ERIC Educational Resources Information Center
Polman, Joseph; Newman, Alan; Farrar, Cathy; Saul, E. Wendy
2012-01-01
Much of the National Science Education Standards (NRC 1996), aside from the inquiry and teaching sections, focus on content. The authors' call is instead to build standards that focus on what students need to be scientifically literate in 10 or 15 years. Although a basic understanding of important scientific concepts and an understanding of how…
Growth in Turkish Positive Basic Sciences, 1933-1966.
ERIC Educational Resources Information Center
Ozinonu, A. Kemal
This study collected data on the measurable qualities of Turkish science in terms of high level scientific manpower, scientific productivity, and scientific fertility from 1933 to 1966 and analyzed the data collected with the goal of providing a deeper understanding of the nature of Turkish science. Scientific personnel, including Turkish…
Basic Inferences of Scientific Reasoning, Argumentation, and Discovery
ERIC Educational Resources Information Center
Lawson, Anton E.
2010-01-01
Helping students better understand how scientists reason and argue to draw scientific conclusions has long been viewed as a critical component of scientific literacy, thus remains a central goal of science instruction. However, differences of opinion persist regarding the nature of scientific reasoning, argumentation, and discovery. Accordingly,…
ERIC Educational Resources Information Center
Bugarcic, A.; Zimbardi, K.; Macaranas, J.; Thorn, P.
2012-01-01
Student-centered education involving research experiences or inquiry have been shown to help undergraduate students understand, and become excited about, the process of scientific investigation. These benefits are particularly important for students in the early stages of their degree (Report and Kenny,…
Scientific independence: A key to credibility
Leonard F. Ruggiero
2007-01-01
Independence and objectivity are key ingredients of scientific credibility, especially in research organizations that are part of a natural resource management agency like the Forest Service. Credibility, in turn, is essential to the utility of scientific information in socio-political processes. In order to develop this thesis further, a basic understanding of Forest...
Nicholas Epley: Award for Distinguished Scientific Early Career Contributions to Psychology.
2011-11-01
Presents Nicholas Epley, the 2011 winner of the American Psychological Association Award for Distinguished Scientific Early Career Contributions to Psychology. "For brilliant empirical and theoretical contributions to social cognition in general and for creative insights into how people understand the minds of others in particular. Nicholas Epley's empirical work demonstrates how basic mechanisms of social cognition can lead to interpersonal conflict and misunderstanding. His theoretical work expands social cognition beyond its traditional focus on human beings as targets of judgment, showing how basic mechanisms explain people's understanding of minds of all kinds, from pets to gadgets to gods. His work shows how social psychology, at its best, increases understanding of everyday life and inspires others to understand more." (PsycINFO Database Record (c) 2011 APA, all rights reserved). 2011 APA, all rights reserved
Basic science right, not basic science lite: medical education at a crossroad.
Fincher, Ruth-Marie E; Wallach, Paul M; Richardson, W Scott
2009-11-01
This perspective is a counterpoint to Dr. Brass' article, Basic biomedical sciences and the future of medical education: implications for internal medicine. The authors review development of the US medical education system as an introduction to a discussion of Dr. Brass' perspectives. The authors agree that sound scientific foundations and skill in critical thinking are important and that effective educational strategies to improve foundational science education should be implemented. Unfortunately, many students do not perceive the relevance of basic science education to clinical practice.The authors cite areas of disagreement. They believe it is unlikely that the importance of basic sciences will be diminished by contemporary directions in medical education and planned modifications of USMLE. Graduates' diminished interest in internal medicine is unlikely from changes in basic science education.Thoughtful changes in education provide the opportunity to improve understanding of fundamental sciences, the process of scientific inquiry, and translation of that knowledge to clinical practice.
Empirical Evidence or Intuition? An Activity Involving the Scientific Method
ERIC Educational Resources Information Center
Overway, Ken
2007-01-01
Students need to have basic understanding of scientific method during their introductory science classes and for this purpose an activity was devised which involved a game based on famous Monty Hall game problem. This particular activity allowed students to banish or confirm their intuition based on empirical evidence.
scientific understanding-of molecular, nanoscale, semiconductor, and biological materials, systems, and molecular, nanoscale, and semiconductor systems to capture, control, and convert solar radiation with high
Observe, simplify, titrate, model, and synthesize: A paradigm for analyzing behavior
Alberts, Jeffrey R.
2013-01-01
Phenomena in behavior and their underlying neural mechanisms are exquisitely complex problems. Infrequently do we reflect on our basic strategies of investigation and analysis, or formally confront the actual challenges of achieving an understanding of the phenomena that inspire research. Philip Teitelbaum is distinct in his elegant approaches to understanding behavioral phenomena and their associated neural processes. He also articulated his views on effective approaches to scientific analyses of brain and behavior, his vision of how behavior and the nervous system are patterned, and what constitutes basic understanding. His rubrics involve careful observation and description of behavior, simplification of the complexity, analysis of elements, and re-integration through different forms of synthesis. Research on the development of huddling behavior by individual and groups of rats is reviewed in a context of Teitelbaum’s rubrics of research, with the goal of appreciating his broad and positive influence on the scientific community. PMID:22481081
NASA Astrophysics Data System (ADS)
Wibowo, F. C.; Suhandi, A.; Rusdiana, D.; Darman, D. R.; Ruhiat, Y.; Denny, Y. R.; Suherman; Fatah, A.
2016-08-01
A Study area in physics learning is purposeful on the effects of various types of learning interventions to help students construct the basic of scientific conception about physics. Microscopic Virtual Media (MVM) are applications for physics learning to support powerful modelling microscopic involving physics concepts and processes. In this study groups (experimental) of 18±20 years old, students were studied to determine the role of MVM in the development of functional understanding of the concepts of thermal expansion in heat transfer. The experimental group used MVM in learning process. The results show that students who learned with virtual media exhibited significantly higher scores in the research tasks. Our findings proved that the MVM may be used as an alternative instructional tool, in order to help students to confront and constructed their basic of scientific conception and developed their understanding.
Development of a Structured Undergraduate Research Experience: Framework and Implications
ERIC Educational Resources Information Center
Brown, Anne M.; Lewis, Stephanie N.; Bevan, David R.
2016-01-01
Participating in undergraduate research can be a pivotal experience for students in life science disciplines. Development of critical thinking skills, in addition to conveying scientific ideas in oral and written formats, is essential to ensuring that students develop a greater understanding of basic scientific knowledge and the research process.…
Astrobiology for the 21st Century
NASA Astrophysics Data System (ADS)
Oliveira, C.
2008-02-01
We live in a scientific world. Science is all around us. We take scientific principles for granted every time we use a piece of technological apparatus, such as a car, a computer, or a cellphone. In today's world, citizens frequently have to make decisions that require them to have some basic scientific knowledge. To be a contributing citizen in a modern democracy, a person needs to understand the general principles of science.
The Experimental Design Ability Test (EDAT)
ERIC Educational Resources Information Center
Sirum, Karen; Humburg, Jennifer
2011-01-01
Higher education goals include helping students develop evidence based reasoning skills; therefore, scientific thinking skills such as those required to understand the design of a basic experiment are important. The Experimental Design Ability Test (EDAT) measures students' understanding of the criteria for good experimental design through their…
An investigation of Taiwanese graduate students' level of civic scientific literacy
NASA Astrophysics Data System (ADS)
Lee, Yu-Mei
2003-07-01
Professionals in a variety of disciplines have stressed the importance of advancing the scientific literacy of all citizens in a democratic and science- and technology-based society. Taiwan has been striving hard to advance its democracy and heavily relies on a knowledge-based economy. The high rank Taiwan receives in international comparisons demonstrates Taiwan's high achievement in science at the middle school level. However, no empirical evidence has been collected to examine whether this high achievement at the middle school level promises a high level of scientific literacy in adults. This study investigated the level of scientific literacy of Taiwanese graduate students using Miller's framework of three dimensions of civic scientific literacy, including: (1) a vocabulary of basic scientific constructs, (2) an understanding of the process of scientific inquiry, and (3) some level of understanding of the impact of science and technology on individuals and on society. A web-based questionnaire was employed to survey Taiwanese graduate students studying in three different types of graduate schools and eleven academic fields. A total of 525 responses were collected. In addition, following the survey, eight participants were purposefully selected for individual interviews in order to obtain additional information on participants' scientific literacy. Descriptive statistical analyses were computed to summarize the participants' overall responses to each of the survey sections. Regression models using dummy coding of categorical variables (i.e., gender, school type, and academic areas) were performed to examine whether significant differences exist among different groups. The major findings suggest that: (1) Taiwanese graduate students' civic scientific literacy is not at a satisfactory level; (2) the participants carry mixed attitudes toward science and technology, (3) Taiwanese graduate students are not very attentive to new information of science and technology; (4) all three categorical variables had an impact on the participants' understanding of basic scientific constructs, while only school type had an effect on the participants' understanding of the scientific inquiry process; and (5) the interview results did not support the survey results. The researcher suggests that further studies are required to determine the reasons behind these findings.
An outline of planetary geoscience. [philosophy
NASA Technical Reports Server (NTRS)
1977-01-01
A philosophy for planetary geoscience is presented to aid in addressing a number of major scientific questions; answers to these questions should constitute the basic geoscientific knowledge of the solar system. However, any compilation of major questions or basic knowledge in planetary geoscience involves compromises and somewhat arbitrary boundaries that reflect the prevalent level of understanding at the time.
ERIC Educational Resources Information Center
Fuselier, Linda; Murphy, Claudia; Bender, Anita; Falcón, Kandace Creel
2015-01-01
Background and purpose: The purpose of this exploratory case study is to describe how scholars negotiated disciplinary divides to develop and communicate to their students an understanding of the basic features of scientific knowledge. Our goals were to examine boundary crossing in interdisciplinary collaboration and to assess the efficacy of…
CURRICULUM GUIDES IN PHYSICS--GENERAL ADVANCED PLACEMENT, COLLEGE LEVEL.
ERIC Educational Resources Information Center
WESNER, GORDON E.
THE GENERAL PHYSICS CURRICULUM IS PLANNED FOR THOSE WHOSE GENERAL ABILITY IS BETTER THAN AVERAGE AND IS OFFERED IN GRADES 11 OR 12. GENERAL OBJECTIVES ARE, TO DEVELOP CRITICAL THINKING THROUGH THE SCIENTIFIC METHOD, TO UNDERSTAND BASIC PHYSICAL LAWS AND MAN'S PLACE IN THE UNIVERSE, AND TO DEVELOP A SCIENTIFIC ABILITY AND INTEREST. ELEVEN UNITS OF…
Mars Observer: Mission toward a basic understanding of Mars
NASA Technical Reports Server (NTRS)
Albee, Arden L.
1992-01-01
The Mars Observer Mission will provide a spacecraft platform about Mars from which the entire Martian surface and atmosphere will be observed and mapped by remote sensing instruments for at least 1 Martian year. The scientific objectives for the Mission emphasize qualitative and quantitative determination of the elemental and mineralogical composition of the surface; measurement of the global surface topography, gravity field, and magnetic field; and the development of a synoptic data base of climatological conditions. The Mission will provide basic global understanding of Mars as it exists today and will provide a framework for understanding its past.
Basic physics of laser interaction with vital tissue.
Wigdor, Harvey
2008-09-01
It is essential for any practitioner who uses lasers in their clinical practice to understand the basic physics of lasers. It is this knowledge that allows for an educated assessment of the clinical outcomes that lasers produce in our patients. It is also this understanding that provides a scientific basis for the visual feedback the clinician uses to vary parameters as needed to get the desired clinical results. It is the intent of this paper to discuss the very basic reasons why lasers affect tissues the way they do, and to synthesize the plethora of information dental practitioners are seeing regularly in dental journals.
Mechanisms of Cancer - Annual Plan
NCI works to understand the mechanisms of cancer cell growth, survival, and metastasis. Get more information on how NCI supports basic scientific research that will lead to new ways to prevent, detect, and treat cancer.
ERIC Educational Resources Information Center
Martins, Isabel P.; Veiga, Luisa
2001-01-01
Argues that science education is a fundamental tool for global education and that it must be introduced in early years as a first step to a scientific culture for all. Describes testing validity of a didactic strategy for developing the learning of concepts, which was based upon an experimental work approach using everyday life contexts. (Author)
A roadmap for bridging basic and applied research in forensic entomology.
Tomberlin, J K; Mohr, R; Benbow, M E; Tarone, A M; VanLaerhoven, S
2011-01-01
The National Research Council issued a report in 2009 that heavily criticized the forensic sciences. The report made several recommendations that if addressed would allow the forensic sciences to develop a stronger scientific foundation. We suggest a roadmap for decomposition ecology and forensic entomology hinging on a framework built on basic research concepts in ecology, evolution, and genetics. Unifying both basic and applied research fields under a common umbrella of terminology and structure would facilitate communication in the field and the production of scientific results. It would also help to identify novel research areas leading to a better understanding of principal underpinnings governing ecosystem structure, function, and evolution while increasing the accuracy of and ability to interpret entomological evidence collected from crime scenes. By following the proposed roadmap, a bridge can be built between basic and applied decomposition ecology research, culminating in science that could withstand the rigors of emerging legal and cultural expectations.
Bugarcic, A; Zimbardi, K; Macaranas, J; Thorn, P
2012-01-01
Student-centered education involving research experiences or inquiry have been shown to help undergraduate students understand, and become excited about, the process of scientific investigation. These benefits are particularly important for students in the early stages of their degree (Report and Kenny, http://naplesccsunysbedu/Pres/boyernsf/1998). However, embedding such experiences into the curriculum is particularly difficult when dealing with early stage students, who are in larger cohorts and often lack the background content knowledge necessary to engage with primary research literature and research level methods and equipment. We report here the design, delivery, assessment, and subsequent student learning outcomes of a 4-week practical module for 120 students at the beginning of their second year of university, which successfully engages students in designing cell culture experiments and in understanding the molecular processes and machinery involved in the basic cellular process of macropinocytosis. Copyright © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Connolly, Joseph W.
The bicycle is a common, yet unique mechanical contraption in our world. In spite of this, the bike's physical and mechanical principles are understood by a select few. You do not have to be a genius to join this small group of people who understand the physics of cycling. This is your guide to fundamental principles (such as Newton's laws) and the book provides intuitive, basic explanations for the bicycle's behaviour. Each concept is introduced and illustrated with simple, everyday examples. Although cycling is viewed by most as a fun activity, and almost everyone acquires the basic skills at a young age, few understand the laws of nature that give magic to the ride. This is a closer look at some of these fun, exhilarating, and magical aspects of cycling. In the reading, you will also understand other physical principles such as motion, force, energy, power, heat, and temperature.
Award for Distinguished Scientific Contributions: Terry E. Robinson.
2016-11-01
The APA Awards for Distinguished Scientific Contributions are presented to persons who, in the opinion of the Committee on Scientific Awards, have made distinguished theoretical or empirical contributions to basic research in psychology. One of the 2016 award winners is Terry E. Robinson, who received this award for "outstanding contributions to understanding the psychological and neural mechanisms underlying stimulant drug responses." Robinson's award citation, biography, and a selected bibliography are presented here. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Kraemer Diaz, Anne E.; Spears Johnson, Chaya R.; Arcury, Thomas A.
2013-01-01
Community-based participatory research (CBPR) has become essential in health disparities and environmental justice research; however, the scientific integrity of CBPR projects has become a concern. Some concerns, such as appropriate research training, lack of access to resources and finances, have been discussed as possibly limiting the scientific integrity of a project. Prior to understanding what threatens scientific integrity in CBPR, it is vital to understand what scientific integrity means for the professional and community investigators who are involved in CBPR. This analysis explores the interpretation of scientific integrity in CBPR among 74 professional and community research team members from of 25 CBPR projects in nine states in the southeastern United States in 2012. It describes the basic definition for scientific integrity and then explores variations in the interpretation of scientific integrity in CBPR. Variations in the interpretations were associated with team member identity as professional or community investigators. Professional investigators understood scientific integrity in CBPR as either conceptually or logistically flexible, as challenging to balance with community needs, or no different than traditional scientific integrity. Community investigators interpret other factors as important in scientific integrity, such as trust, accountability, and overall benefit to the community. This research demonstrates that the variations in the interpretation of scientific integrity in CBPR call for a new definition of scientific integrity in CBPR that takes into account the understanding and needs of all investigators. PMID:24161098
The dynamics of coastal models
Hearn, Clifford J.
2008-01-01
Coastal basins are defined as estuaries, lagoons, and embayments. This book deals with the science of coastal basins using simple models, many of which are presented in either analytical form or Microsoft Excel or MATLAB. The book introduces simple hydrodynamics and its applications, from the use of simple box and one-dimensional models to flow over coral reefs. The book also emphasizes models as a scientific tool in our understanding of coasts, and introduces the value of the most modern flexible mesh combined wave-current models. Examples from shallow basins around the world illustrate the wonders of the scientific method and the power of simple dynamics. This book is ideal for use as an advanced textbook for graduate students and as an introduction to the topic for researchers, especially those from other fields of science needing a basic understanding of the basic ideas of the dynamics of coastal basins.
NASA Astrophysics Data System (ADS)
Hikmah, N.; Yamtinah, S.; Ashadi; Indriyanti, N. Y.
2018-05-01
A Science process skill (SPS) is a fundamental scientific method to achieve good knowledge. SPS can be categorized into two levels: basic and integrated. Learning SPS helps children to grow as individuals who can access knowledge and know how to acquire it. The primary outcomes of the scientific process in learning are the application of scientific processes, scientific reasoning, accurate knowledge, problem-solving, and understanding of the relationship between science, technology, society, and everyday life’s events. Teachers’ understanding of SPS is central to the application of SPS in a learning process. Following this point, this study aims to investigate the high school chemistry teachers’ understanding of SPS pertains to their assessment of SPS in chemistry learning. The understanding of SPS is measured from the conceptual and operational aspects of SPS. This research uses qualitative analysis method, and the sample consists of eight chemistry teachers selected by random sampling. A semi-structured interview procedure is used to collect the data. The result of the analysis shows that teachers’ conceptual and operational understanding of SPS is weak. It affects the accuracy and appropriateness of the teacher’s selection of SPS assessment in chemistry learning.
ERIC Educational Resources Information Center
Xie, Qun; So, Winnie Wing Mui
2012-01-01
Argumentation is recognized as a significant aspect of science education for the development of students' scientific literacy, and the science teacher is the key factor in organizing argumentative discourse in the science classroom. Composing argumentation in the classroom requires teachers to not only acquire the basic understandings and skills…
Energy Frontier Research Centers: Science for Our Nation's Energy Future, September 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
As world demand for energy rapidly expands, transforming the way energy is collected, stored, and used has become a defining challenge of the 21st century. At its heart, this challenge is a scientific one, inspiring the U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) to establish the Energy Frontier Research Center (EFRC) program in 2009. The EFRCs represent a unique approach, bringing together creative, multidisciplinary scientific teams to perform energy-relevant basic research with a complexity beyond the scope of single-investigator projects. These centers take full advantage of powerful new tools for characterizing, understanding, modeling, and manipulating mattermore » from atomic to macroscopic length scales. They also train the next-generation scientific workforce by attracting talented students and postdoctoral researchers interested in energy science. The EFRCs have collectively demonstrated the potential to substantially advance the scientific understanding underpinning transformational energy technologies. Both a BES Committee of Visitors and a Secretary of Energy Advisory Board Task Force have found the EFRC program to be highly successful in meeting its goals. The scientific output from the EFRCs is impressive, and many centers have reported that their results are already impacting both technology research and industry. This report on the EFRC program includes selected highlights from the initial 46 EFRCs and the current 36 EFRCs.« less
Haywood, Alan M.; Dowsett, Harry J.; Dolan, Aisling M.; Rowley, David; Abe-Ouchi, Ayako; Otto-Bliesner, Bette; Chandler, Mark A.; Hunter, Stephen J.; Lunt, Daniel J.; Pound, Matthew; Salzmann, Ulrich
2016-01-01
Finally we have designed a suite of prioritized experiments that tackle issues surrounding the basic understanding of the Pliocene and its relevance in the context of future climate change in a discrete way.
A high arctic experience of uniting research and monitoring
NASA Astrophysics Data System (ADS)
Schmidt, Niels Martin; Christensen, Torben R.; Roslin, Tomas
2017-07-01
Monitoring is science keeping our thumb on the pulse of the environment to detect any changes of concern for societies. Basic science is the question-driven search for fundamental processes and mechanisms. Given the firm root of monitoring in human interests and needs, basic sciences have often been regarded as scientifically "purer"—particularly within university-based research communities. We argue that the dichotomy between "research" and "monitoring" is an artificial one, and that this artificial split clouds the definition of scientific goals and leads to suboptimal use of resources. We claim that the synergy between the two scientific approaches is well distilled by science conducted under extreme logistic constraints, when scientists are forced to take full advantage of both the data and the infrastructure available. In evidence of this view, we present our experiences from two decades of uniting research and monitoring at the remote research facility Zackenberg in High Arctic Greenland. For this site, we show how the combination of insights from monitoring with the mechanistic understanding obtained from basic research has yielded the most complete understanding of the system—to the benefit of all, and as an example to follow. We therefore urge scientists from across the continuum from monitoring to research to come together, to disregard old division lines, and to work together to expose a comprehensive picture of ecosystem change and its consequences.
ERIC Educational Resources Information Center
Adams, Steve
1990-01-01
The study of aerodynamics using a wind tunnel helps students develop an understanding of the basic scientific concepts of lift, drag, and stability and their applications. Directions for building a wind tunnel in the classroom and activities for using the tunnel are provided. (KR)
Scientific innovation's two Valleys of Death: how blood and tissue banks can help to bridge the gap.
Thompson, Sean D A
2014-12-01
Most biomedical basic research in the United States takes place at universities and research institutes and is funded by federal grants. Basic research is awarded billions of federal dollars every year, enabling new discoveries and greater understanding of the fundamental science that makes new innovations and therapies possible. However, when basic research yields an invention of practical use and the research evolves from basic to applied, the playing field changes. Pre-technology licensing federal dollars all but disappear, and innovations rely predominantly on private funding to support the full path from bench to bedside. It is along this path that the scientific advance faces two Valleys of Death. These sometimes insurmountable development stages are the product of the innovation's inherent financial, business and investment risks. Well-planned and executed in vivo studies using quality biological materials demonstrating proof-of-concept is often the key to bridging these gaps, and blood and tissue banks offer unique services and resources to enable this process.
Scientific Innovation's Two Valleys of Death: How Blood and Tissue Banks Can Help to Bridge the Gap
Thompson, Sean D.A.
2014-01-01
Abstract Most biomedical basic research in the United States takes place at universities and research institutes and is funded by federal grants. Basic research is awarded billions of federal dollars every year, enabling new discoveries and greater understanding of the fundamental science that makes new innovations and therapies possible. However, when basic research yields an invention of practical use and the research evolves from basic to applied, the playing field changes. Pre-technology licensing federal dollars all but disappear, and innovations rely predominantly on private funding to support the full path from bench to bedside. It is along this path that the scientific advance faces two Valleys of Death. These sometimes insurmountable development stages are the product of the innovation’s inherent financial, business and investment risks. Well-planned and executed in vivo studies using quality biological materials demonstrating proof-of-concept is often the key to bridging these gaps, and blood and tissue banks offer unique services and resources to enable this process. PMID:25457967
ERIC Educational Resources Information Center
Kelly, P. J., Ed.
One of the important aims of good biology teaching should be to encourage some basic understanding and appreciation of ecology. This understanding should include not only the scientific basis of ecology, but also its application for human welfare and, in particular, for rational exploitation and management of the natural environment and resources.…
Exploring undergraduates' understanding of photosynthesis using diagnostic question clusters.
Parker, Joyce M; Anderson, Charles W; Heidemann, Merle; Merrill, John; Merritt, Brett; Richmond, Gail; Urban-Lurain, Mark
2012-01-01
We present a diagnostic question cluster (DQC) that assesses undergraduates' thinking about photosynthesis. This assessment tool is not designed to identify individual misconceptions. Rather, it is focused on students' abilities to apply basic concepts about photosynthesis by reasoning with a coordinated set of practices based on a few scientific principles: conservation of matter, conservation of energy, and the hierarchical nature of biological systems. Data on students' responses to the cluster items and uses of some of the questions in multiple-choice, multiple-true/false, and essay formats are compared. A cross-over study indicates that the multiple-true/false format shows promise as a machine-gradable format that identifies students who have a mixture of accurate and inaccurate ideas. In addition, interviews with students about their choices on three multiple-choice questions reveal the fragility of students' understanding. Collectively, the data show that many undergraduates lack both a basic understanding of the role of photosynthesis in plant metabolism and the ability to reason with scientific principles when learning new content. Implications for instruction are discussed.
Exploring Undergraduates' Understanding of Photosynthesis Using Diagnostic Question Clusters
Parker, Joyce M.; Anderson, Charles W.; Heidemann, Merle; Merrill, John; Merritt, Brett; Richmond, Gail; Urban-Lurain, Mark
2012-01-01
We present a diagnostic question cluster (DQC) that assesses undergraduates' thinking about photosynthesis. This assessment tool is not designed to identify individual misconceptions. Rather, it is focused on students' abilities to apply basic concepts about photosynthesis by reasoning with a coordinated set of practices based on a few scientific principles: conservation of matter, conservation of energy, and the hierarchical nature of biological systems. Data on students' responses to the cluster items and uses of some of the questions in multiple-choice, multiple-true/false, and essay formats are compared. A cross-over study indicates that the multiple-true/false format shows promise as a machine-gradable format that identifies students who have a mixture of accurate and inaccurate ideas. In addition, interviews with students about their choices on three multiple-choice questions reveal the fragility of students' understanding. Collectively, the data show that many undergraduates lack both a basic understanding of the role of photosynthesis in plant metabolism and the ability to reason with scientific principles when learning new content. Implications for instruction are discussed. PMID:22383617
The Impact of Science Fiction Film on Student Understanding of Science
NASA Astrophysics Data System (ADS)
Barnett, Michael; Wagner, Heather; Gatling, Anne; Anderson, Janice; Houle, Meredith; Kafka, Alan
2006-04-01
Researchers who have investigated the public understanding of science have argued that fictional cinema and television has proven to be particularly effective at blurring the distinction between fact and fiction. The rationale for this study lies in the notion that to teach science effectively, educators need to understand how popular culture influences their students' perception and understanding of science. Using naturalistic research methods in a diverse middle school we found that students who watched a popular science fiction film, The Core, had a number of misunderstandings of earth science concepts when compared to students who did not watch the movie. We found that a single viewing of a science fiction film can negatively impact student ideas regarding scientific phenomena. Specifically, we found that the film leveraged the scientific authority of the main character, coupled with scientifically correct explanations of some basic earth science, to create a series of plausible, albeit unscientific, ideas that made sense to students.
Basic science research in urology training.
Eberli, D; Atala, A
2009-04-01
The role of basic science exposure during urology training is a timely topic that is relevant to urologic health and to the training of new physician scientists. Today, researchers are needed for the advancement of this specialty, and involvement in basic research will foster understanding of basic scientific concepts and the development of critical thinking skills, which will, in turn, improve clinical performance. If research education is not included in urology training, future urologists may not be as likely to contribute to scientific discoveries.Currently, only a minority of urologists in training are currently exposed to significant research experience. In addition, the number of physician-scientists in urology has been decreasing over the last two decades, as fewer physicians are willing to undertake a career in academics and perform basic research. However, to ensure that the field of urology is driving forward and bringing novel techniques to patients, it is clear that more research-trained urologists are needed. In this article we will analyse the current status of basic research in urology training and discuss the importance of and obstacles to successful addition of research into the medical training curricula. Further, we will highlight different opportunities for trainees to obtain significant research exposure in urology.
Science Education: A Case for Astronomy
ERIC Educational Resources Information Center
Wentzel, Donat G.
1971-01-01
Describes astronomy course used as a medium to provide an understanding of how science progresses and how it relates to society. Illustrations are given of how scientific judgment, importance of basic science, humanistic aspects of science, and the priorities among science are presented. (DS)
Using NASA Space Imaging Technology to Teach Earth and Sun Topics
NASA Astrophysics Data System (ADS)
Verner, E.; Bruhweiler, F. C.; Long, T.
2011-12-01
We teach an experimental college-level course, directed toward elementary education majors, emphasizing "hands-on" activities that can be easily applied to the elementary classroom. This course, Physics 240: "The Sun-Earth Connection" includes various ways to study selected topics in physics, earth science, and basic astronomy. Our lesson plans and EPO materials make extensive use of NASA imagery and cover topics about magnetism, the solar photospheric, chromospheric, coronal spectra, as well as earth science and climate. In addition we are developing and will cover topics on ecosystem structure, biomass and water on Earth. We strive to free the non-science undergraduate from the "fear of science" and replace it with the excitement of science such that these future teachers will carry this excitement to their future students. Hands-on experiments, computer simulations, analysis of real NASA data, and vigorous seminar discussions are blended in an inquiry-driven curriculum to instill confident understanding of basic physical science and modern, effective methods for teaching it. The course also demonstrates ways how scientific thinking and hands-on activities could be implemented in the classroom. We have designed this course to provide the non-science student a confident basic understanding of physical science and modern, effective methods for teaching it. Most of topics were selected using National Science Standards and National Mathematics Standards that are addressed in grades K-8. The course focuses on helping education majors: 1) Build knowledge of scientific concepts and processes; 2) Understand the measurable attributes of objects and the units and methods of measurements; 3) Conduct data analysis (collecting, organizing, presenting scientific data, and to predict the result); 4) Use hands-on approaches to teach science; 5) Be familiar with Internet science teaching resources. Here we share our experiences and challenges we face while teaching this course.
Students' Mental Models of Atomic Spectra
ERIC Educational Resources Information Center
Körhasan, Nilüfer Didis; Wang, Lu
2016-01-01
Mental modeling, which is a theory about knowledge organization, has been recently studied by science educators to examine students' understanding of scientific concepts. This qualitative study investigates undergraduate students' mental models of atomic spectra. Nine second-year physics students, who have already taken the basic chemistry and…
2014-06-01
Agenda for Basic Research on Social and Organizational Factors Relevant to Small Units NORMS IN MILITARY ENVIRONMENTS 25 group members regardless of...Army personnel. FUTURE RESEARCH ON NORMS With a scientifically informed understanding of social norms, the roles they play in individual and group ...world, and insufficient research has been conducted on similar groups (with respect to size, responsibility, mission, etc.) to be of much utility to
Towards an HIV cure: a global scientific strategy.
Deeks, Steven G; Autran, Brigitte; Berkhout, Ben; Benkirane, Monsef; Cairns, Scott; Chomont, Nicolas; Chun, Tae-Wook; Churchill, Melissa; Di Mascio, Michele; Katlama, Christine; Lafeuillade, Alain; Landay, Alan; Lederman, Michael; Lewin, Sharon R; Maldarelli, Frank; Margolis, David; Markowitz, Martin; Martinez-Picado, Javier; Mullins, James I; Mellors, John; Moreno, Santiago; O'Doherty, Una; Palmer, Sarah; Penicaud, Marie-Capucine; Peterlin, Matija; Poli, Guido; Routy, Jean-Pierre; Rouzioux, Christine; Silvestri, Guido; Stevenson, Mario; Telenti, Amalio; Van Lint, Carine; Verdin, Eric; Woolfrey, Ann; Zaia, John; Barré-Sinoussi, Françoise
2012-07-20
Given the limitations of antiretroviral therapy and recent advances in our understanding of HIV persistence during effective treatment, there is a growing recognition that a cure for HIV infection is both needed and feasible. The International AIDS Society convened a group of international experts to develop a scientific strategy for research towards an HIV cure. Several priorities for basic, translational and clinical research were identified. This Opinion article summarizes the group's recommended key goals for the international community.
Michael Tomasello: Award for Distinguished Scientific Contributions.
2015-11-01
The APA Awards for Distinguished Scientific Contributions are presented to persons who, in the opinion of the Committee on Scientific Awards, have made distinguished theoretical or empirical contributions to basic research in psychology. One of the 2015 award winners is Michael Tomasello, who received this award for "outstanding empirical and theoretical contributions to understanding what makes the human mind unique. Michael Tomasello's pioneering research on the origins of social cognition has led to revolutionary insights in both developmental psychology and primate cognition." Tomasello's award citation, biography, and a selected bibliography are presented here. (c) 2015 APA, all rights reserved).
ERIC Educational Resources Information Center
VanCleave, Janice
This book provides opportunities for engaging students in scientific investigations, offering a hands-on approach that encourages students to understand science concepts, gives them ways to apply the concepts, and introduces and reinforces the skills they need to become independent investigators. The basic outline and objectives of each section of…
The substrate of fluvial systems is regularly characterized as part of a larger physical habitat assessment. Beyond contributing to a basic scientific understanding of fluvial systems, these measures are instrumental in meeting the regulatory responsibilities of bioassessment and...
Recent advances in basic neurosciences and brain disease: from synapses to behavior
Bi, Guo-Qiang; Bolshakov, Vadim; Bu, Guojun; Cahill, Catherine M; Chen, Zhou-Feng; Collingridge, Graham L; Cooper, Robin L; Coorssen, Jens R; El-Husseini, Alaa; Galhardo, Vasco; Gan, Wen-Biao; Gu, Jianguo; Inoue, Kazuhide; Isaac, John; Iwata, Koichi; Jia, Zhengping; Kaang, Bong-Kiun; Kawamata, Mikito; Kida, Satoshi; Klann, Eric; Kohno, Tatsuro; Li, Min; Li, Xiao-Jiang; MacDonald, John F; Nader, Karim; Nguyen, Peter V; Oh, Uhtaek; Ren, Ke; Roder, John C; Salter, Michael W; Song, Weihong; Sugita, Shuzo; Tang, Shao-Jun; Tao, Yuanxiang; Wang, Yu Tian; Woo, Newton; Woodin, Melanie A; Yan, Zhen; Yoshimura, Megumu; Xu, Ming; Xu, Zao C; Zhang, Xia; Zhen, Mei; Zhuo, Min
2006-01-01
Understanding basic neuronal mechanisms hold the hope for future treatment of brain disease. The 1st international conference on synapse, memory, drug addiction and pain was held in beautiful downtown Toronto, Canada on August 21–23, 2006. Unlike other traditional conferences, this new meeting focused on three major aims: (1) to promote new and cutting edge research in neuroscience; (2) to encourage international information exchange and scientific collaborations; and (3) to provide a platform for active scientists to discuss new findings. Up to 64 investigators presented their recent discoveries, from basic synaptic mechanisms to genes related to human brain disease. This meeting was in part sponsored by Molecular Pain, together with University of Toronto (Faculty of Medicine, Department of Physiology as well as Center for the Study of Pain). Our goal for this meeting is to promote future active scientific collaborations and improve human health through fundamental basic neuroscience researches. The second international meeting on Neurons and Brain Disease will be held in Toronto (August 29–31, 2007). PMID:17196111
Basic Science Considerations in Primary Total Hip Replacement Arthroplasty
Mirza, Saqeb B; Dunlop, Douglas G; Panesar, Sukhmeet S; Naqvi, Syed G; Gangoo, Shafat; Salih, Saif
2010-01-01
Total Hip Replacement is one of the most common operations performed in the developed world today. An increasingly ageing population means that the numbers of people undergoing this operation is set to rise. There are a numerous number of prosthesis on the market and it is often difficult to choose between them. It is therefore necessary to have a good understanding of the basic scientific principles in Total Hip Replacement and the evidence base underpinning them. This paper reviews the relevant anatomical and biomechanical principles in THA. It goes on to elaborate on the structural properties of materials used in modern implants and looks at the evidence base for different types of fixation including cemented and uncemented components. Modern bearing surfaces are discussed in addition to the scientific basis of various surface engineering modifications in THA prostheses. The basic science considerations in component alignment and abductor tension are also discussed. A brief discussion on modular and custom designs of THR is also included. This article reviews basic science concepts and the rationale underpinning the use of the femoral and acetabular component in total hip replacement. PMID:20582240
An Introduction to Turbulent Flow
NASA Astrophysics Data System (ADS)
Mathieu, Jean; Scott, Julian
2000-06-01
In recent years, turbulence has become a very lively area of scientific research and application, attracting many newcomers who need a basic introduction to the subject. Turbulent Flows ably meets this need, developing both physical insight and the mathematical framework needed to express the theory. The authors present basic theory and illustrate it with examples of simple turbulent flows and classical models of jets, wakes, and boundary layers. A deeper understanding of turbulence dynamics is provided by their treatment of spectral analysis and its applications.
Towards an HIV cure: a global scientific strategy
2013-01-01
Given the limitations of antiretroviral therapy and recent advances in our understanding of HIV persistence during effective treatment, there is a growing recognition that a cure for HIV infection is both needed and feasible. The International AIDS Society convened a group of international experts to develop a scientific strategy for research towards an HIV cure. Several priorities for basic, translational and clinical research were identified. This Opinion article summarizes the group’s recommended key goals for the international community. PMID:22814509
48 CFR 970.5217-1 - Work for Others Program.
Code of Federal Regulations, 2011 CFR
2011-10-01
... another Federal agency or non-Federal organization that involves direct comparative competition, either as... selection is based on merit or peer review, the work involves basic or applied research to further advance scientific knowledge or understanding, and a response does not result in direct, comparative competition; (3...
48 CFR 970.5217-1 - Work for Others Program.
Code of Federal Regulations, 2012 CFR
2012-10-01
... another Federal agency or non-Federal organization that involves direct comparative competition, either as... selection is based on merit or peer review, the work involves basic or applied research to further advance scientific knowledge or understanding, and a response does not result in direct, comparative competition; (3...
48 CFR 970.5217-1 - Work for Others Program.
Code of Federal Regulations, 2014 CFR
2014-10-01
... another Federal agency or non-Federal organization that involves direct comparative competition, either as... selection is based on merit or peer review, the work involves basic or applied research to further advance scientific knowledge or understanding, and a response does not result in direct, comparative competition; (3...
48 CFR 970.5217-1 - Work for Others Program.
Code of Federal Regulations, 2013 CFR
2013-10-01
... another Federal agency or non-Federal organization that involves direct comparative competition, either as... selection is based on merit or peer review, the work involves basic or applied research to further advance scientific knowledge or understanding, and a response does not result in direct, comparative competition; (3...
The next generation of training for Arabidopsis researchers: bioinformatics and quantitative biology
USDA-ARS?s Scientific Manuscript database
It has been more than 50 years since Arabidopsis (Arabidopsis thaliana) was first introduced as a model organism to understand basic processes in plant biology. A well-organized scientific community has used this small reference plant species to make numerous fundamental plant biology discoveries (P...
Skylab Experiments, Volume 4, Life Sciences.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
Basic knowledge about Skylab experiments is presented in this book, one of a series, for the purpose of informing high school teachers about scientific research performed in orbit and enabling the teachers to broaden their basis for material selection. This fourth volume is concerned with experiments designed to improve man's understanding of…
What Does Culture Have to Do with Teaching Science?
ERIC Educational Resources Information Center
Madden, Lauren; Joshi, Arti
2013-01-01
In nearly every elementary school, plants are an important part of the science curriculum. Understanding basic ideas about plants prepares children to study more complicated scientific concepts including cell biology, genetics and heredity, complex ecosystem interactions, and evolution. It is especially important that teachers of children at the…
Kids Can Make a Difference! Environmental Science Activities.
ERIC Educational Resources Information Center
Dashefsky, H. Steven
This book of more than 160 environmental science activities is designed to help students understand environmental issues, ask questions, and find solutions to the problems. Introductory sections address: (1) the nature of major global problems and a history of environmental concern; (2) basic environmental science terminology and scientific study…
Informatics for Secondary Education: A Curriculum for Schools.
ERIC Educational Resources Information Center
International Federation for Information Processing, Geneva (Switzerland).
UNESCO (United Nations Educational, Scientific and Cultural Organization) aims to ensure that all countries, both developed and developing, have access to the best educational facilities necessary to prepare young people to play a full role in modern society. Understanding information technology (IT) and mastering IT's basic skills and concepts…
Topological Landscapes: A Terrain Metaphor for ScientificData
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Gunther H.; Bremer, Peer-Timo; Pascucci, Valerio
2007-08-01
Scientific visualization and illustration tools are designed to help people understand the structure and complexity of scientific data with images that are as informative and intuitive as possible. In this context, the use of metaphors plays an important role, since they make complex information easily accessible by using commonly known concepts. In this paper we propose a new metaphor, called 'Topological Landscapes', which facilitates understanding the topological structure of scalar functions. The basic idea is to construct a terrain with the same topology as a given dataset and to display the terrain as an easily understood representation of the actualmore » input data. In this projection from an n-dimensional scalar function to a two-dimensional (2D) model we preserve function values of critical points, the persistence (function span) of topological features, and one possible additional metric property (in our examples volume). By displaying this topologically equivalent landscape together with the original data we harness the natural human proficiency in understanding terrain topography and make complex topological information easily accessible.« less
Barnard, Annette-Christi; Nijhof, Ard M.; Fick, Wilma; Stutzer, Christian; Maritz-Olivier, Christine
2012-01-01
The availability of genome sequencing data in combination with knowledge of expressed genes via transcriptome and proteome data has greatly advanced our understanding of arthropod vectors of disease. Not only have we gained insight into vector biology, but also into their respective vector-pathogen interactions. By combining the strengths of postgenomic databases and reverse genetic approaches such as RNAi, the numbers of available drug and vaccine targets, as well as number of transgenes for subsequent transgenic or paratransgenic approaches, have expanded. These are now paving the way for in-field control strategies of vectors and their pathogens. Basic scientific questions, such as understanding the basic components of the vector RNAi machinery, is vital, as this allows for the transfer of basic RNAi machinery components into RNAi-deficient vectors, thereby expanding the genetic toolbox of these RNAi-deficient vectors and pathogens. In this review, we focus on the current knowledge of arthropod vector RNAi machinery and the impact of RNAi on understanding vector biology and vector-pathogen interactions for which vector genomic data is available on VectorBase. PMID:24705082
ERIC Educational Resources Information Center
Shaw, Barbara J.; Ruedas, Luis A.
2012-01-01
Two-thirds of U.S. citizens do not understand the scientific process. There is a clear misunderstanding about what science is--and is not--both in our society and in the classroom. Furthermore, students below basic proficiency are locked into an achievement gap. In response, the No Child Left Behind Act was passed in 2001. Since then, there has…
Scientific bases of human-machine communication by voice.
Schafer, R W
1995-01-01
The scientific bases for human-machine communication by voice are in the fields of psychology, linguistics, acoustics, signal processing, computer science, and integrated circuit technology. The purpose of this paper is to highlight the basic scientific and technological issues in human-machine communication by voice and to point out areas of future research opportunity. The discussion is organized around the following major issues in implementing human-machine voice communication systems: (i) hardware/software implementation of the system, (ii) speech synthesis for voice output, (iii) speech recognition and understanding for voice input, and (iv) usability factors related to how humans interact with machines. PMID:7479802
The 24th Annual Prostate Cancer Foundation scientific retreat report.
Miyahira, Andrea K; Soule, Howard R
2018-05-15
The 24th Annual Prostate Cancer Foundation (PCF) Scientific Retreat was held from October 5-7, 2017, at the Omni Shoreham Hotel in Washington, DC. The PCF Scientific Retreat is a scientific conference that specifically focuses on cutting edge research deemed to have significant promise for accelerating advances in prostate cancer biology and treatment. Themes highlighted at this year's meeting included: (i) new understandings in prostate cancer biology and disease progression; (ii) new mechanisms and treatment targets in advanced prostate cancer; (iii) advances in precision medicine genomics, germline genetics, and selection of targeted therapies; (iv) PSMA-targeted agents for PET imaging and radionuclide therapy; (v) approaches for improving the efficacy of immunotherapy in prostate cancer; (vi) applications of 3D Genomics in prostate cancer research; and (vii) potential applications of artificial intelligence in prostate cancer. This article reviews the research presented at the PCF Scientific Retreat, in order to improve understanding of the current state of prostate cancer research, encourage discourse and exchange of novel ideas, and stimulate new basic, translational, and clinical research that will ultimately improve the lives of patients. © 2018 Wiley Periodicals, Inc.
Increasing our understanding of how science really works
NASA Astrophysics Data System (ADS)
Scotchmoor, Judith
2010-03-01
``Most Americans do not understand the scientific process," nor can they distinguish between science and non-science (National Science Board, 2006). Given the impact of science on society, the lack of public understanding of science should be a concern to us all. In large part, the current confusions about evolution, global warming, and other aspects of science are symptomatic of a general misunderstanding of what science is and what it is not. Too few of our citizens view science as a dynamic process through which we gain a reliable understanding of the natural world. As a result, the public becomes vulnerable to misinformation and the very real benefits of science become obscured. In response, an NSF- funded initiative has emerged to improve public understanding about how science really works, why it matters, and who scientists are. Understanding Science, a collaborative project developed by the UC Museum of Paleontology, serves to both inspire and engage students in the dynamic nature of science. The ``scientific method'' within our textbooks is an impoverished depiction that does little to promote scientific literacy. If we are aiming for a public capable of assessing conflicting representations of scientific evidence in the media, they must understand the strengths, limitations, and basic methods of the enterprise that has produced those claims. While many teachers recognize the weakness of the standard pedagogical approach to these fundamentals of science literacy, until now they lacked any comprehensive resource to help them strengthen their own knowledge and teaching.
ERIC Educational Resources Information Center
Smith, Zach
2007-01-01
The hydrologic cycle is a very basic scientific principle. In this article, background information is presented on how the hydrologic cycle provides scientists with clues to understanding the history of Earth's climate. Also detailed is a web-based activity that allows students to learn about how scientists are able to piece together a record of…
Answers to Science Questions from the "Stop Faking It!" Guy
ERIC Educational Resources Information Center
Robertson, William C.
2009-01-01
This valuable and entertaining compendium of Bill Robertson's popular "Science 101" columns, from NSTA member journal "Science and Children," proves you don't have to be a science geek to understand basic scientific concepts. The author of the best-selling "Stop Faking It!" series explains everything from quarks to photosynthesis, telescopes to…
Honors Workshop for Middle School Science Teachers. Final Report.
ERIC Educational Resources Information Center
Meisner, Gerald W.; Lee, Ernest W.
The Honors Workshop for Middle School Science Teachers was designed to address teachers' conceptual understanding of basic scientific principles, student misconceptions and how to deal with them, and observation and measurement techniques. For 4 weeks in summer and on 6 Saturdays during 2 academic years, 30 leaders among science teachers from the…
Education in Venezuela. Bulletin, 1948, No. 14
ERIC Educational Resources Information Center
Goetz, Delia
1948-01-01
The Office of Education has undertaken the preparation of a series of basic studies on education in a number of Central and South American countries under the sponsorship of the Interdepartmental Committee on Cultural and Scientific Cooperation. This series of studies is part of a program to promote understanding of educational conditions in the…
Education in Bolivia. Bulletin, 1949, No. 1
ERIC Educational Resources Information Center
Nelson, Raymond H.
1949-01-01
The U.S. Office of Education has undertaken the preparation of a series of basic studies on education in a number of Central and South American countries under the sponsorship of the Interdepartmental Committee on Cultural and Scientific Cooperation. This series of studies is part of a program to promote understanding of educational conditions in…
Education in Nicaragua. Bulletin, 1947, No. 6
ERIC Educational Resources Information Center
Ebaugh, Cameron D.
1947-01-01
The U.S. Office of Education has undertaken the preparation of a series of basic studies on education in a number of Central and South American countries under the sponsorship of the Interdepartmental Committee on Cultural and Scientific Cooperation. This series of studies is part of a program to promote understanding of educational conditions in…
Education in Peru. Bulletin, 1946, No. 3
ERIC Educational Resources Information Center
Ebaugh, Cameron D.
1946-01-01
The U.S. Office of Education has undertaken the preparation of a series of basic studies on education in a number of Central and South American countries under the sponsorship of the Interdepartmental Committee on Cultural and Scientific Cooperation. This series of studies is part of a program to promote understanding of educational conditions in…
Education in Colombia. Bulletin, 1946, No. 6
ERIC Educational Resources Information Center
Furbay, John H.
1946-01-01
The U.S. Office of Education has undertaken the preparation of a series of basic studies on education in a number of Central and South American countries under the sponsorship of the Interdepartmental Committee on Cultural and Scientific Cooperation. This series of studies is part of a program to promote understanding of educational conditions in…
Education in Ecuador. Bulletin, 1947, No. 2
ERIC Educational Resources Information Center
Ebaugh, Cameron D.
1947-01-01
The U. S. Office of Education has undertaken the preparation of a series of basic studies on education in a number of Central and South American countries under the sponsorship of the Interdepartmental Committee on Scientific and Cultural Cooperation. This series of studies is part of a program to promote understanding of educational conditions in…
Education in El Salvador. Bulletin, 1947, No. 3
ERIC Educational Resources Information Center
Ebaugh, Cameron D.
1947-01-01
The U.S. Office of Education has undertaken the preparation of a series of basic studies on education in a number of Central and South American countries under the sponsorship of the Interdepartmental Committee on Cultural and Scientific Cooperation. This series of studies is part of a program to promote understanding of educational conditions in…
Education in Haiti. Bulletin, 1948, No. 1
ERIC Educational Resources Information Center
Cook, Mercer
1948-01-01
The U.S. Office of Education has undertaken the preparation of a series of basic studies on education in a number of Central and South American countries under the sponsorship of the Interdepartmental Committee on Cultural and Scientific Cooperation. This series of studies is part of a program to promote understanding of educational conditions in…
New findings about old-growth forests.
Valerie Rapp
2003-01-01
Not all forests with old trees are scientifically defined as old growth. Among those that are, the variations are so striking that multiple definitions of old-growth forests are needed, even when the discussion is restricted to Pacific coast old-growth forests from southwestern Oregon to southwestern British Columbia.Scientists understand the basic structural...
Alternative Conceptions of Plate Tectonics Held by Nonscience Undergraduates
ERIC Educational Resources Information Center
Clark, Scott K.; Libarkin, Julie C.; Kortz, Karen M.; Jordan, Sarah C.
2011-01-01
The theory of plate tectonics is the conceptual model through which most dynamic processes on Earth are understood. A solid understanding of the basic tenets of this theory is crucial in developing a scientifically literate public and future geoscientists. The size of plates and scale of tectonic processes are inherently unobservable,…
The "Next Generation Science Standards": A Focus on Physical Science
ERIC Educational Resources Information Center
Krajcik, Joe
2013-01-01
What should all students know about the physical sciences? Why should all students have a basic understanding of these ideas? An amazing number of new scientific breakthroughs have occurred in the last 20 years that impact daily lives. This article focuses on the "Next Generation Science Standards" (NGSS) disciplinary core ideas in…
Using Amphibians and Reptiles to Learn the Process of Science
ERIC Educational Resources Information Center
Greene, Janice Schnake; Greene, Brian D.
2005-01-01
Although every student must take some science courses to graduate, understanding the process of science is important, and some students never seem to really grasp science. The National Science Education Standards stress process as a major component in science instruction. The standards state that scientific inquiry is basic to science education…
Education in Panama. Bulletin, 1948, No. 12
ERIC Educational Resources Information Center
Goetz, Delia
1948-01-01
The Office of Education has undertaken the preparation of a series of basic studies on education in a number of Central and South American countries under the sponsorship of the Interdepartmental Committee on Cultural and Scientific Cooperation. This series of studies is part of a program to promote understanding of educational conditions in the…
Interdisciplinary Outdoor Education, Behavior of Mealworms.
ERIC Educational Resources Information Center
Knaack, Janey
This manual is intended for use by second grade teachers as a guide for 35 activities for the study of the behavior of mealworms. The activities are intended to help instill in pupils a joy and excitement for inquiry and experimentation, plus an appreciation and understanding of basic scientific methods. Introductory subject material includes a…
Occupationally Related Science. Draft Curriculum 1986-87.
ERIC Educational Resources Information Center
New York State Education Dept., Albany. Div. of Occupational Education Programs.
To prepare occupational students for employment, a basic understanding of scientific knowledge and the processes of science that have been applied in the development of tools, machines, instruments, and technological techniques or processes should be taught. When a second unit of science was included for all high school students in the New York…
Management of Water Quality Data Within the Corps of Engineers, 1979.
1980-12-01
integrated data base systems have been in the business area. SIR was developed for scientific researchers. 3. An evaluation of the system is as follows. a...of the UPGRADE system. 3. An evaluation of the system is as follows. a. Advanatges : (1) Anyone who understands the data and principles of anal- ysis...A BASIC UNDERSTANDING OF THE STRUCTURE OF THE UPGRADE SYSTEM START SINRTCOMPUTER ECET IE.ECUTE UPGRADE IA IDN IFY ERINAL TYPE SELECTION OF OPERATIONAL
Animal electricity from Bologna to Boston.
Goldensohn, E S
1998-02-01
This is an appreciation of 3 scientists who made historic contributions toward understanding bio-electrical activity. The discoveries of Galvani and Volta, who were contemporaries two hundred years ago, continue as basic supports in advancing the strength and health of all mankind. They, nevertheless, had political and scientific disagreements that still linger. The third scientist was our contemporary, Alexander Forbes who, throughout most of the 20th century, continued to increase our understanding of electrical activity in the nervous system.
