lee, Eve J.; Becker, Juliette C.; Howard, Andrew W.; Isaacson, Howard; Crossfield, Ian J. M.; Fulton, Benjamin J.; Hirsch, Lea; Benneke, Björn

    2017-06-01

    Measuring precise planet masses, densities, and orbital dynamics in individual planetary systems is an important pathway toward understanding planet formation. The WASP-47 system has an unusual architecture that motivates a complex formation theory. The system includes a hot Jupiter (“b”) neighbored by interior (“e”) and exterior (“d”) sub-Neptunes, and a long-period eccentric giant planet (“c”). We simultaneously modeled transit times from the Kepler K2 mission and 118 radial velocities to determine the precise masses, densities, and Keplerian orbital elements of the WASP-47 planets. Combining RVs and TTVs provides a better estimate of the mass of planet d (13.6+/- 2.0 {M}\\oplus ) than that obtained with only RVs (12.75+/- 2.70 {M}\\oplus ) or TTVs (16.1+/- 3.8 {M}\\oplus ). Planets e and d have high densities for their size, consistent with a history of photoevaporation and/or formation in a volatile-poor environment. Through our RV and TTV analysis, we find that the planetary orbits have eccentricities similar to the solar system planets. The WASP-47 system has three similarities to our own solar system: (1) the planetary orbits are nearly circular and coplanar, (2) the planets are not trapped in mean motion resonances, and (3) the planets have diverse compositions. None of the current single-process exoplanet formation theories adequately reproduce these three characteristics of the WASP-47 system (or our solar system). We propose that WASP-47, like the solar system, formed in two stages: first, the giant planets formed in a gas-rich disk and migrated to their present locations, and second, the high-density sub-Neptunes formed in situ in a gas-poor environment.

  8. The Energetic Demands and Planetary Footprint of Alternative Human Diets

    NASA Astrophysics Data System (ADS)

    Eshel, G.; Martin, P. A.

    2005-12-01

    Agriculture is one of the major vehicles of human alteration of the planetary environment. Yet different diets vary vastly in terms of both their energetic demands and overall planetary footprint. We present a quantitative argument that demonstrates that plant-based diets exert vastly smaller planetary environmental cost than animal-based ones. We demonstrate that under a reasonable and readily defensible set of assumptions, a plant-based diet differs from the average American diet by as much energy as the difference between driving a compact and efficient sedan and a Sport Utility Vehicle.

  9. Information architecture for a planetary 'exploration web'

    NASA Technical Reports Server (NTRS)

    Lamarra, N.; McVittie, T.

    2002-01-01

    'Web services' is a common way of deploying distributed applications whose software components and data sources may be in different locations, formats, languages, etc. Although such collaboration is not utilized significantly in planetary exploration, we believe there is significant benefit in developing an architecture in which missions could leverage each others capabilities. We believe that an incremental deployment of such an architecture could significantly contribute to the evolution of increasingly capable, efficient, and even autonomous remote exploration.

  10. Common Infrastructure for Neo Scientific and Planetary Defense Missions

    NASA Technical Reports Server (NTRS)

    Adams, Robert; Wilks, Rodney

    2009-01-01

    While defending the Earth against collisions with asteroids and comets has garnered increasing attention over the past few decades, our knowledge of the threats and methods of mitigation remain inadequate. There exists a considerable gap in knowledge regarding the size, composition, location, internal structure and formation of near earth asteroids and comets. Although estimates have been made, critical experiments have not yet been conducted on the effectiveness of various proposed mitigation techniques. Closing this knowledge gap is of interest to both the planetary defense and planetary science communities. Increased scientific knowledge of asteroid and comet composition and structure can confirm or advance current theories about the formation of the solar system. This proposal suggests a joint effort between these two communities to provide an economical architecture that supports multiple launches of characterization and mitigation payloads with minimal response time. The science community can use this architecture for characterization missions of opportunity when multiple scientific targets or targets of uncommon scientific value present themselves, while the planetary defense community would be able to fire characterization or mitigation payloads at targets that present a threat to the Earth. Both communities would benefit from testing potential mitigation techniques, which would reveal information on the internal structure of asteroids and comets. In return, the Earth would have the beginnings of a viable response system should an impact threat prove real in the near future.

  11. Torques Induced by Scattered Pebble-flow in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Benítez-Llambay, Pablo; Pessah, Martin E.

    2018-03-01

    Fast inward migration of planetary cores is a common problem in the current planet formation paradigm. Even though dust is ubiquitous in protoplanetary disks, its dynamical role in the migration history of planetary embryos has not been assessed. In this Letter, we show that the scattered pebble-flow induced by a low-mass planetary embryo leads to an asymmetric dust-density distribution that is able to exert a net torque. By analyzing a large suite of multifluid hydrodynamical simulations addressing the interaction between the disk and a low-mass planet on a fixed circular orbit, and neglecting dust feedback onto the gas, we identify two different regimes, gas- and gravity-dominated, where the scattered pebble-flow results in almost all cases in positive torques. We collect our measurements in a first torque map for dusty disks, which will enable the incorporation of the effect of dust dynamics on migration into population synthesis models. Depending on the dust drift speed, the dust-to-gas mass ratio/distribution, and the embryo mass, the dust-induced torque has the potential to halt inward migration or even induce fast outward migration of planetary cores. We thus anticipate that dust-driven migration could play a dominant role during the formation history of planets. Because dust torques scale with disk metallicity, we propose that dust-driven outward migration may enhance the occurrence of distant giant planets in higher-metallicity systems.

  12. Scaling Up Decision Theoretic Planning to Planetary Rover Problems

    NASA Technical Reports Server (NTRS)

    Meuleau, Nicolas; Dearden, Richard; Washington, Rich

    2004-01-01

    Because of communication limits, planetary rovers must operate autonomously during consequent durations. The ability to plan under uncertainty is one of the main components of autonomy. Previous approaches to planning under uncertainty in NASA applications are not able to address the challenges of future missions, because of several apparent limits. On another side, decision theory provides a solid principle framework for reasoning about uncertainty and rewards. Unfortunately, there are several obstacles to a direct application of decision-theoretic techniques to the rover domain. This paper focuses on the issues of structure and concurrency, and continuous state variables. We describes two techniques currently under development that address specifically these issues and allow scaling-up decision theoretic solution techniques to planetary rover planning problems involving a small number of goals.

  13. Numerical modelling of impact crater formation associated with isolated lunar skylight candidates on lava tubes

    NASA Astrophysics Data System (ADS)

    Martellato, E.; Foing, B. H.; Benkhoff, J.

    2013-09-01

    Skylights are openings on subsurface voids as lava tubes and caves. Recently deep hole structures, possibly skylights, were discovered on lunar photo images by the JAXA SELenological and ENgineering Explorer (SELENE)-Kaguya mission, and successively confirmed by the NASA Lunar Reconnaissance Orbiter (LRO) mission. Vertical hole structures and possibly underlying subsurface voids have high potential as resources for scientific study, and future unmanned and manned activities on the Moon. One mechanism proposed for their formation is impact cratering. The collapse of craters is due to the back spallation phenomena on the rear surface of the lava tube roofs. Previous analysis in this topic was based on small-scales laboratory experiments. These have pointed out that (i) the target thickness-to-crater diameter ratio is 0.7, and (ii) the projectile diameter-to-target thickness ratio is 0.16, at the ballistic limit once extrapolated to planetary conditions.

  14. Collisional stripping of planetary crusts

    NASA Astrophysics Data System (ADS)

    Carter, Philip J.; Leinhardt, Zoë M.; Elliott, Tim; Stewart, Sarah T.; Walter, Michael J.

    2018-02-01

    Geochemical studies of planetary accretion and evolution have invoked various degrees of collisional erosion to explain differences in bulk composition between planets and chondrites. Here we undertake a full, dynamical evaluation of 'crustal stripping' during accretion and its key geochemical consequences. Crusts are expected to contain a significant fraction of planetary budgets of incompatible elements, which include the major heat producing nuclides. We present smoothed particle hydrodynamics simulations of collisions between differentiated rocky planetesimals and planetary embryos. We find that the crust is preferentially lost relative to the mantle during impacts, and we have developed a scaling law based on these simulations that approximates the mass of crust that remains in the largest remnant. Using this scaling law and a recent set of N-body simulations of terrestrial planet formation, we have estimated the maximum effect of crustal stripping on incompatible element abundances during the accretion of planetary embryos. We find that on average approximately one third of the initial crust is stripped from embryos as they accrete, which leads to a reduction of ∼20% in the budgets of the heat producing elements if the stripped crust does not reaccrete. Erosion of crusts can lead to non-chondritic ratios of incompatible elements, but the magnitude of this effect depends sensitively on the details of the crust-forming melting process on the planetesimals. The Lu/Hf system is fractionated for a wide range of crustal formation scenarios. Using eucrites (the products of planetesimal silicate melting, thought to represent the crust of Vesta) as a guide to the Lu/Hf of planetesimal crust partially lost during accretion, we predict the Earth could evolve to a superchondritic 176Hf/177Hf (3-5 parts per ten thousand) at present day. Such values are in keeping with compositional estimates of the bulk Earth. Stripping of planetary crusts during accretion can lead to detectable changes in bulk composition of lithophile elements, but the fractionation is relatively subtle, and sensitive to the efficiency of reaccretion.

  15. A bibliography of planetary geology principal investigators and their associates, 1982 - 1983

    NASA Technical Reports Server (NTRS)

    Plescia, J. B.

    1984-01-01

    This bibliography cites recent publications by principal investigators and their associates, supported through NASA's Office of Space Science and Applications, Earth and Planetary Exploration Division, Planetary Geology Program. It serves as a companion piece to NASA TM-85127, ""Reports of Planetary Programs, 1982". Entries are listed under the following subject areas: solar system, comets, asteroids, meteorites and small bodies; geologic mapping, geomorphology, and stratigraphy; structure, tectonics, and planetary and satellite evolutions; impact craters; volcanism; fluvial, mass wasting, glacial and preglacial studies; Eolian and Arid climate studies; regolith, volatiles, atmosphere, and climate, radar; remote sensing and photometric studies; and cartography, photogrammetry, geodesy, and altimetry. An author index is provided.

  16. The Robo-AO KOI survey: laser adaptive optics imaging of every Kepler exoplanet candidate

    NASA Astrophysics Data System (ADS)

    Ziegler, Carl; Law, Nicholas M.; Baranec, Christoph; Morton, Tim; Riddle, Reed; Atkinson, Dani; Nofi, Larissa

    2016-07-01

    The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star (KOI) with laser adaptive optics imaging to hunt for blended nearby stars which may be physically associated companions. With the unparalleled efficiency provided by the first fully robotic adaptive optics system, we perform the critical search for nearby stars (0.15" to 4.0" separation with contrasts up to 6 magnitudes) that dilute the observed planetary transit signal, contributing to inaccurate planetary characteristics or astrophysical false positives. We present 3313 high resolution observations of Kepler planetary hosts from 2012-2015, discovering 479 nearby stars. We measure an overall nearby star probability rate of 14.5+/-0.8%. With this large data set, we are uniquely able to explore broad correlations between multiple star systems and the properties of the planets which they host, providing insight into the formation and evolution of planetary systems in our galaxy. Several KOIs of particular interest will be discussed, including possible quadruple star systems hosting planets and updated properties for possible rocky planets orbiting with in their star's habitable zone.

  17. Formation and Internal Structure of Terrestrial Planets, and Atmospheric Escape

    NASA Astrophysics Data System (ADS)

    Jin, S.

    2014-11-01

    As of 2014 April 21, over 1490 confirmed exoplanets and 3705 Kepler candidates have been detected. This implies that exoplanets may be ubiquitous in the universe. In this paper, we focus on the formation, evolution, and internal structure of terrestrial planets, and the atmospheric escape of close-in planets. In chapter 2, we investigate the dynamical evolution of planetary system after the protoplanetary disk has dissipated. We find that in the final assembly stage, the occurrence of terrestrial planets is quite common and in 40% of our simulations finally at least one planet is formed in the habitable zone. We also find that if there is a highly-inclined giant planet in the system, a great many bodies will be either driven out of the system, or collide with the giant planet or the central star. This will lead to the difficulty in planetary accretion. Moreover, our results show that planetary migration can lead to the formation of close-in planets. Besides migration, close-in terrestrial planets can also be formed by a collision-merger mechanism, which means that planetary embryos can kick terrestrial planets directly into orbits that are extremely close to their parent stars. In chapter 3, we construct numerically an internal structure model for terrestrial planets, and provide three kinds of possible internal structures of Europa (Jupiter's moon) based on this model. Then, we calculate the radii of low-mass exoplanets for various mass combinations of core and mantle, and find that some of them are inconsistent with the observed radius of rocky planets. This phenomenon can be explained only if there exists a large amount of water in the core, or they own gaseous envelopes. In chapter 4, we improve our planetary evolution codes using the semi-gray model of Guillot (2010), which includes the incident flux from the host star as a heating source in planetary atmosphere. The updated codes can solve the structure of the top radiative zone of intensely irradiated planets, and thus can simulate the atmospheric escape of close-in planets driven by strong stellar X-ray or EUV emissions. We find that low-mass planets are sensitive to the atmospheric escape, and they could lose all their initial H/He envelopes during the evolution. On the other hand, gas giant can only lose a small fraction of their initial envelopes. We then carry out a parameter study of atmospheric escape at the planetary core mass, envelope mass fraction, and semi-major axis space. We find that the most intense phase of evaporation occurs within the early 100 Myr. Afterwards, atmospheric escape only has a small impact on the planetary evolution. In chapter 5, we apply our new planetary evolution model to different synthetic planet populations that are directly produced by the core-accretion paradigm (Mordasini et al. 2012a,b). We show that although the mass distribution of the planet populations is hardly affected by evaporation, the radius distribution clearly shows a break around 2 R_{⊕}. This break leads to a bimodal distribution in planet sizes (Owen & Wu 2013). Furthermore, the bimodal distribution is related to the initial characteristics of the planetary populations. We find that in two extreme cases, namely without any evaporation or with a 100% heating efficiency in the evaporation model, the final radius distributions show significant differences compared to the radius distribution of Kepler candidates. In chapter 6, we introduce a radiative transfer model that can calculate the radiation spectrum of close-in exoplanets.

  18. Interoperability in planetary research for geospatial data analysis

    NASA Astrophysics Data System (ADS)

    Hare, Trent M.; Rossi, Angelo P.; Frigeri, Alessandro; Marmo, Chiara

    2018-01-01

    For more than a decade there has been a push in the planetary science community to support interoperable methods for accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (e.g., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized geospatial image formats, geologic mapping conventions, U.S. Federal Geographic Data Committee (FGDC) cartographic and metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Map Tile Services (cached image tiles), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they can be just as valuable for planetary domain. Another initiative, called VESPA (Virtual European Solar and Planetary Access), will marry several of the above geoscience standards and astronomy-based standards as defined by International Virtual Observatory Alliance (IVOA). This work outlines the current state of interoperability initiatives in use or in the process of being researched within the planetary geospatial community.

  19. Near Mean-motion Resonances in the System Observed by Kepler: Affected by Mass Accretion and Type I Migration

    NASA Astrophysics Data System (ADS)

    Wang, Su; Ji, Jianghui

    2017-12-01

    The Kepler mission has released over 4496 planetary candidates, among which 3483 planets have been confirmed as of 2017 April. The statistical results of the planets show that there are two peaks around 1.5 and 2.0 in the distribution of orbital period ratios. The observations indicate that plenty of planet pairs could have first been captured into mean-motion resonances (MMRs) in planetary formation. Subsequently, these planets depart from exact resonant locations to be near-MMR configurations. Through type I migration, two low-mass planets have a tendency to be trapped in first-order MMRs (2:1 or 3:2 MMRs); however, two scenarios of mass accretion of planets and potential outward migration play important roles in reshaping their final orbital configurations. Under the scenario of mass accretion, the planet pairs can cross 2:1 MMRs and then enter into 3:2 MMRs, especially for the inner pairs. With such a formation scenario, the possibility that two planets are locked into 3:2 MMRs can increase if they are formed in a flat disk. Moreover, the outward migration can make planets have a high likelihood to be trapped into 3:2 MMRs. We perform additional runs to investigate the mass relationship for those planets in three-planet systems, and we show that two peaks near 1.5 and 2.0 for the period ratios of two planets can be easily reproduced through our formation scenario. We further show that the systems in chain resonances (e.g., 4:2:1, 3:2:1, 6:3:2, and 9:6:4 MMRs), have been observed in our simulations. This mechanism can be applicable to understand the formation of systems of Kepler-48, Kepler-53, Kepler-100, Kepler-192, Kepler-297, Kepler-399, and Kepler-450.

  20. Formation of terrestrial planets in eccentric and inclined giant planet systems

    NASA Astrophysics Data System (ADS)

    Sotiriadis, Sotiris; Libert, Anne-Sophie; Raymond, Sean N.

    2018-06-01

    Aims: Evidence of mutually inclined planetary orbits has been reported for giant planets in recent years. Here we aim to study the impact of eccentric and inclined massive giant planets on the terrestrial planet formation process, and investigate whether it can possibly lead to the formation of inclined terrestrial planets. Methods: We performed 126 simulations of the late-stage planetary accretion in eccentric and inclined giant planet systems. The physical and orbital parameters of the giant planet systems result from n-body simulations of three giant planets in the late stage of the gas disc, under the combined action of Type II migration and planet-planet scattering. Fourteen two- and three-planet configurations were selected, with diversified masses, semi-major axes (resonant configurations or not), eccentricities, and inclinations (including coplanar systems) at the dispersal of the gas disc. We then followed the gravitational interactions of these systems with an inner disc of planetesimals and embryos (nine runs per system), studying in detail the final configurations of the formed terrestrial planets. Results: In addition to the well-known secular and resonant interactions between the giant planets and the outer part of the disc, giant planets on inclined orbits also strongly excite the planetesimals and embryos in the inner part of the disc through the combined action of nodal resonance and the Lidov-Kozai mechanism. This has deep consequences on the formation of terrestrial planets. While coplanar giant systems harbour several terrestrial planets, generally as massive as the Earth and mainly on low-eccentric and low-inclined orbits, terrestrial planets formed in systems with mutually inclined giant planets are usually fewer, less massive (<0.5 M⊕), and with higher eccentricities and inclinations. This work shows that terrestrial planets can form on stable inclined orbits through the classical accretion theory, even in coplanar giant planet systems emerging from the disc phase.

  1. Composition of early planetary atmospheres - II. Coupled Dust and chemical evolution in protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Cridland, A. J.; Pudritz, Ralph E.; Birnstiel, Tilman; Cleeves, L. Ilsedore; Bergin, Edwin A.

    2017-08-01

    We present the next step in a series of papers devoted to connecting the composition of the atmospheres of forming planets with the chemistry of their natal evolving protoplanetary discs. The model presented here computes the coupled chemical and dust evolution of the disc and the formation of three planets per disc model. Our three canonical planet traps produce a Jupiter near 1 AU, a Hot Jupiter and a Super-Earth. We study the dependence of the final orbital radius, mass, and atmospheric chemistry of planets forming in disc models with initial disc masses that vary by 0.02 M⊙ above and below our fiducial model (M_{disc,0} = 0.1 M_{⊙}). We compute C/O and C/N for the atmospheres formed in our three models and find that C/Oplanet ˜ C/O_{disc}, which does not vary strongly between different planets formed in our model. The nitrogen content of atmospheres can vary in planets that grow in different disc models. These differences are related to the formation history of the planet, the time and location that the planet accretes its atmosphere, and are encoded in the bulk abundance of NH3. These results suggest that future observations of atmospheric NH3 and an estimation of the planetary C/O and C/N can inform the formation history of particular planetary systems.

  2. Planetary Formation: From the Earth and Moon to Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    An overview of current theories of star and planet formation is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Specific issues to be discussed include: (1) how large a solid core is needed to initiate rapid accumulation of gas? (2) can giant planets form very close to stars? (3) could a giant impact leading to lunar formation have occurred approximately 100 million years after the condensation of the oldest meteorites?

  3. Planetary Formation: From the Earth and Moon to Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    An overview of current theories of star and planet formation is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases-such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Specific issues to be discussed include: (1) how large a solid core is needed to initiate rapid accumulation of gas? (2) can giant planets form very close to stars? (3) could a giant impact leading to lunar formation have occurred approx. 100 million years after the condensation of the oldest meteorites?

  4. The architecture and formation of the Kepler-30 planetary system

    NASA Astrophysics Data System (ADS)

    Panichi, F.; Goździewski, K.; Migaszewski, C.; Szuszkiewicz, E.

    2018-04-01

    We study the orbital architecture, physical characteristics of planets, formation and long-term evolution of the Kepler-30 planetary system, detected and announced in 2012 by the KEPLER team. We show that the Kepler-30 system belongs to a particular class of very compact and quasi-resonant, yet long-term stable planetary systems. We re-analyse the light curves of the host star spanning Q1-Q17 quarters of the KEPLER mission. A huge variability of the Transit Timing Variations (TTV) exceeding 2 days is induced by a massive Jovian planet located between two Neptune-like companions. The innermost pair is near to the 2:1 mean motion resonance (MMR), and the outermost pair is close to higher order MMRs, such as 17:7 and 7:3. Our re-analysis of photometric data allows us to constrain, better than before, the orbital elements, planets' radii and masses, which are 9.2 ± 0.1, 536 ± 5, and 23.7 ± 1.3 Earth masses for Kepler-30b, Kepler-30c and Kepler-30d, respectively. The masses of the inner planets are determined within ˜1% uncertainty. We infer the internal structures of the Kepler-30 planets and their bulk densities in a wide range from (0.19 ± 0.01) g.cm-3 for Kepler-30d, (0.96 ± 0.15) g.cm-3 for Kepler-30b, to (1.71 ± 0.13) g.cm-3 for the Jovian planet Kepler-30c. We attempt to explain the origin of this unique planetary system and a deviation of the orbits from exact MMRs through the planetary migration scenario. We anticipate that the Jupiter-like planet plays an important role in determining the present dynamical state of this system.

  5. Evidence for Reduced, Carbon-rich Regions in the Solar Nebula from an Unusual Cometary Dust Particle

    NASA Astrophysics Data System (ADS)

    De Gregorio, Bradley T.; Stroud, Rhonda M.; Nittler, Larry R.; Kilcoyne, A. L. David

    2017-10-01

    Geochemical indicators in meteorites imply that most formed under relatively oxidizing conditions. However, some planetary materials, such as the enstatite chondrites, aubrite achondrites, and Mercury, were produced in reduced nebular environments. Because of large-scale radial nebular mixing, comets and other Kuiper Belt objects likely contain some primitive material related to these reduced planetary bodies. Here, we describe an unusual assemblage in a dust particle from comet 81P/Wild 2 captured in silica aerogel by the NASA Stardust spacecraft. The bulk of this ˜20 μm particle is comprised of an aggregate of nanoparticulate Cr-rich magnetite, containing opaque sub-domains composed of poorly graphitized carbon (PGC). The PGC forms conformal shells around tiny 5-15 nm core grains of Fe carbide. The C, N, and O isotopic compositions of these components are identical within errors to terrestrial standards, indicating a formation inside the solar system. Magnetite compositions are consistent with oxidation of reduced metal, similar to that seen in enstatite chondrites. Similarly, the core-shell structure of the carbide + PGC inclusions suggests a formation via FTT reactions on the surface of metal or carbide grains in warm, reduced regions of the solar nebula. Together, the nanoscale assemblage in the cometary particle is most consistent with the alteration of primary solids condensed from a C-rich, reduced nebular gas. The nanoparticulate components in the cometary particle provide the first direct evidence from comets of reduced, carbon-rich regions that were present in the solar nebula.

  6. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    1992-01-01

    Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing atmospheric constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The use of theoretically derived microwave absorption properties for such atmospheric constituents, or using laboratory measurements of such properties under environmental conditions which are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both radio occultation experiments and radio astronomical observations, and over a range of frequencies which correspond to those used in both radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. The goal of this investigation was to conduct such measurements and to apply the results to a wide range of planetary observations, both spacecraft and earth-based, in order to determine the identity and abundance profiles of constituents in those planetary atmospheres.

  7. Diversidad de Sistemas Planetarios en Discos de Baja Masa

    NASA Astrophysics Data System (ADS)

    Ronco, M. P.; de Elía, G. C.

    The accretion process that allows the formation of terrestrial planets is strongly dependent on the mass distribution in the system and the presence of gas giant planets. Several studies suggest that planetary systems formed only by terrestrial planets are the most common in the Universe. In this work we study the diversity of planetary systems that could form around solar-type stars in low mass disks in absence of gas giants planets and search wich ones are targets of particular interest. FULL TEXT IN SPANISH

  8. Walking on Exoplanets: Is Star Wars Right?

    NASA Astrophysics Data System (ADS)

    Ballesteros, Fernando J.; Luque, B.

    2016-05-01

    As the number of detected extrasolar planets increases, exoplanet databases become a valuable resource, confirming some details about planetary formation but also challenging our theories with new, unexpected properties.

  9. The dispersal of planet-forming discs: theory confronts observations.

    PubMed

    Ercolano, Barbara; Pascucci, Ilaria

    2017-04-01

    Discs of gas and dust around million-year-old stars are a by-product of the star formation process and provide the raw material to form planets. Hence, their evolution and dispersal directly impact what type of planets can form and affect the final architecture of planetary systems. Here, we review empirical constraints on disc evolution and dispersal with special emphasis on transition discs, a subset of discs that appear to be caught in the act of clearing out planet-forming material. Along with observations, we summarize theoretical models that build our physical understanding of how discs evolve and disperse and discuss their significance in the context of the formation and evolution of planetary systems. By confronting theoretical predictions with observations, we also identify the most promising areas for future progress.

  10. The dispersal of planet-forming discs: theory confronts observations

    PubMed Central

    Pascucci, Ilaria

    2017-01-01

    Discs of gas and dust around million-year-old stars are a by-product of the star formation process and provide the raw material to form planets. Hence, their evolution and dispersal directly impact what type of planets can form and affect the final architecture of planetary systems. Here, we review empirical constraints on disc evolution and dispersal with special emphasis on transition discs, a subset of discs that appear to be caught in the act of clearing out planet-forming material. Along with observations, we summarize theoretical models that build our physical understanding of how discs evolve and disperse and discuss their significance in the context of the formation and evolution of planetary systems. By confronting theoretical predictions with observations, we also identify the most promising areas for future progress. PMID:28484640

  11. Studies of extra-solar Oort clouds and the Kuiper disk

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1996-01-01

    We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. According to 'standard' theory, both the Kuiper Belt and the Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Therefore, searches for comet disks and clouds orbiting other stars offer a new method for inferring the presence of planetary systems. This project consists of two efforts: (1) observational work to predict and search for the signatures of Oort Clouds and comet disks around other stars; and (2) modelling studies of the formation and evolution of the Kuiper Belt (KB) and similar assemblages that may reside around other stars, including beta Pic.

  12. The Birth of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Young, Richard E. (Technical Monitor)

    1997-01-01

    An overview of current theories of star and planet formation is presented. These models are based upon observations of the Solar System and of young stars and their environments, and they predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates.

  13. Integration of planetary protection activities

    NASA Technical Reports Server (NTRS)

    Race, Margaret S.

    1995-01-01

    For decades, NASA has been concerned about the protection of planets and other solar system bodies from biological contamination. Its policies regarding biological contamination control for outbound and inbound planetary spacecraft have evolved to focus on three important areas: (1) the preservation of celestial objects and the space environment; (2) protection of Earth from extraterrestrial hazards; and (3) ensuring the integrity of its scientific investigations. Over the years as new information has been obtained from planetary exploration and research, planetary protection parameters and policies have been modified accordingly. The overall focus of research under this cooperative agreement has been to provide information about non-scientific and societal factors related to planetary protection and use it in the planning and implementation phases of future Mars sample return missions.

  14. Role of cold water and beta-effect in the formation of the East Korean Warm Current in the East/Japan Sea: a numerical experiment

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Yub; Cho, Yang-Ki; Kim, Young Ho

    2018-06-01

    The contributions of bottom cold water and planetary β-effect to the formation of the East Korean Warm Current (EKWC), the western boundary current in the East/Japan Sea (EJS), were evaluated using an idealized three-dimensional numerical model. The model results suggest that the bottom cold water and, to a lesser extent, the planetary β-effect both contribute to the formation of the EKWC. The cold water functions as the bottom of the upper layer, to control the EKWC via conservation of potential vorticity. It is known that cold waters, such as the North Korean Cold Water and Korea Strait Bottom Cold Water often observed during summer along the southwestern coast of the EJS, originate from the winter convection in the northern area. Observational studies consistently show that the EKWC strengthens in summer when the cold water extends further south along the western boundary.

  15. Reports of planetary geology and geophysics program, 1989

    NASA Technical Reports Server (NTRS)

    Holt, Henry (Editor)

    1990-01-01

    Abstracts of reports from Principal Investigators of NASA's Planetary Geology and Geophysics Program are compiled. The research conducted under this program during 1989 is summarized. Each report includes significant accomplishments in the area of the author's funded grant or contract.

  16. The Dynamics of Tide and Resonances in Exoplanetary Systems

    NASA Astrophysics Data System (ADS)

    Chen, Y. Y.

    2015-05-01

    In recent years, the planet formation theory and planetary system dynamics have become an important area of astronomy. With more details of exoplanets being found, many characteristics quite different from the solar system have been found in the exoplanetary systems. A large number of planets are found to be very close to their host star, and their periods are only a few days, which brings strong tidal dissipation with the star. Many period ratios of adjacent planets in multi-planetary systems are close to the simple integer ratios, which indicates that the planets are likely in the mean motion resonances (MMRs). The range of the angles between the orbital plane of the planets and the equatorial plane of their hosts expands from ≤sssim 7(°) for the planets in the solar system to 0(°) ˜ 180(°) , and some retrograde hot Jupiters exist. These new phenomena are testing out the traditional planetary formation theory and planetary system dynamics, but also provide an unprecedented opportunity for their further improvement and development. Based on these latest observational data and statistical features, the thesis investigates some special configurations combining the resonances and tidal dissipation by the way of planetary system dynamics. The thesis first reviews the primary applications and the latest progress in the tide as well as various resonances of exoplanets. Then it gives some tidal model derivations, including the classic one and most popular one, in order to understand the assumptions of the equilibrium tide. Meanwhile, the average rates of change of orbital elements under tidal dissipation are exhibited. By both numerical simulation and theoretical analysis, the following three questions are investigated: the evolution of the eccentricity of planets in the non-synchronous spin-orbit resonances, the characteristics of nearly 2:1 MMR and Laplace resonance under tidal dissipation, and the promoting role of the gravity of outer gas disk for exciting the planets in its inner cavity. Chapter 3 takes into account the tidal dissipation and the gravity from planet deformation, and concludes that, the tidal dissipation rates in all the non-synchronous spin-orbit resonances are greater than that in the quasi-stationary state of the spin of the planet, so the eccentricity is also damped within a shorter duration. In order to explain the formation of two period ratios nearly 2:1 in the three planet HD40307 system, Chapter 4 simulates the evolution paths of planets in two different situations. If the planets are always stable during and after the dissipation of gas disk, their eccentricities directly from the interaction among planets are very small (˜ 10(-4) ). So the changing timescale of period ratios is much larger than the age of the system. On the contrary, if the planets have experienced unstable phases, their eccentricities would be excited, which can accelerate the evolution of the period ratios effectively. In this situation, three paths exist to achieve the current configuration, whose initial semi-major axes respectively correspond to three different regions on the plane of two period ratios. It can be inferred that the instability stage after the dissipation of the gas disk is a necessary condition for the system to achieve the evolution from 2:1 MMRs to the current configuration under tidal dissipation with the star. Chapter 5 proposes a mechanism to reduce the critical inclination of orbital pumping, in order to explain the retrograde hot Jupiters in latest observations. Considering the gravity of the outer gas disk, a secular resonance would occur between the planets in the inner cavity if they are in appropriate positions, which pumps the mutual inclination of the planets and induces the Kozai resonance between them in some situations. Then the eccentricity and inclination of the inner planet will be excited eventually. We develop the equation of the rates of change of orbital elements under the secular perturbation in hierarchical three-body system (with respect to an arbitrary plane rather than the invariant plane of the two orbits), as well as give the rates of change of orbital elements under a 2-D disk gravity equations. Combining the two parts, the results by integrating the evolution equations are good approximation of the N-body simulations. By scanning the parameter spaces using the evolution equations, we get the preliminary critical condition for the retrograde hot Jupiters formed, and give a complete discussion of the impact of relevant parameters.

  17. From hygroscopic aerosols to cloud droplets: The HygrA-CD campaign in the Athens basin - An overview.

    PubMed

    Papayannis, A; Argyrouli, A; Bougiatioti, A; Remoundaki, E; Vratolis, S; Nenes, A; Solomos, S; Komppula, M; Giannakaki, E; Kalogiros, J; Banks, R; Eleftheriadis, K; Mantas, E; Diapouli, E; Tzanis, C G; Kazadzis, S; Binietoglou, I; Labzovskii, L; Vande Hey, J; Zerefos, C S

    2017-01-01

    The international experimental campaign Hygroscopic Aerosols to Cloud Droplets (HygrA-CD), organized in the Greater Athens Area (GAA), Greece from 15 May to 22 June 2014, aimed to study the physico-chemical properties of aerosols and their impact on the formation of clouds in the convective Planetary Boundary Layer (PBL). We found that under continental (W-NW-N) and Etesian (NE) synoptic wind flow and with a deep moist PBL (~2-2.5km height), mixed hygroscopic (anthropogenic, biomass burning and marine) particles arrive over the GAA, and contribute to the formation of convective non-precipitating PBL clouds (of ~16-20μm mean diameter) with vertical extent up to 500m. Under these conditions, high updraft velocities (1-2ms -1 ) and cloud condensation nuclei (CCN) concentrations (~2000cm -3 at 1% supersaturation), generated clouds with an estimated cloud droplet number of ~600cm -3 . Under Saharan wind flow conditions (S-SW) a shallow PBL (<1-1.2km height) develops, leading to much higher CCN concentrations (~3500-5000cm -3 at 1% supersaturation) near the ground; updraft velocities, however, were significantly lower, with an estimated maximum cloud droplet number of ~200cm -3 and without observed significant PBL cloud formation. The largest contribution to cloud droplet number variance is attributed to the updraft velocity variability, followed by variances in aerosol number concentration. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Sixth Symposium on Chemical Evolution and the Origin and Evolution of Life

    NASA Technical Reports Server (NTRS)

    Acevedo, Sara (Editor); DeVincenzi, Donald L. (Editor); Chang, Sherwood (Editor)

    1998-01-01

    The 6th Symposium on Chemical Evolution and the Origin and Evolution of Life was convened at NASA Ames Research Center, November 17-20, 1997. This Symposium is convened every three years under the auspices of NASA's Exobiology Program Office. All Principal Investigators funded by this Program present their most recent research accomplishments at the Symposium. Scientific papers were presented in the following areas: cosmic evolution of the biogenic elements, prebiotic evolution (both planetary and chemical), evolution of early organisms and evolution of organisms in extreme environments, solar system exploration, and star and planet formation. The Symposium was attended by over 200 scientists from NASA centers and Universities nationwide.

  19. Trapping Planetary Noble Gases During the Fischer-Tropsch-Type Synthesis of Organic Materials

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A.; Johnson, N. M.; Meshik, A.

    2010-01-01

    When hydrogen, nitrogen and CO arc exposed to amorphous iron silicate surfaces at temperatures between 500 - 900K, a carbonaceous coating forms via Fischer-Tropsch type reactions!, Under normal circumstances such a catalytic coating would impede or stop further reaction. However, we find that this coating is a better catalyst than the amorphous iron silicates that initiate these rcactions:u . The formation of a self-perpetuating catalytic coating on grain surfaces could explain the rich deposits of macromolecular carbon found in primitive meteorites and would imply that protostellar nebulae should be rich in organic materiaL Many more experiments are needed to understand this chemical system and its application to protostellar nebulae.

  20. Effective depth of spectral line formation in planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Lestrade, J. P.; Chamberlain, J. W.

    1980-01-01

    The effective level of line formation for spectroscopic absorption lines has long been regarded as a useful parameter for determining average atmospheric values of the quantities involved in line formation. The identity of this parameter was recently disputed. The dependence of this parameter on the average depth where photons are absorbed in a semi-infinite atmosphere is established. It is shown that the mean depths derived by others are similar in nature and behavior.

  1. Comparing HARPS and Kepler surveys. The alignment of multiple-planet systems

    NASA Astrophysics Data System (ADS)

    Figueira, P.; Marmier, M.; Boué, G.; Lovis, C.; Santos, N. C.; Montalto, M.; Udry, S.; Pepe, F.; Mayor, M.

    2012-05-01

    Context. The recent results of the HARPS and Kepler surveys provided us with a bounty of extrasolar systems. While the two teams extensively analyzed each of their data-sets, little work has been done comparing the two. Aims: We study a subset of the planetary population whose characterization is simultaneously within reach of both instruments. We compare the statistical properties of planets in systems with msini > 5-10 M⊕ and R > 2 R⊕, as inferred from the HARPS and Kepler surveys, respectively. If we assume that the underlying population has the same characteristics, the different detection sensitivity to the orbital inclination relative to the line of sight allows us to probe the planets' mutual inclination. Methods: We considered the frequency of systems with one, two, and three planets as dictated by HARPS data. We used Kepler's planetary period and host mass and radius distributions (corrected from detection bias) to model planetary systems in a simple, yet physically plausible way. We then varied the mutual inclination between planets in a system according to different prescriptions (completely aligned, Rayleigh distributions, and isotropic) and compared the transit frequencies with one, two, or three planets with those measured by Kepler. Results: The results show that the two datasets are compatible, a remarkable result especially because there are no tunable knobs other than the assumed inclination distribution. For msini cutoffs of 7-10 M⊕, which are those expected to correspond to the radius cutoff of 2 R⊕, we conclude that the results are better described by a Rayleigh distribution with a mode of 1° or smaller. We show that the best-fit scenario only becomes a Rayleigh distribution with a mode of 5° if we assume a quite extreme mass-radius relationship for the planetary population. Conclusions: These results have important consequences for our understanding of the role of several proposed formation and evolution mechanisms. They confirm that planets are likely to have been formed in a disk and show that most planetary systems evolve quietly without strong angular momentum exchanges such as those produced by Kozai mechanism or planet scattering.

  2. Planetary influence in the gap of a protoplanetary disk: structure formation and an application to V1247 Ori

    NASA Astrophysics Data System (ADS)

    Alvarez-Meraz, R.; Nagel, E.; Rendon, F.; Barragan, O.

    2017-10-01

    We present a set of hydrodynamical models of a planetary system embedded in a protoplanetary disk in order to extract the number of dust structures formed in the disk, their masses and sizes, within optical depth ranges τ≤0.5, 0.5<τ<2 and τ≥2. The study of the structures shows: (1) an increase in the number of planets implies an increase in the creation rate of massive structures; (2) a lower planetary mass accretion corresponds to slower time effects for optically thin structures; (3) an increase in the number of planets allows a faster evolution of the structures in the Hill radius for the different optical depth ranges of the inner planets. An ad-hoc simulation was run using the available information of the stellar system V1247 Ori, leading to a model of a planetary system which explains the SED and is consistent with interferometric observations of structures.

  3. Honors

    NASA Astrophysics Data System (ADS)

    2011-05-01

    Among the new members elected to the U.S. National Academy of Sciences in May are five AGU members: Richard Edwards, George and Orpha Gibson Chair of Earth Systems Sciences and Distinguished McKnight University Professor, Department of Geology and Geophysics, University of Minnesota, Minneapolis; T. Mark Harrison, director, Institute of Geophysics and Planetary Physics, and professor of geology, Department of Earth and Space Sciences, University of California, Los Angeles; David Sandwell, professor of geophysics, Institute for Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California, San Diego, La Jolla (president of the AGU Geodesy section); Benjamin Santer, physicist and atmospheric scientist, Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, Calif.; and Steven Wofsy, Abbott Lawrence Rotch Professor of Atmospheric and Environmental Science, Department of Earth and Planetary Sciences, Harvard University, Cambridge, Mass. Four AGU members are among the 2011 prizewinners announced by the Division for Planetary Sciences (DPS) of the American Astronomical Society on 19 May. The prizes will be presented at the joint meeting of DPS and the European Planetary Science Congress in October. William Ward of the Southwest Research Institute, San Antonio, Tex., is the recipient of the Gerard P. Kuiper Prize for outstanding contributions to the field of planetary science. DPS indicated that Ward originally proposed and evaluated “many dynamical processes that are now cornerstones of current theories of how planets form and evolve” and that his “visionary ideas form the foundation for a significant portion of current work in planetary formation and dynamics.”

