Sample records for underlying silicon substrate

  1. Selective etching of silicon carbide films

    DOEpatents

    Gao, Di; Howe, Roger T.; Maboudian, Roya

    2006-12-19

    A method of etching silicon carbide using a nonmetallic mask layer. The method includes providing a silicon carbide substrate; forming a non-metallic mask layer by applying a layer of material on the substrate; patterning the mask layer to expose underlying areas of the substrate; and etching the underlying areas of the substrate with a plasma at a first rate, while etching the mask layer at a rate lower than the first rate.

  2. Chemical resistivity of self-assembled monolayer covalently attached to silicon substrate to hydrofluoric acid and ammonium fluoride

    NASA Astrophysics Data System (ADS)

    Saito, N.; Youda, S.; Hayashi, K.; Sugimura, H.; Takai, O.

    2003-06-01

    Self-assembled monolayers (SAMs) were prepared on hydrogen-terminated silicon substrates through chemical vapor deposition using 1-hexadecene (HD) as a precursor. The HD-SAMs prepared in an atmosphere under a reduced pressure (≈50 Pa) showed better chemical resistivities to hydrofluoric acid and ammonium fluoride (NH 4F) solutions than that of an organosilane SAM formed on oxide-covered silicon substrates. The surface covered with the HD-SAM was micro-patterned by vacuum ultraviolet photolithography and consequently divided into two areas terminated with HD-SAM or silicon dioxide. This micro-patterned sample was immersed in a 40 vol.% NH 4F aqueous solution. Surface images obtained by an optical microscopy clearly show that the micro-patterns of HD-SAM/silicon dioxide were successfully transferred into the silicon substrate.

  3. Deposition of hydrogenated silicon clusters for efficient epitaxial growth.

    PubMed

    Le, Ha-Linh Thi; Jardali, Fatme; Vach, Holger

    2018-06-13

    Epitaxial silicon thin films grown from the deposition of plasma-born hydrogenated silicon nanoparticles using plasma-enhanced chemical vapor deposition have widely been investigated due to their potential applications in photovoltaic and nanoelectronic device technologies. However, the optimal experimental conditions and the underlying growth mechanisms leading to the high-speed epitaxial growth of thin silicon films from hydrogenated silicon nanoparticles remain far from being understood. In the present work, extensive molecular dynamics simulations were performed to study the epitaxial growth of silicon thin films resulting from the deposition of plasma-born hydrogenated silicon clusters at low substrate temperatures under realistic reactor conditions. There is strong evidence that a temporary phase transition of the substrate area around the cluster impact site to the liquid state is necessary for the epitaxial growth to take place. We predict further that a non-normal incidence angle for the cluster impact significantly facilitates the epitaxial growth of thin crystalline silicon films.

  4. Etching process for improving the strength of a laser-machined silicon-based ceramic article

    DOEpatents

    Copley, Stephen M.; Tao, Hongyi; Todd-Copley, Judith A.

    1991-01-01

    A process for improving the strength of laser-machined articles formed of a silicon-based ceramic material such as silicon nitride, in which the laser-machined surface is immersed in an etching solution of hydrofluoric acid and nitric acid for a duration sufficient to remove substantially all of a silicon film residue on the surface but insufficient to allow the solution to unduly attack the grain boundaries of the underlying silicon nitride substrate. This effectively removes the silicon film as a source of cracks that otherwise could propagate downwardly into the silicon nitride substrate and significantly reduce its strength.

  5. Etching process for improving the strength of a laser-machined silicon-based ceramic article

    DOEpatents

    Copley, S.M.; Tao, H.; Todd-Copley, J.A.

    1991-06-11

    A process is disclosed for improving the strength of laser-machined articles formed of a silicon-based ceramic material such as silicon nitride, in which the laser-machined surface is immersed in an etching solution of hydrofluoric acid and nitric acid for a duration sufficient to remove substantially all of a silicon film residue on the surface but insufficient to allow the solution to unduly attack the grain boundaries of the underlying silicon nitride substrate. This effectively removes the silicon film as a source of cracks that otherwise could propagate downwardly into the silicon nitride substrate and significantly reduce its strength. 1 figure.

  6. Impact of the silicon substrate resistivity and growth condition on the deep levels in Ni-Au/AlN/Si MIS Capacitors

    NASA Astrophysics Data System (ADS)

    Wang, Chong; Simoen, Eddy; Zhao, Ming; Li, Wei

    2017-10-01

    Deep levels formed under different growth conditions of a 200 nm AlN buffer layer on B-doped Czochralski Si(111) substrates with different resistivity were investigated by deep-level transient spectroscopy (DLTS) on metal-insulator-semiconductor capacitors. Growth-temperature-dependent Al diffusion in the Si substrate was derived from the free carrier density obtained by capacitance-voltage measurement on samples grown on p- substrates. The DLTS spectra revealed a high concentration of point and extended defects in the p- and p+ silicon substrates, respectively. This indicated a difference in the electrically active defects in the silicon substrate close to the AlN/Si interface, depending on the B doping concentration.

  7. Formation of multiple levels of porous silicon for buried insulators and conductors in silicon device technologies

    DOEpatents

    Blewer, Robert S.; Gullinger, Terry R.; Kelly, Michael J.; Tsao, Sylvia S.

    1991-01-01

    A method of forming a multiple level porous silicon substrate for semiconductor integrated circuits including anodizing non-porous silicon layers of a multi-layer silicon substrate to form multiple levels of porous silicon. At least one porous silicon layer is then oxidized to form an insulating layer and at least one other layer of porous silicon beneath the insulating layer is metallized to form a buried conductive layer. Preferably the insulating layer and conductive layer are separated by an anodization barrier formed of non-porous silicon. By etching through the anodization barrier and subsequently forming a metallized conductive layer, a fully or partially insulated buried conductor may be fabricated under single crystal silicon.

  8. Dislocation-free strained silicon-on-silicon by in-place bonding

    NASA Astrophysics Data System (ADS)

    Cohen, G. M.; Mooney, P. M.; Paruchuri, V. K.; Hovel, H. J.

    2005-06-01

    In-place bonding is a technique where silicon-on-insulator (SOI) slabs are bonded by hydrophobic attraction to the underlying silicon substrate when the buried oxide is undercut in dilute HF. The bonding between the exposed surfaces of the SOI slab and the substrate propagates simultaneously with the buried oxide etching. As a result, the slabs maintain their registration and are referred to as "bonded in-place". We report the fabrication of dislocation-free strained silicon slabs from pseudomorphic trilayer Si/SiGe/SOI by in-place bonding. Removal of the buried oxide allows the compressively strained SiGe film to relax elastically and induce tensile strain in the top and bottom silicon films. The slabs remain bonded to the substrate by van der Waals forces when the wafer is dried. Subsequent annealing forms a covalent bond such that when the upper Si and the SiGe layer are removed, the bonded silicon slab remains strained.

  9. Silicon nitride films deposited with an electron beam created plasma

    NASA Technical Reports Server (NTRS)

    Bishop, D. C.; Emery, K. A.; Rocca, J. J.; Thompson, L. R.; Zamani, H.; Collins, G. J.

    1984-01-01

    The electron beam assisted chemical vapor deposition (EBCVD) of silicon nitride films using NH3, N2, and SiH4 as the reactant gases is reported. The films have been deposited on aluminum, SiO2, and polysilicon film substrates as well as on crystalline silicon substrates. The range of experimental conditions under which silicon nitrides have been deposited includes substrate temperatures from 50 to 400 C, electron beam currents of 2-40 mA, electron beam energies of 1-5 keV, total ambient pressures of 0.1-0.4 Torr, and NH3/SiH4 mass flow ratios of 1-80. The physical, electrical, and chemical properties of the EBCVD films are discussed.

  10. Polycrystalline silicon on tungsten substrates

    NASA Technical Reports Server (NTRS)

    Bevolo, A. J.; Schmidt, F. A.; Shanks, H. R.; Campisi, G. J.

    1979-01-01

    Thin films of electron-beam-vaporized silicon were deposited on fine-grained tungsten substrates under a pressure of about 1 x 10 to the -10th torr. Mass spectra from a quadrupole residual-gas analyzer were used to determine the partial pressure of 13 residual gases during each processing step. During separate silicon depositions, the atomically clean substrates were maintained at various temperatures between 400 and 780 C, and deposition rates were between 20 and 630 A min. Surface contamination and interdiffusion were monitored by in situ Auger electron spectrometry before and after cleaning, deposition, and annealing. Auger depth profiling, X-ray analysis, and SEM in the topographic and channeling modes were utilized to characterize the samples with respect to silicon-metal interface, interdiffusion, silicide formation, and grain size of silicon. The onset of silicide formation was found to occur at approximately 625 C. Above this temperature tungsten silicides were formed at a rate faster than the silicon deposition. Fine-grain silicon films were obtained at lower temperatures.

  11. Crystallization of amorphous silicon thin films deposited by PECVD on nickel-metalized porous silicon.

    PubMed

    Ben Slama, Sonia; Hajji, Messaoud; Ezzaouia, Hatem

    2012-08-17

    Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under vacuum at 750°C. Obtained results from structural, optical, and electrical characterizations show that thermal annealing of amorphous silicon deposited on Ni-metalized porous silicon leads to an enhancement in the crystalline quality and physical properties of the silicon thin films. The improvement in the quality of the film is due to the crystallization of the amorphous film during annealing. This simple and easy method can be used to produce silicon thin films with high quality suitable for thin film solar cell applications.

  12. Crystallization of amorphous silicon thin films deposited by PECVD on nickel-metalized porous silicon

    PubMed Central

    2012-01-01

    Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under vacuum at 750°C. Obtained results from structural, optical, and electrical characterizations show that thermal annealing of amorphous silicon deposited on Ni-metalized porous silicon leads to an enhancement in the crystalline quality and physical properties of the silicon thin films. The improvement in the quality of the film is due to the crystallization of the amorphous film during annealing. This simple and easy method can be used to produce silicon thin films with high quality suitable for thin film solar cell applications. PMID:22901341

  13. Studies of silicon p-n junction solar cells. [open circuit photovoltage

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.

    1976-01-01

    Single crystal silicon p-n junction solar cells made with low resistivity substrates show poorer solar energy conversion efficiency than traditional theory predicts. The physical mechanisms responsible for this discrepancy are identified and characterized. The open circuit voltage in shallow junction cells of about 0.1 ohm/cm substrate resistivity is investigated under AMO (one sun) conditions.

  14. Development of Mullite Substrates and Containers

    NASA Technical Reports Server (NTRS)

    Sibold, J. D.

    1979-01-01

    The mullite-molten silicon interaction was evaluated through fabrication of a series of bodies made with variations in density, alumina-silica ratio, and glass-crystalline ratio. The materials were tested in a sessile drop technique. None of the variations stood up to extended exposure to molten silicon sufficiently to be recommended as a container material. However, directional solidification experiments suggest that, under proper conditions, contamination of the silicon by mullite containers can be minimized. To improve an already good thermal expansion match between mullite and silicon, compositional variations were studied. Altering of the alumina-silica ratio was determined to give a continuously varying thermal expansion. A standard mullite composition was selected and substrates 40 x 4 x .040 inches were fabricated. Slotted substrates of various configurations and various compositions were also fabricated.

  15. Silica substrate or portion formed from oxidation of monocrystalline silicon

    DOEpatents

    Matzke, Carolyn M.; Rieger, Dennis J.; Ellis, Robert V.

    2003-07-15

    A method is disclosed for forming an inclusion-free silica substrate using a monocrystalline silicon substrate as the starting material and oxidizing the silicon substrate to convert it entirely to silica. The oxidation process is performed from both major surfaces of the silicon substrate using a conventional high-pressure oxidation system. The resulting product is an amorphous silica substrate which is expected to have superior etching characteristics for microfabrication than conventional fused silica substrates. The present invention can also be used to convert only a portion of a monocrystalline silicon substrate to silica by masking the silicon substrate and locally thinning a portion the silicon substrate prior to converting the silicon portion entirely to silica. In this case, the silica formed by oxidizing the thinned portion of the silicon substrate can be used, for example, as a window to provide optical access through the silicon substrate.

  16. Effects of ambient conditions on the adhesion of cubic boron nitride films on silicon substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardinale, G.F.; Howitt, D.G.; Mirkarimi, P.B.

    1994-08-01

    Effect of environmental conditions on cubic boron nitride (cBN) film adhesion to silicon substrates was studied. cBN films were deposited onto (100)-oriented silicon substrates by ion-assisted pulsed laser deposition. Irradiating ions were mixtures of nitrogen with argon, krypton, and xenon. Under room-ambient conditions, the films delaminated in the following time order: N/Xe, N/Kr, and N/Ar. cBN films deposited using N/Xe ion-assisted deposition were exposed to four environmental conditions for several weeks: a 1-mTorr vacuum, high humidity, dry oxygen, and dry nitrogen. Films exposed to the humid environment delaminated whereas those stored under vacuum or in dry gases did not. Filmsmore » stored in dry nitrogen were removed after nearly two weeks and placed in the high-humidity chamber; these films subsequently delaminated within 14 hours.« less

  17. Diffusion Bonding of Silicon Carbide for MEMS-LDI Applications

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay; Shpargel, Tarah P.; Kiser, J. Douglas

    2007-01-01

    A robust joining approach is critically needed for a Micro-Electro-Mechanical Systems-Lean Direct Injector (MEMS-LDI) application which requires leak free joints with high temperature mechanical capability. Diffusion bonding is well suited for the MEMS-LDI application. Diffusion bonds were fabricated using titanium interlayers between silicon carbide substrates during hot pressing. The interlayers consisted of either alloyed titanium foil or physically vapor deposited (PVD) titanium coatings. Microscopy shows that well adhered, crack free diffusion bonds are formed under optimal conditions. Under less than optimal conditions, microcracks are present in the bond layer due to the formation of intermetallic phases. Electron microprobe analysis was used to identify the reaction formed phases in the diffusion bond. Various compatibility issues among the phases in the interlayer and substrate are discussed. Also, the effects of temperature, pressure, time, silicon carbide substrate type, and type of titanium interlayer and thickness on the microstructure and composition of joints are discussed.

  18. Vacuum die attach for integrated circuits

    DOEpatents

    Schmitt, E.H.; Tuckerman, D.B.

    1991-09-10

    A thin film eutectic bond for attaching an integrated circuit die to a circuit substrate is formed by coating at least one bonding surface on the die and substrate with an alloying metal, assembling the die and substrate under compression loading, and heating the assembly to an alloying temperature in a vacuum. A very thin bond, 10 microns or less, which is substantially void free, is produced. These bonds have high reliability, good heat and electrical conduction, and high temperature tolerance. The bonds are formed in a vacuum chamber, using a positioning and loading fixture to compression load the die, and an IR lamp or other heat source. For bonding a silicon die to a silicon substrate, a gold silicon alloy bond is used. Multiple dies can be bonded simultaneously. No scrubbing is required. 1 figure.

  19. Vacuum die attach for integrated circuits

    DOEpatents

    Schmitt, Edward H.; Tuckerman, David B.

    1991-01-01

    A thin film eutectic bond for attaching an integrated circuit die to a circuit substrate is formed by coating at least one bonding surface on the die and substrate with an alloying metal, assembling the die and substrate under compression loading, and heating the assembly to an alloying temperature in a vacuum. A very thin bond, 10 microns or less, which is substantially void free, is produced. These bonds have high reliability, good heat and electrical conduction, and high temperature tolerance. The bonds are formed in a vacuum chamber, using a positioning and loading fixture to compression load the die, and an IR lamp or other heat source. For bonding a silicon die to a silicon substrate, a gold silicon alloy bond is used. Multiple dies can be bonded simultaneously. No scrubbing is required.

  20. Profilometry of thin films on rough substrates by Raman spectroscopy

    PubMed Central

    Ledinský, Martin; Paviet-Salomon, Bertrand; Vetushka, Aliaksei; Geissbühler, Jonas; Tomasi, Andrea; Despeisse, Matthieu; De Wolf , Stefaan; Ballif , Christophe; Fejfar, Antonín

    2016-01-01

    Thin, light-absorbing films attenuate the Raman signal of underlying substrates. In this article, we exploit this phenomenon to develop a contactless thickness profiling method for thin films deposited on rough substrates. We demonstrate this technique by probing profiles of thin amorphous silicon stripes deposited on rough crystalline silicon surfaces, which is a structure exploited in high-efficiency silicon heterojunction solar cells. Our spatially-resolved Raman measurements enable the thickness mapping of amorphous silicon over the whole active area of test solar cells with very high precision; the thickness detection limit is well below 1 nm and the spatial resolution is down to 500 nm, limited only by the optical resolution. We also discuss the wider applicability of this technique for the characterization of thin layers prepared on Raman/photoluminescence-active substrates, as well as its use for single-layer counting in multilayer 2D materials such as graphene, MoS2 and WS2. PMID:27922033

  1. Low cost silicon-on-ceramic photovoltaic solar cells

    NASA Technical Reports Server (NTRS)

    Koepke, B. G.; Heaps, J. D.; Grung, B. L.; Zook, J. D.; Sibold, J. D.; Leipold, M. H.

    1980-01-01

    A technique has been developed for coating low-cost mullite-based refractory substrates with thin layers of solar cell quality silicon. The technique involves first carbonizing one surface of the ceramic and then contacting it with molten silicon. The silicon wets the carbonized surface and, under the proper thermal conditions, solidifies as a large-grained sheet. Solar cells produced from this composite silicon-on-ceramic material have exhibited total area conversion efficiencies of ten percent.

  2. Rapid Covalent Modification of Silicon Oxide Surfaces through Microwave-Assisted Reactions with Alcohols.

    PubMed

    Lee, Austin W H; Gates, Byron D

    2016-07-26

    We demonstrate the method of a rapid covalent modification of silicon oxide surfaces with alcohol-containing compounds with assistance by microwave reactions. Alcohol-containing compounds are prevalent reagents in the laboratory, which are also relatively easy to handle because of their stability against exposure to atmospheric moisture. The condensation of these alcohols with the surfaces of silicon oxides is often hindered by slow reaction kinetics. Microwave radiation effectively accelerates this condensation reaction by heating the substrates and/or solvents. A variety of substrates were modified in this demonstration, such as silicon oxide films of various thicknesses, glass substrates such as microscope slides (soda lime), and quartz. The monolayers prepared through this strategy demonstrated the successful formation of covalent surface modifications of silicon oxides with water contact angles of up to 110° and typical hysteresis values of 2° or less. An evaluation of the hydrolytic stability of these monolayers demonstrated their excellent stability under acidic conditions. The techniques introduced in this article were successfully applied to tune the surface chemistry of silicon oxides to achieve hydrophobic, oleophobic, and/or charged surfaces.

  3. Imaging of the native inversion layer in Silicon-On-Insulator wafers via Scanning Surface Photovoltage: Implications for RF device performance

    NASA Astrophysics Data System (ADS)

    Dahanayaka, Daminda; Wong, Andrew; Kaszuba, Philip; Moszkowicz, Leon; Slinkman, James; IBM SPV Lab Team

    2014-03-01

    Silicon-On-Insulator (SOI) technology has proved beneficial for RF cell phone technologies, which have equivalent performance to GaAs technologies. However, there is evident parasitic inversion layer under the Buried Oxide (BOX) at the interface with the high resistivity Si substrate. The latter is inferred from capacitance-voltage measurements on MOSCAPs. The inversion layer has adverse effects on RF device performance. We present data which, for the first time, show the extent of the inversion layer in the underlying substrate. This knowledge has driven processing techniques to suppress the inversion.

  4. Fabrication Methods for Adaptive Deformable Mirrors

    NASA Technical Reports Server (NTRS)

    Toda, Risaku; White, Victor E.; Manohara, Harish; Patterson, Keith D.; Yamamoto, Namiko; Gdoutos, Eleftherios; Steeves, John B.; Daraio, Chiara; Pellegrino, Sergio

    2013-01-01

    Previously, it was difficult to fabricate deformable mirrors made by piezoelectric actuators. This is because numerous actuators need to be precisely assembled to control the surface shape of the mirror. Two approaches have been developed. Both approaches begin by depositing a stack of piezoelectric films and electrodes over a silicon wafer substrate. In the first approach, the silicon wafer is removed initially by plasmabased reactive ion etching (RIE), and non-plasma dry etching with xenon difluoride (XeF2). In the second approach, the actuator film stack is immersed in a liquid such as deionized water. The adhesion between the actuator film stack and the substrate is relatively weak. Simply by seeping liquid between the film and the substrate, the actuator film stack is gently released from the substrate. The deformable mirror contains multiple piezoelectric membrane layers as well as multiple electrode layers (some are patterned and some are unpatterned). At the piezolectric layer, polyvinylidene fluoride (PVDF), or its co-polymer, poly(vinylidene fluoride trifluoroethylene P(VDF-TrFE) is used. The surface of the mirror is coated with a reflective coating. The actuator film stack is fabricated on silicon, or silicon on insulator (SOI) substrate, by repeatedly spin-coating the PVDF or P(VDFTrFE) solution and patterned metal (electrode) deposition. In the first approach, the actuator film stack is prepared on SOI substrate. Then, the thick silicon (typically 500-micron thick and called handle silicon) of the SOI wafer is etched by a deep reactive ion etching process tool (SF6-based plasma etching). This deep RIE stops at the middle SiO2 layer. The middle SiO2 layer is etched by either HF-based wet etching or dry plasma etch. The thin silicon layer (generally called a device layer) of SOI is removed by XeF2 dry etch. This XeF2 etch is very gentle and extremely selective, so the released mirror membrane is not damaged. It is possible to replace SOI with silicon substrate, but this will require tighter DRIE process control as well as generally longer and less efficient XeF2 etch. In the second approach, the actuator film stack is first constructed on a silicon wafer. It helps to use a polyimide intermediate layer such as Kapton because the adhesion between the polyimide and silicon is generally weak. A mirror mount ring is attached by using adhesive. Then, the assembly is partially submerged in liquid water. The water tends to seep between the actuator film stack and silicon substrate. As a result, the actuator membrane can be gently released from the silicon substrate. The actuator membrane is very flat because it is fixed to the mirror mount prior to the release. Deformable mirrors require extremely good surface optical quality. In the technology described here, the deformable mirror is fabricated on pristine substrates such as prime-grade silicon wafers. The deformable mirror is released by selectively removing the substrate. Therefore, the released deformable mirror surface replicates the optical quality of the underlying pristine substrate.

  5. Method of forming crystalline silicon devices on glass

    DOEpatents

    McCarthy, Anthony M.

    1995-01-01

    A method for fabricating single-crystal silicon microelectronic components on a silicon substrate and transferring same to a glass substrate. This is achieved by utilizing conventional silicon processing techniques for fabricating components of electronic circuits and devices on bulk silicon, wherein a bulk silicon surface is prepared with epitaxial layers prior to the conventional processing. The silicon substrate is bonded to a glass substrate and the bulk silicon is removed leaving the components intact on the glass substrate surface. Subsequent standard processing completes the device and circuit manufacturing. This invention is useful in applications requiring a transparent or insulating substrate, particularly for display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard electronics, and high temperature electronics.

  6. Influence of bending strains on radio frequency characteristics of flexible microwave switches using single-crystal silicon nanomembranes on plastic substrate

    NASA Astrophysics Data System (ADS)

    Qin, Guoxuan; Yuan, Hao-Chih; Celler, George K.; Ma, Jianguo; Ma, Zhenqiang

    2011-10-01

    This letter presents radio frequency (RF) characterization of flexible microwave switches using single-crystal silicon nanomembranes (SiNMs) on plastic substrate under various uniaxial mechanical tensile bending strains. The flexible switches shows significant/negligible performance enhancement on strains under on/off states from dc to 10 GHz. Furthermore, an RF/microwave strain equivalent circuit model is developed and reveals the most influential factors, and un-proportional device parameters change with bending strains. The study demonstrates that flexible microwave single-crystal SiNM switches, as a simple circuit example towards the goal of flexible monolithic microwave integrated circuits, can be properly operated and modeled under mechanical bending conditions.

  7. Plasma-deposited fluoropolymer film mask for local porous silicon formation

    PubMed Central

    2012-01-01

    The study of an innovative fluoropolymer masking layer for silicon anodization is proposed. Due to its high chemical resistance to hydrofluoric acid even under anodic bias, this thin film deposited by plasma has allowed the formation of deep porous silicon regions patterned on the silicon wafer. Unlike most of other masks, fluoropolymer removal after electrochemical etching is rapid and does not alter the porous layer. Local porous regions were thus fabricated both in p+-type and low-doped n-type silicon substrates. PMID:22734507

  8. Helium ion beam induced electron emission from insulating silicon nitride films under charging conditions

    NASA Astrophysics Data System (ADS)

    Petrov, Yu. V.; Anikeva, A. E.; Vyvenko, O. F.

    2018-06-01

    Secondary electron emission from thin silicon nitride films of different thicknesses on silicon excited by helium ions with energies from 15 to 35 keV was investigated in the helium ion microscope. Secondary electron yield measured with Everhart-Thornley detector decreased with the irradiation time because of the charging of insulating films tending to zero or reaching a non-zero value for relatively thick or thin films, respectively. The finiteness of secondary electron yield value, which was found to be proportional to electronic energy losses of the helium ion in silicon substrate, can be explained by the electron emission excited from the substrate by the helium ions. The method of measurement of secondary electron energy distribution from insulators was suggested, and secondary electron energy distribution from silicon nitride was obtained.

  9. Method of forming crystalline silicon devices on glass

    DOEpatents

    McCarthy, A.M.

    1995-03-21

    A method is disclosed for fabricating single-crystal silicon microelectronic components on a silicon substrate and transferring same to a glass substrate. This is achieved by utilizing conventional silicon processing techniques for fabricating components of electronic circuits and devices on bulk silicon, wherein a bulk silicon surface is prepared with epitaxial layers prior to the conventional processing. The silicon substrate is bonded to a glass substrate and the bulk silicon is removed leaving the components intact on the glass substrate surface. Subsequent standard processing completes the device and circuit manufacturing. This invention is useful in applications requiring a transparent or insulating substrate, particularly for display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard electronics, and high temperature electronics. 7 figures.

  10. Metallic coatings on silicon substrates, and methods of forming metallic coatings on silicon substrates

    DOEpatents

    Branagan, Daniel J [Idaho Falls, ID; Hyde, Timothy A [Idaho Falls, ID; Fincke, James R [Los Alamos, NM

    2008-03-11

    The invention includes methods of forming a metallic coating on a substrate which contains silicon. A metallic glass layer is formed over a silicon surface of the substrate. The invention includes methods of protecting a silicon substrate. The substrate is provided within a deposition chamber along with a deposition target. Material from the deposition target is deposited over at least a portion of the silicon substrate to form a protective layer or structure which contains metallic glass. The metallic glass comprises iron and one or more of B, Si, P and C. The invention includes structures which have a substrate containing silicon and a metallic layer over the substrate. The metallic layer contains less than or equal to about 2 weight % carbon and has a hardness of at least 9.2 GPa. The metallic layer can have an amorphous microstructure or can be devitrified to have a nanocrystalline microstructure.

  11. Method for fabricating an ultra-low expansion mask blank having a crystalline silicon layer

    DOEpatents

    Cardinale, Gregory F.

    2002-01-01

    A method for fabricating masks for extreme ultraviolet lithography (EUVL) using Ultra-Low Expansion (ULE) substrates and crystalline silicon. ULE substrates are required for the necessary thermal management in EUVL mask blanks, and defect detection and classification have been obtained using crystalline silicon substrate materials. Thus, this method provides the advantages for both the ULE substrate and the crystalline silicon in an Extreme Ultra-Violet (EUV) mask blank. The method is carried out by bonding a crystalline silicon wafer or member to a ULE wafer or substrate and thinning the silicon to produce a 5-10 .mu.m thick crystalline silicon layer on the surface of the ULE substrate. The thinning of the crystalline silicon may be carried out, for example, by chemical mechanical polishing and if necessary or desired, oxidizing the silicon followed by etching to the desired thickness of the silicon.

  12. Simultaneous dual-functioning InGaN/GaN multiple-quantum-well diode for transferrable optoelectronics

    NASA Astrophysics Data System (ADS)

    Shi, Zheng; Yuan, Jialei; Zhang, Shuai; Liu, Yuhuai; Wang, Yongjin

    2017-10-01

    We propose a wafer-level procedure for the fabrication of 1.5-mm-diameter dual functioning InGaN/GaN multiple-quantum-well (MQW) diodes on a GaN-on-silicon platform for transferrable optoelectronics. Nitride semiconductor materials are grown on (111) silicon substrates with intermediate Al-composition step-graded buffer layers, and membrane-type MQW-diode architectures are obtained by a combination of silicon removal and III-nitride film backside thinning. Suspended MQW-diodes are directly transferred from silicon to foreign substrates such as metal, glass and polyethylene terephthalate by mechanically breaking the support beams. The transferred MQW-diodes display strong electroluminescence under current injection and photodetection under light irradiation. Interestingly, they demonstrate a simultaneous light-emitting light-detecting function, endowing the 1.5-mm-diameter MQW-diode with the capability of producing transferrable optoelectronics for adjustable displays, wearable optical sensors, multifunctional energy harvesting, flexible light communication and monolithic photonic circuit.

  13. A Substrate Bias Effect on Recovery of the Threshold Voltage Shift of Amorphous Silicon Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Han, Chang-Wook; Han, Min-Koo; Choi, Nack-Bong; Kim, Chang-Dong; Kim, Ki-Yong; Chung, In-Jae

    2007-07-01

    Hydrogenated amorphous silicon (a-Si:H) thin-film transistors (TFTs) were fabricated on a flexible stainless-steel (SS) substrate. The stability of the a-Si:H TFT is a key issue for active matrix organic light-emitting diodes (AMOLEDs). The drain current decreases because of the threshold voltage shift (Δ VTH) during OLED driving. A negative voltage at a floated gate can be induced by a negative substrate bias through a capacitor between the substrate and the gate electrode without additional circuits. The negative voltage biased at the SS substrate can recover Δ VTH and reduced drain current of the driving TFT. The VTH of the TFT increased by 2.3 V under a gate bias of +15 V and a drain bias of +15 V at 65 °C applied for 3,500 s. The VTH decreased by -2.3 V and the drain current recovered 97% of its initial value under a substrate bias of -23 V at 65 °C applied for 3,500 s.

  14. Ion irradiation of the native oxide/silicon surface increases the thermal boundary conductance across aluminum/silicon interfaces

    NASA Astrophysics Data System (ADS)

    Gorham, Caroline S.; Hattar, Khalid; Cheaito, Ramez; Duda, John C.; Gaskins, John T.; Beechem, Thomas E.; Ihlefeld, Jon F.; Biedermann, Laura B.; Piekos, Edward S.; Medlin, Douglas L.; Hopkins, Patrick E.

    2014-07-01

    The thermal boundary conductance across solid-solid interfaces can be affected by the physical properties of the solid boundary. Atomic composition, disorder, and bonding between materials can result in large deviations in the phonon scattering mechanisms contributing to thermal boundary conductance. Theoretical and computational studies have suggested that the mixing of atoms around an interface can lead to an increase in thermal boundary conductance by creating a region with an average vibrational spectra of the two materials forming the interface. In this paper, we experimentally demonstrate that ion irradiation and subsequent modification of atoms at solid surfaces can increase the thermal boundary conductance across solid interfaces due to a change in the acoustic impedance of the surface. We measure the thermal boundary conductance between thin aluminum films and silicon substrates with native silicon dioxide layers that have been subjected to proton irradiation and post-irradiation surface cleaning procedures. The thermal boundary conductance across the Al/native oxide/Si interfacial region increases with an increase in proton dose. Supported with statistical simulations, we hypothesize that ion beam mixing of the native oxide and silicon substrate within ˜2.2nm of the silicon surface results in the observed increase in thermal boundary conductance. This ion mixing leads to the spatial gradation of the silicon native oxide into the silicon substrate, which alters the acoustic impedance and vibrational characteristics at the interface of the aluminum film and native oxide/silicon substrate. We confirm this assertion with picosecond acoustic analyses. Our results demonstrate that under specific conditions, a "more disordered and defected" interfacial region can have a lower resistance than a more "perfect" interface.

  15. Porous silicon-copper phthalocyanine heterostructure based photoelectrochemical cell

    NASA Astrophysics Data System (ADS)

    A. Betty, C.; N, Padma; Arora, Shalav; Survaiya, Parth; Bhattacharya, Debarati; Choudhury, Sipra; Roy, Mainak

    2018-01-01

    A hybrid solar cell consisting of nanostructured p-type porous silicon (PS) deposited with visible light absorbing dye, Copper Phthalocyanine (CuPc) has been prepared in the photoelectrochemical cell configuration. P-type PS with (100) and (111) orientations which have different porous structures were used for studying the effects of the substrate morphology on the cell efficiency. Heterostructures were prepared by depositing three different thicknesses of CuPc for optimizing the cell efficiency. Structural and surface characterizations were studied using XRD, Raman, SEM and AFM on the PS-CuPc heterostructure. XRD spectrum on both plane silicon and porous silicon indicates the π-π stacking of CuPc with increased disorder for CuPc film on porous silicon. Electrochemical characterizations under sun light type radiation have been carried out to evaluate the photosensitivity of the heterostructure. Between the two different substrates, (100) PS gives better photocurrent, possibly due to the higher surface area and lower series resistance of the structure. Among the (100) PS substrates, (100) PS with 15 nm CuPc film gives Voc more than 1 V resulting in higher efficiency for the cell. The study suggests the scope for optimization of solar cell efficiency using various combinations of the substrate structure and thickness of the sensitizing layer.

  16. Observation of a photoinduced, resonant tunneling effect in a carbon nanotube–silicon heterojunction

    PubMed Central

    Ambrosio, Antonio; Boscardin, Maurizio; Castrucci, Paola; Crivellari, Michele; Cilmo, Marco; De Crescenzi, Maurizio; De Nicola, Francesco; Fiandrini, Emanuele; Grossi, Valentina; Maddalena, Pasqualino; Passacantando, Maurizio; Santucci, Sandro; Scarselli, Manuela; Valentini, Antonio

    2015-01-01

    Summary A significant resonant tunneling effect has been observed under the 2.4 V junction threshold in a large area, carbon nanotube–silicon (CNT–Si) heterojunction obtained by growing a continuous layer of multiwall carbon nanotubes on an n-doped silicon substrate. The multiwall carbon nanostructures were grown by a chemical vapor deposition (CVD) technique on a 60 nm thick, silicon nitride layer, deposited on an n-type Si substrate. The heterojunction characteristics were intensively studied on different substrates, resulting in high photoresponsivity with a large reverse photocurrent plateau. In this paper, we report on the photoresponsivity characteristics of the device, the heterojunction threshold and the tunnel-like effect observed as a function of applied voltage and excitation wavelength. The experiments are performed in the near-ultraviolet to near-infrared wavelength range. The high conversion efficiency of light radiation into photoelectrons observed with the presented layout allows the device to be used as a large area photodetector with very low, intrinsic dark current and noise. PMID:25821710

  17. Observation of a photoinduced, resonant tunneling effect in a carbon nanotube-silicon heterojunction.

    PubMed

    Aramo, Carla; Ambrosio, Antonio; Ambrosio, Michelangelo; Boscardin, Maurizio; Castrucci, Paola; Crivellari, Michele; Cilmo, Marco; De Crescenzi, Maurizio; De Nicola, Francesco; Fiandrini, Emanuele; Grossi, Valentina; Maddalena, Pasqualino; Passacantando, Maurizio; Santucci, Sandro; Scarselli, Manuela; Valentini, Antonio

    2015-01-01

    A significant resonant tunneling effect has been observed under the 2.4 V junction threshold in a large area, carbon nanotube-silicon (CNT-Si) heterojunction obtained by growing a continuous layer of multiwall carbon nanotubes on an n-doped silicon substrate. The multiwall carbon nanostructures were grown by a chemical vapor deposition (CVD) technique on a 60 nm thick, silicon nitride layer, deposited on an n-type Si substrate. The heterojunction characteristics were intensively studied on different substrates, resulting in high photoresponsivity with a large reverse photocurrent plateau. In this paper, we report on the photoresponsivity characteristics of the device, the heterojunction threshold and the tunnel-like effect observed as a function of applied voltage and excitation wavelength. The experiments are performed in the near-ultraviolet to near-infrared wavelength range. The high conversion efficiency of light radiation into photoelectrons observed with the presented layout allows the device to be used as a large area photodetector with very low, intrinsic dark current and noise.

  18. Thin Film Transistors On Plastic Substrates

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.; Sigmon, Thomas W.; Aceves, Randy C.

    2004-01-20

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250.degree. C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.

  19. Changes in size of nano phase iron inclusions with temperature: Experimental simulation of space weathering effects at high temperature

    NASA Astrophysics Data System (ADS)

    Rout, S. S.; Moroz, L. V.; Stockhoff, T.; Baither, D.; Bischoff, A.; Hiesinger, H.

    2011-10-01

    The mean size of nano phase iron inclusions (npFe0), produced during the space weathering of iron-rich regolith of airless solar system bodies, significantly affects visible and near-infrared (VNIR) spectra. To experimentally simulate the change in the size of npFe0 inclusions with increasing temperature, we produced sputter film deposits on a silicon dioxide substrate by sputtering a pressed pellet prepared from fine olivine powder using 600V Ar+ ions. This silicon dioxide substrate covered with the deposit was later heated to 450°C for 24 hours in an oven under argon atmosphere. Initial TEM analysis of the unheated silicon dioxide substrate showed the presence of a ~ 50 nm-thick layer of an amorphous deposit with nano clusters that has not yet been identified.

  20. Experimental study on surface wrinkling of silicon monoxide film on compliant substrate under thermally induced loads

    NASA Astrophysics Data System (ADS)

    Li, Chuanwei; Kong, Yingxiao; Jiang, Wenchong; Wang, Zhiyong; Li, Linan; Wang, Shibin

    2017-06-01

    The wrinkling of a silicon monoxide thin film on a compliant poly(dimethylsiloxane) (PDMS) substrate structure was experimentally investigated in this study. The self-expansion effect of PDMS during film deposition was utilized to impose a pretensile strain on the structure through a specially made fixture. A laser scanning confocal microscope (LSCM) system with an in situ heating stage was employed for the real-time measurement. The Young’s modulus of the silicon monoxide thin film as well as the PDMS substrate was measured on the basis of the elasticity theory. Moreover, the effects of temperature variations on geometric parameters in the postbuckling state, such as wavelength and amplitude, were analyzed. It was proved that wavelength is relatively immune to thermal loads, while amplitude is much more sensitive.

  1. Silicon on insulator self-aligned transistors

    DOEpatents

    McCarthy, Anthony M.

    2003-11-18

    A method for fabricating thin-film single-crystal silicon-on-insulator (SOI) self-aligned transistors. Standard processing of silicon substrates is used to fabricate the transistors. Physical spaces, between the source and gate, and the drain and gate, introduced by etching the polysilicon gate material, are used to provide connecting implants (bridges) which allow the transistor to perform normally. After completion of the silicon substrate processing, the silicon wafer is bonded to an insulator (glass) substrate, and the silicon substrate is removed leaving the transistors on the insulator (glass) substrate. Transistors fabricated by this method may be utilized, for example, in flat panel displays, etc.

  2. RF performances of inductors integrated on localized p+-type porous silicon regions

    PubMed Central

    2012-01-01

    To study the influence of localized porous silicon regions on radiofrequency performances of passive devices, inductors were integrated on localized porous silicon regions, full porous silicon sheet, bulk silicon and glass substrates. In this work, a novel strong, resistant fluoropolymer mask is introduced to localize the porous silicon on the silicon wafer. Then, the quality factors and resonant frequencies obtained with the different substrates are presented. A first comparison is done between the performances of inductors integrated on same-thickness localized and full porous silicon sheet layers. The effect of the silicon regions in the decrease of performances of localized porous silicon is discussed. Then, the study shows that the localized porous silicon substrate significantly reduces losses in comparison with high-resistivity silicon or highly doped silicon bulks. These results are promising for the integration of both passive and active devices on the same silicon/porous silicon hybrid substrate. PMID:23009746

  3. Structural Evolution of Low-Molecular-Weight Poly(ethylene oxide)-block-polystyrene Diblock Copolymer Thin Film

    PubMed Central

    Huang, Xiaohua

    2013-01-01

    The structural evolution of low-molecular-weight poly(ethylene oxide)-block-polystyrene (PEO-b-PS) diblock copolymer thin film with various initial film thicknesses on silicon substrate under thermal annealing was investigated by atomic force microscopy, optical microscopy, and contact angle measurement. At film thickness below half of the interlamellar spacing of the diblock copolymer (6.2 nm), the entire silicon is covered by a polymer brush with PEO blocks anchored on the Si substrate due to the substrate-induced effect. When the film is thicker than 6.2 nm, a dense polymer brush which is equal to half of an interlamellar layer was formed on the silicon, while the excess material dewet this layer to form droplets. The droplet surface was rich with PS block and the PEO block crystallized inside the bigger droplet to form spherulite. PMID:24302862

  4. Determination of the Wetting Angle of Germanium and Germanium-Silicon Melts on Different Substrate Materials

    NASA Technical Reports Server (NTRS)

    Kaiser, Natalie; Croell, Arne; Szofran, F. R.; Cobb. S. D.; Dold, P.; Benz, K. W.

    1999-01-01

    During Bridgman growth of semiconductors detachment of the crystal and the melt meniscus has occasionally been observed, mainly under microgravity (microg) conditions. An important factor for detached growth is the wetting angle of the melt with the crucible material. High contact angles are more likely to result in detachment of the growing crystal from the ampoule wall. In order to achieve detached growth of germanium (Ge) and germanium-silicon (GeSi) crystals under 1g and microg conditions, sessile drop measurements were performed to determine the most suitable ampoule material as well as temperature dependence of the surface tension for GeSi. Sapphire, fused quartz, glassy carbon, graphite, SiC, pyrolytic Boron Nitride (pBN), AIN, and diamond were used as substrates. Furthermore, different cleaning procedures and surface treatments (etching, sandblasting, etc.) of the same substrate material and their effect on the wetting behavior were studied during these experiments. pBN and AIN substrates exhibited the highest contact angles with values around 170 deg.

  5. Nanostructure iron-silicon thin film deposition using plasma focus device

    NASA Astrophysics Data System (ADS)

    Kotb, M.; Saudy, A. H.; Hassaballa, S.; Eloker, M. M.

    2013-03-01

    The presented study in this paper reports the deposition of nano-structure iron-silicon thin film on a glass substrate using 3.3 KJ Mather-type plasma focus device. The iron-silicon powder was put on the top of hollow copper anode electrode. The deposition was done under different experimental conditions such as numbers of electric discharge shots and angular position of substrate. The film samples were exposed to energetic argon ions generated by plasma focus device at different distances from the top of the central electrode. The exposed samples were then analyzed for their structure and optical properties using X-ray diffraction (XRD) and UV-visible spectroscopy. The structure of iron-silicon thin films deposited using plasma focus device depends on the distance from the anode, the number of focus deposition shots and the angular position of the sample

  6. Estimation of the efficiency of the introduction of a porous layer into a silicon-on-sapphire structure substrate to enhance the reliability of devices under irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleksandrov, P. A., E-mail: Alexandrov-PA@nrcki.ru; Baranova, E. K.; Budaragin, V. V.

    2016-08-15

    We investigate the efficiency of the introduction of a porous layer into the substrate of a silicon-onsapphire structure by the implantation of He ions to enhance the radiation resistance of devices. The properties of the introduced layer and its parameters affecting the concentration of minority charge carriers generated by irradiation are analyzed. The reported results of the analysis and calculations can be used to optimize He-ion implantation conditions during the formation of a porous layer.

  7. Study of surface reaction during selective epitaxy growth of silicon by thermodynamic analysis and density functional theory calculation

    NASA Astrophysics Data System (ADS)

    Mayangsari, Tirta R.; Yusup, Luchana L.; Park, Jae-Min; Blanquet, Elisabeth; Pons, Michel; Jung, Jongwan; Lee, Won-Jun

    2017-06-01

    We modeled and simulated the surface reaction of silicon precursor on different surfaces by thermodynamic analysis and density functional theory calculation. We considered SiH2Cl2 and argon as the silicon precursor and the carrier gas without etchant gas. First, the equilibrium composition of both gaseous and solid species was analyzed as a function of process temperature. SiCl4 is the dominant gaseous species at below 750 °C, and SiCl2 and HCl are dominant at higher temperatures, and the yield of silicon decreases with increasing temperature over 700 °C due to the etching of silicon by HCl. The yield of silicon for SiO2 substrate is lower than that for silicon substrate, especially at 1000 °C or higher. Zero deposition yield and the etching of SiO2 substrate at higher temperatures leads to selective growth on silicon substrate. Next, the adsorption and the reaction of silicon precursor was simulated on H-terminated silicon (100) substrate and on OH-terminated β-cristobalite substrate. The adsorption and reaction of a SiH2Cl2 molecule are spontaneous for both Si and SiO2 substrates. However, the energy barrier for reaction is very small (6×10-4 eV) for Si substrate, whereas the energy barrier is high (0.33 eV) for SiO2 substrate. This makes the differences in growth rate, which also supports the experimental results in literature.

  8. Epitaxial growth of silicon for layer transfer

    DOEpatents

    Teplin, Charles; Branz, Howard M

    2015-03-24

    Methods of preparing a thin crystalline silicon film for transfer and devices utilizing a transferred crystalline silicon film are disclosed. The methods include preparing a silicon growth substrate which has an interface defining substance associated with an exterior surface. The methods further include depositing an epitaxial layer of silicon on the silicon growth substrate at the surface and separating the epitaxial layer from the substrate substantially along the plane or other surface defined by the interface defining substance. The epitaxial layer may be utilized as a thin film of crystalline silicon in any type of semiconductor device which requires a crystalline silicon layer. In use, the epitaxial transfer layer may be associated with a secondary substrate.

  9. ZnO buffer layer for metal films on silicon substrates

    DOEpatents

    Ihlefeld, Jon

    2014-09-16

    Dramatic improvements in metallization integrity and electroceramic thin film performance can be achieved by the use of the ZnO buffer layer to minimize interfacial energy between metallization and adhesion layers. In particular, the invention provides a substrate metallization method utilizing a ZnO adhesion layer that has a high work of adhesion, which in turn enables processing under thermal budgets typically reserved for more exotic ceramic, single-crystal, or metal foil substrates. Embodiments of the present invention can be used in a broad range of applications beyond ferroelectric capacitors, including microelectromechanical systems, micro-printed heaters and sensors, and electrochemical energy storage, where integrity of metallized silicon to high temperatures is necessary.

  10. Anti-reflective device having an anti-reflective surface formed of silicon spikes with nano-tips

    NASA Technical Reports Server (NTRS)

    Bae, Youngsam (Inventor); Manohara, Harish (Inventor); Mobasser, Sohrab (Inventor); Lee, Choonsup (Inventor)

    2011-01-01

    Described is a device having an anti-reflection surface. The device comprises a silicon substrate with a plurality of silicon spikes formed on the substrate. A first metallic layer is formed on the silicon spikes to form the anti-reflection surface. The device further includes an aperture that extends through the substrate. A second metallic layer is formed on the substrate. The second metallic layer includes a hole that is aligned with the aperture. A spacer is attached with the silicon substrate to provide a gap between an attached sensor apparatus. Therefore, operating as a Micro-sun sensor, light entering the hole passes through the aperture to be sensed by the sensor apparatus. Additionally, light reflected by the sensor apparatus toward the first side of the silicon substrate is absorbed by the first metallic layer and silicon spikes and is thereby prevented from being reflected back toward the sensor apparatus.

  11. Anti- reflective device having an anti-reflection surface formed of silicon spikes with nano-tips

    NASA Technical Reports Server (NTRS)

    Bae, Youngsman (Inventor); Mooasser, Sohrab (Inventor); Manohara, Harish (Inventor); Lee, Choonsup (Inventor); Bae, Kungsam (Inventor)

    2009-01-01

    Described is a device having an anti-reflection surface. The device comprises a silicon substrate with a plurality of silicon spikes formed on the substrate. A first metallic layer is formed on the silicon spikes to form the anti-reflection surface. The device further includes an aperture that extends through the substrate. A second metallic layer is formed on the substrate. The second metallic layer includes a hole that is aligned with the aperture. A spacer is attached with the silicon substrate to provide a gap between an attached sensor apparatus. Therefore, operating as a Micro-sun sensor, light entering the hole passes through the aperture to be sensed by the sensor apparatus. Additionally, light reflected by the sensor apparatus toward the first side of the silicon substrate is absorbed by the first metallic layer and silicon spikes and is thereby prevented from being reflected back toward the sensor apparatus.

  12. Structural and elastoplastic properties of β -Ga2O3 films grown on hybrid SiC/Si substrates

    NASA Astrophysics Data System (ADS)

    Osipov, A. V.; Grashchenko, A. S.; Kukushkin, S. A.; Nikolaev, V. I.; Osipova, E. V.; Pechnikov, A. I.; Soshnikov, I. P.

    2018-04-01

    Structural and mechanical properties of gallium oxide films grown on (001), (011) and (111) silicon substrates with a buffer layer of silicon carbide are studied. The buffer layer was fabricated by the atom substitution method, i.e., one silicon atom per unit cell in the substrate was substituted by a carbon atom by chemical reaction with carbon monoxide. The surface and bulk structure properties of gallium oxide films have been studied by atomic-force microscopy and scanning electron microscopy. The nanoindentation method was used to investigate the elastoplastic characteristics of gallium oxide, and also to determine the elastic recovery parameter of the films under study. The ultimate tensile strength, hardness, elastic stiffness constants, elastic compliance constants, Young's modulus, linear compressibility, shear modulus, Poisson's ratio and other characteristics of gallium oxide have been calculated by quantum chemistry methods based on the PBESOL functional. It is shown that all these properties of gallium oxide are essentially anisotropic. The calculated values are compared with experimental data. We conclude that a change in the silicon orientation leads to a significant reorientation of gallium oxide.

  13. Ceramic with preferential oxygen reactive layer

    NASA Technical Reports Server (NTRS)

    Wang, Hongyu (Inventor); Luthra, Krishan Lal (Inventor)

    2001-01-01

    An article comprises a silicon-containing substrate and an external environmental/thermal barrier coating. The external environmental/thermal barrier coating is permeable to diffusion of an environmental oxidant and the silicon-containing substrate is oxidizable by reaction with oxidant to form at least one gaseous product. The article comprises an intermediate layer/coating between the silicon-containing substrate and the environmental/thermal barrier coating that is oxidizable to a nongaseous product by reaction with the oxidant in preference to reaction of the silicon-containing substrate with the oxidant. A method of forming an article, comprises forming a silicon-based substrate that is oxidizable by reaction with oxidant to at least one gaseous product and applying an intermediate layer/coating onto the substrate, wherein the intermediate layer/coating is oxidizable to a nongaseous product by reaction with the oxidant in preference to reaction of the silicon-containing substrate with the oxidant.

  14. Chemical multisensors with selective encapsulation of ion-selective membranes

    NASA Astrophysics Data System (ADS)

    Schwager, Felix J.; Bousse, Luc J.; Bowman, Lyn; Meindl, J. D.

    Chemical sensors fabricated with simultaneous wafer scale encapsulation of ion selective electrode mambranes are described. The sensors are miniature ion selective electrodes in chambers located on a silicon substrate. These chambers are made by anodically bonding to the silicon a no. 7740 pyrex glass wafer in which cavities were drilled. Pores with dimensions selectable from 50 microns upwards are opened in the roofs of the chambers by drilling with a CO2 laser. Each sensor die contains four cavities which are filled under reduced pressure with liquid membrane material which is subsequently polymerized. The transducers on the cavity floor are Ag/AgCl electrodes. Interconnects between the sensor chambers on each die and bonding pads are made in the silicon substrate.

  15. Back contact to film silicon on metal for photovoltaic cells

    DOEpatents

    Branz, Howard M.; Teplin, Charles; Stradins, Pauls

    2013-06-18

    A crystal oriented metal back contact for solar cells is disclosed herein. In one embodiment, a photovoltaic device and methods for making the photovoltaic device are disclosed. The photovoltaic device includes a metal substrate with a crystalline orientation and a heteroepitaxial crystal silicon layer having the same crystal orientation of the metal substrate. A heteroepitaxial buffer layer having the crystal orientation of the metal substrate is positioned between the substrate and the crystal silicon layer to reduce diffusion of metal from the metal foil into the crystal silicon layer and provide chemical compatibility with the heteroepitaxial crystal silicon layer. Additionally, the buffer layer includes one or more electrically conductive pathways to electrically couple the crystal silicon layer and the metal substrate.

  16. Preparation of composite micro/nano structure on the silicon surface by reactive ion etching: Enhanced anti-reflective and hydrophobic properties

    NASA Astrophysics Data System (ADS)

    Zeng, Yu; Fan, Xiaoli; Chen, Jiajia; He, Siyu; Yi, Zao; Ye, Xin; Yi, Yougen

    2018-05-01

    A silicon substrate with micro-pyramid structure (black silicon) is prepared by wet chemical etching and then subjected to reactive ion etching (RIE) in the mixed gas condition of SF6, CHF3 and He. We systematically study the impacts of flow rates of SF6, CHF3 and He, the etching pressure and the etching time on the surface morphology and reflectivity through various characterizations. Meanwhile, we explore and obtain the optimal combination of parameters for the preparation of composite structure that match the RIE process based on the basis of micro-pyramid silicon substrate. The composite sample prepared under the optimum parameters exhibits excellent anti-reflective performance, hydrophobic, self-cleaning and anti-corrosive properties. Based on the above characteristics, the composite micro/nano structure can be applied to solar cells, photodetectors, LEDs, outdoor devices and other important fields.

  17. Development of Si(1-x)Ge(x) technology for microwave sensing applications

    NASA Technical Reports Server (NTRS)

    Mena, Rafael A.; Taub, Susan R.; Alterovitz, Samuel A.; Young, Paul E.; Simons, Rainee N.; Rosenfeld, David

    1993-01-01

    The progress for the first year of the work done under the Director's Discretionary Fund (DDF) research project entitled, 'Development of Si(1-x)Ge(x) Technology for Microwave Sensing Applications.' This project includes basic material characterization studies of silicon-germanium (SiGe), device processing on both silicon (Si) and SiGe substrates, and microwave characterization of transmission lines on silicon substrates. The material characterization studies consisted of ellipsometric and magneto-transport measurements and theoretical calculations of the SiGe band-structure. The device fabrication efforts consisted of establishing SiGe device processing capabilities in the Lewis cleanroom. The characterization of microwave transmission lines included studying the losses of various coplanar transmission lines and the development of transitions on silicon. Each part of the project is discussed individually and the findings for each part are presented. Future directions are also discussed.

  18. Surface treatment effect on Si (111) substrate for carbon deposition using DC unbalanced magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aji, A. S., E-mail: aji.ravazes70@gmail.com; Sahdan, M. F.; Hendra, I. B.

    In this work, we studied the effect of HF treatment in silicon (111) substrate surface for depositing thin layer carbon. We performed the deposition of carbon by using DC Unbalanced Magnetron Sputtering with carbon pallet (5% Fe) as target. From SEM characterization results it can be concluded that the carbon layer on HF treated substrate is more uniform than on substrate without treated. Carbon deposition rate is higher as confirmed by AFM results if the silicon substrate is treated by HF solution. EDAX characterization results tell that silicon (111) substrate with HF treatment have more carbon fraction than substrate withoutmore » treatment. These results confirmed that HF treatment on silicon Si (111) substrates could enhance the carbon deposition by using DC sputtering. Afterward, the carbon atomic arrangement on silicon (111) surface is studied by performing thermal annealing process to 900 °C. From Raman spectroscopy results, thin film carbon is not changing until 600 °C thermal budged. But, when temperature increase to 900 °C, thin film carbon is starting to diffuse to silicon (111) substrates.« less

  19. Formation of composite polyacrylamide and silicone substrates for independent control of stiffness and strain.

    PubMed

    Simmons, Chelsey S; Ribeiro, Alexandre J S; Pruitt, Beth L

    2013-02-21

    Cells that line major tissues in the body such as blood vessels, lungs and gastrointestinal tract experience deformation from mechanical strain with our heartbeat, breathing, and other daily activities. Tissues also remodel in both development and disease, changing their mechanical properties. Taken together, cells can experience vastly different mechanical cues resulting from the combination of these interdependent stimuli. To date, most studies of cellular mechanotransduction have been limited to assays in which variations in substrate stiffness and strain were not combined. Here, we address this technological gap by implementing a method that can simultaneously tune both substrate stiffness and mechanical strain. Substrate stiffness is controlled with different monomer and crosslinker ratios during polyacrylamide gel polymerization, and strain is transferred from the underlying silicone platform when stretched. We demonstrate this platform with polyacrylamide gels with elastic moduli at 6 kPa and 20 kPa in combination with two different silicone formulations. The gels remain attached with up to 50% applied strains. To validate strain transfer through the gels into cells, we employ particle-tracking methods and observe strain transmission via cell morphological changes.

  20. Formation of composite polyacrylamide and silicone substrates for independent control of stiffness and strain

    PubMed Central

    Simmons, Chelsey S.; Ribeiro, Alexandre J. S.; Pruitt, Beth L.

    2013-01-01

    Cells that line major tissues in the body such as blood vessels, lungs and gastrointestinal tract experience deformation from mechanical strain with our heartbeat, breathing, and other daily activities. Tissues also remodel in both development and disease, changing their mechanical properties. Taken together, cells can experience vastly different mechanical cues resulting from the combination of these interdependent stimuli. To date, most studies of cellular mechanotransduction have been limited to assays in which variations in substrate stiffness and strain were not combined. Here, we address this technological gap by implementing a method that can simultaneously tune both substrate stiffness and mechanical strain. Substrate stiffness is controlled with different monomer and crosslinker ratios during polyacrylamide gel polymerization, and strain is transferred from the underlying silicone platform when stretched. We demonstrate this platform with polyacrylamide gels with elastic moduli at 6 kPa and 20 kPa in combination with two different silicone formulations. The gels remain attached with up to 50% applied strains. To validate strain transfer through the gels into cells, we employ particle-tracking methods and observe strain transmission via cell morphological changes. PMID:23287818

  1. Graphene heat dissipating structure

    DOEpatents

    Washburn, Cody M.; Lambert, Timothy N.; Wheeler, David R.; Rodenbeck, Christopher T.; Railkar, Tarak A.

    2017-08-01

    Various technologies presented herein relate to forming one or more heat dissipating structures (e.g., heat spreaders and/or heat sinks) on a substrate, wherein the substrate forms part of an electronic component. The heat dissipating structures are formed from graphene, with advantage being taken of the high thermal conductivity of graphene. The graphene (e.g., in flake form) is attached to a diazonium molecule, and further, the diazonium molecule is utilized to attach the graphene to material forming the substrate. A surface of the substrate is treated to comprise oxide-containing regions and also oxide-free regions having underlying silicon exposed. The diazonium molecule attaches to the oxide-free regions, wherein the diazonium molecule bonds (e.g., covalently) to the exposed silicon. Attachment of the diazonium plus graphene molecule is optionally repeated to enable formation of a heat dissipating structure of a required height.

  2. Transfer of Graphene Layers Grown on SiC Wafers to Other Substrates and Their Integration into Field Effect Transistors

    NASA Astrophysics Data System (ADS)

    Unarunotai, Sakulsuk; Murata, Yuya; Chialvo, Cesar; Kim, Hoon-Sik; MacLaren, Scott; Mason, Nadya; Petrov, Ivan; Rogers, John

    2010-03-01

    An approach to produce graphene films by epitaxial growth on silicon carbide substrate is promising, but its current implementation requires the use of SiC as the device substrate. We present a simple method for transferring epitaxial sheets of graphene on SiC to other substrates. The graphene was grown on the (0001) face of 6H-SiC by thermal annealing in a hydrogen atmosphere. Transfer was accomplished using a peeling process with a bilayer film of Gold/polyimide, to yield graphene with square millimeters of coverage on the target substrate. Back gated field-effect transistors fabricated on oxidized silicon substrates with Cr/Au as source-drain electrodes exhibited ambipolar characteristics with hole mobilities of ˜100 cm^2/V-s, and negligible influence of resistance at the contacts. This work was supported by the U.S. DOE, under Award No. DE-FG02-07ER46471, through the Frederick Seitz Materials Research Laboratory at the University of Illinois at Urbana-Champaign.

  3. Resistivity and Radio-Frequency Properties of Two-Generation Trap-Rich Silicon-on-Insulator Substrates

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Chang, Yong-Wei; Gao, Nan; Su, Xin; Dong, YeMin; Fei, Lu; Wei, Xing; Wang, Xi

    2018-04-01

    Not Available Supported by the National Natural Science Foundation of China under Grant Nos 61376021 and 61674159, and the Program of Shanghai Academic/Technology Research Leader under Grant No 17XD1424500.

  4. Deposition method for producing silicon carbide high-temperature semiconductors

    DOEpatents

    Hsu, George C.; Rohatgi, Naresh K.

    1987-01-01

    An improved deposition method for producing silicon carbide high-temperature semiconductor material comprising placing a semiconductor substrate composed of silicon carbide in a fluidized bed silicon carbide deposition reactor, fluidizing the bed particles by hydrogen gas in a mildly bubbling mode through a gas distributor and heating the substrate at temperatures around 1200.degree.-1500.degree. C. thereby depositing a layer of silicon carbide on the semiconductor substrate.