Fourth National Aeronautics and Space Administration Weather and Climate Program Science Review
NASA Technical Reports Server (NTRS)
Kreins, E. R. (Editor)
1979-01-01
The NASA Weather and Climate Program has two major thrusts. The first involves the development of experimental and prototype operational satellite systems, sensors, and space facilities for monitoring and understanding the atmosphere. The second thrust involves basic scientific investigation aimed at studying the physical and chemical processes which control weather and climate. This fourth science review concentrated on the scientific research rather than the hardware development aspect of the program. These proceedings contain 65 papers covering the three general areas: severe storms and local weather research, global weather, and climate.
Elementary GLOBE: Inquiring About the Earth System Through Elementary Student Investigations
NASA Astrophysics Data System (ADS)
Henderson, S.; Hatheway, B.; Gardiner, L.; Gallagher, S.
2006-12-01
Elementary GLOBE was designed to introduce K-4 students to the study of Earth System Science (ESS). Elementary GLOBE forms an instructional unit comprised of five modules that address ESS and interrelated subjects including weather, hydrology, seasons, and soils. Each Elementary GLOBE module contains a science based storybook, classroom learning activities that complement the science content covered in each book, and teacher's notes. The storybooks explore a component of the Earth system and the associated classroom learning activities provide students with a meaningful introduction to technology, a basic understanding of the methods of inquiry, and connection to math and literacy skills. The science content in the books and activities serves as a springboard to GLOBE's scientific protocols. All Elementary GLOBE materials are freely downloadable (www.globe.gov/elementaryglobe) The use of science storybooks with elementary students has proven to be an effective practice in exposing students to science content while providing opportunities for students to improve their reading, writing, and oral communication skills. The Elementary GLOBE storybooks portray kids asking questions about the natural world, doing science investigations, and exploring the world around them. Through the storybook characters, scientific inquiry is modeled for young learners. The associated learning activities provide opportunities for students to practice science inquiry and investigation skills, including observation, recording, measuring, etc. Students also gain exposure and increase their comfort with different tools that scientists use. The learning activities give students experiences with asking questions, conducting scientific investigations, and scientific journaling. Elementary GLOBE fills an important niche in K-4 instruction. The international GLOBE Program brings together students, teachers, and scientists with the basic goals of increasing scientific understanding of the Earth, supporting improved student achievement in science and math, and enhancing environmental awareness. NASA provides the primary source of funding for GLOBE.
[Explaining and understanding in psychiatry].
Wölk, W
1998-05-01
The philosophical debate on explanation and understanding also led to basic methodological reflections in psychiatry. Subsuming one fact under a general law is the characteristic feature of scientific explanations. In this way, deductive conclusions can be achieved with a high degree of objectivity. Hermeneutical understanding makes way for interpretations in front of a given theoretical matrix. On the other hand, sympathetic understanding is a matter of conceiving single-part items as a consequence of other singular aspects (e.g., tracing back an action to an intention). If one understands the growth of knowledge as a rational and critical process, it seems no more justified to insist on exclusive methodologically based positions.
The Neuropsychoanalytic Approach: Using Neuroscience as the Basic Science of Psychoanalysis.
Johnson, Brian; Flores Mosri, Daniela
2016-01-01
Neuroscience was the basic science behind Freud's psychoanalytic theory and technique. He worked as a neurologist for 20 years before being aware that a new approach to understand complex diseases, namely the hysterias, was needed. Solms coined the term neuropsychoanalysis to affirm that neuroscience still belongs in psychoanalysis. The neuropsychoanalytic field has continued Freud's original ideas as stated in 1895. Developments in psychoanalysis that have been created or revised by the neuropsychoanalysis movement include pain/relatedness/opioids, drive, structural model, dreams, cathexis, and dynamic unconscious. Neuroscience has contributed to the development of new psychoanalytic theory, such as Bazan's (2011) description of anxiety driven by unconscious intentions or "phantoms." Results of adopting the "dual aspect monism" approach of idiographic psychoanalytic clinical observation combined with nomothetic investigation of related human phenomena include clarification and revision of theory, restoration of the scientific base of psychoanalysis, and improvement of clinical treatments. By imbricating psychoanalytic thinking with neuroscience, psychoanalysts are also positioned to make contributions to neuroscience research. Freud's original Project for a Scientific Psychology/Psychology for Neurologists can be carried forward in a way that moves psychoanalysis into the twenty-first century as a core contemporary science (Kandel, 1999). Neuroscience as the basic science of psychoanalysis both improves the field, and enhances its scientific and cultural status.
The Neuropsychoanalytic Approach: Using Neuroscience as the Basic Science of Psychoanalysis
Johnson, Brian; Flores Mosri, Daniela
2016-01-01
Neuroscience was the basic science behind Freud's psychoanalytic theory and technique. He worked as a neurologist for 20 years before being aware that a new approach to understand complex diseases, namely the hysterias, was needed. Solms coined the term neuropsychoanalysis to affirm that neuroscience still belongs in psychoanalysis. The neuropsychoanalytic field has continued Freud's original ideas as stated in 1895. Developments in psychoanalysis that have been created or revised by the neuropsychoanalysis movement include pain/relatedness/opioids, drive, structural model, dreams, cathexis, and dynamic unconscious. Neuroscience has contributed to the development of new psychoanalytic theory, such as Bazan's (2011) description of anxiety driven by unconscious intentions or “phantoms.” Results of adopting the “dual aspect monism” approach of idiographic psychoanalytic clinical observation combined with nomothetic investigation of related human phenomena include clarification and revision of theory, restoration of the scientific base of psychoanalysis, and improvement of clinical treatments. By imbricating psychoanalytic thinking with neuroscience, psychoanalysts are also positioned to make contributions to neuroscience research. Freud's original Project for a Scientific Psychology/Psychology for Neurologists can be carried forward in a way that moves psychoanalysis into the twenty-first century as a core contemporary science (Kandel, 1999). Neuroscience as the basic science of psychoanalysis both improves the field, and enhances its scientific and cultural status. PMID:27790160
Postoperative pain—from mechanisms to treatment
Pogatzki-Zahn, Esther M.; Segelcke, Daniel; Schug, Stephan A.
2017-01-01
Abstract Introduction: Pain management after surgery continues to be suboptimal; there are several reasons including lack of translation of results from basic science studies and scientific clinical evidence into clinical praxis. Objectives: This review presents and discusses basic science findings and scientific evidence generated within the last 2 decades in the field of acute postoperative pain. Methods: In the first part of the review, we give an overview about studies that have investigated the pathophysiology of postoperative pain by using rodent models of incisional pain up to July 2016. The second focus of the review lies on treatment recommendations based on guidelines and clinical evidence, eg, by using the fourth edition of the “Acute Pain Management: Scientific Evidence” of the Australian and New Zealand College of Anaesthetists and Faculty of Pain Medicine. Results: Preclinical studies in rodent models characterized responses of primary afferent nociceptors and dorsal horn neurons as one neural basis for pain behavior including resting pain, hyperalgesia, movement-evoked pain or anxiety- and depression-like behaviors after surgery. Furthermore, the role of certain receptors, mediators, and neurotransmitters involved in peripheral and central sensitization after incision were identified; many of these are very specific, relate to some modalities only, and are unique for incisional pain. Future treatment should focus on these targets to develop therapeutic agents that are effective for the treatment of postoperative pain as well as have few side effects. Furthermore, basic science findings translate well into results from clinical studies. Scientific evidence is able to point towards useful (and less useful) elements of multimodal analgesia able to reduce opioid consumption, improve pain management, and enhance recovery. Conclusion: Understanding basic mechanisms of postoperative pain to identify effective treatment strategies may improve patients' outcome after surgery. PMID:29392204
The Development of Experimentation and Evidence Evaluation Skills at Preschool Age
NASA Astrophysics Data System (ADS)
Piekny, Jeanette; Grube, Dietmar; Maehler, Claudia
2014-01-01
Researchers taking a domain-general approach to the development of scientific reasoning long thought that the ability to engage in scientific reasoning did not develop until adolescence. However, more recent studies have shown that preschool children already have a basic ability to evaluate evidence and a basic understanding of experimentation. Data providing insights into when exactly in the preschool years significant gains in these abilities occur are scarce. Drawing on a sample of 138 preschool children, this longitudinal study therefore examined how children's ability to evaluate evidence and their understanding of experimentation develop between the ages of four and six. Findings showed that the ability to evaluate evidence was already well developed at age four and increased steadily and significantly over time as long as the pattern of covariation was perfect. In the case of imperfect covariation, the proportion of correct answers was low over the period of observation, but showed a significant increase between the ages of four and five. If the data did not allow relationship between variables to be inferred, the proportion of correct answers was low, with a significant increase between the ages of five and six. The children's understanding of experimentation increased significantly between the ages of five and six. The implications of these findings for age-appropriate science programs in preschool are discussed.
The New Millennium and an Education That Captures the Basic Spirit of Science.
ERIC Educational Resources Information Center
Bybee, Rodger W.
This document discusses reflections of the old and new millennium on education that capture the basic spirit of science. The explanation includes basic scientific ideas in physical sciences, earth systems, solar system and space; living systems; basic scientific thinking; the basic distinction between science and technology; basic connections…
A Workshop for Developing Learning Modules for Science Classes Based on Biogeochemical Research
ERIC Educational Resources Information Center
Harrington, James M.; Gardner, Terrence G.; Amoozegar, Aziz; Andrews, Megan Y.; Rivera, Nelson A.; Duckworth, Owen W.
2013-01-01
A challenging aspect of educating secondary students is integrating complex scientific concepts related to modern research topics into lesson plans that students can relate to and understand at a basic level. One method of encouraging the achievement of learning outcomes is to use real-world applications and current research to fuel student…
Reading Scientific Papers for Understanding: Revisiting Watson and Crick (1953)
ERIC Educational Resources Information Center
Kinchin, Ian M.
2005-01-01
The ability to use the research literature within a given field is a basic skill that students should acquire as part of their higher education studies. However, undergraduates need support in developing this skill. The use of concept maps as an aid to interrogating the literature is described here. This may help students to highlight key issues…
Past, Present and Future of General Chemistry in the PUC-Rio.
ERIC Educational Resources Information Center
Farias, Percio A. M.; Goulart, Mauricio S.; de Mello, Paulo Correa
This manuscript describes the role of chemistry as a vehicle for understanding many other basic sciences and engineering based on the experience acquired in the General Chemistry course at the "Center Technical-Scientific" at the Pontific Catholic University of Rio de Janeiro (CTC-PUC-Rio). A description of the history of the General…
The Future Place of Science in the Art of Healing
ERIC Educational Resources Information Center
Thomas, Lewis
1976-01-01
Medical science, according to the author, is in a primitive stage of development. He traces the science of infection, beginning around 1875, not developed enough to be considered an applied science until the 1930's, and points out that we are only halfway in basic scientific understanding of such diseases as cancer, nephritis, and schizophrenia.…
An Attention-Grabbing Approach to Introducing Students to Argumentation in Science
ERIC Educational Resources Information Center
Wojdak, Jeremy M.
2010-01-01
Argumentation and basic logic are foundations of scientific inquiry, and thus should be foundations of science education. Students often are uninterested in formal logic, and do not understand the connection to science or society. I describe a way to engage students in the study of argumentation and to help develop student's ability to critically…
ERIC Educational Resources Information Center
Hocking, Colin; And Others
This series of educational activities is intended to help teachers communicate basic scientific concepts related to global warming and the greenhouse effect to students grades 7-10. Seven sessions provide laboratory activities, simulations, and discussions that can be used to improve student understanding of a number of important scientific…
Teaching Emerging Diseases: A Strategy for Succeeding with Nonmajors
FASS, MARION FIELD
2000-01-01
A nonmajors course on emerging diseases served to introduce students to basic concepts in microbiology and to improve scientific literacy. The course used a range of learner-centered approaches to encourage students to take responsibility for their own learning. Evaluations demonstrated both student satisfaction and an increased understanding of important issues in microbiology. PMID:23653535
USDA-ARS?s Scientific Manuscript database
Understanding the basic ecological patterns of the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), is required for implementing a successful integrated pest management program. As the primary pest of cotton in Mississippi and across the mid-south, L. lineolaris is a highly polyphagous m...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas J. Hanratty
A research program was carried out at the University of Illinois in which develops a scientific approach to gas-liquid flows that explains their macroscopic behavior in terms of small scale interactions. For simplicity, fully-developed flows in horizontal and near-horizontal pipes. The difficulty in dealing with these flows is that the phases can assume a variety of configurations. The specific goal was to develop a scientific understanding of transitions from one flow regime to another and a quantitative understanding of how the phases distribute for a give regime. These basic understandings are used to predict macroscopic quantities of interest, such asmore » frictional pressure drop, liquid hold-up, entrainment in annular flow and frequency of slugging in slug flows. A number of scientific issues are addressed. Examples are the rate of atomization of a liquid film, the rate of deposition of drops, the behavior of particles in a turbulent field, the generation and growth of interfacial waves. The use of drag-reducing polymers that change macroscopic behavior by changing small scale interactions was explored.« less
An integrated strategy for the planetary sciences: 1995 - 2010
NASA Technical Reports Server (NTRS)
1994-01-01
In 1992, the National Research Council's Space Studies Board charged its Committee on Planetary and Lunar Exploration (COMPLEX) to: (1) summarize current understanding of the planets and the solar system; (2) pose the most significant scientific questions that remain; and (3) establish the priorities for scientific exploration of the planets for the period from 1995 to 2010. The broad scientific goals of solar system exploration include: (1) understanding how physical and chemical processes determine the major characteristics of the planets, and thereby help us to understand the operation of Earth; (2) learning about how planetary systems originate and evolve; (3) determining how life developed in the solar system, particularly on Earth, and in what ways life modifies planetary environments; and (4) discovering how relatively simple, basic laws of physics and chemistry can lead to the diverse phenomena observed in complex systems. COMPLEX maintains that the most useful new programs to emphasize in the period from 1995 to 2010 are detailed investigations of comets, Mars, and Jupiter and an intensive search for, and characterization of, extrasolar planets.
An overview of conceptual understanding in science education curriculum in Indonesia
NASA Astrophysics Data System (ADS)
Widiyatmoko, A.; Shimizu, K.
2018-03-01
The purpose of this article is to discuss the term of “conceptual understanding” in science education curriculum in Indonesia. The implementation of 2013 Curriculum focuses on the acquisition of contextual knowledge in respective areas and environments. The curriculum seeks to develop students' evaluation skills in three areas: attitude, technical skills, and scientific knowledge. It is based on two layers of competencies: core and basic competencies. The core competencies in the curriculum 2013 represent the ability level to achieve the gradute competency standards of a students at each grade level. There are four mandatory core competencies for all educational levels and all subjects including science, which are spiritual, social, knowledge and skills competencies. In terms of knowledge competencies, conceptual understanding is an inseparable part of science concept since conceptual understanding is one of the basic competencies in science learning. This competency is a part of science graduation standard indicated in MoEC article number 20 in 2016. Therefore, conceptual understanding is needed by students for learning science successfully.
Measures of accuracy and performance of diagnostic tests.
Drobatz, Kenneth J
2009-05-01
Diagnostic tests are integral to the practice of veterinary cardiology, any other specialty, and general veterinary medicine. Developing and understanding diagnostic tests is one of the cornerstones of clinical research. This manuscript describes the diagnostic test properties including sensitivity, specificity, predictive value, likelihood ratio, receiver operating characteristic curve. Review of practical book chapters and standard statistics manuscripts. Diagnostics such as sensitivity, specificity, predictive value, likelihood ratio, and receiver operating characteristic curve are described and illustrated. Basic understanding of how diagnostic tests are developed and interpreted is essential in reviewing clinical scientific papers and understanding evidence based medicine.
Comparing Emerging XML Based Formats from a Multi-discipline Perspective
NASA Astrophysics Data System (ADS)
Sawyer, D. M.; Reich, L. I.; Nikhinson, S.
2002-12-01
This paper analyzes the similarity and differences among several examples of an emerging generation of Scientific Data Formats that are based on XML technologies. Some of the factors evaluated include the goals of these efforts, the data models, and XML technologies used, and the maturity of currently available software. This paper then investigates the practicality of developing a single set of structural data objects and basic scientific concepts, such as units, that could be used across discipline boundaries and extended by disciplines and missions to create Scientific Data Formats for their communities. This analysis is partly based on an effort sponsored by the ESDIS office at GSFC to compare the Earth Science Markup Language (ESML) and the eXtensible Data Format( XDF), two members of this new generation of XML based Data Description Languages that have been developed by NASA funded efforts in recent years. This paper adds FITSML and potentially CDFML to the list of XML based Scientific Data Formats discussed. This paper draws heavily a Formats Evolution Process Committee (http://ssdoo.gsfc.nasa.gov/nost/fep/) draft white paper primarily developed by Lou Reich, Mike Folk and Don Sawyer to assist the Space Science community in understanding Scientific Data Formats. One of primary conclusions of that paper is that a scientific data format object model should be examined along two basic axes. The first is the complexity of the computer/mathematical data types supported and the second is the level of scientific domain specialization incorporated. This paper also discusses several of the issues that affect the decision on whether to implement a discipline or project specific Scientific Data Format as a formal extension of a general purpose Scientific Data Format or to implement the APIs independently.
Spencer, Becky; Chacko, Jisha; Sallee, Donna
2011-06-01
The American Heart Association (AHA) has a strong commitment to implementing scientific research-based interventions for cardiopulmonary resuscitation and emergency cardiovascular care. This article presents the 2010 AHA major guideline changes to pediatric basic life support (BLS) and pediatric advanced life support (PALS) and the rationale for the changes. The following topics are covered in this article: (1) current understanding of cardiac arrest in the pediatric population, (2) major changes in pediatric BLS, and (3) major changes in PALS. Copyright © 2011. Published by Elsevier Inc.
Controlling birth: science, politics, and public policy.
Russo, Nancy Felipe; Denious, Jean E
2005-03-01
Reproductive technologies raise a host of social and legal issues that challenge basic values and create intense controversy. If researchers wish to inform public policies related to reproductive technologies, they must understand how the scientific enterprise is being manipulated and research findings are being misrepresented to justify a particular social agenda and restrict access to contraception and abortion. To counter these distortions, scientists must defend the science advisory process, be involved in dissemination of their research findings beyond simply publication in scientific journals, and actively work to ensure that the findings are not misrepresented to the public.
Bradbury science museum: your window to Los Alamos National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deck, Linda Theresa
The Bradbury Science Museum is the public's window to Los Alamos National Laboratory and supports the Community Program Office's mission to develop community support to accomplish LANL's national security and science mission. It does this by stimulating interest in and increasing basic knowledge of science and technology in northern New Mexico audiences, and increasing public understanding and appreciation of how LANL science and technology solve our global problems. In performing these prime functions, the Museum also preserves the history of scientific accomplishment at the Lab by collecting and preserving artifacts of scientific and historical importance.
The Scientific Potential of X-ray Polarimetry
NASA Astrophysics Data System (ADS)
Fabian, Andrew C.
2016-04-01
X-ray Polarimetry is a rich, untapped source of information on the geometry and/or magnetic structure of a wide range of cosmic object from accreting black holes to jets and neutron stars. This introductory overview will outline the basics of the production of polarized X-ray emission and emphasise its importance in our quest to understand how compact objects work.
ERIC Educational Resources Information Center
Ngai, Courtney; Sevian, Hannah; Talanquer, Vicente
2014-01-01
Given the diversity of materials in our surroundings, one should expect scientifically literate citizens to have a basic understanding of the core ideas and practices used to analyze chemical substances. In this article, we use the term 'chemical identity' to encapsulate the assumptions, knowledge, and practices upon which chemical…
Making the Connection between Environmental Science and Decision Making
NASA Astrophysics Data System (ADS)
Woodhouse, C. A.; Crimmins, M.; Ferguson, D. B.; Garfin, G. M.; Scott, C. A.
2011-12-01
As society is confronted with population growth, limited resources, and the impacts of climate variability and change, it is vital that institutions of higher education promote the development of professionals who can work with decision-makers to incorporate scientific information into environmental planning and management. Skills for the communication of science are essential, but equally important is the ability to understand decision-making contexts and engage with resource managers and policy makers. It is increasingly being recognized that people who understand the linkages between science and decision making are crucial if science is to better support planning and policy. A new graduate-level seminar, "Making the Connection between Environmental Science and Decision Making," is a core course for a new post-baccalaureate certificate program, Connecting Environmental Science and Decision Making at the University of Arizona. The goal of the course is to provide students with a basic understanding of the dynamics between scientists and decision makers that result in scientific information being incorporated into environmental planning, policy, and management decisions. Through readings from the environmental and social sciences, policy, and planning literature, the course explores concepts including scientific information supply and demand, boundary organizations, co-production of knowledge, platforms for engagement, and knowledge networks. Visiting speakers help students understand some of the challenges of incorporating scientific information into planning and decision making within institutional and political contexts. The course also includes practical aspects of two-way communication via written, oral, and graphical presentations as well as through the interview process to facilitate the transfer of scientific information to decision makers as well as to broader audiences. We aspire to help students develop techniques that improve communication and understanding between scientists and decision-makers, leading to enhanced outcomes in the fields of climate science, water resources, and ecosystem services.
,
1981-01-01
Research in the WRD had its beginnings in the late 1950's when the "core research" line item was added to the Congressional budget. Since this time the Federal program has grown from a "basic sciences" program to one that includes a broad spectrum of basic and applied scientific investigations. Water resources research in WRD includes the study of water in all its phases and uses the basic sciences of mathematics, chemistry, physics, biology, geology and engineering to gain a fundamental understanding of the processes that affect the movement of water and its chemical constituents through hydrologic systems. The basic knowledge and methodologies derived from water resources research are applicable not only to the solution of current problems associated with the Nation's water resources, but also to anticipated hydrologic issues.
The enduring scientific contributions of Sigmund Freud.
Gedo, John E
2002-01-01
Through the development of a novel observational method, Sigmund Freud made possible the collection of reliable data about man's inner life. The scientific hypotheses he formulated about these formed the initial version of psychoanalysis. Many of these first thoughts have had to be revised in the light of subsequent scientific findings about the operations of the central nervous system, but even these refuted propositions often had much heuristic value. Despite the passage of a whole century, many Freudian hypotheses have retained their scientific standing. Most important among these was Freud's realization that human thought is usually unconscious. His understanding of the role of the automatic repetition of basic patterns of behavior, of the fateful consequences of early childhood emotional vicissitudes in structuring enduring mental dispositions, and of the distinction between two distinct modes of thinking are the most significant among his many contributions.
NASA Astrophysics Data System (ADS)
Zuhaida, A.
2018-04-01
Implementation of the experiment have the three aspects of the goal: 1) develop basic skills of experimenting; 2) develop problem-solving skills with a scientific approach; 3) improve understanding of the subject matter. On the implementation of the experiment, students have some weaknesses include: observing, identifying problems, managing information, analyzing, and evaluating. This weakness is included in the metacognition indicator.The objective of the research is to implementation of Basic Chemistry Experiment based on metacognition to increase problem-solving skills and build concept understanding for students of Science Education Department. The method of this research is a quasi- experimental method with pretest-posttest control group design. Problem-solving skills are measured through performance assessments using rubrics from problem solving reports, and results presentation. The conceptual mastery is measured through a description test. The result of the research: (1) improve the problem solving skills of the students with very high category; (2) increase the students’ concept understanding better than the conventional experiment with the result of N-gain in medium category, and (3) increase student's response positively for learning implementation. The contribution of this research is to extend the implementation of practical learning for some subjects, and to improve the students' competence in science.
Teaching resources. The Sherlock Holmes lab: investigations in neurophysiology.
Adler, Elizabeth M; Schwartz, Paul J
2006-05-09
This Teaching Resource describes a research project that can be used in an advanced undergraduate course in neurobiology that covers basic electrophysiology and synaptic transmission. A thought experiment is provided that can be used to assess student understanding of (i) the scientific method, (ii) the process whereby nerve stimulation leads to muscle contraction, and (iii) the use of pharmacological agents to analyze a physiological system.
ERIC Educational Resources Information Center
Peters, Richard Oakes
A global approach to the world's problems is presented, viewing social, cultural, scientific, and humanistic questions as factors in a world that is a single interacting system. It is noted that the basic needs of the third world, which represents nearly half of the world's population, have not been met. A discussion on this topic addresses the…
The U.S. Earthquake Prediction Program
Wesson, R.L.; Filson, J.R.
1981-01-01
There are two distinct motivations for earthquake prediction. The mechanistic approach aims to understand the processes leading to a large earthquake. The empirical approach is governed by the immediate need to protect lives and property. With our current lack of knowledge about the earthquake process, future progress cannot be made without gathering a large body of measurements. These are required not only for the empirical prediction of earthquakes, but also for the testing and development of hypotheses that further our understanding of the processes at work. The earthquake prediction program is basically a program of scientific inquiry, but one which is motivated by social, political, economic, and scientific reasons. It is a pursuit that cannot rely on empirical observations alone nor can it carried out solely on a blackboard or in a laboratory. Experiments must be carried out in the real Earth.
Leadbeatter, Delyse; Gao, Jinlong
2018-04-01
Learning basic science forms an essential foundation for oral health therapy and dentistry, but frequently students perceive it as difficult, dry, and disconnected from clinical practice. This perception is encouraged by assessment methods that reward fact memorization, such as objective examinations. This study evaluated use of a learner-centered assessment portfolio designed to increase student engagement with basic science in an oral health therapy program at the University of Sydney, Australia. The aim of this qualitative study based on focus groups was to investigate students' engagement with basic science courses following introduction of the portfolio. Three assessments were conducted in three subsequent semesters: one based on students' interest in everyday phenomena (one student, for example, explored why she had red hair); the second focussed on scientific evidence and understanding of systemic diseases; and the third explored relations between oral and general health. Students were encouraged to begin with issues from their personal experience or patient care, to focus on what they were curious about, and to ask questions they really cared about. Each student prepared a written report and gave an oral presentation to the entire cohort. After the portfolios were completed, the authors held focus groups with two cohorts of students (N=21) in 2016 and analyzed the results using Zepke's framework for student engagement research. The results showed that the students successfully interweaved personal experience into their studies and that it provided significant motivation for learning. The students described their learning in terms of connection to themselves, their peer community, and their profession. Many additional benefits were identified, from increased student engagement in all courses to appreciation of the relevance of basic science. The findings should encourage dental and allied dental educators to reconsider the effects of assessments and seek integrative methods to help students engage in meaningful knowledge production and understand that what they are learning goes beyond acquisition of scientific facts.
New GMO regulations for old: Determining a new future for EU crop biotechnology.
Davison, John; Ammann, Klaus
2017-01-02
In this review, current EU GMO regulations are subjected to a point-by point analysis to determine their suitability for agriculture in modern Europe. Our analysis concerns present GMO regulations as well as suggestions for possible new regulations for genome editing and New Breeding Techniques (for which no regulations presently exist). Firstly, the present GMO regulations stem from the early days of recombinant DNA and are not adapted to current scientific understanding on this subject. Scientific understanding of GMOs has changed and these regulations are now, not only unfit for their original purpose, but, the purpose itself is now no longer scientifically valid. Indeed, they defy scientific, economic, and even common, sense. A major EU regulatory preconception is that GM crops are basically different from their parent crops. Thus, the EU regulations are "process based" regulations that discriminate against GMOs simply because they are GMOs. However current scientific evidence shows a blending of classical crops and their GMO counterparts with no clear demarcation line between them. Canada has a "product based" approach and determines the safety of each new crop variety independently of the process used to obtain it. We advise that the EC re-writes it outdated regulations and moves toward such a product based approach. Secondly, over the last few years new genomic editing techniques (sometimes called New Breeding Techniques) have evolved. These techniques are basically mutagenesis techniques that can generate genomic diversity and have vast potential for crop improvement. They are not GMO based techniques (any more than mutagenesis is a GMO technique), since in many cases no new DNA is introduced. Thus they cannot simply be lumped together with GMOs (as many anti-GMO NGOs would prefer). The EU currently has no regulations to cover these new techniques. In this review, we make suggestions as to how these new gene edited crops may be regulated. The EU is at a turning point where the wrong decision could destroy European agricultural competitively for decades to come.
NASA Astrophysics Data System (ADS)
Hock, Emily; Sharp, Zoe
2016-03-01
Aspiring teachers and current teachers can gain insight about the scientific community through hands-on experience. As America's standards for elementary school and middle school become more advanced, future and current teachers must gain hands-on experience in the scientific community. For a teacher to be fully capable of teaching all subjects, they must be comfortable in the content areas, equipped to answer questions, and able to pass on their knowledge. Hands-on research experiences, like the Summer Astronomy Research Experience at California Polytechnic University, pair liberal studies students with a cooperative group of science students and instructors with the goal of doing research that benefits the scientific community and deepens the team members' perception of the scientific community. Teachers are then able to apply the basic research process in their classrooms, inspire students to do real life science, and understand the processes scientists' undergo in their workplace.
An Innovative Approach to Science Instruction
NASA Astrophysics Data System (ADS)
McNamara, Bernard; Burnham, Chris; Bridges, Bill
1994-12-01
This paper reports on the results of a multi-year NSF project aimed at undergraduate instruction in astronomy. Its goal is to help incoming university students, particularly from minority groups, develop critical thinking skills and a better understanding of basic scientific principles. The project employs the techniques of ``Writing Across the Curriculum" to counter student math and science anxiety. It employs a workbook consisting of four sections: (1) basic skills exercises, (2) an evolving cosmology, (3) chapter reading responses, and (4) an astronomical scrapbook. Experience with this workbook in introductory astronomy classes at NMSU is discussed, along with suggestions on how the exercises can be incorporated into beginning astronomy classes at other universities.
Fox, Caroline S; Hall, Jennifer L; Arnett, Donna K; Ashley, Euan A; Delles, Christian; Engler, Mary B; Freeman, Mason W; Johnson, Julie A; Lanfear, David E; Liggett, Stephen B; Lusis, Aldons J; Loscalzo, Joseph; MacRae, Calum A; Musunuru, Kiran; Newby, L Kristin; O'Donnell, Christopher J; Rich, Stephen S; Terzic, Andre
2015-05-12
The field of genetics and genomics has advanced considerably with the achievement of recent milestones encompassing the identification of many loci for cardiovascular disease and variable drug responses. Despite this achievement, a gap exists in the understanding and advancement to meaningful translation that directly affects disease prevention and clinical care. The purpose of this scientific statement is to address the gap between genetic discoveries and their practical application to cardiovascular clinical care. In brief, this scientific statement assesses the current timeline for effective translation of basic discoveries to clinical advances, highlighting past successes. Current discoveries in the area of genetics and genomics are covered next, followed by future expectations, tools, and competencies for achieving the goal of improving clinical care. © 2015 American Heart Association, Inc.
Inservice Elementary and Middle School Teachers' Conceptions of Photosynthesis and Respiration
NASA Astrophysics Data System (ADS)
Krall, Rebecca Mcnall; Lott, Kimberly H.; Wymer, Carol L.
2009-02-01
The purpose of this descriptive study was to investigate inservice elementary and middle school teachers’ conceptions of photosynthesis and respiration, basic concepts they are expected to teach. A forced-choice instrument assessing selected standards-based life science concepts with non-scientific conceptions embedded in distracter options was utilized to assess 76 inservice elementary and middle school teachers from the central Appalachian region. Outcomes from four tasks assessing photosynthesis and respiration concepts are discussed. Findings revealed similarities between non-scientific conceptions the teachers demonstrated and non-scientific conceptions reported in the research literature on elementary and middle school students’ understanding of the concepts. Findings also informed subsequent inservice teacher professional development efforts in life science and the development of a biology course for preservice elementary teachers.
[Seed geography: its concept and basic scientific issues].
Yu, Shun-Li; Wang, Zong-Shuai; Zeren, Wangmu
2010-01-01
In this paper, a new concept 'seed geography' was provided, and its definition, research contents, and scientific issues were put forward. Seed geography is a newly developed interdisciplinary science from plant geography, seed ecology, and phytosociology, which studies the geographic variation patterns of seed biological traits as well as their relationships with environmental factors from macroscopic to microscopic, and the seed formation, development, and change trends. The main research contents would include geography of seed mass, geography of seed chemical components, geography of seed morphology, geography of seed cell biological characteristics, geography of seed physiological characteristics, geography of seed genetic characteristics, and geography of flower and fruit. To explore the scientific issues in seed geography would help us to better understand the long-term adaptation and evolution of seed characteristics to natural environments.
Cunha, Leonardo Rodrigues; Cudischevitch, Cecília de Oliveira; Carneiro, Alan Brito; Macedo, Gustavo Bartholomeu; Lannes, Denise; Silva-Neto, Mário Alberto Cardoso da
2014-01-01
We evaluate a new approach to teaching the basic biochemistry mechanisms that regulate the biology of Triatominae, major vectors of Trypanosoma cruzi, the causative agent of Chagas disease. We have designed and used a comic book, "Carlos Chagas: 100 years after a hero's discovery" containing scientific information obtained by seven distinguished contemporary Brazilian researchers working with Triatominaes. Students (22) in the seventh grade of a public elementary school received the comic book. The study was then followed up by the use of Concept Maps elaborated by the students. Six Concept Maps elaborated by the students before the introduction of the comic book received an average score of 7. Scores rose to an average of 45 after the introduction of the comic book. This result suggests that a more attractive content can greatly improve the knowledge and conceptual understanding among students not previously exposed to insect biochemistry. In conclusion, this study illustrates an alternative to current strategies of teaching about the transmission of neglected diseases. It also promotes the diffusion of the scientific knowledge produced by Brazilian researchers that may stimulate students to choose a scientific career. © 2014 The International Union of Biochemistry and Molecular Biology.
Risberg, Gunilla; Hamberg, Katarina; Johansson, Eva E
2006-08-24
During the past few decades, research has reported gender bias in various areas of clinical and academic medicine. To prevent such bias, a gender perspective in medicine has been requested, but difficulties and resistance have been reported from implementation attempts. Our study aimed at analysing this resistance in relation to what is considered good medical research. We used a theoretical model, based on scientific competition, to understand the structures of scientific medicine and how they might influence the resistance to a gender perspective in medicine. The model was originally introduced to discuss how pluralism improves rationality in the social sciences. The model provided a way to conceptualise different fields of research in medicine: basic research, applied research, medical philosophy, and 'empowering' research. It clarified how various research approaches within medicine relate to each other, and how they differ and compete. It also indicated why there might be conflicts between them: basic and applied research performed within the biomedical framework have higher status than gender research and other research approaches that are performed within divergent research paradigms. This hierarchy within medical research contributes to the resistance to a gender perspective, causing gender bias and making medical scientific rationality suboptimal. We recommend that the theoretical model can be applied in a wider medical context when different and hierarchically arranged research traditions are in conflict. In this way, the model might contribute to shape a medical community where scientific pluralism is acknowledged to enlarge, not to disturb, the scientific rationality of medicine.
Risberg, Gunilla; Hamberg, Katarina; Johansson, Eva E
2006-01-01
Background During the past few decades, research has reported gender bias in various areas of clinical and academic medicine. To prevent such bias, a gender perspective in medicine has been requested, but difficulties and resistance have been reported from implementation attempts. Our study aimed at analysing this resistance in relation to what is considered good medical research. Method We used a theoretical model, based on scientific competition, to understand the structures of scientific medicine and how they might influence the resistance to a gender perspective in medicine. The model was originally introduced to discuss how pluralism improves rationality in the social sciences. Results The model provided a way to conceptualise different fields of research in medicine: basic research, applied research, medical philosophy, and 'empowering' research. It clarified how various research approaches within medicine relate to each other, and how they differ and compete. It also indicated why there might be conflicts between them: basic and applied research performed within the biomedical framework have higher status than gender research and other research approaches that are performed within divergent research paradigms. Conclusion This hierarchy within medical research contributes to the resistance to a gender perspective, causing gender bias and making medical scientific rationality suboptimal. We recommend that the theoretical model can be applied in a wider medical context when different and hierarchically arranged research traditions are in conflict. In this way, the model might contribute to shape a medical community where scientific pluralism is acknowledged to enlarge, not to disturb, the scientific rationality of medicine. PMID:16928283
Scientific Research: Commodities or Commons?
NASA Astrophysics Data System (ADS)
Vermeir, Koen
2013-10-01
Truth is for sale today, some critics claim. The increased commodification of science corrupts it, scientific fraud is rampant and the age-old trust in science is shattered. This cynical view, although gaining in prominence, does not explain very well the surprising motivation and integrity that is still central to the scientific life. Although scientific knowledge becomes more and more treated as a commodity or as a product that is for sale, a central part of academic scientific practice is still organized according to different principles. In this paper, I critically analyze alternative models for understanding the organization of knowledge, such as the idea of the scientific commons and the gift economy of science. After weighing the diverse positive and negative aspects of free market economies of science and gift economies of science, a commons structured as a gift economy seems best suited to preserve and take advantage of the specific character of scientific knowledge. Furthermore, commons and gift economies promote the rich social texture that is important for supporting central norms of science. Some of these basic norms might break down if the gift character of science is lost. To conclude, I consider the possibility and desirability of hybrid economies of academic science, which combine aspects of gift economies and free market economies. The aim of this paper is to gain a better understanding of these deeper structural challenges faced by science policy. Such theoretical reflections should eventually assist us in formulating new policy guidelines.
‘The physics of life,’ an undergraduate general education biophysics course
NASA Astrophysics Data System (ADS)
Parthasarathy, Raghuveer
2015-05-01
Improving the scientific literacy of non-scientists is an important aim, both because of the ever-increasing impact of science on our lives and because understanding science enriches our experience of the natural world. One route to improving scientific literacy is via general education undergraduate courses—i.e. courses for students not majoring in the sciences or engineering. Because it encompasses a variety of important scientific concepts, demonstrates connections between basic science and real-world applications and illustrates the creative ways in which scientific insights develop, biophysics is a useful subject with which to promote scientific literacy. I describe here a course on biophysics for non-science-major undergraduates recently developed at the University of Oregon (Eugene, OR, USA), noting its design, which spans both macroscopic and microscopic topics, and the specific content of a few of its modules. I also describe evidence-based pedagogical approaches adopted in teaching the course and aspects of course enrollment and evaluation.
NASA Astrophysics Data System (ADS)
Catley, Kefyn M.; Phillips, Brenda C.; Novick, Laura R.
2013-12-01
The biological community is currently undertaking one its greatest scientific endeavours, that of constructing the Tree of Life, a phylogeny intended to be an evidenced-based, predictive road map of evolutionary relationships among Earth's biota. Unfortunately, we know very little about how such diagrams are understood, interpreted, or used as inferential tools by students—collectively referred to as tree thinking. The present study provides the first in-depth look at US high school students' competence at tree thinking and reports how they engage cognitively with tree representations as a precursor to developing curricula that will provide an entry point into macroevolution. Sixty tenth graders completed a 12-question instrument that assessed five basic tree-thinking skills. We present data that show patterns of misunderstandings are largely congruent between tenth graders and undergraduates and identify competences that are pivotal to address during instruction. Two general principles that emerge from this study are: (a) Students need to be taught that cladograms are an authoritative source of evidence that should be weighted more than other superficial or ecological similarities; (b) students need to understand the vital importance and critical difference between most recent common ancestry and common ancestry. Further, we show how the objectives of this study are closely aligned with US and International Standards and argue that scientifically-literate citizens need at least a basic understanding of the science behind the Tree of Life to understand and engage in twenty-first century societal issues such as human health, agriculture, and biotechnology.
Jiménez-Salas, Zacarías; Campos-Góngora, Eduardo; González-Martínez, Blanca E; Tijerina-Sáenz, Alexandra; Escamilla-Méndez, Angélica D; Ramírez-López, Erik
2017-09-01
Over the past few years, a new research field has emerged, focusing on the social-scientific criteria for the study of opinions toward genetically modified foods (GMFs), since these may be limiting factors for the success or failure of these products. Basic education is the first step in the Mexican education system, and teachers may wield an outsized influence on the attitudes and preferences of children, prospective future consumers of these products. To better understand the current state of knowledge of biotechnology issues and opinions toward the consumption of GMF of Mexican teachers, a questionnaire was distributed, and 362 Mexican teachers of basic education responded. The survey included questions about the benefits and risks of consuming GMF. The mean percentage of teachers expressing knowledge of a given topic in biotechnology was 50%. More than 60% of teachers believed that GMFs would be useful in preventing world hunger, while 39.2% considered GMF to be hazards for future generations. Although 47.0% reported not having enough knowledge about these topics, almost all (90.3%) respondents expressed an interest and willingness to learn about biotechnology. In light of the fact that teachers of basic education represent the first and potentially most lasting stage in the education of young children, this survey establishes the urgent need to develop strategies to improve the scientific knowledge of teachers and to facilitate decision making and the promotion of scientific and technological advances for their students. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):396-402, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.
Basic Scientific Subroutines, Volume II.
ERIC Educational Resources Information Center
Ruckdeschel, F. R.
This book, second in a series dealing with scientific programing in the BASIC language, provides students, engineers, and scientists with a documented library of subroutines for scientific applications. Subjects of the eight chapters include: (1) least-squares approximation of functions and smoothing of data; (2) approximating functions by series…
Federal Research and Development Funding: FY2017
2016-06-24
facilities and equipment; does not include physical assets for R&D such as R&D equipment and facilities or routine product testing, quality control...multiagency R&D initiative to advance understanding and control of matter at the nanoscale, where the physical , chemical, and biological properties of...nuclear programs that dated back to the Manhattan Project. Today, DOE conducts basic scientific research in areas ranging from nuclear physics to the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laws, E.A.
1993-01-01
This book systematically covers all aspects of water pollution in marine and freshwater systems. Didactic style, frequent use of case studies and an extensive bibliography facilitate understanding of fundamental concepts. Offers basic, relevant ecological and toxicological information. Straightforward presentation of the scientific aspects of environmental issues. Information updated, particularly the discussion of toxicology and the case studies of water pollution. Three new chapters on acid rain, groundwater pollution and plastics are added.
Profile of Scientific Ability of Chemistry Education Students in Basic Physics Course
NASA Astrophysics Data System (ADS)
Suastika, K. G.; Sudyana, I. N.; Lasiani, L.; Pebriyanto, Y.; Kurniawati, N.
2017-09-01
The weakness of scientific ability of students in college has been being a concern in this case, especially in terms of laboratory activities to support Laboratory Based Education. Scientific ability is a basic ability that must be dominated by students in basic physics lecturing process as a part of scientific method. This research aims to explore the indicators emergence of the scientific ability of students in Chemistry Education of Study Program, Faculty of Teaching and Education University of Palangka Raya through Inquiry Based Learning in basic physics courses. This research is a quantitative research by using descriptive method (descriptive-quantitative). Students are divided into three categories of group those are excellent group, low group, and heterogeneous group. The result shows that the excellent group and low group have same case that were occured decreasing in the percentage of achievement of scientific ability, while in heterogeneous group was increased. The differentiation of these results are caused by enthusiastic level of students in every group that can be seen in tables of scientific ability achievement aspects. By the results of this research, hoping in the future can be a references for further research about innovative learning strategies and models that can improve scientific ability and scientific reasoning especially for science teacher candidates.
McGhee, Charles N J; Gilhotra, Amardeep K
2005-12-01
Completion of a scientific manuscript for submission to a peer-reviewed journal is a daunting task for clinicians and scientists early in their careers. In an ongoing series, this third article is the first of 2 related articles that deal with the basics of producing a high-quality research manuscript. Although ophthalmology and vision science are the principal focus of this series, the general concepts essential to producing a quality manuscript are applicable to diverse fields of research. This article highlights the exponential growth in the scientific literature over the past 40 years, considers why it is important to publish completed research, and discusses the necessity of identifying the key messages of the research, and their context, in relation to the published literature. The ethics of publishing biomedical research and scientific misconduct, such as duplicate publication or plagiarism, are outlined. To avoid later conflict, there is a critical need for coworkers to carefully address authorship order and inclusion early in the manuscript process. Internationally agreed guidelines are identified to guide this process. The importance of choosing the correct journal for a specific article and the nature of basic citation indices are discussed. The article concludes by elaborating and contrasting different scientific writing styles and emphasizing the considerable importance of developing a representative title and applying clarity and appropriate structure to the abstract.
Using Scientific and Industrial Films in Teaching Technical Communication.
ERIC Educational Resources Information Center
Veeder, Gerry
A film course especially designed for technical communication students can illustrate basic film concepts and techniques while showing how film effectively communicates ideas in an industrial and scientific communication system. After a basic introduction to film terms, the study of actual scientific and industrial films demonstrates the following…
Antiviral drug research proposal activity.
Injaian, Lisa; Smith, Ann C; Shipley, Jennifer German; Marbach-Ad, Gili; Fredericksen, Brenda
2011-01-01
The development of antiviral drugs provides an excellent example of how basic and clinical research must be used together in order to achieve the final goal of treating disease. A Research Oriented Learning Activity was designed to help students to better understand how basic and clinical research can be combined toward a common goal. Through this project students gained a better understanding of the process of scientific research and increased their information literacy in the field of virology. The students worked as teams to research the many aspects involved in the antiviral drug design process, with each student becoming an "expert" in one aspect of the project. The Antiviral Drug Research Proposal (ADRP) culminated with students presenting their proposals to their peers and local virologists in a poster session. Assessment data showed increased student awareness and knowledge of the research process and the steps involved in the development of antiviral drugs as a result of this activity.
Antiviral Drug Research Proposal Activity †
Injaian, Lisa; Smith, Ann C.; Shipley, Jennifer German; Marbach-Ad, Gili; Fredericksen, Brenda
2011-01-01
The development of antiviral drugs provides an excellent example of how basic and clinical research must be used together in order to achieve the final goal of treating disease. A Research Oriented Learning Activity was designed to help students to better understand how basic and clinical research can be combined toward a common goal. Through this project students gained a better understanding of the process of scientific research and increased their information literacy in the field of virology. The students worked as teams to research the many aspects involved in the antiviral drug design process, with each student becoming an “expert” in one aspect of the project. The Antiviral Drug Research Proposal (ADRP) culminated with students presenting their proposals to their peers and local virologists in a poster session. Assessment data showed increased student awareness and knowledge of the research process and the steps involved in the development of antiviral drugs as a result of this activity. PMID:23653735
The Art of Astronomy: A New General Education Course for Non-Science Majors
NASA Astrophysics Data System (ADS)
Pilachowski, Catherine A.; van Zee, Liese
2017-01-01
The Art of Astronomy is a new general education course developed at Indiana University. The topic appeals to a broad range of undergraduates and the course gives students the tools to understand and appreciate astronomical images in a new way. The course explores the science of imaging the universe and the technology that makes the images possible. Topics include the night sky, telescopes and cameras, light and color, and the science behind the images. Coloring the Universe: An Insider's Look at Making Spectacular Images of Space" by T. A. Rector, K. Arcand, and M. Watzke serves as the basic text for the course, supplemented by readings from the web. Through the course, students participate in exploration activities designed to help them first to understand astronomy images, and then to create them. Learning goals include an understanding of scientific inquiry, an understanding of the basics of imaging science as applied in astronomy, a knowledge of the electromagnetic spectrum and how observations at different wavelengths inform us about different environments in the universe, and an ability to interpret astronomical images to learn about the universe and to model and understand the physical world.
Designing Courses that Encourage Post-College Scientific Literacy in General Education Students
NASA Astrophysics Data System (ADS)
Horodyskyj, L.
2010-12-01
In a time when domestic and foreign policy is becoming increasingly dependent on a robust understanding of scientific concepts (especially in regards to climate science), it is of vital importance that non-specialist students taking geoscience courses gain an understanding not only of Earth system processes, but also of how to discern scientific information from "spin". An experimental introductory level environmental geology course was developed at the Glendale Community College in Glendale, Arizona, in the fall of 2010 that sought to integrate collaborative learning, online resources, and science in the media. The goal of this course was for students to end the semester with not just an understanding of basic Earth systems concepts, but also with a set of tools for evaluating information presented by the media. This was accomplished by integrating several online sites that interface scientific data with popular web tools (ie, Google Maps) and collaborative exercises that required students to generate ideas based on their observations followed by evaluation and refinement of these ideas through interactions with peers and the instructor. The capstone activity included a series of homework assignments that required students to make note of science-related news stories in the media early in the semester, and then gradually begin critically evaluating these news sources, which will become their primary source of post-college geoscience information. This combination of activities will benefit students long after the semester has ended by giving them access to primary sources of scientific information, encouraging them to discuss and evaluate their ideas with their peers, and, most importantly, to critically evaluate the information they receive from the media and their peers so that they can become more scientifically literate citizens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colvin, Jeffrey D.
This project had two major goals. Final Goal: obtain spectrally resolved, absolutely calibrated x-ray emission data from uniquely uniform mm-scale near-critical-density high-Z plasmas not in local thermodynamic equilibrium (LTE) to benchmark modern detailed atomic physics models. Scientific significance: advance understanding of non-LTE atomic physics. Intermediate Goal: develop new nano-fabrication techniques to make suitable laser targets that form the required highly uniform non-LTE plasmas when illuminated by high-intensity laser light. Scientific significance: advance understanding of nano-science. The new knowledge will allow us to make x-ray sources that are bright at the photon energies of most interest for testing radiation hardening technologies,more » the spectral energy range where current x-ray sources are weak. All project goals were met.« less
Modelling students' knowledge organisation: Genealogical conceptual networks
NASA Astrophysics Data System (ADS)
Koponen, Ismo T.; Nousiainen, Maija
2018-04-01
Learning scientific knowledge is largely based on understanding what are its key concepts and how they are related. The relational structure of concepts also affects how concepts are introduced in teaching scientific knowledge. We model here how students organise their knowledge when they represent their understanding of how physics concepts are related. The model is based on assumptions that students use simple basic linking-motifs in introducing new concepts and mostly relate them to concepts that were introduced a few steps earlier, i.e. following a genealogical ordering. The resulting genealogical networks have relatively high local clustering coefficients of nodes but otherwise resemble networks obtained with an identical degree distribution of nodes but with random linking between them (i.e. the configuration-model). However, a few key nodes having a special structural role emerge and these nodes have a higher than average communicability betweenness centralities. These features agree with the empirically found properties of students' concept networks.
Final Technical Report for Riedo Georgia Tech
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riedo, Elisa
Nanosheets, nanotubes, nanowires, and nanoparticles are gaining a large interest in the scientific community for their exciting properties, and they hold the potential to become building blocks in integrated nano-electronic and photonic circuits, nano-sensors, batteries electrodes, energy harvesting nano-systems, and nano-electro-mechanical systems (NEMS). While several experiments and theoretical calculations have revealed exciting novel phenomena in these nanostructures, many scientific and technological questions remain open. A fundamental objective guiding the study of nanoscale materials is understanding what are the new rules governing nanoscale properties and at what extent well-known physical macroscopic laws still apply in the nano-world. The vision of thismore » DoE research program is to understand the mechanical properties of nanoscale materials by exploring new experimental methods and theoretical models at the boundaries between continuum mechanics and atomistic models, with the overarching goal of defining the basic laws of mechanics at the nanoscale.« less
NASA Technical Reports Server (NTRS)
Lopez, Ramon E.
1996-01-01
Science education in this country is in its greatest period of ferment since the post-Sputnik frenzy a generation ago. In that earlier time, however, educators' emphasis was on producing more scientists and engineers. Today we recognize that all Americans need a good science background. The ability to observe, measure, think quantitatively, and reach logical conclusions based on available evidence is a set of skills that everyone entering the workforce needs to acquire if our country is to be competitive in a global economy. Moreover, as public policy increasingly crystallizes around scientific issues, it is critical that citizens be educated in science so that they may provide informed debate and on these issues. In order to develop this idea more fully, I proposed to teach a historically based course about space physics as an honors course at the University of Maryland-College Park (UMCP). The honors program at UMCP was established to foster broad-based undergraduate courses that utilize innovative teaching techniques to provide exemplary education to a select group of students. I designed an introductory course that would have four basic goals: to acquaint students with geomagnetic and auroral phenomena and their relationship to the space environment; to examine issues related to the history of science using the evolution of the field as an example; to develop familiarity with basic skills such as describing and interpreting observations, analyzing scientific papers, and communicating the results of their own research; and to provide some understanding of basic physics, especially those aspect that play a role in the near-earth space environment.
