Sample records for underlying semantic encoding

  1. An fMRI study of semantic processing in men with schizophrenia

    PubMed Central

    Kubicki, M.; McCarley, R.W.; Nestor, P.G.; Huh, T.; Kikinis, R.; Shenton, M.E.; Wible, C.G.

    2009-01-01

    As a means toward understanding the neural bases of schizophrenic thought disturbance, we examined brain activation patterns in response to semantically and superficially encoded words in patients with schizophrenia. Nine male schizophrenic and 9 male control subjects were tested in a visual levels of processing (LOP) task first outside the magnet and then during the fMRI scanning procedures (using a different set of words). During the experiments visual words were presented under two conditions. Under the deep, semantic encoding condition, subjects made semantic judgments as to whether the words were abstract or concrete. Under the shallow, nonsemantic encoding condition, subjects made perceptual judgments of the font size (uppercase/lowercase) of the presented words. After performance of the behavioral task, a recognition test was used to assess the depth of processing effect, defined as better performance for semantically encoded words than for perceptually encoded words. For the scanned version only, the words for both conditions were repeated in order to assess repetition-priming effects. Reaction times were assessed in both testing scenarios. Both groups showed the expected depth of processing effect for recognition, and control subjects showed the expected increased activation of the left inferior prefrontal cortex (LIPC) under semantic encoding relative to perceptual encoding conditions as well as repetition priming for semantic conditions only. In contrast, schizophrenics showed similar patterns of fMRI activation regardless of condition. Most striking in relation to controls, patients showed decreased LIFC activation concurrent with increased left superior temporal gyrus activation for semantic encoding versus shallow encoding. Furthermore, schizophrenia subjects did not show the repetition priming effect, either behaviorally or as a decrease in LIPC activity. In patients with schizophrenia, LIFC underactivation and left superior temporal gyrus overactivation for semantically encoded words may reflect a disease-related disruption of a distributed frontal temporal network that is engaged in the representation and processing of meaning of words, text, and discourse and which may underlie schizophrenic thought disturbance. PMID:14683698

  2. An fMRI study of semantic processing in men with schizophrenia.

    PubMed

    Kubicki, M; McCarley, R W; Nestor, P G; Huh, T; Kikinis, R; Shenton, M E; Wible, C G

    2003-12-01

    As a means toward understanding the neural bases of schizophrenic thought disturbance, we examined brain activation patterns in response to semantically and superficially encoded words in patients with schizophrenia. Nine male schizophrenic and 9 male control subjects were tested in a visual levels of processing (LOP) task first outside the magnet and then during the fMRI scanning procedures (using a different set of words). During the experiments visual words were presented under two conditions. Under the deep, semantic encoding condition, subjects made semantic judgments as to whether the words were abstract or concrete. Under the shallow, nonsemantic encoding condition, subjects made perceptual judgments of the font size (uppercase/lowercase) of the presented words. After performance of the behavioral task, a recognition test was used to assess the depth of processing effect, defined as better performance for semantically encoded words than for perceptually encoded words. For the scanned version only, the words for both conditions were repeated in order to assess repetition-priming effects. Reaction times were assessed in both testing scenarios. Both groups showed the expected depth of processing effect for recognition, and control subjects showed the expected increased activation of the left inferior prefrontal cortex (LIPC) under semantic encoding relative to perceptual encoding conditions as well as repetition priming for semantic conditions only. In contrast, schizophrenics showed similar patterns of fMRI activation regardless of condition. Most striking in relation to controls, patients showed decreased LIFC activation concurrent with increased left superior temporal gyrus activation for semantic encoding versus shallow encoding. Furthermore, schizophrenia subjects did not show the repetition priming effect, either behaviorally or as a decrease in LIPC activity. In patients with schizophrenia, LIFC underactivation and left superior temporal gyrus overactivation for semantically encoded words may reflect a disease-related disruption of a distributed frontal temporal network that is engaged in the representation and processing of meaning of words, text, and discourse and which may underlie schizophrenic thought disturbance.

  3. The role of semantically related distractors during encoding and retrieval of words in long-term memory.

    PubMed

    Meade, Melissa E; Fernandes, Myra A

    2016-07-01

    We examined the influence of divided attention (DA) on recognition of words when the concurrent task was semantically related or unrelated to the to-be-recognised target words. Participants were asked to either study or retrieve a target list of semantically related words while simultaneously making semantic decisions (i.e., size judgements) to another set of related or unrelated words heard concurrently. We manipulated semantic relatedness of distractor to target words, and whether DA occurred during the encoding or retrieval phase of memory. Recognition accuracy was significantly diminished relative to full attention, following DA conditions at encoding, regardless of relatedness of distractors to study words. However, response times (RTs) were slower with related compared to unrelated distractors. Similarly, under DA at retrieval, recognition RTs were slower when distractors were semantically related than unrelated to target words. Unlike the effect from DA at encoding, recognition accuracy was worse under DA at retrieval when the distractors were related compared to unrelated to the target words. Results suggest that availability of general attentional resources is critical for successful encoding, whereas successful retrieval is particularly reliant on access to a semantic code, making it sensitive to related distractors under DA conditions.

  4. Semantic Encoding Enhances the Pictorial Superiority Effect in the Oldest-Old

    PubMed Central

    Cherry, Katie E.; Brown, Jennifer Silva; Walker, Erin Jackson; Smitherman, Emily A.; Boudreaux, Emily O.; Volaufova, Julia; Jazwinski, S. Michal

    2011-01-01

    We examined the effect of a semantic orienting task during encoding on free recall and recognition of simple line drawings and matching words in middle-aged (44 to 59 years), older (60 to 89 years), and oldest-old (90 + years) adults. Participants studied line drawings and matching words presented in blocked order. Half of the participants were given a semantic orienting task and the other half received standard intentional learning instructions. Results confirmed that the pictorial superiority effect was greater in magnitude following semantic encoding compared to the control condition. Analyses of clustering in free recall revealed that oldest-old adults’ encoding and retrieval strategies were generally similar to the two younger groups. Self-reported strategy use was less frequent among the oldest-old adults. These data strongly suggest that semantic elaboration is an effective compensatory mechanism underlying preserved episodic memory performance that persists well into the ninth decade of life. PMID:22053814

  5. Goal-directed mechanisms that constrain retrieval predict subsequent memory for new "foil" information.

    PubMed

    Vogelsang, David A; Bonnici, Heidi M; Bergström, Zara M; Ranganath, Charan; Simons, Jon S

    2016-08-01

    To remember a previous event, it is often helpful to use goal-directed control processes to constrain what comes to mind during retrieval. Behavioral studies have demonstrated that incidental learning of new "foil" words in a recognition test is superior if the participant is trying to remember studied items that were semantically encoded compared to items that were non-semantically encoded. Here, we applied subsequent memory analysis to fMRI data to understand the neural mechanisms underlying the "foil effect". Participants encoded information during deep semantic and shallow non-semantic tasks and were tested in a subsequent blocked memory task to examine how orienting retrieval towards different types of information influences the incidental encoding of new words presented as foils during the memory test phase. To assess memory for foils, participants performed a further surprise old/new recognition test involving foil words that were encountered during the previous memory test blocks as well as completely new words. Subsequent memory effects, distinguishing successful versus unsuccessful incidental encoding of foils, were observed in regions that included the left inferior frontal gyrus and posterior parietal cortex. The left inferior frontal gyrus exhibited disproportionately larger subsequent memory effects for semantic than non-semantic foils, and significant overlap in activity during semantic, but not non-semantic, initial encoding and foil encoding. The results suggest that orienting retrieval towards different types of foils involves re-implementing the neurocognitive processes that were involved during initial encoding. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Semantic encoding and retrieval in the left inferior prefrontal cortex: a functional MRI study of task difficulty and process specificity.

    PubMed

    Demb, J B; Desmond, J E; Wagner, A D; Vaidya, C J; Glover, G H; Gabrieli, J D

    1995-09-01

    Prefrontal cortical function was examined during semantic encoding and repetition priming using functional magnetic resonance imaging (fMRI), a noninvasive technique for localizing regional changes in blood oxygenation, a correlate of neural activity. Words studied in a semantic (deep) encoding condition were better remembered than words studied in both easier and more difficult nonsemantic (shallow) encoding conditions, with difficulty indexed by response time. The left inferior prefrontal cortex (LIPC) (Brodmann's areas 45, 46, 47) showed increased activation during semantic encoding relative to nonsemantic encoding regardless of the relative difficulty of the nonsemantic encoding task. Therefore, LIPC activation appears to be related to semantic encoding and not task difficulty. Semantic encoding decisions are performed faster the second time words are presented. This represents semantic repetition priming, a facilitation in semantic processing for previously encoded words that is not dependent on intentional recollection. The same LIPC area activated during semantic encoding showed decreased activation during repeated semantic encoding relative to initial semantic encoding of the same words. This decrease in activation during repeated encoding was process specific; it occurred when words were semantically reprocessed but not when words were nonsemantically reprocessed. The results were apparent in both individual and averaged functional maps. These findings suggest that the LIPC is part of a semantic executive system that contributes to the on-line retrieval of semantic information.

  7. Dissociating the effects of semantic grouping and rehearsal strategies on event-related brain potentials.

    PubMed

    Schleepen, T M J; Markus, C R; Jonkman, L M

    2014-12-01

    The application of elaborative encoding strategies during learning, such as grouping items on similar semantic categories, increases the likelihood of later recall. Previous studies have suggested that stimuli that encourage semantic grouping strategies had modulating effects on specific ERP components. However, these studies did not differentiate between ERP activation patterns evoked by elaborative working memory strategies like semantic grouping and more simple strategies like rote rehearsal. Identification of neurocognitive correlates underlying successful use of elaborative strategies is important to understand better why certain populations, like children or elderly people, have problems applying such strategies. To compare ERP activation during the application of elaborative versus more simple strategies subjects had to encode either four semantically related or unrelated pictures by respectively applying a semantic category grouping or a simple rehearsal strategy. Another goal was to investigate if maintenance of semantically grouped vs. ungrouped pictures modulated ERP-slow waves differently. At the behavioral level there was only a semantic grouping benefit in terms of faster responding on correct rejections (i.e. when the memory probe stimulus was not part of the memory set). At the neural level, during encoding semantic grouping only had a modest specific modulatory effect on a fronto-central Late Positive Component (LPC), emerging around 650 ms. Other ERP components (i.e. P200, N400 and a second Late Positive Component) that had been earlier related to semantic grouping encoding processes now showed stronger modulation by rehearsal than by semantic grouping. During maintenance semantic grouping had specific modulatory effects on left and right frontal slow wave activity. These results stress the importance of careful control of strategy use when investigating the neural correlates of elaborative encoding. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Memory for emotional words: The role of semantic relatedness, encoding task and affective valence.

    PubMed

    Ferré, Pilar; Fraga, Isabel; Comesaña, Montserrat; Sánchez-Casas, Rosa

    2015-01-01

    Emotional stimuli have been repeatedly demonstrated to be better remembered than neutral ones. The aim of the present study was to test whether this advantage in memory is mainly produced by the affective content of the stimuli or it can be rather accounted for by factors such as semantic relatedness or type of encoding task. The valence of the stimuli (positive, negative and neutral words that could be either semantically related or unrelated) as well as the type of encoding task (focused on either familiarity or emotionality) was manipulated. The results revealed an advantage in memory for emotional words (either positive or negative) regardless of semantic relatedness. Importantly, this advantage was modulated by the encoding task, as it was reliable only in the task which focused on emotionality. These findings suggest that congruity with the dimension attended at encoding might contribute to the superiority in memory for emotional words, thus offering us a more complex picture of the underlying mechanisms behind the advantage for emotional information in memory.

  9. Right inferior frontal gyrus activation is associated with memory improvement in patients with left frontal low-grade glioma resection.

    PubMed

    Miotto, Eliane C; Balardin, Joana B; Vieira, Gilson; Sato, Joao R; Martin, Maria da Graça M; Scaff, Milberto; Teixeira, Manoel J; Junior, Edson Amaro

    2014-01-01

    Patients with low-grade glioma (LGG) have been studied as a model of functional brain reorganization due to their slow-growing nature. However, there is no information regarding which brain areas are involved during verbal memory encoding after extensive left frontal LGG resection. In addition, it remains unknown whether these patients can improve their memory performance after instructions to apply efficient strategies. The neural correlates of verbal memory encoding were investigated in patients who had undergone extensive left frontal lobe (LFL) LGG resections and healthy controls using fMRI both before and after directed instructions were given for semantic organizational strategies. Participants were scanned during the encoding of word lists under three different conditions before and after a brief period of practice. The conditions included semantically unrelated (UR), related-non-structured (RNS), and related-structured words (RS), allowing for different levels of semantic organization. All participants improved on memory recall and semantic strategy application after the instructions for the RNS condition. Healthy subjects showed increased activation in the left inferior frontal gyrus (IFG) and middle frontal gyrus (MFG) during encoding for the RNS condition after the instructions. Patients with LFL excisions demonstrated increased activation in the right IFG for the RNS condition after instructions were given for the semantic strategies. Despite extensive damage in relevant areas that support verbal memory encoding and semantic strategy applications, patients that had undergone resections for LFL tumor could recruit the right-sided contralateral homologous areas after instructions were given and semantic strategies were practiced. These results provide insights into changes in brain activation areas typically implicated in verbal memory encoding and semantic processing.

  10. Effects of level of processing at encoding and types of retrieval task in mild cognitive impairment and normal aging.

    PubMed

    Froger, Charlotte; Taconnat, Laurence; Landré, Lionel; Beigneux, Katia; Isingrini, Michel

    2009-04-01

    A total of 16 young (M = 27.25 years), 13 healthy elderly (M = 75.38 years), and 10 older adults with probable mild cognitive impairment (MCI; M = 78.6 years) carried out a task under two different encoding conditions (shallow vs. semantic) and two retrieval conditions (free recall vs. recognition). For the shallow condition, participants had to decide whether the first or last letter of each word in a list was "E." For the semantic condition, they had to decide whether each word represented a concrete or abstract entity. The MCI group was only able to benefit from semantic encoding to the same extent as the healthy older adults in the recognition task, whereas the younger and healthy older adults benefited in both retrieval tasks. These results suggest that the MCI group required cognitive support at retrieval to make effective use of semantic processing carried out at encoding. In the discussion, we suggest that adults with MCI engage more in deep processing, using the semantic network, than hitherto thought.

  11. Self-imagination can enhance memory in individuals with schizophrenia.

    PubMed

    Raffard, Stéphane; Bortolon, Catherine; Burca, Mariana; Novara, Caroline; Gely-Nargeot, Marie-Christine; Capdevielle, Delphine; Van der Linden, Martial

    2016-01-01

    Previous research has demonstrated that self-referential strategies can be applied to improve memory in various memory- impaired populations. However, little is known regarding the relative effectiveness of self-referential strategies in schizophrenia patients. The main aim of this study was to assess the effectiveness of a new self-referential strategy known as self- imagination (SI) on a free recall task. Twenty schizophrenia patients and 20 healthy controls intentionally encoded words under five instructions: superficial processing, semantic processing, semantic self-referential processing, episodic self-referential processing and semantic self- imagining. Other measures included depression, psychotic symptoms and cognitive measures. We found a SI effect in memory as self- imagining resulted in better performance in memory retrieval than semantic and superficial encoding in schizophrenia patients. The memory boost for self-referenced information in comparison to semantic processing was not found for other self-referential strategies. In addition no relationship between clinical variables and free recall performances was found. In controls, the SI condition did not result in better performance. The three self-referential strategies yielded better free recall than both superficial and semantic encoding. This study provides evidence of the clinical utility of self-imagining as a mnemonic strategy in schizophrenia patients.

  12. Semantic attributes are encoded in human electrocorticographic signals during visual object recognition.

    PubMed

    Rupp, Kyle; Roos, Matthew; Milsap, Griffin; Caceres, Carlos; Ratto, Christopher; Chevillet, Mark; Crone, Nathan E; Wolmetz, Michael

    2017-03-01

    Non-invasive neuroimaging studies have shown that semantic category and attribute information are encoded in neural population activity. Electrocorticography (ECoG) offers several advantages over non-invasive approaches, but the degree to which semantic attribute information is encoded in ECoG responses is not known. We recorded ECoG while patients named objects from 12 semantic categories and then trained high-dimensional encoding models to map semantic attributes to spectral-temporal features of the task-related neural responses. Using these semantic attribute encoding models, untrained objects were decoded with accuracies comparable to whole-brain functional Magnetic Resonance Imaging (fMRI), and we observed that high-gamma activity (70-110Hz) at basal occipitotemporal electrodes was associated with specific semantic dimensions (manmade-animate, canonically large-small, and places-tools). Individual patient results were in close agreement with reports from other imaging modalities on the time course and functional organization of semantic processing along the ventral visual pathway during object recognition. The semantic attribute encoding model approach is critical for decoding objects absent from a training set, as well as for studying complex semantic encodings without artificially restricting stimuli to a small number of semantic categories. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Semantic processes leading to true and false memory formation in schizophrenia.

    PubMed

    Paz-Alonso, Pedro M; Ghetti, Simona; Ramsay, Ian; Solomon, Marjorie; Yoon, Jong; Carter, Cameron S; Ragland, J Daniel

    2013-07-01

    Encoding semantic relationships between items on word lists (semantic processing) enhances true memories, but also increases memory distortions. Episodic memory impairments in schizophrenia (SZ) are strongly driven by failures to process semantic relations, but the exact nature of these relational semantic processing deficits is not well understood. Here, we used a false memory paradigm to investigate the impact of implicit and explicit semantic processing manipulations on episodic memory in SZ. Thirty SZ and 30 demographically matched healthy controls (HC) studied Deese/Roediger-McDermott (DRM) lists of semantically associated words. Half of the lists had strong implicit semantic associations and the remainder had low strength associations. Similarly, half of the lists were presented under "standard" instructions and the other half under explicit "relational processing" instructions. After study, participants performed recall and old/new recognition tests composed of targets, critical lures, and unrelated lures. HC exhibited higher true memories and better discriminability between true and false memory compared to SZ. High, versus low, associative strength increased false memory rates in both groups. However, explicit "relational processing" instructions positively improved true memory rates only in HC. Finally, true and false memory rates were associated with severity of disorganized and negative symptoms in SZ. These results suggest that reduced processing of semantic relationships during encoding in SZ may stem from an inability to implement explicit relational processing strategies rather than a fundamental deficit in the implicit activation and retrieval of word meanings from patients' semantic lexicon. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Ontology-Based Search of Genomic Metadata.

    PubMed

    Fernandez, Javier D; Lenzerini, Maurizio; Masseroli, Marco; Venco, Francesco; Ceri, Stefano

    2016-01-01

    The Encyclopedia of DNA Elements (ENCODE) is a huge and still expanding public repository of more than 4,000 experiments and 25,000 data files, assembled by a large international consortium since 2007; unknown biological knowledge can be extracted from these huge and largely unexplored data, leading to data-driven genomic, transcriptomic, and epigenomic discoveries. Yet, search of relevant datasets for knowledge discovery is limitedly supported: metadata describing ENCODE datasets are quite simple and incomplete, and not described by a coherent underlying ontology. Here, we show how to overcome this limitation, by adopting an ENCODE metadata searching approach which uses high-quality ontological knowledge and state-of-the-art indexing technologies. Specifically, we developed S.O.S. GeM (http://www.bioinformatics.deib.polimi.it/SOSGeM/), a system supporting effective semantic search and retrieval of ENCODE datasets. First, we constructed a Semantic Knowledge Base by starting with concepts extracted from ENCODE metadata, matched to and expanded on biomedical ontologies integrated in the well-established Unified Medical Language System. We prove that this inference method is sound and complete. Then, we leveraged the Semantic Knowledge Base to semantically search ENCODE data from arbitrary biologists' queries. This allows correctly finding more datasets than those extracted by a purely syntactic search, as supported by the other available systems. We empirically show the relevance of found datasets to the biologists' queries.

  15. On the asymmetric effects of mind-wandering on levels of processing at encoding and retrieval.

    PubMed

    Thomson, David R; Smilek, Daniel; Besner, Derek

    2014-06-01

    The behavioral consequences of off-task thought (mind-wandering) on primary-task performance are now well documented across an increasing range of tasks. In the present study, we investigated the consequences of mind-wandering on the encoding of information into memory in the context of a levels-of-processing framework (Craik & Lockhart, 1972). Mind-wandering was assessed via subjective self-reports in response to thought probes that were presented under both semantic (size judgment) and perceptual (case judgment) encoding instructions. Mind-wandering rates during semantic encoding negatively predicted subsequent recognition memory performance, whereas no such relation was observed during perceptual encoding. We discuss the asymmetric effects of mind-wandering on levels of processing in the context of attentional-resource accounts of mind-wandering.

  16. Semantics of the visual environment encoded in parahippocampal cortex

    PubMed Central

    Bonner, Michael F.; Price, Amy Rose; Peelle, Jonathan E.; Grossman, Murray

    2016-01-01

    Semantic representations capture the statistics of experience and store this information in memory. A fundamental component of this memory system is knowledge of the visual environment, including knowledge of objects and their associations. Visual semantic information underlies a range of behaviors, from perceptual categorization to cognitive processes such as language and reasoning. Here we examine the neuroanatomic system that encodes visual semantics. Across three experiments, we found converging evidence indicating that knowledge of verbally mediated visual concepts relies on information encoded in a region of the ventral-medial temporal lobe centered on parahippocampal cortex. In an fMRI study, this region was strongly engaged by the processing of concepts relying on visual knowledge but not by concepts relying on other sensory modalities. In a study of patients with the semantic variant of primary progressive aphasia (semantic dementia), atrophy that encompassed this region was associated with a specific impairment in verbally mediated visual semantic knowledge. Finally, in a structural study of healthy adults from the fMRI experiment, gray matter density in this region related to individual variability in the processing of visual concepts. The anatomic location of these findings aligns with recent work linking the ventral-medial temporal lobe with high-level visual representation, contextual associations, and reasoning through imagination. Together this work suggests a critical role for parahippocampal cortex in linking the visual environment with knowledge systems in the human brain. PMID:26679216

  17. Semantics of the Visual Environment Encoded in Parahippocampal Cortex.

    PubMed

    Bonner, Michael F; Price, Amy Rose; Peelle, Jonathan E; Grossman, Murray

    2016-03-01

    Semantic representations capture the statistics of experience and store this information in memory. A fundamental component of this memory system is knowledge of the visual environment, including knowledge of objects and their associations. Visual semantic information underlies a range of behaviors, from perceptual categorization to cognitive processes such as language and reasoning. Here we examine the neuroanatomic system that encodes visual semantics. Across three experiments, we found converging evidence indicating that knowledge of verbally mediated visual concepts relies on information encoded in a region of the ventral-medial temporal lobe centered on parahippocampal cortex. In an fMRI study, this region was strongly engaged by the processing of concepts relying on visual knowledge but not by concepts relying on other sensory modalities. In a study of patients with the semantic variant of primary progressive aphasia (semantic dementia), atrophy that encompassed this region was associated with a specific impairment in verbally mediated visual semantic knowledge. Finally, in a structural study of healthy adults from the fMRI experiment, gray matter density in this region related to individual variability in the processing of visual concepts. The anatomic location of these findings aligns with recent work linking the ventral-medial temporal lobe with high-level visual representation, contextual associations, and reasoning through imagination. Together, this work suggests a critical role for parahippocampal cortex in linking the visual environment with knowledge systems in the human brain.

  18. Automatic semantic encoding in verbal short-term memory: evidence from the concreteness effect.

    PubMed

    Campoy, Guillermo; Castellà, Judit; Provencio, Violeta; Hitch, Graham J; Baddeley, Alan D

    2015-01-01

    The concreteness effect in verbal short-term memory (STM) tasks is assumed to be a consequence of semantic encoding in STM, with immediate recall of concrete words benefiting from richer semantic representations. We used the concreteness effect to test the hypothesis that semantic encoding in standard verbal STM tasks is a consequence of controlled, attention-demanding mechanisms of strategic semantic retrieval and encoding. Experiment 1 analysed the effect of presentation rate, with slow presentations being assumed to benefit strategic, time-dependent semantic encoding. Experiments 2 and 3 provided a more direct test of the strategic hypothesis by introducing three different concurrent attention-demanding tasks. Although Experiment 1 showed a larger concreteness effect with slow presentations, the following two experiments yielded strong evidence against the strategic hypothesis. Limiting available attention resources by concurrent tasks reduced global memory performance, but the concreteness effect was equivalent to that found in control conditions. We conclude that semantic effects in STM result from automatic semantic encoding and provide tentative explanations for the interaction between the concreteness effect and the presentation rate.

  19. The impact of semantic impairment on word stem completion in Alzheimer's disease.

    PubMed

    Beauregard, M; Chertkow, H; Gold, D; Bergman, S

    2001-01-01

    Both the extent of semantic memory impairment and the level of processing attained during encoding might constitute critical factors in determining the amount of word-stem completion (WSC) priming encountered in Alzheimer's disease (AD) subjects. We investigated the impact of varying encoding level in AD and elderly normal subjects, using a set of stimuli ranked as "intact" or "degraded" in terms of each subject's semantic knowledge on probe questions. For both shallow and deep encoding conditions, overall priming in the two subject groups was equivalent. However, for the deep encoding condition, consisting of a semantic judgment task performed on each target word, the priming effect noted in AD subjects was significantly smaller for semantically degraded items than for semantically intact items. Results indicate that the degree of semantic impairment represents one important variable affecting the amount of WSC priming which results when deep encoding procedures are used at study.

  20. Semantic and Phonological Encoding Times in Adults Who Stutter: Brain Electrophysiological Evidence.

    PubMed

    Maxfield, Nathan D

    2017-10-17

    Some psycholinguistic theories of stuttering propose that language production operates along a different time course in adults who stutter (AWS) versus typically fluent adults (TFA). However, behavioral evidence for such a difference has been mixed. Here, the time course of semantic and phonological encoding in picture naming was compared in AWS (n = 16) versus TFA (n = 16) by measuring 2 event-related potential (ERP) components: NoGo N200, an ERP index of response inhibition, and lateralized readiness potential, an ERP index of response preparation. Each trial required a semantic judgment about a picture in addition to a phonemic judgment about the target label of the picture. Judgments were mapped onto a dual-choice (Go-NoGo/left-right) push-button response paradigm. On each trial, ERP activity time-locked to picture onset was recorded at 32 scalp electrodes. NoGo N200 was detected earlier to semantic NoGo trials than to phonemic NoGo trials in both groups, replicating previous evidence that semantic encoding generally precedes phonological encoding in language production. Moreover, N200 onset was earlier to semantic NoGo trials in TFA than in AWS, indicating that semantic information triggering response inhibition became available earlier in TFA versus AWS. In contrast, the time course of N200 activity to phonemic NoGo trials did not differ between groups. Lateralized readiness potential activity was influenced by strategic response preparation and, thus, could not be used to index real-time semantic and phonological encoding. NoGo N200 results point to slowed semantic encoding in AWS versus TFA. Discussion considers possible factors in slowed semantic encoding in AWS and how fluency might be impacted by slowed semantic encoding.

  1. Semantic and Phonological Encoding Times in Adults Who Stutter: Brain Electrophysiological Evidence

    PubMed Central

    2017-01-01

    Purpose Some psycholinguistic theories of stuttering propose that language production operates along a different time course in adults who stutter (AWS) versus typically fluent adults (TFA). However, behavioral evidence for such a difference has been mixed. Here, the time course of semantic and phonological encoding in picture naming was compared in AWS (n = 16) versus TFA (n = 16) by measuring 2 event-related potential (ERP) components: NoGo N200, an ERP index of response inhibition, and lateralized readiness potential, an ERP index of response preparation. Method Each trial required a semantic judgment about a picture in addition to a phonemic judgment about the target label of the picture. Judgments were mapped onto a dual-choice (Go–NoGo/left–right) push-button response paradigm. On each trial, ERP activity time-locked to picture onset was recorded at 32 scalp electrodes. Results NoGo N200 was detected earlier to semantic NoGo trials than to phonemic NoGo trials in both groups, replicating previous evidence that semantic encoding generally precedes phonological encoding in language production. Moreover, N200 onset was earlier to semantic NoGo trials in TFA than in AWS, indicating that semantic information triggering response inhibition became available earlier in TFA versus AWS. In contrast, the time course of N200 activity to phonemic NoGo trials did not differ between groups. Lateralized readiness potential activity was influenced by strategic response preparation and, thus, could not be used to index real-time semantic and phonological encoding. Conclusion NoGo N200 results point to slowed semantic encoding in AWS versus TFA. Discussion considers possible factors in slowed semantic encoding in AWS and how fluency might be impacted by slowed semantic encoding. PMID:28973156

  2. Lateral and medial prefrontal contributions to emotion generation by semantic elaboration during episodic encoding.

    PubMed

    Kaneda, Takumi; Shigemune, Yayoi; Tsukiura, Takashi

    2017-02-01

    Memories for emotion-laden stimuli are remembered more accurately than those for neutral stimuli. Although this enhancement reflects stimulus-driven modulation of memory by emotions, functional neuroimaging evidence of the interacting mechanisms between emotions generated by intentional processes, such as semantic elaboration, and memory is scarce. The present fMRI study investigated how encoding-related activation is modulated by emotions generated during the process of semantic elaboration. During encoding with fMRI, healthy young adults viewed neutral (target) pictures either passively or with semantic elaboration. In semantic elaboration, participants imagined background stories related to the pictures. Encoding trials with semantic elaboration were subdivided into conditions in which participants imagined negative, positive, or neutral stories. One week later, memories for target pictures were tested. In behavioral results, memories for target pictures were significantly enhanced by semantic elaboration, compared to passive viewing, and the memory enhancement was more remarkable when negative or positive stories were imagined. fMRI results demonstrated that activations in the left inferior frontal gyrus and dorsal medial prefrontal cortex (dmPFC) were greater during the encoding of target pictures with semantic elaboration than those with passive viewing, and that these activations further increased during encoding with semantic elaboration of emotional stories than of neutral stories. Functional connectivity between the left inferior frontal gyrus and dmPFC/hippocampus during encoding significantly predicted retrieval accuracies of memories encoded with self-generated emotional stories. These findings suggest that networks including the left inferior frontal region, dmPFC, and hippocampus could contribute to the modulation of memories encoded with the emotion generation.

  3. Sleep Increases Explicit Solutions and Reduces Intuitive Judgments of Semantic Coherence

    ERIC Educational Resources Information Center

    Zander, Thea; Volz, Kirsten G.; Born, Jan; Diekelmann, Susanne

    2017-01-01

    Sleep fosters the generation of explicit knowledge. Whether sleep also benefits implicit intuitive decisions about underlying patterns is unclear. We examined sleep's role in explicit and intuitive semantic coherence judgments. Participants encoded sets of three words and after a sleep or wake period were required to judge the potential…

  4. Semantic congruence enhances memory of episodic associations: role of theta oscillations.

    PubMed

    Atienza, Mercedes; Crespo-Garcia, Maite; Cantero, Jose L

    2011-01-01

    Growing evidence suggests that theta oscillations play a crucial role in episodic encoding. The present study evaluates whether changes in electroencephalographic theta source dynamics mediate the positive influence of semantic congruence on incidental associative learning. Here we show that memory for episodic associations (face-location) is more accurate when studied under semantically congruent contexts. However, only participants showing RT priming effect in a conceptual priming test (priming group) also gave faster responses when recollecting source information of semantically congruent faces as compared with semantically incongruent faces. This improved episodic retrieval was positively correlated with increases in theta power during the study phase mainly in the bilateral parahippocampal gyrus, left superior temporal gyrus, and left lateral posterior parietal lobe. Reconstructed signals from the estimated sources showed higher theta power for congruent than incongruent faces and also for the priming than the nonpriming group. These results are in agreement with the attention to memory model. Besides directing top-down attention to goal-relevant semantic information during encoding, the dorsal parietal lobe may also be involved in redirecting attention to bottom-up-driven memories thanks to connections between the medial-temporal and the left ventral parietal lobe. The latter function can either facilitate or interfere with encoding of face-location associations depending on whether they are preceded by semantically congruent or incongruent contexts, respectively, because only in the former condition retrieved representations related to the cue and the face are both coherent with the person identity and are both associated with the same location.

  5. Alpha Oscillations during Incidental Encoding Predict Subsequent Memory for New "Foil" Information.

    PubMed

    Vogelsang, David A; Gruber, Matthias; Bergström, Zara M; Ranganath, Charan; Simons, Jon S

    2018-05-01

    People can employ adaptive strategies to increase the likelihood that previously encoded information will be successfully retrieved. One such strategy is to constrain retrieval toward relevant information by reimplementing the neurocognitive processes that were engaged during encoding. Using EEG, we examined the temporal dynamics with which constraining retrieval toward semantic versus nonsemantic information affects the processing of new "foil" information encountered during a memory test. Time-frequency analysis of EEG data acquired during an initial study phase revealed that semantic compared with nonsemantic processing was associated with alpha decreases in a left frontal electrode cluster from around 600 msec after stimulus onset. Successful encoding of semantic versus nonsemantic foils during a subsequent memory test was related to decreases in alpha oscillatory activity in the same left frontal electrode cluster, which emerged relatively late in the trial at around 1000-1600 msec after stimulus onset. Across participants, left frontal alpha power elicited by semantic processing during the study phase correlated significantly with left frontal alpha power associated with semantic foil encoding during the memory test. Furthermore, larger left frontal alpha power decreases elicited by semantic foil encoding during the memory test predicted better subsequent semantic foil recognition in an additional surprise foil memory test, although this effect did not reach significance. These findings indicate that constraining retrieval toward semantic information involves reimplementing semantic encoding operations that are mediated by alpha oscillations and that such reimplementation occurs at a late stage of memory retrieval, perhaps reflecting additional monitoring processes.

  6. Cognitive and Neural Effects of Semantic Encoding Strategy Training in Older Adults

    PubMed Central

    Anderson, B. A.; Barch, D. M.; Jacoby, L. L.

    2012-01-01

    Prior research suggests that older adults are less likely than young adults to use effective learning strategies during intentional encoding. This functional magnetic resonance imaging (fMRI) study investigated whether training older adults to use semantic encoding strategies can increase their self-initiated use of these strategies and improve their recognition memory. The effects of training on older adults' brain activity during intentional encoding were also examined. Training increased older adults' self-initiated semantic encoding strategy use and eliminated pretraining age differences in recognition memory following intentional encoding. Training also increased older adults' brain activity in the medial superior frontal gyrus, right precentral gyrus, and left caudate during intentional encoding. In addition, older adults' training-related changes in recognition memory were strongly correlated with training-related changes in brain activity in prefrontal and left lateral temporal regions associated with semantic processing and self-initiated verbal encoding strategy use in young adults. These neuroimaging results demonstrate that semantic encoding strategy training can alter older adults' brain activity patterns during intentional encoding and suggest that young and older adults may use the same network of brain regions to support self-initiated use of verbal encoding strategies. PMID:21709173

  7. Semantic and Phonological Encoding in Adults Who Stutter: Silent Responses to Pictorial Stimuli

    ERIC Educational Resources Information Center

    Vincent, Irena

    2017-01-01

    Purpose: Research on language planning in adult stuttering is relatively sparse and offers diverging arguments about a potential causative relationship between semantic and phonological encoding and fluency breakdowns. This study further investigated semantic and phonological encoding efficiency in adults who stutter (AWS) by means of silent…

  8. Impaired Semantic Knowledge Underlies the Reduced Verbal Short-Term Storage Capacity in Alzheimer's Disease

    ERIC Educational Resources Information Center

    Peters, Frederic; Majerus, Steve; De Baerdemaeker, Julie; Salmon, Eric; Collette, Fabienne

    2009-01-01

    A decrease in verbal short-term memory (STM) capacity is consistently observed in patients with Alzheimer's disease (AD). Although this impairment has been mainly attributed to attentional deficits during encoding and maintenance, the progressive deterioration of semantic knowledge in early stages of AD may also be an important determinant of poor…

  9. Insights from child development on the relationship between episodic and semantic memory.

    PubMed

    Robertson, Erin K; Köhler, Stefan

    2007-11-05

    The present study was motivated by a recent controversy in the neuropsychological literature on semantic dementia as to whether episodic encoding requires semantic processing or whether it can proceed solely based on perceptual processing. We addressed this issue by examining the effect of age-related limitations in semantic competency on episodic memory in 4-6-year-old children (n=67). We administered three different forced-choice recognition memory tests for pictures previously encountered in a single study episode. The tests varied in the degree to which access to semantically encoded information was required at retrieval. Semantic competency predicted recognition performance regardless of whether access to semantic information was required. A direct relation between picture naming at encoding and subsequent recognition was also found for all tests. Our findings emphasize the importance of semantic encoding processes even in retrieval situations that purportedly do not require access to semantic information. They also highlight the importance of testing neuropsychological models of memory in different populations, healthy and brain damaged, at both ends of the developmental continuum.

  10. Effects of semantic relatedness on recall of stimuli preceding emotional oddballs.

    PubMed

    Smith, Ryan M; Beversdorf, David Q

    2008-07-01

    Semantic and episodic memory networks function as highly interconnected systems, both relying on the hippocampal/medial temporal lobe complex (HC/MTL). Episodic memory encoding triggers the retrieval of semantic information, serving to incorporate contextual relationships between the newly acquired memory and existing semantic representations. While emotional material augments episodic memory encoding at the time of stimulus presentation, interactions between emotion and semantic memory that contribute to subsequent episodic recall are not well understood. Using a modified oddball task, we examined the modulatory effects of negative emotion on semantic interactions with episodic memory by measuring the free-recall of serially presented neutral or negative words varying in semantic relatedness. We found increased free-recall for words related to and preceding emotionally negative oddballs, suggesting that negative emotion can indirectly facilitate episodic free-recall by enhancing semantic contributions during encoding. Our findings demonstrate the ability of emotion and semantic memory to interact to mutually enhance free-recall.

  11. School-aged children can benefit from audiovisual semantic congruency during memory encoding.

    PubMed

    Heikkilä, Jenni; Tiippana, Kaisa

    2016-05-01

    Although we live in a multisensory world, children's memory has been usually studied concentrating on only one sensory modality at a time. In this study, we investigated how audiovisual encoding affects recognition memory. Children (n = 114) from three age groups (8, 10 and 12 years) memorized auditory or visual stimuli presented with a semantically congruent, incongruent or non-semantic stimulus in the other modality during encoding. Subsequent recognition memory performance was better for auditory or visual stimuli initially presented together with a semantically congruent stimulus in the other modality than for stimuli accompanied by a non-semantic stimulus in the other modality. This congruency effect was observed for pictures presented with sounds, for sounds presented with pictures, for spoken words presented with pictures and for written words presented with spoken words. The present results show that semantically congruent multisensory experiences during encoding can improve memory performance in school-aged children.

  12. Encoding Specificity: Semantic Change Between Storage and Retrieval Cues

    ERIC Educational Resources Information Center

    Murphy, Michael D.; Wallace, William P.

    1974-01-01

    In three experiments cue words were presented with to-be-remembered (TBR) words in an effort to influence specific encoding formats. Recall was tested in the presence of cues that were identical, semantically similar, or semantically dissimilar to the input cues. (Editor)

  13. Predication-based semantic indexing: permutations as a means to encode predications in semantic space.

    PubMed

    Cohen, Trevor; Schvaneveldt, Roger W; Rindflesch, Thomas C

    2009-11-14

    Corpus-derived distributional models of semantic distance between terms have proved useful in a number of applications. For both theoretical and practical reasons, it is desirable to extend these models to encode discrete concepts and the ways in which they are related to one another. In this paper, we present a novel vector space model that encodes semantic predications derived from MEDLINE by the SemRep system into a compact spatial representation. The associations captured by this method are of a different and complementary nature to those derived by traditional vector space models, and the encoding of predication types presents new possibilities for knowledge discovery and information retrieval.

  14. Audiovisual semantic congruency during encoding enhances memory performance.

    PubMed

    Heikkilä, Jenni; Alho, Kimmo; Hyvönen, Heidi; Tiippana, Kaisa

    2015-01-01

    Studies of memory and learning have usually focused on a single sensory modality, although human perception is multisensory in nature. In the present study, we investigated the effects of audiovisual encoding on later unisensory recognition memory performance. The participants were to memorize auditory or visual stimuli (sounds, pictures, spoken words, or written words), each of which co-occurred with either a semantically congruent stimulus, incongruent stimulus, or a neutral (non-semantic noise) stimulus in the other modality during encoding. Subsequent memory performance was overall better when the stimulus to be memorized was initially accompanied by a semantically congruent stimulus in the other modality than when it was accompanied by a neutral stimulus. These results suggest that semantically congruent multisensory experiences enhance encoding of both nonverbal and verbal materials, resulting in an improvement in their later recognition memory.

  15. Self-referential processing is distinct from semantic elaboration: evidence from long-term memory effects in a patient with amnesia and semantic impairments.

    PubMed

    Sui, Jie; Humphreys, Glyn W

    2013-11-01

    We report data demonstrating that self-referential encoding facilitates memory performance in the absence of effects of semantic elaboration in a severely amnesic patient also suffering semantic problems. In Part 1, the patient, GA, was trained to associate items with the self or a familiar other during the encoding phase of a memory task (self-ownership decisions in Experiment 1 and self-evaluation decisions in Experiment 2). Tests of memory showed a consistent self-reference advantage, relative to a condition where the reference was another person in both experiments. The pattern of the self-reference advantage was similar to that in healthy controls. In Part 2 we demonstrate that GA showed minimal effects of semantic elaboration on memory for items he semantically classified, compared with items subject to physical size decisions; in contrast, healthy controls demonstrated enhanced memory performance after semantic relative to physical encoding. The results indicate that self-referential encoding, not semantic elaboration, improves memory in amnesia. Self-referential processing may provide a unique scaffold to help improve learning in amnesic cases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Cognitive training of self-initiation of semantic encoding strategies in schizophrenia: A pilot study.

    PubMed

    Guimond, Synthia; Lepage, Martin

    2016-01-01

    Available cognitive remediation interventions have a significant but relatively small to moderate impact on episodic memory in schizophrenia. The present study aimed to evaluate the efficacy and feasibility of a brief novel episodic memory training targeting the self-initiation of semantic encoding strategies. To select patients with such deficits, 28 participants with schizophrenia performed our Semantic Encoding Memory Task (SEMT) that provides a measure of self-initiated semantic encoding strategies. This task identified a deficit in 13 participants who were then offered two 60-minute training sessions one week apart. After the training, patients performed an alternate version of the SEMT. The CVLT-II (a standardised measure of semantic encoding strategies) and the BVMT-R (a control spatial memory task) were used to quantify memory pre- and post-training. After the training, participants were significantly better at self-initiating semantic encoding strategies in the SEMT (p = .004) and in the CVLT-II (p = .002). No significant differences were found in the BVMT-R. The current study demonstrates that a brief and specific training in memory strategies can help patients to improve a deficient memory process in schizophrenia. Future studies will need to test this intervention further using a randomised controlled trial, and to explore its functional impact.

  17. An Event Related Potentials Study of Semantic Coherence Effect during Episodic Encoding in Schizophrenia Patients

    PubMed Central

    Blanchet, Alain; Lockman, Hazlin

    2018-01-01

    The objective of this electrophysiological study was to investigate the processing of semantic coherence during encoding in relation to episodic memory processes promoted at test, in schizophrenia patients, by using the N400 paradigm. Eighteen schizophrenia patients and 15 healthy participants undertook a recognition memory task. The stimuli consisted of pairs of words either semantically related or unrelated to a given category name (context). During encoding, both groups exhibited an N400 external semantic coherence effect. Healthy controls also showed an N400 internal semantic coherence effect, but this effect was not present in patients. At test, related stimuli were accompanied by an FN400 old/new effect in both groups and by a parietal old/new effect in the control group alone. In the patient group, external semantic coherence effect was associated with FN400, while, in the control group, it was correlated to the parietal old/new effect. Our results indicate that schizophrenia patients can process the contextual information at encoding to enhance familiarity process for related stimuli at test. Therefore, cognitive rehabilitation therapies targeting the implementation of semantic encoding strategies can mobilize familiarity which in turn can overcome the recollection deficit, promoting successful episodic memory performance in schizophrenia patients. PMID:29535872

  18. Multiple Regions of a Cortical Network Commonly Encode the Meaning of Words in Multiple Grammatical Positions of Read Sentences.

    PubMed

    Anderson, Andrew James; Lalor, Edmund C; Lin, Feng; Binder, Jeffrey R; Fernandino, Leonardo; Humphries, Colin J; Conant, Lisa L; Raizada, Rajeev D S; Grimm, Scott; Wang, Xixi

    2018-05-16

    Deciphering how sentence meaning is represented in the brain remains a major challenge to science. Semantically related neural activity has recently been shown to arise concurrently in distributed brain regions as successive words in a sentence are read. However, what semantic content is represented by different regions, what is common across them, and how this relates to words in different grammatical positions of sentences is weakly understood. To address these questions, we apply a semantic model of word meaning to interpret brain activation patterns elicited in sentence reading. The model is based on human ratings of 65 sensory/motor/emotional and cognitive features of experience with words (and their referents). Through a process of mapping functional Magnetic Resonance Imaging activation back into model space we test: which brain regions semantically encode content words in different grammatical positions (e.g., subject/verb/object); and what semantic features are encoded by different regions. In left temporal, inferior parietal, and inferior/superior frontal regions we detect the semantic encoding of words in all grammatical positions tested and reveal multiple common components of semantic representation. This suggests that sentence comprehension involves a common core representation of multiple words' meaning being encoded in a network of regions distributed across the brain.

  19. Brain oscillatory subsequent memory effects differ in power and long-range synchronization between semantic and survival processing.

    PubMed

    Fellner, Marie-Christin; Bäuml, Karl-Heinz T; Hanslmayr, Simon

    2013-10-01

    Memory crucially depends on the way information is processed during encoding. Differences in processes during encoding not only lead to differences in memory performance but also rely on different brain networks. Although these assumptions are corroborated by several previous fMRI and ERP studies, little is known about how brain oscillations dissociate between different memory encoding tasks. The present study therefore compared encoding related brain oscillatory activity elicited by two very efficient encoding tasks: a typical deep semantic item feature judgment task and a more elaborative survival encoding task. Subjects were asked to judge words either for survival relevance or for animacy, as indicated by a cue presented prior to the item. This allowed dissociating pre-item activity from item-related activity for both tasks. Replicating prior studies, survival processing led to higher recognition performance than semantic processing. Successful encoding in the semantic condition was reflected by a strong decrease in alpha and beta power, whereas successful encoding in the survival condition was related to increased alpha and beta long-range phase synchrony. Moreover, a pre-item subsequent memory effect in theta power was found which did not vary with encoding condition. These results show that measures of local synchrony (power) and global long range-synchrony (phase synchronization) dissociate between memory encoding processes. Whereas semantic encoding was reflected in decreases in local synchrony, increases in global long range synchrony were related to elaborative survival encoding, presumably reflecting the involvement of a more widespread cortical network in this task. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Semantic Congruence Accelerates the Onset of the Neural Signals of Successful Memory Encoding.

    PubMed

    Packard, Pau A; Rodríguez-Fornells, Antoni; Bunzeck, Nico; Nicolás, Berta; de Diego-Balaguer, Ruth; Fuentemilla, Lluís

    2017-01-11

    As the stream of experience unfolds, our memory system rapidly transforms current inputs into long-lasting meaningful memories. A putative neural mechanism that strongly influences how input elements are transformed into meaningful memory codes relies on the ability to integrate them with existing structures of knowledge or schemas. However, it is not yet clear whether schema-related integration neural mechanisms occur during online encoding. In the current investigation, we examined the encoding-dependent nature of this phenomenon in humans. We showed that actively integrating words with congruent semantic information provided by a category cue enhances memory for words and increases false recall. The memory effect of such active integration with congruent information was robust, even with an interference task occurring right after each encoding word list. In addition, via electroencephalography, we show in 2 separate studies that the onset of the neural signals of successful encoding appeared early (∼400 ms) during the encoding of congruent words. That the neural signals of successful encoding of congruent and incongruent information followed similarly ∼200 ms later suggests that this earlier neural response contributed to memory formation. We propose that the encoding of events that are congruent with readily available contextual semantics can trigger an accelerated onset of the neural mechanisms, supporting the integration of semantic information with the event input. This faster onset would result in a long-lasting and meaningful memory trace for the event but, at the same time, make it difficult to distinguish it from plausible but never encoded events (i.e., related false memories). Conceptual or schema congruence has a strong influence on long-term memory. However, the question of whether schema-related integration neural mechanisms occur during online encoding has yet to be clarified. We investigated the neural mechanisms reflecting how the active integration of words with congruent semantic categories enhances memory for words and increases false recall of semantically related words. We analyzed event-related potentials during encoding and showed that the onset of the neural signals of successful encoding appeared early (∼400 ms) during the encoding of congruent words. Our findings indicate that congruent events can trigger an accelerated onset of neural encoding mechanisms supporting the integration of semantic information with the event input. Copyright © 2017 the authors 0270-6474/17/370291-11$15.00/0.

  1. Levels of Processing and the Cue-Dependent Nature of Recollection

    ERIC Educational Resources Information Center

    Mulligan, Neil W.; Picklesimer, Milton

    2012-01-01

    Dual-process models differentiate between two bases of memory, recollection and familiarity. It is routinely claimed that deeper, semantic encoding enhances recollection relative to shallow, non-semantic encoding, and that recollection is largely a product of semantic, elaborative rehearsal. The present experiments show that this is not always the…

  2. Neuronal oscillations reveal the processes underlying intentional compared to incidental learning in children and young adults.

    PubMed

    Köster, Moritz; Haese, André; Czernochowski, Daniela

    2017-01-01

    This EEG study investigated the neuronal processes during intentional compared to incidental learning in young adults and two groups of children aged 10 and 7 years. Theta (3-8 Hz) and alpha (10-16 Hz) neuronal oscillations were analyzed to compare encoding processes during an intentional and an incidental encoding task. In all three age groups, both encoding conditions were associated with an increase in event-related theta activity. Encoding-related alpha suppression increased with age. Memory performance was higher in the intentional compared to the incidental task in all age groups. Furthermore, intentional learning was associated with an improved encoding of perceptual features, which were relevant for the retrieval phase. Theta activity increased from incidental to intentional encoding. Specifically, frontal theta increased in all age groups, while parietal theta increased only in adults and older children. In younger children, parietal theta was similarly high in both encoding phases. While alpha suppression may reflect semantic processes during encoding, increased theta activity during intentional encoding may indicate perceptual binding processes, in accordance with the demands of the encoding task. Higher encoding-related alpha suppression in the older age groups, together with age differences in parietal theta activity during incidental learning in young children, is in line with recent theoretical accounts, emphasizing the role of perceptual processes in mnemonic processing in young children, whereas semantic encoding processes continue to mature throughout middle childhood.

  3. Semantic encoding of relational databases in wireless networks

    NASA Astrophysics Data System (ADS)

    Benjamin, David P.; Walker, Adrian

    2005-03-01

    Semantic Encoding is a new, patented technology that greatly increases the speed of transmission of distributed databases over networks, especially over ad hoc wireless networks, while providing a novel method of data security. It reduces bandwidth consumption and storage requirements, while speeding up query processing, encryption and computation of digital signatures. We describe the application of Semantic Encoding in a wireless setting and provide an example of its operation in which a compression of 290:1 would be achieved.

  4. The importance of material-processing interactions in inducing false memories.

    PubMed

    Chan, Jason C K; McDermott, Kathleen B; Watson, Jason M; Gallo, David A

    2005-04-01

    Deep encoding, relative to shallow encoding, has been shown to increase the probability of false memories in the Deese/Roediger-McDermott (DRM) paradigm (Thapar & McDermott, 2001; Toglia, Neuschatz, & Goodwin, 1999). In two experiments, we showed important limitations on the generalizability of this phenomenon; these limitations are clearly predicted by existing theories regarding the mechanisms underlying such false memories (e.g., Roediger, Watson, McDermott, & Gallo, 2001). Specifically, asking subjects to attend to phonological relations among lists of phonologically associated words (e.g., weep, steep, etc.) increased the likelihood of false recall (Experiment 1) and false recognition (Experiment 2) of a related, nonpresented associate (e.g., sleep), relative to a condition in which subjects attended to meaningful relations among the words. These findings occurred along with a replication of prior findings (i.e., a semantic encoding task, relative to a phonological encoding task, enhanced the likelihood of false memory arising from a list of semantically associated words), and they place important constraints on theoretical explanations of false memory.

  5. Total sleep deprivation does not significantly degrade semantic encoding.

    PubMed

    Honn, K A; Grant, D A; Hinson, J M; Whitney, P; Van Dongen, Hpa

    2018-01-17

    Sleep deprivation impairs performance on cognitive tasks, but it is unclear which cognitive processes it degrades. We administered a semantic matching task with variable stimulus onset asynchrony (SOA) and both speeded and self-paced trial blocks. The task was administered at the baseline and 24 hours later after 30.8 hours of total sleep deprivation (TSD) or matching well-rested control. After sleep deprivation, the 20% slowest response times (RTs) were significantly increased. However, the semantic encoding time component of the RTs remained at baseline level. Thus, the performance impairment induced by sleep deprivation on this task occurred in cognitive processes downstream of semantic encoding.

  6. Effects of donepezil on verbal memory after semantic processing in healthy older adults.

    PubMed

    FitzGerald, David B; Crucian, Gregory P; Mielke, Jeannine B; Shenal, Brian V; Burks, David; Womack, Kyle B; Ghacibeh, Georges; Drago, Valeria; Foster, Paul S; Valenstein, Edward; Heilman, Kenneth M

    2008-06-01

    To learn if acetylcholinesterase inhibitors alter verbal recall by improving semantic encoding in a double-blind randomized placebo-controlled trial. Cholinergic supplementation has been shown to improve delayed recall in adults with Alzheimer disease. With functional magnetic resonance imaging, elderly adults, when compared with younger participants, have reduced cortical activation with semantic processing. There have been no studies investigating the effects of cholinergic supplementation on semantic encoding in healthy elderly adults. Twenty elderly participants (mean age 71.5, SD+/-5.2) were recruited. All underwent memory testing before and after receiving donepezil (5 mg, n=11 or 10 mg, n=1) or placebo (n=8) for 6 weeks. Memory was tested using a Levels of Processing task, where a series of words are presented serially. Subjects were either asked to count consonants in a word (superficially process) or decide if the word was "pleasant" or "unpleasant" (semantically process). After 6 weeks of donepezil or placebo treatment, immediate and delayed recall of superficially and semantically processed words was compared with baseline performance. Immediate and delayed recall of superficially processed words did not show significant changes in either treatment group. With semantic processing, both immediate and delayed recall performance improved in the donepezil group. Our results suggest that when using semantic encoding, older normal subjects may be aided by anticholinesterase treatment. However, this treatment does not improve recall of superficially encoded words.

  7. Age-related effects on perceptual and semantic encoding in memory.

    PubMed

    Kuo, M C C; Liu, K P Y; Ting, K H; Chan, C C H

    2014-03-07

    This study examined the age-related subsequent memory effect (SME) in perceptual and semantic encoding using event-related potentials (ERPs). Seventeen younger adults and 17 older adults studied a series of Chinese characters either perceptually (by inspecting orthographic components) or semantically (by determining whether the depicted object makes sounds). The two tasks had similar levels of difficulty. The participants made studied or unstudied judgments during the recognition phase. Younger adults performed better in both conditions, with significant SMEs detected in the time windows of P2, N3, P550, and late positive component (LPC). In the older group, SMEs were observed in the P2 and N3 latencies in both conditions but were only detected in the P550 in the semantic condition. Between-group analyses showed larger frontal and central SMEs in the younger sample in the LPC latency regardless of encoding type. Aging effect appears to be stronger on influencing perceptual than semantic encoding processes. The effects seem to be associated with a decline in updating and maintaining representations during perceptual encoding. The age-related decline in the encoding function may be due in part to changes in frontal lobe function. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Semantic congruence reverses effects of sleep restriction on associative encoding.

    PubMed

    Alberca-Reina, Esther; Cantero, Jose L; Atienza, Mercedes

    2014-04-01

    Encoding and memory consolidation are influenced by factors such as sleep and congruency of newly learned information with prior knowledge (i.e., schema). However, only a few studies have examined the contribution of sleep to enhancement of schema-dependent memory. Based on previous studies showing that total sleep deprivation specifically impairs hippocampal encoding, and that coherent schemas reduce the hippocampal consolidation period after learning, we predict that sleep loss in the pre-training night will mainly affect schema-unrelated information whereas sleep restriction in the post-training night will have similar effects on schema-related and unrelated information. Here, we tested this hypothesis by presenting participants with face-face associations that could be semantically related or unrelated under different sleep conditions: normal sleep before and after training, and acute sleep restriction either before or after training. Memory was tested one day after training, just after introducing an interference task, and two days later, without any interference. Significant results were evident on the second retesting session. In particular, sleep restriction before training enhanced memory for semantically congruent events in detriment of memory for unrelated events, supporting the specific role of sleep in hippocampal memory encoding. Unexpectedly, sleep restriction after training enhanced memory for both related and unrelated events. Although this finding may suggest a poorer encoding during the interference task, this hypothesis should be specifically tested in future experiments. All together, the present results support a framework in which encoding processes seem to be more vulnerable to sleep loss than consolidation processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Event-related rTMS at encoding affects differently deep and shallow memory traces.

    PubMed

    Innocenti, Iglis; Giovannelli, Fabio; Cincotta, Massimo; Feurra, Matteo; Polizzotto, Nicola R; Bianco, Giovanni; Cappa, Stefano F; Rossi, Simone

    2010-10-15

    The "level of processing" effect is a classical finding of the experimental psychology of memory. Actually, the depth of information processing at encoding predicts the accuracy of the subsequent episodic memory performance. When the incoming stimuli are analyzed in terms of their meaning (semantic, or deep, encoding), the memory performance is superior with respect to the case in which the same stimuli are analyzed in terms of their perceptual features (shallow encoding). As suggested by previous neuroimaging studies and by some preliminary findings with transcranial magnetic stimulation (TMS), the left prefrontal cortex may play a role in semantic processing requiring the allocation of working memory resources. However, it still remains unclear whether deep and shallow encoding share or not the same cortical networks, as well as how these networks contribute to the "level of processing" effect. To investigate the brain areas casually involved in this phenomenon, we applied event-related repetitive TMS (rTMS) during deep (semantic) and shallow (perceptual) encoding of words. Retrieval was subsequently tested without rTMS interference. RTMS applied to the left dorsolateral prefrontal cortex (DLPFC) abolished the beneficial effect of deep encoding on memory performance, both in terms of accuracy (decrease) and reaction times (increase). Neither accuracy nor reaction times were instead affected by rTMS to the right DLPFC or to an additional control site excluded by the memory process (vertex). The fact that online measures of semantic processing at encoding were unaffected suggests that the detrimental effect on memory performance for semantically encoded items took place in the subsequent consolidation phase. These results highlight the specific causal role of the left DLPFC among the wide left-lateralized cortical network engaged by long-term memory, suggesting that it probably represents a crucial node responsible for the improved memory performance induced by semantic processing. Copyright 2010 Elsevier Inc. All rights reserved.

  10. Representations in learning new faces: evidence from prosopagnosia.

    PubMed

    Polster, M R; Rapcsak, S Z

    1996-05-01

    We report the performance of a prosopagnosic patient on face learning tasks under different encoding instructions (i.e., levels of processing manipulations). R.J. performs at chance when given no encoding instructions or when given "shallow" encoding instruction to focus on facial features. By contrast, he performs relatively well with "deep" encoding instructions to rate faces in terms of personality traits or when provided with semantic and name information during the study phase. We propose that the improvement associated with deep encoding instructions may be related to the establishment of distinct visually derived and identity-specific semantic codes. The benefit associated with deep encoding in R.J., however, was found to be restricted to the specific view of the face presented at study and did not generalize to other views of the same face. These observations suggest that deep encoding instructions may enhance memory for concrete or pictorial representations of faces in patients with prosopagnosia, but that these patients cannot compensate for the inability to construct abstract structural codes that normally allow faces to be recognized from different orientations. We postulate further that R.J.'s poor performance on face learning tasks may be attributable to excessive reliance on a feature-based left hemisphere face processing system that operates primarily on view-specific representations.

  11. Effect of normal aging and of Alzheimer's disease on, episodic memory.

    PubMed

    Le Moal, S; Reymann, J M; Thomas, V; Cattenoz, C; Lieury, A; Allain, H

    1997-01-01

    Performances of 12 patients with Alzheimer's disease (AD), 15 healthy elderly subjects and 20 young healthy volunteers were compared on two episodic memory tests. The first, a learning test of semantically related words, enabled an assessment of the effect of semantic relationships on word learning by controlling the encoding and retrieval processes. The second, a dual coding test, is about the assessment of automatic processes operating during drawings encoding. The results obtained demonstrated quantitative and qualitative differences between the population. Manifestations of episodic memory deficit in AD patients were shown not only by lower performance scores than in elderly controls, but also by the lack of any effect of semantic cues and the production of a large number of extra-list intrusions. Automatic processes underlying dual coding appear to be spared in AD, although more time is needed to process information than in young or elderly subjects. These findings confirm former data and emphasize the preservation of certain memory processes (dual coding) in AD which could be used in future therapeutic approaches.

  12. Encoding Sequential Information in Semantic Space Models: Comparing Holographic Reduced Representation and Random Permutation

    PubMed Central

    Recchia, Gabriel; Sahlgren, Magnus; Kanerva, Pentti; Jones, Michael N.

    2015-01-01

    Circular convolution and random permutation have each been proposed as neurally plausible binding operators capable of encoding sequential information in semantic memory. We perform several controlled comparisons of circular convolution and random permutation as means of encoding paired associates as well as encoding sequential information. Random permutations outperformed convolution with respect to the number of paired associates that can be reliably stored in a single memory trace. Performance was equal on semantic tasks when using a small corpus, but random permutations were ultimately capable of achieving superior performance due to their higher scalability to large corpora. Finally, “noisy” permutations in which units are mapped to other units arbitrarily (no one-to-one mapping) perform nearly as well as true permutations. These findings increase the neurological plausibility of random permutations and highlight their utility in vector space models of semantics. PMID:25954306

  13. Left temporal and temporoparietal brain activity depends on depth of word encoding: a magnetoencephalographic study in healthy young subjects.

    PubMed

    Walla, P; Hufnagl, B; Lindinger, G; Imhof, H; Deecke, L; Lang, W

    2001-03-01

    Using a 143-channel whole-head magnetoencephalograph (MEG) we recorded the temporal changes of brain activity from 26 healthy young subjects (14 females) related to shallow perceptual and deep semantic word encoding. During subsequent recognition tests, the subjects had to recognize the previously encoded words which were interspersed with new words. The resulting mean memory performances across all subjects clearly mirrored the different levels of encoding. The grand averaged event-related fields (ERFs) associated with perceptual and semantic word encoding differed significantly between 200 and 550 ms after stimulus onset mainly over left superior temporal and left superior parietal sensors. Semantic encoding elicited higher brain activity than perceptual encoding. Source localization procedures revealed that neural populations of the left temporal and temporoparietal brain areas showed different activity strengths across the whole group of subjects depending on depth of word encoding. We suggest that the higher brain activity associated with deep encoding as compared to shallow encoding was due to the involvement of more neural systems during the processing of visually presented words. Deep encoding required more energy than shallow encoding but for all that led to a better memory performance. Copyright 2001 Academic Press.

  14. A Developmental Study of Conceptual, Semantic Differential, and Acoustical Dimensions as Encoding Categories in Short-Term Memory. Final Report.

    ERIC Educational Resources Information Center

    Pender, Nola J.

    The purpose of this research was to investigate developmental changes in encoding processes. It attempted to determine the extent to which children of varying ages utilize semantic (denotative or connotative) and acoustical encoding categories in a short-term memory task. It appears to be a reasonable assumption that as associational hierarchies…

  15. Decoding the Formation of New Semantics: MVPA Investigation of Rapid Neocortical Plasticity during Associative Encoding through Fast Mapping.

    PubMed

    Atir-Sharon, Tali; Gilboa, Asaf; Hazan, Hananel; Koilis, Ester; Manevitz, Larry M

    2015-01-01

    Neocortical structures typically only support slow acquisition of declarative memory; however, learning through fast mapping may facilitate rapid learning-induced cortical plasticity and hippocampal-independent integration of novel associations into existing semantic networks. During fast mapping the meaning of new words and concepts is inferred, and durable novel associations are incidentally formed, a process thought to support early childhood's exuberant learning. The anterior temporal lobe, a cortical semantic memory hub, may critically support such learning. We investigated encoding of semantic associations through fast mapping using fMRI and multivoxel pattern analysis. Subsequent memory performance following fast mapping was more efficiently predicted using anterior temporal lobe than hippocampal voxels, while standard explicit encoding was best predicted by hippocampal activity. Searchlight algorithms revealed additional activity patterns that predicted successful fast mapping semantic learning located in lateral occipitotemporal and parietotemporal neocortex and ventrolateral prefrontal cortex. By contrast, successful explicit encoding could be classified by activity in medial and dorsolateral prefrontal and parahippocampal cortices. We propose that fast mapping promotes incidental rapid integration of new associations into existing neocortical semantic networks by activating related, nonoverlapping conceptual knowledge. In healthy adults, this is better captured by unique anterior and lateral temporal lobe activity patterns, while hippocampal involvement is less predictive of this kind of learning.

  16. Depth of processing effects on neural correlates of memory encoding: relationship between findings from across- and within-task comparisons.

    PubMed

    Otten, L J; Henson, R N; Rugg, M D

    2001-02-01

    Neuroimaging studies have implicated the prefrontal cortex and medial temporal areas in the successful encoding of verbal material into episodic memory. The present study used event-related functional MRI to investigate whether the brain areas associated with successful episodic encoding of words in a semantic study task are a subset of those demonstrating depth of processing effects. In addition, we tested whether the brain areas associated with successful episodic encoding differ depending on the nature of the study task. At study, 15 volunteers were cued to make either animacy or alphabetical decisions about words. A recognition memory test including confidence judgements followed after a delay of 15 min. Prefrontal and medial temporal regions showed greater functional MRI activations for semantically encoded words relative to alphabetically encoded words. Two of these regions (left anterior hippocampus and left ventral inferior frontal gyrus) showed greater activation for semantically encoded words that were subsequently recognized confidently. However, other regions (left posterior hippocampus and right inferior frontal cortex) demonstrated subsequent memory effects, but not effects of depth of processing. Successful memory for alphabetically encoded words was also associated with greater activation in the left anterior hippocampus and left ventral inferior frontal gyrus. The findings suggest that episodic encoding for words in a semantic study task involves a subset of the regions activated by deep relative to shallow processing. The data provide little evidence that successful episodic encoding during a shallow study task depends upon regions different from those that support the encoding of deeply studied words. Instead, the findings suggest that successful episodic encoding during a shallow study task relies on a subset of the regions engaged during successful encoding in a deep task.

  17. Detecting Analogies Unconsciously

    PubMed Central

    Reber, Thomas P.; Luechinger, Roger; Boesiger, Peter; Henke, Katharina

    2014-01-01

    Analogies may arise from the conscious detection of similarities between a present and a past situation. In this functional magnetic resonance imaging study, we tested whether young volunteers would detect analogies unconsciously between a current supraliminal (visible) and a past subliminal (invisible) situation. The subliminal encoding of the past situation precludes awareness of analogy detection in the current situation. First, participants encoded subliminal pairs of unrelated words in either one or nine encoding trials. Later, they judged the semantic fit of supraliminally presented new words that either retained a previously encoded semantic relation (“analog”) or not (“broken analog”). Words in analogs versus broken analogs were judged closer semantically, which indicates unconscious analogy detection. Hippocampal activity associated with subliminal encoding correlated with the behavioral measure of unconscious analogy detection. Analogs versus broken analogs were processed with reduced prefrontal but enhanced medial temporal activity. We conclude that analogous episodes can be detected even unconsciously drawing on the episodic memory network. PMID:24478656

  18. Spatiotemporal Neural Dynamics of Word Understanding in 12- to 18-Month-Old-Infants

    PubMed Central

    Leonard, Matthew K.; Brown, Timothy T.; Hagler, Donald J.; Curran, Megan; Dale, Anders M.; Elman, Jeffrey L.; Halgren, Eric

    2011-01-01

    Learning words is central in human development. However, lacking clear evidence for how or where language is processed in the developing brain, it is unknown whether these processes are similar in infants and adults. Here, we use magnetoencephalography in combination with high-resolution structural magnetic resonance imaging to noninvasively estimate the spatiotemporal distribution of word-selective brain activity in 12- to 18-month-old infants. Infants watched pictures of common objects and listened to words that they understood. A subset of these infants also listened to familiar words compared with sensory control sounds. In both experiments, words evoked a characteristic event-related brain response peaking ∼400 ms after word onset, which localized to left frontotemporal cortices. In adults, this activity, termed the N400m, is associated with lexico-semantic encoding. Like adults, we find that the amplitude of the infant N400m is also modulated by semantic priming, being reduced to words preceded by a semantically related picture. These findings suggest that similar left frontotemporal areas are used for encoding lexico-semantic information throughout the life span, from the earliest stages of word learning. Furthermore, this ontogenetic consistency implies that the neurophysiological processes underlying the N400m may be important both for understanding already known words and for learning new words. PMID:21209121

  19. Serial and semantic encoding of lists of words in schizophrenia patients with visual hallucinations.

    PubMed

    Brébion, Gildas; Ohlsen, Ruth I; Pilowsky, Lyn S; David, Anthony S

    2011-03-30

    Previous research has suggested that visual hallucinations in schizophrenia are associated with abnormal salience of visual mental images. Since visual imagery is used as a mnemonic strategy to learn lists of words, increased visual imagery might impede the other commonly used strategies of serial and semantic encoding. We had previously published data on the serial and semantic strategies implemented by patients when learning lists of concrete words with different levels of semantic organisation (Brébion et al., 2004). In this paper we present a re-analysis of these data, aiming at investigating the associations between learning strategies and visual hallucinations. Results show that the patients with visual hallucinations presented less serial clustering in the non-organisable list than the other patients. In the semantically organisable list with typical instances, they presented both less serial and less semantic clustering than the other patients. Thus, patients with visual hallucinations demonstrate reduced use of serial and semantic encoding in the lists made up of fairly familiar concrete words, which enable the formation of mental images. Although these results are preliminary, we propose that this different processing of the lists stems from the abnormal salience of the mental images such patients experience from the word stimuli. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  20. An Introduction to the Resource Description Framework.

    ERIC Educational Resources Information Center

    Miller, Eric

    1998-01-01

    Explains the Resource Description Framework (RDF), an infrastructure developed under the World Wide Web Consortium that enables the encoding, exchange, and reuse of structured metadata. It is an application of Extended Markup Language (XML), which is a subset of Standard Generalized Markup Language (SGML), and helps with expressing semantics.…

  1. Prior perceptual processing enhances the effect of emotional arousal on the neural correlates of memory retrieval

    PubMed Central

    Dew, Ilana T. Z.; Ritchey, Maureen; LaBar, Kevin S.; Cabeza, Roberto

    2014-01-01

    A fundamental idea in memory research is that items are more likely to be remembered if encoded with a semantic, rather than perceptual, processing strategy. Interestingly, this effect has been shown to reverse for emotionally arousing materials, such that perceptual processing enhances memory for emotional information or events. The current fMRI study investigated the neural mechanisms of this effect by testing how neural activations during emotional memory retrieval are influenced by the prior encoding strategy. Participants incidentally encoded emotional and neutral pictures under instructions to attend to either semantic or perceptual properties of each picture. Recognition memory was tested two days later. fMRI analyses yielded three main findings. First, right amygdalar activity associated with emotional memory strength was enhanced by prior perceptual processing. Second, prior perceptual processing of emotional pictures produced a stronger effect on recollection- than familiarity-related activations in the right amygdala and left hippocampus. Finally, prior perceptual processing enhanced amygdalar connectivity with regions strongly associated with retrieval success, including hippocampal/parahippocampal regions, visual cortex, and ventral parietal cortex. Taken together, the results specify how encoding orientations yield alterations in brain systems that retrieve emotional memories. PMID:24380867

  2. The semantic web and computer vision: old AI meets new AI

    NASA Astrophysics Data System (ADS)

    Mundy, J. L.; Dong, Y.; Gilliam, A.; Wagner, R.

