Sample records for understanding coal quality

  1. Coal systems analysis: A new approach to the understanding of coal formation, coal quality and environmental considerations, and coal as a source rock for hydrocarbons

    USGS Publications Warehouse

    Warwick, Peter D.

    2005-01-01

    Coal is an important and required energy source for today's world. Current rates of world coal consumption are projected to continue at approximately the same (or greater) levels well into the twenty-first century. This paper will provide an introduction to the concept of coal systems analysis and the accompanying volume of papers will provide examples of how coal systems analysis can be used to understand, characterize, and evaluate coal and coal gas resources. Coal systems analysis incorporates the various disciplines of coal geology to provide a complete characterization of the resource. The coal system is divided into four stages: (1) accumulation, (2) preservation-burial, (3) diagenesis-coalification, and (4) coal and hydrocarbon resources. These stages are briefly discussed and key references and examples of the application of coal systems analysis are provided.

  2. The adaption of coal quality to furnace structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z.; Shun, X.

    1996-12-31

    This paper gives the research result of coal quality adaption to furnace structure. The designing of a furnace is based on the coal quality that the furnace would fire. If the coal fired in the furnace differs from the design coal, there would be a lot of problems such as flame stability, coal burn-out rate and slagging problem for the furnace during its operation. In order to know the adaptional range of coal quality for an existing furnace the authors had chosen three different furnaces and 18 kinds of coals in their research work. To understand the coal combustion characteristicsmore » they introduce different indexes to show different processes of coal combustion. These indexes include Fz index which demonstrates the coal combustion based on its utility analyzed result, flame stability index, combustion characteristic index and char burn-out index which are based on the analyzed result of thermogravimetric characteristic. As a furnace is built up and set into operation its flame stability, burn-out rate and ash deposition are definite. If a furnace`s fuel changes its structure characteristics and operation condition will change. A relation between coal quality to furnace structure is based on a lot of regressional analysis results of existing furnaces and their fuels. Based on this relation the adaption of coal quality for a furnace are defined and the kinds of coal furnace fired are optimized to its design fuel.« less

  3. Chemical analyses of coal, coal-associated rocks and coal combustion products collected for the National Coal Quality Inventory

    USGS Publications Warehouse

    Hatch, Joseph R.; Bullock, John H.; Finkelman, Robert B.

    2006-01-01

    In 1999, the USGS initiated the National Coal Quality Inventory (NaCQI) project to address a need for quality information on coals that will be mined during the next 20-30 years. At the time this project was initiated, the publicly available USGS coal quality data was based on samples primarily collected and analyzed between 1973 and 1985. The primary objective of NaCQI was to create a database containing comprehensive, accurate and accessible chemical information on the quality of mined and prepared United States coals and their combustion byproducts. This objective was to be accomplished through maintaining the existing publicly available coal quality database, expanding the database through the acquisition of new samples from priority areas, and analysis of the samples using updated coal analytical chemistry procedures. Priorities for sampling include those areas where future sources of compliance coal are federally owned. This project was a cooperative effort between the U.S. Geological Survey (USGS), State geological surveys, universities, coal burning utilities, and the coal mining industry. Funding support came from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE).

  4. FINDINGS OF A SYMPOSIUM ON COAL QUALITY.

    USGS Publications Warehouse

    Schweinfurth, Stanley P.; Garbini, Susan

    1985-01-01

    The U. S. Geological Survey (USGS) has been doing research on coal quality for almost a century. Most of the work of the USGS regarding coal went into efforts to assess the quantity of coal in the United States, not the quality. On April 9-11, 1985, the U. S. Geological Survey, along with cosponsors - the Association of American State Geologists, the U. S. Department of Energy, the Electric Power Research Institute, and the U. S. Environmental Protection Agency - convened a symposium on coal quality at the headquarters of the USGS in Reston, Virginia. The coal-quality symposium provided a forum for the discussion of a wide variety of topics with regard to coal-quality research and related activities. The coal community took advantage of that opportunity to recommend a large agenda of coal-research needs, not only for the USGS but for the entire spectrum of organizations that either actively pursue or fund research on coal quality.

  5. National Coal Quality Inventory (NACQI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Finkelman

    2005-09-30

    The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale,more » and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.« less

  6. The World Coal Quality Inventory: South America

    USGS Publications Warehouse

    Karlsen, Alex W.; Tewalt, Susan J.; Bragg, Linda J.; Finkelman, Robert B.

    2006-01-01

    Executive Summary-Introduction: The concepts of a global environment and economy are strongly and irrevocably linked to global energy issues. Worldwide coal production and international coal trade are projected to increase during the next several decades in an international energy mix that is still strongly dependent on fossil fuels. Therefore, worldwide coal use will play an increasingly visible role in global environmental, economic, and energy forums. Policy makers require information on coal, including coal quality data, to make informed decisions regarding domestic coal resource allocation, import needs and export opportunities, foreign policy objectives, technology transfer policies, foreign investment prospects, environmental and health assessments, and byproduct use and disposal issues. The development of a worldwide, reliable, coal quality database would help ensure the most economically and environmentally efficient global use of coal. The U.S. Geological Survey (USGS), in cooperation with many agencies and scientists from the world's coal producing countries, originally undertook a project to obtain representative samples of coal from most of the world's producing coal provinces during a limited period of time (roughly 1998-2005), which is called the World Coal Quality Inventory (WoCQI). The multitude of producing coal mines, coal occurrences, or limited accessibility to sites in some countries can preclude collecting more than a single sample from a mine. In some areas, a single sample may represent an entire coal mining region or basin. Despite these limitations in sampling and uneven distribution of sample collection, the analytical results can still provide a general overview of world coal quality. The USGS intends to present the WoCQI data in reports and, when possible, in Geographic Information System (GIS) products that cover important coal bearing and producing regions.