The Sun to the Earth - and Beyond: A Decadal Research Strategy in Solar and Space Physics
NASA Technical Reports Server (NTRS)
2003-01-01
The sun is the source of energy for life on earth and is the strongest modulator of the human physical environment. In fact, the Sun's influence extends throughout the solar system, both through photons, which provide heat, light, and ionization, and through the continuous outflow of a magnetized, supersonic ionized gas known as the solar wind. While the accomplishments of the past decade have answered important questions about the physics of the Sun, the interplanetary medium, and the space environments of Earth and other solar system bodies, they have also highlighted other questions, some of which are long-standing and fundamental. The Sun to the Earth--and Beyond organizes these questions in terms of five challenges that are expected to be the focus of scientific investigations in solar and space physics during the coming decade and beyond. While the accomplishments of the past decades have answered important questions about the physics of the Sun, the interplanetary medium, and the space environments of Earth and other solar system bodies, they have also highlighted other questions, some of which are long-standing and fundamental. This report organizes these questions in terms of five challenges that are expected to be the focus of scientific investigations in solar and space physics during the coming decade and beyond: Challenge 1: Understanding the structure and dynamics of the Sun's interior, the generation of solar magnetic fields, the origin of the solar cycle, the causes of solar activity, and the structure and dynamics of the corona. Challenge 2: Understanding heliospheric structure, the distribution of magnetic fields and matter throughout the solar system, and the interaction of the solar atmosphere with the local interstellar medium. Challenge 3: Understanding the space environments of Earth and other solar system bodies and their dynamical response to external and internal influences. Challenge 4: Understanding the basic physical principles manifest in processes observed in solar and space plasmas. Challenge 5: Developing a near-real-time predictive capability for understanding and quantifying the impact on human activities of dynamical processes at the Sun, in the interplanetary medium, and in Earth's magnetosphere and ionosphere. This report summarizes the state of knowledge about the total heliospheric system, poses key scientific questions for further research, and presents an integrated research strategy, with prioritized initiatives, for the next decade. The recommended strategy embraces both basic research programs and targeted basic research activities that will enhance knowledge and prediction of space weather effects on Earth. The report emphasizes the importance of understanding the Sun, the heliosphere, and planetary magnetospheres and ionospheres as astrophysical objects and as laboratories for the investigation of fundamental plasma physics phenomena.
Life sciences research on the space station: An introduction
NASA Technical Reports Server (NTRS)
1985-01-01
The Space Station will provide an orbiting, low gravity, permanently manned facility for scientific research, starting in the 1990s. The facilities for life sciences research are being designed to allow scientific investigators to perform research in Space Medicine and Space Biology, to study the consequences of long-term exposure to space conditions, and to allow for the permanent presence of humans in space. This research, using humans, animals, and plants, will provide an understanding of the effects of the space environment on the basic processes of life. In addition, facilities are being planned for remote observations to study biologically important elements and compounds in space and on other planets (exobiology), and Earth observations to study global ecology. The life sciences community is encouraged to plan for participation in scientific research that will be made possible by the Space Station research facility.
Coderre, Raymond W; Uekermann, Kristen A; Choi, Youngeun; Anderson, William J
2016-03-01
Scientists constantly make groundbreaking discoveries, some of which receive attention from the press. We designed a course intended for a lay audience that provides the scientific background to appreciate these reports more fully. We discuss three topics in the life sciences: stem cells, cancer, and infectious disease. The course is structured to blend relevant scientific background and evaluation of primary literature with the coverage of these advances by the media and popular press. In short, lectures emphasize exposure to basic biological concepts and tools as a means of informing understanding of prominent biological questions of public interest. The overall goal of the course is not only to expose students to the media's coverage of scientific progress, but also to hone their critical thinking skills to distinguish hope from hype.
Rieder, Florian; de Bruyn, Jessica R; Pham, Bao Tung; Katsanos, Konstantinos; Annese, Vito; Higgins, Peter D R; Magro, Fernando; Dotan, Iris
2014-10-01
The fourth scientific workshop of the European Crohn's and Colitis Organization (ECCO) focused on intestinal fibrosis in inflammatory bowel disease (IBD). The objective was to better understand basic mechanisms and markers of intestinal fibrosis as well as to suggest new therapeutic targets to prevent or treat fibrosis. The results of this workshop are presented in three separate manuscripts. This section describes markers of fibrosis in IBD, identifies unanswered questions in the field and provides a framework for future studies addressing the unmet needs in the field of intestinal fibrosis. Copyright © 2014 European Crohn's and Colitis Organisation. Published by Elsevier B.V. All rights reserved.
Veritas filia temporis: The origins of the idea of scientific progress.
Špelda, Daniel
2016-10-01
The article provides insight into the epistemological and anthropological aspect of the origination of the idea of scientific progress. It focuses on the relationship between individual's limited lifetime and the immensity of nature. The basic assumption is that the idea of scientific progress offers a solution of the epistemological problem stemming from the finding that there is no (teleological) coincidence between human cognitive abilities and the extent of nature. In order to facilitate the understanding of the origin of the idea of scientific progress, I propose distinction between the descriptive and prescriptive concepts of progress. While the descriptive notion of progress expresses the cumulative character of scientific knowledge and the superiority of the present over preceding generations, the prescriptive concept pertains to progressivist epistemology directing scientific research at the future development of knowledge. This article claims that the prevalent concept in Antiquity was the descriptive concept of scientific progress. The prescriptive notion had developed only in ancient astronomy. Early modern science was faced with similar issues as ancient astronomy - mainly the empirical finding related to the inexhaustible character of nature. Consequently to the introduction of the idea of progress, the progress of sciences became a purpose in itself - hence becoming infinite.
Contributions of Basic Sciences to Science of Education. Studies in Educational Administration.
ERIC Educational Resources Information Center
Lall, Bernard M.
The science of education has been influenced by the basic sciences to the extent that educational research now has been able to modernize its approach by accepting and using the basic scientific methodology and experimental techniques. Using primarily the same steps of scientific investigations, education today holds a place of much greater esteem…
Ginzburg, Samara B; Brenner, Judith; Cassara, Michael; Kwiatkowski, Thomas; Willey, Joanne M
2017-01-01
There has been a call for increased integration of basic and clinical sciences during preclinical years of undergraduate medical education. Despite the recognition that clinical simulation is an effective pedagogical tool, little has been reported on its use to demonstrate the relevance of basic science principles to the practice of clinical medicine. We hypothesized that simulation with an integrated science and clinical debrief used with early learners would illustrate the importance of basic science principles in clinical diagnosis and management of patients. Small groups of first- and second-year medical students were engaged in a high-fidelity simulation followed by a comprehensive debrief facilitated by a basic scientist and clinician. Surveys including anchored and open-ended questions were distributed at the conclusion of each experience. The majority of the students agreed that simulation followed by an integrated debrief illustrated the clinical relevance of basic sciences (mean ± standard deviation: 93.8% ± 2.9% of first-year medical students; 96.7% ± 3.5% of second-year medical students) and its importance in patient care (92.8% of first-year medical students; 90.4% of second-year medical students). In a thematic analysis of open-ended responses, students felt that these experiences provided opportunities for direct application of scientific knowledge to diagnosis and treatment, improving student knowledge, simulating real-world experience, and developing clinical reasoning, all of which specifically helped them understand the clinical relevance of basic sciences. Small-group simulation followed by a debrief that integrates basic and clinical sciences is an effective means of demonstrating the relationship between scientific fundamentals and patient care for early learners. As more medical schools embrace integrated curricula and seek opportunities for integration, our model is a novel approach that can be utilized.
Animal models of intellectual disability: towards a translational approach
Scorza, Carla A; Cavalheiro, Esper A.
2011-01-01
Intellectual disability is a prevalent form of cognitive impairment, affecting 2–3% of the general population. It is a daunting societal problem characterized by significant limitations both in intellectual functioning and in adaptive behavior as expressed in conceptual, social and practical adaptive skills. Intellectual disability is a clinically important disorder for which the etiology and pathogenesis are still poorly understood. Moreover, although tremendous progress has been made, pharmacological intervention is still currently non-existent and therapeutic strategies remain limited. Studies in humans have a very limited capacity to explain basic mechanisms of this condition. In this sense, animal models have been invaluable in intellectual disability investigation. Certainly, a great deal of the knowledge that has improved our understanding of several pathologies has derived from appropriate animal models. Moreover, to improve human health, scientific discoveries must be translated into practical applications. Translational research specifically aims at taking basic scientific discoveries and best practices to benefit the lives of people in our communities. In this context, the challenge that basic science research needs to meet is to make use of a comparative approach to benefit the most from what each animal model can tell us. Intellectual disability results from many different genetic and environmental insults. Taken together, the present review will describe several animal models of potential intellectual disability risk factors. PMID:21779723
Kieburtz, Karl; Olanow, C Warren
2007-04-01
In the past decade, there has been an increasing emphasis on laboratory-based translational research. This has led to significant scientific advances in our understanding of disease mechanisms and in the development of novel approaches to therapy such as gene therapy, RNA interference, and stem cells. However, the translation of these remarkable scientific achievements into new and effective disease-modifying therapies has lagged behind these scientific accomplishments. We use the term "translational experimental therapeutics" to describe the pathway between the discovery of a basic disease mechanism or novel therapeutic approach and its translation into an effective treatment for patients with a specific disease. In this article, we review the components of this pathway, and discuss issues that might impede this process. Only by optimizing this pathway can we realize the full therapeutic potential of current scientific discoveries and translate the astounding advances that have been accomplished in the laboratory into effective treatments for our patients. Copyright (c) 2007 Mount Sinai School of Medicine.
Understanding AIDS: historical interpretations and the limits of biomedical individualism.
Fee, E; Krieger, N
1993-01-01
The popular and scientific understanding of acquired immunodeficiency syndrome (AIDS) in the United States has been shaped by successive historical constructions or paradigms of disease. In the first paradigm, AIDS was conceived of as a "gay plague," by analogy with the sudden, devastating epidemics of the past. In the second, AIDS was normalized as a chronic disease to be managed medically over the long term. By examining and extending critiques of both paradigms, it is possible to discern the emergence of an alternative paradigm of AIDS as a collective chronic infectious disease and persistent pandemic. Each of these constructions of AIDS incorporates distinct views of the etiology, prevention, pathology, and treatment of disease; each tacitly promotes different conceptions of the proper allocation of individual and social responsibility for AIDS. This paper focuses on individualistic vs collective, and biomedical vs social and historical, understandings of disease. It analyzes the use of individualism as methodology and as ideology, criticizes some basic assumptions of the biomedical model, and discusses alternative strategies for scientific research, health policy, and disease prevention. Images p1478-a p1480-a p1482-a PMID:8214245
du Prel, Jean-Baptist; Röhrig, Bernd; Blettner, Maria
2009-02-01
In the era of evidence-based medicine, one of the most important skills a physician needs is the ability to analyze scientific literature critically. This is necessary to keep medical knowledge up to date and to ensure optimal patient care. The aim of this paper is to present an accessible introduction into critical appraisal of scientific articles. Using a selection of international literature, the reader is introduced to the principles of critical reading of scientific articles in medicine. For the sake of conciseness, detailed description of statistical methods is omitted. Widely accepted principles for critically appraising scientific articles are outlined. Basic knowledge of study design, structuring of an article, the role of different sections, of statistical presentations as well as sources of error and limitation are presented. The reader does not require extensive methodological knowledge. As far as necessary for critical appraisal of scientific articles, differences in research areas like epidemiology, clinical, and basic research are outlined. Further useful references are presented. Basic methodological knowledge is required to select and interpret scientific articles correctly.
NASA Technical Reports Server (NTRS)
Moore, J. V.
1976-01-01
The Attitude Control System for the IUE spacecraft is described. The basic mission objectives are stated and a sequential discussion of the mission is presented. Desired accuracy for each mission phase is noted and where applicable the onboard control mechanization is shown. Sensors and actuator systems utilized by the control algorithms are described. Finally, onboard software is discussed to a level necessary to understand the prime mission mode operation.
The future of microarray technology: networking the genome search.
D'Ambrosio, C; Gatta, L; Bonini, S
2005-10-01
In recent years microarray technology has been increasingly used in both basic and clinical research, providing substantial information for a better understanding of genome-environment interactions responsible for diseases, as well as for their diagnosis and treatment. However, in genomic research using microarray technology there are several unresolved issues, including scientific, ethical and legal issues. Networks of excellence like GA(2)LEN may represent the best approach for teaching, cost reduction, data repositories, and functional studies implementation.
Soyyılmaz, Demet; Griffin, Laura M.; Martín, Miguel H.; Kucharský, Šimon; Peycheva, Ekaterina D.; Vaupotič, Nina; Edelsbrunner, Peter A.
2017-01-01
Scientific thinking is a predicate for scientific inquiry, and thus important to develop early in psychology students as potential future researchers. The present research is aimed at fathoming the contributions of formal and informal learning experiences to psychology students’ development of scientific thinking during their 1st-year of study. We hypothesize that informal experiences are relevant beyond formal experiences. First-year psychology student cohorts from various European countries will be assessed at the beginning and again at the end of the second semester. Assessments of scientific thinking will include scientific reasoning skills, the understanding of basic statistics concepts, and epistemic cognition. Formal learning experiences will include engagement in academic activities which are guided by university authorities. Informal learning experiences will include non-compulsory, self-guided learning experiences. Formal and informal experiences will be assessed with a newly developed survey. As dispositional predictors, students’ need for cognition and self-efficacy in psychological science will be assessed. In a structural equation model, students’ learning experiences and personal dispositions will be examined as predictors of their development of scientific thinking. Commonalities and differences in predictive weights across universities will be tested. The project is aimed at contributing information for designing university environments to optimize the development of students’ scientific thinking. PMID:28239363
Soyyılmaz, Demet; Griffin, Laura M; Martín, Miguel H; Kucharský, Šimon; Peycheva, Ekaterina D; Vaupotič, Nina; Edelsbrunner, Peter A
2017-01-01
Scientific thinking is a predicate for scientific inquiry, and thus important to develop early in psychology students as potential future researchers. The present research is aimed at fathoming the contributions of formal and informal learning experiences to psychology students' development of scientific thinking during their 1st-year of study. We hypothesize that informal experiences are relevant beyond formal experiences. First-year psychology student cohorts from various European countries will be assessed at the beginning and again at the end of the second semester. Assessments of scientific thinking will include scientific reasoning skills, the understanding of basic statistics concepts, and epistemic cognition. Formal learning experiences will include engagement in academic activities which are guided by university authorities. Informal learning experiences will include non-compulsory, self-guided learning experiences. Formal and informal experiences will be assessed with a newly developed survey. As dispositional predictors, students' need for cognition and self-efficacy in psychological science will be assessed. In a structural equation model, students' learning experiences and personal dispositions will be examined as predictors of their development of scientific thinking. Commonalities and differences in predictive weights across universities will be tested. The project is aimed at contributing information for designing university environments to optimize the development of students' scientific thinking.
Coderre, Raymond W.; Uekermann, Kristen A.; Choi, Youngeun; Anderson, William J.
2016-01-01
Scientists constantly make groundbreaking discoveries, some of which receive attention from the press. We designed a course intended for a lay audience that provides the scientific background to appreciate these reports more fully. We discuss three topics in the life sciences: stem cells, cancer, and infectious disease. The course is structured to blend relevant scientific background and evaluation of primary literature with the coverage of these advances by the media and popular press. In short, lectures emphasize exposure to basic biological concepts and tools as a means of informing understanding of prominent biological questions of public interest. The overall goal of the course is not only to expose students to the media’s coverage of scientific progress, but also to hone their critical thinking skills to distinguish hope from hype. PMID:27047603
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacon, Charles; Bell, Greg; Canon, Shane
The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In October 2012, ESnet and the Office of Advanced Scientific Computing Research (ASCR) of the DOE SCmore » organized a review to characterize the networking requirements of the programs funded by the ASCR program office. The requirements identified at the review are summarized in the Findings section, and are described in more detail in the body of the report.« less
New GMO regulations for old: Determining a new future for EU crop biotechnology
2017-01-01
ABSTRACT In this review, current EU GMO regulations are subjected to a point-by point analysis to determine their suitability for agriculture in modern Europe. Our analysis concerns present GMO regulations as well as suggestions for possible new regulations for genome editing and New Breeding Techniques (for which no regulations presently exist). Firstly, the present GMO regulations stem from the early days of recombinant DNA and are not adapted to current scientific understanding on this subject. Scientific understanding of GMOs has changed and these regulations are now, not only unfit for their original purpose, but, the purpose itself is now no longer scientifically valid. Indeed, they defy scientific, economic, and even common, sense. A major EU regulatory preconception is that GM crops are basically different from their parent crops. Thus, the EU regulations are “process based” regulations that discriminate against GMOs simply because they are GMOs. However current scientific evidence shows a blending of classical crops and their GMO counterparts with no clear demarcation line between them. Canada has a “product based” approach and determines the safety of each new crop variety independently of the process used to obtain it. We advise that the EC re-writes it outdated regulations and moves toward such a product based approach. Secondly, over the last few years new genomic editing techniques (sometimes called New Breeding Techniques) have evolved. These techniques are basically mutagenesis techniques that can generate genomic diversity and have vast potential for crop improvement. They are not GMO based techniques (any more than mutagenesis is a GMO technique), since in many cases no new DNA is introduced. Thus they cannot simply be lumped together with GMOs (as many anti-GMO NGOs would prefer). The EU currently has no regulations to cover these new techniques. In this review, we make suggestions as to how these new gene edited crops may be regulated. The EU is at a turning point where the wrong decision could destroy European agricultural competitively for decades to come. PMID:28278120
International Space Weather Initiative (ISWI)
NASA Technical Reports Server (NTRS)
Davila, Joseph M.; Gopalswamy, Nat; Thompson, Barbara
2009-01-01
The International Heliophysical Year (IHY), an international program of scientific collaboration to understand the external drivers of planetary environments, has come to an end. The IHY was a major international event of great interest to the member States, which involved the deployment of new instrumentation, new observations from the ground and in space, and an education component. We propose to continue the highly successful collaboration between the heliophysics science community and the United Nations Basic Space Science (UNBSS) program. One of the major thrust of the IHY was to deploy arrays of small instruments such as magnetometers, radio antennas, GPS receivers, all-sky cameras, particle detectors, etc. around the world to provide global measurements of heliospheric phenomena. The United Nations Basic Space Science Initiative (UNBSSI) played a major role in this effort. Scientific teams were organized through UNBSS, which consisted of a lead scientist who provided the instruments or fabrication plans for instruments in the array. As a result of the this program, scientists from UNBSS member states now participate in the instrument operation, data collection, analysis, and publication of scientific results, working at the forefront of science research. As part of this project, support for local scientists, facilities and data acquisition is provided by the host nation. In addition, support at the Government level is provided for local scientists to participate. Building on momentum of the IHY, we propose to continue the highly successful collaboration with the UNBSS program to continue the study of universal processes in the solar system that affect the interplanetary and terrestrial environments, and to continue to coordinate the deployment and operation of new and existing instrument arrays aimed at understanding the impacts of Space Weather on Earth and the near-Earth environment. Toward this end, we propose a new program, the International Space Weather Initiative (ISWI).
International Space Weather Initiative (ISWI)
NASA Technical Reports Server (NTRS)
Davila, Joseph; Gopalswamy, Nathanial; Thompson, Barbara
2010-01-01
The International Heliophysical Year (IHY), an international program of scientific collaboration to understand the external drivers of planetary environments, has come to an end. The IHY was a major international event of great interest to the member States, which involved the deployment of new instrumentation, new observations from the ground and in space, and an education component. We propose to continue the highly successful collaboration between the heliophysics science community and the United Nations Basic Space Science (UNBSS) program. One of the major thrust of the IHY was to deploy arrays of small instruments such as magnetometers, radio antennas, GPS receivers, all-sky cameras, particle detectors, etc. around the world to provide global measurements of heliospheric phenomena. The United Nations Basic Space Science Initiative (UNBSSI) played a major role in this effort. Scientific teams were organized through UNBSS, which consisted of a lead scientist who provided the instruments or fabrication plans for instruments in the array. As a result of the this program, scientists from UNBSS member states now participate in the instrument operation, data collection, analysis, and publication of scientific results, working at the forefront of science research. As part of this project, support for local scientists, facilities and data acquisition is provided by the host nation. In addition, support at the Government level is provided for local scientists to participate. Building on momentum of the IHY, we propose to continue the highly successful collaboration with the UNBSS program to continue the study of universal processes in the solar system that affect the interplanetary and terrestrial environments, and to continue to coordinate the deployment and operation of new and existing instrument arrays aimed at understanding the impacts of Space Weather on Earth and the near-Earth environment. Toward this end, we propose a new program, the International Space Weather Initiative (ISWI).
Hamacher, Michael; Klose, Joachim; Rossier, Jean; Marcus, Katrin; Meyer, Helmut E
2004-07-01
The second Human Brain Proteome Project (HBPP) Workshop of the Human Proteome Organisation (HUPO) took place at the Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI) from April 23-24, 2004. During two days, more than 70 attendees from Europe, Asia and the US came together to decide basic strategic approaches, standards and the beginning of a pilot phase prior to further studies of the human brain proteome. The international consortium presented the technological and scientific portfolio and scheduled the time table for the next year.
The Importance of Mixing Virtual and Real Information in Games
NASA Astrophysics Data System (ADS)
Gaonach, H.
2014-12-01
Educational technology is rapidly evolving, today's classrooms are replete with ipads, iphones, interactive white boards, and other Internet tools and gadgets. However we mustn't be diverted by the technology and lose the basic focus on the communication of scientific ideas to the students. What do we want to teach them? I will present new educational kits including games about active volcanoes as well as climates and climate change. These tools have been created for 8-12 year olds who play on teams. The teams use question-cards and basic geographic knowledge to move on a regular play board by answering scientific questions. In addition to learning the science, through interpreting latitudes and longitudes, children will better understand the link between Google map and the world map after such exercises! With their teacher, they will be able to play with traditional pieces but also use tablets or computers to listen to videos as well as obtain additional subject related questions and activities. In this way, the Web is an infinite extension of the regular game played on a table with physical pieces. Let's see how it works!
Brain structure links trait creativity to openness to experience
Huang, Lijie; Kong, Xiangzhen; Yang, Wenjing; Wei, Dongtao; Li, Jingguang; Cheng, Hongsheng; Zhang, Qinglin
2015-01-01
Creativity is crucial to the progression of human civilization and has led to important scientific discoveries. Especially, individuals are more likely to have scientific discoveries if they possess certain personality traits of creativity (trait creativity), including imagination, curiosity, challenge and risk-taking. This study used voxel-based morphometry to identify the brain regions underlying individual differences in trait creativity, as measured by the Williams creativity aptitude test, in a large sample (n = 246). We found that creative individuals had higher gray matter volume in the right posterior middle temporal gyrus (pMTG), which might be related to semantic processing during novelty seeking (e.g. novel association, conceptual integration and metaphor understanding). More importantly, although basic personality factors such as openness to experience, extroversion, conscientiousness and agreeableness (as measured by the NEO Personality Inventory) all contributed to trait creativity, only openness to experience mediated the association between the right pMTG volume and trait creativity. Taken together, our results suggest that the basic personality trait of openness might play an important role in shaping an individual’s trait creativity. PMID:24603022
Zhu, Xiaoyang (Director, Understanding Charge Separation and Transfer at Interfaces in Energy Materials); CST Staff
2017-12-09
'EFRC:CST at the University of Texas at Austin - A DOE Energy Frontier Research Center' was submitted by the EFRC for Understanding Charge Separation and Transfer at Interfaces in Energy Materials (EFRC:CST) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. EFRC:CST is directed by Xiaoyang Zhu at the University of Texas at Austin in partnership with Sandia National Laboratories. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.
Artemisinin and Chinese Medicine as Tu Science.
Fu, Jia-Chen
2017-09-01
The story of discovery of artemisinin highlights the diversity of scientific values across time and space. Resituating artemisinin research within a broader temporal framework allows us to understand how Chinese drugs like qinghao came to articulate a space for scientific experimentation and innovation through its embodiment of alternating clusters of meanings associated with tu and yang within scientific discourse. Tu science, which was associated with terms like native, Chinese, local, rustic, mass, and crude, articulated a radical vision of science in the service of socialist revolutionary ideals. Yang science, which signified foreign, Western, elite, and professional, tended to bear the hallmarks of professionalism, transnational networks in education and training, and an emphasis on basic or foundational research. With respect to medical research, the case of artemisinin highlights how the constitution of socialist science as an interplay of tu and yang engendered different scientific values and parameters for scientific endeavor. Modern medical research in Maoist China could harness the productive energies of mass participation to technical expertise in its investigations of Chinese drugs, and under the banner of tu science, it became possible and scientifically legitimate to research Chinese drugs in ways that had previously provoked resistance and controversy. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Physics of a Gymnastics Flight Element
NASA Astrophysics Data System (ADS)
Contakos, Jonas; Carlton, Les G.; Thompson, Bruce; Suddaby, Rick
2009-09-01
From its inception, performance in the sport of gymnastics has relied on the laws of physics to create movement patterns and static postures that appear almost impossible. In general, gymnastics is physics in motion and can provide an ideal framework for studying basic human modeling techniques and physical principles. Using low-end technology and basic principles of physics, we analyzed a high-end gymnastics skill competed in by both men and women. The comprehensive goal of the examination is to scientifically understand how a skill of this magnitude is actually physically possible and what must a gymnast do to successfully complete the skill. The examination is divided into three sections, each of which is comprehensive enough to be a separate assignment or small group project.
Future Translational Applications From the Contemporary Genomics Era
Fox, Caroline S.; Hall, Jennifer L.; Arnett, Donna K.; Ashley, Euan A.; Delles, Christian; Engler, Mary B.; Freeman, Mason W.; Johnson, Julie A.; Lanfear, David E.; Liggett, Stephen B.; Lusis, Aldons J.; Loscalzo, Joseph; MacRae, Calum A.; Musunuru, Kiran; Newby, L. Kristin; O’Donnell, Christopher J.; Rich, Stephen S.; Terzic, Andre
2016-01-01
The field of genetics and genomics has advanced considerably with the achievement of recent milestones encompassing the identification of many loci for cardiovascular disease and variable drug responses. Despite this achievement, a gap exists in the understanding and advancement to meaningful translation that directly affects disease prevention and clinical care. The purpose of this scientific statement is to address the gap between genetic discoveries and their practical application to cardiovascular clinical care. In brief, this scientific statement assesses the current timeline for effective translation of basic discoveries to clinical advances, highlighting past successes. Current discoveries in the area of genetics and genomics are covered next, followed by future expectations, tools, and competencies for achieving the goal of improving clinical care. PMID:25882488
Reflections on scientific collaboration between basic researchers and clinicians.
Muia, J; Casari, C
2016-10-01
Early career researchers face uncertainties with respect to their job prospects due to dwindling job markets, decreased availability of funding and undefined career paths. As basic researchers and clinicians tend to have different approaches to scientific problems, there are many advantages from successful collaborations between them. Here, we discuss how collaborations between basic and clinical scientists should be promoted early in their careers. To achieve this, researchers, both basic and clinical, must be proactive during their training and early stages of their careers. Mentors can further augment collaborative links in many ways. We suggest that universities and institutions might reassess their involvement in promoting collaborations between basic and clinical researchers. We hope that this paper will serve as a reminder of the importance of such collaborations, and provide the opportunity for all members of the scientific community to reflect on and ameliorate their own contributions. © 2016 International Society on Thrombosis and Haemostasis.
Kehinde, Elijah O.
2013-01-01
The objective of this review article was to examine current and prospective developments in the scientific use of laboratory animals, and to find out whether or not there are still valid scientific benefits of and justification for animal experimentation. The PubMed and Web of Science databases were searched using the following key words: animal models, basic research, pharmaceutical research, toxicity testing, experimental surgery, surgical simulation, ethics, animal welfare, benign, malignant diseases. Important relevant reviews, original articles and references from 1970 to 2012 were reviewed for data on the use of experimental animals in the study of diseases. The use of laboratory animals in scientific research continues to generate intense public debate. Their use can be justified today in the following areas of research: basic scientific research, use of animals as models for human diseases, pharmaceutical research and development, toxicity testing and teaching of new surgical techniques. This is because there are inherent limitations in the use of alternatives such as in vitro studies, human clinical trials or computer simulation. However, there are problems of transferability of results obtained from animal research to humans. Efforts are on-going to find suitable alternatives to animal experimentation like cell and tissue culture and computer simulation. For the foreseeable future, it would appear that to enable scientists to have a more precise understanding of human disease, including its diagnosis, prognosis and therapeutic intervention, there will still be enough grounds to advocate animal experimentation. However, efforts must continue to minimize or eliminate the need for animal testing in scientific research as soon as possible. PMID:24217224
Kehinde, Elijah O
2013-01-01
The objective of this review article was to examine current and prospective developments in the scientific use of laboratory animals, and to find out whether or not there are still valid scientific benefits of and justification for animal experimentation. The PubMed and Web of Science databases were searched using the following key words: animal models, basic research, pharmaceutical research, toxicity testing, experimental surgery, surgical simulation, ethics, animal welfare, benign, malignant diseases. Important relevant reviews, original articles and references from 1970 to 2012 were reviewed for data on the use of experimental animals in the study of diseases. The use of laboratory animals in scientific research continues to generate intense public debate. Their use can be justified today in the following areas of research: basic scientific research, use of animals as models for human diseases, pharmaceutical research and development, toxicity testing and teaching of new surgical techniques. This is because there are inherent limitations in the use of alternatives such as in vitro studies, human clinical trials or computer simulation. However, there are problems of transferability of results obtained from animal research to humans. Efforts are on-going to find suitable alternatives to animal experimentation like cell and tissue culture and computer simulation. For the foreseeable future, it would appear that to enable scientists to have a more precise understanding of human disease, including its diagnosis, prognosis and therapeutic intervention, there will still be enough grounds to advocate animal experimentation. However, efforts must continue to minimize or eliminate the need for animal testing in scientific research as soon as possible. © 2013 S. Karger AG, Basel.
Brownell, Sara E; Price, Jordan V; Steinman, Lawrence
2013-03-01
Most scientists agree that comprehension of primary scientific papers and communication of scientific concepts are two of the most important skills that we can teach, but few undergraduate biology courses make these explicit course goals. We designed an undergraduate neuroimmunology course that uses a writing-intensive format. Using a mixture of primary literature, writing assignments directed toward a layperson and scientist audience, and in-class discussions, we aimed to improve the ability of students to 1) comprehend primary scientific papers, 2) communicate science to a scientific audience, and 3) communicate science to a layperson audience. We offered the course for three consecutive years and evaluated its impact on student perception and confidence using a combination of pre- and postcourse survey questions and coded open-ended responses. Students showed gains in both the perception of their understanding of primary scientific papers and of their abilities to communicate science to scientific and layperson audiences. These results indicate that this unique format can teach both communication skills and basic science to undergraduate biology students. We urge others to adopt a similar format for undergraduate biology courses to teach process skills in addition to content, thus broadening and strengthening the impact of undergraduate courses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Institute for Materials Research (IMR), one of the major organizational units of the National Bureau of Standards, conducts research to provide a better understanding of the basic properties of materials and develops methodology and standards for measuring their properties to help ensure effective utilization of technologically important materials by the nation's scientific, commercial, and industrial communities. This report covers activities of the Institute during the 12 months preceding the Panel meeting on January 26-27, 1976.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Institute for Materials Research (IMR), one of the major organizational units of the National Bureau of Standards, conducts research to provide a better understanding of the basic properties of materials and develops methodology and standards for measuring their properties to help ensure effective utilization of technologically important materials by the nation's scientific, commercial, and industrial communities. This report covers activities of the Institute during the 12 months preceding the Panel meeting on January 25-26, 1977.
Human Processes in Intelligence Analysis: Phase I Overview
1979-12-01
Inodrtpusehsreac, several operating definitions were thv model, and is based on field obser- adopted. A basic defnition was that vations made from tha...Similarly, the IMINT bo•xes of different analysts, analyst who understands the problems Comnputer data bases, such as those of of the reconnaissance pilot has...TaiulanNevl Franea 3 USA Aviation Test K, Pt Rucler. ATTN: STlG-P( I Prin Scientific Off. Ar-1 HIm mngr Rich Olv. Miniatry 1 USA Apy hr Av4iao SAWe
Kamstrupp's wow-effect: re-examined and expanded
NASA Astrophysics Data System (ADS)
King, Elizabeth M.; Dickmann, Ellyn M.; Johnson, Barbara Z.
2016-12-01
This review examines Anne Katrine Kamstrupp's article "The wow-effect in science teacher education; technology; sociomateriality." In the discussion below we explore three key areas of her ethnographic research. First, we reconsider Kamstrupp's article through the lens of technology as a pedagogical choice and philosophy. This is followed by our discussion of aspects of her study within the context of a basic understanding that entry-level pre-service teachers need to fully understand both the process of learning and scientific principles as these are important foundational factors in determining whether or not the wow-effect will occur as expected. Finally, our review team presents multiple areas in Kamstrupp's article as potential points for further elaboration.
NASA Astrophysics Data System (ADS)
Hess, M.; Garside, D.; Nelson, T.; Robson, S.; Weyrich, T.
2017-08-01
As cultural sector practice becomes increasingly dependent on digital technologies for the production, display, and dissemination of art and material heritage, it is important that those working in the sector understand the basic scientific principles underpinning these technologies and the social, political and economic implications of exploiting them. The understanding of issues in cultural heritage preservation and digital heritage begins in the education of the future stakeholders and the innovative integration of technologies into the curriculum. This paper gives an example of digital technology skills embedded into a module in the interdisciplinary UCL Bachelor of Arts and Sciences, named "Technologies in Arts and Cultural Heritage", at University College London.
The Contribution of TOMS and UARS Data to Our Understanding of Ozone Change
NASA Technical Reports Server (NTRS)
Bhartia, Pawan K.; Einaudi, Franco (Technical Monitor)
2001-01-01
Both TOMS (Total Ozone Mapping Spectrometer) and UARS (Upper Atmosphere Research Satellite) have operated over an extended period, and generated data sets of sufficient accuracy to be of use in determining ozone change (TOMS) and some of the underlying causes (UARS). The basic scientific products have been used for model validation and assimilation to extend our understanding of stratospheric processes. TOMS on Nimbus-7, Earth-Probe, and QuikTOMS, and UARS have led to the next generation of instruments onboard the EOS platforms. Algorithms used for TOMS and UARS are being applied to the new data sets and extended to analysis of European satellite data (e.g., GOME)
Descobrindo o Universo: Relato de Experiência sobre o Ensino de Astronomia nos Anos Iniciais
NASA Astrophysics Data System (ADS)
Nunes, C. F.; Albrecht, E.
2017-12-01
Astronomy has influenced and fascinated humanity throughout history, such aspects have aided development in different areas of knowledge. However, even having this great influence, its insertion in Brazilian schools is still timid. This paper reports a possibility of working with the theme in basic education. One of the objectives is to understand and analyze the contributions of work with Astronomy in the early years from the perspective of scientific literacy. The methodology employed in the study was qualitative. The teacher in his classroom process acted in a way to mediate the issues that were the starting point of this work. This report of experience deals with a work developed with a group composed by 28 students of the 2nd year of elementary school in a public school of the municipal network of Teaching of São Bernardo do Campo, São Paulo. Based on this premise, the teacher offered the possibility for students to formulate hypotheses and to socialize their findings through research. In this perspective, the teacher mediates the conflicts arising from the doubts and questions of the students so that they can research and collect information to learn the concepts. When the student has the opportunity to present his doubts and to define what the subject wants to research, he becomes the protagonist of his learning, understanding that scientific knowledge is not finite but has a spiral movement where the doubts will lead to new research and discoveries. The final product of this work was a book with the record of the researches done by the students being that it made possible an evaluation of the students' understanding of the basic concepts of Astronomy.
Science in the regulatory setting: a challenging but incompatible mix?
Yetley, Elizabeth A
2007-01-01
Regulatory decisions informed by sound science have an important role in many regulatory applications involving drugs and foods, including applications related to dietary supplements. However, science is only one of many factors that must be taken into account in the regulatory decision-making process. In many cases, the scientific input to a regulatory decision must compete with other factors (e.g. economics, legal requirements, stakeholder interests) for impact on the resultant policy decision. Therefore, timely and effective articulation of the available science to support a regulatory decision can significantly affect the relative weight given to science. However, the incorporation of science into the regulatory process for dietary supplements is often fraught with challenges. The available scientific evidence has rarely been designed for the purpose of addressing regulatory questions and is often preliminary and of widely varying scientific quality. To add to the confusion, the same scientific evidence may result in what appears to be different regulatory decisions because the context in which the science is used differs. The underlying assumption is that scientists who have a basic understanding of the interface between science and policy decisions can more effectively provide scientific input into these decisions.
Arctic research in the classroom: A teacher's experiences translated into data driven lesson plans
NASA Astrophysics Data System (ADS)
Kendrick, E. O.; Deegan, L.
2011-12-01
Incorporating research into high school science classrooms can promote critical thinking skills and provide a link between students and the scientific community. Basic science concepts become more relevant to students when taught in the context of research. A vital component of incorporating current research into classroom lessons is involving high school teachers in authentic research. The National Science Foundation sponsored Research Experience for Teachers (RET) program has inspired me to bring research to my classroom, communicate the importance of research in the classroom to other teachers and create lasting connections between students and the research community. Through my experiences as an RET at Toolik Field Station in Alaska, I have created several hands-on lessons and laboratory activities that are based on current arctic research and climate change. Each lesson uses arctic research as a theme for exemplifying basic biology concepts as well as increasing awareness of current topics such as climate change. For instance, data collected on the Kuparuk River will be incorporated into classroom activities that teach concepts such as primary production, trophic levels in a food chain and nutrient cycling within an ecosystem. Students will not only understand the biological concepts but also recognize the ecological implications of the research being conducted in the arctic. By using my experience in arctic research as a template, my students will gain a deeper understanding of the scientific process. I hope to create a crucial link of information between the science community and science education in public schools.
What's hot, what's new: Report from the American Transplant Congress 2017.
Cooper, Matthew; Li, Xian C; Adams, Andrew B
2018-02-01
Significant advances in clinical practice as well as basic and translational science were presented at the American Transplant Congress this year. Topics included innovative clinical trials to recent advances in our basic understanding of the scientific underpinnings of transplant immunology. Key areas of interest included the following: clinical trials utilizing hepatitis C virus-positive (HCV + ) donors for HCV - recipients, the impact of the new allocation policies, normothermic perfusion, novel treatments for desensitization, attempts at precision medicine, advances in xenotransplantation, the role of mitochondria and exosomes in rejection, nanomedicine, and the impact of the microbiota on transplant outcomes. This review highlights some of the most interesting and noteworthy presentations from the meeting. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.
NASA Astrophysics Data System (ADS)
Cakir, Mustafa
The primary objective of this case study was to examine prospective secondary science teachers' developing understanding of scientific inquiry and Mendelian genetics. A computer simulation of basic Mendelian inheritance processes (Catlab) was used in combination with small-group discussions and other instructional scaffolds to enhance prospective science teachers' understandings. The theoretical background for this research is derived from a social constructivist perspective. Structuring scientific inquiry as investigation to develop explanations presents meaningful context for the enhancement of inquiry abilities and understanding of the science content. The context of the study was a teaching and learning course focused on inquiry and technology. Twelve prospective science teachers participated in this study. Multiple data sources included pre- and post-module questionnaires of participants' view of scientific inquiry, pre-posttests of understandings of Mendelian concepts, inquiry project reports, class presentations, process videotapes of participants interacting with the simulation, and semi-structured interviews. Seven selected prospective science teachers participated in in-depth interviews. Findings suggest that while studying important concepts in science, carefully designed inquiry experiences can help prospective science teachers to develop an understanding about the types of questions scientists in that field ask, the methodological and epistemological issues that constrain their pursuit of answers to those questions, and the ways in which they construct and share their explanations. Key findings included prospective teachers' initial limited abilities to create evidence-based arguments, their hesitancy to include inquiry in their future teaching, and the impact of collaboration on thinking. Prior to this experience the prospective teachers held uninformed views of scientific inquiry. After the module, participants demonstrated extended expertise in their understandings of following aspects of scientific inquiry: (a) the iterative nature of scientific inquiry; (b) the tentativeness of specific knowledge claims; (c) the degree to which scientists rely on empirical data, as well as broader conceptual and metaphysical commitments, to assess models and to direct future inquiries; (d) the need for conceptual consistency; (e) multiple methods of investigations and multiple interpretations of data; and (f) social and cultural aspects of scientific inquiry. This research provided evidence that hypothesis testing can support the integrated acquisition of conceptual and procedural knowledge in science. Participants' conceptual elaborations of Mendelian inheritance were enhanced. There were qualitative changes in the nature of the participants' explanations. Moreover, the average percentage of correct responses improved from 39% on the pretest to 67% on the posttest. Findings also suggest those prospective science teachers' experiences as learners of science in their methods course served as a powerful tool for thinking about the role of inquiry in teaching and learning science. They had mixed views about enacting inquiry in their teaching in the future. All of them stated some kind of general willingness to do so; yet, they also mentioned some reservations and practical considerations about inquiry-based teaching.
How Should Medical Schools Respond to Students with Dyslexia?
Romberg, Frederick; Shaywitz, Bennett A; Shaywitz, Sally E
2016-10-01
We examine the dilemmas faced by a medical student with dyslexia who wonders whether he should "out" himself to faculty to receive the accommodations entitled by federal law. We first discuss scientific evidence on dyslexia's prevalence, unexpected nature, and neurobiology. We then examine the experiences of medical students who have revealed their dyslexia to illustrate the point that, far too often, attending physicians who know little about dyslexia can misperceive the motives or behavior of students with dyslexia. Because ignorance and misperception of dyslexia can result in bias against students with dyslexia, we strongly recommend a mandatory course for faculty that provides a basic scientific and clinical overview of dyslexia to facilitate greater understanding of dyslexia and support for students with dyslexia. © 2016 American Medical Association. All Rights Reserved.
Stevens, Tyler; Conwell, Darwin L; Zuccaro, Gregory
2004-11-01
In the past several decades, four prominent theories of chronic pancreatitis pathogenesis have emerged: the toxic-metabolic theory, the oxidative stress hypothesis, the stone and duct obstruction theory, and the necrosis-fibrosis hypothesis. Although these traditional theories are formulated based on compelling scientific observations, substantial contradictory data also exist for each. Furthermore, the basic premises of some of these theories are directly contradictory. Because of the recent scientific progress in the underlying genetic, cellular, and molecular pathophysiology, there have been substantial advances in the understanding of chronic pancreatitis pathogenesis. This paper will provide an evidence-based review and critique of the traditional pathogenic theories, followed by a discussion of the new advances in pancreatic fibrogenesis. Moreover, we will discuss plausible pathogenic sequences applied to each of the known etiologies.
Basic Science Evidence for the Link Between Erectile Dysfunction and Cardiometabolic Dysfunction
Musicki, Biljana; Bella, Anthony J.; Bivalacqua, Trinity J.; Davies, Kelvin P.; DiSanto, Michael E.; Gonzalez-Cadavid, Nestor F.; Hannan, Johanna L.; Kim, Noel N.; Podlasek, Carol A.; Wingard, Christopher J.; Burnett, Arthur L.
2016-01-01
Introduction Although clinical evidence supports an association between cardiovascular/metabolic diseases (CVMD) and erectile dysfunction (ED), scientific evidence for this link is incompletely elucidated. Aim This study aims to provide scientific evidence for the link between CVMD and ED. Methods In this White Paper, the Basic Science Committee of the Sexual Medicine Society of North America assessed the current literature on basic scientific support for a mechanistic link between ED and CVMD, and deficiencies in this regard with a critical assessment of current preclinical models of disease. Results A link exists between ED and CVMD on several grounds: the endothelium (endothelium-derived nitric oxide and oxidative stress imbalance); smooth muscle (SM) (SM abundance and altered molecular regulation of SM contractility); autonomic innervation (autonomic neuropathy and decreased neuronal-derived nitric oxide); hormones (impaired testosterone release and actions); and metabolics (hyperlipidemia, advanced glycation end product formation). Conclusion Basic science evidence supports the link between ED and CVMD. The Committee also highlighted gaps in knowledge and provided recommendations for guiding further scientific study defining this risk relationship. This endeavor serves to develop novel strategic directions for therapeutic interventions. PMID:26646025
NASA Astrophysics Data System (ADS)
Buxner, Sanlyn; Impey, Chris David; Follette, Katherine B.; Dokter, Erin F.; McCarthy, Don; Vezino, Beau; Formanek, Martin; Romine, James M.; Brock, Laci; Neiberding, Megan; Prather, Edward E.
2017-01-01
Introductory astronomy courses often serve as terminal science courses for non-science majors and present an opportunity to assess non future scientists’ attitudes towards science as well as basic scientific knowledge and scientific analysis skills that may remain unchanged after college. Through a series of studies, we have been able to evaluate students’ basic science knowledge, attitudes towards science, quantitative literacy, and informational literacy. In the Fall of 2015, we conducted a case study of a single class administering all relevant surveys to an undergraduate class of 20 students. We will present our analysis of trends of each of these studies as well as the comparison case study. In general we have found that students basic scientific knowledge has remained stable over the past quarter century. In all of our studies, there is a strong relationship between student attitudes and their science and quantitative knowledge and skills. Additionally, students’ information literacy is strongly connected to their attitudes and basic scientific knowledge. We are currently expanding these studies to include new audiences and will discuss the implications of our findings for instructors.
Development the Internet - Resources in Solar-Terrestrial Physics for the Science and Education
NASA Astrophysics Data System (ADS)
Zaistev, A.; Ishkov, V.; Kozlov, A.; Obridko, V.; Odintsov, V.
Future development of research in the solar-terrestrial physics (STP) will motivated by needs into fundamental knowledge and the practical demands in the format of space weather. Public community realized that outer space disturbances affects on the operation of high technologies systems integrated into everyday life, so they need into Internet resources of solar-terrestrial physics as the open scientific and public domain. Recent achievements of STP lead to burst of data sources and we have now many different types of information available free in Internet: solar images from SOHO and GOES-12 satellites, WIND and ACE interplanetary data, satellite and ground-based magnetic field variations, aurora images in real time, ionospheric data and many more. In this paper we present some experience to establish in Russian language the open scientific and public domain in Internet which can served for better understanding of STP in wide scientific community and into the general public including different media sources. Now we have more than one hundred sites which present the STP data: Space Research Institute (www.iki.rssi.ru), IZMIRAN (www.izmiran.rssi.ru), Institute of Solar-Terrestrial Physics (www.iszf.irk.ru), Institute of Nuclear Physics in Moscow University (http://alpha.npi.msu.su) Institute of Nuclear Physics in Moscow University ) and many more. Based on our own experience and our colleagues we decide to create information resources in solar-terrestrial physics as the open scientific and public domain. On this way the main directions of our activity as follows: to produce the catalogues of resources in Internet with detailed description of its content in Russian, to publish the list of Russian institutes working in STP, to present the biographical dictionary of Russian scientists in STP, to create the interactive forum for discussion of latest scientific results, to form the team of authors who willing to publish summarized analytical papers on the STP problems, to establish the regular newsletter with open circulation between professionals and people interested in STP, and to provide the scientific coordination between Russian institutes according rules of the road adopted by Solar-Terrestrial Scientific Council. We strongly advocate in favor to construct such Internet resources on native languages as it will served for national level due to its basic funding source. On the other hand our experience might be useful for other nations, as they are have the same aims. Our project have one of the goal to establish a better public understanding of STP through more open and wide public access to the latest scientific results. The realization of this project is supported by Russian Fund of Basic Research (grant N 02-07-90232) for period 2002-2004 and include results also supported by RFBR before.
Johnson, Jani A; Xu, Jingjing; Cox, Robyn M
2016-01-01
Modern hearing aid (HA) devices include a collection of acoustic signal-processing features designed to improve listening outcomes in a variety of daily auditory environments. Manufacturers market these features at successive levels of technological sophistication. The features included in costlier premium hearing devices are designed to result in further improvements to daily listening outcomes compared with the features included in basic hearing devices. However, independent research has not substantiated such improvements. This research was designed to explore differences in speech-understanding and listening-effort outcomes for older adults using premium-feature and basic-feature HAs in their daily lives. For this participant-blinded, repeated, crossover trial 45 older adults (mean age 70.3 years) with mild-to-moderate sensorineural hearing loss wore each of four pairs of bilaterally fitted HAs for 1 month. HAs were premium- and basic-feature devices from two major brands. After each 1-month trial, participants' speech-understanding and listening-effort outcomes were evaluated in the laboratory and in daily life. Three types of speech-understanding and listening-effort data were collected: measures of laboratory performance, responses to standardized self-report questionnaires, and participant diary entries about daily communication. The only statistically significant superiority for the premium-feature HAs occurred for listening effort in the loud laboratory condition and was demonstrated for only one of the tested brands. The predominant complaint of older adults with mild-to-moderate hearing impairment is difficulty understanding speech in various settings. The combined results of all the outcome measures used in this research suggest that, when fitted using scientifically based practices, both premium- and basic-feature HAs are capable of providing considerable, but essentially equivalent, improvements to speech understanding and listening effort in daily life for this population. For HA providers to make evidence-based recommendations to their clientele with hearing impairment it is essential that further independent research investigates the relative benefit/deficit of different levels of hearing technology across brands and manufacturers in these and other real-world listening domains.
Microplasmas, a platform technology for a plethora of plasma applications
NASA Astrophysics Data System (ADS)
Becker, Kurt
2017-08-01
Publications describing microplasmas, which are commonly defined as plasmas with at least one dimension in the submillimeter range, began to appear to the scientific literature about 20 years ago. As discussed in a recent review by Schoenbach and Becker [1], interest and activities in basic microplasma research as well as in the use of microplasma for a variety of application has increased significatly over the past 20 years. The number of papers devoted to basic microplasma science increased by an order of magnitude between 1995 and 2015, a count that excludes publications dealing exclusively with technological applications of microplasmas, where the microplasma is used solely as a tool. In reference [1], the authors limited the topical coverage largely to the status of microplasma science and our understanding of the physics principles that enable microplasma operation and further stated that the rapid proliferation of microplasma applications made it impossible to cover both basic microplasma science and their application in a single review article.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xiaoyang
"EFRC: CST at the University of Texas at Austin- A DOE Energy Frontier Research Center" was submitted by the EFRC for Understanding Charge Separation and Transfer at Interfaces in Energy Materials (EFRC:CST) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. EFRC: CST is directed by Xiaoyang Zhu at the University of Texas at Austin in partnership with Sandia National Laboratories. The Office of Basic Energy Sciences in themore » U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less
The ergonomics of learning: educational design and learning performance.
Smith, T J
2007-10-01
The application of ergonomics/human factors (E/HF) principles and practices, and the implementation of ergonomics programmes, have achieved proven success in improving performance, productivity, competitiveness, and safety and health in most occupational sectors. However, the benefits that the application of E/HF science might bring to promoting student learning have yet to be widely recognized. This paper deals with the fundamental purpose of education - student learning - and with the question of how the ergonomic design of the learning environment influences learning performance. The underlying premise, embodied in the quote below, is that student learning performance to a substantial degree is context specific - influenced and specialized in relation to specific design factors in the learning environment. The basic scientific question confronting learning ergonomics is which design characteristics in the learning environment have the greatest influence on variability in learning performance. Practically, the basic challenge is to apply this scientific understanding to ergonomic interventions directed at design improvements of learning environments to benefit learning. This paper expands upon these themes by addressing the origins and scope of learning ergonomics, differing perspectives on the nature of learning, evidence for context specificity in learning and conclusions and research implications regarding an ergonomics perspective on learning.
Brain structure links trait creativity to openness to experience.
Li, Wenfu; Li, Xueting; Huang, Lijie; Kong, Xiangzhen; Yang, Wenjing; Wei, Dongtao; Li, Jingguang; Cheng, Hongsheng; Zhang, Qinglin; Qiu, Jiang; Liu, Jia
2015-02-01
Creativity is crucial to the progression of human civilization and has led to important scientific discoveries. Especially, individuals are more likely to have scientific discoveries if they possess certain personality traits of creativity (trait creativity), including imagination, curiosity, challenge and risk-taking. This study used voxel-based morphometry to identify the brain regions underlying individual differences in trait creativity, as measured by the Williams creativity aptitude test, in a large sample (n = 246). We found that creative individuals had higher gray matter volume in the right posterior middle temporal gyrus (pMTG), which might be related to semantic processing during novelty seeking (e.g. novel association, conceptual integration and metaphor understanding). More importantly, although basic personality factors such as openness to experience, extroversion, conscientiousness and agreeableness (as measured by the NEO Personality Inventory) all contributed to trait creativity, only openness to experience mediated the association between the right pMTG volume and trait creativity. Taken together, our results suggest that the basic personality trait of openness might play an important role in shaping an individual's trait creativity. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Effectively Communicating the Uncertainties Surrounding Ebola Virus Transmission.
Kilianski, Andy; Evans, Nicholas G
2015-10-01
The current Ebola virus outbreak has highlighted the uncertainties surrounding many aspects of Ebola virus virology, including routes of transmission. The scientific community played a leading role during the outbreak-potentially, the largest of its kind-as many of the questions surrounding ebolaviruses have only been interrogated in the laboratory. Scientists provided an invaluable resource for clinicians, public health officials, policy makers, and the lay public in understanding the progress of Ebola virus disease and the continuing outbreak. Not all of the scientific communication, however, was accurate or effective. There were multiple instances of published articles during the height of the outbreak containing potentially misleading scientific language that spurred media overreaction and potentially jeopardized preparedness and policy decisions at critical points. Here, we use articles declaring the potential for airborne transmission of Ebola virus as a case study in the inaccurate reporting of basic science, and we provide recommendations for improving the communication about unknown aspects of disease during public health crises.
Genetics and epidemiology, congenital anomalies and cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, J.M.
1997-03-01
Many of the basic statistical methods used in epidemiology - regression, analysis of variance, and estimation of relative risk, for example - originally were developed for the genetic analysis of biometric data. The familiarity that many geneticists have with this methodology has helped geneticists to understand and accept genetic epidemiology as a scientific discipline. It worth noting, however, that most of the work in genetic epidemiology during the past decade has been devoted to linkage and other family studies, rather than to population-based investigations of the type that characterize much of mainstream epidemiology. 30 refs., 2 tabs.