  4. Chemical dynamics of triacetylene formation and implications to the synthesis of polyynes in Titan's atmosphere

    PubMed Central

    Gu, X.; Kim, Y. S.; Kaiser, R. I.; Mebel, A. M.; Liang, M. C.; Yung, Y. L.

    2009-01-01

    For the last four decades, the role of polyynes such as diacetylene (HCCCCH) and triacetylene (HCCCCCCH) in the chemical evolution of the atmosphere of Saturn's moon Titan has been a subject of vigorous research. These polyacetylenes are thought to serve as an UV radiation shield in planetary environments; thus, acting as prebiotic ozone, and are considered as important constituents of the visible haze layers on Titan. However, the underlying chemical processes that initiate the formation and control the growth of polyynes have been the least understood to date. Here, we present a combined experimental, theoretical, and modeling study on the synthesis of the polyyne triacetylene (HCCCCCCH) via the bimolecular gas phase reaction of the ethynyl radical (CCH) with diacetylene (HCCCCH). This elementary reaction is rapid, has no entrance barrier, and yields the triacetylene molecule via indirect scattering dynamics through complex formation in a single collision event. Photochemical models of Titan's atmosphere imply that triacetylene may serve as a building block to synthesize even more complex polyynes such as tetraacetylene (HCCCCCCCCH). PMID:19805262

  5. Chemical dynamics of triacetylene formation and implications to the synthesis of polyynes in Titan's atmosphere.

    PubMed

    Gu, X; Kim, Y S; Kaiser, R I; Mebel, A M; Liang, M C; Yung, Y L

    2009-09-22

    For the last four decades, the role of polyynes such as diacetylene (HCCCCH) and triacetylene (HCCCCCCH) in the chemical evolution of the atmosphere of Saturn's moon Titan has been a subject of vigorous research. These polyacetylenes are thought to serve as an UV radiation shield in planetary environments; thus, acting as prebiotic ozone, and are considered as important constituents of the visible haze layers on Titan. However, the underlying chemical processes that initiate the formation and control the growth of polyynes have been the least understood to date. Here, we present a combined experimental, theoretical, and modeling study on the synthesis of the polyyne triacetylene (HCCCCCCH) via the bimolecular gas phase reaction of the ethynyl radical (CCH) with diacetylene (HCCCCH). This elementary reaction is rapid, has no entrance barrier, and yields the triacetylene molecule via indirect scattering dynamics through complex formation in a single collision event. Photochemical models of Titan's atmosphere imply that triacetylene may serve as a building block to synthesize even more complex polyynes such as tetraacetylene (HCCCCCCCCH).

  6. The Elephant in the Room: Effects of Distant, Massive Companions on Planetary System Architectures

    NASA Astrophysics Data System (ADS)

    Knutson, Heather

    2016-06-01

    Over the past two decades ongoing radial velocity and transit surveys have been astoundingly successful in detecting thousands of new planetary systems around nearby stars. These systems include apparently single gas giant planets on short period orbits, closely packed systems of up to 5-6 “super-Earths”, and relatively empty systems with either one or no small planets interior to 0.5 AU. Despite our success in cataloguing the diverse properties of these systems, we are still struggling to develop narratives that can explain their apparently divergent formation and migration histories. This is in large part due to our lack of knowledge about the potential presence of massive outer companions in these systems, which can play a pivotal role in the shaping the final properties of the inner planets. In my talk I will discuss current efforts to complete the census for known planetary systems by searching for outer gas giant planets with long term radial velocity monitoring and wide separation stellar companions with high contrast imaging and spectroscopy. I will then demonstrate how statistical constraints on this population of outer companions can be used to test current theories for planet formation and migration.

  7. A NEW HYBRID N-BODY-COAGULATION CODE FOR THE FORMATION OF GAS GIANT PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromley, Benjamin C.; Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu

    2011-04-20

    We describe an updated version of our hybrid N-body-coagulation code for planet formation. In addition to the features of our 2006-2008 code, our treatment now includes algorithms for the one-dimensional evolution of the viscous disk, the accretion of small particles in planetary atmospheres, gas accretion onto massive cores, and the response of N-bodies to the gravitational potential of the gaseous disk and the swarm of planetesimals. To validate the N-body portion of the algorithm, we use a battery of tests in planetary dynamics. As a first application of the complete code, we consider the evolution of Pluto-mass planetesimals in amore » swarm of 0.1-1 cm pebbles. In a typical evolution time of 1-3 Myr, our calculations transform 0.01-0.1 M{sub sun} disks of gas and dust into planetary systems containing super-Earths, Saturns, and Jupiters. Low-mass planets form more often than massive planets; disks with smaller {alpha} form more massive planets than disks with larger {alpha}. For Jupiter-mass planets, masses of solid cores are 10-100 M{sub +}.« less

  8. Ionisation in ultra-cool, cloud forming extrasolar planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Helling, Christiane; the LEAP Team

    2015-04-01

    Transit spectroscopy provides evidence that extrasolare planets are covered in clouds, a finding that has been forecast by cloud model simulations 15 years ago. Atmospheres are strongly affected by clouds through their large opacity and their chemical activity. Cloud formation models allow to predict cloud particle sizes, their chemical composition and the composition of the remaining atmospheric gas (Woitke & Helling 2004, A&A 414; Helling & Woitke 2006, A&A 455), for example, as input for radiative transfer codes like Drift-Phoenix (Witte et al. 2009; A&A 506). These cloud particles are charged and can discharge, for example in form of lighting (Helling et al. 2013, ApJ 767; Bailey et al. 2014, ApJ 784). Earth observations demonstrate that lighting effects not only the local chemistry but also the electron budget of the atmosphere. This talk will present our work on cloud formation modelling and ionisation processes in cloud forming atmospheres. An hierarchy of ionisation processes leads to a vertically inhomogenously ionised atmosphere which has implications for planetary mass loss and global circulation pattern of planetary atmospheres. Processes involved, like Cosmic Ray ionisation, do also activate the local chemistry such that large hydrocarbon molecules form (Rimmer et al. 2014, IJAsB 13).

  9. Sublimation of icy planetesimals and the delivery of water to the habitable zone around solar type stars

    NASA Astrophysics Data System (ADS)

    Brunini, Adrián; López, María Cristina

    2018-06-01

    We present a semi analytic model to evaluate the delivery of water to the habitable zone around a solar type star carried by icy planetesimals born beyond the snow line. The model includes sublimation of ice, gas drag and scattering by an outer giant planet located near the snow line. The sublimation model is general and could be applicable to planetary synthesis models or N-Body simulations of the formation of planetary systems. We perform a short series of simulations to asses the potential relevance of sublimation of volatiles in the process of delivery of water to the inner regions of a planetary system during early stages of its formation. We could anticipate that erosion by sublimation would prevent the arrival of much water to the habitable zone of protoplanetary disks in the form of icy planetesimals. Close encounters with a massive planet orbiting near the outer edge of the snow line could make possible for planetesimals to reach the habitable zone somewhat less eroded. However, only large planetesimals could provide appreciable amounts of water. Massive disks and sharp gas surface density profiles favor icy planetesimals to reach inner regions of a protoplanetary disk.

  10. Publications of the Exobiology Program for 1980: A special bibliography

    NASA Technical Reports Server (NTRS)

    Pleasant, L. G.; Devincenzi, D. L.

    1981-01-01

    a list of approximately 160 publications resulting from research pursued under the auspices of NASA'S exobiology Program is given. The publications address chemical evolution, organic geochemistry, origin and evolution of life, planetary environments, life in the universe, and planetary protection.

  11. Multi-scale forcing and the formation of subtropical desert and monsoon

    NASA Astrophysics Data System (ADS)

    Wu, G. X.; Liu, Y.; Zhu, X.; Li, W.; Ren, R.; Duan, A.; Liang, X.

    2009-09-01

    This study investigates three types of atmospheric forcing across the summertime subtropics that are shown to contribute in various ways to the occurrence of dry and wet climates in the subtropics. To explain the formation of desert over the western parts of continents and monsoon over the eastern parts, we propose a new mechanism of positive feedback between diabatic heating and vorticity generation that occurs via meridional advection of planetary vorticity and temperature. Monsoon and desert are demonstrated to coexist as twin features of multi-scale forcing, as follows. First, continent-scale heating over land and cooling over ocean induce the ascent of air over the eastern parts of continents and western parts of oceans, and descent over eastern parts of oceans and western parts of continents. Second, local-scale sea-breeze forcing along coastal regions enhances air descent over eastern parts of oceans and ascent over eastern parts of continents. This leads to the formation of the well-defined summertime subtropical LOSECOD quadruplet-heating pattern across each continent and adjacent oceans, with long-wave radiative cooling (LO) over eastern parts of oceans, sensible heating (SE) over western parts of continents, condensation heating (CO) over eastern parts of continents, and double dominant heating (D: LO+CO) over western parts of oceans. Such a quadruplet heating pattern corresponds to a dry climate over the western parts of continents and a wet climate over eastern parts. Third, regional-scale orographic-uplift-heating generates poleward ascending flow to the east of orography and equatorward descending flow to the west. The Tibetan Plateau (TP) is located over the eastern Eurasian continent. The TP-forced circulation pattern is in phase with that produced by continental-scale forcing, and the strongest monsoon and largest deserts are formed over the Afro-Eurasian Continent. In contrast, the Rockies and the Andes are located over the western parts of their respective continents, and orography-induced ascent is separated from ascent due to continental-scale forcing. Accordingly, the deserts and monsoon climate over these continents are not as strongly developed as those over the Eurasian Continent. A new mechanism of positive feedback between diabatic heating and vorticity generation, which occurs via meridional transfer of heat and planetary vorticity, is proposed as a means of explaining the formation of subtropical desert and monsoon. Strong low-level longwave radiative cooling over eastern parts of oceans and strong surface sensible heating on western parts of continents generate negative vorticity that is balanced by positive planetary vorticity advection from high latitudes. The equatorward flow generated over eastern parts of oceans produces cold sea-surface temperature and stable stratification, leading in turn to the formation of low stratus clouds and the maintenance of strong in situ longwave radiative cooling. The equatorward flow over western parts of continents carries cold, dry air, thereby enhancing local sensible heating as well as moisture release from the underlying soil. These factors result in a dry desert climate. Over the eastern parts of continents, condensation heating generates positive vorticity in the lower troposphere, which is balanced by negative planetary vorticity advection of the meridional flow from low latitudes. The flow brings warm and moist air, thereby enhancing local convective instability and condensation heating associated with rainfall. These factors produce a wet monsoonal climate. Overall, our results demonstrate that subtropical desert and monsoon coexist as a consequence of multi-scale forcing along the subtropics.

  12. Extended infrared emission around IRAS 21282 + 5050

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse D.; Booth, John; Gilmore, D. K.; Kay, Laura; Rank, David

    1992-01-01

    Multiaperture 3-4-micron spectra along with K- and L-band images of the compact planetary nebula IRAS 21282 + 5050 show a 5 arcsec - 20 arcsec diameter nebula with structure similar to many other planetary nebulae. The spectral observations and the L-band image show evidence for extended PAH emission out to a radius of 20 arcsec, while the K-band image shows a 5 arcsec diameter nebula. An observed linear increase of integrated brightness with aperture size at L band implies a 1/r exp 2 volume emissivity for a spherically symmetric model. The spectral similarity of the emission in the small and large apertures suggests fluorescent emission by the PAHs. If the observed emission is from PAHs which formed during the planetary nebulae stage of IRAs 21282 + 5050, then PAHs have been forming for not less than 3000 yr. If the PAH emission is from material produced during the earlier red giant phase, then the formation time frame was much longer. The morphological and spectral similarity of IRAS 21282 + 5050 to many other planetary nebulae suggests that this phenomenon may be widespread, and that planetary nebulae may be a significant source of interstellar PAHs.

  13. The Resilience of Kepler Multi-systems to Stellar Obliquity

    NASA Astrophysics Data System (ADS)

    Spalding, Christopher; Marx, Noah W.; Batygin, Konstantin

    2018-04-01

    The Kepler mission and its successor K2 have brought forth a cascade of transiting planets. Many of these planetary systems exhibit multiple transiting members. However, a large fraction possesses only a single transiting planet. This high abundance of singles, dubbed the "Kepler Dichotomy," has been hypothesized to arise from significant mutual inclinations between orbits in multi-planet systems. Alternatively, the single-transiting population truly possesses no other planets in the system, but the true origin of the overabundance of single systems remains unresolved. In this work, we propose that planetary systems typically form with a coplanar, multiple-planetary architecture, but that quadrupolar gravitational perturbations from their rapidly-rotating host star subsequently disrupt this primordial coplanarity. We demonstrate that, given sufficient stellar obliquity, even systems beginning with 2 planetary constituents are susceptible to dynamical instability soon after planet formation, as a result of the stellar quadrupole moment. This mechanism stands as a widespread, yet poorly explored pathway toward planetary system instability. Moreover, by requiring that observed multi-systems remain coplanar on Gyr timescales, we are able to place upper limits on the stellar obliquity in systems such as K2-38 (obliquity < 20 degrees), where other methods of measuring spin-orbit misalignment are not currently available.

  14. Magnesium isotope evidence that accretional vapour loss shapes planetary compositions

    PubMed Central

    Hin, Remco C.; Coath, Christopher D.; Carter, Philip J.; Nimmo, Francis; Lai, Yi-Jen; Pogge von Strandmann, Philip A.E.; Willbold, Matthias; Leinhardt, Zoë M.; Walter, Michael J.; Elliott, Tim

    2017-01-01

    It has long been recognised that Earth and other differentiated planetary bodies are chemically fractionated compared to primitive, chondritic meteorites and by inference the primordial disk from which they formed. An important question has been whether the notable volatile depletions of planetary bodies are a consequence of accretion1, or inherited from prior nebular fractionation2. The isotopic compositions of the main constituents of planetary bodies can contribute to this debate3–6. Using a new analytical approach to address key issues of accuracy inherent in conventional methods, we show that all differentiated bodies have isotopically heavier magnesium compositions than chondritic meteorites. We argue that possible magnesium isotope fractionation during condensation of the solar nebula, core formation and silicate differentiation cannot explain these observations. However, isotopic fractionation between liquid and vapour followed by vapour escape during accretionary growth of planetesimals generates appropriate residual compositions. Our modelling implies that the isotopic compositions of Mg, Si and Fe and the relative abundances of the major elements of Earth, and other planetary bodies, are a natural consequence of substantial (~40% by mass) vapour loss from growing planetesimals by this mechanism. PMID:28959965

  15. Unbound or distant planetary mass population detected by gravitational microlensing.

    PubMed

    2011-05-19

    Since 1995, more than 500 exoplanets have been detected using different techniques, of which 12 were detected with gravitational microlensing. Most of these are gravitationally bound to their host stars. There is some evidence of free-floating planetary-mass objects in young star-forming regions, but these objects are limited to massive objects of 3 to 15 Jupiter masses with large uncertainties in photometric mass estimates and their abundance. Here, we report the discovery of a population of unbound or distant Jupiter-mass objects, which are almost twice (1.8(+1.7)(-0.8)) as common as main-sequence stars, based on two years of gravitational microlensing survey observations towards the Galactic Bulge. These planetary-mass objects have no host stars that can be detected within about ten astronomical units by gravitational microlensing. However, a comparison with constraints from direct imaging suggests that most of these planetary-mass objects are not bound to any host star. An abrupt change in the mass function at about one Jupiter mass favours the idea that their formation process is different from that of stars and brown dwarfs. They may have formed in proto-planetary disks and subsequently scattered into unbound or very distant orbits.

  16. Common Data Format: New XML and Conversion Tools

    NASA Astrophysics Data System (ADS)

    Han, D. B.; Liu, M. H.; McGuire, R. E.

    2002-12-01

    Common Data Format (CDF) is a self-describing platform-independent data format for storing, accessing, and manipulating scalar and multidimensional scientific data sets. Significant benefit has accrued to specific science communities from their use of standard formats within those communities. Examples include the International Solar Terrestrial Physics (ISTP) community in using CDF for traditional space physics data (fields, particles and plasma, waves, and images), the worldwide astronomical community in using FITS (Flexible Image Transport System) for solar data (primarily spectral images), the NASA Planetary community in using Planetary Data System (PDS) Labels, and the earth science community in using Hierarchical Data Format (HDF). Scientific progress in solar-terrestrial physics continues to be impeded by the multiplicity of available standards for data formats and dearth of general data format translators. As a result, scientists today spend a significant amount of time translating data into the format they are familiar with for their research. To minimize this unnecessary data translation time and to allow more research time, the CDF office located at GSFC National Space Science Data Center (NSSDC) has developed HDF-to-CDF and FITS-to-CDF translators, and employed the eXtensible Markup Language (XML) technology to facilitate and promote data interoperability within the space science community. We will present the current status of the CDF work including the conversion tools that have been recently developed, conversion tools that are planned in the near future, share some of the XML experiences, and use the discussion to gain community feedback to our planned future work.

  17. Collisional dynamics of perturbed particle disks in the solar system

    NASA Technical Reports Server (NTRS)

    Roberts, W. W.; Stewart, G. R.

    1987-01-01

    Investigations of the collisional evolution of particulate disks subject to the gravitational perturbation of a more massive particle orbiting within the disk are underway. Both numerical N-body simulations using a novel collision algorithm and analytical kinetic theory are being employed to extend our understanding of perturbed disks in planetary rings and during the formation of the solar system. Particular problems proposed for investigation are: (1) The development and testing of general criteria for a small moonlet to clear a gap and produce observable morphological features in planetary rings; (2) The development of detailed models of collisional damping of the wavy edges observed on the Encke division of Saturn's A ring; and (3) The determination of the extent of runaway growth of the few largest planetesimals during the early stages of planetary accretion.

  18. Planetary Habitability

    NASA Technical Reports Server (NTRS)

    Kasting, James F.

    1997-01-01

    This grant was entitled 'Planetary Habitability' and the work performed under it related to elucidating the conditions that lead to habitable, i.e. Earth-like, planets. Below are listed publications for the past two and a half years that came out of this work. The main thrusts of the research involved: (1) showing under what conditions atmospheric O2 and O3 can be considered as evidence for life on a planet's surface; (2) determining whether CH4 may have played a role in warming early Mars; (3) studying the effect of varying UV levels on Earth-like planets around different types of stars to see whether this would pose a threat to habitability; and (4) studying the effect of chaotic obliquity variations on planetary climates and determining whether planets that experienced such variations might still be habitable. Several of these topics involve ongoing research that has been carried out under a new grant number, but which continues to be funded by NASA's Exobiology program.

  19. Accurate Treatment of Collisions and Water-Delivery in Models of Terrestrial Planet Formation

    NASA Astrophysics Data System (ADS)

    Haghighipour, Nader; Maindl, Thomas; Schaefer, Christoph

    2017-10-01

    It is widely accepted that collisions among solid bodies, ignited by their interactions with planetary embryos is the key process in the formation of terrestrial planets and transport of volatiles and chemical compounds to their accretion zones. Unfortunately, due to computational complexities, these collisions are often treated in a rudimentary way. Impacts are considered to be perfectly inelastic and volatiles are considered to be fully transferred from one object to the other. This perfect-merging assumption has profound effects on the mass and composition of final planetary bodies as it grossly overestimates the masses of these objects and the amounts of volatiles and chemical elements transferred to them. It also entirely neglects collisional-loss of volatiles (e.g., water) and draws an unrealistic connection between these properties and the chemical structure of the protoplanetary disk (i.e., the location of their original carriers). We have developed a new and comprehensive methodology to simulate growth of embryos to planetary bodies where we use a combination of SPH and N-body codes to accurately model collisions as well as the transport/transfer of chemical compounds. Our methodology accounts for the loss of volatiles (e.g., ice sublimation) during the orbital evolution of their careers and accurately tracks their transfer from one body to another. Results of our simulations show that traditional N-body modeling of terrestrial planet formation overestimates the amount of the mass and water contents of the final planets by over 60% implying that not only the amount of water they suggest is far from being realistic, small planets such as Mars can also form in these simulations when collisions are treated properly. We will present details of our methodology and discuss its implications for terrestrial planet formation and water delivery to Earth.

  20. Survival, DNA Integrity, and Ultrastructural Damage in Antarctic Cryptoendolithic Eukaryotic Microorganisms Exposed to Ionizing Radiation

    NASA Astrophysics Data System (ADS)

    Pacelli, Claudia; Selbmann, Laura; Zucconi, Laura; Raguse, Marina; Moeller, Ralf; Shuryak, Igor; Onofri, Silvano

    2017-02-01

    Life dispersal between planets, planetary protection, and the search for biosignatures are main topics in astrobiology. Under the umbrella of the STARLIFE project, three Antarctic endolithic microorganisms, the melanized fungus Cryomyces antarcticus CCFEE 515, a hyaline strain of Umbilicaria sp. (CCFEE 6113, lichenized fungus), and a Stichococcus sp. strain (C45A, green alga), were exposed to high doses of space-relevant gamma radiation (60Co), up to 117.07 kGy. After irradiation survival, DNA integrity and ultrastructural damage were tested. The first was assessed by clonogenic test; viability and dose responses were reasonably described by the linear-quadratic formalism. DNA integrity was evaluated by PCR, and ultrastructural damage was observed by transmission electron microscopy. The most resistant among the tested organisms was C. antarcticus both in terms of colony formation and DNA preservation. Besides, results clearly demonstrate that DNA was well detectable in all the tested organisms even when microorganisms were dead. This high resistance provides support for the use of DNA as a possible biosignature during the next exploration campaigns. Implication in planetary protection and contamination during long-term space travel are put forward.

  1. On the unique structure of the magnetic fields of Uranus and Neptune

    NASA Technical Reports Server (NTRS)

    Dolginov, Sh. SH.

    1993-01-01

    The magnetic fields of Uranus and Neptune, which have comparable dipole, quadrupole, and octupole harmonics, are unique in the present-day solar system, but they resemble the geomagnetic field at the epochs of excursions and reversals known from paleomagnetic data. The precession dynamo model, in which the dominant role in the generation of the planetary magnetic fields is played by external gravitational forces, allows us to propose two scenarios for the formation of the unique topology of the magnetic fields of Uranus and Neptune. In the first case, tidal flows in the 'oceans' of these two planets extend down to the depths where the matter has a noticeable electric conductivity and velocity. A hydromagnetic interaction of the moving conducting fluid with the planetary magnetic field outside the generation region results in the deformation of the field and the deceleration of the motion under the action of the radial magnetic field. In the second case, the deformation of the field facilitates drastic changes in cyclonic cells within the generation region causing instabilities that result in a multi-polar field structure, excursions, and inversions. This paper considers this problem in greater detail by using the Neptune-Triton system as an example.

  2. The symbiosis of photometry and radial-velocity measurements

    NASA Technical Reports Server (NTRS)

    Cochran, William D.

    1994-01-01

    The FRESIP mission is optimized to detect the inner planets of a planetary system. According to the current paradigm of planet formation, these planets will probably be small Earth-sized objects. Ground-based radial-velocity programs now have the sensitivity to detect Jovian-mass planets in orbit around bright solar-type stars. We expect the more massive planets to form in the outer regions of a proto-stellar nebula. These two types of measurements will very nicely complement each other, as they have highest detection probability for very different types of planets. The combination of FRESIP photometry and ground-based spectra will provide independent confirmation of the existence of planetary systems in orbit around other stars. Such detection of both terrestrial and Jovian planets in orbit around the same star is essential to test our understanding of planet formation.

  3. Formation of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Young, Richard E. (Technical Monitor)

    1998-01-01

    An overview of current theories of the formation of our Solar System, with emphasis on giant planets, is presented. The most detailed models are based upon observations of planets and smaller bodies within our own Solar System and of young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Larger disk mass allows for faster growth of solid planetary bodies. The ability of a solid planet to trap gas from the protoplanetary disk increases rapidly as its mass increases (because the depth of its gravitational potential well increases), but decreases as the planetesimal accretion rate is increased (as it becomes hotter). The net effect of increasing disk mass is that gas giant planets form more rapidly, but with larger core masses. Observations of circumstellar disks suggest an upper bound on the time available prior to dissipation of the gas, and planetary models place upper limits on core sizes. Together, these constraints suggest that Jupiter and Saturn formed in 1-10 million years, and the density of solids in the region of their formation was a few times as large as the lower bound provided by the traditional minimum mass nebula.

  4. Formation of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald L. (Technical Monitor)

    1998-01-01

    An overview of current theories of the formation of our Solar System, with emphasis on giant planets, is presented. The most detailed models are based upon observations of planets and smaller bodies within our own Solar System and of young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Larger disk mass allows for faster growth of solid planetary bodies. The ability of a solid planet to trap gas from the protoplanetary disk increases rapidly as its mass increases (because the depth of its gravitational potential well increases), but decreases as the planetesimal accretion rate is increased (as it becomes hotter). The net effect of increasing disk mass is that gas giant planets form more rapidly, but with larger core masses. Observations of circumstellar disks suggest an upper bound on the time available prior to dissipation of the gas, and planetary models place upper limits on core sizes. Together, these constraints suggest that Jupiter and Saturn formed in 1 - 10 million years, and the density of solids in the region of their formation was a few times as large as the lower bound provided by the traditional minimum mass nebula.

  5. Laboratory evaluation and application of microwave absorption properties under simulated conditions for planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, P. G.

    1986-01-01

    The recognition of the need to make laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressure which correspond to the altitudes probed by radio occultation experiments, and over a range of frequencies which correspond to both radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. Construction was completed of the outer planets simulator and measurements were conducted of the microwave absorption and refraction from nitrogen under simulated Titan conditions. The results of these and previous laboratory measurements were applied to a wide range of microwave opacity measurements, in order to derive constituent densities and distributions in planetary atmospheres such as Venus.

  6. Low-Energy Impacts onto Lunar Regolith Simulant

    NASA Astrophysics Data System (ADS)

    Seward, Laura M.; Colwell, J.; Mellon, M.; Stemm, B.

    2012-10-01

    Low-Energy Impacts onto Lunar Regolith Simulant Laura M. Seward1, Joshua E. Colwell1, Michael T. Mellon2, and Bradley A. Stemm1, 1Department of Physics, University of Central Florida, Orlando, Florida, 2Southwest Research Institute, Boulder, Colorado. Impacts and cratering in space play important roles in the formation and evolution of planetary bodies. Low-velocity impacts and disturbances to planetary regolith are also a consequence of manned and robotic exploration of planetary bodies such as the Moon, Mars, and asteroids. We are conducting a program of laboratory experiments to study low-velocity impacts of 1 to 5 m/s into JSC-1 lunar regolith simulant, JSC-Mars-1 Martian regolith simulant, and silica targets under 1 g. We use direct measurement of ejecta mass and high-resolution video tracking of ejecta particle trajectories to derive ejecta mass velocity distributions. Additionally, we conduct similar experiments under microgravity conditions in a laboratory drop tower and on parabolic aircraft with velocities as low as 10 cm/s. We wish to characterize and understand the collision parameters that control the outcome of low-velocity impacts into regolith, including impact velocity, impactor mass, target shape and size distribution, regolith depth, target relative density, and crater depth, and to experimentally determine the functional dependencies of the outcomes of low-velocity collisions (ejecta mass and ejecta velocities) on the controlling parameters of the collision. We present results from our ongoing study showing the positive correlation between impact energy and ejecta mass. The total ejecta mass is also dependent on the packing density (porosity) of the regolith. We find that ejecta mass velocity fits a power-law or broken power-law distribution. Our goal is to understand the physics of ejecta production and regolith compaction in low-energy impacts and experimentally validate predictive models for dust flow and deposition. We will present our results from one-g and microgravity impact experiments.

  7. The final fate of planetary systems

    NASA Astrophysics Data System (ADS)

    Gaensicke, Boris

    2015-12-01

    The discovery of the first extra-solar planet around a main-sequence star in 1995 has changed the way we think about the Universe: our solar system is not unique. Twenty years later, we know that planetary systems are ubiquitous, orbit stars spanning a wide range in mass, and form in an astonishing variety of architectures. Yet, one fascinating aspect of planetary systems has received relatively little attention so far: their ultimate fate.Most planet hosts will eventually evolve into white dwarfs, Earth-sized stellar embers, and the outer parts of their planetary systems (in the solar system, Mars and beyond) can survive largely intact for billions of years. While scattered and tidally disrupted planetesimals are directly detected at a small number of white dwarfs in the form infrared excess, the most powerful probe for detecting evolved planetary systems is metal pollution of the otherwise pristine H/He atmospheres.I will present the results of a multi-cycle HST survey that has obtained COS observations of 136 white dwarfs. These ultraviolet spectra are exquisitely sensitive to the presence of metals contaminating the white atmosphere. Our sophisticated model atmosphere analysis demonstrates that at least 27% of all targets are currently accreting planetary debris, and an additional 29% have very likely done so in the past. These numbers suggest that planet formation around A-stars (the dominant progenitors of today's white dwarf population) is similarly efficient as around FGK stars.In addition to post-main sequence planetary system demographics, spectroscopy of the debris-polluted white dwarf atmospheres provides a direct window into the bulk composition of exo-planetesimals, analogous to the way we use of meteorites to determine solar-system abundances. Our ultraviolet spectroscopy is particularly sensitive to the detection of Si, a dominant rock-forming species, and we identify up to ten additional volatile and refractory elements in the most strongly contaminated white dwarfs. The derived bulk abundances unambiguously demonstrate the predominantly rocky nature of the accreted material, with two exceptions where we detect volatile-rich debris. The relative abundance ratios suggest a wide range of parent bodies, including both primitive asteroids and fragments from differentiated planetesimals. The growing number of detailed debris abundances can provide important observational constraints on planet formation models.

  8. Depletion of Vandium in Planetary Mantles: Controlled by Metal, Oxide, or Silicate?

    NASA Technical Reports Server (NTRS)

    Righter, Kevin

    2006-01-01

    Vanadium concentrations in planetary mantles can provide information about the conditions during early accretion and differentiation. Because V is a slightly siderophile element, it is usually assumed that any depletion would be due to core formation and metal-silicate equilibrium. However, V is typically more compatible in phases such as spinel, magnesiowuestite and garnet. Fractionation of all of these phases would cause depletions more marked than those from metal. In this paper consideration of depletions due to metal, oxide and silicate are critically evaluated.

  9. On the State of Stress and Failure Prediction Near Planetary Surface Loads

    NASA Astrophysics Data System (ADS)

    Schultz, R. A.

    1996-03-01

    The state of stress surrounding planetary surface loads has been used extensively to predict failure of surface rocks and to invert this information for effective elastic thickness. As demonstrated previously, however, several factors can be important including an explicit comparison between model stresses and rock strength as well as the magnitude of calculated stress. As re-emphasized below, failure to take stress magnitudes into account can lead to erroneous predictions of near-surface faulting. This abstract results from discussions on graben formation at Fall 1995 AGU.

  10. High Pressure Serpentinization Catalysed by Awaruite in Planetary Bodies

    NASA Astrophysics Data System (ADS)

    Neto-Lima, J.; Fernández-Sampedro, M.; Prieto-Ballesteros, O.

    2017-10-01

    Recent discoveries from planetary missions show that serpentinization process may act significantly on the geological evolution and potential habitability of the icy bodies of the Solar System, like Enceladus or Europa. Here we review the available experimental data so far about methane formation occurring during serpentinization, which is potentially relevant to icy moons, and present our results using awaruite as a catalyst of this process. The efficiency of awaruite and high pressure in the Fischer-Tropsch and Sabatier Type reactions are evaluated here when olivine is incubated.

  11. Phase Equilibrium Investigations of Planetary Materials

    NASA Technical Reports Server (NTRS)

    Grove, T. L.

    1997-01-01

    This grant provided funds to carry out experimental studies designed to illuminate the conditions of melting and chemical differentiation that has occurred in planetary interiors. Studies focused on the conditions of mare basalt generation in the moon's interior and on processes that led to core formation in the Shergottite Parent Body (Mars). Studies also examined physical processes that could lead to the segregation of metal-rich sulfide melts in an olivine-rich solid matrix. The major results of each paper are discussed below and copies of the papers are attached as Appendix I.

  12. Factors Affecting the Habitability of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Meadows, Victoria; NAI-Virtual Planetary Laboratory Team

    2014-03-01

    Habitability is a measure of an environment's potential to support life. For exoplanets, the concept of habitability can be used broadly - to inform our calculations of the possibility and distribution of life elsewhere - or as a practical tool to inform mission designs and to prioritize specific targets in the search for extrasolar life. Although a planet's habitability does depend critically on the effect of stellar type and planetary semi-major axis on climate balance, work in the interdisciplinary field of astrobiology has identified many additional factors that can affect a planet's environment and its potential ability to support life. Life requires material for metabolism and structures, a liquid medium for chemical transport, and an energy source to drive metabolism and other life processes. Whether a planet's surface or sub-surface can provide these requirements is the result of numerous planetary and astrophysical processes that affect the planet's formation and evolution. Many of these factors are interdependent, and fall into three main categories: stellar effects, planetary effects and planetary system effects. Key abiotic processes affecting the resultant planetary environment include photochemistry (e.g. Segura et al., 2003; 2005), stellar effects on climate balance (e.g. Joshii et al., 2012; Shields et al., 2013), atmospheric loss (e.g. Lopez and Fortney, 2013), and gravitational interactions with the star (e.g. Barnes et al., 2013). In many cases, the effect of these processes is strongly dependent on a specific planet's existing environmental properties. Examples include the resultant UV flux at a planetary surface as a product of stellar activity and the strength of a planet's atmospheric UV shield (Segura et al., 2010); and the amount of tidal energy available to a planet to drive plate tectonics and heat the surface (Barnes et al., 2009), which is in turn due to a combination of stellar mass, planetary mass and composition, planetary orbital parameters and the gravitational influence of other planets in the system. A thorough assessment of a planet's environment and its potential habitability is a necessary first step in the search for biosignatures. Targeted environmental characteristics include surface temperature and pressure (e.g. Misra et al., 2013), a census of bulk and trace atmospheric gases, and whether there are signs of liquid water on the planetary surface (e.g. Robinson et al., 2010). The robustness of a planetary biosignature is dependent on being able to characterize the environment sufficiently well, and to understand likely star-planet interactions, to preclude formation of a biosignature gas via abiotic processes such as photochemistry (e.g. Segura et al., 2007; Domagal-Goldman et al., 2011; Grenfell et al., 2012). Here we also discuss potential false positives for O2 and O3, which, in large quantities, are often considered robust biosignatures for oxygenic photosynthesis. There is clearly significant future work required to better identify and understand the key environmental processes and interactions that allow a planet to support life, and to distinguish life's global impact on an environment from the environment itself.

  13. Using Sandia's Z Machine and Density Functional Theory Simulations to Understand Planetary Materials

    NASA Astrophysics Data System (ADS)

    Root, Seth

    2017-06-01

    The use of Z, NIF, and Omega have produced many breakthrough results in high pressure physics. One area that has greatly benefited from these facilities is the planetary sciences. The high pressure behavior of planetary materials has implications for numerous geophysical and planetary processes. The continuing discovery of exosolar super-Earths demonstrates the need for accurate equation of state data to better inform our models of their interior structures. Planetary collision processes, such as the moon-forming giant impact, require understanding planetary materials over a wide-range of pressures and temperatures. Using Z, we examined the shock compression response of some common planetary materials: MgO, Mg2SiO4, and Fe2O3 (hematite). We compare the experimental shock compression measurements with density functional theory (DFT) based quantum molecular dynamics (QMD) simulations. The combination of experiment and theory provides clearer understanding of planetary materials properties at extreme conditions. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. Virtual observatory tools and amateur radio observations supporting scientific analysis of Jupiter radio emissions

    NASA Astrophysics Data System (ADS)

    Cecconi, Baptiste; Hess, Sebastien; Le Sidaner, Pierre; Savalle, Renaud; Stéphane, Erard; Coffre, Andrée; Thétas, Emmanuel; André, Nicolas; Génot, Vincent; Thieman, Jim; Typinski, Dave; Sky, Jim; Higgins, Chuck; Imai, Masafumi

    2016-04-01

    In the frame of the preparation of the NASA/JUNO and ESA/JUICE (Jupiter Icy Moon Explorer) missions, and the development of a planetary sciences virtual observatory (VO), we are proposing a new set of tools directed to data providers as well as users, in order to ease data sharing and discovery. We will focus on ground based planetary radio observations (thus mainly Jupiter radio emissions), trying for instance to enhance the temporal coverage of jovian decametric emission. The data service we will be using is EPN-TAP, a planetary science data access protocol developed by Europlanet-VESPA (Virtual European Solar and Planetary Access). This protocol is derived from IVOA (International Virtual Observatory Alliance) standards. The Jupiter Routine Observations from the Nancay Decameter Array are already shared on the planetary science VO using this protocol, as well as data from the Iitate Low Frquency Radio Antenna, in Japan. Amateur radio data from the RadioJOVE project is also available. The attached figure shows data from those three providers. We will first introduce the VO tools and concepts of interest for the planetary radioastronomy community. We will then present the various data formats now used for such data services, as well as their associated metadata. We will finally show various prototypical tools that make use of this shared datasets.

  15. Time-dependent simulations of disk-embedded planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Stökl, A.; Dorfi, E. A.

    2014-03-01

    At the early stages of evolution of planetary systems, young Earth-like planets still embedded in the protoplanetary disk accumulate disk gas gravitationally into planetary atmospheres. The established way to study such atmospheres are hydrostatic models, even though in many cases the assumption of stationarity is unlikely to be fulfilled. Furthermore, such models rely on the specification of a planetary luminosity, attributed to a continuous, highly uncertain accretion of planetesimals onto the surface of the solid core. We present for the first time time-dependent, dynamic simulations of the accretion of nebula gas into an atmosphere around a proto-planet and the evolution of such embedded atmospheres while integrating the thermal energy budget of the solid core. The spherical symmetric models computed with the TAPIR-Code (short for The adaptive, implicit RHD-Code) range from the surface of the rocky core up to the Hill radius where the surrounding protoplanetary disk provides the boundary conditions. The TAPIR-Code includes the hydrodynamics equations, gray radiative transport and convective energy transport. The results indicate that diskembedded planetary atmospheres evolve along comparatively simple outlines and in particular settle, dependent on the mass of the solid core, at characteristic surface temperatures and planetary luminosities, quite independent on numerical parameters and initial conditions. For sufficiently massive cores, this evolution ultimately also leads to runaway accretion and the formation of a gas planet.

  16. Formation of Outer Planets: Overview

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack

    2003-01-01

    An overview of current theories of planetary formation, with emphasis on giant planets is presented. The most detailed models are based upon observation of our own Solar System and of young stars and their environments. Terrestrial planets are believe to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. According to the prevailing core instability model, giant planets begin their growth by the accumulation of small solid bodies, as do terrestrial planets. However, unlike terrestrial planets, the growing giant cores become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk disspates. The primary questions regarding the core instability model is whether planets with small cores can accrete gaseous enveloples within the lifetimes of gaseous protoplanetary disks. The main alternative giant planet formation model is the disk instability model, in which gaseous planets form directly via gravitational instabilities within protoplanetary disks. Formation of giant planets via gas instability has never been demonstrated for realistic disk conditions. Moreover, this model has difficulty explaining the supersolar abundances of heavy elements in Jupiter and Saturn, and it does not explain the orgin of planets like Uranus and Neptune.