  5. Front contact solar cell with formed emitter

    DOEpatents

    Cousins, Peter John

    2014-11-04

    A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

  6. Front contact solar cell with formed emitter

    DOEpatents

    Cousins, Peter John [Menlo Park, CA

    2012-07-17

    A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

  7. Polyelectrolyte multilayer-assisted fabrication of non-periodic silicon nanocolumn substrates for cellular interface applications

    NASA Astrophysics Data System (ADS)

    Lee, Seyeong; Kim, Dongyoon; Kim, Seong-Min; Kim, Jeong-Ah; Kim, Taesoo; Kim, Dong-Yu; Yoon, Myung-Han

    2015-08-01

    Recent advances in nanostructure-based biotechnology have resulted in a growing demand for vertical nanostructure substrates with elaborate control over the nanoscale geometry and a high-throughput preparation. In this work, we report the fabrication of non-periodic vertical silicon nanocolumn substrates via polyelectrolyte multilayer-enabled randomized nanosphere lithography. Owing to layer-by-layer deposited polyelectrolyte adhesives, uniformly-separated polystyrene nanospheres were securely attached on large silicon substrates and utilized as masks for the subsequent metal-assisted silicon etching in solution. Consequently, non-periodic vertical silicon nanocolumn arrays were successfully fabricated on a wafer scale, while each nanocolumn geometric factor, such as the diameter, height, density, and spatial patterning, could be fully controlled in an independent manner. Finally, we demonstrate that our vertical silicon nanocolumn substrates support viable cell culture with minimal cell penetration and unhindered cell motility due to the blunt nanocolumn morphology. These results suggest that vertical silicon nanocolumn substrates may serve as a useful cellular interface platform for performing a statistically meaningful number of cellular experiments in the fields of biomolecular delivery, stem cell research, etc.Recent advances in nanostructure-based biotechnology have resulted in a growing demand for vertical nanostructure substrates with elaborate control over the nanoscale geometry and a high-throughput preparation. In this work, we report the fabrication of non-periodic vertical silicon nanocolumn substrates via polyelectrolyte multilayer-enabled randomized nanosphere lithography. Owing to layer-by-layer deposited polyelectrolyte adhesives, uniformly-separated polystyrene nanospheres were securely attached on large silicon substrates and utilized as masks for the subsequent metal-assisted silicon etching in solution. Consequently, non-periodic vertical silicon nanocolumn arrays were successfully fabricated on a wafer scale, while each nanocolumn geometric factor, such as the diameter, height, density, and spatial patterning, could be fully controlled in an independent manner. Finally, we demonstrate that our vertical silicon nanocolumn substrates support viable cell culture with minimal cell penetration and unhindered cell motility due to the blunt nanocolumn morphology. These results suggest that vertical silicon nanocolumn substrates may serve as a useful cellular interface platform for performing a statistically meaningful number of cellular experiments in the fields of biomolecular delivery, stem cell research, etc. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02384j

  8. Solution and interfacial behavior of modified silicone polymers and their interactions with solid substrates

    NASA Astrophysics Data System (ADS)

    Purohit, Parag

    Surface treatment is very important step in many applications such as fabric finishing, coatings, cosmetics and personal care. Silicone polymers are a class of organic/inorganic materials that show unique properties such as weak intermolecular forces and high flexibility enabling even a very high molecular weight chain to achieve optimal orientation on surfaces. Material properties such as softness, repellency, bounciness and friction can therefore be tailored by using appropriately modified silicone polymers. Despite wide applications, the underlying mechanisms of material modification are unknown and tailoring silicones for applications remains mostly empirical. Thus the objective of this research is to understand the solution and interfacial behavior of functionalized silicone polymers, which govern their performance in material modification. Modified silicones are simultaneously hydrophobic and oleophobic in nature and due to this nearly universal non-compatibility, the studies of these polymers present unusual challenges. Due to this incompatible nature, the functionalized silicone polymers were emulsified into O/W emulsions to study their solution and interfacial properties. The colloidal properties such as electrokinetic and droplet distribution of these emulsions are assumed to play an important role in the observed surface and physical properties of solid substrates (in present study, cellulosic substrates) as well the stability of emulsions itself. To understand the effects of modified silicones on cellulosic substrates a variety of techniques such as frictional analysis, scanning electron microscopy and atomic force microscopy that can probe from macro to nano level were used. It is hypothesized that the size distribution and charge of silicone emulsions as well as the physiochemical conditions such as pH, control silicone conformation which in turn affect the modification of the substrate properties. With bimodal droplet distribution of silicone emulsions, the nano-sized droplets can penetrate deeper into the substrate to provide bounciness, whereas macro-sized droplets can coat the top layer leading to friction reduction. It was observed that at pH 5.5 the silicone treatment resulted in charge reversal of fibers as opposed to treatment at pH 9.5. On a macroscopic scale 20% reduction in frictional coefficient of the fabric was observed after treatment with quaternized (cationically modified) silicones as compared to untreated fibers. It was also observed using AFM that the fibrils treated with quaternized silicones are uniform, well stacked and smoother than the untreated fibers. Spectroscopic analysis of treated fibers using Raman spectroscopy indicated a decrease in fiber stress as a function of modification of silicone polymer and the interaction pH. It is concluded that the protonated amine functional silicone (below pH 7) as well as the quaternized silicone interacts with the negatively charged cellulose fibers primarily through electrostatic interactions. It is proposed that this initial surface coating is a uniform thin film which allows further deposition of polymer from the emulsion. It was observed that at high pH the zetapotential of silicone emulsions decreases drastically and the nano emulsions turn turbid. It is proposed that the observed electrophoretic and nephelometric behavior at high pH is due to flocculation of nanosized droplets to micron size, which eventually leads to droplets coalescing and emulsion destabilization. It is also postulated that the nano emulsion possess a critical dilution concentration (CDC), above which dilution leads to rapid coalescence. This critical dilution phase was further confirmed through polarity parameter and excimer formation studies which show significantly different polymer and surfactant microstructures near the CDC. Hence it is concluded that the observed surface properties of the substrate obtained above the CDC are significantly different than those below the CDC. The results reveal the vital role of physiochemical parameters such as pH, droplet size, and concentration on the emulsion stability as well as the observed physical/chemical properties of the substrates.

  9. Application Of Optical Processing For Growth Of Silicon Dioxide

    DOEpatents

    Sopori, Bhushan L.

    1997-06-17

    A process for producing a silicon dioxide film on a surface of a silicon substrate. The process comprises illuminating a silicon substrate in a substantially pure oxygen atmosphere with a broad spectrum of visible and infrared light at an optical power density of from about 3 watts/cm.sup.2 to about 6 watts/cm.sup.2 for a time period sufficient to produce a silicon dioxide film on the surface of the silicon substrate. An optimum optical power density is about 4 watts/cm.sup.2 for growth of a 100.ANG.-300.ANG. film at a resultant temperature of about 400.degree. C. Deep level transient spectroscopy analysis detects no measurable impurities introduced into the silicon substrate during silicon oxide production and shows the interface state density at the SiO.sub.2 /Si interface to be very low.

  10. Fabricating amorphous silicon solar cells by varying the temperature _of the substrate during deposition of the amorphous silicon layer

    DOEpatents

    Carlson, David E.

    1982-01-01

    An improved process for fabricating amorphous silicon solar cells in which the temperature of the substrate is varied during the deposition of the amorphous silicon layer is described. Solar cells manufactured in accordance with this process are shown to have increased efficiencies and fill factors when compared to solar cells manufactured with a constant substrate temperature during deposition of the amorphous silicon layer.

  11. Effect of heat treatment on phase composition and crystal structure of thin WSi2 films on silicon substrates

    NASA Astrophysics Data System (ADS)

    Biryukov, Y. P.; Dostanko, A. P.; Maltsev, A. A.; Shakhlevich, G. M.

    1984-10-01

    An experimental study of WSi2 films on silicon substrates with either 111 or 100 orientation was made, for the purpose of determining the effect of annealing by heat treatment on their phase composition and crystal structure. Films of 0.2 micron thickness were deposited at a rate of 0.5 nm/s on a silicon surface which was predecontaminated of SiO2 layers and adsorbate atoms by ion sputtering in one vacuum cycle. Deposition was by condensation, with the substrate held at various temperatures from 390 to 500 C, and then annealed in an argon atmosphere at various temperatures from 700 to 1000 C for 30 min. Subsequent phase analysis at room temperature was performed with a DRON-2 X-ray diffractometer, using a CuK (sub alpha)-radiation source and covering the 20 = 10 to 130 deg range of angles by the Debye-Sherer method, while the surface morphology was examined under an electron microscope.

  12. Optimization of amino group density on surfaces of titanium dioxide nanoparticles covalently bonded to a silicone substrate for antibacterial and cell adhesion activities.

    PubMed

    Okada, Masahiro; Yasuda, Shoji; Kimura, Tsuyoshi; Iwasaki, Mitsunobu; Ito, Seishiro; Kishida, Akio; Furuzono, Tsutomu

    2006-01-01

    A composite consisting of titanium dioxide (TiO2) particle, the surface of which was modified with amino groups, and a silicone substrate through covalent bonding at their interface was developed, and antibacterial and cell adhesion activities of the composite were evaluated. The density of the amino groups on the TiO2 particle surface was controlled by the reaction time of the modification reaction. The degradation rate of CH3CHO in the presence of the TiO2 particles under UV irradiation decreased with an increase in the amino group density on the TiO2 surface. On the other hand, the number of L929 cells adhering on the TiO2/silicone composite increased with an increase in the amino group density. From the above two results, the optimum density of amino groups for both photoreactivity and cell adhesiveness was estimated to be 2.0-4.0 molecules/nm2. The optimum amino group-modified TiO2/silicone composite sheet (amino group density, 3.0 molecules/nm2) showed an effective antibacterial activity for Escherichia coli bacteria under UV irradiation. (c) 2005 Wiley Periodicals, Inc

  13. Monolayer Contact Doping of Silicon Surfaces and Nanowires Using Organophosphorus Compounds

    PubMed Central

    Hazut, Ori; Agarwala, Arunava; Subramani, Thangavel; Waichman, Sharon; Yerushalmi, Roie

    2013-01-01

    Monolayer Contact Doping (MLCD) is a simple method for doping of surfaces and nanostructures1. MLCD results in the formation of highly controlled, ultra shallow and sharp doping profiles at the nanometer scale. In MLCD process the dopant source is a monolayer containing dopant atoms. In this article a detailed procedure for surface doping of silicon substrate as well as silicon nanowires is demonstrated. Phosphorus dopant source was formed using tetraethyl methylenediphosphonate monolayer on a silicon substrate. This monolayer containing substrate was brought to contact with a pristine intrinsic silicon target substrate and annealed while in contact. Sheet resistance of the target substrate was measured using 4 point probe. Intrinsic silicon nanowires were synthesized by chemical vapor deposition (CVD) process using a vapor-liquid-solid (VLS) mechanism; gold nanoparticles were used as catalyst for nanowire growth. The nanowires were suspended in ethanol by mild sonication. This suspension was used to dropcast the nanowires on silicon substrate with a silicon nitride dielectric top layer. These nanowires were doped with phosphorus in similar manner as used for the intrinsic silicon wafer. Standard photolithography process was used to fabricate metal electrodes for the formation of nanowire based field effect transistor (NW-FET). The electrical properties of a representative nanowire device were measured by a semiconductor device analyzer and a probe station. PMID:24326774

  14. Electroless epitaxial etching for semiconductor applications

    DOEpatents

    McCarthy, Anthony M.

    2002-01-01

    A method for fabricating thin-film single-crystal silicon on insulator substrates using electroless etching for achieving efficient etch stopping on epitaxial silicon substrates. Microelectric circuits and devices are prepared on epitaxial silicon wafers in a standard fabrication facility. The wafers are bonded to a holding substrate. The silicon bulk is removed using electroless etching leaving the circuit contained within the epitaxial layer remaining on the holding substrate. A photolithographic operation is then performed to define streets and wire bond pad areas for electrical access to the circuit.

  15. Thermally-isolated silicon-based integrated circuits and related methods

    DOEpatents

    Wojciechowski, Kenneth; Olsson, Roy H.; Clews, Peggy J.; Bauer, Todd

    2017-05-09

    Thermally isolated devices may be formed by performing a series of etches on a silicon-based substrate. As a result of the series of etches, silicon material may be removed from underneath a region of an integrated circuit (IC). The removal of the silicon material from underneath the IC forms a gap between remaining substrate and the integrated circuit, though the integrated circuit remains connected to the substrate via a support bar arrangement that suspends the integrated circuit over the substrate. The creation of this gap functions to release the device from the substrate and create a thermally-isolated integrated circuit.

  16. Method for forming metallic silicide films on silicon substrates by ion beam deposition

    DOEpatents

    Zuhr, Raymond A.; Holland, Orin W.

    1990-01-01

    Metallic silicide films are formed on silicon substrates by contacting the substrates with a low-energy ion beam of metal ions while moderately heating the substrate. The heating of the substrate provides for the diffusion of silicon atoms through the film as it is being formed to the surface of the film for interaction with the metal ions as they contact the diffused silicon. The metallic silicide films provided by the present invention are contaminant free, of uniform stoichiometry, large grain size, and exhibit low resistivity values which are of particular usefulness for integrated circuit production.

  17. Whiskerless Schottky diode

    NASA Technical Reports Server (NTRS)

    Bishop, William L. (Inventor); Mcleod, Kathleen A. (Inventor); Mattauch, Robert J. (Inventor)

    1991-01-01

    A Schottky diode for millimeter and submillimeter wave applications is comprised of a multi-layered structure including active layers of gallium arsenide on a semi-insulating gallium arsenide substrate with first and second insulating layers of silicon dioxide on the active layers of gallium arsenide. An ohmic contact pad lays on the silicon dioxide layers. An anode is formed in a window which is in and through the silicon dioxide layers. An elongated contact finger extends from the pad to the anode and a trench, preferably a transverse channel or trench of predetermined width, is formed in the active layers of the diode structure under the contact finger. The channel extends through the active layers to or substantially to the interface of the semi-insulating gallium arsenide substrate and the adjacent gallium arsenide layer which constitutes a buffer layer. Such a structure minimizes the effect of the major source of shunt capacitance by interrupting the current path between the conductive layers beneath the anode contact pad and the ohmic contact. Other embodiments of the diode may substitute various insulating or semi-insulating materials for the silicon dioxide, various semi-conductors for the active layers of gallium arsenide, and other materials for the substrate, which may be insulating or semi-insulating.

  18. Back-side hydrogenation technique for defect passivation in silicon solar cells

    DOEpatents

    Sopori, Bhushan L.

    1994-01-01

    A two-step back-side hydrogenation process includes the steps of first bombarding the back side of the silicon substrate with hydrogen ions with intensities and for a time sufficient to implant enough hydrogen atoms into the silicon substrate to potentially passivate substantially all of the defects and impurities in the silicon substrate, and then illuminating the silicon substrate with electromagnetic radiation to activate the implanted hydrogen, so that it can passivate the defects and impurities in the substrate. The illumination step also annihilates the hydrogen-induced defects. The illumination step is carried out according to a two-stage illumination schedule, the first or low-power stage of which subjects the substrate to electromagnetic radiation that has sufficient intensity to activate the implanted hydrogen, yet not drive the hydrogen from the substrate. The second or high-power illumination stage subjects the substrate to higher intensity electromagnetic radiation, which is sufficient to annihilate the hydrogen-induced defects and sinter/alloy the metal contacts.

  19. Back-side hydrogenation technique for defect passivation in silicon solar cells

    DOEpatents

    Sopori, B.L.

    1994-04-19

    A two-step back-side hydrogenation process includes the steps of first bombarding the back side of the silicon substrate with hydrogen ions with intensities and for a time sufficient to implant enough hydrogen atoms into the silicon substrate to potentially passivate substantially all of the defects and impurities in the silicon substrate, and then illuminating the silicon substrate with electromagnetic radiation to activate the implanted hydrogen, so that it can passivate the defects and impurities in the substrate. The illumination step also annihilates the hydrogen-induced defects. The illumination step is carried out according to a two-stage illumination schedule, the first or low-power stage of which subjects the substrate to electromagnetic radiation that has sufficient intensity to activate the implanted hydrogen, yet not drive the hydrogen from the substrate. The second or high-power illumination stage subjects the substrate to higher intensity electromagnetic radiation, which is sufficient to annihilate the hydrogen-induced defects and sinter/alloy the metal contacts. 3 figures.

  20. Methods of making monolayers

    DOEpatents

    Alford, Kentin L [Pasco, WA; Simmons, Kevin L [Kennewick, WA; Samuels, William D [Richland, WA; Zemanian, Thomas S [Richland, WA; Liu, Jun [Albuquerque, NM; Shin, Yongsoon [Richland, WA; Fryxell, Glen E [Kennewick, WA

    2009-12-08

    The invention pertains to methods of forming monolayers on various surfaces. The surfaces can be selected from a wide array of materials, including, for example, aluminum dioxide, silicon dioxide, carbon and SiC. The substrates can be planar or porous. The monolayer is formed under enhanced pressure conditions. The monolayer contains functionalized molecules, and accordingly functionalizes a surface of the substrate. The properties of the functionalized substrate can enhance the substrate's applicability for numerous purposes including, for example, utilization in extracting contaminants, or incorporation into a polymeric matrix.

  1. Methods of making monolayers

    DOEpatents

    Alford, Kentin L [Pasco, WA; Simmons, Kevin L [Kennewick, WA; Samuels, William D [Richland, WA; Zemanian, Thomas S [Richland, WA; Liu, Jun [Albuquerque, NM; Shin, Yongsoon [Richland, WA; Fryxell, Glen E [Kennewick, WA

    2009-09-15

    The invention pertains to methods of forming monolayers on various surfaces. The surfaces can be selected from a wide array of materials, including, for example, aluminum dioxide, silicon dioxide, carbon and SiC. The substrates can be planar or porous. The monolayer is formed under enhanced pressure conditions. The monolayer contains functionalized molecules, and accordingly functionalizes a surface of the substrate. The properties of the functionalized substrate can enhance the substrate's applicability for numerous purposes including, for example, utilization in extracting contaminants, or incorporation into a polymeric matrix.

  2. Recovery of Mo/Si multilayer coated optical substrates

    DOEpatents

    Baker, Sherry L.; Vernon, Stephen P.; Stearns, Daniel G.

    1997-12-16

    Mo/Si multilayers are removed from superpolished ZERODUR and fused silica substrates with a dry etching process that, under suitable processing conditions, produces negligible change in either the substrate surface figure or surface roughness. The two step dry etching process removes SiO.sub.2 overlayer with a fluroine-containing gas and then moves molybdenum and silicon multilayers with a chlorine-containing gas. Full recovery of the initial normal incidence extreme ultra-violet (EUV) reflectance response has been demonstrated on reprocessed substrates.

  3. Recovery of Mo/Si multilayer coated optical substrates

    DOEpatents

    Baker, S.L.; Vernon, S.P.; Stearns, D.G.

    1997-12-16

    Mo/Si multilayers are removed from superpolished ZERODUR and fused silica substrates with a dry etching process that, under suitable processing conditions, produces negligible change in either the substrate surface figure or surface roughness. The two step dry etching process removes SiO{sub 2} overlayer with a fluroine-containing gas and then moves molybdenum and silicon multilayers with a chlorine-containing gas. Full recovery of the initial normal incidence extreme ultra-violet (EUV) reflectance response has been demonstrated on reprocessed substrates. 5 figs.

  4. High quality silicon-based substrates for microwave and millimeter wave passive circuits

    NASA Astrophysics Data System (ADS)

    Belaroussi, Y.; Rack, M.; Saadi, A. A.; Scheen, G.; Belaroussi, M. T.; Trabelsi, M.; Raskin, J.-P.

    2017-09-01

    Porous silicon substrate is very promising for next generation wireless communication requiring the avoidance of high-frequency losses originating from the bulk silicon. In this work, new variants of porous silicon (PSi) substrates have been introduced. Through an experimental RF performance, the proposed PSi substrates have been compared with different silicon-based substrates, namely, standard silicon (Std), trap-rich (TR) and high resistivity (HR). All of the mentioned substrates have been fabricated where identical samples of CPW lines have been integrated on. The new PSi substrates have shown successful reduction in the substrate's effective relative permittivity to values as low as 3.7 and great increase in the substrate's effective resistivity to values higher than 7 kΩ cm. As a concept proof, a mm-wave bandpass filter (MBPF) centred at 27 GHz has been integrated on the investigated substrates. Compared with the conventional MBPF implemented on standard silicon-based substrates, the measured S-parameters of the PSi-based MBPF have shown high filtering performance, such as a reduction in insertion loss and an enhancement of the filter selectivity, with the joy of having the same filter performance by varying the temperature. Therefore, the efficiency of the proposed PSi substrates has been well highlighted. From 1994 to 1995, she was assistant of physics at (USTHB), Algiers . From 1998 to 2011, she was a Researcher at characterization laboratory in ionized media and laser division at the Advanced Technologies Development Center. She has integrated the Analog Radio Frequency Integrated Circuits team as Researcher since 2011 until now in Microelectronic and Nanotechnology Division at Advanced Technologies Development Center (CDTA), Algiers. She has been working towards her Ph.D. degree jointly at CDTA and Ecole Nationale Polytechnique, Algiers, since 2012. Her research interest includes fabrication and characterization of microwave passive devices on porous silicon as new substrate, such as characterization of FinFET components.

  5. Application of optical processing for growth of silicon dioxide

    DOEpatents

    Sopori, B.L.

    1997-06-17

    A process for producing a silicon dioxide film on a surface of a silicon substrate is disclosed. The process comprises illuminating a silicon substrate in a substantially pure oxygen atmosphere with a broad spectrum of visible and infrared light at an optical power density of from about 3 watts/cm{sup 2} to about 6 watts/cm{sup 2} for a time period sufficient to produce a silicon dioxide film on the surface of the silicon substrate. An optimum optical power density is about 4 watts/cm{sup 2} for growth of a 100{angstrom}-300{angstrom} film at a resultant temperature of about 400 C. Deep level transient spectroscopy analysis detects no measurable impurities introduced into the silicon substrate during silicon oxide production and shows the interface state density at the SiO{sub 2}/Si interface to be very low. 1 fig.

  6. Light Trapping with Silicon Light Funnel Arrays

    PubMed Central

    Nissan, Yuval; Gabay, Tamir; Shalev, Gil

    2018-01-01

    Silicon light funnels are three-dimensional subwavelength structures in the shape of inverted cones with respect to the incoming illumination. Light funnel (LF) arrays can serve as efficient absorbing layers on account of their light trapping capabilities, which are associated with the presence of high-density complex Mie modes. Specifically, light funnel arrays exhibit broadband absorption enhancement of the solar spectrum. In the current study, we numerically explore the optical coupling between surface light funnel arrays and the underlying substrates. We show that the absorption in the LF array-substrate complex is higher than the absorption in LF arrays of the same height (~10% increase). This, we suggest, implies that a LF array serves as an efficient surface element that imparts additional momentum components to the impinging illumination, and hence optically excites the substrate by near-field light concentration, excitation of traveling guided modes in the substrate, and mode hybridization. PMID:29562685

  7. Method for rapid, controllable growth and thickness, of epitaxial silicon films

    DOEpatents

    Wang, Qi [Littleton, CO; Stradins, Paul [Golden, CO; Teplin, Charles [Boulder, CO; Branz, Howard M [Boulder, CO

    2009-10-13

    A method of producing epitaxial silicon films on a c-Si wafer substrate using hot wire chemical vapor deposition by controlling the rate of silicon deposition in a temperature range that spans the transition from a monohydride to a hydrogen free silicon surface in a vacuum, to obtain phase-pure epitaxial silicon film of increased thickness is disclosed. The method includes placing a c-Si substrate in a HWCVD reactor chamber. The method also includes supplying a gas containing silicon at a sufficient rate into the reaction chamber to interact with the substrate to deposit a layer containing silicon thereon at a predefined growth rate to obtain phase-pure epitaxial silicon film of increased thickness.

  8. Electrochemical Fabrication of Nanostructures on Porous Silicon for Biochemical Sensing Platforms.

    PubMed

    Ko, Euna; Hwang, Joonki; Kim, Ji Hye; Lee, Joo Heon; Lee, Sung Hwan; Tran, Van-Khue; Chung, Woo Sung; Park, Chan Ho; Choo, Jaebum; Seong, Gi Hun

    2016-01-01

    We present a method for the electrochemical patterning of gold nanoparticles (AuNPs) or silver nanoparticles (AgNPs) on porous silicon, and explore their applications in: (1) the quantitative analysis of hydroxylamine as a chemical sensing electrode and (2) as a highly sensitive surface-enhanced Raman spectroscopy (SERS) substrate for Rhodamine 6G. For hydroxylamine detection, AuNPs-porous silicon can enhance the electrochemical oxidation of hydroxylamine. The current changed linearly for concentrations ranging from 100 μM to 1.32 mM (R(2) = 0.995), and the detection limit was determined to be as low as 55 μM. When used as SERS substrates, these materials also showed that nanoparticles decorated on porous silicon substrates have more SERS hot spots than those decorated on crystalline silicon substrates, resulting in a larger SERS signal. Moreover, AgNPs-porous silicon provided five-times higher signal compared to AuNPs-porous silicon. From these results, we expect that nanoparticles decorated on porous silicon substrates can be used in various types of biochemical sensing platforms.

  9. AIN-Based Packaging for SiC High-Temperature Electronics

    NASA Technical Reports Server (NTRS)

    Savrun, Ender

    2004-01-01

    Packaging made primarily of aluminum nitride has been developed to enclose silicon carbide-based integrated circuits (ICs), including circuits containing SiC-based power diodes, that are capable of operation under conditions more severe than can be withstood by silicon-based integrated circuits. A major objective of this development was to enable packaged SiC electronic circuits to operate continuously at temperatures up to 500 C. AlN-packaged SiC electronic circuits have commercial potential for incorporation into high-power electronic equipment and into sensors that must withstand high temperatures and/or high pressures in diverse applications that include exploration in outer space, well logging, and monitoring of nuclear power systems. This packaging embodies concepts drawn from flip-chip packaging of silicon-based integrated circuits. One or more SiC-based circuit chips are mounted on an aluminum nitride package substrate or sandwiched between two such substrates. Intimate electrical connections between metal conductors on the chip(s) and the metal conductors on external circuits are made by direct bonding to interconnections on the package substrate(s) and/or by use of holes through the package substrate(s). This approach eliminates the need for wire bonds, which have been the most vulnerable links in conventional electronic circuitry in hostile environments. Moreover, the elimination of wire bonds makes it possible to pack chips more densely than was previously possible.

  10. Method of Forming Three-Dimensional Semiconductors Structures

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W. (Inventor)

    2002-01-01

    Silicon and metal are coevaporated onto a silicon substrate in a molecular beam epitaxy system with a larger than stoichiometric amount of silicon so as to epitaxially grow columns of metal silicide embedded in a matrix of single crystal, epitaxially grown silicon. Higher substrate temperatures and lower deposition rates yield larger columns that are farther apart while more silicon produces smaller columns. Column shapes and locations are selected by seeding the substrate with metal silicide starting regions. A variety of 3-dimensional, exemplary electronic devices are disclosed.

  11. Method of bonding silver to glass and mirrors produced according to this method

    DOEpatents

    Pitts, J.R.; Thomas, T.M.; Czanderna, A.W.

    1984-07-31

    A method for adhering silver to a glass substrate for producing mirrors includes attaining a silicon enriched substrate surface by reducing the oxygen therein in a vacuum and then vacuum depositing a silver layer onto the silicon enriched surface. The silicon enrichment can be attained by electron beam bombardment, ion beam bombardment, or neutral beam bombardment. It can also be attained by depositing a metal, such as aluminum, on the substrate surface, allowing the metal to oxidize by pulling oxygen from the substrate surface, thereby leaving a silicon enriched surface, and then etching or eroding the metal oxide layer away to expose the silicon enriched surface. Ultraviolet rays can be used to maintain dangling silicon bonds on the enriched surface until covalent bonding with the silver can occur. This disclosure also includes encapsulated mirrors with diffusion layers built therein. One of these mirrors is assembled on a polymer substrate.

  12. Method of bonding silver to glass and mirrors produced according to this method

    DOEpatents

    Pitts, John R.; Thomas, Terence M.; Czanderna, Alvin W.

    1985-01-01

    A method for adhering silver to a glass substrate for producing mirrors includes attaining a silicon enriched substrate surface by reducing the oxygen therein in a vacuum and then vacuum depositing a silver layer onto the silicon enriched surface. The silicon enrichment can be attained by electron beam bombardment, ion beam bombardment, or neutral beam bombardment. It can also be attained by depositing a metal, such as aluminum, on the substrate surface, allowing the metal to oxidize by pulling oxygen from the substrate surface, thereby leaving a silicon enriched surface, and then etching or eroding the metal oxide layer away to expose the silicon enriched surface. Ultraviolet rays can be used to maintain dangling silicon bonds on the enriched surface until covalent bonding with the silver can occur. This disclosure also includes encapsulated mirrors with diffusion layers built therein. One of these mirrors is assembled on a polymer substrate.

  13. Investigations of different doping concentration of phosphorus and boron into silicon substrate on the variable temperature Raman characteristics

    NASA Astrophysics Data System (ADS)

    Li, Xiaoli; Ding, Kai; Liu, Jian; Gao, Junxuan; Zhang, Weifeng

    2018-01-01

    Different doped silicon substrates have different device applications and have been used to fabricate solar panels and large scale integrated circuits. The thermal transport in silicon substrates are dominated by lattice vibrations, doping type, and doping concentration. In this paper, a variable-temperature Raman spectroscopic system is applied to record the frequency and linewidth changes of the silicon peak at 520 cm-1 in five chips of silicon substrate with different doping concentration of phosphorus and boron at the 83K to 1473K temperature range. The doping has better heat sensitive to temperature on the frequency shift over the low temperature range from 83K to 300K but on FWHM in high temperature range from 300K to 1473K. The results will be helpful for fundamental study and practical applications of silicon substrates.

  14. Effects of patterning induced stress relaxation in strained SOI/SiGe layers and substrate

    NASA Astrophysics Data System (ADS)

    Hermann, P.; Hecker, M.; Renn, F.; Rölke, M.; Kolanek, K.; Rinderknecht, J.; Eng, L. M.

    2011-06-01

    Local stress fields in strained silicon structures important for CMOS technology are essentially related to size effects and properties of involved materials. In the present investigation, Raman spectroscopy was utilized to analyze the stress distribution within strained silicon (sSi) and silicon-germanium (SiGe) island structures. As a result of the structuring of initially unpatterned strained films, a size-dependent relaxation of the intrinsic film stresses was obtained in agreement with model calculations. This changed stress state in the features also results in the appearance of opposing stresses in the substrate underneath the islands. Even for strained island structures on top of silicon-on-insulator (SOI) wafers, corresponding stresses in the silicon substrate underneath the oxide were detected. Within structures, the stress relaxation is more pronounced for islands on SOI substrates as compared to those on bulk silicon substrates.

  15. Dewetting and deposition of thin films with insoluble surfactants from curved silicone hydrogel substrates.

    PubMed

    Bhamla, M Saad; Balemans, Caroline; Fuller, Gerald G

    2015-07-01

    We investigate the stabilizing effect of insoluble surfactant monolayers on thin aqueous films. We first describe an experimental platform that enables the formation of aqueous films laden with dipalmitoylphosphatidylcholine (DPPC) monolayers on curved silicone hydrogel (SiHy) substrates. We show that these surfactant layers extend the lifetime of the aqueous films. The films eventually "dewet" by the nucleation and growth of dry areas and the onset of this dewetting can be controlled by the surface rheology of the DPPC layer. We thus demonstrate that increasing the interfacial rheology of the DPPC layer leads to stable films that delay dewetting. We also show that dewetting can be exploited to controllably pattern the underlying curved SiHy substrates with DPPC layers. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Fabrication of thermal microphotonic sensors and sensor arrays

    DOEpatents

    Shaw, Michael J.; Watts, Michael R.; Nielson, Gregory N.

    2010-10-26

    A thermal microphotonic sensor is fabricated on a silicon substrate by etching an opening and a trench into the substrate, and then filling in the opening and trench with silicon oxide which can be deposited or formed by thermally oxidizing a portion of the silicon substrate surrounding the opening and trench. The silicon oxide forms a support post for an optical resonator which is subsequently formed from a layer of silicon nitride, and also forms a base for an optical waveguide formed from the silicon nitride layer. Part of the silicon substrate can be selectively etched away to elevate the waveguide and resonator. The thermal microphotonic sensor, which is useful to detect infrared radiation via a change in the evanescent coupling of light between the waveguide and resonator, can be formed as a single device or as an array.

  17. Improved process for epitaxial deposition of silicon on prediffused substrates

    NASA Technical Reports Server (NTRS)

    Clarke, M. G.; Halsor, J. L.; Word, J. C.

    1968-01-01

    Process for fabricating integrated circuits uniformly deposits silicon epitaxially on prediffused substrates without affecting the sublayer diffusion pattern. Two silicon deposits from different sources, and deposited at different temperatures, protect the sublayer pattern from the silicon tetrachloride reaction.

  18. Electrical leakage phenomenon in heteroepitaxial cubic silicon carbide on silicon

    NASA Astrophysics Data System (ADS)

    Pradeepkumar, Aiswarya; Zielinski, Marcin; Bosi, Matteo; Verzellesi, Giovanni; Gaskill, D. Kurt; Iacopi, Francesca

    2018-06-01

    Heteroepitaxial 3C-SiC films on silicon substrates are of technological interest as enablers to integrate the excellent electrical, electronic, mechanical, thermal, and epitaxial properties of bulk silicon carbide into well-established silicon technologies. One critical bottleneck of this integration is the establishment of a stable and reliable electronic junction at the heteroepitaxial interface of the n-type SiC with the silicon substrate. We have thus investigated in detail the electrical and transport properties of heteroepitaxial cubic silicon carbide films grown via different methods on low-doped and high-resistivity silicon substrates by using van der Pauw Hall and transfer length measurements as test vehicles. We have found that Si and C intermixing upon or after growth, particularly by the diffusion of carbon into the silicon matrix, creates extensive interstitial carbon traps and hampers the formation of a stable rectifying or insulating junction at the SiC/Si interface. Although a reliable p-n junction may not be realistic in the SiC/Si system, we can achieve, from a point of view of the electrical isolation of in-plane SiC structures, leakage suppression through the substrate by using a high-resistivity silicon substrate coupled with deep recess etching in between the SiC structures.

  19. Gauge Factor and Stretchability of Silicon-on-Polymer Strain Gauges

    PubMed Central

    Yang, Shixuan; Lu, Nanshu

    2013-01-01

    Strain gauges are widely applied to measure mechanical deformation of structures and specimens. While metallic foil gauges usually have a gauge factor slightly over 2, single crystalline silicon demonstrates intrinsic gauge factors as high as 200. Although silicon is an intrinsically stiff and brittle material, flexible and even stretchable strain gauges have been achieved by integrating thin silicon strips on soft and deformable polymer substrates. To achieve a fundamental understanding of the large variance in gauge factor and stretchability of reported flexible/stretchable silicon-on-polymer strain gauges, finite element and analytically models are established to reveal the effects of the length of the silicon strip, and the thickness and modulus of the polymer substrate. Analytical results for two limiting cases, i.e., infinitely thick substrate and infinitely long strip, have found good agreement with FEM results. We have discovered that strains in silicon resistor can vary by orders of magnitude with different substrate materials whereas strip length or substrate thickness only affects the strain level mildly. While the average strain in silicon reflects the gauge factor, the maximum strain in silicon governs the stretchability of the system. The tradeoff between gauge factor and stretchability of silicon-on-polymer strain gauges has been proposed and discussed. PMID:23881128

  20. Laser-zone growth in a Ribbon-To-Ribbon (RTR) process. Silicon sheet growth development for the large area sheet task of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Baghdadi, A.; Gurtler, R. W.; Legge, R.; Sopori, B.; Ellis, R. J.

    1978-01-01

    A new calculation of the effects of thermal stresses during growth on silicon ribbon quality is reported. Thermal stress distributions are computed for ribbon growth under a variety of temperature profiles. A growth rate of 55 cu cm/min with a single ribbon was achieved. The growth of RTR ribbon with a fairly uniform parallel dendritic structure was demonstrated. Results with two approaches were obtained for reducing the Mo impurity level in polycrystalline feedstock. Coating the Mo substrate with Si3N4 does not effect thermal shear separation of the polyribbon; this process shows promise of improving cell efficiency and also increasing the useful life of the molybdenum substrate. A number of solar cells were fabricated on RTR silicon grown from CVD feedstock.

  1. Dip-Coating Fabrication of Solar Cells

    NASA Technical Reports Server (NTRS)

    Koepke, B.; Suave, D.

    1982-01-01

    Inexpensive silicon solar cells made by simple dip technique. Cooling shoes direct flow of helium on graphite-coated ceramic substrate to solidify film of liquid silicon on graphite surface as substrate is withdrawn from molten silicon. After heaters control cooling of film and substrate to prevent cracking. Gas jets exit at points about 10 mm from substrate surfaces and 6 to 10 mm above melt surface.

  2. Method for enhancing the solubility of boron and indium in silicon

    DOEpatents

    Sadigh, Babak; Lenosky, Thomas J.; Diaz de la Rubia, Tomas; Giles, Martin; Caturla, Maria-Jose; Ozolins, Vidvuds; Asta, Mark; Theiss, Silva; Foad, Majeed; Quong, Andrew

    2002-01-01

    A method for enhancing the equilibrium solubility of boron and indium in silicon. The method involves first-principles quantum mechanical calculations to determine the temperature dependence of the equilibrium solubility of two important p-type dopants in silicon, namely boron and indium, under various strain conditions. The equilibrium thermodynamic solubility of size-mismatched impurities, such as boron and indium in silicon, can be raised significantly if the silicon substrate is strained appropriately. For example, for boron, a 1% compressive strain raises the equilibrium solubility by 100% at 1100.degree. C.; and for indium, a 1% tensile strain at 1100.degree. C., corresponds to an enhancement of the solubility by 200%.

  3. Lateral hydrogen microsensors prepared on-chip by local oxidation of platinum-decorated titanium films

    NASA Astrophysics Data System (ADS)

    Herbertz, S.; Welk, D.; Heinzel, T.

    2018-05-01

    Titanium microstripes on silicon dioxide substrates are oxidized locally by applying voltages on-chip to lateral electrodes under ambient conditions. This technique enables profound modifications of the electronic circuit. As an example, we transform Ti films decorated by a sub-monolayer of platinum into hydrogen gas microsensors in an otherwise completed device by a silicon-MOS compatible process.

  4. Subband Structure and Effective Mass in the Inversion Layer of a Strain Si-Based Alloy P-Type MOSFET.

    PubMed

    Chen, Kuan-Ting; Fan, Jun Wei; Chang, Shu-Tong; Lin, Chung-Yi

    2015-03-01

    In this paper, the subband structure and effective mass of an Si-based alloy inversion layer in a PMOSFET are studied theoretically. The strain condition considered in our calculations is the intrinsic strain resulting from growth of the silicon-carbon alloy on a (001) Si substrate and mechanical uniaxial stress. The quantum confinement effect resulting from the vertically effective electric field was incorporated into the k · p calculation. The distinct effective mass, such as the quantization effective mass and the density-of-states (DOS) effective mass, as well as the subband structure of the silicon-carbon alloy inversion layer for a PMOSFET under substrate strain and various effective electric field strengths, were all investigated. Ore results show that subband structure of relaxed silicon-carbon alloys with low carbon content are almost the same as silicon. We find that an external stress applied parallel to the channel direction can efficiently reduce the effective mass along the channel direction, thus producing hole mobility enhancement.

  5. Wetting Behavior and Reactivity of Molten Silicon with h-BN Substrate at Ultrahigh Temperatures up to 1750 °C

    NASA Astrophysics Data System (ADS)

    Polkowski, Wojciech; Sobczak, Natalia; Nowak, Rafał; Kudyba, Artur; Bruzda, Grzegorz; Polkowska, Adelajda; Homa, Marta; Turalska, Patrycja; Tangstad, Merete; Safarian, Jafar; Moosavi-Khoonsari, Elmira; Datas, Alejandro

    2017-12-01

    For a successful implementation of newly proposed silicon-based latent heat thermal energy storage systems, proper ceramic materials that could withstand a contact heating with molten silicon at temperatures much higher than its melting point need to be developed. In this regard, a non-wetting behavior and low reactivity are the main criteria determining the applicability of ceramic as a potential crucible material for long-term ultrahigh temperature contact with molten silicon. In this work, the wetting of hexagonal boron nitride (h-BN) by molten silicon was examined for the first time at temperatures up to 1750 °C. For this purpose, the sessile drop technique combined with contact heating procedure under static argon was used. The reactivity in Si/h-BN system under proposed conditions was evaluated by SEM/EDS examinations of the solidified couple. It was demonstrated that increase in temperature improves wetting, and consequently, non-wetting-to-wetting transition takes place at around 1650 °C. The contact angle of 90° ± 5° is maintained at temperatures up to 1750 °C. The results of structural characterization supported by a thermodynamic modeling indicate that the wetting behavior of the Si/h-BN couple during heating to and cooling from ultrahigh temperature of 1750 °C is mainly controlled by the substrate dissolution/reprecipitation mechanism.

  6. Synthesis of Poly-Silicon Thin Films on Glass Substrate Using Laser Initiated Metal Induced Crystallization of Amorphous Silicon for Space Power Application

    NASA Technical Reports Server (NTRS)

    Abu-Safe, Husam H.; Naseem, Hameed A.; Brown, William D.

    2007-01-01

    Poly-silicon thin films on glass substrates are synthesized using laser initiated metal induced crystallization of hydrogenated amorphous silicon films. These films can be used to fabricate solar cells on low cost glass and flexible substrates. The process starts by depositing 200 nm amorphous silicon films on the glass substrates. Following this, 200 nm of sputtered aluminum films were deposited on top of the silicon layers. The samples are irradiated with an argon ion cw laser beam for annealing. Laser power densities ranging from 4 to 9 W/cm2 were used in the annealing process. Each area on the sample is irradiated for a different exposure time. Optical microscopy was used to examine any cracks in the films and loss of adhesion to the substrates. X-Ray diffraction patterns from the initial results indicated the crystallization in the films. Scanning electron microscopy shows dendritic growth. The composition analysis of the crystallized films was conducted using Energy Dispersive x-ray Spectroscopy. The results of poly-silicon films synthesis on space qualified flexible substrates such as Kapton are also presented.

  7. Enhanced Raman scattering in porous silicon grating.

    PubMed

    Wang, Jiajia; Jia, Zhenhong; Lv, Changwu

    2018-03-19

    The enhancement of Raman signal on monocrystalline silicon gratings with varying groove depths and on porous silicon grating were studied for a highly sensitive surface enhanced Raman scattering (SERS) response. In the experiment conducted, porous silicon gratings were fabricated. Silver nanoparticles (Ag NPs) were then deposited on the porous silicon grating to enhance the Raman signal of the detective objects. Results show that the enhancement of Raman signal on silicon grating improved when groove depth increased. The enhanced performance of Raman signal on porous silicon grating was also further improved. The Rhodamine SERS response based on Ag NPs/ porous silicon grating substrates was enhanced relative to the SERS response on Ag NPs/ porous silicon substrates. Ag NPs / porous silicon grating SERS substrate system achieved a highly sensitive SERS response due to the coupling of various Raman enhancement factors.

  8. Process for Smoothing an Si Substrate after Etching of SiO2

    NASA Technical Reports Server (NTRS)

    Turner, Tasha; Wu, Chi

    2003-01-01

    A reactive-ion etching (RIE) process for smoothing a silicon substrate has been devised. The process is especially useful for smoothing those silicon areas that have been exposed by etching a pattern of holes in a layer of silicon dioxide that covers the substrate. Applications in which one could utilize smooth silicon surfaces like those produced by this process include fabrication of optical waveguides, epitaxial deposition of silicon on selected areas of silicon substrates, and preparation of silicon substrates for deposition of adherent metal layers. During etching away of a layer of SiO2 that covers an Si substrate, a polymer becomes deposited on the substrate, and the substrate surface becomes rough (roughness height approximately equal to 50 nm) as a result of over-etching or of deposition of the polymer. While it is possible to smooth a silicon substrate by wet chemical etching, the undesired consequences of wet chemical etching can include compromising the integrity of the SiO2 sidewalls and undercutting of the adjacent areas of the silicon dioxide that are meant to be left intact. The present RIE process results in anisotropic etching that removes the polymer and reduces height of roughness of the silicon substrate to less than 10 nm while leaving the SiO2 sidewalls intact and vertical. Control over substrate versus sidewall etching (in particular, preferential etching of the substrate) is achieved through selection of process parameters, including gas flow, power, and pressure. Such control is not uniformly and repeatably achievable in wet chemical etching. The recipe for the present RIE process is the following: Etch 1 - A mixture of CF4 and O2 gases flowing at rates of 25 to 75 and 75 to 125 standard cubic centimeters per minute (stdcm3/min), respectively; power between 44 and 55 W; and pressure between 45 and 55 mtorr (between 6.0 and 7.3 Pa). The etch rate lies between approximately equal to 3 and approximately equal to 6 nm/minute. Etch 2 - O2 gas flowing at 75 to 125 stdcm3/min, power between 44 and 55 W, and pressure between 50 and 100 mtorr (between 6.7 and 13.3 Pa).

  9. High-Temperature Annealing as a Method for the Silicon Nanoclusters Growth in Stoichiometric Silicon Dioxide

    NASA Astrophysics Data System (ADS)

    Ivanova, E. V.; Dementev, P. A.; Sitnikova, A. A.; Aleksandrov, O. V.; Zamoryanskaya, M. V.

    2018-07-01

    A method for the growth of nanocomposite layers in stoichiometric amorphous silicon dioxide is proposed. It is shown that, after annealing at a temperature of 1150°C in nitrogen atmosphere, a layer containing silicon nanoclusters is formed. Silicon nanoclusters have a crystal structure and a size of 3-6 nm. In a film grown on a n-type substrate, a layer of silicon nanoclusters with a thickness of about 10 nm is observed. In the case of a film grown on a p-type substrate, a nanocomposite layer with a thickness of about 100 nm is observed. The difference in the formation of a nanocomposite layer in films on various substrates is associated with the doping of silicon dioxide with impurities from the substrate during the growth of the film. The formation of the nanocomposite layer was confirmed by transmission electron microscopy, XPS and local cathodoluminescence studies.

  10. Effect of specific surface microstructures on substrate endothelialisation and thrombogenicity: Importance for stent design.

    PubMed

    Lutter, Christoph; Nothhaft, Matthias; Rzany, Alexander; Garlichs, Christoph D; Cicha, Iwona

    2015-01-01

    In coronary artery disease, highly stenosed arteries are frequently treated by stent implantation, which thereafter necessitates a dual-antiplatelet therapy (DAPT) in order to prevent stent-thrombosis. We hypothesized that specific patterns of microstructures on stents can accelerate endothelialisation thereby reducing their thrombogenicity and the DAPT duration. Differently designed, 2-5 μm high elevations or hollows were lithographically etched on silicon plates, subsequently coated with silicon carbide. Smooth silicon plates and bare metal substrates were used as controls. To assess attachment and growth of human umbilical vein endothelial cells under static or flow conditions, actin cytoskeleton was visualised with green phalloidin. Endothelial migration was assessed in a modified barrier assay. To investigate surface thrombogenicity, platelets were incubated on the structured surfaces in static and flow conditions, and visualised with fluorescein-conjugated P-selectin antibody. Images were taken with incident-light fluorescent microscope for non-transparent objects. Compared to smooth surface, flat cubic elevations (5 μm edge length) improved endothelial cell attachment and growth under static and dynamic conditions, whereas smaller, spiky structures (2 μm edge length) had a negative influence on endothelialisation. Endothelial cell migration was fastest on flat cubic elevations, hollows, and smooth surfaces, whereas spiky structures and bare metal had a negative effect on endothelial migration. Thrombogenicity assays under static and flow conditions showed that platelet adhesion was reduced on the flat elevations and the smooth surface, as compared to the spiky structures, the hollow design and the bare metal substrates. Surface microstructures strongly influence endothelialisation of substrates. Designing stents with surface topography which accelerates endothelialisation and reduces thrombogenicity may be of clinical benefit by improving the safety profile of coronary interventions.

  11. Transfer of micro and nano-photonic silicon nanomembrane waveguide devices on flexible substrates.

    PubMed

    Ghaffari, Afshin; Hosseini, Amir; Xu, Xiaochuan; Kwong, David; Subbaraman, Harish; Chen, Ray T

    2010-09-13

    This paper demonstrates transfer of optical devices without extra un-patterned silicon onto low-cost, flexible plastic substrates using single-crystal silicon nanomembranes. Employing this transfer technique, stacking two layers of silicon nanomembranes with photonic crystal waveguide in the first layer and multi mode interference couplers in the second layer is shown, respectively. This technique is promising to realize high density integration of multilayer hybrid structures on flexible substrates.

  12. Photoluminescence enhancement of silicon quantum dot monolayer by plasmonic substrate fabricated by nano-imprint lithography

    NASA Astrophysics Data System (ADS)

    Yanagawa, Hiroto; Inoue, Asuka; Sugimoto, Hiroshi; Shioi, Masahiko; Fujii, Minoru

    2017-12-01

    Near-field coupling between a silicon quantum dot (Si-QD) monolayer and a plasmonic substrate fabricated by nano-imprint lithography and having broad multiple resonances in the near-infrared (NIR) window of biological substances was studied by precisely controlling the QDs-substrate distance. A strong enhancement of the NIR photoluminescence (PL) of Si-QDs was observed. Detailed analyses of the PL and PL excitation spectra, the PL decay dynamics, and the reflectance spectra revealed that both the excitation cross-sections and the emission rates are enhanced by the surface plasmon resonances, thanks to the broad multiple resonances of the plasmonic substrate, and that the relative contribution of the two enhancement processes depends strongly on the excitation wavelength. Under excitation by short wavelength photons (405 nm), where enhancement of the excitation cross-section is not expected, the maximum enhancement was obtained when the QDs-substrate distance was around 30 nm. On the other hand, under long wavelength excitation (641 nm), where strong excitation cross-section enhancement is expected, the largest enhancement was obtained when the distance was minimum (around 1 nm). The achievement of efficient excitation of NIR luminescence of Si-QDs by long wavelength photons paves the way for the development of Si-QD-based fluorescence bio-sensing devices with a high bound-to-free ratio.

  13. Efficient solar cells by space processing

    NASA Technical Reports Server (NTRS)

    Schmidt, F. A.; Campisi, G. J.; Bevolo, A.; Shanks, H. R.; Williams, D. E.

    1979-01-01

    Thin films of electron beam evaporated silicon were deposited on molybdenum, tantalum, tungsten and molybdenum disilicide under ultrahigh vacuum conditions. Mass spectra from a quadrapole residual gas analyzer were used to determine the partial pressure of 13 residual gases during each processing step. Surface contamination and interdiffusion were monitored by in situ Auger electron spectrometry. The presence of phosphorus in the silicon was responsible for attaining elevated temperatures with silicide formations. Heteroepitaxial silicon growth was sensitive to the presence of oxygen during deposition, the rate and length of deposition as well as the substrate orientation.

  14. Advancements in n-Type Base Crystalline Silicon Solar Cells and Their Emergence in the Photovoltaic Industry

    PubMed Central

    ur Rehman, Atteq; Lee, Soo Hong

    2013-01-01

    The p-type crystalline silicon wafers have occupied most of the solar cell market today. However, modules made with n-type crystalline silicon wafers are actually the most efficient modules up to date. This is because the material properties offered by n-type crystalline silicon substrates are suitable for higher efficiencies. Properties such as the absence of boron-oxygen related defects and a greater tolerance to key metal impurities by n-type crystalline silicon substrates are major factors that underline the efficiency of n-type crystalline silicon wafer modules. The bi-facial design of n-type cells with good rear-side electronic and optical properties on an industrial scale can be shaped as well. Furthermore, the development in the industrialization of solar cell designs based on n-type crystalline silicon substrates also highlights its boost in the contributions to the photovoltaic industry. In this paper, a review of various solar cell structures that can be realized on n-type crystalline silicon substrates will be given. Moreover, the current standing of solar cell technology based on n-type substrates and its contribution in photovoltaic industry will also be discussed. PMID:24459433

  15. Advancements in n-type base crystalline silicon solar cells and their emergence in the photovoltaic industry.

    PubMed

    ur Rehman, Atteq; Lee, Soo Hong

    2013-01-01

    The p-type crystalline silicon wafers have occupied most of the solar cell market today. However, modules made with n-type crystalline silicon wafers are actually the most efficient modules up to date. This is because the material properties offered by n-type crystalline silicon substrates are suitable for higher efficiencies. Properties such as the absence of boron-oxygen related defects and a greater tolerance to key metal impurities by n-type crystalline silicon substrates are major factors that underline the efficiency of n-type crystalline silicon wafer modules. The bi-facial design of n-type cells with good rear-side electronic and optical properties on an industrial scale can be shaped as well. Furthermore, the development in the industrialization of solar cell designs based on n-type crystalline silicon substrates also highlights its boost in the contributions to the photovoltaic industry. In this paper, a review of various solar cell structures that can be realized on n-type crystalline silicon substrates will be given. Moreover, the current standing of solar cell technology based on n-type substrates and its contribution in photovoltaic industry will also be discussed.

  16. Process for utilizing low-cost graphite substrates for polycrystalline solar cells

    NASA Technical Reports Server (NTRS)

    Chu, T. L. (Inventor)

    1978-01-01

    Low cost polycrystalline silicon solar cells supported on substrates were prepared by depositing successive layers of polycrystalline silicon containing appropriate dopants over supporting substrates of a member selected from the group consisting of metallurgical grade polycrystalline silicon, graphite and steel coated with a diffusion barrier of silica, borosilicate, phosphosilicate, or mixtures thereof such that p-n junction devices were formed which effectively convert solar energy to electrical energy. To improve the conversion efficiency of the polycrystalline silicon solar cells, the crystallite size in the silicon was substantially increased by melting and solidifying a base layer of polycrystalline silicon before depositing the layers which form the p-n junction.

  17. Silicon based substrate with calcium aluminosilicate/thermal barrier layer

    NASA Technical Reports Server (NTRS)

    Eaton, Jr., Harry Edwin (Inventor); Allen, William Patrick (Inventor); Miller, Robert Alden (Inventor); Jacobson, Nathan S. (Inventor); Smialek, James L. (Inventor); Opila, Elizabeth J. (Inventor); Lee, Kang N. (Inventor); Nagaraj, Bangalore A. (Inventor); Wang, Hongyu (Inventor); Meschter, Peter Joel (Inventor)

    2001-01-01

    A barrier layer for a silicon containing substrate which inhibits the formation of gaseous species of silicon when exposed to a high temperature aqueous environment comprises a calcium alumino silicate.

  18. Silicon based substrate with environmental/thermal barrier layer

    NASA Technical Reports Server (NTRS)

    Eaton, Jr., Harry Edwin (Inventor); Allen, William Patrick (Inventor); Jacobson, Nathan S. (Inventor); Bansal, Narottam P. (Inventor); Opila, Elizabeth J. (Inventor); Smialek, James L. (Inventor); Lee, Kang N. (Inventor); Spitsberg, Irene T. (Inventor); Wang, Hongyu (Inventor); Meschter, Peter Joel (Inventor)

    2002-01-01

    A barrier layer for a silicon containing substrate which inhibits the formation of gaseous species of silicon when exposed to a high temperature aqueous environment comprises a barium-strontium alumino silicate.

  19. Silicon based substrate with environmental/ thermal barrier layer

    NASA Technical Reports Server (NTRS)

    Eaton, Jr., Harry Edwin (Inventor); Allen, William Patrick (Inventor); Jacobson, Nathan S. (Inventor); Bansal, Nanottam P. (Inventor); Opila, Elizabeth J. (Inventor); Smialek, James L. (Inventor); Lee, Kang N. (Inventor); Spitsberg, Irene T. (Inventor); Wang, Hongyu (Inventor); Meschter, Peter Joel (Inventor)

    2002-01-01

    A barrier layer for a silicon containing substrate which inhibits the formation of gaseous species of silicon when exposed to a high temperature aqueous environment comprises a barium-strontium alumino silicate.

  20. Buried oxide layer in silicon

    DOEpatents

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  1. Silicon based substrate with calcium aluminosilicate environmental/thermal barrier layer

    NASA Technical Reports Server (NTRS)

    Eaton, Jr., Harry Edwin (Inventor); Allen, William Patrick (Inventor); Miller, Robert Alden (Inventor); Jacobson, Nathan S. (Inventor); Smialek, James L. (Inventor); Opila, Elizabeth J. (Inventor); Lee, Kang N. (Inventor); Nagaraj, Bangalore A. (Inventor); Wang, Hongyu (Inventor); Meschter, Peter Joel (Inventor)

    2001-01-01

    A barrier layer for a silicon containing substrate which inhibits the formation of gaseous species of silicon when exposed to a high temperature aqueous environment comprises a calcium alumino silicate.

  2. Light Trapping in Thin Film Silicon Solar Cells on Plastic Substrates

    NASA Astrophysics Data System (ADS)

    de Jong, M. M.

    2013-01-01

    In the search for sustainable energy sources, solar energy can fulfil a large part of the growing demand. The biggest threshold for large-scale solar energy harvesting is the solar panel price. For drastic cost reductions, roll-to-roll fabrication of thin film silicon solar cells using plastic substrates can be a solution. In this thesis, we investigate the possibilities of depositing thin film solar cells directly onto cheap plastic substrates. Micro-textured glass and sheets, which have a wide range of applications, such as in green house, lighting etc, are applied in these solar cells for light trapping. Thin silicon films can be produced by decomposing silane gas, using a plasma process. In these types of processes, the temperature of the growing surface has a large influence on the quality of the grown films. Because plastic substrates limit the maximum tolerable substrate temperature, new methods have to be developed to produce device-grade silicon layers. At low temperature, polysilanes can form in the plasma, eventually forming dust particles, which can deteriorate device performance. By studying the spatially resolved optical emission from the plasma between the electrodes, we can identify whether we have a dusty plasma. Furthermore, we found an explanation for the temperature dependence of dust formation; Monitoring the formation of polysilanes as a function of temperature using a mass-spectrometer, we observed that the polymerization rate is indeed influenced by the substrate temperature. For solar cell substrate material, our choice was polycarbonate (PC), because of its low cost, its excellent transparency and its relatively high glass transition temperature of 130-140°C. At 130°C we searched for deposition recipes for device quality silicon, using a very high frequency plasma enhanced chemical deposition process. By diluting the feedstock silane with hydrogen gas, the silicon quality can be improved for amorphous silicon (a-Si), until we reach the nanocrystalline silicon (nc-Si) regime. In the nc-Si regime, the crystalline fraction can be further controlled by changing the power input into the plasma. With these layers, a-Si thin film solar cells were fabricated, on glass and PC substrates. The adverse effect of the low temperature growth on the photoactive material is further mitigated by using thinner silicon layers, which can deliver a good current only with an adequate light trapping technique. We have simulated and experimentally tested three light trapping techniques, using embossed structures in PC substrates and random structures on glass: regular pyramid structures larger than the wavelength of light (micropyramids), regular pyramid structures comparable to the wavelength of light (nanopyramids) and random nano-textures (Asahi U-type). The use of nanostructured polycarbonate substrates results in initial conversion efficiencies of 7.4%, compared to 7.6% for cells deposited under identical conditions on Asahi U-type glass. The potential of manufacturing thin film solar cells at processing temperatures lower than 130oC is further illustrated by obtained results on texture-etched aluminium doped zinc-oxide (ZnO:Al) on glass: we achieved 6.9% for nc-Si cells using a very thin absorber layer of only 750 nm, and by combining a-Si and nc-Si cells in tandem solar cells we reached an initial conversion efficiency of 9.5%.

  3. Improved growth of GaN layers on ultra thin silicon nitride/Si (1 1 1) by RF-MBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Mahesh; Roul, Basanta; Central Research Laboratory, Bharat Electronics, Bangalore 560013

    High-quality GaN epilayers were grown on Si (1 1 1) substrates by molecular beam epitaxy using a new growth process sequence which involved a substrate nitridation at low temperatures, annealing at high temperatures, followed by nitridation at high temperatures, deposition of a low-temperature buffer layer, and a high-temperature overgrowth. The material quality of the GaN films was also investigated as a function of nitridation time and temperature. Crystallinity and surface roughness of GaN was found to improve when the Si substrate was treated under the new growth process sequence. Micro-Raman and photoluminescence (PL) measurement results indicate that the GaN filmmore » grown by the new process sequence has less tensile stress and optically good. The surface and interface structures of an ultra thin silicon nitride film grown on the Si surface are investigated by core-level photoelectron spectroscopy and it clearly indicates that the quality of silicon nitride notably affects the properties of GaN growth.« less

  4. Electron field emission from phase pure nanotube films grown in a methane/hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Küttel, Olivier M.; Groening, Oliver; Emmenegger, Christoph; Schlapbach, Louis

    1998-10-01

    Phase pure nanotube films were grown on silicon substrates by a microwave plasma under conditions which normally are used for the growth of chemical vapor deposited diamond films. However, instead of using any pretreatment leading to diamond nucleation we deposited metal clusters on the silicon substrate. The resulting films contain only nanotubes and also onion-like structures. However, no other carbon allotropes like graphite or amorphous clustered material could be found. The nanotubes adhere very well to the substrates and do not need any further purification step. Electron field emission was observed at fields above 1.5 V/μm and we observed an emission site density up to 104/cm2 at 3 V/μm. Alternatively, we have grown nanotube films by the hot filament technique, which allows to uniformly cover a two inch wafer.

  5. Wet-chemical systems and methods for producing black silicon substrates

    DOEpatents

    Yost, Vernon; Yuan, Hao-Chih; Page, Matthew

    2015-05-19

    A wet-chemical method of producing a black silicon substrate. The method comprising soaking single crystalline silicon wafers in a predetermined volume of a diluted inorganic compound solution. The substrate is combined with an etchant solution that forms a uniform noble metal nanoparticle induced Black Etch of the silicon wafer, resulting in a nanoparticle that is kinetically stabilized. The method comprising combining with an etchant solution having equal volumes acetonitrile/acetic acid:hydrofluoric acid:hydrogen peroxide.

  6. Photovoltaic device using single wall carbon nanotubes and method of fabricating the same

    DOEpatents

    Biris, Alexandru S.; Li, Zhongrui

    2012-11-06

    A photovoltaic device and methods for forming the same. In one embodiment, the photovoltaic device has a silicon substrate, and a film comprising a plurality of single wall carbon nanotubes disposed on the silicon substrate, wherein the plurality of single wall carbon nanotubes forms a plurality of heterojunctions with the silicon in the substrate.