NASA Technical Reports Server (NTRS)
1981-01-01
Eight basic solar-terrestrial scientific objectives that benefit from the Shuttle/Platform approach and a program of measurements for each are discussed. The objectives are to understand: (1) solar variability, (2) wave-particle processes, (3) magnetosphere-ionosphere mass transport, (4) the global electric circuit, (5) upper atmospheric dynamics, (6) middle atmospheric chemistry and energetics, (7) lower atmospheric turbidity, and (8) planetary atmospheric waves. A two stage approach to a multidisciplinary payload is developed: an initial STO, that uses a single platform in a low-Earth orbit, and an advanced STO that uses two platforms in differing orbits.
NASA Technical Reports Server (NTRS)
2000-01-01
The acronym, HESSI, stnds for the High Energy Solar Spectroscopic Imager. HESSI is a NASA mission proposed by astrophysicists who study the Sun. Their goal is to learn more about the basic physical processes that occur in solar flares. Teams of astrophysicists and engineers worked together to decide what kinds of observations HESSI would make and what kinds of scientific instrumentation would be required. The HESSI teams will achieve their goal by making "color" pictures of solar flares in X rays and gamma rays. This model is designed to help students understand the operation and objectives of HESSI.
Seizures and Epilepsy: An Overview for Neuroscientists
Stafstrom, Carl E.; Carmant, Lionel
2015-01-01
Epilepsy is one of the most common and disabling neurologic conditions, yet we have an incomplete understanding of the detailed pathophysiology and, thus, treatment rationale for much of epilepsy. This article reviews the clinical aspects of seizures and epilepsy with the goal of providing neuroscientists an introduction to aspects that might be amenable to scientific investigation. Seizures and epilepsy are defined, diagnostic methods are reviewed, various clinical syndromes are discussed, and aspects of differential diagnosis, treatment, and prognosis are considered to enable neuroscientists to formulate basic and translational research questions. PMID:26033084
A conference experience for undergraduates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, L.A.; Magee, N.H.; Bryant, H.C.
1999-08-01
Programs launched by many universities and the federal government expose many undergraduate students in the physical sciences to research early in their careers. However, in their research experiences, undergraduates are not usually introduced to the modes by which scientific knowledge, which they may have helped gather, is communicated and evaluated by working scientists. Nor is it always made clear where the research frontiers really lie. To this end, we guided a selected group of undergraduates through a national scientific conference, followed by a week of tutorials and discussions to help them better understand what had transpired. The program complemented themore » basic undergraduate research endeavors by emphasizing the importance of disseminating results both to other scientists and to society in general. Tutors and discussion leaders in the second week were experts in their fields and included some of the invited speakers from the main meeting. A considerable improvement in the understanding of the issues and prospects for a career in physics was discernible among the students after their two-week experience. {copyright} {ital 1999 American Association of Physics Teachers.}« less
Active learning in camera calibration through vision measurement application
NASA Astrophysics Data System (ADS)
Li, Xiaoqin; Guo, Jierong; Wang, Xianchun; Liu, Changqing; Cao, Binfang
2017-08-01
Since cameras are increasingly more used in scientific application as well as in the applications requiring precise visual information, effective calibration of such cameras is getting more important. There are many reasons why the measurements of objects are not accurate. The largest reason is that the lens has a distortion. Another detrimental influence on the evaluation accuracy is caused by the perspective distortions in the image. They happen whenever we cannot mount the camera perpendicularly to the objects we want to measure. In overall, it is very important for students to understand how to correct lens distortions, that is camera calibration. If the camera is calibrated, the images are rectificated, and then it is possible to obtain undistorted measurements in world coordinates. This paper presents how the students should develop a sense of active learning for mathematical camera model besides the theoretical scientific basics. The authors will present the theoretical and practical lectures which have the goal of deepening the students understanding of the mathematical models of area scan cameras and building some practical vision measurement process by themselves.
NASA Technical Reports Server (NTRS)
Sutliff, Thomas J.
1999-01-01
The International Space Station opens for business in the year 2000, and with the opening, science investigations will take advantage of the unique conditions it provides as an on-orbit laboratory for research. With initiation of scientific studies comes a need to understand the environment present during research. The Space Acceleration Measurement System-II provides researchers a consistent means to understand the vibratory conditions present during experimentation on the International Space Station. The Space Acceleration Measurement System-II, or SAMS-II, detects vibrations present while the space station is operating. SAMS-II on-orbit hardware is comprised of two basic building block elements: a centralized control unit and multiple Remote Triaxial Sensors deployed to measure the acceleration environment at the point of scientific research, generally within a research rack. Ground Operations Equipment is deployed to complete the command, control and data telemetry elements of the SAMS-II implementation. Initially, operations consist of user requirements development, measurement sensor deployment and use, and data recovery on the ground. Future system enhancements will provide additional user functionality and support more simultaneous users.
Challenges in studying the effects of scientific societies on research integrity.
Levine, Felice J; Iutcovich, Joyce M
2003-04-01
Beyond impressionistic observations, little is known about the role and influence of scientific societies on research conduct. Acknowledging that the influence of scientific societies is not easily disentangled from other factors that shape norms and practices, this article addresses how best to study the promotion of research integrity generally as well as the role and impact of scientific societies as part of that process. In setting forth the parameters of a research agenda, the article addresses four issues: (1) how to conceptualize research on scientific societies and research integrity; (2) challenges and complexities in undertaking basic research; (3) strategies for undertaking basic research that is attentive to individual, situational, organizational, and environmental levels of analysis; and (4) the need for evaluation research as integral to programmatic change and to assessment of the impact of activities by scientific societies.
Fajardo-Ortiz, David; Ortega-Sánchez-de-Tagle, José; Castaño, Victor M
2015-04-19
Ebola hemorrhagic fever (Ebola) is still a highly lethal infectious disease long affecting mainly neglected populations in sub-Saharan Africa. Moreover, this disease is now considered a potential worldwide threat. In this paper, we present an approach to understand how the basic, clinical and patent knowledge on Ebola is organized and intercommunicated and what leading factor could be shaping the evolution of the knowledge translation process for this disease. A combination of citation network analysis; analysis of Medical heading Subject (MeSH) and Gene Ontology (GO) terms, and quantitative content analysis for patents and scientific literature, aimed to map the organization of Ebola research was carried out. We found six putative research fronts (i.e. clusters of high interconnected papers). Three research fronts are basic research on Ebola virus structural proteins: glycoprotein, VP40 and VP35, respectively. There is a fourth research front of basic research papers on pathogenesis, which is the organizing hub of Ebola research. A fifth research front is pre-clinical research focused on vaccines and glycoproteins. Finally, a clinical-epidemiology research front related to the disease outbreaks was identified. The network structure of patent families shows that the dominant design is the use of Ebola virus proteins as targets of vaccines and other immunological treatments. Therefore, patents network organization resembles the organization of the scientific literature. Specifically, the knowledge on Ebola would flow from higher (clinical-epidemiology) to intermediated (cellular-tissular pathogenesis) to lower (molecular interactions) levels of organization. Our results suggest a strong reductionist approach for Ebola research probably influenced by the lethality of the disease. On the other hand, the ownership profile of the patent families network and the main researches relationship with the United State Army suggest a strong involvement of this military institution in Ebola research.
Computer Aided Enzyme Design and Catalytic Concepts
Frushicheva, Maria P.; Mills, Matthew J. L.; Schopf, Patrick; Singh, Manoj K.; Warshel, Arieh
2014-01-01
Gaining a deeper understanding of enzyme catalysis is of great practical and fundamental importance. Over the years it has become clear that despite advances made in experimental mutational studies, a quantitative understanding of enzyme catalysis will not be possible without the use of computer modeling approaches. While we believe that electrostatic preorganization is by far the most important catalytic factor, convincing the wider scientific community of this may require the demonstration of effective rational enzyme design. Here we make the point that the main current advances in enzyme design are basically advances in directed evolution and that computer aided enzyme design must involve approaches that can reproduce catalysis in well-defined test cases. Such an approach is provided by the empirical valence bond method. PMID:24814389
Fisher, Philip A.; Berkman, Elliot T.
2015-01-01
In spite of extensive scientific knowledge about the neurobiological systems and neural pathways underlying addictions, only limited progress has been made to reduce the population-level incidence of addictions by using prevention and treatment programs. In this area of research the translation of basic neuroscience of causal mechanisms to effective interventions has not been fully realized. In this article we describe how an understanding of the effects of early adverse experiences on brain and biological development may provide new opportunities to achieve impact at scale with respect to reduction of addictions. We propose four categories of new knowledge that translational neuroscience investigations of addictions should incorporate to be successful. We then describe a translational neuroscience-informed smoking cessation intervention based on this model. PMID:26985399
Li, Ming; Shen, Xiaodong; Zhao, Yan; Hu, Xiaomei; Hu, Fuquan; Rao, Xiancai
2017-07-08
Homologous recombination, a central concept in biology, is defined as the exchange of DNA strands between two similar or identical nucleotide sequences. Unfortunately, undergraduate students majoring in biotechnology often experience difficulties in understanding the molecular basis of homologous recombination. In this study, we developed and implemented a 12-week laboratory course for biotechnology undergraduates in which gene targeting in Streptococcus suis was used to facilitate their understanding of the basic concept and process of homologous recombination. Students worked in teams of two to select a gene of interest to create a knockout mutant using methods that relied on homologous recombination. By integrating abstract knowledge and practice in the process of scientific research, students gained hands-on experience in molecular biology techniques while learning about the principle and process of homologous recombination. The learning outcomes and survey-based assessment demonstrated that students substantially enhanced their understanding of how homologous recombination could be used to study gene function. Overall, the course was very effective for helping biotechnology undergraduates learn the theory and application of homologous recombination, while also yielding positive effects in developing confidence and scientific skills for future work in research. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):329-335, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.
The Physics of Life: A Biophysics Course for Non-science Major Undergraduates
NASA Astrophysics Data System (ADS)
Parthasarathy, Raghuveer
2014-03-01
Enhancing the scientific literacy of non-scientists is an important goal, both because of the ever-increasing impact of science and technology on people's lives, and because understanding contemporary science enables enriching insights into the workings of nature. One route to improving scientific literacy is via general education undergraduate courses - i.e. courses intended for students not majoring in the sciences or engineering - which in many cases provide these students' last formal exposure to science. I describe here a course on biophysics for non-science-major undergraduates recently developed at the University of Oregon. Biophysics, I claim, is a particularly useful vehicle for addressing scientific literacy. It involves important and general scientific concepts, demonstrates connections between basic science and tangible, familiar phenomena related to health and disease, and illustrates how scientific insights proceed not in predictable paths, but rather by applying tools and perspectives from disparate fields in creative ways. In addition, it highlights the far-reaching impact of physics research. I describe the general design of this course and the specific content of a few of its modules, as well as noting aspects of enrollment and evaluation. This work is affiliated with the University of Oregon's Science Literacy Program, supported by a grant from the Howard Hughes Medical Institute.
NASA Astrophysics Data System (ADS)
Huang, Q.; Hattori, K.; Chae, B.
2011-12-01
The Joint Research Collaboration Program (JRCP) for Chinese-Korean-Japanese (CKJ) Research Collaboration is a new cooperative scheme for joint funding from Chinese Department of International Cooperation of the Ministry of Science and Technology (DOIC), Korea Foundation for International Cooperation of Science and Technology (KICOS) and Japan Science and Technology Agency (JST). In this paper, we will introduce the funded CKJ project entitled "Development of early warning system for landslide using electromagnetic, hydrological, geotechnical, and geological approaches". The final goal of the project is to develop a simple methodology for landslide monitoring/forecasting (early warning system) using self potential method in the frame work of joint research among China, Korea, and Japan. The project is developing a new scientific and technical methodology for prevention of natural soil disasters. The outline of the project is as follows: (1) basic understanding on the relationship between resistivity distribution and moisture in soil and their visualization of their dynamical changes in space and time using tomography technique, (2) laboratory experiments of rainfall induced landslides and sandbox for practical use of the basic understanding, (3) in-situ experiments for evaluation. Annual workshops/symposia, seminars will be organized for strengthening the scientific collaborations and exchanges. In consideration of the above issues, integration of geological, hydrological, geotechnical characteristics with electromagnetic one are adopted as the key approach in this project. This study is partially supported by the Joint Research Collaboration Program, DOIC, MOST, China (2010DFA21570) and the National Natural Science Foundation of China (40974038, 41025014).
The Reproduction of Scientific Understanding about Pendulum Motion in the Public
NASA Astrophysics Data System (ADS)
Manabu, Sumida
This paper describes life-span development of understanding about pendulum motion and effects of school science. The subjects were 2,766 people ranging from kindergartners up to 88 years senior citizens. The conflict and consensus between children and their parent's understanding of pendulum motion were also analyzed. The kindergartner's understanding, mostly non-scientific, made a marked developmental change to another type of non-scientific understanding by the time they reach G 4. Parents with scientific understanding do not presumably nurture scientifically minded children,even though about half of them can apply scientific conceptions that shorter pendulums swing faster, and the amplitude and speed of pendulum motion do not depend on its weight. There seems to be another type of developmental change from scientific understanding to non-scientific understanding around their fifties. Itis suggested that the scientific understanding in the public about pendulum motion become predominant due to the educational intervention through school science.
How reverse shoulder arthroplasty works.
Walker, Matthew; Brooks, Jordan; Willis, Matthew; Frankle, Mark
2011-09-01
The reverse total shoulder arthroplasty was introduced to treat the rotator cuff-deficient shoulder. Since its introduction, an improved understanding of the biomechanics of rotator cuff deficiency and reverse shoulder arthroplasty has facilitated the development of modern reverse arthroplasty designs. We review (1) the basic biomechanical challenges associated with the rotator cuff-deficient shoulder; (2) the biomechanical rationale for newer reverse shoulder arthroplasty designs; (3) the current scientific evidence related to the function and performance of reverse shoulder arthroplasty; and (4) specific technical aspects of reverse shoulder arthroplasty. A PubMed search of the English language literature was conducted using the key words reverse shoulder arthroplasty, rotator cuff arthropathy, and biomechanics of reverse shoulder arthroplasty. Articles were excluded if the content fell outside of the biomechanics of these topics, leaving the 66 articles included in this review. Various implant design factors as well as various surgical implantation techniques affect stability of reverse shoulder arthroplasty and patient function. To understand the implications of individual design factors, one must understand the function of the normal and the cuff-deficient shoulder and coalesce this understanding with the pathology presented by each patient to choose the proper surgical technique for reconstruction. Several basic science and clinical studies improve our understanding of various design factors in reverse shoulder arthroplasty. However, much work remains to further elucidate the performance of newer designs and to evaluate patient outcomes using validated instruments such as the American Society for Elbow Surgery, simple shoulder test, and the Constant-Murley scores.
Teaching How to Prepare a Manuscript by Means of Rewriting Published Scientific Papers
Tomaska, Lubomir
2007-01-01
The objective of the course described here is to train undergraduate students to write a scientific manuscript. The students participate in selection of a current topic in contemporary genetics or molecular biology by choosing the most interesting paper of a given year. After the teacher provides all essential background about the selected subject, he or she selects a recent article from the corresponding field and presents the students with all the necessary information contained in the paper without revealing its title and author. The data presented in the paper are reviewed by the class so that each student understands every experiment and the main points of the work. Simultaneously, the students are informed about the basic rules of writing the individual sections of a scientific paper. They are then asked to write and formally submit a manuscript summarizing the data. Finally, the students act as reviewers of their colleagues' manuscripts and compare their papers with the original published articles. This enables them to identify both the strengths and the weaknesses of their manuscripts and to gain confidence in the writing skills that will be so critical for their future scientific activities. PMID:17110479
Interactive, process-oriented climate modeling with CLIMLAB
NASA Astrophysics Data System (ADS)
Rose, B. E. J.
2016-12-01
Global climate is a complex emergent property of the rich interactions between simpler components of the climate system. We build scientific understanding of this system by breaking it down into component process models (e.g. radiation, large-scale dynamics, boundary layer turbulence), understanding each components, and putting them back together. Hands-on experience and freedom to tinker with climate models (whether simple or complex) is invaluable for building physical understanding. CLIMLAB is an open-ended software engine for interactive, process-oriented climate modeling. With CLIMLAB you can interactively mix and match model components, or combine simpler process models together into a more comprehensive model. It was created primarily to support classroom activities, using hands-on modeling to teach fundamentals of climate science at both undergraduate and graduate levels. CLIMLAB is written in Python and ties in with the rich ecosystem of open-source scientific Python tools for numerics and graphics. The Jupyter Notebook format provides an elegant medium for distributing interactive example code. I will give an overview of the current capabilities of CLIMLAB, the curriculum we have developed thus far, and plans for the future. Using CLIMLAB requires some basic Python coding skills. We consider this an educational asset, as we are targeting upper-level undergraduates and Python is an increasingly important language in STEM fields.
Havet, Eric; Duparc, Fabrice; Peltier, Johan; Tobenas-Dujardin, Anne-Claire; Fréger, Pierre
2012-01-01
In France, "article critique" became a particular teaching method in the second part of the medical curriculum. It approaches a reading exercise of scientific medical papers similar to that of journal club. It could be compared to reviewing a paper as performed by reviewers of a scientific journal. We studied the relevancy of that teaching method for the youngest medical students. Our questions were about the understanding and the analyzing ability of a scientific paper while students have just learned basic medical sciences as anatomy. We have included 54 "article critique" written by voluntary students in second and third years of medical cursus. All of the IMRaD structure items (introduction, materials and methods, results and discussion) were analyzed using a qualitative scale for understanding as for analyzing ability. For understanding, 89-96% was good or fair and for the analyzing ability, 93-100% was good or fair. The anatomical papers were better understood than therapeutic or paraclinical studies, but without statistical difference, except for the introduction chapter. Results for analyzing ability were various according to the subject of the papers. This teaching method could be compared to a self-learning method, but also to a problem-based learning method. For the youngest students, the lack of medical knowledge aroused the curiosity. Their enthusiasm to learn new medical subjects remained full. The authors would insist on the requirement of rigorous lessons about evidence-based medicine and IMRaD structure and on a necessary companionship of the students by the teachers.
GLOBEC (Global Ocean Ecosystems Dynamics: Northwest Atlantic program
NASA Technical Reports Server (NTRS)
1991-01-01
The specific objective of the meeting was to plan an experiment in the Northwestern Atlantic to study the marine ecosystem and its role, together with that of climate and physical dynamics, in determining fisheries recruitment. The underlying focus of the GLOBEC initiative is to understand the marine ecosystem as it related to marine living resources and to understand how fluctuation in these resources are driven by climate change and exploitation. In this sense the goal is a solid scientific program to provide basic information concerning major fisheries stocks and the environment that sustains them. The plan is to attempt to reach this understanding through a multidisciplinary program that brings to bear new techniques as disparate as numerical fluid dynamic models of ocean circulation, molecular biology and modern acoustic imaging. The effort will also make use of the massive historical data sets on fisheries and the state of the climate in a coordinated manner.
Basic Science Research and the Protection of Human Research Participants
NASA Astrophysics Data System (ADS)
Eiseman, Elisa
2001-03-01
Technological advances in basic biological research have been instrumental in recent biomedical discoveries, such as in the understanding and treatment of cancer, HIV/AIDS, and heart disease. However, many of these advances also raise several new ethical challenges. For example, genetic research may pose no physical risk beyond that of obtaining the initial blood sample, yet it can pose significant psychological and economic risks to research participants, such as stigmatization, discrimination in insurance and employment, invasion of privacy, or breach of confidentiality. These harms may occur even when investigators do not directly interact with the person whose DNA they are studying. Moreover, this type of basic research also raises broader questions, such as what is the definition of a human subject, and what kinds of expertise do Institutional Review Boards (IRBs) need to review the increasingly diverse types of research made possible by these advances in technology. The National Bioethics Advisory Commission (NBAC), a presidentially appointed federal advisory committee, has addressed these and other ethical, scientific and policy issues that arise in basic science research involving human participants. Two of its six reports, in particular, have proposed recommendations in this regard. "Research Involving Human Biological Materials: Ethical and Policy Guidance" addresses the basic research use of human tissues, cells and DNA and the protection of human participants in this type of research. In "Ethical and Policy Issues in the Oversight of Human Research" NBAC proposes a definition of research involving human participants that would apply to all scientific disciplines, including physical, biological, and social sciences, as well as the humanities and related professions, such as business and law. Both of these reports make it clear that the protection of research participants is key to conducting ethically sound research. By ensuring that all participants in research are protected and by educating everyone involved in research with human participants, including the public, investigators, IRB members, institutions, and federal agencies, NBAC’s goal is to develop guidelines by which important basic research can proceed while making sure that the rights and welfare of human research participants are not compromised.
NASA Astrophysics Data System (ADS)
Jian, Yu-Cin; Wu, Chao-Jung
2015-02-01
We investigated strategies used by readers when reading a science article with a diagram and assessed whether semantic and spatial representations were constructed while reading the diagram. Seventy-one undergraduate participants read a scientific article while tracking their eye movements and then completed a reading comprehension test. Our results showed that the text-diagram referencing strategy was commonly used. However, some readers adopted other reading strategies, such as reading the diagram or text first. We found all readers who had referred to the diagram spent roughly the same amount of time reading and performed equally well. However, some participants who ignored the diagram performed more poorly on questions that tested understanding of basic facts. This result indicates that dual coding theory may be a possible theory to explain the phenomenon. Eye movement patterns indicated that at least some readers had extracted semantic information of the scientific terms when first looking at the diagram. Readers who read the scientific terms on the diagram first tended to spend less time looking at the same terms in the text, which they read after. Besides, presented clear diagrams can help readers process both semantic and spatial information, thereby facilitating an overall understanding of the article. In addition, although text-first and diagram-first readers spent similar total reading time on the text and diagram parts of the article, respectively, text-first readers had significantly less number of saccades of text and diagram than diagram-first readers. This result might be explained as text-directed reading.
Bipolar Pathophysiology and Development of Improved Treatments
Bowden, Charles L.
2013-01-01
The purpose of this review is to provide strategies and their rationale which can facilitate scientifically productive investigations into genetic, neuronal, brain functional and clinical aspects of bipolar disorder. The presentation addresses both factors that have impeded and those that have facilitated landmark advances on the pathophysiology and treatment of bipolar disorders. Application of the strategies can provide a scientific platform that may be useful to basic and clinical scientists for the purposes of achieving seminal advances in understanding pathophysiology, including inherited and experience based contributors to disease expression. Current diagnostic criteria omit certain key symptoms, do not include illness course or family history and lack specification of the importance of fundamental symptomatology. Consideration of such factors in inclusion and exclusion criteria, and in assessment instruments in basic and clinical studies, serves to strengthen the capability of a research plan to test key hypotheses regarding moderating and mediating factors of this complex illness. For example, most studies of brain structure and function and of new interventions have selected subjects on the basis of traditional full syndromal criteria. Evidence indicates that additional consideration of principal behavioral domains of bipolar symptomatology, e.g., anxiety, psychosis, impulsivity, elevated psychomotor and cognitive processing speed, rather than strictly depressive or manic syndromes can provide more homogeneous samples for study, and increase the focus of experimental hypotheses. PMID:18582440
Environmental Management Science Program Workshop. Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1998-07-01
The Department of Energy Office of Environmental Management (EM), in partnership with the Office of Energy Research (ER), designed, developed, and implemented the Environmental Management Science Program as a basic research effort to fund the scientific and engineering understanding required to solve the most challenging technical problems facing the government's largest, most complex environmental cleanup program. The intent of the Environmental Management Science Program is to: (1) Provide scientific knowledge that will revolutionize technologies and cleanup approaches to significantly reduce future costs, schedules, and risks. (2) Bridge the gap between broad fundamental research that has wide-ranging applications such as thatmore » performed in the Department's Office of Energy Research and needs-driven applied technology development that is conducted in Environmental Management's Office of Science and Technology. (3) Focus the nation's science infrastructure on critical Department of Energy environmental problems. In an effort to share information regarding basic research efforts being funded by the Environmental Management Science Program and the Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program), this CD includes summaries for each project. These project summaries, available in portable document format (PDF), were prepared in the spring of 1998 by the principal investigators and provide information about their most recent project activities and accomplishments.« less
Legal & ethical compliance when sharing biospecimen.
Klingstrom, Tomas; Bongcam-Rudloff, Erik; Reichel, Jane
2018-01-01
When obtaining samples from biobanks, resolving ethical and legal concerns is a time-consuming task where researchers need to balance the needs of privacy, trust and scientific progress. The Biobanking and Biomolecular Resources Research Infrastructure-Large Prospective Cohorts project has resolved numerous such issues through intense communication between involved researchers and experts in its mission to unite large prospective study sets in Europe. To facilitate efficient communication, it is useful for nonexperts to have an at least basic understanding of the regulatory system for managing biological samples.Laws regulating research oversight are based on national law and normally share core principles founded on international charters. In interview studies among donors, chief concerns are privacy, efficient sample utilization and access to information generated from their samples. Despite a lack of clear evidence regarding which concern takes precedence, scientific as well as public discourse has largely focused on privacy concerns and the right of donors to control the usage of their samples.It is therefore important to proactively deal with ethical and legal issues to avoid complications that delay or prevent samples from being accessed. To help biobank professionals avoid making unnecessary mistakes, we have developed this basic primer covering the relationship between ethics and law, the concept of informed consent and considerations for returning findings to donors. © The Author 2017. Published by Oxford University Press.
Legal & ethical compliance when sharing biospecimen
Klingstrom, Tomas; Bongcam-Rudloff, Erik; Reichel, Jane
2018-01-01
Abstract When obtaining samples from biobanks, resolving ethical and legal concerns is a time-consuming task where researchers need to balance the needs of privacy, trust and scientific progress. The Biobanking and Biomolecular Resources Research Infrastructure-Large Prospective Cohorts project has resolved numerous such issues through intense communication between involved researchers and experts in its mission to unite large prospective study sets in Europe. To facilitate efficient communication, it is useful for nonexperts to have an at least basic understanding of the regulatory system for managing biological samples. Laws regulating research oversight are based on national law and normally share core principles founded on international charters. In interview studies among donors, chief concerns are privacy, efficient sample utilization and access to information generated from their samples. Despite a lack of clear evidence regarding which concern takes precedence, scientific as well as public discourse has largely focused on privacy concerns and the right of donors to control the usage of their samples. It is therefore important to proactively deal with ethical and legal issues to avoid complications that delay or prevent samples from being accessed. To help biobank professionals avoid making unnecessary mistakes, we have developed this basic primer covering the relationship between ethics and law, the concept of informed consent and considerations for returning findings to donors. PMID:28460118
Analyzing Oscillations of a Rolling Cart Using Smartphones and Tablets
NASA Astrophysics Data System (ADS)
Egri, Sándor; Szabó, Lóránt
2015-03-01
It is well known that "interactive engagement" helps students to understand basic concepts in physics.1 Performing experiments and analyzing measured data are effective ways to realize interactive engagement, in our view. Some experiments need special equipment, measuring instruments, or laboratories, but in this activity we advocate student use of mobile phones or tablets to take experimental data. Applying their own devices and measuring simple phenomena from everyday life can improve student interest, while still allowing precise analysis of data, which can give deeper insight into scientific thinking and provide a good opportunity for inquiry-based learning.2
NASA'S second decade in space.
NASA Technical Reports Server (NTRS)
Manganiello, E. J.
1972-01-01
Advances in space science during the last decade are reviewed. The basic scientific goals of NASA's Planetary Program are to increase man's understanding of the origin and evolution of the solar system, the origin and evolution of life, and the earth, through a comparative study of the other planets. Studies of the planets will be continued during the second decade. Aspects of manned space flights are discussed, giving attention to the Skylab workshop, and the Space Shuttle. The applications program is divided into four major areas including meteorology, communications and navigation, geodesy, and earth resources. Areas of aeronautical research are also examined.
Lhires III High Resolution Spectrograph
NASA Astrophysics Data System (ADS)
Thizy, O.
2007-05-01
By spreading the light from celestial objects by wavelength, spectroscopists are like detectives looking for clues and identifying guilty phenomena that shape their spectra. We will review some basic principles in spectroscopy that will help, at our amateur level, to understand how spectra are shaped. We will review the Lhires III highresolution spectrograph Mark Three that was designed to reveal line profile details and subtle changes. Then, we will do an overview of educational and scientific projects that are conducted with the Lhires III and detail the COROT Be star program and the BeSS database for which the spectrograph is a key instrument.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foust, O J
1978-01-01
The handbook is intended for use by present and future designers in the Liquid Metals Fast Breeder Reactor (LMFBR) Program and by the engineering and scientific community performing other type investigation and exprimentation requiring high-temperature sodium and NaK technology. The arrangement of subject matter progresses from a technological discussion of sodium and sodium--potassium alloy (NaK) to discussions of varius categories and uses of hardware in sodium and NaK systems. Emphasis is placed on sodium and NaK as heat-transport media. Sufficient detail is included for basic understanding of sodium and NaK technology and of technical aspects of sodium and NaK componentsmore » and instrument systems. Information presented is considered adequate for use in feasibility studies and conceptual design, sizing components and systems, developing preliminary component and system descriptions, identifying technological limitations and problem areas, and defining basic constraints and parameters.« less
Learning Genetics through a Scientific Inquiry Game
ERIC Educational Resources Information Center
Casanoves, Marina; Salvadó, Zoel; González, Ángel; Valls, Cristina; Novo, Maria Teresa
2017-01-01
In this paper we discuss an activity through which students learn basic concepts in genetics by taking part in a police investigation game. The activity, which we have called Recal, immerses students in a scientific-based scenario in which they play a role of a scientific assessor. Players have to develop and use scientific reasoning and…
The science of neural interface systems.
Hatsopoulos, Nicholas G; Donoghue, John P
2009-01-01
The ultimate goal of neural interface research is to create links between the nervous system and the outside world either by stimulating or by recording from neural tissue to treat or assist people with sensory, motor, or other disabilities of neural function. Although electrical stimulation systems have already reached widespread clinical application, neural interfaces that record neural signals to decipher movement intentions are only now beginning to develop into clinically viable systems to help paralyzed people. We begin by reviewing state-of-the-art research and early-stage clinical recording systems and focus on systems that record single-unit action potentials. We then address the potential for neural interface research to enhance basic scientific understanding of brain function by offering unique insights in neural coding and representation, plasticity, brain-behavior relations, and the neurobiology of disease. Finally, we discuss technical and scientific challenges faced by these systems before they are widely adopted by severely motor-disabled patients.
Tendinopathy: injury, repair, and current exploration
Lipman, Kelsey; Wang, Chenchao; Ting, Kang; Soo, Chia; Zheng, Zhong
2018-01-01
Both acute and chronic tendinopathy result in high morbidity, requiring management that is often lengthy and expensive. However, limited and conflicting scientific evidence surrounding current management options has presented a challenge when trying to identify the best treatment for tendinopathy. As a result of shortcomings of current treatments, response to available therapies is often poor, resulting in frustration in both patients and physicians. Due to a lack of understanding of basic tendon-cell biology, further scientific investigation is needed in the field for the development of biological solutions. Optimization of new delivery systems and therapies that spatially and temporally mimic normal tendon physiology hold promise for clinical application. This review focuses on the clinical importance of tendinopathy, the structure of healthy tendons, tendon injury, and healing, and a discussion of current approaches for treatment that highlight the need for the development of new nonsurgical interventions. PMID:29593382
Concepts and implications of altruism bias and pathological altruism
Oakley, Barbara A.
2013-01-01
The profound benefits of altruism in modern society are self-evident. However, the potential hurtful aspects of altruism have gone largely unrecognized in scientific inquiry. This is despite the fact that virtually all forms of altruism are associated with tradeoffs—some of enormous importance and sensitivity—and notwithstanding that examples of pathologies of altruism abound. Presented here are the mechanistic bases and potential ramifications of pathological altruism, that is, altruism in which attempts to promote the welfare of others instead result in unanticipated harm. A basic conceptual approach toward the quantification of altruism bias is presented. Guardian systems and their over arching importance in the evolution of cooperation are also discussed. Concepts of pathological altruism, altruism bias, and guardian systems may help open many new, potentially useful lines of inquiry and provide a framework to begin moving toward a more mature, scientifically informed understanding of altruism and cooperative behavior. PMID:23754434
The Goldstone solar system radar: A science instrument for planetary research
NASA Technical Reports Server (NTRS)
Dvorsky, J. D.; Renzetti, N. A.; Fulton, D. E.
1992-01-01
The Goldstone Solar System Radar (GSSR) station at NASA's Deep Space Communications Complex in California's Mojave Desert is described. A short chronological account of the GSSR's technical development and scientific discoveries is given. This is followed by a basic discussion of how information is derived from the radar echo and how the raw information can be used to increase understanding of the solar system. A moderately detailed description of the radar system is given, and the engineering performance of the radar is discussed. The operating characteristics of the Arcibo Observatory in Puerto Rico are briefly described and compared with those of the GSSR. Planned and in-process improvements to the existing radar, as well as the performance of a hypothetical 128-m diameter antenna radar station, are described. A comprehensive bibliography of referred scientific and engineering articles presenting results that depended on data gathered by the instrument is provided.
PCSK9: From Basic Science Discoveries to Clinical Trials.
Shapiro, Michael D; Tavori, Hagai; Fazio, Sergio
2018-05-11
Unknown 15 years ago, PCSK9 (proprotein convertase subtilisin/kexin type 9) is now common parlance among scientists and clinicians interested in prevention and treatment of atherosclerotic cardiovascular disease. What makes this story so special is not its recent discovery nor the fact that it uncovered previously unknown biology but rather that these important scientific insights have been translated into an effective medical therapy in record time. Indeed, the translation of this discovery to novel therapeutic serves as one of the best examples of how genetic insights can be leveraged into intelligent target drug discovery. The PCSK9 saga is unfolding quickly but is far from complete. Here, we review major scientific understandings as they relate to the role of PCSK9 in lipoprotein metabolism and atherosclerotic cardiovascular disease and the impact that therapies designed to inhibit its action are having in the clinical setting. © 2018 American Heart Association, Inc.
SeaWiFS Science Algorithm Flow Chart
NASA Technical Reports Server (NTRS)
Darzi, Michael
1998-01-01
This flow chart describes the baseline science algorithms for the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Data Processing System (SDPS). As such, it includes only processing steps used in the generation of the operational products that are archived by NASA's Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC). It is meant to provide the reader with a basic understanding of the scientific algorithm steps applied to SeaWiFS data. It does not include non-science steps, such as format conversions, and places the greatest emphasis on the geophysical calculations of the level-2 processing. Finally, the flow chart reflects the logic sequences and the conditional tests of the software so that it may be used to evaluate the fidelity of the implementation of the scientific algorithm. In many cases however, the chart may deviate from the details of the software implementation so as to simplify the presentation.
Space life sciences: ground-based iron-ion biology and physics, including shielding.
2005-01-01
This session of the 35th Scientific Assembly of COSPAR focuses on recent advances in ground-based studies of high-energy (mainly 1 GeV/nucleon) iron ions. The theme is interdisciplinary in nature and encompasses both physics and biology reports. Manned space missions, including those of the International Space Station and the planned Mars mission, will require the extended presence of crew members in space. As such, a better understanding in shielding design--in radiation detection as well as radio-protection based on simulating studies--is much needed. On the other hand, a better understanding of the basic mechanisms that modulate radiation sensitivity; in determining DNA double strand breaks, chromosomal aberrations, and the induction of apoptosis, will provide important information for an interventional approach.
Turvey, Stuart E.; Broide, David H.
2009-01-01
Recent years have witnessed an explosion of interest in the innate immune system. Questions about how the innate immune system senses infection and empowers a protective immune response are being answered at the molecular level. These basic science discoveries are being translated into a more complete understanding of the central role innate immunity plays in the pathogenesis of many human infectious and inflammatory diseases. It is particularly exciting that we are already seeing a return on these scientific investments with the emergence of novel therapies to harness the power of the innate immune system. In this review we explore the defining characteristics of the innate immune system, and through more detailed examples, we highlight recent breakthroughs that have advanced our understanding of the role of innate immunity in human health and disease. PMID:19932920
Exciting middle and high school students about immunology: an easy, inquiry-based lesson.
Lukin, Kara
2013-03-01
High school students in the United States are apathetic about science, technology, engineering and mathematics (STEM), and the workforce pipeline in these areas is collapsing. The lack of understanding of basic principles of biology means that students are unable to make educated decisions concerning their personal health. To address these issues, we have developed a simple, inquiry-based outreach lesson centered on a mouse dissection. Students learn key concepts in immunology and enhance their understanding of human organ systems. The experiment highlights aspects of the scientific method and authentic data collection and analysis. This hands-on activity stimulates interest in biology, personal health and careers in STEM fields. Here, we present all the information necessary to execute the lesson effectively with middle and high school students.
Microscopy Images as Interactive Tools in Cell Modeling and Cell Biology Education
Araújo-Jorge, Tania C.; Cardona, Tania S.; Mendes, Cláudia L. S.; Henriques-Pons, Andrea; Meirelles, Rosane M. S.; Coutinho, Cláudia M. L. M.; Aguiar, Luiz Edmundo V.; Meirelles, Maria de Nazareth L.; de Castro, Solange L.; Barbosa, Helene S.; Luz, Mauricio R. M. P.
2004-01-01
The advent of genomics, proteomics, and microarray technology has brought much excitement to science, both in teaching and in learning. The public is eager to know about the processes of life. In the present context of the explosive growth of scientific information, a major challenge of modern cell biology is to popularize basic concepts of structures and functions of living cells, to introduce people to the scientific method, to stimulate inquiry, and to analyze and synthesize concepts and paradigms. In this essay we present our experience in mixing science and education in Brazil. For two decades we have developed activities for the science education of teachers and undergraduate students, using microscopy images generated by our work as cell biologists. We describe open-air outreach education activities, games, cell modeling, and other practical and innovative activities presented in public squares and favelas. Especially in developing countries, science education is important, since it may lead to an improvement in quality of life while advancing understanding of traditional scientific ideas. We show that teaching and research can be mutually beneficial rather than competing pursuits in advancing these goals. PMID:15257338
Public health and epidemiology journals published in Brazil and other Portuguese speaking countries
Barreto, Mauricio L; Barata, Rita Barradas
2008-01-01
It is well known that papers written in languages other than English have a great risk of being ignored simply because these languages are not accessible to the international scientific community. The objective of this paper is to facilitate the access to the public health and epidemiology literature available in Portuguese speaking countries. It was found that it is particularly concentrated in Brazil, with some few examples in Portugal and none in other Portuguese speaking countries. This literature is predominantly written in Portuguese, but also in other languages such as English or Spanish. The paper describes the several journals, as well as the bibliographic databases that index these journals and how to access them. Most journals provide open-access with direct links in the indexing databases. The importance of this scientific production for the development of epidemiology as a scientific discipline and as a basic discipline for public health practice is discussed. To marginalize these publications has implications for a more balanced knowledge and understanding of the health problems and their determinants at a world-wide level. PMID:18826592
[M.S. Gilyarov's Scientific School of Soil Zoology].
Chesnova, L V
2005-01-01
The role of M.S. Gilyarov's scientific school in the development of the subject and methodology of a new complex discipline formed in the mid-20th century--soil zoology--was considered. The establishment and evolution of the proper scientific school was periodized. The creative continuity and development of the basic laws and technical approaches included in the teacher's scientific program was demonstrated by scientific historical analysis.
ERIC Educational Resources Information Center
Karsai, Istvan; Kampis, George
2010-01-01
Biology is changing and becoming more quantitative. Research is creating new challenges that need to be addressed in education as well. New educational initiatives focus on combining laboratory procedures with mathematical skills, yet it seems that most curricula center on a single relationship between scientific knowledge and scientific method:…
The molecular biology of soft-tissue sarcomas and current trends in therapy.
Quesada, Jorge; Amato, Robert
2012-01-01
Basic research in sarcoma models has been fundamental in the discovery of scientific milestones leading to a better understanding of the molecular biology of cancer. Yet, clinical research in sarcoma has lagged behind other cancers because of the multiple clinical and pathological entities that characterize sarcomas and their rarity. Sarcomas encompass a very heterogeneous group of tumors with diverse pathological and clinical overlapping characteristics. Molecular testing has been fundamental in the identification and better definition of more specific entities among this vast array of malignancies. A group of sarcomas are distinguished by specific molecular aberrations such as somatic mutations, intergene deletions, gene amplifications, reciprocal translocations, and complex karyotypes. These and other discoveries have led to a better understanding of the growth signals and the molecular pathways involved in the development of these tumors. These findings are leading to treatment strategies currently under intense investigation. Disruption of the growth signals is being targeted with antagonistic antibodies, tyrosine kinase inhibitors, and inhibitors of several downstream molecules in diverse molecular pathways. Preliminary clinical trials, supported by solid basic research and strong preclinical evidence, promises a new era in the clinical management of these broad spectrum of malignant tumors.
Balancing regulatory control, scientific knowledge, and public understanding.
Kingsbury, D T
1988-01-01
In summary, I would like to emphasize the continued need for broad and vigorous basic research, with a balance between the fundamental work that may eventually lead to commercial products and the fundamental work that is necessary for an understanding of the interaction of many types of organisms within the environment. I would like also to reiterate the need for balance in the regulatory approach so that we do not repress innovation in research and development. Over-regulation has many side effects. In addition to repressing innovation and not taking advantage of our research base, over-regulation leads to reluctance by the capital markets to invest in the future of our new industries, thereby halting their development at an early stage. At the same time, under-regulation leads to lack of confidence by the public and paralysis of the industry based on public outcry and legal proceedings. It is my personal belief that the combination of a sound approach to regulatory practice, based on current scientific knowledge, combined with appropriate communication with the public regarding the new products, will lead to an exciting future for all sectors of industry that use the new biotechnology.
To the National Map and beyond
Kelmelis, J.
2003-01-01
Scientific understanding, technology, and social, economic, and environmental conditions have driven a rapidly changing demand for geographic information, both digital and analog. For more than a decade, the U.S. Geological Survey (USGS) has been developing innovative partnerships with other government agencies and private industry to produce and distribute geographic information efficiently; increase activities in remote sensing to ensure ongoing monitoring of the land surface; and develop new understanding of the causes and consequences of land surface change. These activities are now contributing to a more robust set of geographic information called The National Map (TNM). The National Map is designed to provide an up-to-date, seamless, horizontally and vertically integrated set of basic digital geographic data, a frequent monitoring of changes on the land surface, and an understanding of the condition of the Earth's surface and many of the processes that shape it. The USGS has reorganized its National Mapping Program into three programs to address the continuum of scientific activities-describing (mapping), monitoring, understanding, modeling, and predicting. The Cooperative Topographic Mapping Program focuses primarily on the mapping and revision aspects of TNM. The National Map also includes results from the Land Remote Sensing and Geographic Analysis and Monitoring Programs that provide continual updates, new insights, and analytical tools. The National Map is valuable as a framework for current research, management, and operational activities. It also provides a critical framework for the development of distributed, spatially enabled decision support systems.
ERIC Educational Resources Information Center
Aydeniz, Mehmet; Baksa, Kristen; Skinner, Jane
2011-01-01
The purpose of this study was to understand the impact of an apprenticeship program on high school students' understanding of the nature of scientific inquiry. Data related to seventeen students' understanding of science and scientific inquiry were collected through open-ended questionnaires. Findings suggest that although engagement in authentic…
ICYESS 2013: Understanding and Interpreting Uncertainty
NASA Astrophysics Data System (ADS)
Rauser, F.; Niederdrenk, L.; Schemann, V.; Schmidt, A.; Suesser, D.; Sonntag, S.
2013-12-01
We will report the outcomes and highlights of the Interdisciplinary Conference of Young Earth System Scientists (ICYESS) on Understanding and Interpreting Uncertainty in September 2013, Hamburg, Germany. This conference is aimed at early career scientists (Masters to Postdocs) from a large variety of scientific disciplines and backgrounds (natural, social and political sciences) and will enable 3 days of discussions on a variety of uncertainty-related aspects: 1) How do we deal with implicit and explicit uncertainty in our daily scientific work? What is uncertain for us, and for which reasons? 2) How can we communicate these uncertainties to other disciplines? E.g., is uncertainty in cloud parameterization and respectively equilibrium climate sensitivity a concept that is understood equally well in natural and social sciences that deal with Earth System questions? Or vice versa, is, e.g., normative uncertainty as in choosing a discount rate relevant for natural scientists? How can those uncertainties be reconciled? 3) How can science communicate this uncertainty to the public? Is it useful at all? How are the different possible measures of uncertainty understood in different realms of public discourse? Basically, we want to learn from all disciplines that work together in the broad Earth System Science community how to understand and interpret uncertainty - and then transfer this understanding to the problem of how to communicate with the public, or its different layers / agents. ICYESS is structured in a way that participation is only possible via presentation, so every participant will give their own professional input into how the respective disciplines deal with uncertainty. Additionally, a large focus is put onto communication techniques; there are no 'standard presentations' in ICYESS. Keynote lectures by renowned scientists and discussions will lead to a deeper interdisciplinary understanding of what we do not really know, and how to deal with it. Many participants have a fresh view on the scientific questions because they have been scientifically raised in interdisciplinary graduate schools and institutions and bring a mix of professional expertise into the Earth System sciences. The extraordinary conference structure and the focus on young Earth System scientists lead to a unique perspective for ICYESS, and hopefully to insights that are relevant to the broader scientific community. At the AGU fall meeting we would like to present results and questions that will come out of ICYESS and put them into the ongoing broad discussion of communicating climate science uncertainties. More information on ICYESS can be found at icyess.eu
Nieminen, P; Virtanen, J I
2017-11-01
One of the core skills of competent dentist is the ability to search and analyse high-quality evidence. Problems in understanding the basic aspects of knowledge-based information may impede its implementation into clinical practice. We examined how Finnish dental students acquire scientific information and how familiar they are with methods for evaluating scientific evidence related to clinical questions. All fifth-year dental students (n = 120) at the three universities in Finland received a self-administered questionnaire. The three most commonly used sources of information were colleagues, the commercial Health Gate Portal for dental practitioners and personal lecture notes. Although students rarely read scientific journals, they did find that they possess at least passable or even good skills in literature retrieval. Three questions related to the appraisal of evidence in dentistry revealed that students' knowledge of evidence-based dentistry was inadequate to critically evaluate clinical research findings. Most students seem to lack knowledge of key methodological evidence-based terms. The present curricula in dental schools fail to encourage the students to search and acquire knowledge wider than their patients themselves do. Universities have the responsibility to teach dentists various methods of critical appraisal to cope with scientific information. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Latifah, E.; Imanullah, M. N.
2018-03-01
One of the objectives of fisheries management is to reach long-term sustainable benefits of the fish stocks while reducing the risk of severe or irreversible damage to the marine ecosystem. Achieving this objective needs, the good scientific knowledge and understanding on fisheries management including scientific data and information on the fish stock, fishing catch, distribution, migration, the proportion of mature fish, the mortality rate, reproduction as well as the knowledge on the impact of fishing on dependent and associated species and other species belonging to the same ecosystem, and further the impact of climate change and climate variability on the fish stocks and marine ecosystem. Lack of this scientific knowledge may lead to high levels of uncertainty. The precautionary principle is one of the basic environmental principles needed in overcoming this problem. An essence of this principle is that, in facing the serious risk as a result of the limited scientific knowledge or the absence of complete evidence of harm, it should not prevent the precautionary measures in minimizing risks and protecting the fish stocks and ecosystem. This study aims to examine how the precautionary principle in fisheries management be formulated into the international legal framework, especially under the climate change framework.
Reconciling societal and scientific definitions for the monsoon
NASA Astrophysics Data System (ADS)
Reeve, Mathew; Stephenson, David
2014-05-01
Science defines the monsoon in numerous ways. We can apply these definitions to forecast data, reanalysis data, observations, GCMs and more. In a basic research setting, we hope that this work will advance science and our understanding of the monsoon system. In an applied research setting, we often hope that this work will benefit a specific stakeholder or community. We may want to inform a stakeholder when the monsoon starts, now and in the future. However, what happens if the stakeholders cannot relate to the information because their perceptions do not align with the monsoon definition we use in our analysis? We can resolve this either by teaching the stakeholders or learning from them about how they define the monsoon and when they perceive it to begin. In this work we reconcile different scientific monsoon definitions with the perceptions of agricultural communities in Bangladesh. We have developed a statistical technique that rates different scientific definitions against the people's perceptions of when the monsoon starts and ends. We construct a probability mass function (pmf) around each of the respondent's answers in a questionnaire survey. We can use this pmf to analyze the time series of monsoon onsets and withdrawals from the different scientific definitions. We can thereby quantitatively judge which definition may be most appropriate for a specific applied research setting.
78 FR 32260 - Center For Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-29
... 20892, (301) 435-4445, [email protected] . Name of Committee: Oncology 1-Basic Translational... . Name of Committee: Oncology 1-Basic Translational Integrated Review Group Molecular Oncogenesis Study...
Principles Supporting the Perceptional Teaching of Physics: A ``Practical Teaching Philosophy''
NASA Astrophysics Data System (ADS)
Kurki-Suonio, Kaarle
2011-03-01
This article sketches a framework of ideas developed in the context of decades of physics teacher-education that was entitled the "perceptional approach". Individual learning and the scientific enterprise are interpreted as different manifestations of the same process aimed at understanding the natural and social worlds. The process is understood to possess the basic nature of perception, where empirical meanings are first born and then conceptualised. The accumulation of perceived gestalts in the "structure of the mind" leads to structural perception and the generation of conceptual hierarchies, which form a general principle for the expansion of our understanding. The process undergoes hierarchical development from early sensory perception to individual learning and finally to science. The process is discussed in terms of a three-process dynamic. Scientific and technological processes are driven by the interaction of the mind and nature. They are embedded in the social process due to the interaction of individual minds. These sub-processes are defined by their aims: The scientific process affects the mind and aims at understanding; the technological process affects nature and aims at human well-being; and the social process aims at mutual agreement and cooperation. In hierarchical development the interaction of nature and the mind gets structured into a "methodical cycle" by procedures involving conscious activities. Its intuitive nature is preserved due to subordination of the procedures to empirical meanings. In physics, two dimensions of hierarchical development are distinguished: Unification development gives rise to a generalisation hierarchy of concepts; Quantification development transfers the empirical meanings to quantities, laws and theories representing successive hierarchical levels of quantitative concepts. Consequences for physics teaching are discussed in principle, and in the light of examples and experiences from physics teacher education.
NASA Astrophysics Data System (ADS)
Duncan, Douglas K.; Arthurs, L.; CATS
2009-01-01
Surveys of those who teach Astro 101 say that increasing students’ understanding of the nature and process of science is an important goal. It is also one of the justifications for the "breadth requirement” that supports most of the Astro 101 enterprise in the US. However, little work has been done to measure if this goal is achieved. We interviewed 60 students drawn from two introductory astronomy classes at the beginning and end of the course. Each student was asked 9 questions concerning the nature of science and how it is applied. One of the two introductory classes made a special point of explicitly discussing the nature of science and "science vs. pseudoscience.” Otherwise the two classes were similar. We are investigating how students changed in 4 areas: 1. Do they understand what science is? 2. Do they have the ability to think scientifically themselves? 3. Can they distinguish believable scientific results from bogus ones? 4. Do students develop "basic science literacy?" In addition to the interviews we gave the Epistemological Beliefs Assessment for Physical Science (EBAPS, Elby et al. 2001; www.flaguide.org) to approximately 300 students. Initial results will be reported in our poster, and full results in a publication expected in early 2009. In addition, the results of this study are being used to develop a survey instrument designed specifically for use with Astro 101 students to evaluate the effectiveness of instruction on their scientific attitudes and beliefs as a Collaboration of Astronomy Teaching Scholars (CATS) research project. We would like to thank the NSF for funding under Grant No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS) Program.
Basic Principles of Animal Science. Reprinted.
ERIC Educational Resources Information Center
Florida State Dept. of Education, Tallahassee.
The reference book is designed to fulfill the need for organized subject matter dealing with basic principles of animal science to be incorporated into the high school agriculture curriculum. The material presented is scientific knowledge basic to livestock production. Five units contain specific information on the following topics: anatomy and…
10 CFR Appendix A to Part 4 - Federal Financial Assistance to Which This Part Applies 1
Code of Federal Regulations, 2012 CFR
2012-01-01
... recovery, in meetings, conferences, workshops, and symposia to assist scientific, professional or educational institutions or groups. (e) Research Support. Agreements for the financial support of basic and applied scientific research and for the exchange of scientific information. [29 FR 19277, Dec. 31, 1964...
10 CFR Appendix A to Part 4 - Federal Financial Assistance to Which This Part Applies 1
Code of Federal Regulations, 2013 CFR
2013-01-01
... recovery, in meetings, conferences, workshops, and symposia to assist scientific, professional or educational institutions or groups. (e) Research Support. Agreements for the financial support of basic and applied scientific research and for the exchange of scientific information. [29 FR 19277, Dec. 31, 1964...