    2018-04-01

    There has been vast process in linking semantic information across the billions of web pages through the use of ontologies encoded in the Web Ontology Language (OWL) based on the Resource Description Framework (RDF). A prime example is the Wikipedia where the knowledge contained in its more than four million pages is encoded in an ontological database called DBPedia http://wiki.dbpedia.org/. Web-based query tools can retrieve semantic information from DBPedia encoded in interlinked ontologies that can be accessed using natural language. This paper will show how this vast context can be used to automate the process of querying images and other geospatial data in support of report changes in structures and activities. Computer vision algorithms are selected and provided with context based on natural language requests for monitoring and analysis. The resulting reports provide semantically linked observations from images and 3D surface models.

  3. Deeper processing is beneficial during episodic memory encoding for adults with Williams syndrome.

    PubMed

    Greer, Joanna; Hamiliton, Colin; Riby, Deborah M; Riby, Leigh M

    2014-07-01

    Previous research exploring declarative memory in Williams syndrome (WS) has revealed impairment in the processing of episodic information accompanied by a relative strength in semantic ability. The aim of the current study was to extend this literature by examining how relatively spared semantic memory may support episodic remembering. Using a level of processing paradigm, older adults with WS (aged 35-61 years) were compared to typical adults of the same chronological age and typically developing children matched for verbal ability. In the study phase, pictures were encoded using either a deep (decide if a picture belongs to a particular category) or shallow (perceptual based processing) memory strategy. Behavioural indices (reaction time and accuracy) at retrieval were suggestive of an overall difficulty in episodic memory for WS adults. Interestingly, however, semantic support was evident with a greater recall of items encoded with deep compared to shallow processing, indicative of an ability to employ semantic encoding strategies to maximise the strength of the memory trace created. Unlike individuals with autism who find semantic elaboration strategies problematic, the pattern of findings reported here suggests in those domains that are relatively impaired in WS, support can be recruited from relatively spared cognitive processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Semantic and Phonological Encoding Times in Adults Who Stutter: Brain Electrophysiological Evidence

    ERIC Educational Resources Information Center

    Maxfield, Nathan D.

    2017-01-01

    Purpose: Some psycholinguistic theories of stuttering propose that language production operates along a different time course in adults who stutter (AWS) versus typically fluent adults (TFA). However, behavioral evidence for such a difference has been mixed. Here, the time course of semantic and phonological encoding in picture naming was compared…

  5. Levels of processing with free and cued recall and unilateral temporal lobe epilepsy.

    PubMed

    Lespinet-Najib, Véronique; N'Kaoua, Bernard; Sauzéon, Hélène; Bresson, Christel; Rougier, Alain; Claverie, Bernard

    2004-04-01

    This study investigates the role of the temporal lobes in levels-of-processing tasks (phonetic and semantic encoding) according to the nature of recall tasks (free and cued recall). These tasks were administered to 48 patients with unilateral temporal epilepsy (right "RTLE"=24; left "LTLE"=24) and a normal group (n=24). The results indicated that LTLE patients were impaired for semantic processing (free and cued recall) and for phonetic processing (free and cued recall), while for RTLE patients deficits appeared in free recall with semantic processing. It is suggested that the left temporal lobe is involved in all aspects of verbal memory, and that the right temporal lobe is specialized in semantic processing. Moreover, our data seem to indicate that RTLE patients present a retrieval processing impairment (semantic condition), whereas the LTLE group is characterized by encoding difficulties in the phonetic and semantic condition.

  6. Neural pattern similarity underlies the mnemonic advantages for living words.

    PubMed

    Xiao, Xiaoqian; Dong, Qi; Chen, Chuansheng; Xue, Gui

    2016-06-01

    It has been consistently shown that words representing living things are better remembered than words representing nonliving things, yet the underlying cognitive and neural mechanisms have not been clearly elucidated. The present study used both univariate and multivariate pattern analyses to examine the hypotheses that living words are better remembered because (1) they draw more attention and/or (2) they share more overlapping semantic features. Subjects were asked to study a list of living and nonliving words during a semantic judgment task. An unexpected recognition test was administered 30 min later. We found that subjects recognized significantly more living words than nonliving words. Results supported the overlapping semantic feature hypothesis by showing that (a) semantic ratings showed greater semantic similarity for living words than for nonliving words, (b) there was also significantly greater neural global pattern similarity (nGPS) for living words than for nonliving words in the posterior portion of left parahippocampus (LpPHG), (c) the nGPS in the LpPHG reflected the rated semantic similarity, and also mediated the memory differences between two semantic categories, and (d) greater univariate activation was found for living words than for nonliving words in the left hippocampus (LHIP), which mediated the better memory performance for living words and might reflect greater semantic context binding. In contrast, although living words were processed faster and elicited a stronger activity in the dorsal attention network, these differences did not mediate the animacy effect in memory. Taken together, our results provide strong support to the overlapping semantic features hypothesis, and emphasize the important role of semantic organization in episodic memory encoding. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Levels-Of-Processing Effect on Word Recognition in Schizophrenia

    PubMed Central

    Ragland, J. Daniel; Moelter, Stephen T.; McGrath, Claire; Hill, S. Kristian; Gur, Raquel E.; Bilker, Warren B.; Siegel, Steven J.; Gur, Ruben C.

    2015-01-01

    Background Individuals with schizophrenia have difficulty organizing words semantically to facilitate encoding. This is commonly attributed to organizational rather than semantic processing limitations. By requiring participants to classify and encode words on either a shallow (e.g., uppercase/lowercase) or deep level (e.g., concrete/abstract), the levels-of-processing paradigm eliminates the need to generate organizational strategies. Methods This paradigm was administered to 30 patients with schizophrenia and 30 healthy comparison subjects to test whether providing a strategy would improve patient performance. Results Word classification during shallow and deep encoding was slower and less accurate in patients. Patients also responded slowly during recognition testing and maintained a more conservative response bias following deep encoding; however, both groups showed a robust levels-of-processing effect on recognition accuracy, with unimpaired patient performance following both shallow and deep encoding. Conclusions This normal levels-of-processing effect in the patient sample suggests that semantic processing is sufficiently intact for patients to benefit from organizational cues. Memory remediation efforts may therefore be most successful if they focus on teaching patients to form organizational strategies during initial encoding. PMID:14643082

  8. Levels-of-processing effect on word recognition in schizophrenia.

    PubMed

    Ragland, J Daniel; Moelter, Stephen T; McGrath, Claire; Hill, S Kristian; Gur, Raquel E; Bilker, Warren B; Siegel, Steven J; Gur, Ruben C

    2003-12-01

    Individuals with schizophrenia have difficulty organizing words semantically to facilitate encoding. This is commonly attributed to organizational rather than semantic processing limitations. By requiring participants to classify and encode words on either a shallow (e.g., uppercase/lowercase) or deep level (e.g., concrete/abstract), the levels-of-processing paradigm eliminates the need to generate organizational strategies. This paradigm was administered to 30 patients with schizophrenia and 30 healthy comparison subjects to test whether providing a strategy would improve patient performance. Word classification during shallow and deep encoding was slower and less accurate in patients. Patients also responded slowly during recognition testing and maintained a more conservative response bias following deep encoding; however, both groups showed a robust levels-of-processing effect on recognition accuracy, with unimpaired patient performance following both shallow and deep encoding. This normal levels-of-processing effect in the patient sample suggests that semantic processing is sufficiently intact for patients to benefit from organizational cues. Memory remediation efforts may therefore be most successful if they focus on teaching patients to form organizational strategies during initial encoding.

  9. Memory for environmental sounds in sighted, congenitally blind and late blind adults: evidence for cross-modal compensation.

    PubMed

    Röder, Brigitte; Rösler, Frank

    2003-10-01

    Several recent reports suggest compensatory performance changes in blind individuals. It has, however, been argued that the lack of visual input leads to impoverished semantic networks resulting in the use of data-driven rather than conceptual encoding strategies on memory tasks. To test this hypothesis, congenitally blind and sighted participants encoded environmental sounds either physically or semantically. In the recognition phase, both conceptually as well as physically distinct and physically distinct but conceptually highly related lures were intermixed with the environmental sounds encountered during study. Participants indicated whether or not they had heard a sound in the study phase. Congenitally blind adults showed elevated memory both after physical and semantic encoding. After physical encoding blind participants had lower false memory rates than sighted participants, whereas the false memory rates of sighted and blind participants did not differ after semantic encoding. In order to address the question if compensatory changes in memory skills are restricted to critical periods during early childhood, late blind adults were tested with the same paradigm. When matched for age, they showed similarly high memory scores as the congenitally blind. These results demonstrate compensatory performance changes in long-term memory functions due to the loss of a sensory system and provide evidence for high adaptive capabilities of the human cognitive system.

  10. Semantic, Lexical, and Phonological Influences on the Production of Verb Inflections in Agrammatic Aphasia

    ERIC Educational Resources Information Center

    Faroqi-Shah, Yasmeen; Thompson, Cynthia K.

    2004-01-01

    Verb inflection errors, often seen in agrammatic aphasic speech, have been attributed to either impaired encoding of diacritical features that specify tense and aspect, or to impaired affixation during phonological encoding. In this study we examined the effect of semantic markedness, word form frequency and affix frequency, as well as accuracy…

  11. Eighth Grade Students' Reading Responses to Encoded Inflectional, Syntactic, Grammatical and Semantic Errors.

    ERIC Educational Resources Information Center

    Williamson, Leon E.; And Others

    A study investigated the reading responses of 60 eighth grade students to encoded inflectional, syntactic, grammatical, and semantic errors. The students were equally divided into three categories based on grade level reading competency and given three Aesopian fables to read. The text of the fables contained the following errors: (1) words to…

  12. Electrophysiological Correlates of Semantic Processing during Encoding of Neutral and Emotional Pictures in Patients with ADHD

    ERIC Educational Resources Information Center

    Krauel, Kerstin; Duzel, Emrah; Hinrichs, Hermann; Lenz, Daniel; Herrmann, Christoph S.; Santel, Stephanie; Rellum, Thomas; Baving, Lioba

    2009-01-01

    The current study investigated the relevance of semantic processing and stimulus salience for memory performance in young ADHD patients and healthy control participants. 18 male ADHD patients and 15 healthy control children and adolescents participated in an ERP study during a visual memory paradigm with two different encoding tasks requiring…

  13. Human ecstasy (MDMA) polydrug users have altered brain activation during semantic processing.

    PubMed

    Watkins, Tristan J; Raj, Vidya; Lee, Junghee; Dietrich, Mary S; Cao, Aize; Blackford, Jennifer U; Salomon, Ronald M; Park, Sohee; Benningfield, Margaret M; Di Iorio, Christina R; Cowan, Ronald L

    2013-05-01

    Ecstasy (3,4-methylenedioxymethamphetamine [MDMA]) polydrug users have verbal memory performance that is statistically significantly lower than that of control subjects. Studies have correlated long-term MDMA use with altered brain activation in regions that play a role in verbal memory. The aim of our study was to examine the association of lifetime ecstasy use with semantic memory performance and brain activation in ecstasy polydrug users. A total of 23 abstinent ecstasy polydrug users (age = 24.57 years) and 11 controls (age = 22.36 years) performed a two-part functional magnetic resonance imaging (fMRI) semantic encoding and recognition task. To isolate brain regions activated during each semantic task, we created statistical activation maps in which brain activation was greater for word stimuli than for non-word stimuli (corrected p < 0.05). During the encoding phase, ecstasy polydrug users had greater activation during semantic encoding bilaterally in language processing regions, including Brodmann areas 7, 39, and 40. Of this bilateral activation, signal intensity with a peak T in the right superior parietal lobe was correlated with lifetime ecstasy use (r s = 0.43, p = 0.042). Behavioral performance did not differ between groups. These findings demonstrate that ecstasy polydrug users have increased brain activation during semantic processing. This increase in brain activation in the absence of behavioral deficits suggests that ecstasy polydrug users have reduced cortical efficiency during semantic encoding, possibly secondary to MDMA-induced 5-HT neurotoxicity. Although pre-existing differences cannot be ruled out, this suggests the possibility of a compensatory mechanism allowing ecstasy polydrug users to perform equivalently to controls, providing additional support for an association of altered cerebral neurophysiology with MDMA exposure.

  14. Human ecstasy (MDMA) polydrug users have altered brain activation during semantic processing

    PubMed Central

    Watkins, Tristan J.; Raj, Vidya; Lee, Junghee; Dietrich, Mary S.; Cao, Aize; Blackford, Jennifer U.; Salomon, Ronald M.; Park, Sohee; Benningfield, Margaret M.; Di Iorio, Christina R.; Cowan, Ronald L.

    2012-01-01

    Rationale Ecstasy (MDMA) polydrug users have verbal memory performance that is statistically significantly lower than comparison control subjects. Studies have correlated long-term MDMA use with altered brain activation in regions that play a role in verbal memory. Objectives The aim of our study was to examine the association of lifetime ecstasy use with semantic memory performance and brain activation in ecstasy polydrug users. Methods 23 abstinent ecstasy polydrug users (age=24.57) and 11 controls (age=22.36) performed a two-part fMRI semantic encoding and recognition task. To isolate brain regions activated during each semantic task, we created statistical activation maps in which brain activation was greater for word stimuli than for non-word stimuli (corrected p<0.05). Results During the encoding phase, ecstasy polydrug users had greater activation during semantic encoding bilaterally in language processing regions, including Brodmann Areas 7, 39, and 40. Of this bilateral activation, signal intensity with a peak T in the right superior parietal lobe was correlated with lifetime ecstasy use (rs=0.43, p=0.042). Behavioral performance did not differ between groups. Conclusions These findings demonstrate that ecstasy polydrug users have increased brain activation during semantic processing. This increase in brain activation in the absence of behavioral deficits suggests that ecstasy polydrug users have reduced cortical efficiency during semantic encoding, possibly secondary to MDMA-induced 5-HT neurotoxicity. Although pre-existing differences cannot be ruled out, this suggests the possibility of a compensatory mechanism allowing ecstasy polydrug users to perform equivalently to controls, providing additional support for an association of altered cerebral neurophysiology with MDMA exposure. PMID:23241648

  15. Prefrontal activity and impaired memory encoding strategies in schizophrenia.

    PubMed

    Guimond, Synthia; Hawco, Colin; Lepage, Martin

    2017-08-01

    Schizophrenia patients have significant memory difficulties that have far-reaching implications in their daily life. These impairments are partly attributed to an inability to self-initiate effective memory encoding strategies, but its core neurobiological correlates remain unknown. The current study addresses this critical gap in our knowledge of episodic memory impairments in schizophrenia. Schizophrenia patients (n = 35) and healthy controls (n = 23) underwent a Semantic Encoding Memory Task (SEMT) during an fMRI scan. Brain activity was examined for conditions where participants were a) prompted to use semantic encoding strategies, or b) not prompted but required to self-initiate such strategies. When prompted to use semantic encoding strategies, schizophrenia patients exhibited similar recognition performance and brain activity as healthy controls. However, when required to self-initiate these strategies, patients had significant reduced recognition performance and brain activity in the left dorsolateral prefrontal cortex, as well as in the left temporal gyrus, left superior parietal lobule, and cerebellum. When patients were divided based on performance on the SEMT, the subgroup with more severe deficits in self-initiation also showed greater reduction in left dorsolateral prefrontal activity. These results suggest that impaired self-initiation of elaborative encoding strategies is a driving feature of memory deficits in schizophrenia. We also identified the neural correlates of impaired self-initiation of semantic encoding strategies, in which a failure to activate the left dorsolateral prefrontal cortex plays a key role. These findings provide important new targets in the development of novel treatments aiming to improve memory and ultimately patients' outcome. Copyright © 2017. Published by Elsevier Ltd.

  16. Knowledge Provenance in Semantic Wikis

    NASA Astrophysics Data System (ADS)

    Ding, L.; Bao, J.; McGuinness, D. L.

    2008-12-01

    Collaborative online environments with a technical Wiki infrastructure are becoming more widespread. One of the strengths of a Wiki environment is that it is relatively easy for numerous users to contribute original content and modify existing content (potentially originally generated by others). As more users begin to depend on informational content that is evolving by Wiki communities, it becomes more important to track the provenance of the information. Semantic Wikis expand upon traditional Wiki environments by adding some computationally understandable encodings of some of the terms and relationships in Wikis. We have developed a semantic Wiki environment that expands a semantic Wiki with provenance markup. Provenance of original contributions as well as modifications is encoded using the provenance markup component of the Proof Markup Language. The Wiki environment provides the provenance markup automatically, thus users are not required to make specific encodings of author, contribution date, and modification trail. Further, our Wiki environment includes a search component that understands the provenance primitives and thus can be used to provide a provenance-aware search facility. We will describe the knowledge provenance infrastructure of our Semantic Wiki and show how it is being used as the foundation of our group web site as well as a number of project web sites.

  17. Selective Audiovisual Semantic Integration Enabled by Feature-Selective Attention.

    PubMed

    Li, Yuanqing; Long, Jinyi; Huang, Biao; Yu, Tianyou; Wu, Wei; Li, Peijun; Fang, Fang; Sun, Pei

    2016-01-13

    An audiovisual object may contain multiple semantic features, such as the gender and emotional features of the speaker. Feature-selective attention and audiovisual semantic integration are two brain functions involved in the recognition of audiovisual objects. Humans often selectively attend to one or several features while ignoring the other features of an audiovisual object. Meanwhile, the human brain integrates semantic information from the visual and auditory modalities. However, how these two brain functions correlate with each other remains to be elucidated. In this functional magnetic resonance imaging (fMRI) study, we explored the neural mechanism by which feature-selective attention modulates audiovisual semantic integration. During the fMRI experiment, the subjects were presented with visual-only, auditory-only, or audiovisual dynamical facial stimuli and performed several feature-selective attention tasks. Our results revealed that a distribution of areas, including heteromodal areas and brain areas encoding attended features, may be involved in audiovisual semantic integration. Through feature-selective attention, the human brain may selectively integrate audiovisual semantic information from attended features by enhancing functional connectivity and thus regulating information flows from heteromodal areas to brain areas encoding the attended features.

  18. Categorizing words through semantic memory navigation

    NASA Astrophysics Data System (ADS)

    Borge-Holthoefer, J.; Arenas, A.

    2010-03-01

    Semantic memory is the cognitive system devoted to storage and retrieval of conceptual knowledge. Empirical data indicate that semantic memory is organized in a network structure. Everyday experience shows that word search and retrieval processes provide fluent and coherent speech, i.e. are efficient. This implies either that semantic memory encodes, besides thousands of words, different kind of links for different relationships (introducing greater complexity and storage costs), or that the structure evolves facilitating the differentiation between long-lasting semantic relations from incidental, phenomenological ones. Assuming the latter possibility, we explore a mechanism to disentangle the underlying semantic backbone which comprises conceptual structure (extraction of categorical relations between pairs of words), from the rest of information present in the structure. To this end, we first present and characterize an empirical data set modeled as a network, then we simulate a stochastic cognitive navigation on this topology. We schematize this latter process as uncorrelated random walks from node to node, which converge to a feature vectors network. By doing so we both introduce a novel mechanism for information retrieval, and point at the problem of category formation in close connection to linguistic and non-linguistic experience.

  19. Graph-Theoretic Properties of Networks Based on Word Association Norms: Implications for Models of Lexical Semantic Memory.

    PubMed

    Gruenenfelder, Thomas M; Recchia, Gabriel; Rubin, Tim; Jones, Michael N

    2016-08-01

    We compared the ability of three different contextual models of lexical semantic memory (BEAGLE, Latent Semantic Analysis, and the Topic model) and of a simple associative model (POC) to predict the properties of semantic networks derived from word association norms. None of the semantic models were able to accurately predict all of the network properties. All three contextual models over-predicted clustering in the norms, whereas the associative model under-predicted clustering. Only a hybrid model that assumed that some of the responses were based on a contextual model and others on an associative network (POC) successfully predicted all of the network properties and predicted a word's top five associates as well as or better than the better of the two constituent models. The results suggest that participants switch between a contextual representation and an associative network when generating free associations. We discuss the role that each of these representations may play in lexical semantic memory. Concordant with recent multicomponent theories of semantic memory, the associative network may encode coordinate relations between concepts (e.g., the relation between pea and bean, or between sparrow and robin), and contextual representations may be used to process information about more abstract concepts. Copyright © 2015 Cognitive Science Society, Inc.

  20. First-pass selectivity for semantic categories in human anteroventral temporal lobe

    PubMed Central

    Chan, Alexander M.; Baker, Janet M.; Eskandar, Emad; Schomer, Donald; Ulbert, Istvan; Marinkovic, Ksenija; Cash, Sydney S.; Halgren, Eric

    2012-01-01

    How the brain encodes the semantic concepts represented by words is a fundamental question in cognitive neuroscience. Hemodynamic neuroimaging studies have robustly shown that different areas of posteroventral temporal lobe are selectively activated by images of animals versus manmade objects. Selective responses in these areas to words representing animals versus objects are sometimes also seen, but they are task-dependent, suggesting that posteroventral temporal cortex may encode visual categories, while more anterior areas encode semantic categories. Here, using the spatiotemporal resolution provided by intracranial macroelectrode and microelectrode arrays, we report category-selective responses to words representing animals and objects in human anteroventral temporal areas including inferotemporal, perirhinal and entorhinal cortices. This selectivity generalizes across tasks and sensory modalities, suggesting that it represents abstract lexico-semantic categories. Significant category-specific responses are found in measures sensitive to synaptic activity (local field potentials, high gamma power, current sources and sinks) and unit-firing (multi- and single-unit activity). Category-selective responses can occur at short latency, as early as 130ms, in middle cortical layers and thus are extracted in the first-pass of activity through the anteroventral temporal lobe. This activation may provide input to posterior areas for iconic representations when required by the task, as well as to the hippocampal formation for categorical encoding and retrieval of memories, and to the amygdala for emotional associations. More generally, these results support models in which the anteroventral temporal lobe plays a primary role in the semantic representation of words. PMID:22159123

  1. Delineating the Effect of Semantic Congruency on Episodic Memory: The Role of Integration and Relatedness

    PubMed Central

    Bein, Oded; Livneh, Neta; Reggev, Niv; Gilead, Michael; Goshen-Gottstein, Yonatan; Maril, Anat

    2015-01-01

    A fundamental challenge in the study of learning and memory is to understand the role of existing knowledge in the encoding and retrieval of new episodic information. The importance of prior knowledge in memory is demonstrated in the congruency effect—the robust finding wherein participants display better memory for items that are compatible, rather than incompatible, with their pre-existing semantic knowledge. Despite its robustness, the mechanism underlying this effect is not well understood. In four studies, we provide evidence that demonstrates the privileged explanatory power of the elaboration-integration account over alternative hypotheses. Furthermore, we question the implicit assumption that the congruency effect pertains to the truthfulness/sensibility of a subject-predicate proposition, and show that congruency is a function of semantic relatedness between item and context words. PMID:25695759

  2. Delineating the effect of semantic congruency on episodic memory: the role of integration and relatedness.

    PubMed

    Bein, Oded; Livneh, Neta; Reggev, Niv; Gilead, Michael; Goshen-Gottstein, Yonatan; Maril, Anat

    2015-01-01

    A fundamental challenge in the study of learning and memory is to understand the role of existing knowledge in the encoding and retrieval of new episodic information. The importance of prior knowledge in memory is demonstrated in the congruency effect-the robust finding wherein participants display better memory for items that are compatible, rather than incompatible, with their pre-existing semantic knowledge. Despite its robustness, the mechanism underlying this effect is not well understood. In four studies, we provide evidence that demonstrates the privileged explanatory power of the elaboration-integration account over alternative hypotheses. Furthermore, we question the implicit assumption that the congruency effect pertains to the truthfulness/sensibility of a subject-predicate proposition, and show that congruency is a function of semantic relatedness between item and context words.

  3. Social Networking on the Semantic Web

    ERIC Educational Resources Information Center

    Finin, Tim; Ding, Li; Zhou, Lina; Joshi, Anupam

    2005-01-01

    Purpose: Aims to investigate the way that the semantic web is being used to represent and process social network information. Design/methodology/approach: The Swoogle semantic web search engine was used to construct several large data sets of Resource Description Framework (RDF) documents with social network information that were encoded using the…

  4. Encoding Orientation and the Remembering of Schizophrenic Young Adults

    ERIC Educational Resources Information Center

    Koh, Soon D.; Peterson, Rolf A.

    1978-01-01

    This research examines different types of encoding strategies, in addition to semantic and organizational encodings, and their effects on schizophrenics' remembering. Based on Craik and Lockhart (1972), i.e., memory performance is a function of depth of encoding processing, this analysis compares schizophrenics' encoding processing with that of…

  5. Semantic closure demonstrated by the evolution of a universal constructor architecture in an artificial chemistry.

    PubMed

    Clark, Edward B; Hickinbotham, Simon J; Stepney, Susan

    2017-05-01

    We present a novel stringmol-based artificial chemistry system modelled on the universal constructor architecture (UCA) first explored by von Neumann. In a UCA, machines interact with an abstract description of themselves to replicate by copying the abstract description and constructing the machines that the abstract description encodes. DNA-based replication follows this architecture, with DNA being the abstract description, the polymerase being the copier, and the ribosome being the principal machine in expressing what is encoded on the DNA. This architecture is semantically closed as the machine that defines what the abstract description means is itself encoded on that abstract description. We present a series of experiments with the stringmol UCA that show the evolution of the meaning of genomic material, allowing the concept of semantic closure and transitions between semantically closed states to be elucidated in the light of concrete examples. We present results where, for the first time in an in silico system, simultaneous evolution of the genomic material, copier and constructor of a UCA, giving rise to viable offspring. © 2017 The Author(s).

  6. The self-imagination effect: benefits of a self-referential encoding strategy on cued recall in memory-impaired individuals with neurological damage.

    PubMed

    Grilli, Matthew D; Glisky, Elizabeth L

    2011-09-01

    Knowledge of oneself is preserved in many memory-impaired individuals with neurological damage. Therefore, cognitive strategies that capitalize on mechanisms related to the self may be particularly effective at enhancing memory in this population. The present study investigated the effect of "self-imagining," imagining an event from a personal perspective, on short and long delayed cued recall in memory-impaired individuals with neurological damage. Sixteen patients intentionally encoded word pairs under four separate conditions: visual imagery, semantic elaboration, other person imagining, and self-imagining. The results revealed that self-imagining led to better performance than other-imagining, semantic elaboration, and visual imagery. Furthermore, the "self-imagination effect" (SIE) was preserved after a 30-min delay and was independent of memory functioning. These findings indicate that self-imagining provides a mnemonic advantage in brain-injured individuals, even those with relatively poor memory functioning, and suggest that self-imagining may tap into mnemonic mechanisms related to the self.

  7. Heteromodal Cortical Areas Encode Sensory-Motor Features of Word Meaning.

    PubMed

    Fernandino, Leonardo; Humphries, Colin J; Conant, Lisa L; Seidenberg, Mark S; Binder, Jeffrey R

    2016-09-21

    The capacity to process information in conceptual form is a fundamental aspect of human cognition, yet little is known about how this type of information is encoded in the brain. Although the role of sensory and motor cortical areas has been a focus of recent debate, neuroimaging studies of concept representation consistently implicate a network of heteromodal areas that seem to support concept retrieval in general rather than knowledge related to any particular sensory-motor content. We used predictive machine learning on fMRI data to investigate the hypothesis that cortical areas in this "general semantic network" (GSN) encode multimodal information derived from basic sensory-motor processes, possibly functioning as convergence-divergence zones for distributed concept representation. An encoding model based on five conceptual attributes directly related to sensory-motor experience (sound, color, shape, manipulability, and visual motion) was used to predict brain activation patterns associated with individual lexical concepts in a semantic decision task. When the analysis was restricted to voxels in the GSN, the model was able to identify the activation patterns corresponding to individual concrete concepts significantly above chance. In contrast, a model based on five perceptual attributes of the word form performed at chance level. This pattern was reversed when the analysis was restricted to areas involved in the perceptual analysis of written word forms. These results indicate that heteromodal areas involved in semantic processing encode information about the relative importance of different sensory-motor attributes of concepts, possibly by storing particular combinations of sensory and motor features. The present study used a predictive encoding model of word semantics to decode conceptual information from neural activity in heteromodal cortical areas. The model is based on five sensory-motor attributes of word meaning (color, shape, sound, visual motion, and manipulability) and encodes the relative importance of each attribute to the meaning of a word. This is the first demonstration that heteromodal areas involved in semantic processing can discriminate between different concepts based on sensory-motor information alone. This finding indicates that the brain represents concepts as multimodal combinations of sensory and motor representations. Copyright © 2016 the authors 0270-6474/16/369763-07$15.00/0.

  8. To boost or to CRUNCH? Effect of effortful encoding on episodic memory in older adults is dependent on executive functioning

    PubMed Central

    Fu, Li; Maes, Joseph H. R.; Kessels, Roy P. C.; Daselaar, Sander M.

    2017-01-01

    It is essential to develop effective interventions aimed at ameliorating age-related cognitive decline. Previous studies found that effortful encoding benefits episodic memory in older adults. However, to date it is unclear whether this benefit is different for individuals with strong versus weak executive functioning (EF). Fifty-one older adults were recruited and divided into low (N = 26) and high (N = 25) functioning groups, based on their EF capacity. All participants performed a semantic and a perceptual incidental encoding task. Each encoding task was performed under four difficulty levels to establish different effort levels. Encoding was followed by a recognition task. Results showed that the high EF group benefitted from increased effort in both tasks. However, the low EF group only showed a beneficial effect under low levels of effort. Results are consistent with the Compensation-Related Utilization of Neural Circuits Hypothesis (CRUNCH) and suggest that future research directed at developing efficient memory strategies to reduce negative cognitive aging effects should take individual cognitive differences among older adults into account, such as differences in EF. PMID:28328979

  9. Selective Audiovisual Semantic Integration Enabled by Feature-Selective Attention

    PubMed Central

    Li, Yuanqing; Long, Jinyi; Huang, Biao; Yu, Tianyou; Wu, Wei; Li, Peijun; Fang, Fang; Sun, Pei

    2016-01-01

    An audiovisual object may contain multiple semantic features, such as the gender and emotional features of the speaker. Feature-selective attention and audiovisual semantic integration are two brain functions involved in the recognition of audiovisual objects. Humans often selectively attend to one or several features while ignoring the other features of an audiovisual object. Meanwhile, the human brain integrates semantic information from the visual and auditory modalities. However, how these two brain functions correlate with each other remains to be elucidated. In this functional magnetic resonance imaging (fMRI) study, we explored the neural mechanism by which feature-selective attention modulates audiovisual semantic integration. During the fMRI experiment, the subjects were presented with visual-only, auditory-only, or audiovisual dynamical facial stimuli and performed several feature-selective attention tasks. Our results revealed that a distribution of areas, including heteromodal areas and brain areas encoding attended features, may be involved in audiovisual semantic integration. Through feature-selective attention, the human brain may selectively integrate audiovisual semantic information from attended features by enhancing functional connectivity and thus regulating information flows from heteromodal areas to brain areas encoding the attended features. PMID:26759193

  10. Instruction-specific brain activations during episodic encoding. a generalized level of processing effect.

    PubMed

    Petersson, Karl Magnus; Sandblom, Johan; Elfgren, Christina; Ingvar, Martin

    2003-11-01

    In a within-subject design we investigated the levels-of-processing (LOP) effect using visual material in a behavioral and a corresponding PET study. In the behavioral study we characterize a generalized LOP effect, using pleasantness and graphical quality judgments in the encoding situation, with two types of visual material, figurative and nonfigurative line drawings. In the PET study we investigate the related pattern of brain activations along these two dimensions. The behavioral results indicate that instruction and material contribute independently to the level of recognition performance. Therefore the LOP effect appears to stem both from the relative relevance of the stimuli (encoding opportunity) and an altered processing of stimuli brought about by the explicit instruction (encoding mode). In the PET study, encoding of visual material under the pleasantness (deep) instruction yielded left lateralized frontoparietal and anterior temporal activations while surface-based perceptually oriented processing (shallow instruction) yielded right lateralized frontoparietal, posterior temporal, and occipitotemporal activations. The result that deep encoding was related to the left prefrontal cortex while shallow encoding was related to the right prefrontal cortex, holding the material constant, is not consistent with the HERA model. In addition, we suggest that the anterior medial superior frontal region is related to aspects of self-referential semantic processing and that the inferior parts of the anterior cingulate as well as the medial orbitofrontal cortex is related to affective processing, in this case pleasantness evaluation of the stimuli regardless of explicit semantic content. Finally, the left medial temporal lobe appears more actively engaged by elaborate meaning-based processing and the complex response pattern observed in different subregions of the MTL lends support to the suggestion that this region is functionally segregated.

  11. Facilitation and Interference in Identification of Pictures and Words

    DTIC Science & Technology

    1994-10-05

    semantic activation and episodic memory encoding. Journal of Verbal Learning and Verbal Behavior, 22, 88-104. Becker, C. A. (1979). Semantic context...set of items, such as pictures of common objects or known words, which have representations in semantic memory . To test this, we compared the...activation model in particular because nonwords have no memorial representation in semantic memory and thus cannot interfere with ore another. 2. Long-term

  12. Semantics-informed geological maps: Conceptual modeling and knowledge encoding

    NASA Astrophysics Data System (ADS)

    Lombardo, Vincenzo; Piana, Fabrizio; Mimmo, Dario

    2018-07-01

    This paper introduces a novel, semantics-informed geologic mapping process, whose application domain is the production of a synthetic geologic map of a large administrative region. A number of approaches concerning the expression of geologic knowledge through UML schemata and ontologies have been around for more than a decade. These approaches have yielded resources that concern specific domains, such as, e.g., lithology. We develop a conceptual model that aims at building a digital encoding of several domains of geologic knowledge, in order to support the interoperability of the sources. We apply the devised terminological base to the classification of the elements of a geologic map of the Italian Western Alps and northern Apennines (Piemonte region). The digitally encoded knowledge base is a merged set of ontologies, called OntoGeonous. The encoding process identifies the objects of the semantic encoding, the geologic units, gathers the relevant information about such objects from authoritative resources, such as GeoSciML (giving priority to the application schemata reported in the INSPIRE Encoding Cookbook), and expresses the statements by means of axioms encoded in the Web Ontology Language (OWL). To support interoperability, OntoGeonous interlinks the general concepts by referring to the upper part level of ontology SWEET (developed by NASA), and imports knowledge that is already encoded in ontological format (e.g., ontology Simple Lithology). Machine-readable knowledge allows for consistency checking and for classification of the geological map data through algorithms of automatic reasoning.

  13. Benefits of deep encoding in Alzheimer disease. Analysis of performance on a memory task using the Item Specific Deficit Approach.

    PubMed

    Oltra-Cucarella, J; Pérez-Elvira, R; Duque, P

    2014-06-01

    the aim of this study is to test the encoding deficit hypothesis in Alzheimer disease (AD) using a recent method for correcting memory tests. To this end, a Spanish-language adaptation of the Free and Cued Selective Reminding Test was interpreted using the Item Specific Deficit Approach (ISDA), which provides three indices: Encoding Deficit Index, Consolidation Deficit Index, and Retrieval Deficit Index. We compared the performances of 15 patients with AD and 20 healthy control subjects and analysed results using either the task instructions or the ISDA approach. patients with AD displayed deficient encoding of more than half the information, but items that were encoded properly could be retrieved later with the help of the same semantic clues provided individually during encoding. Virtually all the information retained over the long-term was retrieved by using semantic clues. Encoding was shown to be the most impaired process, followed by retrieval and consolidation. Discriminant function analyses showed that ISDA indices are more sensitive and specific for detecting memory impairments in AD than are raw scores. These results indicate that patients with AD present impaired information encoding, but they benefit from semantic hints that help them recover previously learned information. This should be taken into account for intervention techniques focusing on memory impairments in AD. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  14. Levels-of-processing effect on internal source monitoring in schizophrenia

    PubMed Central

    RAGLAND, J. DANIEL; McCARTHY, ERIN; BILKER, WARREN B.; RENSINGER, COLLEEN M. B; VALDEZ, JEFFREY; KOHLER, CHRISTIAN; GUR, RAQUEL E.; GUR, RUBEN C.

    2015-01-01

    Background Recognition can be normalized in schizophrenia by providing patients with semantic organizational strategies through a levels-of-processing (LOP) framework. However, patients may rely primarily on familiarity effects, making recognition less sensitive than source monitoring to the strength of the episodic memory trace. The current study investigates whether providing semantic organizational strategies can also normalize patients’ internal source-monitoring performance. Method Sixteen clinically stable medicated patients with schizophrenia and 15 demographically matched healthy controls were asked to identify the source of remembered words following an LOP-encoding paradigm in which they alternated between processing words on a ‘shallow’ perceptual versus a ‘deep’ semantic level. A multinomial analysis provided orthogonal measures of item recognition and source discrimination, and bootstrapping generated variance to allow for parametric analyses. LOP and group effects were tested by contrasting recognition and source-monitoring parameters for words that had been encoded during deep versus shallow processing conditions. Results As in a previous study there were no group differences in LOP effects on recognition performance, with patients and controls benefiting equally from deep versus shallow processing. Although there were no group differences in internal source monitoring, only controls had significantly better performance for words processed during the deep encoding condition. Patient performance did not correlate with clinical symptoms or medication dose. Conclusions Providing a deep processing semantic encoding strategy significantly improved patients’ recognition performance only. The lack of a significant LOP effect on internal source monitoring in patients may reffect subtle problems in the relational binding of semantic information that are independent of strategic memory processes. PMID:16608558

  15. Levels-of-processing effect on internal source monitoring in schizophrenia.

    PubMed

    Ragland, J Daniel; McCarthy, Erin; Bilker, Warren B; Brensinger, Colleen M; Valdez, Jeffrey; Kohler, Christian; Gur, Raquel E; Gur, Ruben C

    2006-05-01

    Recognition can be normalized in schizophrenia by providing patients with semantic organizational strategies through a levels-of-processing (LOP) framework. However, patients may rely primarily on familiarity effects, making recognition less sensitive than source monitoring to the strength of the episodic memory trace. The current study investigates whether providing semantic organizational strategies can also normalize patients' internal source-monitoring performance. Sixteen clinically stable medicated patients with schizophrenia and 15 demographically matched healthy controls were asked to identify the source of remembered words following an LOP-encoding paradigm in which they alternated between processing words on a 'shallow' perceptual versus a 'deep' semantic level. A multinomial analysis provided orthogonal measures of item recognition and source discrimination, and bootstrapping generated variance to allow for parametric analyses. LOP and group effects were tested by contrasting recognition and source-monitoring parameters for words that had been encoded during deep versus shallow processing conditions. As in a previous study there were no group differences in LOP effects on recognition performance, with patients and controls benefiting equally from deep versus shallow processing. Although there were no group differences in internal source monitoring, only controls had significantly better performance for words processed during the deep encoding condition. Patient performance did not correlate with clinical symptoms or medication dose. Providing a deep processing semantic encoding strategy significantly improved patients' recognition performance only. The lack of a significant LOP effect on internal source monitoring in patients may reflect subtle problems in the relational binding of semantic information that are independent of strategic memory processes.

  16. Time Course of Grammatical Encoding in Agrammatism

    ERIC Educational Resources Information Center

    Lee, Jiyeon

    2011-01-01

    Producing a sentence involves encoding a preverbal message into a grammatical structure by retrieving lexical items and integrating them into a functional (semantic-to-grammatical) structure. Individuals with agrammatism are impaired in this grammatical encoding process. However, it is unclear what aspect of grammatical encoding is impaired and…

  17. Deep processing activates the medial temporal lobe in young but not in old adults.

    PubMed

    Daselaar, Sander M; Veltman, Dick J; Rombouts, Serge A R B; Raaijmakers, Jeroen G W; Jonker, Cees

    2003-11-01

    Age-related impairments in episodic memory have been related to a deficiency in semantic processing, based on the finding that elderly adults typically benefit less than young adults from deep, semantic as opposed to shallow, nonsemantic processing of study items. In the present study, we tested the hypothesis that elderly adults are not able to perform certain cognitive operations under deep processing conditions. We further hypothesised that this inability does not involve regions commonly associated with lexical/semantic retrieval processes, but rather involves a dysfunction of the medial temporal lobe (MTL) memory system. To this end, we used functional MRI on rather extensive groups of young and elderly adults to compare brain activity patterns obtained during a deep (living/nonliving) and a shallow (uppercase/lowercase) classification task. Common activity in relation to semantic classification was observed in regions that have been previously related to semantic retrieval, including mainly left-lateralised activity in the inferior prefrontal, middle temporal, and middle frontal/anterior cingulate gyrus. Although the young adults showed more activity in some of these areas, the finding of mainly overlapping activation patterns during semantic classification supports the idea that lexical/semantic retrieval processes are still intact in elderly adults. This received further support by the finding that both groups showed similar behavioural performances as well on the deep and shallow classification tasks. Importantly, though, the young revealed significantly more activity than the elderly adults in the left anterior hippocampus during deep relative to shallow classification. This finding is in line with the idea that age-related impairments in episodic encoding are, at least partly, due to an under-recruitment of the medial temporal lobe memory system.

  18. Motivated encoding selectively promotes memory for future inconsequential semantically-related events.

    PubMed

    Oyarzún, Javiera P; Packard, Pau A; de Diego-Balaguer, Ruth; Fuentemilla, Lluis

    2016-09-01

    Neurobiological models of long-term memory explain how memory for inconsequential events fades, unless these happen before or after other relevant (i.e., rewarding or aversive) or novel events. Recently, it has been shown in humans that retrospective and prospective memories are selectively enhanced if semantically related events are paired with aversive stimuli. However, it remains unclear whether motivating stimuli, as opposed to aversive, have the same effect in humans. Here, participants performed a three phase incidental encoding task where one semantic category was rewarded during the second phase. A memory test 24h after, but not immediately after encoding, revealed that memory for inconsequential items was selectively enhanced only if items from the same category had been previously, but not subsequently, paired with rewards. This result suggests that prospective memory enhancement of reward-related information requires, like previously reported for aversive memories, of a period of memory consolidation. The current findings provide the first empirical evidence in humans that the effects of motivated encoding are selectively and prospectively prolonged over time. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Processing Interrogative Sentence Mood at the Semantic-Syntactic Interface: An Electrophysiological Research in Chinese, German, and Polish

    PubMed Central

    Kao, Chung-Shan; Dietrich, Rainer; Sommer, Werner

    2010-01-01

    Background Languages differ in the marking of the sentence mood of a polar interrogative (yes/no question). For instance, the interrogative mood is marked at the beginning of the surface structure in Polish, whereas the marker appears at the end in Chinese. In order to generate the corresponding sentence frame, the syntactic specification of the interrogative mood is early in Polish and late in Chinese. In this respect, German belongs to an interesting intermediate class. The yes/no question is expressed by a shift of the finite verb from its final position in the underlying structure into the utterance initial position, a move affecting, hence, both the sentence's final and the sentence's initial constituents. The present study aimed to investigate whether during generation of the semantic structure of a polar interrogative, i.e., the processing preceding the grammatical formulation, the interrogative mood is encoded according to its position in the syntactic structure at distinctive time points in Chinese, German, and Polish. Methodology/Principal Findings In a two-choice go/nogo experimental design, native speakers of the three languages responded to pictures by pressing buttons and producing utterances in their native language while their brain potentials were recorded. The emergence and latency of lateralized readiness potentials (LRP) in nogo conditions, in which speakers asked a yes/no question, should indicate the time point of processing the interrogative mood. The results revealed that Chinese, German, and Polish native speakers did not differ from each other in the electrophysiological indicator. Conclusions/Significance The findings suggest that the semantic encoding of the interrogative mood is temporally consistent across languages despite its disparate syntactic specification. The consistent encoding may be ascribed to economic processing of interrogative moods at various sentential positions of the syntactic structures in languages or, more generally, to the overarching status of sentence mood in the semantic structure. PMID:20927373

  20. The Semantic Mapping of Archival Metadata to the CIDOC CRM Ontology

    ERIC Educational Resources Information Center

    Bountouri, Lina; Gergatsoulis, Manolis

    2011-01-01

    In this article we analyze the main semantics of archival description, expressed through Encoded Archival Description (EAD). Our main target is to map the semantics of EAD to the CIDOC Conceptual Reference Model (CIDOC CRM) ontology as part of a wider integration architecture of cultural heritage metadata. Through this analysis, it is concluded…

  1. Semantic Priming in Dutch Children: Word Meaning Integration and Study Modality Effects

    ERIC Educational Resources Information Center

    van der Ven, Frauke; Takashima, Atsuko; Segers, Eliane; Verhoeven, Ludo

    2017-01-01

    Research in adults has shown that novel words are encoded rather swiftly but that their semantic integration occurs more slowly and that studying definitions presented in a written modality may benefit integration. It is unclear, however, how semantic integration proceeds in children, who (compared to adults) have more malleable brains and less…

  2. Impact of action primes on implicit processing of thematic and functional similarity relations: evidence from eye-tracking.

    PubMed

    Pluciennicka, Ewa; Wamain, Yannick; Coello, Yann; Kalénine, Solène

    2016-07-01

    The aim of this study was to specify the role of action representations in thematic and functional similarity relations between manipulable artifact objects. Recent behavioral and neurophysiological evidence indicates that while they are all relevant for manipulable artifact concepts, semantic relations based on thematic (e.g., saw-wood), specific function similarity (e.g., saw-axe), and general function similarity (e.g., saw-knife) are differently processed, and may relate to different levels of action representation. Point-light displays of object-related actions previously encoded at the gesture level (e.g., "sawing") or at the higher level of action representation (e.g., "cutting") were used as primes before participants identified target objects (e.g., saw) among semantically related and unrelated distractors (e.g., wood, feather, piano). Analysis of eye movements on the different objects during target identification informed about the amplitude and the timing of implicit activation of the different semantic relations. Results showed that action prime encoding impacted the processing of thematic relations, but not that of functional similarity relations. Semantic competition with thematic distractors was greater and earlier following action primes encoded at the gesture level compared to action primes encoded at higher level. As a whole, these findings highlight the direct influence of action representations on thematic relation processing, and suggest that thematic relations involve gesture-level representations rather than intention-level representations.

  3. Effects of semantic relatedness on age-related associative memory deficits: the role of theta oscillations.

    PubMed

    Crespo-Garcia, Maite; Cantero, Jose L; Atienza, Mercedes

    2012-07-16

    Growing evidence suggests that age-related deficits in associative memory are alleviated when the to-be-associated items are semantically related. Here we investigate whether this beneficial effect of semantic relatedness is paralleled by spatio-temporal changes in cortical EEG dynamics during incidental encoding. Young and older adults were presented with faces at a particular spatial location preceded by a biographical cue that was either semantically related or unrelated. As expected, automatic encoding of face-location associations benefited from semantic relatedness in the two groups of age. This effect correlated with increased power of theta oscillations over medial and anterior lateral regions of the prefrontal cortex (PFC) and lateral regions of the posterior parietal cortex (PPC) in both groups. But better-performing elders also showed increased brain-behavior correlation in the theta band over the right inferior frontal gyrus (IFG) as compared to young adults. Semantic relatedness was, however, insufficient to fully eliminate age-related differences in associative memory. In line with this finding, poorer-performing elders relative to young adults showed significant reductions of theta power in the left IFG that were further predictive of behavioral impairment in the recognition task. All together, these results suggest that older adults benefit less than young adults from executive processes during encoding mainly due to neural inefficiency over regions of the left ventrolateral prefrontal cortex (VLPFC). But this associative deficit may be partially compensated for by engaging preexistent semantic knowledge, which likely leads to an efficient recruitment of attentional and integration processes supported by the left PPC and left anterior PFC respectively, together with neural compensatory mechanisms governed by the right VLPFC. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Forced to remember: when memory is biased by salient information.

    PubMed

    Santangelo, Valerio

    2015-04-15

    The last decades have seen a rapid growing in the attempt to understand the key factors involved in the internal memory representation of the external world. Visual salience have been found to provide a major contribution in predicting the probability for an item/object embedded in a complex setting (i.e., a natural scene) to be encoded and then remembered later on. Here I review the existing literature highlighting the impact of perceptual- (based on low-level sensory features) and semantics-related salience (based on high-level knowledge) on short-term memory representation, along with the neural mechanisms underpinning the interplay between these factors. The available evidence reveal that both perceptual- and semantics-related factors affect attention selection mechanisms during the encoding of natural scenes. Biasing internal memory representation, both perceptual and semantics factors increase the probability to remember high- to the detriment of low-saliency items. The available evidence also highlight an interplay between these factors, with a reduced impact of perceptual-related salience in biasing memory representation as a function of the increasing availability of semantics-related salient information. The neural mechanisms underpinning this interplay involve the activation of different portions of the frontoparietal attention control network. Ventral regions support the assignment of selection/encoding priorities based on high-level semantics, while the involvement of dorsal regions reflects priorities assignment based on low-level sensory features. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Semantic-episodic interactions in the neuropsychology of disbelief.

    PubMed

    Ladowsky-Brooks, Ricki; Alcock, James E

    2007-03-01

    The purpose of this paper is to outline ways in which characteristics of memory functioning determine truth judgements regarding verbally transmitted information. Findings on belief formation from several areas of psychology were reviewed in order to identify general principles that appear to underlie the designation of information in memory as "true" or "false". Studies on belief formation have demonstrated that individuals have a tendency to encode information as "true" and that an additional encoding step is required to tag information as "false". This additional step can involve acquisition and later recall of semantic-episodic associations between message content and contextual cues that signal that information is "false". Semantic-episodic interactions also appear to prevent new information from being accepted as "true" through encoding bias or the assignment of a "false" tag to data that is incompatible with prior knowledge. It is proposed that truth judgements are made through a combined weighting of the reliability of the information source and the compatibility of this information with already stored data. This requires interactions in memory. Failure to integrate different types of memories, such as semantic and episodic memories, can arise from mild hippocampal dysfunction and might result in delusions.

  6. Reduced prefrontal activation in pediatric patients with obsessive-compulsive disorder during verbal episodic memory encoding.

    PubMed

    Batistuzzo, Marcelo Camargo; Balardin, Joana Bisol; Martin, Maria da Graça Morais; Hoexter, Marcelo Queiroz; Bernardes, Elisa Teixeira; Borcato, Sonia; Souza, Marina de Marco E; Querido, Cicero Nardini; Morais, Rosa Magaly; de Alvarenga, Pedro Gomes; Lopes, Antonio Carlos; Shavitt, Roseli Gedanke; Savage, Cary R; Amaro, Edson; Miguel, Euripedes C; Polanczyk, Guilherme V; Miotto, Eliane C

    2015-10-01

    Patients with obsessive-compulsive disorder (OCD) often present with deficits in episodic memory, and there is evidence that these difficulties may be secondary to executive dysfunction, that is, impaired selection and/or application of memory-encoding strategies (mediation hypothesis). Semantic clustering is an effective strategy to enhance encoding of verbal episodic memory (VEM) when word lists are semantically related. Self-initiated mobilization of this strategy has been associated with increased activity in the prefrontal cortex, particularly the orbitofrontal cortex, a key region in the pathophysiology of OCD. We therefore studied children and adolescents with OCD during uncued semantic clustering strategy application in a VEM functional magnetic resonance imaging (fMRI)-encoding paradigm. A total of 25 pediatric patients with OCD (aged 8.1-17.5 years) and 25 healthy controls (HC, aged 8.1-16.9) matched for age, gender, handedness, and IQ were evaluated using a block design VEM paradigm that manipulated semantically related and unrelated words. The semantic clustering strategy score (SCS) predicted VEM performance in HC (p < .001, R(2) = 0.635), but not in patients (p = .099). Children with OCD also presented hypoactivation in the dorsomedial prefrontal cortex (cluster-corrected p < .001). Within-group analysis revealed a negative correlation between Yale-Brown Obsessive Compulsive Scale scores and activation of orbitofrontal cortex in the group with OCD. Finally, a positive correlation between age and SCS was found in HC (p = .001, r = 0.635), but not in patients with OCD (p = .936, r = 0.017). Children with OCD presented altered brain activation during the VEM paradigm and absence of expected correlation between SCS and age, and between SCS and total words recalled. These results suggest that different neural mechanisms underlie self-initiated semantic clustering in OCD. Copyright © 2015 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. The Interaction between Semantic Representation and Episodic Memory.

    PubMed

    Fang, Jing; Rüther, Naima; Bellebaum, Christian; Wiskott, Laurenz; Cheng, Sen

    2018-02-01

    The experimental evidence on the interrelation between episodic memory and semantic memory is inconclusive. Are they independent systems, different aspects of a single system, or separate but strongly interacting systems? Here, we propose a computational role for the interaction between the semantic and episodic systems that might help resolve this debate. We hypothesize that episodic memories are represented as sequences of activation patterns. These patterns are the output of a semantic representational network that compresses the high-dimensional sensory input. We show quantitatively that the accuracy of episodic memory crucially depends on the quality of the semantic representation. We compare two types of semantic representations: appropriate representations, which means that the representation is used to store input sequences that are of the same type as those that it was trained on, and inappropriate representations, which means that stored inputs differ from the training data. Retrieval accuracy is higher for appropriate representations because the encoded sequences are less divergent than those encoded with inappropriate representations. Consistent with our model prediction, we found that human subjects remember some aspects of episodes significantly more accurately if they had previously been familiarized with the objects occurring in the episode, as compared to episodes involving unfamiliar objects. We thus conclude that the interaction with the semantic system plays an important role for episodic memory.

  8. Priming trait inferences through pictures and moving pictures: the impact of open and closed mindsets.

    PubMed

    Fiedler, Klaus; Schenck, Wolfram; Watling, Marlin; Menges, Jochen I

    2005-02-01

    A newly developed paradigm for studying spontaneous trait inferences (STI) was applied in 3 experiments. The authors primed dyadic stimulus behaviors involving a subject (S) and an object (O) person through degraded pictures or movies. An encoding task called for the verification of either a graphical feature or a semantic interpretation, which either fit or did not fit the primed behavior. Next, participants had to identify a trait word that appeared gradually behind a mask and that either matched or did not match the primed behavior. STI effects, defined as shorter identification latencies for matching than nonmatching traits, were stronger for S than for O traits, after graphical rather than semantic encoding decisions and after encoding failures. These findings can be explained by assuming that trait inferences are facilitated by open versus closed mindsets supposed to result from distracting (graphical) encoding tasks or encoding failures (involving nonfitting interpretations).

  9. Progress in The Semantic Analysis of Scientific Code

    NASA Technical Reports Server (NTRS)

    Stewart, Mark

    2000-01-01

    This paper concerns a procedure that analyzes aspects of the meaning or semantics of scientific and engineering code. This procedure involves taking a user's existing code, adding semantic declarations for some primitive variables, and parsing this annotated code using multiple, independent expert parsers. These semantic parsers encode domain knowledge and recognize formulae in different disciplines including physics, numerical methods, mathematics, and geometry. The parsers will automatically recognize and document some static, semantic concepts and help locate some program semantic errors. These techniques may apply to a wider range of scientific codes. If so, the techniques could reduce the time, risk, and effort required to develop and modify scientific codes.

  10. Deep visual-semantic for crowded video understanding

    NASA Astrophysics Data System (ADS)

    Deng, Chunhua; Zhang, Junwen

    2018-03-01

    Visual-semantic features play a vital role for crowded video understanding. Convolutional Neural Networks (CNNs) have experienced a significant breakthrough in learning representations from images. However, the learning of visualsemantic features, and how it can be effectively extracted for video analysis, still remains a challenging task. In this study, we propose a novel visual-semantic method to capture both appearance and dynamic representations. In particular, we propose a spatial context method, based on the fractional Fisher vector (FV) encoding on CNN features, which can be regarded as our main contribution. In addition, to capture temporal context information, we also applied fractional encoding method on dynamic images. Experimental results on the WWW crowed video dataset demonstrate that the proposed method outperform the state of the art.

  11. Is prospective memory enhanced by cue-action semantic relatedness and enactment at encoding?

    PubMed

    Pereira, Antonina; Ellis, Judi; Freeman, Jayne

    2012-09-01

    Benefits and costs on prospective memory performance, of enactment at encoding and a semantic association between a cue-action word pair, were investigated in two experiments. Findings revealed superior performance for both younger and older adults following enactment, in contrast to verbal encoding, and when cue-action semantic relatedness was high. Although younger adults outperformed older adults, age did not moderate benefits of cue-action relatedness or enactment. Findings from a second experiment revealed that the inclusion of an instruction to perform a prospective memory task led to increments in response latency to items from the ongoing activity in which that task was embedded, relative to latencies when the ongoing task only was performed. However, this task interference 'cost' did not differ as a function of either cue-action relatedness or enactment. We argue that the high number of cue-action pairs employed here influenced meta-cognitive consciousness, hence determining attention allocation, in all experimental conditions. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Semantic Modelling of Digital Forensic Evidence

    NASA Astrophysics Data System (ADS)

    Kahvedžić, Damir; Kechadi, Tahar

    The reporting of digital investigation results are traditionally carried out in prose and in a large investigation may require successive communication of findings between different parties. Popular forensic suites aid in the reporting process by storing provenance and positional data but do not automatically encode why the evidence is considered important. In this paper we introduce an evidence management methodology to encode the semantic information of evidence. A structured vocabulary of terms, ontology, is used to model the results in a logical and predefined manner. The descriptions are application independent and automatically organised. The encoded descriptions aim to help the investigation in the task of report writing and evidence communication and can be used in addition to existing evidence management techniques.

  13. Word encoding during sleep is suggested by correlations between word-evoked up-states and post-sleep semantic priming

    PubMed Central

    Ruch, Simon; Koenig, Thomas; Mathis, Johannes; Roth, Corinne; Henke, Katharina

    2014-01-01

    To test whether humans can encode words during sleep we played everyday words to men while they were napping and assessed priming from sleep-played words following waking. Words were presented during non-rapid eye movement (NREM) sleep. Priming was assessed using a semantic and a perceptual priming test. These tests measured differences in the processing of words that had been or had not been played during sleep. Synonyms to sleep-played words were the targets in the semantic priming test that tapped the meaning of sleep-played words. All men responded to sleep-played words by producing up-states in their electroencephalogram. Up-states are NREM sleep-specific phases of briefly increased neuronal excitability. The word-evoked up-states might have promoted word processing during sleep. Yet, the mean performance in the priming tests administered following sleep was at chance level, which suggests that participants as a group failed to show priming following sleep. However, performance in the two priming tests was positively correlated to each other and to the magnitude of the word-evoked up-states. Hence, the larger a participant's word-evoked up-states, the larger his perceptual and semantic priming. Those participants who scored high on all variables must have encoded words during sleep. We conclude that some humans are able to encode words during sleep, but more research is needed to pin down the factors that modulate this ability. PMID:25452740

  14. The role of the frontal cortex in memory: an investigation of the Von Restorff effect

    PubMed Central

    Elhalal, Anat; Davelaar, Eddy J.; Usher, Marius

    2014-01-01

    Evidence from neuropsychology and neuroimaging indicate that the pre-frontal cortex (PFC) plays an important role in human memory. Although frontal patients are able to form new memories, these memories appear qualitatively different from those of controls by lacking distinctiveness. Neuroimaging studies of memory indicate activation in the PFC under deep encoding conditions, and under conditions of semantic elaboration. Based on these results, we hypothesize that the PFC enhances memory by extracting differences and commonalities in the studied material. To test this hypothesis, we carried out an experimental investigation to test the relationship between the PFC-dependent factors and semantic factors associated with common and specific features of words. These experiments were performed using Free-Recall of word lists with healthy adults, exploiting the correlation between PFC function and fluid intelligence. As predicted, a correlation was found between fluid intelligence and the Von-Restorff effect (better memory for semantic isolates, e.g., isolate “cat” within category members of “fruit”). Moreover, memory for the semantic isolate was found to depend on the isolate's serial position. The isolate item tends to be recalled first, in comparison to non-isolates, suggesting that the process interacts with short term memory. These results are captured within a computational model of free recall, which includes a PFC mechanism that is sensitive to both commonality and distinctiveness, sustaining a trade-off between the two. PMID:25018721

  15. The Construction of Semantic Memory: Grammar-Based Representations Learned from Relational Episodic Information

    PubMed Central

    Battaglia, Francesco P.; Pennartz, Cyriel M. A.

    2011-01-01

    After acquisition, memories underlie a process of consolidation, making them more resistant to interference and brain injury. Memory consolidation involves systems-level interactions, most importantly between the hippocampus and associated structures, which takes part in the initial encoding of memory, and the neocortex, which supports long-term storage. This dichotomy parallels the contrast between episodic memory (tied to the hippocampal formation), collecting an autobiographical stream of experiences, and semantic memory, a repertoire of facts and statistical regularities about the world, involving the neocortex at large. Experimental evidence points to a gradual transformation of memories, following encoding, from an episodic to a semantic character. This may require an exchange of information between different memory modules during inactive periods. We propose a theory for such interactions and for the formation of semantic memory, in which episodic memory is encoded as relational data. Semantic memory is modeled as a modified stochastic grammar, which learns to parse episodic configurations expressed as an association matrix. The grammar produces tree-like representations of episodes, describing the relationships between its main constituents at multiple levels of categorization, based on its current knowledge of world regularities. These regularities are learned by the grammar from episodic memory information, through an expectation-maximization procedure, analogous to the inside–outside algorithm for stochastic context-free grammars. We propose that a Monte-Carlo sampling version of this algorithm can be mapped on the dynamics of “sleep replay” of previously acquired information in the hippocampus and neocortex. We propose that the model can reproduce several properties of semantic memory such as decontextualization, top-down processing, and creation of schemata. PMID:21887143

  16. Semantic Encoding in Children: A New Method of Investigation.

    ERIC Educational Resources Information Center

    Kraut, Alan G.; Smothergill, Daniel W.

    A familiarization procedure was used in two experiments investigating word encoding in second and sixth graders. Previous studies using release from proactive inhibition had indicated that developmental changes on some encoding dimensions occur during this period. It is argued that the dependence of release from proactive inhibition on deliberate…

  17. Prosodic Encoding in Silent Reading.

    ERIC Educational Resources Information Center

    Wilkenfeld, Deborah

    In silent reading, short-memory tasks, such as semantic and syntactic processing, require a stage of phonetic encoding between visual representation and the actual extraction of meaning, and this encoding includes prosodic as well as segmental features. To test for this suprasegmental coding, an experiment was conducted in which subjects were…

  18. An Approach toward the Development of a Functional Encoding Model of Short Term Memory during Reading.

    ERIC Educational Resources Information Center

    Herndon, Mary Anne

    1978-01-01

    In a model of the functioning of short term memory, the encoding of information for subsequent storage in long term memory is simulated. In the encoding process, semantically equivalent paragraphs are detected for recombination into a macro information unit. (HOD)

  19. Effects of aging on value-directed modulation of semantic network activity during verbal learning

    PubMed Central

    Cohen, Michael S.; Rissman, Jesse; Suthana, Nanthia A.; Castel, Alan D.; Knowlton, Barbara J.

    2015-01-01

    While impairments in memory recall are apparent in aging, older adults show a remarkably preserved ability to selectively remember information deemed valuable. Here, we use fMRI to compare brain activation in healthy older and younger adults during encoding of high and low value words to determine whether there are differences in how older adults achieve value-directed memory selectivity. We find that memory selectivity in older adults is associated with value-related changes in activation during word presentation in left hemisphere regions that are involved in semantic processing, similar to young adults. However, highly selective young adults show a relatively greater increase in semantic network activity during encoding of high-value items, whereas highly selective older adults show relatively diminished activity during encoding of low-value items. Additionally, only younger adults showed value-related increases in activity in semantic and reward processing regions during presentation of the value cue preceding each to-be-remembered word. Young adults therefore respond to cue value more proactively than do older adults, yet the magnitude of value-related differences in cue period brain activity did not predict individual differences in memory selectivity. Thus, our data also show that age-related reductions in prestimulus activity do not always lead to inefficient performance. PMID:26244278

  20. The Semantic eScience Framework

    NASA Astrophysics Data System (ADS)

    McGuinness, Deborah; Fox, Peter; Hendler, James

    2010-05-01

    The goal of this effort is to design and implement a configurable and extensible semantic eScience framework (SESF). Configuration requires research into accommodating different levels of semantic expressivity and user requirements from use cases. Extensibility is being achieved in a modular approach to the semantic encodings (i.e. ontologies) performed in community settings, i.e. an ontology framework into which specific applications all the way up to communities can extend the semantics for their needs.We report on how we are accommodating the rapid advances in semantic technologies and tools and the sustainable software path for the future (certain) technical advances. In addition to a generalization of the current data science interface, we will present plans for an upper-level interface suitable for use by clearinghouses, and/or educational portals, digital libraries, and other disciplines.SESF builds upon previous work in the Virtual Solar-Terrestrial Observatory. The VSTO utilizes leading edge knowledge representation, query and reasoning techniques to support knowledge-enhanced search, data access, integration, and manipulation. It encodes term meanings and their inter-relationships in ontologies anduses these ontologies and associated inference engines to semantically enable the data services. The Semantically-Enabled Science Data Integration (SESDI) project implemented data integration capabilities among three sub-disciplines; solar radiation, volcanic outgassing and atmospheric structure using extensions to existingmodular ontolgies and used the VSTO data framework, while adding smart faceted search and semantic data registrationtools. The Semantic Provenance Capture in Data Ingest Systems (SPCDIS) has added explanation provenance capabilities to an observational data ingest pipeline for images of the Sun providing a set of tools to answer diverseend user questions such as ``Why does this image look bad?. http://tw.rpi.edu/portal/SESF

  1. The Semantic eScience Framework

    NASA Astrophysics Data System (ADS)

    Fox, P. A.; McGuinness, D. L.

    2009-12-01

    The goal of this effort is to design and implement a configurable and extensible semantic eScience framework (SESF). Configuration requires research into accommodating different levels of semantic expressivity and user requirements from use cases. Extensibility is being achieved in a modular approach to the semantic encodings (i.e. ontologies) performed in community settings, i.e. an ontology framework into which specific applications all the way up to communities can extend the semantics for their needs.We report on how we are accommodating the rapid advances in semantic technologies and tools and the sustainable software path for the future (certain) technical advances. In addition to a generalization of the current data science interface, we will present plans for an upper-level interface suitable for use by clearinghouses, and/or educational portals, digital libraries, and other disciplines.SESF builds upon previous work in the Virtual Solar-Terrestrial Observatory. The VSTO utilizes leading edge knowledge representation, query and reasoning techniques to support knowledge-enhanced search, data access, integration, and manipulation. It encodes term meanings and their inter-relationships in ontologies anduses these ontologies and associated inference engines to semantically enable the data services. The Semantically-Enabled Science Data Integration (SESDI) project implemented data integration capabilities among three sub-disciplines; solar radiation, volcanic outgassing and atmospheric structure using extensions to existingmodular ontolgies and used the VSTO data framework, while adding smart faceted search and semantic data registrationtools. The Semantic Provenance Capture in Data Ingest Systems (SPCDIS) has added explanation provenance capabilities to an observational data ingest pipeline for images of the Sun providing a set of tools to answer diverseend user questions such as ``Why does this image look bad?.

  2. Contribution of organizational strategy to verbal learning and memory in adults with attention-deficit/hyperactivity disorder.

    PubMed

    Roth, Robert M; Wishart, Heather A; Flashman, Laura A; Riordan, Henry J; Huey, Leighton; Saykin, Andrew J

    2004-01-01

    Statistical mediation modeling was used to test the hypothesis that poor use of a semantic organizational strategy contributes to verbal learning and memory deficits in adults with attention-deficit/hyperactivity disorder (ADHD). Comparison of 28 adults with ADHD and 34 healthy controls revealed lower performance by the ADHD group on tests of verbal learning and memory, sustained attention, and use of semantic organization during encoding. Mediation modeling indicated that state anxiety, but not semantic organization, significantly contributed to the prediction of both learning and delayed recall in the ADHD group. The pattern of findings suggests that decreased verbal learning and memory in adult ADHD is due in part to situational anxiety and not to poor use of organizational strategies during encoding. ((c) 2004 APA, all rights reserved)

  3. Late positive slow waves as markers of chunking during encoding

    PubMed Central

    Nogueira, Ana M. L.; Bueno, Orlando F. A.; Manzano, Gilberto M.; Kohn, André F.; Pompéia, Sabine

    2015-01-01

    Electrophysiological markers of chunking of words during encoding have mostly been shown in studies that present pairs of related stimuli. In these cases it is difficult to disentangle cognitive processes that reflect distinctiveness (i.e., conspicuous items because they are related), perceived association between related items and unified representations of various items, or chunking. Here, we propose a paradigm that enables the determination of a separate Event-related Potential (ERP) marker of these cognitive processes using sequentially related word triads. Twenty-three young healthy individuals viewed 80 15-word lists composed of unrelated items except for the three words in the middle serial positions (triads), which could be either unrelated (control list), related perceptually, phonetically or semantically. ERP amplitudes were measured at encoding of each one of the words in the triads. We analyzed two latency intervals (350–400 and 400–800 ms) at midline locations. Behaviorally, we observed a progressive facilitation in the immediate free recall of the words in the triads depending on the relations between their items (control < perceptual < phonetic < semantic), but only semantically related items were recalled as chunks. P300-like deflections were observed for perceptually deviant stimuli. A reduction of amplitude of a component akin to the N400 was found for words that were phonetically and semantically associated with prior items and therefore were not associated to chunking. Positive slow wave (PSW) amplitudes increased as successive phonetically and semantically related items were presented, but they were observed earlier and were more prominent at Fz for semantic associates. PSWs at Fz and Cz also correlated with recall of semantic word chunks. This confirms prior claims that PSWs at Fz are potential markers of chunking which, in the proposed paradigm, were modulated differently from the detection of deviant stimuli and of relations between stimuli. PMID:26283984

  4. Fractionation of the component processes underlying successful episodic encoding: a combined fMRI and divided-attention study.

    PubMed

    Uncapher, Melina R; Rugg, Michael D

    2008-02-01

    Considerable evidence suggests that attentional resources are necessary for the encoding of episodic memories, but the nature of the relationship between attention and neural correlates of encoding is unclear. Here we address this question using functional magnetic resonance imaging and a divided-attention paradigm in which competition for different types of attentional resources was manipulated. Fifteen volunteers were scanned while making animacy judgments to visually presented words and concurrently performing one of three tasks on auditorily presented words: male/female voice discrimination (control task), 1-back voice comparison (1-back task), or indoor/outdoor judgment (semantic task). The 1-back and semantic tasks were designed to compete for task-generic and task-specific attentional resources, respectively. Using the "remember/know" procedure, memory for the study words was assessed after 15 min. In the control condition, subsequent memory effects associated with later recollection were identified in the left dorsal inferior frontal gyrus and in the left hippocampus. These effects were differentially attenuated in the two more difficult divided-attention conditions. The effects of divided attention seem, therefore, to reflect impairments due to limitations at both task-generic and task-specific levels. Additionally, each of the two more difficult divided-attention conditions was associated with subsequent memory effects in regions distinct from those showing effects in the control condition. These findings suggest the engagement of alternative encoding processes to those engaged in the control task. The overall pattern of findings suggests that divided attention can impact later memory in different ways, and accordingly, that different attentional resources, including task-generic and task-specific resources, make distinct contributions to successful episodic encoding.

  5. Visual priming within and across symbolic format using a tachistoscopic picture identification task: a PET study.

    PubMed

    Lebreton, K; Desgranges, B; Landeau, B; Baron, J C; Eustache, F

    2001-07-01

    The present work was aimed at characterizing picture priming effects from two complementary behavioral and functional neuroimaging (positron emission tomography, PET) studies. In two experiments, we used the same line drawings of common living/nonliving objects in a tachistoscopic identification task to contrast two forms of priming. In the within-format priming condition (picture-picture), subjects were instructed to perform a perceptual encoding task in the study phase, whereas in the cross-format priming condition (word-picture), they were instructed to perform a semantic encoding task. In Experiment 1, we showed significant priming effects in both priming conditions. However, the magnitude of priming effects in the same-format/perceptual encoding condition was higher than that in the different-format/semantic encoding condition, while the recognition performance did not differ between the two conditions. This finding supports the existence of two forms of priming that may be subserved by different systems. Consistent with these behavioral findings, the PET data for Experiment 2 revealed distinct priming-related patterns of regional cerebral blood flow (rCBF) decreases for the two priming conditions when primed items were compared to unprimed items. The same-format priming condition involved reductions in cerebral activity particularly in the right extrastriate cortex and left cerebellum, while the different-format priming condition was associated with rCBF decreases in the left inferior temporo-occipital cortex, left frontal regions, and the right cerebellum. These results suggest that the extrastriate cortex may subserve general aspects of perceptual priming, independent of the kind of stimuli, and that the right part of this cortex could underlie the same-format-specific system for pictures. These data also support the idea that the cross-format/semantic encoding priming for pictures represents a form of lexico-semantic priming subserved by a semantic neural network extending from left temporo-occipital cortex to left frontal regions. These results reinforce the distinction between perceptual and conceptual priming for pictures, indicating that different cerebral processes and systems are implicated in these two forms of picture priming.