  7. Chemical Interaction-Guided, Metal-Free Growth of Large-Area Hexagonal Boron Nitride on Silicon-Based Substrates.

    PubMed

    Behura, Sanjay; Nguyen, Phong; Debbarma, Rousan; Che, Songwei; Seacrist, Michael R; Berry, Vikas

    2017-05-23

    Hexagonal boron nitride (h-BN) is an ideal platform for interfacing with two-dimensional (2D) nanomaterials to reduce carrier scattering for high-quality 2D electronics. However, scalable, transfer-free growth of hexagonal boron nitride (h-BN) remains a challenge. Currently, h-BN-based 2D heterostructures require exfoliation or chemical transfer of h-BN grown on metals resulting in small areas or significant interfacial impurities. Here, we demonstrate a surface-chemistry-influenced transfer-free growth of large-area, uniform, and smooth h-BN directly on silicon (Si)-based substrates, including Si, silicon nitride (Si 3 N 4 ), and silicon dioxide (SiO 2 ), via low-pressure chemical vapor deposition. The growth rates increase with substrate electronegativity, Si < Si 3 N 4 < SiO 2 , consistent with the adsorption rates calculated for the precursor molecules via atomistic molecular dynamics simulations. Under graphene with high grain density, this h-BN film acts as a polymer-free, planar-dielectric interface increasing carrier mobility by 3.5-fold attributed to reduced surface roughness and charged impurities. This single-step, chemical interaction guided, metal-free growth mechanism of h-BN for graphene heterostructures establishes a potential pathway for the design of complex and integrated 2D-heterostructured circuitry.

  8. The tensile effect on crack formation in single crystal silicon irradiated by intense pulsed ion beam

    NASA Astrophysics Data System (ADS)

    Liang, Guoying; Shen, Jie; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Yan, Sha; Zhang, Xiaofu; Yu, Xiao; Le, Xiaoyun

    2017-10-01

    Improving antifatigue performance of silicon substrate is very important for the development of semiconductor industry. The cracking behavior of silicon under intense pulsed ion beam irradiation was studied by numerical simulation in order to understand the mechanism of induced surface peeling observed by experimental means. Using molecular dynamics simulation based on Stillinger Weber potential, tensile effect on crack growth and propagation in single crystal silicon was investigated. Simulation results reveal that stress-strain curves of single crystal silicon at a constant strain rate can be divided into three stages, which are not similar to metal stress-strain curves; different tensile load velocities induce difference of single silicon crack formation speed; the layered stress results in crack formation in single crystal silicon. It is concluded that the crack growth and propagation is more sensitive to strain rate, tensile load velocity, stress distribution in single crystal silicon.

  9. Surface thiolation of silicon for antifouling application.

    PubMed

    Zhang, Xiaoning; Gao, Pei; Hollimon, Valerie; Brodus, DaShan; Johnson, Arion; Hu, Hongmei

    2018-02-07

    Thiol groups grafted silicon surface was prepared as previously described. 1H,1H,2H,2H-perfluorodecanethiol (PFDT) molecules were then immobilized on such a surface through disulfide bonds formation. To investigate the contribution of PFDT coating to antifouling, the adhesion behaviors of Botryococcus braunii (B. braunii) and Escherichia coli (E. coli) were studied through biofouling assays in the laboratory. The representative microscope images suggest reduced B. braunii and E. coli accumulation densities on PFDT integrated silicon substrate. However, the antifouling performance of PFDT integrated silicon substrate decreased over time. By incubating the aged substrate in 10 mM TCEP·HCl solution for 1 h, the fouled PFDT coating could be removed as the disulfide bonds were cleaved, resulting in reduced absorption of algal cells and exposure of non-fouled silicon substrate surface. Our results indicate that the thiol-terminated substrate can be potentially useful for restoring the fouled surface, as well as maximizing the effective usage of the substrate.

  10. A tunable sub-100 nm silicon nanopore array with an AAO membrane mask: reducing unwanted surface etching by introducing a PMMA interlayer.

    PubMed

    Lim, Namsoo; Pak, Yusin; Kim, Jin Tae; Hwang, Youngkyu; Lee, Ryeri; Kumaresan, Yogeenth; Myoung, NoSoung; Ko, Heung Cho; Jung, Gun Young

    2015-08-28

    Highly ordered silicon (Si) nanopores with a tunable sub-100 nm diameter were fabricated by a CF4 plasma etching process using an anodic aluminum oxide (AAO) membrane as an etching mask. To enhance the conformal contact of the AAO membrane mask to the underlying Si substrate, poly(methyl methacrylate) (PMMA) was spin-coated on top of the Si substrate prior to the transfer of the AAO membrane. The AAO membrane mask was fabricated by two-step anodization and subsequent removal of the aluminum support and the barrier layer, which was then transferred to the PMMA-coated Si substrate. Contact printing was performed on the sample with a pressure of 50 psi and a temperature of 120 °C to make a conformal contact of the AAO membrane mask to the Si substrate. The CF4 plasma etching was conducted to transfer nanopores onto the Si substrate through the PMMA interlayer. The introduced PMMA interlayer prevented unwanted surface etching of the Si substrate by eliminating the etching ions and radicals bouncing at the gap between the mask and the substrate, resulting in a smooth Si nanopore array.

  11. Optimization and characterization of biomolecule immobilization on silicon substrates using (3-aminopropyl)triethoxysilane (APTES) and glutaraldehyde linker

    NASA Astrophysics Data System (ADS)

    Gunda, Naga Siva Kumar; Singh, Minashree; Norman, Lana; Kaur, Kamaljit; Mitra, Sushanta K.

    2014-06-01

    In the present work, we developed and optimized a technique to produce a thin, stable silane layer on silicon substrate in a controlled environment using (3-aminopropyl)triethoxysilane (APTES). The effect of APTES concentration and silanization time on the formation of silane layer is studied using spectroscopic ellipsometry and Fourier transform infrared spectroscopy (FTIR). Biomolecules of interest are immobilized on optimized silane layer formed silicon substrates using glutaraldehyde linker. Surface analytical techniques such as ellipsometry, FTIR, contact angle measurement system, and atomic force microscopy are employed to characterize the bio-chemically modified silicon surfaces at each step of the biomolecule immobilization process. It is observed that a uniform, homogenous and highly dense layer of biomolecules are immobilized with optimized silane layer on the silicon substrate. The developed immobilization method is successfully implemented on different silicon substrates (flat and pillar). Also, different types of biomolecules such as anti-human IgG (rabbit monoclonal to human IgG), Listeria monocytogenes, myoglobin and dengue capture antibodies were successfully immobilized. Further, standard sandwich immunoassay (antibody-antigen-antibody) is employed on respective capture antibody coated silicon substrates. Fluorescence microscopy is used to detect the respective FITC tagged detection antibodies bound to the surface after immunoassay.

  12. Surface modification of silicon wafer by grafting zwitterionic polymers to improve its antifouling property

    NASA Astrophysics Data System (ADS)

    Sun, Yunlong; Chen, Changlin; Xu, Heng; Lei, Kun; Xu, Guanzhe; Zhao, Li; Lang, Meidong

    2017-10-01

    Silicon (111) wafer was modified by triethoxyvinylsilane containing double bond as an intermedium, and then P4VP (polymer 4-vinyl pyridine) brush was "grafted" onto the surface of silicon wafer containing reactive double bonds by adopting the "grafting from" way and Si-P4VP substrate (silicon wafer grafted by P4VP) was obtained. Finally, P4VP brush of Si-P4VP substrate was modified by 1,3-propanesulfonate fully to obtain P4VP-psl brush (zwitterionic polypyridinium salt) and the functional Si-P4VP-psl substrate (silicon wafer grafted by zwitterionic polypyridinium salt based on polymer 4-vinyl pyridine) was obtained successfully. The antifouling property of the silicon wafer, the Si-P4VP substrate and the Si-P4VP-psl substrate was investigated by using bovine serum albumin, mononuclear macrophages (RAW 264.7) and Escherichia coli (E. coli) ATTC25922 as model bacterium. The results showed that compared with the blank sample-silicon wafer, the Si-P4VP-psl substrate had excellent anti-adhesion ability against bovine serum albumin, cells and bacterium, due to zwitterionic P4VP-psl brush (polymer 4-vinyl pyridine salt) having special functionality like antifouling ability on biomaterial field.

  13. The parameter influence of ion irradiation on the distribution profile of the defect in silicon films

    NASA Astrophysics Data System (ADS)

    Shemukhin, A. A.; Balaskshin, Yu. V.; Evseev, A. P.; Chernysh, V. S.

    2017-09-01

    As silicon is an important element in semiconductor devices, the process of defect formation under ion irradiation in it is studied well enough. Modern electronic components are made on silicon lattices (films) that are 100-300 nm thick (Chernysh et al., 1980; Shemukhin et al., 2012; Ieshkin et al., 2015). However, there are still features to be observed in the process of defect formation in silicon. In our work we investigate the effect of fluence and target temperature on the defect formation in films and bulk silicon samples. To investigate defect formation in the silicon films and bulk silicon samples we present experimental data on Si+ implantation with an energy of 200 keV, fluences range from 5 * 1014 to 5 * 1015 ion/cm2 for a fixed flux 1 μA/cm2 and the substrate temperatures from 150 to 350 K The sample crystallinity was investigated by using the Rutherford backscattering technique (RBS) in channeling and random modes. It is shown that in contrast to bulk silicon for which amorphization is observed at 5 × 1016 ion/cm2, the silicon films on sapphire amorphize at lower critical fluences (1015 ion/cm2). So the amorphization critical fluences depend on the target temperature. In addition it is shown that under similar implantation parameters, the disordering of silicon films under the action of the ion beam is stronger than the bulk silicon.

  14. Ceramic with zircon coating

    NASA Technical Reports Server (NTRS)

    Wang, Hongyu (Inventor)

    2003-01-01

    An article comprises a silicon-containing substrate and a zircon coating. The article can comprise a silicon carbide/silicon (SiC/Si) substrate, a zircon (ZrSiO.sub.4) intermediate coating and an external environmental/thermal barrier coating.

  15. Wettability of Molten Aluminum-Silicon Alloys on Graphite and Surface Tension of Those Alloys at 1273 K (1000 °C)

    NASA Astrophysics Data System (ADS)

    Mao, Weiji; Noji, Takayasu; Teshima, Kenichiro; Shinozaki, Nobuya

    2016-06-01

    The wettability of molten aluminum-silicon alloys with silicon contents of 0, 6, 10, and 20 mass pct on graphite substrates by changing the placing sequence of aluminum and silicon and the surface tension of those alloys were investigated at 1273 K (1000 °C) using the sessile drop method under vacuum. The results showed that the wetting was not affected by changing the placing sequence of the Al-Si alloys on the graphite substrates. The wettability was not improved significantly upon increasing the Si content from 0 to 10 mass pct, whereas a notable decrease of 22 deg in the contact angle was observed when increasing the Si content from 10 to 20 mass pct. This was attributed to the transformation of the interfacial reaction product from Al4C3 into SiC, provided the addition of Si to Al was sufficient. It was verified that the liquid Al can wet the SiC substrate very well in nature, which might explain why the occurrence of SiC would improve the wettability of the Al-20 mass pct Si alloy on the graphite substrate. The results also showed that the surface tension values of the molten Al-Si alloys decreased monotonously with an increase in Si content, being 875, 801, 770, and 744 mN/m for molten Al, Al-6 mass pct Si, Al-10 mass pct Si, and Al-20 mass pct Si alloys, respectively.

  16. Superhydrophobic SERS substrates based on silicon hierarchical nanostructures

    NASA Astrophysics Data System (ADS)

    Chen, Xuexian; Wen, Jinxiu; Zhou, Jianhua; Zheng, Zebo; An, Di; Wang, Hao; Xie, Weiguang; Zhan, Runze; Xu, Ningsheng; Chen, Jun; She, Juncong; Chen, Huanjun; Deng, Shaozhi

    2018-02-01

    Silicon nanostructures have been cultivated as promising surface enhanced Raman scattering (SERS) substrates in terms of their low-loss optical resonance modes, facile functionalization, and compatibility with today’s state-of-the-art CMOS techniques. However, unlike their plasmonic counterparts, the electromagnetic field enhancements induced by silicon nanostructures are relatively small, which restrict their SERS sensing limit to around 10-7 M. To tackle this problem, we propose here a strategy for improving the SERS performance of silicon nanostructures by constructing silicon hierarchical nanostructures with a superhydrophobic surface. The hierarchical nanostructures are binary structures consisted of silicon nanowires (NWs) grown on micropyramids (MPs). After being modified with perfluorooctyltriethoxysilane (PFOT), the nanostructure surface shows a stable superhydrophobicity with a high contact angle of ˜160°. The substrate can allow for concentrating diluted analyte solutions into a specific area during the evaporation of the liquid droplet, whereby the analytes are aggregated into a small volume and can be easily detected by the silicon nanostructure SERS substrate. The analyte molecules (methylene blue: MB) enriched from an aqueous solution lower than 10-8 M can be readily detected. Such a detection limit is ˜100-fold lower than the conventional SERS substrates made of silicon nanostructures. Additionally, the detection limit can be further improved by functionalizing gold nanoparticles onto silicon hierarchical nanostructures, whereby the superhydrophobic characteristics and plasmonic field enhancements can be combined synergistically to give a detection limit down to ˜10-11 M. A gold nanoparticle-functionalized superhydrophobic substrate was employed to detect the spiked melamine in liquid milk. The results showed that the detection limit can be as low as 10-5 M, highlighting the potential of the proposed superhydrophobic SERS substrate in practical food safety inspection applications.

  17. GaN-on-silicon high-electron-mobility transistor technology with ultra-low leakage up to 3000 V using local substrate removal and AlN ultra-wide bandgap

    NASA Astrophysics Data System (ADS)

    Dogmus, Ezgi; Zegaoui, Malek; Medjdoub, Farid

    2018-03-01

    We report on extremely low off-state leakage current in AlGaN/GaN-on-silicon metal–insulator–semiconductor high-electron-mobility transistors (MISHEMTs) up to a high blocking voltage. Remarkably low off-state gate and drain leakage currents below 1 µA/mm up to 3 kV have been achieved owing to the use of a thick in situ SiN gate dielectric under the gate, and a local Si substrate removal technique combined with a cost effective 15-µm-thick AlN dielectric layer followed by a Cu deposition. This result establishes a manufacturable state-of-the-art high-voltage GaN-on-silicon power transistors while maintaining a low specific on-resistance of approximately 10 mΩ·cm2.

  18. Hydrostatic and Flow Measurements on Wrinkled Membrane Walls

    NASA Astrophysics Data System (ADS)

    Ozsun, Ozgur; Ekinci, Kamil

    2013-03-01

    In this study, we investigate structural properties of wrinkled silicon nitride (SiN) membranes, under both hydrostatic perturbations and flow conditions, through surface profile measurements. Rectangular SiN membranes with linear dimensions of 15 mm × 1 . 5 mm × 1 μ m are fabricated on a 500 - μ m-thick silicon substrate using standard lithography techniques. These thin, initially flat, tension-dominated membranes are wrinkled by bending the silicon substrate. The wrinkled membranes are subsequently incorporated as walls into rectangular micro-channels, which allow both hydrostatic and flow measurements. The structural response of the wrinkles to hydrostatic pressure provides a measure of the various energy scales in the problem. Flow experiments show that the elastic properties and the structural undulations on a compliant membrane completely dominate the flow, possibly providing drag reduction. These measurements pave the way for building and using compliant walls for drag reduction in micro-channels.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojciechowski, Kenneth; Olsson, Roy; Clews, Peggy J.

    Thermally isolated devices may be formed by performing a series of etches on a silicon-based substrate. As a result of the series of etches, silicon material may be removed from underneath a region of an integrated circuit (IC). The removal of the silicon material from underneath the IC forms a gap between remaining substrate and the integrated circuit, though the integrated circuit remains connected to the substrate via a support bar arrangement that suspends the integrated circuit over the substrate. The creation of this gap functions to release the device from the substrate and create a thermally-isolated integrated circuit.

  20. Nanosized graphene sheets enhanced photoelectric behavior of carbon film on p-silicon substrate

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Hu, Gaijuan; Zhang, Dongqing; Diao, Dongfeng

    2016-07-01

    We found that nanosized graphene sheets enhanced the photoelectric behavior of graphene sheets embedded carbon (GSEC) film on p-silicon substrate, which was deposited under low energy electron irradiation in electron cyclotron resonance plasma. The GSEC/p-Si photodiode exhibited good photoelectric performance with photoresponsivity of 206 mA/W, rise and fall time of 2.2, and 4.3 μs for near-infrared (850 nm) light. The origin of the strong photoelectric behavior of GSEC film was ascribed to the appearance of graphene nanosheets, which led to higher barrier height and photoexcited electron-collection efficiency. This finding indicates that GSEC film has the potential for photoelectric applications.

  1. The Impact of GaN/Substrate Thermal Boundary Resistance on a HEMT Device

    DTIC Science & Technology

    2011-11-01

    stack between the GaN and Substrate layers. The University of Bristol recently reported that this TBR in commercial devices on Silicon Carbide ( SiC ...Circuit RF Radio Frequency PA Power Amplifier SiC Silicon Carbide FEA Finite Element Analysis heff Effective Heat transfer Coefficient (W/m 2 K...substrate material switched from sapphire to silicon , and by another factor of two from silicon to SiC . TABLE 1: SAMPLE RESULTS FROM DOUGLAS ET AL. FOR

  2. Cryogenic High Pressure Sensor Module

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  3. Cryogenic, Absolute, High Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  4. Compensated amorphous silicon solar cell

    DOEpatents

    Devaud, Genevieve

    1983-01-01

    An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon over said substrate and having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the electrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF.sub.3 doped intrinsic layer.

  5. RF Sputtering for preparing substantially pure amorphous silicon monohydride

    DOEpatents

    Jeffrey, Frank R.; Shanks, Howard R.

    1982-10-12

    A process for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicon produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous silicon hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.

  6. Method of forming buried oxide layers in silicon

    DOEpatents

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2000-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  7. Voltage-Controlled Spray Deposition of Multiwalled Carbon Nanotubes on Semiconducting and Insulating Substrates

    NASA Astrophysics Data System (ADS)

    Maulik, Subhodip; Sarkar, Anirban; Basu, Srismrita; Daniels-Race, Theda

    2018-05-01

    A facile, cost-effective, voltage-controlled, "single-step" method for spray deposition of surfactant-assisted dispersed carbon nanotube (CNT) thin films on semiconducting and insulating substrates has been developed. The fabrication strategy enables direct deposition and adhesion of CNT films on target samples, eliminating the need for substrate surface functionalization with organosilane binder agents or metal layer coatings. Spray coating experiments on four types of sample [bare silicon (Si), microscopy-grade glass samples, silicon dioxide (SiO2), and polymethyl methacrylate (PMMA)] under optimized control parameters produced films with thickness ranging from 40 nm to 6 μm with substantial surface coverage and packing density. These unique deposition results on both semiconducting and insulator target samples suggest potential applications of this technique in CNT thin-film transistors with different gate dielectrics, bendable electronics, and novel CNT-based sensing devices, and bodes well for further investigation into thin-film coatings of various inorganic, organic, and hybrid nanomaterials on different types of substrate.

  8. Reprogramming hMSCs morphology with silicon/porous silicon geometric micro-patterns.

    PubMed

    Ynsa, M D; Dang, Z Y; Manso-Silvan, M; Song, J; Azimi, S; Wu, J F; Liang, H D; Torres-Costa, V; Punzon-Quijorna, E; Breese, M B H; Garcia-Ruiz, J P

    2014-04-01

    Geometric micro-patterned surfaces of silicon combined with porous silicon (Si/PSi) have been manufactured to study the behaviour of human Mesenchymal Stem Cells (hMSCs). These micro-patterns consist of regular silicon hexagons surrounded by spaced columns of silicon equilateral triangles separated by PSi. The results show that, at an early culture stage, the hMSCs resemble quiescent cells on the central hexagons with centered nuclei and actin/β-catenin and a microtubules network denoting cell adhesion. After 2 days, hMSCs adapted their morphology and cytoskeleton proteins from cell-cell dominant interactions at the center of the hexagonal surface. This was followed by an intermediate zone with some external actin fibres/β-catenin interactions and an outer zone where the dominant interactions are cell-silicon. Cells move into silicon columns to divide, migrate and communicate. Furthermore, results show that Runx2 and vitamin D receptors, both specific transcription factors for skeleton-derived cells, are expressed in cells grown on micropatterned silicon under all observed circumstances. On the other hand, non-phenotypic alterations are under cell growth and migration on Si/PSi substrates. The former consideration strongly supports the use of micro-patterned silicon surfaces to address pending questions about the mechanisms of human bone biogenesis/pathogenesis and the study of bone scaffolds.

  9. Room-temperature bonding of epitaxial layer to carbon-cluster ion-implanted silicon wafers for CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Koga, Yoshihiro; Kadono, Takeshi; Shigematsu, Satoshi; Hirose, Ryo; Onaka-Masada, Ayumi; Okuyama, Ryousuke; Okuda, Hidehiko; Kurita, Kazunari

    2018-06-01

    We propose a fabrication process for silicon wafers by combining carbon-cluster ion implantation and room-temperature bonding for advanced CMOS image sensors. These carbon-cluster ions are made of carbon and hydrogen, which can passivate process-induced defects. We demonstrated that this combination process can be used to form an epitaxial layer on a carbon-cluster ion-implanted Czochralski (CZ)-grown silicon substrate with a high dose of 1 × 1016 atoms/cm2. This implantation condition transforms the top-surface region of the CZ-grown silicon substrate into a thin amorphous layer. Thus, an epitaxial layer cannot be grown on this implanted CZ-grown silicon substrate. However, this combination process can be used to form an epitaxial layer on the amorphous layer of this implanted CZ-grown silicon substrate surface. This bonding wafer has strong gettering capability in both the wafer-bonding region and the carbon-cluster ion-implanted projection range. Furthermore, this wafer inhibits oxygen out-diffusion to the epitaxial layer from the CZ-grown silicon substrate after device fabrication. Therefore, we believe that this bonding wafer is effective in decreasing the dark current and white-spot defect density for advanced CMOS image sensors.

  10. Nanomechanical characterization of phospholipid bilayer islands on flat and porous substrates: a force spectroscopy study.

    PubMed

    Nussio, Matthew R; Oncins, Gerard; Ridelis, Ingrid; Szili, Endre; Shapter, Joseph G; Sanz, Fausto; Voelcker, Nicolas H

    2009-07-30

    In this study, we compare for the first time the nanomechanical properties of lipid bilayer islands on flat and porous surfaces. 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) bilayers were deposited on flat (silicon and mica) and porous silicon (pSi) substrate surfaces and examined using atomic force spectroscopy and force volume imaging. Force spectroscopy measurements revealed the effects of the underlying substrate and of the lipid phase on the nanomechanical properties of bilayers islands. For mica and silicon, significant differences in breakthrough force between the center and the edges of bilayer islands were observed for both phospolipids. These differences were more pronounced for DMPC than for DPPC, presumably due to melting effects at the edges of DMPC bilayers. In contrast, bilayer islands deposited on pSi yielded similar breakthrough forces in the central region and along the perimeter of the islands, and those values in turn were similar to those measured along the perimeter of bilayer islands deposited on the flat substrates. The study also demonstrates that pSi is suitable solid support for the formation of pore-spanning phospholipid bilayers with potential applications in transmembrane protein studies, drug delivery, and biosensing.

  11. Low temperature deposition of polycrystalline silicon thin films on a flexible polymer substrate by hot wire chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Lee, Sang-hoon; Jung, Jae-soo; Lee, Sung-soo; Lee, Sung-bo; Hwang, Nong-moon

    2016-11-01

    For the applications such as flexible displays and solar cells, the direct deposition of crystalline silicon films on a flexible polymer substrate has been a great issue. Here, we investigated the direct deposition of polycrystalline silicon films on a polyimide film at the substrate temperature of 200 °C. The low temperature deposition of crystalline silicon on a flexible substrate has been successfully made based on two ideas. One is that the Si-Cl-H system has a retrograde solubility of silicon in the gas phase near the substrate temperature. The other is the new concept of non-classical crystallization, where films grow by the building block of nanoparticles formed in the gas phase during hot-wire chemical vapor deposition (HWCVD). The total amount of precipitation of silicon nanoparticles decreased with increasing HCl concentration. By adding HCl, the amount and the size of silicon nanoparticles were reduced remarkably, which is related with the low temperature deposition of silicon films of highly crystalline fraction with a very thin amorphous incubation layer. The dark conductivity of the intrinsic film prepared at the flow rate ratio of RHCl=[HCl]/[SiH4]=3.61 was 1.84×10-6 Scm-1 at room temperature. The Hall mobility of the n-type silicon film prepared at RHCl=3.61 was 5.72 cm2 V-1s-1. These electrical properties of silicon films are high enough and could be used in flexible electric devices.

  12. Electrical characteristics of silicon nanowire CMOS inverters under illumination.

    PubMed

    Yoo, Jeuk; Kim, Yoonjoong; Lim, Doohyeok; Kim, Sangsig

    2018-02-05

    In this study, we examine the electrical characteristics of complementary metal-oxide-semiconductor (CMOS) inverters with silicon nanowire (SiNW) channels on transparent substrates under illumination. The electrical characteristics vary with the wavelength and power of light due to the variation in the generation rates of the electric-hole pairs. Compared to conventional optoelectronic devices that sense the on/off states by the variation in the current, our device achieves the sensing of the on/off states with more precision by using the voltage variation induced by the wavelength or intensity of light. The device was fabricated on transparent substrates to maximize the light absorption using conventional CMOS technologies. The key difference between our SiNW CMOS inverters and conventional optoelectronic devices is the ability to control the flow of charge carriers more effectively. The improved sensitivity accomplished with the use of SiNW CMOS inverters allows better control of the on/off states.

  13. Semiconductor material and method for enhancing solubility of a dopant therein

    DOEpatents

    Sadigh, Babak; Lenosky, Thomas J.; Rubia, Tomas Diaz; Giles, Martin; Caturla, Maria-Jose; Ozolins, Vidvuds; Asta, Mark; Theiss, Silva; Foad, Majeed; Quong, Andrew

    2003-09-09

    A method for enhancing the equilibrium solubility of boron and indium in silicon. The method involves first-principles quantum mechanical calculations to determine the temperature dependence of the equilibrium solubility of two important p-type dopants in silicon, namely boron and indium, under various strain conditions. The equilibrium thermodynamic solubility of size-mismatched impurities, such as boron and indium in silicon, can be raised significantly if the silicon substrate is strained appropriately. For example, for boron, a 1% compressive strain raises the equilibrium solubility by 100% at 1100.degree. C.; and for indium, a 1% tensile strain at 1100.degree. C., corresponds to an enhancement of the solubility by 200%.

  14. A Semiconductor Material And Method For Enhancing Solubility Of A Dopant Therein

    DOEpatents

    Sadigh, Babak; Lenosky, Thomas J.; Diaz de la Rubia, Tomas; Giles, Martin; Caturla, Maria-Jose; Ozolins, Vidvuds; Asta, Mark; Theiss, Silva; Foad, Majeed; Quong, Andrew

    2005-03-29

    A method for enhancing the equilibrium solubility of boron ad indium in silicon. The method involves first-principles quantum mechanical calculations to determine the temperature dependence of the equilibrium solubility of two important p-type dopants in silicon, namely boron and indium, under various strain conditions. The equilibrium thermodynamic solubility of size-mismatched impurities, such as boron and indium in silicon, can be raised significantly if the silicon substrate is strained appropriately. For example, for boron, a 1% compressive strain raises the equilibrium solubility by 100% at 1100.degree. C.; and for indium, a 1% tensile strain at 1100.degree. C., corresponds to an enhancement of the solubility by 200%.

  15. Study program to develop and evaluate die and container materials for the growth of silicon ribbons. [for development of low cost solar cells

    NASA Technical Reports Server (NTRS)

    Addington, L. A.; Ownby, P. D.; Yu, B. B.; Barsoum, M. W.; Romero, H. V.; Zealer, B. G.

    1979-01-01

    The development and evaluation of proprietary coatings of pure silicon carbide, silicon nitride, and aluminum nitride on less pure hot pressed substrates of the respective ceramic materials, is described. Silicon sessile drop experiments were performed on coated test specimens under controlled oxygen partial pressure. Prior to testing, X-ray diffraction and SEM characterization was performed. The reaction interfaces were characterized after testing with optical and scanning electron microscopy and Auger electron spectroscopy. Increasing the oxygen partial pressure was found to increase the molten silicon contact angle, apparently because adsorbed oxygen lowers the solid-vapor interfacial free energy. It was also found that adsorbed oxygen increased the degree of attack of molten silicon upon the chemical vapor deposited coatings. Cost projections show that reasonably priced, coated, molten silicon resistant refractory material shapes are obtainable.

  16. Visible-blind ultraviolet photodetectors on porous silicon carbide substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naderi, N.; Hashim, M.R., E-mail: roslan@usm.my

    2013-06-01

    Highlights: • Highly reliable UV detectors are fabricated on porous silicon carbide substrates. • The optical properties of samples are enhanced by increasing the current density. • The optimized sample exhibits enhanced sensitivity to the incident UV radiation. - Abstract: Highly reliable visible-blind ultraviolet (UV) photodetectors were successfully fabricated on porous silicon carbide (PSC) substrates. High responsivity and high photoconductive gain were observed in a metal–semiconductor–metal ultraviolet photodetector that was fabricated on an optimized PSC substrate. The PSC samples were prepared via the UV-assisted photo-electrochemical etching of an n-type hexagonal silicon carbide (6H-SiC) substrate using different etching current densities. Themore » optical results showed that the current density is an outstanding etching parameter that controls the porosity and uniformity of PSC substrates. A highly porous substrate was synthesized using a suitable etching current density to enhance its light absorption, thereby improving the sensitivity of UV detector with this substrate. The electrical characteristics of fabricated devices on optimized PSC substrates exhibited enhanced sensitivity and responsivity to the incident radiation.« less

  17. Upgraded metallurgical-grade silicon solar cells with efficiency above 20%

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, P.; Rougieux, F. E.; Samundsett, C.

    We present solar cells fabricated with n-type Czochralski–silicon wafers grown with strongly compensated 100% upgraded metallurgical-grade feedstock, with efficiencies above 20%. The cells have a passivated boron-diffused front surface, and a rear locally phosphorus-diffused structure fabricated using an etch-back process. The local heavy phosphorus diffusion on the rear helps to maintain a high bulk lifetime in the substrates via phosphorus gettering, whilst also reducing recombination under the rear-side metal contacts. The independently measured results yield a peak efficiency of 20.9% for the best upgraded metallurgical-grade silicon cell and 21.9% for a control device made with electronic-grade float-zone silicon. The presencemore » of boron-oxygen related defects in the cells is also investigated, and we confirm that these defects can be partially deactivated permanently by annealing under illumination.« less

  18. Laboratory studies of silicon vapor deposition, phase A. [feasibility of producing thin films for photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Frost, R. T.; Racette, G. W.; Stockhoff, E. H.

    1977-01-01

    A system is described capable of carrying out silicon vapor deposition experiments in the low 10 to the minus 10th power torr vacuum range. The system was assembled and tested for use in a program aimed at exploration of vacuum heteroepitaxy of silicon on several substrates of potential interest for photovoltaic applications. An experiment is described in which a silicon layer 2.5 microns thick was deposited on a pyrolytically cleaned tungsten substrate held at a temperature of 400 C. Using a resistance heated silicon source, thicker layers can be deposited in periods of hours by utilizing closer source to substrate distances.

  19. Highly stable, protein resistant thin films on SiC-modified silicon substrates.

    PubMed

    Qin, Guoting; Zhang, Rui; Makarenko, Boris; Kumar, Amit; Rabalais, Wayne; López Romero, J Manuel; Rico, Rodrigo; Cai, Chengzhi

    2010-05-21

    Thin films terminated with oligo(ethylene glycol) (OEG) could be photochemically grafted onto ultrathin silicon carbide layers that were generated on silicon substrates via carbonization with acetylene at 820 degrees C. The OEG coating reduced the non-specific adsorption of fibrinogen on the substrates by 99.5% and remained resistant after storage in PBS for 4 weeks at 37 degrees C.

  20. Spalling of a Thin Si Layer by Electrodeposit-Assisted Stripping

    NASA Astrophysics Data System (ADS)

    Kwon, Youngim; Yang, Changyol; Yoon, Sang-Hwa; Um, Han-Don; Lee, Jung-Ho; Yoo, Bongyoung

    2013-11-01

    A major goal in solar cell research is to reduce the cost of the final module. Reducing the thickness of the crystalline silicon substrate to several tens of micrometers can reduce material costs. In this work, we describe the electrodeposition of a Ni-P alloy, which induces high stress in the silicon substrate at room temperature. The induced stress enables lift-off of the thin-film silicon substrate. After lift-off of the thin Si film, the mother substrate can be reused, reducing material costs. Moreover, the low-temperature process expected to be improved Si substrate quality.

  1. Deconvoluting the mechanism of microwave annealing of block copolymer thin films.

    PubMed

    Jin, Cong; Murphy, Jeffrey N; Harris, Kenneth D; Buriak, Jillian M

    2014-04-22

    The self-assembly of block copolymer (BCP) thin films is a versatile method for producing periodic nanoscale patterns with a variety of shapes. The key to attaining a desired pattern or structure is the annealing step undertaken to facilitate the reorganization of nanoscale phase-segregated domains of the BCP on a surface. Annealing BCPs on silicon substrates using a microwave oven has been shown to be very fast (seconds to minutes), both with and without contributions from solvent vapor. The mechanism of the microwave annealing process remains, however, unclear. This work endeavors to uncover the key steps that take place during microwave annealing, which enable the self-assembly process to proceed. Through the use of in situ temperature monitoring with a fiber optic temperature probe in direct contact with the sample, we have demonstrated that the silicon substrate on which the BCP film is cast is the dominant source of heating if the doping of the silicon wafer is sufficiently low. Surface temperatures as high as 240 °C are reached in under 1 min for lightly doped, high resistivity silicon wafers (n- or p-type). The influence of doping, sample size, and BCP composition was analyzed to rule out other possible mechanisms. In situ temperature monitoring of various polymer samples (PS, P2VP, PMMA, and the BCPs used here) showed that the polymers do not heat to any significant extent on their own with microwave irradiation of this frequency (2.45 GHz) and power (∼600 W). It was demonstrated that BCP annealing can be effectively carried out in 60 s on non-microwave-responsive substrates, such as highly doped silicon, indium tin oxide (ITO)-coated glass, glass, and Kapton, by placing a piece of high resistivity silicon wafer in contact with the sample-in this configuration, the silicon wafer is termed the heating element. Annealing and self-assembly of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) and polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) BCPs into horizontal cylinder structures were shown to take place in under 1 min, using a silicon wafer heating element, in a household microwave oven. Defect densities were calculated and were shown to decrease with higher maximum obtained temperatures. Conflicting results in the literature regarding BCP annealing with microwave are explained in light of the results obtained in this study.

  2. Forming high efficiency silicon solar cells using density-graded anti-reflection surfaces

    DOEpatents

    Yuan, Hao-Chih; Branz, Howard M.; Page, Matthew R.

    2014-09-09

    A method (50) is provided for processing a graded-density AR silicon surface (14) to provide effective surface passivation. The method (50) includes positioning a substrate or wafer (12) with a silicon surface (14) in a reaction or processing chamber (42). The silicon surface (14) has been processed (52) to be an AR surface with a density gradient or region of black silicon. The method (50) continues with heating (54) the chamber (42) to a high temperature for both doping and surface passivation. The method (50) includes forming (58), with a dopant-containing precursor in contact with the silicon surface (14) of the substrate (12), an emitter junction (16) proximate to the silicon surface (14) by doping the substrate (12). The method (50) further includes, while the chamber is maintained at the high or raised temperature, forming (62) a passivation layer (19) on the graded-density silicon anti-reflection surface (14).

  3. Forming high-efficiency silicon solar cells using density-graded anti-reflection surfaces

    DOEpatents

    Yuan, Hao-Chih; Branz, Howard M.; Page, Matthew R.

    2015-07-07

    A method (50) is provided for processing a graded-density AR silicon surface (14) to provide effective surface passivation. The method (50) includes positioning a substrate or wafer (12) with a silicon surface (14) in a reaction or processing chamber (42). The silicon surface (14) has been processed (52) to be an AR surface with a density gradient or region of black silicon. The method (50) continues with heating (54) the chamber (42) to a high temperature for both doping and surface passivation. The method (50) includes forming (58), with a dopant-containing precursor in contact with the silicon surface (14) of the substrate (12), an emitter junction (16) proximate to the silicon surface (14) by doping the substrate (12). The method (50) further includes, while the chamber is maintained at the high or raised temperature, forming (62) a passivation layer (19) on the graded-density silicon anti-reflection surface (14).

  4. Investigation of high-speed Si photodetectors in standard CMOS technology

    NASA Astrophysics Data System (ADS)

    Wang, Huaqiang; Guo, Xia

    2018-05-01

    In this paper, the frequency response characteristics of the photodetector(PD) were studied considering intrinsic and extrinsic effects. Then we designed the interdigitated p-i-n PD on Silicon-on-Insulator (SOI) and epitaxial (EPI) substrates with photosensitive area of 30-μm diameter, fabricated by CMOS process. The 2-μm finger-spacing devices exhibited a 205 MHz bandwidth at a reverse bias of 3 V processed on 2-μm SOI substrates. EPI devices with 1 μm finger spacing exhibited a 131 MHz bandwidth under -3 V. Responsivity of 0.051 A/W and 0.21 A/W were measured at 850 nm on SOI and EPI substrates, respectively. Compared with the bulk silicon PD, the bandwidth is greatly improved. The PD gains the high cost performance ratio, which can be widely used in short distance communication such as visible light communication and free space optical communication.

  5. Tellurium nano-structure based NO gas sensor.

    PubMed

    Kumar, Vivek; Sen, Shashwati; Sharma, M; Muthe, K P; Jagannath; Gaur, N K; Gupta, S K

    2009-09-01

    Tellurium nanotubes were grown on bare and silver/gold nanoparticle (nucleation centers) deposited silicon substrates by vacuum deposition technique at a substrate temperature of 100 degrees C under high vacuum conditions. Silver and gold nanoparticles prepared on (111) oriented silicon substrates were found to act as nucleation centers for growth of Tellurium nanostructures. Density of nanotubes was found to increase while their diameter reduced when grown using metallic nanoparticle template. These Te nanostructures were investigated for their gas sensitivity. Tellurium nanotubes on Ag templates showed better response to NO in comparison to H2S and NH3 gases. Selectivity in response to NO was improved in comparison to Te thin film sensors reported earlier. The gas sensing mechanism was investigated using Raman and X-ray photoelectron spectroscopy techniques. The interaction of NO is seen to yield increased adsorption of oxygen that in turn increases hole density and conductivity in the material.

  6. Fabrication of TiO2 nanostructures on porous silicon for thermoelectric application

    NASA Astrophysics Data System (ADS)

    Fahrizal, F. N.; Ahmad, M. K.; Ramli, N. M.; Ahmad, N.; Fakhriah, R.; Mohamad, F.; Nafarizal, N.; Soon, C. F.; Ameruddin, A. S.; Faridah, A. B.; Shimomura, M.; Murakami, K.

    2017-09-01

    Nowadays, technology is moving by leaps and bounds over the last several decades. This has created new opportunities and challenge in the research fields. In this study, the experiment is about to investigate the potential of Titanium Dioxide (TiO2) nanostructures that have been growth onto a layer of porous silicon (pSi) for their thermoelectric application. Basically, it is divided into two parts, which is the preparation of the porous silicon (pSi) substrate by electrochemical-etching process and the growth of the Titanium Dioxide (TiO2) nanostructures by hydrothermal method. This sample have been characterize by Field Emission Scanning Electron Microscopy (FESEM) to visualize the morphology of the TiO2 nanostructures area that formed onto the porous silicon (pSi) substrate. Besides, the sample is also used to visualize their cross-section images under the FESEM microscopy. Next, the sample is characterized by the X-Ray Diffraction (XRD) machine. The XRD machine is used to get the information about the chemical composition, crystallographic structure and physical properties of materials.

  7. Kinetics of self-induced nucleation and optical properties of GaN nanowires grown by plasma-assisted molecular beam epitaxy on amorphous Al{sub x}O{sub y}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobanska, M., E-mail: sobanska@ifpan.edu.pl; Zytkiewicz, Z. R.; Klosek, K.

    Nucleation kinetics of GaN nanowires (NWs) by molecular beam epitaxy on amorphous Al{sub x}O{sub y} buffers deposited at low temperature by atomic layer deposition is analyzed. We found that the growth processes on a-Al{sub x}O{sub y} are very similar to those observed on standard Si(111) substrates, although the presence of the buffer significantly enhances nucleation rate of GaN NWs, which we attribute to a microstructure of the buffer. The nucleation rate was studied vs. the growth temperature in the range of 720–790 °C, which allowed determination of nucleation energy of the NWs on a-Al{sub x}O{sub y} equal to 6 eV. Thismore » value is smaller than 10.2 eV we found under the same conditions on nitridized Si(111) substrates. Optical properties of GaN NWs on a-Al{sub x}O{sub y} are analyzed as a function of the growth temperature and compared with those on Si(111) substrates. A significant increase of photoluminescence intensity and much longer PL decay times, close to those on silicon substrates, are found for NWs grown at the highest temperature proving their high quality. The samples grown at high temperature have very narrow PL lines. This allowed observation that positions of donor-bound exciton PL line in the NWs grown on a-Al{sub x}O{sub y} are regularly lower than in samples grown directly on silicon suggesting that oxygen, instead of silicon, is the dominant donor. Moreover, PL spectra suggest that total concentration of donors in GaN NWs grown on a-Al{sub x}O{sub y} is lower than in those grown under similar conditions on bare Si. This shows that the a-Al{sub x}O{sub y} buffer efficiently acts as a barrier preventing uptake of silicon from the substrate to GaN.« less

  8. A tunable sub-100 nm silicon nanopore array with an AAO membrane mask: reducing unwanted surface etching by introducing a PMMA interlayer

    NASA Astrophysics Data System (ADS)

    Lim, Namsoo; Pak, Yusin; Kim, Jin Tae; Hwang, Youngkyu; Lee, Ryeri; Kumaresan, Yogeenth; Myoung, Nosoung; Ko, Heung Cho; Jung, Gun Young

    2015-08-01

    Highly ordered silicon (Si) nanopores with a tunable sub-100 nm diameter were fabricated by a CF4 plasma etching process using an anodic aluminum oxide (AAO) membrane as an etching mask. To enhance the conformal contact of the AAO membrane mask to the underlying Si substrate, poly(methyl methacrylate) (PMMA) was spin-coated on top of the Si substrate prior to the transfer of the AAO membrane. The AAO membrane mask was fabricated by two-step anodization and subsequent removal of the aluminum support and the barrier layer, which was then transferred to the PMMA-coated Si substrate. Contact printing was performed on the sample with a pressure of 50 psi and a temperature of 120 °C to make a conformal contact of the AAO membrane mask to the Si substrate. The CF4 plasma etching was conducted to transfer nanopores onto the Si substrate through the PMMA interlayer. The introduced PMMA interlayer prevented unwanted surface etching of the Si substrate by eliminating the etching ions and radicals bouncing at the gap between the mask and the substrate, resulting in a smooth Si nanopore array.Highly ordered silicon (Si) nanopores with a tunable sub-100 nm diameter were fabricated by a CF4 plasma etching process using an anodic aluminum oxide (AAO) membrane as an etching mask. To enhance the conformal contact of the AAO membrane mask to the underlying Si substrate, poly(methyl methacrylate) (PMMA) was spin-coated on top of the Si substrate prior to the transfer of the AAO membrane. The AAO membrane mask was fabricated by two-step anodization and subsequent removal of the aluminum support and the barrier layer, which was then transferred to the PMMA-coated Si substrate. Contact printing was performed on the sample with a pressure of 50 psi and a temperature of 120 °C to make a conformal contact of the AAO membrane mask to the Si substrate. The CF4 plasma etching was conducted to transfer nanopores onto the Si substrate through the PMMA interlayer. The introduced PMMA interlayer prevented unwanted surface etching of the Si substrate by eliminating the etching ions and radicals bouncing at the gap between the mask and the substrate, resulting in a smooth Si nanopore array. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02786a

  9. Growth of carbon nanotubes by Fe-catalyzed chemical vapor processes on silicon-based substrates

    NASA Astrophysics Data System (ADS)

    Angelucci, Renato; Rizzoli, Rita; Vinciguerra, Vincenzo; Fortuna Bevilacqua, Maria; Guerri, Sergio; Corticelli, Franco; Passini, Mara

    2007-03-01

    In this paper, a site-selective catalytic chemical vapor deposition synthesis of carbon nanotubes on silicon-based substrates has been developed in order to get horizontally oriented nanotubes for field effect transistors and other electronic devices. Properly micro-fabricated silicon oxide and polysilicon structures have been used as substrates. Iron nanoparticles have been obtained both from a thin Fe film evaporated by e-gun and from iron nitrate solutions accurately dispersed on the substrates. Single-walled nanotubes with diameters as small as 1 nm, bridging polysilicon and silicon dioxide “pillars”, have been grown. The morphology and structure of CNTs have been characterized by SEM, AFM and Raman spectroscopy.

  10. Process for depositing an oxide epitaxially onto a silicon substrate and structures prepared with the process

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    1993-01-01

    A process and structure involving a silicon substrate utilizes an ultra high vacuum and molecular beam epitaxy (MBE) methods to grow an epitaxial oxide film upon a surface of the substrate. As the film is grown, the lattice of the compound formed at the silicon interface becomes stabilized, and a base layer comprised of an oxide having a sodium chloride-type lattice structure grows epitaxially upon the compound so as to cover the substrate surface. A perovskite may then be grown epitaxially upon the base layer to render a product which incorporates silicon, with its electronic capabilities, with a perovskite having technologically-significant properties of its own.

  11. Dielectric fluid directional spreading under the action of corona discharge

    NASA Astrophysics Data System (ADS)

    Zhou, Shangru; Liu, Jie; Hu, Qun; Jiang, Teng; Yang, Jinchu; Liu, Sheng; Zheng, Huai

    2018-01-01

    Liquid spreading is a very common nature phenomenon and of significant importance for a broad range of applications. In this study, a dielectric fluid directional spreading phenomenon is presented. Under the action of corona discharge, a dielectric fluid, here a typical silicone directionally spreads along conductive patterns on conductive/nonconductive substrates. Directional spreading behaviors of silicone were experimentally observed on different conductive patterns in detail. Spreading speeds were analyzed at different driving voltages, which induced the corona discharge. The presented phenomenon may be useful to inspire several techniques of manipulating liquid transportation and fabricating micropatterns.

  12. Adhesion of single- and multi-walled carbon nanotubes to silicon substrate: atomistic simulations and continuum analysis

    NASA Astrophysics Data System (ADS)

    Yuan, Xuebo; Wang, Youshan

    2017-10-01

    The radial deformation of carbon nanotubes (CNTs) adhering to a substrate may prominently affect their mechanical and physical properties. In this study, both classical atomistic simulations and continuum analysis are carried out, to investigate the lateral adhesion of single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) to a silicon substrate. A linear elastic model for analyzing the adhesion of 2D shells to a rigid semi-infinite substrate is constructed in the framework of continuum mechanics. Good agreement is achieved between the cross-section profiles of adhesive CNTs obtained by the continuum model and by the atomistic simulation approach. It is found that the adhesion of a CNT to the silicon substrate is significantly influenced by its initial diameter and the number of walls. CNTs with radius larger than a certain critical radius are deformed radially on the silicon substrate with flat contact regions. With increasing number of walls, the extent of radial deformation of a MWCNT on the substrate decreases dramatically, and the flat contact area reduces—and eventually vanishes—due to increasing equivalent bending stiffness. It is analytically predicted that large-diameter MWCNTs with a large number of walls are likely to ‘stand’ on the silicon substrate. The present work can be useful for understanding the radial deformation of CNTs adhering to a solid planar substrate.

  13. Fabrication of polycrystalline solar cells on low-cost substrates

    NASA Technical Reports Server (NTRS)

    Chu, T. L. (Inventor)

    1976-01-01

    A new method of producing p-n junction semiconductors for solar cells was described; the principal objective of this investigation is to reduce production costs significantly by depositing polycrystalline silicon on a relatively cheap substrate such as metallurgical-grade silicon, graphite, or steel. The silicon layer contains appropriate dopants, and the substrates are coated with a diffusion barrier of silica, borosilicate, phosphosilicate, or mixtures of these compounds.

  14. Porous Silicon Covered with Silver Nanoparticles as Surface-Enhanced Raman Scattering (SERS) Substrate for Ultra-Low Concentration Detection.

    PubMed

    Kosović, Marin; Balarin, Maja; Ivanda, Mile; Đerek, Vedran; Marciuš, Marijan; Ristić, Mira; Gamulin, Ozren

    2015-12-01

    Microporous and macro-mesoporous silicon templates for surface-enhanced Raman scattering (SERS) substrates were produced by anodization of low doped p-type silicon wafers. By immersion plating in AgNO3, the templates were covered with silver metallic film consisting of different silver nanostructures. Scanning electron microscopy (SEM) micrographs of these SERS substrates showed diverse morphology with significant difference in an average size and size distribution of silver nanoparticles. Ultraviolet-visible-near-infrared (UV-Vis-NIR) reflection spectroscopy showed plasmonic absorption at 398 and 469 nm, which is in accordance with the SEM findings. The activity of the SERS substrates was tested using rhodamine 6G (R6G) dye molecules and 514.5 nm laser excitation. Contrary to the microporous silicon template, the SERS substrate prepared from macro-mesoporous silicon template showed significantly broader size distribution of irregular silver nanoparticles as well as localized surface plasmon resonance closer to excitation laser wavelength. Such silver morphology has high SERS sensitivity that enables ultralow concentration detection of R6G dye molecules up to 10(-15) M. To our knowledge, this is the lowest concentration detected of R6G dye molecules on porous silicon-based SERS substrates, which might even indicate possible single molecule detection.

  15. Silicon-on-insulator (SOI) active pixel sensors with the photosite implemented in the substrate

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Zheng, Xinyu (Inventor)

    2002-01-01

    Active pixel sensors for a high quality imager are fabricated using a silicon-on-insulator (SOI) process by integrating the photodetectors on the SOI substrate and forming pixel readout transistors on the SOI thin-film. The technique can include forming silicon islands on a buried insulator layer disposed on a silicon substrate and selectively etching away the buried insulator layer over a region of the substrate to define a photodetector area. Dopants of a first conductivity type are implanted to form a signal node in the photodetector area and to form simultaneously drain/source regions for a first transistor in at least a first one of the silicon islands. Dopants of a second conductivity type are implanted to form drain/source regions for a second transistor in at least a second one of the silicon islands. Isolation rings around the photodetector also can be formed when dopants of the second conductivity type are implanted. Interconnections among the transistors and the photodetector are provided to allow signals sensed by the photodetector to be read out via the transistors formed on the silicon islands.

  16. Silicon-on-insulator (SOI) active pixel sensors with the photosite implemented in the substrate

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu (Inventor); Pain, Bedabrata (Inventor)

    2005-01-01

    Active pixel sensors for a high quality imager are fabricated using a silicon-on-insulator (SOI) process by integrating the photodetectors on the SOI substrate and forming pixel readout transistors on the SOI thin-film. The technique can include forming silicon islands on a buried insulator layer disposed on a silicon substrate and selectively etching away the buried insulator layer over a region of the substrate to define a photodetector area. Dopants of a first conductivity type are implanted to form a signal node in the photodetector area and to form simultaneously drain/source regions for a first transistor in at least a first one of the silicon islands. Dopants of a second conductivity type are implanted to form drain/source regions for a second transistor in at least a second one of the silicon islands. Isolation rings around the photodetector also can be formed when dopants of the second conductivity type are implanted. Interconnections among the transistors and the photodetector are provided to allow signals sensed by the photodetector to be read out via the transistors formed on the silicon islands.

  17. Increased voltage photovoltaic cell

    NASA Technical Reports Server (NTRS)

    Ross, B.; Bickler, D. B.; Gallagher, B. D. (Inventor)

    1985-01-01

    A photovoltaic cell, such as a solar cell, is provided which has a higher output voltage than prior cells. The improved cell includes a substrate of doped silicon, a first layer of silicon disposed on the substrate and having opposite doping, and a second layer of silicon carbide disposed on the first layer. The silicon carbide preferably has the same type of doping as the first layer.

  18. Molybdenum enhanced low-temperature deposition of crystalline silicon nitride

    DOEpatents

    Lowden, Richard A.

    1994-01-01

    A process for chemical vapor deposition of crystalline silicon nitride which comprises the steps of: introducing a mixture of a silicon source, a molybdenum source, a nitrogen source, and a hydrogen source into a vessel containing a suitable substrate; and thermally decomposing the mixture to deposit onto the substrate a coating comprising crystalline silicon nitride containing a dispersion of molybdenum silicide.

  19. A theoretical analysis of steady-state photocurrents in simple silicon diodes

    NASA Technical Reports Server (NTRS)

    Edmonds, L.

    1995-01-01

    A theoretical analysis solves for the steady-state photocurrents produced by a given photo-generation rate function with negligible recombination in simple silicon diodes, consisting of a uniformly doped quasi-neutral region (called 'substrate' below) adjacent to a p-n junction depletion region (DR). Special attention is given to conditions that produce 'funneling' (a term used by the single-eventeffects community) under steady-state conditions. Funneling occurs when carriers are generated so fast that the DR becomes flooded and partially or completely collapses. Some or nearly all of the applied voltage, plus built-in potential normally across the DR, is now across the substrate. This substrate voltage drop affects substrate currents. The steady-state problem can provide some qualitative insights into the more difficult transient problem. First, it was found that funneling can be induced from a distance, i.e., from carriers generated at locations outside of the DR. Secondly, it was found that the substrate can divide into two subregions, with one controlling substrate resistance and the other characterized by ambipolar diffusion. Finally, funneling was found to be more difficult to induce in the p(sup +)/n diode than in the n(sup +)/p diode. The carrier density exceeding the doping density in the substrate and at the DR boundary is not a sufficient condition to collapse a DR.

  20. Electron beam enhanced surface modification for making highly resolved structures

    DOEpatents

    Pitts, John R.

    1986-01-01

    A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.

  1. Electron beam enhanced surface modification for making highly resolved structures

    DOEpatents

    Pitts, J.R.

    1984-10-10

    A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.

  2. Method of deposition of silicon carbide layers on substrates

    DOEpatents

    Angelini, P.; DeVore, C.E.; Lackey, W.J.; Blanco, R.E.; Stinton, D.P.

    1982-03-19

    A method for direct chemical vapor deposition of silicon carbide to substrates, especially nuclear waste particles, is provided by the thermal decomposition of methylsilane at 800 to 1050/sup 0/C when the substrates have been confined within a suitable coating environment.

  3. Evaluation of substrate noise suppression method to mitigate crosstalk among trough-silicon vias

    NASA Astrophysics Data System (ADS)

    Araga, Yuuki; Kikuchi, Katsuya; Aoyagi, Masahiro

    2018-04-01

    Substrate noise from a single through-silicon via (TSV) and the noise attenuation by a substrate tap and a guard ring are clarified. A CMOS test vehicle is designed, and 6-µm-diameter TSVs are manufactured on a 20-µm-thick silicon substrate by the via-last method. An on-chip waveform-capturing circuitry is embedded in the test vehicle to capture transient waveforms of substrate noise. The embedded waveform-capturing circuitry demonstrates small and local noise propagation. Experimental results show increased substrate noise level induced by TSVs and the effectiveness of the substrate tap and guard ring for mitigating the crosstalk among TSVs. An analytical model to explain substrate noise propagation is developed to validate experimental results. Results obtained using the substrate model with a multilayer mesh shows good consistency with experimental results, indicating that the model can be used for examination of noise suppression methods.

  4. Comparison on mechanical properties of heavily phosphorus- and arsenic-doped Czochralski silicon wafers

    NASA Astrophysics Data System (ADS)

    Yuan, Kang; Sun, Yuxin; Lu, Yunhao; Liang, Xingbo; Tian, Daxi; Ma, Xiangyang; Yang, Deren

    2018-04-01

    Heavily phosphorus (P)- and arsenic (As)-doped Czochralski silicon (CZ-Si) wafers generally act as the substrates for the epitaxial silicon wafers used to fabricate power and communication devices. The mechanical properties of such two kinds of n-type heavily doped CZ silicon wafers are vital to ensure the quality of epitaxial silicon wafers and the manufacturing yields of devices. In this work, the mechanical properties including the hardness, Young's modulus, indentation fracture toughness and the resistance to dislocation motion have been comparatively investigated for heavily P- and As-doped CZ-Si wafers. It is found that heavily P-doped CZ-Si possesses somewhat higher hardness, lower Young's modulus, larger indentation fracture toughness and stronger resistance to dislocation motion than heavily As-doped CZ-Si. The mechanisms underlying this finding have been tentatively elucidated by considering the differences in the doping effects of P and As in silicon.

  5. Molybdenum enhanced low-temperature deposition of crystalline silicon nitride

    DOEpatents

    Lowden, R.A.

    1994-04-05

    A process for chemical vapor deposition of crystalline silicon nitride is described which comprises the steps of: introducing a mixture of a silicon source, a molybdenum source, a nitrogen source, and a hydrogen source into a vessel containing a suitable substrate; and thermally decomposing the mixture to deposit onto the substrate a coating comprising crystalline silicon nitride containing a dispersion of molybdenum silicide. 5 figures.

  6. Electron Beam "Writes" Silicon On Sapphire

    NASA Technical Reports Server (NTRS)

    Heinemann, Klaus

    1988-01-01

    Method of growing silicon on sapphire substrate uses beam of electrons to aid growth of semiconductor material. Silicon forms as epitaxial film in precisely localized areas in micron-wide lines. Promising fabrication method for fast, densely-packed integrated circuits. Silicon deposited preferentially in contaminated substrate zones and in clean zone irradiated by electron beam. Electron beam, like surface contamination, appears to stimulate decomposition of silane atmosphere.

  7. Spectroellipsometric detection of silicon substrate damage caused by radiofrequency sputtering of niobium oxide

    NASA Astrophysics Data System (ADS)

    Lohner, Tivadar; Serényi, Miklós; Szilágyi, Edit; Zolnai, Zsolt; Czigány, Zsolt; Khánh, Nguyen Quoc; Petrik, Péter; Fried, Miklós

    2017-11-01

    Substrate surface damage induced by deposition of metal atoms by radiofrequency (rf) sputtering or ion beam sputtering onto single-crystalline silicon (c-Si) surface has been characterized earlier by electrical measurements. The question arises whether it is possible to characterize surface damage using spectroscopic ellipsometry (SE). In our experiments niobium oxide layers were deposited by rf sputtering on c-Si substrates in gas mixture of oxygen and argon. Multiple angle of incidence spectroscopic ellipsometry measurements were performed, a four-layer optical model (surface roughness layer, niobium oxide layer, native silicon oxide layer and ion implantation-amorphized silicon [i-a-Si] layer on a c-Si substrate) was created in order to evaluate the spectra. The evaluations yielded thicknesses of several nm for the i-a-Si layer. Better agreement could be achieved between the measured and the generated spectra by inserting a mixed layer (with components of c-Si and i-a-Si applying the effective medium approximation) between the silicon oxide layer and the c-Si substrate. High depth resolution Rutherford backscattering (RBS) measurements were performed to investigate the interface disorder between the deposited niobium oxide layer and the c-Si substrate. Atomic resolution cross-sectional transmission electron microscopy investigation was applied to visualize the details of the damaged subsurface region of the substrate.

  8. Purified silicon production system

    DOEpatents

    Wang, Tihu; Ciszek, Theodore F.

    2004-03-30

    Method and apparatus for producing purified bulk silicon from highly impure metallurgical-grade silicon source material at atmospheric pressure. Method involves: (1) initially reacting iodine and metallurgical-grade silicon to create silicon tetraiodide and impurity iodide byproducts in a cold-wall reactor chamber; (2) isolating silicon tetraiodide from the impurity iodide byproducts and purifying it by distillation in a distillation chamber; and (3) transferring the purified silicon tetraiodide back to the cold-wall reactor chamber, reacting it with additional iodine and metallurgical-grade silicon to produce silicon diiodide and depositing the silicon diiodide onto a substrate within the cold-wall reactor chamber. The two chambers are at atmospheric pressure and the system is open to allow the introduction of additional source material and to remove and replace finished substrates.

  9. Dip coating process: Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Heaps, J. D.; Maciolek, R. B.; Harrison, W. B.; Wolner, H. A.; Hendrickson, G.; Nelson, L. D.

    1976-01-01

    To date, an experimental dip-coating facility was constructed. Using this facility, relatively thin (1 mm) mullite and alumina substrates were successfully dip-coated with 2.5 - 3.0 ohm-cm, p-type silicon with areas of approximately 20 sq cm. The thickness and grain size of these coatings are influenced by the temperature of the melt and the rate at which the substrate is pulled from the melt. One mullite substrate had dendrite-like crystallites of the order of 1 mm wide and 1 to 2 cm long. Their axes were aligned along the direction of pulling. A large variety of substrate materials were purchased or developed enabling the program to commence a substrate definition evaluation. Due to the insulating nature of the substrate, the bottom layer of the p-n junction may have to be made via the top surface. The feasibility of accomplishing this was demonstrated using single crystal wafers.

  10. Silicon carbide thyristor

    NASA Technical Reports Server (NTRS)

    Edmond, John A. (Inventor); Palmour, John W. (Inventor)

    1996-01-01

    The SiC thyristor has a substrate, an anode, a drift region, a gate, and a cathode. The substrate, the anode, the drift region, the gate, and the cathode are each preferably formed of silicon carbide. The substrate is formed of silicon carbide having one conductivity type and the anode or the cathode, depending on the embodiment, is formed adjacent the substrate and has the same conductivity type as the substrate. A drift region of silicon carbide is formed adjacent the anode or cathode and has an opposite conductivity type as the anode or cathode. A gate is formed adjacent the drift region or the cathode, also depending on the embodiment, and has an opposite conductivity type as the drift region or the cathode. An anode or cathode, again depending on the embodiment, is formed adjacent the gate or drift region and has an opposite conductivity type than the gate.