10 CFR Appendix A to Part 4 - Federal Financial Assistance to Which This Part Applies 1
Code of Federal Regulations, 2011 CFR
2011-01-01
... recovery, in meetings, conferences, workshops, and symposia to assist scientific, professional or educational institutions or groups. (e) Research Support. Agreements for the financial support of basic and applied scientific research and for the exchange of scientific information. [29 FR 19277, Dec. 31, 1964...
10 CFR Appendix A to Part 4 - Federal Financial Assistance to Which This Part Applies 1
Code of Federal Regulations, 2010 CFR
2010-01-01
... recovery, in meetings, conferences, workshops, and symposia to assist scientific, professional or educational institutions or groups. (e) Research Support. Agreements for the financial support of basic and applied scientific research and for the exchange of scientific information. [29 FR 19277, Dec. 31, 1964...
Science Advisory Committee on Chemicals Basic Information
The SACC will provide independent scientific advice and recommendations to the EPA on the scientific basis for risk assessments, methodologies, and pollution prevention measures and approaches for chemicals regulated under the TSCA.
78 FR 54665 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-05
...: Center for Scientific Review Special Emphasis Panel; Basic Biology of Neurological Disorders. Date..., Bethesda, MD 20892, 301-435- 1242, [email protected] . Name of Committee: Biological Chemistry and...
Munns, David P D
2015-04-01
This paper describes how, from the early twentieth century, and especially in the early Cold War era, the plant physiologists considered their discipline ideally suited among all the plant sciences to study and explain biological functions and processes, and ranked their discipline among the dominant forms of the biological sciences. At their apex in the late-1960s, the plant physiologists laid claim to having discovered nothing less than the "basic laws of physiology." This paper unwraps that claim, showing that it emerged from the construction of monumental big science laboratories known as phytotrons that gave control over the growing environment. Control meant that plant physiologists claimed to be able to produce a standard phenotype valid for experimental biology. Invoking the standards of the physical sciences, the plant physiologists heralded basic biological science from the phytotronic produced phenotype. In the context of the Cold War era, the ability to pursue basic science represented the highest pinnacle of standing within the scientific community. More broadly, I suggest that by recovering the history of an underappreciated discipline, plant physiology, and by establishing the centrality of the story of the plant sciences in the history of biology can historians understand the massive changes wrought to biology by the conceptual emergence of the molecular understanding of life, the dominance of the discipline of molecular biology, and the rise of biotechnology in the 1980s. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
McCarthy, D. W., Jr.; Lebofsky, L. A.; Higgins, M. L.; Lebofsky, N. R.
2011-09-01
Since 2003, the Near Infrared Camear (NIRCam) science team for the James Webb Space Telescope (JWST) has conducted "Train the Trainer" workshops for adult leaders of the Girl Scout of the USA (GSUSA), engaging them in the process of scientific inquiry and equipping them to host astronomy-related activities at the troop level. Training includes topics in basic astronomy (night sky, phases of the Moon, the scale of the Solar System and beyond, stars, galaxies, telescopes, etc.) as well as JWST-specific research areas in extra-solar planetary systems and cosmology, to pave the way for girls and women to understand the first images from JWST. Participants become part of our world-wide network of 160 trainers teaching young women essential STEM-related concepts using astronomy, the night sky environment, applied math, engineering, and critical thinking.
History of cardiac anatomy: a comprehensive review from the Egyptians to today.
Loukas, Marios; Youssef, Pamela; Gielecki, Jerzy; Walocha, Jerzy; Natsis, Kostantinos; Tubbs, R Shane
2016-04-01
The nature, function, and anatomy of the heart have been extensively studied since 3500 B.C. Greek and Egyptian science developed a basic understanding of the heart, although this was primarily related to religious beliefs. During the Hippocratic era, Hippocrates and his colleagues developed a more scientific and less religious understanding of the cardiovascular system. The post-Hippocratic era was characterized by more advanced descriptions of the location, structure, and function of the heart. The Alexandrian, Roman, Medieval Islamic, and European eras included turning points in the history of cardiac anatomy. Subsequently, after the structure and function of the heart were established, its connection with the lungs was investigated. Description of the pulmonary circulation was followed by the discovery of the conductive system and innervation of the heart. © 2016 Wiley Periodicals, Inc.
Rosenberg, Evan C; Tsien, Richard W; Whalley, Benjamin J; Devinsky, Orrin
2015-10-01
Cannabis has been used for centuries to treat seizures. Recent anecdotal reports, accumulating animal model data, and mechanistic insights have raised interest in cannabis-based antiepileptic therapies. In this study, we review current understanding of the endocannabinoid system, characterize the pro- and anticonvulsive effects of cannabinoids [e.g., Δ9-tetrahydrocannabinol and cannabidiol (CBD)], and highlight scientific evidence from pre-clinical and clinical trials of cannabinoids in epilepsy. These studies suggest that CBD avoids the psychoactive effects of the endocannabinoid system to provide a well-tolerated, promising therapeutic for the treatment of seizures, while whole-plant cannabis can both contribute to and reduce seizures. Finally, we discuss results from a new multicenter, open-label study using CBD in a population with treatment-resistant epilepsy. In all, we seek to evaluate our current understanding of cannabinoids in epilepsy and guide future basic science and clinical studies.
Smith, M F
2016-07-01
Programs in animal science are particularly well suited for graduate education because students can receive comprehensive training in the laboratory as well as with the whole animal. Furthermore, graduate students in animal science have the opportunity to understand how their research relates to a real world problem. Graduate students need to take ownership of their education by identifying training goals, choosing a mentor who will help them achieve their goals, and becoming engaged in research as soon as possible. In my own graduate program, I emphasize concepts more than techniques and I believe that graduate course work should focus on the basic areas of science that underlie reproductive biology (e.g., endocrinology, biochemistry, physiology, immunology, and statistics). Based on the increase in technology available for scientific investigation and the diversity of expertise required to address important research problems, graduate students need to learn the importance of establishing productive collaborations and begin building a scientific network. Preparation for graduate school frequently begins early with a curiosity and passion for understanding how biology works. Undergraduate courses can facilitate scientific thinking by providing opportunities in lectures and laboratories for students to transition from passive learners to thinking of themselves as animal scientists. There is a profound difference between individuals who view themselves as practitioners of a discipline and those who are simply trying to complete a course requirement. Teachers of undergraduate courses should incorporate experiential learning exercises into their lectures and laboratories to provide undergraduate students the opportunity to function as animal scientists and to embrace their scientific education. Graduate training has been the most enjoyable aspect of my career and it has been a joy to witness the achievements of students following completion of their degree!
77 FR 4050 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-26
..., Bethesda, MD 20892, (301) 435-1046, [email protected] . Name of Committee: Oncology 1--Basic...- 4467, [email protected] . Name of Committee: Oncology 1--Basic Translational Integrated Review Group...
77 FR 56216 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-12
... personal privacy. Name of Committee: Oncology 1-Basic Translational Integrated Review Group; Cancer... 20892, 301-435-1254, [email protected]ih.gov . Name of Committee: Oncology 1-Basic Translational...
78 FR 10186 - Center For Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-13
... Committee: Center for Scientific Review Special Emphasis Panel; RFA: EY 13-001 Basic Behavioral Research on... Panel; Fellowships: Cell Biology, Developmental Biology and Bioengineering. Date: March 7, 2013. Time: 8...
Barrett, Lisa Feldman; Mesquita, Batja; Ochsner, Kevin N.; Gross, James J.
2007-01-01
Experiences of emotion are content-rich events that emerge at the level of psychological description, but must be causally constituted by neurobiological processes. This chapter outlines an emerging scientific agenda for understanding what these experiences feel like and how they arise. We review the available answers to what is felt (i.e., the content that makes up an experience of emotion) and how neurobiological processes instantiate these properties of experience. These answers are then integrated into a broad framework that describes, in psychological terms, how the experience of emotion emerges from more basic processes. We then discuss the role of such experiences in the economy of the mind and behavior. PMID:17002554
The principles of teratology: are they still true?
Friedman, Jan M
2010-10-01
James Wilson originally proposed a set of "Principles of Teratology" in 1959, the year before he helped to found the Teratology Society. By 1977, when these Principles were presented in a more definitive form in Wilson and Fraser's Handbook of Teratology, they had become a standard formulation of the basic tenets of the field. Wilson's Principles have continued to guide scientific research in teratology, and they are widely used in teaching. Recent advances in our knowledge of the molecular and cellular bases of embryogenesis serve only to provide a deeper understanding of the fundamental developmental mechanisms that underlie Wilson's Principles of Teratology. © 2010 Wiley-Liss, Inc.
Comments on the Development of Computational Mathematics in Czechoslovakia and in the USSR.
1987-03-01
ACT (COusduMe an reverse .eld NE 4040604W SWi 1410011 6F 660" ambe The talk is an Invited lecture at Ale Conference on the History of Scientific and...Numeric Computations, May 13-15, 1987, Princeton, New Jersey. It present soon basic subjective observations about the history of numerical methods in...invited lecture at ACH Conference on the History of Scientific and Numeric Computations, May 13’-15, 1987, Princeton, New Jersey. It present some basic
Verhagen, H; Aruoma, O I; van Delft, J H M; Dragsted, L O; Ferguson, L R; Knasmüller, S; Pool-Zobel, B L; Poulsen, H E; Williamson, G; Yannai, S
2003-05-01
There is increasing evidence that chemicals/test substances cannot only have adverse effects, but that there are many substances that can (also) have a beneficial effect on health. As this journal regularly publishes papers in this area and has every intention in continuing to do so in the near future, it has become essential that studies reported in this journal reflect an adequate level of scientific scrutiny. Therefore a set of essential characteristics of studies has been defined. These basic requirements are default properties rather than non-negotiables: deviations are possible and useful, provided they can be justified on scientific grounds. The 10 basic requirements for a scientific paper reporting antioxidant, antimutagenic or anticarcinogenic potential of test substances in in vitro experiments and animal studies in vivo concern the following areas: (1) Hypothesis-driven study design; (2) The nature of the test substance; (3) Valid and invalid test systems; (4) The selection of dose levels and gender; (5) Reversal of the effects induced by oxidants, carcinogens and mutagens; (6) Route of administration; (7) Number and validity of test variables; (8) Repeatability and reproducibility; (9) Statistics; and (10) Quality Assurance.
Allen, Todd (Director, Center for Material Science of Nuclear Fuel); CMSNF Staff
2017-12-09
'The Center for Material Science of Nuclear Fuel (CMSNF)' was submitted by the CMSNF to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMSNF, an EFRC directed by Todd Allen at the Idaho National Laboratory is a partnership of scientists from six institutions: INL (lead), Colorado School of Mines, University of Florida, Florida State University, Oak Ridge National Laboratory, and the University of Wisconsin at Madison. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Materials Science of Nuclear Fuels is 'to achieve a first-principles based understanding of the effect of irradiation-induced defects and microstructures on thermal transport in oxide nuclear fuels.' Research topics are: phonons, thermal conductivity, nuclear, extreme environment, radiation effects, defects, and matter by design.
Bullock, R. Morris (Director, Center for Molecular Electrocatalysis); CME Staff
2017-12-09
'Saving the Sun for a Rainy Day' was submitted by the Center for Molecular Electrocatalysis (CME) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CME, an EFRC directed by R. Morris Bullock at Pacific Northwest National Laboratory is a partnership of scientists from four institutions: PNNL (lead), Pensylvania State University, University of Washington, and the University of Wyoming. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Molecular Electrocatalysis is 'to understand, design and develop molecular electrocatalysts for solar fuel production and use.' Research topics are: catalysis (water), electrocatalysis, bio-inspired, electrical energy storage, fuel cells, hydrogen (fuel), matter by design, novel materials synthesis, and charge transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bullock, R. Morris
"Saving the Sun for a Rainy Day" was submitted by the Center for Molecular Electrocatalysis (CME) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CME, an EFRC directed by R. Morris Bullock at Pacific Northwest National Laboratory is a partnership of scientists from four institutions: PNNL (lead), Pennsylvania State University, University of Washington, and the University of Wyoming. The Office of Basic Energy Sciences in the U.S. Departmentmore » of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Molecular Electrocatalysis is 'to understand, design and develop molecular electrocatalysts for solar fuel production and use.' Research topics are: catalysis (water), electrocatalysis, bio-inspired, electrical energy storage, fuel cells, hydrogen (fuel), matter by design, novel materials synthesis, and charge transport.« less
Code of Federal Regulations, 2011 CFR
2011-01-01
..., conferences, workshops, and symposia to assist scientific, professional or educational institutions or groups. (e) Research support. Agreements for the financial support of basic and applied scientific research and for the exchanges of scientific information. [66 FR 709, Jan. 4, 2001] ...
ERIC Educational Resources Information Center
Weiss, Charles J.
2017-01-01
The Scientific Computing for Chemists course taught at Wabash College teaches chemistry students to use the Python programming language, Jupyter notebooks, and a number of common Python scientific libraries to process, analyze, and visualize data. Assuming no prior programming experience, the course introduces students to basic programming and…
77 FR 2737 - National Institute on Aging; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-19
... for Developing Areas of Investigation in the Basic Biology of Aging. Date: February 9, 2012. Time: 8...., Scientific Review Officer, Scientific Review Branch, National Institute on Aging, Gateway Bldg., 2C212, 7201... Officer, Scientific Review Branch, National Institute on Aging, Gateway Building, Suite 2C212, MSC-9205...
Reproducibility in science: improving the standard for basic and preclinical research.
Begley, C Glenn; Ioannidis, John P A
2015-01-02
Medical and scientific advances are predicated on new knowledge that is robust and reliable and that serves as a solid foundation on which further advances can be built. In biomedical research, we are in the midst of a revolution with the generation of new data and scientific publications at a previously unprecedented rate. However, unfortunately, there is compelling evidence that the majority of these discoveries will not stand the test of time. To a large extent, this reproducibility crisis in basic and preclinical research may be as a result of failure to adhere to good scientific practice and the desperation to publish or perish. This is a multifaceted, multistakeholder problem. No single party is solely responsible, and no single solution will suffice. Here we review the reproducibility problems in basic and preclinical biomedical research, highlight some of the complexities, and discuss potential solutions that may help improve research quality and reproducibility. © 2015 American Heart Association, Inc.
Continuous Enhancement of Science Teachers' Knowledge and Skills through Scientific Lecturing.
Azevedo, Maria-Manuel; Duarte, Sofia
2018-01-01
Due to their importance in transmitting knowledge, teachers can play a crucial role in students' scientific literacy acquisition and motivation to respond to ongoing and future economic and societal challenges. However, to conduct this task effectively, teachers need to continuously improve their knowledge, and for that, a periodic update is mandatory for actualization of scientific knowledge and skills. This work is based on the outcomes of an educational study implemented with science teachers from Portuguese Basic and Secondary schools. We evaluated the effectiveness of a training activity consisting of lectures covering environmental and health sciences conducted by scientists/academic teachers. The outcomes of this educational study were evaluated using a survey with several questions about environmental and health scientific topics. Responses to the survey were analyzed before and after the implementation of the scientific lectures. Our results showed that Basic and Secondary schools teachers' knowledge was greatly improved after the lectures. The teachers under training felt that these scientific lectures have positively impacted their current knowledge and awareness on several up-to-date scientific topics, as well as their teaching methods. This study emphasizes the importance of continuing teacher education concerning knowledge and awareness about health and environmental education.
Three Short Films about Water: Presenting Basic Concepts to Students and Stakeholders
NASA Astrophysics Data System (ADS)
Arrigo, J. S.; Hooper, R. P.; Michel, A.; Wilde, P.; Lilienfeld, L.
2011-12-01
Three short form (3 - 5 minute) movies were produced for CUAHSI, to convey basic concepts such as a hydrologic budget, stores and fluxes of water, and the flowpaths and residence time of water. The films were originally intended to be used by scientists to explain the concepts behind potential environmental observatories, but evolved into serving a broader purpose. The films combine still photos, satellite images, animation and video clips, and interviews with CUAHSI members explaining hydrologic concepts in simple, accessible terms. In producing these films, we have found the importance of engaging scientists in conversation first, to develop a script around key accessible concepts and relevant information. Film and communication professionals play a critical role in distilling the scientific explanation and concepts into accessible, engaging film material. The films have been widely distributed through CD and online to educators for use in courses. Additionally, they provide a way to engage stakeholders, particularly land owners, by conveying basic concepts that are necessary to understand the hydrologic and earth science foundation of many of today's political and environmental issues. The films can be viewed online at the CUAHSI website, which also contains links to other film related resources and programs.
Lau, Dennis H; Volders, Paul G A; Kohl, Peter; Prinzen, Frits W; Zaza, Antonio; Kääb, Stefan; Oto, Ali; Schotten, Ulrich
2015-05-01
Cardiac electrophysiology has evolved into an important subspecialty in cardiovascular medicine. This is in part due to the significant advances made in our understanding and treatment of heart rhythm disorders following more than a century of scientific discoveries and research. More recently, the rapid development of technology in cellular electrophysiology, molecular biology, genetics, computer modelling, and imaging have led to the exponential growth of knowledge in basic cardiac electrophysiology. The paradigm of evidence-based medicine has led to a more comprehensive decision-making process and most likely to improved outcomes in many patients. However, implementing relevant basic research knowledge in a system of evidence-based medicine appears to be challenging. Furthermore, the current economic climate and the restricted nature of research funding call for improved efficiency of translation from basic discoveries to healthcare delivery. Here, we aim to (i) appraise the broad challenges of translational research in cardiac electrophysiology, (ii) highlight the need for improved strategies in the training of translational electrophysiologists, and (iii) discuss steps towards building a favourable translational research environment and culture. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Bich Ha, Nguyen
2011-12-01
Having grown rapidly during the last two decades, and successfully synthesized the achievements of physics, chemistry, life science as well as information and computational science and technology, nanoscience and nanotechnology have emerged as interdisciplinary fields of modern science and technology with various prospective applications towards environmental protection and the sustainable development of industry, agriculture, public health etc. At the present time, there exist many textbooks, monographs and encyclopedias on nanoscience and nanotechnology. They present to readers the whole process of development from the emergence of new scientific ideas to comprehensive studies of concrete subjects. They are useful for experienced scientists in nanoscience and nanotechnology as well as related scientific disciplines. However, there are very few textbooks on nanoscience and nanotechnology for beginners—senior undergraduate and junior graduate students. Published by Garland Science in August 2011, Introductory Nanoscience: Physical and Chemical Concepts by Masaru Kuno is one of these rare textbooks. The purpose of this book is twofold. In a pedagogical manner the author presents the basic physical and chemical concepts of nanoscience and nanotechnology. Students with a background knowledge in general chemistry and semiclassical quantum physics can easily understand these concepts. On the other hand, by carefully studying the content of this textbook, readers can learn how to derive a large number of formulae and expressions which they will often use in their study as well as in their future research work. A distinguishing feature of the book is the inclusion of a large number of thought problems at the end of each chapter for demonstrating how to calculate the numerical values of almost all physical quantities involved in the theoretical and experimental studies of all subjects of nanoscience and nanotechnology. The author has successfully achieved both of the main aims of the textbook. The book consists of 15 chapters. According to their detailed contents they can be divided into three groups. In five chapters forming the first group (Introduction, Structure, Length Scales, Types of Nanostructures, Absorption and Emission Basics) the author presents the notions, definitions and concepts related to nanosystems, as well as the length scales of all their physical parameters. The contents of these chapters have been written for all readers studying any undergraduate academic programme in natural sciences and engineering. The subsequent seven chapters forming the second group (A Quantum Mechanics Review, Model Quantum Mechanics Problems, Additional Model Problems, Density of States, Bands, Time-Dependent Perturbation Theory, Interband Transitions) contain a comprehensive and easily understandable presentation of the theoretical basics of nanoscience. The last three chapters (Synthesis, Characterization, Applications) contain presentations on the fundamental methods in the experimental studies and applications of nanosystems. This book is very useful not only for training beginners in research and engineering in nanoscience and nanotechnology, but also for attracting the interest of specialists in other scientific disciplines to the application of the achievements of this new emerging multidisciplinary scientific field.
Deichmann, Ute
2012-01-01
For centuries the question of the origin of life had focused on the question of the spontaneous generation of life, at least primitive forms of life, from inanimate matter, an idea that had been promoted most prominently by Aristotle. The widespread belief in spontaneous generation, which had been adopted by the Church, too, was finally abandoned at the beginning of the twentieth century, when the question of the origin of life became related to that of the artificial generation of life in the laboratory. This paper examines the role of social authorities, researchers' basic beliefs, crucial experiments, and scientific advance in the controversies about spontaneous generation from the seventeenth to the nineteenth centuries and analyzes the subsequent debates about the synthesis of artificial life in the changing scientific contexts of the nineteenth and early-twentieth centuries. It shows that despite the importance of social authorities, basic beliefs, and crucial experiments scientific advances, especially those in microbiology, were the single most important factor in the stepwise abandoning of the doctrine of spontaneous generation. Research on the origin of life and the artificial synthesis of life became scientifically addressed only when it got rid of the idea of constant smooth transitions between inanimate matter and life and explored possible chemical and physical mechanisms of the specificity of basic molecules and processes of life.
Kline, Antonie D; Calof, Anne L; Lander, Arthur D; Gerton, Jennifer L; Krantz, Ian D; Dorsett, Dale; Deardorff, Matthew A; Blagowidow, Natalie; Yokomori, Kyoko; Shirahige, Katsuhiko; Santos, Rosaysela; Woodman, Julie; Megee, Paul C; O'Connor, Julia T; Egense, Alena; Noon, Sarah; Belote, Maurice; Goodban, Marjorie T; Hansen, Blake D; Timmons, Jenni Glad; Musio, Antonio; Ishman, Stacey L; Bryan, Yvon; Wu, Yaning; Bettini, Laura R; Mehta, Devanshi; Zakari, Musinu; Mills, Jason A; Srivastava, Siddharth; Haaland, Richard E
2015-06-01
Cornelia de Lange Syndrome (CdLS) is the most common example of disorders of the cohesin complex, or cohesinopathies. There are a myriad of clinical issues facing individuals with CdLS, particularly in the neurodevelopmental system, which also have implications for the parents and caretakers, involved professionals, therapists, and schools. Basic research in developmental and cell biology on cohesin is showing significant progress, with improved understanding of the mechanisms and the possibility of potential therapeutics. The following abstracts are presentations from the 6th Cornelia de Lange Syndrome Scientific and Educational Symposium, which took place on June 25-26, 2014, in conjunction with the Cornelia de Lange Syndrome Foundation National Meeting in Costa Mesa, CA. The Research Committee of the CdLS Foundation organizes the meeting, reviews and accepts abstracts, and subsequently disseminates the information to the families through members of the Clinical Advisory Board. In addition to the scientific and clinical discussions, there were educationally focused talks related to practical aspects of behavior and development. AMA CME credits were provided by Greater Baltimore Medical Center, Baltimore, MD. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potok, Thomas; Schuman, Catherine; Patton, Robert
The White House and Department of Energy have been instrumental in driving the development of a neuromorphic computing program to help the United States continue its lead in basic research into (1) Beyond Exascale—high performance computing beyond Moore’s Law and von Neumann architectures, (2) Scientific Discovery—new paradigms for understanding increasingly large and complex scientific data, and (3) Emerging Architectures—assessing the potential of neuromorphic and quantum architectures. Neuromorphic computing spans a broad range of scientific disciplines from materials science to devices, to computer science, to neuroscience, all of which are required to solve the neuromorphic computing grand challenge. In our workshopmore » we focus on the computer science aspects, specifically from a neuromorphic device through an application. Neuromorphic devices present a very different paradigm to the computer science community from traditional von Neumann architectures, which raises six major questions about building a neuromorphic application from the device level. We used these fundamental questions to organize the workshop program and to direct the workshop panels and discussions. From the white papers, presentations, panels, and discussions, there emerged several recommendations on how to proceed.« less
The remote sensing data from your UAV probably isn't scientific, but it should be!
NASA Astrophysics Data System (ADS)
McKee, Mac
2017-05-01
The application of unmanned autonomous vehicles (UAVs), or "drones", to generate data to support better decisions for agricultural management and farm operations is a relatively new technology that is now beginning to enter the market. This potentially disruptive technology is still in its infancy and must mature in ways that the current market cannot clearly foresee and probably does not fully understand. Major technical and regulatory hurdles must be overcome before the full potential of this remote sensing technology can be realized in agricultural applications. Further, and most importantly, buyers and sellers in today's market must both gain a deeper understanding of the potential that this technology might achieve and the technical challenges that must be met before advances that will bring significant market value will be possible. A lack of understanding of some of the basic concepts of remote sensing can translate into poor decisions regarding the acquisition and deployment of UAVs in agriculture. This paper focuses on some of the details of remote sensing that few growers, and, indeed, few university researchers fully understand.
Test Driven Development: Lessons from a Simple Scientific Model
NASA Astrophysics Data System (ADS)
Clune, T. L.; Kuo, K.
2010-12-01
In the commercial software industry, unit testing frameworks have emerged as a disruptive technology that has permanently altered the process by which software is developed. Unit testing frameworks significantly reduce traditional barriers, both practical and psychological, to creating and executing tests that verify software implementations. A new development paradigm, known as test driven development (TDD), has emerged from unit testing practices, in which low-level tests (i.e. unit tests) are created by developers prior to implementing new pieces of code. Although somewhat counter-intuitive, this approach actually improves developer productivity. In addition to reducing the average time for detecting software defects (bugs), the requirement to provide procedure interfaces that enable testing frequently leads to superior design decisions. Although TDD is widely accepted in many software domains, its applicability to scientific modeling still warrants reasonable skepticism. While the technique is clearly relevant for infrastructure layers of scientific models such as the Earth System Modeling Framework (ESMF), numerical and scientific components pose a number of challenges to TDD that are not often encountered in commercial software. Nonetheless, our experience leads us to believe that the technique has great potential not only for developer productivity, but also as a tool for understanding and documenting the basic scientific assumptions upon which our models are implemented. We will provide a brief introduction to test driven development and then discuss our experience in using TDD to implement a relatively simple numerical model that simulates the growth of snowflakes. Many of the lessons learned are directly applicable to larger scientific models.
JPRS Report, Science & Technology, USSR: Science and Technology Policy.
1988-03-03
accordance with the Kazakhstan Regional Scientific Research Program, which is called upon to unite scientific development of a basic and applied nature...Resources for 1986-1990 and the Period to 2000." The institute is a part of the union Avtogennyye protsessy Scientific Technical Complex and the...republic Tsvetnaya metallurgiya Scientific Technical Complex and is participating in the work of the creative youth collective for the automation of
NASA Astrophysics Data System (ADS)
Yuksel, Ibrahim; Ates, Salih
2018-02-01
The purpose of this study is to determine relationship between scientific reasoning and mechanics problem solving skills of students in science education program. Scientific Reasoning Skills Test (SRST) and Basic Mechanics Knowledge Test (BMKT) were applied to 90 second, third and fourth grade students who took Scientific Reasoning Skills course at science teaching program of Gazi Faculty of Education for three successive fall semesters of 2014, 2015 and 2016 academic years. It was found a statistically significant positive (p = 0.038 <0.05) but a low correlation (r = 0.219) between SRST and BMKT. There were no significant relationship among Conservation Laws, Proportional Thinking, Combinational Thinking, Correlational Thinking, Probabilistic Thinking subskills of reasoning and BMKT. There were significant and positive correlation among Hypothetical Thinking and Identifying and Controlling Variables subskills of reasoning and BMKT. The findings of the study were compared with other studies in the field and discussed.
NASA Astrophysics Data System (ADS)
Walker, C. G.; Walker, C. C.
2013-12-01
Children's literature has often featured an understanding of our world through imaginative means: Peter Pan and Alice in Wonderland both display this quality. As Wonderland was a manifestation of Alice's own imagination, her journey to understand Wonderland was actually a quest to understand the phenomena that comprised her 'real' world. It was author Lewis Carroll's way of showing that human beings must use multiple intelligences to understand the complicated mystery that is the world and all things in it. The specific way in which we each interpret the facts presented determine if we become an 'artist' or 'scientist.' But does the label matter? Albert Einstein himself once said, 'Imagination is more important than knowledge. Knowledge is limited. Imagination encircles the world.' Inherently, discovery---the finding of something new---demands that one must imagine something that is heretofore unknown. Researchers in both science and the arts use the same basic principles to examine different fields of study. These principles will be discussed via examples such as comparative analysis of scientific vs. historical research methods; how scientific language compares to arts language and why they often mean the same thing; and how study of a subject matter could often be improved through a mutual understanding of both science and art. Because of the apparent difference in subject matter, a schism between the two sides of human understanding has grown to the point where they are thought to be two different and unrelated schools of thought. Here we present several examples of the integration of science and art, and show how 'different' actually means the 'same,' in terms of scientific and artistic processes. We argue that 'science' and 'art' are not mutually exclusive; they are often the same practice and can be taught as such. Simple changes in language prove that methods of inquiry in science are the same as those in the arts. In order to support the mission of STEAM, this interplay must be presented to the public in new and innovative ways via formal and informal education (which should spread from art, history, to science museums). Examples will include the similarity of the study of craquelure in oil paintings and geophysical fracture mechanics and civil engineering fatigue failure; historic depictions of natural phenomena prior to developed notions of observational sciences; fact-gathering to recreate arts history versus the scientific method; and the study of the simple changes in language that give connotation to either arts or science fields - yet mean the same thing.
Providing a virtual tour of a glacial watershed
NASA Astrophysics Data System (ADS)
Berner, L.; Habermann, M.; Hood, E.; Fatland, R.; Heavner, M.; Knuth, E.
2007-12-01
SEAMONSTER, a NASA funded sensor web project, is the SouthEast Alaska MOnitoring Network for Science, Telecommunications, Education, and Research. Seamonster is leveraging existing open-source software and is an implementation of existing sensor web technologies intended to act as a sensor web testbed, an educational tool, a scientific resource, and a public resource. The primary focus area of initial SEAMONSTER deployment is the Lemon Creek watershed, which includes the Lemon Creek Glacier studied as part of the 1957-58 IPY. This presentation describes our year one efforts to maximize education and public outreach activities of SEAMONSTER. During the first summer, 37 sensors were deployed throughout two partially glaciated watersheds and facilitated data acquisition in temperate rain forest, alpine, lacustrine, and glacial environments. Understanding these environments are important for public understanding of climate change. These environments are geographically isolated, limiting public access to, and understanding of, such locales. In an effort to inform the general public and primary educators about the basic processes occurring in these unique natural systems, we are developing an interactive website. This web portal will supplement and enhance environmental science primary education by providing educators and students with interactive access to basic information from the glaciological, hydrological, and meteorological systems we are studying. In addition, we are developing an interactive virtual tour of the Lemon Glacier and its watershed. This effort will include Google Earth as a means of real-time data visualization and will take advantage of time-lapse movies, photographs, maps, and satellite imagery to promote an understanding of these unique natural systems and the role of sensor webs in education.
NASA Astrophysics Data System (ADS)
Rachmatullah, Arif; Diana, Sariwulan; Rustaman, Nuryani Y.
2016-02-01
Along with the development of science and technology, the basic ability to read, write and count is not enough just to be able to survive in the modern era that surrounded by the products of science and technology. Scientific literacy is an ability that might be added as basic ability for human in the modern era. Recently, Fives et al. developed a new scientific literacy assessment for students, named as SLA (Scientific Literacy Assessment). A pilot study on the achievements of scientific literacy of middle school students in Sumedang using SLA was conducted to investigate the profile scientific literacy achievement of 223 middle school students in Sumedang, and compare the outcomes between genders (159 girls and 64 boys) and school accreditation (A and B) using a quantitative method with descriptive research-school survey. Based on the results, the average achievement of scientific literacy Sumedang middle school students is 45.21 and classified as the low category. The five components of scientific literacy, which is only one component in the medium category, namely science motivation and beliefs, and the four other components are in the low and very low category. Boys have higher scientific literacy, but the differences not statistically significant. Student's scientific literacy in an accredited school is higher than B, and the differences are statistically significant. Recommendation for further are: involve more research subjects, add more number of questions for each indicator, and conduct an independent research for each component.
Conceptual and methodological issues in research on mindfulness and meditation.
Davidson, Richard J; Kaszniak, Alfred W
2015-10-01
Both basic science and clinical research on mindfulness, meditation, and related constructs have dramatically increased in recent years. However, interpretation of these research results has been challenging. The present article addresses unique conceptual and methodological problems posed by research in this area. Included among the key topics is the role of first-person experience and how it can be best studied, the challenges posed by intervention research designs in which true double-blinding is not possible, the nature of control and comparison conditions for research that includes mindfulness or other meditation-based interventions, issues in the adequate description of mindfulness and related trainings and interventions, the question of how mindfulness can be measured, questions regarding what can and cannot be inferred from self-report measures, and considerations regarding the structure of study design and data analyses. Most of these topics are germane to both basic and clinical research studies and have important bearing on the future scientific understanding of mindfulness and meditation. (c) 2015 APA, all rights reserved).
Virtual immunology: software for teaching basic immunology.
Berçot, Filipe Faria; Fidalgo-Neto, Antônio Augusto; Lopes, Renato Matos; Faggioni, Thais; Alves, Luiz Anastácio
2013-01-01
As immunology continues to evolve, many educational methods have found difficulty in conveying the degree of complexity inherent in its basic principles. Today, the teaching-learning process in such areas has been improved with tools such as educational software. This article introduces "Virtual Immunology," a software program available free of charge in Portuguese and English, which can be used by teachers and students in physiology, immunology, and cellular biology classes. We discuss the development of the initial two modules: "Organs and Lymphoid Tissues" and "Inflammation" and the use of interactive activities to provide microscopic and macroscopic understanding in immunology. Students, both graduate and undergraduate, were questioned along with university level professors about the quality of the software and intuitiveness of use, facility of navigation, and aesthetic organization using a Likert scale. An overwhelmingly satisfactory result was obtained with both students and immunology teachers. Programs such as "Virtual Immunology" are offering more interactive, multimedia approaches to complex scientific principles that increase student motivation, interest, and comprehension. © 2013 by The International Union of Biochemistry and Molecular Biology.
Hampel, Harald; Vergallo, Andrea; Giorgi, Filippo Sean; Kim, Seung Hyun; Depypere, Herman; Graziani, Manuela; Saidi, Amira; Nisticò, Robert; Lista, Simone
2018-06-12
Neurodegenerative diseases (ND) are among the leading causes of disability and mortality. Considerable sex differences exist in the occurrence of the various manifestations leading to cognitive decline. Alzheimer's disease (AD) exhibits substantial sexual dimorphisms and disproportionately affects women. Women have a higher life expectancy compared to men and, consequently, have more lifespan to develop AD. The emerging precision medicine and pharmacology concepts - taking into account the individual genetic and biological variability relevant for disease risk, prevention, detection, diagnosis, and treatment - are expected to substantially enhance our knowledge and management of AD. Stratifying the affected individuals by sex and gender is an important basic step towards personalization of scientific research, drug development, and care. We hypothesize that sex and gender differences, extending from genetic to psychosocial domains, are highly relevant for the understanding of AD pathophysiology, and for the conceptualization of basic/translational research and for clinical therapy trial design. Copyright © 2018 Elsevier Inc. All rights reserved.
Conceptual and Methodological Issues in Research on Mindfulness and Meditation
Davidson, Richard J.; Kaszniak, Alfred W.
2015-01-01
Both basic science and clinical research on mindfulness, meditation, and related constructs has dramatically increased in recent years. However, interpretation of these research results has been challenging. The present article addresses unique conceptual and methodological problems posed by research in this area. Included among the key topics is the role of first person experience and how it can be best studied; the challenges posed by intervention research designs in which true double-blinding is not possible; the nature of control and comparison conditions for research that includes mindfulness or other meditation-based interventions; issues in the adequate description of mindfulness and related trainings and interventions; the question of how mindfulness can be measured; questions regarding what can and cannot be inferred from self-report measures; and considerations regarding the structure of study design and data analyses. Most of these topics are germane to both basic and clinical research studies and have important bearing on the future scientific understanding of mindfulness and meditation. PMID:26436310
Biological effects of exposure to magnetic resonance imaging: an overview
Formica, Domenico; Silvestri, Sergio
2004-01-01
The literature on biological effects of magnetic and electromagnetic fields commonly utilized in magnetic resonance imaging systems is surveyed here. After an introduction on the basic principles of magnetic resonance imaging and the electric and magnetic properties of biological tissues, the basic phenomena to understand the bio-effects are described in classical terms. Values of field strengths and frequencies commonly utilized in these diagnostic systems are reported in order to allow the integration of the specific literature on the bio-effects produced by magnetic resonance systems with the vast literature concerning the bio-effects produced by electromagnetic fields. This work gives an overview of the findings about the safety concerns of exposure to static magnetic fields, radio-frequency fields, and time varying magnetic field gradients, focusing primarily on the physics of the interactions between these electromagnetic fields and biological matter. The scientific literature is summarized, integrated, and critically analyzed with the help of authoritative reviews by recognized experts, international safety guidelines are also cited. PMID:15104797
Jena, G B; Chavan, Sapana
2017-10-01
The principles of Good Laboratory Practices (GLPs) are mainly intended for the laboratories performing studies for regulatory compliances. However, today GLP can be applied to broad disciplines of science to cater to the needs of the experimental objectives, generation of quality data and assay reproducibility. Considering its significance, it can now be applied in academics; industries as well as government set ups throughout the world. GLP is the best way to promote the reliability, reproducibility of the test data and hence facilitates the international acceptability. Now it is high time to translate and implement the concept of GLP beyond regulatory studies. Thus, it can pave the way for better understanding of scientific problems and help to maintain a good human and environmental health. Through this review, we have made an attempt to explore the uses of GLP principles in different fields of science and its acceptability as well as looking for its future perspectives. Copyright © 2017 Elsevier Inc. All rights reserved.
Dedeurwaerdere, Tom; Melindi-Ghidi, Paolo; Broggiato, Arianna
2016-01-01
This paper aims to get a better understanding of the motivational and transaction cost features of building global scientific research commons, with a view to contributing to the debate on the design of appropriate policy measures under the recently adopted Nagoya Protocol. For this purpose, the paper analyses the results of a world-wide survey of managers and users of microbial culture collections, which focused on the role of social and internalized motivations, organizational networks and external incentives in promoting the public availability of upstream research assets. Overall, the study confirms the hypotheses of the social production model of information and shareable goods, but it also shows the need to complete this model. For the sharing of materials, the underlying collaborative economy in excess capacity plays a key role in addition to the social production, while for data, competitive pressures amongst scientists tend to play a bigger role.
Science Communications: Providing a Return on Investment to the Taxpayer
NASA Technical Reports Server (NTRS)
Horack, John M.; Borchelt, Rick E.
1999-01-01
Nowhere is the disconnect between needing to better communicate science and technology and the skills and techniques used for that communication more evident than in the Federal research enterprise. As Federal research budgets stagnate or decline, and despite public clamor for more and better scientific information, communication of basic research results continues to rank among the lowest agency priorities, mortgaged against traditional public-relations activities to polish an agency's image or control negative information flow to the press and public. Alone among the Federal agencies, NASA articulates in its strategic plan the need "...to advance and communicate scientific knowledge and understanding..." These words emphasize the reality that if new knowledge is generated but not communicated, only half the job has been done. This is a reflection of the transition of NASA from primarily an engineering organization used to help win the Cold War to a producer of new knowledge and technology in the National interest for the 21st century.
Forensic facial comparison in South Africa: State of the science.
Steyn, M; Pretorius, M; Briers, N; Bacci, N; Johnson, A; Houlton, T M R
2018-06-01
Forensic facial comparison (FFC) is a scientific technique used to link suspects to a crime scene based on the analysis of photos or video recordings from that scene. While basic guidelines on practice and training are provided by the Facial Identification Scientific Working Group, details of how these are applied across the world are scarce. FFC is frequently used in South Africa, with more than 700 comparisons conducted in the last two years alone. In this paper the standards of practice are outlined, with new proposed levels of agreement/conclusions. We outline three levels of training that were established, with training in facial anatomy, terminology, principles of image comparison, image science, facial recognition and computer skills being aimed at developing general competency. Training in generating court charts and understanding court case proceedings are being specifically developed for the South African context. Various shortcomings still exist, specifically with regard to knowledge of the reliability of the technique. These need to be addressed in future research. Copyright © 2018 Elsevier B.V. All rights reserved.
Climate Change Conceptual Change: Scientific Information Can Transform Attitudes.
Ranney, Michael Andrew; Clark, Dav
2016-01-01
Of this article's seven experiments, the first five demonstrate that virtually no Americans know the basic global warming mechanism. Fortunately, Experiments 2-5 found that 2-45 min of physical-chemical climate instruction durably increased such understandings. This mechanistic learning, or merely receiving seven highly germane statistical facts (Experiment 6), also increased climate-change acceptance-across the liberal-conservative spectrum. However, Experiment 7's misleading statistics decreased such acceptance (and dramatically, knowledge-confidence). These readily available attitudinal and conceptual changes through scientific information disconfirm what we term "stasis theory"--which some researchers and many laypeople varyingly maintain. Stasis theory subsumes the claim that informing people (particularly Americans) about climate science may be largely futile or even counterproductive--a view that appears historically naïve, suffers from range restrictions (e.g., near-zero mechanistic knowledge), and/or misinterprets some polarization and (noncausal) correlational data. Our studies evidenced no polarizations. Finally, we introduce HowGlobalWarmingWorks.org--a website designed to directly enhance public "climate-change cognition." Copyright © 2016 Cognitive Science Society, Inc.
Animal models for HIV/AIDS research
Hatziioannou, Theodora; Evans, David T.
2015-01-01
The AIDS pandemic continues to present us with unique scientific and public health challenges. Although the development of effective antiretroviral therapy has been a major triumph, the emergence of drug resistance requires active management of treatment regimens and the continued development of new antiretroviral drugs. Moreover, despite nearly 30 years of intensive investigation, we still lack the basic scientific knowledge necessary to produce a safe and effective vaccine against HIV-1. Animal models offer obvious advantages in the study of HIV/AIDS, allowing for a more invasive investigation of the disease and for preclinical testing of drugs and vaccines. Advances in humanized mouse models, non-human primate immunogenetics and recombinant challenge viruses have greatly increased the number and sophistication of available mouse and simian models. Understanding the advantages and limitations of each of these models is essential for the design of animal studies to guide the development of vaccines and antiretroviral therapies for the prevention and treatment of HIV-1 infection. PMID:23154262
Extraterrestrial research in the Federal Republic of Germany
NASA Technical Reports Server (NTRS)
1986-01-01
This German program for basic extraterrestrial research is an essential, successful, and worldwide recognized part of the space program and has the same attributes for basic research in the Federal Republic of Germany. It covers all major scientific disciplines.
NASA Astrophysics Data System (ADS)
Voute, S.; Kleinhans, M. G.; de Regt, H.
2010-12-01
A scientific explanation for a phenomenon is based on relevant theory and initial and background conditions. Scientific understanding, on the other hand, requires intelligibility, which means that a scientist can recognise qualitative characteristic consequences of the theory without doing the actual calculations, and apply it to develop further explanations and predictions. If explanation and understanding are indeed fundamentally different, then it may be possible to convey understanding of earth-scientific phenomena to laymen without the full theoretical background. The aim of this thesis is to analyze how scientists and laymen gain scientific understanding in Earth Sciences, based on the newest insights in the philosophy of science, pedagogy, and science communication. All three disciplines have something to say about how humans learn and understand, even if at very different levels of scientists, students, children or the general public. If different disciplines with different approaches identify and quantify the same theory in the same manner, then there is likely to be something “real” behind the theory. Comparing methodology and learning styles of the different disciplines within the Earth Sciences and by critically analyze earth-scientific exhibitions in different museums may provide insight in the different approaches for earth-scientific explanation and communication. In order to gain earth-scientific understanding, a broad suite of tools is used, such as maps and images, symbols and diagrams, cross-sections and sketches, categorization and classification, modelling, laboratory experiments, (computer) simulations and analogies, remote sensing, and fieldwork. All these tools have a dual nature, containing both theoretical and embodied components. Embodied knowledge is created by doing the actual modelling, intervening in experiments and doing fieldwork. Scientific practice includes discovery and exploration, data collection and analyses, verification or falsification and conclusions that must be well grounded and argued. The intelligibility of theories is improved by the combination of these two types of understanding. This is also attested by the fact that both theoretical and embodied skills are considered essential for the training of university students at all levels. However, from surprised and confounded reactions of the public to natural disasters it appears that just showing scientific results is not enough to convey the scientific understanding to the public. By using the tools used by earth scientists to develop explanations and achieve understanding, laymen could achieve understanding as well without rigorous theoretical training. We are presently investigating in science musea whether engaging the public in scientific activities based on embodied skills leads to understanding of earth-scientific phenomena by laymen.
Scientific method, adversarial system, and technology assessment
NASA Technical Reports Server (NTRS)
Mayo, L. H.
1975-01-01
A basic framework is provided for the consideration of the purposes and techniques of scientific method and adversarial systems. Similarities and differences in these two techniques of inquiry are considered with reference to their relevance in the performance of assessments.
Ashley, David L; Backinger, Cathy L; van Bemmel, Dana M; Neveleff, Deborah J
2014-08-01
The U.S. Food and Drug Administration (FDA) promotes the development of regulatory science to ensure that a strong evidence base informs all of its regulatory activities related to the manufacture, marketing, and distribution of tobacco products as well as public education about tobacco product constituents and effects. Toward that end, the FDA's Center for Tobacco Products (CTP) provides funding for research studies with scientific aims that fall within its defined regulatory authority. However, given their traditional biomedical focus on basic and applied research, some researchers may not understand the principles of regulatory science or the types of studies CTP funds. The purpose of this paper is (1) to clarify the definition of regulatory science as a distinct scientific discipline, (2) to explore the role of tobacco regulatory science in order to help researchers understand the parameters and types of research that can be funded by CTP, and (3) to describe the types of research efforts that will inform the FDA's public health framework for tobacco product regulation. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Spriestersbach, Albert; Röhrig, Bernd; du Prel, Jean-Baptist; Gerhold-Ay, Aslihan; Blettner, Maria
2009-09-01
Descriptive statistics are an essential part of biometric analysis and a prerequisite for the understanding of further statistical evaluations, including the drawing of inferences. When data are well presented, it is usually obvious whether the author has collected and evaluated them correctly and in keeping with accepted practice in the field. Statistical variables in medicine may be of either the metric (continuous, quantitative) or categorical (nominal, ordinal) type. Easily understandable examples are given. Basic techniques for the statistical description of collected data are presented and illustrated with examples. The goal of a scientific study must always be clearly defined. The definition of the target value or clinical endpoint determines the level of measurement of the variables in question. Nearly all variables, whatever their level of measurement, can be usefully presented graphically and numerically. The level of measurement determines what types of diagrams and statistical values are appropriate. There are also different ways of presenting combinations of two independent variables graphically and numerically. The description of collected data is indispensable. If the data are of good quality, valid and important conclusions can already be drawn when they are properly described. Furthermore, data description provides a basis for inferential statistics.
Nutrition and Health in Amphibian Husbandry
Ferrie, Gina M.; Alford, Vance C.; Atkinson, Jim; Baitchman, Eric; Barber, Diane; Blaner, William S.; Crawshaw, Graham; Daneault, Andy; Dierenfeld, Ellen; Finke, Mark; Fleming, Greg; Gagliardo, Ron; Hoffman, Eric A.; Karasov, William; Klasing, Kirk; Koutsos, Elizabeth; Lankton, Julia; Lavin, Shana R.; Lentini, Andrew; Livingston, Shannon; Lock, Brad; Mason, Tom; McComb, Alejandra; Morris, Cheryl; Pessier, Allan P.; Olea-Popelka, Francisco; Probst, Tom; Rodriguez, Carlos; Schad, Kristine; Semmen, Kent; Sincage, Jamie; Stamper, M. Andrew; Steinmetz, Jason; Sullivan, Kathleen; Terrell, Scott; Wertan, Nina; Wheaton, Catharine J.; Wilson, Brad; Valdes, Eduardo V.
2015-01-01
Amphibian biology is intricate, and there are many inter-related factors that need to be understood before establishing successful Conservation Breeding Programs (CBPs). Nutritional needs of amphibians are highly integrated with disease and their husbandry needs, and the diversity of developmental stages, natural habitats, and feeding strategies result in many different recommendations for proper care and feeding. This review identifies several areas where there is substantial room for improvement in maintaining healthy ex situ amphibian populations specifically in the areas of obtaining and utilizing natural history data for both amphibians and their dietary items, achieving more appropriate environmental parameters, understanding stress and hormone production, and promoting better physical and population health. Using a scientific or research framework to answer questions about disease, nutrition, husbandry, genetics, and endocrinology of ex situ amphibians will improve specialists’ understanding of the needs of these species. In general, there is a lack of baseline data and comparative information for most basic aspects of amphibian biology as well as standardized laboratory approaches. Instituting a formalized research approach in multiple scientific disciplines will be beneficial not only to the management of current ex situ populations, but also in moving forward with future conservation and reintroduction projects. This overview of gaps in knowledge concerning ex situ amphibian care should serve as a foundation for much needed future research in these areas. PMID:25296396
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovalev, E.E.; Molchanov, E.D.; Pekhterev, Yu.G.
1975-01-01
The complex of scientific apparatus installed on board the artifical earth satellite Kosmos 605 for the creation of electric fields near the satellite with intensities up to 1.4 x 10/sup 7/ V/m and for direct measurements of conduction currents of a high voltage vacuum interval for the purpose of determining the basic characteristics of electrostatic shielding from cosmic radiations is described.
2016-11-01
The modernization strategy of traditional Chinese medicine (TCM) has been implemented for 20 years. A great deal of basic and innovative researches have been done on basic theory of TCM, effective substance, efficacy evaluation, action mechanism, intracorporal metabolic process, safety evaluation, clinical evaluation and quality standards. As a result, a series of remarkable achievements in scientific research have been generated and promoted the interpretation of the connotation of TCM, supported the industry development of TCM and accelerated internationalization of TCM. Copyright© by the Chinese Pharmaceutical Association.
Enabling large-scale viscoelastic calculations via neural network acceleration
NASA Astrophysics Data System (ADS)
Robinson DeVries, P.; Thompson, T. B.; Meade, B. J.
2017-12-01
One of the most significant challenges involved in efforts to understand the effects of repeated earthquake cycle activity are the computational costs of large-scale viscoelastic earthquake cycle models. Deep artificial neural networks (ANNs) can be used to discover new, compact, and accurate computational representations of viscoelastic physics. Once found, these efficient ANN representations may replace computationally intensive viscoelastic codes and accelerate large-scale viscoelastic calculations by more than 50,000%. This magnitude of acceleration enables the modeling of geometrically complex faults over thousands of earthquake cycles across wider ranges of model parameters and at larger spatial and temporal scales than have been previously possible. Perhaps most interestingly from a scientific perspective, ANN representations of viscoelastic physics may lead to basic advances in the understanding of the underlying model phenomenology. We demonstrate the potential of artificial neural networks to illuminate fundamental physical insights with specific examples.
The dental literature on occlusion and myogenous orofacial pain: application of critical thinking.
Solow, Roger Alan
2016-09-01
To enhance the reader's critical thinking when reading the dental literature on the relationship of occlusion and myogenous orofacial pain (MOP). Representative journal articles and systematic reviews from the dental literature confirming and denying a relationship of occlusion to MOP were analyzed and reviewed. Studies using computerized occlusal analysis (COA) consistently find a relationship of the occlusion to MOP. Studies that do not confirm this relationship have problems with invalid primary source conclusions, unstated assumptions, bias, and errors in logic that disqualify their conclusion. This review explains four categories of problems with the dental literature that denies occlusion has a relationship with MOP. When the reader understands these examples of flaws in this literature, they can apply this critical thinking to future studies. Correct interpretation of the literature on occlusion and MOP requires a foundation of basic and clinical scientific knowledge as well as an understanding of the details of the primary source articles.
Sommer, Andreas
2016-04-02
The popular view of the inherent conflict between science and the occult has been rendered obsolete by recent advances in the history of science. Yet, these historiographical revisions have gone unnoticed in the public understanding of science and public education at large. Particularly, reconstructions of the formation of modern psychology and its links to psychical research can show that the standard view of the latter as motivated by metaphysical bias fails to stand up to scrutiny. After highlighting certain basic methodological maxims shared by psychotherapists and historians, I will try to counterbalance simplistic claims of a 'need to believe' as a precondition of scientific open-mindedness regarding the occurrence of parapsychological phenomena by discussing instances revealing a presumably widespread 'will to disbelieve' in the occult. I shall argue that generalized psychological explanations are only helpful in our understanding of history if we apply them in a symmetrical manner.
Putting the value into biosimilar decision making: the judgment value criteria.
Mendes de Abreu, Mirhelen; Strand, Vibeke; Levy, Roger Abramino; Araujo, Denizar Vianna
2014-06-01
Uncertainties remain the key issue surrounding biosimilars, although decisions regarding their use must be made. The challenges for policymakers, doctors, patients and others seeking to navigate in the uncharted waters of biosimilars must be clarified. At the most basic level, scientific understanding of the issue remains limited and when making decisions, policymakers must consider all those affected by health policy decisions, particularly the ultimate recipients of these medicines: the patients. The biosimilar-value chain relies on measurement of comparabilities. The goal is to demonstrate how, from a molecular perspective, closely similar they are or are not and how potential small differences may be relevant to clinical outcomes. To critically understand these points, this conceptual paper will present a knowledge-value chain and discuss each dimension assigning value in the decision making process re-utilization of biosimilars. Copyright © 2014 Elsevier B.V. All rights reserved.