  6. Influencing Memory Performance in Learning Disabled Students through Semantic Processing.

    ERIC Educational Resources Information Center

    Walker, Stephen C.; Poteet, James A.

    1989-01-01

    Thirty learning-disabled and 30 nonhandicapped intermediate grade children were assessed on memory performance for stimulus words, which were presented with congruent and noncongruent rhyming words and semantically congruent and noncongruent sentence frames. Both groups performed significantly better on words encoded using deep level congruent…

  7. Episodic memory and self-reference via semantic autobiographical memory: insights from an fMRI study in younger and older adults.

    PubMed

    Kalenzaga, Sandrine; Sperduti, Marco; Anssens, Adèle; Martinelli, Penelope; Devauchelle, Anne-Dominique; Gallarda, Thierry; Delhommeau, Marion; Lion, Stéphanie; Amado, Isabelle; Krebs, Marie-Odile; Oppenheim, Catherine; Piolino, Pascale

    2014-01-01

    Self-referential processing relies mainly on the medial prefrontal cortex (MPFC) and enhances memory encoding (i.e., Self-Reference Effect, SRE) as it improves the accuracy and richness of remembering in both young and older adults. However, studies on age-related changes in the neural correlates of the SRE on the subjective (i.e., autonoetic consciousness) and the objective (i.e., source memory) qualitative features of episodic memory are lacking. In the present fMRI study, we compared the effects of a self-related (semantic autobiographical memory task) and a non self-related (general semantic memory task) encoding condition on subsequent episodic memory retrieval. We investigated encoding-related activity during each condition in two groups of 19 younger and 16 older adults. Behaviorally, the SRE improved subjective memory performance in both groups but objective memory only in young adults. At the neural level, a direct comparison between self-related and non self-related conditions revealed that SRE mainly activated the cortical midline system, especially the MPFC, in both groups. Additionally, in older adults and regardless of the condition, greater activity was found in a fronto-parietal network. Overall, correlations were noted between source memory performance and activity in the MPFC (irrespective of age) and visual areas (mediated by age). Thus, the present findings expand evidence of the role of the MPFC in self-referential processing in the context of source memory benefit in both young and older adults using incidental encoding via semantic autobiographical memory. However, our finding suggests that its role is less effective in aging.

  8. Episodic memory and self-reference via semantic autobiographical memory: insights from an fMRI study in younger and older adults

    PubMed Central

    Kalenzaga, Sandrine; Sperduti, Marco; Anssens, Adèle; Martinelli, Penelope; Devauchelle, Anne-Dominique; Gallarda, Thierry; Delhommeau, Marion; Lion, Stéphanie; Amado, Isabelle; Krebs, Marie-Odile; Oppenheim, Catherine; Piolino, Pascale

    2015-01-01

    Self-referential processing relies mainly on the medial prefrontal cortex (MPFC) and enhances memory encoding (i.e., Self-Reference Effect, SRE) as it improves the accuracy and richness of remembering in both young and older adults. However, studies on age-related changes in the neural correlates of the SRE on the subjective (i.e., autonoetic consciousness) and the objective (i.e., source memory) qualitative features of episodic memory are lacking. In the present fMRI study, we compared the effects of a self-related (semantic autobiographical memory task) and a non self-related (general semantic memory task) encoding condition on subsequent episodic memory retrieval. We investigated encoding-related activity during each condition in two groups of 19 younger and 16 older adults. Behaviorally, the SRE improved subjective memory performance in both groups but objective memory only in young adults. At the neural level, a direct comparison between self-related and non self-related conditions revealed that SRE mainly activated the cortical midline system, especially the MPFC, in both groups. Additionally, in older adults and regardless of the condition, greater activity was found in a fronto-parietal network. Overall, correlations were noted between source memory performance and activity in the MPFC (irrespective of age) and visual areas (mediated by age). Thus, the present findings expand evidence of the role of the MPFC in self-referential processing in the context of source memory benefit in both young and older adults using incidental encoding via semantic autobiographical memory. However, our finding suggests that its role is less effective in aging. PMID:25628546

  9. Scene Semantic Segmentation from Indoor Rgb-D Images Using Encode-Decoder Fully Convolutional Networks

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Li, T.; Pan, L.; Kang, Z.

    2017-09-01

    With increasing attention for the indoor environment and the development of low-cost RGB-D sensors, indoor RGB-D images are easily acquired. However, scene semantic segmentation is still an open area, which restricts indoor applications. The depth information can help to distinguish the regions which are difficult to be segmented out from the RGB images with similar color or texture in the indoor scenes. How to utilize the depth information is the key problem of semantic segmentation for RGB-D images. In this paper, we propose an Encode-Decoder Fully Convolutional Networks for RGB-D image classification. We use Multiple Kernel Maximum Mean Discrepancy (MK-MMD) as a distance measure to find common and special features of RGB and D images in the network to enhance performance of classification automatically. To explore better methods of applying MMD, we designed two strategies; the first calculates MMD for each feature map, and the other calculates MMD for whole batch features. Based on the result of classification, we use the full connect CRFs for the semantic segmentation. The experimental results show that our method can achieve a good performance on indoor RGB-D image semantic segmentation.

  10. Lexicality Effects in Word and Nonword Recall of Semantic Dementia and Progressive Nonfluent Aphasia

    PubMed Central

    Reilly, Jamie; Troche, Joshua; Chatel, Alison; Park, Hyejin; Kalinyak-Fliszar, Michelene; Antonucci, Sharon M.; Martin, Nadine

    2012-01-01

    Background Verbal working memory is an essential component of many language functions, including sentence comprehension and word learning. As such, working memory has emerged as a domain of intense research interest both in aphasiology and in the broader field of cognitive neuroscience. The integrity of verbal working memory encoding relies on a fluid interaction between semantic and phonological processes. That is, we encode verbal detail using many cues related to both the sound and meaning of words. Lesion models can provide an effective means of parsing the contributions of phonological or semantic impairment to recall performance. Methods and Procedures We employed the lesion model approach here by contrasting the nature of lexicality errors incurred during recall of word and nonword sequences by 3individuals with progressive nonfluent aphasia (a phonological dominant impairment) compared to that of 2 individuals with semantic dementia (a semantic dominant impairment). We focused on psycholinguistic attributes of correctly recalled stimuli relative to those that elicited a lexicality error (i.e., nonword → word OR word → nonword). Outcomes and results Patients with semantic dementia showed greater sensitivity to phonological attributes (e.g., phoneme length, wordlikeness) of the target items relative to semantic attributes (e.g., familiarity). Patients with PNFA showed the opposite pattern, marked by sensitivity to word frequency, age of acquisition, familiarity, and imageability. Conclusions We interpret these results in favor of a processing strategy such that in the context of a focal phonological impairment patients revert to an over-reliance on preserved semantic processing abilities. In contrast, a focal semantic impairment forces both reliance upon and hypersensitivity to phonological attributes of target words. We relate this interpretation to previous hypotheses about the nature of verbal short-term memory in progressive aphasia. PMID:23486736

  11. Event Congruency and Episodic Encoding: A Developmental fMRI Study

    ERIC Educational Resources Information Center

    Maril, Anat; Avital, Rinat; Reggev, Niv; Zuckerman, Maya; Sadeh, Talya; Sira, Liat Ben; Livneh, Neta

    2011-01-01

    A known contributor to adults' superior memory performance compared to children is their differential reliance on an existing knowledge base. Compared to those of adults, children's semantic networks are less accessible and less established, a difference that is also thought to contribute to children's relative resistance to semantically related…

  12. The Acquisition of Epistemic Modality: From Semantic Meaning to Pragmatic Interpretation

    ERIC Educational Resources Information Center

    Ozturk, Ozge; Papafragou, Anna

    2015-01-01

    Three experiments investigated the acquisition of English epistemic modal verbs (e.g., "may", "have to"). Semantically, these verbs encode possibility or necessity with respect to available evidence. Pragmatically, the use of weak epistemic modals often gives rise to scalar conversational inferences (e.g., "The toy may be…

  13. Scientific Knowledge Discovery in Complex Semantic Networks of Geophysical Systems

    NASA Astrophysics Data System (ADS)

    Fox, P.

    2012-04-01

    The vast majority of explorations of the Earth's systems are limited in their ability to effectively explore the most important (often most difficult) problems because they are forced to interconnect at the data-element, or syntactic, level rather than at a higher scientific, or semantic, level. Recent successes in the application of complex network theory and algorithms to climate data, raise expectations that more general graph-based approaches offer the opportunity for new discoveries. In the past ~ 5 years in the natural sciences there has substantial progress in providing both specialists and non-specialists the ability to describe in machine readable form, geophysical quantities and relations among them in meaningful and natural ways, effectively breaking the prior syntax barrier. The corresponding open-world semantics and reasoning provide higher-level interconnections. That is, semantics provided around the data structures, using semantically-equipped tools, and semantically aware interfaces between science application components allowing for discovery at the knowledge level. More recently, formal semantic approaches to continuous and aggregate physical processes are beginning to show promise and are soon likely to be ready to apply to geoscientific systems. To illustrate these opportunities, this presentation presents two application examples featuring domain vocabulary (ontology) and property relations (named and typed edges in the graphs). First, a climate knowledge discovery pilot encoding and exploration of CMIP5 catalog information with the eventual goal to encode and explore CMIP5 data. Second, a multi-stakeholder knowledge network for integrated assessments in marine ecosystems, where the data is highly inter-disciplinary.

  14. Level of processing modulates the neural correlates of emotional memory formation

    PubMed Central

    Ritchey, Maureen; LaBar, Kevin S.; Cabeza, Roberto

    2010-01-01

    Emotion is known to influence multiple aspects of memory formation, including the initial encoding of the memory trace and its consolidation over time. However, the neural mechanisms whereby emotion impacts memory encoding remain largely unexplored. The present study employed a levels-of-processing manipulation to characterize the impact of emotion on encoding with and without the influence of elaborative processes. Participants viewed emotionally negative, neutral, and positive scenes under two conditions: a shallow condition focused on the perceptual features of the scenes and a deep condition that queried their semantic meaning. Recognition memory was tested 2 days later. Results showed that emotional memory enhancements were greatest in the shallow condition. FMRI analyses revealed that the right amygdala predicted subsequent emotional memory in the shallow more than deep condition, whereas the right ventrolateral prefrontal cortex demonstrated the reverse pattern. Furthermore, the association of these regions with the hippocampus was modulated by valence: the amygdala-hippocampal link was strongest for negative stimuli, whereas the prefrontal-hippocampal link was strongest for positive stimuli. Taken together, these results suggest two distinct activation patterns underlying emotional memory formation: an amygdala component that promotes memory during shallow encoding, especially for negative information, and a prefrontal component that provides extra benefits during deep encoding, especially for positive information. PMID:20350176

  15. Level of processing modulates the neural correlates of emotional memory formation.

    PubMed

    Ritchey, Maureen; LaBar, Kevin S; Cabeza, Roberto

    2011-04-01

    Emotion is known to influence multiple aspects of memory formation, including the initial encoding of the memory trace and its consolidation over time. However, the neural mechanisms whereby emotion impacts memory encoding remain largely unexplored. The present study used a levels-of-processing manipulation to characterize the impact of emotion on encoding with and without the influence of elaborative processes. Participants viewed emotionally negative, neutral, and positive scenes under two conditions: a shallow condition focused on the perceptual features of the scenes and a deep condition that queried their semantic meaning. Recognition memory was tested 2 days later. Results showed that emotional memory enhancements were greatest in the shallow condition. fMRI analyses revealed that the right amygdala predicted subsequent emotional memory in the shallow more than deep condition, whereas the right ventrolateral PFC demonstrated the reverse pattern. Furthermore, the association of these regions with the hippocampus was modulated by valence: the amygdala-hippocampal link was strongest for negative stimuli, whereas the prefrontal-hippocampal link was strongest for positive stimuli. Taken together, these results suggest two distinct activation patterns underlying emotional memory formation: an amygdala component that promotes memory during shallow encoding, especially for negative information, and a prefrontal component that provides extra benefits during deep encoding, especially for positive information.

  16. Effects of the common cold on mood, psychomotor performance, the encoding of new information, speed of working memory and semantic processing.

    PubMed

    Smith, Andrew P

    2012-10-01

    Previous research has shown that people with the common cold report a more negative mood and psychomotor slowing. Recent research suggests that memory speed may also be impaired. This was examined in the study reported here. A prospective design was used and all participants (N=200; half male, half female; mean age 21 years, range 18-30 years) carried out a baseline session when healthy. The test battery involved mood rating, simple and choice reaction time, verbal reasoning and semantic processing. Volunteers returned when they developed an upper respiratory tract illness (URTI) and repeated the test battery. If they remained healthy they were recalled as a control. One hundred and eighty-nine participants completed the study and 48 developed URTIs and 141 were in the healthy control group. Symptoms and signs suggested that those who were ill had colds rather than influenza. The results showed that those with colds reported lower alertness, a more negative mood, and psychomotor slowing. They were also slower at encoding new information and slower on the verbal reasoning and semantic processing tasks. The magnitude of the mood changes associated with being ill were correlated with symptom severity. The performance changes were not correlated with symptom severity, sleep duration or mood changes. Further research is now needed to elucidate the underlying mechanisms of the behavioral malaise associated with URTIs. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. A DNA-based semantic fusion model for remote sensing data.

    PubMed

    Sun, Heng; Weng, Jian; Yu, Guangchuang; Massawe, Richard H

    2013-01-01

    Semantic technology plays a key role in various domains, from conversation understanding to algorithm analysis. As the most efficient semantic tool, ontology can represent, process and manage the widespread knowledge. Nowadays, many researchers use ontology to collect and organize data's semantic information in order to maximize research productivity. In this paper, we firstly describe our work on the development of a remote sensing data ontology, with a primary focus on semantic fusion-driven research for big data. Our ontology is made up of 1,264 concepts and 2,030 semantic relationships. However, the growth of big data is straining the capacities of current semantic fusion and reasoning practices. Considering the massive parallelism of DNA strands, we propose a novel DNA-based semantic fusion model. In this model, a parallel strategy is developed to encode the semantic information in DNA for a large volume of remote sensing data. The semantic information is read in a parallel and bit-wise manner and an individual bit is converted to a base. By doing so, a considerable amount of conversion time can be saved, i.e., the cluster-based multi-processes program can reduce the conversion time from 81,536 seconds to 4,937 seconds for 4.34 GB source data files. Moreover, the size of result file recording DNA sequences is 54.51 GB for parallel C program compared with 57.89 GB for sequential Perl. This shows that our parallel method can also reduce the DNA synthesis cost. In addition, data types are encoded in our model, which is a basis for building type system in our future DNA computer. Finally, we describe theoretically an algorithm for DNA-based semantic fusion. This algorithm enables the process of integration of the knowledge from disparate remote sensing data sources into a consistent, accurate, and complete representation. This process depends solely on ligation reaction and screening operations instead of the ontology.

  18. A DNA-Based Semantic Fusion Model for Remote Sensing Data

    PubMed Central

    Sun, Heng; Weng, Jian; Yu, Guangchuang; Massawe, Richard H.

    2013-01-01

    Semantic technology plays a key role in various domains, from conversation understanding to algorithm analysis. As the most efficient semantic tool, ontology can represent, process and manage the widespread knowledge. Nowadays, many researchers use ontology to collect and organize data's semantic information in order to maximize research productivity. In this paper, we firstly describe our work on the development of a remote sensing data ontology, with a primary focus on semantic fusion-driven research for big data. Our ontology is made up of 1,264 concepts and 2,030 semantic relationships. However, the growth of big data is straining the capacities of current semantic fusion and reasoning practices. Considering the massive parallelism of DNA strands, we propose a novel DNA-based semantic fusion model. In this model, a parallel strategy is developed to encode the semantic information in DNA for a large volume of remote sensing data. The semantic information is read in a parallel and bit-wise manner and an individual bit is converted to a base. By doing so, a considerable amount of conversion time can be saved, i.e., the cluster-based multi-processes program can reduce the conversion time from 81,536 seconds to 4,937 seconds for 4.34 GB source data files. Moreover, the size of result file recording DNA sequences is 54.51 GB for parallel C program compared with 57.89 GB for sequential Perl. This shows that our parallel method can also reduce the DNA synthesis cost. In addition, data types are encoded in our model, which is a basis for building type system in our future DNA computer. Finally, we describe theoretically an algorithm for DNA-based semantic fusion. This algorithm enables the process of integration of the knowledge from disparate remote sensing data sources into a consistent, accurate, and complete representation. This process depends solely on ligation reaction and screening operations instead of the ontology. PMID:24116207

  19. Value-based modulation of memory encoding involves strategic engagement of fronto-temporal semantic processing regions

    PubMed Central

    Cohen, Michael S.; Rissman, Jesse; Suthana, Nanthia A.; Castel, Alan D.; Knowlton, Barbara J.

    2014-01-01

    A number of prior fMRI studies have focused on the ways in which the midbrain dopaminergic reward system co-activates with hippocampus to potentiate memory for valuable items. However, another means by which people could selectively remember more valuable to-be-remembered items is to be selective in their use of effective but effortful encoding strategies. To broadly examine the neural mechanisms of value on subsequent memory, we used fMRI to examine how differences in brain activity at encoding as a function of value relate to subsequent free recall for words. Each word was preceded by an arbitrarily assigned point value, and participants went through multiple study-test cycles with feedback on their point total at the end of each list, allowing for sculpting of cognitive strategies. We examined the correlation between value-related modulation of brain activity and participants’ selectivity index, a measure of how close participants were to their optimal point total given the number of items recalled. Greater selectivity scores were associated with greater differences in activation of semantic processing regions, including left inferior frontal gyrus and left posterior lateral temporal cortex, during encoding of high-value words relative to low-value words. Although we also observed value-related modulation within midbrain and ventral striatal reward regions, our fronto-temporal findings suggest that strategic engagement of deep semantic processing may be an important mechanism for selectively encoding valuable items. PMID:24683066

  20. Value-based modulation of memory encoding involves strategic engagement of fronto-temporal semantic processing regions.

    PubMed

    Cohen, Michael S; Rissman, Jesse; Suthana, Nanthia A; Castel, Alan D; Knowlton, Barbara J

    2014-06-01

    A number of prior fMRI studies have focused on the ways in which the midbrain dopaminergic reward system coactivates with hippocampus to potentiate memory for valuable items. However, another means by which people could selectively remember more valuable to-be-remembered items is to be selective in their use of effective but effortful encoding strategies. To broadly examine the neural mechanisms of value on subsequent memory, we used fMRI to assess how differences in brain activity at encoding as a function of value relate to subsequent free recall for words. Each word was preceded by an arbitrarily assigned point value, and participants went through multiple study-test cycles with feedback on their point total at the end of each list, allowing for sculpting of cognitive strategies. We examined the correlation between value-related modulation of brain activity and participants' selectivity index, which measures how close participants were to their optimal point total, given the number of items recalled. Greater selectivity scores were associated with greater differences in the activation of semantic processing regions, including left inferior frontal gyrus and left posterior lateral temporal cortex, during the encoding of high-value words relative to low-value words. Although we also observed value-related modulation within midbrain and ventral striatal reward regions, our fronto-temporal findings suggest that strategic engagement of deep semantic processing may be an important mechanism for selectively encoding valuable items.

  1. Language production is facilitated by semantic richness but inhibited by semantic density: Evidence from picture naming.

    PubMed

    Rabovsky, Milena; Schad, Daniel J; Abdel Rahman, Rasha

    2016-01-01

    Communicating meaningful messages is the ultimate goal of language production. Yet, verbal messages can differ widely in the complexity and richness of their semantic content, and such differences should strongly modulate conceptual and lexical encoding processes during speech planning. However, despite the crucial role of semantic content in language production, the influence of this variability is currently unclear. Here, we investigate influences of the number of associated semantic features and intercorrelational feature density on language production during picture naming. While the number of semantic features facilitated naming, intercorrelational feature density inhibited naming. Both effects follow naturally from the assumption of conceptual facilitation and simultaneous lexical competition. They are difficult to accommodate with language production theories dismissing lexical competition. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A Semantic Map Approach to English Articles (A, The, and Ø)

    ERIC Educational Resources Information Center

    Butler, Brian C.

    2012-01-01

    The three structural possibilities marking a noun with an English article are "a," "the," and "Ø" (the absence of an article). Although these structural possibilities are simple, they encode a multitude of semantic and pragmatic functions, and it is these complex form-function interactions that this study explores and…

  3. Processing of Formational, Semantic, and Iconic Information in American Sign Language.

    ERIC Educational Resources Information Center

    Poizner, Howard; And Others

    1981-01-01

    Three experiments examined short-term encoding processes of deaf signers for different aspects of signs from American Sign Language. Results indicated that deaf signers code signs at one level in terms of linguistically significant formational parameters. The semantic and iconic information of signs, however, has little effect on short-term…

  4. Quest for a Computerised Semantics.

    ERIC Educational Resources Information Center

    Leslie, Adrian R.

    The objective of this thesis was to colligate the various strands of research in the literature of computational linguistics that have to do with the computational treatment of semantic content so as to encode it into a computerized dictionary. In chapter 1 the course of mechanical translation (1947-1960) and quantitative linguistics is traced to…

  5. Evidentials and Interrogatives: A Case Study from Korean

    ERIC Educational Resources Information Center

    Lim, Dong Sik

    2010-01-01

    My aims in this thesis are to establish how evidentiality is grammatically encoded in Korean, and to investigate the semantic nature of evidential morphemes in Korean, which helps us to explain the semantic and pragmatic behavior of evidential markers in non-declarative sentences, such as interrogatives. By doing so, this thesis also shows the…

  6. Generating Poetry Title Based on Semantic Relevance with Convolutional Neural Network

    NASA Astrophysics Data System (ADS)

    Li, Z.; Niu, K.; He, Z. Q.

    2017-09-01

    Several approaches have been proposed to automatically generate Chinese classical poetry (CCP) in the past few years, but automatically generating the title of CCP is still a difficult problem. The difficulties are mainly reflected in two aspects. First, the words used in CCP are very different from modern Chinese words and there are no valid word segmentation tools. Second, the semantic relevance of characters in CCP not only exists in one sentence but also exists between the same positions of adjacent sentences, which is hard to grasp by the traditional text summarization models. In this paper, we propose an encoder-decoder model for generating the title of CCP. Our model encoder is a convolutional neural network (CNN) with two kinds of filters. To capture the commonly used words in one sentence, one kind of filters covers two characters horizontally at each step. The other covers two characters vertically at each step and can grasp the semantic relevance of characters between adjacent sentences. Experimental results show that our model is better than several other related models and can capture the semantic relevance of CCP more accurately.

  7. Conceptual and non-conceptual repetition priming in category exemplar generation: Evidence from bilinguals.

    PubMed

    Francis, Wendy S; Fernandez, Norma P; Bjork, Robert A

    2010-10-01

    One measure of conceptual implicit memory is repetition priming in the generation of exemplars from a semantic category, but does such priming transfer across languages? That is, do the overlapping conceptual representations for translation equivalents provide a sufficient basis for such priming? In Experiment 1 (N=96) participants carried out a deep encoding task, and priming between languages was statistically reliable, but attenuated, relative to within-language priming. Experiment 2 (N=96) replicated the findings of Experiment 1 and assessed the contributions of conceptual and non-conceptual processes using a levels-of-processing manipulation. Words that underwent shallow encoding exhibited within-language, but not between-language, priming. Priming in shallow conditions cannot therefore be explained by incidental activation of the concept. Instead, part of the within-language priming effect, even under deep-encoding conditions, is due to increased availability of language-specific lemmas or phonological word forms.

  8. Conceptual and Non-conceptual Repetition Priming in Category Exemplar Generation: Evidence from Bilinguals

    PubMed Central

    Francis, Wendy S.; Fernandez, Norma P.; Bjork, Robert A.

    2010-01-01

    One measure of conceptual implicit memory is repetition priming in the generation of exemplars from a semantic category, but does such priming transfer across languages? That is, do the overlapping conceptual representations for translation equivalents provide a sufficient basis for such priming? In Experiment 1 (N = 96), participants carried out a deep encoding task, and priming between languages was statistically reliable, but attenuated, relative to within-language priming. Experiment 2 (N = 96) replicated the findings of Experiment 1 and assessed the contributions of conceptual and non-conceptual processes using a levels-of-processing manipulation. Words that underwent shallow encoding exhibited within-language, but not between-language, priming. Priming in shallow conditions cannot, therefore, be explained by incidental activation of the concept. Instead, part of the within-language priming effect, even under deep-encoding conditions, is due to increased availability of language-specific lemmas or phonological word forms. PMID:20924951

  9. Levels of word processing and incidental memory: dissociable mechanisms in the temporal lobe.

    PubMed

    Castillo, E M; Simos, P G; Davis, R N; Breier, J; Fitzgerald, M E; Papanicolaou, A C

    2001-11-16

    Word recall is facilitated when deep (e.g. semantic) processing is applied during encoding. This fact raises the question of the existence of specific brain mechanisms supporting different levels of information processing that can modulate incidental memory performance. In this study we obtained spatiotemporal brain activation profiles, using magnetic source imaging, from 10 adult volunteers as they performed a shallow (phonological) processing task and a deep (semantic) processing task. When phonological analysis of the word stimuli into their constituent phonemes was required, activation was largely restricted to the posterior portion of the left superior temporal gyrus (area 22). Conversely, when access to lexical/semantic representations was required, activation was found predominantly in the left middle temporal gyrus and medial temporal cortex. The differential engagement of each mechanism during word encoding was associated with dramatic changes in subsequent incidental memory performance.

  10. Statecharts Via Process Algebra

    NASA Technical Reports Server (NTRS)

    Luttgen, Gerald; vonderBeeck, Michael; Cleaveland, Rance

    1999-01-01

    Statecharts is a visual language for specifying the behavior of reactive systems. The Language extends finite-state machines with concepts of hierarchy, concurrency, and priority. Despite its popularity as a design notation for embedded system, precisely defining its semantics has proved extremely challenging. In this paper, a simple process algebra, called Statecharts Process Language (SPL), is presented, which is expressive enough for encoding Statecharts in a structure-preserving and semantic preserving manner. It is establish that the behavioral relation bisimulation, when applied to SPL, preserves Statecharts semantics

  11. Non-Interfering Effects of Active Post-Encoding Tasks on Episodic Memory Consolidation in Humans

    PubMed Central

    Varma, Samarth; Takashima, Atsuko; Krewinkel, Sander; van Kooten, Maaike; Fu, Lily; Medendorp, W. Pieter; Kessels, Roy P. C.; Daselaar, Sander M.

    2017-01-01

    So far, studies that investigated interference effects of post-learning processes on episodic memory consolidation in humans have used tasks involving only complex and meaningful information. Such tasks require reallocation of general or encoding-specific resources away from consolidation-relevant activities. The possibility that interference can be elicited using a task that heavily taxes our limited brain resources, but has low semantic and hippocampal related long-term memory processing demands, has never been tested. We address this question by investigating whether consolidation could persist in parallel with an active, encoding-irrelevant, minimally semantic task, regardless of its high resource demands for cognitive processing. We distinguish the impact of such a task on consolidation based on whether it engages resources that are: (1) general/executive, or (2) specific/overlapping with the encoding modality. Our experiments compared subsequent memory performance across two post-encoding consolidation periods: quiet wakeful rest and a cognitively demanding n-Back task. Across six different experiments (total N = 176), we carefully manipulated the design of the n-Back task to target general or specific resources engaged in the ongoing consolidation process. In contrast to previous studies that employed interference tasks involving conceptual stimuli and complex processing demands, we did not find any differences between n-Back and rest conditions on memory performance at delayed test, using both recall and recognition tests. Our results indicate that: (1) quiet, wakeful rest is not a necessary prerequisite for episodic memory consolidation; and (2) post-encoding cognitive engagement does not interfere with memory consolidation when task-performance has minimal semantic and hippocampally-based episodic memory processing demands. We discuss our findings with reference to resource and reactivation-led interference theories. PMID:28424596

  12. Non-Interfering Effects of Active Post-Encoding Tasks on Episodic Memory Consolidation in Humans.

    PubMed

    Varma, Samarth; Takashima, Atsuko; Krewinkel, Sander; van Kooten, Maaike; Fu, Lily; Medendorp, W Pieter; Kessels, Roy P C; Daselaar, Sander M

    2017-01-01

    So far, studies that investigated interference effects of post-learning processes on episodic memory consolidation in humans have used tasks involving only complex and meaningful information. Such tasks require reallocation of general or encoding-specific resources away from consolidation-relevant activities. The possibility that interference can be elicited using a task that heavily taxes our limited brain resources, but has low semantic and hippocampal related long-term memory processing demands, has never been tested. We address this question by investigating whether consolidation could persist in parallel with an active, encoding-irrelevant, minimally semantic task, regardless of its high resource demands for cognitive processing. We distinguish the impact of such a task on consolidation based on whether it engages resources that are: (1) general/executive, or (2) specific/overlapping with the encoding modality. Our experiments compared subsequent memory performance across two post-encoding consolidation periods: quiet wakeful rest and a cognitively demanding n-Back task. Across six different experiments (total N = 176), we carefully manipulated the design of the n-Back task to target general or specific resources engaged in the ongoing consolidation process. In contrast to previous studies that employed interference tasks involving conceptual stimuli and complex processing demands, we did not find any differences between n-Back and rest conditions on memory performance at delayed test, using both recall and recognition tests. Our results indicate that: (1) quiet, wakeful rest is not a necessary prerequisite for episodic memory consolidation; and (2) post-encoding cognitive engagement does not interfere with memory consolidation when task-performance has minimal semantic and hippocampally-based episodic memory processing demands. We discuss our findings with reference to resource and reactivation-led interference theories.

  13. Event Congruency Enhances Episodic Memory Encoding through Semantic Elaboration and Relational Binding

    PubMed Central

    Staresina, Bernhard P.; Gray, James C.

    2009-01-01

    Behavioral research consistently shows that congruous events, that is, events whose constituent elements match along some specific dimension, are better remembered than incongruous events. Although it has been speculated that this “congruency subsequent memory effect” (cSME) results from enhanced semantic elaboration, empirical evidence for this account is lacking. Here, we report a set of behavioral and neuroimaging experiments demonstrating that congruous events engage regions along the left inferior frontal gyrus (LIFG)—consistently related to semantic elaboration—to a significantly greater degree than incongruous events, providing evidence in favor of this hypothesis. Critically, we additionally report 3 novel findings in relation to event congruency: First, congruous events yield superior memory not only for a given study item but also for associated source details. Second, the cSME is evident not only for events that matched a semantic context but also for those that matched a subjective aesthetic schema. Finally, functional magnetic resonance imaging brain/behavior correlation analysis reveals a strong link between 1) across-subject variation in the magnitude of the cSME and 2) differential right hippocampal activation, suggesting that episodic memory for congruous events is effectively bolstered by the extent to which semantic associations are generated and relationally integrated via LIFG-hippocampal–encoding mechanisms. PMID:18820289

  14. Magnetoencephalographic--features related to mild cognitive impairment.

    PubMed

    Püregger, E; Walla, P; Deecke, L; Dal-Bianco, P

    2003-12-01

    We recorded changes of brain activity from 10 MCI patients and 10 controls related to shallow (nonsemantic) and deep (semantic) word encoding using a whole-head MEG. During the following recognition tasks, all participants had to recognize the previously encoded words, which were presented again together with new words. In both groups recognition performance significantly varied as a function of depth of processing. No significant differences were found between the groups. Reaction times related to correctly classified new words (correct rejections) and incorrectly classified repetitions (misses) of MCI patients showed a strong tendency toward prolongation compared to controls, although no statistically significant differences occurred. Strikingly, in patients the neurophysiological data associated with nonsemantic and semantic word encoding differed significantly between 250 and 450 ms after stimulus onset mainly over left frontal and left temporal sensors. They showed higher electrophysiological activation during shallow encoding as compared to deep encoding. No such significant differences were found in controls. The present results might reflect a dysfunction with respect to shallow encoding of visually presented verbal information. It is interpreted that additional neural activation is needed to compensate for neurodegeneration. This finding is suggested to be an additional tool for MCI diagnosis.

  15. NEREC, an effective brain mapping protocol for combined language and long-term memory functions.

    PubMed

    Perrone-Bertolotti, Marcela; Girard, Cléa; Cousin, Emilie; Vidal, Juan Ricardo; Pichat, Cédric; Kahane, Philippe; Baciu, Monica

    2015-12-01

    Temporal lobe epilepsy can induce functional plasticity in temporoparietal networks involved in language and long-term memory processing. Previous studies in healthy subjects have revealed the relative difficulty for this network to respond effectively across different experimental designs, as compared to more reactive regions such as frontal lobes. For a protocol to be optimal for clinical use, it has to first show robust effects in a healthy cohort. In this study, we developed a novel experimental paradigm entitled NEREC, which is able to reveal the robust participation of temporoparietal networks in a uniquely combined language and memory task, validated in an fMRI study with healthy subjects. Concretely, NEREC is composed of two runs: (a) an intermixed language-memory task (confrontation naming associated with encoding in nonverbal items, NE) to map language (i.e., word retrieval and lexico-semantic processes) combined with simultaneous long-term verbal memory encoding (NE items named but also explicitly memorized) and (b) a memory retrieval task of items encoded during NE (word recognition, REC) intermixed with new items. Word recognition is based on both perceptual-semantic familiarity (feeling of 'know') and accessing stored memory representations (remembering). In order to maximize the remembering and recruitment of medial temporal lobe structures, we increased REC difficulty by changing the modality of stimulus presentation (from nonverbal during NE to verbal during REC). We report that (a) temporoparietal activation during NE was attributable to both lexico-semantic (language) and memory (episodic encoding and semantic retrieval) processes; that (b) encoding activated the left hippocampus, bilateral fusiform, and bilateral inferior temporal gyri; and that (c) task recognition (recollection) activated the right hippocampus and bilateral but predominant left fusiform gyrus. The novelty of this protocol consists of (a) combining two tasks in one (language and long-term memory encoding/recall) instead of applying isolated tasks to map temporoparietal regions, (b) analyzing NE data based on performances recorded during REC, (c) double-mapping networks involved in naming and in long-term memory encoding and retrieval, (d) focusing on remembering with hippocampal activation and familiarity judgment with lateral temporal cortices activation, and (e) short duration of examination and feasibility. These aspects are of particular interest in patients with TLE, who frequently show impairment of these cognitive functions. Here, we show that the novel protocol is suited for this clinical evaluation. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Typicality as a Dimension of Encoding

    ERIC Educational Resources Information Center

    Keller, Dennis; Kellas, George

    1978-01-01

    The salience of encoding attributes in instances of differing levels of category membership was examined using the release from proactive interference (PI) task with college students. Results are discussed in terms of providing converging evidence for Rosch's (1973,1975) theory of semantic category structure. (Editor/RK)

  17. What is in a contour map? A region-based logical formalization of contour semantics

    USGS Publications Warehouse

    Usery, E. Lynn; Hahmann, Torsten

    2015-01-01

    This paper analyses and formalizes contour semantics in a first-order logic ontology that forms the basis for enabling computational common sense reasoning about contour information. The elicited contour semantics comprises four key concepts – contour regions, contour lines, contour values, and contour sets – and their subclasses and associated relations, which are grounded in an existing qualitative spatial ontology. All concepts and relations are illustrated and motivated by physical-geographic features identifiable on topographic contour maps. The encoding of the semantics of contour concepts in first-order logic and a derived conceptual model as basis for an OWL ontology lay the foundation for fully automated, semantically-aware qualitative and quantitative reasoning about contours.

  18. The effects of gender on the retrieval of episodic and semantic components of autobiographical memory.

    PubMed

    Fuentes, Amanda; Desrocher, Mary

    2013-01-01

    Despite consistent evidence that women exhibit greater episodic memory specificity than men, little attention has been paid to gender differences in the production of episodic details during autobiographical recall under conditions of high and low retrieval support. Similarly the role of gender on the production of semantic details used to support autobiographical memory recollections of specific events has been largely unexplored. In the present study an undergraduate sample of 50 men and 50 women were assessed using the Autobiographical Interview (Levine, Svoboda, Hay, Winocur, & Moscovitch, 2002). Women recalled more episodic information compared to men in the high retrieval support condition, whereas no gender differences were found in the low retrieval support condition. In addition, women produced more repetitions compared to men in the high retrieval support condition. No gender differences were found in the production of semantic details. These results are interpreted in terms of gender differences in encoding and reminiscence practices. This research adds to the literature on gender differences in memory recall and suggests that gender is an important variable in explaining individual differences in AM recall.

  19. F-OWL: An Inference Engine for Semantic Web

    NASA Technical Reports Server (NTRS)

    Zou, Youyong; Finin, Tim; Chen, Harry

    2004-01-01

    Understanding and using the data and knowledge encoded in semantic web documents requires an inference engine. F-OWL is an inference engine for the semantic web language OWL language based on F-logic, an approach to defining frame-based systems in logic. F-OWL is implemented using XSB and Flora-2 and takes full advantage of their features. We describe how F-OWL computes ontology entailment and compare it with other description logic based approaches. We also describe TAGA, a trading agent environment that we have used as a test bed for F-OWL and to explore how multiagent systems can use semantic web concepts and technology.

  20. Influence of First Language Orthographic Experience on Second Language Decoding and Word Learning

    ERIC Educational Resources Information Center

    Hamada, Megumi; Koda, Keiko

    2008-01-01

    This study examined the influence of first language (L1) orthographic experiences on decoding and semantic information retention of new words in a second language (L2). Hypotheses were that congruity in L1 and L2 orthographic experiences determines L2 decoding efficiency, which, in turn, affects semantic information encoding and retention.…

  1. Neural Basis of Semantic Representation and Semantic Composition

    ERIC Educational Resources Information Center

    Fernandino, Leonardo F.

    2009-01-01

    The mechanisms by which the mind encodes meaning into words and reconstructs it from them has been the subject of philosophical speculations at least since Plato and Aristotle in the 4th century B.C. Our current understanding of how the brain is involved in these processes, however, only started in the 19 th century, with precise descriptions of…

  2. Semantically-enabled sensor plug & play for the sensor web.

    PubMed

    Bröring, Arne; Maúe, Patrick; Janowicz, Krzysztof; Nüst, Daniel; Malewski, Christian

    2011-01-01

    Environmental sensors have continuously improved by becoming smaller, cheaper, and more intelligent over the past years. As consequence of these technological advancements, sensors are increasingly deployed to monitor our environment. The large variety of available sensor types with often incompatible protocols complicates the integration of sensors into observing systems. The standardized Web service interfaces and data encodings defined within OGC's Sensor Web Enablement (SWE) framework make sensors available over the Web and hide the heterogeneous sensor protocols from applications. So far, the SWE framework does not describe how to integrate sensors on-the-fly with minimal human intervention. The driver software which enables access to sensors has to be implemented and the measured sensor data has to be manually mapped to the SWE models. In this article we introduce a Sensor Plug & Play infrastructure for the Sensor Web by combining (1) semantic matchmaking functionality, (2) a publish/subscribe mechanism underlying the SensorWeb, as well as (3) a model for the declarative description of sensor interfaces which serves as a generic driver mechanism. We implement and evaluate our approach by applying it to an oil spill scenario. The matchmaking is realized using existing ontologies and reasoning engines and provides a strong case for the semantic integration capabilities provided by Semantic Web research.

  3. Semantically-Enabled Sensor Plug & Play for the Sensor Web

    PubMed Central

    Bröring, Arne; Maúe, Patrick; Janowicz, Krzysztof; Nüst, Daniel; Malewski, Christian

    2011-01-01

    Environmental sensors have continuously improved by becoming smaller, cheaper, and more intelligent over the past years. As consequence of these technological advancements, sensors are increasingly deployed to monitor our environment. The large variety of available sensor types with often incompatible protocols complicates the integration of sensors into observing systems. The standardized Web service interfaces and data encodings defined within OGC’s Sensor Web Enablement (SWE) framework make sensors available over the Web and hide the heterogeneous sensor protocols from applications. So far, the SWE framework does not describe how to integrate sensors on-the-fly with minimal human intervention. The driver software which enables access to sensors has to be implemented and the measured sensor data has to be manually mapped to the SWE models. In this article we introduce a Sensor Plug & Play infrastructure for the Sensor Web by combining (1) semantic matchmaking functionality, (2) a publish/subscribe mechanism underlying the SensorWeb, as well as (3) a model for the declarative description of sensor interfaces which serves as a generic driver mechanism. We implement and evaluate our approach by applying it to an oil spill scenario. The matchmaking is realized using existing ontologies and reasoning engines and provides a strong case for the semantic integration capabilities provided by Semantic Web research. PMID:22164033

  4. Auditory cortical function during verbal episodic memory encoding in Alzheimer's disease.

    PubMed

    Dhanjal, Novraj S; Warren, Jane E; Patel, Maneesh C; Wise, Richard J S

    2013-02-01

    Episodic memory encoding of a verbal message depends upon initial registration, which requires sustained auditory attention followed by deep semantic processing of the message. Motivated by previous data demonstrating modulation of auditory cortical activity during sustained attention to auditory stimuli, we investigated the response of the human auditory cortex during encoding of sentences to episodic memory. Subsequently, we investigated this response in patients with mild cognitive impairment (MCI) and probable Alzheimer's disease (pAD). Using functional magnetic resonance imaging, 31 healthy participants were studied. The response in 18 MCI and 18 pAD patients was then determined, and compared to 18 matched healthy controls. Subjects heard factual sentences, and subsequent retrieval performance indicated successful registration and episodic encoding. The healthy subjects demonstrated that suppression of auditory cortical responses was related to greater success in encoding heard sentences; and that this was also associated with greater activity in the semantic system. In contrast, there was reduced auditory cortical suppression in patients with MCI, and absence of suppression in pAD. Administration of a central cholinesterase inhibitor (ChI) partially restored the suppression in patients with pAD, and this was associated with an improvement in verbal memory. Verbal episodic memory impairment in AD is associated with altered auditory cortical function, reversible with a ChI. Although these results may indicate the direct influence of pathology in auditory cortex, they are also likely to indicate a partially reversible impairment of feedback from neocortical systems responsible for sustained attention and semantic processing. Copyright © 2012 American Neurological Association.

  5. The N400 reveals how personal semantics is processed: Insights into the nature and organization of self-knowledge

    PubMed Central

    Federmeier, Kara D.

    2017-01-01

    There is growing recognition that some important forms of long-term memory are difficult to classify into one of the well-studied memory subtypes. One example is personal semantics. Like the episodes that are stored as part of one’s autobiography, personal semantics is linked to an individual, yet, like general semantic memory, it is detached from a specific encoding context. Access to general semantics elicits an electrophysiological response known as the N400, which has been characterized across three decades of research; surprisingly, this response has not been fully examined in the context of personal semantics. In this study, we assessed responses to congruent and incongruent statements about people’s own, personal preferences. We found that access to personal preferences elicited N400 responses, with congruency effects that were similar in latency and distribution to those for general semantic statements elicited from the same participants. These results suggest that the processing of personal and general semantics share important functional and neurobiological features. PMID:26825011

  6. Modulation of task demands suggests that semantic processing interferes with the formation of episodic associations

    PubMed Central

    Long, Nicole M.; Kahana, Michael J.

    2016-01-01

    Although episodic and semantic memory share overlapping neural mechanisms, it remains unclear how our pre-existing semantic associations modulate the formation of new, episodic associations. When freely recalling recently studied words, people rely on both episodic and semantic associations, shown through temporal and semantic clustering of responses. We asked whether orienting participants toward semantic associations interferes with or facilitates the formation of episodic associations. We compared electroencephalographic (EEG) activity recorded during the encoding of subsequently recalled words that were either temporally or semantically clustered. Participants studied words with or without a concurrent semantic orienting task. We identified a neural signature of successful episodic association formation whereby high frequency EEG activity (HFA, 44 – 100 Hz) overlying left prefrontal regions increased for subsequently temporally clustered words, but only for those words studied without a concurrent semantic orienting task. To confirm that this disruption in the formation of episodic associations was driven by increased semantic processing, we measured the neural correlates of subsequent semantic clustering. We found that HFA increased for subsequently semantically clustered words only for lists with a concurrent semantic orienting task. This dissociation suggests that increased semantic processing of studied items interferes with the neural processes that support the formation of novel episodic associations. PMID:27617775

  7. Modulation of task demands suggests that semantic processing interferes with the formation of episodic associations.

    PubMed

    Long, Nicole M; Kahana, Michael J

    2017-02-01

    Although episodic and semantic memory share overlapping neural mechanisms, it remains unclear how our pre-existing semantic associations modulate the formation of new, episodic associations. When freely recalling recently studied words, people rely on both episodic and semantic associations, shown through temporal and semantic clustering of responses. We asked whether orienting participants toward semantic associations interferes with or facilitates the formation of episodic associations. We compared electroencephalographic (EEG) activity recorded during the encoding of subsequently recalled words that were either temporally or semantically clustered. Participants studied words with or without a concurrent semantic orienting task. We identified a neural signature of successful episodic association formation whereby high-frequency EEG activity (HFA, 44-100 Hz) overlying left prefrontal regions increased for subsequently temporally clustered words, but only for those words studied without a concurrent semantic orienting task. To confirm that this disruption in the formation of episodic associations was driven by increased semantic processing, we measured the neural correlates of subsequent semantic clustering. We found that HFA increased for subsequently semantically clustered words only for lists with a concurrent semantic orienting task. This dissociation suggests that increased semantic processing of studied items interferes with the neural processes that support the formation of novel episodic associations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. The associative memory deficit in aging is related to reduced selectivity of brain activity during encoding

    PubMed Central

    Saverino, Cristina; Fatima, Zainab; Sarraf, Saman; Oder, Anita; Strother, Stephen C.; Grady, Cheryl L.

    2016-01-01

    Human aging is characterized by reductions in the ability to remember associations between items, despite intact memory for single items. Older adults also show less selectivity in task-related brain activity, such that patterns of activation become less distinct across multiple experimental tasks. This reduced selectivity, or dedifferentiation, has been found for episodic memory, which is often reduced in older adults, but not for semantic memory, which is maintained with age. We used functional magnetic resonance imaging (fMRI) to investigate whether there is a specific reduction in selectivity of brain activity during associative encoding in older adults, but not during item encoding, and whether this reduction predicts associative memory performance. Healthy young and older adults were scanned while performing an incidental-encoding task for pictures of objects and houses under item or associative instructions. An old/new recognition test was administered outside the scanner. We used agnostic canonical variates analysis and split-half resampling to detect whole brain patterns of activation that predicted item vs. associative encoding for stimuli that were later correctly recognized. Older adults had poorer memory for associations than did younger adults, whereas item memory was comparable across groups. Associative encoding trials, but not item encoding trials, were predicted less successfully in older compared to young adults, indicating less distinct patterns of associative-related activity in the older group. Importantly, higher probability of predicting associative encoding trials was related to better associative memory after accounting for age and performance on a battery of neuropsychological tests. These results provide evidence that neural distinctiveness at encoding supports associative memory and that a specific reduction of selectivity in neural recruitment underlies age differences in associative memory. PMID:27082043

  9. Effects of Post-Encoding Stress on Performance in the DRM False Memory Paradigm

    ERIC Educational Resources Information Center

    Pardilla-Delgado, Enmanuelle; Alger, Sara E.; Cunningham, Tony J.; Kinealy, Brian; Payne, Jessica D.

    2016-01-01

    Numerous studies have investigated how stress impacts veridical memory, but how stress influences false memory formation remains poorly understood. In order to target memory consolidation specifically, a psychosocial stress (TSST) or control manipulation was administered following encoding of 15 neutral, semantically related word lists (DRM false…

  10. Impaired semantic knowledge underlies the reduced verbal short-term storage capacity in Alzheimer's disease.

    PubMed

    Peters, Frédéric; Majerus, Steve; De Baerdemaeker, Julie; Salmon, Eric; Collette, Fabienne

    2009-12-01

    A decrease in verbal short-term memory (STM) capacity is consistently observed in patients with Alzheimer's disease (AD). Although this impairment has been mainly attributed to attentional deficits during encoding and maintenance, the progressive deterioration of semantic knowledge in early stages of AD may also be an important determinant of poor STM performance. The aim of this study was to examine the influence of semantic knowledge on verbal short-term memory storage capacity in normal aging and in AD by exploring the impact of word imageability on STM performance. Sixteen patients suffering from mild AD, 16 healthy elderly subjects and 16 young subjects performed an immediate serial recall task using word lists containing high or low imageability words. All participant groups recalled more high imageability words than low imageability words, but the effect of word imageability on verbal STM was greater in AD patients than in both the young and the elderly control groups. More precisely, AD patients showed a marked decrease in STM performance when presented with lists of low imageability words, whereas recall of high imageability words was relatively well preserved. Furthermore, AD patients displayed an abnormal proportion of phonological errors in the low imageability condition. Overall, these results indicate that the support of semantic knowledge on STM performance was impaired for lists of low imageability words in AD patients. More generally, these findings suggest that the deterioration of semantic knowledge is partly responsible for the poor verbal short-term storage capacity observed in AD.

  11. What does semantic tiling of the cortex tell us about semantics?

    PubMed

    Barsalou, Lawrence W

    2017-10-01

    Recent use of voxel-wise modeling in cognitive neuroscience suggests that semantic maps tile the cortex. Although this impressive research establishes distributed cortical areas active during the conceptual processing that underlies semantics, it tells us little about the nature of this processing. While mapping concepts between Marr's computational and implementation levels to support neural encoding and decoding, this approach ignores Marr's algorithmic level, central for understanding the mechanisms that implement cognition, in general, and conceptual processing, in particular. Following decades of research in cognitive science and neuroscience, what do we know so far about the representation and processing mechanisms that implement conceptual abilities? Most basically, much is known about the mechanisms associated with: (1) feature and frame representations, (2) grounded, abstract, and linguistic representations, (3) knowledge-based inference, (4) concept composition, and (5) conceptual flexibility. Rather than explaining these fundamental representation and processing mechanisms, semantic tiles simply provide a trace of their activity over a relatively short time period within a specific learning context. Establishing the mechanisms that implement conceptual processing in the brain will require more than mapping it to cortical (and sub-cortical) activity, with process models from cognitive science likely to play central roles in specifying the intervening mechanisms. More generally, neuroscience will not achieve its basic goals until it establishes algorithmic-level mechanisms that contribute essential explanations to how the brain works, going beyond simply establishing the brain areas that respond to various task conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. An Experiment in Scientific Program Understanding

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E. M.; Owen, Karl (Technical Monitor)

    2000-01-01

    This paper concerns a procedure that analyzes aspects of the meaning or semantics of scientific and engineering code. This procedure involves taking a user's existing code, adding semantic declarations for some primitive variables, and parsing this annotated code using multiple, independent expert parsers. These semantic parsers encode domain knowledge and recognize formulae in different disciplines including physics, numerical methods, mathematics, and geometry. The parsers will automatically recognize and document some static, semantic concepts and help locate some program semantic errors. Results are shown for three intensively studied codes and seven blind test cases; all test cases are state of the art scientific codes. These techniques may apply to a wider range of scientific codes. If so, the techniques could reduce the time, risk, and effort required to develop and modify scientific codes.

  13. Stereotype Priming in Face Recognition: Interactions between Semantic and Visual Information in Face Encoding

    ERIC Educational Resources Information Center

    Hills, Peter J.; Lewis, Michael B.; Honey, R. C.

    2008-01-01

    The accuracy with which previously unfamiliar faces are recognised is increased by the presentation of a stereotype-congruent occupation label [Klatzky, R. L., Martin, G. L., & Kane, R. A. (1982a). "Semantic interpretation effects on memory for faces." "Memory & Cognition," 10, 195-206; Klatzky, R. L., Martin, G. L., & Kane, R. A. (1982b).…

  14. Squeeze-SegNet: a new fast deep convolutional neural network for semantic segmentation

    NASA Astrophysics Data System (ADS)

    Nanfack, Geraldin; Elhassouny, Azeddine; Oulad Haj Thami, Rachid

    2018-04-01

    The recent researches in Deep Convolutional Neural Network have focused their attention on improving accuracy that provide significant advances. However, if they were limited to classification tasks, nowadays with contributions from Scientific Communities who are embarking in this field, they have become very useful in higher level tasks such as object detection and pixel-wise semantic segmentation. Thus, brilliant ideas in the field of semantic segmentation with deep learning have completed the state of the art of accuracy, however this architectures become very difficult to apply in embedded systems as is the case for autonomous driving. We present a new Deep fully Convolutional Neural Network for pixel-wise semantic segmentation which we call Squeeze-SegNet. The architecture is based on Encoder-Decoder style. We use a SqueezeNet-like encoder and a decoder formed by our proposed squeeze-decoder module and upsample layer using downsample indices like in SegNet and we add a deconvolution layer to provide final multi-channel feature map. On datasets like Camvid or City-states, our net gets SegNet-level accuracy with less than 10 times fewer parameters than SegNet.

  15. Event-related brain potentials in memory: correlates of episodic, semantic and implicit memory.

    PubMed

    Wieser, Stephan; Wieser, Heinz Gregor

    2003-06-01

    To study cognitive evoked potentials, recorded from scalp EEG and foramen ovale electrodes, during activation of explicit and implicit memory. The subgroups of explicit memory, episodic and semantic memory, are looked at separately. A word-learning task was used, which has been shown to activate hippocampus in H(2)(15)O positron emission tomography studies. Subjects had to study and remember word pairs using different learning strategies: (i) associative word learning (AWL), which activates the episodic memory, (ii) deep single word encoding (DSWE), which activates the semantic memory, and (iii) shallow single word encoding (SSWE), which activates the implicit memory and serves as a baseline. The test included the 'remember/know' paradigm as a behavioural learning control. During the task condition, a 10-20 scalp EEG with additional electrodes in both temporal lobes regions was recorded from 11 healthy volunteers. In one patient with mesiotemporal lobe epilepsy, the EEG was recorded from bilateral foramen ovale electrodes directly from mesial temporal lobe structures. Event-related potentials (ERPs) were calculated off-line and visual and statistical analyses were made. Associative learning strategy produced the best memory performance and the best noetic awareness experience, whereas shallow single word encoding produced the worst performance and the smallest noetic awareness. Deep single word encoding performance was in between. ERPs differed according to the test condition, during both encoding and retrieval, from both the scalp EEG and the foramen ovale electrode recordings. Encoding showed significant differences between the shallow single word encoding (SSWE), which is mainly a function of graphical characteristics, and the other two strategies, deep single word (DSWE) and associative learning (AWL), in which there is a semantic processing of the meaning. ERPs generated by these two categories, which are both functions of explicit memory, differed as well, indicating the presence or the absence of associative binding. Retrieval showed a significant test effect between the word pairs learned by association (AWL) and the ones learned by encoding the words in isolation of each other (DSWE and SSWE). The comparison of the ERPs generated by autonoetic awareness ('remember') and noetic awareness ('know') exhibited a significant test effect as well. The results of behavioural data, in particular that of the 'remember/know' procedure, are evidence that the task paradigm was efficient in activating different kinds of memory. Associative word learning generated a high degree of autonoetic awareness, which is a result of the episodic memory, whereas both kinds of single word learning generated less. AWL, DSWE and SSWE resulted in different electrophysiological correlates, both for encoding as well as retrieval, indicating that different brain structures were activated in different temporal sequence.

  16. Evaluative priming in a semantic flanker task: ERP evidence for a mutual facilitation explanation.

    PubMed

    Schmitz, Melanie; Wentura, Dirk; Brinkmann, Thorsten A

    2014-03-01

    In semantic flanker tasks, target categorization response times are affected by the semantic compatibility of the flanker and target. With positive and negative category exemplars, we investigated the influence of evaluative congruency (whether flanker and target share evaluative valence) on the flanker effect, using behavioral and electrophysiological measures. We hypothesized a moderation of the flanker effect by evaluative congruency on the basis of the assumption that evaluatively congruent concepts mutually facilitate each other's activation (see Schmitz & Wentura in Journal of Experimental Psychology: Learning, Memory, and Cognition 38:984-1000, 2012). Applying an onset delay of 50 ms for the flanker, we aimed to decrease the facilitative effect of an evaluatively congruent flanker on target encoding and, at the same time, increase the facilitative effect of an evaluatively congruent target on flanker encoding. As a consequence of increased flanker activation in the case of evaluative congruency, we expected a semantically incompatible flanker to interfere with the target categorization to a larger extent (as compared with an evaluatively incongruent pairing). Confirming our hypotheses, the flanker effect significantly depended on evaluative congruency, in both mean response times and N2 mean amplitudes. Thus, the present study provided behavioral and electrophysiological evidence for the mutual facilitation of evaluatively congruent concepts. Implications for the representation of evaluative connotations of semantic concepts are discussed.

  17. Effects of post-encoding stress on performance in the DRM false memory paradigm

    PubMed Central

    Pardilla-Delgado, Enmanuelle; Alger, Sara E.; Cunningham, Tony J.; Kinealy, Brian

    2016-01-01

    Numerous studies have investigated how stress impacts veridical memory, but how stress influences false memory formation remains poorly understood. In order to target memory consolidation specifically, a psychosocial stress (TSST) or control manipulation was administered following encoding of 15 neutral, semantically related word lists (DRM false memory task) and memory was tested 24 h later. Stress decreased recognition of studied words, while increasing false recognition of semantically related lure words. Moreover, while control subjects remembered true and false words equivalently, stressed subjects remembered more false than true words. These results suggest that stress supports gist memory formation in the DRM task, perhaps by hindering detail-specific processing in the hippocampus. PMID:26670187

  18. Interdependence of episodic and semantic memory: evidence from neuropsychology.

    PubMed

    Greenberg, Daniel L; Verfaellie, Mieke

    2010-09-01

    Tulving's (1972) theory of memory draws a distinction between general knowledge (semantic memory) and memory for events (episodic memory). Neuropsychological studies have generally examined each type of memory in isolation, but theorists have long argued that these two forms of memory are interdependent. Here we review several lines of neuropsychological research that have explored the interdependence of episodic and semantic memory. The studies show that these forms of memory can affect each other both at encoding and at retrieval. We suggest that theories of memory should be revised to account for all of the interdependencies between episodic and semantic memory; they should also incorporate forms of memory that do not fit neatly into either category.

  19. Interdependence of episodic and semantic memory: Evidence from neuropsychology

    PubMed Central

    GREENBERG, DANIEL L.; VERFAELLIE, MIEKE

    2010-01-01

    Tulving's (1972) theory of memory draws a distinction between general knowledge (semantic memory) and memory for events (episodic memory). Neuropsychological studies have generally examined each type of memory in isolation, but theorists have long argued that these two forms of memory are interdependent. Here we review several lines of neuropsychological research that have explored the interdependence of episodic and semantic memory. The studies show that these forms of memory can affect each other both at encoding and at retrieval. We suggest that theories of memory should be revised to account for all of the interdependencies between episodic and semantic memory; they should also incorporate forms of memory that do not fit neatly into either category. PMID:20561378

  20. The effect of encoding manipulation on word-stem cued recall: an event-related potential study.

    PubMed

    Fay, Séverine; Isingrini, Michel; Ragot, Richard; Pouthas, Viviane

    2005-08-01

    The purpose of the present study was to find out whether the neural correlates of explicit retrieval from episodic memory would vary according to conditions at encoding when the words were presented in separate study/test blocks. Event-related potentials (ERPs) were recorded while participants performed a word-stem cued-recall task. Deeply (semantically) studied words were associated with higher levels of recall and faster response times than shallowly (lexically) studied words. Robust ERP old/new effects were observed for each encoding condition. They varied in magnitude, being largest in the semantic condition. As expected, scalp distributions also differed: for deeply studied words, the old/new effect resembled that found in previous ERP studies of word-stem cued-recall tasks (parietal and right frontal effects, between 400-800 and 800-1100 ms post-stimulus), whereas for shallowly studied words, the parietal old/new effect was absent in the latter latency window. These results can be interpreted as reflecting access to different kinds of memory representation depending on the nature of the processing engaged during encoding. Furthermore, differences in the ERPs elicited by new items indicate that subjects adopted different processing strategies in the test blocks following each encoding condition.

  1. Remembering operations.

    PubMed

    Kolers, P A

    1973-09-01

    Two commonplace assumptions about encoding are that sentences are encoded and recognized on the basis of their semantic features primarily and that information regarding form features such as typography is typically ignored or discarded. These assumptions were tested m the present experiment where, within a signal-detection paradigm, S sorted sentences according to whether he had seen them before or not (old vs new) and, if they were old, whether their reappearance was in the same typography as on the first occurrence or a different one. Of the two typographies, one was familiar and the other unfamiliar. Results show that a considerable amount of information regarding surface features is stored for many minutes and that ease of initial encoding is inversely related to likelihood of subsequent recognition: sentences in the unfamiliar typography were remembered better. The results are probably not due to time spent encoding; control tests suggest that time spent encoding a difficult typography does not by itself increase recognition of the semantic content embodied in the typography. Other control tests show that pictorial features or images of the sentences play no significant role in their subsequent recognition. One interpretation of the results is that the analytic activities or cognitive operations that characterize initial acquisition play a significant role in subsequent recognition.

  2. Effortful semantic decision-making boosts memory performance in older adults.

    PubMed

    Fu, Li; Maes, Joseph H R; Varma, Samarth; Kessels, Roy P C; Daselaar, Sander M

    2017-04-01

    A major concern in age-related cognitive decline is episodic memory (EM). Previous studies indicate that both resource and binding deficits contribute to EM decline. Environmental support by task manipulations encouraging stronger cognitive effort and deeper levels of processing may facilitate compensation for these two deficits. To clarify factors that can counteract age-related EM decline, we assessed effects of cognitive effort (four levels) and level of processing (LoP, shallow/deep) during encoding on subsequent retrieval. Young (YAs, N = 23) and older (OAs, N = 23) adults performed two incidental encoding tasks, deep/semantic and shallow/perceptual. Cognitive effort was manipulated by varying decision-making demands. EM performance, indexed by d-prime, was later tested using a recognition task. Results showed that regardless of LoP, increased cognitive effort caused higher d-primes in both age groups. Compared to YAs, OAs showed a lower d-prime after shallow encoding across all cognitive effort levels, and after deep encoding with low cognitive effort. Deep encoding with higher levels of cognitive effort completely eliminated these age differences. Our findings support an environmental-compensatory account of cognitive ageing and can have important therapeutic implications.

  3. Get the gist? The effects of processing depth on false recognition in short-term and long-term memory.

    PubMed

    Flegal, Kristin E; Reuter-Lorenz, Patricia A

    2014-07-01

    Gist-based processing has been proposed to account for robust false memories in the converging-associates task. The deep-encoding processes known to enhance verbatim memory also strengthen gist memory and increase distortions of long-term memory (LTM). Recent research has demonstrated that compelling false memory illusions are relatively delay-invariant, also occurring under canonical short-term memory (STM) conditions. To investigate the contributions of gist to false memory at short and long delays, processing depth was manipulated as participants encoded lists of four semantically related words and were probed immediately, following a filled 3- to 4-s retention interval, or approximately 20 min later, in a surprise recognition test. In two experiments, the encoding manipulation dissociated STM and LTM on the frequency, but not the phenomenology, of false memory. Deep encoding at STM increases false recognition rates at LTM, but confidence ratings and remember/know judgments are similar across delays and do not differ as a function of processing depth. These results suggest that some shared and some unique processes underlie false memory illusions at short and long delays.

  4. Oscillatory EEG dynamics underlying automatic chunking during sentence processing.

    PubMed

    Bonhage, Corinna E; Meyer, Lars; Gruber, Thomas; Friederici, Angela D; Mueller, Jutta L

    2017-05-15

    Sentences are easier to remember than random word sequences, likely because linguistic regularities facilitate chunking of words into meaningful groups. The present electroencephalography study investigated the neural oscillations modulated by this so-called sentence superiority effect during the encoding and maintenance of sentence fragments versus word lists. We hypothesized a chunking-related modulation of neural processing during the encoding and retention of sentences (i.e., sentence fragments) as compared to word lists. Time-frequency analysis revealed a two-fold oscillatory pattern for the memorization of sentences: Sentence encoding was accompanied by higher delta amplitude (4Hz), originating both from regions processing syntax as well as semantics (bilateral superior/middle temporal regions and fusiform gyrus). Subsequent sentence retention was reflected in decreased theta (6Hz) and beta/gamma (27-32Hz) amplitude instead. Notably, whether participants simply read or properly memorized the sentences did not impact chunking-related activity during encoding. Therefore, we argue that the sentence superiority effect is grounded in highly automatized language processing mechanisms, which generate meaningful memory chunks irrespective of task demands. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. How "mere" is the mere ownership effect in memory? Evidence for semantic organization processes.

    PubMed

    Englert, Julia; Wentura, Dirk

    2016-11-01

    Memory is better for items arbitrarily assigned to the self than for items assigned to another person (mere ownership effect, MOE). In a series of six experiments, we investigated the role of semantic processes for the MOE. Following successful replication, we investigated whether the MOE was contingent upon semantic processing: For meaningless stimuli, there was no MOE. Testing for a potential role of semantic elaboration using meaningful stimuli in an encoding task without verbal labels, we found evidence of spontaneous semantic processing irrespective of self- or other-assignment. When semantic organization was manipulated, the MOE vanished if a semantic classification task was added to the self/other assignment but persisted for a perceptual classification task. Furthermore, we found greater clustering of self-assigned than of other-assigned items in free recall. Taken together, these results suggest that the MOE could be based on the organizational principle of a "me" versus "not-me" categorization. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The Dorsolateral Prefrontal Cortex Plays a Role in Self-Initiated Elaborative Cognitive Processing during Episodic Memory Encoding: rTMS Evidence

    PubMed Central

    Hawco, Colin; Berlim, Marcelo T.; Lepage, Martin

    2013-01-01

    During episodic memory encoding, elaborative cognitive processing can improve later recall or recognition. While multiple studies examined the neural correlates of encoding strategies, few studies have explicitly focused on the self-initiation of elaborative encoding. Repetitive transcranial magnetic stimulation (rTMS), a method which can transiently disrupt neural activity, was administered during an associative encoding task. rTMS was either applied to the left dorsolateral prefrontal cortex (DLPFC) or to the vertex (a control region not involved in memory encoding) during presentation of pairs of words. Pairs could be semantically related or not related. Two encoding instructions were given, either cueing participants to analyze semantic relationships (cued condition), or to memorize the pair without any specific strategy cues (the self-initiated condition). Participants filled out a questionnaire regarding their use of memory strategies and performed a cued-recall task. We hypothesized that if the DLPFC plays a role in the self-initiation of elaborative encoding we would observe a reduction in memory performance in the self-initiated condition, particularly for related. We found a significant correlation between the effects of rTMS and strategy use, only in the self-initiated condition with related pairs. High strategy users showed reduced performance following DLPFC stimulation, while low strategy users tended to show increased recall following DLPFC stimulation during encoding. These results suggest the left DLPFC may be involved in the self-initiation of memory strategy use, and individuals may utilize different neural networks depending on their use of encoding strategies. PMID:24040072

  7. Metadata management and semantics in microarray repositories.

    PubMed

    Kocabaş, F; Can, T; Baykal, N

    2011-12-01

    The number of microarray and other high-throughput experiments on primary repositories keeps increasing as do the size and complexity of the results in response to biomedical investigations. Initiatives have been started on standardization of content, object model, exchange format and ontology. However, there are backlogs and inability to exchange data between microarray repositories, which indicate that there is a great need for a standard format and data management. We have introduced a metadata framework that includes a metadata card and semantic nets that make experimental results visible, understandable and usable. These are encoded in syntax encoding schemes and represented in RDF (Resource Description Frame-word), can be integrated with other metadata cards and semantic nets, and can be exchanged, shared and queried. We demonstrated the performance and potential benefits through a case study on a selected microarray repository. We concluded that the backlogs can be reduced and that exchange of information and asking of knowledge discovery questions can become possible with the use of this metadata framework.

  8. The roles of encoding strategies and retrieval practice in test-expectancy effects.

    PubMed

    Cho, Kit W; Neely, James H

    2017-05-01

    We investigated whether expectations for different kinds of memory tests induce qualitatively different encoding strategies. In Experiment 1, participants studied four lists of words and after each list completed a cued-recall test that contained either all semantic or all orthographic cues so as to build up an expectancy for receiving the same type of test for the fifth critical study list. To rule out that the test-expectancy effects in Experiment 1 were due to differences in retrieval practice, in Experiment 2, participants received three practice tests each for both cue-types. Participants' test expectancy for all lists was induced by telling them before each list the type of cue they would receive for the upcoming study list. In both experiments, the critical test contained both expected and unexpected cues. In Experiment 1, participants who expected semantic cues had better recall to the semantic cues than to the orthographic cues and vice versa for those who expected orthographic cues. However, in Experiment 2, there was no effect of test expectancy. These findings suggest that the test-expectancy effects in Experiment 1 were due to more retrieval practice on the expected than unexpected tests rather than to qualitatively different test-expectancy-induced encoding strategies.

  9. A brain-based account of “basic-level” concepts

    PubMed Central

    Bauer, Andrew James; Just, Marcel Adam

    2017-01-01

    This study provides a brain-based account of how object concepts at an intermediate (basic) level of specificity are represented, offering an enriched view of what it means for a concept to be a basic-level concept, a research topic pioneered by Rosch and others (Rosch et al., 1976). Applying machine learning techniques to fMRI data, it was possible to determine the semantic content encoded in the neural representations of object concepts at basic and subordinate levels of abstraction. The representation of basic-level concepts (e.g. bird) was spatially broad, encompassing sensorimotor brain areas that encode concrete object properties, and also language and heteromodal integrative areas that encode abstract semantic content. The representation of subordinate-level concepts (robin) was less widely distributed, concentrated in perceptual areas that underlie concrete content. Furthermore, basic-level concepts were representative of their subordinates in that they were neurally similar to their typical but not atypical subordinates (bird was neurally similar to robin but not woodpecker). The findings provide a brain-based account of the advantages that basic-level concepts enjoy in everyday life over subordinate-level concepts: the basic level is a broad topographical representation that encompasses both concrete and abstract semantic content, reflecting the multifaceted yet intuitive meaning of basic-level concepts. PMID:28826947

  10. A brain-based account of "basic-level" concepts.

    PubMed

    Bauer, Andrew James; Just, Marcel Adam

    2017-11-01

    This study provides a brain-based account of how object concepts at an intermediate (basic) level of specificity are represented, offering an enriched view of what it means for a concept to be a basic-level concept, a research topic pioneered by Rosch and others (Rosch et al., 1976). Applying machine learning techniques to fMRI data, it was possible to determine the semantic content encoded in the neural representations of object concepts at basic and subordinate levels of abstraction. The representation of basic-level concepts (e.g. bird) was spatially broad, encompassing sensorimotor brain areas that encode concrete object properties, and also language and heteromodal integrative areas that encode abstract semantic content. The representation of subordinate-level concepts (robin) was less widely distributed, concentrated in perceptual areas that underlie concrete content. Furthermore, basic-level concepts were representative of their subordinates in that they were neurally similar to their typical but not atypical subordinates (bird was neurally similar to robin but not woodpecker). The findings provide a brain-based account of the advantages that basic-level concepts enjoy in everyday life over subordinate-level concepts: the basic level is a broad topographical representation that encompasses both concrete and abstract semantic content, reflecting the multifaceted yet intuitive meaning of basic-level concepts. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The N400 reveals how personal semantics is processed: Insights into the nature and organization of self-knowledge.

    PubMed

    Coronel, Jason C; Federmeier, Kara D

    2016-04-01

    There is growing recognition that some important forms of long-term memory are difficult to classify into one of the well-studied memory subtypes. One example is personal semantics. Like the episodes that are stored as part of one's autobiography, personal semantics is linked to an individual, yet, like general semantic memory, it is detached from a specific encoding context. Access to general semantics elicits an electrophysiological response known as the N400, which has been characterized across three decades of research; surprisingly, this response has not been fully examined in the context of personal semantics. In this study, we assessed responses to congruent and incongruent statements about people's own, personal preferences. We found that access to personal preferences elicited N400 responses, with congruency effects that were similar in latency and distribution to those for general semantic statements elicited from the same participants. These results suggest that the processing of personal and general semantics share important functional and neurobiological features. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. NCBO Resource Index: Ontology-Based Search and Mining of Biomedical Resources

    PubMed Central

    Jonquet, Clement; LePendu, Paea; Falconer, Sean; Coulet, Adrien; Noy, Natalya F.; Musen, Mark A.; Shah, Nigam H.