  11. Bidisperse silica nanoparticles close-packed monolayer on silicon substrate by three step spin method

    NASA Astrophysics Data System (ADS)

    Khanna, Sakshum; Marathey, Priyanka; Utsav, Chaliawala, Harsh; Mukhopadhyay, Indrajit

    2018-05-01

    We present the studies on the structural properties of monolayer Bidisperse silica (SiO2) nanoparticles (BDS) on Silicon (Si-100) substrate using spin coating technique. The Bidisperse silica nanoparticle was synthesised by the modified sol-gel process. Nanoparticles on the substrate are generally assembled in non-close/close-packed monolayer (CPM) form. The CPM form is obtained by depositing the colloidal suspension onto the silicon substrate using complex techniques. Here we report an effective method for forming a monolayer of bidisperse silica nanoparticle by three step spin coating technique. The samples were prepared by mixing the monodisperse solutions of different particles size 40 and 100 nm diameters. The bidisperse silica nanoparticles were self-assembled on the silicon substrate forming a close-packed monolayer film. The scanning electron microscope images of bidisperse films provided in-depth film structure of the film. The maximum surface coverage obtained was around 70-80%.

  12. Fabrication of novel plasmonics-active substrates

    NASA Astrophysics Data System (ADS)

    Dhawan, Anuj; Gerhold, Michael; Du, Yan; Misra, Veena; Vo-Dinh, Tuan

    2009-02-01

    This paper describes methodologies for fabricating of highly efficient plasmonics-active SERS substrates - having metallic nanowire structures with pointed geometries and sub-5 nm gap between the metallic nanowires enabling concentration of high EM fields in these regions - on a wafer-scale by a reproducible process that is compatible with large-scale development of these substrates. Excitation of surface plasmons in these nanowire structures leads to substantial enhancement in the Raman scattering signal obtained from molecules lying in the vicinity of the nanostructure surface. The methodologies employed included metallic coating of silicon nanowires fabricated by employing deep UV lithography as well as controlled growth of silicon germanium on silicon nanostructures to form diamond-shaped nanowire structures followed by metallic coating. These SERS substrates were employed for detecting chemical and biological molecules of interest. In order to characterize the SERS substrates developed in this work, we obtained SERS signals from molecules such as p-mercaptobenzoic acid (pMBA) and cresyl fast violet (CFV) attached to or adsorbed on the metal-coated SERS substrates. It was observed that both gold-coated triangular shaped nanowire substrates as well as gold-coated diamond shaped nanowire substrates provided very high SERS signals for the nanowires having sub-15 nm gaps and that the SERS signal depends on the closest spacing between the metal-coated silicon and silicon germanium nanowires. SERS substrates developed by the different processes were also employed for detection of biological molecules such as DPA (Dipicolinic Acid), an excellent marker for spores of bacteria such as Anthrax.

  13. Crystalline silicon growth in nickel/a-silicon bilayer

    NASA Astrophysics Data System (ADS)

    Mohiddon, Md Ahamad; Naidu, K. Lakshun; Dalba, G.; Rocca, F.; Krishna, M. Ghanashyam

    2013-02-01

    The effect of substrate temperature on amorphous Silicon crystallization, mediated by metal impurity is reported. Bilayers of Ni(200nm)/Si(400nm) are deposited on fused silica substrate by electron beam evaporator at 200 and 500 °C. Raman mapping shows that, 2 to 5 micron size crystalline silicon clusters are distributed over the entire surface of the sample. X-ray diffraction and X-ray absorption spectroscopy studies demonstrate silicon crystallizes over the metal silicide seeds and grow with the annealing temperature.

  14. Solar cell with silicon oxynitride dielectric layer

    DOEpatents

    Shepherd, Michael; Smith, David D

    2015-04-28

    Solar cells with silicon oxynitride dielectric layers and methods of forming silicon oxynitride dielectric layers for solar cell fabrication are described. For example, an emitter region of a solar cell includes a portion of a substrate having a back surface opposite a light receiving surface. A silicon oxynitride (SiO.sub.xN.sub.y, 0

  15. Fabrication of heterojunction solar cells by improved tin oxide deposition on insulating layer

    DOEpatents

    Feng, Tom; Ghosh, Amal K.

    1980-01-01

    Highly efficient tin oxide-silicon heterojunction solar cells are prepared by heating a silicon substrate, having an insulating layer thereon, to provide a substrate temperature in the range of about 300.degree. C. to about 400.degree. C. and thereafter spraying the so-heated substrate with a solution of tin tetrachloride in a organic ester boiling below about 250.degree. C. Preferably the insulating layer is naturally grown silicon oxide layer.

  16. Interfacial nanobubbles on atomically flat substrates with different hydrophobicities.

    PubMed

    Wang, Xingya; Zhao, Binyu; Ma, Wangguo; Wang, Ying; Gao, Xingyu; Tai, Renzhong; Zhou, Xingfei; Zhang, Lijuan

    2015-04-07

    The dependence of the morphology of interfacial nanobubbles on atomically flat substrates with different wettability ranges was investigated by using PeakForce quantitative nanomechanics. Interfacial nanobubbles were formed and imaged on silicon nitride (Si3N4), mica, and highly ordered pyrolytic graphite (HOPG) substrates that were partly covered by reduced graphene oxide (rGO). The contact angles and sizes of those nanobubbles were measured under the same conditions. Nanobubbles with the same lateral width exhibited different heights on the different substrates, with the order Si3N4≈mica>rGO>HOPG, which is consistent with the trend of the hydrophobicity of the substrates. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Direct Growth of Graphene on Silicon by Metal-Free Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Tai, Lixuan; Zhu, Daming; Liu, Xing; Yang, Tieying; Wang, Lei; Wang, Rui; Jiang, Sheng; Chen, Zhenhua; Xu, Zhongmin; Li, Xiaolong

    2018-06-01

    The metal-free synthesis of graphene on single-crystal silicon substrates, the most common commercial semiconductor, is of paramount significance for many technological applications. In this work, we report the growth of graphene directly on an upside-down placed, single-crystal silicon substrate using metal-free, ambient-pressure chemical vapor deposition. By controlling the growth temperature, in-plane propagation, edge-propagation, and core-propagation, the process of graphene growth on silicon can be identified. This process produces atomically flat monolayer or bilayer graphene domains, concave bilayer graphene domains, and bulging few-layer graphene domains. This work would be a significant step toward the synthesis of large-area and layer-controlled, high-quality graphene on single-crystal silicon substrates. [Figure not available: see fulltext.

  18. Methods of repairing a substrate

    NASA Technical Reports Server (NTRS)

    Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)

    2011-01-01

    A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium boride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.

  19. Method for deposition of a conductor in integrated circuits

    DOEpatents

    Creighton, J. Randall; Dominguez, Frank; Johnson, A. Wayne; Omstead, Thomas R.

    1997-01-01

    A method is described for fabricating integrated semiconductor circuits and, more particularly, for the selective deposition of a conductor onto a substrate employing a chemical vapor deposition process. By way of example, tungsten can be selectively deposited onto a silicon substrate. At the onset of loss of selectivity of deposition of tungsten onto the silicon substrate, the deposition process is interrupted and unwanted tungsten which has deposited on a mask layer with the silicon substrate can be removed employing a halogen etchant. Thereafter, a plurality of deposition/etch back cycles can be carried out to achieve a predetermined thickness of tungsten.

  20. Method of deposition of silicon carbide layers on substrates and product

    DOEpatents

    Angelini, Peter; DeVore, Charles E.; Lackey, Walter J.; Blanco, Raymond E.; Stinton, David P.

    1984-01-01

    A method for direct chemical vapor deposition of silicon carbide to substrates, especially nuclear waste particles, is provided by the thermal decomposition of methylsilane at about 800.degree. C. to 1050.degree. C. when the substrates have been confined within a suitable coating environment.

  1. Study on Buckling of Stiff Thin Films on Soft Substrates as Functional Materials

    NASA Astrophysics Data System (ADS)

    Ma, Teng

    In engineering, buckling is mechanical instability of walls or columns under compression and usually is a problem that engineers try to prevent. In everyday life buckles (wrinkles) on different substrates are ubiquitous -- from human skin to a rotten apple they are a commonly observed phenomenon. It seems that buckles with macroscopic wavelengths are not technologically useful; over the past decade or so, however, thanks to the widespread availability of soft polymers and silicone materials micro-buckles with wavelengths in submicron to micron scale have received increasing attention because it is useful for generating well-ordered periodic microstructures spontaneously without conventional lithographic techniques. This thesis investigates the buckling behavior of thin stiff films on soft polymeric substrates and explores a variety of applications, ranging from optical gratings, optical masks, energy harvest to energy storage. A laser scanning technique is proposed to detect micro-strain induced by thermomechanical loads and a periodic buckling microstructure is employed as a diffraction grating with broad wavelength tunability, which is spontaneously generated from a metallic thin film on polymer substrates. A mechanical strategy is also presented for quantitatively buckling nanoribbons of piezoelectric material on polymer substrates involving the combined use of lithographically patterning surface adhesion sites and transfer printing technique. The precisely engineered buckling configurations provide a route to energy harvesters with extremely high levels of stretchability. This stiff-thin-film/polymer hybrid structure is further employed into electrochemical field to circumvent the electrochemically-driven stress issue in silicon-anode-based lithium ion batteries. It shows that the initial flat silicon-nanoribbon-anode on a polymer substrate tends to buckle to mitigate the lithiation-induced stress so as to avoid the pulverization of silicon anode. Spontaneously generated submicron buckles of film/polymer are also used as an optical mask to produce submicron periodic patterns with large filling ratio in contrast to generating only ˜100 nm edge submicron patterns in conventional near-field soft contact photolithography. This thesis aims to deepen understanding of buckling behavior of thin films on compliant substrates and, in turn, to harness the fundamental properties of such instability for diverse applications.

  2. Improved toughness of silicon carbide

    NASA Technical Reports Server (NTRS)

    Palm, J. A.

    1976-01-01

    Impact energy absorbing layers (EALs) comprised of partially densified silicon carbide were formed in situ on fully sinterable silicon carbide substrates. After final sintering, duplex silicon carbide structures resulted which were comprised of a fully sintered, high density silicon carbide substrate or core, overlayed with an EAL of partially sintered silicon carbide integrally bonded to its core member. Thermal cycling tests proved such structures to be moderately resistant to oxidation and highly resistant to thermal shock stresses. The strength of the developed structures in some cases exceeded but essentially it remained the same as the fully sintered silicon carbide without the EAL. Ballistic impact tests indicated that substantial improvements in the toughness of sintered silicon carbide were achieved by the use of the partially densified silicon carbide EALs.

  3. Dip coating process: Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Heaps, J. D.; Maciolek, R. B.; Zook, J. D.; Harrison, W. B.; Scott, M. W.; Hendrickson, G.; Wolner, H. A.; Nelson, L. D.; Schuller, T. L.; Peterson, A. A.

    1976-01-01

    The technical and economic feasibility of producing solar cell quality sheet silicon by dip-coating one surface of carbonized ceramic substrates with a thin layer of large grain polycrystalline silicon was investigated. The dip-coating methods studied were directed toward a minimum cost process with the ultimate objective of producing solar cells with a conversion efficiency of 10% or greater. The technique shows excellent promise for low cost, labor-saving, scale-up potentialities and would provide an end product of sheet silicon with a rigid and strong supportive backing. An experimental dip-coating facility was designed and constructed, several substrates were successfully dip-coated with areas as large as 25 sq cm and thicknesses of 12 micron to 250 micron. There appears to be no serious limitation on the area of a substrate that could be coated. Of the various substrate materials dip-coated, mullite appears to best satisfy the requirement of the program. An inexpensive process was developed for producing mullite in the desired geometry.

  4. Interaction of a single acetophenone molecule with group III-IV elements mediated by Si(001)

    NASA Astrophysics Data System (ADS)

    Racis, A.; Jurczyszyn, L.; Radny, M. W.

    2018-03-01

    A theoretical study of an influence of the acetophenone molecule adsorbed on the Si(001) on the local chemical reactivity of silicon surface is presented. The obtained results indicate that the interaction of the molecule with silicon substrate breaks the intra-dimer π bonds in four surface silicon dimers interacting directly with adsorbed molecule. This leads to the formation of two pairs of unpaired dangling bonds at two opposite sides of the molecule. It is demonstrated that these dangling bonds increase considerably the local chemical reactivity of the silicon substrate in the vicinity of the adsorbed molecule. Consequently, it is shown that such molecule bonded with Si(001) can stabilize the position of In and Pb adatoms diffusing on silicon substrate at two sides and initiate the one-dimensional aggregation of the metallic adatoms on the Si(001) substrate anchored at both sides of the adsorbed molecule. This type of aggregation leads to the growth of chain-like atomic structures in opposite directions, pinned to adsorbed molecule and oriented perpendicular to the rows of surface silicon dimers.

  5. Low-Power RIE of SiO2 in CHF3 To Obtain Steep Sidewalls

    NASA Technical Reports Server (NTRS)

    Turner, Tasha; Wu, Chi

    2003-01-01

    A reactive-ion etching (RIE) process has been developed to enable the formation of holes with steep sidewalls in a layer of silicon dioxide that covers a silicon substrate. The holes in question are through the thickness of the SiO2 and are used to define silicon substrate areas to be etched or to be built upon through epitaxial deposition of silicon. The sidewalls of these holes are required to be vertical in order to ensure that the sidewalls of the holes to be etched in the substrate or the sidewalls of the epitaxial deposits, respectively, also turn out to be vertical.

  6. Transistors using crystalline silicon devices on glass

    DOEpatents

    McCarthy, Anthony M.

    1995-01-01

    A method for fabricating transistors using single-crystal silicon devices on glass. This method overcomes the potential damage that may be caused to the device during high voltage bonding and employs a metal layer which may be incorporated as part of the transistor. This is accomplished such that when the bonding of the silicon wafer or substrate to the glass substrate is performed, the voltage and current pass through areas where transistors will not be fabricated. After removal of the silicon substrate, further metal may be deposited to form electrical contact or add functionality to the devices. By this method both single and gate-all-around devices may be formed.

  7. Purification and deposition of silicon by an iodide disproportionation reaction

    DOEpatents

    Wang, Tihu; Ciszek, Theodore F.

    2002-01-01

    Method and apparatus for producing purified bulk silicon from highly impure metallurgical-grade silicon source material at atmospheric pressure. Method involves: (1) initially reacting iodine and metallurgical-grade silicon to create silicon tetraiodide and impurity iodide byproducts in a cold-wall reactor chamber; (2) isolating silicon tetraiodide from the impurity iodide byproducts and purifying it by distillation in a distillation chamber; and (3) transferring the purified silicon tetraiodide back to the cold-wall reactor chamber, reacting it with additional iodine and metallurgical-grade silicon to produce silicon diiodide and depositing the silicon diiodide onto a substrate within the cold-wall reactor chamber. The two chambers are at atmospheric pressure and the system is open to allow the introduction of additional source material and to remove and replace finished substrates.

  8. Composition Comprising Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Mehregany, Mehran (Inventor); Zorman, Christian A. (Inventor); Fu, Xiao-An (Inventor); Dunning, Jeremy L. (Inventor)

    2012-01-01

    A method of depositing a ceramic film, particularly a silicon carbide film, on a substrate is disclosed in which the residual stress, residual stress gradient, and resistivity are controlled. Also disclosed are substrates having a deposited film with these controlled properties and devices, particularly MEMS and NEMS devices, having substrates with films having these properties.

  9. Method and apparatus for forming conformal SiN.sub.x films

    DOEpatents

    Wang, Qi

    2007-11-27

    A silicon nitride film formation method includes: Heating a substrate to be subjected to film formation to a substrate temperature; heating a wire to a wire temperature; supplying silane, ammonia, and hydrogen gases to the heating member; and forming a silicon nitride film on the substrate.

  10. Role of the inversion layer on the charge injection in silicon nanocrystal multilayered light emitting devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tondini, S.; Dipartimento di Fisica, Informatica e Matematica, Università di Modena e Reggio Emilia, Via Campi 213/a, 41125 Modena; Pucker, G.

    2016-09-07

    The role of the inversion layer on injection and recombination phenomena in light emitting diodes (LEDs) is here studied on a multilayer (ML) structure of silicon nanocrystals (Si-NCs) embedded in SiO{sub 2}. Two Si-NC LEDs, which are similar for the active material but different in the fabrication process, elucidate the role of the non-radiative recombination rates at the ML/substrate interface. By studying current- and capacitance-voltage characteristics as well as electroluminescence spectra and time-resolved electroluminescence under pulsed and alternating bias pumping scheme in both the devices, we are able to ascribe the different experimental results to an efficient or inefficient minoritymore » carrier (electron) supply by the p-type substrate in the metal oxide semiconductor LEDs.« less

  11. Hybrid metasurface for ultra-broadband terahertz modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heyes, Jane E.; Withayachumnankul, Withawat; Grady, Nathaniel K.

    2014-11-05

    We demonstrate an ultra-broadband free-space terahertz modulator based on a semiconductor-integrated metasurface. The modulator is made of a planar array of metal cut-wires on a silicon-on-sapphire substrate, where the silicon layer functions as photoconductive switches. Without external excitation, the cut-wire array exhibits a Lorentzian resonant response with a transmission passband spanning dc up to the fundamental dipole resonance above 2 THz. Under photoexcitation with 1.55 eV near-infrared light, the silicon regions in the cut-wire gaps become highly conductive, causing a transition of the resonant metasurface to a wire grating with a Drude response. In effect, the low-frequency passband below 2more » THz evolves into a stopband for the incident terahertz waves. Experimental validations confirm a bandwidth of at least 100%, spanning 0.5 to 1.5 THz with -10 dB modulation depth. This modulation depth is far superior to -5 dB achievable from a plain silicon-on-sapphire substrate with effectively 25 times higher pumping energy. The proposed concept of ultra-broadband metasurface modulator can be readily extended to electrically controlled terahertz wave modulation.« less

  12. Undercutting of defects in thin film protective coatings on polymer surfaces exposed to atomic oxygen

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Mihelcic, Judith A.

    1989-01-01

    Protection for polymeric surfaces is needed to make them durable in the low Earth orbital environment, where oxidation by atomic oxygen is the predominant failure mechanism. Thin film coatings of oxides such as silicon dioxide are viable candidates to provide this protection, but concern has been voiced over the ability of these coatings to protect when defects are present in the coating due to surface anomalies occurring during the deposition process, handling, or micrometeoroid and debris bombardment in low Earth orbit. When a defected coating protecting a polymer substrate is exposed to atomic oxygen, the defect provides a pathway to the underlying polymer allowing oxidation and subsequent undercutting to occur. Defect undercutting was studied for sputter deposited coatings of silicon dioxide on polyimide Kapton. Preliminary results indicate that undercutting may be limited as long as the coating remains intact with the substrate. Therefore, coatings may not need to be defect free to give protection to the underlying surface.

  13. Silicon on Ceramic Process: Silicon Sheet Growth and Device Development for the Large-area Silicon Sheet and Cell Development Tasks of the Low-cost Solar Array Project

    NASA Technical Reports Server (NTRS)

    Chapman, P. W.; Zook, J. D.; Heaps, J. D.; Pickering, C.; Grung, B. L.; Koepke, B.; Schuldt, S. B.

    1979-01-01

    The technical and economic feasibility of producing solar cell quality sheet silicon was investigated. It was hoped this could be done by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Work was directed towards the solution of unique cell processing/design problems encountered with the silicon-ceramic (SOC) material due to its intimate contact with the ceramic substrate. Significant progress was demonstrated in the following areas; (1) the continuous coater succeeded in producing small-area coatings exhibiting unidirectional solidification and substatial grain size; (2) dip coater succeeded in producing thick (more than 500 micron) dendritic layers at coating speeds of 0.2-0.3 cm/sec; and (3) a standard for producing total area SOC solar cells using slotted ceramic substrates was developed.

  14. Method for forming silicon on a glass substrate

    DOEpatents

    McCarthy, Anthony M.

    1995-01-01

    A method by which single-crystal silicon microelectronics may be fabricated on glass substrates at unconventionally low temperatures. This is achieved by fabricating a thin film of silicon on glass and subsequently forming the doped components by a short wavelength (excimer) laser doping procedure and conventional patterning techniques. This method may include introducing a heavily boron doped etch stop layer on a silicon wafer using an excimer laser, which permits good control of the etch stop layer removal process. This method additionally includes dramatically reducing the remaining surface roughness of the silicon thin films after etching in the fabrication of silicon on insulator wafers by scanning an excimer laser across the surface of the silicon thin film causing surface melting, whereby the surface tension of the melt causes smoothing of the surface during recrystallization. Applications for this method include those requiring a transparent or insulating substrate, such as display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard and high temperature electronics.

  15. Method for forming silicon on a glass substrate

    DOEpatents

    McCarthy, A.M.

    1995-03-07

    A method by which single-crystal silicon microelectronics may be fabricated on glass substrates at unconventionally low temperatures. This is achieved by fabricating a thin film of silicon on glass and subsequently forming the doped components by a short wavelength (excimer) laser doping procedure and conventional patterning techniques. This method may include introducing a heavily boron doped etch stop layer on a silicon wafer using an excimer laser, which permits good control of the etch stop layer removal process. This method additionally includes dramatically reducing the remaining surface roughness of the silicon thin films after etching in the fabrication of silicon on insulator wafers by scanning an excimer laser across the surface of the silicon thin film causing surface melting, whereby the surface tension of the melt causes smoothing of the surface during recrystallization. Applications for this method include those requiring a transparent or insulating substrate, such as display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard and high temperature electronics. 15 figs.

  16. Surface Attachment of Gold Nanoparticles Guided by Block Copolymer Micellar Films and Its Application in Silicon Etching

    PubMed Central

    Wei, Mingjie; Wang, Yong

    2015-01-01

    Patterning metallic nanoparticles on substrate surfaces is important in a number of applications. However, it remains challenging to fabricate such patterned nanoparticles with easily controlled structural parameters, including particle sizes and densities, from simple methods. We report on a new route to directly pattern pre-formed gold nanoparticles with different diameters on block copolymer micellar monolayers coated on silicon substrates. Due to the synergetic effect of complexation and electrostatic interactions between the micellar cores and the gold particles, incubating the copolymer-coated silicon in a gold nanoparticles suspension leads to a monolayer of gold particles attached on the coated silicon. The intermediate micellar film was then removed using oxygen plasma treatment, allowing the direct contact of the gold particles with the Si substrate. We further demonstrate that the gold nanoparticles can serve as catalysts for the localized etching of the silicon substrate, resulting in nanoporous Si with a top layer of straight pores. PMID:28793407

  17. RF sputtering for controlling dihydride and monohydride bond densities in amorphous silicon hydride

    DOEpatents

    Jeffery, F.R.; Shanks, H.R.

    1980-08-26

    A process is described for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicone produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous solicone hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.

  18. SOI-silicon as structural layer for NEMS applications

    NASA Astrophysics Data System (ADS)

    Villarroya, Maria; Figueras, Eduard; Perez-Murano, Francesc; Campabadal, Francesca; Esteve, Jaume; Barniol, Nuria

    2003-04-01

    The objective of this paper is to present the compatibilization between a standard CMOS on bulk silicon process and the fabrication of nanoelectromechanical systems using Silicon On Insulator (SOI) wafers as substrate. This compatibilization is required as first step to fabricate a very high sensitive mass sensor based on a resonant cantilever with nanometer dimensions using the crystal silicon COI layer as the structural layer. The cantilever is driven electrostatically to its resonance frequency by an electrode placed parallel to the cantilever. A capacitive readout is performed. To achieve very high resolution, very small dimensions of the cantilever (nanometer range) are needed. For this reason, the control and excitation circuitry has to be integrated on the same substrate than the cantilever. Prior to the development of this sensor, it is necessary to develop a substrate able to be used first to integrate a standard CMOS circuit and afterwards to fabricate the nano-resonator. Starting from a SOI wafer and using very simple processes, the SOI silicon layer is removed, except from the areas in which nano-structures will be fabricated; obtaining a silicon substrate with islands with a SOI structure. The CMOS circuitry will be integrated on the bulk silicon region, while the remainder SOI region will be used for the nanoresonator. The silicon oxide of this SOI region is used as insulator; and as sacrificial layer, etched to release the cantilever from the substrate. To assure the cover of the different CMOS layers over the step of the islands, it is essential to avoid very sharp steps.

  19. Method of forming contacts for a back-contact solar cell

    DOEpatents

    Manning, Jane

    2015-10-20

    Methods of forming contacts for solar cells are described. In one embodiment, a method includes forming a silicon layer above a substrate, forming and patterning a solid-state p-type dopant source on the silicon layer, forming an n-type dopant source layer over exposed regions of the silicon layer and over a plurality of regions of the solid-state p-type dopant source, and heating the substrate to provide a plurality of n-type doped silicon regions among a plurality of p-type doped silicon regions.

  20. Method of forming contacts for a back-contact solar cell

    DOEpatents

    Manning, Jane

    2014-07-15

    Methods of forming contacts for solar cells are described. In one embodiment, a method includes forming a silicon layer above a substrate, forming and patterning a solid-state p-type dopant source on the silicon layer, forming an n-type dopant source layer over exposed regions of the silicon layer and over a plurality of regions of the solid-state p-type dopant source, and heating the substrate to provide a plurality of n-type doped silicon regions among a plurality of p-type doped silicon regions.

  1. Paper-based SERS swab for rapid trace detection on real-world surfaces.

    PubMed

    Lee, Chang H; Tian, Limei; Singamaneni, Srikanth

    2010-12-01

    One of the important but often overlooked considerations in the design of surface-enhanced Raman scattering (SERS) substrates for trace detection is the efficiency of sample collection. Conventional designs based on rigid substrates such as silicon, alumina, and glass resist conformal contact with the surface under investigation, making the sample collection inefficient. We demonstrate a novel SERS substrate based on common filter paper adsorbed with gold nanorods, which allows conformal contact with real-world surfaces, thus dramatically enhancing the sample collection efficiency compared to conventional rigid substrates. We demonstrate the detection of trace amounts of analyte (140 pg spread over 4 cm2) by simply swabbing the surface under investigation with the novel SERS substrate. The hierarchical fibrous structure of paper serves as a 3D vasculature for easy uptake and transport of the analytes to the electromagnetic hot spots in the paper. Simple yet highly efficient and cost-effective SERS substrate demonstrated here brings SERS-based trace detection closer to real-world applications.

  2. VLED for Si wafer-level packaging

    NASA Astrophysics Data System (ADS)

    Chu, Chen-Fu; Chen, Chiming; Yen, Jui-Kang; Chen, Yung-Wei; Tsou, Chingfu; Chang, Chunming; Doan, Trung; Tran, Chuong Anh

    2012-03-01

    In this paper, we introduced the advantages of Vertical Light emitting diode (VLED) on copper alloy with Si-wafer level packaging technologies. The silicon-based packaging substrate starts with a <100> dou-ble-side polished p-type silicon wafer, then anisotropic wet etching technology is done to construct the re-flector depression and micro through-holes on the silicon substrate. The operating voltage, at a typical cur-rent of 350 milli-ampere (mA), is 3.2V. The operation voltage is less than 3.7V under higher current driving conditions of 1A. The VLED chip on Si package has excellent heat dissipation and can be operated at high currents up to 1A without efficiency degradation. The typical spatial radiation pattern emits a uniform light lambertian distribution from -65° to 65° which can be easily fit for secondary optics. The correlated color temperature (CCT) has only 5% variation for daylight and less than 2% variation for warm white, when the junction temperature is increased from 25°C to 110°C, suggesting a stable CCT during operation for general lighting application. Coupled with aspheric lens and micro lens array in a wafer level process, it has almost the same light distribution intensity for special secondary optics lighting applications. In addition, the ul-tra-violet (UV) VLED, featuring a silicon substrate and hard glass cover, manufactured by wafer level pack-aging emits high power UV wavelengths appropriate for curing, currency, document verification, tanning, medical, and sterilization applications.

  3. Measurements of Elastic Moduli of Silicone Gel Substrates with a Microfluidic Device

    PubMed Central

    Gutierrez, Edgar; Groisman, Alex

    2011-01-01

    Thin layers of gels with mechanical properties mimicking animal tissues are widely used to study the rigidity sensing of adherent animal cells and to measure forces applied by cells to their substrate with traction force microscopy. The gels are usually based on polyacrylamide and their elastic modulus is measured with an atomic force microscope (AFM). Here we present a simple microfluidic device that generates high shear stresses in a laminar flow above a gel-coated substrate and apply the device to gels with elastic moduli in a range from 0.4 to 300 kPa that are all prepared by mixing two components of a transparent commercial silicone Sylgard 184. The elastic modulus is measured by tracking beads on the gel surface under a wide-field fluorescence microscope without any other specialized equipment. The measurements have small and simple to estimate errors and their results are confirmed by conventional tensile tests. A master curve is obtained relating the mixing ratios of the two components of Sylgard 184 with the resulting elastic moduli of the gels. The rigidity of the silicone gels is less susceptible to effects from drying, swelling, and aging than polyacrylamide gels and can be easily coated with fluorescent tracer particles and with molecules promoting cellular adhesion. This work can lead to broader use of silicone gels in the cell biology laboratory and to improved repeatability and accuracy of cell traction force microscopy and rigidity sensing experiments. PMID:21980487

  4. Underwater locomotion in a terrestrial beetle: combination of surface de-wetting and capillary forces

    PubMed Central

    Hosoda, Naoe; Gorb, Stanislav N.

    2012-01-01

    For the first time, we report the remarkable ability of the terrestrial leaf beetle Gastrophysa viridula to walk on solid substrates under water. These beetles have adhesive setae on their feet that produce a secretory fluid having a crucial role in adhesion on land. In air, adhesion is produced by capillary forces between the fluid-covered setae and the substrate. In general, capillary forces do not contribute to adhesion under water. However, our observations showed that these beetles may use air bubbles trapped between their adhesive setae to walk on flooded, inclined substrata or even under water. Beetle adhesion to hydrophilic surfaces under water was lower than that in air, whereas adhesion to hydrophobic surfaces under water was comparable to that in air. Oil-covered hairy pads had a pinning effect, retaining the air bubbles on their feet. Bubbles in contact with the hydrophobic substrate de-wetted the substrate and produced capillary adhesion. Additional capillary forces are generated by the pad's liquid bridges between the foot and the substrate. Inspired by this idea, we designed an artificial silicone polymer structure with underwater adhesive properties. PMID:22874756

  5. Comparison of silicon, nickel, and nickel silicide (Ni 3Si) as substrates for epitaxial diamond growth

    NASA Astrophysics Data System (ADS)

    Tucker, D. A.; Seo, D.-K.; Whangbo, M.-H.; Sivazlian, F. R.; Stoner, B. R.; Bozeman, S. P.; Sowers, A. T.; Nemanich, R. J.; Glass, J. T.

    1995-07-01

    We carried out experimental and theoretical studies aimed at probing interface interactions of diamond with Si, Ni, and Ni 3Si substrates. Oriented diamond films deposited on (100) silicon were characterized by polar Raman, polar XRD, and cross-sectional HRTEM. These studies show that the diamond-(100)/Si(100) interface does not adopt the 45°-rotation but the 3 : 2-match arrangement. Our extended Hückel tight-binding (EHTB) electronic structure calculations for a model system show that the interface interaction favors the 3 : 2-match arrangement. Growth on polycrystalline Ni 3Si resulted in oriented diamond particles while, under the same growth conditions, largely graphite was formed on the nickel substrate. Our EHTB electronic structure calculations for model systems show that the (111) and (100) surfaces of Ni 3Si have a strong preference for diamond-nucleation over graphite-nucleation, but this is not the case for the (111) and (100) surfaces of Ni.

  6. Method for deposition of a conductor in integrated circuits

    DOEpatents

    Creighton, J.R.; Dominguez, F.; Johnson, A.W.; Omstead, T.R.

    1997-09-02

    A method is described for fabricating integrated semiconductor circuits and, more particularly, for the selective deposition of a conductor onto a substrate employing a chemical vapor deposition process. By way of example, tungsten can be selectively deposited onto a silicon substrate. At the onset of loss of selectivity of deposition of tungsten onto the silicon substrate, the deposition process is interrupted and unwanted tungsten which has deposited on a mask layer with the silicon substrate can be removed employing a halogen etchant. Thereafter, a plurality of deposition/etch back cycles can be carried out to achieve a predetermined thickness of tungsten. 2 figs.

  7. High-Performance Ultrathin Organic-Inorganic Hybrid Silicon Solar Cells via Solution-Processed Interface Modification.

    PubMed

    Zhang, Jie; Zhang, Yinan; Song, Tao; Shen, Xinlei; Yu, Xuegong; Lee, Shuit-Tong; Sun, Baoquan; Jia, Baohua

    2017-07-05

    Organic-inorganic hybrid solar cells based on n-type crystalline silicon and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) exhibited promising efficiency along with a low-cost fabrication process. In this work, ultrathin flexible silicon substrates, with a thickness as low as tens of micrometers, were employed to fabricate hybrid solar cells to reduce the use of silicon materials. To improve the light-trapping ability, nanostructures were built on the thin silicon substrates by a metal-assisted chemical etching method (MACE). However, nanostructured silicon resulted in a large amount of surface-defect states, causing detrimental charge recombination. Here, the surface was smoothed by solution-processed chemical treatment to reduce the surface/volume ratio of nanostructured silicon. Surface-charge recombination was dramatically suppressed after surface modification with a chemical, associated with improved minority charge-carrier lifetime. As a result, a power conversion efficiency of 9.1% was achieved in the flexible hybrid silicon solar cells, with a substrate thickness as low as ∼14 μm, indicating that interface engineering was essential to improve the hybrid junction quality and photovoltaic characteristics of the hybrid devices.

  8. Circularly polarized Raman study on diamond structure crystals

    NASA Astrophysics Data System (ADS)

    Lee, Je-Ho; Kim, Sera; Seong, Maeng-Je

    2018-01-01

    Circularly polarized Raman and/or photoluminescence (PL) analyses have recently been very important in studying physical properties of many layered materials that were either mechanically exfoliated or grown by chemical-vapor-deposition (CVD) on silicon substrates. Since silicon Raman signal is always accompanied by the circularly polarized Raman and/or PL signal from the layered materials, observation of proper circularly polarized Raman selection rules on silicon substrates would be extremely good indicator that the circularly polarized Raman and/or PL measurements on the layered materials were done properly. We have performed circularly polarized Raman measurements on silicon substrates and compared the results with the Raman intensities calculated by using Raman tensors of the diamond crystal structure. Our experimental results were in excellent agreement with the calculation. Similar circularly polarized Raman analysis done on germanium substrate also showed good agreement.

  9. Passivation coating for flexible substrate mirrors

    DOEpatents

    Tracy, C. Edwin; Benson, David K.

    1990-01-01

    A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate before metal deposition thereon to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors. Also, the silver or other reflective metal layer on mirrors comprising thin, lightweight, flexible substrates of metal or polymer sheets coated with glassy layers can be protected with silicon nitride according to this invention.

  10. Decal transfer microfabrication

    DOEpatents

    Nuzzo, Ralph G.; Childs, William Robert

    2004-10-19

    A method of making a microstructure includes forming a pattern in a surface of a silicon-containing elastomer, oxidizing the pattern, contacting the pattern with a substrate; and bonding the oxidized pattern and the substrate such that the pattern and the substrate are irreversibly attached. The silicon-containing elastomer may be removably attached to a transfer pad.

  11. Modification of surface properties of cellulosic substrates by quaternized silicone emulsions.

    PubMed

    Purohit, Parag S; Somasundaran, P

    2014-07-15

    The present work describes the effect of quaternization of silicones as well as the relevant treatment parameter pH on the frictional, morphological and relaxation properties of fabric substrates. Due to their unique surface properties, silicone polymers are extensively used to modify surface properties of various materials, although the effects of functionalization of silicones and relevant process conditions on modification of substrates are not well understood. Specifically we show a considerable reduction in fabric friction, roughness and waviness upon treatment with quaternized silicones. The treatment at acidic pH results in better deposition of silicone polymers onto the fabric as confirmed through streaming potential measurements which show charge reversal of the fabric. Interestingly, Raman spectroscopy studies show the band of C-O ring stretching mode at ∼1095 cm(-1) shift towards higher wavenumber indicating lowering of stress in fibers upon appropriate silicone treatment. Thus along with the morphological and frictional properties being altered, silicone treatment can lead to a reduction in fabric strain. It is concluded that the electrostatic interactions play an initial role in modification of the fiber substrate followed by multilayer deposition of polymer. This multi-technique approach to study fiber properties upon treatment by combining macro to molecular level methods has helped in understanding of new functional coating materials. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Ion-implanted Si-nanostructures buried in a SiO{sub 2} substrate studied with soft-x-ray spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, R.; Rubensson, J.E.; Eisebitt, S.

    1997-04-01

    In recent years silicon nanostructures have gained great interest because of their optical luminescence, which immediately suggests several applications, e.g., in optoelectronic devices. Nanostructures are also investigated because of the fundamental physics involved in the underlying luminescence mechanism, especially attention has been drawn to the influence of the reduced dimensions on the electronic structure. The forming of stable and well-defined nanostructured materials is one goal of cluster physics. For silicon nanostructures this goal has so far not been reached, but various indirect methods have been established, all having the problem of producing less well defined and/or unstable nanostructures. Ion implantationmore » and subsequent annealing is a promising new technique to overcome some of these difficulties. In this experiment the authors investigate the electronic structure of ion-implanted silicon nanoparticles buried in a stabilizing SiO{sub 2} substrate. Soft X-ray emission (SXE) spectroscopy features the appropriate information depth to investigate such buried structures. SXE spectra to a good approximation map the local partial density of occupied states (LPDOS) in broad band materials like Si. The use of monochromatized synchrotron radiation (MSR) allows for selective excitation of silicon atoms in different chemical environments. Thus, the emission from Si atom sites in the buried structure can be separated from contributions from the SiO{sub 2} substrate. In this preliminary study strong size dependent effects are found, and the electronic structure of the ion-implanted nanoparticles is shown to be qualitatively different from porous silicon. The results can be interpreted in terms of quantum confinement and chemical shifts due to neighboring oxygen atoms at the interface to SiO{sub 2}.« less

  13. Plasmon induced modification of silicon nanocrystals photoluminescence in presence of gold nanostripes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyakov, S. A.; Zhigunov, D. M.; Marinins, A.

    Here, we report on the results of theoretical and experimental studies of photoluminescense of silicon nanocrystals in the proximity to plasmonic modes of different types. In the studied samples, the type of plasmonic mode is determined by the filling ratio of a one-dimensional array of gold stripes which covers the thin film with silicon nanocrystals on a quartz substrate. We analyze the extinction, photoluminesce spectra and decay kinetics of silicon nanocrystals and show that the incident and emitted light is coupled to the corresponding plasmonic mode. We demonstrate the modification of the extinction and photoluminesce spectra under the transition frommore » wide to narrow gold stripes. The experimental extinction and photoluminescense spectra are in good agreement with theoretical calculations performed by the rigorous coupled wave analysis. Finally, we study the contribution of individual silicon nanocrystals to the overall photoluminescense intensity, depending on their spacial position inside the structure.« less

  14. Plasmon induced modification of silicon nanocrystals photoluminescence in presence of gold nanostripes

    DOE PAGES

    Dyakov, S. A.; Zhigunov, D. M.; Marinins, A.; ...

    2018-03-20

    Here, we report on the results of theoretical and experimental studies of photoluminescense of silicon nanocrystals in the proximity to plasmonic modes of different types. In the studied samples, the type of plasmonic mode is determined by the filling ratio of a one-dimensional array of gold stripes which covers the thin film with silicon nanocrystals on a quartz substrate. We analyze the extinction, photoluminesce spectra and decay kinetics of silicon nanocrystals and show that the incident and emitted light is coupled to the corresponding plasmonic mode. We demonstrate the modification of the extinction and photoluminesce spectra under the transition frommore » wide to narrow gold stripes. The experimental extinction and photoluminescense spectra are in good agreement with theoretical calculations performed by the rigorous coupled wave analysis. Finally, we study the contribution of individual silicon nanocrystals to the overall photoluminescense intensity, depending on their spacial position inside the structure.« less

  15. Modifying Surface Fluctuations of Polymer Melt Films with Substrate Modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yang; He, Qiming; Zhang, Fan

    Deposition of a plasma polymerized film on a silicon substrate substantially changes the fluctuations on the surface of a sufficiently thin, melt polystyrene (PS) film atop the substrate. Surface fluctuation relaxation times measured with X-ray photon correlation spectroscopy (XPCS) for ca. 4R g thick melt films of 131 kg/mol linear PS on silicon and on a plasma polymer modified silicon wafer can both be described using a hydrodynamic continuum theory (HCT) that assumes the film is characterized throughout its depth by the bulk viscosity. However, when the film thickness is reduced to ~3R g, confinement effects are evident. The surfacemore » fluctuations are slower than predicted using the HCT, and the confinement effect for the PS on silicon is larger than that for the PS on the plasma polymerized film. This deviation is thus due to a difference in the thicknesses of the strongly adsorbed layers at the substrate which are impacted by the substrate surface energy.« less

  16. Modifying Surface Fluctuations of Polymer Melt Films with Substrate Modification

    DOE PAGES

    Zhou, Yang; He, Qiming; Zhang, Fan; ...

    2017-08-14

    Deposition of a plasma polymerized film on a silicon substrate substantially changes the fluctuations on the surface of a sufficiently thin, melt polystyrene (PS) film atop the substrate. Surface fluctuation relaxation times measured with X-ray photon correlation spectroscopy (XPCS) for ca. 4R g thick melt films of 131 kg/mol linear PS on silicon and on a plasma polymer modified silicon wafer can both be described using a hydrodynamic continuum theory (HCT) that assumes the film is characterized throughout its depth by the bulk viscosity. However, when the film thickness is reduced to ~3R g, confinement effects are evident. The surfacemore » fluctuations are slower than predicted using the HCT, and the confinement effect for the PS on silicon is larger than that for the PS on the plasma polymerized film. This deviation is thus due to a difference in the thicknesses of the strongly adsorbed layers at the substrate which are impacted by the substrate surface energy.« less

  17. Influence of arsenic flow on the crystal structure of epitaxial GaAs grown at low temperatures on GaAs (100) and (111)A substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galiev, G. B.; Klimov, E. A.; Vasiliev, A. L.

    The influence of arsenic flow in a growth chamber on the crystal structure of GaAs grown by molecular-beam epitaxy at a temperature of 240°C on GaAs (100) and (111)A substrates has been investigated. The flow ratio γ of arsenic As4 and gallium was varied in the range from 16 to 50. GaAs films were either undoped, or homogeneously doped with silicon, or contained three equidistantly spaced silicon δ-layers. The structural quality of the annealed samples has been investigated by transmission electron microscopy. It is established for the first time that silicon δ-layers in “low-temperature” GaAs serve as formation centers ofmore » arsenic precipitates. Their average size, concentration, and spatial distribution are estimated. The dependence of the film structural quality on γ is analyzed. Regions 100–150 nm in size have been revealed in some samples and identified (by X-ray microanalysis) as pores. It is found that, in the entire range of γ under consideration, GaAs films on (111)A substrates have a poorer structural quality and become polycrystalline beginning with a thickness of 150–200 nm.« less

  18. Polyacrylic acid polymer brushes as substrates for the incorporation of anthraquinone derivatives. Unprecedented application of decorated polymer brushes on organocatalysis

    NASA Astrophysics Data System (ADS)

    Ruiz-Muelle, Ana Belén; Contreras-Cáceres, Rafael; Oña-Burgos, Pascual; Rodríguez-Dieguez, Antonio; López-Romero, Juan Manuel; Fernández, Ignacio

    2018-01-01

    The synthesis of amino-terminated anthraquinone derivatives and their incorporation onto polymer brushes for the fabrication of silicon-based nanometric functional coatings are described for the first time. The general process involves the covalent grafting of anthraquinone 1 onto two different polymer-brushes by amidation reactions. They are composed by amino- and carboxy-terminated poly(acrylic acid) chains (PAA-NH2- and PAA-COOH, respectively) tethered by one end to an underlying silicon oxide (SiO2) substrate in a polymer brush configuration. A third substrate is fabricated by UV induced hydrosilylation reaction using undecenoic acid as adsorbate on hydrogen-terminated Si(111) surfaces. One- and two-dimensional nuclear magnetic resonance (NMR), FT-IR, MS and X-ray diffraction (XRD) were used to characterize anthraquinone 1. Ellipsometric and X-ray photoelectron spectroscopy (XPS) measurements demonstrated the presence of the polymer brushes on the silicon wafers, and atomic force microscopy (AFM) was used to study its surface morphology. The covalent linkage between anthraquinone and polymer brushes was proven by XPS and confocal fluorescence microscopy. The resulting surfaces were assayed in the heterogenous organocatalytic transformation of (1H)-indole into 3-benzyl indole with moderate yields but with high recyclability.

  19. Diamond Composite Films for Protective Coatings on Metals and Method of Formation

    NASA Technical Reports Server (NTRS)

    Ong, Tiong P. (Inventor); Shing, Yuh-Han (Inventor)

    1997-01-01

    Composite films consisting of diamond crystallites and hard amorphous films such as diamond-like carbon, titanium nitride, and titanium oxide are provided as protective coatings for metal substrates against extremely harsh environments. A composite layer having diamond crystallites and a hard amorphous film is affixed to a metal substrate via an interlayer including a bottom metal silicide film and a top silicon carbide film. The interlayer is formed either by depositing metal silicide and silicon carbide directly onto the metal substrate, or by first depositing an amorphous silicon film, then allowing top and bottom portions of the amorphous silicon to react during deposition of the diamond crystallites, to yield the desired interlayer structure.

  20. Transistors using crystalline silicon devices on glass

    DOEpatents

    McCarthy, A.M.

    1995-05-09

    A method is disclosed for fabricating transistors using single-crystal silicon devices on glass. This method overcomes the potential damage that may be caused to the device during high voltage bonding and employs a metal layer which may be incorporated as part of the transistor. This is accomplished such that when the bonding of the silicon wafer or substrate to the glass substrate is performed, the voltage and current pass through areas where transistors will not be fabricated. After removal of the silicon substrate, further metal may be deposited to form electrical contact or add functionality to the devices. By this method both single and gate-all-around devices may be formed. 13 figs.

  1. Method for fabricating transistors using crystalline silicon devices on glass

    DOEpatents

    McCarthy, Anthony M.

    1997-01-01

    A method for fabricating transistors using single-crystal silicon devices on glass. This method overcomes the potential damage that may be caused to the device during high voltage bonding and employs a metal layer which may be incorporated as part of the transistor. This is accomplished such that when the bonding of the silicon wafer or substrate to the glass substrate is performed, the voltage and current pass through areas where transistors will not be fabricated. After removal of the silicon substrate, further metal may be deposited to form electrical contact or add functionality to the devices. By this method both single and gate-all-around devices may be formed.

  2. Method for fabricating transistors using crystalline silicon devices on glass

    DOEpatents

    McCarthy, A.M.

    1997-09-02

    A method for fabricating transistors using single-crystal silicon devices on glass. This method overcomes the potential damage that may be caused to the device during high voltage bonding and employs a metal layer which may be incorporated as part of the transistor. This is accomplished such that when the bonding of the silicon wafer or substrate to the glass substrate is performed, the voltage and current pass through areas where transistors will not be fabricated. After removal of the silicon substrate, further metal may be deposited to form electrical contact or add functionality to the devices. By this method both single and gate-all-around devices may be formed. 13 figs.

  3. Rough SERS substrate based on gold coated porous silicon layer prepared on the silicon backside surface

    NASA Astrophysics Data System (ADS)

    Dridi, H.; Haji, L.; Moadhen, A.

    2017-04-01

    We report in this paper a novel method to elaborate rough Surface Enhanced Raman Scattering (SERS) substrate. A single layer of porous silicon was formed on the silicon backside surface. Morphological characteristics of the porous silicon layer before and after gold deposition were influenced by the rough character (gold size). The reflectance measurements showed a dependence of the gold nano-grains size on the surface nature, through the Localized Surface Plasmon (LSP) band properties. SERS signal of Rhodamine 6G used as a model analyte, adsorbed on the rough porous silicon layer revealed a marked enhancement of its vibrational modes intensities.

  4. Silicon Nanowire Growth at Chosen Positions and Orientations

    NASA Technical Reports Server (NTRS)

    Getty, Stephanie A.

    2009-01-01

    It is now possible to grow silicon nanowires at chosen positions and orientations by a method that involves a combination of standard microfabrication processes. Because their positions and orientations can be chosen with unprecedented precision, the nanowires can be utilized as integral parts of individually electronically addressable devices in dense arrays. Nanowires made from silicon and perhaps other semiconductors hold substantial promise for integration into highly miniaturized sensors, field-effect transistors, optoelectronic devices, and other electronic devices. Like bulk semiconductors, inorganic semiconducting nanowires are characterized by electronic energy bandgaps that render them suitable as means of modulating or controlling electronic signals through electrostatic gating, in response to incident light, or in response to molecules of interest close to their surfaces. There is now potential for fabricating arrays of uniform, individually electronically addressable nanowires tailored to specific applications. The method involves formation of metal catalytic particles at the desired positions on a substrate, followed by heating the substrate in the presence of silane gas. The figure illustrates an example in which a substrate includes a silicon dioxide surface layer that has been etched into an array of pillars and the catalytic (in this case, gold) particles have been placed on the right-facing sides of the pillars. The catalytic thermal decomposition of the silane to silicon and hydrogen causes silicon columns (the desired nanowires) to grow outward from the originally catalyzed spots on the substrate, carrying the catalytic particles at their tips. Thus, the position and orientation of each silicon nanowire is determined by the position of its originally catalyzed spot on the substrate surface, and the orientation of the nanowire is perpendicular to the substrate surface at the originally catalyzed spot.

  5. Thin film transistors on plastic substrates with reflective coatings for radiation protection

    DOEpatents

    Wolfe, Jesse D.; Theiss, Steven D.; Carey, Paul G.; Smith, Patrick M.; Wickboldt, Paul

    2003-11-04

    Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.

  6. Thin film transistors on plastic substrates with reflective coatings for radiation protection

    DOEpatents

    Wolfe, Jesse D [Fairfield, CA; Theiss, Steven D [Woodbury, MN; Carey, Paul G [Mountain View, CA; Smith, Patrick M [San Ramon, CA; Wickbold, Paul [Walnut Creek, CA

    2006-09-26

    Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.

  7. Investigation of the heating behavior of carbide-bonded graphene coated silicon wafer used for hot embossing

    NASA Astrophysics Data System (ADS)

    Yang, Gao; Li, Lihua; Lee, Wing Bun; Ng, Man Cheung; Chan, Chang Yuen

    2018-03-01

    A recently developed carbide-bonded graphene (CBG) coated silicon wafer was found to be an effective micro-patterned mold material for implementing rapid heating in hot embossing processes owing to its superior electrical and thermal conductivity, in addition to excellent mechanical properties. To facilitate the achievement of precision temperature control in the hot embossing, the heating behavior of a CBG coated silicon wafer sample was experimentally investigated. First, two groups of controlled experiments were conducted for quantitatively evaluating the influence of the main factors such as the vacuum pressure and gaseous environment (vacuum versus nitrogen) on its heating performance. The electrical and thermal responses of this sample under a voltage of 60 V were then intensively analyzed, and revealed that it had somewhat semi-conducting properties. Further, we compared its thermal profiles under different settings of the input voltage and current limiting threshold. Moreover, the strong temperature dependence of electrical resistance for this material was observed and determined. Ultimately, the surface temperature of CBG coated silicon wafer could be as high as 1300 ℃, but surprisingly the graphene coating did not detach from the substrate under such an elevated temperature due to its strong thermal coupling with the silicon wafer.

  8. Formation of porous silicon oxide from substrate-bound silicon rich silicon oxide layers by continuous-wave laser irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Fricke-Begemann, Th.; Peretzki, P.; Ihlemann, J.; Seibt, M.

    2018-03-01

    Silicon nanocrystals embedded in silicon oxide that show room temperature photoluminescence (PL) have great potential in silicon light emission applications. Nanocrystalline silicon particle formation by laser irradiation has the unique advantage of spatially controlled heating, which is compatible with modern silicon micro-fabrication technology. In this paper, we employ continuous wave laser irradiation to decompose substrate-bound silicon-rich silicon oxide films into crystalline silicon particles and silicon dioxide. The resulting microstructure is studied using transmission electron microscopy techniques with considerable emphasis on the formation and properties of laser damaged regions which typically quench room temperature PL from the nanoparticles. It is shown that such regions consist of an amorphous matrix with a composition similar to silicon dioxide which contains some nanometric silicon particles in addition to pores. A mechanism referred to as "selective silicon ablation" is proposed which consistently explains the experimental observations. Implications for the damage-free laser decomposition of silicon-rich silicon oxides and also for controlled production of porous silicon dioxide films are discussed.

  9. Galvanic displacement reaction and rapid thermal annealing in size/shape controlling silver nanoparticles on silicon substrate

    NASA Astrophysics Data System (ADS)

    Ghosh, Tapas; Satpati, Biswarup

    2017-05-01

    The effect of the thermal annealing on silver nanoparticles deposited on silicon surface has been studied. The silver nanoparticles have been deposited by the galvanic displacement reaction. Rapid thermal annealing (RTA) has been performed on the Si substrate, containing the silver nanoparticles. The scanning transmission electron microscopy (STEM), energy dispersive X-ray (EDX) spectroscopy and scanning electron microscopy (SEM) study show that the galvanic displacement reaction and subsequent rapid thermal annealing could lead to well separated and spherical shaped larger silver nanoparticles on silicon substrate.

  10. Development of refractory armored silicon carbide by infrared transient liquid phase processing

    NASA Astrophysics Data System (ADS)

    Hinoki, Tatsuya; Snead, Lance L.; Blue, Craig A.

    2005-12-01

    Tungsten (W) and molybdenum (Mo) were coated on silicon carbide (SiC) for use as a refractory armor using a high power plasma arc lamp at powers up to 23.5 MW/m 2 in an argon flow environment. Both tungsten powder and molybdenum powder melted and formed coating layers on silicon carbide within a few seconds. The effect of substrate pre-treatment (vapor deposition of titanium (Ti) and tungsten, and annealing) and sample heating conditions on microstructure of the coating and coating/substrate interface were investigated. The microstructure was observed by scanning electron microscopy (SEM) and optical microscopy (OM). The mechanical properties of the coated materials were evaluated by four-point flexural tests. A strong tungsten coating was successfully applied to the silicon carbide substrate. Tungsten vapor deposition and pre-heating at 5.2 MW/m 2 made for a refractory layer containing no cracks propagating into the silicon carbide substrate. The tungsten coating was formed without the thick reaction layer. For this study, small tungsten carbide grains were observed adjacent to the interface in all conditions. In addition, relatively large, widely scattered tungsten carbide grains and a eutectic structure of tungsten and silicon were observed through the thickness in the coatings formed at lower powers and longer heating times. The strength of the silicon carbide substrate was somewhat decreased as a result of the processing. Vapor deposition of tungsten prior to powder coating helped prevent this degradation. In contrast, molybdenum coating was more challenging than tungsten coating due to the larger coefficient of thermal expansion (CTE) mismatch as compared to tungsten and silicon carbide. From this work it is concluded that refractory armoring of silicon carbide by Infrared Transient Liquid Phase Processing is possible. The tungsten armored silicon carbide samples proved uniform, strong, and capable of withstanding thermal fatigue testing.

  11. Improving performance of Si/CdS micro-/nanoribbon p-n heterojunction light emitting diodes by trenched structure

    NASA Astrophysics Data System (ADS)

    Huang, Shiyuan; Wu, Yuanpeng; Ma, Xiangyang; Yang, Zongyin; Liu, Xu; Yang, Qing

    2018-05-01

    Realizing high performance silicon based light sources has been an unremitting pursuit for researchers. In this letter, we propose a simple structure to enhance electroluminescence emission and reduce the threshold of injected current of silicon/CdS micro-/nanoribbon p-n heterojunction visible light emitting diodes, by fabricating trenched structure on silicon substrate to mount CdS micro-/nanoribbon. A series of experiments and simulation analysis favors the rationality and validity of our mounting design. After mounting the CdS micro-/nanoribbon, the optical field confinement increases, and absorption and losses from high refractive silicon substrate are effectively reduced. Meanwhile the sharp change of silicon substrate near heterojunction also facilitates the balance between electron current and hole current, which substantially conduces to the stable amplification of electroluminescence emission in CdS micro-/nanoribbon.

  12. Wear of tin coating and Al-Si alloy substrate against carburized steel under mixed lubrication

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Cheng, H. S.; Fine, M. E.

    1994-04-01

    Tin coatings on Al-Si alloys are widely used in the automotive industries. The soft tin coating and the harder substrate alloy form a tribological system with the advantages of low friction and reasonably high load-bearing capacity. Wear tests of tin coated Al-Si Z332 alloy in conformal contact against carburized 1016 steel have been carried out under mixed lubrications with SAE 10W30 oil to study the wear mechanisms. Two major wear mechanisms, uniform wear of the tin coating due to micro-plowing and spall pitting related to the substrate are found to contribute to the bearing material loss when the fluid lubrication film is relatively thick (Lambda about 1.6). Under conditions of thinner films (Lambda approximately = 0.8), some local coating debonding occurs. The pitting and local coating debounding are closely related to fracture in the substrate. The bonding between silicon and tin seems to be weaker than between aluminum and tin. During wear, oxidation occurs.

  13. Hybrid emitter all back contact solar cell

    DOEpatents

    Loscutoff, Paul; Rim, Seung

    2016-04-12

    An all back contact solar cell has a hybrid emitter design. The solar cell has a thin dielectric layer formed on a backside surface of a single crystalline silicon substrate. One emitter of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer. The other emitter of the solar cell is formed in the single crystalline silicon substrate and is made of doped single crystalline silicon. The solar cell includes contact holes that allow metal contacts to connect to corresponding emitters.

  14. Silicon carbide and other films and method of deposition

    NASA Technical Reports Server (NTRS)

    Mehregany, Mehran (Inventor); Zorman, Christian A. (Inventor); Fu, Xiao-An (Inventor); Dunning, Jeremy L. (Inventor)

    2007-01-01

    A method of depositing a ceramic film, particularly a silicon carbide film, on a substrate is disclosed in which the residual stress, residual stress gradient, and resistivity are controlled. Also disclosed are substrates having a deposited film with these controlled properties and devices, particularly MEMS and NEMS devices, having substrates with films having these properties.

  15. Coated silicon comprising material for protection against environmental corrosion

    NASA Technical Reports Server (NTRS)

    Hazel, Brian Thomas (Inventor)

    2009-01-01

    In accordance with an embodiment of the invention, an article is disclosed. The article comprises a gas turbine engine component substrate comprising a silicon material; and an environmental barrier coating overlying the substrate, wherein the environmental barrier coating comprises cerium oxide, and the cerium oxide reduces formation of silicate glass on the substrate upon exposure to corrodant sulfates.

  16. Silicon carbide and other films and method of deposition

    NASA Technical Reports Server (NTRS)

    Mehregany, Mehran (Inventor); Zorman, Christian A. (Inventor); Fu, Xiao-An (Inventor); Dunning, Jeremy (Inventor)

    2011-01-01

    A method of depositing a ceramic film, particularly a silicon carbide film, on a substrate is disclosed in which the residual stress, residual stress gradient, and resistivity are controlled. Also disclosed are substrates having a deposited film with these controlled properties and devices, particularly MEMS and NEMS devices, having substrates with films having these properties.

  17. Enhanced optical output power of InGaN/GaN light-emitting diodes grown on a silicon (111) substrate with a nanoporous GaN layer.

    PubMed

    Lee, Kwang Jae; Chun, Jaeyi; Kim, Sang-Jo; Oh, Semi; Ha, Chang-Soo; Park, Jung-Won; Lee, Seung-Jae; Song, Jae-Chul; Baek, Jong Hyeob; Park, Seong-Ju

    2016-03-07

    We report the growth of InGaN/GaN multiple quantum wells blue light-emitting diodes (LEDs) on a silicon (111) substrate with an embedded nanoporous (NP) GaN layer. The NP GaN layer is fabricated by electrochemical etching of n-type GaN on the silicon substrate. The crystalline quality of crack-free GaN grown on the NP GaN layer is remarkably improved and the residual tensile stress is also decreased. The optical output power is increased by 120% at an injection current of 20 mA compared with that of conventional LEDs without a NP GaN layer. The large enhancement of optical output power is attributed to the reduction of threading dislocation, effective scattering of light in the LED, and the suppression of light propagation into the silicon substrate by the NP GaN layer.

  18. Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof

    DOEpatents

    Sarin, V.K.

    1990-08-21

    An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications is disclosed. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al[sub x]N[sub y]O[sub z] layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al[sub x]N[sub y]O[sub z] layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

  19. Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof

    DOEpatents

    Sarin, Vinod K.

    1990-01-01

    An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al.sub.x N.sub.y O.sub.z layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al.sub.x N.sub.y O.sub.z layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

  20. Fabrication of a Silicon Nanowire on a Bulk Substrate by Use of a Plasma Etching and Total Ionizing Dose Effects on a Gate-All-Around Field-Effect Transistor

    NASA Technical Reports Server (NTRS)

    Moon, Dong-Il; Han, Jin-Woo; Meyyappan, Meyya

    2016-01-01

    The gate all around transistor is investigated through experiment. The suspended silicon nanowire for the next generation is fabricated on bulk substrate by plasma etching method. The scallop pattern generated by Bosch process is utilized to form a floating silicon nanowire. By combining anisotropic and istropic silicon etch process, the shape of nanowire is accurately controlled. From the suspended nanowire, the gate all around transistor is demonstrated. As the silicon nanowire is fully surrounded by the gate, the device shows excellent electrostatic characteristics.