  17. Temperature- and pressure-dependent structural transformation of methane hydrates in salt environments

    NASA Astrophysics Data System (ADS)

    Shin, Donghoon; Cha, Minjun; Yang, Youjeong; Choi, Seunghyun; Woo, Yesol; Lee, Jong-Won; Ahn, Docheon; Im, Junhyuck; Lee, Yongjae; Han, Oc Hee; Yoon, Ji-Ho

    2017-03-01

    Understanding the stability of volatile species and their compounds under various surface and subsurface conditions is of great importance in gaining insights into the formation and evolution of planetary and satellite bodies. We report the experimental results of the temperature- and pressure-dependent structural transformation of methane hydrates in salt environments using in situ synchrotron X-ray powder diffraction, solid-state nuclear magnetic resonance, and Raman spectroscopy. We find that under pressurized and concentrated brine solutions methane hydrate forms a mixture of type I clathrate hydrate, ice, and hydrated salts. Under a low-pressure condition, however, the methane hydrates are decomposed through a rapid sublimation of water molecules from the surface of hydrate crystals, while NaCl · 2H2O undergoes a phase transition into a crystal growth of NaCl via the migration of salt ions. In ambient pressure conditions, the methane hydrate is fully decomposed in brine solutions at temperatures above 252 K, the eutectic point of NaCl · 2H2O.

  18. Astronomy4Kids: Utilizing online video forums to teach basic planetary concepts to children (pre-K to 2nd-grade)

    NASA Astrophysics Data System (ADS)

    Pearson, Richard L.

    2016-10-01

    We have developed Astronomy4Kids to help cultivate the next generation of scientists by using technology to reach every interested child in both formal and informal learning environments. This online video series fills the void of effective STEM education tools for children under the age of 8. Our first collection of videos discuss many planetary topics, including the following: planet and moon formation theories, solar and lunar eclipses, and the seasonal effect of the Earth's tilt. As education and outreach become a larger focus of groups such as AAS and NASA, it is imperative to include programs such as Astronomy4Kids to extend these initiatives to younger age groups.Traditionally, this age group has been viewed as too young to be introduced to physics and astronomy concepts. However, child development research is consistently demonstrating the amazing plasticity of a young child's mind: the younger one is introduced to a complex concept, the easier it is to grasp later on. Following the philosophies of Fred Rogers, we present children with a real, relatable, instructor allowing them to focus on the concepts being presented.The format of Astronomy4Kids includes short instruction video clips that usually include a hands-on activity that is easily reproduced at home or in the classroom. This permits flexibility in how the video series is utilized. Within formal classroom or after-school situations, teachers and instructors can lead the discussion and activity with help from the video and supplemental materials (e.g. worksheets, concept outlines, etc.). Informal environments permit the viewer to complete the tasks on their own or simply enjoy the presentation. The video series can be found on YouTube (under "Astronomy 4 Kids") or Facebook (at www.facebook.com/astronomy4kids); we have also expanded to Instagram (www.instragram.com/astronomy4kids) and Pinterest (www.pinterest.com/astronomy4kids).

  19. Forsterite Shock Temperatures and Entropy: New Scaling Laws for Impact Melting and Vaporization

    NASA Astrophysics Data System (ADS)

    Davies, E.; Root, S.; Kraus, R. G.; Townsend, J. P.; Spaulding, D.; Stewart, S. T.; Jacobsen, S. B.; Fratanduono, D.; Millot, M. A.; Mattsson, T. R.; Hanshaw, H. L.

    2017-12-01

    The observed masses, radii and temperatures of thousands of extra-solar planets have challenged our theoretical understanding of planet formation and planetary structures. Planetary materials are subject to extreme pressures and temperatures during formation and within the present-day interiors of large bodies. Here, we focus on improving understanding of the physical properties of rocky planets for calculations of internal structure and the outcomes of giant impacts. We performed flyer plate impact experiments on forsterite [Mg2SiO4] on the Z-Machine at Sandia National Laboratory and decaying shock temperature measurements at the Omega EP laser at U. Rochester. At Z, planar, supported shock waves are generated in single crystal samples, permitting observation of both compressed and released states. Using available static and dynamic thermodynamic data, we calculate absolute entropy and heat capacity along the forsterite shock Hugoniot. Entropy and heat capacity on the Hugoniot are larger than previous estimates. Our data constrain the thermodynamic properties of forsterite liquid at high pressures and temperatures and the amount of melt and vapor produced during impact events. For an ambient pressure of 1 bar, shock-vaporization begins upon reaching the liquid region on the forsterite Hugoniot (about 200 GPa). Using hydrocode simulations of giant impacts between rocky planets with forsterite mantles and iron cores and the new experimentally-constrained forsterite shock entropy, we present a new scaling law for the fraction of mantle that is melted or vaporized by the initial shock wave. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. Prepared by LLNL under Contract DE-AC52-07NA27344. Prepared by the Center for Frontiers in High Energy Density Science

  20. Health condition identification of multi-stage planetary gearboxes using a mRVM-based method

    NASA Astrophysics Data System (ADS)

    Lei, Yaguo; Liu, Zongyao; Wu, Xionghui; Li, Naipeng; Chen, Wu; Lin, Jing

    2015-08-01

    Multi-stage planetary gearboxes are widely applied in aerospace, automotive and heavy industries. Their key components, such as gears and bearings, can easily suffer from damage due to tough working environment. Health condition identification of planetary gearboxes aims to prevent accidents and save costs. This paper proposes a method based on multiclass relevance vector machine (mRVM) to identify health condition of multi-stage planetary gearboxes. In this method, a mRVM algorithm is adopted as a classifier, and two features, i.e. accumulative amplitudes of carrier orders (AACO) and energy ratio based on difference spectra (ERDS), are used as the input of the classifier to classify different health conditions of multi-stage planetary gearboxes. To test the proposed method, seven health conditions of a two-stage planetary gearbox are considered and vibration data is acquired from the planetary gearbox under different motor speeds and loading conditions. The results of three tests based on different data show that the proposed method obtains an improved identification performance and robustness compared with the existing method.

  1. Baby Solar System

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Grady, Carol

    2012-01-01

    What did our solar system look like in its infancy,...... when the planets were forming? We cannot travel back in time to take an image of the early solar system, but in principle we can have the next best thing: images of infant planetary systems around Sun-like stars with ages of 1 to 5 million years, the time we think it took for the giant planets to form. Infant exoplanetary systems are critically important because they can help us understand how our solar system fits within the context of planet formation in general. More than 80% of stars are born with gas- and dust-rich disks, and thus have the potential to form planets. Through many methods we have identified more than 760 planetary systems around middle-aged stars like the Sun, but many of these have architectures that look nothing like our solar system. Young planetary systems are important missing links between various endpoints and may help us understand how and when these differences emerge. Well-known star-forming regions in Taurus, Scorpius. and Orion contain stars that could have infant planetary systems. But these stars are much more distant than our nearest neighbors such as Alpha Centauri or Sirius, making it extremely challenging to produce clear images of systems that can reveal signs of recent planet formation, let alone reveal the planets themselves. Recently, a star with the unassuming name LkCa 15 may have given us our first detailed "baby picture" of a young planetary system similar to our solar system. Located about 450 light-years away in the Taurus starforming region. LkCa 15 has a mass comparable to the Sun (0.97 solar mass) and an age of l to 5 million years, comparable to the time at which Saturn and perhaps Jupiter formed. The star is surrounded by a gas-rich disk similar in structure to the one in our solar system from which the planets formed. With new technologies and observing strategies, we have confirmed suspicions that LkCa 15's disk harbors a young planetary system.

  2. Statistics, Formation and Stability of Exoplanetary Systems

    NASA Astrophysics Data System (ADS)

    Silburt, Ari

    Over the past two decades scientists have detected thousands of exoplanets, and their collective properties are now emerging. This thesis contributes to the exoplanet field by analyzing the statistics, formation and stability of exoplanetary systems. The first part of this thesis conducts a statistical reconstruction of the radius and period distributions of Kepler planets. Accounting for observation and detection biases, as well as measurement errors, we calculate the occurrence of planetary systems, including the prevalence of Earth-like planets. This calculation is compared to related works, finding both similarities and differences. Second, the formation of Kepler planets near mean motion resonance (MMR) is investigated. In particular, 27 Kepler systems near 2:1 MMR are analyzed to determine whether tides are a viable mechanism for transporting Kepler planets from MMR. We find that tides alone cannot transport near-resonant planets from exact 2:1 MMR to their observed locations, and other mechanisms must be invoked to explain their formation. Third, a new hybrid integrator HERMES is presented, which is capable of simulating N-bodies undergoing close encounters. HERMES is specifically designed for planets embedded in planetesimal disks, and includes an adaptive routine for optimizing the close encounter boundary to help maintain accuracy. We find the performance of HERMES comparable to other popular hybrid integrators. Fourth, the longterm stability of planetary systems is investigated using machine learning techniques. Typical studies of longterm stability require thousands of realizations to acquire statistically rigorous results, which can take weeks or months to perform. Here we find that a trained machine is capable of quickly and accurately classifying longterm planet stability. Finally, the planetary system HD155358, consisting of two Jovian-sized planets near 2:1 MMR, is investigated using previously collected radial velocity data. New orbital parameters are derived using a Bayesian framework, and we find a high likelihood that the planets are in MMR. In addition, formation and stability constraints are placed on the HD155358 system.

  3. How the morphology of dusts influences packing density in small solar system bodies

    NASA Astrophysics Data System (ADS)

    Zangmeister, C.; Radney, J. G.; Zachariah, M. R.

    2014-12-01

    Large planetary seedlings, comets, and nanoscale soot particles are made from rigid, aggregated subunits that are compacted under low compression into larger structures spanning over 10 orders of magnitude in dimensional space. Here, we demonstrate that the packing density (Φf) of compacted rigid aggregates is independent of spatial scale for systems under weak compaction, a regime that includes small solar system bodies. The Φf of rigid aggregated structures across 6 orders of magnitude were measured using nanoscale spherical soot aerosol composed of aggregates with ≈ 17 nm monomeric subunits and aggregates made from uniform monomeric 6 mm spherical subunits at the macroscale. We find Φf = 0.36 ± 0.02 at both the nano- and macroscale. These values are remarkably similar to qf observed for comet nuclei and measured values of other rigid aggregated systems across a wide variety of spatial and formative conditions. We present a packing model that incorporates the aggregate morphology and show that Φf is independent of both monomer and aggregate size. These observations suggest thatqf of rigid aggregates is independent of spatial dimension across varied formative conditions ranging from interstellar space to pharmaceutical manufacturing.

  4. Towards a population synthesis model of self-gravitating disc fragmentation and tidal downsizing II: the effect of fragment-fragment interactions

    NASA Astrophysics Data System (ADS)

    Forgan, D. H.; Hall, C.; Meru, F.; Rice, W. K. M.

    2018-03-01

    It is likely that most protostellar systems undergo a brief phase where the protostellar disc is self-gravitating. If these discs are prone to fragmentation, then they are able to rapidly form objects that are initially of several Jupiter masses and larger. The fate of these disc fragments (and the fate of planetary bodies formed afterwards via core accretion) depends sensitively not only on the fragment's interaction with the disc, but also with its neighbouring fragments. We return to and revise our population synthesis model of self-gravitating disc fragmentation and tidal downsizing. Amongst other improvements, the model now directly incorporates fragment-fragment interactions while the disc is still present. We find that fragment-fragment scattering dominates the orbital evolution, even when we enforce rapid migration and inefficient gap formation. Compared to our previous model, we see a small increase in the number of terrestrial-type objects being formed, although their survival under tidal evolution is at best unclear. We also see evidence for disrupted fragments with evolved grain populations - this is circumstantial evidence for the formation of planetesimal belts, a phenomenon not seen in runs where fragment-fragment interactions are ignored. In spite of intense dynamical evolution, our population is dominated by massive giant planets and brown dwarfs at large semimajor axis, which direct imaging surveys should, but only rarely, detect. Finally, disc fragmentation is shown to be an efficient manufacturer of free-floating planetary mass objects, and the typical multiplicity of systems formed via gravitational instability will be low.

  5. A system architecture for a planetary rover

    NASA Technical Reports Server (NTRS)

    Smith, D. B.; Matijevic, J. R.

    1989-01-01

    Each planetary mission requires a complex space vehicle which integrates several functions to accomplish the mission and science objectives. A Mars Rover is one of these vehicles, and extends the normal spacecraft functionality with two additional functions: surface mobility and sample acquisition. All functions are assembled into a hierarchical and structured format to understand the complexities of interactions between functions during different mission times. It can graphically show data flow between functions, and most importantly, the necessary control flow to avoid unambiguous results. Diagrams are presented organizing the functions into a structured, block format where each block represents a major function at the system level. As such, there are six blocks representing telecomm, power, thermal, science, mobility and sampling under a supervisory block called Data Management/Executive. Each block is a simple collection of state machines arranged into a hierarchical order very close to the NASREM model for Telerobotics. Each layer within a block represents a level of control for a set of state machines that do the three primary interface functions: command, telemetry, and fault protection. This latter function is expanded to include automatic reactions to the environment as well as internal faults. Lastly, diagrams are presented that trace the system operations involved in moving from site to site after site selection. The diagrams clearly illustrate both the data and control flows. They also illustrate inter-block data transfers and a hierarchical approach to fault protection. This systems architecture can be used to determine functional requirements, interface specifications and be used as a mechanism for grouping subsystems (i.e., collecting groups of machines, or blocks consistent with good and testable implementations).

  6. Evidence for Reduced, Carbon-rich Regions in the Solar Nebula from an Unusual Cometary Dust Particle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Gregorio, Bradley T.; Stroud, Rhonda M.; Nittler, Larry R.

    Geochemical indicators in meteorites imply that most formed under relatively oxidizing conditions. However, some planetary materials, such as the enstatite chondrites, aubrite achondrites, and Mercury, were produced in reduced nebular environments. Because of large-scale radial nebular mixing, comets and other Kuiper Belt objects likely contain some primitive material related to these reduced planetary bodies. Here, we describe an unusual assemblage in a dust particle from comet 81P/Wild 2 captured in silica aerogel by the NASA Stardust spacecraft. The bulk of this ∼20 μ m particle is comprised of an aggregate of nanoparticulate Cr-rich magnetite, containing opaque sub-domains composed of poorlymore » graphitized carbon (PGC). The PGC forms conformal shells around tiny 5–15 nm core grains of Fe carbide. The C, N, and O isotopic compositions of these components are identical within errors to terrestrial standards, indicating a formation inside the solar system. Magnetite compositions are consistent with oxidation of reduced metal, similar to that seen in enstatite chondrites. Similarly, the core–shell structure of the carbide + PGC inclusions suggests a formation via FTT reactions on the surface of metal or carbide grains in warm, reduced regions of the solar nebula. Together, the nanoscale assemblage in the cometary particle is most consistent with the alteration of primary solids condensed from a C-rich, reduced nebular gas. The nanoparticulate components in the cometary particle provide the first direct evidence from comets of reduced, carbon-rich regions that were present in the solar nebula.« less

  7. Advanced Photon Source Activity Report 2003: Report of Work Conducted at the APS, January 2003-December 2003, Synchrotron x-ray diffraction at the APS, Sector 16 (HPCAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goncharov, A F; Zaug, J M; Crowhurst, J C

    2005-01-27

    We present here the summary of the results of our studies using the APS synchrotron beamline IDB Sector 16 (HPCAT). Optical calibration of pressure sensors for high pressures and temperatures: The high-pressure ruby scale for static measurements is well established to at least 100 GPa (about 5% accuracy), however common use of this and other pressure scales at high temperature is clearly based upon unconfirmed assumptions. Namely that high temperature does not affect observed room temperature pressure derivatives. The establishment of a rigorous pressure scale along with the identification of appropriate pressure gauges (i.e. stable in the high P-T environmentmore » and easy to use) is important for securing the absolute accuracy of fundamental experimental science where results guide the development of our understanding of planetary sciences, geophysics, chemistry at extreme conditions, etc. X-ray diffraction in formic acid under high pressure: Formic acid (HCOOH) is common in the solar system; it is a potential component of the Galilean satellites. Despite this, formic acid has not been well-studied at high temperatures and pressures. A phase diagram of formic acid at planetary interior pressures and temperatures will add to the understanding of planetary formation and the potential for life on Europa. Formic acid (unlike most simple organic acids) forms low-temperature crystal structures characterized by infinite hydrogen-bonded chains of molecules. The behavior of these hydrogen bonds at high pressure is of great interest. Our current research fills this need.« less

  8. The formation of stellar systems from interstellar molecular clouds

    NASA Technical Reports Server (NTRS)

    Gehrz, R. D.; Black, D. C.; Solomon, P.M.

    1984-01-01

    The observational and theoretical study of regions of continuing star formation promises greater insight into the physical conditions and events associated with the formation of the solar system, and elucidates the role played by star formation in the evolutionary cycle which seems to dominate interstellar material's processing by successive generations of stars in the spiral galaxies. Novel astronomical methods incorporated by the new facilities scheduled for development in the 1980s may yield substantial advancements in star formation process theory; most significant among these efforts will be the identification and examination of the elusive protostellar collapse phase of both star and planetary system formation.

  9. Characterizing the Disk of a Recent Massive Collisional Event

    NASA Astrophysics Data System (ADS)

    Song, Inseok

    2015-10-01

    Debris disks play a key role in the formation and evolution of planetary systems. On rare occasions, circumstellar material appears as strictly warm infrared excess in regions of expected terrestrial planet formation and so present an interesting opportunity for the study of terrestrial planetary regions. There are only a few known cases of extreme, warm, dusty disks which lack any colder outer component including BD+20 307, HD 172555, EF Cha, and HD 23514. We have recently found a new system TYC 8830-410-1 belonging to this rare group. Warm dust grains are extremely short-lived, and the extraordinary amount of warm dust near these stars can only be plausibly explainable by a recent (or on-going) massive transient event such as the Late Heavy Bombardment (LHB) or plantary collisions. LHB-like events are seen generally in a system with a dominant cold disk, however, warm dust only systems show no hint of a massive cold disk. Planetary collisions leave a telltale sign of strange mid-IR spectral feature such as silica and we want to fully characterize the spectral shape of the newly found system with SOFIA/FORCAST. With SOFIA/FORCAST, we propose to obtain two narrow band photometric measurements between 6 and 9 microns. These FORCAST photometric measurements will constrain the amount and temperature of the warm disk in the system. There are less than a handful systems with a strong hint of recent planetary collisions. With the firmly constrained warm disk around TYC 8830-410-1, we will publish the discovery in a leading astronomical journal accompanied with a potential press release through SOFIA.

  10. Bringing Planetary Data into Learning Environments: A Community Effort

    NASA Astrophysics Data System (ADS)

    Shipp, S.; Higbie, M.; Lowes, L.

    2005-12-01

    Recognizing the need to communicate scientific findings, and the power of using real planetary data in educational settings to engage students in Earth and space science in meaningful ways, the South Central Organization of Researchers and Educators and the Solar System Exploration Education Forum, part of NASA's Science Mission Directorate's Support Network, have established the Planetary Data in Education (PDE) Initiative. The Initiative strives to: 1) Establish a collaborative community of educators, education specialists, curriculum developers, tool developers, learning technologists, scientists, and data providers to design and develop educationally appropriate products; 2) Build awareness in the broader educational and scientific community of existing programs, products, and resources; 3) Address issues hindering the effective use of planetary data in formal and informal educational settings; and 4) Encourage partnerships that leverage the community's expertise The PDE community has hosted two conferences exploring issues in using data in educational settings. The community recognizes that data are available through venues such as the Planetary Data Systems (PDS), but not in a format that the end-user in a formal or informal educational setting can digest; these data are intended for the scientific audience. Development of meaningful educational programs using planetary data requires design of appropriate learner interfaces and involvement of data providers, product developers, learning technologists, scientists, and educators. The PDE community will participate in the development of Earth Exploration Toolbooks during the DLESE Data Services Workshop and will host a workshop in the summer of 2006 to bring together small groups of educators, data providers, and learning technologists, and scientists to design and develop products that bring planetary data into educational settings. In addition, the PDE community hosts a Web site that presents elements identified as needed by the community, including examples of planetary data use in education, recommendations for program development, links to data providers, opportunities for collaboration, pertinent research, and a Web portal to access educational resources using planetary data on the DLESE Web site.

  11. Zodiacal Exoplanets in Time: Searching for Young Stars in K2

    NASA Astrophysics Data System (ADS)

    Morris, Nathan; Mann, Andrew W.

    2017-06-01

    Nearby young, open clusters such as the Hyades, Pleiades, and Praesepe provide an important reference point for the properties of stellar systems in general. In each cluster, all stars are of the same known age. As such, observations of planetary systems around these stars can be used to gain insight into the early stages of planetary system formation. K2, the revived Kepler mission, has provided a vast number of light curves for young stars in the and elsewhere in the K2 field. We aim to compute rotational periods from sunspot patterns for all K2 target stars and use gyrochronometric relationships derived from cluster stars to determine their ages. From there, we will search for planets around young stars outside the clusters with the ultimate goal of shedding light on how planets and planetary systems evolve with time.

  12. Planetary Systems Dynamics Eccentric patterns in debris disks & Planetary migration in binary systems

    NASA Astrophysics Data System (ADS)

    Faramaz, V.; Beust, H.; Augereau, J.-C.; Bonsor, A.; Thébault, P.; Wu, Y.; Marshall, J. P.; del Burgo, C.; Ertel, S.; Eiroa, C.; Montesinos, B.; Mora, A.

    2014-01-01

    We present some highlights of two ongoing investigations that deal with the dynamics of planetary systems. Firstly, until recently, observed eccentric patterns in debris disks were found in young systems. However recent observations of Gyr-old eccentric debris disks leads to question the survival timescale of this type of asymmetry. One such disk was recently observed in the far-IR by the Herschel Space Observatory around ζ2 Reticuli. Secondly, as a binary companion orbits a circumprimary disk, it creates regions where planet formation is strongly handicapped. However, some planets were detected in this zone in tight binary systems (γ Cep, HD 196885). We aim to determine whether a binary companion can affect migration such that planets are brought in these regions and focus in particular on the planetesimal-driven migration mechanism.

  13. Origin and Evolution of Comet Clouds

    NASA Astrophysics Data System (ADS)

    Higuchi, Arika

    2007-01-01

    The Oort cloud (comet cloud) is a spherical comet reservoir surrounding a planetary system. We have investigated the comet cloud formation that consists of two dynamical stages of orbital evolution of planetesimals due to (1) planetary perturbation, and (2) the galactic tide. We investigated the first stage by using numerical calculations and obtained the probabilities of the fates of planetesimals as functions of the orbital parameters of the planets and planetesimals. We investigated the second stage by using the secular perturbation theory and showed the evolution of the structure of a comet cloud from a planetesimal disk. We found that (1) massive planets effectively produce comet cloud candidates by scattering and (2) many planetesimals with semimajor axes larger than 1,000 AU rise up their perihelion distances to the outside of the planetary region and become members of the Oort cloud in 5 Gyr.

  14. Ancient oceans and Martian paleohydrology

    NASA Technical Reports Server (NTRS)

    Baker, Victor R.; Strom, Robert G.; Gulick, Virginia C.; Kargel, Jeffrey S.; Komatsu, Goro; Kale, Vishwas S.

    1991-01-01

    The global model of ocean formation on Mars is discussed. The studies of impact crater densities on certain Martian landforms show that late in Martian history there could have been coincident formation of: (1) glacial features in the Southern Hemisphere; (2) ponded water and related ice features in the northern plains; (3) fluvial runoff on Martian uplands; and (4) active ice-related mass-movement. This model of transient ocean formation ties these diverse observations together in a long-term cyclic scheme of global planetary operation.

  15. Time-Dependent Simulations of the Formation and Evolution of Disk-Accreted Atmospheres Around Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Stoekl, Alexander; Dorfi, Ernst

    2014-05-01

    In the early, embedded phase of evolution of terrestrial planets, the planetary core accumulates gas from the circumstellar disk into a planetary envelope. This atmosphere is very significant for the further thermal evolution of the planet by forming an insulation around the rocky core. The disk-captured envelope is also the staring point for the atmospheric evolution where the atmosphere is modified by outgassing from the planetary core and atmospheric mass loss once the planet is exposed to the radiation field of the host star. The final amount of persistent atmosphere around the evolved planet very much characterizes the planet and is a key criterion for habitability. The established way to study disk accumulated atmospheres are hydrostatic models, even though in many cases the assumption of stationarity is unlikely to be fulfilled. We present, for the first time, time-dependent radiation hydrodynamics simulations of the accumulation process and the interaction between the disk-nebula gas and the planetary core. The calculations were performed with the TAPIR-Code (short for The adaptive, implicit RHD-Code) in spherical symmetry solving the equations of hydrodynamics, gray radiative transport, and convective energy transport. The models range from the surface of the solid core up to the Hill radius where the planetary envelope merges into the surrounding protoplanetary disk. Our results show that the time-scale of gas capturing and atmospheric growth strongly depends on the mass of the solid core. The amount of atmosphere accumulated during the lifetime of the protoplanetary disk (typically a few Myr) varies accordingly with the mass of the planet. Thus, a core with Mars-mass will end up with about 10 bar of atmosphere while for an Earth-mass core, the surface pressure reaches several 1000 bar. Even larger planets with several Earth masses quickly capture massive envelopes which in turn become gravitationally unstable leading to runaway accretion and the eventual formation of a gas planet.

  16. Surface layer motion in planetary atmosphere containing fog of condensed gases

    NASA Astrophysics Data System (ADS)

    Datsenko, E. N.; Vasiliev, N. I.; Orlova, I. O.; Avakimyan, N. N.

    2017-11-01

    The article contains a simplified model of a wave motion of the atmospheric surface of planets containing finely dispersed particles of condensed gases, it is assumed that the surface of planets is heated above the saturation temperature of gas condensate, and the surface layers of the foggy atmosphere are strongly cooled. The mechanism of formation and growth of such waves is proposed and justified. It was found that the existence of growing waves on the surface of such an atmosphere is possible, as well as, in the course of time, the formation of a vortex in the atmosphere around the planet. Perturbations of the atmosphere thickness lead to the formation of gravitational waves propagating along its surface. The thickness of the atmosphere at the crest of the wave is greater than that in the trough. While the temperature of the atmosphere under the ridge increases, it decreases under the trough due to shielding of the thermal radiation of the planet. When the crest of a gravitational wave moves, the atmosphere under the trailing edge of the crest has a temperature higher than that under the front edge, since the trailing edge of the crest is heated more intensively by radiation from the surface of the planet. The partial pressure of the vapor of the condensed gases at the rear edge of the ridge is higher than that at the front edge; the work of the pressure difference during the motion of the ridge increases its energy and height. The authors demonstrate the analogy between the mechanisms of wave growth in a foggy atmosphere of planets and the mechanism of wave growth in a thin vapor layer between a strongly heated solid surface or a metal melt and a volatile liquid.

  17. Nasa's Planetary Geologic Mapping Program: Overview

    NASA Astrophysics Data System (ADS)

    Williams, D. A.

    2016-06-01

    NASA's Planetary Science Division supports the geologic mapping of planetary surfaces through a distinct organizational structure and a series of research and analysis (R&A) funding programs. Cartography and geologic mapping issues for NASA's planetary science programs are overseen by the Mapping and Planetary Spatial Infrastructure Team (MAPSIT), which is an assessment group for cartography similar to the Mars Exploration Program Assessment Group (MEPAG) for Mars exploration. MAPSIT's Steering Committee includes specialists in geological mapping, who make up the Geologic Mapping Subcommittee (GEMS). I am the GEMS Chair, and with a group of 3-4 community mappers we advise the U.S. Geological Survey Planetary Geologic Mapping Coordinator (Dr. James Skinner) and develop policy and procedures to aid the planetary geologic mapping community. GEMS meets twice a year, at the Annual Lunar and Planetary Science Conference in March, and at the Annual Planetary Mappers' Meeting in June (attendance is required by all NASA-funded geologic mappers). Funding programs under NASA's current R&A structure to propose geological mapping projects include Mars Data Analysis (Mars), Lunar Data Analysis (Moon), Discovery Data Analysis (Mercury, Vesta, Ceres), Cassini Data Analysis (Saturn moons), Solar System Workings (Venus or Jupiter moons), and the Planetary Data Archiving, Restoration, and Tools (PDART) program. Current NASA policy requires all funded geologic mapping projects to be done digitally using Geographic Information Systems (GIS) software. In this presentation we will discuss details on how geologic mapping is done consistent with current NASA policy and USGS guidelines.

  18. High-pressure minerals in shocked meteorites

    NASA Astrophysics Data System (ADS)

    Tomioka, Naotaka; Miyahara, Masaaki

    2017-09-01

    Heavily shocked meteorites contain various types of high-pressure polymorphs of major minerals (olivine, pyroxene, feldspar, and quartz) and accessory minerals (chromite and Ca phosphate). These high-pressure minerals are micron to submicron sized and occur within and in the vicinity of shock-induced melt veins and melt pockets in chondrites and lunar, howardite-eucrite-diogenite (HED), and Martian meteorites. Their occurrence suggests two types of formation mechanisms (1) solid-state high-pressure transformation of the host-rock minerals into monomineralic polycrystalline aggregates, and (2) crystallization of chondritic or monomineralic melts under high pressure. Based on experimentally determined phase relations, their formation pressures are limited to the pressure range up to 25 GPa. Textural, crystallographic, and chemical characteristics of high-pressure minerals provide clues about the impact events of meteorite parent bodies, including their size and mutual collision velocities and about the mineralogy of deep planetary interiors. The aim of this article is to review and summarize the findings on natural high-pressure minerals in shocked meteorites that have been reported over the past 50 years.

  19. Jupiter's decisive role in the inner Solar System's early evolution.

    PubMed

    Batygin, Konstantin; Laughlin, Greg

    2015-04-07

    The statistics of extrasolar planetary systems indicate that the default mode of planet formation generates planets with orbital periods shorter than 100 days and masses substantially exceeding that of the Earth. When viewed in this context, the Solar System is unusual. Here, we present simulations which show that a popular formation scenario for Jupiter and Saturn, in which Jupiter migrates inward from a > 5 astronomical units (AU) to a ≈ 1.5 AU before reversing direction, can explain the low overall mass of the Solar System's terrestrial planets, as well as the absence of planets with a < 0.4 AU. Jupiter's inward migration entrained s ≳ 10-100 km planetesimals into low-order mean motion resonances, shepherding and exciting their orbits. The resulting collisional cascade generated a planetesimal disk that, evolving under gas drag, would have driven any preexisting short-period planets into the Sun. In this scenario, the Solar System's terrestrial planets formed from gas-starved mass-depleted debris that remained after the primary period of dynamical evolution.

  20. The Space Infrared Interferometric Telescope (SPIRIT): Recent Study Results and Plans

    NASA Astrophysics Data System (ADS)

    Leisawitz, David; SPIRIT Mission Study Team

    2007-12-01

    SPIRIT was recommended in the 2002 "Community Plan for Far-IR/Submillimeter Space Astronomy.” A structurally connected interferometer, SPIRIT provides sensitive sub-arcsecond angular resolution images and integral field spectroscopy in the 25 to 400 micron wavelength range. SPIRIT was designed to revolutionize our understanding of planetary system formation, reveal otherwise-undetectable planets through the disk perturbations they induce, spectroscopically probe the atmospheres of extrasolar giant planets in orbits typical of most of the planets in our solar system, and yield significant new insight into the processes associated with galaxy formation and development. This paper updates previously presented study results and describes future study plans. Our SPIRIT mission concept study proposal was peer reviewed and selected by NASA for support under the Origins Probe Mission Concept Study program. NASA's Goddard Space Flight Center and four industry partners - Ball Aerospace, Boeing, Lockheed-Martin, and Northrop-Grumman - contributed generously the study. The Origins Probe study results were reviewed by an Advisory Review Panel.

  1. Origin of the moon - Capture by gas drag of the earth's primordial atmosphere

    NASA Astrophysics Data System (ADS)

    Nakazawa, K.; Komuro, T.; Hayashi, C.

    1983-06-01

    The novel lunar formation scenario proposed is an extension of planetary formation process studies suggesting that the earth originated in a gaseous solar nebula. Attention is given to a series of dynamical processes in which a low energy planetesimal is trapped within the terrestrial Hill sphere under circumstances in which the primordial atmosphere's gas density gradually decreases. An unbound planetesimal entering the Hill sphere would have had to dissipate its kinetic energy and then come into a bound orbit, before escaping from the Hill sphere, without falling onto the earth's surface. The kinetic energy dissipation condition is considered through the calculation of the solar gravity and atmospheric gas drag effects on the planetesimal's orbital motion. The result obtained shows that a low energy planetesimal of less than lunar mass can be trapped in the Hill sphere with a high probability, if it enters at those stages before atmospheric density has decreased to about 1/50th of the initial value.

  2. Wakefield acceleration in planetary atmospheres: A possible source of MeV electrons. The collisionless case

    NASA Astrophysics Data System (ADS)

    Arrayás, M.; Cubero, D.; Montanya, J.; Seviour, R.; Trueba, J. L.

    2018-07-01

    Intense electromagnetic pulses interacting with a plasma can create a wake of plasma oscillations. Electrons trapped in such oscillations can be accelerated under certain conditions to very high energies. We study the optimal conditions for the wakefield acceleration to produce MeV electrons in planetary plasmas under collisionless conditions. The conditions for the optimal plasma densities can be found in the Earth atmosphere at higher altitudes than 10-15 km, which are the altitudes where lightning leaders can take place.

  3. Lunar and Planetary Science XXXVI, Part 13

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Contents include the following: A Fast, Non-Destructive Method for Classifying Ordinary Chondrite Falls Using Density and Magnetic Susceptibility. An Update on Results from the Magnetic Properties Experiments on the Mars Exploration Rovers, Spirit and Opportunity. Measurement Protocols for In Situ Analysis of Organic Compounds at Mars and Comets. Piping Structures on Earth and Possibly Mars: Astrobiological Implications. Uranium and Lead in the Early Planetary Core Formation: New Insights Given by High Pressure and Temperature Experiments. The Mast Cameras and Mars Descent Imager (MARDI) for the 2009 Mars Science Laboratory. MGS MOC: First Views of Mars at Sub-Meter Resolution from Orbit. Analysis of Candor Chasma Interior Layered Deposits from OMEGA/MEX Spectra. Analysis of Valley Networks on Valles Marineris Plateau Using HRSC/MEX Data. Solar Abundance of Elements from Neutron-Capture Cross Sections. Preliminary Evaluation of the Secondary Ion/Accelerator Mass Spectrometer, MegaSIMS. Equilibrium Landforms in the Dry Valleys of Antarctica: Implications for Landscape Evolution and Climate Change on Mars. Continued Study of Ba Isotopic Compositions of Presolar Silicon Carbide Grains from Supernovae. Paleoenviromental Evolution of the Holden-Uzboi Area. Stability of Magnesium Sulfate Minerals in Martian Environments. Tungsten Isotopic Constraints on the Formation and Evolution of Iron Meteorite Parent Bodies. Migration of Dust Particles and Volatiles Delivery to the Inner Planets. On the Sitting of Trapped Noble Gases in Insoluble Organic Matter of Primitive Meteorites. Trapping of Xenon Upon Evaporation-Condensation of Organic Matter Under UV Irradiation: Isotopic Fractionation and Electron Paramagnetic Resonance Analysis. Stability of Water on Mars. A Didactic Activity. Analysis of Coronae in the Parga Chasma Region, Venus. Photometric and Compositional Surface Properties of the Gusev Crater Region, Mars, as Derived from Multi-Angle, Multi-Spectral Investigation of Mars Express HRSC Data. Mapping Compositional Diversity on Mars: Spatial Distribution and Geological Implications. A New Simulation Chamber for Studying Planetary Environments. Folded Structure in Terra Sirenum. Mars. Nitrogen-Noble Gas Static Mass Spectrometry of Genesis Collector Materials. Neon Isotope Heterogeneity in the Terrestrial Mantle: Implication for the Acquisition of Volatile Elements in Terrestrial Planets. The Cosmic Clock, the Cycle of Terrestrial Mass Extinctions.

  4. A homogeneous spectroscopic analysis of host stars of transiting planets

    NASA Astrophysics Data System (ADS)

    Ammler-von Eiff, M.; Santos, N. C.; Sousa, S. G.; Fernandes, J.; Guillot, T.; Israelian, G.; Mayor, M.; Melo, C.

    2009-11-01

    Context: The analysis of transiting extra-solar planets provides an enormous amount of information about the formation and evolution of planetary systems. A precise knowledge of the host stars is necessary to derive the planetary properties accurately. The properties of the host stars, especially their chemical composition, are also of interest in their own right. Aims: Information about planet formation is inferred by, among others, correlations between different parameters such as the orbital period and the metallicity of the host stars. The stellar properties studied should be derived as homogeneously as possible. The present work provides new, uniformly derived parameters for 13 host stars of transiting planets. Methods: Effective temperature, surface gravity, microturbulence parameter, and iron abundance were derived from spectra of both high signal-to-noise ratio and high resolution by assuming iron excitation and ionization equilibria. Results: For some stars, the new parameters differ from previous determinations, which is indicative of changes in the planetary radii. A systematic offset in the abundance scale with respect to previous assessments is found for the TrES and HAT objects. Our abundance measurements are remarkably robust in terms of the uncertainties in surface gravities. The iron abundances measured in the present work are supplemented by all previous determinations using the same analysis technique. The distribution of iron abundance then agrees well with the known metal-rich distribution of planet host stars. To facilitate future studies, the spectroscopic results of the current work are supplemented by the findings for other host stars of transiting planets, for a total dataset of 50 objects. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Based in part on observations made at Observatoire de Haute Provence (CNRS), France. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 080.C-0661.

  5. The Production and Archiving of Navigation and Ancillary Data for the Galileo Mission

    NASA Technical Reports Server (NTRS)

    Miller, J.; Clarke, T.

    1994-01-01

    The Galileo Mission to Jupiter is using the SPICE formats developed by the Navigation and Ancillary Information Facility, a node of the Planetary Data System, to archive its navigation and ancillary data.

  6. The Effect of Nickel on Iron Isotope Fractionation and Implications for the Earth's Core

    NASA Astrophysics Data System (ADS)

    Reagan, M. M.; Shahar, A.; Elardo, S. M.; Liu, J.; Xiao, Y.; Mao, W. L.

    2017-12-01

    The Earth's core is thought to be composed mainly of an iron-rich iron nickel (FeNi) alloy. Therefore, determining the behavior of these alloys at core conditions is crucial for interpreting and constraining geophysical and geochemical models. Understanding the effect of nickel on iron isotope fractionation can shed light on planetary core formation. We collected a series of phonon excitation spectra using nuclear resonant inelastic x-ray scattering (NRIXS) on 57Fe-enriched FeNi alloys with varying (Fe0.9Ni0.1, Fe0.8Ni0.2, Fe0.7Ni0.3) nickel content in a diamond anvil cell at pressures up to 50 GPa. All three alloys studied exhibited differences from pure Fe, indicating that increasing nickel content could have an effect on iron isotope fractionation which would have implications for planetary core formation and provide constraints the bulk composition for terrestrial planets.

  7. CARBON-RICH MOLECULAR CHAINS IN PROTOPLANETARY AND PLANETARY ATMOSPHERES: QUANTUM MECHANISMS AND ELECTRON ATTACHMENT RATES FOR ANION FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carelli, F.; Grassi, T.; Gianturco, F. A.

    The elementary mechanisms through which molecular polyynes could form stable negative ions after interacting with free electrons in planetary atmospheres (e.g., Titan's) are analyzed using quantum scattering calculations and quantum structure methods. The case of radical species and of nonpolar partners are analyzed via specific examples for both the C{sub n}H and HC{sub n}H series, with n values from 4 to 12. We show that attachment processes to polar radicals are dominating the anionic production and that the mediating role of dipolar scattering states is crucial to their formation. The corresponding attachment rates are presented as calculated upper limits tomore » their likely values and are obtained down to the low temperatures of interest. The effects of the computed rates, when used in simple evolutionary models, are also investigated and presented in detail.« less

  8. Astrophysics from the moon; Proceedings of the Workshop, Annapolis, MD, Feb. 5-7, 1990

    NASA Technical Reports Server (NTRS)

    Mumma, Michael J. (Editor); Smith, Harlan J. (Editor)

    1990-01-01

    The present conference on astrophysics from the moon encompasses the study of the Galaxy, external planetary systems, solar physics, stars and stellar evolution, the frontiers of Galactic, extragalactic, and cosmological astronomy, an introduction to lunar-based astronomy, concepts for lunar observatories including high-energy observatories, solar observatories, and observatories for particle astrophysics and gravitational studies. Specific issues addressed include the dynamics of Jovian atmospheres, planetary magnetospheres, flare physics, exobiology and SETI from the lunar farside, and the study of interactive stars, star formation, H II regions in absorption at low frequencies, and normal galaxies. Also addressed are the potential lunar investigation of quasars, the formation epoch, and the large-scale structure of the universe, and observational issues related to X-ray large arrays, optical interferometers, VLF radio astronomy, a UV-solar reflecting coronagraph, and a heavy-nucleus detector.