    2011-01-01

    The volume of publicly available data in biomedicine is constantly increasing. However, these data are stored in different formats and on different platforms. Integrating these data will enable us to facilitate the pace of medical discoveries by providing scientists with a unified view of this diverse information. Under the auspices of the National Center for Biomedical Ontology (NCBO), we have developed the Resource Index—a growing, large-scale ontology-based index of more than twenty heterogeneous biomedical resources. The resources come from a variety of repositories maintained by organizations from around the world. We use a set of over 200 publicly available ontologies contributed by researchers in various domains to annotate the elements in these resources. We use the semantics that the ontologies encode, such as different properties of classes, the class hierarchies, and the mappings between ontologies, in order to improve the search experience for the Resource Index user. Our user interface enables scientists to search the multiple resources quickly and efficiently using domain terms, without even being aware that there is semantics “under the hood.” PMID:21918645

  13. NCBO Resource Index: Ontology-Based Search and Mining of Biomedical Resources.

    PubMed

    Jonquet, Clement; Lependu, Paea; Falconer, Sean; Coulet, Adrien; Noy, Natalya F; Musen, Mark A; Shah, Nigam H

    2011-09-01

    The volume of publicly available data in biomedicine is constantly increasing. However, these data are stored in different formats and on different platforms. Integrating these data will enable us to facilitate the pace of medical discoveries by providing scientists with a unified view of this diverse information. Under the auspices of the National Center for Biomedical Ontology (NCBO), we have developed the Resource Index-a growing, large-scale ontology-based index of more than twenty heterogeneous biomedical resources. The resources come from a variety of repositories maintained by organizations from around the world. We use a set of over 200 publicly available ontologies contributed by researchers in various domains to annotate the elements in these resources. We use the semantics that the ontologies encode, such as different properties of classes, the class hierarchies, and the mappings between ontologies, in order to improve the search experience for the Resource Index user. Our user interface enables scientists to search the multiple resources quickly and efficiently using domain terms, without even being aware that there is semantics "under the hood."

  14. Case-Based Plan Recognition Using Action Sequence Graphs

    DTIC Science & Technology

    2014-10-01

    resized as necessary. Similarly, trace- based reasoning (Zarka et al., 2013) and episode -based reasoning (Sánchez-Marré, 2005) store fixed-length...is a goal state of Π, where satisfies has the same semantics as originally laid out in Ghallab, Nau & Traverso (2004). Action 0 is ...Although there are syntactic similarities between planning encoding graphs and action sequence graphs, important semantic differences exist because the

  15. Supervised Outlier Detection in Large-Scale Mvs Point Clouds for 3d City Modeling Applications

    NASA Astrophysics Data System (ADS)

    Stucker, C.; Richard, A.; Wegner, J. D.; Schindler, K.

    2018-05-01

    We propose to use a discriminative classifier for outlier detection in large-scale point clouds of cities generated via multi-view stereo (MVS) from densely acquired images. What makes outlier removal hard are varying distributions of inliers and outliers across a scene. Heuristic outlier removal using a specific feature that encodes point distribution often delivers unsatisfying results. Although most outliers can be identified correctly (high recall), many inliers are erroneously removed (low precision), too. This aggravates object 3D reconstruction due to missing data. We thus propose to discriminatively learn class-specific distributions directly from the data to achieve high precision. We apply a standard Random Forest classifier that infers a binary label (inlier or outlier) for each 3D point in the raw, unfiltered point cloud and test two approaches for training. In the first, non-semantic approach, features are extracted without considering the semantic interpretation of the 3D points. The trained model approximates the average distribution of inliers and outliers across all semantic classes. Second, semantic interpretation is incorporated into the learning process, i.e. we train separate inlieroutlier classifiers per semantic class (building facades, roof, ground, vegetation, fields, and water). Performance of learned filtering is evaluated on several large SfM point clouds of cities. We find that results confirm our underlying assumption that discriminatively learning inlier-outlier distributions does improve precision over global heuristics by up to ≍ 12 percent points. Moreover, semantically informed filtering that models class-specific distributions further improves precision by up to ≍ 10 percent points, being able to remove very isolated building, roof, and water points while preserving inliers on building facades and vegetation.

  16. The ties that bind what is known to the recognition of what is new.

    PubMed

    Nelson, D L; Zhang, N; McKinney, V M

    2001-09-01

    Recognition success varies with how information is encoded (e.g., level of processing) and with what is already known as a result of past learning (e.g., word frequency). This article presents the results of experiments showing that preexisting connections involving the associates of studied words facilitate their recognition regardless of whether the words are intentionally encoded or are incidentally encoded under semantic or nonsemantic conditions. Words are more likely to be recognized when they have either more resonant connections coming back to them from their associates or more connections among their associates. Such results occur even though attention is never drawn to these associates. Regression analyses showed that these connections affect recognition independently of frequency, so the present results add to the literature showing that prior lexical knowledge contributes to episodic recognition. In addition, equations that use free-association data to derive composite strength indices of resonance and connectivity were evaluated. Implications for theories of recognition are discussed.

  17. Neural correlates of the spacing effect in explicit verbal semantic encoding support the deficient-processing theory.

    PubMed

    Callan, Daniel E; Schweighofer, Nicolas

    2010-04-01

    Spaced presentations of to-be-learned items during encoding leads to superior long-term retention over massed presentations. Despite over a century of research, the psychological and neural basis of this spacing effect however is still under investigation. To test the hypotheses that the spacing effect results either from reduction in encoding-related verbal maintenance rehearsal in massed relative to spaced presentations (deficient processing hypothesis) or from greater encoding-related elaborative rehearsal of relational information in spaced relative to massed presentations (encoding variability hypothesis), we designed a vocabulary learning experiment in which subjects encoded paired-associates, each composed of a known word paired with a novel word, in both spaced and massed conditions during functional magnetic resonance imaging. As expected, recall performance in delayed cued-recall tests was significantly better for spaced over massed conditions. Analysis of brain activity during encoding revealed that the left frontal operculum, known to be involved in encoding via verbal maintenance rehearsal, was associated with greater performance-related increased activity in the spaced relative to massed condition. Consistent with the deficient processing hypothesis, a significant decrease in activity with subsequent episodes of presentation was found in the frontal operculum for the massed but not the spaced condition. Our results suggest that the spacing effect is mediated by activity in the frontal operculum, presumably by encoding-related increased verbal maintenance rehearsal, which facilitates binding of phonological and word level verbal information for transfer into long-term memory. Copyright 2009 Wiley-Liss, Inc.

  18. Potential role of monkey inferior parietal neurons coding action semantic equivalences as precursors of parts of speech.

    PubMed

    Yamazaki, Yumiko; Yokochi, Hiroko; Tanaka, Michio; Okanoya, Kazuo; Iriki, Atsushi

    2010-01-01

    The anterior portion of the inferior parietal cortex possesses comprehensive representations of actions embedded in behavioural contexts. Mirror neurons, which respond to both self-executed and observed actions, exist in this brain region in addition to those originally found in the premotor cortex. We found that parietal mirror neurons responded differentially to identical actions embedded in different contexts. Another type of parietal mirror neuron represents an inverse and complementary property of responding equally to dissimilar actions made by itself and others for an identical purpose. Here, we propose a hypothesis that these sets of inferior parietal neurons constitute a neural basis for encoding the semantic equivalence of various actions across different agents and contexts. The neurons have mirror neuron properties, and they encoded generalization of agents, differentiation of outcomes, and categorization of actions that led to common functions. By integrating the activities of these mirror neurons with various codings, we further suggest that in the ancestral primates' brains, these various representations of meaningful action led to the gradual establishment of equivalence relations among the different types of actions, by sharing common action semantics. Such differential codings of the components of actions might represent precursors to the parts of protolanguage, such as gestural communication, which are shared among various members of a society. Finally, we suggest that the inferior parietal cortex serves as an interface between this action semantics system and other higher semantic systems, through common structures of action representation that mimic language syntax.

  19. Potential role of monkey inferior parietal neurons coding action semantic equivalences as precursors of parts of speech

    PubMed Central

    Yamazaki, Yumiko; Yokochi, Hiroko; Tanaka, Michio; Okanoya, Kazuo; Iriki, Atsushi

    2010-01-01

    The anterior portion of the inferior parietal cortex possesses comprehensive representations of actions embedded in behavioural contexts. Mirror neurons, which respond to both self-executed and observed actions, exist in this brain region in addition to those originally found in the premotor cortex. We found that parietal mirror neurons responded differentially to identical actions embedded in different contexts. Another type of parietal mirror neuron represents an inverse and complementary property of responding equally to dissimilar actions made by itself and others for an identical purpose. Here, we propose a hypothesis that these sets of inferior parietal neurons constitute a neural basis for encoding the semantic equivalence of various actions across different agents and contexts. The neurons have mirror neuron properties, and they encoded generalization of agents, differentiation of outcomes, and categorization of actions that led to common functions. By integrating the activities of these mirror neurons with various codings, we further suggest that in the ancestral primates' brains, these various representations of meaningful action led to the gradual establishment of equivalence relations among the different types of actions, by sharing common action semantics. Such differential codings of the components of actions might represent precursors to the parts of protolanguage, such as gestural communication, which are shared among various members of a society. Finally, we suggest that the inferior parietal cortex serves as an interface between this action semantics system and other higher semantic systems, through common structures of action representation that mimic language syntax. PMID:20119879

  20. Meaning in the avian auditory cortex: Neural representation of communication calls

    PubMed Central

    Elie, Julie E; Theunissen, Frédéric E

    2014-01-01

    Understanding how the brain extracts the behavioral meaning carried by specific vocalization types that can be emitted by various vocalizers and in different conditions is a central question in auditory research. This semantic categorization is a fundamental process required for acoustic communication and presupposes discriminative and invariance properties of the auditory system for conspecific vocalizations. Songbirds have been used extensively to study vocal learning, but the communicative function of all their vocalizations and their neural representation has yet to be examined. In our research, we first generated a library containing almost the entire zebra finch vocal repertoire and organized communication calls along 9 different categories based on their behavioral meaning. We then investigated the neural representations of these semantic categories in the primary and secondary auditory areas of 6 anesthetized zebra finches. To analyze how single units encode these call categories, we described neural responses in terms of their discrimination, selectivity and invariance properties. Quantitative measures for these neural properties were obtained using an optimal decoder based both on spike counts and spike patterns. Information theoretic metrics show that almost half of the single units encode semantic information. Neurons achieve higher discrimination of these semantic categories by being more selective and more invariant. These results demonstrate that computations necessary for semantic categorization of meaningful vocalizations are already present in the auditory cortex and emphasize the value of a neuro-ethological approach to understand vocal communication. PMID:25728175

  1. Comparison of the Effects of Episodic Organizers and Traditional Notetaking on Story Recall. Final Report.

    ERIC Educational Resources Information Center

    Denner, Peter R.

    Since the precise nature of the effects of notetaking encoding has not been clearly specified, a study involving 111 suburban seventh graders (southeastern Idaho) explored the differential effects of traditional notetaking and of episodic organizers (a type of semantic web or map) on the encoding of complex narrative passages. Subjects were…

  2. An Investigation of Differential Encoding and Retrieval in Older Adult College Students.

    ERIC Educational Resources Information Center

    Shaughnessy, Michael F.; Reif, Laurie

    Three experiments were conducted in order to clarify the encoding/retrieval dilemma in older adult students; and the recognition/recall test issue was also explored. First, a mnemonic technique based on the "key word" method of Funk and Tarshis was used; secondly, a semantic processing task was tried; and lastly, a repetition task, based…

  3. Short theta burst stimulation to left frontal cortex prior to encoding enhances subsequent recognition memory

    PubMed Central

    Demeter, Elise; Mirdamadi, Jasmine L.; Meehan, Sean K.; Taylor, Stephan F.

    2016-01-01

    Deep semantic encoding of verbal stimuli can aid in later successful retrieval of those stimuli from long-term episodic memory. Evidence from numerous neuropsychological and neuroimaging experiments demonstrate regions in left prefrontal cortex, including left dorsolateral prefrontal cortex (DLPFC), are important for processes related to encoding. Here, we investigated the relationship between left DLPFC activity during encoding and successful subsequent memory with transcranial magnetic stimulation (TMS). In a pair of experiments using a 2-session within-subjects design, we stimulated either left DLPFC or a control region (Vertex) with a single 2-s train of short theta burst stimulation (sTBS) during a semantic encoding task and then gave participants a recognition memory test. We found that subsequent memory was enhanced on the day left DLPFC was stimulated, relative to the day Vertex was stimulated, and that DLPFC stimulation also increased participants’ confidence in their decisions during the recognition task. We also explored the time course of how long the effects of sTBS persisted. Our data suggest 2 s of sTBS to left DLPFC is capable of enhancing subsequent memory for items encoded up to 15 s following stimulation. Collectively, these data demonstrate sTBS is capable of enhancing long-term memory and provide evidence that TBS protocols are a potentially powerful tool for modulating cognitive function. PMID:27098772

  4. Semantic associative relations and conceptual processing.

    PubMed

    Di Giacomo, Dina; De Federicis, Lucia Serenella; Pistelli, Manuela; Fiorenzi, Daniela; Passafiume, Domenico

    2012-02-01

    We analysed the organisation of semantic network using associative mechanisms between different types of information and studied the progression of the use of these associative relations during development. We aimed to verify the linkage of concepts with the use of semantic associative relations. The goal of this study was to analyse the cognitive ability to use associative relations between various items when describing old and/or new concepts. We examined the performance of 100 subjects between the ages of 4 and 7 years on an experimental task using five associative relations based on verbal encoding. The results showed that children are able to use the five semantic associative relations at age 4, but performance with each of the different associative relations improves at different times during development. Functional and part/whole relations develop at an early age, whereas the superordinate relations develop later. Our study clarified the characteristics of the progression of semantic associations during development as well as the roles that associative relations play in the structure and improvement of the semantic store.

  5. Spatio-temporal Dynamics of Referential and Inferential Naming: Different Brain and Cognitive Operations to Lexical Selection.

    PubMed

    Fargier, Raphaël; Laganaro, Marina

    2017-03-01

    Picture naming tasks are largely used to elicit the production of specific words and sentences in psycholinguistic and neuroimaging research. However, the generation of lexical concepts from a visual input is clearly not the exclusive way speech production is triggered. In inferential speech encoding, the concept is not provided from a visual input, but is elaborated though semantic and/or episodic associations. It is therefore likely that the cognitive operations leading to lexical selection and word encoding are different in inferential and referential expressive language. In particular, in picture naming lexical selection might ensue from a simple association between a perceptual visual representation and a word with minimal semantic processes, whereas richer semantic associations are involved in lexical retrieval in inferential situations. Here we address this hypothesis by analyzing ERP correlates during word production in a referential and an inferential task. The participants produced the same words elicited from pictures or from short written definitions. The two tasks displayed similar electrophysiological patterns only in the time-period preceding the verbal response. In the stimulus-locked ERPs waveform amplitudes and periods of stable global electrophysiological patterns differed across tasks after the P100 component and until 400-500 ms, suggesting the involvement of different, task-specific neural networks. Based on the analysis of the time-windows affected by specific semantic and lexical variables in each task, we conclude that lexical selection is underpinned by a different set of conceptual and brain processes, with semantic processes clearly preceding word retrieval in naming from definition whereas the semantic information is enriched in parallel with word retrieval in picture naming.

  6. Effect of semantic coherence on episodic memory processes in schizophrenia.

    PubMed

    Battal Merlet, Lâle; Morel, Shasha; Blanchet, Alain; Lockman, Hazlin; Kostova, Milena

    2014-12-30

    Schizophrenia is associated with severe episodic retrieval impairment. The aim of this study was to investigate the possibility that schizophrenia patients could improve their familiarity and/or recollection processes by manipulating the semantic coherence of to-be-learned stimuli and using deep encoding. Twelve schizophrenia patients and 12 healthy controls of comparable age, gender, and educational level undertook an associative recognition memory task. The stimuli consisted of pairs of words that were either related or unrelated to a given semantic category. The process dissociation procedure was used to calculate the estimates of familiarity and recollection processes. Both groups showed enhanced memory performances for semantically related words. However, in healthy controls, semantic relatedness led to enhanced recollection, while in schizophrenia patients, it induced enhanced familiarity. The familiarity estimates for related words were comparable in both groups, indicating that familiarity could be used as a compensatory mechanism in schizophrenia patients. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Meaningful Memory in Acute Anorexia Nervosa Patients-Comparing Recall, Learning, and Recognition of Semantically Related and Semantically Unrelated Word Stimuli.

    PubMed

    Terhoeven, Valentin; Kallen, Ursula; Ingenerf, Katrin; Aschenbrenner, Steffen; Weisbrod, Matthias; Herzog, Wolfgang; Brockmeyer, Timo; Friederich, Hans-Christoph; Nikendei, Christoph

    2017-03-01

    It is unclear whether observed memory impairment in anorexia nervosa (AN) depends on the semantic structure (categorized words) of material to be encoded. We aimed to investigate the processing of semantically related information in AN. Memory performance was assessed in a recall, learning, and recognition test in 27 adult women with AN (19 restricting, 8 binge-eating/purging subtype; average disease duration: 9.32 years) and 30 healthy controls using an extended version of the Rey Auditory Verbal Learning Test, applying semantically related and unrelated word stimuli. Short-term memory (immediate recall, learning), regardless of semantics of the words, was significantly worse in AN patients, whereas long-term memory (delayed recall, recognition) did not differ between AN patients and controls. Semantics of stimuli do not have a better effect on memory recall in AN compared to CO. Impaired short-term versus long-term memory is discussed in relation to dysfunctional working memory in AN. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association.

  8. Semantic priming in the motor cortex: evidence from combined repetitive transcranial magnetic stimulation and event-related potential.

    PubMed

    Kuipers, Jan-Rouke; van Koningsbruggen, Martijn; Thierry, Guillaume

    2013-08-21

    Reading action verbs is associated with activity in the motor cortices involved in performing the corresponding actions. Here, we present new evidence that the motor cortex is involved in semantic processing of bodily action verbs. In contrast to previous studies, we used a direct, nonbehavioural index of semantic processing after repetitive transcranial magnetic stimulation (rTMS). Participants saw pairs of hand-related (e.g. to grab-to point) or mouth-related (e.g. to speak-to sing) verbs, whereas semantic priming was assessed using event-related potentials. Presentation of the first verb coincided with rTMS over the participant's cortical-left hand area and event-related brain potentials were analysed time-locked to the presentation onset of the second verb. Semantic integration - indexed by the N400 brain potential - was impaired for hand-related but not for mouth-related verb pairs after rTMS. This finding provides strong evidence that the motor cortex is involved in semantic encoding of action verbs, and supports the 'embodied semantics' hypothesis.

  9. Classification with an edge: Improving semantic image segmentation with boundary detection

    NASA Astrophysics Data System (ADS)

    Marmanis, D.; Schindler, K.; Wegner, J. D.; Galliani, S.; Datcu, M.; Stilla, U.

    2018-01-01

    We present an end-to-end trainable deep convolutional neural network (DCNN) for semantic segmentation with built-in awareness of semantically meaningful boundaries. Semantic segmentation is a fundamental remote sensing task, and most state-of-the-art methods rely on DCNNs as their workhorse. A major reason for their success is that deep networks learn to accumulate contextual information over very large receptive fields. However, this success comes at a cost, since the associated loss of effective spatial resolution washes out high-frequency details and leads to blurry object boundaries. Here, we propose to counter this effect by combining semantic segmentation with semantically informed edge detection, thus making class boundaries explicit in the model. First, we construct a comparatively simple, memory-efficient model by adding boundary detection to the SEGNET encoder-decoder architecture. Second, we also include boundary detection in FCN-type models and set up a high-end classifier ensemble. We show that boundary detection significantly improves semantic segmentation with CNNs in an end-to-end training scheme. Our best model achieves >90% overall accuracy on the ISPRS Vaihingen benchmark.

  10. Depth of processing and recall of threat material in fearful and nonfearful individuals.

    PubMed

    Wenzel, Amy; Zetocha, Kimberlee; Ferraro, F Richard

    2007-09-01

    Although many studies have examined the nature of memory distortions in anxious individuals, few have considered biases in specific memory processes, such as encoding or retrieval. To investigate whether the presentation of threat material facilitates encoding biases, spider fearful (n=63), blood fearful (n=73), and nonfearful (n=75) participants encoded spider related, blood related, and neutral words as a function of three levels of processing (i.e., structural, semantic, and self referent). Participants subsequently completed either a free recall or a recognition task. All participants demonstrated a partial depth of processing effect, such that they recalled more words encoded in the self referent condition than in the other two conditions, but groups did not differ in their recall of stimuli as a function of word type. Relative to participants in the other groups, spider fearful participants had fewer spider related intrusions in the recall condition, and they made fewer errors in responding to structural and semantic encoding questions when spider related words were presented. These results contribute to an increasingly large body of literature suggesting that anxious individuals are not characterized by a memory bias toward threat, and they raise the possibility that individuals with spider fears process threat-relevant information differently than individuals with blood fears.

  11. Grammatical markers switch roles and elicit different electrophysiological responses under shallow and deep semantic requirements.

    PubMed

    Soshi, Takahiro; Nakajima, Heizo; Hagiwara, Hiroko

    2016-10-01

    Static knowledge about the grammar of a natural language is represented in the cortico-subcortical system. However, the differences in dynamic verbal processing under different cognitive conditions are unclear. To clarify this, we conducted an electrophysiological experiment involving a semantic priming paradigm in which semantically congruent or incongruent word sequences (prime nouns-target verbs) were randomly presented. We examined the event-related brain potentials that occurred in response to congruent and incongruent target words that were preceded by primes with or without grammatical case markers. The two participant groups performed either the shallow (lexical judgment) or deep (direct semantic judgment) semantic tasks. We hypothesized that, irrespective of the case markers, the congruent targets would reduce centro-posterior N400 activities under the deep semantic condition, which induces selective attention to the semantic relatedness of content words. However, the same congruent targets with correct case markers would reduce lateralized negativity under the shallow semantic condition because grammatical case markers are related to automatic structural integration under semantically unattended conditions. We observed that congruent targets (e.g., 'open') that were preceded by primes with congruent case markers (e.g., 'shutter-object case') reduced lateralized negativity under the shallow semantic condition. In contrast, congruent targets, irrespective of case markers, consistently yielded N400 reductions under the deep semantic condition. To summarize, human neural verbal processing differed in response to the same grammatical markers in the same verbal expressions under semantically attended or unattended conditions.

  12. Synergetic computer and holonics - information dynamics of a semantic computer

    NASA Astrophysics Data System (ADS)

    Shimizu, H.; Yamaguchi, Y.

    1987-12-01

    The dynamics of semantic information in biosystem is studied based on holons, generators of mutual relations. Any biosystem has an internal world, a so-called "self", which has an intrinsic purpose rendering the system continuously alive and developed as much as possible against a fluctuating external world. External signals to the system through sensory organs are classified by the self into two basic categories, semantic information with some meaning and value for the purpose and inputs from background and noise sources. Due to this breaking of semantic symmetry, any input signals are transformed into a figure and background, respectively. As a typical example, the visual perception of vertebrates is studied. For such semantic transformation the external signal is first decomposed and converted into a number of elementary signs named "syntons" which are then transmitted into a sensory area of cortex corresponding to an image synthesizer. The synthesizer is a sort of autonomic parallel processor composed of autonomic units, "holons", which are characterized by many internal modes. Syntons are fed into the holons one by one. A set of the elementary meanings, the so-called "semons", provided to the synton are encoded in the internal modes of the holon; that is, each internal mode encodes a semon. A dynamic information theory for the transformation of external signals to semantic information is developed based on our model which we call holovision. Holovision is a dynamic model of visual perception that processes an autonomic ability to self-organize visual images. Autonomous oscillators are utilized as the line processors to encode line elements with specific orientations in their phases as semons. An information space is defined according to the assembly of holons; the spatial plane on which holons are arranged is a syntactic subspace while the internal modes of the holons span a semantic subspace in the orthogonal direction. In this information space, the image of a figure is self-organized - as a sort of spatiotemporal pattern - by autonomic coordinations of the holons that select relevant internal modes, accompanied with compression of irrelevant syntons that correspond to the background. Holons coded by a synton are relevantly connected by means of coherent relations, i.e., dynamic connections with time-coherence, in order to represent the image that varies in time depending on the instantaneous state of the external object. These connections depend on the internal modes that are cooperatively selectively selected by the holons. The image is regarded as a bridge between the external and internal world that has both external and internal consistency. The meaning of the image, i.e., transformed semantic information, is spontaneously transferred from semantic items that have a coherent relation with the image, and the external signal is perceived by the self through the image. We demonstrate that images are indeed self-organized in holovision in the previously described sense. Simulated processes of the creation of semantic information in holovision are shown to display typical features of the forgoing steps of information compression. Based on these results, we propose quantitative indices that represent the value of semantic information in the image processor as well as in the memory.

  13. The residual protective effects of enactment.

    PubMed

    Wammes, Jeffrey D; Fernandes, Myra A

    2017-07-01

    Research has demonstrated the importance of the quality of initial retrieval events (Test 1) for performance on later memory tests (Test 2). We explored whether enacting words at encoding, relative to simply reading them, provided protection against the detrimental effects of a degraded retrieval experience, through the addition of motor processing to the extant memory representation. Participants encoded a mixed list of enacted and read words, then completed Test 1, and a later Test 2. Encoding and Test 2 were always completed under full attention (FA). Critically though, Test 1 was completed either under FA, or under divided attention (DA) with a distracting task requiring semantic and phonological processing. We predicted a larger enactment effect following DA relative to FA, indicating greater preservation of enacted words from dual-task interference. In Experiment 1, we demonstrated that the enactment effect was indeed larger following DA than FA, indicating greater preservation of enacted words after dual-task interference. In Experiment 2, we showed that this effect was even more potent over longer time scales, which served as a conceptual replication. In Experiment 3, we showed that enactment provides little to no protection when the distracting task requires motor processing, and in Experiment 4, we returned to the phonological distracting task and showed that in contrast with enactment, generation at encoding does not afford the same protection to memory. Taken together, these finding suggest that enactment renders words relatively immune to the detrimental effects of dual-tasking during testing, through the addition of a different kind, rather than a greater degree, of processing to the memory trace at encoding. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. When the Wedding March becomes sad: Semantic memory impairment for music in the semantic variant of primary progressive aphasia.

    PubMed

    Macoir, Joël; Berubé-Lalancette, Sarah; Wilson, Maximiliano A; Laforce, Robert; Hudon, Carol; Gravel, Pierre; Potvin, Olivier; Duchesne, Simon; Monetta, Laura

    2016-12-01

    Music can induce particular emotions and activate semantic knowledge. In the semantic variant of primary progressive aphasia (svPPA), semantic memory is impaired as a result of anterior temporal lobe (ATL) atrophy. Semantics is responsible for the encoding and retrieval of factual knowledge about music, including associative and emotional attributes. In the present study, we report the performance of two individuals with svPPA in three experiments. NG with bilateral ATL atrophy and ND with atrophy largely restricted to the left ATL. Experiment 1 assessed the recognition of musical excerpts and both patients were unimpaired. Experiment 2 studied the emotions conveyed by music and only NG showed impaired performance. Experiment 3 tested the association of semantic concepts to musical excerpts and both patients were impaired. These results suggest that the right ATL seems essential for the recognition of emotions conveyed by music and that the left ATL is involved in binding music to semantics. They are in line with the notion that the ATLs are devoted to the binding of different modality-specific properties and suggest that they are also differentially involved in the processing of factual and emotional knowledge associated with music.

  15. The effects of bilingual language proficiency on recall accuracy and semantic clustering in free recall output: evidence for shared semantic associations across languages.

    PubMed

    Francis, Wendy S; Taylor, Randolph S; Gutiérrez, Marisela; Liaño, Mary K; Manzanera, Diana G; Penalver, Renee M

    2018-05-19

    Two experiments investigated how well bilinguals utilise long-standing semantic associations to encode and retrieve semantic clusters in verbal episodic memory. In Experiment 1, Spanish-English bilinguals (N = 128) studied and recalled word and picture sets. Word recall was equivalent in L1 and L2, picture recall was better in L1 than in L2, and the picture superiority effect was stronger in L1 than in L2. Semantic clustering in word and picture recall was equivalent in L1 and L2. In Experiment 2, Spanish-English bilinguals (N = 128) and English-speaking monolinguals (N = 128) studied and recalled word sequences that contained semantically related pairs. Data were analyzed using a multinomial processing tree approach, the pair-clustering model. Cluster formation was more likely for semantically organised than for randomly ordered word sequences. Probabilities of cluster formation, cluster retrieval, and retrieval of unclustered items did not differ across languages or language groups. Language proficiency has little if any impact on the utilisation of long-standing semantic associations, which are language-general.

  16. Modulation of alpha oscillations is required for the suppression of semantic interference.

    PubMed

    Melnik, Natalia; Mapelli, Igor; Özkurt, Tolga Esat

    2017-10-01

    Recent findings on alpha band oscillations suggest their important role in memory consolidation and suppression of external distractors such as environmental noise. However, less attention was given to the phenomenon of internal distracting information being solely inherent to the stimuli content. Human memory may be prone to internal distractions caused by semantic relatedness between the meaning of words (e.g., atom, neutron, nucleus, etc.) to be encoded, i.e., semantic interference. Our study investigates the brain oscillatory dynamics behind the semantic interference phenomenon, whose possible outcome is known as false memories. In this direction, Deese-Roediger-McDermott word lists were appropriated for a modified Sternberg paradigm in auditory modality. Participants received semantically related and unrelated word lists via headphones while EEG data were acquired. Semantic interference triggered the false memory rates to be higher than those of other types of memory errors. Analysis demonstrated that the upper part of alpha band (∼10-12Hz) power decreases on parieto-occipital channels in the retention interval, prior to the probe item for semantically related condition. Our study elucidates the oscillatory mechanisms behind semantic interference by relying on alpha functional inhibition theory. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Seek and you shall remember: Scene semantics interact with visual search to build better memories

    PubMed Central

    Draschkow, Dejan; Wolfe, Jeremy M.; Võ, Melissa L.-H.

    2014-01-01

    Memorizing critical objects and their locations is an essential part of everyday life. In the present study, incidental encoding of objects in naturalistic scenes during search was compared to explicit memorization of those scenes. To investigate if prior knowledge of scene structure influences these two types of encoding differently, we used meaningless arrays of objects as well as objects in real-world, semantically meaningful images. Surprisingly, when participants were asked to recall scenes, their memory performance was markedly better for searched objects than for objects they had explicitly tried to memorize, even though participants in the search condition were not explicitly asked to memorize objects. This finding held true even when objects were observed for an equal amount of time in both conditions. Critically, the recall benefit for searched over memorized objects in scenes was eliminated when objects were presented on uniform, non-scene backgrounds rather than in a full scene context. Thus, scene semantics not only help us search for objects in naturalistic scenes, but appear to produce a representation that supports our memory for those objects beyond intentional memorization. PMID:25015385

  18. Procedurally Mediated Social Inferences: The Case of Category Accessibility Effects.

    DTIC Science & Technology

    1984-12-01

    New York: Academic. Craik , F. I. M., & Lockhart , R. S. (1972). Levels of processing : A framework for memory research. Journal of Verbal Learning...more "deeply" encoded semantic features (cf. Craik 8 Lockhart , 1972). (A few theorists assume that visual images may also be used as an alternative...semantically rather than phonemically or graphemically ( Craik & Lockhart , 1972). It is this familiar type of declarative memory of which we are usually

  19. Using XML to encode TMA DES metadata.

    PubMed

    Lyttleton, Oliver; Wright, Alexander; Treanor, Darren; Lewis, Paul

    2011-01-01

    The Tissue Microarray Data Exchange Specification (TMA DES) is an XML specification for encoding TMA experiment data. While TMA DES data is encoded in XML, the files that describe its syntax, structure, and semantics are not. The DTD format is used to describe the syntax and structure of TMA DES, and the ISO 11179 format is used to define the semantics of TMA DES. However, XML Schema can be used in place of DTDs, and another XML encoded format, RDF, can be used in place of ISO 11179. Encoding all TMA DES data and metadata in XML would simplify the development and usage of programs which validate and parse TMA DES data. XML Schema has advantages over DTDs such as support for data types, and a more powerful means of specifying constraints on data values. An advantage of RDF encoded in XML over ISO 11179 is that XML defines rules for encoding data, whereas ISO 11179 does not. We created an XML Schema version of the TMA DES DTD. We wrote a program that converted ISO 11179 definitions to RDF encoded in XML, and used it to convert the TMA DES ISO 11179 definitions to RDF. We validated a sample TMA DES XML file that was supplied with the publication that originally specified TMA DES using our XML Schema. We successfully validated the RDF produced by our ISO 11179 converter with the W3C RDF validation service. All TMA DES data could be encoded using XML, which simplifies its processing. XML Schema allows datatypes and valid value ranges to be specified for CDEs, which enables a wider range of error checking to be performed using XML Schemas than could be performed using DTDs.

  20. Using XML to encode TMA DES metadata

    PubMed Central

    Lyttleton, Oliver; Wright, Alexander; Treanor, Darren; Lewis, Paul

    2011-01-01

    Background: The Tissue Microarray Data Exchange Specification (TMA DES) is an XML specification for encoding TMA experiment data. While TMA DES data is encoded in XML, the files that describe its syntax, structure, and semantics are not. The DTD format is used to describe the syntax and structure of TMA DES, and the ISO 11179 format is used to define the semantics of TMA DES. However, XML Schema can be used in place of DTDs, and another XML encoded format, RDF, can be used in place of ISO 11179. Encoding all TMA DES data and metadata in XML would simplify the development and usage of programs which validate and parse TMA DES data. XML Schema has advantages over DTDs such as support for data types, and a more powerful means of specifying constraints on data values. An advantage of RDF encoded in XML over ISO 11179 is that XML defines rules for encoding data, whereas ISO 11179 does not. Materials and Methods: We created an XML Schema version of the TMA DES DTD. We wrote a program that converted ISO 11179 definitions to RDF encoded in XML, and used it to convert the TMA DES ISO 11179 definitions to RDF. Results: We validated a sample TMA DES XML file that was supplied with the publication that originally specified TMA DES using our XML Schema. We successfully validated the RDF produced by our ISO 11179 converter with the W3C RDF validation service. Conclusions: All TMA DES data could be encoded using XML, which simplifies its processing. XML Schema allows datatypes and valid value ranges to be specified for CDEs, which enables a wider range of error checking to be performed using XML Schemas than could be performed using DTDs. PMID:21969921

  1. Carrying a Baby in the Back: Teaching with an Awareness of the Cultural Construction of Language.

    ERIC Educational Resources Information Center

    Holme, Randal

    2002-01-01

    Shows how culture is encoded in the everyday conceptual metaphors speakers take for granted. Describes the way these encodings differ across languages as "semantic relativism" and argues that language teachers need to be aware of this phenomenon to understand their learners' interlanguage and to help them recognize the internal structure of the…

  2. Twelve-Month-Old Infants' Encoding of Goal and Source Paths in Agentive and Non-Agentive Motion Events

    ERIC Educational Resources Information Center

    Lakusta, Laura; Carey, Susan

    2015-01-01

    Across languages and event types (i.e., agentive and nonagentive motion, transfer, change of state, attach/detach), goal paths are privileged over source paths in the linguistic encoding of events. Furthermore, some linguistic analyses suggest that goal paths are more central than source paths in the semantic and syntactic structure of motion…

  3. Richer concepts are better remembered: number of features effects in free recall

    PubMed Central

    Hargreaves, Ian S.; Pexman, Penny M.; Johnson, Jeremy C.; Zdrazilova, Lenka

    2012-01-01

    Many models of memory build in a term for encoding variability, the observation that there can be variability in the richness or extensiveness of processing at encoding, and that this variability has consequences for retrieval. In four experiments, we tested the expectation that encoding variability could be driven by the properties of the to-be-remembered item. Specifically, that concepts associated with more semantic features would be better remembered than concepts associated with fewer semantic features. Using feature listing norms we selected sets of items for which people tend to list higher numbers of features (high NoF) and items for which people tend to list lower numbers of features (low NoF). Results showed more accurate free recall for high NoF concepts than for low NoF concepts in expected memory tasks (Experiments 1–3) and also in an unexpected memory task (Experiment 4). This effect was not the result of associative chaining between study items (Experiment 3), and can be attributed to the amount of item-specific processing that occurs at study (Experiment 4). These results provide evidence that stimulus-specific differences in processing at encoding have consequences for explicit memory retrieval. PMID:22514526

  4. Levels-of-processing effect on frontotemporal function in schizophrenia during word encoding and recognition.

    PubMed

    Ragland, J Daniel; Gur, Ruben C; Valdez, Jeffrey N; Loughead, James; Elliott, Mark; Kohler, Christian; Kanes, Stephen; Siegel, Steven J; Moelter, Stephen T; Gur, Raquel E

    2005-10-01

    Patients with schizophrenia improve episodic memory accuracy when given organizational strategies through levels-of-processing paradigms. This study tested if improvement is accompanied by normalized frontotemporal function. Event-related blood-oxygen-level-dependent functional magnetic resonance imaging (fMRI) was used to measure activation during shallow (perceptual) and deep (semantic) word encoding and recognition in 14 patients with schizophrenia and 14 healthy comparison subjects. Despite slower and less accurate overall word classification, the patients showed normal levels-of-processing effects, with faster and more accurate recognition of deeply processed words. These effects were accompanied by left ventrolateral prefrontal activation during encoding in both groups, although the thalamus, hippocampus, and lingual gyrus were overactivated in the patients. During word recognition, the patients showed overactivation in the left frontal pole and had a less robust right prefrontal response. Evidence of normal levels-of-processing effects and left prefrontal activation suggests that patients with schizophrenia can form and maintain semantic representations when they are provided with organizational cues and can improve their word encoding and retrieval. Areas of overactivation suggest residual inefficiencies. Nevertheless, the effect of teaching organizational strategies on episodic memory and brain function is a worthwhile topic for future interventional studies.

  5. Knowledge Representation Issues in Semantic Graphs for Relationship Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barthelemy, M; Chow, E; Eliassi-Rad, T

    2005-02-02

    An important task for Homeland Security is the prediction of threat vulnerabilities, such as through the detection of relationships between seemingly disjoint entities. A structure used for this task is a ''semantic graph'', also known as a ''relational data graph'' or an ''attributed relational graph''. These graphs encode relationships as typed links between a pair of typed nodes. Indeed, semantic graphs are very similar to semantic networks used in AI. The node and link types are related through an ontology graph (also known as a schema). Furthermore, each node has a set of attributes associated with it (e.g., ''age'' maymore » be an attribute of a node of type ''person''). Unfortunately, the selection of types and attributes for both nodes and links depends on human expertise and is somewhat subjective and even arbitrary. This subjectiveness introduces biases into any algorithm that operates on semantic graphs. Here, we raise some knowledge representation issues for semantic graphs and provide some possible solutions using recently developed ideas in the field of complex networks. In particular, we use the concept of transitivity to evaluate the relevance of individual links in the semantic graph for detecting relationships. We also propose new statistical measures for semantic graphs and illustrate these semantic measures on graphs constructed from movies and terrorism data.« less

  6. Effects of post-encoding stress on performance in the DRM false memory paradigm.

    PubMed

    Pardilla-Delgado, Enmanuelle; Alger, Sara E; Cunningham, Tony J; Kinealy, Brian; Payne, Jessica D

    2016-01-01

    Numerous studies have investigated how stress impacts veridical memory, but how stress influences false memory formation remains poorly understood. In order to target memory consolidation specifically, a psychosocial stress (TSST) or control manipulation was administered following encoding of 15 neutral, semantically related word lists (DRM false memory task) and memory was tested 24 h later. Stress decreased recognition of studied words, while increasing false recognition of semantically related lure words. Moreover, while control subjects remembered true and false words equivalently, stressed subjects remembered more false than true words. These results suggest that stress supports gist memory formation in the DRM task, perhaps by hindering detail-specific processing in the hippocampus. © 2015 Pardilla-Delgado et al.; Published by Cold Spring Harbor Laboratory Press.

  7. Resting-state functional connectivity and pitch identification ability in non-musicians

    PubMed Central

    Hou, Jiancheng; Chen, Chuansheng; Dong, Qi

    2015-01-01

    Previous studies have used task-related fMRI to investigate the neural basis of pitch identification (PI), but no study has examined the associations between resting-state functional connectivity (RSFC) and PI ability. Using a large sample of Chinese non-musicians (N = 320, with 56 having prior musical training), the current study examined the associations among musical training, PI ability, and RSFC. Results showed that musical training was associated with increased RSFC within the networks for multiple cognitive functions (such as vision, phonology, semantics, auditory encoding, and executive functions). PI ability was associated with RSFC with regions for perceptual and auditory encoding for participants with musical training, and with RSFC with regions for short-term memory, semantics, and phonology for participants without musical training. PMID:25717289

  8. Differential contributions of dorso-ventral and rostro-caudal prefrontal white matter tracts to cognitive control in healthy older adults.

    PubMed

    Strenziok, Maren; Greenwood, Pamela M; Santa Cruz, Sophia A; Thompson, James C; Parasuraman, Raja

    2013-01-01

    Prefrontal cortex mediates cognitive control by means of circuitry organized along dorso-ventral and rostro-caudal axes. Along the dorso-ventral axis, ventrolateral PFC controls semantic information, whereas dorsolateral PFC encodes task rules. Along the rostro-caudal axis, anterior prefrontal cortex encodes complex rules and relationships between stimuli, whereas posterior prefrontal cortex encodes simple relationships between stimuli and behavior. Evidence of these gradients of prefrontal cortex organization has been well documented in fMRI studies, but their functional correlates have not been examined with regard to integrity of underlying white matter tracts. We hypothesized that (a) the integrity of specific white matter tracts is related to cognitive functioning in a manner consistent with the dorso-ventral and rostro-caudal organization of the prefrontal cortex, and (b) this would be particularly evident in healthy older adults. We assessed three cognitive processes that recruit the prefrontal cortex and can distinguish white matter tracts along the dorso-ventral and rostro-caudal dimensions -episodic memory, working memory, and reasoning. Correlations between cognition and fractional anisotropy as well as fiber tractography revealed: (a) Episodic memory was related to ventral prefrontal cortex-thalamo-hippocampal fiber integrity; (b) Working memory was related to integrity of corpus callosum body fibers subserving dorsolateral prefrontal cortex; and (c) Reasoning was related to integrity of corpus callosum body fibers subserving rostral and caudal dorsolateral prefrontal cortex. These findings confirm the ventrolateral prefrontal cortex's role in semantic control and the dorsolateral prefrontal cortex's role in rule-based processing, in accordance with the dorso-ventral prefrontal cortex gradient. Reasoning-related rostral and caudal superior frontal white matter may facilitate different levels of task rule complexity. This study is the first to demonstrate dorso-ventral and rostro-caudal prefrontal cortex processing gradients in white matter integrity.

  9. Self-imagining enhances recognition memory in memory-impaired individuals with neurological damage.

    PubMed

    Grilli, Matthew D; Glisky, Elizabeth L

    2010-11-01

    The ability to imagine an elaborative event from a personal perspective relies on several cognitive processes that may potentially enhance subsequent memory for the event, including visual imagery, semantic elaboration, emotional processing, and self-referential processing. In an effort to find a novel strategy for enhancing memory in memory-impaired individuals with neurological damage, we investigated the mnemonic benefit of a method we refer to as self-imagining-the imagining of an event from a realistic, personal perspective. Fourteen individuals with neurologically based memory deficits and 14 healthy control participants intentionally encoded neutral and emotional sentences under three instructions: structural-baseline processing, semantic processing, and self-imagining. Findings revealed a robust "self-imagination effect (SIE)," as self-imagination enhanced recognition memory relative to deep semantic elaboration in both memory-impaired individuals, F(1, 13) = 32.11, p < .001, η2 = .71; and healthy controls, F(1, 13) = 5.57, p < .05, η2 = .30. In addition, results indicated that mnemonic benefits of self-imagination were not limited by severity of the memory disorder nor were they related to self-reported vividness of visual imagery, semantic processing, or emotional content of the materials. The findings suggest that the SIE may depend on unique mnemonic mechanisms possibly related to self-referential processing and that imagining an event from a personal perspective makes that event particularly memorable even for those individuals with severe memory deficits. Self-imagining may thus provide an effective rehabilitation strategy for individuals with memory impairment.

  10. Self-referencing enhances recollection in both young and older adults

    PubMed Central

    Leshikar, Eric D.; Dulas, Michael R.; Duarte, Audrey

    2014-01-01

    Processing information in relation to the self enhances subsequent item recognition in both young and older adults, and further, enhances recollection at least in the young. Because older adults experience recollection memory deficits it is unknown whether self-referencing improves recollection in older adults. We examined recollection benefits from self-referential encoding in older and younger adults and further examined the quality and quantity of episodic details facilitated by self-referencing. We further investigated the influence of valence on recollection given prior findings of age group differences in emotional memory (i.e. “positivity effects”). Across 2 experiments, young and older adults processed positive and negative adjectives either for self-relevance or for semantic meaning. We found that self-referencing, relative to semantic encoding, increased recollection memory in both age groups. In Experiment 1, both groups remembered proportionally more negative than positive items when adjectives were processed semantically; however, when adjectives were processed self-referentially, both groups exhibited evidence of better recollection for the positive items, inconsistent with a positivity effect in aging. In Experiment 2, both groups reported more episodic details associated with recollected items, as measured by a memory characteristic questionnaire (MCQ), for the self-reference relative to the semantic condition. Overall, these data suggest that self-referencing leads to detail-rich memory representations reflected in higher rates of recollection across age. PMID:25264018

  11. Semantics by analogy for illustrative volume visualization☆

    PubMed Central

    Gerl, Moritz; Rautek, Peter; Isenberg, Tobias; Gröller, Eduard

    2012-01-01

    We present an interactive graphical approach for the explicit specification of semantics for volume visualization. This explicit and graphical specification of semantics for volumetric features allows us to visually assign meaning to both input and output parameters of the visualization mapping. This is in contrast to the implicit way of specifying semantics using transfer functions. In particular, we demonstrate how to realize a dynamic specification of semantics which allows to flexibly explore a wide range of mappings. Our approach is based on three concepts. First, we use semantic shader augmentation to automatically add rule-based rendering functionality to static visualization mappings in a shader program, while preserving the visual abstraction that the initial shader encodes. With this technique we extend recent developments that define a mapping between data attributes and visual attributes with rules, which are evaluated using fuzzy logic. Second, we let users define the semantics by analogy through brushing on renderings of the data attributes of interest. Third, the rules are specified graphically in an interface that provides visual clues for potential modifications. Together, the presented methods offer a high degree of freedom in the specification and exploration of rule-based mappings and avoid the limitations of a linguistic rule formulation. PMID:23576827

  12. Wordform Similarity Increases With Semantic Similarity: An Analysis of 100 Languages.

    PubMed

    Dautriche, Isabelle; Mahowald, Kyle; Gibson, Edward; Piantadosi, Steven T

    2017-11-01

    Although the mapping between form and meaning is often regarded as arbitrary, there are in fact well-known constraints on words which are the result of functional pressures associated with language use and its acquisition. In particular, languages have been shown to encode meaning distinctions in their sound properties, which may be important for language learning. Here, we investigate the relationship between semantic distance and phonological distance in the large-scale structure of the lexicon. We show evidence in 100 languages from a diverse array of language families that more semantically similar word pairs are also more phonologically similar. This suggests that there is an important statistical trend for lexicons to have semantically similar words be phonologically similar as well, possibly for functional reasons associated with language learning. Copyright © 2016 Cognitive Science Society, Inc.

  13. A Diffusive-Particle Theory of Free Recall

    PubMed Central

    Fumarola, Francesco

    2017-01-01

    Diffusive models of free recall have been recently introduced in the memory literature, but their potential remains largely unexplored. In this paper, a diffusive model of short-term verbal memory is considered, in which the psychological state of the subject is encoded as the instantaneous position of a particle diffusing over a semantic graph. The model is particularly suitable for studying the dependence of free-recall observables on the semantic properties of the words to be recalled. Besides predicting some well-known experimental features (forward asymmetry, semantic clustering, word-length effect), a novel prediction is obtained on the relationship between the contiguity effect and the syllabic length of words; shorter words, by way of their wider semantic range, are predicted to be characterized by stronger forward contiguity. A fresh analysis of archival free-recall data allows to confirm this prediction. PMID:29085521

  14. Hemispheric encoding/retrieval asymmetry in episodic memory: positron emission tomography findings.

    PubMed Central

    Tulving, E; Kapur, S; Craik, F I; Moscovitch, M; Houle, S

    1994-01-01

    Data are reviewed from positron emission tomography studies of encoding and retrieval processes in episodic memory. These data suggest a hemispheric encoding/retrieval asymmetry model of prefrontal involvement in encoding and retrieval of episodic memory. According to this model, the left and right prefrontal lobes are part of an extensive neuronal network that subserves episodic remembering, but the two prefrontal hemispheres play different roles. Left prefrontal cortical regions are differentially more involved in retrieval of information from semantic memory and in simultaneously encoding novel aspects of the retrieved information into episodic memory. Right prefrontal cortical regions, on the other hand, are differentially more involved in episodic memory retrieval. PMID:8134342

  15. Targeting latent function: Encouraging effective encoding for successful memory training and transfer

    PubMed Central

    Lustig, Cindy; Flegal, Kristin E.

    2009-01-01

    Cognitive training programs for older adults often result in improvements at the group level. However, there are typically large age and individual differences in the size of training benefits. These differences may be related to the degree to which participants implement the processes targeted by the training program. To test this possibility, we tested older adults in a memory-training procedure either under specific strategy instructions designed to encourage semantic, integrative encoding, or in a condition that encouraged time and attention to encoding but allowed participants to choose their own strategy. Both conditions improved the performance of old-old adults relative to an earlier study (Bissig & Lustig, 2007) and reduced self-reports of everyday memory errors. Performance in the strategy-instruction group was related to pre-existing ability, performance in the strategy-choice group was not. The strategy-choice group performed better on a laboratory transfer test of recognition memory, and training performance was correlated with reduced everyday memory errors. Training programs that target latent but inefficiently-used abilities while allowing flexibility in bringing those abilities to bear may best promote effective training and transfer. PMID:19140647

  16. Activation of semantic information at the sublexical level during handwriting production: Evidence from inhibition effects of Chinese semantic radicals in the picture-word interference paradigm.

    PubMed

    Chen, Xuqian; Liao, Yuanlan; Chen, Xianzhe

    2017-08-01

    Using a non-alphabetic language (e.g., Chinese), the present study tested a novel view that semantic information at the sublexical level should be activated during handwriting production. Over 80% of Chinese characters are phonograms, in which semantic radicals represent category information (e.g., 'chair,' 'peach,' 'orange' are related to plants) while phonetic radicals represent phonetic information (e.g., 'wolf,' 'brightness,' 'male,' are all pronounced /lang/). Under different semantic category conditions at the lexical level (semantically related in Experiment 1; semantically unrelated in Experiment 2), the orthographic relatedness and semantic relatedness of semantic radicals in the picture name and its distractor were manipulated under different SOAs (i.e., stimulus onset asynchrony, the interval between the onset of the picture and the onset of the interference word). Two questions were addressed: (1) Is it possible that semantic information could be activated in the sublexical level conditions? (2) How are semantic and orthographic information dynamically accessed in word production? Results showed that both orthographic and semantic information were activated under the present picture-word interference paradigm, dynamically under different SOAs, which supported our view that discussions on semantic processes in the writing modality should be extended to the sublexical level. The current findings provide possibility for building new orthography-phonology-semantics models in writing. © 2017 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  17. Differentiation of perceptual and semantic subsequent memory effects using an orthographic paradigm.

    PubMed

    Kuo, Michael C C; Liu, Karen P Y; Ting, Kin Hung; Chan, Chetwyn C H

    2012-11-27

    This study aimed to differentiate perceptual and semantic encoding processes using subsequent memory effects (SMEs) elicited by the recognition of orthographs of single Chinese characters. Participants studied a series of Chinese characters perceptually (by inspecting orthographic components) or semantically (by determining the object making sounds), and then made studied or unstudied judgments during the recognition phase. Recognition performance in terms of d-prime measure in the semantic condition was higher, though not significant, than that of the perceptual condition. The between perceptual-semantic condition differences in SMEs at P550 and late positive component latencies (700-1000ms) were not significant in the frontal area. An additional analysis identified larger SME in the semantic condition during 600-1000ms in the frontal pole regions. These results indicate that coordination and incorporation of orthographic information into mental representation is essential to both task conditions. The differentiation was also revealed in earlier SMEs (perceptual>semantic) at N3 (240-360ms) latency, which is a novel finding. The left-distributed N3 was interpreted as more efficient processing of meaning with semantically learned characters. Frontal pole SMEs indicated strategic processing by executive functions, which would further enhance memory. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Spreading Activation in an Attractor Network with Latching Dynamics: Automatic Semantic Priming Revisited

    PubMed Central

    Lerner, Itamar; Bentin, Shlomo; Shriki, Oren

    2012-01-01

    Localist models of spreading activation (SA) and models assuming distributed-representations offer very different takes on semantic priming, a widely investigated paradigm in word recognition and semantic memory research. In the present study we implemented SA in an attractor neural network model with distributed representations and created a unified framework for the two approaches. Our models assumes a synaptic depression mechanism leading to autonomous transitions between encoded memory patterns (latching dynamics), which account for the major characteristics of automatic semantic priming in humans. Using computer simulations we demonstrated how findings that challenged attractor-based networks in the past, such as mediated and asymmetric priming, are a natural consequence of our present model’s dynamics. Puzzling results regarding backward priming were also given a straightforward explanation. In addition, the current model addresses some of the differences between semantic and associative relatedness and explains how these differences interact with stimulus onset asynchrony in priming experiments. PMID:23094718

  19. Semantic memory retrieval circuit: role of pre-SMA, caudate, and thalamus.

    PubMed

    Hart, John; Maguire, Mandy J; Motes, Michael; Mudar, Raksha Anand; Chiang, Hsueh-Sheng; Womack, Kyle B; Kraut, Michael A

    2013-07-01

    We propose that pre-supplementary motor area (pre-SMA)-thalamic interactions govern processes fundamental to semantic retrieval of an integrated object memory. At the onset of semantic retrieval, pre-SMA initiates electrical interactions between multiple cortical regions associated with semantic memory subsystems encodings as indexed by an increase in theta-band EEG power. This starts between 100-150 ms after stimulus presentation and is sustained throughout the task. We posit that this activity represents initiation of the object memory search, which continues in searching for an object memory. When the correct memory is retrieved, there is a high beta-band EEG power increase, which reflects communication between pre-SMA and thalamus, designates the end of the search process and resultant in object retrieval from multiple semantic memory subsystems. This high beta signal is also detected in cortical regions. This circuit is modulated by the caudate nuclei to facilitate correct and suppress incorrect target memories. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Preserved Proactive Interference in Autism Spectrum Disorder.

    PubMed

    Carmo, Joana C; Duarte, Elsa; Pinho, Sandra; Filipe, Carlos N; Marques, J Frederico

    2016-01-01

    In this study, we aimed to evaluate further the functioning and structuring of the semantic system in autism spectrum disorders (ASD). We analyzed the performance of 19 high-functioning young adults with ASD and a group of 20 age-, verbal IQ- and education-matched individuals with the Proactive Interference (PI) Paradigm to evaluate semantic functioning in ASD (Experiment 1). In Experiment 2, we analyzed the performances of both groups in a PI paradigm with manipulation of the level of typicality. In both experiments, we observed significant effects of trial and group but no trial by group interactions, which we interpreted as robust evidence of preserved PI (build up effect) that indicated the preservation of semantic mechanisms of encoding and retrieval.

  1. Encoding Dimensions in Memory: Developmental Similarities at Two Grade Levels

    ERIC Educational Resources Information Center

    Geis, Mary Fulcher

    1975-01-01

    Second and sixth grade children's relative sensitivity to acoustic, semantic, and physical dimensions was inferred from the amount of release from proactive interference obtained for shifts along each dimension. (ED)

  2. More than meets the eye: context effects in word identification.

    PubMed

    Masson, M E; Borowsky, R

    1998-11-01

    The influence of semantic context on word identification was examined using masked target displays. Related prime words enhanced a signal detection measure of sensitivity in making lexical decisions and in determining whether a probe word matched the target word. When line drawings were used as primes, a similar benefit was obtained with the probe task. Although these results suggest that contextual information affects perceptual encoding, this conclusion is questioned on the grounds that sensitivity in these tasks may be determined by independent contributions of perceptual and contextual information. The plausibility of this view is supported by a simulation of the experiments using a connectionist model in which perceptual and semantic information make independent contributions to word identification. The model also predicts results with two other analytic methods that have been used to argue for priming effects on perceptual encoding.

  3. Neuroanatomical correlates of encoding in episodic memory: levels of processing effect.

    PubMed Central

    Kapur, S; Craik, F I; Tulving, E; Wilson, A A; Houle, S; Brown, G M

    1994-01-01

    Cognitive studies of memory processes demonstrate that memory for stimuli is a function of how they are encoded; stimuli processed semantically are better remembered than those processed in a perceptual or shallow fashion. This study investigates the neural correlates of this cognitive phenomenon. Twelve subjects performed two different cognitive tasks on a series of visually presented nouns. In one task, subjects detected the presence or absence of the letter a; in the other, subjects categorized each noun as living or nonliving. Positron emission tomography (PET) scans using 15O-labeled water were obtained during both tasks. Subjects showed substantially better recognition memory for nouns seen in the living/nonliving task, compared to nouns seen in the a-checking task. Comparison of the PET images between the two cognitive tasks revealed a significant activation in the left inferior prefrontal cortex (Brodmann's areas 45, 46, 47, and 10) in the semantic task as compared to the perceptual task. We propose that memory processes are subserved by a wide neurocognitive network and that encoding processes involve preferential activation of the structures in the left inferior prefrontal cortex. PMID:8134340

  4. Controlled encoding strategies in memory tests in lithium patients.

    PubMed

    Opgenoorth, E; Karlick-Bolten, E

    1986-03-01

    The "levels of processing" theory (Craik and Lockhart) and "dual coding" theory (Paivio) provide new aspects for clinical memory research work. Therefore, an incidental learning paradigm on the basis of these two theoretical approaches was chosen to test aspects of memory performances with lithium therapy. Results of two experiments, with controlled non-semantic processing (rating experiment "comparison of size") and additive semantic processing (rating "living--non-living") indicate a slight reduction in recall (Fig. 1) and recognition performance (Fig. 2) in lithium patients. Effects on encoding strategies are of equal quality in patients and healthy subjects (Tab. 1, 2) but performance differs between both groups: poorer systematic benefit from within code repetitions ("word-word" items, "picture-picture" items) and dual coding (repeated variable item presentation "picture-word") is obtained. The less efficient encoding strategies in the speeded task are discussed with respect to cognitive rigidity and slowing of performance by emotional states. This investigation of so-called "memory deficits" with lithium is an attempt to explore impairments at an early stage of processing; the characterization of the perceptual cognitive analysis seems useful for further clinical research work on this topic.

  5. Neuroanatomical correlates of encoding in episodic memory: levels of processing effect.

    PubMed

    Kapur, S; Craik, F I; Tulving, E; Wilson, A A; Houle, S; Brown, G M

    1994-03-15

    Cognitive studies of memory processes demonstrate that memory for stimuli is a function of how they are encoded; stimuli processed semantically are better remembered than those processed in a perceptual or shallow fashion. This study investigates the neural correlates of this cognitive phenomenon. Twelve subjects performed two different cognitive tasks on a series of visually presented nouns. In one task, subjects detected the presence or absence of the letter a; in the other, subjects categorized each noun as living or nonliving. Positron emission tomography (PET) scans using 15O-labeled water were obtained during both tasks. Subjects showed substantially better recognition memory for nouns seen in the living/nonliving task, compared to nouns seen in the a-checking task. Comparison of the PET images between the two cognitive tasks revealed a significant activation in the left inferior prefrontal cortex (Brodmann's areas 45, 46, 47, and 10) in the semantic task as compared to the perceptual task. We propose that memory processes are subserved by a wide neurocognitive network and that encoding processes involve preferential activation of the structures in the left inferior prefrontal cortex.

  6. Biologically Plausible, Human-Scale Knowledge Representation.

    PubMed

    Crawford, Eric; Gingerich, Matthew; Eliasmith, Chris

    2016-05-01

    Several approaches to implementing symbol-like representations in neurally plausible models have been proposed. These approaches include binding through synchrony (Shastri & Ajjanagadde, ), "mesh" binding (van der Velde & de Kamps, ), and conjunctive binding (Smolensky, ). Recent theoretical work has suggested that most of these methods will not scale well, that is, that they cannot encode structured representations using any of the tens of thousands of terms in the adult lexicon without making implausible resource assumptions. Here, we empirically demonstrate that the biologically plausible structured representations employed in the Semantic Pointer Architecture (SPA) approach to modeling cognition (Eliasmith, ) do scale appropriately. Specifically, we construct a spiking neural network of about 2.5 million neurons that employs semantic pointers to successfully encode and decode the main lexical relations in WordNet, which has over 100,000 terms. In addition, we show that the same representations can be employed to construct recursively structured sentences consisting of arbitrary WordNet concepts, while preserving the original lexical structure. We argue that these results suggest that semantic pointers are uniquely well-suited to providing a biologically plausible account of the structured representations that underwrite human cognition. Copyright © 2015 Cognitive Science Society, Inc.

  7. Depth and elaboration of processing in relation to age.

    PubMed

    Simon, E

    1979-03-01

    Processing at encoding and retrieval was jointly manipulated, and then the retrieval effectiveness of different cues was directly compared to uncover the relative pattern of deep and elaborate processing in relation to both age and different experimental manipulations. In experiment 1 phonemic and semantic cues were effective retrieval aids for to-be-remembered words in the youngest group; with increasing age, semantic cues decreased in effectiveness more than phonemic cues. These data showed phonemic features to have an importance that is not recognized in the data generated by the typical levels paradigm. When elaboration of the words was induced in Experiment 2 by presenting them in sentences, semantic and context cues were most effective in the youngest group whereas phonemic cues were most effective in the oldest group. Since the pattern of cue effectiveness in the elderly was similar to that in Experiment 1, where the same words were presented alone, it was concluded that aging results in poor elaboration, in particular, in inefficient integration of word events with the context of presentation. These age effects were mimicked in young subjects in Experiment 3 by experimentally restricting encoding time. The present approach uses somewhat modified views of depth and elaboration.

  8. Brain mechanisms of successful recognition through retrieval of semantic context.

    PubMed

    Flegal, Kristin E; Marín-Gutiérrez, Alejandro; Ragland, J Daniel; Ranganath, Charan

    2014-08-01

    Episodic memory is associated with the encoding and retrieval of context information and with a subjective sense of reexperiencing past events. The neural correlates of episodic retrieval have been extensively studied using fMRI, leading to the identification of a "general recollection network" including medial temporal, parietal, and prefrontal regions. However, in these studies, it is difficult to disentangle the effects of context retrieval from recollection. In this study, we used fMRI to determine the extent to which the recruitment of regions in the recollection network is contingent on context reinstatement. Participants were scanned during a cued recognition test for target words from encoded sentences. Studied target words were preceded by either a cue word studied in the same sentence (thus congruent with encoding context) or a cue word studied in a different sentence (thus incongruent with encoding context). Converging fMRI results from independently defined ROIs and whole-brain analysis showed regional specificity in the recollection network. Activity in hippocampus and parahippocampal cortex was specifically increased during successful retrieval following congruent context cues, whereas parietal and prefrontal components of the general recollection network were associated with confident retrieval irrespective of contextual congruency. Our findings implicate medial temporal regions in the retrieval of semantic context, contributing to, but dissociable from, recollective experience.

  9. Levels-of-Processing Effect on Frontotemporal Function in Schizophrenia During Word Encoding and Recognition

    PubMed Central

    Ragland, J. Daniel; Gur, Ruben C.; Valdez, Jeffrey N.; Loughead, James; Elliott, Mark; Kohler, Christian; Kanes, Stephen; Siegel, Steven J.; Moelter, Stephen T.; Gur, Raquel E.

    2015-01-01

    Objective Patients with schizophrenia improve episodic memory accuracy when given organizational strategies through levels-of-processing paradigms. This study tested if improvement is accompanied by normalized frontotemporal function. Method Event-related blood-oxygen-level-dependent functional magnetic resonance imaging (fMRI) was used to measure activation during shallow (perceptual) and deep (semantic) word encoding and recognition in 14 patients with schizophrenia and 14 healthy comparison subjects. Results Despite slower and less accurate overall word classification, the patients showed normal levels-of-processing effects, with faster and more accurate recognition of deeply processed words. These effects were accompanied by left ventrolateral prefrontal activation during encoding in both groups, although the thalamus, hippocampus, and lingual gyrus were overactivated in the patients. During word recognition, the patients showed overactivation in the left frontal pole and had a less robust right prefrontal response. Conclusions Evidence of normal levels-of-processing effects and left prefrontal activation suggests that patients with schizophrenia can form and maintain semantic representations when they are provided with organizational cues and can improve their word encoding and retrieval. Areas of overactivation suggest residual inefficiencies. Nevertheless, the effect of teaching organizational strategies on episodic memory and brain function is a worthwhile topic for future interventional studies. PMID:16199830

  10. Behavioural and magnetoencephalographic evidence for the interaction between semantic and episodic memory in healthy elderly subjects.

    PubMed

    La Corte, Valentina; Dalla Barba, Gianfranco; Lemaréchal, Jean-Didier; Garnero, Line; George, Nathalie

    2012-10-01

    The relationship between episodic and semantic memory systems has long been debated. Some authors argue that episodic memory is contingent on semantic memory (Tulving 1984), while others postulate that both systems are independent since they can be selectively damaged (Squire 1987). The interaction between these memory systems is particularly important in the elderly, since the dissociation of episodic and semantic memory defects characterize different aging-related pathologies. Here, we investigated the interaction between semantic knowledge and episodic memory processes associated with faces in elderly subjects using an experimental paradigm where the semantic encoding of famous and unknown faces was compared to their episodic recognition. Results showed that the level of semantic awareness of items affected the recognition of those items in the episodic memory task. Event-related magnetic fields confirmed this interaction between episodic and semantic memory: ERFs related to the old/new effect during the episodic task were markedly different for famous and unknown faces. The old/new effect for famous faces involved sustained activities maximal over right temporal sensors, showing a spatio-temporal pattern partly similar to that found for famous versus unknown faces during the semantic task. By contrast, an old/new effect for unknown faces was observed on left parieto-occipital sensors. These findings suggest that the episodic memory for famous faces activated the retrieval of stored semantic information, whereas it was based on items' perceptual features for unknown faces. Overall, our results show that semantic information interfered markedly with episodic memory processes and suggested that the neural substrates of these two memory systems overlap.

  11. Speaker information affects false recognition of unstudied lexical-semantic associates.

    PubMed

    Luthra, Sahil; Fox, Neal P; Blumstein, Sheila E

    2018-05-01

    Recognition of and memory for a spoken word can be facilitated by a prior presentation of that word spoken by the same talker. However, it is less clear whether this speaker congruency advantage generalizes to facilitate recognition of unheard related words. The present investigation employed a false memory paradigm to examine whether information about a speaker's identity in items heard by listeners could influence the recognition of novel items (critical intruders) phonologically or semantically related to the studied items. In Experiment 1, false recognition of semantically associated critical intruders was sensitive to speaker information, though only when subjects attended to talker identity during encoding. Results from Experiment 2 also provide some evidence that talker information affects the false recognition of critical intruders. Taken together, the present findings indicate that indexical information is able to contact the lexical-semantic network to affect the processing of unheard words.

  12. Effects of perceptual similarity but not semantic association on false recognition in aging

    PubMed Central

    Gill, Emma

    2017-01-01

    This study investigated semantic and perceptual influences on false recognition in older and young adults in a variant on the Deese-Roediger-McDermott paradigm. In two experiments, participants encoded intermixed sets of semantically associated words, and sets of unrelated words. Each set was presented in a shared distinctive font. Older adults were no more likely to falsely recognize semantically associated lure words compared to unrelated lures also presented in studied fonts. However, they showed an increase in false recognition of lures which were related to studied items only by a shared font. This increased false recognition was associated with recollective experience. The data show that older adults do not always rely more on prior knowledge in episodic memory tasks. They converge with other findings suggesting that older adults may also be more prone to perceptually-driven errors. PMID:29302398

  13. Streamlining geospatial metadata in the Semantic Web

    NASA Astrophysics Data System (ADS)

    Fugazza, Cristiano; Pepe, Monica; Oggioni, Alessandro; Tagliolato, Paolo; Carrara, Paola

    2016-04-01

    In the geospatial realm, data annotation and discovery rely on a number of ad-hoc formats and protocols. These have been created to enable domain-specific use cases generalized search is not feasible for. Metadata are at the heart of the discovery process and nevertheless they are often neglected or encoded in formats that either are not aimed at efficient retrieval of resources or are plainly outdated. Particularly, the quantum leap represented by the Linked Open Data (LOD) movement did not induce so far a consistent, interlinked baseline in the geospatial domain. In a nutshell, datasets, scientific literature related to them, and ultimately the researchers behind these products are only loosely connected; the corresponding metadata intelligible only to humans, duplicated on different systems, seldom consistently. Instead, our workflow for metadata management envisages i) editing via customizable web- based forms, ii) encoding of records in any XML application profile, iii) translation into RDF (involving the semantic lift of metadata records), and finally iv) storage of the metadata as RDF and back-translation into the original XML format with added semantics-aware features. Phase iii) hinges on relating resource metadata to RDF data structures that represent keywords from code lists and controlled vocabularies, toponyms, researchers, institutes, and virtually any description one can retrieve (or directly publish) in the LOD Cloud. In the context of a distributed Spatial Data Infrastructure (SDI) built on free and open-source software, we detail phases iii) and iv) of our workflow for the semantics-aware management of geospatial metadata.

  14. Continuation-like semantics for modeling structural process anomalies

    PubMed Central

    2012-01-01

    Background Biomedical ontologies usually encode knowledge that applies always or at least most of the time, that is in normal circumstances. But for some applications like phenotype ontologies it is becoming increasingly important to represent information about aberrations from a norm. These aberrations may be modifications of physiological structures, but also modifications of biological processes. Methods To facilitate precise definitions of process-related phenotypes, such as delayed eruption of the primary teeth or disrupted ocular pursuit movements, I introduce a modeling approach that draws inspiration from the use of continuations in the analysis of programming languages and apply a similar idea to ontological modeling. This approach characterises processes by describing their outcome up to a certain point and the way they will continue in the canonical case. Definitions of process types are then given in terms of their continuations and anomalous phenotypes are defined by their differences to the canonical definitions. Results The resulting model is capable of accurately representing structural process anomalies. It allows distinguishing between different anomaly kinds (delays, interruptions), gives identity criteria for interrupted processes, and explains why normal and anomalous process instances can be subsumed under a common type, thus establishing the connection between canonical and anomalous process-related phenotypes. Conclusion This paper shows how to to give semantically rich definitions of process-related phenotypes. These allow to expand the application areas of phenotype ontologies beyond literature annotation and establishment of genotype-phenotype associations to the detection of anomalies in suitably encoded datasets. PMID:23046705

  15. Event-related fMRI studies of false memory: An Activation Likelihood Estimation meta-analysis.

    PubMed

    Kurkela, Kyle A; Dennis, Nancy A

    2016-01-29

    Over the last two decades, a wealth of research in the domain of episodic memory has focused on understanding the neural correlates mediating false memories, or memories for events that never happened. While several recent qualitative reviews have attempted to synthesize this literature, methodological differences amongst the empirical studies and a focus on only a sub-set of the findings has limited broader conclusions regarding the neural mechanisms underlying false memories. The current study performed a voxel-wise quantitative meta-analysis using activation likelihood estimation to investigate commonalities within the functional magnetic resonance imaging (fMRI) literature studying false memory. The results were broken down by memory phase (encoding, retrieval), as well as sub-analyses looking at differences in baseline (hit, correct rejection), memoranda (verbal, semantic), and experimental paradigm (e.g., semantic relatedness and perceptual relatedness) within retrieval. Concordance maps identified significant overlap across studies for each analysis. Several regions were identified in the general false retrieval analysis as well as multiple sub-analyses, indicating their ubiquitous, yet critical role in false retrieval (medial superior frontal gyrus, left precentral gyrus, left inferior parietal cortex). Additionally, several regions showed baseline- and paradigm-specific effects (hit/perceptual relatedness: inferior and middle occipital gyrus; CRs: bilateral inferior parietal cortex, precuneus, left caudate). With respect to encoding, analyses showed common activity in the left middle temporal gyrus and anterior cingulate cortex. No analysis identified a common cluster of activation in the medial temporal lobe. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. The effect of level of processing on perceptual and conceptual priming: control versus closed-head-injured patients.