Proportional Reasoning: An Essential Component of Scientific Understanding
ERIC Educational Resources Information Center
Hilton, Annette; Hilton, Geoff
2016-01-01
In many scientific contexts, students need to be able to use mathematical knowledge in order to engage in scientific reasoning and problem-solving, and their understanding of scientific concepts relies heavily on their ability to understand and use mathematics in often new or unfamiliar contexts. Not only do science students need high levels of…
R & D on carbon nanostructures in Russia: scientometric analysis, 1990-2011
NASA Astrophysics Data System (ADS)
Terekhov, Alexander I.
2015-02-01
The analysis, based on scientific publications and patents, was conducted to form an understanding of the overall scientific and technology landscape in the field of carbon nanostructures and determine Russia's place on it. The scientific publications came from the Science Citation Index Expanded database (DB SCIE); the patent information was extracted from databases of the United States Patent and Trade Office (USPTO), the World Intellectual Property Organization (WIPO), and Russian Federal Service for Intellectual Property (Rospatent). We used also data about research projects, obtained via information systems of the U.S. National Science Foundation (NSF) and the Russian Foundation for Basic Research (RFBR). Bibliometric methods are used to rank countries, institutions, and scientists, contributing to the carbon nanostructures research. We analyze the current state and trends of the research in Russia as compared to other countries, and the contribution and impact of its institutions, especially research of the "highest quality." Considerable focus is on research collaboration and its relationship with citation impact. Patent datasets are used to determine the composition of participants of innovative processes and international patent activity of Russian inventors in the field, and to identify the most active representatives of small and medium business and some technological developments ripe for commercialization. The article contains a critical analysis of the findings, including a policy discussion of the country's scientific authorities.
Indicators that influence prospective mathematics teachers representational and reasoning abilities
NASA Astrophysics Data System (ADS)
Darta; Saputra, J.
2018-01-01
Representational and mathematical reasoning ability are very important ability as basic in mathematics learning process. The 2013 curriculum suggests that the use of a scientific approach emphasizes higher order thinking skills. Therefore, a scientific approach is required in mathematics learning to improve ability of representation and mathematical reasoning. The objectives of this research are: (1) to analyze representational and reasoning abilities, (2) to analyze indicators affecting the ability of representation and mathematical reasoning, (3) to analyze scientific approaches that can improve the ability of representation and mathematical reasoning. The subject of this research is the students of mathematics prospective teachers in the first semester at Private Higher Education of Bandung City. The research method of this research was descriptive analysis. The research data were collected using reasoning and representation tests on sixty-one students. Data processing was done by descriptive analysis specified based on the indicators of representation ability and mathematical reasoning that influenced it. The results of this first-year study showed that students still had many weaknesses in reasoning and mathematical representation that were influenced by the ability to understand the indicators of both capabilities. After observing the results of the first-year research, then in the second and third year, the development of teaching materials with a scientific approach in accordance with the needs of prospective students was planned.
International cooperation in basic space science, Western Asian countries and the world
NASA Astrophysics Data System (ADS)
de Morais Mendonca Teles, Antonio
The world will never better develop and attain a global peace state, if it does not exist a world-wide cooperation, union of interests among all countries on planet Earth, respecting and understanding each other culture differences. So, if the countries interested in space science want to create or better develop this field, they need to firstly construct peace states and social cooperation, while scientific and technological cooperation will develop -among them. Here in this paper, under the principles in the United Nations (UN)' Agenda 21 (UN UNCED, 1992), I propose four points that can lead to a practical and solid international cooperation in basic aerospace science and technology, based on ground studies, with sustainable space programs in countries with social necessities, and to the construction of an avenue of peace states in those areas and in the world, 1) The creation of LINKS among the "developing" countries, among the "developed" ones and between them -with scientists, engineers, educators and administrative personnel. This can catalyze a self-sustainable scientific and technological production in the "developing" countries. Financial matters could be done through the World Bank in coopera-tion with UNESCO. 2) The administration of this difficult enterprise of international coopera-tion. With the increasing complexity of relationships among the aerospace-interested countries, it will be necessary the creation of a center capable to serve as an INTERNATIONAL CO-ORDINATOR CENTER FOR AEROSPACE ACTIVITIES. 3) CULTURE: in Western Asian countries there is a cultural habit that when somebody gives something valuable to a person, this person should give something back. Thus, the Western Asian countries receiving infor-mation on basic aerospace science and technology from the "developed" ones, those countries would probably feel they should give something in return. Western Asian countries could trans-mit their costumes, thinking ways, habits, persons' worries, thoughts and life knowledge, and music -culture -among themselves and to the "developed" countries. With this transmission of culture, principally among children, a better understanding among the countries could be created and the relationships among them could be very much easier for a sustainable inter-national cooperation in basic aerospace science and technology, and for a sustainable better development and peace states for all Peoples and Nations on Earth. A cultural aspect which can highly increase children's interest in basic space science and technologies is by preparing the `terrain' of their minds, planting seeds of peace on them. It is known that if children live in countries with peace states their learning capacity is much better. So, I also propose (a neces-sity) to reeducate children -by teaching them about peace, showing them about Nations which have peace societies, redirecting children's mind for them to acquire knowledge of peace. So, they will grow into adults with more possibilities of developing science and technology (space research included) for peaceful purposes. We can extend our hands and actually help persons and Peoples with real necessities. By doing this way and keeping it constant we all can greatly grow together socially, and scientific-technologically, and real peace states will be achieved while sustainable space program will develop better -these two matters go 'hands-in-hands'. 4) The PARTICIPATION of the Western Asian countries in already programmed space missions, the participation in the astrobiology research, and in the transference of aerospace-related sci-entific and technical information to them. The better social development of the world (with sustainable space programs) with more union among the Peoples and Nations on Earth, within a protected environment, it is a goal we (a living species Homo sapiens, among others species, on this extremely rare unique special planet Earth) all need to achieve together.
CLIMLAB: a Python-based software toolkit for interactive, process-oriented climate modeling
NASA Astrophysics Data System (ADS)
Rose, B. E. J.
2015-12-01
Global climate is a complex emergent property of the rich interactions between simpler components of the climate system. We build scientific understanding of this system by breaking it down into component process models (e.g. radiation, large-scale dynamics, boundary layer turbulence), understanding each components, and putting them back together. Hands-on experience and freedom to tinker with climate models (whether simple or complex) is invaluable for building physical understanding. CLIMLAB is an open-ended software engine for interactive, process-oriented climate modeling. With CLIMLAB you can interactively mix and match model components, or combine simpler process models together into a more comprehensive model. It was created primarily to support classroom activities, using hands-on modeling to teach fundamentals of climate science at both undergraduate and graduate levels. CLIMLAB is written in Python and ties in with the rich ecosystem of open-source scientific Python tools for numerics and graphics. The IPython notebook format provides an elegant medium for distributing interactive example code. I will give an overview of the current capabilities of CLIMLAB, the curriculum we have developed thus far, and plans for the future. Using CLIMLAB requires some basic Python coding skills. We consider this an educational asset, as we are targeting upper-level undergraduates and Python is an increasingly important language in STEM fields. However CLIMLAB is well suited to be deployed as a computational back-end for a graphical gaming environment based on earth-system modeling.
Baron, Jill S.
2001-01-01
Long-term ecosystem research and monitoring was begun in the Loch Vale watershed of Rocky Mountain National Park in 1983, after extensive survey work to identify the best location. Then, as now, our scientific objectives were to understand natural biogeochemical cycles and variability, so that we could differentiate ecosystem changes from human-caused disturbances, such as atmospheric deposition of pollutants and climate change. We have learned many lessons, often through our mistakes, that are worth passing on. Clear scientific objectives, even for long-term monitoring, are essential. Standardized methods, including rigorous quality assurance procedures should be adhered to from the beginning of the program. All data, even those collected routinely for background records, should be scrutinized and summarized at least once a year. Freely share basic information such as weather, hydrologic, chemical, and descriptive records with other researchers who can build upon your efforts. Use many tools when asking complex ecological questions, in order to minimize bias toward specific results. Publish frequently; long-term studies do not imply there are no interim conclusions or interesting findings. Interpret findings frequently to policy makers and citizens; increased understanding of the environment and human-caused changes may improve natural resource management, and build support for ecological research. And finally, be persistent. Long-term ecological research can be frustrating and difficult to maintain, yet is often the best way to observe and understand ecological change on a meaningful time scale.
Disaggregating asthma: Big investigation versus big data.
Belgrave, Danielle; Henderson, John; Simpson, Angela; Buchan, Iain; Bishop, Christopher; Custovic, Adnan
2017-02-01
We are facing a major challenge in bridging the gap between identifying subtypes of asthma to understand causal mechanisms and translating this knowledge into personalized prevention and management strategies. In recent years, "big data" has been sold as a panacea for generating hypotheses and driving new frontiers of health care; the idea that the data must and will speak for themselves is fast becoming a new dogma. One of the dangers of ready accessibility of health care data and computational tools for data analysis is that the process of data mining can become uncoupled from the scientific process of clinical interpretation, understanding the provenance of the data, and external validation. Although advances in computational methods can be valuable for using unexpected structure in data to generate hypotheses, there remains a need for testing hypotheses and interpreting results with scientific rigor. We argue for combining data- and hypothesis-driven methods in a careful synergy, and the importance of carefully characterized birth and patient cohorts with genetic, phenotypic, biological, and molecular data in this process cannot be overemphasized. The main challenge on the road ahead is to harness bigger health care data in ways that produce meaningful clinical interpretation and to translate this into better diagnoses and properly personalized prevention and treatment plans. There is a pressing need for cross-disciplinary research with an integrative approach to data science, whereby basic scientists, clinicians, data analysts, and epidemiologists work together to understand the heterogeneity of asthma. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Wei, Silin; Liu, Xiufeng; Jia, Yuane
2014-01-01
Scientific models and modeling play an important role in science, and students' understanding of scientific models is essential for their understanding of scientific concepts. The measurement instrument of "Students' Understanding of Models in Science" (SUMS), developed by Treagust, Chittleborough & Mamiala ("International…
ENHANCING SCIENTIFIC COLLABORATION THROUGH QUALITY ASSURANCE
The basic features of the Quality Assurance Program have been in existence since the early 1980's, but this poster will highlight some topics that have emerged more recently, in particular the Agency's laboratory competency policy, the information quality guidelines, and scientif...
78 FR 14560 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-06
... Cell Entry. Date: March 27-28, 2013. Time: 10:00 a.m. to 5:00 p.m. Agenda: To review and evaluate grant....gov . Name of Committee: Center for Scientific Review Special Emphasis Panel; Member Conflict: Basic...
[Basic research in traumatology and its contribution to routine operation].
Hausner, T; Redl, H
2017-02-01
Basic research in traumatology supports the clinical outcome of patients in trauma care and tries to find science-based solutions for clinical problems. Furthermore, institutions for basic research in traumatology usually offer training in different skills, such as how to write a scientific paper, or practice in microsurgery or intubation. Two examples of clinically significant research topics are presented.
Marsan, Lynnsay A; D'Arcy, Christina E; Olimpo, Jeffrey T
2016-12-01
Evidence suggests that incorporating quantitative reasoning exercises into existent curricular frameworks within the science, technology, engineering, and mathematics (STEM) disciplines is essential for novices' development of conceptual understanding and process skills in these domains. Despite this being the case, such studies acknowledge that students often experience difficulty in applying mathematics in the context of scientific problems. To address this concern, the present study sought to explore the impact of active demonstrations and critical reading exercises on novices' comprehension of basic statistical concepts, including hypothesis testing, experimental design, and interpretation of research findings. Students first engaged in a highly interactive height activity that served to intuitively illustrate normal distribution, mean, standard deviation, and sample selection criteria. To enforce practical applications of standard deviation and p -value, student teams were subsequently assigned a figure from a peer-reviewed primary research article and instructed to evaluate the trustworthiness of the data. At the conclusion of this exercise, students presented their evaluations to the class for open discussion and commentary. Quantitative assessment of pre- and post-module survey data indicated a statistically significant increase both in students' scientific reasoning and process skills and in their self-reported confidence in understanding the statistical concepts presented in the module. Furthermore, data indicated that the majority of students (>85%) found the module both interesting and helpful in nature. Future studies will seek to develop additional, novel exercises within this area and to evaluate the impact of such modules across a variety of STEM and non-STEM contexts.
The attitudes of science policy, environmental, and utility leaders on US energy issues and fusion
NASA Astrophysics Data System (ADS)
Miller, J. D.
1986-11-01
One example of basic and applied research at LLNL that has produced major, highly visible scientific and engineering advances has been the research related to controlled fusion energy. Continuing experimentation at LLNL and elsewhere is likely to demonstrate that fusion is a viable, inexhaustible alternative source of energy. Having conducted major fusion energy experiments for over 30 years at LLNL, it scientists and engineers recognized the enormous challenges that lay ahead in this important endeavor. To be successful, it was clear that collaborative efforts with universities, private industry, and other national laboratories would need to be greatly expanded. Along with invention and scientific discovery would come the challenge of transferring the myriad of new technologies from the laboratories to the private sector for commercialization of the fusion energy process and the application of related technologies to yet unimagined new industries and products. Therefore, using fusion energy research as the focus, the Laboratory's Technology Transfer Initiatives Program contracted with the Public Opinion Laboratory to conduct a survey designed to promote a better understanding of effective technology transfer. As one of the recognized authorities on scientific surveys, Dr. Jon Miller of the POL worked with Laboratory scientists to understand the objectives of the survey. He then formulated the questions, designed the survey, and derived his survey sample from a qualified list developed at the POL, which has formed the basis for other survey panels. This report, prepared by Dr. Miller, describes the basis and methodology of this survey process and then presents the survey findings and some conclusions.
Marsan, Lynnsay A.; D’Arcy, Christina E.; Olimpo, Jeffrey T.
2016-01-01
Evidence suggests that incorporating quantitative reasoning exercises into existent curricular frameworks within the science, technology, engineering, and mathematics (STEM) disciplines is essential for novices’ development of conceptual understanding and process skills in these domains. Despite this being the case, such studies acknowledge that students often experience difficulty in applying mathematics in the context of scientific problems. To address this concern, the present study sought to explore the impact of active demonstrations and critical reading exercises on novices’ comprehension of basic statistical concepts, including hypothesis testing, experimental design, and interpretation of research findings. Students first engaged in a highly interactive height activity that served to intuitively illustrate normal distribution, mean, standard deviation, and sample selection criteria. To enforce practical applications of standard deviation and p-value, student teams were subsequently assigned a figure from a peer-reviewed primary research article and instructed to evaluate the trustworthiness of the data. At the conclusion of this exercise, students presented their evaluations to the class for open discussion and commentary. Quantitative assessment of pre- and post-module survey data indicated a statistically significant increase both in students’ scientific reasoning and process skills and in their self-reported confidence in understanding the statistical concepts presented in the module. Furthermore, data indicated that the majority of students (>85%) found the module both interesting and helpful in nature. Future studies will seek to develop additional, novel exercises within this area and to evaluate the impact of such modules across a variety of STEM and non-STEM contexts. PMID:28101271
ERIC Educational Resources Information Center
Hanke, Craig J.; Bauer-Dantoin, Angela C.
2006-01-01
Classroom discussion of scientific articles can be an effective means of teaching scientific principles and methodology to both undergraduate and graduate science students. The availability of classic papers from the American Physiological Society Legacy Project has made it possible to access articles dating back to the early portions of the 20th…
ERIC Educational Resources Information Center
Air Force Systems Command, Wright-Patterson AFB, OH. Foreign Technology Div.
The role and place of the machine in scientific and technical information is explored including: basic trends in the development of information retrieval systems; preparation of engineering and scientific cadres with respect to mechanization and automation of information works; the logic of descriptor retrieval systems; the 'SETKA-3' automated…
Educational Video Recording and Editing for The Hand Surgeon
Rehim, Shady A.; Chung, Kevin C.
2016-01-01
Digital video recordings are increasingly used across various medical and surgical disciplines including hand surgery for documentation of patient care, resident education, scientific presentations and publications. In recent years, the introduction of sophisticated computer hardware and software technology has simplified the process of digital video production and improved means of disseminating large digital data files. However, the creation of high quality surgical video footage requires basic understanding of key technical considerations, together with creativity and sound aesthetic judgment of the videographer. In this article we outline the practical steps involved with equipment preparation, video recording, editing and archiving as well as guidance for the choice of suitable hardware and software equipment. PMID:25911212
NASA Technical Reports Server (NTRS)
Greco, R. V.; Eaton, L. R.; Wilkinson, H. C.
1974-01-01
The work is summarized which was accomplished from January 1974 to October 1974 for the Zero-Gravity Atmospheric Cloud Physics Laboratory. The definition and development of an atmospheric cloud physics laboratory and the selection and delineation of candidate experiments that require the unique environment of zero gravity or near zero gravity are reported. The experiment program and the laboratory concept for a Spacelab payload to perform cloud microphysics research are defined. This multimission laboratory is planned to be available to the entire scientific community to utilize in furthering the basic understanding of cloud microphysical processes and phenomenon, thereby contributing to improved weather prediction and ultimately to provide beneficial weather control and modification.
Human exploration of space: why, where, what for?
Vernikos, J
2008-08-01
"Man must rise above Earth to the top of the atmosphere and beyond, for only then will he fully understand the world in which he lives"-Socrates (469-399 BC). The basic driving rationales for human space flight (HSF) are rooted in age-old and persisting dreams. Fascination with the idea of people going into the sky for adventures in other worlds goes back to ancient myths. This paper sheds light onto criticisms of HSF programs, by revisiting their scientific grounds and associated benefits, along with the different types of emerging commercial enterprise. Research from space has lead to a wealth of commercial and societal applications on Earth, building up the case for the so-called "Space Applications Market".
Basic energy sciences: Summary of accomplishments
NASA Astrophysics Data System (ADS)
1990-05-01
For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.
Basic Energy Sciences: Summary of Accomplishments
DOE R&D Accomplishments Database
1990-05-01
For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy-related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user'' facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.
Moving to a Soft Path for Water: Integrated Research and Management Needs
NASA Astrophysics Data System (ADS)
Gleick, P. H.
2011-12-01
Water on Earth in its three fundamental phases is integral to the functioning, dynamics, and variability of the global climatological and biological support systems. From a purely scientific point of view, understanding the complexity of the hydrological cycle is of paramount interest and central to our understanding of other planetary geological, atmospheric, chemical, and physical processes. But water is more than that: water is key to economic, social, and political issues as well, including some of the core challenges of our time such central to issues of poverty, health, environmental sustainability, conflict, and economic prosperity. The more society seeks to solve these challenges, the more obvious it becomes that we must improve more than just our understanding of the fundamental science of the hydrological cycle and its links with related global processes; we must also improve our understanding of the complex social, economic, and structural challenges facing water managers and users. We must move to a different paradigm where water is managed in a far more integrated way - what I call the "soft path for water." Central to our basic science needs are (1) an expansion of the frequency and nature of the data we collect, (2) the development of systems for managing, sharing, and analyzing those data, and (3) improvements in our ability to model and forecast the hydrological cycle together with other climatological, geophysical, and biochemical systems. These improvements would lead to a far better understanding of the local, regional, and global details of the water balance on timescales from minutes to millennia. These needs are increasingly well understood in the research community and extensive efforts in these areas are underway under the auspices of national research centers, universities, and international scientific collaborations. But it is also becoming increasingly apparent that many of the current water challenges facing society are not going to be resolved solely through improvements in scientific understanding. Many water challenges lie at the intersection between pure science and applied science, or between the sciences and economics and policy. Any effort to summarize future needs must therefore also acknowledge the urgent need to improve our understanding of how humans are increasingly influencing and changing the hydrologic cycle and the ultimate consequences of those changes for societal well-being. Such efforts would be greatly enhanced by interdisciplinary research and policy efforts involving the scientific community and a broader range of engineers, economists, utility managers, irrigators, and local communities. For example, as one measure of the recognition of these challenges, the Hydrology Section of the American Geophysical Union has just constituted a new Technical Committee on Water and Society to broaden the issues addressed by AGU members and to develop alternative paths - including "soft paths" to addressing a wide range of water-related challenges.
Is the use of sentient animals in basic research justifiable?
2010-01-01
Animals can be used in many ways in science and scientific research. Given that society values sentient animals and that basic research is not goal oriented, the question is raised: "Is the use of sentient animals in basic research justifiable?" We explore this in the context of funding issues, outcomes from basic research, and the position of society as a whole on using sentient animals in research that is not goal oriented. We conclude that the use of sentient animals in basic research cannot be justified in light of society's priorities. PMID:20825676
Is the use of sentient animals in basic research justifiable?
Greek, Ray; Greek, Jean
2010-09-08
Animals can be used in many ways in science and scientific research. Given that society values sentient animals and that basic research is not goal oriented, the question is raised: "Is the use of sentient animals in basic research justifiable?" We explore this in the context of funding issues, outcomes from basic research, and the position of society as a whole on using sentient animals in research that is not goal oriented. We conclude that the use of sentient animals in basic research cannot be justified in light of society's priorities.
75 FR 28623 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-21
... 20892, (301) 435- 0682, [email protected] . Name of Committee: Oncology 1--Basic Translational... . Name of Committee: Oncology 2--Translational Clinical Integrated Review Group, Clinical Oncology [email protected] . Name of Committee: Oncology 1-Basic Translational Integrated Review Group, Cancer...
In defense of basic science funding: today's scientific discovery is tomorrow's medical advance.
Tessier-Lavigne, Marc
2013-06-01
In this address, I will discuss the importance of basic science in tackling our health problems. I will also describe how the funding cuts are damaging our economic competitiveness and turning our young people away from science.
48 CFR 35.014 - Government property and title.
Code of Federal Regulations, 2011 CFR
2011-10-01
... basic or applied scientific research, apply to contracts with nonprofit institutions of higher education and nonprofit organizations whose primary purpose is the conduct of scientific research: (1) If the... SPECIAL CATEGORIES OF CONTRACTING RESEARCH AND DEVELOPMENT CONTRACTING 35.014 Government property and...
Basic Scientific Principles of Diving
ERIC Educational Resources Information Center
MacLean, Don
1976-01-01
Described are some of the physical and physiological scientific principles related to diving. The article is written as supplementary information for a teacher and includes suggested activities, a keyed test, and a bibliography. This article complements one on Sea Lab II in the same issue. (MA)
The Sciences: An Integrated Approach, 2nd Edition (by James Trefil and Robert M. Hazen)
NASA Astrophysics Data System (ADS)
Hoffman, Reviewed By Megan M.
2000-01-01
"You're going to teach the organic chemistry section of the Natural Science class?" - one of my biology colleagues asked me last semester - "Better you than me!" "You are?" added a chemistry professor, with interest. Yet these same people ardently believe that all our students should have a basic understanding of carbon's remarkable bonding capabilities and how they relate to life on Earth. If our art or economics majors can learn about organic chemistry and genetics and astronomy, our faculty should be able to teach those same topics, regardless of their acknowledged specialties. The basis of a scientifically literate society is not expertise in specific arcane subfields of science. Scientific literacy is a general understanding of what science is, what science can and cannot do, and what scientific accomplishments have occurred over the centuries. If you subscribe to this definition of scientific literacy, James Trefil and Robert M. Hazen's The Sciences: An Integrated Approach can help you and your general science students. The self-avowed purpose of this text is to address science illiteracy in America. Trefil and Hazen propose that the best way to combat scientific illiteracy is to provide integrated science courses that focus on a broad understanding of science, rather than the specialized knowledge available to a science major. The new edition of The Sciences has been influenced by the 1996 publication of the National Research Council's National Science Education Standards. While the first edition of Trefil and Hazen's book admirably addressed the integration of the natural and physical sciences, in this second edition, the authors have increased the connections between science and real-world situations and have made a more conscious effort to emphasize the process of science and the overlapping nature of scientific disciplines. The text is based on 25 "scientific concepts", one per chapter. These concepts are clearly explained in relatively jargon-free language and are then tied explicitly to familiar situations and life experiences. For instance, a power outage at a baseball game helps set the scene for quantum mechanics and Heisenberg's uncertainty principle, while jump-starting a car illustrates the conversion of energy from potential through kinetic to chemical. Most of the fine pedagogical features of the first edition have been continued, including descriptions of relevant technologies, historical aspects of various discoveries, and clear descriptions of mathematical approaches to the topics. The second edition of The Sciences has increased the accessibility of science and scientific concepts by adding several new features to the successful features of the first edition: "The Ongoing Process of Science" addresses current scientific questions; "Stop and Think" encourages students to consider further implications of the topic at hand; and "Science News" provides excerpts from the periodical of the same name. In addition, previous features that highlighted connections to human physiology have been broadened to include all living things, thus allowing students to make connections between the familiar and the more abstract, for instance magnetic navigation in birds (Electricity and Magnetism), upright human posture (Plate Tectonics) and blood clotting (The Chemical Bond). A final addition to each chapter is "Great Ideas Across the Sciences", which ties the Great Idea on which the chapter is based to each of the natural sciences. This latter addition is one that students might easily overlook, but it has great potential for opening class discussion on how, for instance, the science of entropy relates to weather, arthritis, volcanoes, and gasoline use (Chapter 4). Trefil and Hazen offer a basis for understanding physics, chemistry, biology, earth science, and cosmology. While the text and figures provide a basic description of these topics, this book will not produce physicists, chemists, etc. Keep the general-science purpose of the text in mind when you begin to feel that the chapters on your favorite topic are leaving out details or ideas that you consider crucial to scientific literacy in your area. My first impression of the chapter on Classical and Modern Genetics was that it did not spend enough time on Mendel and his foundational contributions to biology. Consequently, I went well beyond the text material in my lecture on Mendelian genetics. To my regret, I learned that this extra, "crucial" material was more intimidating than enlightening. While there are sure to be critics who will wish that certain topics were covered in more depth or who will want topics added or deleted, my conclusion after teaching from this book is that Trefil and Hazen have provided a clear, well-considered, and extremely useful text for a general science course.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wasielewski, Michael R.; ANSER Staff
2011-05-01
'Search for the ANSER' was submitted by the Argonne-Northwestern Solar Energy Research Center (ANSER) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. ANSER, an EFRC directed by Michael Wasielewski at Argonne National Laboratory is a partnership of scientists from five institutions: Argonne National Laboratory, Northwestern University, University of Chicago, University of Illinois at Urbana-Champaign, and Yale. The Office of Basic Energy Sciences in the U.S. Department of Energy'smore » Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. At ANSER, the mission is 'to revolutionize our understanding of molecules, materials and methods necessary to create dramatically more efficient technologies for solar fuels and electricity production.' Research topics are: catalysis (water), electrocatalysis, photocatalysis, photoelectrocatalysis, solar photovoltaic, solar fuels, solar electrodes, photosynthesis, transportation fuels, bio-inspired, spin dynamics, hydrogen (fuel), ultrafast physics, interfacial characterization, matter by design, novel materials synthesis, charge transport, and self-assembly.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thackeray, Michael M.
"Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries" was submitted by the Center for Electrochemical Energy Science (CEES) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEES, an EFRC directed by Michael Thackery at Argonne National Laboratory is a partnership of scientists from four institutions: ANL (lead), Northwestern University, Purdue University, and the University of Illinois at Urbana-Champaign. The Office of Basic Energy Sciences in the U.S. Department ofmore » Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Electrochemical Energy Science (CEES) is "to create a robust fundamental understanding of the phenomena that control the reactivity of electrified oxide interfaces, films and materials relevant to lithium-ion battery chemistries". Research topics are: electrical energy storage, batteries, battery electrodes, electrolytes, adaptive materials, interfacial characterization, matter by design; novel materials synthesis, charge transport, and defect tolerant materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam, David
"The Center for Materials Science of Nuclear Fuels (CMSNF)" was submitted by the CMSNF to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMSNF, an EFRC directed by Todd Allen at the Idaho National Laboratory is a partnership of scientists from five institutions: INL (lead), University of Florida, Oak Ridge National Laboratory, Purdue University and the University of Wisconsin at Madison. The Office of Basic Energy Sciences in themore » U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Materials Science of Nuclear Fuels (CMSNF) is 'to achieve a first-principles based understanding of the effect of irradiation-induced defects and microstructures on thermal transport in oxide nuclear fuels.' Research topics are: phonons, thermal conductivity, nuclear, extreme environment, radiation effects, defects, and matter by design.« less
Neal, Tess M S
2018-02-12
This article delineates 2 separate but related subfields of psychological science and practice applicable across all major areas of the field (e.g., clinical, counseling, developmental, social, cognitive, community). Forensic and correctional psychology are related by their historical roots, involvement in the justice system, and the shared population of people they study and serve. The practical and ethical contexts of these subfields is distinct from other areas of psychology-and from one another-with important implications for ecologically valid research and ethically sound practice. Forensic psychology is a subfield of psychology in which basic and applied psychological science or scientifically oriented professional practice is applied to the law to help resolve legal, contractual, or administrative matters. Correctional psychology is a subfield of psychology in which basic and applied psychological science or scientifically oriented professional practice is applied to the justice system to inform the classification, treatment, and management of offenders to reduce risk and improve public safety. There has been and continues to be great interest in both subfields-especially the potential for forensic and correctional psychological science to help resolve practical issues and questions in legal and justice settings. This article traces the shared and separate developmental histories of these subfields, outlines their important distinctions and implications, and provides a common understanding and shared language for psychologists interested in applying their knowledge in forensic or correctional contexts. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Betsch, Cornelia; Böhm, Robert; Airhihenbuwa, Collins O; Butler, Robb; Chapman, Gretchen B; Haase, Niels; Herrmann, Benedikt; Igarashi, Tasuku; Kitayama, Shinobu; Korn, Lars; Nurm, Ülla-Karin; Rohrmann, Bernd; Rothman, Alexander J; Shavitt, Sharon; Updegraff, John A; Uskul, Ayse K
2016-10-01
This review introduces the concept of culture-sensitive health communication. The basic premise is that congruency between the recipient's cultural characteristics and the respective message will increase the communication's effectiveness. Culture-sensitive health communication is therefore defined as the deliberate and evidence-informed adaptation of health communication to the recipients' cultural background in order to increase knowledge and improve preparation for medical decision making and to enhance the persuasiveness of messages in health promotion. To achieve effective health communication in varying cultural contexts, an empirically and theoretically based understanding of culture will be indispensable. We therefore define culture, discuss which evolutionary and structural factors contribute to the development of cultural diversity, and examine how differences are conceptualized as scientific constructs in current models of cultural differences. In addition, we will explicate the implications of cultural differences for psychological theorizing, because common constructs of health behavior theories and decision making, such as attitudes or risk perception, are subject to cultural variation. In terms of communication, we will review both communication strategies and channels that are used to disseminate health messages, and we will discuss the implications of cultural differences for their effectiveness. Finally, we propose an agenda both for science and for practice to advance and apply the evidence base for culture-sensitive health communication. This calls for more interdisciplinary research between science and practice but also between scientific disciplines and between basic and applied research. © The Author(s) 2015.
Thackeray, Michael (Director, Center for Electrical Energy Storage); CEES Staff
2017-12-09
'Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries' was submitted by the Center for Electrical Energy Storage (CEES) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEES, an EFRC directed by Michael Thackery at Argonne National Laboratory is a partnership of scientists from three institutions: ANL (lead), Northwestern University, and the University of Illinois at Urbana-Champaign. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Electrical Energy Storage is 'to acquire a fundamental understanding of interfacial phenomena controlling electrochemical processes that will enable dramatic improvements in the properties and performance of energy storage devices, notable Li ion batteries.' Research topics are: electrical energy storage, batteries, battery electrodes, electrolytes, adaptive materials, interfacial characterization, matter by design; novel materials synthesis, charge transport, and defect tolerant materials.
NASA Technical Reports Server (NTRS)
Miller, Kate (Editor)
1995-01-01
On July 5, 1945, Dr. Vannevar Bush delivered a report to President Truman known as 'Science: The Endless Frontier'. In the report, Dr. Bush stated that 'scientific progress is one essential key to our security as a nation, to our better health, to more jobs, to a higher standard of living, and to our cultural progress'. Bush addressed job creation, the independence of basic research, the ties between research and application, and the nations's need for new talent. In 1995, there are strong similarities between the issues addressed in the Congress, Administration, and the public and those following World War 2. Federal funds and research funding are under severe pressure, including that from fiscal constraints in the federal budget due to the large and growing deficit and the escalating cost of health care. Defense conversion is addressed in the Congress and in industry, where many jobs are at stake. Conversion of the national laboratories, particularly nuclear weapons laboratories, has been a subject of a governmental commission and is the subject of draft legislation. Health care costs and the appropriate role of the federal government in funding basic and applied research has become a major topic of debate. Discussion on education in science has grown from the issue of how to produce more Ph.D.'s to how to improve the understanding of technology and science among the general public.
Wasielewski, Michael R. (Director, Argonne-Northwestern Solar Energy Research Center); ANSER Staff
2017-12-09
'Search for the ANSER' was submitted by the Argonne-Northwestern Solar Energy Research Center (ANSER) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. ANSER, an EFRC directed by Michael Wasielewski at Argonne National Laboratory is a partnership of scientists from five institutions: Argonne National Laboratory, Northwestern University, University of Chicago, University of Illinois at Urbana-Champaign, and Yale. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. At ANSER, the mission is 'to revolutionize our understanding of molecules, materials and methods necessary to create dramatically more efficient technologies for solar fuels and electricity production.' Research topics are: catalysis (water), electrocatalysis, photocatalysis, photoelectrocatalysis, solar photovoltaic, solar fuels, solar electrodes, photosynthesis, transportation fuels, bio-inspired, spin dynamics, hydrogen (fuel), ultrafast physics, interfacial characterization, matter by design, novel materials synthesis, charge transport, and self-assembly.
A structural equation modeling analysis of students' understanding in basic mathematics
NASA Astrophysics Data System (ADS)
Oktavia, Rini; Arif, Salmawaty; Ferdhiana, Ridha; Yuni, Syarifah Meurah; Ihsan, Mahyus
2017-11-01
This research, in general, aims to identify incoming students' understanding and misconceptions of several basic concepts in mathematics. The participants of this study are the 2015 incoming students of Faculty of Mathematics and Natural Science of Syiah Kuala University, Indonesia. Using an instrument that were developed based on some anecdotal and empirical evidences on students' misconceptions, a survey involving 325 participants was administered and several quantitative and qualitative analysis of the survey data were conducted. In this article, we discuss the confirmatory factor analysis using Structural Equation Modeling (SEM) on factors that determine the new students' overall understanding of basic mathematics. The results showed that students' understanding on algebra, arithmetic, and geometry were significant predictors for their overall understanding of basic mathematics. This result supported that arithmetic and algebra are not the only predictors of students' understanding of basic mathematics.
ERIC Educational Resources Information Center
Dogan, Nihal
2017-01-01
In 2016, the Program for International Student Assessment (PISA) showed that approximately 44.4% of students in Turkey obtained very low grades when their scientific knowledge was evaluated. In addition, the vast majority of students were shown to have no knowledge of basic scientific terms or concepts. Science teachers play a significant role in…
Basic Mechanisms of the Epilepsies.
ERIC Educational Resources Information Center
Jasper, Herbert H., Ed.; And Others
A collection of highly technical scientific articles by international basic and clinical neuroscientists constitutes a review of their knowledge of the brain and nervous system, particularly the aspects related to loss of brain function control and its explosive discharges which cause epileptic seizures. Anatomy, biophysics, biochemistry, and…
Hoffman, Steve G
2015-04-01
Some scholars dismiss the distinction between basic and applied science as passé, yet substantive assumptions about this boundary remain obdurate in research policy, popular rhetoric, the sociology and philosophy of science, and, indeed, at the level of bench practice. In this article, I draw on a multiple ontology framework to provide a more stable affirmation of a constructivist position in science and technology studies that cannot be reduced to a matter of competing perspectives on a single reality. The analysis is grounded in ethnographic research in the border zone of Artificial Intelligence science. I translate in-situ moments in which members of neighboring but differently situated labs engage in three distinct repertoires that render the reality of basic and applied science: partitioning, flipping, and collapsing. While the essences of scientific objects are nowhere to be found, the boundary between basic and applied is neither illusion nor mere propaganda. Instead, distinctions among scientific knowledge are made real as a matter of course.
[The research project: financing and management].
Schena, F P
2003-01-01
Basic and clinical research is accomplished by projects. The design of a project is not only based on the scientific content but also on its financing and management. This article wants to illustrate the correct modalities for project financing and project management in a scientific project.
Cape Wind: A Public Policy Debate for the Physical Sciences
ERIC Educational Resources Information Center
Mayer, Shannon
2007-01-01
Since the industrial revolution, technological innovation and the application of basic scientific research have transformed society. Increasingly, critical conversations and legislation regarding national and international public policy have sophisticated scientific underpinnings. It is crucial that we prepare scientists and engineers with an…
Sherlock Holmes as a Social Scientist.
ERIC Educational Resources Information Center
Ward, Veronica; Orbell, John
1988-01-01
Presents a way of teaching the scientific method through studying the adventures of Sherlock Holmes. Asserting that Sherlock Holmes used the scientific method to solve cases, the authors construct Holmes' method through excerpts from novels featuring his adventures. Discusses basic assumptions, paradigms, theory building, and testing. (SLM)
ERIC Educational Resources Information Center
Green, Connie
1997-01-01
Describes a classroom unit that provides preschoolers with hands-on experience, using common dirt as a way to develop scientific thinking and foster an appreciation of biology, ecology, and the natural world. Focuses on practicing the basic steps in the scientific process, including prediction, observation, documentation, conclusions, and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blankenship, Robert E.
"PARC - Scientific Exchange Program" was submitted by the Photosynthetic Antenna Research Center (PARC) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. PARC, an EFRC directed by Robert E. Blankenship at Washington University in St. Louis, is a partnership of scientists from ten institutions. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) inmore » 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less
Blankenship, Robert E. (Director, Photosynthetic Antenna Research Center); PARC Staff
2017-12-09
'PARC - Scientific Exchange Program' was submitted by the Photosynthetic Antenna Research Center (PARC) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. PARC, an EFRC directed by Robert E. Blankenship at Washington University in St. Louis, is a partnership of scientists from ten institutions. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.
Charlton, Bruce G
2010-02-01
In UK educational circles it has long been regarded as a platitude that a good scientific education at school and undergraduate level should aim to teach critical thinking and encourage students to challenge mainstream science, debate scientific issues and express their personal opinions. However, I believe that this strategy is usually mistaken, and that such educational strategies probably do more harm than good. For most students, at most levels, for most of the time; science education should be focused on the inculcation of established knowledge. This is for the simple reason that critique is educationally-counterproductive and scientifically-worthless unless or until underpinned by adequate knowledge and competence. Instead, for the early years of science teaching, the basic assumption ought to be that the student is there to learn science; not to confront science. The basic attitude being taught should be one of humility before the science being studied.
ERIC Educational Resources Information Center
Edmund, Norman W.
This booklet introduces a new and general approach to the scientific method for everyone. Teaching the scientific method to all students allows them to develop their own talents and is necessary to prevent the loss of jobs. Many job areas that require scientific methodology are listed. Harmful results that may occur because of not teaching the…
Understanding the Performance and Potential of Cloud Computing for Scientific Applications
Sadooghi, Iman; Martin, Jesus Hernandez; Li, Tonglin; ...
2015-02-19
In this paper, commercial clouds bring a great opportunity to the scientific computing area. Scientific applications usually require significant resources, however not all scientists have access to sufficient high-end computing systems, may of which can be found in the Top500 list. Cloud Computing has gained the attention of scientists as a competitive resource to run HPC applications at a potentially lower cost. But as a different infrastructure, it is unclear whether clouds are capable of running scientific applications with a reasonable performance per money spent. This work studies the performance of public clouds and places this performance in context tomore » price. We evaluate the raw performance of different services of AWS cloud in terms of the basic resources, such as compute, memory, network and I/O. We also evaluate the performance of the scientific applications running in the cloud. This paper aims to assess the ability of the cloud to perform well, as well as to evaluate the cost of the cloud running scientific applications. We developed a full set of metrics and conducted a comprehensive performance evlauation over the Amazon cloud. We evaluated EC2, S3, EBS and DynamoDB among the many Amazon AWS services. We evaluated the memory sub-system performance with CacheBench, the network performance with iperf, processor and network performance with the HPL benchmark application, and shared storage with NFS and PVFS in addition to S3. We also evaluated a real scientific computing application through the Swift parallel scripting system at scale. Armed with both detailed benchmarks to gauge expected performance and a detailed monetary cost analysis, we expect this paper will be a recipe cookbook for scientists to help them decide where to deploy and run their scientific applications between public clouds, private clouds, or hybrid clouds.« less
Understanding the Performance and Potential of Cloud Computing for Scientific Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadooghi, Iman; Martin, Jesus Hernandez; Li, Tonglin
In this paper, commercial clouds bring a great opportunity to the scientific computing area. Scientific applications usually require significant resources, however not all scientists have access to sufficient high-end computing systems, may of which can be found in the Top500 list. Cloud Computing has gained the attention of scientists as a competitive resource to run HPC applications at a potentially lower cost. But as a different infrastructure, it is unclear whether clouds are capable of running scientific applications with a reasonable performance per money spent. This work studies the performance of public clouds and places this performance in context tomore » price. We evaluate the raw performance of different services of AWS cloud in terms of the basic resources, such as compute, memory, network and I/O. We also evaluate the performance of the scientific applications running in the cloud. This paper aims to assess the ability of the cloud to perform well, as well as to evaluate the cost of the cloud running scientific applications. We developed a full set of metrics and conducted a comprehensive performance evlauation over the Amazon cloud. We evaluated EC2, S3, EBS and DynamoDB among the many Amazon AWS services. We evaluated the memory sub-system performance with CacheBench, the network performance with iperf, processor and network performance with the HPL benchmark application, and shared storage with NFS and PVFS in addition to S3. We also evaluated a real scientific computing application through the Swift parallel scripting system at scale. Armed with both detailed benchmarks to gauge expected performance and a detailed monetary cost analysis, we expect this paper will be a recipe cookbook for scientists to help them decide where to deploy and run their scientific applications between public clouds, private clouds, or hybrid clouds.« less
Scientific progress: Knowledge versus understanding.
Dellsén, Finnur
2016-04-01
What is scientific progress? On Alexander Bird's epistemic account of scientific progress, an episode in science is progressive precisely when there is more scientific knowledge at the end of the episode than at the beginning. Using Bird's epistemic account as a foil, this paper develops an alternative understanding-based account on which an episode in science is progressive precisely when scientists grasp how to correctly explain or predict more aspects of the world at the end of the episode than at the beginning. This account is shown to be superior to the epistemic account by examining cases in which knowledge and understanding come apart. In these cases, it is argued that scientific progress matches increases in scientific understanding rather than accumulations of knowledge. In addition, considerations having to do with minimalist idealizations, pragmatic virtues, and epistemic value all favor this understanding-based account over its epistemic counterpart. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mayo-Santana, Raúl
2016-12-01
This essay presents a history of the scientific journal of the University of Puerto Rico, School of Tropical Medicine (STM) under the auspices of Columbia University: The Puerto Rico Journal of Public Health and Tropical Medicine. This is the third article in a historical series about the STM, and includes supporting information relevant to the forthcoming articles on the school's scientific endeavors. This article is conceived as a history from the perspective of the literature of journal genre in the field of tropical medicine. The STM scientific journal, precursor of the Puerto Rico Health Sciences Journal, had five main stages. First (1925-1927), originated as an official bulletin of the Health Department (Porto Rico Health Review). Second (1927-1929), became a project of mutual collaboration between the Health Department and the STM, and the publication's title reflected the fields of public health and tropical medicine. Third (1929-1932), acquired a scientific focus as it changed to a quarterly science publication. Fourth (1932-1942), became a fully bilingual journal and acquired its definitive name. Fifth (1942-1950), the final phase in which the first Puerto Rican Director became the principal editor until the Journal's dissolution. The analysis of authorship and the content analysis of the topics of diseases, public health and basic sciences, clarify the history of tropical medicine during the first half of the 20th century in Puerto Rico. The article highlights major symbolic events that delve into the understanding of a collaborative exemplar of the modernity of medical science.
Development of high resolution NMR spectroscopy as a structural tool
NASA Astrophysics Data System (ADS)
Feeney, James
1992-06-01
The discovery of the nuclear magnetic resonance (NMR) phenomenon and its development and exploitation as a scientific tool provide an excellent basis for a case-study for examining the factors which control the evolution of scientific techniques. Since the detection of the NMR phenomenon and the subsequent rapid discovery of all the important NMR spectral parameters in the late 1940s, the method has emerged as one of the most powerful techniques for determining structures of molecules in solution and for analysis of complex mixtures. The method has made a dramatic impact on the development of structural chemistry over the last 30 years and is now one of the key techniques in this area. Support for NMR instrumentation attracts a dominant slice of public funding in most scientifically developed countries. The technique is an excellent example of how instrumentation and technology have revolutionised structural chemistry and it is worth exploring how it has been developed so successfully. Clearly its wide range of application and the relatively direct connection between the NMR data and molecular structure has created a major market for the instrumentation. This has provided several competing manufacturers with the incentive to develop better and better instruments. Understanding the complexity of the basics of NMR spectroscopy has been an ongoing challenge attracting the attention of physicists. The well-organised specialist NMR literature and regular scientific meetings have ensured rapid exploitation of any theoretical advances that have a practical relevance. In parallel, the commercial development of the technology has allowed the fruits of such theoretical advances to be enjoyed by the wider scientific community.
The Blue LED Nobel Prize: Historical context, current scientific understanding, human benefit
Tsao, Jeffrey Y.; Han, Jung; Haitz, Roland H.; ...
2015-06-19
Here, the paths that connect scientific understanding with tools and technology are rarely linear. Sometimes scientific understanding leads and enables, sometimes tools and technologies lead and enable. But by feeding on each other, they create virtuous spirals of forward and backward innovation.
The Blue LED Nobel Prize: Historical context, current scientific understanding, human benefit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsao, Jeffrey Y.; Han, Jung; Haitz, Roland H.
Here, the paths that connect scientific understanding with tools and technology are rarely linear. Sometimes scientific understanding leads and enables, sometimes tools and technologies lead and enable. But by feeding on each other, they create virtuous spirals of forward and backward innovation.
Contrasting Controversies: Fracking and Climate Change
NASA Astrophysics Data System (ADS)
Duggan-Haas, D.; Zabel, I. H. H.; Ross, R. M.
2014-12-01
Slickwater high-volume hydraulic fracturing (commonly known as "fracking") is highly controversial. So is global warming, and the two issues are closely related, but the natures of these two controversies have substantial and important differences. Building upon years of experience in teaching and developing resources and strategies for teaching about evolution and climate change, staff at the Paleontological Research Institution have engaged in public outreach and educator professional development to help nurture understanding of fracking and the broader energy system. How are these controversies similar to and different from one another, and how should understanding these similarities and differences inform educational programming (and about how you talk about these issues with your Uncle Fred at the family holiday dinner?). It is nearly universally agreed amongst scientists who study climate that changes now underway are real and human caused, and are posing or likely to pose very serious problems for humanity. Scientists who study slickwater high-volume hydraulic fracturing agree that it causes environmental damage, but there is no consensus as to whether fracking causes more or less harm (e.g., among different kinds of environment harm, across different temporal and spatial scales, and among different social contexts) than other ways of producing energy on a large scale. In other words, the basic tenets of climate change are not a matter of scientific controversy, though the implications for policy making obviously remain politically controversial, while fracking is an issue of both scientific and political controversy. Without advocating for or against fracking, we help audiences disentangle scientific and political issues, better understand the energy resources used in their own communities, and consider issues of scale, systems, and complexity. We will compare and contrast the overlapping controversies surrounding climate change and fracking and highlight effective and ineffective approaches for educational programming as well as for more personal discussions. We will draw attention to the important ways in which these topics differ and what that implies for the development of programming and resources for teaching.
Integrated scientific data bases review on asulacrine and associated toxicity.
Afzal, Attia; Sarfraz, Muhammad; Wu, Zimei; Wang, Guangji; Sun, Jianguo
2016-08-01
Asulacrine (ASL), a weakly basic and highly lipophilic drug was synthesized in 1980's in cancer research laboratory of Auckland by modifications to the acridine portion of amsacrine on 3-, 4- and 5-substitution patterns. In contrast to its precursor amsacrine (m-AMSA), ASL was effective not only against leukemia and Lewis lung tumor system but also a wide variety of solid tumor. Its metabolic pathway is not same to amsacrine hence different side effects, hepatotoxicity and excretion was observed. Asulacrine is under phase II clinical trials and has showed promising results but its toxicity especially phlebitis is stumbling block in its clinical implementation. This review is an effort to give a possible clue, based on scientifically proven results, to the researchers to solve the mystery of associated toxicity, phlebitis. Review covers the available literature on asulacrine and other acridine derivatives regarding pharmacology, pharmacokinetics, quantitative structure activity relationship and toxicology via electronic search using scientific databases like PubMed and others. To date, all abstracts and full-text articles were discussed and analyzed. The tabulated comparisons and circuitry mechanism of ASL are the added features of the review which give a complete understanding of hidden aspects of possible route cause of associated toxicity, the phlebitis. Copyright © 2016. Published by Elsevier Ireland Ltd.
Panorama of theoretical physics
NASA Astrophysics Data System (ADS)
Mimouni, J.
2012-06-01
We shall start this panorama of theoretical physics by giving an overview of physics in general, this branch of knowledge that has been taken since the scientific revolution as the archetype of the scientific discipline. We shall then proceed in showing in what way theoretical physics from Newton to Maxwell, Einstein, Feynman and the like, in all modesty, could be considered as the ticking heart of physics. By its special mode of inquiry and its tantalizing successes, it has capturing the very spirit of the scientific method, and indeed it has been taken as a role model by other disciplines all the way from the "hard" ones to the social sciences. We shall then review how much we know today of the world of matter, both in term of its basic content and in the way it is structured. We will then present the dreams of today's theoretical physics as a way of penetrating into its psyche, discovering in this way its aspirations and longing in much the same way that a child's dreams tell us about his yearning and craving. Yet our understanding of matter has been going in the past decades through a crisis of sort. As a necessary antidote, we shall thus discuss the pitfalls of dreams pushed too far….
78 FR 12072 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-21
... unwarranted invasion of personal privacy. Name of Committee: AIDS and Related Research Integrated Review Group... Emphasis Panel; PAR Panel: Cancer Health Disparities/Diversity in Basic Cancer Research. Date: March 18-19... for Scientific Review Special Emphasis Panel; Small Business: Orthopedic and Skeletal Biology. Date...
Scientific Elitism and the Information System of Science
ERIC Educational Resources Information Center
Amick, Daniel James
1973-01-01
Scientific elitism must be viewed as a multidimensional phenomenon. Ten variables of elitism are considered and a principal components factor analysis is used to scale this multivariate domain. Two significant dimensions of elitism were found; one in basic and one in applied science. (20 references) (Author)
Selection of species and sampling areas: The importance of inference
Paul Stephen Corn
2009-01-01
Inductive inference, the process of drawing general conclusions from specific observations, is fundamental to the scientific method. Platt (1964) termed conclusions obtained through rigorous application of the scientific method as "strong inference" and noted the following basic steps: generating alternative hypotheses; devising experiments, the...
Scientific cousins: the relationship between Charles Darwin and Francis Galton.
Fancher, Raymond E
2009-01-01
This article traces the personal as well as the intellectual and scientific relationship between Charles Darwin and his younger half-cousin Francis Galton. Although they had been on friendly terms as young men, and Darwin had in some ways been a role model for Galton, the two did not share major scientific interests until after the publication of Darwin's On the Origin of Species in 1859. That work precipitated a religious and philosophical crisis in Galton, which he gradually resolved after conceiving and developing the basic ideas of "hereditary genius" and eugenics. More mathematically inclined than Darwin, he subsequently contributed to the Darwinian evolutionary discussion, and to the future science of psychology, by proposing the basic concept of the nature-nurture dichotomy, the conceptual and statistical foundations for behavior genetics, and the idea for intelligence testing. 2009 APA, all rights reserved
International bowel function basic spinal cord injury data set.
Krogh, K; Perkash, I; Stiens, S A; Biering-Sørensen, F
2009-03-01
International expert working group. To develop an International Bowel Function Basic Spinal Cord Injury (SCI) Data Set presenting a standardized format for the collection and reporting of a minimal amount of information on bowel function in daily practice or in research. Working group consisting of members appointed by the American Spinal Injury Association (ASIA) and the International Spinal Cord Society (ISCoS). A draft prepared by the working group was reviewed by Executive Committee of the International SCI Standards and Data Sets, and later by ISCoS Scientific Committee and the ASIA Board. Relevant and interested scientific and professional (international) organizations and societies (approximately 40) were also invited to review the data set and it was posted on the ISCoS and ASIA websites for 3 months to allow comments and suggestions. The ISCoS Scientific Committee, Council and ASIA Board received the data set for final review and approval. The International Bowel Function Basic SCI Data Set includes the following 12 items: date of data collection, gastrointestinal or anal sphincter dysfunction unrelated to SCI, surgical procedures on the gastrointestinal tract, awareness of the need to defecate, defecation method and bowel care procedures, average time required for defecation, frequency of defecation, frequency of fecal incontinence, need to wear pad or plug, medication affecting bowel function/constipating agents, oral laxatives and perianal problems. An International Bowel Function Basic SCI Data Set has been developed.