  9. The excavation stage of basin formation - A qualitative model

    NASA Technical Reports Server (NTRS)

    Croft, S. K.

    1981-01-01

    One of the most complex problems in planetary geology and geophysics is the determination of the nature of the impact cratering processes at scales of tens to thousands of kilometers that produce the complex morphological structures of multiring basins. The cratering process is frequently considered to be divided into three stages, including a short high-pressure stage of initial contact between the projectile and the planetary crust, a longer excavation or cratering flow stage culminating in the formation of a transient crater, and a still longer modification stage during which the transient crater is modified into the observed final geologic form. The transient crater may be considered as the initial boundary condition of the modification stage. In the present investigation, the nature of the transient crater is indicated by the cratering flow field determined from numerical simulations of the excavation stage. Attention is given to empirical and theoretical scaling.

  10. The James Webb Space Telescope: Capabilities for Exoplanet Science

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2011-01-01

    The James Webb Space Telescope (JWST) is a large aperture (6.5 meter), cryogenic space telescope with a suite of near and mid-infrared instruments covering the wavelength range of 0.6 micron to 28 micron. JWST's primary science goal is to detect and characterize the first galaxies. It will also study the assembly of galaxies, stellar and planetary system formation, and the formation and evolution of planetary systems. We will review the design of JWST, and discuss the current status of the project, with emphasis on recent progress in the construction of the observatory. We also review the capabilities of the observatory for observations of exosolar planets and debris disks by means of coronagraphic imaging, and high contrast imaging and spectroscopy. This discussion will focus on the optical and thermal performance of the observatory, and will include the current predictions for the performance of the observatory, with special reference to the demands of exoplanet science observations.

  11. Simulation of Planetary Formation using Python

    NASA Astrophysics Data System (ADS)

    Bufkin, James; Bixler, David

    2015-03-01

    A program to simulate planetary formation was developed in the Python programming language. The program consists of randomly placed and massed bodies surrounding a central massive object in order to approximate a protoplanetary disk. The orbits of these bodies are time-stepped, with accelerations, velocities and new positions calculated in each step. Bodies are allowed to merge if their disks intersect. Numerous parameters (orbital distance, masses, number of particles, etc.) were varied in order to optimize the program. The program uses an iterative difference equation approach to solve the equations of motion using a kinematic model. Conservation of energy and angular momentum are not specifically forced, but conservation of momentum is forced during the merging of bodies. The initial program was created in Visual Python (VPython) but the current intention is to allow for higher particle count and faster processing by utilizing PyOpenCl and PyOpenGl. Current results and progress will be reported.

  12. Planetary Atmosphere and Surfaces Chamber (PASC): A Platform to Address Various Challenges in Astrobiology

    NASA Astrophysics Data System (ADS)

    Mateo-Marti, Eva

    2014-08-01

    The study of planetary environments of astrobiological interest has become a major challenge. Because of the obvious technical and economical limitations on in situ planetary exploration, laboratory simulations are one of the most feasible research options to make advances both in planetary science and in developing a consistent description of the origin of life. With this objective in mind, we applied vacuum technology to the design of versatile vacuum chambers devoted to the simulation of planetary atmospheres' conditions. These vacuum chambers are able to simulate atmospheres and surface temperatures representative of the majority of planetary objects, and they are especially appropriate for studying the physical, chemical and biological changes induced in a particular sample by in situ irradiation or physical parameters in a controlled environment. Vacuum chambers are a promising potential tool in several scientific and technological fields, such as engineering, chemistry, geology and biology. They also offer the possibility of discriminating between the effects of individual physical parameters and selected combinations thereof. The implementation of our vacuum chambers in combination with analytical techniques was specifically developed to make feasible the in situ physico-chemical characterization of samples. Many wide-ranging applications in astrobiology are detailed herein to provide an understanding of the potential and flexibility of these experimental systems. Instruments and engineering technology for space applications could take advantage of our environment-simulation chambers for sensor calibration. Our systems also provide the opportunity to gain a greater understanding of the chemical reactivity of molecules on surfaces under different environments, thereby leading to a greater understanding of interface processes in prebiotic chemical reactions and facilitating studies of UV photostability and photochemistry on surfaces. Furthermore, the stability and presence of certain minerals on planetary surfaces and the potential habitability of microorganisms under various planetary environmental conditions can be studied using our apparatus. Therefore, these simulation chambers can address multiple different challenging and multidisciplinary astrobiological studies.

  13. Review of methodology and technology available for the detection of extrasolar planetary systems

    NASA Technical Reports Server (NTRS)

    Tarter, J. C.; Black, D. C.; Billingham, J.

    1986-01-01

    Anyone undertaking an interstellar voyage might wish to be assured of the existence of a safe planetary harbor at the other end! Aside from the obvious interest of the participants in this Symposium, astronomers and astrophysicists are also eager to detect and study other planetary systems in order to better understand the formation of our own Solar System. Scientists involved in the search for extraterrestrial intelligence argue that planets suitable for the evolution of life may abound elsewhere within our own Milky Way Galaxy. On theoretical grounds, they are probably correct, but they lack any observational support. For in spite of decades of claimed astrometric detections of planetary companions and the recent exciting and tantalizing observations from the IRAS satellite and the IR speckle observations of Van Biesbroeck 8 and other cool stars, there is no unambiguous proof for the existence of another planetary system beyond our own. In this paper we review the various methods for detecting extrasolar planets and briefly describe the Earth and space based technology currently available and discuss the near-term plans to implement these different search techniques. In each case an attempt is made to identify the limiting source of systematic error inherent to the methodology and to assess the potential for technological improvements.

  14. Confirmation and characterization of young planetary companions hidden in the HST NICMOS archive

    NASA Astrophysics Data System (ADS)

    Pueyo, Laurent

    2013-10-01

    We propose to conduct WFC3 high contrast observations of six faint planetary candidates orbiting young {1 to 100 Myrs} stars identified in archival HST NICMOS coronagraphic data as part of our team's program AR-12652. Such rare objects are of the utmost importance to comparative exo-planetology as their physical properties reflect the initial conditions of still poorly constrained planetary formation mechanisms. Moreover directly imaged systems are precious artifacts in the expanding exo-planetary treasure trove as they are readily available for spectroscopic characterization. Our statistical analysis, which combines population synthesis models and empirical inspections of the entire NICMOS field of view for all sources observed in coronaraphic mode, almost guarantees that one of these six faint candidates is associated with its putative host star. We will conduct our observation in four near infrared filter, F125W, F160W to establish the baseline luminosity of our candidates and in F127M and F139M in order to probe the depth their water absorption features, characteristic of substellar /exo-planetary like atmospheres. Because of the youth of our targets, this program, which only requires a modest 12 HST orbits, will almost certainly identify and image a young or adolescent exo-planet.

  15. Review of methodology and technology available for the detection of extrasolar planetary systems.

    PubMed

    Tarter, J C; Black, D C; Billingham, J

    1986-01-01

    Anyone undertaking an interstellar voyage might wish to be assured of the existence of a safe planetary harbor at the other end! Aside from the obvious interest of the participants in this Symposium, astronomers and astrophysicists are also eager to detect and study other planetary systems in order to better understand the formation of our own Solar System. Scientists involved in the search for extraterrestrial intelligence argue that planets suitable for the evolution of life may abound elsewhere within our own Milky Way Galaxy. On theoretical grounds, they are probably correct, but they lack any observational support. For in spite of decades of claimed astrometric detections of planetary companions and the recent exciting and tantalizing observations from the IRAS satellite and the IR speckle observations of Van Biesbroeck 8 and other cool stars, there is no unambiguous proof for the existence of another planetary system beyond our own. In this paper we review the various methods for detecting extrasolar planets and briefly describe the Earth and space based technology currently available and discuss the near-term plans to implement these different search techniques. In each case an attempt is made to identify the limiting source of systematic error inherent to the methodology and to assess the potential for technological improvements.

  16. Progress report of the IAU Commission 4 Working Group on Ephemeris Access and the comparison of high accuracy planetary ephemerides

    NASA Astrophysics Data System (ADS)

    Hilton, J. L.

    2012-12-01

    In September 2010 IAU Commission 4, Ephemerides, organized a working group to provide a recommendation for a preferred format for solar system ephemerides. The purpose of this recommendation is to provide easy access to a wide range of solar system ephemerides for users. The working group, chaired by Hilton, includes representatives from each of the major planetary ephemeris groups and representatives from the satellite and asteroid ephemeris communities. The working group has tentatively decided to recommend the SPK format developed by the Jet Propulsion Laboratory's Navigation and Ancillary Information Facility for use with its SPICE Toolkit. Certain details, however, must still be resolved before a final recommendation is made by the working group. An update is also provided to ongoing analysis comparing the three high accuracy planetary ephemerides, DE421, EPM2008, and INPOP10a. The principal topics of this update are: replacing the INPOP08 ephemeris with the INPOP10a ephemeris, making the comparisons with respect to DE421 rather than DE405, and comparing the TT - TDB values determined in EPM2008 and INPOP10a with the Fairhead & Bretagnon (1990, A&A, 229, 240) model used in DE421 as T_eph.

  17. Do Interactive Globes and Games Help Students Learn Planetary Science?

    NASA Astrophysics Data System (ADS)

    Coba, Filis; Burgin, Stephen; De Paor, Declan; Georgen, Jennifer

    2016-01-01

    The popularity of animations and interactive visualizations in undergraduate science education might lead one to assume that these teaching aids enhance student learning. We tested this assumption for the case of the Google Earth virtual globe with a comparison of control and treatment student groups in a general education class of over 370 students at a large public university. Earth and Planetary Science course content was developed in two formats: using Keyhole Markup Language (KML) to create interactive tours in Google Earth (the treatment group) and Portable Document Format (PDF) for on-screen reading (the control group). The PDF documents contained identical text and images to the placemark balloons or "tour stops" in the Google Earth version. Some significant differences were noted between the two groups based on the immediate post-questionnaire with the KML students out-performing the PDF students, but not on the delayed measure. In a separate but related project, we undertake preliminary investigations into methods of teaching basic concepts in planetary mantle convection using numerical simulations. The goal of this project is to develop an interface with a two-dimensional finite element model that will allow students to vary parameters such as the temperatures assigned to the boundaries of the model domain, to help them actively explore important variables that control convection.

  18. Planetary Nebulae: Reviews and Previews of a Rapidly Evolving Field

    NASA Astrophysics Data System (ADS)

    Balick, Bruce

    2015-01-01

    Observational results from the ground and space in the past decade and covering the entire spectrum have jolted and energized research into the nature, the formation, and the evolution of planetary nebulae (PNs). The 101-level bubble structure of PNs turned out to be a pleasant but misleading fantasy as observations by HST and ALMA revealed basic details of their infancy. Some combination of close geriatric binary stars (the precusrors of SN Ia's) and magnetic fields dredged into the dusty winds appear to play vital roles in the ejection and collimation of AGB atmospheres. As a result, PNe and their antecedents, AGB stars and prePNs, are providing an array of new opportunities to study asymmetric wind formation, complex gas dynamics, CNO production rates in various galactic environments, and galaxy structure and evolution. I shall review the highlights of recent results, summarize their interpretations, and show some of the observational opportunities to monitor in the next decade, many of which couple strongly to research to related fields.This talk is dedicated to the career of Olivier Chesneau (1972-2014) who pioneered new high-resolution imaging methods that peered into the deep inner cores of nascent planetary nebulae. We remember Olivier as everyone's enthusiastic friend and colleague whose career ended in full stride.

  19. The Formation and Evolution of Planetary Systems: Placing Our Solar System in Context with Spitzer

    NASA Astrophysics Data System (ADS)

    Meyer, Michael R.; Hillenbrand, Lynne A.; Backman, Dana; Beckwith, Steve; Bouwman, Jeroen; Brooke, Tim; Carpenter, John; Cohen, Martin; Cortes, Stephanie; Crockett, Nathan; Gorti, Uma; Henning, Thomas; Hines, Dean; Hollenbach, David; Kim, Jinyoung Serena; Lunine, Jonathan; Malhotra, Renu; Mamajek, Eric; Metchev, Stanimir; Moro-Martin, Amaya; Morris, Pat; Najita, Joan; Padgett, Deborah; Pascucci, Ilaria; Rodmann, Jens; Schlingman, Wayne; Silverstone, Murray; Soderblom, David; Stauffer, John; Stobie, Elizabeth; Strom, Steve; Watson, Dan; Weidenschilling, Stuart; Wolf, Sebastian; Young, Erick

    2006-12-01

    We provide an overview of the Spitzer Legacy Program, Formation and Evolution of Planetary Systems, that was proposed in 2000, begun in 2001, and executed aboard the Spitzer Space Telescope between 2003 and 2006. This program exploits the sensitivity of Spitzer to carry out mid-infrared spectrophotometric observations of solar-type stars. With a sample of ~328 stars ranging in age from ~3 Myr to ~3 Gyr, we trace the evolution of circumstellar gas and dust from primordial planet-building stages in young circumstellar disks through to older collisionally generated debris disks. When completed, our program will help define the timescales over which terrestrial and gas giant planets are built, constrain the frequency of planetesimal collisions as a function of time, and establish the diversity of mature planetary architectures. In addition to the observational program, we have coordinated a concomitant theoretical effort aimed at understanding the dynamics of circumstellar dust with and without the effects of embedded planets, dust spectral energy distributions, and atomic and molecular gas line emission. Together with the observations, these efforts will provide an astronomical context for understanding whether our solar system-and its habitable planet-is a common or a rare circumstance. Additional information about the FEPS project can be found on the team Web site.

  20. Evolution of the Magnetic Field during Chondrule Formation in Planetary Bow Shocks

    NASA Astrophysics Data System (ADS)

    Mai, Chuhong; Desch, Steven; Boley, Aaron C.

    2016-10-01

    Recent laboratory efforts (Fu et al., 2014, 2015) have constrained the remanent magnetizations of chondrules and the magnetic field strengths they were exposed to as they cooled below their Curie points. An outstanding question is whether these fields represent the background magnetic field of the solar nebula or were unique to the chondrule-forming environment. We investigate the amplification of the magnetic field above background values in a planetary bow shock, which is one proposed mechanism for chondrule formation. We use a hydrodynamic code to model the temperature and pressure around a 3000 km-radius planetary embryo as it moves supersonically through the nebula gas. We calculate the ionization of hot, shocked gas considering thermionic emission of electrons and ions from grains and thermal ionization of potassium. We calculate the magnetic diffusion rate, including Ohmic dissipation and ambipolar diffusion (assuming a magnetic field strength comparable to 0.5 G). We compute the steady-state magnetic field around in the bow shock and find that behind the planet the field is amplified, but everywhere else it quickly diffuses out of the shocked region and recovers the background value. We consider the trajectories taken by chondrules behind the shock and present likely values of the magnetic field amplification experienced by chondrules as they cool after melting in the shock.

  1. What Controls the Temperature of the Arctic Stratosphere during the Spring?

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Nash, Eric R.; Rosenfield, Joan E.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Understanding the mechanisms that control the temperature of the polar lower stratosphere during spring is key to understanding ozone loss in the Arctic polar vortex. Spring ozone loss rates are directly tied to polar stratospheric temperatures by the formation of polar stratospheric clouds, and the conversion of chlorine species to reactive forms on these cloud particle surfaces. In this paper, we study those factors that control temperatures in the polar lower stratosphere. We use the National Centers for Environmental Prediction (NCEP)/NCAR reanalysis data covering the last two decades to investigate how planetary wave driving of the stratosphere is connected to polar temperatures. In particular, we show that planetary waves forced in the troposphere in mid- to late winter (January-February) are principally responsible for the mean polar temperature during the March period. These planetary waves are forced by both thermal and orographic processes in the troposphere, and propagate into the stratosphere in the mid and high latitudes. Strong mid-winter planetary wave forcing leads to a warmer Arctic lower stratosphere in early spring, while weak mid-winter forcing leads to cooler Arctic temperatures.

  2. The Robo-AO KOI Survey: Laser Adaptive Optics Imaging of Every Kepler Exoplanet Candidate

    NASA Astrophysics Data System (ADS)

    Ziegler, Carl; Law, Nicholas M.; Baranec, Christoph; Morton, Tim; Riddle, Reed L.

    2016-01-01

    The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star (KOI) with laser adaptive optics imaging to hunt for blended nearby stars which may be physically associated companions. With the unparalleled efficiency provided by the first fully robotic adaptive optics system, we perform the critical search for nearby stars (0.15" to 4.0" separation with contrasts up to 6 magnitudes) that pollute the observed planetary transit signal, contributing to inaccurate planetary characteristics or astrophysical false positives. We present approximately 3300 high resolution observations of Kepler planetary hosts from 2012-2015, with ~500 observed nearby stars. We measure an overall nearby star probability rate of 16.2±0.8%. With this large dataset, we are uniquely able to explore broad correlations between multiple star systems and the properties of the planets which they host. We then use these clues for insight into the formation and evolution of these exotic systems. Several KOIs of particular interest will be discussed, including possible quadruple star systems hosting planets and updated properties for possible rocky planets orbiting in the habitable zone.

  3. The influence of carbon, sulfur, and silicon on trace element partitioning in iron alloys

    NASA Astrophysics Data System (ADS)

    Han, J.; Van Orman, J. A.; Crispin, K. L.; Ash, R. D.

    2014-12-01

    Non-metallic light elements are important constituents of planetary cores and have a strong influence on the partitioning behavior of trace elements. Planetary cores may contain a wide range of non-metallic light elements, including H, N, S, P, Si, and C. Under highly reducing conditions, such as those that are thought to have pertained during the formation of Mercury's core, Si and C, in addition to sulfur, may be particularly important constituents. Each of these elements may strongly effect and have a different impact on the partitioning behavior of trace elements but their combined effects on trace element partitioning have not been quantified. We investigated the partitioning behavior of more than 25 siderophile trace elements within the Fe-S-C-Si system with varying concentrations of C, S, and Si. The experiments were performed under pressures varying from 1 atm to 2 GPa and temperatures ranging from 1200˚C to 1450˚C. All experiments produced immiscible liquids, one enriched in Si and C, and the other predominantly FeS. We found some highly siderophile elements including Os, Ru, Ir, and Re are much more enriched in Fe-Si-C phase than in Fe-S phase, whereas other trace elements like V, Co, Ag, Hf, and Pb are enriched in S-rich phase. However, not all the trace elements enriched in Fe-Si-C phase are repelled by sulfur. Elements like Re and Ru could have different partitioning trends if sulfur concentration in S-rich phase rises. The partitioning behavior of these trace elements could enhance our understanding of the differentiation of Mercury's core under oxygen-poor conditions.

  4. Novel 3D imaging techniques for improved understanding of planetary surface geomorphology.

    NASA Astrophysics Data System (ADS)

    Muller, Jan-Peter

    2015-04-01

    Understanding the role of different planetary surface formation processes within our Solar System is one of the fundamental goals of planetary science research. There has been a revolution in planetary surface observations over the past decade for Mars and the Moon, especially in 3D imaging of surface shape (down to resolutions of 75cm) and subsequent correction for terrain relief of imagery from orbiting and co-registration of lander and rover robotic images. We present some of the recent highlights including 3D modelling of surface shape from the ESA Mars Express HRSC (High Resolution Stereo Camera), see [1], [2] at 30-100m grid-spacing; and then co-registered to HRSC using a resolution cascade of 20m DTMs from NASA MRO stereo-CTX and 0.75m DTMs from MRO stereo-HiRISE [3]. This has opened our eyes to the formation mechanisms of megaflooding events, such as the formation of Iani Vallis and the upstream blocky terrain, to crater lakes and receding valley cuts [4]. A comparable set of products is now available for the Moon from LROC-WA at 100m [5] and LROC-NA at 1m [6]. Recently, a very novel technique for the super-resolution restoration (SRR) of stacks of images has been developed at UCL [7]. First examples shown will be of the entire MER-A Spirit rover traverse taking a stack of 25cm HiRISE to generate a corridor of SRR images along the rover traverse of 5cm imagery of unresolved features such as rocks, created as a consequence of meteoritic bombardment, ridge and valley features. This SRR technique will allow us for ˜400 areas on Mars (where 5 or more HiRISE images have been captured) and similar numbers on the Moon to resolve sub-pixel features. Examples will be shown of how these SRR images can be employed to assist with the better understanding of surface geomorphology. Acknowledgements: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under PRoViDE grant agreement n° 312377. Partial support is also provided from the STFC 'MSSL Consolidated Grant' ST/K000977/1. References: [1] Gwinner, K., F. et al. (2010) Topography of Mars from global mapping by HRSC high-resolution digital terrain models and orthoimages: characteristics and performance. Earth and Planetary Science Letters 294, 506-519, doi:10.1016/j.epsl.2009.11.007, 2010; [2] Gwinner, K., F. et al. (2015) MarsExpress High Resolution Stereo Camera (HRSC) Multi-orbit Data Products: Methodology, Mapping Concepts and Performance for the first Quadrangle (MC-11E). Geophysical Research Abstracts, Vol. 17, EGU2015-13832; [3] Kim, J., & Muller, J. (2009). Multi-resolution topographic data extraction from Martian stereo imagery. Planetary and Space Science, 57, 2095-2112. doi:10.1016/j.pss.2009.09.024; [4] Warner, N. H., Gupta, S., Kim, J.-R., Muller, J.-P., Le Corre, L., Morley, J., et al. (2011). Constraints on the origin and evolution of Iani Chaos, Mars. Journal of Geophysical Research, 116(E6), E06003. doi:10.1029/2010JE003787; [5] Fok, H. S., Shum, C. K., Yi, Y., Araki, H., Ping, J., Williams, J. G., et al. (2011). Accuracy assessment of lunar topography models. Earth Planets Space, 63, 15-23. doi:10.5047/eps.2010.08.005; [6] Haase, I., Oberst, J., Scholten, F., Wählisch, M., Gläser, P., Karachevtseva, I., & Robinson, M. S. (2012). Mapping the Apollo 17 landing site area based on Lunar Reconnaissance Orbiter Camera images and Apollo surface photography - Haase - 2012 - Journal of Geophysical Research: Planets (1991-2012). Journal of Geophysical Research, 117, E00H20. doi:10.1029/2011JE003908; [7] Tao, Y., Muller, J.-P. (2015) Supporting lander and rover operation: a novel super-resolution restoration technique. Geophysical Research Abstracts, Vol. 17, EGU2015-6925

  5. Theory of Tumbling Bodies Entering Planetary Atmospheres with Application to Probe Vehicles and the Australian Tektites

    NASA Technical Reports Server (NTRS)

    Tobak, Murray; Peterson, Victor L.

    1964-01-01

    The tumbling motion of aerodynamically stable bodies entering planetary atmospheres is analyzed considering that the tumbling, its arrest, and the subsequent oscillatory motion are governed by the equation for the fifth Painleve' transcendent. Results based on the asymptotic behavior of the transcendent are applied to study (1) the oscillatory behavior of planetary probe vehicles in relation to aerodynamic heating and loads and (2) the dynamic behavior of the Australian tektites on entering the Earth's atmosphere, under the hypothesis that their origin was the Moon.

  6. Planetary boundaries for a blue planet.

    PubMed

    Nash, Kirsty L; Cvitanovic, Christopher; Fulton, Elizabeth A; Halpern, Benjamin S; Milner-Gulland, E J; Watson, Reg A; Blanchard, Julia L

    2017-11-01

    Concepts underpinning the planetary boundaries framework are being incorporated into multilateral discussions on sustainability, influencing international environmental policy development. Research underlying the boundaries has primarily focused on terrestrial systems, despite the fundamental role of marine biomes for Earth system function and societal wellbeing, seriously hindering the efficacy of the boundary approach. We explore boundaries from a marine perspective. For each boundary, we show how improved integration of marine systems influences our understanding of the risk of crossing these limits. Better integration of marine systems is essential if planetary boundaries are to inform Earth system governance.

  7. Online Planetary Science Courses at Athabasca University

    NASA Astrophysics Data System (ADS)

    Connors, Martin; Munyikwa, Ken; Bredeson, Christy

    2016-01-01

    Athabasca University offers distance education courses in science, at freshman and higher levels. It has a number of geology and astronomy courses, and recently opened a planetary science course as the first upper division astronomy course after many years of offering freshman astronomy. Astronomy 310, Planetary Science, focuses on process in the Solar System on bodies other than Earth. This process-oriented course uses W. F. Hartmann's "Moons and Planets" as its textbook. It primarily approaches the subject from an astronomy and physics perspective. Geology 415, Earth's Origin and Early Evolution, is based on the same textbook, but explores the evidence for the various processes, events, and materials involved in the formation and evolution of Earth. The course provides an overview of objects in the Solar System, including the Sun, the planets, asteroids, comets, and meteoroids. Earth's place in the solar system is examined and physical laws that govern the motion of objects in the universe are looked at. Various geochemical tools and techniques used by geologists to reveal and interpret the evidence for the formation and evolution of bodies in the solar system as well as the age of earth are also explored. After looking at lines of evidence used to reconstruct the evolution of the solar system, processes involved in the formation of planets and stars are examined. The course concludes with a look at the origin and nature of Earth's internal structure. GEOL415 is a senior undergraduate course and enrols about 15-30 students annually. The courses are delivered online via Moodle and student evaluation is conducted through assignments and invigilated examinations.

  8. To See a World in a Grain of Sand: Insights into Solar System Formation and Evolution from Isotopic Analyses of Planetary Materials

    NASA Astrophysics Data System (ADS)

    Wadhwa, M.

    2016-12-01

    The last few decades have seen revolutionary advances in the planetary sciences through remote observations (by spacecraft and Earth-based observatories) of many Solar System destinations and, in more recent years, even exoplanets around other stars. In parallel with this, ground-breaking developments in analytical capabilities and access to a greater variety of Solar System materials (through systematic and sustained meteorite collection programs as well as sample return missions) have led to significant insights that are complementary to those from remote observations and measurements. I will discuss two examples where the combination of remote observations and sample analyses has the potential to provide a more holistic picture of Solar System formation and evolution: 1) High-precision analyses of radiogenic isotopes in primitive and differentiated meteoritic materials, which are yielding a detailed high-resolution chronology of the first 10 million years of Solar System history. Such investigations are providing the chronological framework for the formation and evolution of small bodies (including comets, asteroids and Kuiper Belt Objects) in our Solar System that are the targets of recent spacecraft missions such as NASA's Dawn and New Horizons missions and ESA's Rosetta mission. 2) In-situ analyses of hydrogen isotope compositions and H2O abundances in meteorites from Mars and Vesta, which are giving constraints on the inventory and source of water and other volatiles in these planetary bodies. These studies are providing insights complementary to those about Mars from NASA's Mars Science Laboratory and Mars Atmosphere and Volatile Evolution (MAVEN) missions, and about Vesta from NASA's Dawn mission.

  9. Efficiency of planetesimal ablation in giant planetary envelopes

    NASA Astrophysics Data System (ADS)

    Pinhas, Arazi; Madhusudhan, Nikku; Clarke, Cathie

    2016-12-01

    Observations of exoplanetary spectra are leading to unprecedented constraints on their atmospheric elemental abundances, particularly O/H, C/H, and C/O ratios. Recent studies suggest that elemental ratios could provide important constraints on formation and migration mechanisms of giant exoplanets. A fundamental assumption in such studies is that the chemical composition of the planetary envelope represents the sum-total of compositions of the accreted gas and solids during the formation history of the planet. We investigate the efficiency with which accreted planetesimals ablate in a giant planetary envelope thereby contributing to its composition rather than sinking to the core. From considerations of aerodynamic drag causing `frictional ablation' and the envelope temperature structure causing `thermal ablation', we compute mass ablations for impacting planetesimals of radii 30 m to 1 km for different compositions (ice to iron) and a wide range of velocities and impact angles, assuming spherical symmetry. Icy impactors are fully ablated in the outer envelope for a wide range of parameters. Even for Fe impactors substantial ablation occurs in the envelope for a wide range of sizes and velocities. For example, iron impactors of sizes below ˜0.5 km and velocities above ˜30 km s-1 are found to ablate by ˜60-80 per cent within the outer envelope at pressures below 103 bar due to frictional ablation alone. For deeper pressures (˜107 bar), substantial ablation happens over a wider range of parameters. Therefore, our exploratory study suggests that atmospheric abundances of volatile elements in giant planets reflect their accretion history during formation.

  10. A Detailed Study of Rocky Planetary Material in the Hyades

    NASA Astrophysics Data System (ADS)

    Farihi, Jay

    2017-08-01

    The Hyades is the nearest open cluster, relatively young, and containing numerous A-type stars. Its youth, distance, and metallicity make it an ideal site to study planet formation around 2-3 Msun stars, and in a dynamically challenging environment.During our HST COS Snapshot, we discovered the ongoing accretion of Si-rich and C-deficient material in two white dwarf Hyads. The lower limit Si/C ratios determined from these 400s exposures indicate the material is more C-depleted than in chondritic meteorites, the most primitive rocks in the Solar System. Our 2013 Keck discovery of metal pollution in a third Hyades white dwarf indicates that planet formation is common in the cluster. Together, these three stars indicate that substantial minor bodies persist at several AU or more, and provide an unprecedented opportunity for a detailed study of rocky exoplanet precursors in a cluster environment.We propose to obtain detailed abundances of the planetary debris at these three polluted Hyads, which requires a modest investment of observatory time. The mass ratios between C, O, Mg, and Si are accurate indicators of the temperature and orbital regions where the parent bodies formed, their water and volatile contents. We will also detect Al and Fe, which are key indicators of differentiation and giant impacts among planetary embryos.Our proposed observations will provide legacy value for planet formation models, and especially those in cluster enviroments. These observations cannot be done from the ground or at optical or longer wavelengths, and must be carried out by HST in the ultraviolet.

  11. Getting Under Mars' Skin: The InSight Mission to the Deep Interior of Mars

    NASA Astrophysics Data System (ADS)

    Banerdt, W. B.; Asmar, S.; Banfield, D. J.; Christensen, U. R.; Clinton, J. F.; Dehant, V. M. A.; Folkner, W. M.; Garcia, R.; Giardini, D.; Golombek, M. P.; Grott, M.; Hudson, T.; Johnson, C. L.; Kargl, G.; Knapmeyer-Endrun, B.; Kobayashi, N.; Lognonne, P. H.; Maki, J.; Mimoun, D.; Mocquet, A.; Morgan, P.; Panning, M. P.; Pike, W. T.; Spohn, T.; Tromp, J.; Weber, R. C.; Wieczorek, M. A.; Russell, C. T.

    2015-12-01

    The InSight mission to Mars will launch in March of 2016, landing six months later in Elysium Planitia. In contrast to the 43 previous missions to Mars, which have thoroughly explored its surface features and chemistry, atmosphere, and searched for past or present life, InSight will focus on the deep interior of the planet. InSight will investigate the fundamental processes of terrestrial planet formation and evolution by performing the first comprehensive surface-based geophysical measurements on Mars. It will provide key information on the composition and structure of an Earth-like planet that has gone through most of the evolutionary stages of the Earth up to plate tectonics. The planet Mars can play a key role in understanding early terrestrial planet formation and evolution. Unlike the Earth, its overall structure appears to be relatively unchanged since the first few hundred million years after formation; unlike the Moon, it is large enough that the P-T conditions within the planet span an appreciable fraction of the terrestrial planet range. Thus the large-scale chemical and structural evidence preserved in Mars' interior should tell us a great deal about the processes of planetary differentiation and heat transport. InSight will undertake this investigation using the "traditional" geophysical techniques of seismology, precision tracking (for rotational dynamics), and heat flow measurement. The predominant challenge, in addition to the technical problems of the remote installation and operation of instruments on a distant and harsh planetary surface, comes from the practical limitation of working with data acquired from a single station. We will discuss how we overcome these limitations through the application of single-station seismic analysis techniques, which take advantage of some of the specific attributes of Mars, and global heat flow modeling, which allows the interpretation of a single measurement of a spatially inhomogeneous surface distribution.

  12. On the Habitability of Desert Varnish: A Combined Study by Micro-Raman Spectroscopy, X-ray Diffraction, and Methylated Pyrolysis-Gas Chromatography-Mass Spectrometry.

    PubMed

    Malherbe, C; Hutchinson, I B; Ingley, R; Boom, A; Carr, A S; Edwards, H; Vertruyen, B; Gilbert, B; Eppe, G

    2017-11-01

    In 2020, the ESA ExoMars and NASA Mars 2020 missions will be launched to Mars to search for evidence of past and present life. In preparation for these missions, terrestrial analog samples of rock formations on Mars are studied in detail in order to optimize the scientific information that the analytical instrumentation will return. Desert varnishes are thin mineral coatings found on rocks in arid and semi-arid environments on Earth that are recognized as analog samples. During the formation of desert varnishes (which takes many hundreds of years), organic matter is incorporated, and microorganisms may also play an active role in the formation process. During this study, four complementary analytical techniques proposed for Mars missions (X-ray diffraction [XRD], Raman spectroscopy, elemental analysis, and pyrolysis-gas chromatography-mass spectrometry [Py-GC-MS]) were used to interrogate samples of desert varnish and describe their capacity to sustain life under extreme scenarios. For the first time, both the geochemistry and the organic compounds associated with desert varnish are described with the use of identical sets of samples. XRD and Raman spectroscopy measurements were used to nondestructively interrogate the mineralogy of the samples. In addition, the use of Raman spectroscopy instruments enabled the detection of β-carotene, a highly Raman-active biomarker. The content and the nature of the organic material in the samples were further investigated with elemental analysis and methylated Py-GC-MS, and a bacterial origin was determined to be likely. In the context of planetary exploration, we describe the habitable nature of desert varnish based on the biogeochemical composition of the samples. Possible interference of the geological substrate on the detectability of pyrolysis products is also suggested. Key Words: Desert varnish-Habitability-Raman spectroscopy-Py-GC-MS-XRD-ExoMars-Planetary science. Astrobiology 17, 1123-1137.

  13. Directory of research projects: Planetary geology and geophysics program

    NASA Technical Reports Server (NTRS)

    Holt, Henry (Editor)

    1990-01-01

    Information about currently funded scientific research within the Planetary Geology and Geophysics Program is provided, including the proposal summary sheet from each proposal funded under the program during fiscal year 1990. Information about the research project, including title, principal investigator, institution, summary of research objectives, past accomplishments, and proposed new investigations is also provided.

  14. Growth and form of planetary seedlings: results from a microgravity aggregation experiment.

    PubMed

    Blum, J; Wurm, G; Kempf, S; Poppe, T; Klahr, H; Kozasa, T; Rott, M; Henning, T; Dorschner, J; Schräpler, R; Keller, H U; Markiewicz, W J; Mann, I; Gustafson, B A; Giovane, F; Neuhaus, D; Fechtig, H; Grün, E; Feuerbacher, B; Kochan, H; Ratke, L; El Goresy, A; Morfill, G; Weidenschilling, S J; Schwehm, G; Metzler, K; Ip, W H

    2000-09-18

    The outcome of the first stage of planetary formation, which is characterized by ballistic agglomeration of preplanetary dust grains due to Brownian motion in the free molecular flow regime of the solar nebula, is still somewhat speculative. We performed a microgravity experiment flown onboard the space shuttle in which we simulated, for the first time, the onset of free preplanetary dust accumulation and revealed the structures and growth rates of the first dust agglomerates in the young solar system. We find that a thermally aggregating swarm of dust particles evolves very rapidly and forms unexpected open-structured agglomerates.

  15. From stars to dust: looking into a circumstellar disk through chondritic meteorites.

    PubMed

    Connolly, Harold C

    2005-01-07

    One of the most fundamental questions in planetary science is, How did the solar system form? In this special issue, astronomical observations and theories constraining circumstellar disks, their lifetimes, and the formation of planetary to subplanetary objects are reviewed. At present, it is difficult to observe what is happening within disks and to determine if another disk environment is comparable to the early solar system disk environment (called the protoplanetary disk). Fortunately, we have chondritic meteorites, which provide a record of the processes that operated and materials present within the protoplanetary disk.

  16. Deploying Object Oriented Data Technology to the Planetary Data System

    NASA Technical Reports Server (NTRS)

    Kelly, S.; Crichton, D.; Hughes, J. S.

    2003-01-01

    How do you provide more than 350 scientists and researchers access to data from every instrument in Odyssey when the data is curated across half a dozen institutions and in different formats and is too big to mail on a CD-ROM anymore? The Planetary Data System (PDS) faced this exact question. The solution was to use a metadata-based middleware framework developed by the Object Oriented Data Technology task at NASA s Jet Propulsion Laboratory. Using OODT, PDS provided - for the first time ever - data from all mission instruments through a single system immediately upon data delivery.

  17. The search for other planetary systems - Progress to date and future prospects (The Rudolph Pesek Lecture)

    NASA Technical Reports Server (NTRS)

    Black, David C.

    1991-01-01

    The notion is addressed which links the formation of stars and the existence of planets, and the lack of supporting observational data is discussed in relation to a NASA astrometric project. The program cited is called Towards Other Planetary Systems (TOPS) and includes ground-based astrometric and radial-velocity studies for both direct and indirect scrutiny of unknown planets. The TOPS program also envisages space-based astrometric systems that can operate with an accuracy of not less than 10 microarcseconds, and the possibility is mentioned of a moon-based astrometric platform.

  18. Scientific Value of a Saturn Atmospheric Probe Mission

    NASA Technical Reports Server (NTRS)

    Simon-Miller, A. A.; Lunine, J. I.; Atreya, S. K.; Spilker, T. R.; Coustenis, A.; Atkinson, D. H.

    2012-01-01

    Atmospheric entry probe mISSions to the giant planets can uniquely discriminate between competing theories of solar system formation and the origin and evolution of the giant planets and their atmospheres. This provides for important comparative studies of the gas and ice giants, and to provide a laboratory for studying the atmospheric chemistries, dynamics, and interiors of all the planets including Earth. The giant planets also represent a valuable link to extrasolar planetary systems. As outlined in the recent Planetary Decadal Survey, a Saturn Probe mission - with a shallow probe - ranks as a high priority for a New Frontiers class mission [1].

  19. Life beyond the solar system.

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1972-01-01

    Review of some of the highlights and more recent developments in the search for extraterrestrial intelligence. The first major problem is one of the generality of the formation of planetary systems. Observations of the nearest stars which are not members of binary or multiple stars indicates that fully half have companions of planetary mass. The presence of organic compounds in meteorites, probably in Jovian planets, in comets, in the interstellar medium, and in cool stars implies that the production of organic compounds essential for the origin of life should be pervasive throughout the universe. Possibilities of interstellar communication are discussed.