    PubMed

    Vakil, E; Sigal, J

    1997-07-01

    Twenty-four closed-head-injured (CHI) and 24 control participants studied two word lists under shallow (i.e., nonsemantic) and deep (i.e., semantic) encoding conditions. They were then tested on free recall, perceptual priming (i.e., perceptual partial word identification) and conceptual priming (i.e., category production) tasks. Previous findings have demonstrated that memory in CHI is characterized by inefficient conceptual processing of information. It was thus hypothesized that the CHI participants would perform more poorly than the control participants on the explicit and on the conceptual priming tasks. On these tasks the CHI group was expected to benefit to a lesser degree from prior deep encoding, as compared to controls. The groups were not expected to significantly differ from each other on the perceptual priming task. Prior deep encoding was not expected to improve the perceptual priming performance of either group. All findings were as predicted, with the exception that a significant effect was not found between groups for deep encoding in the conceptual priming task. The results are discussed (1) in terms of their theoretical contribution in further validating the dissociation between perceptual and conceptual priming; and (2) in terms of the contribution in differentiating between amnesic and CHI patients. Conceptual priming is preserved in amnesics but not in CHI patients.

  17. Self-Imagining Enhances Recognition Memory in Memory-Impaired Individuals with Neurological Damage

    PubMed Central

    Grilli, Matthew D.; Glisky, Elizabeth L.

    2010-01-01

    Objective The ability to imagine an elaborative event from a personal perspective relies on a number of cognitive processes that may potentially enhance subsequent memory for the event, including visual imagery, semantic elaboration, emotional processing, and self-referential processing. In an effort to find a novel strategy for enhancing memory in memory-impaired individuals with neurological damage, the present study investigated the mnemonic benefit of a method we refer to as “self-imagining” – or the imagining of an event from a realistic, personal perspective. Method Fourteen individuals with neurologically-based memory deficits and fourteen healthy control participants intentionally encoded neutral and emotional sentences under three instructions: structural-baseline processing, semantic processing, and self-imagining. Results Findings revealed a robust “self-imagination effect” as self-imagination enhanced recognition memory relative to deep semantic elaboration in both memory-impaired individuals, F (1, 13) = 32.11, p < .001, η2 = .71, and healthy controls, F (1, 13) = 5.57, p < .05, η2 = .30. In addition, results indicated that mnemonic benefits of self-imagination were not limited by severity of the memory disorder nor were they related to self-reported vividness of visual imagery, semantic processing, or emotional content of the materials. Conclusions The findings suggest that the self-imagination effect may depend on unique mnemonic mechanisms possibly related to self-referential processing, and that imagining an event from a personal perspective makes that event particularly memorable even for those individuals with severe memory deficits. Self-imagining may thus provide an effective rehabilitation strategy for individuals with memory impairment. PMID:20873930

  18. What makes deeply encoded items memorable? Insights into the levels of processing framework from neuroimaging and neuromodulation.

    PubMed

    Galli, Giulia

    2014-01-01

    When we form new memories, their mnestic fate largely depends upon the cognitive operations set in train during encoding. A typical observation in experimental as well as everyday life settings is that if we learn an item using semantic or "deep" operations, such as attending to its meaning, memory will be better than if we learn the same item using more "shallow" operations, such as attending to its structural features. In the psychological literature, this phenomenon has been conceptualized within the "levels of processing" framework and has been consistently replicated since its original proposal by Craik and Lockhart in 1972. However, the exact mechanisms underlying the memory advantage for deeply encoded items are not yet entirely understood. A cognitive neuroscience perspective can add to this field by clarifying the nature of the processes involved in effective deep and shallow encoding and how they are instantiated in the brain, but so far there has been little work to systematically integrate findings from the literature. This work aims to fill this gap by reviewing, first, some of the key neuroimaging findings on the neural correlates of deep and shallow episodic encoding and second, emerging evidence from studies using neuromodulatory approaches such as psychopharmacology and non-invasive brain stimulation. Taken together, these studies help further our understanding of levels of processing. In addition, by showing that deep encoding can be modulated by acting upon specific brain regions or systems, the reviewed studies pave the way for selective enhancements of episodic encoding processes.

  19. What Makes Deeply Encoded Items Memorable? Insights into the Levels of Processing Framework from Neuroimaging and Neuromodulation

    PubMed Central

    Galli, Giulia

    2014-01-01

    When we form new memories, their mnestic fate largely depends upon the cognitive operations set in train during encoding. A typical observation in experimental as well as everyday life settings is that if we learn an item using semantic or “deep” operations, such as attending to its meaning, memory will be better than if we learn the same item using more “shallow” operations, such as attending to its structural features. In the psychological literature, this phenomenon has been conceptualized within the “levels of processing” framework and has been consistently replicated since its original proposal by Craik and Lockhart in 1972. However, the exact mechanisms underlying the memory advantage for deeply encoded items are not yet entirely understood. A cognitive neuroscience perspective can add to this field by clarifying the nature of the processes involved in effective deep and shallow encoding and how they are instantiated in the brain, but so far there has been little work to systematically integrate findings from the literature. This work aims to fill this gap by reviewing, first, some of the key neuroimaging findings on the neural correlates of deep and shallow episodic encoding and second, emerging evidence from studies using neuromodulatory approaches such as psychopharmacology and non-invasive brain stimulation. Taken together, these studies help further our understanding of levels of processing. In addition, by showing that deep encoding can be modulated by acting upon specific brain regions or systems, the reviewed studies pave the way for selective enhancements of episodic encoding processes. PMID:24904444

  20. CHRONOS architecture: Experiences with an open-source services-oriented architecture for geoinformatics

    USGS Publications Warehouse

    Fils, D.; Cervato, C.; Reed, J.; Diver, P.; Tang, X.; Bohling, G.; Greer, D.

    2009-01-01

    CHRONOS's purpose is to transform Earth history research by seamlessly integrating stratigraphic databases and tools into a virtual on-line stratigraphic record. In this paper, we describe the various components of CHRONOS's distributed data system, including the encoding of semantic and descriptive data into a service-based architecture. We give examples of how we have integrated well-tested resources available from the open-source and geoinformatic communities, like the GeoSciML schema and the simple knowledge organization system (SKOS), into the services-oriented architecture to encode timescale and phylogenetic synonymy data. We also describe on-going efforts to use geospatially enhanced data syndication and informally including semantic information by embedding it directly into the XHTML Document Object Model (DOM). XHTML DOM allows machine-discoverable descriptive data such as licensing and citation information to be incorporated directly into data sets retrieved by users. ?? 2008 Elsevier Ltd. All rights reserved.

  1. Knowledge acquisition is governed by striatal prediction errors.

    PubMed

    Pine, Alex; Sadeh, Noa; Ben-Yakov, Aya; Dudai, Yadin; Mendelsohn, Avi

    2018-04-26

    Discrepancies between expectations and outcomes, or prediction errors, are central to trial-and-error learning based on reward and punishment, and their neurobiological basis is well characterized. It is not known, however, whether the same principles apply to declarative memory systems, such as those supporting semantic learning. Here, we demonstrate with fMRI that the brain parametrically encodes the degree to which new factual information violates expectations based on prior knowledge and beliefs-most prominently in the ventral striatum, and cortical regions supporting declarative memory encoding. These semantic prediction errors determine the extent to which information is incorporated into long-term memory, such that learning is superior when incoming information counters strong incorrect recollections, thereby eliciting large prediction errors. Paradoxically, by the same account, strong accurate recollections are more amenable to being supplanted by misinformation, engendering false memories. These findings highlight a commonality in brain mechanisms and computational rules that govern declarative and nondeclarative learning, traditionally deemed dissociable.

  2. Elaborative processing in the Korsakoff syndrome: context versus habit.

    PubMed

    Van Damme, Ilse; d'Ydewalle, Géry

    2008-07-01

    Using a procedure of Hay and Jacoby [Hay, J. F., & Jacoby, L. L. (1999). Separating habit and recollection in young and older adults: Effects of elaborative processing and distinctiveness. Psychology and Aging, 14, 122-134], Korsakoff patients' capacity to encode and retrieve elaborative, semantic information was investigated. Habits were created during initial training, whereupon cued-recall memory performance was examined, with habit opposing as well as facilitating recollection of earlier studied words. A first group of patients was instructed and tested in the same way as healthy controls and showed poor test performance. Nevertheless, when given more processing and response time, additional explanation, and explicit encouragement, a second group of patients performed similarly to healthy controls. The results suggest that, when given adequate support, Korsakoff patients are able to encode and make use of semantic, contextual, and sequential information. Word distinctiveness, however, only influenced performance of controls.

  3. Towards Semantic Web Services on Large, Multi-Dimensional Coverages

    NASA Astrophysics Data System (ADS)

    Baumann, P.

    2009-04-01

    Observed and simulated data in the Earth Sciences often come as coverages, the general term for space-time varying phenomena as set forth by standardization bodies like the Open GeoSpatial Consortium (OGC) and ISO. Among such data are 1-d time series, 2-D surface data, 3-D surface data time series as well as x/y/z geophysical and oceanographic data, and 4-D metocean simulation results. With increasing dimensionality the data sizes grow exponentially, up to Petabyte object sizes. Open standards for exploiting coverage archives over the Web are available to a varying extent. The OGC Web Coverage Service (WCS) standard defines basic extraction operations: spatio-temporal and band subsetting, scaling, reprojection, and data format encoding of the result - a simple interoperable interface for coverage access. More processing functionality is available with products like Matlab, Grid-type interfaces, and the OGC Web Processing Service (WPS). However, these often lack properties known as advantageous from databases: declarativeness (describe results rather than the algorithms), safe in evaluation (no request can keep a server busy infinitely), and optimizable (enable the server to rearrange the request so as to produce the same result faster). WPS defines a geo-enabled SOAP interface for remote procedure calls. This allows to webify any program, but does not allow for semantic interoperability: a function is identified only by its function name and parameters while the semantics is encoded in the (only human readable) title and abstract. Hence, another desirable property is missing, namely an explicit semantics which allows for machine-machine communication and reasoning a la Semantic Web. The OGC Web Coverage Processing Service (WCPS) language, which has been adopted as an international standard by OGC in December 2008, defines a flexible interface for the navigation, extraction, and ad-hoc analysis of large, multi-dimensional raster coverages. It is abstract in that it does not anticipate any particular protocol. One such protocol is given by the OGC Web Coverage Service (WCS) Processing Extension standard which ties WCPS into WCS. Another protocol which makes WCPS an OGC Web Processing Service (WPS) Profile is under preparation. Thereby, WCPS bridges WCS and WPS. The conceptual model of WCPS relies on the coverage model of WCS, which in turn is based on ISO 19123. WCS currently addresses raster-type coverages where a coverage is seen as a function mapping points from a spatio-temporal extent (its domain) into values of some cell type (its range). A retrievable coverage has an identifier associated, further the CRSs supported and, for each range field (aka band, channel), the interpolation methods applicable. The WCPS language offers access to one or several such coverages via a functional, side-effect free language. The following example, which derives the NDVI (Normalized Difference Vegetation Index) from given coverages C1, C2, and C3 within the regions identified by the binary mask R, illustrates the language concept: for c in ( C1, C2, C3 ), r in ( R ) return encode( (char) (c.nir - c.red) / (c.nir + c.red), H˜DF-EOS\\~ ) The result is a list of three HDF-EOS encoded images containing masked NDVI values. Note that the same request can operate on coverages of any dimensionality. The expressive power of WCPS includes statistics, image, and signal processing up to recursion, to maintain safe evaluation. As both syntax and semantics of any WCPS expression is well known the language is Semantic Web ready: clients can construct WCPS requests on the fly, servers can optimize such requests (this has been investigated extensively with the rasdaman raster database system) and automatically distribute them for processing in a WCPS-enabled computing cloud. The WCPS Reference Implementation is being finalized now that the standard is stable; it will be released in open source once ready. Among the future tasks is to extend WCPS to general meshes, in synchronization with the WCS standard. In this talk WCPS is presented in the context of OGC standardization. The author is co-chair of OGC's WCS Working Group (WG) and Coverages WG.

  4. Semantic strategy training increases memory performance and brain activity in patients with prefrontal cortex lesions.

    PubMed

    Miotto, Eliane C; Savage, Cary R; Evans, Jonathan J; Wilson, Barbara A; Martin, Maria G M; Balardin, Joana B; Barros, Fabio G; Garrido, Griselda; Teixeira, Manoel J; Amaro Junior, Edson

    2013-03-01

    Memory deficit is a frequent cognitive disorder following acquired prefrontal cortex lesions. In the present study, we investigated the brain correlates of a short semantic strategy training and memory performance of patients with distinct prefrontal cortex lesions using fMRI and cognitive tests. Twenty-one adult patients with post-acute prefrontal cortex (PFC) lesions, twelve with left dorsolateral PFC (LPFC) and nine with bilateral orbitofrontal cortex (BOFC) were assessed before and after a short cognitive semantic training using a verbal memory encoding paradigm during scanning and neuropsychological tests outside the scanner. After the semantic strategy training both groups of patients showed significant behavioral improvement in verbal memory recall and use of semantic strategies. In the LPFC group, greater activity in left inferior and medial frontal gyrus, precentral gyrus and insula was found after training. For the BOFC group, a greater activation was found in the left parietal cortex, right cingulated and precuneus after training. The activation of these specific areas in the memory and executive networks following cognitive training was associated to compensatory brain mechanisms and application of the semantic strategy. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. A SEMantic and EPisodic Memory Test (SEMEP) Developed within the Embodied Cognition Framework: Application to Normal Aging, Alzheimer's Disease and Semantic Dementia.

    PubMed

    Vallet, Guillaume T; Hudon, Carol; Bier, Nathalie; Macoir, Joël; Versace, Rémy; Simard, Martine

    2017-01-01

    Embodiment has highlighted the importance of sensory-motor components in cognition. Perception and memory are thus very tightly bound together, and episodic and semantic memories should rely on the same grounded memory traces. Reduced perception should then directly reduce the ability to encode and retrieve an episodic memory, as in normal aging. Multimodal integration deficits, as in Alzheimer's disease, should lead to more severe episodic memory impairment. The present study introduces a new memory test developed to take into account these assumptions. The SEMEP (SEMantic-Episodic) memory test proposes to assess conjointly semantic and episodic knowledge across multiple tasks: semantic matching, naming, free recall, and recognition. The performance of young adults is compared to healthy elderly adults (HE), patients with Alzheimer's disease (AD), and patients with semantic dementia (SD). The results show specific patterns of performance between the groups. HE commit memory errors only for presented but not to be remembered items. AD patients present the worst episodic memory performance associated with intrusion errors (recall or recognition of items never presented). They were the only group to not benefit from a visual isolation (addition of a yellow background), a method known to increase the distinctiveness of the memory traces. Finally, SD patients suffer from the most severe semantic impairment. To conclude, confusion errors are common across all the elderly groups, whereas AD was the only group to exhibit regular intrusion errors and SD patients to show severe semantic impairment.

  6. Processing of visual semantic information to concrete words: temporal dynamics and neural mechanisms indicated by event-related brain potentials( ).

    PubMed

    van Schie, Hein T; Wijers, Albertus A; Mars, Rogier B; Benjamins, Jeroen S; Stowe, Laurie A

    2005-05-01

    Event-related brain potentials were used to study the retrieval of visual semantic information to concrete words, and to investigate possible structural overlap between visual object working memory and concreteness effects in word processing. Subjects performed an object working memory task that involved 5 s retention of simple 4-angled polygons (load 1), complex 10-angled polygons (load 2), and a no-load baseline condition. During the polygon retention interval subjects were presented with a lexical decision task to auditory presented concrete (imageable) and abstract (nonimageable) words, and pseudowords. ERP results are consistent with the use of object working memory for the visualisation of concrete words. Our data indicate a two-step processing model of visual semantics in which visual descriptive information of concrete words is first encoded in semantic memory (indicated by an anterior N400 and posterior occipital positivity), and is subsequently visualised via the network for object working memory (reflected by a left frontal positive slow wave and a bilateral occipital slow wave negativity). Results are discussed in the light of contemporary models of semantic memory.

  7. Brain mechanisms of successful recognition through retrieval of semantic context

    PubMed Central

    Flegal, Kristin E.; Marín-Gutiérrez, Alejandro; Ragland, J. Daniel; Ranganath, Charan

    2017-01-01

    Episodic memory is associated with the encoding and retrieval of context information, and with a subjective sense of re-experiencing past events. The neural correlates of episodic retrieval have been extensively studied using fMRI, leading to the identification of a “general recollection network” including medial temporal, parietal, and prefrontal regions. However, in these studies, it is difficult to disentangle the effects of context retrieval from recollection. In the present study, we used functional magnetic resonance imaging (fMRI) to determine the extent to which the recruitment of regions in the recollection network is contingent on context reinstatement. Participants were scanned during a cued recognition test for target words from encoded sentences. Studied target words were preceded by either a cue word studied in the same sentence (thus congruent with encoding context), or a cue word studied in a different sentence (thus incongruent with encoding context). Converging fMRI results from independently-defined regions of interest and whole-brain analysis showed regional specificity in the recollection network. Activity in hippocampus and parahippocampal cortex was specifically increased during successful retrieval following congruent context cues, whereas parietal and prefrontal components of the general recollection network were associated with confident retrieval irrespective of contextual congruency. Our findings implicate medial temporal regions in the retrieval of semantic context, contributing to, but dissociable from, recollective experience. PMID:24564467

  8. Verbal learning and memory impairments in posttraumatic stress disorder: the role of encoding strategies.

    PubMed

    Johnsen, Grethe E; Asbjørnsen, Arve E

    2009-01-30

    The present study examined mechanisms underlying verbal memory impairments in patients with posttraumatic stress disorder (PTSD). Earlier studies have reported that the verbal learning and memory alterations in PTSD are related to impaired encoding, but the use of encoding and organizational strategies in patients with PTSD has not been fully explored. This study examined organizational strategies in 21 refugees/immigrants exposed to war and political violence who fulfilled DSM-IV criteria for chronic PTSD compared with a control sample of 21 refugees/immigrants with similar exposure, but without PTSD. The California Verbal Learning Test was administered to examine differences in organizational strategies and memory. The semantic clustering score was slightly reduced in both groups, but the serial cluster score was significantly impaired in the PTSD group and they also reported more items from the recency region of the list. In addition, intrusive errors were significantly increased in the PTSD group. The data support an assumption of changed memory strategies in patients with PTSD associated with a specific impairment in executive control. However, memory impairment and the use of ineffective learning strategies may not be related to PTSD symptomatology only, but also to self-reported symptoms of depression and general distress.

  9. Targeting latent function: encouraging effective encoding for successful memory training and transfer.

    PubMed

    Lustig, Cindy; Flegal, Kristin E

    2008-12-01

    Cognitive training programs for older adults often result in improvements at the group level. However, there are typically large age and individual differences in the size of training benefits. These differences may be related to the degree to which participants implement the processes targeted by the training program. To test this possibility, we tested older adults in a memory-training procedure either under specific strategy instructions designed to encourage semantic, integrative encoding, or in a condition that encouraged time and attention to encoding but allowed participants to choose their own strategy. Both conditions improved the performance of old-old adults relative to an earlier study (D. Bissig & C. Lustig, 2007) and reduced self-reports of everyday memory errors. Performance in the strategy-instruction group was related to preexisting ability; performance in the strategy?choice group was not. The strategy-choice group performed better on a laboratory transfer test of recognition memory, and training performance was correlated with reduced everyday memory errors. Training programs that target participants' latent but inefficiently used abilities while allowing flexibility in bringing those abilities to bear may best promote effective training and transfer. Copyright (c) 2009 APA, all rights reserved.

  10. The role of left prefrontal cortex in language and memory

    PubMed Central

    Gabrieli, John D. E.; Poldrack, Russell A.; Desmond, John E.

    1998-01-01

    This article reviews attempts to characterize the mental operations mediated by left inferior prefrontal cortex, especially the anterior and inferior portion of the gyrus, with the functional neuroimaging techniques of positron emission tomography and functional magnetic resonance imaging. Activations in this region occur during semantic, relative to nonsemantic, tasks for the generation of words to semantic cues or the classification of words or pictures into semantic categories. This activation appears in the right prefrontal cortex of people known to be atypically right-hemisphere dominant for language. In this region, activations are associated with meaningful encoding that leads to superior explicit memory for stimuli and deactivations with implicit semantic memory (repetition priming) for words and pictures. New findings are reported showing that patients with global amnesia show deactivations in the same region associated with repetition priming, that activation in this region reflects selection of a response from among numerous relative to few alternatives, and that activations in a portion of this region are associated specifically with semantic relative to phonological processing. It is hypothesized that activations in left inferior prefrontal cortex reflect a domain-specific semantic working memory capacity that is invoked more for semantic than nonsemantic analyses regardless of stimulus modality, more for initial than for repeated semantic analysis of a word or picture, more when a response must be selected from among many than few legitimate alternatives, and that yields superior later explicit memory for experiences. PMID:9448258

  11. How activation, entanglement, and searching a semantic network contribute to event memory.

    PubMed

    Nelson, Douglas L; Kitto, Kirsty; Galea, David; McEvoy, Cathy L; Bruza, Peter D

    2013-08-01

    Free-association norms indicate that words are organized into semantic/associative neighborhoods within a larger network of words and links that bind the net together. We present evidence indicating that memory for a recent word event can depend on implicitly and simultaneously activating related words in its neighborhood. Processing a word during encoding primes its network representation as a function of the density of the links in its neighborhood. Such priming increases recall and recognition and can have long-lasting effects when the word is processed in working memory. Evidence for this phenomenon is reviewed in extralist-cuing, primed free-association, intralist-cuing, and single-item recognition tasks. The findings also show that when a related word is presented in order to cue the recall of a studied word, the cue activates the target in an array of related words that distract and reduce the probability of the target's selection. The activation of the semantic network produces priming benefits during encoding, and search costs during retrieval. In extralist cuing, recall is a negative function of cue-to-distractor strength, and a positive function of neighborhood density, cue-to-target strength, and target-to-cue strength. We show how these four measures derived from the network can be combined and used to predict memory performance. These measures play different roles in different tasks, indicating that the contribution of the semantic network varies with the context provided by the task. Finally, we evaluate spreading-activation and quantum-like entanglement explanations for the priming effects produced by neighborhood density.

  12. The Category Cued Recall test in very mild Alzheimer's disease: discriminative validity and correlation with semantic memory functions.

    PubMed

    Vogel, A; Mortensen, E L; Gade, A; Waldemar, G

    2007-01-01

    Episodic memory tests that measure cued recall may be particularly effective in the diagnosis of early Alzheimer's disease (AD) because they examine both episodic and semantic memory functions. The Category Cued Recall (CCR) test provides superordinate semantic cues at encoding and retrieval, and high discriminative validity has been claimed for this test. The aim of this study was to investigate the discriminative validity for this test when compared with the 10-word memory list from Alzheimer's Disease Assessment Scale (ADAS-cog) that measures free recall. The clinical diagnosis of AD was taken as the standard. It was also investigated whether the two episodic memory tests correlated with measures of semantic memory. The tests were administered to 35 patients with very mild AD (Mini Mental State Examination score >22) and 28 control subjects. Both tests had high sensitivity (>88%) with high specificity (>89%). One out of the five semantic memory tests was significantly correlated to performances on CCR, whereas delayed recall on the ADAS-cog memory test was significantly correlated to two semantic tests. In conclusion, the discriminative validity of the CCR test and the ADAS-cog memory test was equivalent in very mild AD. This may be because CCR did not tap more semantic processes, which are impaired in the earliest phases of AD, than a test of free recall.

  13. The influence of autonomic arousal and semantic relatedness on memory for emotional words.

    PubMed

    Buchanan, Tony W; Etzel, Joset A; Adolphs, Ralph; Tranel, Daniel

    2006-07-01

    Increased memory for emotional stimuli is a well-documented phenomenon. Emotional arousal during the encoding of a stimulus is one mediator of this memory enhancement. Other variables such as semantic relatedness also play a role in the enhanced memory for emotional stimuli, especially for verbal stimuli. Research has not addressed the contributions of emotional arousal, indexed by self-report and autonomic measures, and semantic relatedness on memory performance. Twenty young adults (10 women) were presented neutral-unrelated words, school-related words, moderately arousing emotional words, and highly arousing taboo words while heart rate and skin conductance were measured. Memory was tested with free recall and recognition tests. Results showed that taboo words, which were both semantically related and high arousal were remembered best. School-related words, which were high on semantic relatedness but low on arousal, were remembered better than the moderately arousing emotional words and semantically unrelated neutral words. Psychophysiological responses showed that within the moderately arousing emotional and neutral word groups, those words eliciting greater autonomic activity were better remembered than words that did not elicit such activity. These results demonstrate additive effects of semantic relatedness and emotional arousal on memory. Relatedness confers an advantage to memory (as in the school-words), but the combination of relatedness and arousal (as in the taboo words) results in the best memory performance.

  14. Is attention enough? A re-examination of the impact of feature-specific attention allocation on semantic priming effects in the pronunciation task.

    PubMed

    Becker, Manuel; Klauer, Karl Christoph; Spruyt, Adriaan

    2016-02-01

    In a series of articles, Spruyt and colleagues have developed the Feature-Specific Attention Allocation framework, stating that the semantic analysis of task-irrelevant stimuli is critically dependent upon dimension-specific attention allocation. In an adversarial collaboration, we replicate one experiment supporting this theory (Spruyt, de Houwer, & Hermans, 2009; Exp. 3), in which semantic priming effects in the pronunciation task were found to be restricted to stimulus dimensions that were task-relevant on induction trials. Two pilot studies showed the capability of our laboratory to detect priming effects in the pronunciation task, but also suggested that the original effect may be difficult to replicate. In this study, we tried to replicate the original experiment while ensuring adequate statistical power. Results show little evidence for dimension-specific priming effects. The present results provide further insight into the malleability of early semantic encoding processes, but also show the need for further research on this topic.

  15. White matter pathway supporting phonological encoding in speech production: a multi-modal imaging study of brain damage patients.

    PubMed

    Han, Zaizhu; Ma, Yujun; Gong, Gaolang; Huang, Ruiwang; Song, Luping; Bi, Yanchao

    2016-01-01

    In speech production, an important step before motor programming is the retrieval and encoding of the phonological elements of target words. It has been proposed that phonological encoding is supported by multiple regions in the left frontal, temporal and parietal regions and their underlying white matter, especially the left arcuate fasciculus (AF) or superior longitudinal fasciculus (SLF). It is unclear, however, whether the effects of AF/SLF are indeed related to phonological encoding for output and whether there are other white matter tracts that also contribute to this process. We comprehensively investigated the anatomical connectivity supporting phonological encoding in production by studying the relationship between the integrity of all major white matter tracts across the entire brain and phonological encoding deficits in a group of 69 patients with brain damage. The integrity of each white matter tract was measured both by the percentage of damaged voxels (structural imaging) and the mean fractional anisotropy value (diffusion tensor imaging). The phonological encoding deficits were assessed by various measures in two oral production tasks that involve phonological encoding: the percentage of nonword (phonological) errors in oral picture naming and the accuracy of word reading aloud with word comprehension ability regressed out. We found that the integrity of the left SLF in both the structural and diffusion tensor imaging measures consistently predicted the severity of phonological encoding impairment in the two phonological production tasks. Such effects of the left SLF on phonological production remained significant when a range of potential confounding factors were considered through partial correlation, including total lesion volume, demographic factors, lesions on phonological-relevant grey matter regions, or effects originating from the phonological perception or semantic processes. Our results therefore conclusively demonstrate the central role of the left SLF in phonological encoding in speech production.

  16. Differential Contributions of Dorso-Ventral and Rostro-Caudal Prefrontal White Matter Tracts to Cognitive Control in Healthy Older Adults

    PubMed Central

    Strenziok, Maren; Greenwood, Pamela M.; Santa Cruz, Sophia A.; Thompson, James C.; Parasuraman, Raja

    2013-01-01

    Prefrontal cortex mediates cognitive control by means of circuitry organized along dorso-ventral and rostro-caudal axes. Along the dorso-ventral axis, ventrolateral PFC controls semantic information, whereas dorsolateral PFC encodes task rules. Along the rostro-caudal axis, anterior prefrontal cortex encodes complex rules and relationships between stimuli, whereas posterior prefrontal cortex encodes simple relationships between stimuli and behavior. Evidence of these gradients of prefrontal cortex organization has been well documented in fMRI studies, but their functional correlates have not been examined with regard to integrity of underlying white matter tracts. We hypothesized that (a) the integrity of specific white matter tracts is related to cognitive functioning in a manner consistent with the dorso-ventral and rostro-caudal organization of the prefrontal cortex, and (b) this would be particularly evident in healthy older adults. We assessed three cognitive processes that recruit the prefrontal cortex and can distinguish white matter tracts along the dorso-ventral and rostro-caudal dimensions –episodic memory, working memory, and reasoning. Correlations between cognition and fractional anisotropy as well as fiber tractography revealed: (a) Episodic memory was related to ventral prefrontal cortex-thalamo-hippocampal fiber integrity; (b) Working memory was related to integrity of corpus callosum body fibers subserving dorsolateral prefrontal cortex; and (c) Reasoning was related to integrity of corpus callosum body fibers subserving rostral and caudal dorsolateral prefrontal cortex. These findings confirm the ventrolateral prefrontal cortex's role in semantic control and the dorsolateral prefrontal cortex's role in rule-based processing, in accordance with the dorso-ventral prefrontal cortex gradient. Reasoning-related rostral and caudal superior frontal white matter may facilitate different levels of task rule complexity. This study is the first to demonstrate dorso-ventral and rostro-caudal prefrontal cortex processing gradients in white matter integrity. PMID:24312550

  17. MDMA (Ecstasy) use is associated with reduced BOLD signal change during semantic recognition in abstinent human polydrug users: a preliminary fMRI study

    PubMed Central

    Raj, Vidya; Liang, Han-Chun; Woodward, Neil D.; Bauernfeind, Amy L.; Lee, Junghee; Dietrich, Mary; Park, Sohee; Cowan, Ronald L.

    2011-01-01

    Objectives MDMA users have impaired verbal memory, and voxel-based morphometry has demonstrated decreased gray matter in Brodmann area (BA) 18, 21 and 45. Because these regions play a role in verbal memory, we hypothesized that MDMA users would show altered brain activation in these areas during performance of an fMRI task that probed semantic verbal memory. Methods Polysubstance users enriched for MDMA exposure participated in a semantic memory encoding and recognition fMRI task that activated left BA 9, 18, 21/22 and 45. Primary outcomes were percent BOLD signal change in left BA 9, 18, 21/22 and 45, accuracy and response time. Results During semantic recognition, lifetime MDMA use was associated with decreased activation in left BA 9, 18 and 21/22 but not 45. This was partly influenced by contributions from cannabis and cocaine use. MDMA exposure was not associated with accuracy or response time during the semantic recognition task. Conclusions During semantic recognition, MDMA exposure is associated with reduced regional brain activation in regions mediating verbal memory. These findings partially overlap with prior structural evidence for reduced gray matter in MDMA users and may, in part, explain the consistent verbal memory impairments observed in other studies of MDMA users. PMID:19304866

  18. Hippocampus Is Place of Interaction between Unconscious and Conscious Memories

    PubMed Central

    Züst, Marc Alain; Colella, Patrizio; Reber, Thomas Peter; Vuilleumier, Patrik; Hauf, Martinus; Ruch, Simon; Henke, Katharina

    2015-01-01

    Recent evidence suggests that humans can form and later retrieve new semantic relations unconsciously by way of hippocampus—the key structure also recruited for conscious relational (episodic) memory. If the hippocampus subserves both conscious and unconscious relational encoding/retrieval, one would expect the hippocampus to be place of unconscious-conscious interactions during memory retrieval. We tested this hypothesis in an fMRI experiment probing the interaction between the unconscious and conscious retrieval of face-associated information. For the establishment of unconscious relational memories, we presented subliminal (masked) combinations of unfamiliar faces and written occupations (“actor” or “politician”). At test, we presented the former subliminal faces, but now supraliminally, as cues for the reactivation of the unconsciously associated occupations. We hypothesized that unconscious reactivation of the associated occupation—actor or politician—would facilitate or inhibit the subsequent conscious retrieval of a celebrity’s occupation, which was also actor or politician. Depending on whether the reactivated unconscious occupation was congruent or incongruent to the celebrity’s occupation, we expected either quicker or delayed conscious retrieval process. Conscious retrieval was quicker in the congruent relative to a neutral baseline condition but not delayed in the incongruent condition. fMRI data collected during subliminal face-occupation encoding confirmed previous evidence that the hippocampus was interacting with neocortical storage sites of semantic knowledge to support relational encoding. fMRI data collected at test revealed that the facilitated conscious retrieval was paralleled by deactivations in the hippocampus and neocortical storage sites of semantic knowledge. We assume that the unconscious reactivation has pre-activated overlapping relational representations in the hippocampus reducing the neural effort for conscious retrieval. This finding supports the notion of synergistic interactions between conscious and unconscious relational memories in a common, cohesive hippocampal-neocortical memory space. PMID:25826338

  19. Event-related potentials of self-face recognition in children with pervasive developmental disorders.

    PubMed

    Gunji, Atsuko; Inagaki, Masumi; Inoue, Yuki; Takeshima, Yasuyuki; Kaga, Makiko

    2009-02-01

    Patients with pervasive developmental disorders (PDD) often have difficulty reading facial expressions and deciphering their implied meaning. We focused on semantic encoding related to face cognition to investigate event-related potentials (ERPs) to the subject's own face and familiar faces in children with and without PDD. Eight children with PDD (seven boys and one girl; aged 10.8+/-2.9 years; one left-handed) and nine age-matched typically developing children (four boys and five girls; aged 11.3+/-2.3 years; one left-handed) participated in this study. The stimuli consisted of three face images (self, familiar, and unfamiliar faces), one scrambled face image, and one object image (e.g., cup) with gray scale. We confirmed three major components: N170 and early posterior negativity (EPN) in the occipito-temporal regions (T5 and T6) and P300 in the parietal region (Pz). An enhanced N170 was observed as a face-specific response in all subjects. However, semantic encoding of each face might be unrelated to N170 because the amplitude and latency were not significantly different among the face conditions. On the other hand, an additional component after N170, EPN which was calculated in each subtracted waveform (self vs. familiar and familiar vs. unfamiliar), indicated self-awareness and familiarity with respect to face cognition in the control adults and children. Furthermore, the P300 amplitude in the control adults was significantly greater in the self-face condition than in the familiar-face condition. However, no significant differences in the EPN and P300 components were observed among the self-, familiar-, and unfamiliar-face conditions in the PDD children. The results suggest a deficit of semantic encoding of faces in children with PDD, which may be implicated in their delay in social communication.

  20. The NASA ADS Abstract Service and the Distributed Astronomy Digital Library [and] Project Soup: Comparing Evaluations of Digital Collection Efforts [and] Cross-Organizational Access Management: A Digital Library Authentication and Authorization Architecture [and] BibRelEx: Exploring Bibliographic Databases by Visualization of Annotated Content-based Relations [and] Semantics-Sensitive Retrieval for Digital Picture Libraries [and] Encoded Archival Description: An Introduction and Overview.

    ERIC Educational Resources Information Center

    Kurtz, Michael J.; Eichorn, Guenther; Accomazzi, Alberto; Grant, Carolyn S.; Demleitner, Markus; Murray, Stephen S.; Jones, Michael L. W.; Gay, Geri K.; Rieger, Robert H.; Millman, David; Bruggemann-Klein, Anne; Klein, Rolf; Landgraf, Britta; Wang, James Ze; Li, Jia; Chan, Desmond; Wiederhold, Gio; Pitti, Daniel V.

    1999-01-01

    Includes six articles that discuss a digital library for astronomy; comparing evaluations of digital collection efforts; cross-organizational access management of Web-based resources; searching scientific bibliographic databases based on content-based relations between documents; semantics-sensitive retrieval for digital picture libraries; and…

  1. User Authentication from Web Browsing Behavior

    DTIC Science & Technology

    2013-05-01

    ourselves with a cognitive personal fingerprint. Attribution is broadly defined as the assignment of an ef- fect to a cause. We differentiate between...reusable patterns of behavior. We encode the semantic and stylistic content Figure 4: Burstiness profile below 1 min aggregated across all sessions for

  2. Temporally Specific Divided Attention Tasks in Young Adults Reveal the Temporal Dynamics of Episodic Encoding Failures in Elderly Adults

    PubMed Central

    Johnson, Ray; Nessler, Doreen; Friedman, David

    2013-01-01

    Nessler, Johnson, Bersick, and Friedman (D. Nessler, R. Johnson, Jr., M. Bersick, & D. Friedman, 2006, On why the elderly have normal semantic retrieval but deficient episodic encoding: A study of left inferior frontal ERP activity, NeuroImage, Vol. 30, pp. 299–312) found that, compared with young adults, older adults show decreased event-related brain potential (ERP) activity over posterior left inferior prefrontal cortex (pLIPFC) in a 400- to 1,400-ms interval during episodic encoding. This altered brain activity was associated with significantly decreased recognition performance and reduced recollection-related brain activity at retrieval (D. Nessler, D. Friedman, R. Johnson, Jr., & M. Bersick, 2007, Does repetition engender the same retrieval processes in young and older adults? NeuroReport, Vol. 18, pp. 1837–1840). To test the hypothesis that older adults’ well-documented episodic retrieval deficit is related to reduced pLIPFC activity at encoding, we used a novel divided attention task in healthy young adults that was specifically timed to disrupt encoding in either the 1st or 2nd half of a 300- to 1,400-ms interval. The results showed that diverting resources for 550 ms during either half of this interval reproduced the 4 characteristic aspects of the older participants’ retrieval performance: normal semantic retrieval during encoding, reduced subsequent episodic recognition and recall, reduced recollection-related ERP activity, and the presence of “compensatory” brain activity. We conclude that part of older adults’ episodic memory deficit is attributable to altered pLIPFC activity during encoding due to reduced levels of available processing resources. Moreover, the findings also provide insights into the nature and timing of the putative “compensatory” processes posited to be used by older adults in an attempt to compensate for age-related decline in cognitive function. These results support the scaffolding account of compensation, in which the recruitment of additional cognitive processes is an adaptive response across the life span. PMID:23276214

  3. TMS-induced modulation of action sentence priming in the ventral premotor cortex.

    PubMed

    Tremblay, Pascale; Sato, Marc; Small, Steven L

    2012-01-01

    Despite accumulating evidence that cortical motor areas, particularly the lateral premotor cortex, are activated during language comprehension, the question of whether motor processes help mediate the semantic encoding of language remains controversial. To address this issue, we examined whether low frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) of the left ventral premotor cortex (PMv) can interfere with the comprehension of sentences describing manual actions, visual properties of manipulable and non-manipulable objects, and actions of the lips and mouth. Using a primed semantic decision task, sixteen participants were asked to determine for a given sentence whether or not an auditorily presented target word was congruent with the sentence. We hypothesized that if the left PMv is contributing semantic information that is used to comprehend action and object related sentences, then TMS applied over PMv should result in a disruption of semantic priming. Our results show that TMS reduces semantic priming, induces a shift in response bias, and increases response sensitivity, but does so only during the processing of manual action sentences. This suggests a preferential contribution of PMv to the processing of sentences describing manual actions compared to other types of sentences. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Transfer-appropriate processing in the testing effect.

    PubMed

    Veltre, Mary T; Cho, Kit W; Neely, James H

    2015-01-01

    The testing effect is the finding that taking a review test enhances performance on a final test relative to restudying the material. The present experiment investigated transfer-appropriate processing in the testing effect using semantic and orthographic cues to evoke conceptual and data-driven processing, respectively. After a study phase, subjects either restudied the material or took a cued-recall test consisting of half semantic and half orthographic cues in which the correct response was given as feedback. A final, cued-recall test consisted of the identical cue, or a new cue that was of the same type or different type of cue (semantic/orthographic or orthographic/semantic) as that used for that target in the review test. Testing enhanced memory in all conditions. When the review cues and final-test cues were identical, final recall was higher for semantic than orthographic cues. Consistent with test-based transfer-appropriate processing, memory performance improved as the review and final cues became more similar. These results suggest that the testing effect could potentially be caused by the episodic retrieval processes in a final memory test overlapping more with the episodic retrieval processes in a review test than with the encoding operations performed during restudy.

  5. Modelling and approaching pragmatic interoperability of distributed geoscience data

    NASA Astrophysics Data System (ADS)

    Ma, Xiaogang

    2010-05-01

    Interoperability of geodata, which is essential for sharing information and discovering insights within a cyberinfrastructure, is receiving increasing attention. A key requirement of interoperability in the context of geodata sharing is that data provided by local sources can be accessed, decoded, understood and appropriately used by external users. Various researchers have discussed that there are four levels in data interoperability issues: system, syntax, schematics and semantics, which respectively relate to the platform, encoding, structure and meaning of geodata. Ontology-driven approaches have been significantly studied addressing schematic and semantic interoperability issues of geodata in the last decade. There are different types, e.g. top-level ontologies, domain ontologies and application ontologies and display forms, e.g. glossaries, thesauri, conceptual schemas and logical theories. Many geodata providers are maintaining their identified local application ontologies in order to drive standardization in local databases. However, semantic heterogeneities often exist between these local ontologies, even though they are derived from equivalent disciplines. In contrast, common ontologies are being studied in different geoscience disciplines (e.g., NAMD, SWEET, etc.) as a standardization procedure to coordinate diverse local ontologies. Semantic mediation, e.g. mapping between local ontologies, or mapping local ontologies to common ontologies, has been studied as an effective way of achieving semantic interoperability between local ontologies thus reconciling semantic heterogeneities in multi-source geodata. Nevertheless, confusion still exists in the research field of semantic interoperability. One problem is caused by eliminating elements of local pragmatic contexts in semantic mediation. Comparing to the context-independent feature of a common domain ontology, local application ontologies are closely related to elements (e.g., people, time, location, intention, procedure, consequence, etc.) of local pragmatic contexts and thus context-dependent. Elimination of these elements will inevitably lead to information loss in semantic mediation between local ontologies. Correspondingly, understanding and effect of exchanged data in a new context may differ from that in its original context. Another problem is the dilemma on how to find a balance between flexibility and standardization of local ontologies, because ontologies are not fixed, but continuously evolving. It is commonly realized that we cannot use a unified ontology to replace all local ontologies because they are context-dependent and need flexibility. However, without coordination of standards, freely developed local ontologies and databases will bring enormous work of mediation between them. Finding a balance between standardization and flexibility for evolving ontologies, in a practical sense, requires negotiations (i.e. conversations, agreements and collaborations) between different local pragmatic contexts. The purpose of this work is to set up a computer-friendly model representing local pragmatic contexts (i.e. geodata sources), and propose a practical semantic negotiation procedure for approaching pragmatic interoperability between local pragmatic contexts. Information agents, objective facts and subjective dimensions are reviewed as elements of a conceptual model for representing pragmatic contexts. The author uses them to draw a practical semantic negotiation procedure approaching pragmatic interoperability of distributed geodata. The proposed conceptual model and semantic negotiation procedure were encoded with Description Logic, and then applied to analyze and manipulate semantic negotiations between different local ontologies within the National Mineral Resources Assessment (NMRA) project of China, which involves multi-source and multi-subject geodata sharing.

  6. On Productive Knowledge and Levels of Questions.

    ERIC Educational Resources Information Center

    Andre, Thomas

    A model is proposed for memory that stresses a distinction between episodic memory for encoded personal experience and semantic memory for abstractors and generalizations. Basically, the model holds that questions influence the nature of memory representations formed during instruction, and that memory representation controls the way in which…

  7. Maximal likelihood correspondence estimation for face recognition across pose.

    PubMed

    Li, Shaoxin; Liu, Xin; Chai, Xiujuan; Zhang, Haihong; Lao, Shihong; Shan, Shiguang

    2014-10-01

    Due to the misalignment of image features, the performance of many conventional face recognition methods degrades considerably in across pose scenario. To address this problem, many image matching-based methods are proposed to estimate semantic correspondence between faces in different poses. In this paper, we aim to solve two critical problems in previous image matching-based correspondence learning methods: 1) fail to fully exploit face specific structure information in correspondence estimation and 2) fail to learn personalized correspondence for each probe image. To this end, we first build a model, termed as morphable displacement field (MDF), to encode face specific structure information of semantic correspondence from a set of real samples of correspondences calculated from 3D face models. Then, we propose a maximal likelihood correspondence estimation (MLCE) method to learn personalized correspondence based on maximal likelihood frontal face assumption. After obtaining the semantic correspondence encoded in the learned displacement, we can synthesize virtual frontal images of the profile faces for subsequent recognition. Using linear discriminant analysis method with pixel-intensity features, state-of-the-art performance is achieved on three multipose benchmarks, i.e., CMU-PIE, FERET, and MultiPIE databases. Owe to the rational MDF regularization and the usage of novel maximal likelihood objective, the proposed MLCE method can reliably learn correspondence between faces in different poses even in complex wild environment, i.e., labeled face in the wild database.

  8. Aging and the Picture Superiority Effect in Recall.

    ERIC Educational Resources Information Center

    Winograd, Eugene; And Others

    1982-01-01

    Compared verbal and visual encoding using the picture superiority effect. One experiment found an interaction between age and type of material. In other experiments, the picture superiority effect was found in both age groups with no interaction. Performing a semantic-orienting task had no effect on recall. (Author/RC)

  9. Memory and Metamemory in Deaf Students.

    ERIC Educational Resources Information Center

    Fung Tsui, Hing; Rodda, Michael

    1990-01-01

    Memory and metamemory abilities of 24 severely to profoundly deaf students between the ages of 9 and 20 years old were studied. Results did not suggest spatial bias in encoding. Semantic knowledge was correlated with metamemory and free recall, and rehearsal mechanisms correlated with temporal position recall and paired-associate nonprototypic…

  10. Reducing the Familiarity of Conjunction Lures with Pictures

    ERIC Educational Resources Information Center

    Lloyd, Marianne E.

    2013-01-01

    Four experiments were conducted to test whether conjunction errors were reduced after pictorial encoding and whether the semantic overlap between study and conjunction items would impact error rates. Across 4 experiments, compound words studied with a single-picture had lower conjunction error rates during a recognition test than those words…

  11. 45 CFR 162.103 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... definitions apply: Code set means any set of codes used to encode data elements, such as tables of terms... code sets inherent to a transaction, and not related to the format of the transaction. Data elements... information in a transaction. Data set means a semantically meaningful unit of information exchanged between...

  12. 45 CFR 162.103 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... definitions apply: Code set means any set of codes used to encode data elements, such as tables of terms... sets inherent to a transaction, and not related to the format of the transaction. Data elements that... information in a transaction. Data set means a semantically meaningful unit of information exchanged between...

  13. 45 CFR 162.103 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... definitions apply: Code set means any set of codes used to encode data elements, such as tables of terms... sets inherent to a transaction, and not related to the format of the transaction. Data elements that... information in a transaction. Data set means a semantically meaningful unit of information exchanged between...

  14. 45 CFR 162.103 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... definitions apply: Code set means any set of codes used to encode data elements, such as tables of terms... sets inherent to a transaction, and not related to the format of the transaction. Data elements that... information in a transaction. Data set means a semantically meaningful unit of information exchanged between...

  15. 45 CFR 162.103 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... definitions apply: Code set means any set of codes used to encode data elements, such as tables of terms... code sets inherent to a transaction, and not related to the format of the transaction. Data elements... information in a transaction. Data set means a semantically meaningful unit of information exchanged between...

  16. TMS-Induced Modulation of Action Sentence Priming in the Ventral Premotor Cortex

    ERIC Educational Resources Information Center

    Tremblay, Pascale; Sato, Marc; Small, Steven L.

    2012-01-01

    Despite accumulating evidence that cortical motor areas, particularly the lateral premotor cortex, are activated during language comprehension, the question of whether motor processes help mediate the semantic encoding of language remains controversial. To address this issue, we examined whether low frequency (1 Hz) repetitive transcranial…

  17. Free Recall Test Experience Potentiates Strategy-Driven Effects of Value on Memory

    ERIC Educational Resources Information Center

    Cohen, Michael S.; Rissman, Jesse; Hovhannisyan, Mariam; Castel, Alan D.; Knowlton, Barbara J.

    2017-01-01

    People tend to show better memory for information that is deemed valuable or important. By one mechanism, individuals selectively engage deeper, semantic encoding strategies for high value items (Cohen, Rissman, Suthana, Castel, & Knowlton, 2014). By another mechanism, information paired with value or reward is automatically strengthened in…

  18. Shared Semantic Representations for Coordinating Distributed Robot Teams

    DTIC Science & Technology

    2003-12-01

    Encoding of Rules, Variables, and Dynamic Bindings Using Temporal Synchrony." Behavioral and Brain Sciences, 16:3 p. 417-494. 29 16. Marvin Minsky . "Plain...is limited. Minsky [16] also describes a proposal for c-lines, a frame implementation mechanism similar in spirit to role passing, although the details

  19. Radical Sensitivity Is the Key to Understanding Chinese Character Acquisition in Children

    ERIC Educational Resources Information Center

    Tong, Xiuhong; Tong, Xiuli; McBride, Catherine

    2017-01-01

    This study investigated Chinese children's development of sensitivity to positional (orthographic), phonological, and semantic cues of radicals in encoding novel Chinese characters. A newly designed picture-novel character mapping task, along with nonverbal reasoning ability, vocabulary, and Chinese character recognition were administered to 198…

  20. Elaborative Processing in the Korsakoff Syndrome: Context versus Habit

    ERIC Educational Resources Information Center

    Van Damme, Ilse; d'Ydewalle, Gery

    2008-01-01

    Using a procedure of Hay and Jacoby [Hay, J. F., & Jacoby, L. L. (1999). "Separating habit and recollection in young and older adults: Effects of elaborative processing and distinctiveness." "Psychology and Aging," 14, 122-134], Korsakoff patients' capacity to encode and retrieve elaborative, semantic information was investigated. Habits were…

  1. A hierarchical, ontology-driven Bayesian concept for ubiquitous medical environments--a case study for pulmonary diseases.

    PubMed

    Maragoudakis, Manolis; Lymberopoulos, Dimitrios; Fakotakis, Nikos; Spiropoulos, Kostas

    2008-01-01

    The present paper extends work on an existing computer-based Decision Support System (DSS) that aims to provide assistance to physicians as regards to pulmonary diseases. The extension deals with allowing for a hierarchical decomposition of the task, at different levels of domain granularity, using a novel approach, i.e. Hierarchical Bayesian Networks. The proposed framework uses data from various networking appliances such as mobile phones and wireless medical sensors to establish a ubiquitous environment for medical treatment of pulmonary diseases. Domain knowledge is encoded at the upper levels of the hierarchy, thus making the process of generalization easier to accomplish. The experimental results were carried out under the Pulmonary Department, University Regional Hospital Patras, Patras, Greece. They have supported our initial beliefs about the ability of Bayesian networks to provide an effective, yet semantically-oriented, means of prognosis and reasoning under conditions of uncertainty.

  2. Wernicke's aphasia reflects a combination of acoustic-phonological and semantic control deficits: a case-series comparison of Wernicke's aphasia, semantic dementia and semantic aphasia.

    PubMed

    Robson, Holly; Sage, Karen; Ralph, Matthew A Lambon

    2012-01-01

    Wernicke's aphasia (WA) is the classical neurological model of comprehension impairment and, as a result, the posterior temporal lobe is assumed to be critical to semantic cognition. This conclusion is potentially confused by (a) the existence of patient groups with semantic impairment following damage to other brain regions (semantic dementia and semantic aphasia) and (b) an ongoing debate about the underlying causes of comprehension impairment in WA. By directly comparing these three patient groups for the first time, we demonstrate that the comprehension impairment in Wernicke's aphasia is best accounted for by dual deficits in acoustic-phonological analysis (associated with pSTG) and semantic cognition (associated with pMTG and angular gyrus). The WA group were impaired on both nonverbal and verbal comprehension assessments consistent with a generalised semantic impairment. This semantic deficit was most similar in nature to that of the semantic aphasia group suggestive of a disruption to semantic control processes. In addition, only the WA group showed a strong effect of input modality on comprehension, with accuracy decreasing considerably as acoustic-phonological requirements increased. These results deviate from traditional accounts which emphasise a single impairment and, instead, implicate two deficits underlying the comprehension disorder in WA. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Word add-in for ontology recognition: semantic enrichment of scientific literature.

    PubMed

    Fink, J Lynn; Fernicola, Pablo; Chandran, Rahul; Parastatidis, Savas; Wade, Alex; Naim, Oscar; Quinn, Gregory B; Bourne, Philip E

    2010-02-24

    In the current era of scientific research, efficient communication of information is paramount. As such, the nature of scholarly and scientific communication is changing; cyberinfrastructure is now absolutely necessary and new media are allowing information and knowledge to be more interactive and immediate. One approach to making knowledge more accessible is the addition of machine-readable semantic data to scholarly articles. The Word add-in presented here will assist authors in this effort by automatically recognizing and highlighting words or phrases that are likely information-rich, allowing authors to associate semantic data with those words or phrases, and to embed that data in the document as XML. The add-in and source code are publicly available at http://www.codeplex.com/UCSDBioLit. The Word add-in for ontology term recognition makes it possible for an author to add semantic data to a document as it is being written and it encodes these data using XML tags that are effectively a standard in life sciences literature. Allowing authors to mark-up their own work will help increase the amount and quality of machine-readable literature metadata.

  4. Young children make their gestural communication systems more language-like: segmentation and linearization of semantic elements in motion events.

    PubMed

    Clay, Zanna; Pople, Sally; Hood, Bruce; Kita, Sotaro

    2014-08-01

    Research on Nicaraguan Sign Language, created by deaf children, has suggested that young children use gestures to segment the semantic elements of events and linearize them in ways similar to those used in signed and spoken languages. However, it is unclear whether this is due to children's learning processes or to a more general effect of iterative learning. We investigated whether typically developing children, without iterative learning, segment and linearize information. Gestures produced in the absence of speech to express a motion event were examined in 4-year-olds, 12-year-olds, and adults (all native English speakers). We compared the proportions of gestural expressions that segmented semantic elements into linear sequences and that encoded them simultaneously. Compared with adolescents and adults, children reshaped the holistic stimuli by segmenting and recombining their semantic features into linearized sequences. A control task on recognition memory ruled out the possibility that this was due to different event perception or memory. Young children spontaneously bring fundamental properties of language into their communication system. © The Author(s) 2014.

  5. The SeaHorn Verification Framework

    NASA Technical Reports Server (NTRS)

    Gurfinkel, Arie; Kahsai, Temesghen; Komuravelli, Anvesh; Navas, Jorge A.

    2015-01-01

    In this paper, we present SeaHorn, a software verification framework. The key distinguishing feature of SeaHorn is its modular design that separates the concerns of the syntax of the programming language, its operational semantics, and the verification semantics. SeaHorn encompasses several novelties: it (a) encodes verification conditions using an efficient yet precise inter-procedural technique, (b) provides flexibility in the verification semantics to allow different levels of precision, (c) leverages the state-of-the-art in software model checking and abstract interpretation for verification, and (d) uses Horn-clauses as an intermediate language to represent verification conditions which simplifies interfacing with multiple verification tools based on Horn-clauses. SeaHorn provides users with a powerful verification tool and researchers with an extensible and customizable framework for experimenting with new software verification techniques. The effectiveness and scalability of SeaHorn are demonstrated by an extensive experimental evaluation using benchmarks from SV-COMP 2015 and real avionics code.

  6. Identifying bilingual semantic neural representations across languages

    PubMed Central

    Buchweitz, Augusto; Shinkareva, Svetlana V.; Mason, Robert A.; Mitchell, Tom M.; Just, Marcel Adam

    2015-01-01

    The goal of the study was to identify the neural representation of a noun's meaning in one language based on the neural representation of that same noun in another language. Machine learning methods were used to train classifiers to identify which individual noun bilingual participants were thinking about in one language based solely on their brain activation in the other language. The study shows reliable (p < .05) pattern-based classification accuracies for the classification of brain activity for nouns across languages. It also shows that the stable voxels used to classify the brain activation were located in areas associated with encoding information about semantic dimensions of the words in the study. The identification of the semantic trace of individual nouns from the pattern of cortical activity demonstrates the existence of a multi-voxel pattern of activation across the cortex for a single noun common to both languages in bilinguals. PMID:21978845

  7. Sharing Epigraphic Information as Linked Data

    NASA Astrophysics Data System (ADS)

    Álvarez, Fernando-Luis; García-Barriocanal, Elena; Gómez-Pantoja, Joaquín-L.

    The diffusion of epigraphic data has evolved in the last years from printed catalogues to indexed digital databases shared through the Web. Recently, the open EpiDoc specifications have resulted in an XML-based schema for the interchange of ancient texts that uses XSLT to render typographic representations. However, these schemas and representation systems are still not providing a way to encode computational semantics and semantic relations between pieces of epigraphic data. This paper sketches an approach to bring these semantics into an EpiDoc based schema using the Ontology Web Language (OWL) and following the principles and methods of information sharing known as "linked data". The paper describes the general principles of the OWL mapping of the EpiDoc schema and how epigraphic data can be shared in RDF format via dereferenceable URIs that can be used to build advanced search, visualization and analysis systems.

  8. SAS- Semantic Annotation Service for Geoscience resources on the web

    NASA Astrophysics Data System (ADS)

    Elag, M.; Kumar, P.; Marini, L.; Li, R.; Jiang, P.

    2015-12-01

    There is a growing need for increased integration across the data and model resources that are disseminated on the web to advance their reuse across different earth science applications. Meaningful reuse of resources requires semantic metadata to realize the semantic web vision for allowing pragmatic linkage and integration among resources. Semantic metadata associates standard metadata with resources to turn them into semantically-enabled resources on the web. However, the lack of a common standardized metadata framework as well as the uncoordinated use of metadata fields across different geo-information systems, has led to a situation in which standards and related Standard Names abound. To address this need, we have designed SAS to provide a bridge between the core ontologies required to annotate resources and information systems in order to enable queries and analysis over annotation from a single environment (web). SAS is one of the services that are provided by the Geosematnic framework, which is a decentralized semantic framework to support the integration between models and data and allow semantically heterogeneous to interact with minimum human intervention. Here we present the design of SAS and demonstrate its application for annotating data and models. First we describe how predicates and their attributes are extracted from standards and ingested in the knowledge-base of the Geosemantic framework. Then we illustrate the application of SAS in annotating data managed by SEAD and annotating simulation models that have web interface. SAS is a step in a broader approach to raise the quality of geoscience data and models that are published on the web and allow users to better search, access, and use of the existing resources based on standard vocabularies that are encoded and published using semantic technologies.

  9. Encoding techniques for complex information structures in connectionist systems

    NASA Technical Reports Server (NTRS)

    Barnden, John; Srinivas, Kankanahalli

    1990-01-01

    Two general information encoding techniques called relative position encoding and pattern similarity association are presented. They are claimed to be a convenient basis for the connectionist implementation of complex, short term information processing of the sort needed in common sense reasoning, semantic/pragmatic interpretation of natural language utterances, and other types of high level cognitive processing. The relationships of the techniques to other connectionist information-structuring methods, and also to methods used in computers, are discussed in detail. The rich inter-relationships of these other connectionist and computer methods are also clarified. The particular, simple forms are discussed that the relative position encoding and pattern similarity association techniques take in the author's own connectionist system, called Conposit, in order to clarify some issues and to provide evidence that the techniques are indeed useful in practice.

  10. The impact of iconic gestures on foreign language word learning and its neural substrate.

    PubMed

    Macedonia, Manuela; Müller, Karsten; Friederici, Angela D

    2011-06-01

    Vocabulary acquisition represents a major challenge in foreign language learning. Research has demonstrated that gestures accompanying speech have an impact on memory for verbal information in the speakers' mother tongue and, as recently shown, also in foreign language learning. However, the neural basis of this effect remains unclear. In a within-subjects design, we compared learning of novel words coupled with iconic and meaningless gestures. Iconic gestures helped learners to significantly better retain the verbal material over time. After the training, participants' brain activity was registered by means of fMRI while performing a word recognition task. Brain activations to words learned with iconic and with meaningless gestures were contrasted. We found activity in the premotor cortices for words encoded with iconic gestures. In contrast, words encoded with meaningless gestures elicited a network associated with cognitive control. These findings suggest that memory performance for newly learned words is not driven by the motor component as such, but by the motor image that matches an underlying representation of the word's semantics. Copyright © 2010 Wiley-Liss, Inc.

  11. Memory for the perceptual and semantic attributes of information in pure amnesic and severe closed-head injured patients.

    PubMed

    Carlesimo, Giovanni A; Bonanni, Rita; Caltagirone, Carlo

    2003-05-01

    This study investigated the hypothesis that brain damaged patients with memory disorder are poorer at remembering the semantic than the perceptual attributes of information. Eight patients with memory impairment of different etiology and 24 patients with chronic consequences of severe closed-head injury were compared to similarly sized age- and literacy-matched normal control groups on recognition tests for the physical aspect and the semantic identity of words and pictures lists. In order to avoid interpretative problems deriving from different absolute levels of performance, study conditions were manipulated across subjects to obtain comparable accuracy on the perceptual recognition tests in the memory disordered and control groups. The results of the Picture Recognition test were consistent with the hypothesis. Indeed, having more time for the stimulus encoding, the two memory disordered groups performed at the same level as the normal subjects on the perceptual test but significantly lower on the semantic test. Instead, on the Word Recognition test, following study condition manipulation, patients and controls performed similarly on both the perceptual and the semantic tests. These data only partially support the hypothesis of the study; rather they suggest that in memory disordered patients there is a reduction of the advantage, exhibited by normal controls, of retrieving pictures over words (picture superiority effect).

  12. A computational modeling of semantic knowledge in reading comprehension: Integrating the landscape model with latent semantic analysis.

    PubMed

    Yeari, Menahem; van den Broek, Paul

    2016-09-01

    It is a well-accepted view that the prior semantic (general) knowledge that readers possess plays a central role in reading comprehension. Nevertheless, computational models of reading comprehension have not integrated the simulation of semantic knowledge and online comprehension processes under a unified mathematical algorithm. The present article introduces a computational model that integrates the landscape model of comprehension processes with latent semantic analysis representation of semantic knowledge. In three sets of simulations of previous behavioral findings, the integrated model successfully simulated the activation and attenuation of predictive and bridging inferences during reading, as well as centrality estimations and recall of textual information after reading. Analyses of the computational results revealed new theoretical insights regarding the underlying mechanisms of the various comprehension phenomena.

  13. Multivariate Pattern Analysis Reveals Category-Related Organization of Semantic Representations in Anterior Temporal Cortex.

    PubMed

    Malone, Patrick S; Glezer, Laurie S; Kim, Judy; Jiang, Xiong; Riesenhuber, Maximilian

    2016-09-28

    The neural substrates of semantic representation have been the subject of much controversy. The study of semantic representations is complicated by difficulty in disentangling perceptual and semantic influences on neural activity, as well as in identifying stimulus-driven, "bottom-up" semantic selectivity unconfounded by top-down task-related modulations. To address these challenges, we trained human subjects to associate pseudowords (TPWs) with various animal and tool categories. To decode semantic representations of these TPWs, we used multivariate pattern classification of fMRI data acquired while subjects performed a semantic oddball detection task. Crucially, the classifier was trained and tested on disjoint sets of TPWs, so that the classifier had to use the semantic information from the training set to correctly classify the test set. Animal and tool TPWs were successfully decoded based on fMRI activity in spatially distinct subregions of the left medial anterior temporal lobe (LATL). In addition, tools (but not animals) were successfully decoded from activity in the left inferior parietal lobule. The tool-selective LATL subregion showed greater functional connectivity with left inferior parietal lobule and ventral premotor cortex, indicating that each LATL subregion exhibits distinct patterns of connectivity. Our findings demonstrate category-selective organization of semantic representations in LATL into spatially distinct subregions, continuing the lateral-medial segregation of activation in posterior temporal cortex previously observed in response to images of animals and tools, respectively. Together, our results provide evidence for segregation of processing hierarchies for different classes of objects and the existence of multiple, category-specific semantic networks in the brain. The location and specificity of semantic representations in the brain are still widely debated. We trained human participants to associate specific pseudowords with various animal and tool categories, and used multivariate pattern classification of fMRI data to decode the semantic representations of the trained pseudowords. We found that: (1) animal and tool information was organized in category-selective subregions of medial left anterior temporal lobe (LATL); (2) tools, but not animals, were encoded in left inferior parietal lobe; and (3) LATL subregions exhibited distinct patterns of functional connectivity with category-related regions across cortex. Our findings suggest that semantic knowledge in LATL is organized in category-related subregions, providing evidence for the existence of multiple, category-specific semantic representations in the brain. Copyright © 2016 the authors 0270-6474/16/3610089-08$15.00/0.

  14. Different Brain Activities Predict Retrieval Success during Emotional and Semantic Encoding

    ERIC Educational Resources Information Center

    Padovani, Tullia; Koenig, Thomas; Brandeis, Daniel; Perrig, Walter J.

    2011-01-01

    There is an increasing line of evidence supporting the idea that the formation of lasting memories involves neural activity preceding stimulus presentation. Following this line, we presented words in an incidental learning setting and manipulated the prestimulus state by asking the participants to perform either an emotional (neutral or emotional)…

  15. Cognitive Processing Load as a Determinant of Stuttering: Summary of a Research Programme

    ERIC Educational Resources Information Center

    Bosshardt, Hans-Georg

    2006-01-01

    The present paper integrates the results of experimental studies in which cognitive differences between stuttering and nonstuttering adults were investigated. In a monitoring experiment it was found that persons who stutter encode semantic information more slowly than nonstuttering persons. In dual-task experiments the two groups were compared in…

  16. Order of Access to Semantic Content and Self Schema.

    ERIC Educational Resources Information Center

    Mueller, John H.; And Others

    Self-referenced content is generally remembered better and faster than information encoded in other ways. To examine how self-relevant information is organized in memory, three experiments were conducted, comparing the effects of target-first or word-first methodology. In the target-first condition, subjects (N=15) saw one of the two questions,…

  17. Deep Levels of Processing Elicit a Distinctiveness Heuristic: Evidence from the Criterial Recollection Task

    ERIC Educational Resources Information Center

    Gallo, David A.; Meadow, Nathaniel G.; Johnson, Elizabeth L.; Foster, Katherine T.

    2008-01-01

    Thinking about the meaning of studied words (deep processing) enhances memory on typical recognition tests, relative to focusing on perceptual features (shallow processing). One explanation for this levels-of-processing effect is that deep processing leads to the encoding of more distinctive representations (i.e., more unique semantic or…

  18. Processing Depth, Elaboration of Encoding, Memory Stores, and Expended Processing Capacity.

    ERIC Educational Resources Information Center

    Eysenck, Michael W.; Eysenck, M. Christine

    1979-01-01

    The effects of several factors on expended processing capacity were measured. Expended processing capacity was greater when information was retrieved from secondary memory than from primary memory, when processing was of a deep, semantic nature than when it was shallow and physical, and when processing was more elaborate. (Author/GDC)

  19. Can Survival Processing Enhance Story Memory? Testing the Generalizability of the Adaptive Memory Framework

    ERIC Educational Resources Information Center

    Seamon, John G.; Bohn, Justin M.; Coddington, Inslee E.; Ebling, Maritza C.; Grund, Ethan M.; Haring, Catherine T.; Jang, Sue-Jung; Kim, Daniel; Liong, Christopher; Paley, Frances M.; Pang, Luke K.; Siddique, Ashik H.

    2012-01-01

    Research from the adaptive memory framework shows that thinking about words in terms of their survival value in an incidental learning task enhances their free recall relative to other semantic encoding strategies and intentional learning (Nairne, Pandeirada, & Thompson, 2008). We found similar results. When participants used incidental…

  20. Transient medial prefrontal perturbation reduces false memory formation.

    PubMed

    Berkers, Ruud M W J; van der Linden, Marieke; de Almeida, Rafael F; Müller, Nils C J; Bovy, Leonore; Dresler, Martin; Morris, Richard G M; Fernández, Guillén

    2017-03-01

    Knowledge extracted across previous experiences, or schemas, benefit encoding and retention of congruent information. However, they can also reduce specificity and augment memory for semantically related, but false information. A demonstration of the latter is given by the Deese-Roediger-McDermott (DRM) paradigm, where the studying of words that fit a common semantic schema are found to induce false memories for words that are congruent with the given schema, but were not studied. The medial prefrontal cortex (mPFC) has been ascribed the function of leveraging prior knowledge to influence encoding and retrieval, based on imaging and patient studies. Here, we used transcranial magnetic stimulation (TMS) to transiently perturb ongoing mPFC processing immediately before participants performed the DRM-task. We observed the predicted reduction in false recall of critical lures after mPFC perturbation, compared to two control groups, whereas veridical recall and recognition memory performance remained similar across groups. These data provide initial causal evidence for a role of the mPFC in biasing the assimilation of new memories and their consolidation as a function of prior knowledge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Cross-cultural examination of the semantic dimensions of body postures.

    PubMed

    Kudoh, T; Matsumoto, D

    1985-06-01

    In two studies, we examined the cross-cultural validity of the dimensional structures with which postures are judged. In Study 1, 686 Japanese subjects rated 40 posture expressions on sixteen 5-point semantic differential scale items. Subjects inferred an encoder's attitude towards oneself (i.e., the decoding subject) in hypothetical dyadic situations. A principal-component factor analysis yielded evidence for three independent dimensions resembling those proposed by Schlosberg (1954), Osgood (1966), and Williams and Sundene (1965). These three factors were named self-fulfillment, interpersonal positiveness, and interpersonal consciousness. In Study 2, 336 Japanese students again rated the 40 posture expressions on the sixteen 5-point differential items, but an attempt was made to control for the status of the hypothetical encoder. The results of this study essentially replicated those of Study 1. One interesting finding was that although we found the same factors as those found in studies conducted in the West, the order of the factors in our studies was the reverse of the order found in these previous studies. The findings are discussed in terms of proposed cultural differences in the maintenance of human relations.

  2. Benefits of computer-based memory and attention training in healthy older adults.

    PubMed

    Chambon, Caroline; Herrera, Cathy; Romaiguere, Patricia; Paban, Véronique; Alescio-Lautier, Béatrice

    2014-09-01

    Multifactorial cognitive training programs have a positive effect on cognition in healthy older adults. Among the age-sensitive cognitive domains, episodic memory is the most affected. In the present study, we evaluated the benefits on episodic memory of a computer-based memory and attention training. We targeted consciously controlled processes at encoding and minimizing processing at retrieval, by using more familiarity than recollection during recognition. Such an approach emphasizes processing at encoding and prevents subjects from reinforcing their own errors. Results showed that the training improved recognition performances and induced near transfer to recall. The largest benefits, however, were for tasks with high mental load. Improvement in free recall depended on the modality to recall; semantic recall was improved but not spatial recall. In addition, a far transfer was also observed with better memory self-perception and self-esteem of the participants. Finally, at 6-month follow up, maintenance of benefits was observed only for semantic free recall. The challenge now is to corroborate far transfer by objective measures of everyday life executive functioning. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  3. Medical knowledge discovery and management.

    PubMed

    Prior, Fred

    2009-05-01

    Although the volume of medical information is growing rapidly, the ability to rapidly convert this data into "actionable insights" and new medical knowledge is lagging far behind. The first step in the knowledge discovery process is data management and integration, which logically can be accomplished through the application of data warehouse technologies. A key insight that arises from efforts in biosurveillance and the global scope of military medicine is that information must be integrated over both time (longitudinal health records) and space (spatial localization of health-related events). Once data are compiled and integrated it is essential to encode the semantics and relationships among data elements through the use of ontologies and semantic web technologies to convert data into knowledge. Medical images form a special class of health-related information. Traditionally knowledge has been extracted from images by human observation and encoded via controlled terminologies. This approach is rapidly being replaced by quantitative analyses that more reliably support knowledge extraction. The goals of knowledge discovery are the improvement of both the timeliness and accuracy of medical decision making and the identification of new procedures and therapies.