Report of the American Heart Association (AHA) Scientific Sessions 2012, Los Angeles.
Fujita, Jun
2013-01-01
The American Heart Association (AHA) Scientific Sessions were held for the first time in Los Angeles in 2012, with the most up-to-date basic and clinical science in the field presented and heard by physicians, research scientists, students, and paramedical personnel from 100 countries. Japan accounted for the second highest number of submitted abstracts and the Japanese Circulation Society actively contributed to the success of the AHA Scientific Sessions this year. The Late-Breaking Clinical Trial sessions comprised 27 clinical studies presented in the main hall. The FREEDOM study revealed the superiority of using a coronary artery bypass graft for diabetic multivessel coronary artery diseases over percutaneous coronary intervention using a drug-eluting stent. A new peptide hormone, serelaxin, improved dyspnea in heart failure patients and significantly reduced mortality rates according to the RELAX-AHF study. In the basic sciences, primary necrosis in mitochondria was the hot topic, while genetics, including genome-wide association studies, and epigenetics were strong features of the basic and clinical cardiovascular (CV) science. It was also clear that regenerative medicine is now part of mainstream CV research, with several clinical trials underway and many basic research projects ongoing around the world. Induced pluripotent stem cells in particular have the potential to change CV medicine, and will underpin the next era of regenerative medicine and personal therapies for heart diseases.
How to Search, Write, Prepare and Publish the Scientific Papers in the Biomedical Journals
Masic, Izet
2011-01-01
This article describes the methodology of preparation, writing and publishing scientific papers in biomedical journals. given is a concise overview of the concept and structure of the System of biomedical scientific and technical information and the way of biomedical literature retreival from worldwide biomedical databases. Described are the scientific and professional medical journals that are currently published in Bosnia and Herzegovina. Also, given is the comparative review on the number and structure of papers published in indexed journals in Bosnia and Herzegovina, which are listed in the Medline database. Analyzed are three B&H journals indexed in MEDLINE database: Medical Archives (Medicinski Arhiv), Bosnian Journal of Basic Medical Sciences and Medical Gazette (Medicinki Glasnik) in 2010. The largest number of original papers was published in the Medical Archives. There is a statistically significant difference in the number of papers published by local authors in relation to international journals in favor of the Medical Archives. True, the Journal Bosnian Journal of Basic Medical Sciences does not categorize the articles and we could not make comparisons. Journal Medical Archives and Bosnian Journal of Basic Medical Sciences by percentage published the largest number of articles by authors from Sarajevo and Tuzla, the two oldest and largest university medical centers in Bosnia and Herzegovina. The author believes that it is necessary to make qualitative changes in the reception and reviewing of papers for publication in biomedical journals published in Bosnia and Herzegovina which should be the responsibility of the separate scientific authority/ committee composed of experts in the field of medicine at the state level. PMID:23572850
Basic Blue Skies Research in the UK: Are we losing out?
Linden, Belinda
2008-01-01
Background The term blue skies research implies a freedom to carry out flexible, curiosity-driven research that leads to outcomes not envisaged at the outset. This research often challenges accepted thinking and introduces new fields of study. Science policy in the UK has given growing support for short-term goal-oriented scientific research projects, with pressure being applied on researchers to demonstrate the future application of their work. These policies carry the risk of restricting freedom, curbing research direction, and stifling rather than stimulating the creativity needed for scientific discovery. Methods This study tracks the tortuous routes that led to three major discoveries in cardiology. It then investigates the constraints in current research, and opportunities that may be lost with existing funding processes, by interviewing selected scientists and fund providers for their views on curiosity-driven research and the freedom needed to allow science to flourish. The transcripts were analysed using a grounded theory approach to gather recurrent themes from the interviews. Results The results from these interviews suggest that scientists often cannot predict the future applications of research. Constraints such as lack of scientific freedom, and a narrow focus on relevance and accountability were believed to stifle the discovery process. Although it was acknowledged that some research projects do need a clear and measurable framework, the interviewees saw a need for inquisitive, blue skies research to be managed in a different way. They provided examples of situations where money allocated to 'safe' funding was used for more innovative research. Conclusion This sample of key UK scientists and grant providers acknowledge the importance of basic blue skies research. Yet the current evaluation process often requires that scientists predict their likely findings and estimate short-term impact, which does not permit freedom of research direction. There is a vital need for prominent scientists and for universities to help the media, the public, and policy makers to understand the importance of innovative thought along with the need for scientists to have the freedom to challenge accepted thinking. Encouraging an avenue for blue skies research could have immense influence over future scientific discoveries. PMID:18312612
Basic Blue Skies Research in the UK: Are we losing out?
Linden, Belinda
2008-02-29
The term blue skies research implies a freedom to carry out flexible, curiosity-driven research that leads to outcomes not envisaged at the outset. This research often challenges accepted thinking and introduces new fields of study. Science policy in the UK has given growing support for short-term goal-oriented scientific research projects, with pressure being applied on researchers to demonstrate the future application of their work. These policies carry the risk of restricting freedom, curbing research direction, and stifling rather than stimulating the creativity needed for scientific discovery. This study tracks the tortuous routes that led to three major discoveries in cardiology. It then investigates the constraints in current research, and opportunities that may be lost with existing funding processes, by interviewing selected scientists and fund providers for their views on curiosity-driven research and the freedom needed to allow science to flourish. The transcripts were analysed using a grounded theory approach to gather recurrent themes from the interviews. The results from these interviews suggest that scientists often cannot predict the future applications of research. Constraints such as lack of scientific freedom, and a narrow focus on relevance and accountability were believed to stifle the discovery process. Although it was acknowledged that some research projects do need a clear and measurable framework, the interviewees saw a need for inquisitive, blue skies research to be managed in a different way. They provided examples of situations where money allocated to 'safe' funding was used for more innovative research. This sample of key UK scientists and grant providers acknowledge the importance of basic blue skies research. Yet the current evaluation process often requires that scientists predict their likely findings and estimate short-term impact, which does not permit freedom of research direction. There is a vital need for prominent scientists and for universities to help the media, the public, and policy makers to understand the importance of innovative thought along with the need for scientists to have the freedom to challenge accepted thinking. Encouraging an avenue for blue skies research could have immense influence over future scientific discoveries.
NASA Astrophysics Data System (ADS)
Purwati, F. G.; Ekawanti, N.; Luthfiandari; Premadi, P. W.
2016-11-01
The Total Solar Eclipse (TSE) on the 9th March 2016 received a huge attention from the mass media. Some of them intensively write articles about it even months before the TSE day. As we know media plays strategic role not only in raising public awareness but also interest. The aim of this project is to study the relation between the number of accesses to the media information and how well public learned the information delivered by the media. We prepared questionnaire consisting of seven semi-multiple choices on how public got information about TSE. We gave them choices of what they had heard to measure their basic understanding of TSE. Furthermore we add two “wrong” choices in the last questions to identify less serious respondents. We analyze 60 respondents of Palembang who visited Ampera bridge area. Our result shows no correlation between the number of information access and the level of understanding about TSE. We also found that local media did not provide the scientific content of TSE as well as the national media.
Guizzetti, Marina; Davies, Daryl L; Egli, Mark; Finn, Deborah A; Molina, Patricia; Regunathan, Soundar; Robinson, Donita L; Sohrabji, Farida
2016-06-01
In May 2014, Dr. Francis Collins, the director of U.S. National Institutes of Health (NIH), and Dr. Janine Clayton, the director of the U.S. National Institutes of Health Office of Research on Women's Health, published a commentary in the journal Nature announcing new policies to ensure that preclinical research funded by the NIH considers both males and females. While these policies are still developing, they have already generated great interest by the scientific community and triggered both criticism and applause. This review provides a description and interpretation of the NIH guidelines, and it traces the history that led to their implementation. As expected, this NIH initiative generated some anxiety in the scientific community. The use of female animals in the investigation of basic mechanisms is perceived to increase variability in the results, and the use of both sexes has been claimed to slow the pace of scientific discoveries and to increase the cost at a time characterized by declining research support. This review discusses issues related to the study of sex as a biological variable (SABV) in alcohol studies and provides examples of how researchers have successfully addressed some of them. A practical strategy is provided to include both sexes in biomedical research while maintaining control of the research direction. The inclusion of sex as an important biological variable in experimental design, analysis, and reporting of preclinical alcohol research is likely to lead to a better understanding of alcohol pharmacology and the development of alcohol use disorder, may promote drug discovery for new pharmacotherapies by increasing scientific rigor, and may provide clinical benefit to women's health. This review aims to promote the understanding of the NIH's SABV guidelines and to provide alcohol researchers with a theoretical and practical framework for working with both sexes in preclinical research. Copyright © 2016 by the Research Society on Alcoholism.
[Patents and scientific research: an ethical-legal approach].
Darío Bergel, Salvador
2014-01-01
This article aims to review the relationship between patents and scientific research from an ethical point of view. The recent developments in the law of industrial property led in many cases to patent discoveries, contributions of basic science, and laws of nature. This trend, which denies the central principles of the discipline, creates disturbances in scientific activity, which requires the free movement of knowledge in order to develop their potentialities.
Send Student Interest Skyward! Soaring Teaches Aeronautics Basics
ERIC Educational Resources Information Center
Scarcella, Joe; Wallace, Art
2011-01-01
Gliders and sailplanes provide a great launching platform for teaching about technology and scientific principles. Soaring is technological innovation in action, using earth's natural resources for energy and endurance during flight. This article focuses on the basics of soaring, which educators can use to increase excitement and interest in the…
Send Student Interest Skyward!: Soaring Teaches Aeronautics Basics
ERIC Educational Resources Information Center
Scarcella, Joe; Wallace, Art
2011-01-01
Gliders and sailplanes provide a great launching platform for teaching about technology and scientific principles. Soaring is technological innovation in action, using earth's natural resources for energy and endurance during flight. This article focuses on the basics of soaring, which educators can use to increase excitement and interest in the…
Basic Curriculum Guide--Science. Grades K-6.
ERIC Educational Resources Information Center
Starr, John W., 3rd., Ed.
GRADES OR AGES: K-6. SUBJECT MATTER: Science. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is in two parts--the background, philosophy, and instructional principles of science teaching, including a resource unit model, and the development by grade level of the various basic scientific concepts. The guide also includes information of…
ERIC Educational Resources Information Center
DARLEY, FREDERIC L.
THIS TEXT GIVES THE STUDENT AN OUTLINE OF THE BASIC PRINCIPLES OF SCIENTIFIC METHODOLOGY WHICH UNDERLIE EVALUATIVE WORK IN SPEECH DISORDERS. RATIONALE AND ASSESSMENT TECHNIQUES ARE GIVEN FOR EXAMINATION OF THE BASIC COMMUNICATION PROCESSES OF SYMBOLIZATION, RESPIRATION, PHONATION, ARTICULATION-RESONANCE, PROSODY, ASSOCIATED SENSORY AND PERCEPTUAL…
Basic College-Level Pharmacology: Therapeutic Drug Range Lesson Plan.
ERIC Educational Resources Information Center
Laipply, Richelle S.
2000-01-01
Investigations of scientific concepts using inquiry can be included in the traditional college lecture. This lesson uses the Learning Cycle to demonstrate therapeutic drug range, a basic concept in pharmaceutical science. Students use graphing to discover patterns as a part of data analysis and interpretation of provided investigation data.…
Taming theory with thought experiments: Understanding and scientific progress.
Stuart, Michael T
2016-08-01
I claim that one way thought experiments contribute to scientific progress is by increasing scientific understanding. Understanding does not have a currently accepted characterization in the philosophical literature, but I argue that we already have ways to test for it. For instance, current pedagogical practice often requires that students demonstrate being in either or both of the following two states: 1) Having grasped the meaning of some relevant theory, concept, law or model, 2) Being able to apply that theory, concept, law or model fruitfully to new instances. Three thought experiments are presented which have been important historically in helping us pass these tests, and two others that cause us to fail. Then I use this operationalization of understanding to clarify the relationships between scientific thought experiments, the understanding they produce, and the progress they enable. I conclude that while no specific instance of understanding (thus conceived) is necessary for scientific progress, understanding in general is. Copyright © 2016 Elsevier Ltd. All rights reserved.
Anthropological film: a scientific and humanistic resource.
Soren, E R
1974-12-20
More than a scientific endeavor but not strictly one of the humanities either, anthropology stands between these basic kinds of intellectual pursuit, bridging and contributing to both. Not limited to natural history, anthropology touches art, historical process, and human values, drawing from the materials and approaches of both science and humanities. This professional interest in a broad understanding of the human condition has led anthropologists to adapt and use modern cameras and films to inquire further into the variety of ways of life of mankind and to develop method and theory to prepare anthropological film as a permanent scientific and humanistic resource. Until quite recently the evolution of human culture and organization has diverged in the hitherto isolated regions of the world. Now this divergence has virtually ceased; we are witnessing an unprecedented period in human history-one where cultural divergence has turned to cultural convergence and where the varieties of independently evolved expressions of basic human potential are giving way to a single system of modern communications, transport, commerce, and manufacturing technology. Before the varieties of ways of life of the world disappear, they can be preserved in facsimile in anthropological films. As primary, undifferentiated visual information, these films facilitate that early step in the creation of new knowledge which is sometimes called humanistic and without which scientific application lies dormant, lacking an idea to test. In keeping with the two scholarly faces of anthropology, humanistic and scientific, anthropological films may provide material permitting both humanistic insight and the more controlled formulations of science. The lightweight filming equipment recently developed has been adapted by anthropologists as a tool of scholarly visual inquiry; methods of retrieving visual data from changing and vanishing ways of life have been developed; and new ways to reveal human beings to one another by using such visual resources have been explored. As a result, not only can anthropological film records permit continued reexamination of the past human conditions from which the present was shaped, but they also facilitate an ongoing public and scientific review of the dynamics of the human behavioral and social repertoire in relation to the contemporary conditions which pattern human responses and adaptation. How man fits into and copes with the changing world is of vital interest and concern. Visual data provide otherwise unobtainable information on human potential, behavior, and social organization. Such information, fed into the public media, facilitates informed consideration of alternative possibilities. By contributing to a better informed society, such films will help make our future more human and more humane.
NASA Astrophysics Data System (ADS)
Tselfes, Vasilis; Paroussi, Antigoni
2009-09-01
There is, in Greece, an ongoing attempt to breach the boundaries established between the different teaching-learning subjects of compulsory education. In this context, we are interested in exploring to what degree the teaching and learning of ideas from the sciences’ “internal life” (Hacking, in: Pickering (ed) Science as practice and culture, 1992) benefits from creatively coming into contact with theatrical education as part of the corresponding curriculum subject. To this end, 57 students of the Early Childhood Education Department of the University of Athens were called to study extracts from Galileo’s Dialogue Concerning the Two Chief World Systems, Ptolemaic and Copernican, to focus on a subject that the Dialogue’s “interlocutors” forcefully disagree about and to theatrically represent (using shadow theatre techniques) what they considered as being the central idea of this clash of opinions. The results indicate that this attempt leads to a satisfactory understanding of ideas relating to the content and methodology of the natural sciences. At the same time, theatrical education avails itself of the representation of scientific ideas and avoids the clichés and hackneyed techniques that the (often) simplistic choices available in the educational context of early childhood education tend towards. The basic reasons for both facets of this success are: (a) Genuine scientific texts force the students to approach them with seriousness, and all the more so if these recount the manner in which scientific ideas are produced and are embedded in the historical and social context of the age that created them; (b) The theatrical framework, which essentially guides the students’ activities, allows (if not obliges) them to approach scientific issues creatively; in other words, it allows them to create something related to science and recognize it as theirs; and, (c) Both the narrative texts describing processes of “science making” (Bruner, J Sci Educ Technol 1:5-12, 1992) and theatrical expression constitute fields that are characterized by what, for the students, is a common and understandable manner of expression: the narrative.
Code of Federal Regulations, 2010 CFR
2010-07-01
... AND SUPPORT OF BASIC RESEARCH BY THE DEPARTMENT OF DEFENSE § 272.1 Purpose This part implements the: (a) Policy on the support of scientific research in Executive Order 10521, “Administration of Scientific Research by Agencies of the Federal Government” (3 CFR, 1954-1958 Comp., p. 183), as amended; and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... AND SUPPORT OF BASIC RESEARCH BY THE DEPARTMENT OF DEFENSE § 272.1 Purpose This part implements the: (a) Policy on the support of scientific research in Executive Order 10521, “Administration of Scientific Research by Agencies of the Federal Government” (3 CFR, 1954-1958 Comp., p. 183), as amended; and...
General Science, Ninth Grade: Theme III and Theme IV. Experimental.
ERIC Educational Resources Information Center
New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.
This document was designed to help teachers provide ninth grade students in New York City with opportunities to learn about scientific processes as well as basic reasoning skills which underlie problem-solving processes in scientific and nonscientific disciplines. The first section of the guide, "The Environment," contains lessons which…
76 FR 10910 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-28
... Committee: Center for Scientific Review Special Emphasis Panel; RFA-HD-11-101: Sleep and Social Environment... Emphasis Panel; RFA-HD-11-102: Sleep and Social Environment: Basic Biopsychosocial Processes (R21). Date... . (Catalogue of Federal Domestic Assistance Program Nos. 93.306, Comparative Medicine; 93.333, Clinical...
A Response to Stewart, McElwee, and Ming
ERIC Educational Resources Information Center
Martin, Garry L.; Yu, C. T.
2010-01-01
In a recent article published in "The Behavior Analyst," Stewart, McElwee, and Ming (2010) suggested that "scientific experts in scientific contexts" should use more "technically accurate and precise labeling" when describing the Assessment of Basic Learning Abilities (ABLA) in published articles. They concluded by stating, "We believe that…
Jacques Loeb, B. F. Skinner, and the legacy of prediction and control
Hackenberg, Timothy D.
1995-01-01
The biologist Jacques Loeb is an important figure in the history of behavior analysis. Between 1890 and 1915, Loeb championed an approach to experimental biology that would later exert substantial influence on the work of B. F. Skinner and behavior analysis. This paper examines some of these sources of influence, with a particular emphasis on Loeb's firm commitment to prediction and control as fundamental goals of an experimental life science, and how these goals were extended and broadened by Skinner. Both Loeb and Skinner adopted a pragmatic approach to science that put practical control of their subject matter above formal theory testing, both based their research programs on analyses of reproducible units involving the intact organism, and both strongly endorsed technological applications of basic laboratory science. For Loeb, but especially for Skinner, control came to mean something more than mere experimental or technological control for its own sake; it became synonomous with scientific understanding. This view follows from (a) the successful working model of science Loeb and Skinner inherited from Ernst Mach, in which science is viewed as human social activity, and effective practical action is taken as the basis of scientific knowledge, and (b) Skinner's analysis of scientific activity, situated in the world of direct experience and related to practices arranged by scientific verbal communities. From this perspective, prediction and control are human acts that arise from and are maintained by social circumstances in which such acts meet with effective consequences. PMID:22478220
NASA Astrophysics Data System (ADS)
Wilson, S.; Tamsitt, V. M.
2016-02-01
A two week high school course for high-achieving 10th-12th graders was developed through the combined efforts of Scripps Institution of Oceanography (SIO) Graduate Students and UC San Diego Academic Connections. For the high school students involved, one week was spent at SIO learning basic climate science and researching climate-related topics, and one week was spent in Washington D.C. lobbying Congress for an environmental issue of their choosing. The specific learning goals of the course were for students to (1) collect, analyze and interpret scientific data, (2) synthesize scientific research for policy recommendations, (3) craft and deliver a compelling policy message, and (4) understand and experience change. In this first year, 10 students conducted research on two scientific topics; sea level rise using pier temperature data and California rainfall statistics using weather stations. Simultaneous lessons on policy messaging helped students learn how to focus scientific information for non-scientists. In combining the importance of statistics from their Science lessons with effective communication from their Policy lessons, the students developed issue papers which highlighted an environmental problem, the solution, and the reason their solution is most effective. The course culminated in two days of meetings on Capitol Hill, where they presented their solutions to their Congressional and Senate Members, conversed with policymakers, and received constructive feedback. Throughout the process, the students effectively defined arguments for an environmental topic in a program developed by SIO Graduate Students.
Principles of skin care in the elderly.
Surber, C; Brandt, S; Cozzio, A; Kottner, J
2015-12-01
With aging, skin undergoes progressive structural and functional degeneration that leaves it prone to a wide variety of bothersome and even serious conditions and diseases. As skin conditions and diseases may affect all ages from cradle to grave, a disproportionate burden will clearly fall on the elderly and may significantly impact on quality of life (QoL). With a reduced ability of the skin to regenerate, the elderly are at an increased risk of skin breakdowns from even the simplest insults. It is therefore vital that skin care in the late adulthood is seen as a priority among both clinicians and caregivers. The scientific literature on diagnosing and assessing age-related skin conditions and diseases is vast; however, when it comes to preventive care and treatment, the scientific data available is less profound, and the recommendations are often based on personal experience, opinions or at best on consensus documents rather than on scientific data retrieved from controlled clinical trials. In addition to the absence of the scientific data, the imprecise terminology to describe the topical products, as well as the lack of understanding the essence of the vehicle, contributes to vague and often unhelpfully product recommendations. This paper aims to elucidate some basic principles of skincare, the choice of skincare products and their regulatory status. The paper discusses adherence to topical therapies, percutaneous absorption in the elderly, and skin surface pH and skin care. Lastly, it also discusses skin care principles in selected age related skin conditions and diseases.
The Neurolab mission and biomedical engineering: a partnership for the future.
Liskowsky, D R; Frey, M A; Sulzman, F M; White, R J; Likowsky, D R
1996-01-01
Over the last five years, with the advent of flights of U.S. Shuttle/Spacelab missions dedicated entirely to life sciences research, the opportunities for conducting serious studies that use a fully outfitted space laboratory to better understand basic biological processes have increased. The last of this series of Shuttle/Spacelab missions, currently scheduled for 1998, is dedicated entirely to neuroscience and behavioral research. The mission, named Neurolab, includes a broad range of experiments that build on previous research efforts, as well as studies related to less mature areas of space neuroscience. The Neurolab mission provides the global scientific community with the opportunity to use the space environment for investigations that exploit microgravity to increase our understanding of basic processes in neuroscience. The results from this premier mission should lead to a significant advancement in the field as a whole and to the opening of new lines of investigation for future research. Experiments under development for this mission will utilize human subjects as well as a variety of other species. The capacity to carry out detailed experiments on both human and animal subjects in space allows a diverse complement of studies that investigate functional changes and their underlying molecular, cellular, and physiological mechanisms. In order to conduct these experiments, a wide array of biomedical instrumentation will be used, including some instruments and devices being developed especially for the mission.
NASA Technical Reports Server (NTRS)
1986-01-01
The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.
Sustainability in care through an ethical practice model.
Nyholm, Linda; Salmela, Susanne; Nyström, Lisbet; Koskinen, Camilla
2018-03-01
While sustainability is a key concept in many different domains today, it has not yet been sufficiently emphasized in the healthcare sector. Earlier research shows that ethical values and evidence-based care models create sustainability in care practice. The aim of this study was to gain further understanding of the ethical values central to the realization of sustainability in care and to create an ethical practice model whereby these basic values can be made perceptible and active in care practice. Part of the ongoing "Ethical Sustainable Caring Cultures" research project, a hermeneutical application research design was employed in this study. Dialogues were used, where scientific researchers and co-researchers were given the opportunity to reflect on ethical values in relation to sustainability in care. An ethical practice model with ethos as its core was created from the results of the dialogues. In the model, ethos is encircled by the ethical values central to sustainability: dignity, responsibility, respect, invitation, and vows. The model can be used as a starting point for ethical conversations that support carers' reflections on the ethical issues seen in day-to-day care work and the work community, allowing ethical values to become visible throughout the entire care culture. It is intended as a tool whereby carers can more deeply understand an organization's common basic values and what they entail in regard to sustainability in care.
The Neurolab mission and biomedical engineering: a partnership for the future
NASA Technical Reports Server (NTRS)
Liskowsky, D. R.; Frey, M. A.; Sulzman, F. M.; White, R. J.; Likowsky, D. R.
1996-01-01
Over the last five years, with the advent of flights of U.S. Shuttle/Spacelab missions dedicated entirely to life sciences research, the opportunities for conducting serious studies that use a fully outfitted space laboratory to better understand basic biological processes have increased. The last of this series of Shuttle/Spacelab missions, currently scheduled for 1998, is dedicated entirely to neuroscience and behavioral research. The mission, named Neurolab, includes a broad range of experiments that build on previous research efforts, as well as studies related to less mature areas of space neuroscience. The Neurolab mission provides the global scientific community with the opportunity to use the space environment for investigations that exploit microgravity to increase our understanding of basic processes in neuroscience. The results from this premier mission should lead to a significant advancement in the field as a whole and to the opening of new lines of investigation for future research. Experiments under development for this mission will utilize human subjects as well as a variety of other species. The capacity to carry out detailed experiments on both human and animal subjects in space allows a diverse complement of studies that investigate functional changes and their underlying molecular, cellular, and physiological mechanisms. In order to conduct these experiments, a wide array of biomedical instrumentation will be used, including some instruments and devices being developed especially for the mission.
Chaos in World Politics: A Reflection
NASA Astrophysics Data System (ADS)
Ferreira, Manuel Alberto Martins; Filipe, José António Candeias Bonito; Coelho, Manuel F. P.; Pedro, Isabel C.
Chaos theory results from natural scientists' findings in the area of non-linear dynamics. The importance of related models has increased in the last decades, by studying the temporal evolution of non-linear systems. In consequence, chaos is one of the concepts that most rapidly have been expanded in what research topics respects. Considering that relationships in non-linear systems are unstable, chaos theory aims to understand and to explain this kind of unpredictable aspects of nature, social life, the uncertainties, the nonlinearities, the disorders and confusion, scientifically it represents a disarray connection, but basically it involves much more than that. The existing close relationship between change and time seems essential to understand what happens in the basics of chaos theory. In fact, this theory got a crucial role in the explanation of many phenomena. The relevance of this kind of theories has been well recognized to explain social phenomena and has permitted new advances in the study of social systems. Chaos theory has also been applied, particularly in the context of politics, in this area. The goal of this chapter is to make a reflection on chaos theory - and dynamical systems such as the theories of complexity - in terms of the interpretation of political issues, considering some kind of events in the political context and also considering the macro-strategic ideas of states positioning in the international stage.
Evolution and convergence of the patterns of international scientific collaboration.
Coccia, Mario; Wang, Lili
2016-02-23
International research collaboration plays an important role in the social construction and evolution of science. Studies of science increasingly analyze international collaboration across multiple organizations for its impetus in improving research quality, advancing efficiency of the scientific production, and fostering breakthroughs in a shorter time. However, long-run patterns of international research collaboration across scientific fields and their structural changes over time are hardly known. Here we show the convergence of international scientific collaboration across research fields over time. Our study uses a dataset by the National Science Foundation and computes the fraction of papers that have international institutional coauthorships for various fields of science. We compare our results with pioneering studies carried out in the 1970s and 1990s by applying a standardization method that transforms all fractions of internationally coauthored papers into a comparable framework. We find, over 1973-2012, that the evolution of collaboration patterns across scientific disciplines seems to generate a convergence between applied and basic sciences. We also show that the general architecture of international scientific collaboration, based on the ranking of fractions of international coauthorships for different scientific fields per year, has tended to be unchanged over time, at least until now. Overall, this study shows, to our knowledge for the first time, the evolution of the patterns of international scientific collaboration starting from initial results described by literature in the 1970s and 1990s. We find a convergence of these long-run collaboration patterns between the applied and basic sciences. This convergence might be one of contributing factors that supports the evolution of modern scientific fields.
Nutrition and health in amphibian husbandry.
Ferrie, Gina M; Alford, Vance C; Atkinson, Jim; Baitchman, Eric; Barber, Diane; Blaner, William S; Crawshaw, Graham; Daneault, Andy; Dierenfeld, Ellen; Finke, Mark; Fleming, Greg; Gagliardo, Ron; Hoffman, Eric A; Karasov, William; Klasing, Kirk; Koutsos, Elizabeth; Lankton, Julia; Lavin, Shana R; Lentini, Andrew; Livingston, Shannon; Lock, Brad; Mason, Tom; McComb, Alejandra; Morris, Cheryl; Pessier, Allan P; Olea-Popelka, Francisco; Probst, Tom; Rodriguez, Carlos; Schad, Kristine; Semmen, Kent; Sincage, Jamie; Stamper, M Andrew; Steinmetz, Jason; Sullivan, Kathleen; Terrell, Scott; Wertan, Nina; Wheaton, Catharine J; Wilson, Brad; Valdes, Eduardo V
2014-01-01
Amphibian biology is intricate, and there are many inter-related factors that need to be understood before establishing successful Conservation Breeding Programs (CBPs). Nutritional needs of amphibians are highly integrated with disease and their husbandry needs, and the diversity of developmental stages, natural habitats, and feeding strategies result in many different recommendations for proper care and feeding. This review identifies several areas where there is substantial room for improvement in maintaining healthy ex situ amphibian populations specifically in the areas of obtaining and utilizing natural history data for both amphibians and their dietary items, achieving more appropriate environmental parameters, understanding stress and hormone production, and promoting better physical and population health. Using a scientific or research framework to answer questions about disease, nutrition, husbandry, genetics, and endocrinology of ex situ amphibians will improve specialists' understanding of the needs of these species. In general, there is a lack of baseline data and comparative information for most basic aspects of amphibian biology as well as standardized laboratory approaches. Instituting a formalized research approach in multiple scientific disciplines will be beneficial not only to the management of current ex situ populations, but also in moving forward with future conservation and reintroduction projects. This overview of gaps in knowledge concerning ex situ amphibian care should serve as a foundation for much needed future research in these areas. © 2014 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Faria, Cláudia; Freire, Sofia; Baptista, Mónica; Galvão, Cecília
2014-01-01
Mobilizing scientific knowledge for understanding the natural world and for critically appraise socio-scientific situations and make decisions are key competencies for today's' society. Therefore, it is essential to understand how students at the end of compulsory schooling use scientific knowledge for understanding the surrounding world. The…
The United States Geological Survey: A vision for the 21st century
,
1993-01-01
Leadership in Earth science for sustained global health, welfare, and prosperity. We envision a U.S. Geological Survey that is a global leader in relevant, innovative, and interdisciplinary Earth science. We shall conduct collaborative, impartial, multi-scale scientific investigations into the Earth's systems and conditions through a spectrum of basic to applied research on the environment, hazards, resources, and information management, all in support of present and future societal needs. We envision an organization that serves the public by sharing Earthscience data and information and by promoting its dissemination, understanding, and application. We shall be a flexible organization that values its employees and works in concert with them for attainment of both institutional and individual goals.
Policy, politics and public health.
Greer, Scott L; Bekker, Marleen; de Leeuw, Evelyne; Wismar, Matthias; Helderman, Jan-Kees; Ribeiro, Sofia; Stuckler, David
2017-10-01
If public health is the field that diagnoses and strives to cure social ills, then understanding political causes and cures for health problems should be an intrinsic part of the field. In this article, we argue that there is no support for the simple and common, implicit model of politics in which scientific evidence plus political will produces healthy policies. Efforts to improve the translation of evidence into policy such as knowledge transfer work only under certain circumstances. These circumstances are frequently political, and to be understood through systematic inquiry into basic features of the political economy such as institutions, partisanship and the organization of labour markets. © The Author 2017. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.
Genome annotation in a community college cell biology lab.
Beagley, C Timothy
2013-01-01
The Biology Department at Salt Lake Community College has used the IMG-ACT toolbox to introduce a genome mapping and annotation exercise into the laboratory portion of its Cell Biology course. This project provides students with an authentic inquiry-based learning experience while introducing them to computational biology and contemporary learning skills. Additionally, the project strengthens student understanding of the scientific method and contributes to student learning gains in curricular objectives centered around basic molecular biology, specifically, the Central Dogma. Importantly, inclusion of this project in the laboratory course provides students with a positive learning environment and allows for the use of cooperative learning strategies to increase overall student success. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.
The National Cancer Institute’s (NCI) Office of Cancer Clinical Proteomics Research, part of the National Institutes of Health, along with the Indian Institute of Technology Bombay (IITB) and Tata Memorial Centre (TMC) have signed a Memorandum of Understanding (MOU) on clinical proteogenomics cancer research. The MOU between NCI, IITB, and Tata Memorial Centre represents the thirtieth and thirty-first institutions and the twelfth country to join the International Cancer Proteogenome Consortium (ICPC). The purpose of the MOU is to facilitate scientific and programmatic collaborations between NCI, IITB, and TMC in basic and clinical proteogenomic studies leading to patient care and public dissemination and information sharing to the research community.
Emerging Applications of Liquid Crystals Based on Nanotechnology
Sohn, Jung Inn; Hong, Woong-Ki; Choi, Su Seok; Coles, Harry J.; Welland, Mark E.; Cha, Seung Nam; Kim, Jong Min
2014-01-01
Diverse functionalities of liquid crystals (LCs) offer enormous opportunities for their potential use in advanced mobile and smart displays, as well as novel non-display applications. Here, we present snapshots of the research carried out on emerging applications of LCs ranging from electronics to holography and self-powered systems. In addition, we will show our recent results focused on the development of new LC applications, such as programmable transistors, a transparent and active-type two-dimensional optical array and self-powered display systems based on LCs, and will briefly discuss their novel concepts and basic operating principles. Our research will give insights not only into comprehensively understanding technical and scientific applications of LCs, but also developing new discoveries of other LC-based devices. PMID:28788555
Ma, Shuo; Jiang, Yue; Huang, Weiting; Li, Xintao; Li, Shuzhuang
2017-05-18
Heart transplantation has evolved as the criterion standard therapy for end-stage heart failure, but its efficacy is limited by the development of cardiac allograft vasculopathy (CAV), a unique and rapidly progressive form of atherosclerosis in heart transplant recipients. Here, we briefly review the key processes in the development of CAV during heart transplantation and highlight the roles of transient receptor potential (TRP) channels in these processes during heart transplantation. Understanding the roles of TRP channels in contributing to the key procedures for the development of CAV during heart transplantation could provide basic scientific knowledge for the development of new preventive and therapeutic approaches to manage patients with CAV after heart transplantation.
Electrostatic Phenomena on Planetary Surfaces
NASA Astrophysics Data System (ADS)
Calle, Carlos I.
2017-02-01
The diverse planetary environments in the solar system react in somewhat different ways to the encompassing influence of the Sun. These different interactions define the electrostatic phenomena that take place on and near planetary surfaces. The desire to understand the electrostatic environments of planetary surfaces goes beyond scientific inquiry. These environments have enormous implications for both human and robotic exploration of the solar system. This book describes in some detail what is known about the electrostatic environment of the solar system from early and current experiments on Earth as well as what is being learned from the instrumentation on the space exploration missions (NASA, European Space Agency, and the Japanese Space Agency) of the last few decades. It begins with a brief review of the basic principles of electrostatics.
Avula, Haritha; Pandey, Ruchi; Bolla, Vijayalakshmi; Rao, Harika; Avula, Jaya Kumar
2013-09-01
Research in the field of periodontology has witnessed a tremendous upsurge in the last two decades unveiling newer innovations in techniques, methodologies, and material science. The recent focus in periodontal research is an evidence-based approach which offers a bridge from science to clinical practice. This three part review series intends to take a reader through a maze of periodontal research, unraveling and simplifying various issues in the design, conduct and interpretation of various study designs routinely used in the field of periodontal research. This understanding would facilitate a researcher with a focused and an enhanced vision toward formulating studies which can more efficiently translate sound scientific phenomena into clinically meaningful results.
Avula, Haritha; Pandey, Ruchi; Bolla, Vijayalakshmi; Rao, Harika; Avula, Jaya Kumar
2013-01-01
Research in the field of periodontology has witnessed a tremendous upsurge in the last two decades unveiling newer innovations in techniques, methodologies, and material science. The recent focus in periodontal research is an evidence-based approach which offers a bridge from science to clinical practice. This three part review series intends to take a reader through a maze of periodontal research, unraveling and simplifying various issues in the design, conduct and interpretation of various study designs routinely used in the field of periodontal research. This understanding would facilitate a researcher with a focused and an enhanced vision toward formulating studies which can more efficiently translate sound scientific phenomena into clinically meaningful results. PMID:24174746
Human Exploration of Space: why, where, what for?
Vernikos, J
2008-01-01
"Man must rise above Earth to the top of the atmosphere and beyond, for only then will he fully understand the world in which he lives" – Socrates (469-399 BC). The basic driving rationales for human space flight (HSF) are rooted in age-old and persisting dreams. Fascination with the idea of people going into the sky for adventures in other worlds goes back to ancient myths. This paper sheds light onto criticisms of HSF programs, by revisiting their scientific grounds and associated benefits, along with the different types of emerging commercial enterprise. Research from space has lead to a wealth of commercial and societal applications on Earth, building up the case for the so-called "Space Applications Market". PMID:19048086
Isotope studies in large river basins: A new global research focus
NASA Astrophysics Data System (ADS)
Gibson, John J.; Aggarwal, Pradeep; Hogan, James; Kendall, Carol; Martinelli, Luiz A.; Stichler, Willi; Rank, Dieter; Goni, Ibrahim; Choudhry, Manzoor; Gat, Joel; Bhattacharya, Sourendra; Sugimoto, Atsuko; Fekete, Balazs; Pietroniro, Alain; Maurer, Thomas; Panarello, Hector; Stone, David; Seyler, Patrick; Maurice-Bourgoin, Laurence; Herczeg, Andrew
Rivers are an important linkage in the global hydrological cycle, returning about 35%of continental precipitation to the oceans. Rivers are also the most important source of water for human use. Much of the world's population lives along large rivers, relying on them for trade, transportation, industry, agriculture, and domestic water supplies. The resulting pressure has led to the extreme regulation of some river systems, and often a degradation of water quantity and quality For sustainable management of water supply agriculture, flood-drought cycles, and ecosystem and human health, there is a basic need for improving the scientific understanding of water cycling processes in river basins, and the ability to detect and predict impacts of climate change and water resources development.
Eastwood, Jonathan P
2008-12-13
The basic physics underpinning space weather is reviewed, beginning with a brief overview of the main causes of variability in the near-Earth space environment. Although many plasma phenomena contribute to space weather, one of the most important is magnetic reconnection, and recent cutting edge research in this field is reviewed. We then place this research in context by discussing a number of specific types of space weather in more detail. As society inexorably increases its dependence on space, the necessity of predicting and mitigating space weather will become ever more acute. This requires a deep understanding of the complexities inherent in the plasmas that fill space and has prompted the development of a new generation of scientific space missions at the international level.
International food patterns for space food
NASA Technical Reports Server (NTRS)
Ahmed, Selina; Cox, Amanda; Cornish, Pauline V.
1989-01-01
The purpose of this research was to obtain basic data on ethnic foods by studying dietary patterns and multicultural foods, and to determine nutritional status of multicultural space explorers by evaluating dietary, clinical, biochemical, and socioeconomic factors. The study will plan a significant role in providing nutritional research for space explorers of different ethnic backgrounds. It will provide scientific background information by bringing together cross cultural dietary and nutritional from different ethnic groups. Results will also help the health care personnel including physicians, dietitians, and nutritionists to better understand and assist patients from other cultures illness. Also, the results will provide data which will help in the development of future food plans for long duration flights involving manned exploration to Mars and lunar base colonies.
Compressibility, Laws of Nature, Initial Conditions and Complexity
NASA Astrophysics Data System (ADS)
Chibbaro, Sergio; Vulpiani, Angelo
2017-10-01
We critically analyse the point of view for which laws of nature are just a mean to compress data. Discussing some basic notions of dynamical systems and information theory, we show that the idea that the analysis of large amount of data by means of an algorithm of compression is equivalent to the knowledge one can have from scientific laws, is rather naive. In particular we discuss the subtle conceptual topic of the initial conditions of phenomena which are generally incompressible. Starting from this point, we argue that laws of nature represent more than a pure compression of data, and that the availability of large amount of data, in general, is not particularly useful to understand the behaviour of complex phenomena.
Recommendations for Cycle II of National Water-Quality Assessment (NAWQA) Program
,; Mallard, Gail E.; Armbruster, Jeffrey T.; Broshears, Robert E.; Evenson, Eric J.; Luoma, Samuel N.; Phillips, Patrick J.; Prince, Keith R.
1999-01-01
The Planning Team for the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program defines a successful NAWQA Program as one that makes a balanced contribution to study-unit issues, national issues, and to the pursuit of scientific knowledge. Using this criterion, NAWQA has been a success. The program has provided important new knowledge and understanding of scientific processes, and insights into the occurrence and distribution of contaminants that have been key to local and national policy decisions. Most of the basic design characteristics of NAWQA's first decade (1991-2000), hereafter called cycle I) remain appropriate as the program enters its second decade (cycle II) in 2001. In cycle II, the program has the opportunity to build on its successful base and to evolve to take advantage of the knowledge generated in cycle I. In addition to this expected evolution, NAWQA must also make some changes to compensate for the fact that program funding has not kept pace with inflation. An important theme for the second cycle of NAWQA will be the integration of knowledge across scales and across disciplines. The question that drove the NAWQA design in the first cycle was "How is water quality related to land use?" Cycle II will build upon what was learned in cycle I and use land-use and water-quality gradients to identify and understand potential sources of various constituents and the processes affecting transport and fate of those constituents and their effects on receptors. The understanding we gain from applying this approach will be relevant to the interests of policymakers, regulatory agencies, and resource managers.
Barlow, Paul M.; Leake, Stanley A.
2012-11-02
Groundwater is an important source of water for many human needs, including public supply, agriculture, and industry. With the development of any natural resource, however, adverse consequences may be associated with its use. One of the primary concerns related to the development of groundwater resources is the effect of groundwater pumping on streamflow. Groundwater and surface-water systems are connected, and groundwater discharge is often a substantial component of the total flow of a stream. Groundwater pumping reduces the amount of groundwater that flows to streams and, in some cases, can draw streamflow into the underlying groundwater system. Streamflow reductions (or depletions) caused by pumping have become an important water-resource management issue because of the negative impacts that reduced flows can have on aquatic ecosystems, the availability of surface water, and the quality and aesthetic value of streams and rivers. Scientific research over the past seven decades has made important contributions to the basic understanding of the processes and factors that affect streamflow depletion by wells. Moreover, advances in methods for simulating groundwater systems with computer models provide powerful tools for estimating the rates, locations, and timing of streamflow depletion in response to groundwater pumping and for evaluating alternative approaches for managing streamflow depletion. The primary objective of this report is to summarize these scientific insights and to describe the various field methods and modeling approaches that can be used to understand and manage streamflow depletion. A secondary objective is to highlight several misconceptions concerning streamflow depletion and to explain why these misconceptions are incorrect.
Beck, Naomi
2009-12-01
Friedrich August von Hayek (1899-1992) is mainly known for his defense of free-market economics and liberalism. His views on science--more specifically on the methodological differences between the physical sciences on the one hand, and evolutionary biology and the social sciences on the other--are less well known. Yet in order to understand, and properly evaluate Hayek's political position, we must look at the theory of scientific method that underpins it. Hayek believed that a basic misunderstanding of the discipline of economics and the complex phenomena with which it deals produced misconceptions concerning its method and goals, which led in turn to the adoption of dangerous policies. The objective of this article is to trace the development of Hayek's views on the nature of economics as a scientific discipline and to examine his conclusions concerning the scope of economic prediction. In doing so, I will first show that Hayek's interest in the natural sciences (especially biology), as well as his interest in epistemology, were central to his thought, dating back to his formative years. I will then emphasize the important place of historical analysis in Hayek's reflections on methodology and examine the reasons for his strong criticism of positivism and socialism. Finally, in the third and fourth sections that constitute the bulk of this article, I will show how Hayek's understanding of the data and goal of the social sciences (which he distinguished from those of the physical sciences), culminated in an analogy that sought to establish economics and evolutionary biology as exemplary complex sciences. I will challenge Hayek's interpretation of this analogy through a comparison with Darwin's views in The Origin of Species, and thus open a door to re-evaluating the theoretical foundations of Hayek's political claims.
Choosing phenomenology as a guiding philosophy for nursing research.
Matua, Gerald Amandu
2015-03-01
To provide an overview of important methodological considerations that nurse researchers need to adhere to when choosing phenomenology as a guiding philosophy and research method. Phenomenology is a major philosophy and research method in the humanities, human sciences and arts disciplines with a central goal of describing people's experiences. However, many nurse researchers continue to grapple with methodological issues related to their choice of phenomenological method. The author conducted online and manual searches of relevant research books and electronic databases. Using an integrative method, peer-reviewed research and discussion papers published between January 1990 and December 2011 and listed in the CINAHL, Science Direct, PubMed and Google Scholar databases were reviewed. In addition, textbooks that addressed research methodologies such as phenomenology were used. Although phenomenology is widely used today to broaden understanding of human phenomena relevant to nursing practice, nurse researchers often fail to adhere to acceptable scientific and phenomenological standards. Cognisant of these challenges, researchers are expected to indicate in their work the focus of their investigations, designs, and approaches to collecting and analysing data. They are also expected to present their findings in an evocative and expressive manner. Choosing phenomenology requires researchers to understand it as a philosophy, including basic assumptions and tenets of phenomenology as a research method. This awareness enables researchers, especially novices, to make important methodological decisions, particularly those necessary to indicate the study's scientific rigour and phenomenological validity. This paper adds to the discussion of phenomenology as a guiding philosophy for nursing research. It aims to guide new researchers on important methodological decisions they need to make to safeguard their study's scientific rigour and phenomenological validity.
Basic Energy Sciences Program Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2016-01-04
The U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) supports fundamental research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels to provide the foundations for new energy technologies and to support DOE missions in energy, environment, and national security. The research disciplines covered by BES—condensed matter and materials physics, chemistry, geosciences, and aspects of physical biosciences— are those that discover new materials and design new chemical processes. These disciplines touch virtually every aspect of energy resources, production, conversion, transmission, storage, efficiency, and waste mitigation. BES also plans, constructs, andmore » operates world-class scientific user facilities that provide outstanding capabilities for imaging and spectroscopy, characterizing materials of all kinds ranging from hard metals to fragile biological samples, and studying the chemical transformation of matter. These facilities are used to correlate the microscopic structure of materials with their macroscopic properties and to study chemical processes. Such experiments provide critical insights to electronic, atomic, and molecular configurations, often at ultrasmall length and ultrafast time scales.« less
Casa, Douglas J.
1999-01-01
Objective: To present the critical issue of exercise in the heat in a format that provides physiologic foundations (Part I) and then applies the established literature to substantial, usable guidelines that athletic trainers can implement on a daily basis when working with athletes who exercise in the heat (Part II). Data Sources: The databases MEDLINE and SPORT Discus were searched from 1980 to 1999, with the terms “hydration,” “heat,” “dehydration,” “cardiovascular,” “thermoregulatory,” “physiology,” and “exercise,” among others. The remaining citations are knowledge base. Data Synthesis: Part I introduces athletic trainers to some of the basic physiologic and performance responses to exercise in the heat. Conclusions/Recommendations: The medical supervision of athletes who exercise in hot environments requires an in-depth understanding of basic physiologic responses and performance considerations. Part I of this article aims to lay the scientific foundation for efficient implementation of the guidelines for monitoring athletic performance in the heat provided in Part II. PMID:16558572
Active Learning in an Introductory Meteorology Class
NASA Astrophysics Data System (ADS)
Marchese, P. J.; Bluestone, C.
2007-12-01
Active learning modules were introduced to the primarily minority population in the introductory meteorology class at Queensborough Community College (QCC). These activities were developed at QCC and other 4 year colleges and designed to reinforce basic meteorological concepts. The modules consisted of either Interactive Lecture Demonstrations (ILD) or discovery-based activities. During the ILD the instructor would describe an experiment that would be demonstrated in class. Students would predict what the outcome would be and compare their expected results to the actual outcome of the experiment. In the discovery-based activities students would learn about physical concepts by performing basic experiments. These activities differed from the traditional lab in that it avoided "cookbook" procedures and emphasized having the students learn about the concept using the scientific method. As a result of these activities student scores measuring conceptual understanding, as well as factual knowledge, increased as compared to student scores in a more affluent community college. Students also had higher self- efficacy scores. Lower scoring students demonstrated the greatest benefit, while the better students had little (or no) changes.
Furthering knowledge of seaweed growth and development to facilitate sustainable aquaculture.
Charrier, Bénédicte; Abreu, Maria Helena; Araujo, Rita; Bruhn, Annette; Coates, Juliet C; De Clerck, Olivier; Katsaros, Christos; Robaina, Rafael R; Wichard, Thomas
2017-12-01
Macroalgae (seaweeds) are the subject of increasing interest for their potential as a source of valuable, sustainable biomass in the food, feed, chemical and pharmaceutical industries. Compared with microalgae, the pace of knowledge acquisition in seaweeds is slower despite the availability of whole-genome sequences and model organisms for the major seaweed groups. This is partly a consequence of specific hurdles related to the large size of these organisms and their slow growth. As a result, this basic scientific field is falling behind, despite the societal and economic importance of these organisms. Here, we argue that sustainable management of seaweed aquaculture requires fundamental understanding of the underlying biological mechanisms controlling macroalgal life cycles - from the production of germ cells to the growth and fertility of the adult organisms - using diverse approaches requiring a broad range of technological tools. This Viewpoint highlights several examples of basic research on macroalgal developmental biology that could enable the step-changes which are required to adequately meet the demands of the aquaculture sector. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Contemporary concepts of dissociation.
Avdibegović, Esmina
2012-10-01
The concept of dissociation was developed in the late 19th century by Pierre Janet for conditions of "double consciousness" in hypnosis, hysteria, spirit possession and mediumship. He defined dissociation as a deficit in the capacity of integration of two or more different "systems of ideas and functions that constitute personality", and suggested that it can be related to a genetic component, to severe illness and fatigue, and particularly to experiencing adverse, potentially traumatizing events. By the late 20th century, various and often contradictory concepts of dissociation were suggested, which were either insufficient or exceedingly including when compared to the original idea. Currently, dissociation is used to describe a wide range of normal and abnormal phenomena as a process in which behaviour, thoughts and emotions can become separated one from another. A complete presentation of mechanisms involved in dissociation is still unknown. Scientific research on basic processes of dissociation is derived mainly from studies of hypnosis and post-traumatic stress disorder. Given the controversies in modern concepts of dissociation, some researchers and theorists suggest return to the original understanding of dissociation as a basic premise for the further development of the concept of dissociation.
"The instincts of motherhood: bringing joy back into newborn care".
Odent, Michel
2009-11-01
Although homo sapiens is equipped with subneocortical neuro-endocrine structures comparable to those of all mammals, there is no scientific curiosity about basic behaviours such as the maternal protective aggressive instinct or basic emotional states such as joy. A study of the fetus ejection reflex is an opportunity to present the rational control of the procreative drives as a by-product of human brain evolution, and to clarify the concepts of neocortical inhibitions and cultural conditioning. After referring to recent spectacular advances, we anticipate that in the near future several developing scientific disciplines will have the power to overcome the effects of thousands of years of socialisation of childbirth.
A simple model of hysteresis behavior using spreadsheet analysis
NASA Astrophysics Data System (ADS)
Ehrmann, A.; Blachowicz, T.
2015-01-01
Hysteresis loops occur in many scientific and technical problems, especially as field dependent magnetization of ferromagnetic materials, but also as stress-strain-curves of materials measured by tensile tests including thermal effects, liquid-solid phase transitions, in cell biology or economics. While several mathematical models exist which aim to calculate hysteresis energies and other parameters, here we offer a simple model for a general hysteretic system, showing different hysteresis loops depending on the defined parameters. The calculation which is based on basic spreadsheet analysis plus an easy macro code can be used by students to understand how these systems work and how the parameters influence the reactions of the system on an external field. Importantly, in the step-by-step mode, each change of the system state, compared to the last step, becomes visible. The simple program can be developed further by several changes and additions, enabling the building of a tool which is capable of answering real physical questions in the broad field of magnetism as well as in other scientific areas, in which similar hysteresis loops occur.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, Joseph; Savage, Martin J.; Gerber, Richard
Imagine being able to predict — with unprecedented accuracy and precision — the structure of the proton and neutron, and the forces between them, directly from the dynamics of quarks and gluons, and then using this information in calculations of the structure and reactions of atomic nuclei and of the properties of dense neutron stars (NSs). Also imagine discovering new and exotic states of matter, and new laws of nature, by being able to collect more experimental data than we dream possible today, analyzing it in real time to feed back into an experiment, and curating the data with fullmore » tracking capabilities and with fully distributed data mining capabilities. Making this vision a reality would improve basic scientific understanding, enabling us to precisely calculate, for example, the spectrum of gravity waves emitted during NS coalescence, and would have important societal applications in nuclear energy research, stockpile stewardship, and other areas. This review presents the components and characteristics of the exascale computing ecosystems necessary to realize this vision.« less
Slavkin, Harold C
2012-01-01
Science is the fuel for technology and the foundation for understanding the human condition. In dental education, as in all health professions, science informs a basic understanding of development, is essential to understand the structure and function of biological systems, and is prerequisite to understand and perform diagnostics, therapeutics, and clinical outcomes in the treatment of diseases and disorders. During the last seventy-five years, biomedical science has transformed from discipline-based scientists working on a problem to multidisciplinary research teams working to solve complex problems of significance to the larger society. Over these years, we witnessed the convergence of the biological and digital revolutions with clinical health care in medical, dental, pharmacy, nursing, and allied health care professional education. Biomedical science informs our understanding, from human genes and their functions to populations, health disparities, and the biosphere. Science is a "way of knowing," an international enterprise, a prerequisite for the health professions, and a calling and adventure to the curious mind. Science, the activity of doing science, is in the national self-interest, in the defense of a nation, and critical to the improvement of the human condition. In the words of Vannevar Bush, "science is the endless frontier."