  20. Proceedings of the 38th Lunar and Planetary Science Conference

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The sessions in the conference include: Titan, Mars Volcanism, Mars Polar Layered Deposits, Early Solar System Isotopes, SPECIAL SESSION: Mars Reconnaissance Orbiter: New Ways of Studying the Red Planet, Achondrites: Exploring Oxygen Isotopes and Parent-Body Processes, Solar System Formation and Evolution, SPECIAL SESSION: SMART-1, . Impact Cratering: Observations and Experiments, SPECIAL SESSION: Volcanism and Tectonism on Saturnian Satellites, Solar Nebula Composition, Mars Fluvial Geomorphology, Asteroid Observations: Spectra, Mostly, Mars Sediments and Geochemistry: View from the Surface, Mars Tectonics and Crustal Dichotomy, Stardust: Wild-2 Revealed, Impact Cratering from Observations and Interpretations, Mars Sediments and Geochemistry: The Map View, Chondrules and Their Formation, Enceladus, Asteroids and Deep Impact: Structure, Dynamics, and Experiments, Mars Surface Process and Evolution, Martian Meteorites: Nakhlites, Experiments, and the Great Shergottite Age Debate, Stardust: Mainly Mineralogy, Astrobiology, Wind-Surface Interactions on Mars and Earth, Icy Satellite Surfaces, Venus, Lunar Remote Sensing, Space Weathering, and Impact Effects, Interplanetary Dust/Genesis, Mars Cratering: Counts and Catastrophes?, Chondrites: Secondary Processes, Mars Sediments and Geochemistry: Atmosphere, Soils, Brines, and Minerals, Lunar Interior and Differentiation, Mars Magnetics and Atmosphere: Core to Ionosphere, Metal-rich Chondrites, Organics in Chondrites, Lunar Impacts and Meteorites, Presolar/Solar Grains, Topics for Print Only papers are: Outer Planets/Satellites, Early Solar System, Interplanetary Dust, Comets and Kuiper Belt Objects, Asteroids and Meteoroids, Chondrites, Achondrites, Meteorite Related, Mars Reconnaissance Orbiter, Mars, Astrobiology, Planetary Differentiation, Impacts, Mercury, Lunar Samples and Modeling, Venus, Missions and Instruments, Global Warming, Education and Public Outreach, Poster sessions are: Asteroids/Kuiper Belt Objects, Galilean Satellites: Geology and Mapping, Titan, Volcanism and Tectonism on Saturnian Satellites, Early Solar System, Achondrite Hodgepodge, Ordinary Chondrites, Carbonaceous Chondrites, Impact Cratering from Observations and Interpretations, Impact Cratering from Experiments and Modeling, SMART-1, Planetary Differentiation, Mars Geology, Mars Volcanism, Mars Tectonics, Mars: Polar, Glacial, and Near-Surface Ice, Mars Valley Networks, Mars Gullies, Mars Outflow Channels, Mars Sediments and Geochemistry: Spirit and Opportunity, Mars Reconnaissance Orbiter: New Ways of Studying the Red Planet, Mars Reconnaissance Orbiter: Geology, Layers, and Landforms, Oh, My!, Mars Reconnaissance Orbiter: Viewing Mars Through Multicolored Glasses; Mars Science Laboratory, Phoenix, and ExoMars: Science, Instruments, and Landing Sites; Planetary Analogs: Chemical and Mineral, Planetary Analogs: Physical, Planetary Analogs: Operations, Future Mission Concepts, Planetary Data, Imaging, and Cartography, Outer Solar System, Presolar/Solar Grains, Stardust Mission; Interplanetary Dust, Genesis, Asteroids and Comets: Models, Dynamics, and Experiments, Venus, Mercury, Laboratory Instruments, Methods, and Techniques to Support Planetary Exploration; Instruments, Techniques, and Enabling Techologies for Planetary Exploration; Lunar Missions and Instruments, Living and Working on the Moon, Meteoroid Impacts on the Moon, Lunar Remote Sensing, Lunar Samples and Experiments, Lunar Atmosphere, Moon: Soils, Poles, and Volatiles, Lunar Topography and Geophysics, Lunar Meteorites, Chondrites: Secondary Processes, Chondrites, Martian Meteorites, Mars Cratering, Mars Surface Processes and Evolution, Mars Sediments and Geochemistry: Regolith, Spectroscopy, and Imaging, Mars Sediments and Geochemistry: Analogs and Mineralogy, Mars: Magnetics and Atmosphere, Mars Aeolian Geomorphology, Mars Data Processing and Analyses, Astrobiology, Engaging Student Educators and the Public in Planetary Science,

  1. Planet Formation in Disks with Inclined Binary Companions: Can Primordial Spin-Orbit Misalignment be Produced?

    NASA Astrophysics Data System (ADS)

    Zanazzi, J. J.; Lai, Dong

    2018-04-01

    Many hot Jupiter (HJ) systems have been observed to have their stellar spin axis misaligned with the planet's orbital angular momentum axis. The origin of this spin-orbit misalignment and the formation mechanism of HJs remain poorly understood. A number of recent works have suggested that gravitational interactions between host stars, protoplanetary disks, and inclined binary companions may tilt the stellar spin axis with respect to the disk's angular angular momentum axis, producing planetary systems with misaligned orbits. These previous works considered idealized disk evolution models and neglected the gravitational influence of newly formed planets. In this paper, we explore how disk photoevaporation and planet formation and migration affect the inclination evolution of planet-star-disk-binary systems. We take into account planet-disk interactions and the gravitational spin-orbit coupling between the host star and the planet. We find that the rapid depletion of the inner disk via photoevaporation reduces the excitation of stellar obliquities. Depending on the formation and migration history of HJs, the spin-orbit coupling between the star and the planet may reduces and even completely suppress the excitation of stellar obliquities. Our work constrains the formation/migration history of HJs. On the other hand, planetary systems with "cold" Jupiters or close-in super-earths may experience excitation of stellar obliquities in the presence of distant inclined companions.

  2. Planet formation in discs with inclined binary companions: can primordial spin-orbit misalignment be produced?

    NASA Astrophysics Data System (ADS)

    Zanazzi, J. J.; Lai, Dong

    2018-07-01

    Many hot Jupiter (HJ) systems have been observed to have their stellar spin axis misaligned with the planet's orbital angular momentum axis. The origin of this spin-orbit misalignment and the formation mechanism of HJs remain poorly understood. A number of recent works have suggested that gravitational interactions between host stars, protoplanetary discs, and inclined binary companions may tilt the stellar spin axis with respect to the disc's angular angular momentum axis, producing planetary systems with misaligned orbits. These previous works considered idealized disc evolution models and neglected the gravitational influence of newly formed planets. In this paper, we explore how disc photoevaporation and planet formation and migration affect the inclination evolution of planet-star-disc-binary systems. We take into account planet-disc interactions and the gravitational spin-orbit coupling between the host star and the planet. We find that the rapid depletion of the inner disc via photoevaporation reduces the excitation of stellar obliquities. Depending on the formation and migration history of HJs, the spin-orbit coupling between the star and the planet may reduces and even completely suppress the excitation of stellar obliquities. Our work constrains the formation/migration history of HJs. On the other hand, planetary systems with `cold' Jupiters or close-in super-earths may experience excitation of stellar obliquities in the presence of distant inclined companions.

  3. Planet Formation

    NASA Astrophysics Data System (ADS)

    Podolak, Morris

    2018-04-01

    Modern observational techniques are still not powerful enough to directly view planet formation, and so it is necessary to rely on theory. However, observations do give two important clues to the formation process. The first is that the most primitive form of material in interstellar space exists as a dilute gas. Some of this gas is unstable against gravitational collapse, and begins to contract. Because the angular momentum of the gas is not zero, it contracts along the spin axis, but remains extended in the plane perpendicular to that axis, so that a disk is formed. Viscous processes in the disk carry most of the mass into the center where a star eventually forms. In the process, almost as a by-product, a planetary system is formed as well. The second clue is the time required. Young stars are indeed observed to have gas disks, composed mostly of hydrogen and helium, surrounding them, and observations tell us that these disks dissipate after about 5 to 10 million years. If planets like Jupiter and Saturn, which are very rich in hydrogen and helium, are to form in such a disk, they must accrete their gas within 5 million years of the time of the formation of the disk. Any formation scenario one proposes must produce Jupiter in that time, although the terrestrial planets, which don't contain significant amounts of hydrogen and helium, could have taken longer to build. Modern estimates for the formation time of the Earth are of the order of 100 million years. To date there are two main candidate theories for producing Jupiter-like planets. The core accretion (CA) scenario supposes that any solid materials in the disk slowly coagulate into protoplanetary cores with progressively larger masses. If the core remains small enough it won't have a strong enough gravitational force to attract gas from the surrounding disk, and the result will be a terrestrial planet. If the core grows large enough (of the order of ten Earth masses), and the disk has not yet dissipated, then the planetary embryo can attract gas from the surrounding disk and grow to be a gas giant. If the disk dissipates before the process is complete, the result will be an object like Uranus or Neptune, which has a small, but significant, complement of hydrogen and helium. The main question is whether the protoplanetary core can grow large enough before the disk dissipates. A second scenario is the disk instability (DI) scenario. This scenario posits that the disk itself is unstable and tends to develop regions of higher than normal density. Such regions collapse under their own gravity to form Jupiter-mass protoplanets. In the DI scenario a Jupiter-mass clump of gas can form—in several hundred years which will eventually contract into a gas giant planet. The difficulty here is to bring the disk to a condition where such instabilities will form. Now that we have discovered nearly 3000 planetary systems, there will be numerous examples against which to test these scenarios.

  4. Laboratory Evaluation and Application of Microwave Absorption Properties under Simulated Conditions for Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.

    2002-01-01

    Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments, entry probe radio signal absorption measurements, and earth-based or spacecraft-based radio astronomical (emission) observations can be used to infer abundances of microwave absorbing constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The use of theoretically-derived microwave absorption properties for such atmospheric constituents, or the use of laboratory measurements of such properties taken under environmental conditions that are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. Laboratory measurements have shown that the centimeter-wavelength opacity from gaseous phosphine (PH3) under simulated conditions for the outer planets far exceeds that predicted from theory over a wide range of temperatures and pressures. This fundamentally changed the resulting interpretation of Voyager radio occultation data at Saturn and Neptune. It also directly impacts planning and scientific goals for study of Saturn's atmosphere with the Cassini Radio Science Experiment and the Rossini RADAR instrument. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both radio occultation experiments and radio astronomical observations, and over a range of frequencies which correspond to those used in both spacecraft entry probe and orbiter (or flyby) radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. It has been the goal of this investigation to conduct such measurements and to apply the results to a wide range of planetary observations, both spacecraft- and earth-based, in order to determine the identity and abundance profiles of constituents in those planetary atmospheres,

  5. Obituary: Thomas Julian Ahrens (1936-2010)

    NASA Astrophysics Data System (ADS)

    Jeanloz, Raymond; Asimow, Paul

    2011-12-01

    Thomas J. Ahrens, a leader in the use of shock waves to study planetary interiors and impact phenomena, died at his home in Pasadena, California on November 24, 2010, at the age of 74. He was the California Institute of Technology's Fletcher Jones Professor of Geophysics, formally emeritus since 2005 but professionally active to the end. Tom was a pioneer in experimental and numerical studies of the effects of hypervelocity impact, arguably the most important geophysical process in the formation, growth and - in many cases - surface evolution of planets. As a professor at Caltech, he established the foremost university laboratory for shock wave experiments, where students and research associates from around the world pursued basic research in geophysics, planetary science and other disciplines. Previously, high-pressure shock experiments were primarily conducted in national laboratories, where they were initially associated with development of nuclear weapons. The shock wave laboratory at Caltech was noted for key measurements addressing major questions in planetary geophysics. Equation-of-state studies on silicate melts showed that magma deep in Earth's mantle could be denser than the coexisting crystals, implying downward transport of melts (and associated heat) rather than the upward eruption of lavas observed in volcanic regions at Earth's surface. Shock-melting experiments on iron at pressures of Earth's core provide a crucial constraint on the temperature at the center of our planet. And studies of hydrous, carbonate and sulphate minerals under shock compression document how climate-altering molecules can be released by major impacts, such as the K/T event associated with the most recent mass extinction of biota in Earth history. In addition, Tom was a leader in numerical simulation of cratering, bringing the most recent laboratory measurements into the modeling of planetary impacts. Tom's training was in geophysics and applied experimental physics, as exemplified by the ultrasonic wave-velocity measurements of his Ph.D. research at Rensselaer Polytechnic Institute (geophysics Ph.D. in 1962, following a B.S. in geology and geophysics from Massachusetts Institute of Technology in 1957, and M.S. in geophysics from Caltech in 1958). He served in the U.S. Army (1959-60) and was employed at Stanford Research Institute (1962-67), where he conducted shock wave experiments, before joining the faculty at Caltech in 1967. With such a broad background, Tom combined condensed-matter physics, continuum mechanics, petrology and seismology, for instance in characterizing polymorphic phase transformations in Earth's mantle (1967 J. Geophys. Res. Paper with Y. Syono); using shock wave measurements to interpret seismological data on Earth's deep interior (1969 Rev. Geophysics paper with D. L. Anderson and A. E. Ringwood); modeling geodynamic effects of phase-transition kinetics (1975 Rev. Geophysics paper with G. Shubert); characterizing the effects of gravity and crustal strength on crater formation (1981 Rev. Geophysics paper with J. D. O'Keefe); and quantifying impact erosion of terrestrial planetary atmospheres (1993 Annual Review of Earth and Planetary Sciences). The span of his science was also reflected in collaborations with - among others - Paul D. Asimow, George R. Rossman and Edward M. Stolper at Caltech, as well as Arthur C. Mitchell and William J. Nellis at Lawrence Livermore National Laboratory. His accomplishments included conducting the first shock-wave experiments on lunar samples and solid hydrogen; measuring the first absorption spectra of minerals under shock loading; discovering major phase changes in CaO, FeO, KAlSi3O8, and KFeS2; measuring shock temperatures in silicates, metals, and oxides; conducting the first planetary cratering calculations for mass of melted and vaporized material, and mass and energy of ejecta as a function of planetary escape velocity; experimentally documenting shock vaporization on volatile-bearing minerals, and applying the results to understanding the formation of oceans and atmospheres; conducting the first dynamic-compression experiments on molten silicates, with applications to characterizing the maximum depth of volcanism on terrestrial planets, as well as the crystallization sequence of magma oceans; performing the first thermodynamic calculations delineating the impact-shock conditions for melting and vaporization of planetary materials; carrying out the first smoothed particle hydrodynamic calculations to investigate energy partitioning upon impact in self-gravitating planetary systems; and conducting the first quantitative tensile failure studies for brittle media, relating crack-density to elastic velocity deficits and the onset of damage. Tom was also Co-Investigator on the NASA Cosmic Dust Analyzer Experiment, and the NASA/ESA Cassini Mission to Saturn. Honors included the AGU Hess Medal, Geological Society of America Day Medal, Meteoritical Society Barringer Medal, APS Shock Compression of Condensed Matter' Topical Groups's Duvall Medal and AAAS Newcomb-Cleveland Prize. He had been President of AGU's Tectonophysics Section, Editor of Journal of Geophysical Research, founding member of both the Mineral and Rock Physics and Study of Earth's Deep Interior focus groups, and Editor - more like key driving force - for AGU's Handbook of Physical Constants. He was a fellow of the AGU, American Academy of Arts and Sciences, American Association for the Advancement of Science, and Geochemical Society; and member of the U.S. National Academy of Sciences, as well as Foreign Associate of the Russian Academy of Sciences. Main-belt asteroid 4739 Tomahrens (1985 TH1) was named after him. Tom made it clear, however, that it was his students (more than 30), research associates (15 or more) and many collaborators who were the real mark of success. No doubt driven by the need to sustain a major, expensive research facility, as well as to satisfy an inner drive, he maintained a daunting work schedule - including evenings, weekends and holidays - that challenged and stimulated so many around him, perhaps even frightening or frustrating some. He could play as hard as he worked, enjoying sailing, skiing and other outdoor activities over the years.

  6. Concept of Operations Evaluation for Mitigating Space Flight-Relevant Medical Issues in a Planetary Habitat

    NASA Technical Reports Server (NTRS)

    Barsten, Kristina; Hurst, Victor, IV; Scheuring, Richard; Baumann, David K.; Johnson-Throop, Kathy

    2010-01-01

    Introduction: Analogue environments assist the NASA Human Research Program (HRP) in developing capabilities to mitigate high risk issues to crew health and performance for space exploration. The Habitat Demonstration Unit (HDU) is an analogue habitat used to assess space-related products for planetary missions. The Exploration Medical Capability (ExMC) element at the NASA Johnson Space Center (JSC) was tasked with developing planetary-relevant medical scenarios to evaluate the concept of operations for mitigating medical issues in such an environment. Methods: Two medical scenarios were conducted within the simulated planetary habitat with the crew executing two space flight-relevant procedures: Eye Examination with a corneal injury and Skin Laceration. Remote guidance for the crew was provided by a flight surgeon (FS) stationed at a console outside of the habitat. Audio and video data were collected to capture the communication between the crew and the FS, as well as the movements of the crew executing the procedures. Questionnaire data regarding procedure content and remote guidance performance also were collected from the crew immediately after the sessions. Results: Preliminary review of the audio, video, and questionnaire data from the two scenarios conducted within the HDU indicate that remote guidance techniques from an FS on console can help crew members within a planetary habitat mitigate planetary-relevant medical issues. The content and format of the procedures were considered concise and intuitive, respectively. Discussion: Overall, the preliminary data from the evaluation suggest that use of remote guidance techniques by a FS can help HDU crew execute space exploration-relevant medical procedures within a habitat relevant to planetary missions, however further evaluations will be needed to implement this strategy into the complete concept of operations for conducting general space medicine within similar environments

  7. Orbits and Interiors of Planets

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin

    2012-05-01

    The focus of this thesis is a collection of problems of timely interest in orbital dynamics and interior structure of planetary bodies. The first three chapters are dedicated to understanding the interior structure of close-in, gaseous extrasolar planets (hot Jupiters). In order to resolve a long-standing problem of anomalously large hot Jupiter radii, we proposed a novel magnetohydrodynamic mechanism responsible for inflation. The mechanism relies on the electro-magnetic interactions between fast atmospheric flows and the planetary magnetic field in a thermally ionized atmosphere, to induce electrical currents that flow throughout the planet. The resulting Ohmic dissipation acts to maintain the interior entropies, and by extension the radii of hot Jupiters at an enhanced level. Using self-consistent calculations of thermal evolution of hot Jupiters under Ohmic dissipation, we demonstrated a clear tendency towards inflated radii for effective temperatures that give rise to significant ionization of K and Na in the atmosphere, a trend fully consistent with the observational data. Furthermore, we found that in absence of massive cores, low-mass hot Jupiters can over-flow their Roche-lobes and evaporate on Gyr time-scales, possibly leaving behind small rocky cores. Chapters four through six focus on the improvement and implications of a model for orbital evolution of the solar system, driven by dynamical instability (termed the "Nice" model). Hydrodynamical studies of the orbital evolution of planets embedded in protoplanetary disks suggest that giant planets have a tendency to assemble into multi-resonant configurations. Following this argument, we used analytical methods as well as self-consistent numerical N-body simulations to identify fully-resonant primordial states of the outer solar system, whose dynamical evolutions give rise to orbital architectures that resemble the current solar system. We found a total of only eight such initial conditions, providing independent constraints for the solar system's birth environment. Next, we addressed a significant drawback of the original Nice model, namely its inability to create the physically unique, cold classical population of the Kuiper Belt. Specifically, we showed that a locally-formed cold belt can survive the transient instability, and its relatively calm dynamical structure can be reproduced. The last four chapters of this thesis address various aspects and consequences of dynamical relaxation of planetary orbits through dissipative effects as well as the formation of planets in binary stellar systems. Using octopole-order secular perturbation theory, we demonstrated that in multi-planet systems, tidal dissipation often drives orbits onto dynamical "fixed points," characterized by apsidal alignment and lack of periodic variations in eccentricities. We applied this formalism towards investigating the possibility that the large orbital eccentricity of the transiting Neptune-mass planet Gliese 436b is maintained in the face of tidal dissipation by a second planet in the system and computed a locus of possible orbits for the putative perturber. Following up along similar lines, we used various permutations of secular theory to show that when applied specifically to close-in low-mass planetary systems, various terms in the perturbation equations become separable, and the true masses of the planets can be solved for algebraically. In practice, this means that precise knowledge of the system's orbital state can resolve the sin( i) degeneracy inherent to non-transiting planets. Subsequently, we investigated the onset of chaotic motion in dissipative planetary systems. We worked in the context of classical secular perturbation theory, and showed that planetary systems approach chaos via the so-called period-doubling route. Furthermore, we demonstrated that chaotic strange attractors can exist in mildly damped systems, such as photo-evaporating nebulae that host multiple planets. Finally, we considered planetary formation in highly inclined binary systems, where orbital excitation due to the Kozai resonance apparently implies destructive collisions among planetesimals. Through a proper account of gravitational interactions within the protoplanetary disk, we showed that fast apsidal recession induced by disk self-gravity tends to erase the Kozai effect, and ensure that the disk's unwarped, rigid structure is maintained, resolving the difficulty in planet-formation. (Abstract shortened by UMI.)

  8. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1997-01-02

    What look like giant twisters are spotted by the Hubble Space Telescope (HST). These images are, in actuality, pillars of gases that are in the process of the formation of a new star. These pillars can be billions of miles in length and may have been forming for millions of years. This one formation is located in the Lagoon Nebula and was captured by the Hubble's wide field planetary camera-2 (WFPC-2).

  9. Robo-AO KOI Survey: LGS-AO imaging of every Kepler planetary candidate host star

    NASA Astrophysics Data System (ADS)

    Ziegler, Carl; Law, Nicholas; Baranec, Christoph; Riddle, Reed

    2018-01-01

    Robo-AO is observing every Kepler planetary candidate host star (KOI) in high resolution, made possible using the unprecedented efficiency provided by automation of LGS adaptive optics. Nearby contaminating stars may be the source of false positive transit signals or, if a bona fide planet is in the system, dilute the observed transit signal, resulting in underestimated planet radii. In 3857 observations, we find 632 stars within 4" (approximately the Kepler pixel scale) of KOIs. In particular, we find 26 rocky, habitable zone planets with contaminating nearby stars, 8 of which are now more likely to have large gaseous envelopes. We present evidence that the majority of these nearby stars are unbound, and use the likely bound stars to test theories of planetary formation and evolution within multiple star systems. Finally, we discuss future all-sky, kilo-target surveys made possible by the construction of a Southern Robo-AO analog.

  10. Horizons and opportunities in lunar sample science

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Moon is the cornerstone of planetary science. Lunar sample studies were fundamental in developing an understanding of the early evolution and continued development of planetary bodies, and have led to major revisions in understanding of processes for the accumulation of planetesimals and the formation of planets. Studies of lunar samples have increased an understanding of impact cratering, meteoroid and micrometeoroid fluxes, the interaction of planetary surfaces with radiations and particles, and even the history of the Sun. The lunar sample research program was especially productive, but by no means have all the important answers been determined; continued study of lunar samples will further illuminate the shadows of our knowledge about the solar system. Further, the treasures returned through the Apollo program provide information that is required for a return to the Moon, beginning with new exploration (Lunar Geoscience Observer (LGO)), followed by intensive study (new sample return missions), and eventually culminating in a lunar base and lunar resource utilization.

  11. The planetary data system

    USGS Publications Warehouse

    Acton, Charles; Slavney, Susan; Arvidson, Raymond E.; Gaddis, Lisa R.; Gordon, Mitchell; Lavoie, Susan

    2017-01-01

    In the early 1980s, the Space Science Board (SSB) of the National Research Council was concerned about the poor and inconsistent treatment of scientific information returned from NASA’s space science missions. The SSB formed a panel [The Committee on Data Management and Computation (CODMAC)] to assess the situation and make recommendations to NASA for improvements. The CODMAC panel issued a report [1,2] that led to a number of actions, one of which was the convening of a Planetary Data Workshop in November 1983 [3]. The key findings of that workshop were that (1) important datasets were being irretrievably lost, and (2) the use of planetary data by the wider community is constrained by inaccessibility and a lack of commonality in format and documentation. The report further stated, “Most participants felt the present system (of data archiving and access) is inadequate and immediate changes are necessary to insure retention of and access to these and future datasets.”

  12. Probing the Interiors of the Ice Giants: Shock Compression of Water to 700 GPa and 3.8 g/cm³

    DOE PAGES

    Knudson, M. D.; Desjarlais, M. P.; Lemke, R. W.; ...

    2012-02-27

    Recently, there has been a tremendous increase in the number of identified extrasolar planetary systems. Our understanding of their formation is tied to exoplanet internal structure models, which rely upon equations of state of light elements and compounds such as water. Here, we present shock compression data for water with unprecedented accuracy that show that water equations of state commonly used in planetary modeling significantly overestimate the compressibility at conditions relevant to planetary interiors. Furthermore, we show that its behavior at these conditions, including reflectivity and isentropic response, is well-described by a recent first-principles based equation of state. These findingsmore » advocate that this water model be used as the standard for modeling Neptune, Uranus, and “hot Neptune” exoplanets and should improve our understanding of these types of planets.« less

  13. Entry Probe Missions to the Giant Planets

    NASA Astrophysics Data System (ADS)

    Spilker, T. R.; Atkinson, D. H.; Atreya, S. K.; Colaprete, A.; Cuzzi, J. N.; Spilker, L. J.; Coustenis, A.; Venkatapathy, E.; Reh, K.; Frampton, R.

    2009-12-01

    The primary motivation for in situ probe missions to the outer planets derives from the need to constrain models of solar system formation and the origin and evolution of atmospheres, to provide a basis for comparative studies of the gas and ice giants, and to provide a valuable link to extrasolar planetary systems. As time capsules of the solar system, the gas and ice giants offer a laboratory to better understand the atmospheric chemistries, dynamics, and interiors of all the planets, including Earth; and it is within the atmospheres and interiors of the giant planets that material diagnostic of the epoch of formation can be found, providing clues to the local chemical and physical conditions existing at the time and location at which each planet formed. Measurements of current conditions and processes in those atmospheres inform us about their evolution since formation and into the future, providing information about our solar system’s evolution, and potentially establishing a framework for recognizing extrasolar giant planets in different stages of their evolution. Detailed explorations and comparative studies of the gas and ice giant planets will provide a foundation for understanding the integrated dynamic, physical, and chemical origins, formation, and evolution of the solar system. To allow reliable conclusions from comparative studies of gas giants Jupiter and Saturn, an entry probe mission to Saturn is needed to complement the Galileo Probe measurements at Jupiter. These measurements provide the basis for a significantly better understanding of gas giant formation in the context of solar system formation. A probe mission to either Uranus or Neptune will be needed for comparative studies of the gas giants and the ice giants, adding knowledge of ice giant origins and thus making further inroads in our understanding of solar system formation. Recognizing Jupiter’s spatial variability and the need to understand its implications for global composition, returning to Jupiter with a follow-on probe mission, possibly with technological advances allowing a multiple-probe mission, would make use of data from the Juno mission to guide entry location and measurement suite selection. This poster summarizes a white paper prepared for the Space Studies Board’s 2013-2022 Planetary Science Decadal Survey. It discusses specific measurements to be made by planetary probes at the giant planets, rationales and priorities for those measurements, and locations within the destination atmospheres where the measurements are best made.

  14. Interdisciplinary Research Produces Results in the Understanding of Planetary Dunes

    NASA Astrophysics Data System (ADS)

    Titus, Timothy N.; Hayward, Rosalyn Kay; Bourke, Mary C.

    2010-08-01

    Second International Planetary Dunes Workshop: Planetary Analogs—Integrating Models, Remote Sensing, and Field Data; Alamosa, Colorado, 18-21 May 2010; Dunes and other eolian bed forms are prominent on several planetary bodies in our solar system. Despite 4 decades of study, many questions remain regarding the composition, age, and origins of these features, as well as the climatic conditions under which they formed. Recently acquired data from orbiters and rovers, together with terrestrial analogs and numerical models, are providing new insights into Martian sand dunes, as well as eolian bed forms on other terrestrial planetary bodies (e.g., Titan). As a means of bringing together terrestrial and planetary researchers from diverse backgrounds with the goal of fostering collaborative interdisciplinary research, the U.S. Geological Survey (USGS), the Carl Sagan Center for the Study of Life in the Universe, the Desert Research Institute, and the U.S. National Park Service held a workshop in Colorado. The small group setting facilitated intensive discussion of problems and issues associated with eolian processes on Earth, Mars, and Titan.

  15. After Apollo: Fission Origin of the Moon

    ERIC Educational Resources Information Center

    O'Keefe, John A.

    1973-01-01

    Presents current ideas about the fission process of the Moon, including loss of mass. Saturnian rings, center of the Moon, binary stars, and uniformitarianism. Indicates that planetary formation may be best explained as a destructive, rather than a constructive process. (CC)

  16. Planetary Geologic Mapping Handbook - 2010. Appendix

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.

    2010-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces. Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962. Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by the USGS now are primarily digital products using geographic information system (GIS) software and file formats. GIS mapping tools permit easy spatial comparison, generation, importation, manipulation, and analysis of multiple raster image, gridded, and vector data sets. GIS software has also permitted the development of projectspecific tools and the sharing of geospatial products among researchers. GIS approaches are now being used in planetary geologic mapping as well. Guidelines or handbooks on techniques in planetary geologic mapping have been developed periodically. As records of the heritage of mapping methods and data, these remain extremely useful guides. However, many of the fundamental aspects of earlier mapping handbooks have evolved significantly, and a comprehensive review of currently accepted mapping methodologies is now warranted. As documented in this handbook, such a review incorporates additional guidelines developed in recent years for planetary geologic mapping by the NASA Planetary Geology and Geophysics (PGG) Program's Planetary Cartography and Geologic Mapping Working Group's (PCGMWG) Geologic Mapping Subcommittee (GEMS) on the selection and use of map bases as well as map preparation, review, publication, and distribution. In light of the current boom in planetary exploration and the ongoing rapid evolution of available data for planetary mapping, this handbook is especially timely.

  17. Thermal evolution of trans-Neptunian objects, icy satellites, and minor icy planets in the early solar system

    NASA Astrophysics Data System (ADS)

    Bhatia, Gurpreet Kaur; Sahijpal, Sandeep

    2017-12-01

    Numerical simulations are performed to understand the early thermal evolution and planetary scale differentiation of icy bodies with the radii in the range of 100-2500 km. These icy bodies include trans-Neptunian objects, minor icy planets (e.g., Ceres, Pluto); the icy satellites of Jupiter, Saturn, Uranus, and Neptune; and probably the icy-rocky cores of these planets. The decay energy of the radionuclides, 26Al, 60Fe, 40K, 235U, 238U, and 232Th, along with the impact-induced heating during the accretion of icy bodies were taken into account to thermally evolve these planetary bodies. The simulations were performed for a wide range of initial ice and rock (dust) mass fractions of the icy bodies. Three distinct accretion scenarios were used. The sinking of the rock mass fraction in primitive water oceans produced by the substantial melting of ice could lead to planetary scale differentiation with the formation of a rocky core that is surrounded by a water ocean and an icy crust within the initial tens of millions of years of the solar system in case the planetary bodies accreted prior to the substantial decay of 26Al. However, over the course of billions of years, the heat produced due to 40K, 235U, 238U, and 232Th could have raised the temperature of the interiors of the icy bodies to the melting point of iron and silicates, thereby leading to the formation of an iron core. Our simulations indicate the presence of an iron core even at the center of icy bodies with radii ≥500 km for different ice mass fractions.

  18. Applicability of Electrical and Electroanalytical Techniques to Detect Water and Characterize the Geochemistry of Undisturbed Planetary Soils

    NASA Technical Reports Server (NTRS)

    Seshadri, S.; Buehler, M. G.; Anderson, R. C.; Kuhlman, G. M.; Keymeulen, D.; Cheung, I. W.; Schaap, M. G.

    2005-01-01

    The search for life is a primary goal of NASA s planetary exploration program. The search is, of necessity, tiered in both the detection approach (looking for evidence of microbial fossils or the presence of water in the geological history of a planetary body and/or looking for evidence of water, energy sources, precursors to life, signatures of life and/or life itself in the present day planetary environment) and in the survey method (scale, range, specificity) employed. Terrestrial investigations suggests that life as we know it requires water. Thus, the search for extant microbial life and habitats requires identifying water-bearing soils. Determining Reduction-Oxidation (REDOX) couples present in water, once it is found, provides information on soil geochemistry and identifies potential chemical energy sources for life. Mars offers a near-term target for conducting this search. The identification of gully formation [1], layered deposits [2] and elemental ratios of bromine and chlorine [3] present indirect evidence that water was abundant locally in the Martian past. Additionally, Viking images of polar ice and frost formation on the surface of Mars demonstrate that water can exist in at least some near-surface regions of present-day Mars. Atmospheric pressure data further suggest that liquid water may be stable for short periods of time in the mid-latitudes of the Martian surface. [4] Measurements of the global distribution of hydrogen in the Martian regolith offer tantalizing indirect evidence that water may at least exist in near-surface soils. [5] Evidently, any water to be found is likely to exist as soil mixtures at levels ranging between approx.0.5% and approx.5 %.

  19. Directory of research projects: Planetary geology and geophysics program

    NASA Technical Reports Server (NTRS)

    Holt, Henry (Editor)

    1992-01-01

    Information about currently funded scientific research within the Planetary Geology and Geophysics Program is provided. The directory consists of the proposal summary sheet from each proposal funded under the program during Fiscal Year 1992. The sheets provide information about the research project, including title, principal investigator, institution, summary of research objectives, past accomplishments, and proposed new investigations.

  20. Planetary Nebulae and their parent stellar populations. Tracing the mass assembly of M87 and Intracluster light in the Virgo cluster core

    NASA Astrophysics Data System (ADS)

    Arnaboldi, Magda; Longobardi, Alessia; Gerhard, Ortwin

    2016-08-01

    The diffuse extended outer regions of galaxies are hard to study because they are faint, with typical surface brightness of 1% of the dark night sky. We can tackle this problem by using resolved star tracers which remain visible at large distances from the galaxy centers. This article describes the use of Planetary Nebulae as tracers and the calibration of their properties as indicators of the star formation history, mean age and metallicity of the parent stars in the Milky Way and Local Group galaxies. We then report on the results from a deep, extended, planetary nebulae survey in a 0.5 deg2 region centered on the brightest cluster galaxy NGC 4486 (M87) in the Virgo cluster core, carried out with SuprimeCam@Subaru and FLAMES-GIRAFFE@VLT. Two planetary nebulae populations are identified out to 150 kpc distance from the center of M87. One population is associated with the M87 halo and the second one with the intracluster light in the Virgo cluster core. They have different line-of-sight velocity and spatial distributions, as well as different planetary nebulae specific frequencies and luminosity functions. The intracluster planetary nebulae in the surveyed region correspond to a luminosity of four times the luminosity of the Large Magellanic Cloud. The M87 halo planetary nebulae trace an older, more metal-rich, parent stellar population. A substructure detected in the projected phase-space of the line-of-sight velocity vs. major axis distance for the M87 halo planetary nebulae provides evidence for the recent accretion event of a satellite galaxy with luminosity twice that of M33. The satellite stars were tidally stripped about 1 Gyr ago, and reached apocenter at a major axis distance of 60-90 kpc from the center of M87. The M87 halo is still growing significantly at the distances where the substructure is detected.

  1. Survival, DNA Integrity, and Ultrastructural Damage in Antarctic Cryptoendolithic Eukaryotic Microorganisms Exposed to Ionizing Radiation.

    PubMed

    Pacelli, Claudia; Selbmann, Laura; Zucconi, Laura; Raguse, Marina; Moeller, Ralf; Shuryak, Igor; Onofri, Silvano

    2017-02-01

    Life dispersal between planets, planetary protection, and the search for biosignatures are main topics in astrobiology. Under the umbrella of the STARLIFE project, three Antarctic endolithic microorganisms, the melanized fungus Cryomyces antarcticus CCFEE 515, a hyaline strain of Umbilicaria sp. (CCFEE 6113, lichenized fungus), and a Stichococcus sp. strain (C45A, green alga), were exposed to high doses of space-relevant gamma radiation ( 60 Co), up to 117.07 kGy. After irradiation survival, DNA integrity and ultrastructural damage were tested. The first was assessed by clonogenic test; viability and dose responses were reasonably described by the linear-quadratic formalism. DNA integrity was evaluated by PCR, and ultrastructural damage was observed by transmission electron microscopy. The most resistant among the tested organisms was C. antarcticus both in terms of colony formation and DNA preservation. Besides, results clearly demonstrate that DNA was well detectable in all the tested organisms even when microorganisms were dead. This high resistance provides support for the use of DNA as a possible biosignature during the next exploration campaigns. Implication in planetary protection and contamination during long-term space travel are put forward. Key Words: Biosignatures-Ionizing radiation-DNA integrity-Eukaryotic microorganisms-Fingerprinting-Mars exploration. Astrobiology 17, 126-135.

  2. Does the Momentum Flux Generated by Gravitational Contraction Drive Asymptotic Giant Branch Mass Loss?

    NASA Astrophysics Data System (ADS)

    Lewis, B. M.

    1997-12-01

    Gravitational contraction always generates a radially directed momentum flow. A particularly simple example occurs in the electron-degenerate cores of asymptotic giant branch (AGB) stars, which contract steadily under the addition of helium ashes from shell hydrogen burning. The resulting momentum flux is quantified here. And since the cores of AGB stars lack efficient momentum-cancellation mechanisms, they can maintain equilibrium by exporting their excess momentum flux to the stellar envelope, which disposes of much of it in a low velocity wind. Gravitational contraction easily accounts for the momentum flux in the solar wind, as well as the flux required to lift mass into the dust formation zone of every AGB star, whereon radiation pressure continues its ejection as a low-velocity wind. This mechanism explains the dependence of the AGB mass-loss rate on core mass; its generalization to objects with angular momentum and/or strong magnetic fields suggests a novel explanation as to why most planetary nebulae and proto-planetary nebulae exhibit axial symmetry. Quasi-static contraction is inherently biased to the generation of the maximum possible momentum flux. Its formalism is, therefore, readily adapted to providing an upper limit to the momentum flux needed to sustain mass loss when this begins from a semicontinuous rather than an impulsive process.

  3. Dynamics and Chemistry in Jovian Atmospheres: 2D Hydrodynamical Simulations

    NASA Astrophysics Data System (ADS)

    Bordwell, B. R.; Brown, B. P.; Oishi, J.

    2016-12-01

    A key component of our understanding of the formation and evolution of planetary systems is chemical composition. Problematically, however, in the atmospheres of cooler gas giants, dynamics on the same timescale as chemical reactions pull molecular abundances out of thermochemical equilibrium. These disequilibrium abundances are treated using what is known as the "quench" approximation, based upon the mixing length theory of convection. The validity of this approximation is questionable, though, as the atmospheres of gas giants encompass two distinct dynamic regimes: convective and radiative. To resolve this issue, we conduct 2D hydrodynamical simulations using the state-of-the-art pseudospectral simulation framework Dedalus. In these simulations, we solve the fully compressible equations of fluid motion in a local slab geometry that mimics the structure of a planetary atmosphere (convective zone underlying a radiative zone). Through the inclusion of passive tracers, we explore the transport properties of both regimes, and assess the validity of the classical eddy diffusion parameterization. With the addition of active tracers, we examine the interactions between dynamical and chemical processes, and generate prescriptions for the observational community. By providing insight into mixing and feedback mechanisms in Jovian atmospheres, this research lays a solid foundation for future global simulations and the construction of physically-sound models for current and future observations.

  4. On the variations of O III forbidden line intensities in the spectrum of the planetary nebula IC 4997

    NASA Astrophysics Data System (ADS)

    Egikyan, A. G.

    1997-10-01

    The causes of asynchronous variations in the intensities of forbidden O III lines in the spectrum of the planetary nebula IC 4997 are considered. It is shown that the strengthening of the 4363-A line with a simultaneous weakening of the N1 and N2 lines can be explained by a severalfold increase of the mass-loss rate from the nucleus, up to 1-2 x 10 exp -7 solar mass/yr, over several years. The ionization model of the nebula under the combined effect of nucleus emission and the emission from a variable hot stellar wind with electron temperature of 500,000 K is used to calculate the theoretical line intensities. The calculations included 12 levels of O III. In the region of O III line formation, the electron density of 10 exp 6/cu cm and Te, which varies from 12,000 to 15,000 K, yield theoretical line intensities that are in best agreement with observations. The X-ray luminosity of the stellar wind from the nucleus at energies not less than 0.2 keV is on the order of 10 exp 35 erg/s, but the interstellar extinction rules out the possibility of observing this object.

  5. New Indivisible Planetary Science Paradigm: Consequence of Questioning Popular Paradigms

    NASA Astrophysics Data System (ADS)

    Marvin Herndon, J.