  4. Brain correlates of performance in a free/cued recall task with semantic encoding in Alzheimer disease.

    PubMed

    Lekeu, Françoise; Van der Linden, Martial; Chicherio, Christian; Collette, Fabienne; Degueldre, Christian; Franck, Georges; Moonen, Gustave; Salmon, Eric

    2003-01-01

    The goal of this study was to explore in patients with Alzheimer's disease (AD) the brain correlates of free and cued recall performance using an adaptation of the procedure developed by Grober and Buschke (1987). This procedure, which ensures semantic processing and coordinates encoding and retrieval, has been shown to be very sensitive to an early diagnosis of AD. Statistical parametric mapping (SPM 99) was used to establish clinicometabolic correlations between performance at free and cued verbal recall and resting brain metabolism in 31 patients with AD. Results showed that patient's score on free recall correlated with metabolic activity in right frontal regions (BA 10 and BA 45), suggesting that performance reflected a strategic retrieval attempt. Poor retrieval performance was tentatively attributed to a loss of functional correlation between frontal and medial temporal regions in patients with AD compared with elderly controls. Performance on cued recall was correlated to residual metabolic activity in bilateral parahippocampal regions (BA 36), suggesting that performance reflected retrieval of semantic associations, without recollection in AD. In conclusion, this study demonstrates that the diagnostic sensitivity for Alzheimer's disease of the cued recall performance in the Grober and Buschke procedure (1987) depends on the activity of parahippocampal regions, one of the earliest targets of the disease. Moreover, the results suggest that the poor performance of patients with AD during free and cued recall is related to a decreased connectivity between parahippocampal regions and frontal areas.

  5. Conceptual fluency at test shifts recognition response bias in Alzheimer's disease: implications for increased false recognition.

    PubMed

    Gold, Carl A; Marchant, Natalie L; Koutstaal, Wilma; Schacter, Daniel L; Budson, Andrew E

    2007-09-20

    The presence or absence of conceptual information in pictorial stimuli may explain the mixed findings of previous studies of false recognition in patients with mild Alzheimer's disease (AD). To test this hypothesis, 48 patients with AD were compared to 48 healthy older adults on a recognition task first described by Koutstaal et al. [Koutstaal, W., Reddy, C., Jackson, E. M., Prince, S., Cendan, D. L., & Schacter D. L. (2003). False recognition of abstract versus common objects in older and younger adults: Testing the semantic categorization account. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 499-510]. Participants studied and were tested on their memory for categorized ambiguous pictures of common objects. The presence of conceptual information at study and/or test was manipulated by providing or withholding disambiguating semantic labels. Analyses focused on testing two competing theories. The semantic encoding hypothesis, which posits that the inter-item perceptual details are not encoded by AD patients when conceptual information is present in the stimuli, was not supported by the findings. In contrast, the conceptual fluency hypothesis was supported. Enhanced conceptual fluency at test dramatically shifted AD patients to a more liberal response bias, raising their false recognition. These results suggest that patients with AD rely on the fluency of test items in making recognition memory decisions. We speculate that AD patients' over reliance upon fluency may be attributable to (1) dysfunction of the hippocampus, disrupting recollection, and/or (2) dysfunction of prefrontal cortex, disrupting post-retrieval processes.

  6. Evaluative priming of naming and semantic categorization responses revisited: a mutual facilitation explanation.

    PubMed

    Schmitz, Melanie; Wentura, Dirk

    2012-07-01

    The evaluative priming effect (i.e., faster target responses following evaluatively congruent compared with evaluatively incongruent primes) in nonevaluative priming tasks (such as naming or semantic categorization tasks) is considered important for the question of how evaluative connotations are represented in memory. However, the empirical evidence is rather ambiguous: Positive effects as well as null results and negatively signed effects have been found. We tested the assumption that different processes are responsible for these results. In particular, we argue that positive effects are due to target-encoding facilitation (caused by a congruent prime), while negative effects are due to prime-activation maintenance (caused by a congruent target) and subsequent response conflict. In 4 experiments, we used a negative prime-target stimulus-onset asynchrony (SOA) to minimize target-encoding facilitation and maximize prime maintenance. In a naming task (Experiment 1), we found a negatively signed evaluative priming effect if prime and target competed for naming responses. In a semantic categorization task (i.e., person vs. animal; Experiments 2 and 3), response conflicts between prime and target were significantly larger in case of evaluative congruence compared with incongruence. These results corroborate the theory that a prime has more potential to interfere with the target response if its activation is maintained by an evaluatively congruent target. Experiment 4a/b indicated valence specificity of the effect. Implications for the memory representation of valence are discussed. 2012 APA, all rights reserved

  7. Neural Encoding and Decoding with Deep Learning for Dynamic Natural Vision.

    PubMed

    Wen, Haiguang; Shi, Junxing; Zhang, Yizhen; Lu, Kun-Han; Cao, Jiayue; Liu, Zhongming

    2017-10-20

    Convolutional neural network (CNN) driven by image recognition has been shown to be able to explain cortical responses to static pictures at ventral-stream areas. Here, we further showed that such CNN could reliably predict and decode functional magnetic resonance imaging data from humans watching natural movies, despite its lack of any mechanism to account for temporal dynamics or feedback processing. Using separate data, encoding and decoding models were developed and evaluated for describing the bi-directional relationships between the CNN and the brain. Through the encoding models, the CNN-predicted areas covered not only the ventral stream, but also the dorsal stream, albeit to a lesser degree; single-voxel response was visualized as the specific pixel pattern that drove the response, revealing the distinct representation of individual cortical location; cortical activation was synthesized from natural images with high-throughput to map category representation, contrast, and selectivity. Through the decoding models, fMRI signals were directly decoded to estimate the feature representations in both visual and semantic spaces, for direct visual reconstruction and semantic categorization, respectively. These results corroborate, generalize, and extend previous findings, and highlight the value of using deep learning, as an all-in-one model of the visual cortex, to understand and decode natural vision. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Dynamic semantic cognition: Characterising coherent and controlled conceptual retrieval through time using magnetoencephalography and chronometric transcranial magnetic stimulation.

    PubMed

    Teige, Catarina; Mollo, Giovanna; Millman, Rebecca; Savill, Nicola; Smallwood, Jonathan; Cornelissen, Piers L; Jefferies, Elizabeth

    2018-06-01

    Distinct neural processes are thought to support the retrieval of semantic information that is (i) coherent with strongly-encoded aspects of knowledge, and (ii) non-dominant yet relevant for the current task or context. While the brain regions that support readily coherent and more controlled patterns of semantic retrieval are relatively well-characterised, the temporal dynamics of these processes are not well-understood. This study used magnetoencephalography (MEG) and dual-pulse chronometric transcranial magnetic stimulation (cTMS) in two separate experiments to examine temporal dynamics during the retrieval of strong and weak associations. MEG results revealed a dissociation within left temporal cortex: anterior temporal lobe (ATL) showed greater oscillatory response for strong than weak associations, while posterior middle temporal gyrus (pMTG) showed the reverse pattern. Left inferior frontal gyrus (IFG), a site associated with semantic control and retrieval, showed both patterns at different time points. In the cTMS experiment, stimulation of ATL at ∼150 msec disrupted the efficient retrieval of strong associations, indicating a necessary role for ATL in coherent conceptual activations. Stimulation of pMTG at the onset of the second word disrupted the retrieval of weak associations, suggesting this site may maintain information about semantic context from the first word, allowing efficient engagement of semantic control. Together these studies provide converging evidence for a functional dissociation within the temporal lobe, across both tasks and time. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Temporally specific divided attention tasks in young adults reveal the temporal dynamics of episodic encoding failures in elderly adults.

    PubMed

    Johnson, Ray; Nessler, Doreen; Friedman, David

    2013-06-01

    Nessler, Johnson, Bersick, and Friedman (D. Nessler, R. Johnson, Jr., M. Bersick, & D. Friedman, 2006, On why the elderly have normal semantic retrieval but deficient episodic encoding: A study of left inferior frontal ERP activity, NeuroImage, Vol. 30, pp. 299-312) found that, compared with young adults, older adults show decreased event-related brain potential (ERP) activity over posterior left inferior prefrontal cortex (pLIPFC) in a 400- to 1,400-ms interval during episodic encoding. This altered brain activity was associated with significantly decreased recognition performance and reduced recollection-related brain activity at retrieval (D. Nessler, D. Friedman, R. Johnson, Jr., & M. Bersick, 2007, Does repetition engender the same retrieval processes in young and older adults? NeuroReport, Vol. 18, pp. 1837-1840). To test the hypothesis that older adults' well-documented episodic retrieval deficit is related to reduced pLIPFC activity at encoding, we used a novel divided attention task in healthy young adults that was specifically timed to disrupt encoding in either the 1st or 2nd half of a 300- to 1,400-ms interval. The results showed that diverting resources for 550 ms during either half of this interval reproduced the 4 characteristic aspects of the older participants' retrieval performance: normal semantic retrieval during encoding, reduced subsequent episodic recognition and recall, reduced recollection-related ERP activity, and the presence of "compensatory" brain activity. We conclude that part of older adults' episodic memory deficit is attributable to altered pLIPFC activity during encoding due to reduced levels of available processing resources. Moreover, the findings also provide insights into the nature and timing of the putative "compensatory" processes posited to be used by older adults in an attempt to compensate for age-related decline in cognitive function. These results support the scaffolding account of compensation, in which the recruitment of additional cognitive processes is an adaptive response across the life span. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  10. Using ontology-based semantic similarity to facilitate the article screening process for systematic reviews.

    PubMed

    Ji, Xiaonan; Ritter, Alan; Yen, Po-Yin

    2017-05-01

    Systematic Reviews (SRs) are utilized to summarize evidence from high quality studies and are considered the preferred source of evidence-based practice (EBP). However, conducting SRs can be time and labor intensive due to the high cost of article screening. In previous studies, we demonstrated utilizing established (lexical) article relationships to facilitate the identification of relevant articles in an efficient and effective manner. Here we propose to enhance article relationships with background semantic knowledge derived from Unified Medical Language System (UMLS) concepts and ontologies. We developed a pipelined semantic concepts representation process to represent articles from an SR into an optimized and enriched semantic space of UMLS concepts. Throughout the process, we leveraged concepts and concept relations encoded in biomedical ontologies (SNOMED-CT and MeSH) within the UMLS framework to prompt concept features of each article. Article relationships (similarities) were established and represented as a semantic article network, which was readily applied to assist with the article screening process. We incorporated the concept of active learning to simulate an interactive article recommendation process, and evaluated the performance on 15 completed SRs. We used work saved over sampling at 95% recall (WSS95) as the performance measure. We compared the WSS95 performance of our ontology-based semantic approach to existing lexical feature approaches and corpus-based semantic approaches, and found that we had better WSS95 in most SRs. We also had the highest average WSS95 of 43.81% and the highest total WSS95 of 657.18%. We demonstrated using ontology-based semantics to facilitate the identification of relevant articles for SRs. Effective concepts and concept relations derived from UMLS ontologies can be utilized to establish article semantic relationships. Our approach provided a promising performance and can easily apply to any SR topics in the biomedical domain with generalizability. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The Deese-Roediger-McDermott (DRM) Task: A Simple Cognitive Paradigm to Investigate False Memories in the Laboratory.

    PubMed

    Pardilla-Delgado, Enmanuelle; Payne, Jessica D

    2017-01-31

    The Deese, Roediger and McDermott (DRM) task is a false memory paradigm in which subjects are presented with lists of semantically related words (e.g., nurse, hospital, etc.) at encoding. After a delay, subjects are asked to recall or recognize these words. In the recognition memory version of the task, subjects are asked whether they remember previously presented words, as well as related (but never presented) critical lure words ('doctor'). Typically, the critical word is recognized with high probability and confidence. This false memory effect has been robustly demonstrated across short (e.g., immediate, 20 min) and long (e.g., 1, 7, 60 d) delays between encoding and memory testing. A strength of using this task to study false memory is its simplicity and short duration. If encoding and retrieval components of the task occur in the same session, the entire task can take as little as 2 - 30 min. However, although the DRM task is widely considered a 'false memory' paradigm, some researchers consider DRM illusions to be based on the activation of semantic memory networks in the brain, and argue that such semantic gist-based false memory errors may actually be useful in some scenarios (e.g., remembering the forest for the trees; remembering that a word list was about "doctors", even though the actual word "doctor" was never presented for study). Remembering the gist of experience (instead of or along with individual details) is arguably an adaptive process and this task has provided a great deal of knowledge about the constructive, adaptive nature of memory. Therefore, researchers should use caution when discussing the overall reach and implications of their experiments when using this task to study 'false memory', as DRM memory errors may not adequately reflect false memories in the real world, such as false memory in eyewitness testimony, or false memories of sexual abuse.

  12. On the flexibility of grammatical advance planning during sentence production: Effects of cognitive load on multiple lexical access.

    PubMed

    Wagner, Valentin; Jescheniak, Jörg D; Schriefers, Herbert

    2010-03-01

    Three picture-word interference experiments addressed the question of whether the scope of grammatical advance planning in sentence production corresponds to some fixed unit or rather is flexible. Subjects produced sentences of different formats under varying amounts of cognitive load. When speakers described 2-object displays with simple sentences of the form "the frog is next to the mug," the 2 nouns were found to be lexically-semantically activated to similar degrees at speech onset, as indexed by similarly sized interference effects from semantic distractors related to either the first or the second noun. When speakers used more complex sentences (including prenominal color adjectives; e.g., "the blue frog is next to the blue mug") much larger interference effects were observed for the first than the second noun, suggesting that the second noun was lexically-semantically activated before speech onset on only a subset of trials. With increased cognitive load, introduced by an additional conceptual decision task and variable utterance formats, the interference effect for the first noun was increased and the interference effect for second noun disappeared, suggesting that the scope of advance planning had been narrowed. By contrast, if cognitive load was induced by a secondary working memory task to be performed during speech planning, the interference effect for both nouns was increased, suggesting that the scope of advance planning had not been affected. In all, the data suggest that the scope of advance planning during grammatical encoding in sentence production is flexible, rather than structurally fixed.

  13. Some Semantic Structures for Representing English Meanings.

    ERIC Educational Resources Information Center

    Simmons, R. F.

    This paper defines the structure of a semantic network for use in representing discourse and lexical meanings. The structure is designed to represent underlying semantic meanings that, with a lexicon and a grammar, can generate natural-language sentences in a linguistically justifiable manner. The semantics of natural English can be defined as a…

  14. Neural changes associated with semantic processing in healthy aging despite intact behavioral performance.

    PubMed

    Lacombe, Jacinthe; Jolicoeur, Pierre; Grimault, Stephan; Pineault, Jessica; Joubert, Sven

    2015-10-01

    Semantic memory recruits an extensive neural network including the left inferior prefrontal cortex (IPC) and the left temporoparietal region, which are involved in semantic control processes, as well as the anterior temporal lobe region (ATL) which is considered to be involved in processing semantic information at a central level. However, little is known about the underlying neuronal integrity of the semantic network in normal aging. Young and older healthy adults carried out a semantic judgment task while their cortical activity was recorded using magnetoencephalography (MEG). Despite equivalent behavioral performance, young adults activated the left IPC to a greater extent than older adults, while the latter group recruited the temporoparietal region bilaterally and the left ATL to a greater extent than younger adults. Results indicate that significant neuronal changes occur in normal aging, mainly in regions underlying semantic control processes, despite an apparent stability in performance at the behavioral level. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Geospatial-temporal semantic graph representations of trajectories from remote sensing and geolocation data

    DOEpatents

    Perkins, David Nikolaus; Brost, Randolph; Ray, Lawrence P.

    2017-08-08

    Various technologies for facilitating analysis of large remote sensing and geolocation datasets to identify features of interest are described herein. A search query can be submitted to a computing system that executes searches over a geospatial temporal semantic (GTS) graph to identify features of interest. The GTS graph comprises nodes corresponding to objects described in the remote sensing and geolocation datasets, and edges that indicate geospatial or temporal relationships between pairs of nodes in the nodes. Trajectory information is encoded in the GTS graph by the inclusion of movable nodes to facilitate searches for features of interest in the datasets relative to moving objects such as vehicles.

  16. Divided attention can enhance memory encoding: the attentional boost effect in implicit memory.

    PubMed

    Spataro, Pietro; Mulligan, Neil W; Rossi-Arnaud, Clelia

    2013-07-01

    Distraction during encoding has long been known to disrupt later memory performance. Contrary to this long-standing result, we show that detecting an infrequent target in a dual-task paradigm actually improves memory encoding for a concurrently presented word, above and beyond the performance reached in the full-attention condition. This absolute facilitation was obtained in 2 perceptual implicit tasks (lexical decision and word fragment completion) but not in a conceptual implicit task (semantic classification). In the case of recognition memory, the facilitation was relative, bringing accuracy in the divided attention condition up to the level of accuracy in the full attention condition. The findings follow from the hypothesis that the attentional boost effect reflects enhanced visual encoding of the study stimulus consequent to the transient orienting response to the dual-task target. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  17. Word add-in for ontology recognition: semantic enrichment of scientific literature

    PubMed Central

    2010-01-01

    Background In the current era of scientific research, efficient communication of information is paramount. As such, the nature of scholarly and scientific communication is changing; cyberinfrastructure is now absolutely necessary and new media are allowing information and knowledge to be more interactive and immediate. One approach to making knowledge more accessible is the addition of machine-readable semantic data to scholarly articles. Results The Word add-in presented here will assist authors in this effort by automatically recognizing and highlighting words or phrases that are likely information-rich, allowing authors to associate semantic data with those words or phrases, and to embed that data in the document as XML. The add-in and source code are publicly available at http://www.codeplex.com/UCSDBioLit. Conclusions The Word add-in for ontology term recognition makes it possible for an author to add semantic data to a document as it is being written and it encodes these data using XML tags that are effectively a standard in life sciences literature. Allowing authors to mark-up their own work will help increase the amount and quality of machine-readable literature metadata. PMID:20181245

  18. Is Semantic Priming (Ir)rational? Insights from the Speeded Word Fragment Completion Task

    ERIC Educational Resources Information Center

    Heyman, Tom; Hutchison, Keith A.; Storms, Gert

    2016-01-01

    Semantic priming, the phenomenon that a target is recognized faster if it is preceded by a semantically related prime, is a well-established effect. However, the mechanisms producing semantic priming are subject of debate. Several theories assume that the underlying processes are controllable and tuned to prime utility. In contrast, purely…

  19. Semantic similarity between ontologies at different scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qingpeng; Haglin, David J.

    In the past decade, existing and new knowledge and datasets has been encoded in different ontologies for semantic web and biomedical research. The size of ontologies is often very large in terms of number of concepts and relationships, which makes the analysis of ontologies and the represented knowledge graph computational and time consuming. As the ontologies of various semantic web and biomedical applications usually show explicit hierarchical structures, it is interesting to explore the trade-offs between ontological scales and preservation/precision of results when we analyze ontologies. This paper presents the first effort of examining the capability of this idea viamore » studying the relationship between scaling biomedical ontologies at different levels and the semantic similarity values. We evaluate the semantic similarity between three Gene Ontology slims (Plant, Yeast, and Candida, among which the latter two belong to the same kingdom—Fungi) using four popular measures commonly applied to biomedical ontologies (Resnik, Lin, Jiang-Conrath, and SimRel). The results of this study demonstrate that with proper selection of scaling levels and similarity measures, we can significantly reduce the size of ontologies without losing substantial detail. In particular, the performance of Jiang-Conrath and Lin are more reliable and stable than that of the other two in this experiment, as proven by (a) consistently showing that Yeast and Candida are more similar (as compared to Plant) at different scales, and (b) small deviations of the similarity values after excluding a majority of nodes from several lower scales. This study provides a deeper understanding of the application of semantic similarity to biomedical ontologies, and shed light on how to choose appropriate semantic similarity measures for biomedical engineering.« less

  20. The list-composition effect in memory for emotional and neutral pictures: Differential contribution of ventral and dorsal attention networks to successful encoding.

    PubMed

    Barnacle, Gemma E; Montaldi, Daniela; Talmi, Deborah; Sommer, Tobias

    2016-09-01

    The Emotional enhancement of memory (EEM) is observed in immediate free-recall memory tests when emotional and neutral stimuli are encoded and tested together ("mixed lists"), but surprisingly, not when they are encoded and tested separately ("pure lists"). Here our aim was to investigate whether the effect of list-composition (mixed versus pure lists) on the EEM is due to differential allocation of attention. We scanned participants with fMRI during encoding of semantically-related emotional (negative valence only) and neutral pictures. Analysis of memory performance data replicated previous work, demonstrating an interaction between list composition and emotional valence. In mixed lists, neural subsequent memory effects in the dorsal attention network were greater for neutral stimulus encoding, while neural subsequent memory effects for emotional stimuli were found in a region associated with the ventral attention network. These results imply that when life experiences include both emotional and neutral elements, memory for the latter is more highly correlated with neural activity representing goal-directed attention processing at encoding. Copyright © 2016. Published by Elsevier Ltd.

  1. Encoding-related brain activity during deep processing of verbal materials: a PET study.

    PubMed

    Fujii, Toshikatsu; Okuda, Jiro; Tsukiura, Takashi; Ohtake, Hiroya; Suzuki, Maki; Kawashima, Ryuta; Itoh, Masatoshi; Fukuda, Hiroshi; Yamadori, Atsushi

    2002-12-01

    The recent advent of neuroimaging techniques provides an opportunity to examine brain regions related to a specific memory process such as episodic memory encoding. There is, however, a possibility that areas active during an assumed episodic memory encoding task, compared with a control task, involve not only areas directly relevant to episodic memory encoding processes but also areas associated with other cognitive processes for on-line information. We used positron emission tomography (PET) to differentiate these two kinds of regions. Normal volunteers were engaged in deep (semantic) or shallow (phonological) processing of new or repeated words during PET. Results showed that deep processing, compared with shallow processing, resulted in significantly better recognition performance and that this effect was associated with activation of various brain areas. Further analyses revealed that there were regions directly relevant to episodic memory encoding in the anterior part of the parahippocampal gyrus, inferior frontal gyrus, supramarginal gyrus, anterior cingulate gyrus, and medial frontal lobe in the left hemisphere. Our results demonstrated that several regions, including the medial temporal lobe, play a role in episodic memory encoding.

  2. Wordform Similarity Increases with Semantic Similarity: An Analysis of 100 Languages

    ERIC Educational Resources Information Center

    Dautriche, Isabelle; Mahowald, Kyle; Gibson, Edward; Piantadosi, Steven T.

    2017-01-01

    Although the mapping between form and meaning is often regarded as arbitrary, there are in fact well-known constraints on words which are the result of functional pressures associated with language use and its acquisition. In particular, languages have been shown to encode meaning distinctions in their sound properties, which may be important for…

  3. Involvement of the Central Cognitive Mechanism in Word Production in Adults Who Stutter

    ERIC Educational Resources Information Center

    Tsai, Pei-Tzu; Bernstein Ratner, Nan

    2016-01-01

    Purpose: The study examined whether semantic and phonological encoding processes were capacity demanding, involving the central cognitive mechanism, in adults who do and do not stutter (AWS and NS) to better understand the role of cognitive demand in linguistic processing and stuttering. We asked (a) whether the two linguistic processes in AWS are…

  4. Ellipsis and the Structure of Expectation. San Jose State Occasional Papers in Linguistics, Vol. 1, November, 1975.

    ERIC Educational Resources Information Center

    Ross, Robert N.

    This paper discusses one way of exploring how we perceive and understand the connections between some parts of texts, or between one sentence and the whole discourse. Understanding ellipsis involves non-syntactic understanding; the semantic structure is responsible for our understanding of elliptical sentences and encoding the knowledge contained…

  5. A Synchronization Account of False Recognition

    ERIC Educational Resources Information Center

    Johns, Brendan T.; Jones, Michael N.; Mewhort, Douglas J. K.

    2012-01-01

    We describe a computational model to explain a variety of results in both standard and false recognition. A key attribute of the model is that it uses plausible semantic representations for words, built through exposure to a linguistic corpus. A study list is encoded in the model as a gist trace, similar to the proposal of fuzzy trace theory…

  6. Syntax "and" Semantics: A Teaching Model.

    ERIC Educational Resources Information Center

    Wolfe, Frank

    In translating perception into written language, a child must learn an encoding process which is a continuation of the process of improving sensing of the world around him or her. To verbalize an object (a perception) we use frames which name a referent, locate the referent in space and time, identify its appearance and behavior, and define terms…

  7. The Onset and Time Course of Semantic Priming during Rapid Recognition of Visual Words

    PubMed Central

    Hoedemaker, Renske S.; Gordon, Peter C.

    2016-01-01

    In two experiments, we assessed the effects of response latency and task-induced goals on the onset and time course of semantic priming during rapid processing of visual words as revealed by ocular response tasks. In Experiment 1 (Ocular Lexical Decision Task), participants performed a lexical decision task using eye-movement responses on a sequence of four words. In Experiment 2, the same words were encoded for an episodic recognition memory task that did not require a meta-linguistic judgment. For both tasks, survival analyses showed that the earliest-observable effect (Divergence Point or DP) of semantic priming on target-word reading times occurred at approximately 260 ms, and ex-Gaussian distribution fits revealed that the magnitude of the priming effect increased as a function of response time. Together, these distributional effects of semantic priming suggest that the influence of the prime increases when target processing is more effortful. This effect does not require that the task include a metalinguistic judgment; manipulation of the task goals across experiments affected the overall response speed but not the location of the DP or the overall distributional pattern of the priming effect. These results are more readily explained as the result of a retrospective rather than a prospective priming mechanism and are consistent with compound-cue models of semantic priming. PMID:28230394

  8. The onset and time course of semantic priming during rapid recognition of visual words.

    PubMed

    Hoedemaker, Renske S; Gordon, Peter C

    2017-05-01

    In 2 experiments, we assessed the effects of response latency and task-induced goals on the onset and time course of semantic priming during rapid processing of visual words as revealed by ocular response tasks. In Experiment 1 (ocular lexical decision task), participants performed a lexical decision task using eye movement responses on a sequence of 4 words. In Experiment 2, the same words were encoded for an episodic recognition memory task that did not require a metalinguistic judgment. For both tasks, survival analyses showed that the earliest observable effect (divergence point [DP]) of semantic priming on target-word reading times occurred at approximately 260 ms, and ex-Gaussian distribution fits revealed that the magnitude of the priming effect increased as a function of response time. Together, these distributional effects of semantic priming suggest that the influence of the prime increases when target processing is more effortful. This effect does not require that the task include a metalinguistic judgment; manipulation of the task goals across experiments affected the overall response speed but not the location of the DP or the overall distributional pattern of the priming effect. These results are more readily explained as the result of a retrospective, rather than a prospective, priming mechanism and are consistent with compound-cue models of semantic priming. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Social conflicts elicit an N400-like component.

    PubMed

    Huang, Yi; Kendrick, Keith M; Yu, Rongjun

    2014-12-01

    When people have different opinions, they often adjust their own attitude to match that of others, known as social conformity. How social conflicts trigger subsequent conformity remains unclear. One possibility is that a conflict with the group opinion is perceived as a violation of social information, analogous to using wrong grammar, and activates conflict monitoring and adjustment mechanisms. Using event related potential (ERP) recording combined with a face attractiveness judgment task, we investigated the neural encoding of social conflicts. We found that social conflicts elicit an N400-like negative deflection, being more negative for conflict with group opinions than no-conflict condition. The social conflict related signals also have a bi-directional profile similar to reward prediction error signals: it was more negative for under-estimation (i.e. one׳s own ratings were smaller than group ratings) than over-estimation, and the larger the differences between ratings, the larger the N400 amplitude. The N400 effects were significantly diminished in the non-social condition. We conclude that social conflicts are encoded in a bidirectional fashion in the N400-like component, similar to the pattern of reward-based prediction error signals. Our findings also suggest that the N400, a well-established ERP component encoding semantic violation, might be involved in social conflict processing and social learning. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Spatial Language and the Embedded Listener Model in Parents’ Input to Children

    PubMed Central

    Ferrara, Katrina; Silva, Malena; Wilson, Colin; Landau, Barbara

    2015-01-01

    Language is a collaborative act: in order to communicate successfully, speakers must generate utterances that are not only semantically valid, but also sensitive to the knowledge state of the listener. Such sensitivity could reflect use of an “embedded listener model,” where speakers choose utterances on the basis of an internal model of the listeners’ conceptual and linguistic knowledge. In this paper, we ask whether parents’ spatial descriptions incorporate an embedded listener model that reflects their children’s understanding of spatial relations and spatial terms. Adults described the positions of targets in spatial arrays to their children or to the adult experimenter. Arrays were designed so that targets could not be identified unless spatial relationships within the array were encoded and described. Parents of 3–4 year-old children encoded relationships in ways that were well-matched to their children’s level of spatial language. These encodings differed from those of the same relationships in speech to the adult experimenter (Experiment 1). By contrast, parents of individuals with severe spatial impairments (Williams syndrome) did not show clear evidence of sensitivity to their children’s level of spatial language (Experiment 2). The results provide evidence for an embedded listener model in the domain of spatial language, and indicate conditions under which the ability to model listener knowledge may be more challenging. PMID:26717804

  11. Spatial Language and the Embedded Listener Model in Parents' Input to Children.

    PubMed

    Ferrara, Katrina; Silva, Malena; Wilson, Colin; Landau, Barbara

    2016-11-01

    Language is a collaborative act: To communicate successfully, speakers must generate utterances that are not only semantically valid but also sensitive to the knowledge state of the listener. Such sensitivity could reflect the use of an "embedded listener model," where speakers choose utterances on the basis of an internal model of the listener's conceptual and linguistic knowledge. In this study, we ask whether parents' spatial descriptions incorporate an embedded listener model that reflects their children's understanding of spatial relations and spatial terms. Adults described the positions of targets in spatial arrays to their children or to the adult experimenter. Arrays were designed so that targets could not be identified unless spatial relationships within the array were encoded and described. Parents of 3-4-year-old children encoded relationships in ways that were well-matched to their children's level of spatial language. These encodings differed from those of the same relationships in speech to the adult experimenter (Experiment 1). In contrast, parents of individuals with severe spatial impairments (Williams syndrome) did not show clear evidence of sensitivity to their children's level of spatial language (Experiment 2). The results provide evidence for an embedded listener model in the domain of spatial language and indicate conditions under which the ability to model listener knowledge may be more challenging. Copyright © 2015 Cognitive Science Society, Inc.

  12. The effects of age on the neural correlates of episodic encoding.

    PubMed

    Grady, C L; McIntosh, A R; Rajah, M N; Beig, S; Craik, F I

    1999-12-01

    Young and old adults underwent positron emission tomographic scans while encoding pictures of objects and words using three encoding strategies: deep processing (a semantic living/nonliving judgement), shallow processing (size judgement) and intentional learning. Picture memory exceeded word memory in both young and old groups, and there was an age-related decrement only in word recognition. During the encoding tasks three brain activity patterns were found that differentiated stimulus type and the different encoding strategies. The stimulus-specific pattern was characterized by greater activity in extrastriate and medial temporal cortices during picture encoding, and greater activity in left prefrontal and temporal cortices during encoding of words. The older adults showed this pattern to a significantly lesser degree. A pattern distinguishing deep processing from intentional learning of words and pictures was identified, characterized mainly by differences in prefrontal cortex, and this pattern also was of significantly lesser magnitude in the old group. A final pattern identified areas with increased activity during deep processing and intentional learning of pictures, including left prefrontal and bilateral medial temporal regions. There was no group difference in this pattern. These results indicate age-related dysfunction in several encoding networks, with sparing of one specifically involved in more elaborate encoding of pictures. These age-related changes appear to affect verbal memory more than picture memory.

  13. Design and Applications of a GeoSemantic Framework for Integration of Data and Model Resources in Hydrologic Systems

    NASA Astrophysics Data System (ADS)

    Elag, M.; Kumar, P.

    2016-12-01

    Hydrologists today have to integrate resources such as data and models, which originate and reside in multiple autonomous and heterogeneous repositories over the Web. Several resource management systems have emerged within geoscience communities for sharing long-tail data, which are collected by individual or small research groups, and long-tail models, which are developed by scientists or small modeling communities. While these systems have increased the availability of resources within geoscience domains, deficiencies remain due to the heterogeneity in the methods, which are used to describe, encode, and publish information about resources over the Web. This heterogeneity limits our ability to access the right information in the right context so that it can be efficiently retrieved and understood without the Hydrologist's mediation. A primary challenge of the Web today is the lack of the semantic interoperability among the massive number of resources, which already exist and are continually being generated at rapid rates. To address this challenge, we have developed a decentralized GeoSemantic (GS) framework, which provides three sets of micro-web services to support (i) semantic annotation of resources, (ii) semantic alignment between the metadata of two resources, and (iii) semantic mediation among Standard Names. Here we present the design of the framework and demonstrate its application for semantic integration between data and models used in the IML-CZO. First we show how the IML-CZO data are annotated using the Semantic Annotation Services. Then we illustrate how the Resource Alignment Services and Knowledge Integration Services are used to create a semantic workflow among TopoFlow model, which is a spatially-distributed hydrologic model and the annotated data. Results of this work are (i) a demonstration of how the GS framework advances the integration of heterogeneous data and models of water-related disciplines by seamless handling of their semantic heterogeneity, (ii) an introduction of new paradigm for reusing existing and new standards as well as tools and models without the need of their implementation in the Cyberinfrastructures of water-related disciplines, and (iii) an investigation of a methodology by which distributed models can be coupled in a workflow using the GS services.

  14. Memory enhancement by a semantically unrelated emotional arousal source induced after learning.

    PubMed

    Nielson, Kristy A; Yee, Douglas; Erickson, Kirk I

    2005-07-01

    It has been well established that moderate physiological or emotional arousal modulates memory. However, there is some controversy about whether the source of arousal must be semantically related to the information to be remembered. To test this idea, 35 healthy young adult participants learned a list of common nouns and afterward viewed a semantically unrelated, neutral or emotionally arousing videotape. The tape was shown after learning to prevent arousal effects on encoding or attention, instead influencing memory consolidation. Heart rate increase was significantly greater in the arousal group, and negative affect was significantly less reported in the non-arousal group after the video. The arousal group remembered significantly more words than the non-arousal group at both 30 min and 24 h delays, despite comparable group memory performance prior to the arousal manipulation. These results demonstrate that emotional arousal, even from an unrelated source, is capable of modulating memory consolidation. Potential reasons for contradictory findings in some previous studies, such as the timing of "delayed" memory tests, are discussed.

  15. ERP evidence of distinct processes underlying semantic facilitation and interference in word production.

    PubMed

    Python, Grégoire; Fargier, Raphaël; Laganaro, Marina

    2018-02-01

    In everyday conversations, we take advantage of lexical-semantic contexts to facilitate speech production, but at the same time, we also have to reduce interference and inhibit semantic competitors. The blocked cyclic naming paradigm (BCNP) has been used to investigate such context effects. Typical results on production latencies showed semantic facilitation (or no effect) during the first presentation cycle, and interference emerging in subsequent cycles. Even if semantic contexts might be just as facilitative as interfering, previous BCNP studies focused on interference, which was interpreted as reflecting lemma selection and self-monitoring processes. Facilitation in the first cycle was rarely considered/analysed, although it potentially informs on word production to the same extent as interference. Here we contrasted the event-related potential (ERP) signatures of both semantic facilitation and interference in a BCNP. ERPs differed between homogeneous and heterogeneous blocks from about 365 msec post picture onset in the first cycle (facilitation) and in an earlier time-window (270 msec post picture onset) in the third cycle (interference). Three different analyses of the ERPs converge towards distinct processes underlying semantic facilitation and interference (post-lexical vs lexical respectively). The loci of semantic facilitation and interference are interpreted in the context of different theoretical frameworks of language production: the post-lexical locus of semantic facilitation involves interactive phonological-semantic processes and/or self-monitoring, whereas the lexical locus of semantic interference is in line with selection through increased lexical competition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Mapping the connectivity underlying multimodal (verbal and non-verbal) semantic processing: a brain electrostimulation study.

    PubMed

    Moritz-Gasser, Sylvie; Herbet, Guillaume; Duffau, Hugues

    2013-08-01

    Accessing the meaning of words, objects, people and facts is a human ability, made possible thanks to semantic processing. Although studies concerning its cortical organization are proficient, the subcortical connectivity underlying this semantic network received less attention. We used intraoperative direct electrostimulation, which mimics a transient virtual lesion during brain surgery for glioma in eight awaken patients, to map the anatomical white matter substrate subserving the semantic system. Patients performed a picture naming task and a non-verbal semantic association test during the electrical mapping. Direct electrostimulation of the inferior fronto-occipital fascicle, a poorly known ventral association pathway which runs throughout the brain, induced in all cases semantic disturbances. These transient disorders were highly reproducible, and concerned verbal as well as non-verbal output. Our results highlight for the first time the essential role of the left inferior fronto-occipital fascicle in multimodal (and not only in verbal) semantic processing. On the basis of these original findings, and in the lights of phylogenetic considerations regarding this fascicle, we suggest its possible implication in the monitoring of the human level of consciousness related to semantic memory, namely noetic consciousness. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. The role of hippocampus dysfunction in deficient memory encoding and positive symptoms in schizophrenia.

    PubMed

    Zierhut, Kathrin; Bogerts, Bernhard; Schott, Björn; Fenker, Daniela; Walter, Martin; Albrecht, Dominik; Steiner, Johann; Schütze, Hartmut; Northoff, Georg; Düzel, Emrah; Schiltz, Kolja

    2010-09-30

    Declarative memory disturbances, known to substantially contribute to cognitive impairment in schizophrenia, have previously been attributed to prefrontal as well as hippocampal dysfunction. To characterize the role of prefrontal and mesolimbic/hippocampal dysfunction during memory encoding in schizophrenia. Neuronal activation in schizophrenia patients and controls was assessed using functional magnetic resonance imaging (fMRI) during encoding of words in a deep (semantic judgement) and shallow (case judgment) task. A free recall (no delay) and a recognition task (24h delay) were performed. Free recall, but not recognition performance was reduced in patients. Reduced performance was correlated with positive symptoms which in turn were related to increased left hippocampal activity during successful encoding. Furthermore, schizophrenia patients displayed a hippocampal hyperactivity during deep encoding irrespective of encoding success along with a reduced anterior cingulate cortex (ACC) and dorsomedial prefrontal cortex (DMPFC) activity in successful encoding but an intact left inferior frontal cortex (LIFC) activity. This study provides the first evidence directly linking positive symptoms and memory deficits to dysfunctional hippocampal hyperactivity. It thereby underscores the pivotal pathophysiological role of a hyperdopaminergic mesolimbic state in schizophrenia. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  18. Reduced Performance During a Sentence Repetition Task by Continuous Theta-Burst Magnetic Stimulation of the Pre-supplementary Motor Area.

    PubMed

    Dietrich, Susanne; Hertrich, Ingo; Müller-Dahlhaus, Florian; Ackermann, Hermann; Belardinelli, Paolo; Desideri, Debora; Seibold, Verena C; Ziemann, Ulf

    2018-01-01

    The pre-supplementary motor area (pre-SMA) is engaged in speech comprehension under difficult circumstances such as poor acoustic signal quality or time-critical conditions. Previous studies found that left pre-SMA is activated when subjects listen to accelerated speech. Here, the functional role of pre-SMA was tested for accelerated speech comprehension by inducing a transient "virtual lesion" using continuous theta-burst stimulation (cTBS). Participants were tested (1) prior to (pre-baseline), (2) 10 min after (test condition for the cTBS effect), and (3) 60 min after stimulation (post-baseline) using a sentence repetition task (formant-synthesized at rates of 8, 10, 12, 14, and 16 syllables/s). Speech comprehension was quantified by the percentage of correctly reproduced speech material. For high speech rates, subjects showed decreased performance after cTBS of pre-SMA. Regarding the error pattern, the number of incorrect words without any semantic or phonological similarity to the target context increased, while related words decreased. Thus, the transient impairment of pre-SMA seems to affect its inhibitory function that normally eliminates erroneous speech material prior to speaking or, in case of perception, prior to encoding into a semantically/pragmatically meaningful message.

  19. Semantic Classical Conditioning and Brain-Computer Interface Control: Encoding of Affirmative and Negative Thinking

    PubMed Central

    Ruf, Carolin A.; De Massari, Daniele; Furdea, Adrian; Matuz, Tamara; Fioravanti, Chiara; van der Heiden, Linda; Halder, Sebastian; Birbaumer, Niels

    2013-01-01

    The aim of the study was to investigate conditioned electroencephalography (EEG) responses to factually correct and incorrect statements in order to enable binary communication by means of a brain-computer interface (BCI). In two experiments with healthy participants true and false statements (serving as conditioned stimuli, CSs) were paired with two different tones which served as unconditioned stimuli (USs). The features of the USs were varied and tested for their effectiveness to elicit differentiable conditioned reactions (CRs). After acquisition of the CRs, these CRs to true and false statements were classified offline using a radial basis function kernel support vector machine. A mean single-trial classification accuracy of 50.5% was achieved for differentiating conditioned “yes” versus “no” thinking and mean accuracies of 65.4% for classification of “yes” and 68.8% for “no” thinking (both relative to baseline) were found using the best US. Analysis of the area under the curve of the conditioned EEG responses revealed significant differences between conditioned “yes” and “no” answers. Even though improvements are necessary, these first results indicate that the semantic conditioning paradigm could be a useful basis for further research regarding BCI communication in patients in the complete locked-in state. PMID:23471568

  20. Reduced Performance During a Sentence Repetition Task by Continuous Theta-Burst Magnetic Stimulation of the Pre-supplementary Motor Area

    PubMed Central

    Dietrich, Susanne; Hertrich, Ingo; Müller-Dahlhaus, Florian; Ackermann, Hermann; Belardinelli, Paolo; Desideri, Debora; Seibold, Verena C.; Ziemann, Ulf

    2018-01-01

    The pre-supplementary motor area (pre-SMA) is engaged in speech comprehension under difficult circumstances such as poor acoustic signal quality or time-critical conditions. Previous studies found that left pre-SMA is activated when subjects listen to accelerated speech. Here, the functional role of pre-SMA was tested for accelerated speech comprehension by inducing a transient “virtual lesion” using continuous theta-burst stimulation (cTBS). Participants were tested (1) prior to (pre-baseline), (2) 10 min after (test condition for the cTBS effect), and (3) 60 min after stimulation (post-baseline) using a sentence repetition task (formant-synthesized at rates of 8, 10, 12, 14, and 16 syllables/s). Speech comprehension was quantified by the percentage of correctly reproduced speech material. For high speech rates, subjects showed decreased performance after cTBS of pre-SMA. Regarding the error pattern, the number of incorrect words without any semantic or phonological similarity to the target context increased, while related words decreased. Thus, the transient impairment of pre-SMA seems to affect its inhibitory function that normally eliminates erroneous speech material prior to speaking or, in case of perception, prior to encoding into a semantically/pragmatically meaningful message. PMID:29896086

  1. Chemical Entity Semantic Specification: Knowledge representation for efficient semantic cheminformatics and facile data integration

    PubMed Central

    2011-01-01

    Background Over the past several centuries, chemistry has permeated virtually every facet of human lifestyle, enriching fields as diverse as medicine, agriculture, manufacturing, warfare, and electronics, among numerous others. Unfortunately, application-specific, incompatible chemical information formats and representation strategies have emerged as a result of such diverse adoption of chemistry. Although a number of efforts have been dedicated to unifying the computational representation of chemical information, disparities between the various chemical databases still persist and stand in the way of cross-domain, interdisciplinary investigations. Through a common syntax and formal semantics, Semantic Web technology offers the ability to accurately represent, integrate, reason about and query across diverse chemical information. Results Here we specify and implement the Chemical Entity Semantic Specification (CHESS) for the representation of polyatomic chemical entities, their substructures, bonds, atoms, and reactions using Semantic Web technologies. CHESS provides means to capture aspects of their corresponding chemical descriptors, connectivity, functional composition, and geometric structure while specifying mechanisms for data provenance. We demonstrate that using our readily extensible specification, it is possible to efficiently integrate multiple disparate chemical data sources, while retaining appropriate correspondence of chemical descriptors, with very little additional effort. We demonstrate the impact of some of our representational decisions on the performance of chemically-aware knowledgebase searching and rudimentary reaction candidate selection. Finally, we provide access to the tools necessary to carry out chemical entity encoding in CHESS, along with a sample knowledgebase. Conclusions By harnessing the power of Semantic Web technologies with CHESS, it is possible to provide a means of facile cross-domain chemical knowledge integration with full preservation of data correspondence and provenance. Our representation builds on existing cheminformatics technologies and, by the virtue of RDF specification, remains flexible and amenable to application- and domain-specific annotations without compromising chemical data integration. We conclude that the adoption of a consistent and semantically-enabled chemical specification is imperative for surviving the coming chemical data deluge and supporting systems science research. PMID:21595881

  2. Chemical Entity Semantic Specification: Knowledge representation for efficient semantic cheminformatics and facile data integration.

    PubMed

    Chepelev, Leonid L; Dumontier, Michel

    2011-05-19

    Over the past several centuries, chemistry has permeated virtually every facet of human lifestyle, enriching fields as diverse as medicine, agriculture, manufacturing, warfare, and electronics, among numerous others. Unfortunately, application-specific, incompatible chemical information formats and representation strategies have emerged as a result of such diverse adoption of chemistry. Although a number of efforts have been dedicated to unifying the computational representation of chemical information, disparities between the various chemical databases still persist and stand in the way of cross-domain, interdisciplinary investigations. Through a common syntax and formal semantics, Semantic Web technology offers the ability to accurately represent, integrate, reason about and query across diverse chemical information. Here we specify and implement the Chemical Entity Semantic Specification (CHESS) for the representation of polyatomic chemical entities, their substructures, bonds, atoms, and reactions using Semantic Web technologies. CHESS provides means to capture aspects of their corresponding chemical descriptors, connectivity, functional composition, and geometric structure while specifying mechanisms for data provenance. We demonstrate that using our readily extensible specification, it is possible to efficiently integrate multiple disparate chemical data sources, while retaining appropriate correspondence of chemical descriptors, with very little additional effort. We demonstrate the impact of some of our representational decisions on the performance of chemically-aware knowledgebase searching and rudimentary reaction candidate selection. Finally, we provide access to the tools necessary to carry out chemical entity encoding in CHESS, along with a sample knowledgebase. By harnessing the power of Semantic Web technologies with CHESS, it is possible to provide a means of facile cross-domain chemical knowledge integration with full preservation of data correspondence and provenance. Our representation builds on existing cheminformatics technologies and, by the virtue of RDF specification, remains flexible and amenable to application- and domain-specific annotations without compromising chemical data integration. We conclude that the adoption of a consistent and semantically-enabled chemical specification is imperative for surviving the coming chemical data deluge and supporting systems science research.

  3. SATware: A Semantic Approach for Building Sentient Spaces

    NASA Astrophysics Data System (ADS)

    Massaguer, Daniel; Mehrotra, Sharad; Vaisenberg, Ronen; Venkatasubramanian, Nalini

    This chapter describes the architecture of a semantic-based middleware environment for building sensor-driven sentient spaces. The proposed middleware explicitly models sentient space semantics (i.e., entities, spaces, activities) and supports mechanisms to map sensor observations to the state of the sentient space. We argue how such a semantic approach provides a powerful programming environment for building sensor spaces. In addition, the approach provides natural ways to exploit semantics for variety of purposes including scheduling under resource constraints and sensor recalibration.

  4. Dissociating early- and late-selection processes in recall: the mixed blessing of categorized study lists.

    PubMed

    Guzel, Mehmet A; Higham, Philip A

    2013-07-01

    Two experiments are reported in which we used type-2 signal detection theory to separate the effects of semantic categorization on early- and late-selection processes in free and cued recall. In Experiment 1, participants studied cue-target pairs for which the targets belonged to two, six, or 24 semantic categories, and later the participants were required to recall the targets either with (cued recall) or without (free recall) the studied cues. A confidence rating and a report decision were also required, so that we could compute both forced-report quantity and metacognitive resolution (type-2 discrimination), which served as our estimates of early- and late-selection processes, respectively. Consistent with prior research, having fewer categories enhanced the early-selection process (in performance, two > six > 24 categories). However, in contrast, the late-selection process was impaired (24 > six = two categories). In Experiment 2, encoding of paired associates, for which the targets belonged to either two or 20 semantic categories, was manipulated by having participants either form interactive images or engage in rote repetition. Having fewer categories again was associated with enhanced early selection (two > 20 categories); this effect was greater for rote repetition than for interactive imagery, and greater for free recall than for cued recall. However, late selection again showed the opposite pattern (20 > two categories), even with interactive-imagery encoding, which formed distinctive, individuated memory traces. The results are discussed in terms of early- and late-selection processes in retrieval, as well as overt versus covert recognition.

  5. Early onset marijuana use is associated with learning inefficiencies.

    PubMed

    Schuster, Randi Melissa; Hoeppner, Susanne S; Evins, A Eden; Gilman, Jodi M

    2016-05-01

    Verbal memory difficulties are the most widely reported and persistent cognitive deficit associated with early onset marijuana use. Yet, it is not known what memory stages are most impaired in those with early marijuana use. Forty-eight young adults, aged 18-25, who used marijuana at least once per week and 48 matched nonusing controls (CON) completed the California Verbal Learning Test, Second Edition (CVLT-II). Marijuana users were stratified by age of initial use: early onset users (EMJ), who started using marijuana at or before age 16 (n = 27), and late onset marijuana user group (LMJ), who started using marijuana after age 16 (n = 21). Outcome variables included trial immediate recall, total learning, clustering strategies (semantic clustering, serial clustering, ratio of semantic to serial clustering, and total number of strategies used), delayed recall, and percent retention. Learning improved with repetition, with no group effect on the learning slope. EMJ learned fewer words overall than LMJ or CON. There was no difference between LMJ and CON in total number of words learned. Reduced overall learning mediated the effect on reduced delayed recall among EMJ, but not CON or LMJ. Learning improved with greater use of semantic versus serial encoding, but this did not vary between groups. EMJ was not related to delayed recall after adjusting for encoding. Young adults reporting early onset marijuana use had learning weaknesses, which accounted for the association between early onset marijuana use and delayed recall. No amnestic effect of marijuana use was observed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  6. A New Semantic List Learning Task to Probe Functioning of the Papez Circuit

    PubMed Central

    Schallmo, Michael-Paul; Kassel, Michelle T.; Weisenbach, Sara L.; Walker, Sara J.; Guidotti-Breting, Leslie M.; Rao, Julia A.; Hazlett, Kathleen E.; Considine, Ciaran M.; Sethi, Gurpriya; Vats, Naalti; Pecina, Marta; Welsh, Robert C.; Starkman, Monica N.; Giordani, Bruno; Langenecker, Scott A.

    2016-01-01

    Introduction List learning tasks are powerful clinical tools for studying memory, yet have been relatively underutilized within the functional imaging literature. This limits understanding of regions such as the Papez circuit which support memory performance in healthy, non-demented adults. Method The current study characterized list learning performance in 40 adults who completed a Semantic List Learning Task (SLLT) with a Brown-Peterson manipulation during functional MRI (fMRI). Cued recall with semantic cues, and recognition memory were assessed after imaging. Internal reliability and convergent and discriminant validity were evaluated. Results Subjects averaged 38% accuracy in recall (62% for recognition), with primacy but no recency effects observed. Validity and reliability were demonstrated by showing that the SLLT was correlated with the California Verbal Learning test (CVLT), but not with executive functioning tests, and high intraclass correlation coefficient across lists for recall (.91). fMRI measurements during Encoding (vs. Silent Rehearsal) revealed significant activation in bilateral hippocampus, parahippocampus, and bilateral anterior and posterior cingulate cortex. Post-hoc analyses showed increased activation in anterior and middle hippocampus, subgenual cingulate, and mammillary bodies specific to Encoding. In addition, increasing age was positively associated with increased activation in a diffuse network, particularly frontal cortex and specific Papez regions for correctly recalled words. Gender differences were specific to left inferior and superior frontal cortex. Conclusions This is a clinically relevant list learning task that can be used in studies of groups for which the Papez circuit is damaged or disrupted, in mixed or crossover studies at imaging and clinical sites. PMID:26313512

  7. Early Onset Marijuana Use Is Associated with Learning Inefficiencies

    PubMed Central

    Schuster, Randi Melissa; Hoeppner, Susanne S.; Evins, A. Eden; Gilman, Jodi M.

    2016-01-01

    Objective Verbal memory difficulties are the most widely reported and persistent cognitive deficit associated with early-onset marijuana use. Yet, it is not known what memory stages are most impaired in those with early marijuana use. Method Forty-eight young adults, aged 18–25, who used marijuana at least once per week and 48 matched non-using controls (CON) completed the California Verbal Learning Test, Second Edition (CVLT-II). Marijuana users were stratified by age of initial use: ‘early onset’ users (EMJ), who started using marijuana at or before age 16 (n = 27), and ‘late onset’ marijuana user group (LMJ), who started using marijuana after age 16 (n = 21). Outcome variables included trial immediate recall, total learning, clustering strategies (semantic clustering, serial clustering, ratio of semantic to serial clustering, and total number of strategies used), delayed recall, and percent retention. Results Learning improved with repetition, with no group effect on the learning slope. EMJ learned fewer words overall than LMJ or CON. There was no difference between LMJ and CON in total number of words learned. Reduced overall learning mediated the effect on reduced delayed recall among EMJ, but not CON or LMJ. Learning improved with greater use of semantic versus serial encoding, but this did not vary between groups. EMJ was not related to delayed recall after adjusting for encoding. Conclusions Young adults reporting early onset marijuana use had learning weaknesses, which accounted for the association between early onset marijuana use and delayed recall. No amnestic effect of marijuana use was observed. PMID:26986749

  8. Neural Global Pattern Similarity Underlies True and False Memories.

    PubMed

    Ye, Zhifang; Zhu, Bi; Zhuang, Liping; Lu, Zhonglin; Chen, Chuansheng; Xue, Gui

    2016-06-22

    The neural processes giving rise to human memory strength signals remain poorly understood. Inspired by formal computational models that posit a central role of global matching in memory strength, we tested a novel hypothesis that the strengths of both true and false memories arise from the global similarity of an item's neural activation pattern during retrieval to that of all the studied items during encoding (i.e., the encoding-retrieval neural global pattern similarity [ER-nGPS]). We revealed multiple ER-nGPS signals that carried distinct information and contributed differentially to true and false memories: Whereas the ER-nGPS in the parietal regions reflected semantic similarity and was scaled with the recognition strengths of both true and false memories, ER-nGPS in the visual cortex contributed solely to true memory. Moreover, ER-nGPS differences between the parietal and visual cortices were correlated with frontal monitoring processes. By combining computational and neuroimaging approaches, our results advance a mechanistic understanding of memory strength in recognition. What neural processes give rise to memory strength signals, and lead to our conscious feelings of familiarity? Using fMRI, we found that the memory strength of a given item depends not only on how it was encoded during learning, but also on the similarity of its neural representation with other studied items. The global neural matching signal, mainly in the parietal lobule, could account for the memory strengths of both studied and unstudied items. Interestingly, a different global matching signal, originated from the visual cortex, could distinguish true from false memories. The findings reveal multiple neural mechanisms underlying the memory strengths of events registered in the brain. Copyright © 2016 the authors 0270-6474/16/366792-11$15.00/0.

  9. Levels-of-processing effects in first-degree relatives of individuals with schizophrenia.

    PubMed

    Bonner-Jackson, Aaron; Csernansky, John G; Barch, Deanna M

    2007-05-15

    First-degree relatives of individuals with schizophrenia show cognitive impairments that are similar to but less severe than their ill relatives. We have shown that memory impairments can be improved and prefrontal cortical (PFC) activity increased in individuals with schizophrenia by providing beneficial encoding strategies. The current study used a similar paradigm to determine whether siblings of individuals with schizophrenia (SIBs) also show increases in brain activity when presented with beneficial encoding strategies. Twenty-one SIBs and 38 siblings of healthy comparison subjects underwent functional magnetic resonance imaging scans while engaged in deep (abstract/concrete judgments) and shallow (orthographic judgments) encoding. Subjects were then given a recognition memory test. The groups did not differ on encoding or recognition accuracy, and the SIBs benefited from deep encoding to a similar degree as control subjects. The SIBs showed deep encoding-related activity in a number of PFC regions typically activated during semantic processing. However, SIBs showed more activity than control subjects in three subregions of PFC (left BA 44 & BA 47 bilaterally). Siblings of individuals with schizophrenia benefit from supportive verbal encoding conditions. Like individuals with schizophrenia, SIBs also show increased task-related activity in a larger number of PFC subregions than control subjects during deep verbal encoding.

  10. Levels of Processing with Free and Cued Recall and Unilateral Temporal Lobe Epilepsy

    ERIC Educational Resources Information Center

    Lespinet-Najib, Veronique; N'Kaoua, Bernard; Sauzeon, Helene; Bresson, Christel; Rougier, Alain; Claverie, Bernard

    2004-01-01

    This study investigates the role of the temporal lobes in levels-of-processing tasks (phonetic and semantic encoding) according to the nature of recall tasks (free and cued recall). These tasks were administered to 48 patients with unilateral temporal epilepsy (right ''RTLE''=24; left ''LTLE''=24) and a normal group (n=24). The results indicated…

  11. When Transparency Doesn't Mean Ease: Learning the Meaning of Resultative Verb Compounds in Mandarin Chinese

    ERIC Educational Resources Information Center

    Chen, Jidong

    2017-01-01

    Children have to figure out the lexicalization of meaning components in learning verb semantics (e.g. Behrens, 1998; Gentner, 1982; Tomasello & Brooks, 1998). The meaning of an English state-change verb (e.g. "break") is divided into two portions (i.e. cause and result), respectively encoded with a separate verb in a Mandarin…

  12. Effects of Aging on True and False Memory Formation: An fMRI Study

    ERIC Educational Resources Information Center

    Dennis, Nancy A.; Kim, Hongkeun; Cabeza, Roberto

    2007-01-01

    Compared to young, older adults are more likely to forget events that occurred in the past as well as remember events that never happened. Previous studies examining false memories and aging have shown that these memories are more likely to occur when new items share perceptual or semantic similarities with those presented during encoding. It is…

  13. Does Truth Exist? Insights from Applied Linguistics for the Rationalism/Postmodern Debate

    ERIC Educational Resources Information Center

    Ross, David A.

    2008-01-01

    The question of whether or not truth exists is at the center of the rationalism versus postmodern debate. Noting the difficulty of defining truth, the author uses the principles of linguistics to show that semantic skewing has resulted in the concept of truth being encoded as a noun, while it is really an attribute (true). The introduction of a…

  14. Making Semantic Waves: A Key to Cumulative Knowledge-Building

    ERIC Educational Resources Information Center

    Maton, Karl

    2013-01-01

    The paper begins by arguing that knowledge-blindness in educational research represents a serious obstacle to understanding knowledge-building. It then offers sociological concepts from Legitimation Code Theory--"semantic gravity" and "semantic density"--that systematically conceptualize one set of organizing principles underlying knowledge…

  15. Aligning Where to See and What to Tell: Image Captioning with Region-Based Attention and Scene-Specific Contexts.

    PubMed

    Fu, Kun; Jin, Junqi; Cui, Runpeng; Sha, Fei; Zhang, Changshui

    2017-12-01

    Recent progress on automatic generation of image captions has shown that it is possible to describe the most salient information conveyed by images with accurate and meaningful sentences. In this paper, we propose an image captioning system that exploits the parallel structures between images and sentences. In our model, the process of generating the next word, given the previously generated ones, is aligned with the visual perception experience where the attention shifts among the visual regions-such transitions impose a thread of ordering in visual perception. This alignment characterizes the flow of latent meaning, which encodes what is semantically shared by both the visual scene and the text description. Our system also makes another novel modeling contribution by introducing scene-specific contexts that capture higher-level semantic information encoded in an image. The contexts adapt language models for word generation to specific scene types. We benchmark our system and contrast to published results on several popular datasets, using both automatic evaluation metrics and human evaluation. We show that either region-based attention or scene-specific contexts improves systems without those components. Furthermore, combining these two modeling ingredients attains the state-of-the-art performance.

  16. Effects of Severe Bothersome Tinnitus on Cognitive Function Measured with Standardized Tests

    PubMed Central

    Pierce, Katherine J.; Kallogjeri, Dorina; Piccirillo, Jay F.; Garcia, Keith S.; Nicklaus, Joyce E.; Burton, Harold

    2012-01-01

    Neurocognitive tests compared abilities in people with bothersome tinnitus against an age, gender, and education matched normative population. Participants between 18 and 60 years had subjective, unilateral or bilateral, non-pulsatile tinnitus for >6 months, and a Tinnitus Handicap Inventory score of ≥38. Results from a first testing session showed deficits in learning, learning rates, immediate recall of heard words, and use of a serial order encoding strategy. Initial reliance on serial order encoding and later, increased intrusion of incorrect words towards normal levels might indicate a less demanding strategy to compensate for weakness in associative memory for semantic categories. PMID:22168528

  17. A Formalisation of Adaptable Pervasive Flows

    NASA Astrophysics Data System (ADS)

    Bucchiarone, Antonio; Lafuente, Alberto Lluch; Marconi, Annapaola; Pistore, Marco

    Adaptable Pervasive Flows is a novel workflow-based paradigm for the design and execution of pervasive applications, where dynamic workflows situated in the real world are able to modify their execution in order to adapt to changes in their environment. In this paper, we study a formalisation of such flows by means of a formal flow language. More precisely, we define APFoL (Adaptable Pervasive Flow Language) and formalise its textual notation by encoding it in Blite, a formalisation of WS-BPEL. The encoding in Blite equips the language with a formal semantics and enables the use of automated verification techniques. We illustrate the approach with an example of a Warehouse Case Study.

  18. Over-activation in bilateral superior temporal gyrus correlated with subsequent forgetting effect of Chinese words.

    PubMed

    Chen, Tzu-Ching; Kuo, Wen-Jui; Chiang, Ming-Chang; Tseng, Yi-Jhan; Lin, Yung-Yang

    2013-08-01

    We evaluated the subsequent memory and forgotten effects for Chinese using event-related fMRI. Sixteen normal subjects were recruited and performing incidental memory tasks where semantic decision was required during memory encoding. Consistent with previous studies, our results showed bilateral frontal regions as the main locus for the subsequent memory effect. However, contrast between miss and hit responses revealed larger activation in bilateral superior temporal gyrus. We proposed that larger activation in the superior temporal gyrus may reflect alteration of self-monitoring process which resulted in unsuccessful memory encoding for the miss items. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. The Yin and the Yang of Prediction: An fMRI Study of Semantic Predictive Processing

    PubMed Central

    Weber, Kirsten; Lau, Ellen F.; Stillerman, Benjamin; Kuperberg, Gina R.

    2016-01-01

    Probabilistic prediction plays a crucial role in language comprehension. When predictions are fulfilled, the resulting facilitation allows for fast, efficient processing of ambiguous, rapidly-unfolding input; when predictions are not fulfilled, the resulting error signal allows us to adapt to broader statistical changes in this input. We used functional Magnetic Resonance Imaging to examine the neuroanatomical networks engaged in semantic predictive processing and adaptation. We used a relatedness proportion semantic priming paradigm, in which we manipulated the probability of predictions while holding local semantic context constant. Under conditions of higher (versus lower) predictive validity, we replicate previous observations of reduced activity to semantically predictable words in the left anterior superior/middle temporal cortex, reflecting facilitated processing of targets that are consistent with prior semantic predictions. In addition, under conditions of higher (versus lower) predictive validity we observed significant differences in the effects of semantic relatedness within the left inferior frontal gyrus and the posterior portion of the left superior/middle temporal gyrus. We suggest that together these two regions mediated the suppression of unfulfilled semantic predictions and lexico-semantic processing of unrelated targets that were inconsistent with these predictions. Moreover, under conditions of higher (versus lower) predictive validity, a functional connectivity analysis showed that the left inferior frontal and left posterior superior/middle temporal gyrus were more tightly interconnected with one another, as well as with the left anterior cingulate cortex. The left anterior cingulate cortex was, in turn, more tightly connected to superior lateral frontal cortices and subcortical regions—a network that mediates rapid learning and adaptation and that may have played a role in switching to a more predictive mode of processing in response to the statistical structure of the wider environmental context. Together, these findings highlight close links between the networks mediating semantic prediction, executive function and learning, giving new insights into how our brains are able to flexibly adapt to our environment. PMID:27010386

  20. The Yin and the Yang of Prediction: An fMRI Study of Semantic Predictive Processing.

    PubMed

    Weber, Kirsten; Lau, Ellen F; Stillerman, Benjamin; Kuperberg, Gina R

    2016-01-01

    Probabilistic prediction plays a crucial role in language comprehension. When predictions are fulfilled, the resulting facilitation allows for fast, efficient processing of ambiguous, rapidly-unfolding input; when predictions are not fulfilled, the resulting error signal allows us to adapt to broader statistical changes in this input. We used functional Magnetic Resonance Imaging to examine the neuroanatomical networks engaged in semantic predictive processing and adaptation. We used a relatedness proportion semantic priming paradigm, in which we manipulated the probability of predictions while holding local semantic context constant. Under conditions of higher (versus lower) predictive validity, we replicate previous observations of reduced activity to semantically predictable words in the left anterior superior/middle temporal cortex, reflecting facilitated processing of targets that are consistent with prior semantic predictions. In addition, under conditions of higher (versus lower) predictive validity we observed significant differences in the effects of semantic relatedness within the left inferior frontal gyrus and the posterior portion of the left superior/middle temporal gyrus. We suggest that together these two regions mediated the suppression of unfulfilled semantic predictions and lexico-semantic processing of unrelated targets that were inconsistent with these predictions. Moreover, under conditions of higher (versus lower) predictive validity, a functional connectivity analysis showed that the left inferior frontal and left posterior superior/middle temporal gyrus were more tightly interconnected with one another, as well as with the left anterior cingulate cortex. The left anterior cingulate cortex was, in turn, more tightly connected to superior lateral frontal cortices and subcortical regions-a network that mediates rapid learning and adaptation and that may have played a role in switching to a more predictive mode of processing in response to the statistical structure of the wider environmental context. Together, these findings highlight close links between the networks mediating semantic prediction, executive function and learning, giving new insights into how our brains are able to flexibly adapt to our environment.

  1. The thematic hierarchy in sentence comprehension: A study on the interaction between verb class and word order in Spanish.

    PubMed

    Gattei, Carolina A; Dickey, Michael W; Wainselboim, Alejandro J; París, Luis

    2015-01-01

    Linking is the theory that captures the mapping of the semantic roles of lexical arguments to the syntactic functions of the phrases that realize them. At the sentence level, linking allows us to understand "who did what to whom" in an event. In Spanish, linking has been shown to interact with word order, verb class, and case marking. The current study aims to provide the first piece of experimental evidence about the interplay between word order and verb type in Spanish. We achieve this by adopting role and reference grammar and the extended argument dependency model. Two different types of clauses were examined in a self-paced reading task: clauses with object-experiencer psychological verbs and activity verbs. These types of verbs differ in the way that their syntactic and semantic structures are linked, and thus they provide interesting evidence on how information that belongs to the syntax-semantics interface might influence the predictive and integrative processes of sentence comprehension with alternative word orders. Results indicate that in Spanish, comprehension and processing speed is enhanced when the order of the constituents in the sentence mirrors their ranking on a semantic hierarchy that encodes a verb's lexical semantics. Moreover, results show that during online comprehension, predictive mechanisms based on argument hierarchization are used rapidly to inform the processing system. Our findings corroborate already existing cross-linguistic evidence on the issue and are briefly discussed in the light of other sentence-processing models.

  2. OmniSearch: a semantic search system based on the Ontology for MIcroRNA Target (OMIT) for microRNA-target gene interaction data.

    PubMed

    Huang, Jingshan; Gutierrez, Fernando; Strachan, Harrison J; Dou, Dejing; Huang, Weili; Smith, Barry; Blake, Judith A; Eilbeck, Karen; Natale, Darren A; Lin, Yu; Wu, Bin; Silva, Nisansa de; Wang, Xiaowei; Liu, Zixing; Borchert, Glen M; Tan, Ming; Ruttenberg, Alan

    2016-01-01

    As a special class of non-coding RNAs (ncRNAs), microRNAs (miRNAs) perform important roles in numerous biological and pathological processes. The realization of miRNA functions depends largely on how miRNAs regulate specific target genes. It is therefore critical to identify, analyze, and cross-reference miRNA-target interactions to better explore and delineate miRNA functions. Semantic technologies can help in this regard. We previously developed a miRNA domain-specific application ontology, Ontology for MIcroRNA Target (OMIT), whose goal was to serve as a foundation for semantic annotation, data integration, and semantic search in the miRNA field. In this paper we describe our continuing effort to develop the OMIT, and demonstrate its use within a semantic search system, OmniSearch, designed to facilitate knowledge capture of miRNA-target interaction data. Important changes in the current version OMIT are summarized as: (1) following a modularized ontology design (with 2559 terms imported from the NCRO ontology); (2) encoding all 1884 human miRNAs (vs. 300 in previous versions); and (3) setting up a GitHub project site along with an issue tracker for more effective community collaboration on the ontology development. The OMIT ontology is free and open to all users, accessible at: http://purl.obolibrary.org/obo/omit.owl. The OmniSearch system is also free and open to all users, accessible at: http://omnisearch.soc.southalabama.edu/index.php/Software.

  3. Reading visually embodied meaning from the brain: Visually grounded computational models decode visual-object mental imagery induced by written text.

    PubMed

    Anderson, Andrew James; Bruni, Elia; Lopopolo, Alessandro; Poesio, Massimo; Baroni, Marco

    2015-10-15

    Embodiment theory predicts that mental imagery of object words recruits neural circuits involved in object perception. The degree of visual imagery present in routine thought and how it is encoded in the brain is largely unknown. We test whether fMRI activity patterns elicited by participants reading objects' names include embodied visual-object representations, and whether we can decode the representations using novel computational image-based semantic models. We first apply the image models in conjunction with text-based semantic models to test predictions of visual-specificity of semantic representations in different brain regions. Representational similarity analysis confirms that fMRI structure within ventral-temporal and lateral-occipital regions correlates most strongly with the image models and conversely text models correlate better with posterior-parietal/lateral-temporal/inferior-frontal regions. We use an unsupervised decoding algorithm that exploits commonalities in representational similarity structure found within both image model and brain data sets to classify embodied visual representations with high accuracy (8/10) and then extend it to exploit model combinations to robustly decode different brain regions in parallel. By capturing latent visual-semantic structure our models provide a route into analyzing neural representations derived from past perceptual experience rather than stimulus-driven brain activity. Our results also verify the benefit of combining multimodal data to model human-like semantic representations. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Recall from Semantic and Episodic Memory.

    ERIC Educational Resources Information Center

    Gillund, Gary; Perlmutter, Marion

    Although research in episodic recall memory, comparing younger and older adults, favors the younger adults, findings in semantic memory research are less consistent. To examine age differences in semantic and episodic memory recall, 72 young adults (mean age, 20.8) and 72 older adults (mean age 71) completed three memory tests under varied…

  5. Activation of Phonological and Semantic Codes in Toddlers

    ERIC Educational Resources Information Center

    Mani, Nivedita; Durrant, Samantha; Floccia, Caroline

    2012-01-01

    What are the processes underlying word recognition in the toddler lexicon? Work with adults suggests that, by 5-years of age, hearing a word leads to cascaded activation of other phonologically, semantically and phono-semantically related words (Huang & Snedeker, 2010; Marslen-Wilson & Zwitserlood, 1989). Given substantial differences in…

  6. Semantics-Based Composition of Integrated Cardiomyocyte Models Motivated by Real-World Use Cases.

    PubMed

    Neal, Maxwell L; Carlson, Brian E; Thompson, Christopher T; James, Ryan C; Kim, Karam G; Tran, Kenneth; Crampin, Edmund J; Cook, Daniel L; Gennari, John H

    2015-01-01

    Semantics-based model composition is an approach for generating complex biosimulation models from existing components that relies on capturing the biological meaning of model elements in a machine-readable fashion. This approach allows the user to work at the biological rather than computational level of abstraction and helps minimize the amount of manual effort required for model composition. To support this compositional approach, we have developed the SemGen software, and here report on SemGen's semantics-based merging capabilities using real-world modeling use cases. We successfully reproduced a large, manually-encoded, multi-model merge: the "Pandit-Hinch-Niederer" (PHN) cardiomyocyte excitation-contraction model, previously developed using CellML. We describe our approach for annotating the three component models used in the PHN composition and for merging them at the biological level of abstraction within SemGen. We demonstrate that we were able to reproduce the original PHN model results in a semi-automated, semantics-based fashion and also rapidly generate a second, novel cardiomyocyte model composed using an alternative, independently-developed tension generation component. We discuss the time-saving features of our compositional approach in the context of these merging exercises, the limitations we encountered, and potential solutions for enhancing the approach.