  1. Study on Silicon Microstructure Processing Technology Based on Porous Silicon

    NASA Astrophysics Data System (ADS)

    Shang, Yingqi; Zhang, Linchao; Qi, Hong; Wu, Yalin; Zhang, Yan; Chen, Jing

    2018-03-01

    Aiming at the heterogeneity of micro - sealed cavity in silicon microstructure processing technology, the technique of preparing micro - sealed cavity of porous silicon is proposed. The effects of different solutions, different substrate doping concentrations, different current densities, and different etching times on the rate, porosity, thickness and morphology of the prepared porous silicon were studied. The porous silicon was prepared by different process parameters and the prepared porous silicon was tested and analyzed. For the test results, optimize the process parameters and experiments. The experimental results show that the porous silicon can be controlled by optimizing the parameters of the etching solution and the doping concentration of the substrate, and the preparation of porous silicon with different porosity can be realized by different doping concentration, so as to realize the preparation of silicon micro-sealed cavity, to solve the sensor sensitive micro-sealed cavity structure heterogeneous problem, greatly increasing the application of the sensor.

  2. Formation and metrology of dual scale nano-morphology on SF(6) plasma etched silicon surfaces.

    PubMed

    Boulousis, G; Constantoudis, V; Kokkoris, G; Gogolides, E

    2008-06-25

    Surface roughness and nano-morphology in SF(6) plasma etched silicon substrates are investigated in a helicon type plasma reactor as a function of etching time and process parameters. The plasma etched surfaces are analyzed by atomic force microscopy. It is found that dual scale nano-roughness is formatted on the silicon surface comprising an underlying nano-roughness and superimposed nano-mounds. Detailed metrological quantification is proposed for the characterization of dual scale surface morphology. As etching proceeds, the mounds become higher, fewer and wider, and the underlying nano-roughness also increases. Increase in wafer temperature leads to smoother surfaces with lower, fewer and wider nano-mounds. A mechanism based on the deposition of etch inhibiting particles during the etching process is proposed for the explanation of the experimental behavior. In addition, appropriately designed experiments are conducted, and they confirm the presence of this mechanism.

  3. Paper based Flexible and Conformal SERS Substrate for Rapid Trace Detection on Real-world Surfaces

    NASA Astrophysics Data System (ADS)

    Singamaneni, Srikanth; Lee, Chang; Tian, Limei

    2011-03-01

    One of the important but often overlooked considerations in the design of surface enhanced Raman scattering (SERS) substrates for trace detection is the efficiency of sample collection. Conventional designs based on rigid substrates such as silicon, alumina, and glass resist conformal contact with the surface under investigation, making the sample collection inefficient. We demonstrate a novel SERS substrate based on common filter paper adsorbed with gold nanorods, which allows conformal contact with real-world surfaces, thus dramatically enhancing the sample collection efficiency compared to conventional rigid substrates. We demonstrate the detection of trace amounts of analyte (140 pg spread over 4 cm2) by simply swabbing the surface under investigation with the novel SERS substrate. The hierarchical fibrous structure of paper serves as a 3D vasculature for easy uptake and transport of the analytes to the electromagnetic hot spots in the paper. Simple yet highly efficient and cost effective SERS substrate demonstrated here brings SERS based trace detection closer to real-world applications. We acknowledge the financial support from Center for Materials Innovation at Washington University.

  4. Encapsulation of Au Nanoparticles on a Silicon Wafer During Thermal Oxidation

    PubMed Central

    2013-01-01

    We report the behavior of Au nanoparticles anchored onto a Si(111) substrate and the evolution of the combined structure with annealing and oxidation. Au nanoparticles, formed by annealing a Au film, appear to “float” upon a growing layer of SiO2 during oxidation at high temperature, yet they also tend to become partially encapsulated by the growing silica layers. It is proposed that this occurs largely because of the differential growth rates of the silica layer on the silicon substrate between the particles and below the particles due to limited access of oxygen to the latter. This in turn is due to a combination of blockage of oxygen adsorption by the Au and limited oxygen diffusion under the gold. We think that such behavior is likely to be seen for other metal–semiconductor systems. PMID:24163715

  5. Growth and characterization of molecular beam epitaxial GaAs layers on porous silicon

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Liu, J. K.; Sadwick, L.; Wang, K. L.; Kao, Y. C.

    1987-01-01

    GaAs layers have been grown on porous silicon (PS) substrates with good crystallinity by molecular beam epitaxy. In spite of the surface irregularity of PS substrates, no surface morphology deterioration was observed on epitaxial GaAs overlayers. A 10-percent Rutherford backscattering spectroscopy minimum channeling yield for GaAs-on-PS layers as compared to 16 percent for GaAs-on-Si layers grown under the same condition indicates a possible improvement of crystallinity when GaAs is grown on PS. Transmission electron microscopy reveals that the dominant defects in the GaAs-on-PS layers are microtwins and stacking faults, which originate from the GaAs/PS interface. GaAs is found to penetrate into the PS layers. n-type GaAs/p-type PS heterojunction diodes were fabricated with good rectifying characteristics.

  6. Substrate for thin silicon solar cells

    DOEpatents

    Ciszek, Theodore F.

    1995-01-01

    A photovoltaic device for converting solar energy into electrical signals comprises a substrate, a layer of photoconductive semiconductor material grown on said substrate, wherein the substrate comprises an alloy of boron and silicon, the boron being present in a range of from 0.1 to 1.3 atomic percent, the alloy having a lattice constant substantially matched to that of the photoconductive semiconductor material and a resistivity of less than 1.times.10.sup.-3 ohm-cm.

  7. Effect of the substrate on the insulator-metal transition of vanadium dioxide films

    NASA Astrophysics Data System (ADS)

    Kovács, György J.; Bürger, Danilo; Skorupa, Ilona; Reuther, Helfried; Heller, René; Schmidt, Heidemarie

    2011-03-01

    Single-phase vanadium dioxide films grown on (0001) sapphire and (001) silicon substrates show a very different insulator-metal electronic transition. A detailed description of the growth mechanisms and the substrate-film interaction is given, and the characteristics of the electronic transition are described by the morphology and grain boundary structure. (Tri-)epitaxy-stabilized columnar growth of VO2 takes place on the sapphire substrate, whereas on silicon the expected Zone II growth is identified. We have found that in the case of the Si substrate the reasons for the broader hysteresis and the lower switching amplitude are the formation of an amorphous insulating VOx (x > 2.6) phase coexisting with VO2 and the high vanadium vacancy concentration of the VO2. These phenomena are the result of the excess oxygen during the growth and the interaction between the silicon substrate and the growing film.

  8. Die singulation method

    DOEpatents

    Swiler, Thomas P.; Garcia, Ernest J.; Francis, Kathryn M.

    2013-06-11

    A method is disclosed for singulating die from a semiconductor substrate (e.g. a semiconductor-on-insulator substrate or a bulk silicon substrate) containing an oxide layer (e.g. silicon dioxide or a silicate glass) and one or more semiconductor layers (e.g. monocrystalline or polycrystalline silicon) located above the oxide layer. The method etches trenches through the substrate and through each semiconductor layer about the die being singulated, with the trenches being offset from each other around at least a part of the die so that the oxide layer between the trenches holds the substrate and die together. The trenches can be anisotropically etched using a Deep Reactive Ion Etching (DRIE) process. After the trenches are etched, the oxide layer between the trenches can be etched away with an HF etchant to singulate the die. A release fixture can be located near one side of the substrate to receive the singulated die.

  9. Die singulation method

    DOEpatents

    Swiler, Thomas P [Albuquerque, NM; Garcia, Ernest J [Albuquerque, NM; Francis, Kathryn M [Rio Rancho, NM

    2014-01-07

    A method is disclosed for singulating die from a semiconductor substrate (e.g. a semiconductor-on-insulator substrate or a bulk silicon substrate) containing an oxide layer (e.g. silicon dioxide or a silicate glass) and one or more semiconductor layers (e.g. monocrystalline or polycrystalline silicon) located above the oxide layer. The method etches trenches through the substrate and through each semiconductor layer about the die being singulated, with the trenches being offset from each other around at least a part of the die so that the oxide layer between the trenches holds the substrate and die together. The trenches can be anisotropically etched using a Deep Reactive Ion Etching (DRIE) process. After the trenches are etched, the oxide layer between the trenches can be etched away with a HF etchant to singulate the die. A release fixture can be located near one side of the substrate to receive the singulated die.

  10. Progress in the Development of SERS-Active Substrates Based on Metal-Coated Porous Silicon

    PubMed Central

    Girel, Kseniya V.; Panarin, Andrei; Terekhov, Sergei N.

    2018-01-01

    The present work gives an overview of the developments in surface-enhanced Raman scattering (SERS) with metal-coated porous silicon used as an active substrate. We focused this review on the research referenced to SERS-active materials based on porous silicon, beginning from the patent application in 2002 and enclosing the studies of this year. Porous silicon and metal deposition technologies are discussed. Since the earliest studies, a number of fundamentally different plasmonic nanostructures including metallic dendrites, quasi-ordered arrays of metallic nanoparticles (NPs), and metallic nanovoids have been grown on porous silicon, defined by the morphology of this host material. SERS-active substrates based on porous silicon have been found to combine a high and well-reproducible signal level, storage stability, cost-effective technology and handy use. They make it possible to identify and study many compounds including biomolecules with a detection limit varying from milli- to femtomolar concentrations. The progress reviewed here demonstrates the great prospects for the extensive use of the metal-coated porous silicon for bioanalysis by SERS-spectroscopy. PMID:29883382

  11. High-speed and on-chip graphene blackbody emitters for optical communications by remote heat transfer.

    PubMed

    Miyoshi, Yusuke; Fukazawa, Yusuke; Amasaka, Yuya; Reckmann, Robin; Yokoi, Tomoya; Ishida, Kazuki; Kawahara, Kenji; Ago, Hiroki; Maki, Hideyuki

    2018-03-29

    High-speed light emitters integrated on silicon chips can enable novel architectures for silicon-based optoelectronics, such as on-chip optical interconnects, and silicon photonics. However, conventional light sources based on compound semiconductors face major challenges for their integration with a silicon-based platform because of their difficulty of direct growth on a silicon substrate. Here we report ultra-high-speed (100-ps response time), highly integrated graphene-based on-silicon-chip blackbody emitters in the near-infrared region including telecommunication wavelength. Their emission responses are strongly affected by the graphene contact with the substrate depending on the number of graphene layers. The ultra-high-speed emission can be understood by remote quantum thermal transport via surface polar phonons of the substrates. We demonstrated real-time optical communications, integrated two-dimensional array emitters, capped emitters operable in air, and the direct coupling of optical fibers to the emitters. These emitters can open new routes to on-Si-chip, small footprint, and high-speed emitters for highly integrated optoelectronics and silicon photonics.

  12. Progress in the Development of SERS-Active Substrates Based on Metal-Coated Porous Silicon.

    PubMed

    Bandarenka, Hanna V; Girel, Kseniya V; Zavatski, Sergey A; Panarin, Andrei; Terekhov, Sergei N

    2018-05-21

    The present work gives an overview of the developments in surface-enhanced Raman scattering (SERS) with metal-coated porous silicon used as an active substrate. We focused this review on the research referenced to SERS-active materials based on porous silicon, beginning from the patent application in 2002 and enclosing the studies of this year. Porous silicon and metal deposition technologies are discussed. Since the earliest studies, a number of fundamentally different plasmonic nanostructures including metallic dendrites, quasi-ordered arrays of metallic nanoparticles (NPs), and metallic nanovoids have been grown on porous silicon, defined by the morphology of this host material. SERS-active substrates based on porous silicon have been found to combine a high and well-reproducible signal level, storage stability, cost-effective technology and handy use. They make it possible to identify and study many compounds including biomolecules with a detection limit varying from milli- to femtomolar concentrations. The progress reviewed here demonstrates the great prospects for the extensive use of the metal-coated porous silicon for bioanalysis by SERS-spectroscopy.

  13. Structural and interfacial defects in c-axis oriented LiNbO3 thin films grown by pulsed laser deposition on Si using Al : ZnO conducting layer

    NASA Astrophysics Data System (ADS)

    Shandilya, Swati; Tomar, Monika; Sreenivas, K.; Gupta, Vinay

    2009-05-01

    Highly c-axis oriented LiNbO3 films are deposited using pulsed laser deposition on a silicon substrate using a transparent conducting Al doped ZnO layer. X-ray diffraction and Raman spectroscopic analysis show the fabrication of single phase and oriented LiNbO3 films under the optimized deposition condition. An extra peak at 905 cm-1 was observed in the Raman spectra of LiNbO3 film deposited at higher substrate temperature and higher oxygen pressure, and attributed to the presence of niobium antisite defects in the lattice. Dielectric constant and ac conductivity of oriented LiNbO3 films deposited under the static and rotating substrate modes have been studied. Films deposited under the rotating substrate mode exhibit dielectric properties close to the LiNbO3 single crystal. The cause of deviation in the dielectric properties of the film deposited under the static substrate mode, in comparison with the bulk, are discussed in the light of the possible formation of an interdiffusion layer at the interface of the LiNbO3 film and the Al : ZnO layer.

  14. Thick, low-stress films, and coated substrates formed therefrom

    DOEpatents

    Henager, Jr., Charles H.; Knoll, Robert W.

    1991-01-01

    Stress-induced deformation, and the damage resulting therefrom, increases with film thickness. The overcoming of excessive stress by the use of the film material of the present invention, permits the formation of thick films that are necessary for certain of the above described applications. The most likely use for the subject film materials, other than their specialized views as an optical film, is for microelectronic packaging of components on silicon substrates. In general, the subject Si-Al-O-N films have excellent adherence to the underlying substrate, a high degree of hardness and durability, and are excellent insulators. Prior art elevated temperature deposition processes cannot meet the microelectronic packaging temperature formation constraints. The process of the present invention is conducted under non-elevated temperature conditions, typically 500# C. or less.

  15. Study of the photovoltaic effect in thin film barium titanate

    NASA Technical Reports Server (NTRS)

    Grannemann, W. W.; Dharmadhikari, V. S.

    1982-01-01

    Ferroelectric films of barium titanate were synthesized on silicon and quartz substrates, and the photoelectric effect in the structure consisting of metal deposited ferroelectric barium titanate film silicon was studied. A photovoltage with polarity that depends on the direction of the remanent polarization was observed. The deposition of BaTiO3 on silicon and fused quartz substrates was accomplished by an rf sputtering technique. A series of experiments to study the growth of ferroelectric BaTiO3 films on single crystal silicon and fused quartz substrates were conducted. The ferroelectric character in these films was found on the basis of evidence from the polarization electric field hysteresis loops, capacitance voltage and capacitance temperature techniques and from X-ray diffraction studies.

  16. Method for providing an arbitrary three-dimensional microstructure in silicon using an anisotropic deep etch

    DOEpatents

    Morales, Alfredo M.; Gonzales, Marcela

    2004-06-15

    The present invention describes a method for fabricating an embossing tool or an x-ray mask tool, providing microstructures that smoothly vary in height from point-to-point in etched substrates, i.e., structure which can vary in all three dimensions. The process uses a lithographic technique to transfer an image pattern in the surface of a silicon wafer by exposing and developing the resist and then etching the silicon substrate. Importantly, the photoresist is variably exposed so that when developed some of the resist layer remains. The remaining undeveloped resist acts as an etchant barrier to the reactive plasma used to etch the silicon substrate and therefore provides the ability etch structures of variable depths.

  17. Biofunctionalization on alkylated silicon substrate surfaces via "click" chemistry.

    PubMed

    Qin, Guoting; Santos, Catherine; Zhang, Wen; Li, Yan; Kumar, Amit; Erasquin, Uriel J; Liu, Kai; Muradov, Pavel; Trautner, Barbara Wells; Cai, Chengzhi

    2010-11-24

    Biofunctionalization of silicon substrates is important to the development of silicon-based biosensors and devices. Compared to conventional organosiloxane films on silicon oxide intermediate layers, organic monolayers directly bound to the nonoxidized silicon substrates via Si-C bonds enhance the sensitivity of detection and the stability against hydrolytic cleavage. Such monolayers presenting a high density of terminal alkynyl groups for bioconjugation via copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC, a "click" reaction) were reported. However, yields of the CuAAC reactions on these monolayer platforms were low. Also, the nonspecific adsorption of proteins on the resultant surfaces remained a major obstacle for many potential biological applications. Herein, we report a new type of "clickable" monolayers grown by selective, photoactivated surface hydrosilylation of α,ω-alkenynes, where the alkynyl terminal is protected with a trimethylgermanyl (TMG) group, on hydrogen-terminated silicon substrates. The TMG groups on the film are readily removed in aqueous solutions in the presence of Cu(I). Significantly, the degermanylation and the subsequent CuAAC reaction with various azides could be combined into a single step in good yields. Thus, oligo(ethylene glycol) (OEG) with an azido tag was attached to the TMG-alkyne surfaces, leading to OEG-terminated surfaces that reduced the nonspecific adsorption of protein (fibrinogen) by >98%. The CuAAC reaction could be performed in microarray format to generate arrays of mannose and biotin with varied densities on the protein-resistant OEG background. We also demonstrated that the monolayer platform could be functionalized with mannose for highly specific capturing of living targets (Escherichia coli expressing fimbriae) onto the silicon substrates.

  18. Quantum cascade lasers grown on silicon.

    PubMed

    Nguyen-Van, Hoang; Baranov, Alexei N; Loghmari, Zeineb; Cerutti, Laurent; Rodriguez, Jean-Baptiste; Tournet, Julie; Narcy, Gregoire; Boissier, Guilhem; Patriarche, Gilles; Bahriz, Michael; Tournié, Eric; Teissier, Roland

    2018-05-08

    Technological platforms offering efficient integration of III-V semiconductor lasers with silicon electronics are eagerly awaited by industry. The availability of optoelectronic circuits combining III-V light sources with Si-based photonic and electronic components in a single chip will enable, in particular, the development of ultra-compact spectroscopic systems for mass scale applications. The first circuits of such type were fabricated using heterogeneous integration of semiconductor lasers by bonding the III-V chips onto silicon substrates. Direct epitaxial growth of interband III-V laser diodes on silicon substrates has also been reported, whereas intersubband emitters grown on Si have not yet been demonstrated. We report the first quantum cascade lasers (QCLs) directly grown on a silicon substrate. These InAs/AlSb QCLs grown on Si exhibit high performances, comparable with those of the devices fabricated on their native InAs substrate. The lasers emit near 11 µm, the longest emission wavelength of any laser integrated on Si. Given the wavelength range reachable with InAs/AlSb QCLs, these results open the way to the development of a wide variety of integrated sensors.

  19. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Zhang, Yang; Xu, Qiang; Wei, Haotong; Fang, Yanjun; Wang, Qi; Deng, Yehao; Li, Tao; Gruverman, Alexei; Cao, Lei; Huang, Jinsong

    2017-04-01

    The monolithic integration of new optoelectronic materials with well-established inexpensive silicon circuitry is leading to new applications, functionality and simple readouts. Here, we show that single crystals of hybrid perovskites can be integrated onto virtually any substrates, including silicon wafers, through facile, low-temperature, solution-processed molecular bonding. The brominated (3-aminopropyl)triethoxysilane molecule binds the native oxide of silicon and participates in the perovskite crystal with its ammonium bromide group, yielding a solid mechanical and electrical connection. The dipole of the bonding molecule reduces device noise while retaining signal intensity. The reduction of dark current enables the detectors to be operated at increased bias, resulting in a sensitivity of 2.1 × 104 µC Gyair-1 cm-2 under 8 keV X-ray radiation, which is over a thousand times higher than the sensitivity of amorphous selenium detectors. X-ray imaging with both perovskite pixel detectors and linear array detectors reduces the total dose by 15-120-fold compared with state-of-the-art X-ray imaging systems.

  20. Energy levels distribution in supersaturated silicon with titanium for photovoltaic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pérez, E., E-mail: eduper@ele.uva.es; Castán, H.; García, H.

    2015-01-12

    In the attempt to form an intermediate band in the bandgap of silicon substrates to give it the capability to absorb infrared radiation, we studied the deep levels in supersaturated silicon with titanium. The technique used to characterize the energy levels was the thermal admittance spectroscopy. Our experimental results showed that in samples with titanium concentration just under Mott limit there was a relationship among the activation energy value and the capture cross section value. This relationship obeys to the well known Meyer-Neldel rule, which typically appears in processes involving multiple excitations, like carrier capture/emission in deep levels, and itmore » is generally observed in disordered systems. The obtained characteristic Meyer-Neldel parameters were Tmn = 176 K and kTmn = 15 meV. The energy value could be associated to the typical energy of the phonons in the substrate. The almost perfect adjust of all experimental data to the same straight line provides further evidence of the validity of the Meyer Neldel rule, and may contribute to obtain a deeper insight on the ultimate meaning of this phenomenon.« less

  1. Method for enhancing the solubility of dopants in silicon

    DOEpatents

    Sadigh, Babak; Lenosky, Thomas J.; De La Rubia, Tomas Diaz

    2003-09-30

    A method for enhancing the equilibrium solid solubility of dopants in silicon, germanium and silicon-germanium alloys. The method involves subjecting silicon-based substrate to biaxial or compression strain. It has been determined that boron solubility was largely enhanced (more than 100%) by a compressive bi-axial strain, based on a size-mismatch theory since the boron atoms are smaller than the silicon atoms. It has been found that the large enhancement or mixing properties of dopants in silicon and germanium substrates is primarily governed by their, and to second order by their size-mismatch with the substrate. Further, it has been determined that the dopant solubility enhancement with strain is most effective when the charge and the size-mismatch of the impurity favor the same type of strain. Thus, the solid solubility of small p-type (e.g., boron) as well as large n-type (e.g., arsenic) dopants can be raised most dramatically by appropriate bi-axial (compressive) strain, and that solubility of a large p-type dopant (e.g, indium) in silicon will be raised due to size-mismatch with silicon, which favors tensile strain, while its negative charge prefers compressive strain, and thus the two effects counteract each other.

  2. Hydrothermal corrosion of silicon carbide joints without radiation

    DOE PAGES

    Koyanagi, Takaaki; Katoh, Yutai; Terrani, Kurt A.; ...

    2016-09-28

    In this paper, hydrothermal corrosion of four types of the silicon carbide (SiC) to SiC plate joints were investigated under pressurized water reactor and boiling water reactor relevant chemical conditions without irradiation. The joints were formed by metal diffusion bonding using molybdenum or titanium interlayer, reaction sintering using Ti—Si—C system, and SiC nanopowder sintering. Most of the joints withstood the corrosion tests for five weeks. The recession of the SiC substrates was limited. Based on the recession of the bonding layers, it was concluded that all the joints except for the molybdenum diffusion bond are promising under the reducing environmentsmore » without radiation. Finally, the SiC nanopowder sintered joint was the most corrosion tolerant under the oxidizing environment among the four joints.« less

  3. Fabrication and characterization of physically defined quantum dots on a boron-doped silicon-on-insulator substrate

    NASA Astrophysics Data System (ADS)

    Mizoguchi, Seiya; Shimatani, Naoki; Kobayashi, Mizuki; Makino, Takaomi; Yamaoka, Yu; Kodera, Tetsuo

    2018-04-01

    We study hole transport properties in physically defined p-type silicon quantum dots (QDs) on a heavily doped silicon-on-insulator (SOI) substrate. We observe Coulomb diamonds using single QDs and estimate the charging energy as ∼1.6 meV. We obtain the charge stability diagram of double QDs using single QDs as a charge sensor. This is the first demonstration of charge sensing in p-type heavily doped silicon QDs. For future time-resolved measurements, we apply radio-frequency reflectometry using impedance matching of LC circuits to the device. We observe the resonance and estimate the capacitance as ∼0.12 pF from the resonant frequency. This value is smaller than that of the devices with top gates on nondoped SOI substrate. This indicates that high-frequency signals can be applied efficiently to p-type silicon QDs without top gates.

  4. Microelectromechanical pump utilizing porous silicon

    DOEpatents

    Lantz, Jeffrey W [Albuquerque, NM; Stalford, Harold L [Norman, OK

    2011-07-19

    A microelectromechanical (MEM) pump is disclosed which includes a porous silicon region sandwiched between an inlet chamber and an outlet chamber. The porous silicon region is formed in a silicon substrate and contains a number of pores extending between the inlet and outlet chambers, with each pore having a cross-section dimension about equal to or smaller than a mean free path of a gas being pumped. A thermal gradient is provided along the length of each pore by a heat source which can be an electrical resistance heater or an integrated circuit (IC). A channel can be formed through the silicon substrate so that inlet and outlet ports can be formed on the same side of the substrate, or so that multiple MEM pumps can be connected in series to form a multi-stage MEM pump. The MEM pump has applications for use in gas-phase MEM chemical analysis systems, and can also be used for passive cooling of ICs.

  5. Silicon nanomembranes as a means to evaluate stress evolution in deposited thin films

    Treesearch

    Anna M. Clausen; Deborah M. Paskiewicz; Alireza Sadeghirad; Joseph Jakes; Donald E. Savage; Donald S. Stone; Feng Liu; Max G. Lagally

    2014-01-01

    Thin-film deposition on ultra-thin substrates poses unique challenges because of the potential for a dynamic response to the film stress during deposition. While theoretical studies have investigated film stress related changes in bulk substrates, little has been done to learn how stress might evolve in a film growing on a compliant substrate. We use silicon...

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradeepkumar, Aiswarya; Mishra, Neeraj; Kermany, Atieh Ranjbar

    Epitaxial cubic silicon carbide on silicon is of high potential technological relevance for the integration of a wide range of applications and materials with silicon technologies, such as micro electro mechanical systems, wide-bandgap electronics, and graphene. The hetero-epitaxial system engenders mechanical stresses at least up to a GPa, pressures making it extremely challenging to maintain the integrity of the silicon carbide/silicon interface. In this work, we investigate the stability of said interface and we find that high temperature annealing leads to a loss of integrity. High–resolution transmission electron microscopy analysis shows a morphologically degraded SiC/Si interface, while mechanical stress measurementsmore » indicate considerable relaxation of the interfacial stress. From an electrical point of view, the diode behaviour of the initial p-Si/n-SiC junction is catastrophically lost due to considerable inter-diffusion of atoms and charges across the interface upon annealing. Temperature dependent transport measurements confirm a severe electrical shorting of the epitaxial silicon carbide to the underlying substrate, indicating vast predominance of the silicon carriers in lateral transport above 25 K. This finding has crucial consequences on the integration of epitaxial silicon carbide on silicon and its potential applications.« less

  7. Indium-bump-free antimonide superlattice membrane detectors on silicon substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamiri, M., E-mail: mzamiri@chtm.unm.edu, E-mail: skrishna@chtm.unm.edu; Klein, B.; Schuler-Sandy, T.

    2016-02-29

    We present an approach to realize antimonide superlattices on silicon substrates without using conventional Indium-bump hybridization. In this approach, PIN superlattices are grown on top of a 60 nm Al{sub 0.6}Ga{sub 0.4}Sb sacrificial layer on a GaSb host substrate. Following the growth, the individual pixels are transferred using our epitaxial-lift off technique, which consists of a wet-etch to undercut the pixels followed by a dry-stamp process to transfer the pixels to a silicon substrate prepared with a gold layer. Structural and optical characterization of the transferred pixels was done using an optical microscope, scanning electron microscopy, and photoluminescence. The interface betweenmore » the transferred pixels and the new substrate was abrupt, and no significant degradation in the optical quality was observed. An Indium-bump-free membrane detector was then fabricated using this approach. Spectral response measurements provided a 100% cut-off wavelength of 4.3 μm at 77 K. The performance of the membrane detector was compared to a control detector on the as-grown substrate. The membrane detector was limited by surface leakage current. The proposed approach could pave the way for wafer-level integration of photonic detectors on silicon substrates, which could dramatically reduce the cost of these detectors.« less

  8. Molecular tailoring of interfaces for thin film on substrate systems

    NASA Astrophysics Data System (ADS)

    Grady, Martha Elizabeth

    Thin film on substrate systems appear most prevalently within the microelectronics industry, which demands that devices operate in smaller and smaller packages with greater reliability. The reliability of these multilayer film systems is strongly influenced by the adhesion of each of the bimaterial interfaces. During use, microelectronic components undergo thermo-mechanical cycling, which induces interfacial delaminations leading to failure of the overall device. The ability to tailor interfacial properties at the molecular level provides a mechanism to improve thin film adhesion, reliability and performance. This dissertation presents the investigation of molecular level control of interface properties in three thin film-substrate systems: photodefinable polyimide films on passivated silicon substrates, self-assembled monolayers at the interface of Au films and dielectric substrates, and mechanochemically active materials on rigid substrates. For all three materials systems, the effect of interfacial modifications on adhesion is assessed using a laser-spallation technique. Laser-induced stress waves are chosen because they dynamically load the thin film interface in a precise, noncontacting manner at high strain rates and are suitable for both weak and strong interfaces. Photodefinable polyimide films are used as dielectrics in flip chip integrated circuit packages to reduce the stress between silicon passivation layers and mold compound. The influence of processing parameters on adhesion is examined for photodefinable polyimide films on silicon (Si) substrates with three different passivation layers: silicon nitride (SiNx), silicon oxynitride (SiOxNy), and the native silicon oxide (SiO2). Interfacial strength increases when films are processed with an exposure step as well as a longer cure cycle. Additionally, the interfacial fracture energy is assessed using a dynamic delamination protocol. The high toughness of this interface (ca. 100 J/m2) makes it difficult to use more conventional interfacial fracture testing techniques. Self-assembled monolayers (SAMs) provide an enabling platform for molecular tailoring of the chemical and physical properties of an interface in an on-demand fashion. The SAM end-group functionality is systematically varied and the corresponding effect on interfacial adhesion between a transfer printed gold (Au) film and a fused silica substrate is measured. SAMs with four different end groups are investigated: methyl, amine, bromine and thiol. In addition to these four end groups, mixed monolayers of increasing molar ratio of thiol to methyl SAMs in solution are investigated. There is a strong dependence of interfacial chemistry on the adhesion strength of Au films. In addition to the chemical functionality of the SAM, surface roughness of the underlying substrate also has a significant impact on the interfacial strength. Thin films of mechanochemically active polymer are subjected to laser-generated, high amplitude acoustic pulses. Stress wave propagation through the film produces large amplitude stresses (>100 MPa) in short time frames (10-20 ns), leading to very high strain-rates (ca. 107-108 s -1). The polymer system, spiropyran (SP)- linked polystyrene (PS), undergoes a force-induced chemical reaction causing fluorescence and color change. Activation of SP is evident via a fluorescence signal in thin films subject to high strain-rates. In contrast, quasi-static loading of bulk SP-linked PS samples failed to result in SP activation. Mechanoresponsive coatings have potential to indicate deformation under shockwave loading conditions. In addition to SP-linked polymer films, the activation of spiropyran interfacial molecules with different side groups is characterized as they adsorb onto a SAM platform with preferential amine terminating chemistry. The reactivity of SP monolayers due to UV irradiation is evaluated by water contact angle goniometry and fluorescence spectroscopy. Side groups on the interfacial spiropyran molecule affect the reactivity and the proximity of neighboring spiropyrans can prevent efficient mobility.

  9. Towards substrate engineering of graphene-silicon Schottky diode photodetectors.

    PubMed

    Selvi, Hakan; Unsuree, Nawapong; Whittaker, Eric; Halsall, Matthew P; Hill, Ernie W; Thomas, Andrew; Parkinson, Patrick; Echtermeyer, Tim J

    2018-02-15

    Graphene-silicon Schottky diode photodetectors possess beneficial properties such as high responsivities and detectivities, broad spectral wavelength operation and high operating speeds. Various routes and architectures have been employed in the past to fabricate devices. Devices are commonly based on the removal of the silicon-oxide layer on the surface of silicon by wet-etching before deposition of graphene on top of silicon to form the graphene-silicon Schottky junction. In this work, we systematically investigate the influence of the interfacial oxide layer, the fabrication technique employed and the silicon substrate on the light detection capabilities of graphene-silicon Schottky diode photodetectors. The properties of devices are investigated over a broad wavelength range from near-UV to short-/mid-infrared radiation, radiation intensities covering over five orders of magnitude as well as the suitability of devices for high speed operation. Results show that the interfacial layer, depending on the required application, is in fact beneficial to enhance the photodetection properties of such devices. Further, we demonstrate the influence of the silicon substrate on the spectral response and operating speed. Fabricated devices operate over a broad spectral wavelength range from the near-UV to the short-/mid-infrared (thermal) wavelength regime, exhibit high photovoltage responses approaching 10 6 V W -1 and short rise- and fall-times of tens of nanoseconds.

  10. Substrate for thin silicon solar cells

    DOEpatents

    Ciszek, T.F.

    1995-03-28

    A photovoltaic device for converting solar energy into electrical signals comprises a substrate, a layer of photoconductive semiconductor material grown on said substrate, wherein the substrate comprises an alloy of boron and silicon, the boron being present in a range of from 0.1 to 1.3 atomic percent, the alloy having a lattice constant substantially matched to that of the photoconductive semiconductor material and a resistivity of less than 1{times}10{sup {minus}3} ohm-cm. 4 figures.

  11. Measured Propagation Characteristics of Finite Ground Coplanar Waveguide on Silicon with a Thick Polyimide Interface Layer

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Papapolymerou, John; Tentzeris, Emmanouil M.; Williams, W. O. (Technical Monitor)

    2002-01-01

    Measured propagation characteristics of Finite Ground Coplanar (FGC) waveguide on silicon substrates with resistivities spanning 3 orders of magnitude (0.1 to 15.5 Ohm cm) and a 20 micron thick polyimide interface layer is presented as a function of the FGC geometry. Results show that there is an optimum FGC geometry for minimum loss, and silicon with a resistivity of 0.1 Ohm cm has greater loss than substrates with higher and lower resistivity. Lastly, substrates with a resistivity of 10 Ohm cm or greater have acceptable loss.

  12. Silicon-integrated thin-film structure for electro-optic applications

    DOEpatents

    McKee, Rodney A.; Walker, Frederick Joseph

    2000-01-01

    A crystalline thin-film structure suited for use in any of an number of electro-optic applications, such as a phase modulator or a component of an interferometer, includes a semiconductor substrate of silicon and a ferroelectric, optically-clear thin film of the perovskite BaTiO.sub.3 overlying the surface of the silicon substrate. The BaTiO.sub.3 thin film is characterized in that substantially all of the dipole moments associated with the ferroelectric film are arranged substantially parallel to the surface of the substrate to enhance the electro-optic qualities of the film.

  13. Coated article and method of making

    NASA Technical Reports Server (NTRS)

    Wang, Hongyu (Inventor); Lee, Kang Neung (Inventor)

    2003-01-01

    An article includes a silicon-containing substrate and a modified mullite coating. The modified mullite coating comprises mullite and a modifier component that reduces cracks in the modified mullite coating. The article can further comprise a thermal barrier coating applied to the modified mullite coating. The modified mullite coating functions as a bond coating between the external environmental/thermal barrier coating and the silicon-containing substrate. In a method of forming an article, a silicon-containing substrate is formed and a modified mullite coating is applied. The modified mullite coating comprises mullite and a modifier component that reduces cracks in the modified mullite coating.

  14. Coated article and method of making

    NASA Technical Reports Server (NTRS)

    Wang, Hongyu (Inventor); Lee, Kang Neung (Inventor)

    2002-01-01

    An article includes a silicon-containing substrate and a modified mullite coating. The modified mullite coating comprises mullite and a modifier component that reduces cracks in the modified mullite coating. The article can further comprise a thermal barrier coating applied to the modified mullite coating. The modified mullite coating functions as a bond coating between the external environmental/thermal barrier coating and the silicon-containing substrate. In a method of forming an article, a silicon-containing substrate is formed and a modified mullite coating is applied. The modified mullite coating comprises mullite and a modifier component that reduces cracks in the modified mullite coating.

  15. RF Transmission Lines on Silicon Substrates

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.

    1999-01-01

    A review of RF transmission lines on silicon substrates is presented. Through measurements and calculated results, it is shown that attenuation is dominated by conductor loss if silicon substrates with a resistivity greater than 2500 Ohm-cm are used. Si passivation layers affect the transmission line attenuation; however, measured results demonstrate that passivation layers do not necessarily increase attenuation. If standard, low resistivity Si wafers must be used, alternative transmission lines such as thin film microstrip and Co-Planar Waveguide (CPW) on thick polyimide layers must be used. Measured results presented here show that low loss per unit length is achievable with these transmission lines.

  16. Electrical and optical characteristics of heterojunction devices composed of silicon nanowires and mercury selenide nanoparticle films on flexible plastics.

    PubMed

    Yeo, Minje; Yun, Junggwon; Kim, Sangsig

    2013-09-01

    A pn heterojunction device based on p-type silicon (Si) nanowires (NWs) prepared by top-down method and n-type mercury selenide (HgSe) nanoparticles (NPs) synthesized by the colloidal method have been fabricated on a flexible plastic substrate. The synthesized HgSe NPs were analyzed through the effective mass approximation. The characteristics of the heterojunction device were examined and studied with the energy band diagram. The device showed typical diode characteristics with a turn-on voltage of 1.5 V and exhibited a high rectification ratio of 10(3) under relatively low forward bias. Under illumination of 633-nm-wavelength light, the device presented photocurrent efficiency of 117.5 and 20.1 nA/W under forward bias and reverse bias conditions, respectively. Moreover, the photocurrent characteristics of the device have been determined by bending of the plastic substrate upward and downward with strain of 0.8%. Even though the photocurrent efficiency has fluctuations during the bending cycles, the values are roughly maintained for 10(4) bending cycles. This result indicates that the fabricated heterojunction device has the potential to be applied as fundamental elements of flexible nanoelectronics.

  17. Charge-coupled device for low background observations

    NASA Technical Reports Server (NTRS)

    Loh, Edwin D. (Inventor); Cheng, Edward S. (Inventor)

    2002-01-01

    A charge-coupled device with a low-emissivity metal layer located between a sensing layer and a substrate provides reduction in ghost images. In a typical charge-coupled device of a silicon sensing layer, a silicon dioxide insulating layer, with a glass substrate and a metal carrier layer, a near-infrared photon, not absorbed in the first pass, enters the glass substrate, reflects from the metal carrier, thereby returning far from the original pixel in its entry path. The placement of a low-emissivity metal layer between the glass substrate and the sensing layer reflects near infrared photons before they reach the substrate so that they may be absorbed in the silicon nearer the pixel of their points of entry so that the reflected ghost image is coincident with the primary image for a sharper, brighter image.

  18. Conductive scanning probe microscopy of the semicontinuous gold film and its SERS enhancement toward two-step photo-induced charge transfer and effect of the supportive layer

    NASA Astrophysics Data System (ADS)

    Sinthiptharakoon, K.; Sapcharoenkun, C.; Nuntawong, N.; Duong, B.; Wutikhun, T.; Treetong, A.; Meemuk, B.; Kasamechonchung, P.; Klamchuen, A.

    2018-05-01

    The semicontinuous gold film, enabling various electronic applications including development of surface-enhanced Raman scattering (SERS) substrate, is investigated using conductive atomic force microscopy (CAFM) and Kelvin probe force microscopy (KPFM) to reveal and investigate local electronic characteristics potentially associated with SERS generation of the film material. Although the gold film fully covers the underlying silicon surface, CAFM results reveal that local conductivity of the film is not continuous with insulating nanoislands appearing throughout the surface due to incomplete film percolation. Our analysis also suggests the two-step photo-induced charge transfer (CT) play the dominant role in the enhancement of SERS intensity with strong contribution from free electrons of the silicon support. Silicon-to-gold charge transport is illustrated by KPFM results showing that Fermi level of the gold film is slightly inhomogeneous and far below the silicon conduction band. We propose that inhomogeneity of the film workfunction affecting chemical charge transfer between gold and Raman probe molecule is associated with the SERS intensity varying across the surface. These findings provide deeper understanding of charge transfer mechanism for SERS which can help in design and development of the semicontinuous gold film-based SERS substrate and other electronic applications.

  19. High-alignment-accuracy transfer printing of passive silicon waveguide structures.

    PubMed

    Ye, Nan; Muliuk, Grigorij; Trindade, Antonio Jose; Bower, Chris; Zhang, Jing; Uvin, Sarah; Van Thourhout, Dries; Roelkens, Gunther

    2018-01-22

    We demonstrate the transfer printing of passive silicon devices on a silicon-on-insulator target waveguide wafer. Adiabatic taper structures and directional coupler structures were designed for 1310 nm and 1600 nm wavelength coupling tolerant for ± 1 µm misalignment. The release of silicon devices from the silicon substrate was realized by underetching the buried oxide layer while protecting the back-end stack. Devices were successfully picked by a PDMS stamp, by breaking the tethers that kept the silicon coupons in place on the source substrate, and printed with high alignment accuracy on a silicon photonic target wafer. Coupling losses of -1.5 +/- 0.5 dB for the adiabatic taper at 1310 nm wavelength and -0.5 +/- 0.5 dB for the directional coupler at 1600 nm wavelength are obtained.

  20. Comparative study of initial stages of copper immersion deposition on bulk and porous silicon

    NASA Astrophysics Data System (ADS)

    Bandarenka, Hanna; Prischepa, Sergey L.; Fittipaldi, Rosalba; Vecchione, Antonio; Nenzi, Paolo; Balucani, Marco; Bondarenko, Vitaly

    2013-02-01

    Initial stages of Cu immersion deposition in the presence of hydrofluoric acid on bulk and porous silicon were studied. Cu was found to deposit both on bulk and porous silicon as a layer of nanoparticles which grew according to the Volmer-Weber mechanism. It was revealed that at the initial stages of immersion deposition, Cu nanoparticles consisted of crystals with a maximum size of 10 nm and inherited the orientation of the original silicon substrate. Deposited Cu nanoparticles were found to be partially oxidized to Cu2O while CuO was not detected for all samples. In contrast to porous silicon, the crystal orientation of the original silicon substrate significantly affected the sizes, density, and oxidation level of Cu nanoparticles deposited on bulk silicon.

  1. The Design, Fabrication and Characterization of a Transparent Atom Chip

    PubMed Central

    Chuang, Ho-Chiao; Huang, Chia-Shiuan; Chen, Hung-Pin; Huang, Chi-Sheng; Lin, Yu-Hsin

    2014-01-01

    This study describes the design and fabrication of transparent atom chips for atomic physics experiments. A fabrication process was developed to define the wire patterns on a transparent glass substrate to create the desired magnetic field for atom trapping experiments. An area on the chip was reserved for the optical access, so that the laser light can penetrate directly through the glass substrate for the laser cooling process. Furthermore, since the thermal conductivity of the glass substrate is poorer than other common materials for atom chip substrate, for example silicon, silicon carbide, aluminum nitride. Thus, heat dissipation copper blocks are designed on the front and back of the glass substrate to improve the electrical current conduction. The testing results showed that a maximum burnout current of 2 A was measured from the wire pattern (with a width of 100 μm and a height of 20 μm) without any heat dissipation design and it can increase to 2.5 A with a heat dissipation design on the front side of the atom chips. Therefore, heat dissipation copper blocks were designed and fabricated on the back of the glass substrate just under the wire patterns which increases the maximum burnout current to 4.5 A. Moreover, a maximum burnout current of 6 A was achieved when the entire backside glass substrate was recessed and a thicker copper block was electroplated, which meets most requirements of atomic physics experiments. PMID:24922456

  2. Process for Polycrystalline film silicon growth

    DOEpatents

    Wang, Tihu; Ciszek, Theodore F.

    2001-01-01

    A process for depositing polycrystalline silicon on substrates, including foreign substrates, occurs in a chamber at about atmospheric pressure, wherein a temperature gradient is formed, and both the atmospheric pressure and the temperature gradient are maintained throughout the process. Formation of a vapor barrier within the chamber that precludes exit of the constituent chemicals, which include silicon, iodine, silicon diiodide, and silicon tetraiodide. The deposition occurs beneath the vapor barrier. One embodiment of the process also includes the use of a blanketing gas that precludes the entrance of oxygen or other impurities. The process is capable of repetition without the need to reset the deposition zone conditions.

  3. Laser desorption ionization and peptide sequencing on laser induced silicon microcolumn arrays

    DOEpatents

    Vertes, Akos [Reston, VA; Chen, Yong [San Diego, CA

    2011-12-27

    The present invention provides a method of producing a laser-patterned silicon surface, especially silicon wafers for use in laser desorption ionization (LDI-MS) (including MALDI-MS and SELDI-MS), devices containing the same, and methods of testing samples employing the same. The surface is prepared by subjecting a silicon substrate to multiple laser shots from a high-power picosecond or femtosecond laser while in a processing environment, e.g., underwater, and generates a remarkable homogenous microcolumn array capable of providing an improved substrate for LDI-MS.

  4. Near single-crystalline, high-carrier-mobility silicon thin film on a polycrystalline/amorphous substrate

    DOEpatents

    Findikoglu, Alp T [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM; Arendt, Paul N [Los Alamos, NM; Matias, Vladimir [Santa Fe, NM; Choi, Woong [Los Alamos, NM

    2009-10-27

    A template article including a base substrate including: (i) a base material selected from the group consisting of polycrystalline substrates and amorphous substrates, and (ii) at least one layer of a differing material upon the surface of the base material; and, a buffer material layer upon the base substrate, the buffer material layer characterized by: (a) low chemical reactivity with the base substrate, (b) stability at temperatures up to at least about 800.degree. C. under low vacuum conditions, and (c) a lattice crystal structure adapted for subsequent deposition of a semiconductor material; is provided, together with a semiconductor article including a base substrate including: (i) a base material selected from the group consisting of polycrystalline substrates and amorphous substrates, and (ii) at least one layer of a differing material upon the surface of the base material; and, a buffer material layer upon the base substrate, the buffer material layer characterized by: (a) low chemical reactivity with the base substrate, (b) stability at temperatures up to at least about 800.degree. C. under low vacuum conditions, and (c) a lattice crystal structure adapted for subsequent deposition of a semiconductor material, and, a top-layer of semiconductor material upon the buffer material layer.

  5. High-T(sub c) Edge-geometry SNS Weak Links on Silicon-on-sapphire Substrates

    NASA Technical Reports Server (NTRS)

    Hunt, B.; Foote, M.; Pike, W.; Barner, J.; Vasquez, R.

    1994-01-01

    High-quality superconductor/normal-metal/superconductor(SNS) edge-geometry weak links have been produced on silicon-on-sapphire (SOS) substrates using a new SrTiO(sub 3)/'seed layer'/cubic-zirconia (YS2) buffer system.

  6. Electron beam recrystallization of amorphous semiconductor materials

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.

    1968-01-01

    Nucleation and growth of crystalline films of silicon, germanium, and cadmium sulfide on substrates of plastic and glass were investigated. Amorphous films of germanium, silicon, and cadmium sulfide on amorphous substrates of glass and plastic were converted to the crystalline condition by electron bombardment.

  7. Enhanced red photoluminescence of quartz by silicon nanocrystals thin film deposition

    NASA Astrophysics Data System (ADS)

    Momeni, A.; Pourgolestani, M.; Taheri, M.; Mansour, N.

    2018-03-01

    The room-temperature photoluminescence properties of silicon nanocrystals (SiNCs) thin film on a quartz substrate were investigated, which presents the red emission enhancement of quartz. We show that the photoluminescence intensity of quartz, in the wavelength range of 640-700 nm, can be enhanced as much as 15-fold in the presence of the SiNCs thin film. Our results reveal that the defect states at the SiNCs/SiO2 interface can be excited more efficiently by indirect excitation via the SiNCs, leading to the prominent red photoluminescence enhancement under the photo-excitation in the range of 440-470 nm. This work suggests a simple pathway to improve silicon-based light emitting devices for photonic applications.

  8. Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements.

    PubMed

    Ko, Heung Cho; Shin, Gunchul; Wang, Shuodao; Stoykovich, Mark P; Lee, Jeong Won; Kim, Dong-Hun; Ha, Jeong Sook; Huang, Yonggang; Hwang, Keh-Chih; Rogers, John A

    2009-12-01

    Materials and methods to achieve electronics intimately integrated on the surfaces of substrates with complex, curvilinear shapes are described. The approach exploits silicon membranes in circuit mesh structures that can be deformed in controlled ways using thin, elastomeric films. Experimental and theoretical studies of the micromechanics of such curvilinear electronics demonstrate the underlying concepts. Electrical measurements illustrate the high yields that can be obtained. The results represent significant experimental and theoretical advances over recently reported concepts for creating hemispherical photodetectors in electronic eye cameras and for using printable silicon nanoribbons/membranes in flexible electronics. The results might provide practical routes to the integration of high performance electronics with biological tissues and other systems of interest for new applications.

  9. Influence of design variables on radiation hardness of silicon MINP solar cells

    NASA Technical Reports Server (NTRS)

    Anderson, W. A.; Solaun, S.; Rao, B. B.; Banerjee, S.

    1985-01-01

    Metal-insulator-N/P silicon (MINP) solar cells were fabricated using different substrate resistivity values, different N-layer designs, and different I-layer designs. A shallow junction into an 0.3 ohm-cm substrate gave best efficiency whereas a deeper junction into a 1 to 4 ohm-cm substrate gave improved radiation hardness. I-layer design variation did little to influence radiation hardness.

  10. Environmental barrier coating

    DOEpatents

    Pujari, Vimal K.; Vartabedian, Ara; Collins, William T.; Woolley, David; Bateman, Charles

    2012-12-18

    The present invention relates generally to a multi-layered article suitable for service in severe environments. The article may be formed of a substrate, such as silicon carbide and/or silicon nitride. The substrate may have a first layer of a mixture of a rare earth silicate and Cordierite. The substrate may also have a second layer of a rare earth silicate or a mixture of a rare earth silicate and cordierite.

  11. Fabrication & characterization of thin film Perovskite solar cells under ambient conditions

    NASA Astrophysics Data System (ADS)

    Shah, Vivek T.

    High efficiency solar cells based on inorganic materials such as silicon have been commercialized and used to harness energy from the sun and convert it into electrical energy. However, they are energy-intensive and rigid. Thin film solar cells based on inorganic-organic hybrid lead halide perovskite compounds have the potential to be a disruptive technology in the field of renewable energy sector of the economy. Perovskite solar cell (PSC) technology is a viable candidate for low-cost large scale production as it is solution processable at low temperature on a flexible substrate. However, for commercialization, PSCs need to compete with the cost and efficiency of crystalline silicon solar cells. High efficiency PSCs have been fabricated under highly controlled conditions in what is known as a glove-box, which adds to the cost of fabrication of PSCs. This additional cost can be significantly reduced by eliminating the use of glove-box for fabrication. Therefore, in this work, thin film PSCs were fabricated at ambient conditions on glass substrates. A power conversion efficiency of 5.6% was achieved with optimum fabrication control and minimal exposure to moisture.

  12. Vertical group III-V nanowires on si, heterostructures, flexible arrays and fabrication

    DOEpatents

    Wang, Deli; Soci, Cesare; Bao, Xinyu; Wei, Wei; Jing, Yi; Sun, Ke

    2015-01-13

    Embodiments of the invention provide a method for direct heteroepitaxial growth of vertical III-V semiconductor nanowires on a silicon substrate. The silicon substrate is etched to substantially completely remove native oxide. It is promptly placed in a reaction chamber. The substrate is heated and maintained at a growth temperature. Group III-V precursors are flowed for a growth time. Preferred embodiment vertical Group III-V nanowires on silicon have a core-shell structure, which provides a radial homojunction or heterojunction. A doped nanowire core is surrounded by a shell with complementary doping. Such can provide high optical absorption due to the long optical path in the axial direction of the vertical nanowires, while reducing considerably the distance over which carriers must diffuse before being collected in the radial direction. Alloy composition can also be varied. Radial and axial homojunctions and heterojunctions can be realized. Embodiments provide for flexible Group III-V nanowire structures. An array of Group III-V nanowire structures is embedded in polymer. A fabrication method forms the vertical nanowires on a substrate, e.g., a silicon substrate. Preferably, the nanowires are formed by the preferred methods for fabrication of Group III-V nanowires on silicon. Devices can be formed with core/shell and core/multi-shell nanowires and the devices are released from the substrate upon which the nanowires were formed to create a flexible structure that includes an array of vertical nanowires embedded in polymer.

  13. Detection of biomolecular interaction between biotin and streptavidin on a self-assembled monolayer using magnetic nanoparticles.

    PubMed

    Arakaki, Atsushi; Hideshima, Sho; Nakagawa, Takahito; Niwa, Daisuke; Tanaka, Tsuyoshi; Matsunaga, Tadashi; Osaka, Tetsuya

    2004-11-20

    For developing a magnetic bioassay system, an investigation to determine the presence of a specific biomolecular interaction between biotin and streptavidin was done using magnetic nanoparticles and a silicon substrate with a self-assembled monolayer. Streptavidin was immobilized on the magnetic particles, and biotin was attached to the monolayer-modified substrate. The reaction of streptavidin-modified magnetic particles on the biotin-modified substrate was clearly observed under an optical microscope. The magnetic signals from the particles were detected using a magnetic force microscope. The results of this study demonstrate that the combination of a monolayer-modified substrate with biomolecule-modified magnetic particles is useful for detecting biomolecular interactions in medical and diagnostic analyses. (c) 2004 Wiley Periodicals, Inc

  14. Investigation of ZnSe-coated silicon substrates for GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Huber, Daniel A.; Olsen, Larry C.; Dunham, Glen; Addis, F. William

    1993-01-01

    Studies are being carried out to determine the feasibility of using ZnSe as a buffer layer for GaAs solar cells grown on silicon. This study was motivated by reports in the literature indicating ZnSe films had been grown by metallorganic chemical vapor deposition (MOCVD) onto silicon with EPD values of 2 x 10(exp 5) cm(sup -2), even though the lattice mismatch between silicon and ZnSe is 4.16 percent. These results combined with the fact that ZnSe and GaAs are lattice matched to within 0.24 percent suggest that the prospects for growing high efficiency GaAs solar cells onto ZnSe-coated silicon are very good. Work to date has emphasized development of procedures for MOCVD growth of (100) ZnSe onto (100) silicon wafers, and subsequent growth of GaAs films on ZnSe/Si substrates. In order to grow high quality single crystal GaAs with a (100) orientation, which is desirable for solar cells, one must grow single crystal (100) ZnSe onto silicon substrates. A process for growth of (100) ZnSe was developed involving a two-step growth procedure at 450 C. Single crystal, (100) GaAs films were grown onto the (100) ZnSe/Si substrates at 610 C that are adherent and specular. Minority carrier diffusion lengths for the GaAs films grown on ZnSe/Si substrates were determined from photoresponse properties of Al/GaAs Schottky barriers. Diffusion lengths for n-type GaAs films are currently on the order of 0.3 microns compared to 2.0 microns for films grown simultaneously by homoepitaxy.

  15. Gold Nanoparticles on Functionalized Silicon Substrate under Coulomb Blockade Regime: An Experimental and Theoretical Investigation.

    PubMed

    Pluchery, Olivier; Caillard, Louis; Dollfus, Philippe; Chabal, Yves J

    2018-01-18

    Single charge electronics offer a way for disruptive technology in nanoelectronics. Coulomb blockade is a realistic way for controlling the electric current through a device with the accuracy of one electron. In such devices the current exhibits a step-like increase upon bias which reflects the discrete nature of the fundamental charge. We have assembled a double tunnel junction on an oxide-free silicon substrate that exhibits Coulomb staircase characteristics using gold nanoparticles (AuNPs) as Coulomb islands. The first tunnel junction is an insulating layer made of a grafted organic monolayer (GOM) developed for this purpose. The GOM also serves for attaching AuNPs covalently. The second tunnel junction is made by the tip of an STM. We show that this device exhibits reproducible Coulomb blockade I-V curves at 40 K in vacuum. We also show that depending on the doping of the silicon substrate, the whole Coulomb staircase can be adjusted. We have developed a simulation approach based on the orthodox theory that was completed by calculating the bias dependent tunnel barriers and by including an accurate calculation of the band bending. This model accounts for the experimental data and the doping dependence of Coulomb oscillations. This study opens new perspectives toward designing new kind of single electron transistors (SET) based on this dependence of the Coulomb staircase with the charge carrier concentration.

  16. Formation of microchannels from low-temperature plasma-deposited silicon oxynitride

    DOEpatents

    Matzke, Carolyn M.; Ashby, Carol I. H.; Bridges, Monica M.; Manginell, Ronald P.

    2000-01-01

    A process for forming one or more fluid microchannels on a substrate is disclosed that is compatible with the formation of integrated circuitry on the substrate. The microchannels can be formed below an upper surface of the substrate, above the upper surface, or both. The microchannels are formed by depositing a covering layer of silicon oxynitride over a mold formed of a sacrificial material such as photoresist which can later be removed. The silicon oxynitride is deposited at a low temperature (.ltoreq.100.degree. C.) and preferably near room temperature using a high-density plasma (e.g. an electron-cyclotron resonance plasma or an inductively-coupled plasma). In some embodiments of the present invention, the microchannels can be completely lined with silicon oxynitride to present a uniform material composition to a fluid therein. The present invention has applications for forming microchannels for use in chromatography and electrophoresis. Additionally, the microchannels can be used for electrokinetic pumping, or for localized or global substrate cooling.

  17. Ablative performance of uncoated silicone-modified and shuttle baseline reinforced carbon composites

    NASA Technical Reports Server (NTRS)

    Dicus, D. L.; Hopko, R. N.; Brown, R. D.

    1976-01-01

    The relative ablative performance of uncoated silicone-modified reinforced carbon composite (RCC) and uncoated shuttle baseline RCC substrates was investigated. The test specimens were 13 plies (5.3 to 5.8 millimeters) thick and had a 25-millimeter-diameter test face. Prior to arc tunnel testing, all specimens were subjected to a heat treatment simulating the RCC coating process. During arc tunnel testing, the specimens were exposed to cold wall heating rates of 178 to 529 kilowatts/sq m and stagnation pressures ranging from 0.015 to 0.046 atmosphere at Mach 4.6 in air, with and without preheating in nitrogen. The results show that the ablative performance of uncoated silicone-modified RCC substrates is significantly superior to that of uncoated shuttle baseline RCC substrates over the range of heating conditions used. These results indicate that the silicone-modified RCC substrate would yield a substantially greater safety margin in the event of complete coating loss on the shuttle orbiter.

  18. RF sputtered silicon and hafnium nitrides as applied to 440C steel

    NASA Technical Reports Server (NTRS)

    Grill, A.; Aron, P. R.

    1984-01-01

    Silicon nitride and hafnium nitride coatings were deposited on oxidized and unoxidized 440C stainless steel substrates. Sputtering was done in mixtures of argon and nitrogen gases from pressed powder silicon nitride and from hafnium metal targets. The coatings and the interface between the coating and substrate were investigated by X-ray diffractometry, scanning electron microscopy, energy dispersive X-ray analysis and Auger electron spectroscopy. Oxide was found at all interfaces with an interface width of at least 600 A for the oxidized substrates and at least 300 A for the unoxidized substrates. Scratch test results demonstrate that the adhesion of hafnium nitride to both oxidized and unoxidized 440C is superior to that of silicon nitride. Oxidized 440C is found to have increased adhesion, to both nitrides, over that of unoxidized 440C. Coatings of both nitrides deposited at 8 mtorr were found to have increased adhesion to both oxidized and unoxidized 440C over those deposited at 20 mtorr.

  19. Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Yating; Li, Qiang; Lau, Kei May, E-mail: eekmlau@ust.hk

    Subwavelength micro-disk lasers (MDLs) as small as 1 μm in diameter on exact (001) silicon were fabricated using colloidal lithography. The micro-cavity gain medium incorporating five-stacked InAs quantum dot layers was grown on a high crystalline quality GaAs-on-V-grooved-Si template with no absorptive intermediate buffers. Under continuous-wave optical pumping, the MDLs on silicon exhibit lasing in the 1.2-μm wavelength range with low thresholds down to 35 μW at 10 K. The MDLs compare favorably with devices fabricated on native GaAs substrates and state-of-the-art work reported elsewhere. Feasibility of device miniaturization can be projected by size-dependent lasing characteristics. The results show a promising path towardsmore » dense integration of photonic components on the mainstream complementary metal–oxide–semiconductor platform.« less

  20. Plasmonic and silicon spherical nanoparticle antireflective coatings

    NASA Astrophysics Data System (ADS)

    Baryshnikova, K. V.; Petrov, M. I.; Babicheva, V. E.; Belov, P. A.

    2016-03-01

    Over the last decade, plasmonic antireflecting nanostructures have been extensively studied to be utilized in various optical and optoelectronic systems such as lenses, solar cells, photodetectors, and others. The growing interest to all-dielectric photonics as an alternative optical technology along with plasmonics motivates us to compare antireflective properties of plasmonic and all-dielectric nanoparticle coatings based on silver and crystalline silicon respectively. Our simulation results for spherical nanoparticles array on top of amorphous silicon show that both silicon and silver coatings demonstrate strong antireflective properties in the visible spectral range. For the first time, we show that zero reflectance from the structure with silicon coatings originates from the destructive interference of electric- and magnetic-dipole responses of nanoparticle array with the wave reflected from the substrate, and we refer to this reflection suppression as substrate-mediated Kerker effect. We theoretically compare the silicon and silver coating effectiveness for the thin-film photovoltaic applications. Silver nanoparticles can be more efficient, enabling up to 30% increase of the overall absorbance in semiconductor layer. Nevertheless, silicon coatings allow up to 64% absorbance increase in the narrow band spectral range because of the substrate-mediated Kerker effect, and band position can be effectively tuned by varying the nanoparticles sizes.

  1. Plasmonic and silicon spherical nanoparticle antireflective coatings

    PubMed Central

    Baryshnikova, K. V.; Petrov, M. I.; Babicheva, V. E.; Belov, P. A.

    2016-01-01

    Over the last decade, plasmonic antireflecting nanostructures have been extensively studied to be utilized in various optical and optoelectronic systems such as lenses, solar cells, photodetectors, and others. The growing interest to all-dielectric photonics as an alternative optical technology along with plasmonics motivates us to compare antireflective properties of plasmonic and all-dielectric nanoparticle coatings based on silver and crystalline silicon respectively. Our simulation results for spherical nanoparticles array on top of amorphous silicon show that both silicon and silver coatings demonstrate strong antireflective properties in the visible spectral range. For the first time, we show that zero reflectance from the structure with silicon coatings originates from the destructive interference of electric- and magnetic-dipole responses of nanoparticle array with the wave reflected from the substrate, and we refer to this reflection suppression as substrate-mediated Kerker effect. We theoretically compare the silicon and silver coating effectiveness for the thin-film photovoltaic applications. Silver nanoparticles can be more efficient, enabling up to 30% increase of the overall absorbance in semiconductor layer. Nevertheless, silicon coatings allow up to 64% absorbance increase in the narrow band spectral range because of the substrate-mediated Kerker effect, and band position can be effectively tuned by varying the nanoparticles sizes. PMID:26926602

  2. Evaluation of the Effect of Silicone Contamination on Various Bond Systems and the Feasibility of Removing the Contamination

    NASA Technical Reports Server (NTRS)

    Stanley, Stephanie D.