    2014-05-01

    Progress in science involves replacing less precise understanding with more precise understanding. In science and in science education one should always question popular ideas; ask "What's wrong with this picture?" Finding limitations, conflicts or circumstances that require special ad hoc consideration sometimes is the key to making important discoveries. For example, from thermodynamic considerations, I found that the 'standard model of solar system formation' leads to insufficiently massive planetary cores. That understanding led me to discover a new indivisible planetary science paradigm. Massive-core planets formed by condensing and raining-out from within giant gaseous protoplanets at high pressures and high temperatures, accumulating heterogeneously on the basis of volatility with liquid core-formation preceding mantle-formation; the interior states of oxidation resemble that of the Abee enstatite chondrite. Core-composition was established during condensation based upon the relative solubilities of elements, including uranium, in liquid iron in equilibrium with an atmosphere of solar composition at high pressures and high temperatures. Uranium settled to the central region and formed planetary nuclear fission reactors, producing heat and planetary magnetic fields. Earth's complete condensation included a ~300 Earth-mass gigantic gas/ice shell that compressed the rocky kernel to about 66% of Earth's present diameter. T-Tauri eruptions, associated with the thermonuclear ignition of the Sun, stripped the gases away from the Earth and the inner planets. The T-Tauri outbursts stripped a portion of Mercury's incompletely condensed protoplanet and transported it to the region between Mars and Jupiter where it fused with in-falling oxidized condensate from the outer regions of the Solar System, forming the parent matter of ordinary chondrite meteorites, the main-Belt asteroids, and veneer for the inner planets, especially Mars. With its massive gas/ice shell removed, pressure began to build in the compressed rocky kernel of Earth and eventually the rigid crust began to crack. The major energy source for planetary decompression and for heat emplacement at the base of the crust is the stored energy of protoplanetary compression. In response to decompression-driven volume increases, cracks form to increase surface area and fold-mountain ranges form to accommodate changes in curvature. One of the most profound mysteries of modern planetary science is this: As the terrestrial planets are more-or-less of common chondritic composition, how does one account for the marked differences in their surface dynamics? Differences among the inner planets are principally due to the degree of compression experienced. Planetocentric georeactor nuclear fission, responsible for magnetic field generation and concomitant heat production, is applicable to compressed and non-compressed planets and large moons. The internal composition of Mercury is calculated based upon an analogy with the deep-Earth mass ratio relationships. The origin and implication of Mercurian hydrogen geysers is described. Besides Earth, only Venus appears to have sustained protoplanetary compression; the degree of which might eventually be estimated from understanding Venetian surface geology. A basis is provided for understanding that Mars essentially lacks a 'geothermal gradient' which implies potentially greater subsurface water reservoir capacity than previously expected. Resources at NuclearPlanet.com .

  6. Planetary Surface Analysis Using Fast Laser Spectroscopic Techniques: Combined Microscopic Raman, LIBS, and Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Blacksberg, J.; Rossman, G. R.; Maruyama, Y.; Charbon, E.

    2011-12-01

    In situ exploration of planetary surfaces has to date required multiple techniques that, when used together, yield important information about their formation histories and evolution. We present a time-resolved laser spectroscopic technique that could potentially collect complementary sets of data providing information on mineral structure, composition, and hydration state. Using a picosecond-scale pulsed laser and a fast time-resolved detector we can simultaneously collect spectra from Raman, Laser Induced Breakdown Spectroscopy (LIBS), and fluorescence emissions that are separated in time due to the unique decay times of each process. The use of a laser with high rep rate (40 KHz) and low pulse energy (1 μJ/pulse) allows us to rapidly collect high signal to noise Raman spectra while minimizing sample damage. Increasing the pulse energy by about an order of magnitude creates a microscopic plasma near the surface and enables the collection of LIBS spectra at an unusually high rep rate and low pulse energy. Simultaneously, broader fluorescence peaks can be detected with lifetimes varying from nanosecond to microsecond. We will present Raman, LIBS, and fluorescence spectra obtained on natural mineral samples such as sulfates, clays, pyroxenes and carbonates that are of interest for Mars mineralogy. We demonstrate this technique using a photocathode-based streak camera detector as well as a newly-developed solid state Single Photon Avalanche Diode (SPAD) sensor array based on Complementary Metal-Oxide Semiconductor (CMOS) technology. We will discuss the impact of system design and detector choice on science return of a potential planetary surface mission, with a specific focus on size, weight, power, and complexity. The research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA).

  7. BepiColombo the next step to explore Mercury - Status update and Science goals

    NASA Astrophysics Data System (ADS)

    Benkhoff, Johannes; Fujimoto, Masaki; Zender, Joe

    2016-04-01

    NASA's MESSENGER mission has fundamentally changed our view of the innermost planet. Mercury is in many ways a very different planet from what we were expecting. Now BepiColombo has to follow up on answering the fundamental questions that MESSENGER raised and go beyond. BepiColombo is a joint project between ESA and the Japanese Aerospace Exploration Agency (JAXA). The Mission consists of two orbiters, the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MMO). The mission scenario foresees a launch of both spacecraft with an ARIANE V in late 2017/early 2018 and an arrival at Mercury in 2024. From their dedicated orbits the two spacecraft will be studying the planet and its environment. The MPO scientific payload comprises eleven instruments/instrument packages; the MMO scientific payload consists of five instruments/instrument packages. Together, the scientific payload of both spacecraft will perform measurements to find clues to the origin and evolution of a planet close to its parent star. The MPO on BepiColombo will focus on a global characterization of Mercury through the investigation of its interior, surface, exosphere and magnetosphere. In addition, it will be testing Einstein's theory of general relativity. The MMO provided by JAXA focuses on investigating the wave and particle environment of the planet from an eccentric orbit. Together, the scientific payload of both spacecraft will provide the detailed information necessary to understand the process of planetary formation and evolution in the hottest part of the proto-planetary nebula as well as the similarities and differences between the magnetospheres of Mercury and the Earth. All scientific instruments have been integrated into the spacecraft and both spacecraft are now under final acceptance testing.

  8. Simulation of the planetary interior differentiation processes in the laboratory.

    PubMed

    Fei, Yingwei

    2013-11-15

    A planetary interior is under high-pressure and high-temperature conditions and it has a layered structure. There are two important processes that led to that layered structure, (1) percolation of liquid metal in a solid silicate matrix by planet differentiation, and (2) inner core crystallization by subsequent planet cooling. We conduct high-pressure and high-temperature experiments to simulate both processes in the laboratory. Formation of percolative planetary core depends on the efficiency of melt percolation, which is controlled by the dihedral (wetting) angle. The percolation simulation includes heating the sample at high pressure to a target temperature at which iron-sulfur alloy is molten while the silicate remains solid, and then determining the true dihedral angle to evaluate the style of liquid migration in a crystalline matrix by 3D visualization. The 3D volume rendering is achieved by slicing the recovered sample with a focused ion beam (FIB) and taking SEM image of each slice with a FIB/SEM crossbeam instrument. The second set of experiments is designed to understand the inner core crystallization and element distribution between the liquid outer core and solid inner core by determining the melting temperature and element partitioning at high pressure. The melting experiments are conducted in the multi-anvil apparatus up to 27 GPa and extended to higher pressure in the diamond-anvil cell with laser-heating. We have developed techniques to recover small heated samples by precision FIB milling and obtain high-resolution images of the laser-heated spot that show melting texture at high pressure. By analyzing the chemical compositions of the coexisting liquid and solid phases, we precisely determine the liquidus curve, providing necessary data to understand the inner core crystallization process.

  9. Simulation of the Planetary Interior Differentiation Processes in the Laboratory

    PubMed Central

    Fei, Yingwei

    2013-01-01

    A planetary interior is under high-pressure and high-temperature conditions and it has a layered structure. There are two important processes that led to that layered structure, (1) percolation of liquid metal in a solid silicate matrix by planet differentiation, and (2) inner core crystallization by subsequent planet cooling. We conduct high-pressure and high-temperature experiments to simulate both processes in the laboratory. Formation of percolative planetary core depends on the efficiency of melt percolation, which is controlled by the dihedral (wetting) angle. The percolation simulation includes heating the sample at high pressure to a target temperature at which iron-sulfur alloy is molten while the silicate remains solid, and then determining the true dihedral angle to evaluate the style of liquid migration in a crystalline matrix by 3D visualization. The 3D volume rendering is achieved by slicing the recovered sample with a focused ion beam (FIB) and taking SEM image of each slice with a FIB/SEM crossbeam instrument. The second set of experiments is designed to understand the inner core crystallization and element distribution between the liquid outer core and solid inner core by determining the melting temperature and element partitioning at high pressure. The melting experiments are conducted in the multi-anvil apparatus up to 27 GPa and extended to higher pressure in the diamond-anvil cell with laser-heating. We have developed techniques to recover small heated samples by precision FIB milling and obtain high-resolution images of the laser-heated spot that show melting texture at high pressure. By analyzing the chemical compositions of the coexisting liquid and solid phases, we precisely determine the liquidus curve, providing necessary data to understand the inner core crystallization process. PMID:24326245

  10. Ly α Absorption at Transits of HD 209458b: A Comparative Study of Various Mechanisms Under Different Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khodachenko, M. L.; Lammer, H.; Kislyakova, K. G.

    To shed more light on the nature of the observed Ly α absorption during transits of HD 209458b and to quantify the major mechanisms responsible for the production of fast hydrogen atoms (the so-called energetic neutral atoms, ENAs) around the planet, 2D hydrodynamic multifluid modeling of the expanding planetary upper atmosphere, which is driven by stellar XUV, and its interaction with the stellar wind has been performed. The model self-consistently describes the escaping planetary wind, taking into account the generation of ENAs due to particle acceleration by the radiation pressure and by the charge exchange between the stellar wind protonsmore » and planetary atoms. The calculations in a wide range of stellar wind parameters and XUV flux values showed that under typical Sun-like star conditions, the amount of generated ENAs is too small, and the observed absorption at the level of 6%–8% can be attributed only to the non-resonant natural line broadening. For lower XUV fluxes, e.g., during the activity minima, the number of planetary atoms that survive photoionization and give rise to ENAs increases, resulting in up to 10%–15% absorption at the blue wing of the Ly α line, caused by resonant thermal line broadening. A similar asymmetric absorption can be seen under the conditions realized during coronal mass ejections, when sufficiently high stellar wind pressure confines the escaping planetary material within a kind of bowshock around the planet. It was found that the radiation pressure in all considered cases has a negligible contribution to the production of ENAs and the corresponding absorption.« less

  11. Energy Balance Models of planetary climate as a tool for investigating the habitability of terrestrial planets and its evolution

    NASA Astrophysics Data System (ADS)

    Ferri, G.; Murante, G.; Provenzale, A.; Silva, L.; Vladilo, G.

    2012-04-01

    The study of the habitability and potential for life formation of terrestrial planets requires a considerable work of modelization owing to the limited amount of experimental constraints typical of this type of research. As an example, the paucity of experimental Archean data severely limits the study of the habitability of the primitive Earth at the epoch of the origin of life. In the case of exoplanets the amount of experimental information available is quite limited and the need for modelization strong. Here we focus on the modelization of the surface planetary temperature, a key thermodynamical quantity used to define the habitability. Energy Balance Models (EBM) of planetary climate provide a simple way to calculate the temperature-latitude profile of terrestrial planets with a small amount of computing resources. Thanks to this fact EBMs offer an excellent tool to exploring a wide range of parameter space and therefore testing the effects of variations of physical/chemical quantities unconstrained by experimental data. In particular, one can easily probe possible scenarios of habitability at different stages of planetary evolution. We have recently implemented one-dimensional EBMs featuring the possibility of probing variations of astronomical and geophysical parameters, such as stellar luminosity, orbital semi-major axis and eccentricity, obliquity of the planetary axis, planet rotational velocity, land/ocean surface fractions and thermal capacities, and latitudinal heat diffusion. After testing our models against results obtained in previous work (Williams & Kasting 1997, Icarus, 129, 254; Spiegel et al. 2008, ApJ, 681, 1609), we introduced a novel parametrization of the diffusion coefficient as a function of the stellar zenith distance. Our models have been validated using the mean temperature-latitude profiles of the present Earth and its seasonal variations; the global albedo has been used as an additional constraint. In this work we present specific examples of application of our EBMs to studies of habitability of terrestrial planets. In the first part we focus on the primitive Earth, taking into account the effects of the higher speed of Earth rotation and reduced solar luminosity at the epoch of life formation. In the second part we provide examples of habitability studies of planetary systems discovered in surveys of exoplanets. These examples allow us to critically discuss the concept of circumstellar habitable zone.

  12. Planet engulfment and the planetary nebula morphology mystery

    NASA Astrophysics Data System (ADS)

    Boyle, Laura A.

    2018-04-01

    This thesis presents an investigation into the galactic population of planetary nebulae (PNe) whose progenitors have evolved through the engulfment of massive planets during the asymptotic giant branch (AGB) phase of their evolution. The objective of this research was to investigate the hypothesis that planet engulfment can aid in explaining the observed non-spherical planetary nebula (PN) population, as a complementary shaping mechanism to the binary hypothesis. This was performed by the design and development of a new research tool, simsplash (SIMulationS for the PLAnet Shaping Hypothesis), which was developed for the specific purpose of conducting, for the first time, a population synthesis of planet engulfment in planetary nebula progenitors. The first step in this investigation involved modelling the tidal evolution of planets orbiting PN progenitor stars to determine the importance of the adopted initial conditions and input physics in the stellar models and their effects on the orbital evolution of star-planet systems. The next step was to determine the probabilities of stars having and engulfing massive planets as a function of stellar mass and metallicity. This was achieved by combining the tidal evolution treatment with both the known exoplanet populations, as well as theoretical planet populations, and the occurrence rates of massive planets. Finally, taking into consideration the results from the analyses described above, a PN population synthesis was performed using the star formation history and metallicity evolution of the galaxy as well as varying forms of the initial mass function and planetary nebula formation constraints. The population of visible PNe in the present-day galaxy was calculated to consist of a total of 16,500±2,200 PNe, of which 240±20 PNe (≃ 1.5%) have evolved from the engulfment of a massive planet on the AGB and 3,300±200 PNe are the result of binary interactions (≃ 20%), translating to an expected non-spherical population of ≃ 21.5% of all PNe currently visible in the galaxy. The overall conclusion from this work is that while planet engulfment can explain a small fraction of the observed population of non-spherical PNe (≃ 7%), the hypothesis is not capable of resolving the mystery of the unexplained population of non-spherical planetary nebula morphologies. This conclusion adds support to the emerging view that not all low-to-intermediate mass stars can form visible PNe.

  13. Analytic theory of orbit contraction and ballistic entry into planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Longuski, J. M.; Vinh, N. X.

    1980-01-01

    A space object traveling through an atmosphere is governed by two forces: aerodynamic and gravitational. On this premise, equations of motion are derived to provide a set of universal entry equations applicable to all regimes of atmospheric flight from orbital motion under the dissipate force of drag through the dynamic phase of reentry, and finally to the point of contact with the planetary surface. Rigorous mathematical techniques such as averaging, Poincare's method of small parameters, and Lagrange's expansion, applied to obtain a highly accurate, purely analytic theory for orbit contraction and ballistic entry into planetary atmospheres. The theory has a wide range of applications to modern problems including orbit decay of artificial satellites, atmospheric capture of planetary probes, atmospheric grazing, and ballistic reentry of manned and unmanned space vehicles.

  14. PAH-Mineral Interactions. A Laboratory Approach to Astrophysical Catalysis

    NASA Astrophysics Data System (ADS)

    Adolfo Cruz Diaz, Gustavo; Mattioda, Andrew

    2017-06-01

    Polycyclic Aromatic Hydrocarbon (PAH) molecules carry the infrared emission features which dominate the spectra of most galactic and extragalactic sources. Our study investigates the chemical evolution, chemical properties, physical properties, thermal stability, and photostability of samples produced from the UV-irradiation of simulated mineral dust grains coated with aromatics and astrobiologically relevant ices, using infrared spectroscopy. We investigate the chemical evolution of aromatic organics via anhydrous (no H2O ice) and hydrous (H2O ice) mechanisms. The anhydrous mechanism involves UV-induced catalytic reactions between organics and dense-cloud mineral grains, whereas the hydrous mechanism incorporates H2O-rich ice mixtures with the minerals and organics. These investigations identify the chemical and physical interactions occurring between the organic species, the dust grains and water-rich ices.These laboratory simulations also generate observable IR spectroscopic parameters for future astronomical observations with infrared telescopes such as SOFIA and JWST as well as provide empirical parameters for input into astronomical models of the early stages of planetary formation. These studies give us a deeper understanding of the potential catalytic pathways mineral surfaces provide and a deeper understanding of the role of ice-organic compositions in the chemical reaction pathways and how these processes fit into the formation of new planetary systems.In order to achieve these goals we use the Harrick ‘Praying Mantis’ Diffuse Reflectance Accessory (DRIFTS), which allows FTIR measurements of dust samples under ambient conditions by measuring the light scattered by the dust sample. We have also incorporated a low -temperature reaction chamber permitting the DRIFTS measurements at low temperatures and high-vacuum. This set-up permits the analysis of the solid particles surfaces revealing the chemical species adsorbed as well as their chemical evolution via the introduction of reactant gases, UV irradiation, temperature change, etc.

  15. Investigation of Kelvin-Helmholtz Instability in the boundary layer using Doppler lidar and radiosonde data

    NASA Astrophysics Data System (ADS)

    Das, Subrata Kumar; Das, Siddarth Shankar; Saha, Korak; Murali Krishna, U. V.; Dani, K. K.

    2018-04-01

    Characteristics of Kelvin Helmholtz Instability (KHI) using Doppler wind lidar observation have rarely been reported during the Indian summer monsoon season. In this paper, we present a case study of KHI near planetary boundary layer using Doppler wind lidar and radiosonde measurements at Mahabubnagar, a tropical Indian station. The data was collected during the Integrated Ground Observation Campaign (June-October 2011) under the Cloud Aerosol Interaction and Precipitation Enhancement EXperiment-2011. The continuous wind lidar observation during 10-16 August 2011 shows there is an increase in carrier-to-noise ratio values near planetary boundary layer from 03:00 to 11:00 LT on 13 August; reveals the formation of KHI. There is a strong power bursts pattern corresponding to high turbulence characteristics in the early half of the day. The KHI temporal evolution from initial to dissipating stage is observed with clear variation in the carrier-to-noise ratio values. The observed KHI billows are in the height between 600 and 1200 m and lasted for about 7.5 h. The vertical velocity from Doppler lidar measurement shows the presence of updrafts after breaking of KHI in the boundary layer. The presence of strong wind shear, high stability parameter, low Richardson number and high relative humidity during the enhanced carrier-to-noise ratio period indicates the ideal condition for the formation and persistence of this dynamic instability. A typical characteristic of trapped humidity above the KHI billows suggest the presence of strong inversion. A wavelet analysis of 3-dimensional wind components show dominant periodicity of 45-65 min and the periodicity in vertical wind is more prominent.

  16. Restoration of Apollo Data for Future Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Schultz, Alfred B.; Williams, D. R.; Hills, H. K.

    2007-10-01

    The Lunar Data Project (LDP) at NASA's National Space Science Data Center (NSSDC) is retrieving and restoring relevant, scientifically important Apollo data into accessible digital form for use by researchers and mission planners. Much of the Apollo data housed at the NSSDC are in forms which are not readily usable, such as microfilm, hardcopy, and magnetic tapes written using machine representations of computers no longer in use. The LDP has prioritized these data based on scientific and engineering value and level of effort required and is in the process of restoring these data collections. In association with the Planetary Data System (PDS), the restored data are converted into standard format and subject to a data peer review before ingestion into PDS. The Apollo 12 and 15 Solar Wind Spectrometer data have been restored and are awaiting data review. The Apollo 14 and 15 ALSEP Cold Cathode Ion Gage data have been scanned, the Apollo 14 Dust, Thermal, and Radiation Engineering Measurements data are in the process of being scanned, and the Apollo 14 Charged Particle Lunar Environment Experiment data have been retrieved from magnetic tape. An optical character recognition software to produce digital tables of the scanned data, where appropriate, is under development. These data represent some of the only long-term lunar surface environment information that exists. We will report on our progress. Metadata, ancillary information to aid in the use and understanding of the data, will be included in these online data collections. These cover complete descriptions of the data sets, formats, processing history, relevant references and contacts, and instrument descriptions. Restored data and associated metadata are posted online and easily accessible to interested users. The data sets and more information on the LDP can be found at nssdc.gsfc.nasa.gov/planetary/lunar/lunar_data/

  17. Core segregation mechanism and compositional evolution of terretrial planets

    NASA Astrophysics Data System (ADS)

    Petford, N.; Rushmer, T.

    2009-04-01

    A singular event in the formation of the earth and terrestrial planets was the separation iron-rich melt from mantle silicate to form planetary cores. On Earth, and by implication other rocky planets, this process induced profound internal chemical fractionation, with siderophile elements (Ni, Co, Au, Pt, W, Re) following Fe into the core, leaving the silicate crust and mantle with strong depletions of these elements relative to primitive planetary material. Recent measurements of radiogenic 182W anomalies in the silicate Earth, Mars and differentiated meteorites imply that planetesimals segregated metallic cores within a few Myr of the origin of the solar system. Various models have been put forward to explain the physical nature of the segregation mechanism (Fe-diapirs, ‘raining' through a magma ocean), and more recently melt flow via fractures. In this contribution we present the initial results of a numerical study into Fe segregation in a deforming silicate matrix that captures the temperature-dependent effect of liquid metal viscosity on the transport rate. Flow is driven by pressure gradients associated with impact deformation in a growing planetesimal and the fracture geometry is constrained by experimental data on naturally deformed H6 chondrite. Early results suggest that under dynamic conditions, fracture-driven melt flow can in principle be extremely rapid, leading to a significant draining of the Fe-liquid metal and siderophile trace element component on a timescale of hours to days. Fluid transport in planetesimals where deformation is the driving force provides an attractive and simple way of segregating Fe from host silicate as both precursor and primary agent of core formation. The potential for flow of metal-rich melt to induce local magnetic anomalies will also be addressed.

  18. Scientific rationale for Uranus and Neptune in situ explorations

    NASA Astrophysics Data System (ADS)

    Mousis, O.; Atkinson, D. H.; Cavalié, T.; Fletcher, L. N.; Amato, M. J.; Aslam, S.; Ferri, F.; Renard, J.-B.; Spilker, T.; Venkatapathy, E.; Wurz, P.; Aplin, K.; Coustenis, A.; Deleuil, M.; Dobrijevic, M.; Fouchet, T.; Guillot, T.; Hartogh, P.; Hewagama, T.; Hofstadter, M. D.; Hue, V.; Hueso, R.; Lebreton, J.-P.; Lellouch, E.; Moses, J.; Orton, G. S.; Pearl, J. C.; Sánchez-Lavega, A.; Simon, A.; Venot, O.; Waite, J. H.; Achterberg, R. K.; Atreya, S.; Billebaud, F.; Blanc, M.; Borget, F.; Brugger, B.; Charnoz, S.; Chiavassa, T.; Cottini, V.; d'Hendecourt, L.; Danger, G.; Encrenaz, T.; Gorius, N. J. P.; Jorda, L.; Marty, B.; Moreno, R.; Morse, A.; Nixon, C.; Reh, K.; Ronnet, T.; Schmider, F.-X.; Sheridan, S.; Sotin, C.; Vernazza, P.; Villanueva, G. L.

    2018-06-01

    The ice giants Uranus and Neptune are the least understood class of planets in our solar system but the most frequently observed type of exoplanets. Presumed to have a small rocky core, a deep interior comprising ∼70% heavy elements surrounded by a more dilute outer envelope of H2 and He, Uranus and Neptune are fundamentally different from the better-explored gas giants Jupiter and Saturn. Because of the lack of dedicated exploration missions, our knowledge of the composition and atmospheric processes of these distant worlds is primarily derived from remote sensing from Earth-based observatories and space telescopes. As a result, Uranus's and Neptune's physical and atmospheric properties remain poorly constrained and their roles in the evolution of the Solar System not well understood. Exploration of an ice giant system is therefore a high-priority science objective as these systems (including the magnetosphere, satellites, rings, atmosphere, and interior) challenge our understanding of planetary formation and evolution. Here we describe the main scientific goals to be addressed by a future in situ exploration of an ice giant. An atmospheric entry probe targeting the 10-bar level, about 5 scale heights beneath the tropopause, would yield insight into two broad themes: i) the formation history of the ice giants and, in a broader extent, that of the Solar System, and ii) the processes at play in planetary atmospheres. The probe would descend under parachute to measure composition, structure, and dynamics, with data returned to Earth using a Carrier Relay Spacecraft as a relay station. In addition, possible mission concepts and partnerships are presented, and a strawman ice-giant probe payload is described. An ice-giant atmospheric probe could represent a significant ESA contribution to a future NASA ice-giant flagship mission.

  19. Experimental Simulations to Understand the Lunar and Martian Surficial Processes

    NASA Astrophysics Data System (ADS)

    Zhao, Y. Y. S.; Li, X.; Tang, H.; Li, Y.; Zeng, X.; Chang, R.; Li, S.; Zhang, S.; Jin, H.; Mo, B.; Li, R.; Yu, W.; Wang, S.

    2016-12-01

    In support with China's Lunar and Mars exploration programs and beyond, our center is dedicated to understand the surficial processes and environments of planetary bodies. Over the latest several years, we design, build and optimize experimental simulation facilities and utilize them to test hypotheses and evaluate affecting mechanisms under controlled conditions particularly relevant to the Moon and Mars. Among the fundamental questions to address, we emphasize on five major areas: (1) Micrometeorites bombardment simulation to evaluate the formation mechanisms of np-Fe0 which was found in lunar samples and the possible sources of Fe. (2) Solar wind implantation simulation to evaluate the alteration/amorphization/OH or H2O formation on the surface of target minerals or rocks. (3) Dusts mobility characteristics on the Moon and other planetary bodies by excitation different types of dust particles and measuring their movements. (4) Mars basaltic soil simulant development (e.g., Jining Martian Soil Simulant (JMSS-1)) and applications for scientific/engineering experiments. (5) Halogens (Cl and Br) and life essential elements (C, H, O, N, P, and S) distribution and speciation on Mars during surficial processes such as sedimentary- and photochemical- related processes. Depending on the variables of interest, the simulation systems provide flexibility to vary source of energy, temperature, pressure, and ambient gas composition in the reaction chambers. Also, simulation products can be observed or analyzed in-situ by various analyzer components inside the chamber, without interrupting the experimental conditions. In addition, behavior of elements and isotopes during certain surficial processes (e.g., evaporation, dissolution, etc.) can be theoretically predicted by our theoretical geochemistry group with thermodynamics-kinetics calculation and modeling, which supports experiment design and result interpretation.

  20. Laboratory Simulations on Haze Formation in Cool Exoplanet Atmospheres

    NASA Astrophysics Data System (ADS)

    He, Chao; Horst, Sarah; Lewis, Nikole; Yu, Xinting; McGuiggan, Patricia; Moses, Julianne I.

    2017-10-01

    The Kepler mission has shown that the most abundant types of planets are super-Earths and mini-Neptunes among ~3500 confirmed exoplanets, and these types of exoplanets are expected to exhibit a wide variety of atmospheric compositions. Recent transit spectra have demonstrated that clouds and/or hazes could play a significant role in these planetary atmospheres (Deming et al. 2013, Knutson et al. 2014, Kreidberg et al. 2014, Pont, et al. 2013). However, very little laboratory work has been done to understand the formation of haze over a broad range of atmospheric compositions. Here we conducted a series of laboratory simulations to investigate haze formation in a range of planetary atmospheres using our newly built Planetary HAZE Research (PHAZER) chamber (He et al. 2017). We ran experimental simulations for nine different atmospheres: three temperatures (300 K, 400 K, and 600 K) and three metallicities (100, 1000, and 10000 times solar metallicity) using AC glow discharge as an energy source to irradiate gas mixtures. We found that haze particles are formed in all nine experiments, but the haze production rates are dramatically different for different cases. We investigated the particle sizes of the haze particles deposited on quartz discs using atomic force microscopy (AFM). The AFM images show that the particle size varies from 30 nm to 200 nm. The haze particles are more uniform for 100x solar metallicity experiments (30 nm to 40 nm) while the particles sizes for 1000x and 10000x solar metallicity experiments have wider distributions (30 nm to 200 nm). The particle size affects the scattering of light, and thus the temperature structure of planetary atmospheres. The haze production rates and particle size distributions obtained here can serve as critical inputs to atmospheric physical and chemical tools to understand the exoplanetary atmospheres and help guide future TESS and JWST observations of super-Earths and mini-Neptunes.Ref:Deming, D., et al. 2013, ApJ, 774, 95.He, C., et al. 2017, APJL, 841, L31.Knutson, H. A., et al. 2014, Nat. 505, 66.Kreidberg, L., et al. 2014, Nat. 505, 69.Pont, F., et al. 2013, MNRAS, 432, 2917.

  1. Origin of the eclogitic clasts with graphite-bearing and graphite-free lithologies in the Northwest Africa 801 (CR2) chondrite: Possible origin from a Moon-sized planetary body inferred from chemistry, oxygen isotopes and REE abundances

    NASA Astrophysics Data System (ADS)

    Hiyagon, H.; Sugiura, N.; Kita, N. T.; Kimura, M.; Morishita, Y.; Takehana, Y.

    2016-08-01

    In order to clarify the origin of the eclogitic clasts found in the NWA801 (CR2) chondrite (Kimura et al., 2013), especially, that of the high pressure and temperature (P-T) condition (∼3 GPa and ∼1000 °C), we conducted ion microprobe analyses of oxygen isotopes and rare earth element (REE) abundances in the clasts. Oxygen isotopic compositions of the graphite-bearing lithology (GBL) and graphite-free lithology (GFL) show a slope ∼0.6 correlation slightly below the CR-CH-CB chondrites field in the O three-isotope-diagram, with a large variation for the former and almost homogeneous composition for the latter. The average REE abundances of the two lithologies show almost unfractionated patterns. Based on these newly obtained data, as well as mineralogical observations, bulk chemistry, and considerations about diffusion timescales for various elements, we discuss in detail the formation history of the clasts. Consistency of the geothermobarometers used by Kimura et al. (2013), suggesting equilibration of various elements among different mineral pairs, provides a strong constraint for the duration of the high P-T condition. We suggest that the high P-T condition lasted 102-103 years. This clearly precludes a shock high pressure (HP) model, and hence, strongly supports a static HP model. A static HP model requires a Moon-sized planetary body of ∼1500 km in radius. Furthermore, it implies two successive violent collisions, first at the formation of the large planetary body, when the clasts were placed its deep interior, and second, at the disruption of the large planetary body, when the clasts were expelled out of the parent body and later on transported to the accretion region of the CR chondrites. We also discuss possible origin of O isotopic variations in GBL, and presence/absence of graphite in GBL/GFL, respectively, in relation to smelting possibly occurred during the igneous process(es) which formed the two lithologies. Finally we present a possible formation scenario of the eclogitic clasts.

  2. Magnetic Fields of Extrasolar Planets: Planetary Interiors and Habitability

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph

    2018-06-01

    Ground-based observations showed that Jupiter's radio emission is linked to its planetary-scale magnetic field, and subsequent spacecraft observations have shown that most planets, and some moons, have or had a global magnetic field. Generated by internal dynamos, magnetic fields are one of the few remote sensing means of constraining the properties of planetary interiors. For the Earth, its magnetic field has been speculated to be partially responsible for its habitability, and knowledge of an extrasolar planet's magnetic field may be necessary to assess its habitability. The radio emission from Jupiter and other solar system planets is produced by an electron cyclotron maser, and detections of extrasolar planetary electron cyclotron masers will enable measurements of extrasolar planetary magnetic fields. Based on experience from the solar system, such observations will almost certainly require space-based observations, but they will also be guided by on-going and near-future ground-based observations.This work has benefited from the discussion and participants of the W. M. Keck Institute of Space Studies "Planetary Magnetic Fields: Planetary Interiors and Habitability" and content within a white paper submitted to the National Academy of Science Committee on Exoplanet Science Strategy. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  3. Planetary Rings

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.

    1994-01-01

    Just over two decades ago, Jim Pollack made a critical contribution to our understanding of planetary ring particle properties, and resolved a major apparent paradox between radar reflection and radio emission observations. At the time, particle properties were about all there were to study about planetary rings, and the fundamental questions were, why is Saturn the only planet with rings, how big are the particles, and what are they made of? Since then, we have received an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Meanwhile, we have seen steady progress in our understanding of the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron-to-several-meter size particles which comprise ring systems into the complex webs of structure that we now know them to display. Insights gained from studies of these giant dynamical analogs have carried over into improved understanding of the formation of the planets themselves from particle disks, a subject very close to Jim's heart. The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems are invariably found in association with families of regular satellites, and there is ark emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system

  4. Kepler Mission to Detect Earth-like Planets

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji

    2003-01-01

    Kepler Mission to detect Earth-like planets in our Milky Way galaxy was approved by NASA in December 2001 for a 4-5 year mission. The launch is planned in about 5 years. The Kepler observatory will be placed in an Earth-trailing orbit. The unique feature of the Kepler Mission is its ability to detect Earth-like planets orbiting around solar-type stars at a distance similar to that of Earth (from our Sun); such an orbit could provide an environment suitable for supporting life as we know it. The Kepler observatory accomplishes this feat by looking for the transits of planetary object in front of their suns; Kepler has a photometric precision of 10E-5 (0.00001) to achieve such detections. Other ongoing planetary detection programs (based mostly on a technique that looks for the shifting of spectral lines of the primary star due to its planetary companions' motions around it) have detected massive planets (with masses in the range of Jupiter); such massive planets are not considered suitable for supporting life. If our current theories for the formation of planetary systems are valid, we expect to detect about 50 Earth-like planets during Kepler's 4-year mission (assuming a random distribution of the planetary orbital inclinations with respect to the line of sight from Kepler). The number of detection will increase about 640 planets if the planets to be detected are Jupiter-sized.

  5. Kepler Mission to Detect Earth-like Planets

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji

    2002-01-01

    Kepler Mission to detect Earth-like planets in our Milky Way galaxy was approved by NASA in December 2001 for a 4-5 year mission. The launch is planned in about 5 years. The Kepler observatory will be placed in an Earth-trailing orbit. The unique feature of the Kepler Mission is its ability to detect Earth-like planets orbiting around solar-type stars at a distance similar to that of Earth (from our Sun); such an orbit could provide an environment suitable for supporting life as we know it. The Kepler observatory accomplishes this feat by looking for the transits of planetary object in front of their suns; Kepler has a photometric precision of 10E-5 (0.00001) to achieve such detections. Other ongoing planetary detection programs (based mostly on a technique that looks for the shifting of spectral lines of the primary star due to its planetary companions' motions around it) have detected massive planets (with masses in the range of Jupiter); such massive planets are not considered suitable for supporting life. If our current theories for the formation of planetary systems are valid, we expect to detect about 50 Earth-like planets during Kepler's 4-year mission (assuming a random distribution of the planetary orbital inclinations with respect to the line of sight from Kepler). The number of detection will increase about 640 planets if the planets to be detected are Jupiter-sized.

  6. Planetary population synthesis coupled with atmospheric escape: a statistical view of evaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Sheng; Ji, Jianghui; Mordasini, Christoph

    2014-11-01

    We apply hydrodynamic evaporation models to different synthetic planet populations that were obtained from a planet formation code based on the core-accretion paradigm. We investigated the evolution of the planet populations using several evaporation models, which are distinguished by the driving force of the escape flow (X-ray or EUV), the heating efficiency in energy-limited evaporation regimes, or both. Although the mass distribution of the planet populations is barely affected by evaporation, the radius distribution clearly shows a break at approximately 2 R {sub ⊕}. We find that evaporation can lead to a bimodal distribution of planetary sizes and to anmore » 'evaporation valley' running diagonally downward in the orbital distance—planetary radius plane, separating bare cores from low-mass planets that have kept some primordial H/He. Furthermore, this bimodal distribution is related to the initial characteristics of the planetary populations because low-mass planetary cores can only accrete small primordial H/He envelopes and their envelope masses are proportional to their core masses. We also find that the population-wide effect of evaporation is not sensitive to the heating efficiency of energy-limited description. However, in two extreme cases, namely without evaporation or with a 100% heating efficiency in an evaporation model, the final size distributions show significant differences; these two scenarios can be ruled out from the size distribution of Kepler candidates.« less

  7. A consensus approach to planetary protection requirements: recommendations for Mars lander missions

    NASA Technical Reports Server (NTRS)

    Rummel, J. D.; Meyer, M. A.

    1996-01-01

    Over the last several years, the nature of the surface conditions on the planet Mars, our knowledge of the growth capabilities of Earth organisms under extreme conditions, and future opportunities for Mars exploration have been under extensive review in the United States and elsewhere. As part of these examinations, in 1992 the US Space Studies Board made a series of recommendations to NASA on the requirements that should be implemented on future missions that will explore Mars. In particular, significant changes were recommended in the requirements for Mars landers, changes that significantly alleviated the burden of planetary protection implementation for these missions. In this paper we propose a resolution implementing this new set of recommendations, for adoption by COSPAR at its 30th meeting in Hamburg. We also discuss future directions and study areas for planetary protection, in light of changing plans for Mars exploration.

  8. Formation of TRAPPIST-1

    NASA Astrophysics Data System (ADS)

    Ormel, C. W.; Liu, B.; Schoonenberg, D.

    2017-09-01

    We present a model for the formation of the recently-discovered TRAPPIST-1 planetary system. In our scenario planets form in the interior regions, by accretion of mm to cm-size particles (pebbles) that drifted from the outer disk. This scenario has several advantages: it connects to the observation that disks are made up of pebbles, it is efficient, it explains why the TRAPPIST-1 planets are ˜Earth mass, and it provides a rationale for the system's architecture.

  9. USRA's NCSEFSE: a new National Center for Space, Earth, and Flight Sciences Education

    NASA Astrophysics Data System (ADS)

    Livengood, T. A.; Goldstein, J.; Vanhala, H.; Hamel, J.; Miller, E. A.; Pulkkinen, K.; Richards, S.

    2005-08-01

    A new National Center for Space, Earth, and Flight Sciences Education (NCSEFSE) has been created in the Washington, DC metropolitan area under the auspices of the Universities Space Research Association. The NCSEFSE provides education and public outreach services in the areas of NASA's research foci in programs of both national and local scope. Present NCSEFSE programs include: Journey through the Universe, which unites formal and informal education within communities and connects a nationally-distributed network of communities from Hilo, HI to Washington, DC with volunteer Visiting Researchers and thematic education modules; the Voyage Scale Model Solar System exhibition on the National Mall, a showcase for planetary science placed directly outside the National Air and Space Museum; educational module development and distribution for the MESSENGER mission to Mercury through a national cadre of MESSENGER Educator Fellows; Teachable Moments in the News, which capitalizes on current events in space, Earth, and flight sciences to teach the science that underlies students' natural interests; the Voyages Across the Universe Speakers' Bureau; and Family Science Night at the National Air and Space Museum, which reaches audiences of 2000--3000 each year, drawn from the Washington metropolitan area. Staff scientists of NCSEFSE maintain active research programs, presently in the areas of planetary atmospheric composition, structure, and dynamics, and in solar system formation. NCSEFSE scientists thus are able to act as authentic representatives of frontier scientific research, and ensure accuracy, relevance, and significance in educational products. NCSEFSE instructional designers and educators ensure pedagogic clarity and effectiveness, through a commitment to quantitative assessment.

  10. Publications of the planetary biology program for 1975: A special bibliography. [on NASA programs and research projects on extraterrestrial life

    NASA Technical Reports Server (NTRS)

    Souza, K. A. (Compiler); Young, R. S. (Compiler)

    1976-01-01

    The Planetary Biology Program of the National Aeronautics and Space Administration is the first and only integrated program to methodically investigate the planetary events which may have been responsible for, or related to, the origin, evolution, and distribution of life in the universe. Research supported by this program is divided into the seven areas listed below: (1) chemical evolution, (2) organic geochemistry, (3) life detection, (4) biological adaptation, (5) bioinstrumentation, (6) planetary environments, and (7) origin of life. The arrangement of references in this bibliography follows the division of research described above. Articles are listed alphabetically by author under the research area with which they are most closely related. Only those publications which resulted from research supported by the Planetary Biology Program and which bear a 1975 publication date have been included. Abstracts and theses are not included because of the preliminary and abbreviated nature of the former and the frequent difficulty of obtaining the latter.