  7. Semantics-Based Composition of Integrated Cardiomyocyte Models Motivated by Real-World Use Cases

    PubMed Central

    Neal, Maxwell L.; Carlson, Brian E.; Thompson, Christopher T.; James, Ryan C.; Kim, Karam G.; Tran, Kenneth; Crampin, Edmund J.; Cook, Daniel L.; Gennari, John H.

    2015-01-01

    Semantics-based model composition is an approach for generating complex biosimulation models from existing components that relies on capturing the biological meaning of model elements in a machine-readable fashion. This approach allows the user to work at the biological rather than computational level of abstraction and helps minimize the amount of manual effort required for model composition. To support this compositional approach, we have developed the SemGen software, and here report on SemGen’s semantics-based merging capabilities using real-world modeling use cases. We successfully reproduced a large, manually-encoded, multi-model merge: the “Pandit-Hinch-Niederer” (PHN) cardiomyocyte excitation-contraction model, previously developed using CellML. We describe our approach for annotating the three component models used in the PHN composition and for merging them at the biological level of abstraction within SemGen. We demonstrate that we were able to reproduce the original PHN model results in a semi-automated, semantics-based fashion and also rapidly generate a second, novel cardiomyocyte model composed using an alternative, independently-developed tension generation component. We discuss the time-saving features of our compositional approach in the context of these merging exercises, the limitations we encountered, and potential solutions for enhancing the approach. PMID:26716837

  8. Reply to David Kemmerer's "a critique of Mark D. Allen's 'the preservation of verb subcategory knowledge in a spoken language comprehension deficit'".

    PubMed

    Allen, Mark D; Owens, Tyler E

    2008-07-01

    Allen [Allen, M. D. (2005). The preservation of verb subcategory knowledge in a spoken language comprehension deficit. Brain and Language, 95, 255-264] presents evidence from a single patient, WBN, to motivate a theory of lexical processing and representation in which syntactic information may be encoded and retrieved independently of semantic information. In his critique, Kemmerer argues that because Allen depended entirely on preposition-based verb subcategory violations to test WBN's knowledge of correct argument structure, his results, at best, address a "strawman" theory. This argument rests on the assumption that preposition subcategory options are superficial syntactic phenomena which are not represented by argument structure proper. We demonstrate that preposition subcategory is in fact treated as semantically determined argument structure in the theories that Allen evaluated, and thus far from irrelevant. In further discussion of grammatically relevant versus irrelevant semantic features, Kemmerer offers a review of his own studies. However, due to an important design shortcoming in these experiments, we remain unconvinced. Reemphasizing the fact the Allen (2005) never claimed to rule out all semantic contributions to syntax, we propose an improvement in Kemmerer's approach that might provide more satisfactory evidence on the distinction between the kinds of relevant versus irrelevant features his studies have addressed.

  9. ERPs, semantic processing and age.

    PubMed

    Miyamoto, T; Katayama, J; Koyama, T

    1998-06-01

    ERPs (N400, LPC and CNV) were elicited in two sets of subjects grouped according to age (young vs. elderly) using a word-pair category matching paradigm. Each prime consisted of a Japanese noun (constructed from two to four characters of the Hiragana) followed by one Chinese character (Kanji) as the target, this latter representing one of five semantic categories. There were two equally probable target conditions: match or mismatch. Each target was preceded by a prime, either belonging to, or not belonging to, the same semantic category. The subjects were required to respond with a specified button press to the given target according to the condition. We found RTs to be longer in the elderly subjects and under the mismatch condition. N400 amplitude was reduced in the elderly subjects under the mismatch condition and there was no difference between match and mismatch response, which were similar in amplitude to that under match condition for the young subjects. In addition, the CNV amplitudes were larger in the elderly subjects. These results suggested that functional changes in semantic processing through aging (larger semantic networks and diffuse semantic activation) were the cause of this N400 reduction, attributing a subsidiary role to attentional disturbance. We also discuss the importance of taking age-related changes into consideration in clinical studies.

  10. Distributed Representation of Visual Objects by Single Neurons in the Human Brain

    PubMed Central

    Valdez, André B.; Papesh, Megan H.; Treiman, David M.; Smith, Kris A.; Goldinger, Stephen D.

    2015-01-01

    It remains unclear how single neurons in the human brain represent whole-object visual stimuli. While recordings in both human and nonhuman primates have shown distributed representations of objects (many neurons encoding multiple objects), recordings of single neurons in the human medial temporal lobe, taken as subjects' discriminated objects during multiple presentations, have shown gnostic representations (single neurons encoding one object). Because some studies suggest that repeated viewing may enhance neural selectivity for objects, we had human subjects discriminate objects in a single, more naturalistic viewing session. We found that, across 432 well isolated neurons recorded in the hippocampus and amygdala, the average fraction of objects encoded was 26%. We also found that more neurons encoded several objects versus only one object in the hippocampus (28 vs 18%, p < 0.001) and in the amygdala (30 vs 19%, p < 0.001). Thus, during realistic viewing experiences, typical neurons in the human medial temporal lobe code for a considerable range of objects, across multiple semantic categories. PMID:25834044

  11. Unconscious relational inference recruits the hippocampus.

    PubMed

    Reber, Thomas P; Luechinger, Roger; Boesiger, Peter; Henke, Katharina

    2012-05-02

    Relational inference denotes the capacity to encode, flexibly retrieve, and integrate multiple memories to combine past experiences to update knowledge and improve decision-making in new situations. Although relational inference is thought to depend on the hippocampus and consciousness, we now show in young, healthy men that it may occur outside consciousness but still recruits the hippocampus. In temporally distinct and unique subliminal episodes, we presented word pairs that either overlapped ("winter-red", "red-computer") or not. Effects of unconscious relational inference emerged in reaction times recorded during unconscious encoding and in the outcome of decisions made 1 min later at test, when participants judged the semantic relatedness of two supraliminal words. These words were either episodically related through a common word ("winter-computer" related through "red") or unrelated. Hippocampal activity increased during the unconscious encoding of overlapping versus nonoverlapping word pairs and during the unconscious retrieval of episodically related versus unrelated words. Furthermore, hippocampal activity during unconscious encoding predicted the outcome of decisions made at test. Hence, unconscious inference may influence decision-making in new situations.

  12. Verbal fluency in bilingual Spanish/English Alzheimer's disease patients.

    PubMed

    Salvatierra, Judy; Rosselli, Monica; Acevedo, Amarilis; Duara, Ranjan

    2007-01-01

    Studies have demonstrated that in verbal fluency tests, monolinguals with Alzheimer's disease (AD) show greater difficulties retrieving words based on semantic rather than phonemic rules. The present study aimed to determine whether this difficulty was reproduced in both languages of Spanish/English bilinguals with mild to moderate AD whose primary language was Spanish. Performance on semantic and phonemic verbal fluency of 11 bilingual AD patients was compared to the performance of 11 cognitively normal, elderly bilingual individuals matched for gender, age, level of education, and degree of bilingualism. Cognitively normal subjects retrieved significantly more items under the semantic condition compared to the phonemic, whereas the performance of AD patients was similar under both conditions, suggesting greater decline in semantic verbal fluency tests. This pattern was produced in both languages, implying a related semantic decline in both languages. Results from this study should be considered preliminary because of the small sample size.

  13. Opposite ERP effects for conscious and unconscious semantic processing under continuous flash suppression.

    PubMed

    Yang, Yung-Hao; Zhou, Jifan; Li, Kuei-An; Hung, Tifan; Pegna, Alan J; Yeh, Su-Ling

    2017-09-01

    We examined whether semantic processing occurs without awareness using continuous flash suppression (CFS). In two priming tasks, participants were required to judge whether a target was a word or a non-word, and to report whether the masked prime was visible. Experiment 1 manipulated the lexical congruency between the prime-target pairs and Experiment 2 manipulated their semantic relatedness. Despite the absence of behavioral priming effects (Experiment 1), the ERP results revealed that an N4 component was sensitive to the prime-target lexical congruency (Experiment 1) and semantic relatedness (Experiment 2) when the prime was rendered invisible under CFS. However, these results were reversed with respect to those that emerged when the stimuli were perceived consciously. Our findings suggest that some form of lexical and semantic processing can occur during CFS-induced unawareness, but are associated with different electrophysiological outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Behavioral profiles in frontal lobe epilepsy: Autobiographic memory versus mood impairment.

    PubMed

    Rayner, Genevieve; Jackson, Graeme D; Wilson, Sarah J

    2015-02-01

    Autobiographic memory encompasses the encoding and retrieval of episodes, people, and places encountered in everyday life. It can be impaired in both epilepsy and frontal lobe damage. Here, we performed an initial investigation of how autobiographic memory is impacted by chronic frontal lobe epilepsy (FLE) together with its underlying pathology. We prospectively studied a series of nine consecutive patients with medically refractory FLE, relative to 24 matched healthy controls. Seven of the nine patients had frontal lobe structural abnormalities. Episodic and semantic autobiographic memory functioning was profiled, and factors associated with impaired autobiographic memory were identified among epileptologic, neuroimaging, neuropsychiatric, and cognitive variables including auditory-verbal and visual memory, and the executive function of cognitive control. Results showed that the FLE group experienced significantly higher rates of autobiographic memory and mood disturbance (p < 0.001), with detailed assessment of individual patients revealing two profiles of impairment, primarily characterized by cognitive or mood disturbance. Five of the patients (56%) exhibited significant episodic autobiographic memory deficits, whereas in three of these, knowledge of semantic autobiographic facts was preserved. Four of them also had reduced cognitive control. Mood disorder was largely unrelated to poor autobiographic memory. In contrast, the four cases with preserved autobiographic memory were notable for their past or current depressive symptoms. These findings provide preliminary data that frontal lobe seizure activity with its underlying pathology may selectively disrupt large-scale cognitive or affective networks, giving rise to different neurobehavioral profiles that may be used to inform clinical management. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  15. The anterior-ventrolateral temporal lobe contributes to boosting visual working memory capacity for items carrying semantic information.

    PubMed

    Chiou, Rocco; Lambon Ralph, Matthew A

    2018-04-01

    Working memory (WM) is a buffer that temporarily maintains information, be it visual or auditory, in an active state, caching its contents for online rehearsal or manipulation. How the brain enables long-term semantic knowledge to affect the WM buffer is a theoretically significant issue awaiting further investigation. In the present study, we capitalise on the knowledge about famous individuals as a 'test-case' to study how it impinges upon WM capacity for human faces and its neural substrate. Using continuous theta-burst transcranial stimulation combined with a psychophysical task probing WM storage for varying contents, we provide compelling evidence that (1) faces (regardless of familiarity) continued to accrue in the WM buffer with longer encoding time, whereas for meaningless stimuli (colour shades) there was little increment; (2) the rate of WM accrual was significantly more efficient for famous faces, compared to unknown faces; (3) the right anterior-ventrolateral temporal lobe (ATL) causally mediated this superior WM storage for famous faces. Specifically, disrupting the ATL (a region tuned to semantic knowledge including person identity) selectively hinders WM accrual for celebrity faces while leaving the accrual for unfamiliar faces intact. Further, this 'semantically-accelerated' storage is impervious to disruption of the right middle frontal gyrus and vertex, supporting the specific and causative contribution of the right ATL. Our finding advances the understanding of the neural architecture of WM, demonstrating that it depends on interaction with long-term semantic knowledge underpinned by the ATL, which causally expands the WM buffer when visual content carries semantic information. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Semantic e-Science: From Microformats to Models

    NASA Astrophysics Data System (ADS)

    Lumb, L. I.; Freemantle, J. R.; Aldridge, K. D.

    2009-05-01

    A platform has been developed to transform semi-structured ASCII data into a representation based on the eXtensible Markup Language (XML). A subsequent transformation allows the XML-based representation to be rendered in the Resource Description Format (RDF). Editorial metadata, expressed as external annotations (via XML Pointer Language), also survives this transformation process (e.g., Lumb et al., http://dx.doi.org/10.1016/j.cageo.2008.03.009). Because the XML-to-RDF transformation uses XSLT (eXtensible Stylesheet Language Transformations), semantic microformats ultimately encode the scientific data (Lumb & Aldridge, http://dx.doi.org/10.1109/HPCS.2006.26). In building the relationship-centric representation in RDF, a Semantic Model of the scientific data is extracted. The systematic enhancement in the expressivity and richness of the scientific data results in representations of knowledge that are readily understood and manipulated by intelligent software agents. Thus scientists are able to draw upon various resources within and beyond their discipline to use in their scientific applications. Since the resulting Semantic Models are independent conceptualizations of the science itself, the representation of scientific knowledge and interaction with the same can stimulate insight from different perspectives. Using the Global Geodynamics Project (GGP) for the purpose of illustration, the introduction of GGP microformats enable a Semantic Model for the GGP that can be semantically queried (e.g., via SPARQL, http://www.w3.org/TR/rdf-sparql-query). Although the present implementation uses the Open Source Redland RDF Libraries (http://librdf.org/), the approach is generalizable to other platforms and to projects other than the GGP (e.g., Baker et al., Informatics and the 2007-2008 Electronic Geophysical Year, Eos Trans. Am. Geophys. Un., 89(48), 485-486, 2008).

  17. Tracking neural coding of perceptual and semantic features of concrete nouns

    PubMed Central

    Sudre, Gustavo; Pomerleau, Dean; Palatucci, Mark; Wehbe, Leila; Fyshe, Alona; Salmelin, Riitta; Mitchell, Tom

    2015-01-01

    We present a methodological approach employing magnetoencephalography (MEG) and machine learning techniques to investigate the flow of perceptual and semantic information decodable from neural activity in the half second during which the brain comprehends the meaning of a concrete noun. Important information about the cortical location of neural activity related to the representation of nouns in the human brain has been revealed by past studies using fMRI. However, the temporal sequence of processing from sensory input to concept comprehension remains unclear, in part because of the poor time resolution provided by fMRI. In this study, subjects answered 20 questions (e.g. is it alive?) about the properties of 60 different nouns prompted by simultaneous presentation of a pictured item and its written name. Our results show that the neural activity observed with MEG encodes a variety of perceptual and semantic features of stimuli at different times relative to stimulus onset, and in different cortical locations. By decoding these features, our MEG-based classifier was able to reliably distinguish between two different concrete nouns that it had never seen before. The results demonstrate that there are clear differences between the time course of the magnitude of MEG activity and that of decodable semantic information. Perceptual features were decoded from MEG activity earlier in time than semantic features, and features related to animacy, size, and manipulability were decoded consistently across subjects. We also observed that regions commonly associated with semantic processing in the fMRI literature may not show high decoding results in MEG. We believe that this type of approach and the accompanying machine learning methods can form the basis for further modeling of the flow of neural information during language processing and a variety of other cognitive processes. PMID:22565201

  18. Negative words enhance recognition in nonclinical high dissociators: An fMRI study.

    PubMed

    de Ruiter, Michiel B; Veltman, Dick J; Phaf, R Hans; van Dyck, Richard

    2007-08-01

    Memory encoding and retrieval were studied in a nonclinical sample of participants that differed in the amount of reported dissociative experiences (trait dissociation). Behavioral as well as functional imaging (fMRI) indices were used as convergent measures of memory functioning. In a deep vs. shallow encoding paradigm, the influence of dissociative style on elaborative and avoidant encoding was studied, respectively. Furthermore, affectively neutral and negative words were presented, to test whether the effects of dissociative tendencies on memory functioning depended on the affective valence of the stimulus material. Results showed that (a) deep encoding of negative vs. neutral stimuli was associated with higher levels of semantic elaboration in high than in low dissociators, as indicated by increased levels of activity in hippocampus and prefrontal cortex during encoding and higher memory performance during recognition, (b) high dissociators were generally characterized by higher levels of conscious recollection as indicated by increased activity of the hippocampus and posterior parietal areas during recognition, (c) nonclinical high dissociators were not characterized by an avoidant encoding style. These results support the notion that trait dissociation in healthy individuals is associated with high levels of elaborative encoding, resulting in high levels of conscious recollection. These abilities, in addition, seem to depend on the salience of the presented stimulus material.

  19. Action and semantic tool knowledge - Effective connectivity in the underlying neural networks.

    PubMed

    Kleineberg, Nina N; Dovern, Anna; Binder, Ellen; Grefkes, Christian; Eickhoff, Simon B; Fink, Gereon R; Weiss, Peter H

    2018-04-26

    Evidence from neuropsychological and imaging studies indicate that action and semantic knowledge about tools draw upon distinct neural substrates, but little is known about the underlying interregional effective connectivity. With fMRI and dynamic causal modeling (DCM) we investigated effective connectivity in the left-hemisphere (LH) while subjects performed (i) a function knowledge and (ii) a value knowledge task, both addressing semantic tool knowledge, and (iii) a manipulation (action) knowledge task. Overall, the results indicate crosstalk between action nodes and semantic nodes. Interestingly, effective connectivity was weakened between semantic nodes and action nodes during the manipulation task. Furthermore, pronounced modulations of effective connectivity within the fronto-parietal action system of the LH (comprising lateral occipito-temporal cortex, intraparietal sulcus, supramarginal gyrus, inferior frontal gyrus) were observed in a bidirectional manner during the processing of action knowledge. In contrast, the function and value knowledge tasks resulted in a significant strengthening of the effective connectivity between visual cortex and fusiform gyrus. Importantly, this modulation was present in both semantic tasks, indicating that processing different aspects of semantic knowledge about tools evokes similar effective connectivity patterns. Data revealed that interregional effective connectivity during the processing of tool knowledge occurred in a bidirectional manner with a weakening of connectivity between areas engaged in action and semantic knowledge about tools during the processing of action knowledge. Moreover, different semantic tool knowledge tasks elicited similar effective connectivity patterns. © 2018 Wiley Periodicals, Inc.

  20. Hypermedia-Assisted Instruction and Second Language Learning: A Semantic-Network-Based Approach.

    ERIC Educational Resources Information Center

    Liu, Min

    This literature review examines a hypermedia learning environment from a semantic network basis and the application of such an environment to second language learning. (A semantic network is defined as a conceptual representation of knowledge in human memory). The discussion is organized under the following headings and subheadings: (1) Advantages…

  1. Aberrant prefrontal beta oscillations predict episodic memory encoding deficits in schizophrenia.

    PubMed

    Meconi, Federica; Anderl-Straub, Sarah; Raum, Heidelore; Landgrebe, Michael; Langguth, Berthold; Bäuml, Karl-Heinz T; Hanslmayr, Simon

    Verbal episodic memory is one of the core cognitive functions affected in patients with schizophrenia (SZ). Although this verbal memory impairment in SZ is a well-known finding, our understanding about its underlying neurophysiological mechanisms is rather scarce. Here we address this issue by recording brain oscillations during a memory task in a sample of healthy controls and patients with SZ. Brain oscillations represent spectral fingerprints of specific neurocognitive operations and are therefore a promising tool to identify neurocognitive mechanisms that are affected by SZ. Healthy controls showed a prominent suppression of left prefrontal beta oscillatory activity during successful memory formation, which replicates several previous oscillatory memory studies. In contrast, patients failed to exhibit such a left prefrontal beta power suppression. Utilizing a new topographical pattern similarity approach, we further demonstrate that the degree of similarity between a patient's beta power decrease to that of the controls reliably predicted memory performance. This relationship between beta power decreases and memory was such that the patients' memory performance improved as they showed a more similar topographical beta desynchronization pattern compared to that of healthy controls. Together, these findings support left prefrontal beta desynchronization as the spectral fingerprint of verbal episodic memory formation, likely indicating deep semantic processing of verbal material. These findings also demonstrate that left prefrontal beta power suppression (or lack thereof) during memory encoding are a reliable biomarker for the observed encoding impairments in SZ in verbal memory.

  2. A funny thing happened on the way to articulation: N400 attenuation despite behavioral interference in picture naming

    PubMed Central

    Blackford, Trevor; Holcomb, Phillip J.; Grainger, Jonathan; Kuperberg, Gina R.

    2013-01-01

    We measured Event-Related Potentials (ERPs) and naming times to picture targets preceded by masked words (stimulus onset asynchrony: 80 ms) that shared one of three different types of relationship with the names of the pictures: (1) Identity related, in which the prime was the name of the picture (“socks” – ), (2) Phonemic Onset related, in which the initial segment of the prime was the same as the name of the picture (“log” – ), and (3) Semantically related in which the prime was a co–category exemplar and associated with the name of the picture (“cake” – ). Each type of related picture target was contrasted with an Unrelated picture target, resulting in a 3 × 2 design that crossed Relationship Type between the word and the target picture (Identity, Phonemic Onset and Semantic) with Relatedness (Related and Unrelated). Modulation of the N400 component to related (versus unrelated) pictures was taken to reflect semantic processing at the interface between the picture's conceptual features and its lemma, while naming times reflected the end product of all stages of processing. Both attenuation of the N400 and shorter naming times were observed to pictures preceded by Identity related (versus Unrelated) words. No ERP effects within 600 ms, but shorter naming times, were observed to pictures preceded by Phonemic Onset related (versus Unrelated) words. An attenuated N400 (electrophysiological semantic priming) but longer naming times (behavioral semantic interference) were observed to pictures preceded by Semantically related (versus Unrelated) words. These dissociations between ERP modulation and naming times suggest that (a) phonemic onset priming occurred late, during encoding of the articulatory response, and (b) semantic behavioral interference was not driven by competition at the lemma level of representation, but rather occurred at a later stage of production. PMID:22245030

  3. Structured Semantic Knowledge Can Emerge Automatically from Predicting Word Sequences in Child-Directed Speech

    PubMed Central

    Huebner, Philip A.; Willits, Jon A.

    2018-01-01

    Previous research has suggested that distributional learning mechanisms may contribute to the acquisition of semantic knowledge. However, distributional learning mechanisms, statistical learning, and contemporary “deep learning” approaches have been criticized for being incapable of learning the kind of abstract and structured knowledge that many think is required for acquisition of semantic knowledge. In this paper, we show that recurrent neural networks, trained on noisy naturalistic speech to children, do in fact learn what appears to be abstract and structured knowledge. We trained two types of recurrent neural networks (Simple Recurrent Network, and Long Short-Term Memory) to predict word sequences in a 5-million-word corpus of speech directed to children ages 0–3 years old, and assessed what semantic knowledge they acquired. We found that learned internal representations are encoding various abstract grammatical and semantic features that are useful for predicting word sequences. Assessing the organization of semantic knowledge in terms of the similarity structure, we found evidence of emergent categorical and hierarchical structure in both models. We found that the Long Short-term Memory (LSTM) and SRN are both learning very similar kinds of representations, but the LSTM achieved higher levels of performance on a quantitative evaluation. We also trained a non-recurrent neural network, Skip-gram, on the same input to compare our results to the state-of-the-art in machine learning. We found that Skip-gram achieves relatively similar performance to the LSTM, but is representing words more in terms of thematic compared to taxonomic relations, and we provide reasons why this might be the case. Our findings show that a learning system that derives abstract, distributed representations for the purpose of predicting sequential dependencies in naturalistic language may provide insight into emergence of many properties of the developing semantic system. PMID:29520243

  4. Semantic Mediation via Access Broker: the OWS-9 experiment

    NASA Astrophysics Data System (ADS)

    Santoro, Mattia; Papeschi, Fabrizio; Craglia, Massimo; Nativi, Stefano

    2013-04-01

    Even with the use of common data models standards to publish and share geospatial data, users may still face semantic inconsistencies when they use Spatial Data Infrastructures - especially in multidisciplinary contexts. Several semantic mediation solutions exist to address this issue; they span from simple XSLT documents to transform from one data model schema to another, to more complex services based on the use of ontologies. This work presents the activity done in the context of the OGC Web Services Phase 9 (OWS-9) Cross Community Interoperability to develop a semantic mediation solution by enhancing the GEOSS Discovery and Access Broker (DAB). This is a middleware component that provides harmonized access to geospatial datasets according to client applications preferred service interface (Nativi et al. 2012, Vaccari et al. 2012). Given a set of remote feature data encoded in different feature schemas, the objective of the activity was to use the DAB to enable client applications to transparently access the feature data according to one single schema. Due to the flexible architecture of the Access Broker, it was possible to introduce a new transformation type in the configured chain of transformations. In fact, the Access Broker already provided the following transformations: Coordinate Reference System (CRS), spatial resolution, spatial extent (e.g., a subset of a data set), and data encoding format. A new software module was developed to invoke the needed external semantic mediation service and harmonize the accessed features. In OWS-9 the Access Broker invokes a SPARQL WPS to retrieve mapping rules for the OWS-9 schemas: USGS, and NGA schema. The solution implemented to address this problem shows the flexibility and extensibility of the brokering framework underpinning the GEO DAB: new services can be added to augment the number of supported schemas without the need to modify other components and/or software modules. Moreover, all other transformations (CRS, format, etc.) are available for client applications in a transparent way. Notwithstanding the encouraging results of this experiment, some issues (e.g. the automatic discovery of semantic mediation services to be invoked) still need to be solved. Future work will consider new semantic mediation services to broker, and compliance tests with the INSPIRE transformation service. References: Nativi S., Craglia M. and Pearlman J. 2012. The Brokering Approach for Multidisciplinary Interoperability: A Position Paper. International Journal of Spatial Data Infrastructures Research, Vol. 7, 1-15. http://ijsdir.jrc.ec.europa.eu/index.php/ijsdir/article/view/281/319 Vaccari L., Craglia M., Fugazza C. Nativi S. and Santoro M. 2012. Integrative Research: The EuroGEOSS Experience. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 5 (6) 1603-1611. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6187671&contentType=Journals+%26+Magazines&sortType%3Dasc_p_Sequence%26filter%3DAND%28p_IS_Number%3A6383184%29

  5. SemanticOrganizer: A Customizable Semantic Repository for Distributed NASA Project Teams

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Berrios, Daniel C.; Carvalho, Robert E.; Hall, David R.; Rich, Stephen J.; Sturken, Ian B.; Swanson, Keith J.; Wolfe, Shawn R.

    2004-01-01

    SemanticOrganizer is a collaborative knowledge management system designed to support distributed NASA projects, including diverse teams of scientists, engineers, and accident investigators. The system provides a customizable, semantically structured information repository that stores work products relevant to multiple projects of differing types. SemanticOrganizer is one of the earliest and largest semantic web applications deployed at NASA to date, and has been used in diverse contexts ranging from the investigation of Space Shuttle Columbia's accident to the search for life on other planets. Although the underlying repository employs a single unified ontology, access control and ontology customization mechanisms make the repository contents appear different for each project team. This paper describes SemanticOrganizer, its customization facilities, and a sampling of its applications. The paper also summarizes some key lessons learned from building and fielding a successful semantic web application across a wide-ranging set of domains with diverse users.

  6. Trial-by-trial adjustments in control triggered by incidentally encoded semantic cues.

    PubMed

    Blais, Chris; Harris, Michael B; Sinanian, Michael H; Bunge, Silvia A

    2015-01-01

    Cognitive control mechanisms provide the flexibility to rapidly adapt to contextual demands. These contexts can be defined by top-down goals-but also by bottom-up perceptual factors, such as the location at which a visual stimulus appears. There are now several experiments reporting contextual control effects. Such experiments establish that contexts defined by low-level perceptual cues such as the location of a visual stimulus can lead to context-specific control, suggesting a relatively early focus for cognitive control. The current set of experiments involved a word-word interference task designed to assess whether a high-level cue, the semantic category to which a word belongs, can also facilitate contextual control. Indeed, participants exhibit a larger Flanker effect to items pertaining to a semantic category in which 75% of stimuli are incongruent than in response to items pertaining to a category in which 25% of stimuli are incongruent. Thus, both low-level and high-level stimulus features can affect the bottom-up engagement of cognitive control. The implications for current models of cognitive control are discussed.

  7. Formal ontologies in biomedical knowledge representation.

    PubMed

    Schulz, S; Jansen, L

    2013-01-01

    Medical decision support and other intelligent applications in the life sciences depend on increasing amounts of digital information. Knowledge bases as well as formal ontologies are being used to organize biomedical knowledge and data. However, these two kinds of artefacts are not always clearly distinguished. Whereas the popular RDF(S) standard provides an intuitive triple-based representation, it is semantically weak. Description logics based ontology languages like OWL-DL carry a clear-cut semantics, but they are computationally expensive, and they are often misinterpreted to encode all kinds of statements, including those which are not ontological. We distinguish four kinds of statements needed to comprehensively represent domain knowledge: universal statements, terminological statements, statements about particulars and contingent statements. We argue that the task of formal ontologies is solely to represent universal statements, while the non-ontological kinds of statements can nevertheless be connected with ontological representations. To illustrate these four types of representations, we use a running example from parasitology. We finally formulate recommendations for semantically adequate ontologies that can efficiently be used as a stable framework for more context-dependent biomedical knowledge representation and reasoning applications like clinical decision support systems.

  8. Similarity of wh-Phrases and Acceptability Variation in wh-Islands

    PubMed Central

    Atkinson, Emily; Apple, Aaron; Rawlins, Kyle; Omaki, Akira

    2016-01-01

    In wh-questions that form a syntactic dependency between the fronted wh-phrase and its thematic position, acceptability is severely degraded when the dependency crosses another wh-phrase. It is well known that the acceptability degradation in wh-island violation ameliorates in certain contexts, but the source of this variation remains poorly understood. In the syntax literature, an influential theory – Featural Relativized Minimality – has argued that the wh-island effect is modulated exclusively by the distinctness of morpho-syntactic features in the two wh-phrases, but psycholinguistic theories of memory encoding and retrieval mechanisms predict that semantic properties of wh-phrases should also contribute to wh-island amelioration. We report four acceptability judgment experiments that systematically investigate the role of morpho-syntactic and semantic features in wh-island violations. The results indicate that the distribution of wh-island amelioration is best explained by an account that incorporates the distinctness of morpho-syntactic features as well as the semantic denotation of the wh-phrases. We argue that an integration of syntactic theories and perspectives from psycholinguistics can enrich our understanding of acceptability variation in wh-dependencies. PMID:26793156

  9. Concept Representation Reflects Multimodal Abstraction: A Framework for Embodied Semantics

    PubMed Central

    Fernandino, Leonardo; Binder, Jeffrey R.; Desai, Rutvik H.; Pendl, Suzanne L.; Humphries, Colin J.; Gross, William L.; Conant, Lisa L.; Seidenberg, Mark S.

    2016-01-01

    Recent research indicates that sensory and motor cortical areas play a significant role in the neural representation of concepts. However, little is known about the overall architecture of this representational system, including the role played by higher level areas that integrate different types of sensory and motor information. The present study addressed this issue by investigating the simultaneous contributions of multiple sensory-motor modalities to semantic word processing. With a multivariate fMRI design, we examined activation associated with 5 sensory-motor attributes—color, shape, visual motion, sound, and manipulation—for 900 words. Regions responsive to each attribute were identified using independent ratings of the attributes' relevance to the meaning of each word. The results indicate that these aspects of conceptual knowledge are encoded in multimodal and higher level unimodal areas involved in processing the corresponding types of information during perception and action, in agreement with embodied theories of semantics. They also reveal a hierarchical system of abstracted sensory-motor representations incorporating a major division between object interaction and object perception processes. PMID:25750259

  10. Dissociable roles of default-mode regions during episodic encoding.

    PubMed

    Maillet, David; Rajah, M Natasha

    2014-04-01

    We investigated the role of distinct regions of the default-mode network (DMN) during memory encoding with fMRI. Subjects encoded words using either a strategy that emphasized self-referential (pleasantness) processing, or one that emphasized semantic (man-made/natural) processing. During encoding subjects were intermittently presented with thought probes to evaluate if they were concentrated and on-task or exhibiting task-unrelated thoughts (TUT). After the scanning session subjects performed a source retrieval task to determine which of two judgments they performed for each word at encoding. Source retrieval accuracy was higher for words encoded with the pleasantness vs. the man-made/natural task and there was a trend for higher performance for words preceding on-task vs. TUT reports. fMRI results show that left anterior medial PFC and left angular gyrus activity was greater during successful vs. unsuccessful encoding during both encoding tasks. Greater activity in left anterior cingulate and bilateral lateral temporal cortex was related successful vs. unsuccessful encoding only in the pleasantness task. In contrast, posterior cingulate, right anterior cingulate and right temporoparietal junction were activated to a greater extent in unsuccessful vs. successful encoding across tasks. Finally, activation in posterior cingulate and bilateral dorsolateral prefrontal cortex was related to TUT across tasks; moreover, we observed a conjunction in posterior cingulate between encoding failure and TUT. We conclude that DMN regions play dissociable roles during memory formation, and that their association with subsequent memory may depend on the manner in which information is encoded and retrieved. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  11. A common neural substrate for language production and verbal working memory.

    PubMed

    Acheson, Daniel J; Hamidi, Massihullah; Binder, Jeffrey R; Postle, Bradley R

    2011-06-01

    Verbal working memory (VWM), the ability to maintain and manipulate representations of speech sounds over short periods, is held by some influential models to be independent from the systems responsible for language production and comprehension [e.g., Baddeley, A. D. Working memory, thought, and action. New York, NY: Oxford University Press, 2007]. We explore the alternative hypothesis that maintenance in VWM is subserved by temporary activation of the language production system [Acheson, D. J., & MacDonald, M. C. Verbal working memory and language production: Common approaches to the serial ordering of verbal information. Psychological Bulletin, 135, 50-68, 2009b]. Specifically, we hypothesized that for stimuli lacking a semantic representation (e.g., nonwords such as mun), maintenance in VWM can be achieved by cycling information back and forth between the stages of phonological encoding and articulatory planning. First, fMRI was used to identify regions associated with two different stages of language production planning: the posterior superior temporal gyrus (pSTG) for phonological encoding (critical for VWM of nonwords) and the middle temporal gyrus (MTG) for lexical-semantic retrieval (not critical for VWM of nonwords). Next, in the same subjects, these regions were targeted with repetitive transcranial magnetic stimulation (rTMS) during language production and VWM task performance. Results showed that rTMS to the pSTG, but not the MTG, increased error rates on paced reading (a language production task) and on delayed serial recall of nonwords (a test of VWM). Performance on a lexical-semantic retrieval task (picture naming), in contrast, was significantly sensitive to rTMS of the MTG. Because rTMS was guided by language production-related activity, these results provide the first causal evidence that maintenance in VWM directly depends on the long-term representations and processes used in speech production.

  12. Ketamine Disrupts Frontal and Hippocampal Contribution to Encoding and Retrieval of Episodic Memory: An fMRI Study

    PubMed Central

    Honey, G.D.; Honey, R.A.E.; O’Loughlin, C.; Sharar, S.R.; Kumaran, D.; Suckling, J.; Menon, D.K.; Sleator, C.; Bullmore, E.T.; Fletcher, P.C.

    2012-01-01

    The N-methyl-d-aspartate (NMDA) receptor antagonist ketamine produces episodic memory deficits. We used functional magnetic resonance imaging to characterize the effects of ketamine on frontal and hippocampal responses to memory encoding and retrieval in healthy volunteers using a double-blind, placebo-controlled, randomized, within-subjects comparison of two doses of intravenous ketamine. Dissociation of the effects of ketamine on encoding and retrieval processes was achieved using two study-test cycles: in the first, items were encoded prior to drug infusion and retrieval tested, during scanning, on drug; in the second, encoding was scanned on drug, and retrieval tested once ketamine plasma levels had declined. We additionally determined the interaction of ketamine with the depth of processing that occurred at encoding. A number of effects upon task-dependent activations were seen. Overall, our results suggest that left frontal activation is augmented by ketamine when elaborative semantic processing is required at encoding. In addition, successful encoding on ketamine is supplemented by additional non-verbal processing that is incidental to task demands. The effects of ketamine at retrieval are consistent with impaired access to accompanying contextual features of studied items. Our findings show that, even when overt behaviour is unimpaired, ketamine has an impact upon the recruitment of key regions in episodic memory task performance. PMID:15537676

  13. Structure Discovery in Large Semantic Graphs Using Extant Ontological Scaling and Descriptive Statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    al-Saffar, Sinan; Joslyn, Cliff A.; Chappell, Alan R.

    As semantic datasets grow to be very large and divergent, there is a need to identify and exploit their inherent semantic structure for discovery and optimization. Towards that end, we present here a novel methodology to identify the semantic structures inherent in an arbitrary semantic graph dataset. We first present the concept of an extant ontology as a statistical description of the semantic relations present amongst the typed entities modeled in the graph. This serves as a model of the underlying semantic structure to aid in discovery and visualization. We then describe a method of ontological scaling in which themore » ontology is employed as a hierarchical scaling filter to infer different resolution levels at which the graph structures are to be viewed or analyzed. We illustrate these methods on three large and publicly available semantic datasets containing more than one billion edges each. Keywords-Semantic Web; Visualization; Ontology; Multi-resolution Data Mining;« less

  14. Verbal memory in drug-naive, newly diagnosed Parkinson's disease. The retrieval deficit hypothesis revisited.

    PubMed

    Brønnick, Kolbjørn; Alves, Guido; Aarsland, Dag; Tysnes, Ole-Bjørn; Larsen, Jan Petter

    2011-01-01

    The retrieval deficit hypothesis on memory impairment in patients with Parkinson's disease (PD) implies a selective impairment in recall of learned material with normal encoding, retention, and recognition. This hypothesis has been challenged by new data. We have therefore investigated verbal memory and learning in a large sample of newly diagnosed, drug naïve, non-demented patients with PD. From a sample of patients with PD from the Norwegian ParkWest study, 133 PD patients and 133 controls matched on sex, age, and education were included. The California Verbal Learning Test-2 (CVLT-2) was used to assess verbal memory. Patients performed significantly worse than controls on free and cued recall as well as on recognition memory. Patients used the semantic clustering learning strategy significantly less extensively than the controls and the learning slope of the PD patients was significantly less steep. There was no difference in retention when controlling for encoding. Patients did not perform better on the recognition measure or on cued recall (d-prime), as compared to free recall. Executive functions explained a substantial part of the memory deficits. This study suggests that memory impairment in drug naïve early PD to a large degree is a deficit of learning/ encoding and not of retention or retrieval. An implication is that the retrieval deficit hypothesis should be moderated in its general form. Executive deficits and less extensive use of the efficient semantic clustering learning strategy had a strong impact on learning and memory. (c) 2010 APA, all rights reserved.

  15. fMRI differences in encoding and retrieval of pictures due to encoding strategy in the elderly.

    PubMed

    Mandzia, Jennifer L; Black, Sandra E; McAndrews, Mary Pat; Grady, Cheryl; Graham, Simon

    2004-01-01

    Functional MRI (fMRI) was used to examine the neural correlates of depth of processing during encoding and retrieval of photographs in older normal volunteers (n = 12). Separate scans were run during deep (natural vs. man-made decision) and shallow (color vs. black-and-white decision) encoding and during old/new recognition of pictures initially presented in one of the two encoding conditions. A baseline condition consisting of a scrambled, color photograph was used as a contrast in each scan. Recognition accuracy was greater for the pictures on which semantic decisions were made at encoding, consistent with the expected levels of processing effect. A mixed-effects model was used to compare fMRI differences between conditions (deep-baseline vs. shallow-baseline) in both encoding and retrieval. For encoding, this contrast revealed greater activation associated with deep encoding in several areas, including the left parahippocampal gyrus (PHG), left middle temporal gyrus, and left anterior thalamus. Increased left hippocampal, right dorsolateral, and inferior frontal activations were found for recognition of items that had been presented in the deep relative to the shallow encoding condition. We speculate that the modulation of activity in these regions by the depth of processing manipulation shows that these regions support effective encoding and successful retrieval. A direct comparison between encoding and retrieval revealed greater activation during retrieval in the medial temporal (right hippocampus and bilateral PHG), anterior cingulate, and bilateral prefrontal (inferior and dorsolateral). Most notably, greater right posterior PHG was found during encoding compared to recognition. Focusing on the medial temporal lobe (MTL) region, our results suggest a greater involvement of both anterior MTL and prefrontal regions in retrieval compared to encoding. Copyright 2003 Wiley-Liss, Inc.

  16. Processing of visually presented clock times.

    PubMed

    Goolkasian, P; Park, D C

    1980-11-01

    The encoding and representation of visually presented clock times was investigated in three experiments utilizing a comparative judgment task. Experiment 1 explored the effects of comparing times presented in different formats (clock face, digit, or word), and Experiment 2 examined angular distance effects created by varying positions of the hands on clock faces. In Experiment 3, encoding and processing differences between clock faces and digitally presented times were directly measured. Same/different reactions to digitally presented times were faster than to times presented on a clock face, and this format effect was found to be a result of differences in processing that occurred after encoding. Angular separation also had a limited effect on processing. The findings are interpreted within the framework of theories that refer to the importance of representational codes. The applicability to the data of Bank's semantic-coding theory, Paivio's dual-coding theory, and the levels-of-processing view of memory are discussed.

  17. The dual effect of context on memory of related and unrelated themes: discrimination at encoding and cue at retrieval.

    PubMed

    Levy-Gigi, Einat; Vakil, Eli

    2012-01-01

    The influence of contextual factors on encoding and retrieval in recognition memory was investigated using a retroactive interference paradigm. Participants were randomly assigned to four context conditions constructed by manipulating types of presentation modality (pictures vs words) for study, interference, and test stages, respectively (ABA, ABB, AAA, & AAB). In Experiment 1 we presented unrelated items in the study and interference stages, while in Experiment 2 each stage contained items from the same semantic category. The results demonstrate a dual role for context in memory processes-at encoding as well as at retrieval. In Experiment 1 there is a hierarchical order between the four context conditions, depending on both target-test and target-interference contextual similarity. Adding a categorical context in Experiment 2 helped to specify each list and therefore better distinguish between target and interferer information, and in some conditions compensated for their perceptual similarity.

  18. Information and processes underlying semantic and episodic memory across tasks, items, and individuals.

    PubMed

    Cox, Gregory E; Hemmer, Pernille; Aue, William R; Criss, Amy H

    2018-04-01

    The development of memory theory has been constrained by a focus on isolated tasks rather than the processes and information that are common to situations in which memory is engaged. We present results from a study in which 453 participants took part in five different memory tasks: single-item recognition, associative recognition, cued recall, free recall, and lexical decision. Using hierarchical Bayesian techniques, we jointly analyzed the correlations between tasks within individuals-reflecting the degree to which tasks rely on shared cognitive processes-and within items-reflecting the degree to which tasks rely on the same information conveyed by the item. Among other things, we find that (a) the processes involved in lexical access and episodic memory are largely separate and rely on different kinds of information, (b) access to lexical memory is driven primarily by perceptual aspects of a word, (c) all episodic memory tasks rely to an extent on a set of shared processes which make use of semantic features to encode both single words and associations between words, and (d) recall involves additional processes likely related to contextual cuing and response production. These results provide a large-scale picture of memory across different tasks which can serve to drive the development of comprehensive theories of memory. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  19. Testing the attentional boundary conditions of subliminal semantic priming: the influence of semantic and phonological task sets

    PubMed Central

    Adams, Sarah C.; Kiefer, Markus

    2012-01-01

    Recent studies challenged the classical notion of automaticity and indicated that even unconscious automatic semantic processing is under attentional control to some extent. In line with our attentional sensitization model, these data suggest that a sensitization of semantic pathways by a semantic task set is necessary for subliminal semantic priming to occur while non-semantic task sets attenuate priming. In the present study, we tested whether masked semantic priming is also reduced by phonological task sets using the previously developed induction task paradigm. This would substantiate the notion that attention to semantics is necessary for eliciting unconscious semantic priming. Participants first performed semantic and phonological induction tasks that should either activate a semantic or a phonological task set. Subsequent to the induction task, a masked prime word, either associated or non-associated with the following lexical decision target word, was presented. Across two experiments, we varied the nature of the phonological induction task (word phonology vs. letter phonology) to assess whether the attentional focus on the entire word vs. single letters modulates subsequent masked semantic priming. In both experiments, subliminal semantic priming was only found subsequent to the semantic induction task, but was attenuated following either phonological induction task. These results indicate that attention to phonology attenuates subsequent semantic processing of unconsciously presented primes whether or not attention is directed to the entire word or to single letters. The present findings therefore substantiate earlier evidence that an attentional orientation toward semantics is necessary for subliminal semantic priming to be elicited. PMID:22952461

  20. EEG Theta and Alpha Responses Reveal Qualitative Differences in Processing Taxonomic versus Thematic Semantic Relationships

    ERIC Educational Resources Information Center

    Maguire, Mandy J.; Brier, Matthew R.; Ferree, Thomas C.

    2010-01-01

    Despite the importance of semantic relationships to our understanding of semantic knowledge, the nature of the neural processes underlying these abilities are not well understood. In order to investigate these processes, 20 healthy adults listened to thematically related (e.g., leash-dog), taxonomically related (e.g., horse-dog), or unrelated…

  1. Differences in Processing of Taxonomic and Sequential Relations in Semantic Memory: An fMRI Investigation

    ERIC Educational Resources Information Center

    Kuchinke, Lars; van der Meer, Elke; Krueger, Frank

    2009-01-01

    Conceptual knowledge of our world is represented in semantic memory in terms of concepts and semantic relations between concepts. We used functional magnetic resonance imaging (fMRI) to examine the cortical regions underlying the processing of sequential and taxonomic relations. Participants were presented verbal cues and performed three tasks:…

  2. Determinants of Multiple Semantic Priming: A Meta-Analysis and Spike Frequency Adaptive Model of a Cortical Network

    ERIC Educational Resources Information Center

    Lavigne, Frederic; Dumercy, Laurent; Darmon, Nelly

    2011-01-01

    Recall and language comprehension while processing sequences of words involves multiple semantic priming between several related and/or unrelated words. Accounting for multiple and interacting priming effects in terms of underlying neuronal structure and dynamics is a challenge for current models of semantic priming. Further elaboration of current…

  3. Contextual Processing of Abstract Concepts Reveals Neural Representations of Non-Linguistic Semantic Content

    PubMed Central

    Wilson-Mendenhall, Christine D.; Simmons, W. Kyle; Martin, Alex; Barsalou, Lawrence W.

    2014-01-01

    Concepts develop for many aspects of experience, including abstract internal states and abstract social activities that do not refer to concrete entities in the world. The current study assessed the hypothesis that, like concrete concepts, distributed neural patterns of relevant, non-linguistic semantic content represent the meanings of abstract concepts. In a novel neuroimaging paradigm, participants processed two abstract concepts (convince, arithmetic) and two concrete concepts (rolling, red) deeply and repeatedly during a concept-scene matching task that grounded each concept in typical contexts. Using a catch trial design, neural activity associated with each concept word was separated from neural activity associated with subsequent visual scenes to assess activations underlying the detailed semantics of each concept. We predicted that brain regions underlying mentalizing and social cognition (e.g., medial prefrontal cortex, superior temporal sulcus) would become active to represent semantic content central to convince, whereas brain regions underlying numerical cognition (e.g., bilateral intraparietal sulcus) would become active to represent semantic content central to arithmetic. The results supported these predictions, suggesting that the meanings of abstract concepts arise from distributed neural systems that represent concept-specific content. PMID:23363408

  4. The effect of childhood bilingualism on episodic and semantic memory tasks.

    PubMed

    Kormi-Nouri, Reza; Shojaei, Razie-Sadat; Moniri, Sadegheh; Gholami, Ali-Reza; Moradi, Ali-Reza; Akbari-Zardkhaneh, Saeed; Nilsson, Lars-Göran

    2008-04-01

    Kormi-Nouri, Moniri and Nilsson (2003) demonstrated that Swedish-Persian bilingual children recalled at a higher level than Swedish monolingual children, when they were tested using Swedish materials. The present study was designed to examine the bilingual advantage of children who use different languages in their everyday life but have the same cultural background and live in their communities in the same way as monolingual children. In four experiments, 488 monolingual and bilingual children were compared with regard to episodic and semantic memory tasks. In experiments 1 and 2 there were 144 boys and 144 girls in three school groups (aged 9-10 years, 13-14 years and 16-17 years) and in three language groups (Persian monolingual, Turkish-Persian bilingual, and Kurdish-Persian bilingual). In experiments 3 and 4, there were 200 male students in two school groups (aged 9-10 years and 16-17 years) and in two language groups (Persian monolingual and Turkish-Persian bilingual). In the episodic memory task, children learned sentences (experiments 1-3) and words (Experiment 4). Letter and category fluency tests were used as measures of semantic memory. To change cognitive demands in memory tasks, in Experiment 1, the integration of nouns and verbs within sentences was manipulated by the level of association between verb and noun in each sentence. At retrieval, a recognition test was used. In experiments 2 and 3, the organization between sentences was manipulated at encoding in Experiment 2 and at both encoding and retrieval in Experiment 3 through the use of categories among the objects. At retrieval, free recall or cued recall tests were employed. In Experiment 4, the bilingual children were tested with regard to both their first and their second language. In all four experiments, a positive effect of bilingualism was found on episodic and semantic memory tasks; the effect was more pronounced for older than younger children. The bilingual advantage was not affected by changing cognitive demands or by using first/second language in memory tasks. The present findings support the cross-language interactivity hypothesis of bilingual advantage.

  5. Preservation of Person-Specific Semantic Knowledge in Semantic Dementia: Does Direct Personal Experience Have a Specific Role?

    PubMed Central

    Péron, Julie A.; Piolino, Pascale; Moal-Boursiquot, Sandrine Le; Biseul, Isabelle; Leray, Emmanuelle; Bon, Laetitia; Desgranges, Béatrice; Eustache, Francis; Belliard, Serge

    2015-01-01

    Semantic dementia patients seem to have better knowledge of information linked to the self. More specifically, despite having severe semantic impairment, these patients show that they have more general information about the people they know personally by direct experience than they do about other individuals they know indirectly. However, the role of direct personal experience remains debated because of confounding factors such as frequency, recency of exposure, and affective relevance. We performed an exploratory study comparing the performance of five semantic dementia patients with that of 10 matched healthy controls on the recognition (familiarity judgment) and identification (biographic information recall) of personally familiar names vs. famous names. As expected, intergroup comparisons indicated a semantic breakdown in semantic dementia patients as compared with healthy controls. Moreover, unlike healthy controls, the semantic dementia patients recognized and identified personally familiar names better than they did famous names. This pattern of results suggests that direct personal experience indeed plays a specific role in the relative preservation of person-specific semantic meaning in semantic dementia. We discuss the role of direct personal experience on the preservation of semantic knowledge and the potential neurophysiological mechanisms underlying these processes. PMID:26635578

  6. Solving Semantic Searches for Source Code

    DTIC Science & Technology

    2012-11-01

    but of input and expected output pairs. In this domain, those inputs take the form of strings and outputs could be one of sev- eral datatypes ...for some relaxation of CPi that yields C ′ Pi . Encoding weakening is performed by systematically making the constraints on a particular datatype ...the datatypes that can hold concrete or symbolic values: integers, characters, booleans, and strings. The Java implementation uses all the data types

  7. Conceptual fluency at test shifts recognition response bias in Alzheimer’s disease: Implications for increased false recognition

    PubMed Central

    Gold, Carl A.; Marchant, Natalie L.; Koutstaal, Wilma; Schacter, Daniel L.; Budson, Andrew E.

    2012-01-01

    The presence or absence of conceptual information in pictorial stimuli may explain the mixed findings of previous studies of false recognition in patients with mild Alzheimer’s disease (AD). To test this hypothesis, 48 patients with AD were compared to 48 healthy older adults on a recognition task first described by Koutstaal et al. (2003). Participants studied and were tested on their memory for categorized ambiguous pictures of common objects. The presence of conceptual information at study and/or test was manipulated by providing or withholding disambiguating semantic labels. Analyses focused on testing two competing theories. The semantic encoding hypothesis, which posits that the inter-item perceptual details are not encoded by AD patients when conceptual information is present in the stimuli, was not supported by the findings. In contrast, the conceptual fluency hypothesis was supported. Enhanced conceptual fluency at test dramatically shifted AD patients to a more liberal response bias, raising their false recognition. These results suggest that patients with AD rely on the fluency of test items in making recognition memory decisions. We speculate that AD patients’ over reliance upon fluency may be attributable to (1) dysfunction of the hippocampus, disrupting recollection, and/or (2) dysfunction of prefrontal cortex, disrupting post-retrieval processes. PMID:17573074

  8. Separating the FN400 and N400 potentials across recognition memory experiments

    PubMed Central

    Stróżak, Paweł; Abedzadeh, Delora; Curran, Tim

    2016-01-01

    There is a growing debate as to whether frontally distributed FN400 potentials reflect familiarity-based recognition or are functionally identical to centro-parietal N400 reflecting semantic processing. We conducted two experiments in which event-related potentials (ERPs) associated with semantic priming and recognition were recorded, either when priming was embedded within a recognition test (Experiment 1), or when these two phases were separated (Experiment 2). In Experiment 1, we observed 300–500 ms differences between primed and unprimed old words as well as differences between old and new primed words, but these two effects did not differ topographically and both showed midline central maxima. In Experiment 2, the N400 for priming was recorded exclusively during encoding and again showed a midline central distribution. The ERP component of recognition was only found for unrelated words (not primed previously during encoding), and also showed a midline central maximum, but, in addition, was present in the left frontal area of the scalp. Conversely, the priming effect was absent in the left frontal cluster. This pattern of results indicate that FN400 and N400 potentials share similar neural generators; but when priming and recognition are not confounded, these potentials do not entirely overlap in terms of topographical distribution and presumably reflect functionally distinct processes. PMID:26776478

  9. Prioritization of candidate disease genes by combining topological similarity and semantic similarity.

    PubMed

    Liu, Bin; Jin, Min; Zeng, Pan

    2015-10-01

    The identification of gene-phenotype relationships is very important for the treatment of human diseases. Studies have shown that genes causing the same or similar phenotypes tend to interact with each other in a protein-protein interaction (PPI) network. Thus, many identification methods based on the PPI network model have achieved good results. However, in the PPI network, some interactions between the proteins encoded by candidate gene and the proteins encoded by known disease genes are very weak. Therefore, some studies have combined the PPI network with other genomic information and reported good predictive performances. However, we believe that the results could be further improved. In this paper, we propose a new method that uses the semantic similarity between the candidate gene and known disease genes to set the initial probability vector of a random walk with a restart algorithm in a human PPI network. The effectiveness of our method was demonstrated by leave-one-out cross-validation, and the experimental results indicated that our method outperformed other methods. Additionally, our method can predict new causative genes of multifactor diseases, including Parkinson's disease, breast cancer and obesity. The top predictions were good and consistent with the findings in the literature, which further illustrates the effectiveness of our method. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Emotional Complexity and the Neural Representation of Emotion in Motion

    PubMed Central

    Barnard, Philip J.; Lawrence, Andrew D.

    2011-01-01

    According to theories of emotional complexity, individuals low in emotional complexity encode and represent emotions in visceral or action-oriented terms, whereas individuals high in emotional complexity encode and represent emotions in a differentiated way, using multiple emotion concepts. During functional magnetic resonance imaging, participants viewed valenced animated scenarios of simple ball-like figures attending either to social or spatial aspects of the interactions. Participant’s emotional complexity was assessed using the Levels of Emotional Awareness Scale. We found a distributed set of brain regions previously implicated in processing emotion from facial, vocal and bodily cues, in processing social intentions, and in emotional response, were sensitive to emotion conveyed by motion alone. Attention to social meaning amplified the influence of emotion in a subset of these regions. Critically, increased emotional complexity correlated with enhanced processing in a left temporal polar region implicated in detailed semantic knowledge; with a diminished effect of social attention; and with increased differentiation of brain activity between films of differing valence. Decreased emotional complexity was associated with increased activity in regions of pre-motor cortex. Thus, neural coding of emotion in semantic vs action systems varies as a function of emotional complexity, helping reconcile puzzling inconsistencies in neuropsychological investigations of emotion recognition. PMID:20207691

  11. The relationship between level of processing and hippocampal-cortical functional connectivity during episodic memory formation in humans.

    PubMed

    Schott, Björn H; Wüstenberg, Torsten; Wimber, Maria; Fenker, Daniela B; Zierhut, Kathrin C; Seidenbecher, Constanze I; Heinze, Hans-Jochen; Walter, Henrik; Düzel, Emrah; Richardson-Klavehn, Alan

    2013-02-01

    New episodic memory traces represent a record of the ongoing neocortical processing engaged during memory formation (encoding). Thus, during encoding, deep (semantic) processing typically establishes more distinctive and retrievable memory traces than does shallow (perceptual) processing, as assessed by later episodic memory tests. By contrast, the hippocampus appears to play a processing-independent role in encoding, because hippocampal lesions impair encoding regardless of level of processing. Here, we clarified the neural relationship between processing and encoding by examining hippocampal-cortical connectivity during deep and shallow encoding. Participants studied words during functional magnetic resonance imaging and freely recalled these words after distraction. Deep study processing led to better recall than shallow study processing. For both levels of processing, successful encoding elicited activations of bilateral hippocampus and left prefrontal cortex, and increased functional connectivity between left hippocampus and bilateral medial prefrontal, cingulate and extrastriate cortices. Successful encoding during deep processing was additionally associated with increased functional connectivity between left hippocampus and bilateral ventrolateral prefrontal cortex and right temporoparietal junction. In the shallow encoding condition, on the other hand, pronounced functional connectivity increases were observed between the right hippocampus and the frontoparietal attention network activated during shallow study processing. Our results further specify how the hippocampus coordinates recording of ongoing neocortical activity into long-term memory, and begin to provide a neural explanation for the typical advantage of deep over shallow study processing for later episodic memory. Copyright © 2011 Wiley Periodicals, Inc.

  12. Recalling taboo and nontaboo words.

    PubMed

    Jay, Timothy; Caldwell-Harris, Catherine; King, Krista

    2008-01-01

    People remember emotional and taboo words better than neutral words. It is well known that words that are processed at a deep (i.e., semantic) level are recalled better than words processed at a shallow (i.e., purely visual) level. To determine how depth of processing influences recall of emotional and taboo words, a levels of processing paradigm was used. Whether this effect holds for emotional and taboo words has not been previously investigated. Two experiments demonstrated that taboo and emotional words benefit less from deep processing than do neutral words. This is consistent with the proposal that memories for taboo and emotional words are a function of the arousal level they evoke, even under shallow encoding conditions. Recall was higher for taboo words, even when taboo words were cued to be recalled after neutral and emotional words. The superiority of taboo word recall is consistent with cognitive neuroscience and brain imaging research.

  13. ontologyX: a suite of R packages for working with ontological data.

    PubMed

    Greene, Daniel; Richardson, Sylvia; Turro, Ernest

    2017-04-01

    Ontologies are widely used constructs for encoding and analyzing biomedical data, but the absence of simple and consistent tools has made exploratory and systematic analysis of such data unnecessarily difficult. Here we present three packages which aim to simplify such procedures. The ontologyIndex package enables arbitrary ontologies to be read into R, supports representation of ontological objects by native R types, and provides a parsimonius set of performant functions for querying ontologies. ontologySimilarity and ontologyPlot extend ontologyIndex with functionality for straightforward visualization and semantic similarity calculations, including statistical routines. ontologyIndex , ontologyPlot and ontologySimilarity are all available on the Comprehensive R Archive Network website under https://cran.r-project.org/web/packages/ . Daniel Greene dg333@cam.ac.uk. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  14. Toward a Unified Sub-symbolic Computational Theory of Cognition

    PubMed Central

    Butz, Martin V.

    2016-01-01

    This paper proposes how various disciplinary theories of cognition may be combined into a unifying, sub-symbolic, computational theory of cognition. The following theories are considered for integration: psychological theories, including the theory of event coding, event segmentation theory, the theory of anticipatory behavioral control, and concept development; artificial intelligence and machine learning theories, including reinforcement learning and generative artificial neural networks; and theories from theoretical and computational neuroscience, including predictive coding and free energy-based inference. In the light of such a potential unification, it is discussed how abstract cognitive, conceptualized knowledge and understanding may be learned from actively gathered sensorimotor experiences. The unification rests on the free energy-based inference principle, which essentially implies that the brain builds a predictive, generative model of its environment. Neural activity-oriented inference causes the continuous adaptation of the currently active predictive encodings. Neural structure-oriented inference causes the longer term adaptation of the developing generative model as a whole. Finally, active inference strives for maintaining internal homeostasis, causing goal-directed motor behavior. To learn abstract, hierarchical encodings, however, it is proposed that free energy-based inference needs to be enhanced with structural priors, which bias cognitive development toward the formation of particular, behaviorally suitable encoding structures. As a result, it is hypothesized how abstract concepts can develop from, and thus how they are structured by and grounded in, sensorimotor experiences. Moreover, it is sketched-out how symbol-like thought can be generated by a temporarily active set of predictive encodings, which constitute a distributed neural attractor in the form of an interactive free-energy minimum. The activated, interactive network attractor essentially characterizes the semantics of a concept or a concept composition, such as an actual or imagined situation in our environment. Temporal successions of attractors then encode unfolding semantics, which may be generated by a behavioral or mental interaction with an actual or imagined situation in our environment. Implications, further predictions, possible verification, and falsifications, as well as potential enhancements into a fully spelled-out unified theory of cognition are discussed at the end of the paper. PMID:27445895

  15. Path Network Recovery Using Remote Sensing Data and Geospatial-Temporal Semantic Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William C. McLendon III; Brost, Randy C.

    Remote sensing systems produce large volumes of high-resolution images that are difficult to search. The GeoGraphy (pronounced Geo-Graph-y) framework [2, 20] encodes remote sensing imagery into a geospatial-temporal semantic graph representation to enable high level semantic searches to be performed. Typically scene objects such as buildings and trees tend to be shaped like blocks with few holes, but other shapes generated from path networks tend to have a large number of holes and can span a large geographic region due to their connectedness. For example, we have a dataset covering the city of Philadelphia in which there is a singlemore » road network node spanning a 6 mile x 8 mile region. Even a simple question such as "find two houses near the same street" might give unexpected results. More generally, nodes arising from networks of paths (roads, sidewalks, trails, etc.) require additional processing to make them useful for searches in GeoGraphy. We have assigned the term Path Network Recovery to this process. Path Network Recovery is a three-step process involving (1) partitioning the network node into segments, (2) repairing broken path segments interrupted by occlusions or sensor noise, and (3) adding path-aware search semantics into GeoQuestions. This report covers the path network recovery process, how it is used, and some example use cases of the current capabilities.« less

  16. Semantic and phonological contributions to short-term repetition and long-term cued sentence recall.

    PubMed

    Meltzer, Jed A; Rose, Nathan S; Deschamps, Tiffany; Leigh, Rosie C; Panamsky, Lilia; Silberberg, Alexandra; Madani, Noushin; Links, Kira A

    2016-02-01

    The function of verbal short-term memory is supported not only by the phonological loop, but also by semantic resources that may operate on both short and long time scales. Elucidation of the neural underpinnings of these mechanisms requires effective behavioral manipulations that can selectively engage them. We developed a novel cued sentence recall paradigm to assess the effects of two factors on sentence recall accuracy at short-term and long-term stages. Participants initially repeated auditory sentences immediately following a 14-s retention period. After this task was complete, long-term memory for each sentence was probed by a two-word recall cue. The sentences were either concrete (high imageability) or abstract (low imageability), and the initial 14-s retention period was filled with either an undemanding finger-tapping task or a more engaging articulatory suppression task (Exp. 1, counting backward by threes; Exp. 2, repeating a four-syllable nonword). Recall was always better for the concrete sentences. Articulatory suppression reduced accuracy in short-term recall, especially for abstract sentences, but the sentences initially recalled following articulatory suppression were retained better at the subsequent cued-recall test, suggesting that the engagement of semantic mechanisms for short-term retention promoted encoding of the sentence meaning into long-term memory. These results provide a basis for using sentence imageability and subsequent memory performance as probes of semantic engagement in short-term memory for sentences.

  17. Object Recognition Under Semantic Impairment: The Effects of Conceptual Regularities on Perceptual Decisions.

    ERIC Educational Resources Information Center

    Rogers, Timothy T.; Hodges, John R.; Ralph, Matthew A. Lambon; Patterson, Karalyn

    2003-01-01

    Presents evidence that although patients with semantic deficits can sometimes show good performance on tests or object decisions, this pattern applies when nonsee-objects do not respect the regularities of the domain. Patients with semantic dementia viewed line drawings of a real and chimeric animals side-by-side and were asked to decide which was…

  18. Won't get fooled again: An event-related potential study of task and repetition effects on the semantic processing of items without semantics.

    PubMed

    Laszlo, Sarah; Stites, Mallory; Federmeier, Kara D

    2012-01-01

    A growing body of evidence suggests that semantic access is obligatory. Several studies have demonstrated that brain activity associated with semantic processing, measured in the N400 component of the event-related brain potential (ERP), is elicited even by meaningless, orthographically illegal strings, suggesting that semantic access is not gated by lexicality. However, the downstream consequences of that activity vary by item type, exemplified by the typical finding that N400 activity is reduced by repetition for words and pronounceable nonwords but not for illegal strings. We propose that this lack of repetition effect for illegal strings is caused not by lack of contact with semantics, but by the unrefined nature of that contact under conditions in which illegal strings can be readily categorised as task-irrelevant. To test this, we collected ERPs from participants performing a modified Lexical Decision Task, in which the presence of orthographically illegal acronyms rendered meaningless illegal strings more difficult lures than normal. Confirming our hypothesis, under these conditions illegal strings elicited robust N400 repetition effects, quantitatively and qualitatively similar to those elicited by words, pseudowords, and acronyms.

  19. Distinct Patterns of Neural Activity during Memory Formation of Nonwords versus Words

    PubMed Central

    Otten, Leun J.; Sveen, Josefin; Quayle, Angela H.

    2008-01-01

    Research into the neural underpinnings of memory formation has focused on the encoding of familiar verbal information. Here, we address how the brain supports the encoding of novel information that does not have meaning. Electrical brain activity was recorded from the scalps of healthy young adults while they performed an incidental encoding task (syllable judgments) on separate series of words and ‘nonwords’ (nonsense letter strings that are orthographically legal and pronounceable). Memory for the items was then probed with a recognition memory test. For words as well as nonwords, event-related potentials differed depending on whether an item would subsequently be remembered or forgotten. However, the polarity and timing of the effect varied across item type. For words, subsequently remembered items showed the usually observed positive-going, frontally-distributed modulation from around 600 ms after word onset. For nonwords, by contrast, a negative-going, spatially widespread modulation predicted encoding success from 1000 ms onwards. Nonwords also showed a modulation shortly after item onset. These findings imply that the brain supports the encoding of familiar and unfamiliar letter strings in qualitatively different ways, including the engagement of distinct neural activity at different points in time. The processing of semantic attributes plays an important role in the encoding of words and the associated positive frontal modulation. PMID:17958481

  20. An online paradigm for exploring the self-reference effect

    PubMed Central

    Bentley, Sarah V.; Greenaway, Katharine H.; Haslam, S. Alexander

    2017-01-01

    People reliably encode information more effectively when it is related in some way to the self—a phenomenon known as the self-reference effect. This effect has been recognized in psychological research for almost 40 years, and its scope as a tool for investigating the self-concept is still expanding. The self-reference effect has been used within a broad range of psychological research, from cultural to neuroscientific, cognitive to clinical. Traditionally, the self-reference effect has been investigated in a laboratory context, which limits its applicability in non-laboratory samples. This paper introduces an online version of the self-referential encoding paradigm that yields reliable effects in an easy-to-administer procedure. Across four studies (total N = 658), this new online tool reliably replicated the traditional self-reference effect: in all studies self-referentially encoded words were recalled significantly more than semantically encoded words (d = 0.63). Moreover, the effect sizes obtained with this online tool are similar to those obtained in laboratory samples, and are robust to experimental variations in encoding time (Studies 1 and 2) and recall procedure (Studies 3 and 4), and persist independent of primacy and recency effects (all studies). PMID:28472160

  1. Neural encoding of the speech envelope by children with developmental dyslexia.

    PubMed

    Power, Alan J; Colling, Lincoln J; Mead, Natasha; Barnes, Lisa; Goswami, Usha

    2016-09-01

    Developmental dyslexia is consistently associated with difficulties in processing phonology (linguistic sound structure) across languages. One view is that dyslexia is characterised by a cognitive impairment in the "phonological representation" of word forms, which arises long before the child presents with a reading problem. Here we investigate a possible neural basis for developmental phonological impairments. We assess the neural quality of speech encoding in children with dyslexia by measuring the accuracy of low-frequency speech envelope encoding using EEG. We tested children with dyslexia and chronological age-matched (CA) and reading-level matched (RL) younger children. Participants listened to semantically-unpredictable sentences in a word report task. The sentences were noise-vocoded to increase reliance on envelope cues. Envelope reconstruction for envelopes between 0 and 10Hz showed that the children with dyslexia had significantly poorer speech encoding in the 0-2Hz band compared to both CA and RL controls. These data suggest that impaired neural encoding of low frequency speech envelopes, related to speech prosody, may underpin the phonological deficit that causes dyslexia across languages. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Unconscious semantic activation depends on feature-specific attention allocation.

    PubMed

    Spruyt, Adriaan; De Houwer, Jan; Everaert, Tom; Hermans, Dirk

    2012-01-01

    We examined whether semantic activation by subliminally presented stimuli is dependent upon the extent to which participants assign attention to specific semantic stimulus features and stimulus dimensions. Participants pronounced visible target words that were preceded by briefly presented, masked prime words. Both affective and non-affective semantic congruence of the prime-target pairs were manipulated under conditions that either promoted selective attention for affective stimulus information or selective attention for non-affective semantic stimulus information. In line with our predictions, results showed that affective congruence had a clear impact on word pronunciation latencies only if participants were encouraged to assign attention to the affective stimulus dimension. In contrast, non-affective semantic relatedness of the prime-target pairs produced no priming at all. Our findings are consistent with the hypothesis that unconscious activation of (affective) semantic information is modulated by feature-specific attention allocation. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Ways of making-sense: Local gamma synchronization reveals differences between semantic processing induced by music and language.

    PubMed

    Barraza, Paulo; Chavez, Mario; Rodríguez, Eugenio

    2016-01-01

    Similar to linguistic stimuli, music can also prime the meaning of a subsequent word. However, it is so far unknown what is the brain dynamics underlying the semantic priming effect induced by music, and its relation to language. To elucidate these issues, we compare the brain oscillatory response to visual words that have been semantically primed either by a musical excerpt or by an auditory sentence. We found that semantic violation between music-word pairs triggers a classical ERP N400, and induces a sustained increase of long-distance theta phase synchrony, along with a transient increase of local gamma activity. Similar results were observed after linguistic semantic violation except for gamma activity, which increased after semantic congruence between sentence-word pairs. Our findings indicate that local gamma activity is a neural marker that signals different ways of semantic processing between music and language, revealing the dynamic and self-organized nature of the semantic processing. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Solar-Terrestrial Ontology Development

    NASA Astrophysics Data System (ADS)

    McGuinness, D.; Fox, P.; Middleton, D.; Garcia, J.; Cinquni, L.; West, P.; Darnell, J. A.; Benedict, J.

    2005-12-01

    The development of an interdisciplinary virtual observatory (the Virtual Solar-Terrestrial Observatory; VSTO) as a scalable environment for searching, integrating, and analyzing databases distributed over the Internet requires a higher level of semantic interoperability than here-to-fore required by most (if not all) distributed data systems or discipline specific virtual observatories. The formalization of semantics using ontologies and their encodings for the internet (e.g. OWL - the Web Ontology Language), as well as the use of accompanying tools, such as reasoning, inference and explanation, open up both a substantial leap in options for interoperability and in the need for formal development principles to guide ontology development and use within modern, multi-tiered network data environments. In this presentation, we outline the formal methodologies we utilize in the VSTO project, the currently developed use-cases, ontologies and their relation to existing ontologies (such as SWEET).