    2008-01-01

    Silicone is a contaminant that can cause catastrophic failure of a bond system depending on the materials and processes used to fabricate the bond system, Unfortunately, more and more materials are fabricated using silicone. The purpose of this testing was to evaluate which bond systems are sensitive to silicone contamination and whether or not a cleaning process could be utilized to remove the silicone to bring the bond system performance back to baseline. Due to the extensive nature of the testing attempts will be made to generalize the understanding within classes of substrates, bond systems, and surface preparation and cleaning methods. This study was done by contaminating various meta! (steel, inconel, and aluminum), phenolic (carbon cloth phenolic and glass cloth phenolic), and rubber (natural rubber, asbestos-silicone dioxide filled natural butyldiene rubber, silica-filled ethylene propylenediene monomer, and carbon-filled ethylene propylenediene monomer) substrates which were then bonded using various adhesives and coatings (epoxy-based adhesives, paints, ablative compounds, and Chemlok adhesives) to determine the effect silicone contamination has on a given bond system's performance. The test configurations depended on the bond system being evaluated. The study also evaluated the feasibility of removing the silicone contamination by cleaning the contaminated substrate prior to bonding. The cleaning processes also varied depending on bond system.

  3. In situ micro-Raman analysis and X-ray diffraction of nickel silicide thin films on silicon.

    PubMed

    Bhaskaran, M; Sriram, S; Perova, T S; Ermakov, V; Thorogood, G J; Short, K T; Holland, A S

    2009-01-01

    This article reports on the in situ analysis of nickel silicide (NiSi) thin films formed by thermal processing of nickel thin films deposited on silicon substrates. The in situ techniques employed for this study include micro-Raman spectroscopy (microRS) and X-ray diffraction (XRD); in both cases the variations for temperatures up to 350 degrees C has been studied. Nickel silicide thin films formed by vacuum annealing of nickel on silicon were used as a reference for these measurements. In situ analysis was carried out on nickel thin films on silicon, while the samples were heated from room temperature to 350 degrees C. Data was gathered at regular temperature intervals and other specific points of interest (such as 250 degrees C, where the reaction between nickel and silicon to form Ni(2)Si is expected). The transformations from the metallic state, through the intermediate reaction states, until the desired metal-silicon reaction product is attained, are discussed. The evolution of nickel silicide from the nickel film can be observed from both the microRS and XRD in situ studies. Variations in the evolution of silicide from metal for different silicon substrates are discussed, and these include (100) n-type, (100) p-type, and (110) p-type silicon substrates.

  4. Mechanically flexible optically transparent silicon fabric with high thermal budget devices from bulk silicon (100)

    NASA Astrophysics Data System (ADS)

    Hussain, Muhammad M.; Rojas, Jhonathan P.; Torres Sevilla, Galo A.

    2013-05-01

    Today's information age is driven by silicon based electronics. For nearly four decades semiconductor industry has perfected the fabrication process of continuingly scaled transistor - heart of modern day electronics. In future, silicon industry will be more pervasive, whose application will range from ultra-mobile computation to bio-integrated medical electronics. Emergence of flexible electronics opens up interesting opportunities to expand the horizon of electronics industry. However, silicon - industry's darling material is rigid and brittle. Therefore, we report a generic batch fabrication process to convert nearly any silicon electronics into a flexible one without compromising its (i) performance; (ii) ultra-large-scale-integration complexity to integrate billions of transistors within small areas; (iii) state-of-the-art process compatibility, (iv) advanced materials used in modern semiconductor technology; (v) the most widely used and well-studied low-cost substrate mono-crystalline bulk silicon (100). In our process, we make trenches using anisotropic reactive ion etching (RIE) in the inactive areas (in between the devices) of a silicon substrate (after the devices have been fabricated following the regular CMOS process), followed by a dielectric based spacer formation to protect the sidewall of the trench and then performing an isotropic etch to create caves in silicon. When these caves meet with each other the top portion of the silicon with the devices is ready to be peeled off from the bottom silicon substrate. Release process does not need to use any external support. Released silicon fabric (25 μm thick) is mechanically flexible (5 mm bending radius) and the trenches make it semi-transparent (transparency of 7%).

  5. Some material structural properties of SOI substrates produced by SDB technology

    NASA Astrophysics Data System (ADS)

    Hui, Li; Guo-Liang, Sun; Juan, Zhan; Qin-Yi, Tong

    1987-10-01

    SOI substrates have been produced by silicon direct bonding (SDB) technology. Thermal oxides ranging in thickness from native oxide to 1 μm or even more, on either or both wafers have been bonded successfully. The fracture strength of the SOI layer is 130-200 kg/cm 2 which is similar to the value of intrinsic bulk silicon. Dislocations have been shown to be concentrated on the backsides of the substrate and no additional defects have been developed within 80 μm of the Si-SiO 2 bonding area. Mobility and minority carrier lifetime similar to that of the original bulk silicon have been obtained after annealing.

  6. Efficient Surface Enhanced Raman Scattering substrates from femtosecond laser based fabrication

    NASA Astrophysics Data System (ADS)

    Parmar, Vinod; Kanaujia, Pawan K.; Bommali, Ravi Kumar; Vijaya Prakash, G.

    2017-10-01

    A fast and simple femtosecond laser based methodology for efficient Surface Enhanced Raman Scattering (SERS) substrate fabrication has been proposed. Both nano scaffold silicon (black silicon) and gold nanoparticles (Au-NP) are fabricated by femtosecond laser based technique for mass production. Nano rough silicon scaffold enables large electromagnetic fields for the localized surface plasmons from decorated metallic nanoparticles. Thus giant enhancement (approximately in the order of 104) of Raman signal arises from the mixed effects of electron-photon-phonon coupling, even at nanomolar concentrations of test organic species (Rhodamine 6G). Proposed process demonstrates the low-cost and label-less application ability from these large-area SERS substrates.

  7. Thick, low-stress films, and coated substrates formed therefrom, and methods for making same

    DOEpatents

    Henager, Jr., Charles H.; Knoll, Robert W.

    1992-01-01

    Stress-induced deformation, and the damage resulting therefrom, increases with film thickness. The overcoming of excessive stress by the use of the Si-Al-N film material of the present invention, permits the formation of thick films that are necessary for certain of the above described applications. The most likely use for the subject film materials, other than their specialized views as an optical film, is for microelectronic packaging of components on silicon substrates. In general, the subject films have excellent adherence to the underlying substrate, a high degree of hardness and durability, and are excellent insulators. Prior art elevated temperature deposition processes cannot meet the microelectronic packaging temperature formation constraints. The process of the present invention is conducted under non-elevated temperature conditions, typically 500.degree. C. or less.

  8. Deposition of device quality, low hydrogen content, hydrogenated amorphous silicon at high deposition rates with increased stability using the hot wire filament technique

    DOEpatents

    Molenbroek, Edith C.; Mahan, Archie Harvin; Gallagher, Alan C.

    2000-09-26

    A method or producing hydrogenated amorphous silicon on a substrate, comprising the steps of: positioning the substrate in a deposition chamber at a distance of about 0.5 to 3.0 cm from a heatable filament in the deposition chamber; maintaining a pressure in said deposition chamber in the range of about 10 to 100 millitorr and pressure times substrate-filament spacing in the range of about 10 to 100 millitorr-cm, heating the filament to a temperature in the range of about 1,500 to 2,000.degree. C., and heating the substrate to a surface temperature in the range of about 280 to 475.degree. C.; and flowing silicohydride gas into the deposition chamber with said heated filament, decomposing said silicohydride gas into silicon and hydrogen atomic species and allowing products of gas reactions between said atomic species and the silicohydride gas to migrate to and deposit on said substrate while adjusting and maintaining said pressure times substrate-filament spacing in said deposition chamber at a value in said 10 to 100 millitorr range to produce statistically about 3 to 50 atomic collisions between the silicon and hydrogen atomic species migrating to said substrate and undecomposed molecules of the silane or other silicohydride gas in the deposition chamber.

  9. Method of making a ceramic with preferential oxygen reactive layer

    NASA Technical Reports Server (NTRS)

    Wang, Hongyu (Inventor); Luthra, Krishan Lal (Inventor)

    2003-01-01

    A method of forming an article. The method comprises forming a silicon-based substrate that is oxidizable by reaction with an oxidant to form at least one gaseous product and applying an intermediate layer/coating onto the substrate, wherein the intermediate layer/coating is oxidizable to a nongaseous product by reaction with the oxidant in preference to reaction of the silicon-containing substrate with the oxidant.

  10. Formation of thin-film resistors on silicon substrates

    DOEpatents

    Schnable, George L.; Wu, Chung P.

    1988-11-01

    The formation of thin-film resistors by the ion implantation of a metallic conductive layer in the surface of a layer of phosphosilicate glass or borophosphosilicate glass which is deposited on a silicon substrate. The metallic conductive layer materials comprise one of the group consisting of tantalum, ruthenium, rhodium, platinum and chromium silicide. The resistor is formed and annealed prior to deposition of metal, e.g. aluminum, on the substrate.

  11. Electrically conductive, black thermal control coatings for space craft application. II - Silicone matrix formulation

    NASA Technical Reports Server (NTRS)

    Hribar, V. F.; Bauer, J. L.; O'Donnell, T. P.

    1986-01-01

    Five black electrically conductive thermal-control coatings have been formulated and tested for application on the Galileo spacecraft. The coatings consisted of organic and inorganic systems applied on titanium and aluminum surfaces. The coatings were tested under simulated space environment conditions. Coated specimens were subjected to thermal radiation and convective and conductive heating from -196 to 538 C. Mechanical, physical, thermal, electrical, and optical characteristics, formulation, mixing, application, surface preparation of substrates, and a method of determining electrical resistance are presented for the silicone matrix formulation designated as GF-580.

  12. NT-SiC (new-technology silicon carbide) : Φ 650mm optical space mirror substrate of high-strength reaction-sintered silicon carbide

    NASA Astrophysics Data System (ADS)

    Suyama, Shoko; Itoh, Yoshiyasu; Tsuno, Katsuhiko; Ohno, Kazuhiko

    2005-08-01

    Silicon carbide (SiC) is the most advantageous as the material of various telescope mirrors, because of high stiffness, low density, low coefficient of thermal expansion, high thermal conductivity and thermal stability. Newly developed high-strength reaction-sintered silicon carbide (NTSIC), which has two times higher strength than sintered SiC, is one of the most promising candidates for lightweight optical mirror substrate, because of fully dense, lightweight, small sintering shrinkage (+/-1 %), good shape capability and low processing temperature. In this study, 650mm in diameter mirror substrate of NTSIC was developed for space telescope applications. Three developed points describe below. The first point was to realize the lightweight to thin the thickness of green bodies. Ribs down to 3mm thickness can be obtained by strengthen the green body. The second point was to enlarge the mirror size. 650mm in diameter of mirror substrate can be fabricated with enlarging the diameter in order. The final point was to realize the homogeneity of mirror substrate. Some properties, such as density, bending strength, coefficient of thermal expansion, Young's modulus, Poisson's ratio, fracture toughness, were measured by the test pieces cutting from the fabricated mirror substrates.

  13. Silicon accumulation and distribution in petunia and sunflower

    USDA-ARS?s Scientific Manuscript database

    Silicon (Si) is a beneficial element that has been shown to protect plants during periods of abiotic and biotic stress. Plant-available Si can be supplied through substrate components, substrate amendments, liquid fertilization, or foliar sprays. The objective of this study was to compare Si accum...

  14. Microdynamic Devices Fabricated on Silicon-On-Sapphire Substrates.

    DTIC Science & Technology

    Silicon-on-sapphire substrates are provided for the fabrication of micromechanical devices, such as micromotors . The high voltage stand-off...a consequence, the electrostatically driven devices, micromotors , can be incorporated in the integrated circuits and yet be powered at elevated voltages to increase their work potential.

  15. Comparing the ice nucleation efficiencies of ice nucleating substrates to natural mineral dusts

    NASA Astrophysics Data System (ADS)

    Steinke, Isabelle; Funk, Roger; Höhler, Kristina; Haarig, Moritz; Hoffmann, Nadine; Hoose, Corinna; Kiselev, Alexei; Möhler, Ottmar; Leisner, Thomas

    2014-05-01

    Mineral dust particles in the atmosphere may act as efficient ice nuclei over a wide range of temperature and relative humidity conditions. The ice nucleation capability of dust particles mostly depends on the particle surface area and the associated physico-chemical surface properties. It has been observed that the surface-related ice nucleation efficiency of different dust particles and mineral species can vary by several orders of magnitude. However, the relation between aerosol surface properties and observed ice nucleation efficiency is still not completely understood due to the large variability of chemical compositions and morphological features. In order to gain a better understanding of small scale freezing processes, we investigated the freezing of several hundreds of small droplets (V=0.4 nl) deposited on materials with reasonably well defined surfaces such as crystalline silicon wafers, graphite and freshly cleaved mica sheets under atmospherically relevant conditions. These substrates are intended to serve as simple model structures compared to the surface of natural aerosol particles. To learn more about the impact of particle morphology on ice nucleation processes, we also investigated micro-structured silicon wafers with prescribed trenches. The ice nucleation efficiencies deduced from these experiments are expressed as ice nucleation active surface site density values. With this approach, the freezing properties of the above-described substrates could be compared to those of natural mineral dusts such as agricultural soil dusts, volcanic ash and fossil diatoms, which have been investigated in AIDA cloud chamber experiments. All tested ice nucleating substrates were consistently less efficient at nucleating ice than the natural mineral dusts. Crystalline silicon only had a negligible influence on the freezing of small droplets, leading to freezing near the homogeneous freezing temperature threshold. Applying surface structures to silicon led to a shift towards heterogeneous freezing. However, the measured ice nucleation active surface site densities were still smaller than those of mineral dusts.

  16. Method of forming silicon structures with selectable optical characteristics

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W. (Inventor); Schowalter, Leo (Inventor)

    1993-01-01

    Silicon and metal are coevaporated onto a silicon substrate in a molecular beam epitaxy system with a larger than stoichiometric amount of silicon so as to epitaxially grow particles of metal silicide embedded in a matrix of single crystal epitaxially grown silicon. The particles interact with incident photons by resonant optical absorption at the surface plasmon resonance frequency. Controlling the substrate temperature and deposition rate and time allows the aspect ratio of the particles to be tailored to desired wavelength photons and polarizations. The plasmon energy may decay as excited charge carriers or phonons, either of which can be monitored to indicate the amount of incident radiation at the selected frequency and polarization.

  17. Method of manufacturing a hybrid emitter all back contact solar cell

    DOEpatents

    Loscutoff, Paul; Rim, Seung

    2017-02-07

    A method of manufacturing an all back contact solar cell which has a hybrid emitter design. The solar cell has a thin dielectric layer formed on a backside surface of a single crystalline silicon substrate. One emitter of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer. A second emitter of the solar cell is formed in the single crystalline silicon substrate and is made of doped single crystalline silicon. The method further includes forming contact holes that allow metal contacts to connect to corresponding emitters.

  18. Method of fabricating germanium and gallium arsenide devices

    NASA Technical Reports Server (NTRS)

    Jhabvala, Murzban (Inventor)

    1990-01-01

    A method of semiconductor diode fabrication is disclosed which relies on the epitaxial growth of a precisely doped thickness layer of gallium arsenide or germanium on a semi-insulating or intrinsic substrate, respectively, of gallium arsenide or germanium by either molecular beam epitaxy (MBE) or by metal-organic chemical vapor deposition (MOCVD). The method involves: depositing a layer of doped or undoped silicon dioxide on a germanium or gallium arsenide wafer or substrate, selectively removing the silicon dioxide layer to define one or more surface regions for a device to be fabricated thereon, growing a matched epitaxial layer of doped germanium or gallium arsenide of an appropriate thickness using MBE or MOCVD techniques on both the silicon dioxide layer and the defined one or more regions; and etching the silicon dioxide and the epitaxial material on top of the silicon dioxide to leave a matched epitaxial layer of germanium or gallium arsenide on the germanium or gallium arsenide substrate, respectively, and upon which a field effect device can thereafter be formed.

  19. Deep level transient spectroscopic investigation of phosphorus-doped silicon by self-assembled molecular monolayers.

    PubMed

    Gao, Xuejiao; Guan, Bin; Mesli, Abdelmadjid; Chen, Kaixiang; Dan, Yaping

    2018-01-09

    It is known that self-assembled molecular monolayer doping technique has the advantages of forming ultra-shallow junctions and introducing minimal defects in semiconductors. In this paper, we report however the formation of carbon-related defects in the molecular monolayer-doped silicon as detected by deep-level transient spectroscopy and low-temperature Hall measurements. The molecular monolayer doping process is performed by modifying silicon substrate with phosphorus-containing molecules and annealing at high temperature. The subsequent rapid thermal annealing drives phosphorus dopants along with carbon contaminants into the silicon substrate, resulting in a dramatic decrease of sheet resistance for the intrinsic silicon substrate. Low-temperature Hall measurements and secondary ion mass spectrometry indicate that phosphorus is the only electrically active dopant after the molecular monolayer doping. However, during this process, at least 20% of the phosphorus dopants are electrically deactivated. The deep-level transient spectroscopy shows that carbon-related defects are responsible for such deactivation.

  20. Microfabricated instrument for tissue biopsy and analysis

    DOEpatents

    Krulevitch, Peter A.; Lee, Abraham P.; Northrup, M. Allen; Benett, William J.

    2001-01-01

    A microfabricated biopsy/histology instrument which has several advantages over the conventional procedures, including minimal specimen handling, smooth cutting edges with atomic sharpness capable of slicing very thin specimens (approximately 2 .mu.m or greater), micro-liter volumes of chemicals for treating the specimens, low cost, disposable, fabrication process which renders sterile parts, and ease of use. The cutter is a "cheese-grater" style design comprising a block or substrate of silicon and which uses anisotropic etching of the silicon to form extremely sharp and precise cutting edges. As a specimen is cut, it passes through the silicon cutter and lies flat on a piece of glass which is bonded to the cutter. Microchannels are etched into the glass or silicon substrates for delivering small volumes of chemicals for treating the specimen. After treatment, the specimens can be examined through the glass substrate.

  1. Substrate and Passivation Techniques for Flexible Amorphous Silicon-Based X-ray Detectors

    PubMed Central

    Marrs, Michael A.; Raupp, Gregory B.

    2016-01-01

    Flexible active matrix display technology has been adapted to create new flexible photo-sensing electronic devices, including flexible X-ray detectors. Monolithic integration of amorphous silicon (a-Si) PIN photodiodes on a flexible substrate poses significant challenges associated with the intrinsic film stress of amorphous silicon. This paper examines how altering device structuring and diode passivation layers can greatly improve the electrical performance and the mechanical reliability of the device, thereby eliminating one of the major weaknesses of a-Si PIN diodes in comparison to alternative photodetector technology, such as organic bulk heterojunction photodiodes and amorphous selenium. A dark current of 0.5 pA/mm2 and photodiode quantum efficiency of 74% are possible with a pixelated diode structure with a silicon nitride/SU-8 bilayer passivation structure on a 20 µm-thick polyimide substrate. PMID:27472329

  2. Substrate and Passivation Techniques for Flexible Amorphous Silicon-Based X-ray Detectors.

    PubMed

    Marrs, Michael A; Raupp, Gregory B

    2016-07-26

    Flexible active matrix display technology has been adapted to create new flexible photo-sensing electronic devices, including flexible X-ray detectors. Monolithic integration of amorphous silicon (a-Si) PIN photodiodes on a flexible substrate poses significant challenges associated with the intrinsic film stress of amorphous silicon. This paper examines how altering device structuring and diode passivation layers can greatly improve the electrical performance and the mechanical reliability of the device, thereby eliminating one of the major weaknesses of a-Si PIN diodes in comparison to alternative photodetector technology, such as organic bulk heterojunction photodiodes and amorphous selenium. A dark current of 0.5 pA/mm² and photodiode quantum efficiency of 74% are possible with a pixelated diode structure with a silicon nitride/SU-8 bilayer passivation structure on a 20 µm-thick polyimide substrate.

  3. Ultra-Sensitive Magnetoresistive Displacement Sensing Device

    NASA Technical Reports Server (NTRS)

    Olivas, John D. (Inventor); Lairson, Bruce M. (Inventor); Ramesham, Rajeshuni (Inventor)

    2003-01-01

    An ultrasensitive displacement sensing device for use in accelerometers, pressure gauges, temperature transducers, and the like, comprises a sputter deposited, multilayer, magnetoresistive field sensor with a variable electrical resistance based on an imposed magnetic field. The device detects displacement by sensing changes in the local magnetic field about the magnetoresistive field sensor caused by the displacement of a hard magnetic film on a movable microstructure. The microstructure, which may be a cantilever, membrane, bridge, or other microelement, moves under the influence of an acceleration a known displacement predicted by the configuration and materials selected, and the resulting change in the electrical resistance of the MR sensor can be used to calculate the displacement. Using a micromachining approach, very thin silicon and silicon nitride membranes are fabricated in one preferred embodiment by means of anisotropic etching of silicon wafers. Other approaches include reactive ion etching of silicon on insulator (SOI), or Low Pressure Chemical Vapor Deposition of silicon nitride films over silicon substrates. The device is found to be improved with the use of giant magnetoresistive elements to detect changes in the local magnetic field.

  4. Bilateral substrate effect on the thermal conductivity of two-dimensional silicon

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoliang; Bao, Hua; Hu, Ming

    2015-03-01

    Silicene, the silicon-based counterpart of graphene, has received exceptional attention from a wide community of scientists and engineers in addition to graphene, due to its unique and fascinating physical and chemical properties. Recently, the thermal transport of the atomic thin Si layer, critical to various applications in nanoelectronics, has been studied; however, to date, the substrate effect has not been investigated. In this paper, we present our nonequilibrium molecular dynamics studies on the phonon transport of silicene supported on different substrates. A counter-intuitive phenomenon, in which the thermal conductivity of silicene can be either enhanced or suppressed by changing the surface crystal plane of the substrate, has been observed. This phenomenon is fundamentally different from the general understanding of supported graphene, a representative two-dimensional material, in which the substrate always has a negative effect on the phonon transport of graphene. By performing phonon polarization and spectral energy density analysis, we explain the underlying physics of the new phenomenon in terms of the different impacts on the dominant phonons in the thermal transport of silicene induced by the substrate: the dramatic increase in the thermal conductivity of silicene supported on the 6H-SiC substrate is due to the augmented lifetime of the majority of the acoustic phonons, while the significant decrease in the thermal conductivity of silicene supported on the 3C-SiC substrate results from the reduction in the lifetime of almost the entire phonon spectrum. Our results suggest that, by choosing different substrates, the thermal conductivity of silicene can be largely tuned, which paves the way for manipulating the thermal transport properties of silicene for future emerging applications.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammad, Sabah M., E-mail: Sabahaskari14@gmail.com; Ahmed, Naser M.; Abd-Alghafour, Nabeel M.

    Vertically, well-aligned and high density ZnO nanorods were successfully hydrothermally grown on glass and silicon substrates using a simple and low cost system. The mechanism of synthesis of ZnO nanorods, generated with our system under hydrothermal conditions, is investigated in this report. Field-emission scanning electron microscopy indicated that the fabricated ZnO nanorods on both substrates have hexagonal shape with diameters ranging from 20 nm to 70 nm which grew vertically from the substrate. XRD analysis confirms the formation of wurtzite ZnO phase with a preferred orientation along (002) direction perpendicular on the substrate and enhanced crystallinity. The low value ofmore » the tensile strain (0.126 %) revealed that ZnO nanorods preferred to grow along the c-axis for both substrates. Photoluminescence spectra exhibited a strong, sharp UV near band edge emission peak with narrow FWHM values for both samples.« less

  6. Integrated circuit with dissipative layer for photogenerated carriers

    DOEpatents

    Myers, D.R.

    1988-04-20

    The sensitivity of an integrated circuit to single-event upsets is decreased by providing a dissipative layer of silicon nitride between a silicon substrate and the active device. Free carriers generated in the substrate are dissipated by the layer before they can build up charge on the active device. 1 fig.

  7. Crystallization and growth of Ni-Si alloy thin films on inert and on silicon substrates

    NASA Astrophysics Data System (ADS)

    Grimberg, I.; Weiss, B. Z.

    1995-04-01

    The crystallization kinetics and thermal stability of NiSi2±0.2 alloy thin films coevaporated on two different substrates were studied. The substrates were: silicon single crystal [Si(100)] and thermally oxidized silicon single crystal. In situ resistance measurements, transmission electron microscopy, x-ray diffraction, Auger electron spectroscopy, and Rutherford backscattering spectroscopy were used. The postdeposition microstructure consisted of a mixture of amorphous and crystalline phases. The amorphous phase, independent of the composition, crystallizes homogeneously to NiSi2 at temperatures lower than 200 °C. The activation energy, determined in the range of 1.4-2.54 eV, depends on the type of the substrate and on the composition of the alloyed films. The activation energy for the alloys deposited on the inert substrate was found to be lower than for the alloys deposited on silicon single crystal. The lowest activation energy was obtained for nonstoichiometric NiSi2.2, the highest for NiSi2—on both substrates. The crystallization mode depends on the structure of the as-deposited films, especially the density of the existing crystalline nuclei. Substantial differences were observed in the thermal stability of the NiSi2 compound on both substrates. With the alloy films deposited on the Si substrate, only the NiSi2 phase was identified after annealing to temperatures up to 800 °C. In the films deposited on the inert substrate, NiSi and NiSi2 phases were identified when the Ni content in the alloy exceeded 33 at. %. The effects of composition and the type of substrate on the crystallization kinetics and thermal stability are discussed.

  8. Screening method for selecting semiconductor substrates having defects below a predetermined level in an oxide layer

    DOEpatents

    Warren, William L.; Vanheusden, Karel J. R.; Schwank, James R.; Fleetwood, Daniel M.; Shaneyfelt, Marty R.; Winokur, Peter S.; Devine, Roderick A. B.

    1998-01-01

    A method for screening or qualifying semiconductor substrates for integrated circuit fabrication. The method comprises the steps of annealing at least one semiconductor substrate at a first temperature in a defect-activating ambient (e.g. hydrogen, forming gas, or ammonia) for sufficient time for activating any defects within on oxide layer of the substrate; measuring a defect-revealing electrical characteristic of at least a portion of the oxide layer for determining a quantity of activated defects therein; and selecting substrates for which the quantity of activated defects is below a predetermined level. The defect-revealing electrical characteristic may be a capacitance-versus-voltage (C-V) characteristic or a current-versus-voltage (I-V) characteristic that is dependent on an electrical charge in the oxide layer generated by the activated defects. Embodiments of the present invention may be applied for screening any type of semiconductor substrate or wafer having an oxide layer formed thereon or therein. This includes silicon-on-insulator substrates formed by a separation by the implantation of oxygen (SIMOX) process or the bond and etch back silicon-on-insulator (BESOI) process, as well as silicon substrates having a thermal oxide layer or a deposited oxide layer.

  9. The Growth of Expitaxial GaAs and GaAlAs on Silicon Substrates by OMVPE

    DTIC Science & Technology

    1988-08-01

    structures have been grown on semi-insulating gallium arsenide substrates, and on high-resistivity silicon substrates using a two stage growth technique...fully in Quarter 9. 2. MATERIALS GROWTH 2.1 DOPING OF GALLIUM ARSENIDE FOR FETs As reported in quarter 7, doping levels for GaAs/SI 4ere found to be a...FET structures on both GaAs and Si substrates. A number of FET layers have been grown to the GAT4 specification on semi-insulating gallium arsenide

  10. Wetting of silicone oil onto a cell-seeded substrate

    NASA Astrophysics Data System (ADS)

    Lu, Yongjie; Chan, Yau Kei; Chao, Youchuang; Shum, Ho Cheung

    2017-11-01

    Wetting behavior of solid substrates in three-phase systems containing two immiscible liquids are widely studied. There exist many three-phase systems in biological environments, such as droplet-based microfluidics or tamponade of silicone oil for eye surgery. However, few studies focus on wetting behavior of biological surfaces with cells. Here we investigate wetting of silicone oil onto cell-seeded PMMA sheet immersed in water. Using a simple parallel-plate cell, we show the effect of cell density, viscosity of silicone oil, morphology of silicone oil drops and interfacial tension on the wetting phenomenon. The dynamics of wetting is also observed by squeezing silicone oil drop using two parallel plates. Experimental results are explained based on disjoining pressure which is dependent on the interaction of biological surfaces and liquid used. These findings are useful for explaining emulsification of silicone oil in ophthalmological applications.

  11. Silane coupling agent bearing a photoremovable succinimidyl carbonate for patterning amines on glass and silicon surfaces with controlled surface densities.

    PubMed

    Nakayama, Hidekazu; Nakanishi, Jun; Shimizu, Takahiro; Yoshino, Yutaro; Iwai, Hideo; Kaneko, Shingo; Horiike, Yasuhiro; Yamaguchi, Kazuo

    2010-03-01

    Patterned immobilization of synthetic and biological ligands on material surfaces with controlled surface densities is important for various bioanalytical and cell biological purposes. This paper describes the synthesis, characterization, and application of a novel silane coupling agent bearing a photoremovable succinimidyl carbonate, which enables the photopatterning of various primary amines on glass and silicon surfaces. The silane coupling agent is 1-[5-methoxy-2-nitro-4-(3-trimethoxysilylpropyloxy)phenyl]ethyl N-succinimidyl carbonate. The distinct feature of this molecule is that it has a photocleavable 2-nitrobenzyl switch between a trimethoxysilyl group and a succinimidyl carbonate, each reactive to the hydroxy groups of inorganic oxides and primary amines. Based on this molecular design, the compound allows for the one-step introduction of succinimidyl carbonates onto the surface of glass and silicon, immobilization of primary amines, and region-selective and dose-dependent release of the amines by near-UV irradiation. Therefore, we were able to pattern amine ligands on the substrates in given surface densities and arbitrary geometries by controlling the doses and regions of photoirradiation. These features were verified by UV-vis spectroscopy, contact angle measurements, infrared (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), ellipsometry, and atomic force microscopy (AFM). The compound was applied to form a chemical density gradient of amino-biotin on a silicon substrate in a range of 0.87-0.12 chains/nm(2) by controlling photoirradiation under a standard fluorescence microscope. Furthermore, we also succeeded in forming a chemical density gradient at a lower surface density range (0.15-0.011 chains/nm(2)) on the substrate by diluting the feed amino-biotin with an inert control amine.

  12. Physical mechanisms of SiN{sub x} layer structuring with ultrafast lasers by direct and confined laser ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, S., E-mail: rapp@hm.edu; Erlangen Graduate School in Advanced Optical Technologies; Heinrich, G.

    2015-03-14

    In the production process of silicon microelectronic devices and high efficiency silicon solar cells, local contact openings in thin dielectric layers are required. Instead of photolithography, these openings can be selectively structured with ultra-short laser pulses by confined laser ablation in a fast and efficient lift off production step. Thereby, the ultrafast laser pulse is transmitted by the dielectric layer and absorbed at the substrate surface leading to a selective layer removal in the nanosecond time domain. Thermal damage in the substrate due to absorption is an unwanted side effect. The aim of this work is to obtain a deepermore » understanding of the physical laser-material interaction with the goal of finding a damage-free ablation mechanism. For this, thin silicon nitride (SiN{sub x}) layers on planar silicon (Si) wafers are processed with infrared fs-laser pulses. Two ablation types can be distinguished: The known confined ablation at fluences below 300 mJ/cm{sup 2} and a combined partial confined and partial direct ablation at higher fluences. The partial direct ablation process is caused by nonlinear absorption in the SiN{sub x} layer in the center of the applied Gaussian shaped laser pulses. Pump-probe investigations of the central area show ultra-fast reflectivity changes typical for direct laser ablation. Transmission electron microscopy results demonstrate that the Si surface under the remaining SiN{sub x} island is not damaged by the laser ablation process. At optimized process parameters, the method of direct laser ablation could be a good candidate for damage-free selective structuring of dielectric layers on absorbing substrates.« less

  13. Hot Electron Injection into Uniaxially Strained Silicon

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Soo

    In semiconductor spintronics, silicon attracts great attention due to the long electron spin lifetime. Silicon is also one of the most commonly used semiconductor in microelectronics industry. The spin relaxation process of diamond crystal structure such as silicon is dominant by Elliot-Yafet mechanism. Yafet shows that intravalley scattering process is dominant. The conduction electron spin lifetime measured by electron spin resonance measurement and electronic measurement using ballistic hot electron method well agrees with Yafet's theory. However, the recent theory predicts a strong contribution of intervalley scattering process such as f-process in silicon. The conduction band minimum is close the Brillouin zone edge, X point which causes strong spin mixing at the conduction band. A recent experiment of electric field-induced hot electron spin relaxation also shows the strong effect of f-process in silicon. In uniaxially strained silicon along crystal axis [100], the suppression of f-process is predicted which leads to enhance electron spin lifetime. By inducing a change in crystal structure due to uniaxial strain, the six fold degeneracy becomes two fold degeneracy, which is valley splitting. As the valley splitting increases, intervalley scattering is reduced. A recent theory predicts 4 times longer electron spin lifetime in 0.5% uniaxially strained silicon. In this thesis, we demonstrate ballistic hot electron injection into silicon under various uniaxial strain. Spin polarized hot electron injection under strain is experimentally one of the most challenging part to measure conduction electron spin lifetime in silicon. Hot electron injection adopts tunnel junction which is a thin oxide layer between two conducting materials. Tunnel barrier, which is an oxide layer, is only 4 ˜ 5 nm thick. Also, two conducting materials are only tens of nanometer. Therefore, under high pressure to apply 0.5% strain on silicon, thin films on silicon substrate can be easily destroyed. In order to confirm the performance of tunnel junction, we use tunnel magnetoresistance(TMR). TMR consists of two kinds of ferromagnetic materials and an oxide layer as tunnel barrier in order to measure spin valve effect. Using silicon as a collector with Schottky barrier interface between metal and silicon, ballistic hot spin polarized electron injection into silicon is demonstrated. We also observed change of coercive field and magnetoresistance due to modification of local states in ferromagnetic materials and surface states at the interface between metal and silicon due to strain.

  14. High-performance solid state supercapacitors assembling graphene interconnected networks in porous silicon electrode by electrochemical methods using 2,6-dihydroxynaphthalen.

    PubMed

    Romanitan, Cosmin; Varasteanu, Pericle; Mihalache, Iuliana; Culita, Daniela; Somacescu, Simona; Pascu, Razvan; Tanasa, Eugenia; Eremia, Sandra A V; Boldeiu, Adina; Simion, Monica; Radoi, Antonio; Kusko, Mihaela

    2018-06-25

    The challenge for conformal modification of the ultra-high internal surface of nanoporous silicon was tackled by electrochemical polymerisation of 2,6-dihydroxynaphthalene using cyclic voltammetry or potentiometry and, notably, after the thermal treatment (800 °C, N 2 , 4 h) an assembly of interconnected networks of graphene strongly adhering to nanoporous silicon matrix resulted. Herein we demonstrate the achievement of an easy scalable technology for solid state supercapacitors on silicon, with excellent electrochemical properties. Accordingly, our symmetric supercapacitors (SSC) showed remarkable performance characteristics, comparable to many of the best high-power and/or high-energy carbon-based supercapacitors, their figures of merit matching under battery-like supercapacitor behaviour. Furthermore, the devices displayed high specific capacity values along with enhanced capacity retention even at ultra-high rates for voltage sweep, 5 V/s, or discharge current density, 100 A/g, respectively. The cycling stability tests performed at relatively high discharge current density of 10 A/g indicated good capacity retention, with a superior performance demonstrated for the electrodes obtained under cyclic voltammetry approach, which may be ascribed on the one hand to a better coverage of the porous silicon substrate and, on the other hand, to an improved resilience of the hybrid electrode to pore clogging.

  15. Abrasive rolling effects on material removal and surface finish in chemical mechanical polishing analyzed by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Si, Lina; Guo, Dan; Luo, Jianbin; Lu, Xinchun; Xie, Guoxin

    2011-04-01

    In an abrasive chemical mechanical polishing (CMP) process, materials were considered to be removed by abrasive sliding and rolling. Abrasive sliding has been investigated by many molecular dynamics (MD) studies; while abrasive rolling was usually considered to be negligible and therefore was rarely investigated. In this paper, an MD simulation was used to study the effects of abrasive rolling on material removal and surface finish in the CMP process. As the silica particle rolled across the silicon substrate, some atoms of the substrate were dragged out from their original positions and adhered to the silica particle, leaving some atomic vacancies on the substrate surface. Meanwhile, a high quality surface could be obtained. During the abrasive rolling process, the influencing factors of material removal, e.g., external down force and driving force, were also discussed. Finally, MD simulations were carried out to examine the effects of abrasive sliding on material removal under the same external down force as abrasive rolling. The results showed that the ability of abrasive rolling to remove material on the atomic scale was not notably inferior to that of abrasive sliding. Therefore, it can be proposed that both abrasive sliding and rolling play important roles in material removal in the abrasive CMP of the silicon substrate.

  16. Erosion mechanisms of monocrystalline silicon under a microparticle laden air jet

    NASA Astrophysics Data System (ADS)

    Li, Q. L.; Wang, J.; Huang, C. Z.

    2008-08-01

    Microabrasive air-jet machining is considered as a promising precision processing technology for silicon substrates. In this paper, the impressions produced on a monocrystalline silicon by the impacts of microsolid particles entrained by an air jet and the associated microscopic erosion mechanisms are presented and discussed. It is shown that the impressions can be classified into three categories, namely, craters, scratches, and microdents, of which two types of craters and two types of scratches can lead to large-scale fractures. Craters with cleavage fracture surfaces have been found to play an important role in the material removal process. In addition, it is shown that most particles bounced away from the target surface without sliding or rolling during an impact so that most impressions formed are crater-type erosions.

  17. Silicon Hard-Stop Mesas for 3D Integration of Superconducting Qubits

    NASA Astrophysics Data System (ADS)

    Kim, David; Rosenberg, Danna; Osadchy, Brenda; Calusine, Greg; Das, Rabindra; Melville, Alexander; Yoder, Jonilyn; Yost, Donna-Ruth; Racz, Livia; Oliver, William

    As quantum computing with superconducting qubits advances past the few-qubit stage, implementing 3D packaging/integration to route readout/control lines will become increasingly important. One approach is to bond chips that perform different functions using indium bump bonds. Because indium is malleable, however, achieving the desired spacing and tilt between two chips can be challenging. We present an approach based on etching several microns into the silicon substrate to produce hard stop silicon posts. Since this process involves etching into a pristine substrate, it is essential to evaluate its impact on qubit performance. We report the etched surface's effect on the resonator quality factor and qubit coherence time, as well as the improvement in planarity and tilt. This research was funded in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) and by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  18. A continuous silicon-coating facility

    NASA Technical Reports Server (NTRS)

    Butter, C.; Heaps, J. D.

    1979-01-01

    Automatic continuous silicon-coating facility is used to process 100 by 10 cm graphite-coated ceramic substrates for silicon solar cells. Process reduces contamination associated with conventional dip-coating processes, improving material service life.

  19. Gray scale x-ray mask

    DOEpatents

    Morales, Alfredo M [Livermore, CA; Gonzales, Marcela [Seattle, WA

    2006-03-07

    The present invention describes a method for fabricating an embossing tool or an x-ray mask tool, providing microstructures that smoothly vary in height from point-to-point in etched substrates, i.e., structure which can vary in all three dimensions. The process uses a lithographic technique to transfer an image pattern in the surface of a silicon wafer by exposing and developing the resist and then etching the silicon substrate. Importantly, the photoresist is variably exposed so that when developed some of the resist layer remains. The remaining undeveloped resist acts as an etchant barrier to the reactive plasma used to etch the silicon substrate and therefore provides the ability etch structures of variable depths.

  20. Broadly tunable terahertz difference-frequency generation in quantum cascade lasers on silicon

    NASA Astrophysics Data System (ADS)

    Jung, Seungyong; Kim, Jae Hyun; Jiang, Yifan; Vijayraghavan, Karun; Belkin, Mikhail A.

    2018-01-01

    We report broadly tunable terahertz (THz) sources based on intracavity Cherenkov difference-frequency generation in quantum cascade lasers transfer-printed on high-resistivity silicon substrates. Spectral tuning from 1.3 to 4.3 THz was obtained from a 2-mm long laser chip using a modified Littrow external cavity setup. The THz power output and the midinfrared-to-THz conversion efficiency of the devices transferred on silicon are dramatically enhanced, compared with the devices on a native semi-insulating InP substrate. Enhancement is particularly significant at higher THz frequencies, where the tail of the Reststrahlen band results in a strong absorption of THz light in the InP substrate.

  1. Designed porosity materials in nuclear reactor components

    DOEpatents

    Yacout, A. M.; Pellin, Michael J.; Stan, Marius

    2016-09-06

    A nuclear fuel pellet with a porous substrate, such as a carbon or tungsten aerogel, on which at least one layer of a fuel containing material is deposited via atomic layer deposition, and wherein the layer deposition is controlled to prevent agglomeration of defects. Further, a method of fabricating a nuclear fuel pellet, wherein the method features the steps of selecting a porous substrate, depositing at least one layer of a fuel containing material, and terminating the deposition when the desired porosity is achieved. Also provided is a nuclear reactor fuel cladding made of a porous substrate, such as silicon carbide aerogel or silicon carbide cloth, upon which layers of silicon carbide are deposited.

  2. Monolithically interconnected silicon-film™ module technology

    NASA Astrophysics Data System (ADS)

    DelleDonne, E. J.; Ford, D. H.; Hall, R. B.; Ingram, A. E.; Rand, J. A.; Barnett, A. M.

    1999-03-01

    AstroPower is developing an advanced thin-silicon-based, photovoltaic module product. A low-cost monolithic interconnected device is being integrated into a module that combines the design and process features of advanced light trapped, thin-silicon solar cells. This advanced product incorporates a low-cost substrate, a nominally 50-μm thick grown silicon layer with minority carrier diffusion lengths exceeding the active layer thickness, light trapping due to back-surface reflection, and back-surface passivation. The thin silicon layer enables high solar cell performance and can lead to a module conversion efficiency as high as 19%. These performance design features, combined with low-cost manufacturing using relatively low-cost capital equipment, continuous processing and a low-cost substrate, will lead to high-performance, low-cost photovoltaic panels.

  3. Evanescent Microwave Probes on High-Resistivity Silicon and its Application in Characterization of Semiconductors

    NASA Technical Reports Server (NTRS)

    Tabib-Azar, M.; Akinwande, D.; Ponchak, George E.; LeClair, S. R.

    1999-01-01

    In this article we report the design, fabrication, and characterization of very high quality factor 10 GHz microstrip resonators on high-resistivity (high-rho) silicon substrates. Our experiments show that an external quality factor of over 13 000 can be achieved on microstripline resonators on high-rho silicon substrates. Such a high Q factor enables integration of arrays of previously reported evanescent microwave probe (EMP) on silicon cantilever beams. We also demonstrate that electron-hole pair recombination and generation lifetimes of silicon can be conveniently measured by illuminating the resonator using a pulsed light. Alternatively, the EMP was also used to nondestructively monitor excess carrier generation and recombination process in a semiconductor placed near the two-dimensional resonator.

  4. Evaluation of the Effect of Silicone Contamination on Various Bond Systems and the Feasibility of Removing the Contamination

    NASA Technical Reports Server (NTRS)

    Stanley, Stephanie D.

    2008-01-01

    Silicone is a contaminant that can cause catastrophic failure of a bond system depending on the materials and processes used to fabricate the bond system. Unfortunately, more and more materials are fabricated using silicone. The purpose of this testing was to evaluate which bond systems are sensitive to silicone contamination and whether or not a cleaning process could be utilized to remove the silicone to bring the bond system performance back to baseline. Due to the extensive nature of the testing, attempts will be made to generalize the understanding within classes of substrates, bond systems, and surface preparation and cleaning methods. This study was done by contaminating various metal (steel, Inconel, and aluminum), phenolic (carbon-cloth phenolic [CCP] and glass-cloth phenolic [GCP]), and rubber (natural rubber, asbestos-silicone dioxide filled natural butyldiene rubber [ASNBR]; silica-filled ethylene propylenediene monomer [SFEPDM], and carbon-filled ethylene propylenediene monomer [CFEPDM]) substrates which were then bonded using various adhesives and coatings (epoxy-based adhesives, paints, ablative compounds, and Chemlok adhesives) to determine the effect silicone contamination has on a given bond system's performance. The test configurations depended on the bond system being evaluated. The study also evaluated the feasibility of removing the silicone contamination by cleaning the contaminated substrate prior to bonding. The cleaning processes also varied depending on bond system.

  5. Silicon on ceramic process. Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Zook, J. D.; Heaps, J. D.; Maciolek, R. B.; Koepke, B. G.; Butter, C. D.; Schuldt, S. B.

    1977-01-01

    The technical and economic feasibility of producing solar-cell-quality sheet silicon was investigated. The sheets were made by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Significant progress was made in all areas of the program.

  6. Effects of varying oxygen partial pressure on molten silicon-ceramic substrate interactions

    NASA Technical Reports Server (NTRS)

    Ownby, D. P.; Barsoum, M. W.

    1980-01-01

    The silicon sessile drop contact angle was measured on hot pressed silicon nitride, silicon nitride coated on hot pressed silicon nitride, silicon carbon coated on graphite, and on Sialon to determine the degree to which silicon wets these substances. The post-sessile drop experiment samples were sectioned and photomicrographs were taken of the silicon-substrate interface to observe the degree of surface dissolution and degradation. Of these materials, silicon did not form a true sessile drop on the SiC on graphite due to infiltration of the silicon through the SiC coating, nor on the Sialon due to the formation of a more-or-less rigid coating on the liquid silicon. The most wetting was obtained on the coated Si3N4 with a value of 42 deg. The oxygen concentrations in a silicon ribbon furnace and in a sessile drop furnace were measured using the protable thoria-yttria solid solution electrolyte oxygen sensor. Oxygen partial pressures of 10 to the minus 7 power atm and 10 to the minus 8 power atm were obtained at the two facilities. These measurements are believed to represent nonequilibrium conditions.

  7. Patterned microstructures formed with MeV Au implantation in Si(1 0 0)

    NASA Astrophysics Data System (ADS)

    Rout, Bibhudutta; Greco, Richard R.; Zachry, Daniel P.; Dymnikov, Alexander D.; Glass, Gary A.

    2006-09-01

    Energetic (MeV) Au implantation in Si(1 0 0) (n-type) through masked micropatterns has been used to create layers resistant to KOH wet etching. Microscale patterns were produced in PMMA and SU(8) resist coatings on the silicon substrates using P-beam writing and developed. The silicon substrates were subsequently exposed using 1.5 MeV Au 3+ ions with fluences as high as 1 × 10 16 ions/cm 2 and additional patterns were exposed using copper scanning electron microscope calibration grids as masks on the silicon substrates. When wet etched with KOH microstructures were created in the silicon due to the resistance to KOH etching cause by the Au implantation. The process of combining the fabrication of masked patterns with P-beam writing with broad beam Au implantation through the masks can be a promising, cost-effective process for nanostructure engineering with Si.

  8. AES study on the chemical composition of ferroelectric BaTiO3 thin films RF sputter-deposited on silicon

    NASA Technical Reports Server (NTRS)

    Dharmadhikari, V. S.; Grannemann, W. W.

    1983-01-01

    AES depth profiling data are presented for thin films of BaTiO3 deposited on silicon by RF sputtering. By profiling the sputtered BaTiO3/silicon structures, it was possible to study the chemical composition and the interface characteristics of thin films deposited on silicon at different substrate temperatures. All the films showed that external surface layers were present, up to a few tens of angstroms thick, the chemical composition of which differed from that of the main layer. The main layer had stable composition, whereas the intermediate film-substrate interface consisted of reduced TiO(2-x) oxides. The thickness of this intermediate layer was a function of substrate temperature. All the films showed an excess of barium at the interface. These results are important in the context of ferroelectric phenomena observed in BaTiO3 thin films.

  9. Optical substrate materials for synchrotron radiation beamlines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howells, M.R.; Paquin, R.A.

    1997-06-01

    The authors consider the materials choices available for making optical substrates for synchrotron radiation beam lines. They find that currently the optical surfaces can only be polished to the required finish in fused silica and other glasses, silicon, CVD silicon carbide, electroless nickel and 17-4 PH stainless steel. Substrates must therefore be made of one of these materials or of a metal that can be coated with electroless nickel. In the context of material choices for mirrors they explore the issues of dimensional stability, polishing, bending, cooling, and manufacturing strategy. They conclude that metals are best from an engineering andmore » cost standpoint while the ceramics are best from a polishing standpoint. They then give discussions of specific materials as follows: silicon carbide, silicon, electroless nickel, Glidcop{trademark}, aluminum, precipitation-hardening stainless steel, mild steel, invar and superinvar. Finally they summarize conclusions and propose ideas for further research.« less

  10. Stoichiometry of Silicon Dioxide Films Obtained by Ion-Beam Sputtering

    NASA Astrophysics Data System (ADS)

    Telesh, E. V.; Dostanko, A. P.; Gurevich, O. V.

    2018-03-01

    The composition of SiOx films produced by ion-beam sputtering (IBS) of silicon and quartz targets were studied by infrared spectrometry. Films with thicknesses of 150-390 nm were formed on silicon substrates. It was found that increase in the partial pressure of oxygen in the working gas, increase in the temperature of the substrate, and the presence of a positive potential on the target during reactive IBS of silicon shifted the main absorption band νas into the high-frequency region and increased the composition index from 1.41 to 1.85. During IBS of a quartz target the stoichiometry of the films deteriorates with increase of the energy of the sputtering argon ions. This may be due to increase of the deposition rate. Increase in the current of the thermionic compensator, increase of the substrate temperature, and addition of oxygen led to the formation of SiOx films with improved stoichiometry.

  11. Method to fabricate silicon chromatographic column comprising fluid ports

    DOEpatents

    Manginell, Ronald P.; Frye-Mason, Gregory C.; Heller, Edwin J.; Adkins, Douglas R.

    2004-03-02

    A new method for fabricating a silicon chromatographic column comprising through-substrate fluid ports has been developed. This new method enables the fabrication of multi-layer interconnected stacks of silicon chromatographic columns.

  12. Curvature Control of Silicon Microlens for THz Dielectric Antenna

    NASA Technical Reports Server (NTRS)

    Lee, Choonsup; Chattopadhyay, Goutam; Cooper, Ken; Mehdi, Imran

    2012-01-01

    We have controlled the curvature of silicon microlens by changing the amount of photoresist in order to microfabricate hemispherical silicon microlens which can improve the directivity and reduce substrate mode losses.

  13. Micromachined cutting blade formed from {211}-oriented silicon

    DOEpatents

    Fleming, James G.; Sniegowski, Jeffry J.; Montague, Stephen

    2003-09-09

    A cutting blade is disclosed fabricated of micromachined silicon. The cutting blade utilizes a monocrystalline silicon substrate having a {211} crystalline orientation to form one or more cutting edges that are defined by the intersection of {211} crystalline planes of silicon with {111} crystalline planes of silicon. This results in a cutting blade which has a shallow cutting-edge angle .theta. of 19.5.degree.. The micromachined cutting blade can be formed using an anisotropic wet etching process which substantially terminates etching upon reaching the {111} crystalline planes of silicon. This allows multiple blades to be batch fabricated on a common substrate and separated for packaging and use. The micromachined cutting blade, which can be mounted to a handle in tension and optionally coated for increased wear resistance and biocompatibility, has multiple applications including eye surgery (LASIK procedure).

  14. Micromachined cutting blade formed from {211}-oriented silicon

    DOEpatents

    Fleming, James G [Albuquerque, NM; Fleming, legal representative, Carol; Sniegowski, Jeffry J [Tijeras, NM; Montague, Stephen [Albuquerque, NM

    2011-08-09

    A cutting blade is disclosed fabricated of micromachined silicon. The cutting blade utilizes a monocrystalline silicon substrate having a {211} crystalline orientation to form one or more cutting edges that are defined by the intersection of {211} crystalline planes of silicon with {111} crystalline planes of silicon. This results in a cutting blade which has a shallow cutting-edge angle .theta. of 19.5.degree.. The micromachined cutting blade can be formed using an anisotropic wet etching process which substantially terminates etching upon reaching the {111} crystalline planes of silicon. This allows multiple blades to be batch fabricated on a common substrate and separated for packaging and use. The micromachined cutting blade, which can be mounted to a handle in tension and optionally coated for increased wear resistance and biocompatibility, has multiple applications including eye surgery (LASIK procedure).

  15. MBE growth and optical properties of GaN layers on SiC/Si(111) hybrid substrate

    NASA Astrophysics Data System (ADS)

    Reznik, R. R.; Kotlyar, K. P.; Soshnikov, I. P.; Kukushkin, S. A.; Osipov, A. V.; Nikitina, E. V.; Cirlin, G. E.

    2017-11-01

    The fundamental possibility of the growth of GaN layers by molecular-beam epitaxy on a silicon substrate with nanoscale buffer layer of silicon carbide without any AlN layers has been demonstrated for the first time. Morphological properties of the resulting system have been studied.

  16. Soft lithographic functionalization and patterning oxide-free silicon and germanium.

    PubMed

    Bowers, Carleen M; Toone, Eric J; Clark, Robert L; Shestopalov, Alexander A

    2011-12-16

    The development of hybrid electronic devices relies in large part on the integration of (bio)organic materials and inorganic semiconductors through a stable interface that permits efficient electron transport and protects underlying substrates from oxidative degradation. Group IV semiconductors can be effectively protected with highly-ordered self-assembled monolayers (SAMs) composed of simple alkyl chains that act as impervious barriers to both organic and aqueous solutions. Simple alkyl SAMs, however, are inert and not amenable to traditional patterning techniques. The motivation for immobilizing organic molecular systems on semiconductors is to impart new functionality to the surface that can provide optical, electronic, and mechanical function, as well as chemical and biological activity. Microcontact printing (μCP) is a soft-lithographic technique for patterning SAMs on myriad surfaces. Despite its simplicity and versatility, the approach has been largely limited to noble metal surfaces and has not been well developed for pattern transfer to technologically important substrates such as oxide-free silicon and germanium. Furthermore, because this technique relies on the ink diffusion to transfer pattern from the elastomer to substrate, the resolution of such traditional printing is essentially limited to near 1 μm. In contrast to traditional printing, inkless μCP patterning relies on a specific reaction between a surface-immobilized substrate and a stamp-bound catalyst. Because the technique does not rely on diffusive SAM formation, it significantly expands the diversity of patternable surfaces. In addition, the inkless technique obviates the feature size limitations imposed by molecular diffusion, facilitating replication of very small (<200 nm) features. However, up till now, inkless μCP has been mainly used for patterning relatively disordered molecular systems, which do not protect underlying surfaces from degradation. Here, we report a simple, reliable high-throughput method for patterning passivated silicon and germanium with reactive organic monolayers and demonstrate selective functionalization of the patterned substrates with both small molecules and proteins. The technique utilizes a preformed NHS-reactive bilayered system on oxide-free silicon and germanium. The NHS moiety is hydrolyzed in a pattern-specific manner with a sulfonic acid-modified acrylate stamp to produce chemically distinct patterns of NHS-activated and free carboxylic acids. A significant limitation to the resolution of many μCP techniques is the use of PDMS material which lacks the mechanical rigidity necessary for high fidelity transfer. To alleviate this limitation we utilized a polyurethane acrylate polymer, a relatively rigid material that can be easily functionalized with different organic moieties. Our patterning approach completely protects both silicon and germanium from chemical oxidation, provides precise control over the shape and size of the patterned features, and gives ready access to chemically discriminated patterns that can be further functionalized with both organic and biological molecules. The approach is general and applicable to other technologically-relevant surfaces.

  17. Influence of calcium and silicon supplementation into Pleurotus ostreatus substrates on quality of fresh and canned mushrooms.

    PubMed

    Thongsook, T; Kongbangkerd, T

    2011-08-01

    Supplements of gypsum (calcium source), pumice (silicon source) and pumice sulfate (silicon and calcium source) into substrates for oyster mushrooms (Pleurotus ostreatus) were searched for their effects on production as well as qualities of fresh and canned mushrooms. The addition of pumice up to 30% had no effect on total yield, size distribution and cap diameters. The supplementation of gypsum at 10% decreased the total yield; and although gypsum at 5% did not affect total yield, the treatment increased the proportion of large-sized caps. High content (>10%) of pumice sulfate resulted in the lower yield. Calcium and silicon contents in the fruit bodies were not influenced by supplementations. The centrifugal drip loss values and solid content of fresh mushrooms, and the percentage of weight gained and firmness of canned mushrooms, cultivated in substrates supplemented with gypsum, pumice and pumice sulfate were significantly (p≤0.05) higher than those of the control. Scanning electron micrographs revealed the more compacted hyphae of mushroom stalks supplemented with silicon and/or calcium after heat treatment, compared to the control. Supplementation of P. ostreatus substrates with 20% pumice was the most practical treatment because it showed no effect on yield and the most cost-effective.

  18. Organic electronics with polymer dielectrics on plastic substrates fabricated via transfer printing

    NASA Astrophysics Data System (ADS)

    Hines, Daniel R.

    Printing methods are fast becoming important processing techniques for the fabrication of flexible electronics. Some goals for flexible electronics are to produce cheap, lightweight, disposable radio frequency identification (RFID) tags, very large flexible displays that can be produced in a roll-to-roll process and wearable electronics for both the clothing and medical industries. Such applications will require fabrication processes for the assembly of dissimilar materials onto a common substrate in ways that are compatible with organic and polymeric materials as well as traditional solid-state electronic materials. A transfer printing method has been developed with these goals and application in mind. This printing method relies primarily on differential adhesion where no chemical processing is performed on the device substrate. It is compatible with a wide variety of materials with each component printed in exactly the same way, thus avoiding any mixed processing steps on the device substrate. The adhesion requirements of one material printed onto a second are studied by measuring the surface energy of both materials and by surface treatments such as plasma exposure or the application of self-assembled monolayers (SAM). Transfer printing has been developed within the context of fabricating organic electronics onto plastic substrates because these materials introduce unique opportunities associated with processing conditions not typically required for traditional semiconducting materials. Compared to silicon, organic semiconductors are soft materials that require low temperature processing and are extremely sensitive to chemical processing and environmental contamination. The transfer printing process has been developed for the important and commonly used organic semiconducting materials, pentacene (Pn) and poly(3-hexylthiophene) (P3HT). A three-step printing process has been developed by which these materials are printed onto an electrode subassembly consisting of previously printed electrodes separated by a polymer dielectric layer all on a plastic substrate. These bottom contact, flexible organic thin-film transistors (OTFT) have been compared to unprinted (reference) devices consisting of top contact electrodes and a silicon dioxide dielectric layer on a silicon substrate. Printed Pn and P3HT TFTs have been shown to out-perform the reference devices. This enhancement has been attributed to an annealing under pressure of the organic semiconducting material.

  19. Oxygen ion-beam microlithography

    DOEpatents

    Tsuo, Y.S.

    1991-08-20

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used. 5 figures.

  20. Oxygen ion-beam microlithography

    DOEpatents

    Tsuo, Y. Simon

    1991-01-01

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used.

  1. Silicon nitride protective coatings for silvered glass mirrors

    DOEpatents

    Tracy, C. Edwin; Benson, David K.

    1988-01-01

    A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate before metal deposition to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors.

  2. Silicon nitride protective coatings for silvered glass mirrors

    DOEpatents

    Tracy, C.E.; Benson, D.K.

    1984-07-20

    A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate prior to metal deposition thereon to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors.

  3. Study of thickness and uniformity of oxide passivation with DI-O3 on silicon substrate for electronic and photonic applications

    NASA Astrophysics Data System (ADS)

    Sharma, Mamta; Hazra, Purnima; Singh, Satyendra Kumar

    2018-05-01

    Since the beginning of semiconductor fabrication technology evolution, clean and passivated substrate surface is one of the prime requirements for fabrication of Electronic and optoelectronic device fabrication. However, as the scale of silicon circuits and device architectures are continuously decreased from micrometer to nanometer (from VLSI to ULSI technology), the cleaning methods to achieve better wafer surface qualities has raised research interests. The development of controlled and uniform silicon dioxide is the most effective and reliable way to achieve better wafer surface quality for fabrication of electronic devices. On the other hand, in order to meet the requirement of high environment safety/regulatory standards, the innovation of cleaning technology is also in demand. The controlled silicon dioxide layer formed by oxidant de-ionized ozonated water has better uniformity. As the uniformity of the controlled silicon dioxide layer is improved on the substrate, it enhances the performance of the devices. We can increase the thickness of oxide layer, by increasing the ozone time treatment. We reported first time to measurement of thickness of controlled silicon dioxide layer and obtained the uniform layer for same ozone time.

  4. Laser generation in microdisc resonators with InAs/GaAs quantum dots transferred on a silicon substrate

    NASA Astrophysics Data System (ADS)

    Nadtochiy, A. M.; Kryzhanovskaya, N. V.; Maximov, M. V.; Zhukov, A. E.; Moiseev, E. I.; Kulagina, M. M.; Vashanova, K. A.; Zadiranov, Yu. M.; Mukhin, I. S.; Arakcheeva, E. M.; Livshits, D.; Lipovskii, A. A.

    2013-09-01

    Microdisc resonators based on InAs/GaAs quantum dots separated from a GaAs substrate by selective etching and fixed to a silicon substrate by epoxy glue are studied using luminescence spectroscopy. A disc resonator 6 μm in diameter exhibits quasi-single-mode laser generation at a temperature of 78 K with a threshold power of 320 μW and λ/Δλ ˜ 27000.