  11. Dynamics of binary and planetary-system interaction with disks - Eccentricity changes

    NASA Technical Reports Server (NTRS)

    Atrymowicz, Pawel

    1992-01-01

    Protostellar and protoplanetary systems, as well as merging galactic nuclei, often interact tidally and resonantly with the astrophysical disks via gravity. Underlying our understanding of the formation processes of stars, planets, and some galaxies is a dynamical theory of such interactions. Its main goals are to determine the geometry of the binary-disk system and, through the torque calculations, the rate of change of orbital elements of the components. We present some recent developments in this field concentrating on eccentricity driving mechanisms in protoplanetary and protobinary systems. In those two types of systems the result of the interaction is opposite. A small body embedded in a disk suffers a decrease of orbital eccentricity, whereas newly formed binary stars surrounded by protostellar disks may undergo a significant orbital evolution increasing their eccentricities.

  12. Research in astrophysical processes

    NASA Technical Reports Server (NTRS)

    Ruderman, Malvin A.

    1994-01-01

    Work completed under this grant is summarized in the following areas:(1) radio pulsar turn on and evaporation of companions in very low mass x-ray binaries and in binary radio pulsar systems; (2) effects of magnetospheric pair production on the radiation from gamma-ray pulsars; (3) radiation transfer in the atmosphere of an illuminated companion star; (4) evaporation of millisecond pulsar companions;(5) formation of planets around pulsars; (6) gamma-ray bursts; (7) quasi-periodic oscillations in low mass x-ray binaries; (8) origin of high mass x-ray binaries, runaway OB stars, and the lower mass cutoff for core collapse supernovae; (9) dynamics of planetary atmospheres; (10) two point closure modeling of stationary, forced turbulence; (11) models for the general circulation of Saturn; and (12) compressible convection in stellar interiors.

  13. Disks around stars and the growth of planetary systems.

    PubMed

    Greaves, Jane S

    2005-01-07

    Circumstellar disks play a vital evolutionary role, providing a way to move gas inward and onto a young star. The outward transfer of angular momentum allows the star to contract without breaking up, and the remnant disk of gas and particles is the reservoir for forming planets. High-resolution spectroscopy is uncovering planetary dynamics and motion within the remnant disk, and imaging at infrared to millimeter wavelengths resolves disk structure over billions of years of evolution. Most stars are born with a disk, and models of planet formation need to form such bodies from the disk material within the disk's 10-million-year life-span.

  14. Oxygen isotope variation in stony-iron meteorites.

    PubMed

    Greenwood, R C; Franchi, I A; Jambon, A; Barrat, J A; Burbine, T H

    2006-09-22

    Asteroidal material, delivered to Earth as meteorites, preserves a record of the earliest stages of planetary formation. High-precision oxygen isotope analyses for the two major groups of stony-iron meteorites (main-group pallasites and mesosiderites) demonstrate that each group is from a distinct asteroidal source. Mesosiderites are isotopically identical to the howardite-eucrite-diogenite clan and, like them, are probably derived from the asteroid 4 Vesta. Main-group pallasites represent intermixed core-mantle material from a single disrupted asteroid and have no known equivalents among the basaltic meteorites. The stony-iron meteorites demonstrate that intense asteroidal deformation accompanied planetary accretion in the early Solar System.

  15. Transport of contaminants in the planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Lee, I. Y.; Swan, P. R.

    1978-01-01

    A planetary boundary layer model is described and used to simulate PBL phenomena including cloud formation and pollution transport in the San Francisco Bay Area. The effect of events in the PBL on air pollution is considered, and governing equations for the average momentum, potential temperature, water vapor mixing ratio, and air contaminants are presented. These equations are derived by integrating the basic equations vertically through the mixed layer. Characteristics of the day selected for simulation are reported, and the results suggest that the diurnally cyclic features of the mesoscale motion, including clouds and air pollution, can be simulated in a readily interpretable way with the model.

  16. The Fate of Exoplanetary Systems and the Implications for White Dwarf Pollution

    NASA Astrophysics Data System (ADS)

    Veras, D.; Mustill, A. J.; Bonsor, A.; Wyatt, M. C.

    2013-09-01

    Mounting discoveries of extrasolar planets orbiting post-main-sequence stars motivate studies to understand the fate of these planets. Also, polluted white dwarfs (WDs) likely represent dynamically active systems at late times. Here, we perform full-lifetime simulations of one-, two- and three-planet systems from the endpoint of formation to several Gyr into the WD phase of the host star. We outline the physical and computational processes which must be considered for post-main-sequence planetary studies, and characterize the challenges in explaining the robust observational signatures of infrared excess in white dwarfs by appealing to late-stage planetary systems.

  17. Experiments in Planetary and Related Sciences and the Space Station

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald (Editor); Williams, Richard J. (Editor)

    1987-01-01

    Numerous workshops were held to provide a forum for discussing the full range of possible experiments, their science rationale, and the requirements on the Space Station, should such experiments eventually be flown. During the workshops, subgroups met to discuss areas of common interest. Summaries of each group and abstracts of contributed papers as they developed from a workshop on September 15 to 16, 1986, are included. Topics addressed include: planetary impact experimentation; physics of windblown particles; particle formation and interaction; experimental cosmochemistry in the space station; and an overview of the program to place advanced automation and robotics on the space station.

  18. Structure of exoplanets

    PubMed Central

    Spiegel, David S.; Fortney, Jonathan J.; Sotin, Christophe

    2014-01-01

    The hundreds of exoplanets that have been discovered in the past two decades offer a new perspective on planetary structure. Instead of being the archetypal examples of planets, those of our solar system are merely possible outcomes of planetary system formation and evolution, and conceivably not even especially common outcomes (although this remains an open question). Here, we review the diverse range of interior structures that are both known and speculated to exist in exoplanetary systems—from mostly degenerate objects that are more than 10× as massive as Jupiter, to intermediate-mass Neptune-like objects with large cores and moderate hydrogen/helium envelopes, to rocky objects with roughly the mass of Earth. PMID:24379369

  19. Rocky core solubility in Jupiter and giant exoplanets.

    PubMed

    Wilson, Hugh F; Militzer, Burkhard

    2012-03-16

    Gas giants are believed to form by the accretion of hydrogen-helium gas around an initial protocore of rock and ice. The question of whether the rocky parts of the core dissolve into the fluid H-He layers following formation has significant implications for planetary structure and evolution. Here we use ab initio calculations to study rock solubility in fluid hydrogen, choosing MgO as a representative example of planetary rocky materials, and find MgO to be highly soluble in H for temperatures in excess of approximately 10,000 K, implying the potential for significant redistribution of rocky core material in Jupiter and larger exoplanets.

  20. Structure of exoplanets.

    PubMed

    Spiegel, David S; Fortney, Jonathan J; Sotin, Christophe

    2014-09-02

    The hundreds of exoplanets that have been discovered in the past two decades offer a new perspective on planetary structure. Instead of being the archetypal examples of planets, those of our solar system are merely possible outcomes of planetary system formation and evolution, and conceivably not even especially common outcomes (although this remains an open question). Here, we review the diverse range of interior structures that are both known and speculated to exist in exoplanetary systems--from mostly degenerate objects that are more than 10× as massive as Jupiter, to intermediate-mass Neptune-like objects with large cores and moderate hydrogen/helium envelopes, to rocky objects with roughly the mass of Earth.

  1. ON THE NATURE OF THE TERTIARY COMPANION TO FW TAU: ALMA CO OBSERVATIONS AND SED MODELING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caceres, Claudio; Hardy, Adam; Schreiber, Matthias R.

    2015-06-20

    It is thought that planetary mass companions may form through gravitational disk instabilities or core accretion. Identifying such objects in the process of formation would provide the most direct test for the competing formation theories. One of the most promising candidates for a planetary mass object still in formation is the third object in the FW Tau system. We present here ALMA cycle 1 observations confirming the recently published 1.3 mm detection of a dust disk around this third object and present for the first time a clear detection of a single peak {sup 12}CO (2–1) line, providing direct evidencemore » for the simultaneous existence of a gas disk. We perform radiative transfer modeling of the third object in FW Tau and find that current observations are consistent with either a brown dwarf embedded in an edge-on disk or a planet embedded in a low inclination disk, which is externally irradiated by the binary companion. Further observations with ALMA, aiming for high SNR detections of non-contaminated gas lines, are required to conclusively unveil the nature of the third object in FW Tau.« less

  2. Identifying Organic Molecules in Space: The AstroBiology Explorer (ABE) Mission Concept

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Sandford, S.; Allamandola, L.; Bregman, J.; Cohen, M.; Cruikshank, D.; Dumas, C.; Greene, T.; Hudgins, D.; Kwok, S.

    2004-01-01

    The AstroBiology Explorer (ABE) mission concept consists of a modest dedicated space observatory having a 60 cm class primary mirror cooled to T less than 50 K equipped with medium resolution cross-dispersed spectrometers having cooled large format near- and mid-infrared detector arrays. Such a system would be capable of addressing outstanding problems in Astrochemistry and Astrophysics that are particularly relevant to Astrobiology and addressable via astronomical observation. The mission's observaticxiai program woiild make fundamental scieztific: prngress in establishing the nature, distribution, formation and evolution of organic and other molecular materials in the following extra-terrestrial environments: 1) The Outflow of Dying Stars; 2) The Diffuse Interstellar Medium (DISM); 3) Dense Molecular Clouds, Star Formation Regions, and Young Stellar/Planetary Systems; 4) Planets, Satellites, and Small Bodies within the Solar System; and 5) The Interstellar Media of Other Galaxies ABE could make fundamental progress in all of these area by conducting a 1 to 2 year mission to obtain a coordinated set of infrared spectroscopic observations over the 2.5 - 20 micron spectral range at a spectral resolution of R greater than 2500 of about 1500 galaxies, stars, planetary nebulae, young stellar objects, and solar system objects.

  3. Studies of extra-solar Oort Clouds and the Kuiper Disk

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1994-01-01

    The March 1994 Semi-Annual report for Studies of Extra-Solar Oort Clouds and the Kuiper Disk is presented. We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation, the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and to the ultimate fate of comet clouds around the Sun and other stars. According to 'standard' theory, both the Kuiper Disk and Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Therefore, searches for comet disks and clouds orbiting other stars offer a new method for inferring the presence of planetary systems. Our three-year effort consists of two major efforts: observational work to predict and search for the signatures of Oort Clouds and comet disks around other stars; and modeling studies of the formation and evolution of the Kuiper Disk (KD) and similar assemblages that may reside around other stars, including beta Pic.

  4. A Standardized Interface for Obtaining Digital Planetary and Heliophysics Time Series Data

    NASA Astrophysics Data System (ADS)

    Vandegriff, Jon; Weigel, Robert; Faden, Jeremy; King, Todd; Candey, Robert

    2016-10-01

    We describe a low level interface for accessing digital Planetary and Heliophysics data, focusing primarily on time-series data from in-situ instruments. As the volume and variety of planetary data has increased, it has become harder to merge diverse datasets into a common analysis environment. Thus we are building low-level computer-to-computer infrastructure to enable data from different missions or archives to be able to interoperate. The key to enabling interoperability is a simple access interface that standardizes the common capabilities available from any data server: 1. identify the data resources that can be accessed; 2. describe each resource; and 3. get the data from a resource. We have created a standardized way for data servers to perform each of these three activities. We are also developing a standard streaming data format for the actual data content to be returned (i.e., the result of item 3). Our proposed standard access interface is simple enough that it could be implemented on top of or beside existing data services, or it could even be fully implemented by a small data provider as a way to ensure that the provider's holdings can participate in larger data systems or joint analysis with other datasets. We present details of the interface and of the streaming format, including a sample server designed to illustrate the data request and streaming capabilities.

  5. Development of nano-structured duplex and ferritic stainless steels by pulverisette planetary milling followed by pressureless sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R, Shashanka, E-mail: shashankaic@gmail.com; Chaira, D., E-mail: chaira.debasis@gmail.com

    Nano-structured duplex and ferritic stainless steel powders are prepared by planetary milling of elemental Fe, Cr and Ni powder for 40 h and then consolidated by conventional pressureless sintering. The progress of milling and the continuous refinement of stainless steel powders have been confirmed by means of X-ray diffraction and scanning electron microscopy. Activation energy for the formation of duplex and ferritic stainless steels is calculated by Kissinger method using differential scanning calorimetry and is found to be 159.24 and 90.17 KJ/mol respectively. Both duplex and ferritic stainless steel powders are consolidated at 1000, 1200 and 1400 °C in argonmore » atmosphere to study microstructure, density and hardness. Maximum sintered density of 90% and Vickers microhardness of 550 HV are achieved for duplex stainless steel sintered at 1400 °C for 1 h. Similarly, 92% sintered density and 263 HV microhardness are achieved for ferritic stainless steel sintered at 1400 °C. - Highlights: • Synthesized duplex and ferritic stainless steels by pulverisette planetary milling • Calculated activation energy for the formation of duplex and ferritic stainless steels • Studied the effect of sintering temperature on density, hardness and microstructure • Duplex stainless steel exhibits 90% sintered density and microhardness of 550 HV. • Ferritic stainless steel shows 92% sintered density and 263 HV microhardness.« less

  6. Pursuing the planet-debris disk connection: Analysis of upper limits from the Anglo-Australian planet search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittenmyer, Robert A.; Marshall, Jonathan P., E-mail: rob@phys.unsw.edu.au

    2015-02-01

    Solid material in protoplanetary disks will suffer one of two fates after the epoch of planet formation; either being bound up into planetary bodies, or remaining in smaller planetesimals to be ground into dust. These end states are identified through detection of sub-stellar companions by periodic radial velocity (or transit) variations of the star, and excess emission at mid- and far-infrared wavelengths, respectively. Since the material that goes into producing the observable outcomes of planet formation is the same, we might expect these components to be related both to each other and their host star. Heretofore, our knowledge of planetarymore » systems around other stars has been strongly limited by instrumental sensitivity. In this work, we combine observations at far-infrared wavelengths by IRAS, Spitzer, and Herschel with limits on planetary companions derived from non-detections in the 16 year Anglo-Australian Planet Search to clarify the architectures of these (potential) planetary systems and search for evidence of correlations between their constituent parts. We find no convincing evidence of such correlations, possibly owing to the dynamical history of the disk systems, or the greater distance of the planet-search targets. Our results place robust limits on the presence of Jupiter analogs which, in concert with the debris disk observations, provides insights on the small-body dynamics of these nearby systems.« less

  7. Channel coding/decoding alternatives for compressed TV data on advanced planetary missions.

    NASA Technical Reports Server (NTRS)

    Rice, R. F.

    1972-01-01

    The compatibility of channel coding/decoding schemes with a specific TV compressor developed for advanced planetary missions is considered. Under certain conditions, it is shown that compressed data can be transmitted at approximately the same rate as uncompressed data without any loss in quality. Thus, the full gains of data compression can be achieved in real-time transmission.

  8. An Approach for the Dynamic Measurement of Ring Gear Strains of Planetary Gearboxes Using Fiber Bragg Gratings

    PubMed Central

    Zhang, Xiaodong; Hou, Chenggang

    2017-01-01

    The strain of the ring gear can reflect the dynamic characteristics of planetary gearboxes directly, which makes it an ideal signal to monitor the health condition of the gearbox. To overcome the disadvantages of traditional methods, a new approach for the dynamic measurement of ring gear strains using fiber Bragg gratings (FBGs) is proposed in this paper. Firstly, the installation of FBGs is determined according to the analysis for the strain distribution of the ring gear. Secondly, the parameters of the FBG are determined in consideration of the accuracy and sensitivity of the measurement as well as the size of the ring gear. The strain measured by the FBG is then simulated under non-uniform strain field conditions. Thirdly, a dynamic measurement system is built and tested. Finally, the strains of the ring gear are measured in a planetary gearbox under normal and faulty conditions. The experimental results showed good agreement with the theoretical results in values, trends, and the fault features can be seen from the time domain of the measured strain signal, which proves that the proposed method is feasible for the measurement of the ring gear strains of planetary gearboxes. PMID:29258164

  9. An Approach for the Dynamic Measurement of Ring Gear Strains of Planetary Gearboxes Using Fiber Bragg Gratings.

    PubMed

    Niu, Hang; Zhang, Xiaodong; Hou, Chenggang

    2017-12-16

    The strain of the ring gear can reflect the dynamic characteristics of planetary gearboxes directly, which makes it an ideal signal to monitor the health condition of the gearbox. To overcome the disadvantages of traditional methods, a new approach for the dynamic measurement of ring gear strains using fiber Bragg gratings (FBGs) is proposed in this paper. Firstly, the installation of FBGs is determined according to the analysis for the strain distribution of the ring gear. Secondly, the parameters of the FBG are determined in consideration of the accuracy and sensitivity of the measurement as well as the size of the ring gear. The strain measured by the FBG is then simulated under non-uniform strain field conditions. Thirdly, a dynamic measurement system is built and tested. Finally, the strains of the ring gear are measured in a planetary gearbox under normal and faulty conditions. The experimental results showed good agreement with the theoretical results in values, trends, and the fault features can be seen from the time domain of the measured strain signal, which proves that the proposed method is feasible for the measurement of the ring gear strains of planetary gearboxes.

  10. New particle formation at ground level and in the vertical column over the Barcelona area

    NASA Astrophysics Data System (ADS)

    Minguillón, M. C.; Brines, M.; Pérez, N.; Reche, C.; Pandolfi, M.; Fonseca, A. S.; Amato, F.; Alastuey, A.; Lyasota, A.; Codina, B.; Lee, H.-K.; Eun, H.-R.; Ahn, K.-H.; Querol, X.

    2015-10-01

    The vertical profiles (up to 975 m a.s.l.) of ultrafine and micronic particles across the planetary boundary layer and the free troposphere over a Mediterranean urban environment were investigated. Measurements were carried out using a tethered balloon equipped with a miniaturized condensation particle counter, a miniaturized optical particle counter, a micro-aethalometer, a rotating impactor, and meteorological instrumentation. Simultaneous ground measurements were carried out at an urban and a regional background site. New particle formation episodes initiating in the urban area were observed under high insolation conditions. The precursors were emitted by the city and urban photochemically-activated nucleation occurred both at high atmospheric levels (tens to hundreds of meters) and at ground level. The new particle formation at ground level was limited by the high particulate matter concentrations recorded during the morning traffic rush hours that increase the condensation sink and prevent new particle formation, and therefore restricted to midday and early afternoon. The aloft new particle formation occurred earlier as the thermally ascending polluted air mass was diluted. The regional background was only affected from midday and early afternoon when sea and mountain breezes transported the urban air mass after particle growth. These events are different from most new particle formation events described in literature, characterized by a regionally originated nucleation, starting early in the morning in the regional background and persisting with a subsequent growth during a long period. An idealized and simplified model of the spatial and time occurrence of these two types of new particle formation episodes into, around and over the city was elaborated.

  11. THE IMPRINT OF EXOPLANET FORMATION HISTORY ON OBSERVABLE PRESENT-DAY SPECTRA OF HOT JUPITERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mordasini, C.; Van Boekel, R.; Mollière, P.

    The composition of a planet’s atmosphere is determined by its formation, evolution, and present-day insolation. A planet’s spectrum therefore may hold clues on its origins. We present a “chain” of models, linking the formation of a planet to its observable present-day spectrum. The chain links include (1) the planet’s formation and migration, (2) its long-term thermodynamic evolution, (3) a variety of disk chemistry models, (4) a non-gray atmospheric model, and (5) a radiometric model to obtain simulated spectroscopic observations with James Webb Space Telescope and ARIEL. In our standard chemistry model the inner disk is depleted in refractory carbon asmore » in the Solar System and in white dwarfs polluted by extrasolar planetesimals. Our main findings are: (1) envelope enrichment by planetesimal impacts during formation dominates the final planetary atmospheric composition of hot Jupiters. We investigate two, under this finding, prototypical formation pathways: a formation inside or outside the water iceline, called “dry” and “wet” planets, respectively. (2) Both the “dry” and “wet” planets are oxygen-rich (C/O < 1) due to the oxygen-rich nature of the solid building blocks. The “dry” planet’s C/O ratio is <0.2 for standard carbon depletion, while the “wet” planet has typical C/O values between 0.1 and 0.5 depending mainly on the clathrate formation efficiency. Only non-standard disk chemistries without carbon depletion lead to carbon-rich C/O ratios >1 for the “dry” planet. (3) While we consistently find C/O ratios <1, they still vary significantly. To link a formation history to a specific C/O, a better understanding of the disk chemistry is thus needed.« less

  12. Dynamics and Statistical Mechanics of Rotating and non-Rotating Vortical Flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Chjan

    Three projects were analyzed with the overall aim of developing a computational/analytical model for estimating values of the energy, angular momentum, enstrophy and total variation of fluid height at phase transitions between disordered and self-organized flow states in planetary atmospheres. It is believed that these transitions in equilibrium statistical mechanics models play a role in the construction of large-scale, stable structures including super-rotation in the Venusian atmosphere and the formation of the Great Red Spot on Jupiter. Exact solutions of the spherical energy-enstrophy models for rotating planetary atmospheres by Kac's method of steepest descent predicted phase transitions to super-rotating solid-bodymore » flows at high energy to enstrophy ratio for all planetary spins and to sub-rotating modes if the planetary spin is large enough. These canonical statistical ensembles are well-defined for the long-range energy interactions that arise from 2D fluid flows on compact oriented manifolds such as the surface of the sphere and torus. This is because in Fourier space available through Hodge theory, the energy terms are exactly diagonalizable and hence has zero range, leading to well-defined heat baths.« less

  13. Science goals and concepts of a Saturn probe for the future L2/L3 ESA call

    NASA Astrophysics Data System (ADS)

    Schmider, F.-X.; Mousis, O.; Fletcher, L. N.; Altwegg, K.; André, N.; Blanc, M.; Coustenis, A.; Gautier, D.; Geppert, W. D.; Guillot, T.; Irwin, P.; Lebreton, J.-P.; Marty, B.; Sánchez-Lavega, A.; Waite, J. H.; Wurz, P.

    2013-11-01

    Comparative studies of the elemental enrichments and isotopic abundances measured on Saturn can provide unique insights into the processes at work within our planetary system and are related to the time and location of giant planet formation. In situ measurements via entry probes remain the only reliable, unambiguous method for determining the atmospheric composition from the thermosphere to the deep cloud-forming regions of their complex weather layers. Furthermore, in situ experiments can reveal the meteorological properties of planetary atmospheres to provide ``ground truth'' for orbital remote sensing. Following the orbital reconnaissance of the Galileo and Cassini spacecraft, and the single-point in situ measurement of the Galileo probe to Jupiter, we believe that an in situ measurement of Saturn's atmospheric composition should be an essential element of ESA's future cornerstone missions, providing the much-needed comparative planetology to reveal the origins of our outer planets. This quest for understanding the origins of our solar system and the nature of planetary atmospheres is in the heart of ESA's Cosmic Vision, and has vast implications for the origins of planetary systems around other stars.

  14. Heliophysics: Evolving Solar Activity and the Climates of Space and Earth

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus J.; Siscoe, George L.

    2010-09-01

    Preface; 1. Interconnectedness in heliophysics Carolus J. Schrijver and George L. Siscoe; 2. Long-term evolution of magnetic activity of Sun-like stars Carolus J. Schrijver; 3. Formation and early evolution of stars and proto-planetary disks Lee W. Hartmann; 4. Planetary habitability on astronomical time scales Donald E. Brownlee; 5. Solar internal flows and dynamo action Mark S. Miesch; 6. Modeling solar and stellar dynamos Paul Charbonneau; 7. Planetary fields and dynamos Ulrich R. Christensen; 8. The structure and evolution of the 3D solar wind John T. Gosling; 9. The heliosphere and cosmic rays J. Randy Jokipii; 10. Solar spectral irradiance: measurements and models Judith L. Lean and Thomas N. Woods; 11. Astrophysical influences on planetary climate systems Juerg Beer; 12. Evaluating the drivers of Earth's climate system Thomas J. Crowley; 13. Ionospheres of the terrestrial planets Stanley C. Solomon; 14. Long-term evolution of the geospace climate Jan J. Sojka; 15. Waves and transport processes in atmospheres and oceans Richard L. Walterscheid; 16. Solar variability, climate, and atmospheric photochemistry Guy P. Brasseur, Daniel Marsch and Hauke Schmidt; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index.

  15. Heliophysics: Evolving Solar Activity and the Climates of Space and Earth

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus J.; Siscoe, George L.

    2012-01-01

    Preface; 1. Interconnectedness in heliophysics Carolus J. Schrijver and George L. Siscoe; 2. Long-term evolution of magnetic activity of Sun-like stars Carolus J. Schrijver; 3. Formation and early evolution of stars and proto-planetary disks Lee W. Hartmann; 4. Planetary habitability on astronomical time scales Donald E. Brownlee; 5. Solar internal flows and dynamo action Mark S. Miesch; 6. Modeling solar and stellar dynamos Paul Charbonneau; 7. Planetary fields and dynamos Ulrich R. Christensen; 8. The structure and evolution of the 3D solar wind John T. Gosling; 9. The heliosphere and cosmic rays J. Randy Jokipii; 10. Solar spectral irradiance: measurements and models Judith L. Lean and Thomas N. Woods; 11. Astrophysical influences on planetary climate systems Juerg Beer; 12. Evaluating the drivers of Earth's climate system Thomas J. Crowley; 13. Ionospheres of the terrestrial planets Stanley C. Solomon; 14. Long-term evolution of the geospace climate Jan J. Sojka; 15. Waves and transport processes in atmospheres and oceans Richard L. Walterscheid; 16. Solar variability, climate, and atmospheric photochemistry Guy P. Brasseur, Daniel Marsch and Hauke Schmidt; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index.

  16. Systematic Search for Rings around Kepler Planet Candidates: Constraints on Ring Size and Occurrence Rate

    NASA Astrophysics Data System (ADS)

    Aizawa, Masataka; Masuda, Kento; Kawahara, Hajime; Suto, Yasushi

    2018-05-01

    We perform a systematic search for rings around 168 Kepler planet candidates with sufficient signal-to-noise ratios that are selected from all of the short-cadence data. We fit ringed and ringless models to their light curves and compare the fitting results to search for the signatures of planetary rings. First, we identify 29 tentative systems, for which the ringed models exhibit statistically significant improvement over the ringless models. The light curves of those systems are individually examined, but we are not able to identify any candidate that indicates evidence for rings. In turn, we find several mechanisms of false positives that would produce ringlike signals, and the null detection enables us to place upper limits on the size of the rings. Furthermore, assuming the tidal alignment between axes of the planetary rings and orbits, we conclude that the occurrence rate of rings larger than twice the planetary radius is less than 15%. Even though the majority of our targets are short-period planets, our null detection provides statistical and quantitative constraints on largely uncertain theoretical models of the origin, formation, and evolution of planetary rings.

  17. An Undergraduate Endeavor: Assembling a Live Planetarium Show About Mars

    NASA Astrophysics Data System (ADS)

    McGraw, Allison M.

    2016-10-01

    Viewing the mysterious red planet Mars goes back thousands of years with just the human eye but in more recent years the growth of telescopes, satellites and lander missions unveil unrivaled detail of the Martian surface that tells a story worth listening to. This planetarium show will go through the observations starting with the ancients to current understandings of the Martian surface, atmosphere and inner-workings through past and current Mars missions. Visual animations of its planetary motions, display of high resolution images from the Hi-RISE (High Resolution Imaging Science Experiment) and CTX (Context Camera) data imagery aboard the MRO (Mars Reconnaissance Orbiter) as well as other datasets will be used to display the terrain detail and imagery of the planet Mars with a digital projection system. Local planetary scientists and Mars specialists from the Lunar and Planetary Lab at the University of Arizona (Tucson, AZ) will be interviewed and used in the show to highlight current technology and understandings of the red planet. This is an undergraduate project that is looking for collaborations and insight in order gain structure in script writing that will teach about this planetary body to all ages in the format of a live planetarium show.

  18. Planet Formation

    NASA Astrophysics Data System (ADS)

    Klahr, Hubert; Brandner, Wolfgang

    2006-05-01

    This volume addresses fundamental questions concerning the formation of planetary systems in general, and of our solar system in particular. Drawing from recent advances in observational, experimental, and theoretical research, it summarises our current understanding of the planet formation processes, and addresses major open questions and research issues. Chapters are written by leading experts in the field of planet formation and extrasolar planet studies. The book is based on a meeting held at Ringberg Castle in Bavaria, where experts gathered together to present and exchange their ideas and findings. It is a comprehensive resource for graduate students and researchers, and is written to be accessible to newcomers to the field.

  19. Gas-phase spectra of MgO molecules: a possible connection from gas-phase molecules to planet formation

    NASA Astrophysics Data System (ADS)

    Kloska, Katherine A.; Fortenberry, Ryan C.

    2018-02-01

    A more fine-tuned method for probing planet-forming regions, such as protoplanetary discs, could be rovibrational molecular spectroscopy observation of particular premineral molecules instead of more common but ultimately less related volatile organic compounds. Planets are created when grains aggregate, but how molecules form grains is an ongoing topic of discussion in astrophysics and planetary science. Using the spectroscopic data of molecules specifically involved in mineral formation could help to map regions where planet formation is believed to be occurring in order to examine the interplay between gas and dust. Four atoms are frequently associated with planetary formation: Fe, Si, Mg and O. Magnesium, in particular, has been shown to be in higher relative abundance in planet-hosting stars. Magnesium oxide crystals comprise the mineral periclase making it the chemically simplest magnesium-bearing mineral and a natural choice for analysis. The monomer, dimer and trimer forms of (MgO)n with n = 1-3 are analysed in this work using high-level quantum chemical computations known to produce accurate results. Strong vibrational transitions at 12.5, 15.0 and 16.5 μm are indicative of magnesium oxide monomer, dimer and trimer making these wavelengths of particular interest for the observation of protoplanetary discs and even potentially planet-forming regions around stars. If such transitions are observed in emission from the accretion discs or absorptions from stellar spectra, the beginning stages of mineral and, subsequently, rocky body formation could be indicated.

  20. Ejecta from Targets Strong and Weak: Experimental Measurements of Strength Controlled and Strengthless Craters

    NASA Astrophysics Data System (ADS)

    Hermalyn, B.

    2014-09-01

    This study presents novel time-resolved 3D measurements of the impact ejecta through crater formation and the arresting process that ceases growth into a variety of targets exhibiting a spectrum of different strengths of interest on planetary bodies.

  1. Anthropogenic pollution elevates the peak height of new particle formation from planetary boundary layer to lower free troposphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quan, Jiannong; Liu, Yangang; Liu, Quan

    New particle formation (NPF) and subsequent growth are primary sources of atmospheric aerosol particles and cloud condensation nuclei. Previous studies have been conducted in relatively clean environments; investigation of NPF events over highly polluted megacities is still lacking. Here in this paper we show, based on a recent yearlong aircraft campaign conducted over Beijing, China, from April 2011 to June 2012, that NPF occurrence peaks in the lower free troposphere (LT), instead of planetary boundary layer (PBL), as most previous studies have found and that the distance of NPF peak to PBL top increases with increasing aerosol loading. Further analysismore » reveals that increased aerosols suppress NPF in PBL, but enhance NPF in LT due to a complex chain of aerosol-radiation-photochemistry interactions that affect both NPF sources and sinks. These findings shed new light on our understanding of NPF occurrence, NPF vertical distribution, and thus their effects on atmospheric photochemistry, clouds, and climate.« less

  2. Anthropogenic pollution elevates the peak height of new particle formation from planetary boundary layer to lower free troposphere

    DOE PAGES

    Quan, Jiannong; Liu, Yangang; Liu, Quan; ...

    2017-07-21

    New particle formation (NPF) and subsequent growth are primary sources of atmospheric aerosol particles and cloud condensation nuclei. Previous studies have been conducted in relatively clean environments; investigation of NPF events over highly polluted megacities is still lacking. Here in this paper we show, based on a recent yearlong aircraft campaign conducted over Beijing, China, from April 2011 to June 2012, that NPF occurrence peaks in the lower free troposphere (LT), instead of planetary boundary layer (PBL), as most previous studies have found and that the distance of NPF peak to PBL top increases with increasing aerosol loading. Further analysismore » reveals that increased aerosols suppress NPF in PBL, but enhance NPF in LT due to a complex chain of aerosol-radiation-photochemistry interactions that affect both NPF sources and sinks. These findings shed new light on our understanding of NPF occurrence, NPF vertical distribution, and thus their effects on atmospheric photochemistry, clouds, and climate.« less

  3. SOLAR SYSTEM MOONS AS ANALOGS FOR COMPACT EXOPLANETARY SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kane, Stephen R.; Hinkel, Natalie R.; Raymond, Sean N., E-mail: skane@ipac.caltech.edu

    2013-11-01

    The field of exoplanetary science has experienced a recent surge of new systems that is largely due to the precision photometry provided by the Kepler mission. The latest discoveries have included compact planetary systems in which the orbits of the planets all lie relatively close to the host star, which presents interesting challenges in terms of formation and dynamical evolution. The compact exoplanetary systems are analogous to the moons orbiting the giant planets in our solar system, in terms of their relative sizes and semimajor axes. We present a study that quantifies the scaled sizes and separations of the solarmore » system moons with respect to their hosts. We perform a similar study for a large sample of confirmed Kepler planets in multi-planet systems. We show that a comparison between the two samples leads to a similar correlation between their scaled sizes and separation distributions. The different gradients of the correlations may be indicative of differences in the formation and/or long-term dynamics of moon and planetary systems.« less

  4. MapX: 2D XRF for Planetary Exploration - Image Formation and Optic Characterization

    DOE PAGES

    Sarrazin, P.; Blake, D.; Gailhanou, M.; ...

    2018-04-01

    Map-X is a planetary instrument concept for 2D X-Ray Fluorescence (XRF) spectroscopy. The instrument is placed directly on the surface of an object and held in a fixed position during the measurement. The formation of XRF images on the CCD detector relies on a multichannel optic configured for 1:1 imaging and can be analyzed through the point spread function (PSF) of the optic. The PSF can be directly measured using a micron-sized monochromatic X-ray source in place of the sample. Such PSF measurements were carried out at the Stanford Synchrotron and are compared with ray tracing simulations. It is shownmore » that artifacts are introduced by the periodicity of the PSF at the channel scale and the proximity of the CCD pixel size and the optic channel size. A strategy of sub-channel random moves was used to cancel out these artifacts and provide a clean experimental PSF directly usable for XRF image deconvolution.« less

  5. A possible mechanism for the capture of microparticles by the earth and other planets of the solar system. [planetary gravitation effects on cosmic dust particles

    NASA Technical Reports Server (NTRS)

    Dibenedetto, F.

    1973-01-01

    By application of Lyttleton's theory for the formation of comets, it is shown that a possible mechanism for the origin and formation of a concentration of cosmic particles around the earth and the other planets of the solar system exists. In the vicinity of the neutral point, where the velocity of colliding particles is not greater than 6 km/s, it is found that if the solid particles after collision must remain in a solid state, there can be no possibility of accretion for Mercury, Mars, and the Moon, where the maximum value of the distance of the center of the planet to the asymptotic trajectory is less than the radius of the planet. On the other hand, the capture radii of microparticles in solid form varies from a minimum of 2.95 planetary radii for Venus and 3.47 for the Earth, to about 986 for Jupiter.

  6. MapX: 2D XRF for Planetary Exploration - Image Formation and Optic Characterization

    NASA Astrophysics Data System (ADS)

    Sarrazin, P.; Blake, D.; Gailhanou, M.; Marchis, F.; Chalumeau, C.; Webb, S.; Walter, P.; Schyns, E.; Thompson, K.; Bristow, T.

    2018-04-01

    Map-X is a planetary instrument concept for 2D X-Ray Fluorescence (XRF) spectroscopy. The instrument is placed directly on the surface of an object and held in a fixed position during the measurement. The formation of XRF images on the CCD detector relies on a multichannel optic configured for 1:1 imaging and can be analyzed through the point spread function (PSF) of the optic. The PSF can be directly measured using a micron-sized monochromatic X-ray source in place of the sample. Such PSF measurements were carried out at the Stanford Synchrotron and are compared with ray tracing simulations. It is shown that artifacts are introduced by the periodicity of the PSF at the channel scale and the proximity of the CCD pixel size and the optic channel size. A strategy of sub-channel random moves was used to cancel out these artifacts and provide a clean experimental PSF directly usable for XRF image deconvolution.

  7. Hydrogen-deficient Central Stars of Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Todt, H.; Kniazev, A. Y.; Gvaramadze, V. V.; Hamann, W.-R.; Pena, M.; Graefener, G.; Buckley, D.; Crause, L.; Crawford, S. M.; Gulbis, A. A. S.; Hettlage, C.; Hooper, E.; Husser, T.-O.; Kotze, P.; Loaring, N.; Nordsieck, K. H.; O'Donoghue, D.; Pickering, T.; Potter, S.; Romero-Colmenero, E.; Vaisanen, P.; Williams, T.; Wolf, M.

    2015-06-01

    A significant number of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient and are considered as the progenitors of H-deficient white dwarfs. Almost all of these H-deficient CSPNe show a chemical composition of helium, carbon, and oxygen. Most of them exhibit Wolf-Rayet-like emission line spectra and are therefore classified as of spectral type [WC]. In the last years, CSPNe of other Wolf-Rayet spectral subtypes have been identified, namely PB 8 (spectral type [WN/WC]), IC 4663 and Abell 48 (spectral type [WN]). We performed spectral analyses for a number of Wolf-Rayet type central stars of different evolutionary stages with the help of our Potsdam Wolf-Rayet (PoWR) model code for expanding atmospheres to determine relevant stellar parameters. The results of our recent analyses will be presented in the context of stellar evolution and white dwarf formation. Especially the problems of a uniform evolutionary channel for [WC] stars as well as constraints to the formation of [WN] or [WN/WC] subtype stars will be addressed.

  8. MapX: 2D XRF for Planetary Exploration - Image Formation and Optic Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarrazin, P.; Blake, D.; Gailhanou, M.

    Map-X is a planetary instrument concept for 2D X-Ray Fluorescence (XRF) spectroscopy. The instrument is placed directly on the surface of an object and held in a fixed position during the measurement. The formation of XRF images on the CCD detector relies on a multichannel optic configured for 1:1 imaging and can be analyzed through the point spread function (PSF) of the optic. The PSF can be directly measured using a micron-sized monochromatic X-ray source in place of the sample. Such PSF measurements were carried out at the Stanford Synchrotron and are compared with ray tracing simulations. It is shownmore » that artifacts are introduced by the periodicity of the PSF at the channel scale and the proximity of the CCD pixel size and the optic channel size. A strategy of sub-channel random moves was used to cancel out these artifacts and provide a clean experimental PSF directly usable for XRF image deconvolution.« less

  9. Core formation, wet early mantle, and H2O degassing on early Mars

    NASA Technical Reports Server (NTRS)

    Kuramoto, K.; Matsui, T.

    1993-01-01

    Geophysical and geochemical observations strongly suggest a 'hot origin of Mars,' i.e., the early formation of both the core and the crust-mantle system either during or just after planetary accretion. To consider the behavior of H2O in the planetary interior it is specifically important to determine by what mechanism the planet is heated enough to cause melting. For Mars, the main heat source is probably accretional heating. Because Mars is small, the accretion energy needs to be effectively retained in its interior. Therefore, the three candidates of heat retention mechanism are discussed first: (1) the blanketing effect of the primordial H2-He atmosphere; (2) the blanketing effect of the impact-induced H2O-CO2 atmosphere; and (3) the higher deposition efficiency of impact energy due to larger impacts. It was concluded that (3) the is the most plausible mechanism for Mars. Then, its possible consequence on how wet the early martian mantle was is discussed.

  10. Scientific rationale and concepts for in situ probe exploration of Uranus and Neptune

    NASA Astrophysics Data System (ADS)

    Mousis, O.; Atkinson, D.; Amato, M.; Aslam, S.; Atreya, S.; Blanc, M.; Brugger, B.; Calcutt, S.; Cavalié, T.; Charnoz, S.; Coustenis, A.; Deleuil, M.; Dobrijevic, M.; Encrenaz, T.; Ferri, F.; Fletcher, L.; Guillot, T.; Hartogh, P.; Hofstadter, M.; Hueso, R.