  5. The ARES High-level Intermediate Representation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moss, Nicholas David

    The LLVM intermediate representation (IR) lacks semantic constructs for depicting common high-performance operations such as parallel and concurrent execution, communication and synchronization. Currently, representing such semantics in LLVM requires either extending the intermediate form (a signi cant undertaking) or the use of ad hoc indirect means such as encoding them as intrinsics and/or the use of metadata constructs. In this paper we discuss a work in progress to explore the design and implementation of a new compilation stage and associated high-level intermediate form that is placed between the abstract syntax tree and when it is lowered to LLVM's IR. Thismore » highlevel representation is a superset of LLVM IR and supports the direct representation of these common parallel computing constructs along with the infrastructure for supporting analysis and transformation passes on this representation.« less

  6. The effects of associative and semantic priming in the lexical decision task.

    PubMed

    Perea, Manuel; Rosa, Eva

    2002-08-01

    Four lexical decision experiments were conducted to examine under which conditions automatic semantic priming effects can be obtained. Experiments 1 and 2 analyzed associative/semantic effects at several very short stimulus-onset asynchronies (SOAs), whereas Experiments 3 and 4 used a single-presentation paradigm at two response-stimulus intervals (RSIs). Experiment 1 tested associatively related pairs from three semantic categories (synonyms, antonyms, and category coordinates). The results showed reliable associative priming effects at all SOAs. In addition, the correlation between associative strength and magnitude of priming was significant only at the shortest SOA (66 ms). When prime-target pairs were semantically but not associatively related (Experiment 2), reliable priming effects were obtained at SOAs of 83 ms and longer. Using the single-presentation paradigm with a short RSI (200 ms, Experiment 3), the priming effect was equal in size for associative + semantic and for semantic-only pairs (a 21-ms effect). When the RSI was set much longer (1,750 ms, Experiment 4), only the associative + semantic pairs showed a reliable priming effect (23 ms). The results are interpreted in the context of models of semantic memory.

  7. Investigating Correlation between Protein Sequence Similarity and Semantic Similarity Using Gene Ontology Annotations.

    PubMed

    Ikram, Najmul; Qadir, Muhammad Abdul; Afzal, Muhammad Tanvir

    2018-01-01

    Sequence similarity is a commonly used measure to compare proteins. With the increasing use of ontologies, semantic (function) similarity is getting importance. The correlation between these measures has been applied in the evaluation of new semantic similarity methods, and in protein function prediction. In this research, we investigate the relationship between the two similarity methods. The results suggest absence of a strong correlation between sequence and semantic similarities. There is a large number of proteins with low sequence similarity and high semantic similarity. We observe that Pearson's correlation coefficient is not sufficient to explain the nature of this relationship. Interestingly, the term semantic similarity values above 0 and below 1 do not seem to play a role in improving the correlation. That is, the correlation coefficient depends only on the number of common GO terms in proteins under comparison, and the semantic similarity measurement method does not influence it. Semantic similarity and sequence similarity have a distinct behavior. These findings are of significant effect for future works on protein comparison, and will help understand the semantic similarity between proteins in a better way.

  8. Treating a novel plasticity defect rescues episodic memory in Fragile X model mice

    PubMed Central

    Wang, Weisheng; Cox, Brittney M.; Jia, Yousheng; Le, Aliza A.; Cox, Conor D.; Jung, Kwang M.; Hou, Bowen; Piomelli, Daniele; Gall, Christine M.; Lynch, Gary

    2017-01-01

    Episodic memory, a fundamental component of human cognition, is significantly impaired in autism. We report the first evidence for this problem in the Fmr1-knockout (KO) mouse model of Fragile X syndrome and describe potentially treatable underlying causes. The hippocampus is critical for the formation and use of episodes, with semantic (cue identity) information relayed to the structure via the lateral perforant path (LPP). The unusual form of synaptic plasticity expressed by the LPP (lppLTP) was profoundly impaired in Fmr1-KOs relative to wild type mice. Two factors contributed to this defect: i) reduced GluN1 subunit levels in synaptic NMDA receptors and related currents, and ii) impaired retrograde synaptic signaling by the endocannabinoid 2-archadonolglycerol (2-AG). Studies using a novel serial cue paradigm showed that episodic encoding is dependent on both the LPP and the endocannabinoid receptor CB1, and is strikingly impaired in Fmr1-KOs. Enhancing 2-AG signaling rescued both lppLTP and learning in the mutants. Thus, two consequences of the Fragile-X mutation converge on plasticity at one site in hippocampus to prevent encoding of a basic element of cognitive memory. Collectively, the results suggest a clinically plausible approach to treatment. PMID:29133950

  9. Sequential then Interactive Processing of Letters and Words in the Left Fusiform Gyrus

    PubMed Central

    Thesen, Thomas; McDonald, Carrie R.; Carlson, Chad; Doyle, Werner; Cash, Syd; Sherfey, Jason; Felsovalyi, Olga; Girard, Holly; Barr, William; Devinsky, Orrin; Kuzniecky, Ruben; Halgren, Eric

    2013-01-01

    Despite decades of cognitive, neuropsychological, and neuroimaging studies, it is unclear if letters are identified prior to word-form encoding during reading, or if letters and their combinations are encoded simultaneously and interactively. Here, using functional magnetic resonance imaging, we show that a ‘letter-form’ area (responding more to consonant strings than false fonts) can be distinguished from an immediately anterior ‘visual word-form area’ in ventral occipitotemporal cortex (responding more to words than consonant strings). Letter-selective magnetoencephalographic responses begin in the letter-form area ~60ms earlier than word-selective responses in the word-form area. Local field potentials confirm the latency and location of letter-selective responses. This area shows increased high gamma power for ~400ms, and strong phase-locking with more anterior areas supporting lexico-semantic processing. These findings suggest that during reading, visual stimuli are first encoded as letters before their combinations are encoded as words. Activity then rapidly spreads anteriorly, and the entire network is engaged in sustained integrative processing. PMID:23250414

  10. Distributed representation of visual objects by single neurons in the human brain.

    PubMed

    Valdez, André B; Papesh, Megan H; Treiman, David M; Smith, Kris A; Goldinger, Stephen D; Steinmetz, Peter N

    2015-04-01

    It remains unclear how single neurons in the human brain represent whole-object visual stimuli. While recordings in both human and nonhuman primates have shown distributed representations of objects (many neurons encoding multiple objects), recordings of single neurons in the human medial temporal lobe, taken as subjects' discriminated objects during multiple presentations, have shown gnostic representations (single neurons encoding one object). Because some studies suggest that repeated viewing may enhance neural selectivity for objects, we had human subjects discriminate objects in a single, more naturalistic viewing session. We found that, across 432 well isolated neurons recorded in the hippocampus and amygdala, the average fraction of objects encoded was 26%. We also found that more neurons encoded several objects versus only one object in the hippocampus (28 vs 18%, p < 0.001) and in the amygdala (30 vs 19%, p < 0.001). Thus, during realistic viewing experiences, typical neurons in the human medial temporal lobe code for a considerable range of objects, across multiple semantic categories. Copyright © 2015 the authors 0270-6474/15/355180-07$15.00/0.

  11. Representation of Semantic Similarity in the Left Intraparietal Sulcus: Functional Magnetic Resonance Imaging Evidence

    PubMed Central

    Neyens, Veerle; Bruffaerts, Rose; Liuzzi, Antonietta G.; Kalfas, Ioannis; Peeters, Ronald; Keuleers, Emmanuel; Vogels, Rufin; De Deyne, Simon; Storms, Gert; Dupont, Patrick; Vandenberghe, Rik

    2017-01-01

    According to a recent study, semantic similarity between concrete entities correlates with the similarity of activity patterns in left middle IPS during category naming. We examined the replicability of this effect under passive viewing conditions, the potential role of visuoperceptual similarity, where the effect is situated compared to regions that have been previously implicated in visuospatial attention, and how it compares to effects of object identity and location. Forty-six subjects participated. Subjects passively viewed pictures from two categories, musical instruments and vehicles. Semantic similarity between entities was estimated based on a concept-feature matrix obtained in more than 1,000 subjects. Visuoperceptual similarity was modeled based on the HMAX model, the AlexNet deep convolutional learning model, and thirdly, based on subjective visuoperceptual similarity ratings. Among the IPS regions examined, only left middle IPS showed a semantic similarity effect. The effect was significant in hIP1, hIP2, and hIP3. Visuoperceptual similarity did not correlate with similarity of activity patterns in left middle IPS. The semantic similarity effect in left middle IPS was significantly stronger than in the right middle IPS and also stronger than in the left or right posterior IPS. The semantic similarity effect was similar to that seen in the angular gyrus. Object identity effects were much more widespread across nearly all parietal areas examined. Location effects were relatively specific for posterior IPS and area 7 bilaterally. To conclude, the current findings replicate the semantic similarity effect in left middle IPS under passive viewing conditions, and demonstrate its anatomical specificity within a cytoarchitectonic reference frame. We propose that the semantic similarity effect in left middle IPS reflects the transient uploading of semantic representations in working memory. PMID:28824405

  12. When Wine and Apple Both Help the Production of Grapes: ERP Evidence for Post-lexical Semantic Facilitation in Picture Naming

    PubMed Central

    Python, Grégoire; Fargier, Raphaël; Laganaro, Marina

    2018-01-01

    Background: Producing a word in referential naming requires to select the right word in our mental lexicon among co-activated semantically related words. The mechanisms underlying semantic context effects during speech planning are still controversial, particularly for semantic facilitation which investigation remains under-represented in contrast to the plethora of studies dealing with interference. Our aim is to study the time-course of semantic facilitation in picture naming, using a picture-word “interference” paradigm and event-related potentials (ERPs). Methods: We compared two different types of semantic relationships, associative and categorical, in a single word priming and a double word priming paradigm. The primes were presented visually with a long negative Stimulus Onset Asynchrony (SOA), which is expected to cause facilitation. Results: Shorter naming latencies were observed after both associative and categorical primes, as compared to unrelated primes, and even shorter latencies after two primes. Electrophysiological results showed relatively late modulations of waveform amplitudes for both types of primes (beginning ~330 ms post picture onset with a single prime and ~275 ms post picture onset with two primes), corresponding to a shift in latency of similar topographic maps across conditions. Conclusion: The present results are in favor of a post-lexical locus of semantic facilitation for associative and categorical priming in picture naming and confirm that semantic facilitation is as relevant as semantic interference to inform on word production. The post-lexical locus argued here might be related to self-monitoting or/and to modulations at the level of word-form planning, without excluding the participation of strategic processes. PMID:29692716

  13. Richness of information about novel words influences how episodic and semantic memory networks interact during lexicalization.

    PubMed

    Takashima, Atsuko; Bakker, Iske; van Hell, Janet G; Janzen, Gabriele; McQueen, James M

    2014-01-01

    The complementary learning systems account of declarative memory suggests two distinct memory networks, a fast-mapping, episodic system involving the hippocampus, and a slower semantic memory system distributed across the neocortex in which new information is gradually integrated with existing representations. In this study, we investigated the extent to which these two networks are involved in the integration of novel words into the lexicon after extensive learning, and how the involvement of these networks changes after 24h. In particular, we explored whether having richer information at encoding influences the lexicalization trajectory. We trained participants with two sets of novel words, one where exposure was only to the words' phonological forms (the form-only condition), and one where pictures of unfamiliar objects were associated with the words' phonological forms (the picture-associated condition). A behavioral measure of lexical competition (indexing lexicalization) indicated stronger competition effects for the form-only words. Imaging (fMRI) results revealed greater involvement of phonological lexical processing areas immediately after training in the form-only condition, suggesting that tight connections were formed between novel words and existing lexical entries already at encoding. Retrieval of picture-associated novel words involved the episodic/hippocampal memory system more extensively. Although lexicalization was weaker in the picture-associated condition, overall memory strength was greater when tested after a 24hour delay, probably due to the availability of both episodic and lexical memory networks to aid retrieval. It appears that, during lexicalization of a novel word, the relative involvement of different memory networks differs according to the richness of the information about that word available at encoding. © 2013.

  14. An architecture for encoding sentence meaning in left mid-superior temporal cortex

    PubMed Central

    Frankland, Steven M.; Greene, Joshua D.

    2015-01-01

    Human brains flexibly combine the meanings of words to compose structured thoughts. For example, by combining the meanings of “bite,” “dog,” and “man,” we can think about a dog biting a man, or a man biting a dog. Here, in two functional magnetic resonance imaging (fMRI) experiments using multivoxel pattern analysis (MVPA), we identify a region of left mid-superior temporal cortex (lmSTC) that flexibly encodes “who did what to whom” in visually presented sentences. We find that lmSTC represents the current values of abstract semantic variables (“Who did it?” and “To whom was it done?”) in distinct subregions. Experiment 1 first identifies a broad region of lmSTC whose activity patterns (i) facilitate decoding of structure-dependent sentence meaning (“Who did what to whom?”) and (ii) predict affect-related amygdala responses that depend on this information (e.g., “the baby kicked the grandfather” vs. “the grandfather kicked the baby”). Experiment 2 then identifies distinct, but neighboring, subregions of lmSTC whose activity patterns carry information about the identity of the current “agent” (“Who did it?”) and the current “patient” (“To whom was it done?”). These neighboring subregions lie along the upper bank of the superior temporal sulcus and the lateral bank of the superior temporal gyrus, respectively. At a high level, these regions may function like topographically defined data registers, encoding the fluctuating values of abstract semantic variables. This functional architecture, which in key respects resembles that of a classical computer, may play a critical role in enabling humans to flexibly generate complex thoughts. PMID:26305927

  15. Neural mechanisms underlying the facilitation of naming in aphasia using a semantic task: an fMRI study

    PubMed Central

    2012-01-01

    Background Previous attempts to investigate the effects of semantic tasks on picture naming in both healthy controls and people with aphasia have typically been confounded by inclusion of the phonological word form of the target item. As a result, it is difficult to isolate any facilitatory effects of a semantically-focused task to either lexical-semantic or phonological processing. This functional magnetic resonance imaging (fMRI) study examined the neurological mechanisms underlying short-term (within minutes) and long-term (within days) facilitation of naming from a semantic task that did not include the phonological word form, in both participants with aphasia and age-matched controls. Results Behavioral results showed that a semantic task that did not include the phonological word form can successfully facilitate subsequent picture naming in both healthy controls and individuals with aphasia. The whole brain neuroimaging results for control participants identified a repetition enhancement effect in the short-term, with modulation of activity found in regions that have not traditionally been associated with semantic processing, such as the right lingual gyrus (extending to the precuneus) and the left inferior occipital gyrus (extending to the fusiform gyrus). In contrast, the participants with aphasia showed significant differences in activation over both the short- and the long-term for facilitated items, predominantly within either left hemisphere regions linked to semantic processing or their right hemisphere homologues. Conclusions For control participants in this study, the short-lived facilitation effects of a prior semantic task that did not include the phonological word form were primarily driven by object priming and episodic memory mechanisms. However, facilitation effects appeared to engage a predominantly semantic network in participants with aphasia over both the short- and the long-term. The findings of the present study also suggest that right hemisphere involvement may be supportive rather than maladaptive, and that a large distributed perisylvian network in both cerebral hemispheres supports the facilitation of naming in individuals with aphasia. PMID:22882806

  16. Face (and Nose) Priming for Book: The Malleability of Semantic Memory

    PubMed Central

    Coane, Jennifer H.; Balota, David A.

    2010-01-01

    There are two general classes of models of semantic structure that support semantic priming effects. Feature-overlap models of semantic priming assume that shared features between primes and targets are critical (e.g., cat-DOG). Associative accounts assume that contextual co-occurrence is critical and that the system is organized along associations independent of featural overlap (e.g., leash-DOG). If unrelated concepts can become related as a result of contextual co-occurrence, this would be more supportive of associative accounts and provide insight into the nature of the network underlying “semantic” priming effects. Naturally co-occurring recent associations (e.g., face-BOOK) were tested under conditions that minimize strategic influences (i.e., short stimulus onset asynchrony, low relatedness proportion) in a semantic priming paradigm. Priming for new associations did not differ from the priming found for pre-existing relations (e.g., library-BOOK). Mediated priming (e.g., nose-BOOK) was also found. These results suggest that contextual associations can result in the reorganization of the network that subserves “semantic” priming effects. PMID:20494866

  17. Selective deficits in episodic feeling of knowing in ageing: a novel use of the general knowledge task.

    PubMed

    Morson, Suzannah M; Moulin, Chris J A; Souchay, Céline

    2015-05-01

    Failure to recall an item from memory can be accompanied by the subjective experience that the item is known but currently unavailable for report. The feeling of knowing (FOK) task allows measurement of the predictive accuracy of this reflective judgement. Young and older adults were asked to provide answers to general knowledge questions both prior to and after learning, thus measuring both semantic and episodic memory for the items. FOK judgements were made at each stage for all unrecalled responses, providing a measure of predictive accuracy for semantic and episodic knowledge. Results demonstrated a selective effect of age on episodic FOK resolution, with older adults found to have impaired episodic FOK accuracy while semantic FOK accuracy remained intact. Although recall and recognition measures of episodic memory are equivalent between the two age groups, older adults may have been unable to access contextual details on which to base their FOK judgements. The results suggest that older adults are not able to accurately predict future recognition of unrecalled episodic information, and consequently may have difficulties in monitoring recently encoded memories. Copyright © 2015. Published by Elsevier B.V.

  18. Long-term memory following transient global amnesia: an investigation of episodic and semantic memory.

    PubMed

    Guillery-Girard, B; Quinette, P; Desgranges, B; Piolino, P; Viader, F; de la Sayette, V; Eustache, F

    2006-11-01

    Several studies noted persistence of memory impairment following an episode of transient global amnesia (TGA) with standard tests. To specify long-term memory impairments in a group of patients selected with stringent criteria. Both retrograde and anterograde memory were investigated in 32 patients 13-67 months after a TGA episode with original tasks encompassing retrograde semantic memory (academic, public and personal knowledge), retrograde episodic memory (autobiographical events) and anterograde episodic memory. Patients had preserved academic and public knowledge. Pathological scores were obtained in personal verbal fluency for the two most recent periods, and patients produced less autobiographical events than controls. However, when they were provided time to detail, memories were as episodic as in controls regardless of their remoteness. Anterograde episodic tasks revealed a mild but significant impairment of the capacity of re-living the condition of encoding, i.e. the moment at which words were presented. Patients who have suffered from an episode of TGA manifest deficits of memory focused on the retrieval of both recent semantic information and episodic memories and especially the capacity of re-living. These deficits may not result from a deterioration of memory per se but rather from difficulties in accessing memories.

  19. Determining Semantically Related Significant Genes.

    PubMed

    Taha, Kamal

    2014-01-01

    GO relation embodies some aspects of existence dependency. If GO term xis existence-dependent on GO term y, the presence of y implies the presence of x. Therefore, the genes annotated with the function of the GO term y are usually functionally and semantically related to the genes annotated with the function of the GO term x. A large number of gene set enrichment analysis methods have been developed in recent years for analyzing gene sets enrichment. However, most of these methods overlook the structural dependencies between GO terms in GO graph by not considering the concept of existence dependency. We propose in this paper a biological search engine called RSGSearch that identifies enriched sets of genes annotated with different functions using the concept of existence dependency. We observe that GO term xcannot be existence-dependent on GO term y, if x- and y- have the same specificity (biological characteristics). After encoding into a numeric format the contributions of GO terms annotating target genes to the semantics of their lowest common ancestors (LCAs), RSGSearch uses microarray experiment to identify the most significant LCA that annotates the result genes. We evaluated RSGSearch experimentally and compared it with five gene set enrichment systems. Results showed marked improvement.

  20. Dynamic memory searches: Selective output interference for the memory of facts.

    PubMed

    Aue, William R; Criss, Amy H; Prince, Melissa A

    2015-12-01

    The benefits of testing on later memory performance are well documented; however, the manner in which testing harms memory performance is less well understood. This research is concerned with the finding that accuracy decreases over the course of testing, a phenomena termed "output interference" (OI). OI has primarily been investigated with episodic memory, but there is limited research investigating OI in measures of semantic memory (i.e., knowledge). In the current study, participants were twice tested for their knowledge of factual questions; they received corrective feedback during the first test. No OI was observed during the first test, when participants presumably searched semantic memory to answer the general-knowledge questions. During the second test, OI was observed. Conditional analyses of Test 2 performance revealed that OI was largely isolated to questions answered incorrectly during Test 1. These were questions for which participants needed to rely on recent experience (i.e., the feedback in episodic memory) to respond correctly. One possible explanation is that episodic memory is more susceptible to the sort of interference generated during testing (e.g., gradual changes in context, encoding/updating of items) relative to semantic memory. Alternative explanations are considered.

  1. Functional neuroanatomy of remote episodic, semantic and spatial memory: a unified account based on multiple trace theory

    PubMed Central

    Moscovitch, Morris; Rosenbaum, R Shayna; Gilboa, Asaf; Addis, Donna Rose; Westmacott, Robyn; Grady, Cheryl; McAndrews, Mary Pat; Levine, Brian; Black, Sandra; Winocur, Gordon; Nadel, Lynn

    2005-01-01

    We review lesion and neuroimaging evidence on the role of the hippocampus, and other structures, in retention and retrieval of recent and remote memories. We examine episodic, semantic and spatial memory, and show that important distinctions exist among different types of these memories and the structures that mediate them. We argue that retention and retrieval of detailed, vivid autobiographical memories depend on the hippocampal system no matter how long ago they were acquired. Semantic memories, on the other hand, benefit from hippocampal contribution for some time before they can be retrieved independently of the hippocampus. Even semantic memories, however, can have episodic elements associated with them that continue to depend on the hippocampus. Likewise, we distinguish between experientially detailed spatial memories (akin to episodic memory) and more schematic memories (akin to semantic memory) that are sufficient for navigation but not for re-experiencing the environment in which they were acquired. Like their episodic and semantic counterparts, the former type of spatial memory is dependent on the hippocampus no matter how long ago it was acquired, whereas the latter can survive independently of the hippocampus and is represented in extra-hippocampal structures. In short, the evidence reviewed suggests strongly that the function of the hippocampus (and possibly that of related limbic structures) is to help encode, retain, and retrieve experiences, no matter how long ago the events comprising the experience occurred, and no matter whether the memories are episodic or spatial. We conclude that the evidence favours a multiple trace theory (MTT) of memory over two other models: (1) traditional consolidation models which posit that the hippocampus is a time-limited memory structure for all forms of memory; and (2) versions of cognitive map theory which posit that the hippocampus is needed for representing all forms of allocentric space in memory. PMID:16011544

  2. Functional neuroanatomy of remote episodic, semantic and spatial memory: a unified account based on multiple trace theory.

    PubMed

    Moscovitch, Morris; Rosenbaum, R Shayna; Gilboa, Asaf; Addis, Donna Rose; Westmacott, Robyn; Grady, Cheryl; McAndrews, Mary Pat; Levine, Brian; Black, Sandra; Winocur, Gordon; Nadel, Lynn

    2005-07-01

    We review lesion and neuroimaging evidence on the role of the hippocampus, and other structures, in retention and retrieval of recent and remote memories. We examine episodic, semantic and spatial memory, and show that important distinctions exist among different types of these memories and the structures that mediate them. We argue that retention and retrieval of detailed, vivid autobiographical memories depend on the hippocampal system no matter how long ago they were acquired. Semantic memories, on the other hand, benefit from hippocampal contribution for some time before they can be retrieved independently of the hippocampus. Even semantic memories, however, can have episodic elements associated with them that continue to depend on the hippocampus. Likewise, we distinguish between experientially detailed spatial memories (akin to episodic memory) and more schematic memories (akin to semantic memory) that are sufficient for navigation but not for re-experiencing the environment in which they were acquired. Like their episodic and semantic counterparts, the former type of spatial memory is dependent on the hippocampus no matter how long ago it was acquired, whereas the latter can survive independently of the hippocampus and is represented in extra-hippocampal structures. In short, the evidence reviewed suggests strongly that the function of the hippocampus (and possibly that of related limbic structures) is to help encode, retain, and retrieve experiences, no matter how long ago the events comprising the experience occurred, and no matter whether the memories are episodic or spatial. We conclude that the evidence favours a multiple trace theory (MTT) of memory over two other models: (1) traditional consolidation models which posit that the hippocampus is a time-limited memory structure for all forms of memory; and (2) versions of cognitive map theory which posit that the hippocampus is needed for representing all forms of allocentric space in memory.

  3. The ontology-based answers (OBA) service: a connector for embedded usage of ontologies in applications.

    PubMed

    Dönitz, Jürgen; Wingender, Edgar

    2012-01-01

    The semantic web depends on the use of ontologies to let electronic systems interpret contextual information. Optimally, the handling and access of ontologies should be completely transparent to the user. As a means to this end, we have developed a service that attempts to bridge the gap between experts in a certain knowledge domain, ontologists, and application developers. The ontology-based answers (OBA) service introduced here can be embedded into custom applications to grant access to the classes of ontologies and their relations as most important structural features as well as to information encoded in the relations between ontology classes. Thus computational biologists can benefit from ontologies without detailed knowledge about the respective ontology. The content of ontologies is mapped to a graph of connected objects which is compatible to the object-oriented programming style in Java. Semantic functions implement knowledge about the complex semantics of an ontology beyond the class hierarchy and "partOf" relations. By using these OBA functions an application can, for example, provide a semantic search function, or (in the examples outlined) map an anatomical structure to the organs it belongs to. The semantic functions relieve the application developer from the necessity of acquiring in-depth knowledge about the semantics and curation guidelines of the used ontologies by implementing the required knowledge. The architecture of the OBA service encapsulates the logic to process ontologies in order to achieve a separation from the application logic. A public server with the current plugins is available and can be used with the provided connector in a custom application in scenarios analogous to the presented use cases. The server and the client are freely available if a project requires the use of custom plugins or non-public ontologies. The OBA service and further documentation is available at http://www.bioinf.med.uni-goettingen.de/projects/oba.

  4. The ontology-based answers (OBA) service: a connector for embedded usage of ontologies in applications

    PubMed Central

    Dönitz, Jürgen; Wingender, Edgar

    2012-01-01

    The semantic web depends on the use of ontologies to let electronic systems interpret contextual information. Optimally, the handling and access of ontologies should be completely transparent to the user. As a means to this end, we have developed a service that attempts to bridge the gap between experts in a certain knowledge domain, ontologists, and application developers. The ontology-based answers (OBA) service introduced here can be embedded into custom applications to grant access to the classes of ontologies and their relations as most important structural features as well as to information encoded in the relations between ontology classes. Thus computational biologists can benefit from ontologies without detailed knowledge about the respective ontology. The content of ontologies is mapped to a graph of connected objects which is compatible to the object-oriented programming style in Java. Semantic functions implement knowledge about the complex semantics of an ontology beyond the class hierarchy and “partOf” relations. By using these OBA functions an application can, for example, provide a semantic search function, or (in the examples outlined) map an anatomical structure to the organs it belongs to. The semantic functions relieve the application developer from the necessity of acquiring in-depth knowledge about the semantics and curation guidelines of the used ontologies by implementing the required knowledge. The architecture of the OBA service encapsulates the logic to process ontologies in order to achieve a separation from the application logic. A public server with the current plugins is available and can be used with the provided connector in a custom application in scenarios analogous to the presented use cases. The server and the client are freely available if a project requires the use of custom plugins or non-public ontologies. The OBA service and further documentation is available at http://www.bioinf.med.uni-goettingen.de/projects/oba PMID:23060901

  5. Semantic Web Compatible Names and Descriptions for Organisms

    NASA Astrophysics Data System (ADS)

    Wang, H.; Wilson, N.; McGuinness, D. L.

    2012-12-01

    Modern scientific names are critical for understanding the biological literature and provide a valuable way to understand evolutionary relationships. To validly publish a name, a description is required to separate the described group of organisms from those described by other names at the same level of the taxonomic hierarchy. The frequent revision of descriptions due to new evolutionary evidence has lead to situations where a single given scientific name may over time have multiple descriptions associated with it and a given published description may apply to multiple scientific names. Because of these many-to-many relationships between scientific names and descriptions, the usage of scientific names as a proxy for descriptions is inevitably ambiguous. Another issue lies in the fact that the precise application of scientific names often requires careful microscopic work, or increasingly, genetic sequencing, as scientific names are focused on the evolutionary relatedness between and within named groups such as species, genera, families, etc. This is problematic to many audiences, especially field biologists, who often do not have access to the instruments and tools required to make identifications on a microscopic or genetic basis. To better connect scientific names to descriptions and find a more convenient way to support computer assisted identification, we proposed the Semantic Vernacular System, a novel naming system that creates named, machine-interpretable descriptions for groups of organisms, and is compatible with the Semantic Web. Unlike the evolutionary relationship based scientific naming system, it emphasizes the observable features of organisms. By independently naming the descriptions composed of sets of observational features, as well as maintaining connections to scientific names, it preserves the observational data used to identify organisms. The system is designed to support a peer-review mechanism for creating new names, and uses a controlled vocabulary encoded in the Web Ontology Language to represent the observational features. A prototype of the system is currently under development in collaboration with the Mushroom Observer website. It allows users to propose new names and descriptions for fungi, provide feedback on those proposals, and ultimately have them formally approved. It relies on SPARQL queries and semantic reasoning for data management. This effort will offer the mycology community a knowledge base of fungal observational features and a tool for identifying fungal observations. It will also serve as an operational specification of how the Semantic Vernacular System can be used in practice in one scientific community (in this case mycology).

  6. Semantic relation vs. surprise: the differential effects of related and unrelated co-verbal gestures on neural encoding and subsequent recognition.

    PubMed

    Straube, Benjamin; Meyer, Lea; Green, Antonia; Kircher, Tilo

    2014-06-03

    Speech-associated gesturing leads to memory advantages for spoken sentences. However, unexpected or surprising events are also likely to be remembered. With this study we test the hypothesis that different neural mechanisms (semantic elaboration and surprise) lead to memory advantages for iconic and unrelated gestures. During fMRI-data acquisition participants were presented with video clips of an actor verbalising concrete sentences accompanied by iconic gestures (IG; e.g., circular gesture; sentence: "The man is sitting at the round table"), unrelated free gestures (FG; e.g., unrelated up down movements; same sentence) and no gestures (NG; same sentence). After scanning, recognition performance for the three conditions was tested. Videos were evaluated regarding semantic relation and surprise by a different group of participants. The semantic relationship between speech and gesture was rated higher for IG (IG>FG), whereas surprise was rated higher for FG (FG>IG). Activation of the hippocampus correlated with subsequent memory performance of both gesture conditions (IG+FG>NG). For the IG condition we found activation in the left temporal pole and middle cingulate cortex (MCC; IG>FG). In contrast, for the FG condition posterior thalamic structures (FG>IG) as well as anterior and posterior cingulate cortices were activated (FG>NG). Our behavioral and fMRI-data suggest different mechanisms for processing related and unrelated co-verbal gestures, both of them leading to enhanced memory performance. Whereas activation in MCC and left temporal pole for iconic co-verbal gestures may reflect semantic memory processes, memory enhancement for unrelated gestures relies on the surprise response, mediated by anterior/posterior cingulate cortex and thalamico-hippocampal structures. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Lateralized semantic priming: modulation by levodopa, semantic distance, and participants’ magical beliefs

    PubMed Central

    Mohr, Christine; Landis, Theodor; Brugger, Peter

    2006-01-01

    We tested levodopa effects on lateralized direct and indirect semantic priming in 40 healthy right-handed men in a placebo-controlled, double-blind procedure. Crucially, priming was also analyzed as a function of participants’ positive schizotypal features (magical ideation, MI), previously found to be associated with an enhanced semantic spreading activation (SSA) within the right hemisphere. Across both priming conditions, we observed increased semantic priming in the levodopa group 1) specifically after right visual field stimulations and 2) in high MI scorers. In both instances, increased semantic priming emerged from exceedingly long reaction times to unrelated targets reflecting 1) the left hemisphere’s specialization for closely related concepts and 2) an opposite association between MI and SSA in the levodopa as compared with the placebo group. As a final finding, low MI scorers under levodopa performed like high MI scorers under placebo. Our findings speak against a general dopaminergic focusing of SSA, but one that respects each hemisphere’s specialization. They also suggest that individuals’ schizotypal features are important determinants of dopamine-induced changes in hemispheric functioning. We note that, in psychiatric patients, dopamine antagonists reportedly restore unusual lateralization. We discuss this dissociation between schizotypy and schizophrenia as supporting previous notions of protective brain mechanisms operating in the healthy “psychosis-prone” brain. PMID:19412448

  8. The roles of scene gist and spatial dependency among objects in the semantic guidance of attention in real-world scenes.

    PubMed

    Wu, Chia-Chien; Wang, Hsueh-Cheng; Pomplun, Marc

    2014-12-01

    A previous study (Vision Research 51 (2011) 1192-1205) found evidence for semantic guidance of visual attention during the inspection of real-world scenes, i.e., an influence of semantic relationships among scene objects on overt shifts of attention. In particular, the results revealed an observer bias toward gaze transitions between semantically similar objects. However, this effect is not necessarily indicative of semantic processing of individual objects but may be mediated by knowledge of the scene gist, which does not require object recognition, or by known spatial dependency among objects. To examine the mechanisms underlying semantic guidance, in the present study, participants were asked to view a series of displays with the scene gist excluded and spatial dependency varied. Our results show that spatial dependency among objects seems to be sufficient to induce semantic guidance. Scene gist, on the other hand, does not seem to affect how observers use semantic information to guide attention while viewing natural scenes. Extracting semantic information mainly based on spatial dependency may be an efficient strategy of the visual system that only adds little cognitive load to the viewing task. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The cognitive and neural expression of semantic memory impairment in mild cognitive impairment and early Alzheimer's disease.

    PubMed

    Joubert, Sven; Brambati, Simona M; Ansado, Jennyfer; Barbeau, Emmanuel J; Felician, Olivier; Didic, Mira; Lacombe, Jacinthe; Goldstein, Rachel; Chayer, Céline; Kergoat, Marie-Jeanne

    2010-03-01

    Semantic deficits in Alzheimer's disease have been widely documented, but little is known about the integrity of semantic memory in the prodromal stage of the illness. The aims of the present study were to: (i) investigate naming abilities and semantic memory in amnestic mild cognitive impairment (aMCI), early Alzheimer's disease (AD) compared to healthy older subjects; (ii) investigate the association between naming and semantic knowledge in aMCI and AD; (iii) examine if the semantic impairment was present in different modalities; and (iv) study the relationship between semantic performance and grey matter volume using voxel-based morphometry. Results indicate that both naming and semantic knowledge of objects and famous people were impaired in aMCI and early AD groups, when compared to healthy age- and education-matched controls. Item-by-item analyses showed that anomia in aMCI and early AD was significantly associated with underlying semantic knowledge of famous people but not with semantic knowledge of objects. Moreover, semantic knowledge of the same concepts was impaired in both the visual and the verbal modalities. Finally, voxel-based morphometry analyses revealed that semantic impairment in aMCI and AD was associated with cortical atrophy in the anterior temporal lobe (ATL) region as well as in the inferior prefrontal cortex (IPC), some of the key regions of the semantic cognition network. These findings suggest that the semantic impairment in aMCI may result from a breakdown of semantic knowledge of famous people and objects, combined with difficulties in the selection, manipulation and retrieval of this knowledge. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  10. Linking Disparate Datasets of the Earth Sciences with the SemantEco Annotator

    NASA Astrophysics Data System (ADS)

    Seyed, P.; Chastain, K.; McGuinness, D. L.

    2013-12-01

    Use of Semantic Web technologies for data management in the Earth sciences (and beyond) has great potential but is still in its early stages, since the challenges of translating data into a more explicit or semantic form for immediate use within applications has not been fully addressed. In this abstract we help address this challenge by introducing the SemantEco Annotator, which enables anyone, regardless of expertise, to semantically annotate tabular Earth Science data and translate it into linked data format, while applying the logic inherent in community-standard vocabularies to guide the process. The Annotator was conceived under a desire to unify dataset content from a variety of sources under common vocabularies, for use in semantically-enabled web applications. Our current use case employs linked data generated by the Annotator for use in the SemantEco environment, which utilizes semantics to help users explore, search, and visualize water or air quality measurement and species occurrence data through a map-based interface. The generated data can also be used immediately to facilitate discovery and search capabilities within 'big data' environments. The Annotator provides a method for taking information about a dataset, that may only be known to its maintainers, and making it explicit, in a uniform and machine-readable fashion, such that a person or information system can more easily interpret the underlying structure and meaning. Its primary mechanism is to enable a user to formally describe how columns of a tabular dataset relate and/or describe entities. For example, if a user identifies columns for latitude and longitude coordinates, we can infer the data refers to a point that can be plotted on a map. Further, it can be made explicit that measurements of 'nitrate' and 'NO3-' are of the same entity through vocabulary assignments, thus more easily utilizing data sets that use different nomenclatures. The Annotator provides an extensive and searchable library of vocabularies to assist the user in locating terms to describe observed entities, their properties, and relationships. The Annotator leverages vocabulary definitions of these concepts to guide the user in describing data in a logically consistent manner. The vocabularies made available through the Annotator are open, as is the Annotator itself. We have taken a step towards making semantic annotation/translation of data more accessible. Our vision for the Annotator is as a tool that can be integrated into a semantic data 'workbench' environment, which would allow semantic annotation of a variety of data formats, using standard vocabularies. These vocabularies involved enable search for similar datasets, and integration with any semantically-enabled applications for analysis and visualization.

  11. Remote semantic memory for public figures in HIV infection, alcoholism, and their comorbidity.

    PubMed

    Fama, Rosemary; Rosenbloom, Margaret J; Sassoon, Stephanie A; Thompson, Megan A; Pfefferbaum, Adolf; Sullivan, Edith V

    2011-02-01

    Impairments in component processes of working and episodic memory mark both HIV infection and chronic alcoholism, with compounded deficits often observed in individuals comorbid for these conditions. Remote semantic memory processes, however, have only seldom been studied in these diagnostic groups. Examination of remote semantic memory could provide insight into the underlying processes associated with storage and retrieval of learned information over extended time periods while elucidating spared and impaired cognitive functions in these clinical groups. We examined component processes of remote semantic memory in HIV infection and chronic alcoholism in 4 subject groups (HIV, ALC, HIV + ALC, and age-matched healthy adults) using a modified version of the Presidents Test. Free recall, recognition, and sequencing of presidential candidates and election dates were assessed. In addition, component processes of working, episodic, and semantic memory were assessed with ancillary cognitive tests. The comorbid group (HIV + ALC) was significantly impaired on sequencing of remote semantic information compared with age-matched healthy adults. Free recall of remote semantic information was also modestly impaired in the HIV + ALC group, but normal performance for recognition of this information was observed. Few differences were observed between the single diagnosis groups (HIV, ALC) and healthy adults, although examination of the component processes underlying remote semantic memory scores elicited differences between the HIV and ALC groups. Selective remote memory processes were related to lifetime alcohol consumption in the ALC group and to viral load and depression level in the HIV group. Hepatitis C diagnosis was associated with lower remote semantic memory scores in all 3 clinical groups. Education level did not account for group differences reported. This study provides behavioral support for the existence of adverse effects associated with the comorbidity of HIV infection and chronic alcoholism on selective component processes of memory function, with untoward effects exacerbated by Hepatitis C infection. The pattern of remote semantic memory function in HIV + ALC is consistent with those observed in neurological conditions primarily affecting frontostriatal pathways and suggests that remote memory dysfunction in HIV + ALC may be a result of impaired retrieval processes rather than loss of remote semantic information per se. Copyright © 2010 by the Research Society on Alcoholism.

  12. Spontaneous Gender Categorization in Masking and Priming Studies: Key for Distinguishing Jane from John Doe but Not Madonna from Sinatra

    PubMed Central

    Habibi, Ruth; Khurana, Beena

    2012-01-01

    Facial recognition is key to social interaction, however with unfamiliar faces only generic information, in the form of facial stereotypes such as gender and age is available. Therefore is generic information more prominent in unfamiliar versus familiar face processing? In order to address the question we tapped into two relatively disparate stages of face processing. At the early stages of encoding, we employed perceptual masking to reveal that only perception of unfamiliar face targets is affected by the gender of the facial masks. At the semantic end; using a priming paradigm, we found that while to-be-ignored unfamiliar faces prime lexical decisions to gender congruent stereotypic words, familiar faces do not. Our findings indicate that gender is a more salient dimension in unfamiliar relative to familiar face processing, both in early perceptual stages as well as later semantic stages of person construal. PMID:22389697

  13. Terminology model discovery using natural language processing and visualization techniques.

    PubMed

    Zhou, Li; Tao, Ying; Cimino, James J; Chen, Elizabeth S; Liu, Hongfang; Lussier, Yves A; Hripcsak, George; Friedman, Carol

    2006-12-01

    Medical terminologies are important for unambiguous encoding and exchange of clinical information. The traditional manual method of developing terminology models is time-consuming and limited in the number of phrases that a human developer can examine. In this paper, we present an automated method for developing medical terminology models based on natural language processing (NLP) and information visualization techniques. Surgical pathology reports were selected as the testing corpus for developing a pathology procedure terminology model. The use of a general NLP processor for the medical domain, MedLEE, provides an automated method for acquiring semantic structures from a free text corpus and sheds light on a new high-throughput method of medical terminology model development. The use of an information visualization technique supports the summarization and visualization of the large quantity of semantic structures generated from medical documents. We believe that a general method based on NLP and information visualization will facilitate the modeling of medical terminologies.

  14. Two-dimensional hidden semantic information model for target saliency detection and eyetracking identification

    NASA Astrophysics Data System (ADS)

    Wan, Weibing; Yuan, Lingfeng; Zhao, Qunfei; Fang, Tao

    2018-01-01

    Saliency detection has been applied to the target acquisition case. This paper proposes a two-dimensional hidden Markov model (2D-HMM) that exploits the hidden semantic information of an image to detect its salient regions. A spatial pyramid histogram of oriented gradient descriptors is used to extract features. After encoding the image by a learned dictionary, the 2D-Viterbi algorithm is applied to infer the saliency map. This model can predict fixation of the targets and further creates robust and effective depictions of the targets' change in posture and viewpoint. To validate the model with a human visual search mechanism, two eyetrack experiments are employed to train our model directly from eye movement data. The results show that our model achieves better performance than visual attention. Moreover, it indicates the plausibility of utilizing visual track data to identify targets.

  15. The Event Related Brain Potential as an Index of Information Processing, Cognitive Activity, and Skill Acquisition: A Program of Basic Research.

    DTIC Science & Technology

    1983-10-01

    representations in memory as multidimensional "traces" containing infqrmation on both semantic and nonsemantic attributes. Isolation in this study results...effect and induced amnesia : Production by manipulation of sound intensity. Journal of Experimental Psychology: Human Learning and Memory , 1, 614-628...Thomson, D.M. (1973). Encoding specificity and retrieval processes in episodic memory . Psychological Review, 80, 352-373. .. -- "V- - ’. 4 -- .7 ’. ... . n

  16. The origins of age of acquisition and typicality effects: Semantic processing in aphasia and the ageing brain.

    PubMed

    Räling, Romy; Schröder, Astrid; Wartenburger, Isabell

    2016-06-01

    Age of acquisition (AOA) has frequently been shown to influence response times and accuracy rates in word processing and constitutes a meaningful variable in aphasic language processing, while its origin in the language processing system is still under debate. To find out where AOA originates and whether and how it is related to another important psycholinguistic variable, namely semantic typicality (TYP), we studied healthy, elderly controls and semantically impaired individuals using semantic priming. For this purpose, we collected reaction times and accuracy rates as well as event-related potential data in an auditory category-member-verification task. The present results confirm a semantic origin of TYP, but question the same for AOA while favouring its origin at the phonology-semantics interface. The data are further interpreted in consideration of recent theories of ageing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Graded effects of regularity in language revealed by N400 indices of morphological priming.

    PubMed

    Kielar, Aneta; Joanisse, Marc F

    2010-07-01

    Differential electrophysiological effects for regular and irregular linguistic forms have been used to support the theory that grammatical rules are encoded using a dedicated cognitive mechanism. The alternative hypothesis is that language systematicities are encoded probabilistically in a way that does not categorically distinguish rule-like and irregular forms. In the present study, this matter was investigated more closely by focusing specifically on whether the regular-irregular distinction in English past tenses is categorical or graded. We compared the ERP priming effects of regulars (baked-bake), vowel-change irregulars (sang-sing), and "suffixed" irregulars that display a partial regularity (suffixed irregular verbs, e.g., slept-sleep), as well as forms that are related strictly along formal or semantic dimensions. Participants performed a visual lexical decision task with either visual (Experiment 1) or auditory prime (Experiment 2). Stronger N400 priming effects were observed for regular than vowel-change irregular verbs, whereas suffixed irregulars tended to group with regular verbs. Subsequent analyses decomposed early versus late-going N400 priming, and suggested that differences among forms can be attributed to the orthographic similarity of prime and target. Effects of morphological relatedness were observed in the later-going time period, however, we failed to observe true regular-irregular dissociations in either experiment. The results indicate that morphological effects emerge from the interaction of orthographic, phonological, and semantic overlap between words.

  18. Integrating reasoning and clinical archetypes using OWL ontologies and SWRL rules.

    PubMed

    Lezcano, Leonardo; Sicilia, Miguel-Angel; Rodríguez-Solano, Carlos

    2011-04-01

    Semantic interoperability is essential to facilitate the computerized support for alerts, workflow management and evidence-based healthcare across heterogeneous electronic health record (EHR) systems. Clinical archetypes, which are formal definitions of specific clinical concepts defined as specializations of a generic reference (information) model, provide a mechanism to express data structures in a shared and interoperable way. However, currently available archetype languages do not provide direct support for mapping to formal ontologies and then exploiting reasoning on clinical knowledge, which are key ingredients of full semantic interoperability, as stated in the SemanticHEALTH report [1]. This paper reports on an approach to translate definitions expressed in the openEHR Archetype Definition Language (ADL) to a formal representation expressed using the Ontology Web Language (OWL). The formal representations are then integrated with rules expressed with Semantic Web Rule Language (SWRL) expressions, providing an approach to apply the SWRL rules to concrete instances of clinical data. Sharing the knowledge expressed in the form of rules is consistent with the philosophy of open sharing, encouraged by archetypes. Our approach also allows the reuse of formal knowledge, expressed through ontologies, and extends reuse to propositions of declarative knowledge, such as those encoded in clinical guidelines. This paper describes the ADL-to-OWL translation approach, describes the techniques to map archetypes to formal ontologies, and demonstrates how rules can be applied to the resulting representation. We provide examples taken from a patient safety alerting system to illustrate our approach. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Distinct behavioural profiles in frontotemporal dementia and semantic dementia

    PubMed Central

    Snowden, J; Bathgate, D; Varma, A; Blackshaw, A; Gibbons, Z; Neary, D

    2001-01-01

    OBJECTIVE—To test predictions that frontotemporal dementia and semantic dementia give rise to distinct patterns of behavioural change.
METHODS—An informant based semistructured behavioural interview, covering the domains of basic and social emotions, social and personal behaviour, sensory behaviour, eating and oral behaviour, repetitive behaviours, rituals, and compulsions, was administered to carers of 41 patients with semantic dementia and with apathetic (FTD-A) and disinhibited (FTD-D) forms of frontotemporal dementia.
RESULTS—Consistent with prediction, emotional changes differentiated FTD from semantic dementia. Whereas lack of emotional response was pervasive in FTD, it was more selective in semantic dementia, affecting particularly the capacity to show fear. Social avoidance occurred more often in FTD and social seeking in semantic dementia. Patients with FTD showed reduced response to pain, whereas patients with semantic dementia more often showed exaggerated reactions to sensory stimuli. Gluttony and indiscriminate eating were characteristic of FTD, whereas patients with semantic dementia were more likely to exhibit food fads. Hyperorality, involving inedible objects, was unrelated to gluttony, indicating different underlying mechanisms. Repetitive behaviours were common in both FTD and semantic dementia, but had a more compulsive quality in semantic dementia. Behavioural differences were greater between semantic dementia and FTD-A than FTD-D. A logistic regression analysis indicated that emotional and repetitive, compulsive behaviours discriminated FTD from semantic dementia with 97% accuracy.
CONCLUSION—The findings confirm predictions regarding behavioural differences in frontotemporal and semantic dementia and point to differential roles of the frontal and temporal lobes in affect, social functioning, eating, and compulsive behaviour.

 PMID:11181853

  20. Using Implicit Instructional Cues to Influence False Memory Induction.

    PubMed

    Cirelli, Laura K; Dickinson, Joël; Poirier, Marie

    2015-10-01

    Previous research has shown that explicit cues specific to the encoding process (endogenous) or characteristic of the stimuli themselves (exogenous) can be used to direct a reader's attentional resources towards either relational or item-specific information. By directing attention to relational information (and therefore away from item-specific information) the rate of false memory induction can be increased. The purpose of the current study was to investigate if a similar effect would be found by manipulating implicitly endogenous cues. An instructional manipulation was used to influence the perceptual action participants performed on word stimuli during the encoding of DRM list words. Results demonstrated that the instructional conditions that encouraged faster processing also led to an increased rate of false memory induction for semantically related words, supporting the hypothesis that attention was directed towards relational information. This finding supports the impoverished relational processing account of false memory induction. This supports the idea that implicitly endogenous cues, exogenous cues (like font) or explicitly endogenous cues (like training) can direct attentional resources during encoding.

  1. Does GEM-encoding clinical practice guidelines improve the quality of knowledge bases? A study with the rule-based formalism.

    PubMed

    Georg, Georg; Séroussi, Brigitte; Bouaud, Jacques

    2003-01-01

    The aim of this work was to determine whether the GEM-encoding step could improve the representation of clinical practice guidelines as formalized knowledge bases. We used the 1999 Canadian recommendations for the management of hypertension, chosen as the knowledge source in the ASTI project. We first clarified semantic ambiguities of therapeutic sequences recommended in the guideline by proposing an interpretative framework of therapeutic strategies. Then, after a formalization step to standardize the terms used to characterize clinical situations, we created the GEM-encoded instance of the guideline. We developed a module for the automatic derivation of a rule base, BR-GEM, from the instance. BR-GEM was then compared to the rule base, BR-ASTI, embedded within the critic mode of ASTI, and manually built by two physicians from the same Canadian guideline. As compared to BR-ASTI, BR-GEM is more specific and covers more clinical situations. When evaluated on 10 patient cases, the GEM-based approach led to promising results.

  2. The Analysis of RDF Semantic Data Storage Optimization in Large Data Era

    NASA Astrophysics Data System (ADS)

    He, Dandan; Wang, Lijuan; Wang, Can

    2018-03-01

    With the continuous development of information technology and network technology in China, the Internet has also ushered in the era of large data. In order to obtain the effective acquisition of information in the era of large data, it is necessary to optimize the existing RDF semantic data storage and realize the effective query of various data. This paper discusses the storage optimization of RDF semantic data under large data.

  3. Learning for Semantic Parsing with Kernels under Various Forms of Supervision

    DTIC Science & Technology

    2007-08-01

    natural language sentences to their formal executable meaning representations. This is a challenging problem and is critical for developing computing...sentences are semantically tractable. This indi- cates that Geoquery is more challenging domain for semantic parsing than ATIS. In the past, there have been a...Combining parsers. In Proceedings of the Conference on Em- pirical Methods in Natural Language Processing and Very Large Corpora (EMNLP/ VLC -99), pp. 187–194

  4. How semantics can inform the geological mapping process and support intelligent queries

    NASA Astrophysics Data System (ADS)

    Lombardo, Vincenzo; Piana, Fabrizio; Mimmo, Dario

    2017-04-01

    The geologic mapping process requires the organization of data according to the general knowledge about the objects, namely the geologic units, and to the objectives of a graphic representation of such objects in a map, following an established model of geotectonic evolution. Semantics can greatly help such a process in two concerns: the provision of a terminological base to name and classify the objects of the map; on the other, the implementation of a machine-readable encoding of the geologic knowledge base supports the application of reasoning mechanisms and the derivation of novel properties and relations about the objects of the map. The OntoGeonous initiative has built a terminological base of geological knowledge in a machine-readable format, following the Semantic Web tenets and the Linked Data paradigm. The major knowledge sources of the OntoGeonous initiative are GeoScience Markup Language schemata and vocabularies (through its last version, GeoSciML 4, 2015, published by the IUGS CGI Commission) and the INSPIRE "Data Specification on Geology" directives (an operative simplification of GeoSciML, published by INSPIRE Thematic Working Group Geology of the European Commission). The Linked Data paradigm has been exploited by linking (without replicating, to avoid inconsistencies) the already existing machine-readable encoding for some specific domains, such as the lithology domain (vocabulary Simple Lithology) and the geochronologic time scale (ontology "gts"). Finally, for the upper level knowledge, shared across several geologic domains, we have resorted to NASA SWEET ontology. The OntoGeonous initiative has also produced a wiki that explains how the geologic knowledge has been encoded from shared geoscience vocabularies (https://www.di.unito.it/wikigeo/). In particular, the sections dedicated to axiomatization will support the construction of an appropriate data base schema that can be then filled with the objects of the map. This contribution will discuss how the formal encoding of the geological knowledge opens new perspectives for the analysis and representation of the geological systems. In fact, once that the major concepts are defined, the resulting formal conceptual model of the geologic system can hold across different technical and scientific communities. Furthermore, this would allow for a semi-automatic or automatic classification of the cartographic database, where a significant number of properties (attributes) of the recorded instances could be inferred through computational reasoning. So, for example, the system can be queried for showing the instances that satisfy some property (e.g., "Retrieve all the lithostratigraphic units composed of clastic sedimentary rock") or for classifying some unit according to the properties holding for that unit (e.g., "What is the class of the geologic unit composed of siltstone material?").

  5. Target-Oriented High-Resolution SAR Image Formation via Semantic Information Guided Regularizations

    NASA Astrophysics Data System (ADS)

    Hou, Biao; Wen, Zaidao; Jiao, Licheng; Wu, Qian

    2018-04-01

    Sparsity-regularized synthetic aperture radar (SAR) imaging framework has shown its remarkable performance to generate a feature enhanced high resolution image, in which a sparsity-inducing regularizer is involved by exploiting the sparsity priors of some visual features in the underlying image. However, since the simple prior of low level features are insufficient to describe different semantic contents in the image, this type of regularizer will be incapable of distinguishing between the target of interest and unconcerned background clutters. As a consequence, the features belonging to the target and clutters are simultaneously affected in the generated image without concerning their underlying semantic labels. To address this problem, we propose a novel semantic information guided framework for target oriented SAR image formation, which aims at enhancing the interested target scatters while suppressing the background clutters. Firstly, we develop a new semantics-specific regularizer for image formation by exploiting the statistical properties of different semantic categories in a target scene SAR image. In order to infer the semantic label for each pixel in an unsupervised way, we moreover induce a novel high-level prior-driven regularizer and some semantic causal rules from the prior knowledge. Finally, our regularized framework for image formation is further derived as a simple iteratively reweighted $\\ell_1$ minimization problem which can be conveniently solved by many off-the-shelf solvers. Experimental results demonstrate the effectiveness and superiority of our framework for SAR image formation in terms of target enhancement and clutters suppression, compared with the state of the arts. Additionally, the proposed framework opens a new direction of devoting some machine learning strategies to image formation, which can benefit the subsequent decision making tasks.

  6. Enhancing prospective memory in mild cognitive impairment: The role of enactment.

    PubMed

    Pereira, Antonina; de Mendonça, Alexandre; Silva, Dina; Guerreiro, Manuela; Freeman, Jayne; Ellis, Judi

    2015-01-01

    Prospective memory (PM) is a fundamental requirement for independent living which might be prematurely compromised in the neurodegenerative process, namely in mild cognitive impairment (MCI), a typical prodromal Alzheimer's disease (AD) phase. Most encoding manipulations that typically enhance learning in healthy adults are of minimal benefit to AD patients. However, there is some indication that these can display a recall advantage when encoding is accompanied by the physical enactment of the material. The aim of this study was to explore the potential benefits of enactment at encoding and cue-action relatedness on memory for intentions in MCI patients and healthy controls using a behavioral PM experimental paradigm. We report findings examining the influence of enactment at encoding for PM performance in MCI patients and age- and education-matched controls using a laboratory-based PM task with a factorial independent design. PM performance was consistently superior when physical enactment was used at encoding and when target-action pairs were strongly associated. Importantly, these beneficial effects were cumulative and observable across both a healthy and a cognitively impaired lifespan as well as evident in the perceived subjective difficulty in performing the task. The identified beneficial effects of enacted encoding and semantic relatedness have unveiled the potential contribution of this encoding technique to optimize attentional demands through an adaptive allocation of strategic resources. We discuss our findings with respect to their potential impact on developing strategies to improve PM in AD sufferers.

  7. A Semantic Constraint on Syntactic Parsing.

    ERIC Educational Resources Information Center

    Crain, Stephen; Coker, Pamela L.

    This research examines how semantic information influences syntactic parsing decisions during sentence processing. In the first experiment, subjects were presented lexical strings having syntactically identical surface structures but with two possible underlying structures: "The children taught by the Berlitz method," and "The…

  8. NetCDF-U - Uncertainty conventions for netCDF datasets

    NASA Astrophysics Data System (ADS)

    Bigagli, Lorenzo; Nativi, Stefano; Domenico, Ben

    2013-04-01

    To facilitate the automated processing of uncertain data (e.g. uncertainty propagation in modeling applications), we have proposed a set of conventions for expressing uncertainty information within the netCDF data model and format: the NetCDF Uncertainty Conventions (NetCDF-U). From a theoretical perspective, it can be said that no dataset is a perfect representation of the reality it purports to represent. Inevitably, errors arise from the observation process, including the sensor system and subsequent processing, differences in scales of phenomena and the spatial support of the observation mechanism, lack of knowledge about the detailed conversion between the measured quantity and the target variable. This means that, in principle, all data should be treated as uncertain. The most natural representation of an uncertain quantity is in terms of random variables, with a probabilistic approach. However, it must be acknowledged that almost all existing data resources are not treated in this way. Most datasets come simply as a series of values, often without any uncertainty information. If uncertainty information is present, then it is typically within the metadata, as a data quality element. This is typically a global (dataset wide) representation of uncertainty, often derived through some form of validation process. Typically, it is a statistical measure of spread, for example the standard deviation of the residuals. The introduction of a mechanism by which such descriptions of uncertainty can be integrated into existing geospatial applications is considered a practical step towards a more accurate modeling of our uncertain understanding of any natural process. Given the generality and flexibility of the netCDF data model, conventions on naming, syntax, and semantics have been adopted by several communities of practice, as a means of improving data interoperability. Some of the existing conventions include provisions on uncertain elements and concepts, but, to our knowledge, no general convention on the encoding of uncertainty has been proposed, to date. In particular, the netCDF Climate and Forecast Conventions (NetCDF-CF), a de-facto standard for a large amount of data in Fluid Earth Sciences, mention the issue and provide limited support for uncertainty representation. NetCDF-U is designed to be fully compatible with NetCDF-CF, where possible adopting the same mechanisms (e.g. using the same attributes name with compatible semantics). The rationale for this is that a probabilistic description of scientific quantities is a crosscutting aspect, which may be modularized (note that a netCDF dataset may be compliant with more than one convention). The scope of NetCDF-U is to extend and qualify the netCDF classic data model (also known as netCDF3), to capture the uncertainty related to geospatial information encoded in that format. In the future, a netCDF4 approach for uncertainty encoding will be investigated. The NetCDF-U Conventions have the following rationale: • Compatibility with netCDF-CF Conventions 1.5. • Human-readability of conforming datasets structure. • Minimal difference between certain/agnostic and uncertain representations of data (e.g. with respect to dataset structure). NetCDF-U is based on a generic mechanism for annotating netCDF data variables with probability theory semantics. The Uncertainty Markup Language (UncertML) 2.0 is used as a controlled conceptual model and vocabulary for NetCDF-U annotations. The proposed mechanism anticipates a generalized support for semantic annotations in netCDF. NetCDF-U defines syntactical conventions for encoding samples, summary statistics, and distributions, along with mechanisms for expressing dependency relationships among variables. The conventions were accepted as an Open Geospatial Consortium (OGC) Discussion Paper (OGC 11-163); related discussions are conducted on a public forum hosted by the OGC. NetCDF-U may have implications for future work directed at communicating geospatial data provenance and uncertainty in contexts other than netCDF. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n° 248488.

  9. Seeing is not stereotyping: the functional independence of categorization and stereotype activation

    PubMed Central

    Tomelleri, Silvia

    2017-01-01

    Abstract Social categorization has been viewed as necessarily resulting in stereotyping, yet extant research suggests the two processes are differentially sensitive to task manipulations. Here, we simultaneously test the degree to which race perception and stereotyping are conditionally automatic. Participants performed a sequential priming task while either explicitly attending to the race of face primes or directing attention away from their semantic nature. We find a dissociation between the perceptual encoding of race and subsequent activation of associated stereotypes, with race perception occurring in both task conditions, but implicit stereotyping occurring only when attention is directed to the race of the face primes. These results support a clear conceptual distinction between categorization and stereotyping and show that the encoding of racial category need not result in stereotype activation. PMID:28338829

  10. Edge-Based Image Compression with Homogeneous Diffusion

    NASA Astrophysics Data System (ADS)

    Mainberger, Markus; Weickert, Joachim

    It is well-known that edges contain semantically important image information. In this paper we present a lossy compression method for cartoon-like images that exploits information at image edges. These edges are extracted with the Marr-Hildreth operator followed by hysteresis thresholding. Their locations are stored in a lossless way using JBIG. Moreover, we encode the grey or colour values at both sides of each edge by applying quantisation, subsampling and PAQ coding. In the decoding step, information outside these encoded data is recovered by solving the Laplace equation, i.e. we inpaint with the steady state of a homogeneous diffusion process. Our experiments show that the suggested method outperforms the widely-used JPEG standard and can even beat the advanced JPEG2000 standard for cartoon-like images.

  11. A Separate Compilation Extension to Standard ML (Revised and Expanded)

    DTIC Science & Technology

    2006-09-17

    repetition of interfaces. The language is given a formal semantics, and we argue that this semantics is implementable in a variety of compilers. This...material is based on work supported in part by the National Science Foundation under grant 0121633 Language Technology for Trustless Software...Dissemination and by the Defense Advanced Research Projects Agency under contracts F196268-95-C-0050 The Fox Project: Advanced Languages for Systems Software

  12. Software analysis in the semantic web

    NASA Astrophysics Data System (ADS)

    Taylor, Joshua; Hall, Robert T.

    2013-05-01

    Many approaches in software analysis, particularly dynamic malware analyis, benefit greatly from the use of linked data and other Semantic Web technology. In this paper, we describe AIS, Inc.'s Semantic Extractor (SemEx) component from the Malware Analysis and Attribution through Genetic Information (MAAGI) effort, funded under DARPA's Cyber Genome program. The SemEx generates OWL-based semantic models of high and low level behaviors in malware samples from system call traces generated by AIS's introspective hypervisor, IntroVirtTM. Within MAAGI, these semantic models were used by modules that cluster malware samples by functionality, and construct "genealogical" malware lineages. Herein, we describe the design, implementation, and use of the SemEx, as well as the C2DB, an OWL ontology used for representing software behavior and cyber-environments.

  13. Form and meaning in early morphological processing: Comment on Feldman, O'Connor, and Moscoso del Prado Martin (2009).

    PubMed

    Davis, Matthew H; Rastle, Kathleen

    2010-10-01

    Feldman, O'Connor, and Moscoso del Prado Martín (2009) reported evidence for differential priming of semantically transparent (talker-talk) and semantically opaque (corner-corn) morphological pairs under masked presentation conditions. The present commentary argues that these data should not call into question the theory that morphologically structured words undergo a segmentation process based solely on form, because (1) these results do not contradict existing evidence for morpho-orthographic segmentation, (2) funnel plots suggest that the lack of priming observed for semantically opaque items in this study is inconsistent with findings in the existing literature, and (3) orthographic characteristics of the semantically opaque pairs in this study (rather than semantic factors) are the most likely explanation for these discrepant results.

  14. An RT distribution analysis of relatedness proportion effects in lexical decision and semantic categorization reveals different mechanisms.

    PubMed

    de Wit, Bianca; Kinoshita, Sachiko

    2015-01-01

    The magnitude of the semantic priming effect is known to increase as the proportion of related prime-target pairs in an experiment increases. This relatedness proportion (RP) effect was studied in a lexical decision task at a short prime-target stimulus onset asynchrony (240 ms), which is widely assumed to preclude strategic prospective usage of the prime. The analysis of the reaction time (RT) distribution suggested that the observed RP effect reflected a modulation of a retrospective semantic matching process. The pattern of the RP effect on the RT distribution found here is contrasted to that reported in De Wit and Kinoshita's (2014) semantic categorization study, and it is concluded that the RP effect is driven by different underlying mechanisms in lexical decision and semantic categorization.

  15. The neural mechanisms of semantic and response conflicts: an fMRI study of practice-related effects in the Stroop task.

    PubMed

    Chen, Zhencai; Lei, Xu; Ding, Cody; Li, Hong; Chen, Antao

    2013-02-01

    Previous studies have demonstrated that there are separate neural mechanisms underlying semantic and response conflicts in the Stroop task. However, the practice effects of these conflicts need to be elucidated and the possible involvements of common neural mechanisms are yet to be established. We employed functional magnetic resonance imaging (fMRI) in a 4-2 mapping practice-related Stroop task to determine the neural substrates under these conflicts. Results showed that different patterns of brain activations are associated with practice in the attentional networks (e.g., dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), and posterior parietal cortex (PPC)) for both conflicts, response control regions (e.g., inferior frontal junction (IFJ), inferior frontal gyrus (IFG)/insula, and pre-supplementary motor areas (pre-SMA)) for semantic conflict, and posterior cortex for response conflict. We also found areas of common activation in the left hemisphere within the attentional networks, for the early practice stage in semantic conflict and the late stage in "pure" response conflict using conjunction analysis. The different practice effects indicate that there are distinct mechanisms underlying these two conflict types: semantic conflict practice effects are attributable to the automation of stimulus processing, conflict and response control; response conflict practice effects are attributable to the proportional increase of conflict-related cognitive resources. In addition, the areas of common activation suggest that the semantic conflict effect may contain a partial response conflict effect, particularly at the beginning of the task. These findings indicate that there are two kinds of response conflicts contained in the key-pressing Stroop task: the vocal-level (mainly in the early stage) and key-pressing (mainly in the late stage) response conflicts; thus, the use of the subtraction method for the exploration of semantic and response conflicts may need to be further examined. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. The semantic origin of unconscious priming: Behavioral and event-related potential evidence during category congruency priming from strongly and weakly related masked words.

    PubMed

    Ortells, Juan J; Kiefer, Markus; Castillo, Alejandro; Megías, Montserrat; Morillas, Alejandro

    2016-01-01

    The mechanisms underlying masked congruency priming, semantic mechanisms such as semantic activation or non-semantic mechanisms, for example response activation, remain a matter of debate. In order to decide between these alternatives, reaction times (RTs) and event-related potentials (ERPs) were recorded in the present study, while participants performed a semantic categorization task on visible word targets that were preceded either 167 ms (Experiment 1) or 34 ms before (Experiment 2) by briefly presented (33 ms) novel (unpracticed) masked prime words. The primes and targets belonged to different categories (unrelated), or they were either strongly or weakly semantically related category co-exemplars. Behavioral (RT) and electrophysiological masked congruency priming effects were significantly greater for strongly related pairs than for weakly related pairs, indicating a semantic origin of effects. Priming in the latter condition was not statistically reliable. Furthermore, priming effects modulated the N400 event-related potential (ERP) component, an electrophysiological index of semantic processing, but not ERPs in the time range of the N200 component, associated with response conflict and visuo-motor response priming. The present results demonstrate that masked congruency priming from novel prime words also depends on semantic processing of the primes and is not exclusively driven by non-semantic mechanisms such as response activation. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Evidence for degraded low frequency verbal concepts in left resected temporal lobe epilepsy patients.

    PubMed

    Visser, M; Forn, C; Lambon Ralph, M A; Hoffman, P; Gómez Ibáñez, A; Sunajuán, Ana; Rosell Negre, P; Villanueva, V; Ávila, C

    2018-06-01

    According to a large neuropsychological and neuroimaging literature, the bilateral anterior temporal lobe (ATL) is a core region for semantic processing. It seems therefore surprising that semantic memory appears to be preserved in temporal lobe epilepsy (TLE) patients with unilateral ATL resection. However, recent work suggests that the bilateral semantic system is relatively robust against unilateral damage and semantic impairments under these circumstances only become apparent with low frequency specific concepts. In addition, neuroimaging studies have shown that the function of the left and right ATLs differ and therefore left or right ATL resection should lead to a different pattern of impairment. The current study investigated hemispheric differences in the bilateral semantic system by comparing left and right resected TLE patients during verbal semantic processing of low frequency concepts. Picture naming and semantic comprehension tasks with varying word frequencies were included to investigate the pattern of impairment. Left but not right TLE patients showed impaired semantic processing, which was particularly apparent on low frequency items. This indicates that, for verbal information, the bilateral semantic system is more sensitive to damage in the left compared to the right ATL, which is in line with theories that attribute a more prominent role to the left ATL due to connections with pre-semantic verbal regions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Facilitation and interference in naming: A consequence of the same learning process?

    PubMed

    Hughes, Julie W; Schnur, Tatiana T

    2017-08-01

    Our success with naming depends on what we have named previously, a phenomenon thought to reflect learning processes. Repeatedly producing the same name facilitates language production (i.e., repetition priming), whereas producing semantically related names hinders subsequent performance (i.e., semantic interference). Semantic interference is found whether naming categorically related items once (continuous naming) or multiple times (blocked cyclic naming). A computational model suggests that the same learning mechanism responsible for facilitation in repetition creates semantic interference in categorical naming (Oppenheim, Dell, & Schwartz, 2010). Accordingly, we tested the predictions that variability in semantic interference is correlated across categorical naming tasks and is caused by learning, as measured by two repetition priming tasks (picture-picture repetition priming, Exp. 1; definition-picture repetition priming, Exp. 2, e.g., Wheeldon & Monsell, 1992). In Experiment 1 (77 subjects) semantic interference and repetition priming effects were robust, but the results revealed no relationship between semantic interference effects across contexts. Critically, learning (picture-picture repetition priming) did not predict semantic interference effects in either task. We replicated these results in Experiment 2 (81 subjects), finding no relationship between semantic interference effects across tasks or between semantic interference effects and learning (definition-picture repetition priming). We conclude that the changes underlying facilitatory and interfering effects inherent to lexical access are the result of distinct learning processes where multiple mechanisms contribute to semantic interference in naming. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Contextual priming in semantic anomia: a case study.

    PubMed

    Renvall, Kati; Laine, Matti; Martin, Nadine

    2005-11-01

    The present case continues the series of anomia treatment studies with contextual priming (CP), being the second in-depth treatment study conducted for an individual suffering from semantically based anomia. Our aim was to acquire further evidence of the facilitation and interference effects of the CP treatment on semantic anomia. Based on the results of the study of , our hypothesis before the treatment was that our participant would show short-term interference and at most modest and short-term benefit from treatment. To acquire such evidence would not only be important for the choice of anomia treatment methods in individual patients, but would also prompt further development of the CP method. The CP technique used for our participant included cycles of repeating and naming items in three contextual conditions (semantic, phonological, and unrelated). As predicted, the overall improvement of naming was modest and short-term. Interestingly, the contextual condition that corresponded with the nature of our patient's underlying naming deficit (semantic) elicited immediate interference in the form of contextual naming errors, as well as short-term improvement of naming. Based on this and a recent study by , it appears that despite short-term positive effects, in its current form the CP treatment is not sufficient for those aphasics who have a semantic deficit underlying their anomia. The possible mechanism and directions for future research are discussed.

  20. Automatic Semantic Facilitation in Anterior Temporal Cortex Revealed through Multimodal Neuroimaging

    PubMed Central

    Gramfort, Alexandre; Hämäläinen, Matti S.; Kuperberg, Gina R.

    2013-01-01

    A core property of human semantic processing is the rapid, facilitatory influence of prior input on extracting the meaning of what comes next, even under conditions of minimal awareness. Previous work has shown a number of neurophysiological indices of this facilitation, but the mapping between time course and localization—critical for separating automatic semantic facilitation from other mechanisms—has thus far been unclear. In the current study, we used a multimodal imaging approach to isolate early, bottom-up effects of context on semantic memory, acquiring a combination of electroencephalography (EEG), magnetoencephalography (MEG), and functional magnetic resonance imaging (fMRI) measurements in the same individuals with a masked semantic priming paradigm. Across techniques, the results provide a strikingly convergent picture of early automatic semantic facilitation. Event-related potentials demonstrated early sensitivity to semantic association between 300 and 500 ms; MEG localized the differential neural response within this time window to the left anterior temporal cortex, and fMRI localized the effect more precisely to the left anterior superior temporal gyrus, a region previously implicated in semantic associative processing. However, fMRI diverged from early EEG/MEG measures in revealing semantic enhancement effects within frontal and parietal regions, perhaps reflecting downstream attempts to consciously access the semantic features of the masked prime. Together, these results provide strong evidence that automatic associative semantic facilitation is realized as reduced activity within the left anterior superior temporal cortex between 300 and 500 ms after a word is presented, and emphasize the importance of multimodal neuroimaging approaches in distinguishing the contributions of multiple regions to semantic processing. PMID:24155321

Top