  5. Silicon-on-ceramic process: Silicon sheet growth and device development for the large-area silicon sheet task of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Whitehead, A. B.; Zook, J. D.; Grung, B. L.; Heaps, J. D.; Schmit, F.; Schuldt, S. B.; Chapman, P. W.

    1981-01-01

    The technical feasibility of producing solar cell quality sheet silicon to meet the DOE 1986 cost goal of 70 cents/watt was investigated. The silicon on ceramic approach is to coat a low cost ceramic substrate with large grain polycrystalline silicon by unidirectional solidification of molten silicon. Results and accomplishments are summarized.

  6. Fabrication of terahertz metamaterials using electrohydrodynamic jet printing for sensitive detection of yeast

    NASA Astrophysics Data System (ADS)

    Pradhipta Tenggara, Ayodya; Park, S. J.; Teguh Yudistira, Hadi; Ahn, Y. H.; Byun, Doyoung

    2017-03-01

    We demonstrated the fabrication of terahertz metamaterial sensor for the accurate and on-site detection of yeast using electrohydrodynamic jet printing, which is inexpensive, simple, and environmentally friendly. The very small sized pattern up to 5 µm-width of electrical split ring resonator unit structures could be printed on a large area on both a rigid substrate and flexible substrate, i.e. silicon wafer and polyimide film using the drop on demand technique to eject liquid ink containing silver nanoparticles. Experimental characterization and simulation were performed to study their performances in detecting yeast of different weights. It was shown that the metamaterial sensor fabricated on a flexible polyimide film had higher sensitivity by more than six times than the metamaterial sensor fabricated on a silicon wafer, due to the low refractive index of the PI substrate and due to the extremely thin substrate thickness which lowers the effective index further. The resonance frequency shift saturated when the yeast weights were 145 µg and 215 µg for metamaterial structures with gap size 6.5 µm fabricated on the silicon substrate and on the polyimide substrate, respectively.

  7. Preparation of Mica and Silicon Substrates for DNA Origami Analysis and Experimentation

    PubMed Central

    Pillers, Michelle A.; Shute, Rebecca; Farchone, Adam; Linder, Keenan P.; Doerfler, Rose; Gavin, Corey; Goss, Valerie; Lieberman, Marya

    2015-01-01

    The designed nature and controlled, one-pot synthesis of DNA origami provides exciting opportunities in many fields, particularly nanoelectronics. Many of these applications require interaction with and adhesion of DNA nanostructures to a substrate. Due to its atomically flat and easily cleaned nature, mica has been the substrate of choice for DNA origami experiments. However, the practical applications of mica are relatively limited compared to those of semiconductor substrates. For this reason, a straightforward, stable, and repeatable process for DNA origami adhesion on derivatized silicon oxide is presented here. To promote the adhesion of DNA nanostructures to silicon oxide surface, a self-assembled monolayer of 3-aminopropyltriethoxysilane (APTES) is deposited from an aqueous solution that is compatible with many photoresists. The substrate must be cleaned of all organic and metal contaminants using Radio Corporation of America (RCA) cleaning processes and the native oxide layer must be etched to ensure a flat, functionalizable surface. Cleanrooms are equipped with facilities for silicon cleaning, however many components of DNA origami buffers and solutions are often not allowed in them due to contamination concerns. This manuscript describes the set-up and protocol for in-lab, small-scale silicon cleaning for researchers who do not have access to a cleanroom or would like to incorporate processes that could cause contamination of a cleanroom CMOS clean bench. Additionally, variables for regulating coverage are discussed and how to recognize and avoid common sample preparation problems is described. PMID:26274888

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yu; School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430073; Guo, Zhiguang, E-mail: zguo@licp.cas.cn

    Graphical abstract: A double-metal-assisted chemical etching method is employed to fabricate superhydrophobic surfaces, showing a good superhydrophobicity with the contact angle of about 170°, and the sliding angle of about 0°. Meanwhile, the potential formation mechanism about it is also presented. Highlights: ► A double-metal-assisted chemical etching method is employed to fabricate superhydrophobic surfaces. ► The obtained surfaces show good superhydrophobicity with a high contact angle and low sliding angle. ► The color of the etched substrate dark brown or black and it is so-called black silicon. -- Abstract: Silicon substrates treated by metal-assisted chemical etching have been studied formore » many years since they could be employed in a variety of electronic and optical devices such as integrated circuits, photovoltaics, sensors and detectors. However, to the best of our knowledge, the chemical etching treatment on the same silicon substrate with the assistance of two or more kinds of metals has not been reported. In this paper, we mainly focus on the etching time and finally obtain a series of superhydrophobic silicon surfaces with novel etching structures through two successive etching processes of Cu-assisted and Ag-assisted chemical etching. It is shown that large-scale homogeneous but locally irregular wire-like structures are obtained, and the superhydrophobic surfaces with low hysteresis are prepared after the modifications with low surface energy materials. It is worth noting that the final silicon substrates not only possess high static contact angle and low hysteresis angle, but also show a black color, indicating that the superhydrophobic silicon substrate has an extremely low reflectance in a certain range of wavelengths. In our future work, we will go a step further to discuss the effect of temperature, the size of Cu nanoparticles and solution concentration on the final topography and superhydrophobicity.« less

  9. Formation and Migration Energies of Interstitials in Silicon Under Strain Conditions

    NASA Technical Reports Server (NTRS)

    Halicioglu, Timur; Barnett, David M.

    1999-01-01

    Simulation calculations are conducted for Si substrates to analyze formation and diffusion energies of interstitials under strain condition using statics methods .based on a Stillinger-Weber type potential function. Defects in the vicinity of the surface region and in the bulk are examined, and the role played by compressive and tensile strains on the energetics of interstitials is investigated. Results indicate that strain alters defect energetics which, in turn, modifies their diffusion characteristics.

  10. High performance and reusable SERS substrates using Ag/ZnO heterostructure on periodic silicon nanotube substrate

    NASA Astrophysics Data System (ADS)

    Lai, Yi-Chen; Ho, Hsin-Chia; Shih, Bo-Wei; Tsai, Feng-Yu; Hsueh, Chun-Hway

    2018-05-01

    Surface-enhanced Raman scattering (SERS) substrate with a higher surface area, enhanced light harvesting, multiple hot spots and strong electromagnetic field enhancements would exhibit enhanced Raman signals. Herein, the Ag nanoparticle/ZnO nanowire heterostructure decorated periodic silicon nanotube (Ag@ZnO@SiNT) substrate was proposed and fabricated. The proposed structure employed as SERS-active substrate was examined, and the results showed both the high performance in terms of high sensitivity and good reproducibility. Furthermore, the Ag@ZnO@SiNT substrate demonstrated the self-cleaning performance through the photocatalytic degradation of probed molecules upon UV-irradiation. The results showed that the proposed nanostructure had high performance, good reproducibility and reusability, and it is a promising SERS-active substrate for molecular sensing and cleaning.

  11. Scalable and durable polymeric icephobic and hydrate-phobic coatings.

    PubMed

    Sojoudi, Hossein; Arabnejad, Hadi; Raiyan, Asif; Shirazi, Siamack A; McKinley, Gareth H; Gleason, Karen K

    2018-05-09

    Ice formation and accumulation on surfaces can result in severe problems for solar photovoltaic installations, offshore oil platforms, wind turbines and aircrafts. In addition, blockage of pipelines by formation and accumulation of clathrate hydrates of natural gases has safety and economical concerns in oil and gas operations, particularly at high pressures and low temperatures such as those found in subsea or arctic environments. Practical adoption of icephobic/hydrate-phobic surfaces requires mechanical robustness and stability under harsh environments. Here, we develop durable and mechanically robust bilayer poly-divinylbenzene (pDVB)/poly-perfluorodecylacrylate (pPFDA) coatings using initiated chemical vapor deposition (iCVD) to reduce the adhesion strength of ice/hydrates to underlying substrates (silicon and steel). Utilizing a highly-cross-linked polymer (pDVB) underneath a very thin veneer of fluorine-rich polymer (pPFDA) we have designed inherently rough bilayer polymer films that can be deposited on rough steel substrates resulting in surfaces which exhibit a receding water contact angle (WCA) higher than 150° and WCA hysteresis as low as 4°. Optical profilometer measurements were performed on the films and root mean square (RMS) roughness values of Rq = 178.0 ± 17.5 nm and Rq = 312.7 ± 23.5 nm were obtained on silicon and steel substrates, respectively. When steel surfaces are coated with these smooth hard iCVD bilayer polymer films, the strength of ice adhesion is reduced from 1010 ± 95 kPa to 180 ± 85 kPa. The adhesion strength of the cyclopentane (CyC5) hydrate is also reduced from 220 ± 45 kPa on rough steel substrates to 34 ± 12 kPa on the polymer-coated steel substrates. The durability of these bilayer polymer coated icephobic and hydrate-phobic substrates is confirmed by sand erosion tests and examination of multiple ice/hydrate adhesion/de-adhesion cycles.

  12. Physical and biological evaluations of sintered hydroxyapatite/silicone composite with covalent bonding for a percutaneous implant material.

    PubMed

    Furuzono, Tsutomu; Wang, Pao-Li; Korematsu, Arata; Miyazaki, Kozo; Oido-Mori, Mari; Kowashi, Yusuke; Ohura, Kiyoshi; Tanaka, Junzo; Kishida, Akio

    2003-05-15

    A composite (HA/silicone) of hydroxyapatite (HA) microparticles with an average diameter of 2.0 micro m covalently linked to a silicone substrate has been developed, and its physical and biological properties as a percutaneous soft-tissue-compatible material have been evaluated. In tensile property measurement, samples of HA/silicone and the original silicone were similar in tensile strength, ca. 7.8 MPa, and elongation at break, ca. 570%. It was found that chemical surface modification with HA particles presented no mechanical disadvantage. In an adhesive-tape peeling test, scanning electron microscopic (SEM) observation showed that HA particles coupled directly to the substrate were not removed. HA particles may bond strongly with the substrate. In human periodontal ligament fibroblast attachment and proliferation experiments, the number of cells attached to HA/silicone was 14 times greater than that attached to the original silicone after 24 h of incubation. The value on HA/silicone was ca. 80% versus that on a tissue-culture plastic used as a positive control. After 72 h of incubation, the number of cells grown on HA/silicone increased to the level of the positive control. In observation of fluorescence microscopy stained by Hoechst 33342, cells appeared to tightly adhere to HA particles coupled to the silicone sheet due to intact nuclear morphology. Observation of cells by fluorescence dye with rhodamin phalloidin showed an extensive F-actin cytoskeleton on HA/silicone. In a 4-week animal implant test, force required to pull out the HA/silicone sheet was 15 times that of the original silicone. HA-particle coating on silicone with covalent linkage gave the inert surface bioactivity. The HA composite thus effectively prevents germ infection percutaneously. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 65B: 217-226, 2003

  13. Method of Forming Textured Silicon Substrate by Maskless Cryogenic Etching

    NASA Technical Reports Server (NTRS)

    Yee, Karl Y. (Inventor); Homyk, Andrew P. (Inventor)

    2014-01-01

    Disclosed herein is a textured substrate comprising a base comprising silicon, the base having a plurality of needle like structures depending away from the base, wherein at least one of the needle like structures has a depth of greater than or equal to about 50 micrometers determined perpendicular to the base, and wherein at least one of the needle like structures has a width of less than or equal to about 50 micrometers determined parallel to the base. An anode and a lithium ion battery comprising the textured substrate, and a method of producing the textured substrate are also disclosed.

  14. A sub-atmospheric chemical vapor deposition process for deposition of oxide liner in high aspect ratio through silicon vias.

    PubMed

    Lisker, Marco; Marschmeyer, Steffen; Kaynak, Mehmet; Tekin, Ibrahim

    2011-09-01

    The formation of a Through Silicon Via (TSV) includes a deep Si trench etching and the formation of an insulating layer along the high-aspect-ratio trench and the filling of a conductive material into the via hole. The isolation of the filling conductor from the silicon substrate becomes more important for higher frequencies due to the high coupling of the signal to the silicon. The importance of the oxide thickness on the via wall isolation can be verified using electromagnetic field simulators. To satisfy the needs on the Silicon dioxide deposition, a sub-atmospheric chemical vapor deposition (SA-CVD) process has been developed to deposit an isolation oxide to the walls of deep silicon trenches. The technique provides excellent step coverage of the 100 microm depth silicon trenches with the high aspect ratio of 20 and more. The developed technique allows covering the deep silicon trenches by oxide and makes the high isolation of TSVs from silicon substrate feasible which is the key factor for the performance of TSVs for mm-wave 3D packaging.

  15. Hybrid solar cell based on a-Si/polymer flat heterojunction on flexible substrates

    NASA Astrophysics Data System (ADS)

    Olivares Vargas, A. J.; Mansurova, S.; Cosme, I.; Kosarev, A.; Ospina Ocampo, C. A.; Martinez Mateo, H. E.

    2017-08-01

    In this work, we present the results of investigation of thin film hybrid organic-inorganic photovoltaic structures based on flat heterojunction hydrogenated silicon (a-Si:H) and poly(3,4 ethylene dioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) fabricated on polyethylene naphthalate (PEN). Different thicknesses of transparent AL doped Zn:O (AZO) electrodes have been tested on PEN substrate and studied by atomic force microscopy (AFM). The AZO films on PEN substrate were statistically processed to obtain surface morphological characteristics, such as root mean square roughness RQ, skewness SK and kurtosis KU. Performance characteristics of fabricated photovoltaic structures have been measured and analyzed for different thicknesses of the transparent electrodes under standard illumination (AM 1.5 I0= 100mW/cm2). Structures on flexible substrates show reproducible performance characteristic as their glass substrate counterpart with values of JSC= 6 mA/cm2, VOC= 0.535 V, FF= 43 % and PCE= 1.41%.

  16. Light-induced V{sub oc} increase and decrease in high-efficiency amorphous silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuckelberger, M., E-mail: michael.stuckelberger@epfl.ch; Riesen, Y.; Despeisse, M.

    High-efficiency amorphous silicon (a-Si:H) solar cells were deposited with different thicknesses of the p-type amorphous silicon carbide layer on substrates of varying roughness. We observed a light-induced open-circuit voltage (V{sub oc}) increase upon light soaking for thin p-layers, but a decrease for thick p-layers. Further, the V{sub oc} increase is enhanced with increasing substrate roughness. After correction of the p-layer thickness for the increased surface area of rough substrates, we can exclude varying the effective p-layer thickness as the cause of the substrate roughness dependence. Instead, we explain the observations by an increase of the dangling-bond density in both themore » p-layer—causing a V{sub oc} increase—and in the intrinsic absorber layer, causing a V{sub oc} decrease. We present a mechanism for the light-induced increase and decrease, justified by the investigation of light-induced changes of the p-layer and supported by Advanced Semiconductor Analysis simulation. We conclude that a shift of the electron quasi-Fermi level towards the conduction band is the reason for the observed V{sub oc} enhancements, and poor amorphous silicon quality on rough substrates enhances this effect.« less

  17. Silicon-slurry/aluminide coating. [protecting gas turbine engine vanes and blades

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Young, S. G. (Inventor)

    1983-01-01

    A low cost coating protects metallic base system substrates from high temperatures, high gas velocity ovidation, thermal fatigue and hot corrosion and is particularly useful fo protecting vanes and blades in aircraft and land based gas turbine engines. A lacquer slurry comprising cellulose nitrate containing high purity silicon powder is sprayed onto the superalloy substrates. The silicon layer is then aluminized to complete the coating. The Si-Al coating is less costly to produce than advanced aluminides and protects the substrates from oxidation and thermal fatigue for a much longer period of time than the conventional aluminide coatings. While more expensive Pt-Al coatings and physical vapor deposited MCrAlY coatings may last longer or provide equal protection on certain substrates, the Si-Al coating exceeded the performance of both types of coatings on certain superalloys in high gas velocity oxidation and thermal fatigue and increased the resistance of certain superalloys to hot corrosion.

  18. Experimental study of optical and electrical properties of ZnO nano composites electrodeposited on n-porous silicon substrate for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Selmane, Naceur; Cheknane, Ali; Gabouze, Nourddine; Maloufi, Nabila; Aillerie, Michel

    2017-11-01

    ZnO films deposited on silicon porous substrates (PS) were prepared by electro-deposition anodization on n type (100) silicon wafer. This ZnO/PS structure combines substrates having specific structural and optical properties (IR emission), with nano-composites of ZnO potentially interesting due to their functional properties (UV emission) to be integrated as constitutive elements of devices in various optoelectronic applications mainly in blue light emitters. With this combined structure, the blue shift in the PL peak is possible and easy to obtain (467nm). The vibration modes of PS and ZnO films on PS substrates (ZnO /PS) were investigated by infrared (FTIR) measurements and their behaviors were analyzed and discussed by considering the structural properties characterized by X-ray diffraction (DRX) and scanning electronic microscopy (MEB).

  19. Photo-electronic current transport in back-gated graphene transistor

    NASA Astrophysics Data System (ADS)

    Srivastava, Ashok; Chen, Xinlu; Pradhan, Aswini K.

    2017-04-01

    In this work, we have studied photo-electronic current transport in a back-gated graphene field-effect transistor. Under the light illumination, band bending at the metal/graphene interface develops a built-in potential which generates photonic current at varying back-gate biases. A typical MOSFET type back-gated transistor structure uses a monolayer graphene as the channel layer formed over the silicon dioxide/silicon substrate. It is shown that the photo-electronic current consists of current contributions from photovoltaic, photo-thermoelectric and photo-bolometric effects. A maximum external responsivity close to 0.0009A/W is achieved at 30μW laser power source and 633nm wavelength.

  20. New generation of plasma-sprayed mullite coatings on silicon carbide

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.; Miller, Robert A.; Jacobson, Nathan S.

    1995-01-01

    Mullite is promising as a protective coating for silicon-based ceramics in aggressive high-temperature environments. Conventionally plasma-sprayed mullite on SiC tends to crack and debond on thermal cycling. It is shown that this behavior is due to the presence of amorphous mullite in the conventionally sprayed mullite. Heating the SiC substrate during the plasma spraying eliminated the amorphous phase and produced coatings with dramatically improved properties. The new coating exhibits excellent adherence and crack resistance under thermal cycling between room temperature and 1000 to 1400 C. Preliminary tests showed good resistance to Na2CO3-induced hot corrosion.

  1. Effects of macro- versus nanoporous silicon substrates on human aortic endothelial cell behavior

    PubMed Central

    2014-01-01

    Human aortic endothelial cells play a key role in the pathogenesis of atherosclerosis, which is a common, progressive, and multifactorial disease that is the clinical endpoint of an inflammatory process and endothelial dysfunction. Study and development of new therapies against cardiovascular disease must be tested in vitro cell models, prior to be evaluated in vivo. To this aim, new cell culture platforms are developed that allow cells to grow and respond to their environment in a realistic manner. In this work, the cell adhesion and morphology of endothelial cells are investigated on functionalized porous silicon substrates with two different pore size configurations: macroporous and nanoporous silicon. Herein, we modified the surfaces of porous silicon substrates by aminopropyl triethoxysilane, and we studied how different pore geometries induced different cellular response in the cell morphology and adhesion. The cell growth over the surface of porous silicon becomes an attractive field, especially for medical applications. Surface properties of the biomaterial are associated with cell adhesion and as well as, with proliferation, migration and differentiation. PMID:25246859

  2. Performance study of double SOI image sensors

    NASA Astrophysics Data System (ADS)

    Miyoshi, T.; Arai, Y.; Fujita, Y.; Hamasaki, R.; Hara, K.; Ikegami, Y.; Kurachi, I.; Nishimura, R.; Ono, S.; Tauchi, K.; Tsuboyama, T.; Yamada, M.

    2018-02-01

    Double silicon-on-insulator (DSOI) sensors composed of two thin silicon layers and one thick silicon layer have been developed since 2011. The thick substrate consists of high resistivity silicon with p-n junctions while the thin layers are used as SOI-CMOS circuitry and as shielding to reduce the back-gate effect and crosstalk between the sensor and the circuitry. In 2014, a high-resolution integration-type pixel sensor, INTPIX8, was developed based on the DSOI concept. This device is fabricated using a Czochralski p-type (Cz-p) substrate in contrast to a single SOI (SSOI) device having a single thin silicon layer and a Float Zone p-type (FZ-p) substrate. In the present work, X-ray spectra of both DSOI and SSOI sensors were obtained using an Am-241 radiation source at four gain settings. The gain of the DSOI sensor was found to be approximately three times that of the SSOI device because the coupling capacitance is reduced by the DSOI structure. An X-ray imaging demonstration was also performed and high spatial resolution X-ray images were obtained.

  3. An all-diamond X-ray position and flux monitor using nitrogen-incorporated ultra-nanocrystalline diamond contacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Mengnan; Gaowei, Mengjia; Zhou, Tianyi

    Diamond X-ray detectors with conducting nitrogen-incorporated ultra-nanocrystalline diamond (N-UNCD) films as electrodes were fabricated to measure X-ray beam flux and position. Structural characterization and functionality tests were performed for these devices. The N-UNCD films grown on unseeded diamond substrates were compared with N-UNCD films grown on a seeded silicon substrate. The feasibility of the N-UNCD films acting as electrodes for X-ray detectors was confirmed by the stable performance in a monochromatic X-ray beam. The fabrication process is able to change the surface status which may influence the signal uniformity under low bias, but this effect can be neglected under fullmore » collection bias.« less

  4. Sol-gel modification of wood substrates to retard weathering

    Treesearch

    Mandla A Tshabalala; Sam Williams

    2008-01-01

    Wood specimens were treated with sol-gel systems based on metalorganic precursors of silicon (Si), iron (Fe), zirconium (Zr), and titanium (Ti). The effect of these sol-gel systems on weathering properties of wood was investigated. These sol-gel systems were found to have a positive effect on surface color stability and water vapor resistance of the specimens. Under...

  5. Controlled growth of periodically aligned copper-silicide nanocrystal arrays on silicon directed by laser-induced periodic surface structures (LIPSS)

    NASA Astrophysics Data System (ADS)

    Nürnberger, Philipp; Reinhardt, Hendrik M.; Rhinow, Daniel; Riedel, René; Werner, Simon; Hampp, Norbert A.

    2017-10-01

    In this paper we introduce a versatile tool for the controlled growth and alignment of copper-silicide nanocrystals. The method takes advantage of a unique self-organization phenomenon denoted as laser-induced periodic surface structures (LIPSS). Copper films (3 ± 0.2 nm) are sputter-deposited onto single crystal silicon (100) substrates with a thin oxide layer (4 ± 0.2 nm), and subsequently exposed to linearly polarized nanosecond laser pulses (τ ≈ 6 ns) at a central wavelength of 532 nm. The irradiation triggers dewetting of the Cu film and simultaneous formation of periodic Cu nanowires (LIPSS), which partially penetrate the oxide layer to the Si substrate. These LIPSS act as nucleation centers for the growth of Cu-Si crystals during thermal processing at 500 °C under forming gas 95/5 atmosphere. Exemplified by our model system Cu/SiO2/Si, LIPSS are demonstrated to facilitate the diffusion reaction between Cu and underlying Si. Moreover, adjustment of the laser polarization allows us to precisely control the nanocrystal alignment with respect to the LIPSS orientation. Potential applications and conceivable alternatives of this process are discussed.

  6. Screening method for selecting semiconductor substrates having defects below a predetermined level in an oxide layer

    DOEpatents

    Warren, W.L.; Vanheusden, K.J.R.; Schwank, J.R.; Fleetwood, D.M.; Shaneyfelt, M.R.; Winokur, P.S.; Devine, R.A.B.

    1998-07-28

    A method is disclosed for screening or qualifying semiconductor substrates for integrated circuit fabrication. The method comprises the steps of annealing at least one semiconductor substrate at a first temperature in a defect-activating ambient (e.g. hydrogen, forming gas, or ammonia) for sufficient time for activating any defects within on oxide layer of the substrate; measuring a defect-revealing electrical characteristic of at least a portion of the oxide layer for determining a quantity of activated defects therein; and selecting substrates for which the quantity of activated defects is below a predetermined level. The defect-revealing electrical characteristic may be a capacitance-versus voltage (C-V) characteristic or a current-versus-voltage (I-V) characteristic that is dependent on an electrical charge in the oxide layer generated by the activated defects. Embodiments of the present invention may be applied for screening any type of semiconductor substrate or wafer having an oxide layer formed thereon or therein. This includes silicon-on-insulator substrates formed by a separation by the implantation of oxygen (SIMOX) process or the bond and etch back silicon-on-insulator (BESOI) process, as well as silicon substrates having a thermal oxide layer or a deposited oxide layer. 5 figs.

  7. EPITAXIAL GROWTH OF SILICON

    DTIC Science & Technology

    Epitaxial growth of silicon on a silicon substrate by hydrogen reduction of SiCl4 was investigated. The chemical and physical processes involved in...silicon layers were produced at temperatures between 1100 and 1300 C. The effects of the concentration of SiCl4 in H2, the flow rate of the gas, the

  8. Fast assembling microarrays of superparamagnetic Fe3O4@Au nanoparticle clusters as reproducible substrates for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Ye, Min; Wei, Zewen; Hu, Fei; Wang, Jianxin; Ge, Guanglu; Hu, Zhiyuan; Shao, Mingwang; Lee, Shuit-Tong; Liu, Jian

    2015-08-01

    It is currently a very active research area to develop new types of substrates which integrate various nanomaterials for surface-enhanced Raman scattering (SERS) techniques. Here we report a unique approach to prepare SERS substrates with reproducible performance. It features silicon mold-assisted magnetic assembling of superparamagnetic Fe3O4@Au nanoparticle clusters (NCs) into arrayed microstructures on a wafer scale. This approach enables the fabrication of both silicon-based and hydrogel-based substrates in a sequential manner. We have demonstrated that strong SERS signals can be harvested from these substrates due to an efficient coupling effect between Fe3O4@Au NCs, with enhancement factors >106. These substrates have been confirmed to provide reproducible SERS signals, with low variations in different locations or batches of samples. We investigate the spatial distributions of electromagnetic field enhancement around Fe3O4@Au NCs assemblies using finite-difference-time-domain (FDTD) simulations. The procedure to prepare the substrates is straightforward and fast. The silicon mold can be easily cleaned out and refilled with Fe3O4@Au NCs assisted by a magnet, therefore being re-useable for many cycles. Our approach has integrated microarray technologies and provided a platform for thousands of independently addressable SERS detection, in order to meet the requirements of a rapid, robust, and high throughput performance.It is currently a very active research area to develop new types of substrates which integrate various nanomaterials for surface-enhanced Raman scattering (SERS) techniques. Here we report a unique approach to prepare SERS substrates with reproducible performance. It features silicon mold-assisted magnetic assembling of superparamagnetic Fe3O4@Au nanoparticle clusters (NCs) into arrayed microstructures on a wafer scale. This approach enables the fabrication of both silicon-based and hydrogel-based substrates in a sequential manner. We have demonstrated that strong SERS signals can be harvested from these substrates due to an efficient coupling effect between Fe3O4@Au NCs, with enhancement factors >106. These substrates have been confirmed to provide reproducible SERS signals, with low variations in different locations or batches of samples. We investigate the spatial distributions of electromagnetic field enhancement around Fe3O4@Au NCs assemblies using finite-difference-time-domain (FDTD) simulations. The procedure to prepare the substrates is straightforward and fast. The silicon mold can be easily cleaned out and refilled with Fe3O4@Au NCs assisted by a magnet, therefore being re-useable for many cycles. Our approach has integrated microarray technologies and provided a platform for thousands of independently addressable SERS detection, in order to meet the requirements of a rapid, robust, and high throughput performance. Electronic supplementary information (ESI) available: XRD, reflection spectra, zeta potential, TEM images, evaluations of reproducibility, EDS, tables of EF and RSD values of different substrates. See DOI: 10.1039/c5nr02491a

  9. Titanium disilicide formation by sputtering of titanium on heated silicon substrate

    NASA Astrophysics Data System (ADS)

    Tanielian, M.; Blackstone, S.

    1984-09-01

    We have sputter deposited titanium on bare silicon substrates at elevated temperatures. We find that at a substrate temperature of about 515 °C titanium silicide is formed due to the reaction of the titanium with the Si. The resistivity of the silicide is about 15 μΩ cm and it is not etchable in a selective titanium etch. This process can have applications in low-temperature, metal-oxide-semiconductor self-aligned silicide formation for very large scale integrated

  10. Thin film photovoltaic device with multilayer substrate

    DOEpatents

    Catalano, Anthony W.; Bhushan, Manjul

    1984-01-01

    A thin film photovoltaic device which utilizes at least one compound semiconductor layer chosen from Groups IIB and VA of the Periodic Table is formed on a multilayer substrate The substrate includes a lowermost support layer on which all of the other layers of the device are formed. Additionally, an uppermost carbide or silicon layer is adjacent to the semiconductor layer. Below the carbide or silicon layer is a metal layer of high conductivity and expansion coefficient equal to or slightly greater than that of the semiconductor layer.

  11. Imaging antenna array at 119 microns. [for plasma diagnostics

    NASA Technical Reports Server (NTRS)

    Neikirk, N. P.; Tong, P. P.; Putledge, D. B.; Park, H.; Young, P. E.

    1982-01-01

    A focal-plane imaging antenna array has been demonstrated at 119 microns. The array is a line of evaporated silver bow-tie antennas with bismuth microbolometer detectors on a silicon substrate. Radiation is coupled into the array by a lens placed on the back of the substrate. The bolometers are thermally isolated from the silicon substrate with a half-micron layer of polyimide. The array performance is demonstrated by coherent imaging of a series of holes at half the diffraction-limited cut-off frequency.

  12. Surface Control of Actuated Hybrid Space Mirrors

    DTIC Science & Technology

    2010-10-01

    precision Nanolaminate foil facesheet and Silicon Carbide ( SiC ) substrate embedded with electroactive ceramic actuators. Wavefront sensors are used to...integrate precision Nanolaminate foil facesheet with Silicon Carbide ( SiC ) substrate equipped with embedded electroactive ceramic actuators...IAC-10.C2.5.8 SURFACE CONTROL OF ACTUATED HYBRID SPACE MIRRORS Brij. N. Agrawal Naval Postgraduate School, Monterey, CA, 93943, agrawal

  13. Sputtered silicon nitride coatings for wear protection

    NASA Technical Reports Server (NTRS)

    Grill, A.; Aron, P. R.

    1982-01-01

    Silicon nitride films were deposited by RF sputtering on 304 stainless steel substrates in a planar RF sputtering apparatus. The sputtering was performed from a Si3N4 target in a sputtering atmosphere of argon and nitrogen. The rate of deposition, the composition of the coatings, the surface microhardness and the adhesion of the coatings to the substrates were investigated as a function of the process parameters, such as: substrate target distance, fraction nitrogen in the sputtering atmosphere and sputtering pressure. Silicon rich coating was obtained for fraction nitrogen below 0.2. The rate of deposition decreases continuously with increasing fraction nitrogen and decreasing sputtering pressure. It was found that the adherence of the coatings improves with decreasing sputtering pressure, almost independently of their composition.

  14. Sensors for ceramic components in advanced propulsion systems

    NASA Technical Reports Server (NTRS)

    Koller, A. C.; Bennethum, W. H.; Burkholder, S. D.; Brackett, R. R.; Harris, J. P.

    1995-01-01

    This report includes: (1) a survey of the current methods for the measurement of surface temperature of ceramic materials suitable for use as hot section flowpath components in aircraft gas turbine engines; (2) analysis and selection of three sensing techniques with potential to extend surface temperature measurement capability beyond current limits; and (3) design, manufacture, and evaluation of the three selected techniques which include the following: platinum rhodium thin film thermocouple on alumina and mullite substrates; doped silicon carbide thin film thermocouple on silicon carbide, silicon nitride, and aluminum nitride substrates; and long and short wavelength radiation pyrometry on the substrates listed above plus yttria stabilized zirconia. Measurement of surface emittance of these materials at elevated temperature was included as part of this effort.

  15. Triple-junction thin-film silicon solar cell fabricated on periodically textured substrate with a stabilized efficiency of 13.6%

    NASA Astrophysics Data System (ADS)

    Sai, Hitoshi; Matsui, Takuya; Koida, Takashi; Matsubara, Koji; Kondo, Michio; Sugiyama, Shuichiro; Katayama, Hirotaka; Takeuchi, Yoshiaki; Yoshida, Isao

    2015-05-01

    We report a high-efficiency triple-junction thin-film silicon solar cell fabricated with the so-called substrate configuration. It was verified whether the design criteria for developing single-junction microcrystalline silicon (μc-Si:H) solar cells are applicable to multijunction solar cells. Furthermore, a notably high short-circuit current density of 32.9 mA/cm2 was achieved in a single-junction μc-Si:H cell fabricated on a periodically textured substrate with a high-mobility front transparent contacting layer. These technologies were also combined into a-Si:H/μc-Si:H/μc-Si:H triple-junction cells, and a world record stabilized efficiency of 13.6% was achieved.

  16. Hard carbon nitride and method for preparing same

    DOEpatents

    Haller, Eugene E.; Cohen, Marvin L.; Hansen, William L.

    1992-01-01

    Novel crystalline .alpha. (silicon nitride-like)-carbon nitride and .beta. (silicon nitride-like)-carbon nitride are formed by sputtering carbon in the presence of a nitrogen atmosphere onto a single crystal germanium or silicon, respectively, substrate.

  17. Competing Classical and Quantum Effects in Shape Relaxation of a Metallic Island

    NASA Technical Reports Server (NTRS)

    Okamoto, Rowland H.; Chen, D.; Yamada, T.

    2002-01-01

    Pb islands grown on a silicon substrate transform at room temperature from the initially flattop facet geometry into an unusual ring, shape with a volume-preserving mass transport process catalysed by the tip electrical field of a scanning tunnelling microscope. The formation of such ring shape morphology results from the competing classical and quantum effects in the shape relaxation. The latter also leads to a sequential regrowth on alternating, strips of the same facet defined by the underlying substrate steps, showing for the first time the dynamical impact of the quantum size effect on the stability of a nanostructure.

  18. Effect of nanoconfinement on the sputter yield in ultrathin polymeric films: Experiments and model

    NASA Astrophysics Data System (ADS)

    Cristaudo, Vanina; Poleunis, Claude; Delcorte, Arnaud

    2018-06-01

    This fundamental contribution on secondary ion mass spectrometry (SIMS) polymer depth-profiling by large argon clusters investigates the dependence of the sputter yield volume (Y) on the thickness (d) of ultrathin films as a function of the substrate nature, i.e. hard vs soft. For this purpose, thin films of polystyrene (PS) oligomers (∼4,000 amu) are spin-coated, respectively, onto silicon and poly (methyl methacrylate) supports and, then, bombarded by 10 keV Ar3000+ ions. The investigated thickness ranges from 15 to 230 nm. Additionally, the influence of the polymer molecular weight on Y(d) for PS thin films on Si is explored. The sputtering efficiency is found to be strongly dependent on the overlayer thickness, only in the case of the silicon substrate. A simple phenomenological model is proposed for the description of the thickness influence on the sputtering yield. Molecular dynamics (MD) simulations conducted on amorphous films of polyethylene-like oligomers of increasing thickness (from 2 to 20 nm), under comparable cluster bombardment conditions, predict a significant increase of the sputtering yield for ultrathin layers on hard substrates, induced by energy confinement in the polymer, and support our phenomenological model.

  19. Integrated Microfluidic Gas Sensors for Water Monitoring

    NASA Technical Reports Server (NTRS)

    Zhu, L.; Sniadecki, N.; DeVoe, D. L.; Beamesderfer, M.; Semancik, S.; DeVoe, D. L.

    2003-01-01

    A silicon-based microhotplate tin oxide (SnO2) gas sensor integrated into a polymer-based microfluidic system for monitoring of contaminants in water systems is presented. This device is designed to sample a water source, control the sample vapor pressure within a microchannel using integrated resistive heaters, and direct the vapor past the integrated gas sensor for analysis. The sensor platform takes advantage of novel technology allowing direct integration of discrete silicon chips into a larger polymer microfluidic substrate, including seamless fluidic and electrical interconnects between the substrate and silicon chip.

  20. Growing Cobalt Silicide Columns In Silicon

    NASA Technical Reports Server (NTRS)

    Fathauer, Obert W.

    1991-01-01

    Codeposition by molecular-beam epitaxy yields variety of structures. Proposed fabrication process produces three-dimensional nanometer-sized structures on silicon wafers. Enables control of dimensions of metal and semiconductor epitaxial layers in three dimensions instead of usual single dimension (perpendicular to the plane of the substrate). Process used to make arrays of highly efficient infrared sensors, high-speed transistors, and quantum wires. For fabrication of electronic devices, both shapes and locations of columns controlled. One possible technique for doing this electron-beam lithography, see "Making Submicron CoSi2 Structures on Silicon Substrates" (NPO-17736).

  1. Enhanced photocatalytic degradation of methylene blue by metal-modified silicon nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brahiti, N., E-mail: dihiabrahiti@yahoo.fr; Université Mouloud MAMMERI de TiziOuzou, Département de Physique, Bastos; Hadjersi, T., E-mail: hadjersi@gmx.com

    2015-02-15

    Highlights: • SiNWs modified with Pd, Au and Pt were used as photocatalysts to degrade MB. • Yield of photodegardation increases with UV irradiation time. • SiNWs modified with Pd nanoparticles show the best photocatalytic activity. • A degradation of 97% was obtained after 200 min of UV irradiation. - Abstract: Silicon nanowires (SiNWs) modified with Au, Pt and Pd nanoparticles were used as heterogeneous photocatalysts for the photodegradation of methylene blue in water under UV light irradiation. The modification of SiNWs was carried out by deposition of metal nanoparticles using the electroless metal deposition (EMD) technique. The effect ofmore » metal nanoparticles deposition time on the photocatalytic activity was studied. It was found that the photocatalytic activity of modified SiNWs was enhanced when the deposition time of metal nanoparticles was increased. In addition of modified SiNWs with Pt, Au and Pd nanoparticles, oxidized silicon substrate (Ox-Si), oxidized silicon nanowires (Ox-SiNWs) and hydrogen-terminated silicon nanowires (H-SiNWs) were also evaluated for the photodegradation of methylene blue.« less

  2. Passivation of InGaAs(001)-(2 × 4) by Self-Limiting Chemical Vapor Deposition of a Silicon Hydride Control Layer.

    PubMed

    Edmonds, Mary; Kent, Tyler; Chagarov, Evgueni; Sardashti, Kasra; Droopad, Ravi; Chang, Mei; Kachian, Jessica; Park, Jun Hong; Kummel, Andrew

    2015-07-08

    A saturated Si-Hx seed layer for gate oxide or contact conductor ALD has been deposited via two separate self-limiting and saturating CVD processes on InGaAs(001)-(2 × 4) at substrate temperatures of 250 and 350 °C. For the first self-limiting process, a single silicon precursor, Si3H8, was dosed at a substrate temperature of 250 °C, and XPS results show the deposited silicon hydride layer saturated at about 4 monolayers of silicon coverage with hydrogen termination. STS results show the surface Fermi level remains unpinned following the deposition of the saturated silicon hydride layer, indicating the InGaAs surface dangling bonds are electrically passivated by Si-Hx. For the second self-limiting process, Si2Cl6 was dosed at a substrate temperature of 350 °C, and XPS results show the deposited silicon chloride layer saturated at about 2.5 monolayers of silicon coverage with chlorine termination. Atomic hydrogen produced by a thermal gas cracker was subsequently dosed at 350 °C to remove the Si-Cl termination by replacing with Si-H termination as confirmed by XPS, and STS results confirm the saturated Si-Hx bilayer leaves the InGaAs(001)-(2 × 4) surface Fermi level unpinned. Density function theory modeling of silicon hydride surface passivation shows an Si-Hx monolayer can remove all the dangling bonds and leave a charge balanced surface on InGaAs.

  3. Directed dewetting of amorphous silicon film by a donut-shaped laser pulse.

    PubMed

    Yoo, Jae-Hyuck; In, Jung Bin; Zheng, Cheng; Sakellari, Ioanna; Raman, Rajesh N; Matthews, Manyalibo J; Elhadj, Selim; Grigoropoulos, Costas P

    2015-04-24

    Irradiation of a thin film with a beam-shaped laser is proposed to achieve site-selectively controlled dewetting of the film into nanoscale structures. As a proof of concept, the laser-directed dewetting of an amorphous silicon thin film on a glass substrate is demonstrated using a donut-shaped laser beam. Upon irradiation of a single laser pulse, the silicon film melts and dewets on the substrate surface. The irradiation with the donut beam induces an unconventional lateral temperature profile in the film, leading to thermocapillary-induced transport of the molten silicon to the center of the beam spot. Upon solidification, the ultrathin amorphous silicon film is transformed to a crystalline silicon nanodome of increased height. This morphological change enables further dimensional reduction of the nanodome as well as removal of the surrounding film material by isotropic silicon etching. These results suggest that laser-based dewetting of thin films can be an effective way for scalable manufacturing of patterned nanostructures.

  4. Ultra-Thin Monocrystalline Silicon Solar Cell with 12.2% Efficiency Using Silicon-On-Insulator Substrate.

    PubMed

    Bian, Jian-Tao; Yu, Jian; Duan, Wei-Yuan; Qiu, Yu

    2015-04-01

    Single side heterojunction silicon solar cells were designed and fabricated using Silicon-On-Insulator (SOI) substrate. The TCAD software was used to simulate the effect of silicon layer thickness, doping concentration and the series resistance. A 10.5 µm thick monocrystalline silicon layer was epitaxially grown on the SOI with boron doping concentration of 2 x 10(16) cm(-3) by thermal CVD. Very high Voc of 678 mV was achieved by applying amorphous silicon heterojunction emitter on the front surface. The single cell efficiency of 12.2% was achieved without any light trapping structures. The rear surface recombination and the series resistance are the main limiting factors for the cell efficiency in addition to the c-Si thickness. By integrating an efficient light trapping scheme and further optimizing fabrication process, higher efficiency of 14.0% is expected for this type of cells. It can be applied to integrated circuits on a monolithic chip to meet the requirements of energy autonomous systems.

  5. Silicon Satellites: Picosats, Nanosats, and Microsats

    NASA Technical Reports Server (NTRS)

    Janson, Siegfried W.

    1995-01-01

    Silicon, the most abundant solid element in the Earth's lithosphere, is a useful material for spacecraft construction. Silicon is stronger than stainless steel, has a thermal conductivity about half that of aluminum, is transparent to much of the infrared radiation spectrum, and can form a stable oxide. These unique properties enable silicon to become most of the mass of a satellite, it can simultaneously function as structure, heat transfer system, radiation shield, optics, and semiconductor substrate. Semiconductor batch-fabrication techniques can produce low-power digital circuits, low-power analog circuits, silicon-based radio frequency circuits, and micro-electromechanical systems (MEMS) such as thrusters and acceleration sensors on silicon substrates. By exploiting these fabrication techniques, it is possible to produce highly-integrated satellites for a number of applications. This paper analyzes the limitations of silicon satellites due to size. Picosatellites (approximately 1 gram mass), nanosatellites (about 1 kg mass), and highly capable microsatellites (about 10 kg mass) can perform various missions with lifetimes of a few days to greater than a decade.

  6. Low-Temperature Growth of Amorphous Silicon Films and Direct Fabrication of Solar Cells on Flexible Polyimide and Photo-Paper Substrates

    NASA Astrophysics Data System (ADS)

    Madaka, Ramakrishna; Kanneboina, Venkanna; Agarwal, Pratima

    2018-05-01

    Direct deposition of hydrogenated amorphous silicon (a-Si:H) thin films and fabrication of solar cells on polyimide (PI) and photo-paper (PP) substrates using a rf-plasma-enhanced chemical vapor deposition technique is reported. Intrinsic amorphous silicon films were deposited on PI and PP substrates by varying the substrate temperature (T s) over 70-150°C to optimize the deposition parameters for best quality films. The films deposited on both PI and PP substrates at a temperature as low as 70°C showed a photosensitivity (σ ph/σ d) of nearly 4 orders of magnitude which increased to 5-6 orders of magnitude when the substrate temperature was increased to 130-150°C. The increase in σ ph/σ d is due to the presence of a few nanometer-sized crystallites embedded in the film. Solar cells (n-i-p) were fabricated directly on PI, PP and Corning 1737 glass (Corning) at 150°C for different thicknesses of an intrinsic amorphous silicon layer (i-layer). With the increase in i-layer thickness from 330 nm to 700 nm, the solar cell efficiency was found to increase from 3.81% to 5.02% on the Corning substrate whereas on the flexible PI substrate an increase from 3.38% to 4.38% was observed. On the other hand, in the case of cells on PP, the i-layer thickness was varied from 200 nm to 700 nm and the best cell efficiency 1.54% was obtained for the 200-nm-thick i-layer. The fabrication of a-Si (n-i-p) solar cells on photo-paper is presented for the first time.

  7. Hexagonal arrays of round-head silicon nanopillars for surface anti-reflection applications

    NASA Astrophysics Data System (ADS)

    Yan, Wensheng; Dottermusch, Stephan; Reitz, Christian; Richards, Bryce S.

    2016-10-01

    We designed and fabricated an anti-reflection surface of hexagonal arrays of round-head silicon nanopillars. The measurements show a significant reduction in reflectivity across a broad spectral range. However, we then grew a conformal titanium dioxide coating via atomic layer deposition to achieve an extremely low weighted average reflection of 2.1% over the 460-1040 nm wavelength range. To understand the underlying reasons for the reduced reflectance, the simulations were conducted and showed that it is due to strong forward scattering of incident light into the silicon substrate. The calculated normalized scattering cross section demonstrates a broadband distribution feature, and the peak has a red-shift to longer wavelengths. Finally, we report two-dimensional weighted average reflectance as a function of both wavelength and angle of incidence and present the resulting analysis contour map.

  8. Effect of the carrier gas flow rate on the microstructure evolution and the generation of the charged nanoparticles during silicon chemical vapor deposition.

    PubMed

    Youn, Woong-Kyu; Kim, Chan-Soo; Hwang, Nong-Moon

    2013-10-01

    The generation of charged nanoparticles in the gas phase has been continually reported in many chemical vapor deposition processes. Charged silicon nanoparticles in the gas phase were measured using a differential mobility analyzer connected to an atmospheric-pressure chemical vapor deposition reactor at various nitrogen carrier gas flow rates (300-1000 standard cubic centimeter per minute) under typical conditions for silicon deposition at the reactor temperature of 900 degrees C. The carrier gas flow rate affected not only the growth behavior of nanostructures but also the number concentration and size distribution of both negatively and positively charged nanoparticles. As the carrier gas flow rate decreased, the growth behavior changed from films to nanowires, which grew without catalytic metal nanoparticles on a quartz substrate.

  9. YBa2Cu307 superconducting microbolometer linear arrays

    NASA Astrophysics Data System (ADS)

    Johnson, Burgess R.; Ohnstein, Thomas R.; Marsh, Holly A.; Dunham, Scott B.; Kruse, Paul W.

    1992-09-01

    Single pixels and linear arrays of microbolometers employing the high-T(subscript c) superconductor YBa(subscript 2)Cu(subscript 3)O(subscript 7) have been fabricated by silicon micromachining techniques. The substrates are 3 in. diameter silicon wafers upon which buffer layers of Si(subscript 3)N(subscript 4) and yttria-stabilized zirconia (YSZ) have been deposited. The YBa(subscript 2)Cu(subscript 3)O(subscript 7) was deposited by ion beam sputtering upon the yttria-stabilized zirconia (YSZ), then photolithographically patterned into serpentines 4 micrometers wide. Anisotropic etching in KOH removed the silicon underlying each pixel, thereby providing the necessary thermal isolation. When operated at 70 degree(s)K with 1 (mu) A dc bias, the D(superscript *) is 7.5 X 10(superscript 8) cm Hz(superscript 1/2)/Watt with a thermal response time of 24 msec.

  10. Investigation of the silicon ion density during molecular beam epitaxy growth

    NASA Astrophysics Data System (ADS)

    Eifler, G.; Kasper, E.; Ashurov, Kh.; Morozov, S.

    2002-05-01

    Ions impinging on a surface during molecular beam epitaxy influence the growth and the properties of the growing layer, for example, suppression of dopant segregation and the generation of crystal defects. The silicon electron gun in the molecular beam epitaxy (MBE) equipment is used as a source for silicon ions. To use the effect of ion bombardment the mechanism of generation and distribution of ions was investigated. A monitoring system was developed and attached at the substrate position in the MBE growth chamber to measure the ion and electron densities towards the substrate. A negative voltage was applied to the substrate to modify the ion energy and density. Furthermore the current caused by charge carriers impinging on the substrate was measured and compared with the results of the monitoring system. The electron and ion densities were measured by varying the emission current of the e-gun achieving silicon growth rates between 0.07 and 0.45 nm/s and by changing the voltage applied to the substrate between 0 to -1000 V. The dependencies of ion and electron densities were shown and discussed within the framework of a simple model. The charged carrier densities measured with the monitoring system enable to separate the ion part of the substrate current and show its correlation to the generation rate. Comparing the ion density on the whole substrate and in the center gives a hint to the ion beam focusing effect. The maximum ion and electron current densities obtained were 0.40 and 0.61 μA/cm2, respectively.

  11. Optical detector having a plurality of matrix layers with cobalt disilicide particles embedded therein

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W. (Inventor); Schowalter, Leo (Inventor)

    1994-01-01

    Silicon and metal are coevaporated onto a silicon substrate in a molecular beam epitaxy system with a larger than stoichiometric amount of silicon so as to epitaxially grow particles of metal silicide embedded in a matrix of single crystal epitaxially grown silicon. The particles interact with incident photons by resonant optical absorption at the surface plasmon resonance frequency. Controlling the substrate temperature and deposition rate and time allows the aspect ratio of the particles to be tailored to desired wavelength photons and polarizations. The plasmon energy may decay as excited charge carriers of phonons, either of which can be monitored to indicate the amount of incident radiation at the selected frequency and polarization.

  12. Deposition of device quality low H content, amorphous silicon films

    DOEpatents

    Mahan, A.H.; Carapella, J.C.; Gallagher, A.C.

    1995-03-14

    A high quality, low hydrogen content, hydrogenated amorphous silicon (a-Si:H) film is deposited by passing a stream of silane gas (SiH{sub 4}) over a high temperature, 2,000 C, tungsten (W) filament in the proximity of a high temperature, 400 C, substrate within a low pressure, 8 mTorr, deposition chamber. The silane gas is decomposed into atomic hydrogen and silicon, which in turn collides preferably not more than 20--30 times before being deposited on the hot substrate. The hydrogenated amorphous silicon films thus produced have only about one atomic percent hydrogen, yet have device quality electrical, chemical, and structural properties, despite this lowered hydrogen content. 7 figs.

  13. Deposition of device quality low H content, amorphous silicon films

    DOEpatents

    Mahan, Archie H.; Carapella, Jeffrey C.; Gallagher, Alan C.

    1995-01-01

    A high quality, low hydrogen content, hydrogenated amorphous silicon (a-Si:H) film is deposited by passing a stream of silane gas (SiH.sub.4) over a high temperature, 2000.degree. C., tungsten (W) filament in the proximity of a high temperature, 400.degree. C., substrate within a low pressure, 8 mTorr, deposition chamber. The silane gas is decomposed into atomic hydrogen and silicon, which in turn collides preferably not more than 20-30 times before being deposited on the hot substrate. The hydrogenated amorphous silicon films thus produced have only about one atomic percent hydrogen, yet have device quality electrical, chemical, and structural properties, despite this lowered hydrogen content.

  14. Nano-Welding of Multi-Walled Carbon Nanotubes on Silicon and Silica Surface by Laser Irradiation.

    PubMed

    Yuan, Yanping; Chen, Jimin

    2016-02-24

    In this study, a continuous fiber laser (1064 nm wavelength, 30 W/cm²) is used to irradiate multi-walled carbon nanotubes (MWCNTs) on different substrate surfaces. Effects of substrates on nano-welding of MWCNTs are investigated by scanning electron microscope (SEM). For MWCNTs on silica, after 3 s irradiation, nanoscale welding with good quality can be achieved due to breaking C-C bonds and formation of new graphene layers. While welding junctions can be formed until 10 s for the MWCNTs on silicon, the difference of irradiation time to achieve welding is attributed to the difference of thermal conductivity for silica and silicon. As the irradiation time is prolonged up to 12.5 s, most of the MWCNTs are welded to a silicon substrate, which leads to their frameworks of tube walls on the silicon surface. This is because the accumulation of absorbed energy makes the temperature rise. Then chemical reactions among silicon, carbon and nitrogen occur. New chemical bonds of Si-N and Si-C achieve the welding between the MWCNTs and silicon. Vibration modes of Si₃N₄ appear at peaks of 363 cm -1 and 663 cm -1 . There are vibration modes of SiC at peaks of 618 cm -1 , 779 cm -1 and 973 cm -1 . The experimental observation proves chemical reactions and the formation of Si₃N₄ and SiC by laser irradiation.

  15. Vacuum arc plasma deposition of thin titanium dioxide films on silicone elastomer as a functional coating for medical applications.

    PubMed

    Boudot, Cécile; Kühn, Marvin; Kühn-Kauffeldt, Marina; Schein, Jochen

    2017-05-01

    Silicone elastomer is a promising material for medical applications and is widely used for implants with blood and tissue contact. However, its strong hydrophobicity limits adhesion of tissue cells to silicone surfaces, which can impair the healing process. To improve the biological properties of silicone, a triggerless pulsed vacuum cathodic arc plasma deposition technique was applied to deposit titanium dioxide (TiO 2 ) films onto the surface. Scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and contact angle measurements were used for coating characterization. Deposited films were about 150nm thick and exhibited good adhesion to the underlying silicone substrate. Surface wettability and roughness both increased after deposition of the TiO 2 layer. In addition, cell-biological investigations demonstrated that the in-vitro cytocompatibility of TiO 2 -coated samples was greatly improved without impacting silicone's nontoxicity. For validation of use in medical devices, further investigations were conducted and demonstrated stability of surface properties in an aqueous environment for a period of 68days and the coating's resistance to several sterilization methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seif, Johannes Peter; Menda, Deneb; Descoeudres, Antoine

    Here, amorphous/crystalline silicon interfaces feature considerably larger valence than conduction band offsets. In this article, we analyze the impact of such band offset asymmetry on the performance of silicon heterojunction solar cells. To this end, we use silicon suboxides as passivation layers -- inserted between substrate and (front or rear) contacts -- since such layers enable intentionally exacerbated band-offset asymmetry. Investigating all topologically possible passivation layer permutations and focussing on light and dark current-voltage characteristics, we confirm that to avoid fill factor losses, wider-bandgap silicon oxide films (of at least several nanometer thin) should be avoided in hole-collecting contacts. Asmore » a consequence, device implementation of such films as window layers -- without degraded carrier collection -- demands electron collection at the front and hole collection at the rear. Furthermore, at elevated operating temperatures, once possible carrier transport barriers are overcome by thermionic (field) emission, the device performance is mainly dictated by the passivation of its surfaces. In this context, compared to the standard amorphous silicon layers, the wide-bandgap oxide layers applied here passivate remarkably better at these temperatures, which may represent an additional benefit under practical operation conditions.« less

  17. Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance

    DOE PAGES

    Seif, Johannes Peter; Menda, Deneb; Descoeudres, Antoine; ...

    2016-08-01

    Here, amorphous/crystalline silicon interfaces feature considerably larger valence than conduction band offsets. In this article, we analyze the impact of such band offset asymmetry on the performance of silicon heterojunction solar cells. To this end, we use silicon suboxides as passivation layers -- inserted between substrate and (front or rear) contacts -- since such layers enable intentionally exacerbated band-offset asymmetry. Investigating all topologically possible passivation layer permutations and focussing on light and dark current-voltage characteristics, we confirm that to avoid fill factor losses, wider-bandgap silicon oxide films (of at least several nanometer thin) should be avoided in hole-collecting contacts. Asmore » a consequence, device implementation of such films as window layers -- without degraded carrier collection -- demands electron collection at the front and hole collection at the rear. Furthermore, at elevated operating temperatures, once possible carrier transport barriers are overcome by thermionic (field) emission, the device performance is mainly dictated by the passivation of its surfaces. In this context, compared to the standard amorphous silicon layers, the wide-bandgap oxide layers applied here passivate remarkably better at these temperatures, which may represent an additional benefit under practical operation conditions.« less

  18. Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seif, Johannes Peter, E-mail: johannes.seif@alumni.epfl.ch; Ballif, Christophe; De Wolf, Stefaan

    Amorphous/crystalline silicon interfaces feature considerably larger valence than conduction band offsets. In this article, we analyze the impact of such band offset asymmetry on the performance of silicon heterojunction solar cells. To this end, we use silicon suboxides as passivation layers—inserted between substrate and (front or rear) contacts—since such layers enable intentionally exacerbated band-offset asymmetry. Investigating all topologically possible passivation layer permutations and focussing on light and dark current-voltage characteristics, we confirm that to avoid fill factor losses, wider-bandgap silicon oxide films (of at least several nanometer thin) should be avoided in hole-collecting contacts. As a consequence, device implementation ofmore » such films as window layers—without degraded carrier collection—demands electron collection at the front and hole collection at the rear. Furthermore, at elevated operating temperatures, once possible carrier transport barriers are overcome by thermionic (field) emission, the device performance is mainly dictated by the passivation of its surfaces. In this context, compared to the standard amorphous silicon layers, the wide-bandgap oxide layers applied here passivate remarkably better at these temperatures, which may represent an additional benefit under practical operation conditions.« less

  19. Hard carbon nitride and method for preparing same

    DOEpatents

    Haller, E.E.; Cohen, M.L.; Hansen, W.L.

    1992-05-05

    Novel crystalline [alpha](silicon nitride-like)-carbon nitride and [beta](silicon nitride-like)-carbon nitride are formed by sputtering carbon in the presence of a nitrogen atmosphere onto a single crystal germanium or silicon, respectively, substrate. 1 figure.

  20. High-aspect-ratio microstructures with versatile slanting angles on silicon by uniform metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Li, Liyi; Zhang, Cheng; Tuan, Chia-Chi; Chen, Yun; Wong, C.-P.

    2018-05-01

    High-aspect-ratio (HAR) microstructures on silicon (Si) play key roles in photonics and electromechanical devices. However, it has been challenging to fabricate HAR microstructures with slanting profiles. Here we report successful fabrication of uniform HAR microstructures with controllable slanting angles on (1 0 0)-Si by slanted uniform metal-assisted chemical etching (SUMaCE). The trenches have width of 2 µm, aspect ratio greater than 20:1 and high geometric uniformity. The slanting angles can be adjusted between 2-70° with respect to the Si surface normal. The results support a fundamental hypothesis that under the UMaCE condition, the preferred etching direction is along the normal of the thin film catalysts, regardless of the relative orientation of the catalyst to Si substrates or the crystalline orientation of the substrates. The SUMaCE method paves the way to HAR 3D microfabrication with arbitrary slanting profiles inside Si.

  1. Adhesion enhancement of titanium nitride coating on aluminum casting alloy by intrinsic microstructures

    NASA Astrophysics Data System (ADS)

    Nguyen, Chuong L.; Preston, Andrew; Tran, Anh T. T.; Dickinson, Michelle; Metson, James B.

    2016-07-01

    Aluminum casting alloys have excellent castability, high strength and good corrosion resistance. However, the presence of silicon in these alloys prevents surface finishing with conventional methods such as anodizing. Hard coating with titanium nitride can provide wear and corrosion resistances, as well as the aesthetic finish. A critical factor for a durable hard coating is its bonding with the underlying substrate. In this study, a titanium nitride layer was coated on LM25 casting alloy and a reference high purity aluminum substrate using Ion Assisted Deposition. Characterization of the coating and the critical interface was carried out by a range of complementing techniques, including SIMS, XPS, TEM, SEM/EDS and nano-indentation. It was observed that the coating on the aluminum alloy is stronger compared to that on the pure aluminum counterpart. Silicon particles in the alloy offers the reinforcement though mechanical interlocking at microscopic level, even with nano-scale height difference. This reinforcement overcomes the adverse effect caused by surface segregation of magnesium in aluminum casting alloys.

  2. Pressure cell for investigations of solid-liquid interfaces by neutron reflectivity.

    PubMed

    Kreuzer, Martin; Kaltofen, Thomas; Steitz, Roland; Zehnder, Beat H; Dahint, Reiner

    2011-02-01

    We describe an apparatus for measuring scattering length density and structure of molecular layers at planar solid-liquid interfaces under high hydrostatic pressure conditions. The device is designed for in situ characterizations utilizing neutron reflectometry in the pressure range 0.1-100 MPa at temperatures between 5 and 60 °C. The pressure cell is constructed such that stratified molecular layers on crystalline substrates of silicon, quartz, or sapphire with a surface area of 28 cm(2) can be investigated against noncorrosive liquid phases. The large substrate surface area enables reflectivity to be measured down to 10(-5) (without background correction) and thus facilitates determination of the scattering length density profile across the interface as a function of applied load. Our current interest is on the stability of oligolamellar lipid coatings on silicon surfaces against aqueous phases as a function of applied hydrostatic pressure and temperature but the device can also be employed to probe the structure of any other solid-liquid interface.

  3. Silicon Carbide High Temperature Anemometer and Method for Assembling the Same

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S. (Inventor); Fralick, Gustave C. (Inventor); Saad, George J. (Inventor)

    2003-01-01

    A high temperature anemometer includes a pair of substrates. One of the substrates has a plurality of electrodes on a facing surface, while the other of the substrates has a sensor cavity on a facing surface. A sensor is received in the sensor cavity, wherein the sensor has a plurality of bondpads, and wherein the bond pads contact the plurality of electrodes when the facing surfaces are mated with one another. The anemometer further includes a plurality of plug-in pins, wherein the substrate with the cavity has a plurality of trenches with each one receiving a plurality of plug-in pins. The plurality of plug-in pins contact the plurality of electrodes when the substrates are mated with one another. The sensor cavity is at an end of one of the substrates such that the sensor partially extends from the substrate. The sensor and the substrates are preferably made of silicon carbide.