Conceptual design of the scientific instrument arrangement for the large space telescope
NASA Technical Reports Server (NTRS)
Zurasky, J. L.
1974-01-01
A description of the scientific instrument arrangement for the large space telescope (LST) is given, with some of the rationale for selecting this concept. The first section of this report describes the basic configuration and was designed for an f/20 telescope focal plane. The subsequent LSTWG meeting held in November gave some redirection to the scientific requirements, and these changes are described in the section, Configuration Update.
ERIC Educational Resources Information Center
United Nations Educational, Scientific and Cultural Organization, Bangkok (Thailand). Principal Regional Office for Asia and the Pacific.
This collection of science activities is designed to supplement traditional science education by encompassing an issues-based approach to helping students develop scientific and technological literacy. Each unit can be used within an existing teaching sequence and includes an introduction specifying scientific issues and educational objectives, a…
Flow Cytometry Scientist | Center for Cancer Research
PROGRAM DESCRIPTION The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). KEY ROLES/RESPONSIBILITIES The Flow Cytometry Core (Flow Core) in the Cancer and Inflammation Program (CIP) is a service core which supports the research efforts of the CCR by providing expertise in the field of flow cytometry (using analyzers and sorters) with the goal of gaining a more thorough understanding of the biology of the immune system, cancer, and inflammation processes. The Flow Core provides service to 12-15 CIP laboratories and more than 22 non-CIP laboratories. Flow core staff provide technical advice on the experimental design of applications, which include immunological phenotyping, cell function assays, and cell cycle analysis. Work is performed per customer requirements, and no independent research is involved. The Flow Cytometry Scientist will be responsible for: Daily management of the Flow Cytometry Core, to include the supervision and guidance of technical staff members Monitor performance of and maintain high dimensional flow cytometer analyzers and cell sorters Operate high dimensional flow cytometer analyzers and cell sorters Provide scientific expertise to the user community and facilitate the development of cutting edge technologies Interact with Flow Core users and customers, and provide technical and scientific advice, and guidance regarding their experiments, including possible collaborations Train staff and scientific end users on the use of flow cytometry in their research, as well as teach them how to operate and troubleshoot the bench-top analyzer instruments Prepare and deliver lectures, as well as one-on-one training sessions, with customers/users Ensure that protocols are up-to-date, and appropriately adhered to Experience with sterile technique and tissue culture
The Notion of Scientific Knowledge in Biology
NASA Astrophysics Data System (ADS)
Morante, Silvia; Rossi, Giancarlo
2016-03-01
The purpose of this work is to reconsider and critically discuss the conceptual foundations of modern biology and bio-sciences in general, and provide an epistemological guideline to help framing the teaching of these disciplines and enhancing the quality of their presentation in High School, Master and Ph.D. courses. After discussing the methodological problems that arise in trying to construct a sensible and useful scientific approach applicable to the study of living systems, we illustrate what are the general requirements that a workable scheme of investigation should meet to comply with the principles of the Galilean method. The amazing success of basic physics, the Galilean science of election, can be traced back to the development of a radically " reductionistic" approach in the interpretation of experiments and a systematic procedure tailored on the paradigm of " falsifiability" aimed at consistently incorporating new information into extended models/theories. The development of bio-sciences seems to fit with neither reductionism (the deeper is the level of description of a biological phenomenon the more difficult looks finding general and simple laws), nor falsifiability (not always experiments provide a yes-or-no answer). Should we conclude that biology is not a science in the Galilean sense? We want to show that this is not so. Rather in the study of living systems, the novel interpretative paradigm of " complexity" has been developed that, without ever conflicting with the basic principles of physics, allows organizing ideas, conceiving new models and understanding the puzzling lack of reproducibility that seems to affect experiments in biology and in other modern areas of investigation. In the delicate task of conveying scientific concepts and principles to students as well as in popularising bio-sciences to a wider audience, it is of the utmost importance for the success of the process of learning to highlight the internal logical consistency of biology and its compliance with the fundamental laws of physics.
Klahr, David; Nigam, Milena
2004-10-01
In a study with 112 third- and fourth-grade children, we measured the relative effectiveness of discovery learning and direct instruction at two points in the learning process: (a) during the initial acquisition of the basic cognitive objective (a procedure for designing and interpreting simple, unconfounded experiments) and (b) during the subsequent transfer and application of this basic skill to more diffuse and authentic reasoning associated with the evaluation of science-fair posters. We found not only that many more children learned from direct instruction than from discovery learning, but also that when asked to make broader, richer scientific judgments, the many children who learned about experimental design from direct instruction performed as well as those few children who discovered the method on their own. These results challenge predictions derived from the presumed superiority of discovery approaches in teaching young children basic procedures for early scientific investigations.
NASA Astrophysics Data System (ADS)
Hoffmann, Achim; Mahidadia, Ashesh
The purpose of this chapter is to present fundamental ideas and techniques of machine learning suitable for the field of this book, i.e., for automated scientific discovery. The chapter focuses on those symbolic machine learning methods, which produce results that are suitable to be interpreted and understood by humans. This is particularly important in the context of automated scientific discovery as the scientific theories to be produced by machines are usually meant to be interpreted by humans. This chapter contains some of the most influential ideas and concepts in machine learning research to give the reader a basic insight into the field. After the introduction in Sect. 1, general ideas of how learning problems can be framed are given in Sect. 2. The section provides useful perspectives to better understand what learning algorithms actually do. Section 3 presents the Version space model which is an early learning algorithm as well as a conceptual framework, that provides important insight into the general mechanisms behind most learning algorithms. In section 4, a family of learning algorithms, the AQ family for learning classification rules is presented. The AQ family belongs to the early approaches in machine learning. The next, Sect. 5 presents the basic principles of decision tree learners. Decision tree learners belong to the most influential class of inductive learning algorithms today. Finally, a more recent group of learning systems are presented in Sect. 6, which learn relational concepts within the framework of logic programming. This is a particularly interesting group of learning systems since the framework allows also to incorporate background knowledge which may assist in generalisation. Section 7 discusses Association Rules - a technique that comes from the related field of Data mining. Section 8 presents the basic idea of the Naive Bayesian Classifier. While this is a very popular learning technique, the learning result is not well suited for human comprehension as it is essentially a large collection of probability values. In Sect. 9, we present a generic method for improving accuracy of a given learner by generatingmultiple classifiers using variations of the training data. While this works well in most cases, the resulting classifiers have significantly increased complexity and, hence, tend to destroy the human readability of the learning result that a single learner may produce. Section 10 contains a summary, mentions briefly other techniques not discussed in this chapter and presents outlook on the potential of machine learning in the future.
Jaffe, Klaus; Caicedo, Mario; Manzanares, Marcos; Gil, Mario; Rios, Alfredo; Florez, Astrid; Montoreano, Claudia; Davila, Vicente
2013-01-01
Scientific productivity of middle income countries correlates stronger with present and future wealth than indices reflecting its financial, social, economic or technological sophistication. We identify the contribution of the relative productivity of different scientific disciplines in predicting the future economic growth of a nation. Results show that rich and poor countries differ in the relative proportion of their scientific output in the different disciplines: countries with higher relative productivity in basic sciences such as physics and chemistry had the highest economic growth in the following five years compared to countries with a higher relative productivity in applied sciences such as medicine and pharmacy. Results suggest that the economies of middle income countries that focus their academic efforts in selected areas of applied knowledge grow slower than countries which invest in general basic sciences.
Preparing manuscript: Scientific writing for publication.
Bajwa, Sukhminder Jit Singh; Sawhney, Chhavi
2016-09-01
Publication has become a burning issue among Indian medical fraternity owing to certain academic and professional necessities. The large number of submissions to the anaesthesia journals has resulted in accumulation of too much below average scientific material. A properly written manuscript is the dream of every editor and reviewer. The art of preparing a manuscript can be acquired only by following certain basic rules and technical aspects, besides knowledge and skills. Before preparing the manuscript, a target journal should be considered. All the instructions to the authors pertaining to that particular journal should be followed meticulously before preparing the manuscript for submission. The basic structure of the manuscript to be followed can be summarised by the acronym IMRaD (introduction, methods, results and discussion). The current review article aims to highlight all those mandatory and desirable features which should be kept in consideration while preparing a scientific manuscript for publication.
Ninth Grade Students' Understanding of The Nature of Scientific Knowledge
ERIC Educational Resources Information Center
Kilic, Kerem; Sungur, Semra; Cakiroglu, Jale; Tekkaya, Ceren
2005-01-01
The purpose of this study was to investigate the 9th-grade students' understandings of the nature of scientific knowledge. The study also aimed to investigate the differences in students' understanding of the nature of scientific knowledge by gender, and school types. A total of 575 ninth grade students from four different school types (General…
Public understanding of science is not scientific literacy
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGowan, A.
1995-12-31
The author notes that public understanding of science has, in many quarters, been taken over by the wrong notion of scientific literacy. The need for the scientific community to develop the language that speaks to the public in general is explored. Methodologies to improve communication to the general public and increase their understanding with clearly developed metaphors are examined.
The Model-Based View of Scientific Theories and the Structuring of School Science Programmes
ERIC Educational Resources Information Center
Develaki, Maria
2007-01-01
Model theory in contemporary philosophy of science interprets scientific theories as sets of models, and contributes significantly to the understanding of the relation between theories, models, and the real world. The clarification of this relation is fundamental for the understanding of the nature of scientific methods and scientific knowledge…
ERIC Educational Resources Information Center
Robertshaw, Brooke; Campbell, Todd
2013-01-01
As western society becomes increasingly reliant on scientific information to make decisions, citizens must be equipped to understand how scientific arguments are constructed. In order to do this, pre-service teachers must be prepared to foster students' abilities and understandings of scientific argumentation in the classroom. This study…
Investigating the Impact on Skill Development of an Undergraduate Scientific Research Skills Course
ERIC Educational Resources Information Center
Yeoman, Kay H.; Zamorski, Barbara
2008-01-01
This paper describes the design and subsequent impact of a scientific research skills course. Student understanding of the university research environment, their confidence in finding and using scientific literature and in scientific writing and presentation pre- and post-course was investigated. The findings suggested that understanding of the…
NASA Astrophysics Data System (ADS)
Smith, Shirley Mccraw
2003-06-01
The purpose of this research was to investigate students' understanding of interdependency across grade levels. Interdependency concepts selected for this study included food chains, pollination, and seed dispersal. Children's everyday concepts and scientific concepts across grade levels represented the focus of conceptual understanding. The researcher interviewed a total of 24 students across grade levels, six students each from grades 3, 7, and 10, and 6 college students. Data were collected by means of interviews and card sorts. A constructivist theoretical framework formed the groundwork for presenting the focus of this study and for interpreting the results of the interview data. Results were analyzed on the basis of identifying student responses to interview questions as either everyday concepts or as scientific concepts, along with transition through the zone of proximal development (ZPD) by mediation, as developed by Vygotsky. Results revealed that children across grade levels vary in their everyday and scientific understanding of the three interdependency concepts. Results for seed dispersal showed little evidence of understanding for grade 3, that is, seed dispersal was not within the zone of proximal development (ZPD) for grade 3 students. Students in grades 7 and 10 showed a developing transition within the zone of proximal development from everyday to scientific understanding, and college students demonstrated scientific understanding of seed dispersal. For pollination and food chains, results showed that grades 3, 7, and 10 were in transition from everyday to scientific understanding, and all college students demonstrated scientific understanding. The seed dispersal concept proved more complex than pollination and food chains. The findings of this study have implications for classroom teachers. By understanding the dynamic nature of the ZPD continuum for students, teachers can plan instruction to meet the needs of each student.
Basic Scientific and Engineering Research at U.S. Universities. AAU Data & Policy Brief. No. 1
ERIC Educational Resources Information Center
Association of American Universities, 2015
2015-01-01
"Discovery," wrote William Press in a 2013 article in "Science," "leads to technology and invention, which lead to new products, jobs, and industries." Basic, curiosity-driven research continually expands the boundaries of knowledge across fields, providing insights that enrich lives. Such research helps drive the…
THE DEVELOPING CLIMATE FOR READING RESEARCH--PROGRAMS VS. PROJECTS.
ERIC Educational Resources Information Center
ADAMS, RICHARD B.; PENNEY, MONTE
PROGRAMMATIC RESEARCH IS DISCUSSED AS ONE OF THE BASIC NEEDS OF READING RESEARCH. OTHER NEEDS ARE--(1) FOR BASIC RESEARCH THAT FOCUSES ON THE READING PROCESS, (2) FOR LEADERSHIP THAT VALUES SCIENTIFIC OBJECTIVITY AND INTELLECTUAL HONESTY, AND (3) TO INFORM AND CONVINCE THE PUBLIC OF THE POSSIBLE CONTRIBUTIONS OF READING RESEARCH. PROGRAMMATIC…
Teaching energy using an integrated science approach
NASA Astrophysics Data System (ADS)
Poggi, Valeria; Miceli, Cristina; Testa, Italo
2017-01-01
Despite its relevance to all scientific domains, the debate surrounding the teaching of energy is still open. The main point remains the problems students have in understanding some aspects of the energy concept and in applying their knowledge to the comprehension of natural phenomena. In this paper, we present a research-based interdisciplinary approach to the teaching of energy in which the first and second laws of thermodynamics were used to interpret physical, chemical and biological processes. The contents of the three disciplines (physics, chemistry, biology) were reconstructed focusing on six basic aspects of energy (forms, transfer, transformation, conservation, degradation, and entropy) and using common teaching methodologies. The module was assessed with 39 secondary school students (aged 15-16) using a 30-question research instrument and a treatment/control group methodology. Analysis of students’ learning outcomes suggests a better understanding of the energy concept, supporting the effectiveness of an interdisciplinary approach in the teaching of energy in physics and science in general. Implications for the teaching of energy are briefly discussed.
Kirlian Photography as a Teaching Tool of Physics
NASA Astrophysics Data System (ADS)
Terrel, Andy; Thacker, Beth Ann, , Dr.
2002-10-01
There are a number of groups across the country working on redesigning introductory physics courses by incorporating physics education research, modeling, and making the courses appeal to students in broader fields. We spent the summer exploring Kirlian photography, a subject that can be understood by students with a basic comprehension of electrostatics but is still questioned by many people in other fields. Kirlian photography's applications have captivated alternative medicine but still requires research from both physics and biology to understand if it has potential as medical tool. We used a simple setup to reproduce the physics that has been done to see if it could be used in an educational setting. I will demonstrate how Kirlian photography can be explained by physics but also how the topic still needs research to completely understand its possible biological applications. By incorporating such a topic into a curriculum, one is able to teach students to explore supposed supernatural phenomena scientifically and to promote research among undergraduate students.
Emerging Therapies for Scar Prevention
Block, Lisa; Gosain, Ankush; King, Timothy W.
2015-01-01
Significance: There are ∼12 million traumatic lacerations treated in the United States emergency rooms each year, 250 million surgical incisions created worldwide every year, and 11 million burns severe enough to warrant medical treatment worldwide. In the United States, over $20 billion dollars per year are spent on the treatment and management of scars. Recent Advances: Investigations into the management of scar therapies over the last decade have advanced our understanding related to the care of cutaneous scars. Scar treatment methods are presented including topical, intralesional, and mechanical therapies in addition to cryotherapy, radiotherapy, and laser therapy. Critical Issues: Current treatment options for scars have significant limitations. This review presents the current and emerging therapies available for scar management and the scientific evidence for scar management is discussed. Future Directions: Based upon our new understanding of scar formation, innovative scar therapies are being developed. Additional research on the basic science of scar formation will lead to additional advances and novel therapies for the treatment of cutaneous scars. PMID:26487979
NASA Astrophysics Data System (ADS)
Lebedev, A. A.; Ivanova, E. G.; Komleva, V. A.; Klokov, N. M.; Komlev, A. A.
2017-01-01
The considered method of learning the basics of microelectronic circuits and systems amplifier enables one to understand electrical processes deeper, to understand the relationship between static and dynamic characteristics and, finally, bring the learning process to the cognitive process. The scheme of problem-based learning can be represented by the following sequence of procedures: the contradiction is perceived and revealed; the cognitive motivation is provided by creating a problematic situation (the mental state of the student), moving the desire to solve the problem, to raise the question "why?", the hypothesis is made; searches for solutions are implemented; the answer is looked for. Due to the complexity of architectural schemes in the work the modern methods of computer analysis and synthesis are considered in the work. Examples of engineering by students in the framework of students' scientific and research work of analog circuits with improved performance based on standard software and software developed at the Department of Microelectronics MEPhI.
NASA Astrophysics Data System (ADS)
Vespignani, Alessandro
From schools of fish and flocks of birds, to digital networks and self-organizing biopolymers, our understanding of spontaneously emergent phenomena, self-organization, and critical behavior is in large part due to complex systems science. The complex systems approach is indeed a very powerful conceptual framework to shed light on the link between the microscopic dynamical evolution of the basic elements of the system and the emergence of oscopic phenomena; often providing evidence for mathematical principles that go beyond the particulars of the individual system, thus hinting to general modeling principles. By killing the myth of the ant queen and shifting the focus on the dynamical interaction across the elements of the systems, complex systems science has ushered our way into the conceptual understanding of many phenomena at the core of major scientific and social challenges such as the emergence of consensus, social opinion dynamics, conflicts and cooperation, contagion phenomena. For many years though, these complex systems approaches to real-world problems were often suffering from being oversimplified and not grounded on actual data...
Are you afraid of the dark? Notes on the psychology of belief in histories of science and the occult
Sommer, Andreas
2016-01-01
Abstract The popular view of the inherent conflict between science and the occult has been rendered obsolete by recent advances in the history of science. Yet, these historiographical revisions have gone unnoticed in the public understanding of science and public education at large. Particularly, reconstructions of the formation of modern psychology and its links to psychical research can show that the standard view of the latter as motivated by metaphysical bias fails to stand up to scrutiny. After highlighting certain basic methodological maxims shared by psychotherapists and historians, I will try to counterbalance simplistic claims of a ‘need to believe’ as a precondition of scientific open-mindedness regarding the occurrence of parapsychological phenomena by discussing instances revealing a presumably widespread ‘will to disbelieve’ in the occult. I shall argue that generalized psychological explanations are only helpful in our understanding of history if we apply them in a symmetrical manner. PMID:27226762
Towards new understanding of the heart structure and function.
Torrent-Guasp, Francisco; Kocica, Mladen J; Corno, Antonio F; Komeda, Masashi; Carreras-Costa, Francesc; Flotats, A; Cosin-Aguillar, Juan; Wen, Han
2005-02-01
Structure and function in any organ are inseparable categories, both in health and disease. Whether we are ready to accept, or not, many questions in cardiovascular medicine are still pending, due to our insufficient insight in the basic science. Even so, any new concept encounters difficulties, mainly arising from our inert attitude, which may result either in unjustified acceptance or denial. The ventricular myocardial band concept, developed over the last 50 years, has revealed unavoidable coherence and mutual coupling of form and function in the ventricular myocardium. After more than five centuries long debate on macroscopic structure of the ventricular myocardium, this concept has provided a promising ground for its final understanding. Recent validations of the ventricular myocardial band, reviewed here, as well as future research directions that are pointed out, should initiate much wider scientific interest, which would, in turn, lead to reconciliation of some exceeded concepts about developmental, electrical, mechanical and energetical events in human heart. The benefit of this, of course, would be the most evident in the clinical arena.
Beyond 100 Tesla: Scientific experiments using single-turn coils
NASA Astrophysics Data System (ADS)
Portugall, Oliver; Solane, Pierre Yves; Plochocka, Paulina; Maude, Duncan K.; Nicholas, Robin J.
2013-01-01
Current opportunities and recent examples for research in magnetic fields well above 100 T using single-turn coils are discussed. After a general introduction into basic principles and technical constraints associated with the generation of Megagauss fields we discuss data obtained at the LNCMI Toulouse, where such fields are routinely used for scientific applications.
Faculty Forum: HOMER as an Acronym for the Scientific Method
ERIC Educational Resources Information Center
Lakin, Jessica L.; Giesler, R. Brian; Morris, Kathryn A.; Vosmik, Jordan R.
2007-01-01
Mnemonic strategies, such as acronyms, effectively increase student retention of course material. We present an acronym based on a popular television character to help students remember the basic steps in the scientific method. Our empirical evaluation of the acronym revealed that students found it to be enjoyable, useful, and worthy of use in…
Principled Practical Knowledge: Not a Bridge but a Ladder
ERIC Educational Resources Information Center
Bereiter, Carl
2014-01-01
The much-lamented gap between theory and practice in education cannot be filled by practical knowledge alone or by explanatory knowledge alone. Principled practical knowledge (PPK) is a type of knowledge that has characteristics of both practical know-how and scientific theory. Like basic scientific theory, PPK meets standards of explanatory…
Scientific Self-Defense: Transforming Dewey's Idea of Technological Transparency
ERIC Educational Resources Information Center
Waddington, David I.
2010-01-01
In this essay, David Waddington provides a basic outline of John Dewey's often-overlooked views on technology education and explores how these ideas could be updated productively for use in contemporary contexts. Some of the shortcomings of Dewey's ideas are also examined--his faith in the scientific method may have been excessive, and some…
Literature and Bibliography of the Social Sciences.
ERIC Educational Resources Information Center
Freides, Thelma
The first part of this work sets forth some basic points concerning the nature of scientific work and the meaning of knowledge in science, and the patterns of organization and communication characteristic of the scientific world. It considers the ways in which the attributes of science manifest themselves in the social sciences and describes,…
78 FR 65343 - Center for Scientific Review; Amended Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-31
...; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the Center for Scientific Review Special Emphasis Panel, Revision Applications for Basic, Social and Behavioral Research on the Social, Cultural, Biological and Psychological Mechanisms of Stigma, October 20, 2013, 6:00 p.m. to...
General Science, Ninth Grade: Theme I and Theme II. Experimental.
ERIC Educational Resources Information Center
New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.
This document was designed to assist teachers who are helping ninth grade students in New York City learn scientific concepts. In addition, the guide emphasizes basic reasoning skills which underlie problem-solving processes in scientific and nonscientific disciplines. The first section of the guide contains lessons on what a scientist does,…
Scientific and Technical Information Transfer for Education (STITE). Research Report No. 2.
ERIC Educational Resources Information Center
Zunde, Pranas
STITE (Scientific and Technical Information Transfer for Education) is basically a system to interface between science information and the science learner. As such STITE acts as a link between STIC (Science and Technology Infromation Centers) and LIS (Learning Information Systems). In this second progress report the internal knowledge of STITE is…
Basic Training Programme for Library Technicians in Mexico.
ERIC Educational Resources Information Center
Vilentchuk, Lydia
The Consejo Nacional de Ciencia y Tecnologia (CONACYT), set up in 1971 to further scientific and technological advancement in Mexico, commissioned this determination of the steps necessary to promote the use of libraries and recorded scientific and technical information, and to foster the reading habits of the population. A brief overview examines…
Predictors of scientific understanding of middle school students
NASA Astrophysics Data System (ADS)
Strate, Joshua Matthew
The purpose of this study was to determine if middle school student scientific understanding could be predicted by the variables: standardized 5th grade score in science, standardized 5th grade score in mathematics, standardized 5th grade score in reading, student attitude towards science, socioeconomic status, gender, and ethnicity. The areas of the comprehensive literature review were trends in science learning and teaching, research in the K-12 science education arena, what factors have influenced K-12 science education, scientific understanding, what research has been done on K-12 scientific understanding, and what factors have influenced science understanding in the K-12 arenas. Based on the results of the literature review, the researcher of this study examined a sample of middle school 8th grade students. An Attitude Towards Science Survey (SATS) Simpson & Oliver (1990) and a Survey of Scientific Understandings (Klapper, DeLucia, & Trent, 1993) were administered to these 116 middle school 8th grade students drawn from a total population of 1109 who attend this middle school in a typical county in Florida during the 2010- 2011 school year. Multiple linear regression analysis was used to test each sub-hypothesis and to provide a model that attempted to predict student scientific understanding. Seven null sub-hypotheses were formed to determine if there were significant relationships between student scientific understanding and the abovementioned variables. The results of the tests of the seven null sub-hypotheses showed that the sub-hypothesis that involved socioeconomic status was rejected, which indicated that the socioeconomic status of a family does influence the level of scientific understanding of a student. Low SES students performed lower on the scientific understanding survey, on average, than high SES students. This study can be a source of information for teachers in low-income schools by recognizing potential areas of concern for low-income students in their science classrooms. The study is also a guide for administrators in developing science curriculum that is designed to remediate critical science content. Recommendations, further research, and implications for stakeholders in the science education process are then identified in order to focus on the concerns that these stakeholders need to address through a needs assessment.
NASA Astrophysics Data System (ADS)
Castle, Margaret Ann
A number of reports have raised a concern that the U.S. is not meeting the demands of 21st century skill preparation of students, teachers, and practitioners in the areas of science, technology, engineering, and mathematics (STEM). In 2005 and 2006 five reports were released indicating a need for improvement in science and mathematics education in the U.S. The reports were: Keeping America Competitive: Five Strategies To Improve Mathematics and Science Education (Coble & Allen, 2005); National Defense Education and Innovation Initiative: Meeting America's Economic and Security Challenges in the 21st Century (The Association of American Universities, 2006); Rising Above the Gathering Storm: Energizing and Employing America for a Brighter Economic Future (National Academies Press, 2007); Tapping America's Potential: The Education for Innovation Initiative (Business Roundtable Taskforce , 2005); and Waiting for Sputnik: Basic Research and Strategic Competition (Lewis, 2005). Consensus of data in these reports indicates that the U.S., as compared to other industrialized nations, does not fare very well in science achievement and STEM degree attainment. For example, on the 2003 Program for International Assessment (PISA), 15-year-old students in the U.S. ranked 28th in math and 24th in science literacy (Kuenzi, Matthews, & Mangon, 2006). Furthermore, the U.S. ranked 20th among all nations in the proportion of 24-year-olds who earned degrees in natural sciences or engineering (Kuenzi, 2008). As a result, if the U.S. is to remain scientifically and technologically competitive in the world, it is necessary to increase our efforts to incorporate scientific practices associated with science, technology, engineering, and mathematics into the science classroom. Middle school is a critical point in students' science education and it is in middle school that they begin to dislike science. Research indicates that when students learn science through inquiry their interest in and understanding of science increases (Akkus, Gunel & Hand, 2007; Gibson, 2002; Liu, Lee & Linn, 2010). As a result, it is important to explore middle school science teachers' definition of science as inquiry because of its importance in how their understandings are reflected in their practice. Researchers must witness, first- hand, what is taking place in middle school science classrooms with respect to the teaching of scientific inquiry before recommendations for improvements can be made. We must also allow opportunities for middle school science teachers to broach, examine, explore, interpret and report implementation strategies when practicing the elements of scientific inquiry as a science content area. It then stands to reason that more research needs to be done to: (1) assess teachers' knowledge related to reform-based teaching, (2) investigate teachers' views about the goals and purposes of inquiry, and (3) investigate the processes by which teachers carry out SI and motivation for undertaking such a complex and difficult to manage form of instruction. The purpose of this study was to examine middle school science teachers' understandings and skills related to scientific inquiry; how those understandings and skills were translated into classroom practice, and the role the school district played in the development of such understandings and skills.
Socorro Students Translate NRAO Web Pages Into Spanish
NASA Astrophysics Data System (ADS)
2002-07-01
Six Socorro High School students are spending their summer working at the National Radio Astronomy Observatory (NRAO) on a unique project that gives them experience in language translation, World Wide Web design, and technical communication. Under the project, called "Un puente a los cielos," the students are translating many of NRAO's Web pages on astronomy into Spanish. "These students are using their bilingual skills to help us make basic information about astronomy and radio telescopes available to the Spanish-speaking community," said Kristy Dyer, who works at NRAO as a National Science Foundation postdoctoral fellow and who developed the project and obtained funding for it from the National Aeronautics and Space Administration. The students are: Daniel Acosta, 16; Rossellys Amarante, 15; Sandra Cano, 16; Joel Gonzalez, 16; Angelica Hernandez, 16; and Cecilia Lopez, 16. The translation project, a joint effort of NRAO and the NM Tech physics department, also includes Zammaya Moreno, a teacher from Ecuador, Robyn Harrison, NRAO's education officer, and NRAO computer specialist Allan Poindexter. The students are translating NRAO Web pages aimed at the general public. These pages cover the basics of radio astronomy and frequently-asked questions about NRAO and the scientific research done with NRAO's telescopes. "Writing about science for non-technical audiences has to be done carefully. Scientific concepts must be presented in terms that are understandable to non-scientists but also that remain scientifically accurate," Dyer said. "When translating this type of writing from one language to another, we need to preserve both the understandability and the accuracy," she added. For that reason, Dyer recruited 14 Spanish-speaking astronomers from Argentina, Mexico and the U.S. to help verify the scientific accuracy of the Spanish translations. The astronomers will review the translations. The project is giving the students a broad range of experience. "They are getting hands-on experience in language translation, in Web design and computer science, and learning some astronomy as well," said Dyer. "This is a challenging project, but these students are meeting the challenge well," she added. The students are enthusiastic. "I've always been interested in stars and space, and I love working with computers," said Amarante. "We are pleased that these local students are using their skills to enhance our public-education efforts," said NRAO's director of New Mexico operations James Ulvestad. "Our Web site is one of our best tools for informing the public about astronomy and the work done at our observatory. This translation project now allows us to reach an important new audience," Ulvestad added. The students began the project in June and will complete the effort on July 26. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldo, Marc
"Excited about Excitons" was submitted by the Center for Excitonics (CE) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was selected as one of five winners by a distinguished panel of judges for its "outstanding portrayal of young scientists". The Center for Excitonics (CE), an EFRC directed by Marc Baldo at the Massachusetts Institute of Technology (MIT) is a partnership of scientists from three institutions: MITmore » (lead), Brookhaven National Laboratory, and Harvard University. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Excitonics (CE) is 'to understand the transport of charge carriers in synthetic disordered systems, which hold promise as new materials for conversion of solar energy to electricity and electrical energy storage.' Research topics are: solar photovoltaic, photonic, solid state lighting, photosynthesis, novel materials synthesis, charge transport, defect tolerant materials, scalable processing, and self-assembly.« less
The 12th International Workshops on Opportunistic Protists (IWOP-12)
Weiss, Louis M.; Cushion, Melanie T.; Didier, Elizabeth; Xiao, Lihua; Marciano-Cabral, Francine; Sinai, Anthony P.; Matos, Olga; Calderon, Enrique J.; Kaneshiro, Edna S.
2013-01-01
The 12th International Workshops on Opportunistic Protists (IWOP-12) was held in August 2012 in Tarrytown, New York. The objectives of the IWOP meetings are to: (1) serve as a forum for exchange of new information among active researchers concerning the basic biology, molecular genetics, immunology, biochemistry, pathogenesis, drug development, therapy, and epidemiology of these immunodeficiency-associated pathogenic eukaryotic microorganisms that are seen in patients with AIDS and (2) foster the entry of new and young investigators into these underserved research areas. The IWOP meeting focuses on opportunistic protists, e.g. the free-living amoebae, Pneumocystis, Cryptosporidium, Toxoplasma, the Microsporidia, and kinetoplastid flagellates. This conference represents the major conference that brings together research groups working on these opportunistic pathogens. Slow but steady progress is being achieved on understanding the biology of these pathogenic organisms, their involvement in disease causation in both immune-deficient and immune-competent hosts, and is providing critical insights into these emerging and reemerging pathogens. This IWOP meeting demonstrated the importance of newly developed genomic level information for many of these pathogens and how analysis of such large data sets is providing key insights into the basic biology of these organisms. A great concern is the loss of scientific expertise and diversity in the research community due to the ongoing decline in research funding. This loss of researchers is due to the small size of many of these research communities and a lack of appreciation by the larger scientific community concerning the state of art and challenges faced by researchers working on these organisms. PMID:23560871
Rocca, Elena; Andersen, Fredrik
2017-08-14
Scientific risk evaluations are constructed by specific evidence, value judgements and biological background assumptions. The latter are the framework-setting suppositions we apply in order to understand some new phenomenon. That background assumptions co-determine choice of methodology, data interpretation, and choice of relevant evidence is an uncontroversial claim in modern basic science. Furthermore, it is commonly accepted that, unless explicated, disagreements in background assumptions can lead to misunderstanding as well as miscommunication. Here, we extend the discussion on background assumptions from basic science to the debate over genetically modified (GM) plants risk assessment. In this realm, while the different political, social and economic values are often mentioned, the identity and role of background assumptions at play are rarely examined. We use an example from the debate over risk assessment of stacked genetically modified plants (GM stacks), obtained by applying conventional breeding techniques to GM plants. There are two main regulatory practices of GM stacks: (i) regulate as conventional hybrids and (ii) regulate as new GM plants. We analyzed eight papers representative of these positions and found that, in all cases, additional premises are needed to reach the stated conclusions. We suggest that these premises play the role of biological background assumptions and argue that the most effective way toward a unified framework for risk analysis and regulation of GM stacks is by explicating and examining the biological background assumptions of each position. Once explicated, it is possible to either evaluate which background assumptions best reflect contemporary biological knowledge, or to apply Douglas' 'inductive risk' argument.
Marine Atmospheric Corrosion of Carbon Steel: A Review.
Alcántara, Jenifer; Fuente, Daniel de la; Chico, Belén; Simancas, Joaquín; Díaz, Iván; Morcillo, Manuel
2017-04-13
The atmospheric corrosion of carbon steel is an extensive topic that has been studied over the years by many researchers. However, until relatively recently, surprisingly little attention has been paid to the action of marine chlorides. Corrosion in coastal regions is a particularly relevant issue due the latter's great importance to human society. About half of the world's population lives in coastal regions and the industrialisation of developing countries tends to concentrate production plants close to the sea. Until the start of the 21st century, research on the basic mechanisms of rust formation in Cl - -rich atmospheres was limited to just a small number of studies. However, in recent years, scientific understanding of marine atmospheric corrosion has advanced greatly, and in the authors' opinion a sufficient body of knowledge has been built up in published scientific papers to warrant an up-to-date review of the current state-of-the-art and to assess what issues still need to be addressed. That is the purpose of the present review. After a preliminary section devoted to basic concepts on atmospheric corrosion, the marine atmosphere, and experimentation on marine atmospheric corrosion, the paper addresses key aspects such as the most significant corrosion products, the characteristics of the rust layers formed, and the mechanisms of steel corrosion in marine atmospheres. Special attention is then paid to important matters such as coastal-industrial atmospheres and long-term behaviour of carbon steel exposed to marine atmospheres. The work ends with a section dedicated to issues pending, noting a series of questions in relation with which greater research efforts would seem to be necessary.
NASA Astrophysics Data System (ADS)
Lei, Bing; Liu, Wei; Shi, Jianhua; Yao, Tianfu; Wang, Wei; Hu, Haojun
2017-08-01
The Students Innovation Training Program (SITP) has become an effective method to impel the teaching reform and improve undergraduate's innovative practical ability in Chinese colleges and universities, which is quite helpful for students to understand the social requirement, to grasp the basic means of scientific research and to improve their innovative practical ability and team work spirit. In this paper, three problems have been analyzed and discussed based on our organizing and instructing experience of SITP in recent years. Firstly, the SITP is a synthetically training project, and it is quite suitable to cultivate the students' innovative practical ability. Because SITP is similar to the real scientific research activity, and both of them include the steps of project application, solution design, research implementation and project summary etc. By making great efforts to these basic training steps, the undergraduates' innovative practical ability has been improved systemically. Secondly, a new talents cultivation system has been constructed based on SITP by integrating the subject competitions, graduation design and other conventional training activities, which is quite good to improve the training quality and decrease the total training class hours. Thirdly, a series of long-term effective operation and management guidelines have been established to ensure the SITP work normally, including doing a good job of project evaluation, setting up a reward and punishment system and creating a good atmosphere for innovation. In conclusion, great efforts have been made to enhance undergraduates' innovative ability, and the research results will provide useful reference for improving the training effects and reforming talents cultivating mode further.
Data Processing Courses in High Schools?
ERIC Educational Resources Information Center
Reese, Don
1970-01-01
It is more important for students to have an understanding of basic fundamentals such as English, mathematics, social studies, and basic business understandings than a superficial understanding of data processing equipment and its operation. (Editor)
Questioning the Evidence for a Claim in a Socio-Scientific Issue: An Aspect of Scientific Literacy
ERIC Educational Resources Information Center
Roberts, Ros; Gott, Richard
2010-01-01
Understanding the science in a "socio-scientific issue" is at the heart of the varied definitions of "scientific literacy". Many consider that understanding evidence is necessary to participate in decision making and to challenge the science that affects people's lives. A model is described that links practical work,…
Vuckovic-Dekic, L; Gavrilovic, D; Kezic, I; Bogdanovic, G; Brkic, S
2012-01-01
To determine the impact of the short science ethics courses on the knowledge of basic principles of responsible conduct of research (RCR), and on the attitude toward scientific fraud among young biomedical researchers. A total of 361 attendees of the course on science ethics answered a specially designed anonymous multiple- choice questionnaire before and after a one-day course in science ethics. The educational course consisted of 10 lectures: 1) Good scientific practice - basic principles; 2) Publication ethics; 3) Scientific fraud - fabrication, falsification, plagiarism; 4) Conflict of interests; 5) Underpublishing; 6) Mentorship; 7) Authorship; 8) Coauthorship; 9) False authorship; 10) Good scientific practice - ethical codex of science. In comparison to their answers before the course, a significantly higher (p<0.001) number of students qualified their knowledge of science ethics as sufficient after the course was completed. That the wrongdoers deserve severe punishment for all types of scientific fraud, including false authorship, thought significantly (p<0.001) more attendees than before the course, while notably fewer attendees (p<0.001) would give or accept undeserved authorship Even a short course in science ethics had a great impact on the attendees, enlarging their knowledge of responsible conduct of research and changing their previous, somewhat opportunistic, behavior regarding the reluctance to react publicly and punish the wrongdoers.
NASA Astrophysics Data System (ADS)
Rusli, Aloysius
2016-08-01
Until the 1980s, it is well known and practiced in Indonesian Basic Physics courses, to present physics by its effective technicalities: The ideally elastic spring, the pulley and moving blocks, the thermodynamics of ideal engine models, theoretical electrostatics and electrodynamics with model capacitors and inductors, wave behavior and its various superpositions, and hopefully closed with a modern physics description. A different approach was then also experimented with, using the Hobson and Moore texts, stressing the alternative aim of fostering awareness, not just mastery, of science and the scientific method. This is hypothesized to be more in line with the changed attitude of the so-called Millenials cohort who are less attentive if not interested, and are more used to multi-tasking which suits their shorter span of attention. The upside is increased awareness of science and the scientific method. The downside is that they are getting less experience of the scientific method which intensely bases itself on critical observation, analytic thinking to set up conclusions or hypotheses, and checking consistency of the hypotheses with measured data. Another aspect is recognition that the human person encompasses both the reasoning capacity and the mental- spiritual-cultural capacity. This is considered essential, as the world grows even smaller due to increased communication capacity, causing strong interactions, nonlinear effects, and showing that value systems become more challenging and challenged due to physics / science and its cosmology, which is successfully based on the scientific method. So students should be made aware of the common basis of these two capacities: the assumptions, the reasoning capacity and the consistency assumption. This shows that the limits of science are their set of basic quantifiable assumptions, and the limits of the mental-spiritual-cultural aspects of life are their set of basic metaphysical (non-quantifiable) assumptions. The bridging between these two human aspects of life, can lead to a “why” of science, and a “meaning” of life. A progress report on these efforts is presented, essentially being of the results indicated by an extended format of the usual weekly reporting used previously in Basic Physics lectures.
Acceptance of mixed scientific and clinical activities in a sub-speciality urology meeting.
Buchholz, Noor N P; El Howairis, Mohammed El Fatih; Durner, Leopold; Harry, Damiete; Kachrilas, Stefanos; Rodgers, Allen L; Hakenberg, Oliver
2015-04-01
Basic urolithiasis research into the causes for stone formation has been stagnating for a long time. Emergence of effective stone treatment modalities has shifted the public and clinicians' focus away from basic research towards symptomatic treatment solutions. This has occurred in spite of urolithiasis being a highly recurrent disease with an enormous socio-economic impact warranting a prophylactic and recurrence-preventing approach. An integrated, multidisciplinary translational platform has been developed in the form of urolithiasis meetings bringing together urologists, radiologists, nephrologists, basic scientists, dieticians and other stake holders interested in stone disease, for an exchange of knowledge, mutual education and understanding, and professional networking. Traditionally, such combined meetings are split into sessions addressing the specific interests of clinicians and scientists. At the recent Experts in Stone Disease Symposium we devised and implemented a program which mixed clinical and basic science activities throughout. We interviewed delegates between sessions regarding their acceptance of this novel concept using a standardized questionnaire. Sessions were well-attended, alleviating our initial anxiety that delegates would not appreciate a "no-choice" program. Of the 74 delegates who were interviewed, 60 (81%) were urologists, and 14 (19%) were non-urologists such as nephrologists, dieticians, and students. This is representative of the overall distribution of delegates at the conference. 71% felt that a closer co-operation and understanding between clinicians and scientists will ultimately benefit both groups, as well as patients; 95% found the mixed session approach beneficial, with half appreciating it as very good and innovative; 94% believed that they had derived useful learnings from the "other side"; 94% found that such mixed sessions are useful for their future work and understanding of the urolithiasis field as a whole; 94% agreed that mixed meetings of this type are useful in enhancing networking between the different stake holders in urolithiasis treatment and research. Finally, 85% would like to visit future mixed session meetings, and 89% would encourage their juniors to attend, too. Not only was a platform created to facilitate multidisciplinary exchange and networking, but delegates from several different backgrounds were encouraged to attend presentations in disciplines other than their own. The results of our survey confirm an overwhelmingly positive acceptance of this integrated multidisciplinary concept for stone meetings. As such, we are encouraged to continue with this concept in future conferences.
... and Reimbursement Basics APMA Career Center Your APMA Leadership Opportunities Early Career Resources Academic and Scientific Resources Practice Management & Reimbursement Coding Resources Coding Resource Center Reimbursement Resources ...
Making holograms in middle and high schools
NASA Astrophysics Data System (ADS)
Jeong, Tung H.
2000-06-01
Holography is a worthy topic that should become an integral part of any basic science curriculum. It embodies basic scientific principle that include the direct applications of three Nobel Prize physics concepts; it involves procedures that teaches the scientific method of problem solving; it can be learned by `doing' without previous experience; it is artistically creative; it can be appreciated by students of all ranges of abilities; and it is an open-ended subject so that specially interested students can continue to pursue deeper and more creative projects beyond the scope that fits into the curriculum. Finally, with the availability of high quality and low cost diode lasers, it is an affordable unit for any school.
Robotic Technology for Exploration of Venus
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2003-01-01
Venus, the "greenhouse planet", is a scientifically fascinating place. A huge number of important scientific questions remain to be answered. Venus is sometimes called Earth's "sister planet" due to the fact that it is closest to the Earth in distance and similar to Earth in size. Despite its similarity to Earth, however, the climate of Venus is vastly different from Earth's. Understanding the atmosphere, climate, geology, and history of Venus could shed considerable light on our understanding of our own home planet. The surface of Venus is a hostile environment, with an atmosperic pressure of over 90 bar of carbon dioxide, temperature of 450 C, and shrouded in sulphuric-acid clouds. Venus has been explored by a number of missions from Earth, including the Russian Venera missions which landed probes on the surface, the American Pioneer missions which flew both orbiters and atmospheric probes to Venus, the Russian "Vega" mission, which floated balloons in the atmosphere of Venus, and most recently the American Magellan mission which mapped the surface by radar imaging. While these missions have answered basic questions about Venus, telling us the surface temperature and pressure, the elevations and topography of the continents, and the composition of the atmosphere and clouds, scientific mysteries still abound. Venus is of considerable interest to terrestrial atmospheric science, since of all the planets in the solar system, it is the closest analogue to the Earth in terms of atmosphere. Yet Venus' atmosphere is an example of "runaway greenhouse effect." Understanding the history and the dynamics of Venus' atmosphere could tell us considerable insight about the workings of the atmosphere of the Earth. It also has some interest to astrobiology-- could life have existed on Venus in an earlier, pre-greenhouse-effect phase? Could life still be possible in the temperate middle-atmosphere of Venus? The geology of Venus also has interest in the study of Earth. surface robot will require new technologies; specifically, it will require electronics, scientific instruments, power supplies, and mechanical linkages designed to operate at a temperature above 450 C-hot enough to melt the solder on a standard electronic circuit board. This will require devices made from advanced semiconductor materials, such as silicon carbide, or even new approaches, such as micro-vacuum tube electronics. Such materials are now being developed in the laboratory.
NASA Astrophysics Data System (ADS)
Fuselier, Linda; Murphy, Claudia; Bender, Anita; Creel Falcón, Kandace
2015-01-01
Background and purpose:The purpose of this exploratory case study is to describe how scholars negotiated disciplinary divides to develop and communicate to their students an understanding of the basic features of scientific knowledge. Our goals were to examine boundary crossing in interdisciplinary collaboration and to assess the efficacy of adding science content to an introductory Women's Studies course. Sample:We studied a collaboration between faculty in Biology and Women's Studies and evaluated science modules in a Women's Studies course at a regional four-year university in the Midwestern USA. The study included 186 student participants over three semesters and four faculty from Philosophy, Women's Studies and Biology. Design and method:Women's Studies and Biology faculty collaborated to design and implement science content learning modules that included the case of women and science in an introductory Women's Studies course. Qualitative data collected from faculty participants in the form of peer debrief sessions and narrative reflections were used to examine the process of interdisciplinary collaboration. Students exposed to curriculum changes were administered pre- and post-lesson surveys to evaluate their understanding of issues faced by women in science careers, the nature of science, and interest in science studies. Data from collaborators, student journal reflections, and pre-/post-lesson surveys were considered together in an evaluation of how knowledge of science was understood and taught in a Women's Studies course over a longitudinal study of three semesters. Results:We found evidence of discipline-based challenges to interdisciplinarity and disciplinary boundary crossing among collaborators. Three themes emerged from our collaboration: challenges posed by disciplinary differences, creation of a space for interdisciplinary work, and evidence of boundary crossing. Student participants exhibited more prior knowledge of Women's Studies content than nature of science but showed learning in the areas of scientific literacy and the understanding of issues related to women in science careers. Student understanding of science content was enhanced by the participation of a woman scientist in the learning module. Conclusion:This case study illustrates how creating an inclusive space for interdisciplinary collaboration led to successful curriculum transformation and academic boundary crossing by faculty participants. Success is evident in the legacy of interdisciplinarity in the curriculum and learning gains by students. Use of a feminist science studies framework was successful at helping students learn about the influence of values on science and the tentative nature of scientific conclusions. It was less successful in teaching the distinction between science and other ways of knowing and the conception that science is an evidence-based approach to understanding the natural world. This study highlights the importance of interdisciplinary teams of faculty members collaborating to help students learn about science by modeling that there are multiple ways of knowing.
Connecting Science and Society: Basic Research in the Service of Social Objectives
NASA Astrophysics Data System (ADS)
Sonnert, Gerhard
2007-03-01
A flawed dichotomy of basic versus applied science (or of ``curiosity-driven'' vs. ``mission-oriented'' science) pervades today's thinking about science policy. This talk argues for the addition of a third mode of scientific research, called Jeffersonian science. Whereas basic science, as traditionally understood, is a quest for the unknown regardless of societal needs, and applied science is known science applied to known needs, Jeffersonian science is the quest for the unknown in the service of a known social need. It is research in an identified area of basic scientific ignorance that lies at the heart of a social problem. The talk discusses the conceptual foundations and then provides some case examples of Jeffersonian-type science initiatives, such as the Lewis and Clark Expedition, initiated by Thomas Jefferson (which led us to call this mode of research Jeffersonian), research conducted under the auspices of the National Institutes of Health, and a science policy project by President Jimmy Carter and his Science Adviser, Frank Press, in the late 1970s. Because the concept of Jeffersonian science explicitly ties basic research to the social good, one of the potential benefits of adding a Jeffersonian dimension to our thinking about science is that it might make science careers more attractive to women and underrepresented minorities.
Computational Simulations and the Scientific Method
NASA Technical Reports Server (NTRS)
Kleb, Bil; Wood, Bill
2005-01-01
As scientific simulation software becomes more complicated, the scientific-software implementor's need for component tests from new model developers becomes more crucial. The community's ability to follow the basic premise of the Scientific Method requires independently repeatable experiments, and model innovators are in the best position to create these test fixtures. Scientific software developers also need to quickly judge the value of the new model, i.e., its cost-to-benefit ratio in terms of gains provided by the new model and implementation risks such as cost, time, and quality. This paper asks two questions. The first is whether other scientific software developers would find published component tests useful, and the second is whether model innovators think publishing test fixtures is a feasible approach.
How do I write a scientific article?-A personal perspective.
Lippi, Giuseppe
2017-10-01
Scientific writing is not an easy task. Although there is no single and universally agreed strategy for assembling a successful scientific article, it is undeniable that some basic notions, gathered after decades of experience, may help increasing the chance of acceptance of a scientific manuscript. Therefore, the purpose of this article is to present a personal and arbitrary perspective on how to write a scientific article, entailing a tentative flowchart and a checklist describing the most important aspects characterizing each section of the manuscript. The final suggestion, which can be summarized in one simple and straightforward concept, is that you should always remember that a scientific article is meant to be read by others (i.e., referees and readers) and not by yourself.
The Challenge of Evaluating Students' Scientific Literacy in a Writing-to-Learn Context
NASA Astrophysics Data System (ADS)
Tomas, Louisa; Ritchie, Stephen M.
2015-02-01
This paper reports on the challenge of evaluating students' scientific literacy in a writing-to-learn context, as illustrated by our experience with an online science-writing project. In this mixed methods study, year 9 students in a case study class (13-14 year olds, n = 26) authored a series of two `hybridised' short stories that merged scientific and narratives genres about the socioscientific issue of biosecurity. In seeking to measure the efficacy of the intervention, we sought evidence of students' conceptual understanding communicated through their stories. Finding a suitable instrument presented our first challenge. This led to the development of scoring matrices to evaluate students' derived sense of scientific literacy. Student interviews were also conducted to explore their understanding of concepts related to the biosecurity context. While the results of these analyses showed significant improvements in students' understanding arising from their participation in the writing tasks, the interviews highlighted a second challenge in evaluating students' scientific literacy: a disparity between their written and vocalised understandings. The majority of students expressed a deeper level of conceptual understanding during the interviews than they did in their stories. The interviews also revealed alternative conceptions and instances of superficial understanding that were not expressed in their writing. Aside from the methodological challenge of analysing stories quantitatively, these findings suggest that in a writing-to-learn context, evaluating students' scientific literacy can be difficult. An examination of these artefacts in combination with interviews about students' written work provided a more comprehensive evaluation of their developing scientific literacy. The implications of this study for our understanding of the derived sense of scientific literacy, as well as implications for classroom practice, are discussed.
ERIC Educational Resources Information Center
Coll, Richard K.; Lay, Mark C.; Taylor, Neil
2008-01-01
Scientific literacy is explored in this paper which describes two studies that seek to understand a particular feature of the nature of science; namely scientists' habits of mind. The research investigated scientists' views of scientific evidence and how scientists judge evidence claims. The first study is concerned with scientists' views of what…
ERIC Educational Resources Information Center
Britt, M. Anne; Richter, Tobias; Rouet, Jean-François
2014-01-01
In this article, we examine the mental processes and representations that are required of laypersons when learning about science issues from texts. We begin by defining scientific literacy as the ability to understand and critically evaluate scientific content in order to achieve one's goals. We then present 3 challenges of learning from…
ERIC Educational Resources Information Center
Peters-Burton, Erin; Baynard, Liz R.
2013-01-01
An understanding of the scientific enterprise is useful because citizens need to make systematic, rational decisions about projects involving scientific endeavors and technology, and a clearer understanding of scientific epistemology is beneficial because it could encourage more public engagement with science. The purpose of this study was to…
Basic Energy Sciences FY 2011 Research Summaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This report provides a collection of research abstracts for more than 1,300 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2011 at some 180 institutions across the U.S. This volume is organized along the three BES divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.
Basic Energy Sciences FY 2012 Research Summaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This report provides a collection of research abstracts and highlights for more than 1,400 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2012 at some 180 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.