    2017-09-01

    Uranus and Neptune, referred to as ice giants, are fundamentally different from the better-known gas giants (Jupiter and Saturn). Exploration of an ice giant system is a high-priority science objective, as these systems (including the magnetosphere, satellites, rings, atmosphere, and interior) challenge our understanding of planetary formation and evolution. The importance of the ice giants is reflected in NASA's 2011 Decadal Survey, comments from ESA's SSC in response to L2/L3 mission proposals and results of the 2017 NASA/ESA Ice Giants study. A crucial part of exploration of the ice giants is in situ sampling of the atmosphere via an atmospheric probe. A probe would bring insights in two broad themes: the formation history of our Solar System and the processes at play in planetary atmospheres. Here we summarize the science driver for in situ measurements at these two planets and discuss possible mission concepts that would be consistent with the constraints of ESA M-class missions.

  11. Restoration and PDS Archive of Apollo Lunar Rock Sample Data

    NASA Technical Reports Server (NTRS)

    Garcia, P. A.; Todd, N. S.; Lofgren, G. E.; Stefanov, W. L.; Runco, S. K.; LaBasse, D.; Gaddis, L. R.

    2011-01-01

    In 2008, scientists at the Johnson Space Center (JSC) Lunar Sample Laboratory and Image Science & Analysis Laboratory (under the auspices of the Astromaterials Research and Exploration Science Directorate or ARES) began work on a 4-year project to digitize the original film negatives of Apollo Lunar Rock Sample photographs. These rock samples together with lunar regolith and core samples were collected as part of the lander missions for Apollos 11, 12, 14, 15, 16 and 17. The original film negatives are stored at JSC under cryogenic conditions. This effort is data restoration in the truest sense. The images represent the only record available to scientists which allows them to view the rock samples when making a sample request. As the negatives are being scanned, they are also being formatted and documented for permanent archive in the NASA Planetary Data System (PDS) archive. The ARES group is working collaboratively with the Imaging Node of the PDS on the archiving.

  12. Precipitation of Secondary Phases from the Dissolution of Silicate Glasses

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Golden, D. C.

    2004-01-01

    Basaltic and anorthositic glasses were subjected to aqueous weathering conditions in the laboratory where the variables were pH, temperature, glass composition, solution composition, and time. Leached layers formed at the surfaces of glasses followed by the precipitation of X-ray amorphous iron and titanium oxides in acidic and neutral solutions at 25 C over time. Glass under oxidative hydrothermal treatments at 150 C yielded a three-layered surface; which included an outer smectite layer, a Fe-Ti oxide layer and an innermost thin leached layer. The introduction of Mg into solutions facilitated the formation of phyllosilicates. Aqueous hydrothermal treatment of anorthositic glasses (high Ca, low Ti) at 200 C readily formed smectite, whereas, the basaltic glasses (high Ti) were more resistant to alteration and smectite was not observed. Alkaline hydrothermal treatment at 2000e produced zeolites and smectites; only smectites formed at 200 C in neutral solutions. These mineralogical changes, although observed under controlled conditions, have direct applications in interpreting planetary (e.g., meteorite parent bodies) and terrestrial aqueous alteration processes.

  13. Planetary Space Weather Service: Part of the the Europlanet 2020 Research Infrastructure

    NASA Astrophysics Data System (ADS)

    Grande, Manuel; Andre, Nicolas

    2016-07-01

    Over the next four years the Europlanet 2020 Research Infrastructure will set up an entirely new European Planetary Space Weather service (PSWS). Europlanet RI is a part of of Horizon 2020 (EPN2020-RI, http://www.europlanet-2020-ri.eu). The Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this Joint Research Aactivities will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in Europe at the end of the programme. Europlanet 2020 RI has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654208.

  14. NASA Johnson Space Center's Planetary Sample Analysis and Mission Science (PSAMS) Laboratory: A National Facility for Planetary Research

    NASA Technical Reports Server (NTRS)

    Draper, D. S.

    2016-01-01

    NASA Johnson Space Center's (JSC's) Astromaterials Research and Exploration Science (ARES) Division, part of the Exploration Integration and Science Directorate, houses a unique combination of laboratories and other assets for conducting cutting edge planetary research. These facilities have been accessed for decades by outside scientists, most at no cost and on an informal basis. ARES has thus provided substantial leverage to many past and ongoing science projects at the national and international level. Here we propose to formalize that support via an ARES/JSC Plane-tary Sample Analysis and Mission Science Laboratory (PSAMS Lab). We maintain three major research capa-bilities: astromaterial sample analysis, planetary process simulation, and robotic-mission analog research. ARES scientists also support planning for eventual human ex-ploration missions, including astronaut geological training. We outline our facility's capabilities and its potential service to the community at large which, taken together with longstanding ARES experience and expertise in curation and in applied mission science, enable multi-disciplinary planetary research possible at no other institution. Comprehensive campaigns incorporating sample data, experimental constraints, and mission science data can be conducted under one roof.

  15. Planetary Geologic Mapping Handbook - 2009

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Skinner, J. A.; Hare, T. M.

    2009-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces (e.g., Varnes, 1974). Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962 (Hackman, 1962). Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by the USGS now are primarily digital products using geographic information system (GIS) software and file formats. GIS mapping tools permit easy spatial comparison, generation, importation, manipulation, and analysis of multiple raster image, gridded, and vector data sets. GIS software has also permitted the development of project-specific tools and the sharing of geospatial products among researchers. GIS approaches are now being used in planetary geologic mapping as well (e.g., Hare and others, 2009). Guidelines or handbooks on techniques in planetary geologic mapping have been developed periodically (e.g., Wilhelms, 1972, 1990; Tanaka and others, 1994). As records of the heritage of mapping methods and data, these remain extremely useful guides. However, many of the fundamental aspects of earlier mapping handbooks have evolved significantly, and a comprehensive review of currently accepted mapping methodologies is now warranted. As documented in this handbook, such a review incorporates additional guidelines developed in recent years for planetary geologic mapping by the NASA Planetary Geology and Geophysics (PGG) Program s Planetary Cartography and Geologic Mapping Working Group s (PCGMWG) Geologic Mapping Subcommittee (GEMS) on the selection and use of map bases as well as map preparation, review, publication, and distribution. In light of the current boom in planetary exploration and the ongoing rapid evolution of available data for planetary mapping, this handbook is especially timely.

  16. Scientists Needed! The Year of the Solar System: Opportunities for Scientist Involvement

    NASA Astrophysics Data System (ADS)

    Shipp, S. S.; Buxner, S.; Cobabe-Ammann, E. A.; Scalice, D.; Bleacher, L.

    2011-12-01

    Spanning a Martian Year - 23 months from October 2010 through August 2012 - the Year of the Solar System (YSS) celebrates the amazing discoveries of numerous new and ongoing NASA missions and research efforts as they explore our near and distant neighbors and probe the outer edges of our solar system. The science revealed by these endeavors is dramatically revising our understanding of the formation and evolution of our solar system. YSS offers opportunities for planetary scientists to become involved in education and public outreach (E/PO) in meaningful ways. By getting involved in YSS E/PO activities, scientists can help to raise awareness of, build excitement in, and make connections with educators, students and the public about current planetary science research and exploration. Each month during YSS a different compelling aspect of the solar system - its formation, volcanism, ice, life - is explored. The monthly topics, tied to the big questions of planetary science, include online resources that can be used by scientists to engage their audiences: hands-on learning activities, demonstrations, connections to solar system and mission events, ideas for partnering with other organizations, and other programming ideas. Resources for past, present, and future YSS monthly topics can be found at: http://solarsystem.nasa.gov/yss. Scientists are encouraged to get involved in YSS through an avenue that best fits their available time and interests. Possible paths include: contacting the YSS organizational team to provide content for or to review the monthly topics; integrating current planetary research discoveries into your introductory college science classes; starting a science club; prompting an interview with the local media, creating a podcast about your science, sharing YSS with educators or program coordinators at your local schools, museums, libraries, astronomical clubs and societies, retirement homes, or rotary club; volunteering to present your science in one of these venues for a YSS event; co-hosting a YSS event for an audience with educators or other local partners; or hosting a YSS event at your own institution. YSS offers rich and diverse ways for scientists to actively engage with the public about planetary science; we invite you to get involved!

  17. The Development of the Planet Formation Concept Inventory: A Preliminary Analysis of Version 1

    NASA Astrophysics Data System (ADS)

    Simon, Molly; Impey, Chris David; Buxner, Sanlyn

    2018-01-01

    The topic of planet formation is poorly represented in the educational literature, especially at the college level. As recently as 2014, when developing the Test of Astronomy Standards (TOAST), Slater (2014) noted that for two topics (formation of the Solar System and cosmology), “high quality test items that reflect our current understanding of students’ conceptions were not available [in the literature]” (Slater,2014, p. 8). Furthermore, nearly half of ASTR 101 enrollments are at 2 year/community colleges where both instructors and students have little access to current research and models of planet formation. In response, we administered six student replied response (SSR) short answer questions on the topic of planet formation to n = 1,050 students enrolled in introductory astronomy and planetary science courses at The University of Arizona in the Fall 2016 and Spring 2017 semesters. After analyzing and coding the data from the SSR questions, we developed a preliminary version of the Planet Formation Concept Inventory (PFCI). The PFCI is a multiple-choice instrument with 20 planet formation-related questions, and 4 demographic-related questions. We administered version 1 of the PFCI to six introductory astronomy and planetary science courses (n ~ 700 students) during the Fall 2017 semester. We provided students with 7-8 multiple-choice with explanation of reasoning (MCER) questions from the PFCI. Students selected an answer (similar to a traditional multiple-choice test), and then briefly explained why they chose the answer they did. We also conducted interviews with ~15 students to receive feedback on the quality of the questions and clarity of the instrument. We will present an analysis of the MCER responses and student interviews, and discuss any modifications that will be made to the instrument as a result.

  18. Robotic vehicles for planetary exploration

    NASA Astrophysics Data System (ADS)

    Wilcox, Brian; Matthies, Larry; Gennery, Donald; Cooper, Brian; Nguyen, Tam; Litwin, Todd; Mishkin, Andrew; Stone, Henry

    A program to develop planetary rover technology is underway at the Jet Propulsion Laboratory (JPL) under sponsorship of the National Aeronautics and Space Administration. Developmental systems with the necessary sensing, computing, power, and mobility resources to demonstrate realistic forms of control for various missions have been developed, and initial testing has been completed. These testbed systems and the associated navigation techniques used are described. Particular emphasis is placed on three technologies: Computer-Aided Remote Driving (CARD), Semiautonomous Navigation (SAN), and behavior control. It is concluded that, through the development and evaluation of such technologies, research at JPL has expanded the set of viable planetary rover mission possibilities beyond the limits of remotely teleoperated systems such as Lunakhod. These are potentially applicable to exploration of all the solid planetary surfaces in the solar system, including Mars, Venus, and the moons of the gas giant planets.

  19. Robotic vehicles for planetary exploration

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian; Matthies, Larry; Gennery, Donald; Cooper, Brian; Nguyen, Tam; Litwin, Todd; Mishkin, Andrew; Stone, Henry

    1992-01-01

    A program to develop planetary rover technology is underway at the Jet Propulsion Laboratory (JPL) under sponsorship of the National Aeronautics and Space Administration. Developmental systems with the necessary sensing, computing, power, and mobility resources to demonstrate realistic forms of control for various missions have been developed, and initial testing has been completed. These testbed systems and the associated navigation techniques used are described. Particular emphasis is placed on three technologies: Computer-Aided Remote Driving (CARD), Semiautonomous Navigation (SAN), and behavior control. It is concluded that, through the development and evaluation of such technologies, research at JPL has expanded the set of viable planetary rover mission possibilities beyond the limits of remotely teleoperated systems such as Lunakhod. These are potentially applicable to exploration of all the solid planetary surfaces in the solar system, including Mars, Venus, and the moons of the gas giant planets.

  20. Simulating airless and/or hot planetary surfaces in the Planetary Emissivity Laboratory (PEL)

    NASA Astrophysics Data System (ADS)

    Maturilli, A.; Helbert, J.; D'Amore, M.

    2010-12-01

    A complete and extensive mineralogical survey of extraterrestrial bodies is actually possible only by means of remote sensing spectrometers, measuring the planetary surfaces in a spectral range that goes from the visible to the far infrared. The list of instruments still active today, observing the most interesting planets and bodies in our solar system is far too long to list them in this abstract. The important message is that all of them are sending to Earth a huge amount of data that needs to be correctly analysed, to infer the mineralogical composition of the observed regions on different targets. This requires laboratory data of relevant analogue materials under relevant conditions measured on a wide spectral range. At the Planetary Emissivity Laboratory (PEL) of DLR in Berlin two separate instruments, a Bruker IFS 88 and a Bruker Vertex 80V are operated in parallel and independently to measure reflectance and emissivity of planetary analogue materials to cover the 0.4 to 100 µm spectral range. The older IFS 88 is used to measure under room pressure and for emissivity measurements from low to moderate temperatures (up to 180° C), while the new Vertex 80V can be evacuated (below 1 mbar) and used to measure emissivity of moderate to very hot surfaces, reaching temperatures typical of the daily Mercury (beyond 500° C). The laboratory set-up and the already obtained results will be described, together with details about the online-archival and the standardized structure of the existing dataset.

  1. The effect of hydrostatic pressure up to 1.61 GPa on the Morin transition of hematite-bearing rocks: Implications for planetary crustal magnetization

    NASA Astrophysics Data System (ADS)

    Bezaeva, Natalia S.; Demory, François; Rochette, Pierre; Sadykov, Ravil A.; Gattacceca, Jérôme; Gabriel, Thomas; Quesnel, Yoann

    2015-12-01

    We present new experimental data on the dependence of the Morin transition temperature (TM) on hydrostatic pressure up to 1.61 GPa, obtained on a well-characterized multidomain hematite-bearing sample from a banded iron formation. We used a nonmagnetic high-pressure cell for pressure application and a Superconducting Quantum Interference Device magnetometer to measure the isothermal remanent magnetization (IRM) under pressure on warming from 243 K to room temperature (T0). IRM imparted at T0 under pressure in 270 mT magnetic field (IRM270mT) is not recovered after a cooling-warming cycle. Memory effect under pressure was quantified as IRM recovery decrease of 10%/GPa. TM, determined on warming, reaches T0 under hydrostatic pressure 1.38-1.61 GPa. The pressure dependence of TM up to 1.61 GPa is positive and essentially linear with a slope dTM/dP = (25 ± 2) K/GPa. This estimate is more precise than previous ones and allows quantifying the effect of a pressure wave on the upper crust magnetization, with special emphasis on Mars.

  2. Iron Sulfide Minerals Record Microbe-Mineral Interactions in Anoxic Environments

    NASA Astrophysics Data System (ADS)

    Picard, A.; Gartman, A.; Cosmidis, J.; Clarke, D. R.; Girguis, P. R.

    2017-12-01

    The precipitation of most minerals in low-temperature environments on Earth is directly or indirectly influenced by the presence of organic substances and/or microbial biomass. Notably, the influence of microorganisms on the formation of Mn and Fe oxides/oxyhydroxides at the surface of the Earth has been well characterized (Chan et al., 2011; Estes et al., 2017). However, an oxygenated atmosphere is a unique feature of planet Earth. It is therefore critical for the search of life on other planetary bodies to characterize microbe-mineral interactions that form in anoxic conditions. Here we explore the role of microorganisms on the formation of iron sulfide minerals, which form under anoxic conditions. On modern Earth, sulfate-reducing microorganisms (SRM) are the major source of dissolved sulfide in low-temperature sedimentary environments. We experimentally demonstrate that SRM play a role in the nucleation and growth of iron sulfide minerals by acting as organic templates. The physical characteristics of the resulting minerals are different from those formed under abiotic conditions. Moreover, upon forming, iron sulfide minerals become associated with organic carbon, producing a potential organo-mineral signature. We also evaluate how the presence of various organic substances affect the formation of abiotic minerals and how this could produce false biosignatures that could be mistaken as biogenic minerals. Chan, C.S., Fakra, S.C., Emerson, D., Fleming, E.J. and Edwards, K.J. (2011) Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation. Isme Journal 5, 717-727. Estes, E.R., Andeer, P.F., Nordlund, D., Wankel, S.D. and Hansel, C.M. (2017) Biogenic manganese oxides as reservoirs of organic carbon and proteins in terrestrial and marine environments. Geobiology 15, 158-172.

  3. Jumping the gap: the formation conditions and mass function of `pebble-pile' planetesimals

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.

    2016-03-01

    In a turbulent proto-planetary disc, dust grains undergo large-density fluctuations and under the right circumstances, grain overdensities can collapse under self-gravity (forming a `pebble-pile' planetesimal). Using a simple model for fluctuations predicted in simulations, we estimate the rate of formation and mass function of self-gravitating planetesimal-mass bodies formed by this mechanism. This depends sensitively on the grain size, disc surface density, and turbulent Mach numbers. However, when it occurs, the resulting planetesimal mass function is broad and quasi-universal, with a slope dN/dM ∝ M-(1-2), spanning size/mass range ˜10-104 km (˜10-9-5 M⊕). Collapse to planetesimal through super-Earth masses is possible. The key condition is that grain density fluctuations reach large amplitudes on large scales, where gravitational instability proceeds most easily (collapse of small grains is suppressed by turbulence). This leads to a new criterion for `pebble-pile' formation: τs ≳ 0.05 ln (Q1/2/Zd)/ln (1 + 10 α1/4) ˜ 0.3 ψ(Q, Z, α) where τs = ts Ω is the dimensionless particle stopping time. In a minimum-mass solar nebula, this requires grains larger than a = (50, 1, 0.1) cm at r=(1, 30, 100) au}. This may easily occur beyond the ice line, but at small radii would depend on the existence of large boulders. Because density fluctuations depend strongly on τs (inversely proportional to disc surface density), lower density discs are more unstable. Conditions for pebble-pile formation also become more favourable around lower mass, cooler stars.

  4. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion

    PubMed Central

    Johansen, Anders; Low, Mordecai-Mark Mac; Lacerda, Pedro; Bizzarro, Martin

    2015-01-01

    Chondrules are millimeter-sized spherules that dominate primitive meteorites (chondrites) originating from the asteroid belt. The incorporation of chondrules into asteroidal bodies must be an important step in planet formation, but the mechanism is not understood. We show that the main growth of asteroids can result from gas drag–assisted accretion of chondrules. The largest planetesimals of a population with a characteristic radius of 100 km undergo runaway accretion of chondrules within ~3 My, forming planetary embryos up to Mars’s size along with smaller asteroids whose size distribution matches that of main belt asteroids. The aerodynamical accretion leads to size sorting of chondrules consistent with chondrites. Accretion of millimeter-sized chondrules and ice particles drives the growth of planetesimals beyond the ice line as well, but the growth time increases above the disc lifetime outside of 25 AU. The contribution of direct planetesimal accretion to the growth of both asteroids and Kuiper belt objects is minor. In contrast, planetesimal accretion and chondrule accretion play more equal roles in the formation of Moon-sized embryos in the terrestrial planet formation region. These embryos are isolated from each other and accrete planetesimals only at a low rate. However, the continued accretion of chondrules destabilizes the oligarchic configuration and leads to the formation of Mars-sized embryos and terrestrial planets by a combination of direct chondrule accretion and giant impacts. PMID:26601169

  5. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion

    NASA Astrophysics Data System (ADS)

    Johansen, Anders; Mac Low, Mordecai-Mark; Lacerda, Pedro; Bizzarro, Martin

    2015-04-01

    Chondrules are millimeter-sized spherules that dominate primitive meteorites (chondrites) originating from the asteroid belt. The incorporation of chondrules into asteroidal bodies must be an important step in planet formation, but the mechanism is not understood. We show that the main growth of asteroids can result from gas drag-assisted accretion of chondrules. The largest planetesimals of a population with a characteristic radius of 100 km undergo runaway accretion of chondrules within ~3 My, forming planetary embryos up to Mars's size along with smaller asteroids whose size distribution matches that of main belt asteroids. The aerodynamical accretion leads to size sorting of chondrules consistent with chondrites. Accretion of millimeter-sized chondrules and ice particles drives the growth of planetesimals beyond the ice line as well, but the growth time increases above the disc lifetime outside of 25 AU. The contribution of direct planetesimal accretion to the growth of both asteroids and Kuiper belt objects is minor. In contrast, planetesimal accretion and chondrule accretion play more equal roles in the formation of Moon-sized embryos in the terrestrial planet formation region. These embryos are isolated from each other and accrete planetesimals only at a low rate. However, the continued accretion of chondrules destabilizes the oligarchic configuration and leads to the formation of Mars-sized embryos and terrestrial planets by a combination of direct chondrule accretion and giant impacts.

  6. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion.

    PubMed

    Johansen, Anders; Low, Mordecai-Mark Mac; Lacerda, Pedro; Bizzarro, Martin

    2015-04-01

    Chondrules are millimeter-sized spherules that dominate primitive meteorites (chondrites) originating from the asteroid belt. The incorporation of chondrules into asteroidal bodies must be an important step in planet formation, but the mechanism is not understood. We show that the main growth of asteroids can result from gas drag-assisted accretion of chondrules. The largest planetesimals of a population with a characteristic radius of 100 km undergo runaway accretion of chondrules within ~3 My, forming planetary embryos up to Mars's size along with smaller asteroids whose size distribution matches that of main belt asteroids. The aerodynamical accretion leads to size sorting of chondrules consistent with chondrites. Accretion of millimeter-sized chondrules and ice particles drives the growth of planetesimals beyond the ice line as well, but the growth time increases above the disc lifetime outside of 25 AU. The contribution of direct planetesimal accretion to the growth of both asteroids and Kuiper belt objects is minor. In contrast, planetesimal accretion and chondrule accretion play more equal roles in the formation of Moon-sized embryos in the terrestrial planet formation region. These embryos are isolated from each other and accrete planetesimals only at a low rate. However, the continued accretion of chondrules destabilizes the oligarchic configuration and leads to the formation of Mars-sized embryos and terrestrial planets by a combination of direct chondrule accretion and giant impacts.

  7. Fragmentation and Thermochemical Exchanges during Planetary Core Formation - an Experimental Approach

    NASA Astrophysics Data System (ADS)

    Le Bars, M.; Wacheul, J. B.

    2015-12-01

    Telluric planet formation involved the settling of large amounts of liquid iron coming from impacting planetesimals into an ambient viscous magma ocean. The initial state of planets was mostly determined by exchanges of heat and elements during this iron rain. Up to now, most models of planet formation simply assume that the metal rapidly equilibrated with the whole mantle. Other models account for simplified dynamics of the iron rain, involving the settling of single size drops at the Stokes velocity. But the fluid dynamics of iron sedimentation is much more complex, and influenced by the large viscosity ratio between the metal and the ambient fluid, as shown in studies of rising gas bubbles (e.g. Bonometti and Magnaudet 2006). We aim at developing a global understanding of the iron rain dynamics. Our study relies on a model experiment, consisting in popping a balloon of heated metal liquid at the top of a tank filled with viscous liquid. The experiments reach the relevant turbulent planetary regime, and tackle the whole range of expected viscosity ratios. High-speed videos allow determining the dynamics of drop clouds, as well as the statistics of drop sizes, shapes, and velocities. We also develop an analytical model of turbulent diffusion during settling, validated by measuring the temperature decrease of the metal blob. We finally present consequences for models of planet formation.

  8. N-body simulations of terrestrial planet formation under the influence of a hot Jupiter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogihara, Masahiro; Kobayashi, Hiroshi; Inutsuka, Shu-ichiro, E-mail: omasahiro@oca.eu, E-mail: ogihara@nagoya-u.jp

    We investigate the formation of multiple-planet systems in the presence of a hot Jupiter (HJ) using extended N-body simulations that are performed simultaneously with semianalytic calculations. Our primary aims are to describe the planet formation process starting from planetesimals using high-resolution simulations, and to examine the dependences of the architecture of planetary systems on input parameters (e.g., disk mass, disk viscosity). We observe that protoplanets that arise from oligarchic growth and undergo type I migration stop migrating when they join a chain of resonant planets outside the orbit of an HJ. The formation of a resonant chain is almost independentmore » of our model parameters, and is thus a robust process. At the end of our simulations, several terrestrial planets remain at around 0.1 AU. The formed planets are not equal mass; the largest planet constitutes more than 50% of the total mass in the close-in region, which is also less dependent on parameters. In the previous work of this paper, we have found a new physical mechanism of induced migration of the HJ, which is called a crowding-out. If the HJ opens up a wide gap in the disk (e.g., owing to low disk viscosity), crowding-out becomes less efficient and the HJ remains. We also discuss angular momentum transfer between the planets and disk.« less

  9. The Universe, Two by Two.

    ERIC Educational Resources Information Center

    Metz, William

    1983-01-01

    Discusses the nature of and current research related to binary stars, indicating that the knowledge that most stars come in pairs is critical to the understanding of stellar phenomena. Subjects addressed include aberrant stellar behavior, x-ray binaries, lobes/disks, close binaries, planetary nebulas, and formation/evolution of binaries. (JN)

  10. Topical Conference on the Origin of the Earth

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The abstracts are presented on the topic of the origin of the Earth. The subject of planetary evolution from inner solar system plantesimals through the formation and composition of the Earth's atmosphere and the physical structure of the Earth and the Moon is explored in great variety.

  11. An Interconnected Network of Core-Forming Melts Produced by Shear Deformation

    NASA Technical Reports Server (NTRS)

    Bruhn, D.; Groebner, N.; Kohlstedt, D. L.

    2000-01-01

    The formation mechanism of terrestrial planetary is still poorly understood, and has been the subject of numerous experimental studies. Several mechanisms have been proposed by which metal-mainly iron with some nickel-could have been extracted from a silicate mantle to form the core. Most recent models involve gravitational sinking of molten metal or metal sulphide through a partially or fully molten mantle that is often referred to as a'magma ocean. Alternative models invoke percolation of molten metal along an interconnected network (that is, porous flow) through a solid silicate matrix. But experimental studies performed at high pressures have shown that, under hydrostatic conditions, these melts do not form an interconnected network, leading to the widespread assumption that formation of metallic cores requires a magma ocean. In contrast, here we present experiments which demonstrate that shear deformation to large strains can interconnect a significant fraction of initially isolated pockets of metal and metal sulphide melts in a solid matrix of polycrystalline olivine. Therefore, in a dynamic (nonhydrostatic) environment, percolation remains a viable mechanism for the segregation and migration of core-forming melts in a solid silicate mantle.

  12. Jupiter’s decisive role in the inner Solar System’s early evolution

    PubMed Central

    Batygin, Konstantin; Laughlin, Greg

    2015-01-01

    The statistics of extrasolar planetary systems indicate that the default mode of planet formation generates planets with orbital periods shorter than 100 days and masses substantially exceeding that of the Earth. When viewed in this context, the Solar System is unusual. Here, we present simulations which show that a popular formation scenario for Jupiter and Saturn, in which Jupiter migrates inward from a > 5 astronomical units (AU) to a ≈ 1.5 AU before reversing direction, can explain the low overall mass of the Solar System’s terrestrial planets, as well as the absence of planets with a < 0.4 AU. Jupiter’s inward migration entrained s ≳ 10−100 km planetesimals into low-order mean motion resonances, shepherding and exciting their orbits. The resulting collisional cascade generated a planetesimal disk that, evolving under gas drag, would have driven any preexisting short-period planets into the Sun. In this scenario, the Solar System’s terrestrial planets formed from gas-starved mass-depleted debris that remained after the primary period of dynamical evolution. PMID:25831540

  13. Non-solar noble gas abundances in the atmosphere of Jupiter

    NASA Technical Reports Server (NTRS)

    Lunine, Jonathan I.; Stevenson, David J.

    1986-01-01

    The thermodynamic stability of clathrate hydrate is calculated to predict the formation conditions corresponding to a range of solar system parameters. The calculations were performed using the statistical mechanical theory developed by van der Waals and Platteeuw (1959) and existing experimental data concerning clathrate hydrate and its components. Dissociation pressures and partition functions (Langmuir constants) are predicted at low pressure for CO clathrate (hydrate) using the properties of chemicals similar to CO. It is argued that nonsolar but well constrained noble gas abundances may be measurable by the Galileo spacecraft in the Jovian atmosphere if the observed carbon enhancement is due to bombardment of the atmosphere by clathrate-bearing planetesimals sometime after planetary formation. The noble gas abundances of the Jovian satellite Titan are predicted, assuming that most of the methane in Titan is accreted as clathrate. It is suggested that under thermodynamically appropriate conditions, complete clathration of water ice could have occurred in high-pressure nebulas around giant planets, but probably not in the outer solar nebula. The stability of clathrate in other pressure ranges is also discussed.

  14. Thermodynamics of clathrate hydrate at low and high pressures with application to the outer solar system

    NASA Technical Reports Server (NTRS)

    Lunine, J. I.; Stevenson, D. J.

    1985-01-01

    The thermodynamic stability of clathrate hydrate is calculated to predict the formation conditions corresponding to a range of solar system parameters. The calculations were performed using the statistical mechanical theory developed by van der Waals and Platteeuw (1959) and existing experimental data concerning clathrate hydrate and its components. Dissociation pressures and partition functions (Langmuir constants) are predicted at low pressure for CO clathrate (hydrate) using the properties of chemicals similar to CO. It is argued that nonsolar but well constrained noble gas abundances may be measurable by the Galileo spacecraft in the Jovian atmosphere if the observed carbon enhancement is due to bombardment of the atmosphere by clathrate-bearing planetesimals sometime after planetary formation. The noble gas abundances of the Jovian satellite Titan are predicted, assuming that most of the methane in Titan is accreted as clathrate. It is suggested that under thermodynamically appropriate conditions, complete clathration of water ice could have occurred in high-pressure nebulas around giant planets, but probably not in the outer solar nebula. The stability of clathrate in other pressure ranges is also discussed.

  15. Transiting exoplanets from the CoRoT space mission. XXVII. CoRoT-28b, a planet orbiting an evolved star, and CoRoT-29b, a planet showing an asymmetric transit

    NASA Astrophysics Data System (ADS)

    Cabrera, J.; Csizmadia, Sz.; Montagnier, G.; Fridlund, M.; Ammler-von Eiff, M.; Chaintreuil, S.; Damiani, C.; Deleuil, M.; Ferraz-Mello, S.; Ferrigno, A.; Gandolfi, D.; Guillot, T.; Guenther, E. W.; Hatzes, A.; Hébrard, G.; Klagyivik, P.; Parviainen, H.; Pasternacki, Th.; Pätzold, M.; Sebastian, D.; Tadeu dos Santos, M.; Wuchterl, G.; Aigrain, S.; Alonso, R.; Almenara, J.-M.; Armstrong, J. D.; Auvergne, M.; Baglin, A.; Barge, P.; Barros, S. C. C.; Bonomo, A. S.; Bordé, P.; Bouchy, F.; Carpano, S.; Chaffey, C.; Deeg, H. J.; Díaz, R. F.; Dvorak, R.; Erikson, A.; Grziwa, S.; Korth, J.; Lammer, H.; Lindsay, C.; Mazeh, T.; Moutou, C.; Ofir, A.; Ollivier, M.; Pallé, E.; Rauer, H.; Rouan, D.; Samuel, B.; Santerne, A.; Schneider, J.

    2015-07-01

    Context. We present the discovery of two transiting extrasolar planets by the satellite CoRoT. Aims: We aim at a characterization of the planetary bulk parameters, which allow us to further investigate the formation and evolution of the planetary systems and the main properties of the host stars. Methods: We used the transit light curve to characterize the planetary parameters relative to the stellar parameters. The analysis of HARPS spectra established the planetary nature of the detections, providing their masses. Further photometric and spectroscopic ground-based observations provided stellar parameters (log g, Teff, v sin i) to characterize the host stars. Our model takes the geometry of the transit to constrain the stellar density into account, which when linked to stellar evolutionary models, determines the bulk parameters of the star. Because of the asymmetric shape of the light curve of one of the planets, we had to include the possibility in our model that the stellar surface was not strictly spherical. Results: We present the planetary parameters of CoRoT-28b, a Jupiter-sized planet (mass 0.484 ± 0.087 MJup; radius 0.955 ± 0.066 RJup) orbiting an evolved star with an orbital period of 5.208 51 ± 0.000 38 days, and CoRoT-29b, another Jupiter-sized planet (mass 0.85 ± 0.20 MJup; radius 0.90 ± 0.16 RJup) orbiting an oblate star with an orbital period of 2.850 570 ± 0.000 006 days. The reason behind the asymmetry of the transit shape is not understood at this point. Conclusions: These two new planetary systems have very interesting properties and deserve further study, particularly in the case of the star CoRoT-29. The CoRoT space mission, launched on December 27th 2006, was developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany, and Spain. Based on observations obtained with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, in time allocated by OPTICON and the Spanish Time Allocation Committee (CAT). The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement number RG226604 (OPTICON). This work makes use of observations from the LCOGT network.Appendices are available in electronic form at http://www.aanda.org

  16. A primordial origin for misalignments between stellar spin axes and planetary orbits.

    PubMed

    Batygin, Konstantin

    2012-11-15

    The existence of gaseous giant planets whose orbits lie close to their host stars ('hot Jupiters') can largely be accounted for by planetary migration associated with viscous evolution of proto-planetary nebulae. Recently, observations of the Rossiter-McLaughlin effect during planetary transits have revealed that a considerable fraction of hot Jupiters are on orbits that are misaligned with respect to the spin axes of their host stars. This observation has cast doubt on the importance of disk-driven migration as a mechanism for producing hot Jupiters. Here I show that misaligned orbits can be a natural consequence of disk migration in binary systems whose orbital plane is uncorrelated with the spin axes of the individual stars. The gravitational torques arising from the dynamical evolution of idealized proto-planetary disks under perturbations from massive distant bodies act to misalign the orbital planes of the disks relative to the spin poles of their host stars. As a result, I suggest that in the absence of strong coupling between the angular momentum of the disk and that of the host star, or of sufficient dissipation that acts to realign the stellar spin axis and the planetary orbits, the fraction of planetary systems (including systems of 'hot Neptunes' and 'super-Earths') whose angular momentum vectors are misaligned with respect to their host stars will be commensurate with the rate of primordial stellar multiplicity.

  17. Developement of the Potassium-Argon Laser Experiment (KArLE) for In Situ Geochronology

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.

    2012-01-01

    Absolute dating of planetary samples is an essential tool to establish the chronology of geological events, including crystallization history, magmatic evolution, and alteration. Thus far, radiometric geochronology of planetary samples has only been accomplishable in terrestrial laboratories on samples from dedicated sample return missions and meteorites. In situ instruments to measure rock ages have been proposed, but none have yet reached TRL 6, because isotopic measurements with sufficient resolution are challenging. We have begun work under the NASA Planetary Instrument Definition and Development Program (PIDDP) to develop the Potassium (K) - Argon Laser Experiment (KArLE), a novel combination of several flight-proven components that will enable accurate KAr isochron dating of planetary rocks. KArLE will ablate a rock sample, measure the K in the plasma state using laser-induced breakdown spectroscopy (LIBS), measure the liberated Ar using quadrupole mass spectrometry (QMS), and relate the two by measuring the volume of the abated pit using a optical methods such as a vertical scanning interferometer (VSI). Our preliminary work indicates that the KArLE instrument will be capable of determining the age of several kinds of planetary samples to 100 Myr, sufficient to address a wide range of geochronology problems in planetary science. Additional benefits derive from the fact that each KArLE component achieves analyses common to most planetary surface missions.

  18. Quantitative measurement of the chemical composition of geological standards with a miniature laser ablation/ionization mass spectrometer designed for in situ application in space research

    NASA Astrophysics Data System (ADS)

    Neuland, M. B.; Grimaudo, V.; Mezger, K.; Moreno-García, P.; Riedo, A.; Tulej, M.; Wurz, P.

    2016-03-01

    A key interest of planetary space missions is the quantitative determination of the chemical composition of the planetary surface material. The chemical composition of surface material (minerals, rocks, soils) yields fundamental information that can be used to answer key scientific questions about the formation and evolution of the planetary body in particular and the Solar System in general. We present a miniature time-of-flight type laser ablation/ionization mass spectrometer (LMS) and demonstrate its capability in measuring the elemental and mineralogical composition of planetary surface samples quantitatively by using a femtosecond laser for ablation/ionization. The small size and weight of the LMS make it a remarkable tool for in situ chemical composition measurements in space research, convenient for operation on a lander or rover exploring a planetary surface. In the laboratory, we measured the chemical composition of four geological standard reference samples USGS AGV-2 Andesite, USGS SCo-l Cody Shale, NIST 97b Flint Clay and USGS QLO-1 Quartz Latite with LMS. These standard samples are used to determine the sensitivity factors of the instrument. One important result is that all sensitivity factors are close to 1. Additionally, it is observed that the sensitivity factor of an element depends on its electron configuration, hence on the electron work function and the elemental group in agreement with existing theory. Furthermore, the conformity of the sensitivity factors is supported by mineralogical analyses of the USGS SCo-l and the NIST 97b samples. With the four different reference samples, the consistency of the calibration factors can be demonstrated, which constitutes the fundamental basis for a standard-less measurement-technique for in situ quantitative chemical composition measurements on planetary surface.

  19. Habitability and Life - an Overview

    NASA Astrophysics Data System (ADS)

    Bredehöft, J. H.

    2008-09-01

    Abstract The search for habitable planets has seen a significant boost, since much effort was invested into development of newer and more powerful techniques of detecting such planetary bodies. This search is fuelled by the interest that is sparked by its help in answering the bigger question of the origin of life on Earth and its abundance in the universe. Traditionally a planetary body has been deemed habitable when it provides conditions under which water is liquid. This led to the formulation of a habitable zone across stars, in which liquid water can exist. [1] Liquid water remains to this day the single most important feature in the search for life. There have been various suggestions of life being present in waterless environments like liquid hydrocarbons or even liquid ammonia, but how exactly a living system under such conditions might work, no one can satisfactorily explain. [2] A very important point in this context that is not often raised is that while water might be a favourable medium in which to live and certainly a major constituent of all living organism we know of, water alone is not alive and it will not spontaneously evolve into life. It would thus seem that apart from the presence of liquid water there a number of other, minor, necessary ingredients to life that determine whether a planet is habitable (meaning capable of sustaining life) or whether it is also capable of providing the starting grounds for the evolution of living systems. These other ingredients are determined by the minimum requirements of life itself. They include the molecular components of the most primitive encasing of an organism, the most primitive molecules needed for something like a metabolism and the most primitive way of storing information. [3] In addition to these molecular components, life must be able to utilise a source of energy to drive chemical reactions. Observations of various extremophiles on Earth utilising all kinds disequilibria suggest that these can be very diverse. The exact nature of these other ingredients, their possible presence and history of formation and their impact for the formation and evolution of life will be discussed for several different types of habitats all across the regime in which liquid water can be found, such as very dry and cold bodies like Mars, hot bodies like Venus, bodies covered completely in water or bodies with subsurface oceans. References [1] Kasting J.F., Whitmire D.P., Reynolds R.T., (1993) Icarus 101(1), 108-128 [2] Benner S.A., Ricardo A., Carrigan M.A. (2004) Curr Opin Chem Biol 8(6), 672-689 [3] Ruiz-Mirazo K., Peretó J., Moreno A., (2004) OLEB 34(3), 323-346 EPSC Abstracts, Vol. 3, EPSC2008-A-00039, 2008 European Planetary Science Congress, Author(s) 2008

  20. Pressure demagnetization of synthetic Al substituted hematite and its implications for planetary studies

    NASA Astrophysics Data System (ADS)

    Jiang, Zhaoxia; Rochette, Pierre; Liu, Qingsong; Gattacceca, Jérôme; Yu, Yongjae; Barrón, Vidal; Torrent, José

    2013-11-01

    Magnetic minerals can undergo high pressures during their formation and subsequent evolution, which can modify both their intrinsic magnetic properties and remanent magnetization. Aluminum-substituted hematite (Al-hematite) occurs in significant proportion in many soils and sediments, especially in temperate and warm areas. In this work we investigated the effect of high hydrostatic pressures on the magnetic remanence of two series of synthetic Al-hematites. A pressure of 1.44 GPa resulted in 50% reduction of the isothermal remanent magnetization (IRM), which was more effective than alternating field (AF) demagnetization with the largest peak field of 120 mT. In addition, repeated application of the same pressure leads to further demagnetization. Aluminum substitution may increase the resistance to the pressure effect by decreasing particle size and generating defects in magnetic lattices, which results in an increase in coercivity. Our study contributes to understanding the effects of pressure on rocks from the interior of Earth and other planets as well as shocked planetary surfaces, which is significant for future planetary studies.

Top