  4. Impact of substrate etching on plasmonic elements and metamaterials: preventing red shift and improving refractive index sensitivity.

    PubMed

    Moritake, Yuto; Tanaka, Takuo

    2018-02-05

    We propose and demonstrate the elimination of substrate influence on plasmon resonance by using selective and isotropic etching of substrates. Preventing the red shift of the resonance due to substrates and improving refractive index sensitivity were experimentally demonstrated by using plasmonic nanostructures fabricated on silicon substrates. Applying substrate etching decreases the effective refractive index around the metal nanostructures, resulting in elimination of the red shift. Improvement of sensitivity to the refractive index environment was demonstrated by using plasmonic metamaterials with Fano resonance based on far field interference. Change in quality factors (Q-factors) of the Fano resonance by substrate etching was also investigated in detail. The presence of a closely positioned substrate distorts the electric field distribution and degrades the Q-factors. Substrate etching dramatically increased the refractive index sensitivity reaching to 1532 nm/RIU since the electric fields under the nanostructures became accessible through substrate etching. The FOM was improved compared to the case without the substrate etching. The method presented in this paper is applicable to a variety of plasmonic structures to eliminate the influence of substrates for realizing high performance plasmonic devices.

  5. Amorphous Silicon Nanowires Grown on Silicon Oxide Film by Annealing

    NASA Astrophysics Data System (ADS)

    Yuan, Zhishan; Wang, Chengyong; Chen, Ke; Ni, Zhonghua; Chen, Yunfei

    2017-08-01

    In this paper, amorphous silicon nanowires (α-SiNWs) were synthesized on (100) Si substrate with silicon oxide film by Cu catalyst-driven solid-liquid-solid mechanism (SLS) during annealing process (1080 °C for 30 min under Ar/H2 atmosphere). Micro size Cu pattern fabrication decided whether α-SiNWs can grow or not. Meanwhile, those micro size Cu patterns also controlled the position and density of wires. During the annealing process, Cu pattern reacted with SiO2 to form Cu silicide. More important, a diffusion channel was opened for Si atoms to synthesis α-SiNWs. What is more, the size of α-SiNWs was simply controlled by the annealing time. The length of wire was increased with annealing time. However, the diameter showed the opposite tendency. The room temperature resistivity of the nanowire was about 2.1 × 103 Ω·cm (84 nm diameter and 21 μm length). This simple fabrication method makes application of α-SiNWs become possible.

  6. Magnet-induced temporary superhydrophobic coatings from one-pot synthesized hydrophobic magnetic nanoparticles.

    PubMed

    Fang, Jian; Wang, Hongxia; Xue, Yuhua; Wang, Xungai; Lin, Tong

    2010-05-01

    In this paper, we report on the production of superhydrophobic coatings on various substrates (e.g., glass slide, silicon wafer, aluminum foil, plastic film, nanofiber mat, textile fabrics) using hydrophobic magnetic nanoparticles and a magnet-assembly technique. Fe(3)O(4) magnetic nanoparticles functionalized with a thin layer of fluoroalkyl silica on the surface were synthesized by one-step coprecipitation of Fe(2+)/Fe(3+) under an alkaline condition in the presence of a fluorinated alkyl silane. Under a magnetic field, the magnetic nanoparticles can be easily deposited on any solid substrate to form a thin superhydrophobic coating with water contact angle as high as 172 degrees , and the surface superhydrophobicity showed very little dependence on the substrate type. The particulate coating showed reasonable durability because of strong aggregation effect of nanoparticles, but the coating layer can be removed (e.g., by ultrasonication) to restore the original surface feature of the substrates. By comparison, the thin particle layer deposited under no magnetic field showed much lower hydrophobicity. The main reason for magnet-induced superhydrophobic surfaces is the formation of nano- and microstructured surface features. Such a magnet-induced temporary superhydrophobic coating may have wide applications in electronic, biomedical, and defense-related areas.

  7. Quantum-Well Infrared Photodetector (QWIP) Focal Plane Assembly

    NASA Technical Reports Server (NTRS)

    Jhabvala, Murzy; Jhabvala, Christine A.; Ewin, Audrey J.; Hess, Larry A.; Hartmann, Thomas M.; La, Anh T.

    2012-01-01

    A paper describes the Thermal Infrared Sensor (TIRS), a QWIP-based instrument intended to supplement the Operational Land Imager (OLI) for the Landsat Data Continuity Mission (LDCM). The TIRS instrument is a far-infrared imager operating in the pushbroom mode with two IR channels: 10.8 and 12 microns. The focal plane will contain three 640x512 QWIP arrays mounted on a silicon substrate. The silicon substrate is a custom-fabricated carrier board with a single layer of aluminum interconnects. The general fabrication process starts with a 4-in. (approx.10-cm) diameter silicon wafer. The wafer is oxidized, a single substrate contact is etched, and aluminum is deposited, patterned, and alloyed. This technology development is aimed at incorporating three large-format infrared detecting arrays based on GaAs QWIP technology onto a common focal plane with precision alignment of all three arrays. This focal plane must survive the rigors of flight qualification and operate at a temperature of 43 K (-230 C) for five years while orbiting the Earth. The challenges presented include ensuring thermal compatibility among all the components, designing and building a compact, somewhat modular system and ensuring alignment to very tight levels. The multi-array focal plane integrated onto a single silicon substrate is a new application of both QWIP array development and silicon wafer scale integration. The Invar-based assembly has been tested to ensure thermal reliability.

  8. Electronic unit integrated into a flexible polymer body

    DOEpatents

    Krulevitch, Peter A [Pleasanton, CA; Maghribi, Mariam N [Livermore, CA; Benett, William J [Livermore, CA; Hamilton, Julie K [Tracy, CA; Rose, Klint A [Mt. View, CA; Davidson, James Courtney [Livermore, CA; Strauch, Mark S [Livermore, CA

    2008-03-11

    A peel and stick electronic system comprises a silicone body, and at least one electronic unit operatively connected to the silicone body. The electronic system is produce by providing a silicone layer on a substrate, providing a metal layer on the silicone layer, and providing at least one electronic unit connected to the metal layer.

  9. Electronic unit integrated into a flexible polymer body

    DOEpatents

    Krulevitch, Peter A [Pleasanton, CA; Maghribi, Mariam N [Livermore, CA; Benett, William J [Livermore, CA; Hamilton, Julie K [Tracy, CA; Rose, Klint A [Mt. View, CA; Davidson, James Courtney [Livermore, CA; Strauch, Mark S [Livermore, CA

    2006-04-18

    A peel and stick electronic system comprises a silicone body, and at least one electronic unit operatively connected to the silicone body. The electronic system is produce by providing a silicone layer on a substrate, providing a metal layer on the silicone layer, and providing at least one electronic unit connected to the metal layer.

  10. Electronic unit integrated into a flexible polymer body

    DOEpatents

    Krulevitch, Peter A.; Maghribi, Mariam N.; Benett, William J.; Hamilton, Julie K.; Rose, Klint A.; Davidson, James Courtney; Strauch, Mark S.

    2005-04-12

    A peel and stick electronic system comprises a silicone body, and at least one electronic unit operatively connected to the silicone body. The electronic system is produce by providing a silicone layer on a substrate, providing a metal layer on the silicone layer, and providing at least one electronic unit connected to the metal layer.

  11. Electronic Unit Integrated Into A Flexible Polymer Body

    DOEpatents

    Krulevitch, Peter A.; Maghribi, Mariam N.; Benett, William J.; Hamilton, Julie K.; Rose, Klint A.; Davidson, James Courtney; Strauch, Mark S.

    2006-01-31

    A peel and stick electronic system comprises a silicone body, and at least one electronic unit operatively connected to the silicone body. The electronic system is produce by providing a silicone layer on a substrate, providing a metal layer on the silicone layer, and providing at least one electronic unit connected to the metal layer.

  12. Plasmonic integrated circuits comprising metal waveguides, multiplexer/demultiplexer, detectors, and logic circuits on a silicon substrate

    NASA Astrophysics Data System (ADS)

    Fukuda, M.; Ota, M.; Sumimura, A.; Okahisa, S.; Ito, M.; Ishii, Y.; Ishiyama, T.

    2017-05-01

    A plasmonic integrated circuit configuration comprising plasmonic and electronic components is presented and the feasibility for high-speed signal processing applications is discussed. In integrated circuits, plasmonic signals transmit data at high transfer rates with light velocity. Plasmonic and electronic components such as wavelength-divisionmultiplexing (WDM) networks comprising metal wires, plasmonic multiplexers/demultiplexers, and crossing metal wires are connected via plasmonic waveguides on the nanometer or micrometer scales. To merge plasmonic and electronic components, several types of plasmonic components were developed. To ensure that the plasmonic components could be easily fabricated and monolithically integrated onto a silicon substrate using silicon complementary metal-oxide-semiconductor (CMOS)-compatible processes, the components were fabricated on a Si substrate and made from silicon, silicon oxides, and metal; no other materials were used in the fabrication. The plasmonic components operated in the 1300- and 1550-nm-wavelength bands, which are typically employed in optical fiber communication systems. The plasmonic logic circuits were formed by patterning a silicon oxide film on a metal film, and the operation as a half adder was confirmed. The computed plasmonic signals can propagate through the plasmonic WDM networks and be connected to electronic integrated circuits at high data-transfer rates.

  13. Electrolytic etch for preventing electrical shorts in solar cells on polymer surfaces

    DOEpatents

    Weber, Michael F.

    1991-10-08

    A method for preventing shorts and shunts in solar cells having in order, an insulating substrate, a conductive metal layer on the substrate, an amorphous silicon layer and a transparent conductive layer. The method includes anodic etching of exposed portions of the metal layer after deposition of the amorphous silicon and prior to depositing the transparent conductive layer.

  14. Graphene-Mesoporous Si Nanocomposite as a Compliant Substrate for Heteroepitaxy.

    PubMed

    Boucherif, Abderrahim Rahim; Boucherif, Abderraouf; Kolhatkar, Gitanjali; Ruediger, Andreas; Arès, Richard

    2017-05-01

    The ultimate performance of a solid state device is limited by the restricted number of crystalline substrates that are available for epitaxial growth. As a result, only a small fraction of semiconductors are usable. This study describes a novel concept for a tunable compliant substrate for epitaxy, based on a graphene-porous silicon nanocomposite, which extends the range of available lattice constants for epitaxial semiconductor alloys. The presence of graphene and its effect on the strain of the porous layer lattice parameter are discussed in detail and new remarkable properties are demonstrated. These include thermal stability up to 900 °C, lattice tuning up to 0.9 % mismatch, and compliance under stress for virtual substrate thicknesses of several micrometers. A theoretical model is proposed to define the compliant substrate design rules. These advances lay the foundation for the fabrication of a compliant substrate that could unlock the lattice constant restrictions for defect-free new epitaxial semiconductor alloys and devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors.

    PubMed

    Hwang, Suk-Won; Lee, Chi Hwan; Cheng, Huanyu; Jeong, Jae-Woong; Kang, Seung-Kyun; Kim, Jae-Hwan; Shin, Jiho; Yang, Jian; Liu, Zhuangjian; Ameer, Guillermo A; Huang, Yonggang; Rogers, John A

    2015-05-13

    Transient electronics represents an emerging class of technology that exploits materials and/or device constructs that are capable of physically disappearing or disintegrating in a controlled manner at programmed rates or times. Inorganic semiconductor nanomaterials such as silicon nanomembranes/nanoribbons provide attractive choices for active elements in transistors, diodes and other essential components of overall systems that dissolve completely by hydrolysis in biofluids or groundwater. We describe here materials, mechanics, and design layouts to achieve this type of technology in stretchable configurations with biodegradable elastomers for substrate/encapsulation layers. Experimental and theoretical results illuminate the mechanical properties under large strain deformation. Circuit characterization of complementary metal-oxide-semiconductor inverters and individual transistors under various levels of applied loads validates the design strategies. Examples of biosensors demonstrate possibilities for stretchable, transient devices in biomedical applications.

  16. Gallium arsenide single crystal solar cell structure and method of making

    NASA Technical Reports Server (NTRS)

    Stirn, Richard J. (Inventor)

    1983-01-01

    A production method and structure for a thin-film GaAs crystal for a solar cell on a single-crystal silicon substrate (10) comprising the steps of growing a single-crystal interlayer (12) of material having a closer match in lattice and thermal expansion with single-crystal GaAs than the single-crystal silicon of the substrate, and epitaxially growing a single-crystal film (14) on the interlayer. The material of the interlayer may be germanium or graded germanium-silicon alloy, with low germanium content at the silicon substrate interface, and high germanium content at the upper surface. The surface of the interface layer (12) is annealed for recrystallization by a pulsed beam of energy (laser or electron) prior to growing the interlayer. The solar cell structure may be grown as a single-crystal n.sup.+ /p shallow homojunction film or as a p/n or n/p junction film. A Ga(Al)AS heteroface film may be grown over the GaAs film.

  17. An Analytical Model of Joule Heating in Piezoresistive Microcantilevers

    PubMed Central

    Ansari, Mohd Zahid; Cho, Chongdu

    2010-01-01

    The present study investigates Joule heating in piezoresistive microcantilever sensors. Joule heating and thermal deflections are a major source of noise in such sensors. This work uses analytical and numerical techniques to characterise the Joule heating in 4-layer piezoresistive microcantilevers made of silicon and silicon dioxide substrates but with the same U-shaped silicon piezoresistor. A theoretical model for predicting the temperature generated due to Joule heating is developed. The commercial finite element software ANSYS Multiphysics was used to study the effect of electrical potential on temperature and deflection produced in the cantilevers. The effect of piezoresistor width on Joule heating is also studied. Results show that Joule heating strongly depends on the applied potential and width of piezoresistor and that a silicon substrate cantilever has better thermal characteristics than a silicon dioxide cantilever. PMID:22163433

  18. An analytical model of joule heating in piezoresistive microcantilevers.

    PubMed

    Ansari, Mohd Zahid; Cho, Chongdu

    2010-01-01

    The present study investigates Joule heating in piezoresistive microcantilever sensors. Joule heating and thermal deflections are a major source of noise in such sensors. This work uses analytical and numerical techniques to characterise the Joule heating in 4-layer piezoresistive microcantilevers made of silicon and silicon dioxide substrates but with the same U-shaped silicon piezoresistor. A theoretical model for predicting the temperature generated due to Joule heating is developed. The commercial finite element software ANSYS Multiphysics was used to study the effect of electrical potential on temperature and deflection produced in the cantilevers. The effect of piezoresistor width on Joule heating is also studied. Results show that Joule heating strongly depends on the applied potential and width of piezoresistor and that a silicon substrate cantilever has better thermal characteristics than a silicon dioxide cantilever.

  19. Development of a physical and electronic model for RuO 2 nanorod rectenna devices

    NASA Astrophysics Data System (ADS)

    Dao, Justin

    Ruthenium oxide (RuO2) nanorods are an emergent technology in nanostructure devices. As the physical size of electronics approaches a critical lower limit, alternative solutions to further device miniaturization are currently under investigation. Thin-film nanorod growth is an interesting technology, being investigated for use in wireless communications, sensor systems, and alternative energy applications. In this investigation, self-assembled RuO2 nanorods are grown on a variety of substrates via a high density plasma, reactive sputtering process. Nanorods have been found to grow on substrates that form native oxide layers when exposed to air, namely silicon, aluminum, and titanium. Samples were analyzed with Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques. Conductive Atomic Force Microscopy (C-AFM) measurements were performed on single nanorods to characterize structure and electrical conductivity. The C-AFM probe tip is placed on a single nanorod and I-V characteristics are measured, potentially exhibiting rectifying capabilities. An analysis of these results using fundamental semiconductor physics principles is presented. Experimental data for silicon substrates was most closely approximated by the Simmons model for direct electron tunneling, whereas that of aluminum substrates was well approximated by Fowler-Nordheim tunneling. The native oxide of titanium is regarded as a semiconductor rather than an insulator and its ability to function as a rectifier is not strong. An electronic model for these nanorods is described herein.

  20. A reliable method to grow vertically-aligned silicon nanowires by a novel ramp-cooling process

    NASA Astrophysics Data System (ADS)

    Ho, Tzuen-Wei; Hong, Franklin Chau-Nan

    2012-08-01

    We have grown silicon nanowires (SiNWs) on Si (1 1 1) substrates by gold-catalyzed vapor-liquid-solid (VLS) process using tetrachlorosilane (SiCl4) in a hot-wall chemical vapor deposition reactor. Even under the optimized conditions including H2 annealing to reduce the surface native oxide, epitaxial SiNWs of 150-200 nm in diameter often grew along all four <1 1 1> family directions with one direction vertical and three others inclined to the surface. Therefore, the growth of high degree ordered SiNW arrays along [1 1 1] only was attempted on Au-coated Si (1 1 1) by a ramp-cooling process utilizing the liquid phase epitaxy (LPE) mechanism. The Au-coated Si substrate was first annealed in H2 at 650 °C to form Au-Si alloy nanoparticles, and then ramp-cooled at a controlled rate to precipitate epitaxial Si seeds on the substrate based on LPE mechanism. The substrate was further heated in SiCl4/H2 to 850 °C for the VLS growths of SiNWs on the Si seeds. Thus, almost 100% vertically-aligned SiNWs along [1 1 1] only could be reproducibly grown on Si (1 1 1), without using a template or patterning the metal catalyst. The high-density vertically-aligned SiNWs have good potentials for solar cells and nano-devices.

  1. Silicon Nanowires for Solar Thermal Energy Harvesting: an Experimental Evaluation on the Trade-off Effects of the Spectral Optical Properties.

    PubMed

    Sekone, Abdoul Karim; Chen, Yu-Bin; Lu, Ming-Chang; Chen, Wen-Kai; Liu, Chia-An; Lee, Ming-Tsang

    2016-12-01

    Silicon nanowire possesses great potential as the material for renewable energy harvesting and conversion. The significantly reduced spectral reflectivity of silicon nanowire to visible light makes it even more attractive in solar energy applications. However, the benefit of its use for solar thermal energy harvesting remains to be investigated and has so far not been clearly reported. The purpose of this study is to provide practical information and insight into the performance of silicon nanowires in solar thermal energy conversion systems. Spectral hemispherical reflectivity and transmissivity of the black silicon nanowire array on silicon wafer substrate were measured. It was observed that the reflectivity is lower in the visible range but higher in the infrared range compared to the plain silicon wafer. A drying experiment and a theoretical calculation were carried out to directly evaluate the effects of the trade-off between scattering properties at different wavelengths. It is clearly seen that silicon nanowires can improve the solar thermal energy harnessing. The results showed that a 17.8 % increase in the harvest and utilization of solar thermal energy could be achieved using a silicon nanowire array on silicon substrate as compared to that obtained with a plain silicon wafer.

  2. Dielectrophoretic alignment of metal and metal oxide nanowires and nanotubes: a universal set of parameters for bridging prepatterned microelectrodes.

    PubMed

    Maijenburg, A W; Maas, M G; Rodijk, E J B; Ahmed, W; Kooij, E S; Carlen, E T; Blank, D H A; ten Elshof, J E

    2011-03-15

    Nanowires and nanotubes were synthesized from metals and metal oxides using templated cathodic electrodeposition. With templated electrodeposition, small structures are electrodeposited using a template that is the inverse of the final desired shape. Dielectrophoresis was used for the alignment of the as-formed nanowires and nanotubes between prepatterned electrodes. For reproducible nanowire alignment, a universal set of dielectrophoresis parameters to align any arbitrary nanowire material was determined. The parameters include peak-to-peak potential and frequency, thickness of the silicon oxide layer, grounding of the silicon substrate, and nature of the solvent medium used. It involves applying a field with a frequency >10(5) Hz, an insulating silicon oxide layer with a thickness of 2.5 μm or more, grounding of the underlying silicon substrate, and the use of a solvent medium with a low dielectric constant. In our experiments, we obtained good results by using a peak-to-peak potential of 2.1 V at a frequency of 1.2 × 10(5) Hz. Furthermore, an indirect alignment technique is proposed that prevents short circuiting of nanowires after contacting both electrodes. After alignment, a considerably lower resistivity was found for ZnO nanowires made by templated electrodeposition (2.2-3.4 × 10(-3) Ωm) compared to ZnO nanorods synthesized by electrodeposition (10 Ωm) or molecular beam epitaxy (MBE) (500 Ωm). Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Analysis of signals propagating in a phononic crystal PZT layer deposited on a silicon substrate.

    PubMed

    Hladky-Hennion, Anne-Christine; Vasseur, Jérôme; Dubus, Bertrand; Morvan, Bruno; Wilkie-Chancellier, Nicolas; Martinez, Loïc

    2013-12-01

    The design of a stop-band filter constituted by a periodically patterned lead zirconate titanate (PZT) layer, polarized along its thickness, deposited on a silicon substrate and sandwiched between interdigitated electrodes for emission/reception of guided elastic waves, is investigated. The filter characteristics are theoretically evaluated by using finite element simulations: dispersion curves of a patterned PZT layer with a specific pattern geometry deposited on a silicon substrate present an absolute stop band. The whole structure is modeled with realistic conditions, including appropriate interdigitated electrodes to propagate a guided mode in the piezoelectric layer. A robust method for signal analysis based on the Gabor transform is applied to treat transmitted signals; extract attenuation, group delays, and wave number variations versus frequency; and identify stop-band filter characteristics.

  4. Manufacture of silicon-based devices having disordered sulfur-doped surface layers

    DOEpatents

    Carey, III; Edward, James [Newton, MA; Mazur, Eric [Concord, MA

    2008-04-08

    The present invention provides methods of fabricating a radiation-absorbing semiconductor wafer by irradiating at least one surface location of a silicon substrate, e.g., an n-doped crystalline silicon, by a plurality of temporally short laser pulses, e.g., femtosecond pulses, while exposing that location to a substance, e.g., SF.sub.6, having an electron-donating constituent so as to generate a substantially disordered surface layer (i.e., a microstructured layer) that incorporates a concentration of that electron-donating constituent, e.g., sulfur. The substrate is also annealed at an elevated temperature and for a duration selected to enhance the charge carrier density in the surface layer. For example, the substrate can be annealed at a temperature in a range of about 700 K to about 900 K.

  5. Method for formation of thin film transistors on plastic substrates

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.; Sigmon, Thomas W.; Aceves, Randy C.

    1998-10-06

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics.

  6. Metal-assisted etch combined with regularizing etch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yim, Joanne; Miller, Jeff; Jura, Michael

    In an aspect of the disclosure, a process for forming nanostructuring on a silicon-containing substrate is provided. The process comprises (a) performing metal-assisted chemical etching on the substrate, (b) performing a clean, including partial or total removal of the metal used to assist the chemical etch, and (c) performing an isotropic or substantially isotropic chemical etch subsequently to the metal-assisted chemical etch of step (a). In an alternative aspect of the disclosure, the process comprises (a) performing metal-assisted chemical etching on the substrate, (b) cleaning the substrate, including removal of some or all of the assisting metal, and (c) performingmore » a chemical etch which results in regularized openings in the silicon substrate.« less

  7. Formation of nanodiamond films from aqueous suspensions during spin coating

    NASA Astrophysics Data System (ADS)

    Lebedev-Stepanov, P. V.; Molchanov, S. P.; Vasil'ev, A. L.; Mitrokhin, V. P.; Yurasik, G. A.; Aleksenskii, A. E.; Dideikin, A. T.

    2016-03-01

    The formation of multifunctional ordered arrays of detonation diamond particles is studied during self-assembling in spin coating of films of evaporating microdroplets. It is shown that the most homogeneous layer of diamond particles on a crystalline silicon substrate forms at a rate of substrate rotation of 8000 min-1, whereas a relation between the distribution of particles and the radius is clearly detected at rates of about 2000 min-1. As the rate of substrate rotation increases from 2500 to 8000 min-1, the density of the coating of a silicon substrate with diamond nanoparticles decreases approximately threefold. A model is proposed to estimate the increase in the number of individual diamond "points" with the substrate rotation frequency.

  8. Micro- and Nano-Scale Electrically Driven Two-Phase Thermal Management

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2016-01-01

    This presentation discusses ground based proof of concept hardware under development at NASA GSFC to address high heat flux thermal management in silicon substrates. The goal is to develop proof of concept hardware for space flight validation. The space flight hardware will provide gravity insensitive thermal management for electronics applications such as transmit receive modules that are severely limited by thermal concerns.

  9. Development of Advanced Spacecraft Thermal Subsystems

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2016-01-01

    This presentation discusses ground based proof of concept hardware under development at NASA GSFC to address high heat flux thermal management in silicon substrates and embedded thermal management systems. The goal is to develop proof of concept hardware for space flight validation. The space flight hardware will provide gravity insensitive thermal management for electronics applications such as transmit/receive modules that are severely limited by thermal concerns.

  10. Fabrication and characterization of low temperature polycrystalline silicon thin film transistors

    NASA Astrophysics Data System (ADS)

    Krishnan, Anand Thiruvengadathan

    2000-10-01

    The proliferation of devices with built-in displays, such as personal digital assistants and cellular phones has created a demand for rugged light-weight displays. Polymeric substrates could be suited for these applications, and they offer the possibility of flexible displays also. However, driver circuitry needs to be integrated in the display if the cost is to be reduced. Low temperature (<350°C) polycrystalline silicon (poly-Si) thin film transistors, if developed, offer driver circuitry integration during pixel transistor fabrication on top of flexible substrates. This thesis addresses several issues related to the fabrication of thin film transistors at low temperatures on glass substrates. A high-density plasma (electron cyclotron resonance (ECR)) based approach was adopted for deposition of thin films. A process for deposition of n-type doped silicon (n-type doped Si) at T < 350°C and having resistivity <1 ohm/cm has been developed. Intrinsic poly-Si was deposited under different conditions of microwave power, RF bias and deposition times. The properties of n-type doped Si and intrinsic poly-Si were correlated with the structure and the deposition conditions. A novel TFT structure has been proposed and implemented in this work. This top gate TFT structure uses n-type doped Si and utilizes only two masks and one alignment step. There are no critical etch steps and good interface quality could be obtained even without post-processing hydrogenation as the poly-Si surface was not exposed to air before deposition of the gate dielectric. TFTs using this top gate structure were fabricated with no process step exceeding 340°C electrode temperature (surface temperature <300°C). These TFTs show ON/OFF ratios in excess of 105. Their sub-threshold swing is ˜0.5 V/decade and mobility is 1--10 cm2/V-s. Several TFTs were also fabricated using alternative dielectrics such as oxide deposited from tetramethyl silane in an RFPECVD chamber and silicon nitride deposited in the ECR and these TFTs also show reasonable device characteristics. TFTs processed using this high-density plasma based approach show great potential for use in applications such as driver circuitry integration on low temperature substrates.

  11. High-performance field emission device utilizing vertically aligned carbon nanotubes-based pillar architectures

    NASA Astrophysics Data System (ADS)

    Gupta, Bipin Kumar; Kedawat, Garima; Gangwar, Amit Kumar; Nagpal, Kanika; Kashyap, Pradeep Kumar; Srivastava, Shubhda; Singh, Satbir; Kumar, Pawan; Suryawanshi, Sachin R.; Seo, Deok Min; Tripathi, Prashant; More, Mahendra A.; Srivastava, O. N.; Hahm, Myung Gwan; Late, Dattatray J.

    2018-01-01

    The vertical aligned carbon nanotubes (CNTs)-based pillar architectures were created on laminated silicon oxide/silicon (SiO2/Si) wafer substrate at 775 °C by using water-assisted chemical vapor deposition under low pressure process condition. The lamination was carried out by aluminum (Al, 10.0 nm thickness) as a barrier layer and iron (Fe, 1.5 nm thickness) as a catalyst precursor layer sequentially on a silicon wafer substrate. Scanning electron microscope (SEM) images show that synthesized CNTs are vertically aligned and uniformly distributed with a high density. The CNTs have approximately 2-30 walls with an inner diameter of 3-8 nm. Raman spectrum analysis shows G-band at 1580 cm-1 and D-band at 1340 cm-1. The G-band is higher than D-band, which indicates that CNTs are highly graphitized. The field emission analysis of the CNTs revealed high field emission current density (4mA/cm2 at 1.2V/μm), low turn-on field (0.6 V/μm) and field enhancement factor (6917) with better stability and longer lifetime. Emitter morphology resulting in improved promising field emission performances, which is a crucial factor for the fabrication of pillared shaped vertical aligned CNTs bundles as practical electron sources.

  12. Simulation, design and fabrication of a planar micro thermoelectric generator

    NASA Astrophysics Data System (ADS)

    Pelegrini, S.; Adami, A.; Collini, C.; Conci, P.; Lorenzelli, L.; Pasa, A. A.

    2013-05-01

    This study describes the design, simulation, and micro fabrication of a micro thermoelectric generator (μTEG) based on planar technology using constantan (CuNi) and copper (Cu) thermocouples deposited electrochemically (ECD) on silicon substrate. The present thin film technology can be manufactured into large area and also on flexible substrate with low cost of production and can be used to exploit waste heat from equipments or hot surfaces in general. In the current implementation, the silicon structure has been designed and optimized with analytical models and FE simulations in order to exploit the different thermal conductivity of silicon and air gaps to produce the maximum temperature difference on a planar surface. The results showed that a temperature difference of 10K across the structure creates a temperature difference of 5.3K on the thermocouples, thus providing an efficiency of thermal distribution up to 55%, depending on the heat convection at the surface. Efficiency of module has been experimentally tested under different working condition, showing the dependence of module output on the external heat exchange (natural and forced convection). Maximum generated potential at 6m/s airflow is 5.7V/m2 K and thermoelectric efficiency is 1.9μW K-2 m-2.

  13. Hybrid stretchable circuits on silicone substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, A., E-mail: adam.1.robinson@nokia.com; Aziz, A., E-mail: a.aziz1@lancaster.ac.uk; Liu, Q.

    When rigid and stretchable components are integrated onto a single elastic carrier substrate, large strain heterogeneities appear in the vicinity of the deformable-non-deformable interfaces. In this paper, we report on a generic approach to manufacture hybrid stretchable circuits where commercial electronic components can be mounted on a stretchable circuit board. Similar to printed circuit board development, the components are electrically bonded on the elastic substrate and interconnected with stretchable electrical traces. The substrate—a silicone matrix carrying concentric rigid disks—ensures both the circuit elasticity and the mechanical integrity of the most fragile materials.

  14. Method of producing an electronic unit having a polydimethylsiloxane substrate and circuit lines

    DOEpatents

    Davidson, James Courtney [Livermore, CA; Krulevitch, Peter A [Pleasanton, CA; Maghribi, Mariam N [Livermore, CA; Benett, William J [Livermore, CA; Hamilton, Julie K [Tracy, CA; Tovar, Armando R [San Antonio, TX

    2012-06-19

    A system of metalization in an integrated polymer microsystem. A flexible polymer substrate is provided and conductive ink is applied to the substrate. In one embodiment the flexible polymer substrate is silicone. In another embodiment the flexible polymer substrate comprises poly(dimethylsiloxane).

  15. [Technology Development for X-Ray Reflection for the Constellation-X Reflection Grating Spectrometer (RGS)

    NASA Technical Reports Server (NTRS)

    Schattenburg, Mark L.

    2003-01-01

    This Grant covers MIT support for the technology development of x-ray reflection gratings for the Constellation-X Reflection Grating Spectrometer (RGS). Since the start of the Grant MIT has extended its previously-developed patterning and super-smooth, blazed grating fabrication technology to ten-times smaller grating periods and ten-times larger blaze angles to demonstrate feasibility and performance in the off-plane grating geometry. In the past year we successfully developed several nanoimprint grating replication methods that achieved very high fidelity replication of master silicon gratings. Grating geometry on the nano and macro scales were faithfully replicated, demonstrating the viability of the process for manufacturing the thousands of gratings required for the RGS. We also successfully developed an improved metrology truss for holding test grating substrates during metrology. The flatness goal of grating substrates is under 500 nm. In the past, grating holders would cause non-repeatable distortion of >> 500 nm to the substrates due to friction and gravity sag. The new holder has a repeatability of under 50 nm which is adequate for the proposed RGS grating substrates.

  16. Cathodoluminescence of SiOx under-stoichiometric silica layers

    NASA Astrophysics Data System (ADS)

    Salh, Roushdey; von Czarnowski, A.; Zamoryanskaya, M. V.; Kolesnikova, E. V.; Fitting, H.-J.

    2006-06-01

    Under-stoichiometric thin silica layers SiOx with different stoichiometric degree 1 x 2, were prepared by thermal evaporation of silicon monoxide in vacuum and in ambient oxygen atmosphere of various pressure onto crystalline silicon substrates. The chemical composition has been determined by Fourier transform infrared spectroscopy (FTIR). A special formula is derived to correlate the stoichiometric degree x with the wavenumber of the main TO stretching mode (Si-O-Si) in silica, finally to determine the actual composition values x of the layers. Cathodoluminescence (CL) of these layers shows the development of typical amorphous SiO2 luminescence bands at the composition threshold x > 1.5 and then onwards to x = 2. These luminescence bands were observed at 4.3, 2.7, 2.15, and 1.9 eV. The green-yellow luminescence (2.15 eV) is strongly increasing with the annealing temperature up to 1300 °C and is assigned to phase separation of SiOx into Si and SiO2 and formation of hexamer silicon rings in the understoichiometric silica network. Finally we observe Si nanoclusters by means of transmission elec- tron microscopy (TEM) micrographs.

  17. Process for forming silicon carbide films and microcomponents

    DOEpatents

    Hamza, A.V.; Balooch, M.; Moalem, M.

    1999-01-19

    Silicon carbide films and microcomponents are grown on silicon substrates at surface temperatures between 900 K and 1700 K via C{sub 60} precursors in a hydrogen-free environment. Selective crystalline silicon carbide growth can be achieved on patterned silicon-silicon oxide samples. Patterned SiC films are produced by making use of the high reaction probability of C{sub 60} with silicon at surface temperatures greater than 900 K and the negligible reaction probability for C{sub 60} on silicon dioxide at surface temperatures less than 1250 K. 5 figs.

  18. Process for forming silicon carbide films and microcomponents

    DOEpatents

    Hamza, Alex V.; Balooch, Mehdi; Moalem, Mehran

    1999-01-01

    Silicon carbide films and microcomponents are grown on silicon substrates at surface temperatures between 900 K and 1700 K via C.sub.60 precursors in a hydrogen-free environment. Selective crystalline silicon carbide growth can be achieved on patterned silicon-silicon oxide samples. Patterned SiC films are produced by making use of the high reaction probability of C.sub.60 with silicon at surface temperatures greater than 900 K and the negligible reaction probability for C.sub.60 on silicon dioxide at surface temperatures less than 1250 K.

  19. Heat- and electron-beam-induced transport of gold particles into silicon oxide and silicon studied by in situ high-resolution transmission electron microscopy.

    PubMed

    Biskupek, Johannes; Kaiser, Ute; Falk, Fritz

    2008-06-01

    In this study, we describe the transport of gold (Au) nanoparticles from the surface into crystalline silicon (Si) covered by silicon oxide (SiO(2)) as revealed by in situ high-resolution transmission electron microscopy. Complete crystalline Au nanoparticles sink through the SiO(2) layer into the Si substrate when high-dose electron irradiation is applied and temperature is raised above 150 degrees C. Above temperatures of 250 degrees C, the Au nanoparticles finally dissolve into fragments accompanied by crystallization of the amorphized Si substrate around these fragments. The transport process is explained by a wetting process followed by Stokes motion. Modelling this process yields boundaries for the interface energies involved.

  20. Simple method for the growth of 4H silicon carbide on silicon substrate

    NASA Astrophysics Data System (ADS)

    Asghar, M.; Shahid, M. Y.; Iqbal, F.; Fatima, K.; Nawaz, Muhammad Asif; Arbi, H. M.; Tsu, R.

    2016-03-01

    In this study we report thermal evaporation technique as a simple method for the growth of 4H silicon carbide on p-type silicon substrate. A mixture of Si and C60 powder of high purity (99.99%) was evaporated from molybdenum boat. The as grown film was characterized by XRD, FTIR, UV-Vis Spectrophotometer and Hall Measurements. The XRD pattern displayed four peaks at 2Θ angles 28.550, 32.700, 36.100 and 58.900 related to Si (1 1 1), 4H-SiC (1 0 0), 4H-SiC (1 1 1) and 4H-SiC (2 2 2), respectively. FTIR, UV-Vis spectrophotometer and electrical properties further strengthened the 4H-SiC growth.

  1. Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Jiang, Shou Zhen; Yang, Cheng; Li, Chong Hui; Huo, Yan Yan; Liu, Xiao Yun; Liu, Ai Hua; Wei, Qin; Gao, Sai Sai; Gao, Xing Guo; Man, Bao Yuan

    2016-05-01

    A novel and efficient surface enhanced Raman scattering (SERS) substrate has been presented based on Gold@silver/pyramidal silicon 3D substrate (Au@Ag/3D-Si). By combining the SERS activity of Ag, the chemical stability of Au and the large field enhancement of 3D-Si, the Au@Ag/3D-Si substrate possesses perfect sensitivity, homogeneity, reproducibility and chemical stability. Using R6G as probe molecule, the SERS results imply that the Au@Ag/3D-Si substrate is superior to the 3D-Si, Ag/3D-Si and Au/3D-Si substrate. We also confirmed these excellent behaviors in theory via a commercial COMSOL software. The corresponding experimental and theoretical results indicate that our proposed Au@Ag/3D-Si substrate is expected to develop new opportunities for label-free SERS detections in biological sensors, biomedical diagnostics and food safety.

  2. Modeling Changes in Measured Conductance of Thin Boron Carbide Semiconducting Films Under Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, George G.; Wang, Yongqiang; Ianno, N. J.

    Semiconducting, p-type, amorphous partially dehydrogenated boron carbide films (a-B 10C 2+x:H y) were deposited utilizing plasma enhanced chemical vapor deposition (PECVD) onto n-type silicon thus creating a heterojunction diode. A model was developed for the conductance of the device as a function of perturbation frequency (f) that incorporates changes of the electrical properties for both the a-B 10C 2+x:H y film and the silicon substrate when irradiated. The virgin model has 3 independent variables (R1, C1, R3), and 1 dependent variable (f). These samples were then irradiated with 200 keV He + ions, and the conductance model was matched tomore » the measured data. It was found that initial irradiation (0.1 displacements per atom (dpa) equivalent) resulted in a decrease in the parallel junction resistance parameter from 6032 Ω to 2705 Ω. Further irradiation drastically increased the parallel junction resistance parameter to 39000 Ω (0.2 dpa equivalent), 77440 Ω (0.3 dpa equivalent), and 190000 Ω (0.5 dpa equivalent). It is believed that the initial irradiation causes type inversion of the silicon substrate changing the original junction from a p-n to a p-p+ with a much lower barrier height leading to a lower junction resistance component between the a-B 10C 2+x:H y and irradiated silicon. In addition, it was found that after irradiation, a second parallel resistor and capacitor component is required for the model, introducing 2 additional independent variables (R2, C2). This is interpreted as the junction between the irradiated and virgin silicon near ion end of range.« less

  3. Modeling Changes in Measured Conductance of Thin Boron Carbide Semiconducting Films Under Irradiation

    DOE PAGES

    Peterson, George G.; Wang, Yongqiang; Ianno, N. J.; ...

    2016-11-09

    Semiconducting, p-type, amorphous partially dehydrogenated boron carbide films (a-B 10C 2+x:H y) were deposited utilizing plasma enhanced chemical vapor deposition (PECVD) onto n-type silicon thus creating a heterojunction diode. A model was developed for the conductance of the device as a function of perturbation frequency (f) that incorporates changes of the electrical properties for both the a-B 10C 2+x:H y film and the silicon substrate when irradiated. The virgin model has 3 independent variables (R1, C1, R3), and 1 dependent variable (f). These samples were then irradiated with 200 keV He + ions, and the conductance model was matched tomore » the measured data. It was found that initial irradiation (0.1 displacements per atom (dpa) equivalent) resulted in a decrease in the parallel junction resistance parameter from 6032 Ω to 2705 Ω. Further irradiation drastically increased the parallel junction resistance parameter to 39000 Ω (0.2 dpa equivalent), 77440 Ω (0.3 dpa equivalent), and 190000 Ω (0.5 dpa equivalent). It is believed that the initial irradiation causes type inversion of the silicon substrate changing the original junction from a p-n to a p-p+ with a much lower barrier height leading to a lower junction resistance component between the a-B 10C 2+x:H y and irradiated silicon. In addition, it was found that after irradiation, a second parallel resistor and capacitor component is required for the model, introducing 2 additional independent variables (R2, C2). This is interpreted as the junction between the irradiated and virgin silicon near ion end of range.« less

  4. Characterization of mechanical properties of hydroxyapatite-silicon-multi walled carbon nano tubes composite coatings synthesized by EPD on NiTi alloys for biomedical application.

    PubMed

    Khalili, Vida; Khalil-Allafi, Jafar; Sengstock, Christina; Motemani, Yahya; Paulsen, Alexander; Frenzel, Jan; Eggeler, Gunther; Köller, Manfred

    2016-06-01

    Release of Ni(1+) ions from NiTi alloy into tissue environment, biological response on the surface of NiTi and the allergic reaction of atopic people towards Ni are challengeable issues for biomedical application. In this study, composite coatings of hydroxyapatite-silicon multi walled carbon nano-tubes with 20wt% Silicon and 1wt% multi walled carbon nano-tubes of HA were deposited on a NiTi substrate using electrophoretic methods. The SEM images of coated samples exhibit a continuous and compact morphology for hydroxyapatite-silicon and hydroxyapatite-silicon-multi walled carbon nano-tubes coatings. Nano-indentation analysis on different locations of coatings represents the highest elastic modulus (45.8GPa) for HA-Si-MWCNTs which is between the elastic modulus of NiTi substrate (66.5GPa) and bone tissue (≈30GPa). This results in decrease of stress gradient on coating-substrate-bone interfaces during performance. The results of nano-scratch analysis show the highest critical distance of delamination (2.5mm) and normal load before failure (837mN) as well as highest critical contact pressure for hydroxyapatite-silicon-multi walled carbon nano-tubes coating. The cell culture results show that human mesenchymal stem cells are able to adhere and proliferate on the pure hydroxyapatite and composite coatings. The presence of both silicon and multi walled carbon nano-tubes (CS3) in the hydroxyapatite coating induce more adherence of viable human mesenchymal stem cells in contrast to the HA coated samples with only silicon (CS2). These results make hydroxyapatite-silicon-multi walled carbon nano-tubes a promising composite coating for future bone implant application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Rapid fibroblast activation in mammalian cells induced by silicon nanowire arrays

    NASA Astrophysics Data System (ADS)

    Ha, Qing; Yang, Gao; Ao, Zhuo; Han, Dong; Niu, Fenglan; Wang, Shutao

    2014-06-01

    Activated tumor-associated fibroblasts (TAFs) with abundant fibroblast activation protein (FAP) expression attract tremendous attention in tumor progression studies. In this work, we report a rapid 24 h FAP activation method for fibroblasts using silicon nanowires (SiNWs) as culture substrates instead of growth factors or chemokines. In contrast with cells cultured on flat silicon which rarely express FAP, SiNW cultivated cells exhibit FAP levels similar to those found in cancerous tissue. We demonstrated that activated cells grown on SiNWs maintain their viability and proliferation in a time-dependent manner. Moreover, environmental scanning electron microscopy (ESEM) and focused ion beam and scanning electron microscopy (FIB-SEM) analysis clearly revealed that activated cells on SiNWs adapt to the structure of their substrates by filling inter-wire cavities via filopodia in contrast to cells cultured on flat silicon which spread freely. We further illustrated that the expression of FAP was rarely detected in activated cells after being re-cultured in Petri dishes, suggesting that the unique structure of SiNWs may have a certain influence on FAP activation.Activated tumor-associated fibroblasts (TAFs) with abundant fibroblast activation protein (FAP) expression attract tremendous attention in tumor progression studies. In this work, we report a rapid 24 h FAP activation method for fibroblasts using silicon nanowires (SiNWs) as culture substrates instead of growth factors or chemokines. In contrast with cells cultured on flat silicon which rarely express FAP, SiNW cultivated cells exhibit FAP levels similar to those found in cancerous tissue. We demonstrated that activated cells grown on SiNWs maintain their viability and proliferation in a time-dependent manner. Moreover, environmental scanning electron microscopy (ESEM) and focused ion beam and scanning electron microscopy (FIB-SEM) analysis clearly revealed that activated cells on SiNWs adapt to the structure of their substrates by filling inter-wire cavities via filopodia in contrast to cells cultured on flat silicon which spread freely. We further illustrated that the expression of FAP was rarely detected in activated cells after being re-cultured in Petri dishes, suggesting that the unique structure of SiNWs may have a certain influence on FAP activation. Electronic supplementary information (ESI) available: (1) ESEM cross-sectional view images of the flat silicon and SiNW substrates. (2) Bright field morphology images of fibroblasts cultured in Petri dishes. (3) FIB/SEM 52° tilt images of fibroblasts cultured on SiNW 2 and SiNW 3. (4) Immunofluorescence images of FAP expression in fibroblasts re-cultured in Petri dishes after detachment from flat silicon and a series of SiNW substrates. (5) ESEM images of cells re-cultured in Petri dishes after detachment from each group. See DOI: 10.1039/c4nr01415d

  6. Optimization of conditions for growth of vanadium dioxide thin films on silicon by pulsed-laser deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shibuya, Keisuke, E-mail: k.shibuya@aist.go.jp; Sawa, Akihito

    2015-10-15

    We systematically examined the effects of the substrate temperature (T{sub S}) and the oxygen pressure (P{sub O2}) on the structural and optical properties polycrystalline V O{sub 2} films grown directly on Si(100) substrates by pulsed-laser deposition. A rutile-type V O{sub 2} phase was formed at a T{sub S} ≥ 450 °C at P{sub O2} values ranging from 5 to 20 mTorr, whereas other structures of vanadium oxides were stabilized at lower temperatures or higher oxygen pressures. The surface roughness of the V O{sub 2} films significantly increased at growth temperatures of 550 °C or more due to agglomeration of Vmore » O{sub 2} on the surface of the silicon substrate. An apparent change in the refractive index across the metal–insulator transition (MIT) temperature was observed in V O{sub 2} films grown at a T{sub S} of 450 °C or more. The difference in the refractive index at a wavelength of 1550 nm above and below the MIT temperature was influenced by both the T{sub S} and P{sub O2}, and was maximal for a V O{sub 2} film grown at 450 °C under 20 mTorr. Based on the results, we derived the P{sub O2} versus 1/T{sub S} phase diagram for the films of vanadium oxides, which will provide a guide to optimizing the conditions for growth of V O{sub 2} films on silicon platforms.« less

  7. Substrate nitridation induced modulations in transport properties of wurtzite GaN/p-Si (100) heterojunctions grown by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, Thirumaleshwara N.; Rajpalke, Mohana K.; Krupanidhi, S. B.

    Phase pure wurtzite GaN films were grown on Si (100) substrates by introducing a silicon nitride layer followed by low temperature GaN growth as buffer layers. GaN films grown directly on Si (100) were found to be phase mixtured, containing both cubic ({beta}) and hexagonal ({alpha}) modifications. The x-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) spectroscopy studies reveal that the significant enhancement in the structural as well as in the optical properties of GaN films grown with silicon nitride buffer layer grown at 800 deg. C when compared to the samples grown in the absence of silicon nitridemore » buffer layer and with silicon nitride buffer layer grown at 600 deg. C. Core-level photoelectron spectroscopy of Si{sub x}N{sub y} layers reveals the sources for superior qualities of GaN epilayers grown with the high temperature substrate nitridation process. The discussion has been carried out on the typical inverted rectification behavior exhibited by n-GaN/p-Si heterojunctions. Considerable modulation in the transport mechanism was observed with the nitridation conditions. The heterojunction fabricated with the sample of substrate nitridation at high temperature exhibited superior rectifying nature with reduced trap concentrations. Lowest ideality factors ({approx}1.5) were observed in the heterojunctions grown with high temperature substrate nitridation which is attributed to the recombination tunneling at the space charge region transport mechanism at lower voltages and at higher voltages space charge limited current conduction is the dominating transport mechanism. Whereas, thermally generated carrier tunneling and recombination tunneling are the dominating transport mechanisms in the heterojunctions grown without substrate nitridation and low temperature substrate nitridation, respectively.« less

  8. Method of protecting a surface with a silicon-slurry/aluminide coating. [coatings for gas turbine engine blades and vanes

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Young, S. G. (Inventor)

    1982-01-01

    A low cost coating for protecting metallic base system substrates from high temperatures, high gas velocity oxidation, thermal fatigue and hot corrosion is described. The coating is particularly useful for protecting vanes and blades in aircraft and land based gas turbine engines. A lacquer slurry comprising cellulose nitrate containing high purity silicon powder is sprayed onto the superalloy substrates. The silicon layer is then aluminized to complete the coating. The Si-Al coating is less costly to produce than advanced aluminides and protects the substrate from oxidation and thermal fatigue for a much longer period of time than the conventional aluminide coatings. While more expensive Pt-Al coatings and physical vapor deposited MCrAlY coatings may last longer or provide equal protection on certain substrates, the Si-Al coating exceeded the performance of both types of coatings on certain superalloys in high gas velocity oxidation and thermal fatigue. Also, the Si-Al coating increased the resistance of certain superalloys to hot corrosion.

  9. Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates.

    PubMed

    Chen, Jianyi; Wen, Yugeng; Guo, Yunlong; Wu, Bin; Huang, Liping; Xue, Yunzhou; Geng, Dechao; Wang, Dong; Yu, Gui; Liu, Yunqi

    2011-11-09

    We report the metal-catalyst-free synthesis of high-quality polycrystalline graphene on dielectric substrates [silicon dioxide (SiO(2)) or quartz] using an oxygen-aided chemical vapor deposition (CVD) process. The growth was carried out using a CVD system at atmospheric pressure. After high-temperature activation of the growth substrates in air, high-quality polycrystalline graphene is subsequently grown on SiO(2) by utilizing the oxygen-based nucleation sites. The growth mechanism is analogous to that of growth for single-walled carbon nanotubes. Graphene-modified SiO(2) substrates can be directly used in transparent conducting films and field-effect devices. The carrier mobilities are about 531 cm(2) V(-1) s(-1) in air and 472 cm(2) V(-1) s(-1) in N(2), which are close to that of metal-catalyzed polycrystalline graphene. The method avoids the need for either a metal catalyst or a complicated and skilled postgrowth transfer process and is compatible with current silicon processing techniques.

  10. Radiation Hardened Silicon-on-Insulator Structures with N+ Ion Modified Buried SiO2 Layer

    NASA Astrophysics Data System (ADS)

    Tyschenko, I. E.; Popov, V. P.

    2009-12-01

    Radiation-resistant silicon-on-insulator structures were produced by N+ ion implantation into thermally grown SiO2 film and subsequent hydrogen transfer of the Si layer to the nitrogen-implanted substrate under conditions of vacuum wafer bonding. Accumulation of the carriers in the buried SiO2 was investigated as a function of fluence of nitrogen ions in the range (1-6)×1015 cm2 and as a function of total radiation dose ranging from 104 to 107 rad (Si). It was found that the charge generated near the nitrided bonding interface was reduced by a factor of four compared to the thermal SiO2/Si interface.

  11. Bipolar resistive switching in metal-insulator-semiconductor nanostructures based on silicon nitride and silicon oxide

    NASA Astrophysics Data System (ADS)

    Koryazhkina, M. N.; Tikhov, S. V.; Mikhaylov, A. N.; Belov, A. I.; Korolev, D. S.; Antonov, I. N.; Karzanov, V. V.; Gorshkov, O. N.; Tetelbaum, D. I.; Karakolis, P.; Dimitrakis, P.

    2018-03-01

    Bipolar resistive switching in metal-insulator-semiconductor (MIS) capacitor-like structures with an inert Au top electrode and a Si3N4 insulator nanolayer (6 nm thick) has been observed. The effect of a highly doped n +-Si substrate and a SiO2 interlayer (2 nm) is revealed in the changes in the semiconductor space charge region and small-signal parameters of parallel and serial equivalent circuit models measured in the high- and low-resistive capacitor states, as well as under laser illumination. The increase in conductivity of the semiconductor capacitor plate significantly reduces the charging and discharging times of capacitor-like structures.

  12. Optimized structural designs for stretchable silicon integrated circuits.

    PubMed

    Kim, Dae-Hyeong; Liu, Zhuangjian; Kim, Yun-Soung; Wu, Jian; Song, Jizhou; Kim, Hoon-Sik; Huang, Yonggang; Hwang, Keh-Chih; Zhang, Yongwei; Rogers, John A

    2009-12-01

    Materials and design strategies for stretchable silicon integrated circuits that use non-coplanar mesh layouts and elastomeric substrates are presented. Detailed experimental and theoretical studies reveal many of the key underlying aspects of these systems. The results shpw, as an example, optimized mechanics and materials for circuits that exhibit maximum principal strains less than 0.2% even for applied strains of up to approximately 90%. Simple circuits, including complementary metal-oxide-semiconductor inverters and n-type metal-oxide-semiconductor differential amplifiers, validate these designs. The results suggest practical routes to high-performance electronics with linear elastic responses to large strain deformations, suitable for diverse applications that are not readily addressed with conventional wafer-based technologies.

  13. Nano-Welding of Multi-Walled Carbon Nanotubes on Silicon and Silica Surface by Laser Irradiation

    PubMed Central

    Yuan, Yanping; Chen, Jimin

    2016-01-01

    In this study, a continuous fiber laser (1064 nm wavelength, 30 W/cm2) is used to irradiate multi-walled carbon nanotubes (MWCNTs) on different substrate surfaces. Effects of substrates on nano-welding of MWCNTs are investigated by scanning electron microscope (SEM). For MWCNTs on silica, after 3 s irradiation, nanoscale welding with good quality can be achieved due to breaking C–C bonds and formation of new graphene layers. While welding junctions can be formed until 10 s for the MWCNTs on silicon, the difference of irradiation time to achieve welding is attributed to the difference of thermal conductivity for silica and silicon. As the irradiation time is prolonged up to 12.5 s, most of the MWCNTs are welded to a silicon substrate, which leads to their frameworks of tube walls on the silicon surface. This is because the accumulation of absorbed energy makes the temperature rise. Then chemical reactions among silicon, carbon and nitrogen occur. New chemical bonds of Si–N and Si–C achieve the welding between the MWCNTs and silicon. Vibration modes of Si3N4 appear at peaks of 363 cm−1 and 663 cm−1. There are vibration modes of SiC at peaks of 618 cm−1, 779 cm−1 and 973 cm−1. The experimental observation proves chemical reactions and the formation of Si3N4 and SiC by laser irradiation. PMID:28344293

  14. Oriented conductive oxide electrodes on SiO2/Si and glass

    DOEpatents

    Jia, Quanxi; Arendt, Paul N.

    2001-01-01

    A thin film structure is provided including a silicon substrate with a layer of silicon dioxide on a surface thereof, and a layer of cubic oxide material deposited upon the layer of silicon dioxide by ion-beam-assisted-deposition, said layer of cubic oxide material characterized as biaxially oriented. Preferably, the cubic oxide material is yttria-stabilized zirconia. Additional thin layers of biaxially oriented ruthenium oxide or lanthanum strontium cobalt oxide are deposited upon the layer of yttria-stabilized zirconia. An intermediate layer of cerium oxide is employed between the yttria-stabilized zirconia layer and the lanthanum strontium cobalt oxide layer. Also, a layer of barium strontium titanium oxide can be upon the layer of biaxially oriented ruthenium oxide or lanthanum strontium cobalt oxide. Also, a method of forming such thin film structures, including a low temperature deposition of a layer of a biaxially oriented cubic oxide material upon the silicon dioxide surface of a silicon dioxide/silicon substrate is provided.

  15. Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing.

    PubMed

    Chen, Yu; Lin, Hongtao; Hu, Juejun; Li, Mo

    2014-07-22

    Besides being the foundational material for microelectronics, crystalline silicon has long been used for the production of infrared lenses and mirrors. More recently, silicon has become the key material to achieve large-scale integration of photonic devices for on-chip optical interconnect and signal processing. For optics, silicon has significant advantages: it offers a very high refractive index and is highly transparent in the spectral range from 1.2 to 8 μm. To fully exploit silicon’s superior performance in a remarkably broad range and to enable new optoelectronic functionalities, here we describe a general method to integrate silicon photonic devices on arbitrary foreign substrates. In particular, we apply the technique to integrate silicon microring resonators on mid-infrared compatible substrates for operation in the mid-infrared. These high-performance mid-infrared optical resonators are utilized to demonstrate, for the first time, on-chip cavity-enhanced mid-infrared spectroscopic analysis of organic chemicals with a limit of detection of less than 0.1 ng.

  16. Continuous coating of silicon-on-ceramic

    NASA Technical Reports Server (NTRS)

    Heaps, J. D.; Schuldt, S. B.; Grung, B. L.; Zook, J. D.; Butter, C. D.

    1980-01-01

    Growth of sheet silicon on low-cost substrates has been demonstrated by the silicon coating with inverted meniscus (SCIM) technique. A mullite-based ceramic substrate is coated with carbon and then passed over a trough of molten silicon with a raised meniscus. Solidification occurs at the trailing edge of the downstream meniscus, producing a silicon-on-ceramic (SOC) layer. Meniscus shape and stability are controlled by varying the level of molten silicon in a reservoir connected to the trough. The thermal conditions for growth and the crystallographic texture of the SOC layers are similar to those produced by dip-coating, the original technique of meniscus-controlled growth. The thermal conditions for growth have been analyzed in some detail. The analysis correctly predicts the velocity-thickness relationship and the liquid-solid interface shape for dip-coating, and appears to be equally applicable to SCIM-coating. Solar cells made from dip-coated SOC material have demonstrated efficiencies of 10% on 4-sq cm cells and 9.9% on 10-sq cm cells.

  17. Phase modulation in horizontal metal-insulator-silicon-insulator-metal plasmonic waveguides.

    PubMed

    Zhu, Shiyang; Lo, G Q; Kwong, D L

    2013-04-08

    An extremely compact Si phase modulator is proposed and validated, which relies on effective modulation of the real part of modal index of horizontal metal-insulator-Si-insulator-metal plasmonic waveguides by a voltage applied between the metal cover and the Si core. Proof-of-concept devices are fabricated on silicon-on-insulator substrates using standard complementary metal-oxide-semiconductor technology using copper as the metal and thermal silicon dioxide as the insulator. A modulator with a 1-μm-long phase shifter inserted in an asymmetric Si Mach-Zehnder interferometer exhibits 9-dB extinction ratio under a 6-V/10-kHz voltage swing. Numerical simulations suggest that high speed and low driving voltage could be achieved by shortening the distance between the Si core and the n(+)-contact and by using a high-κ dielectric as the insulator, respectively.

  18. Non-Plasmonic SERS with Silicon: Is It Really Safe? New Insights into the Optothermal Properties of Core/Shell Microbeads.

    PubMed

    Bontempi, Nicolò; Vassalini, Irene; Danesi, Stefano; Ferroni, Matteo; Donarelli, Maurizio; Colombi, Paolo; Alessandri, Ivano

    2018-05-03

    Silicon is one of the most interesting candidates for plasmon-free surface-enhaced Raman scattering (SERS), because of its high-refractive index and thermal stability. However, here we demonstrate that the alleged thermal stability of silicon nanoshells irradiated by conventional Raman laser cannot be taken for granted. We investigated the opto-thermal behavior of SiO 2 /Si core/shell microbeads (Si-rex) irradiated with three common Raman laser sources (λ = 532, 633, 785 nm) under real working conditions. We obtained an experimental proof of the critical role played by bead size and aggregation in heat and light management, demonstrating that, in the case of strong opto-thermal coupling, the temperature can exceed that of the melting points of both core and shell components. In addition, we also show that weakly coupled beads can be utilized as stable substrates for plasmon-free SERS experiments.

  19. Study of the Anisotropic Elastoplastic Properties of β-Ga2O3 Films Synthesized on SiC/Si Substrates

    NASA Astrophysics Data System (ADS)

    Grashchenko, A. S.; Kukushkin, S. A.; Nikolaev, V. I.; Osipov, A. V.; Osipova, E. V.; Soshnikov, I. P.

    2018-05-01

    The structural and mechanical properties of gallium oxide films grown on silicon crystallographic planes (001), (011), and (111) with a buffer layer of silicon carbide are investigated. Nanoindentation was used to study the elastoplastic properties of gallium oxide and also to determine the elastic recovery parameter of the films under study. The tensile strength, hardness, elasticity tensor, compliance tensor, Young's modulus, Poisson's ratio, and other characteristics of gallium oxide were calculated using quantum chemistry methods. It was found that the gallium oxide crystal is auxetic because, for some stretching directions, the Poisson's ratio takes on negative values. The calculated values correspond quantitatively to the experimental data. It is concluded that the elastoplastic properties of gallium oxide films approximately correspond to the properties of bulk crystals and that a change in the orientation of the silicon surface leads to a significant change in the orientation of gallium oxide.

  20. Graphoepitaxy integration and pattern transfer of lamellar silicon-containing high-chi block copolymers

    NASA Astrophysics Data System (ADS)

    Bézard, P.; Chevalier, X.; Legrain, A.; Navarro, C.; Nicolet, C.; Fleury, G.; Cayrefourcq, I.; Tiron, R.; Zelsmann, M.

    2018-03-01

    In this work, we present our recent achievements on the integration and transfer etching of a novel silicon-containing high-χ block copolymer for lines/spaces applications. Developed carbo-silane BCPs are synthesized under industrial conditions and present periodicities as low as 14 nm. A full directed self-assembly by graphoepitaxy process is shown using standard photolithography stacks and all processes are performed on 300 mm wafer compatible tools. Specific plasma processes are developed to isolate perpendicular lamellae and sub-12 nm features are finally transferred into silicon substrates. The quality of the final BCP hard mask (CDU, LWR, LER) are also investigated. Finally, thanks to the development of dedicated neutral layers and top-coats allowing perpendicular orientations, it was possible to investigate plasma etching experiments on full-sheets at 7 nm resolution, opening the way to the integration of these polymers in chemoepitaxy stacks.

Top