  7. The World Coal Quality Inventory: A status report

    USGS Publications Warehouse

    Tewalt, S.J.; Willett, J.C.; Finkelman, R.B.

    2005-01-01

    National and international policy makers and industry require accurate information on coal, including coal quality data, to make informed decisions regarding international import needs and export opportunities, foreign policy, technology transfer policies, foreign investment prospects, environmental and health assessments, and byproduct use and disposal issues. Unfortunately, the information needed is generally proprietary and does not exist in the public domain. The U.S. Geological Survey (USGS), in conjunction with partners in about 60 countries, is developing a digital compilation of worldwide coal quality. The World Coal Quality Inventory (WoCQI) will contain coal quality information for samples obtained from major coal beds in countries having significant coal production, as well as from many countries producing smaller volumes of coal, with an emphasis on coals currently being burned. The information that will be incorporated includes, but is not limited to, proximate and ultimate analyses; sulfur-form data; major, minor, and trace element analysis; and semi-quantitative analyses of minerals, modes of occurrence, and petrography. The coal quality information will eventually be linked to a Geographic Information System (GIS) that shows the coal basins and sample locations along with geologic, land use, transportation, industrial, and cultural information. The WoCQI will be accessible on the USGS web page and new data added periodically. This multi-national collaboration is developing global coal quality data that contain a broad array of technologic, economic, and environmental parameters, which should help to ensure the efficient and environmentally compatible use of global coal resources in the 21st century.

  8. Coal-Quality Information - Key to the Efficient and Environmentally Sound Use of Coal

    USGS Publications Warehouse

    Finkleman, Robert B.

    1997-01-01

    The rock that we refer to as coal is derived principally from decomposed organic matter (plants) consisting primarily of the element carbon. When coal is burned, it produces energy in the form of heat, which is used to power machines such as steam engines or to drive turbines that produce electricity. Almost 60 percent of the electricity produced in the United States is derived from coal combustion. Coal is an extraordinarily complex material. In addition to organic matter, coal contains water (up to 40 or more percent by weight for some lignitic coals), oils, gases (such as methane), waxes (used to make shoe polish), and perhaps most importantly, inorganic matter (fig. 1). The inorganic matter--minerals and trace elements--cause many of the health, environmental, and technological problems attributed to coal use (fig. 2). 'Coal quality' is the term used to refer to the properties and characteristics of coal that influence its behavior and use. Among the coal-quality characteristics that will be important for future coal use are the concentrations, distribution, and forms of the many elements contained in the coal that we intend to burn. Knowledge of these quality characteristics in U.S. coal deposits may allow us to use this essential energy resource more efficiently and effectively and with less undesirable environmental impact.

  9. Quality of selected coals of Hungary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landis, E.R.; Rohrbacher, T.J.; Gluskoter, H.J.

    2000-07-01

    As part of the activities conducted under the US-Hungarian Science and Technology Fund, a total of 39 samples from five coal mines in five geologically-distinct coal areas in Hungary were selected for proximate and ultimate analyses. In addition, the heat value, forms of sulfur, free-swelling index, equilibrium moisture, Hardgrove grindability index, four-point ash fusion temperatures (both oxidizing and reducing), and apparent specific gravity were determined for each sample. Standard procedures established by the American Society for Testing and Materials (ASTM, 1999) were used. The analytical results will be available in the International Coal Quality Data Base of the USGS. Resultsmore » of the program provide data for comparison with coal quality test data from Europe and information of value to potential investors or cooperators in the coal industry of Hungary and Central Europe.« less

  10. U.S. Geological Survey coal quality (COALQUAL) database; version 2.0

    USGS Publications Warehouse

    Bragg, L.J.; Oman, J.K.; Tewalt, S.J.; Oman, C.L.; Rega, N.H.; Washington, P.M.; Finkelman, R.B.

    1997-01-01

    The USGS Coal Quality database is an interactive, computerized component of the NCRDS. It contains comprehensive analyses of more than 13,000 samples of coal and associated rocks from every major coal-bearing basin and coal bed in the U.S. The data in the coal quality database represent analyses of the coal as it exists in the ground. The data commonly are presented on an as-received whole-coal basis.

  11. Coal resources, production, and quality in the Eastern kentucky coal field: Perspectives on the future of steam coal production

    USGS Publications Warehouse

    Hower, J.C.; Hiett, J.K.; Wild, G.D.; Eble, C.F.

    1994-01-01

    The Eastern Kentucky coal field, along with adjacent portions of Virginia and southern West Virginia, is part of the greatest production concentration of high-heating-value, low-sulfur coal in the United States, accounting for over 27% of the 1993 U.S. production of coal of all ranks. Eastern Kentucky's production is spread among many coal beds but is particularly concentrated in a limited number of highquality coals, notably the Pond Creek coal bed and its correlatives, and the Fire Clay coal bed and its correlatives. Both coals are relatively low ash and low sulfur through the areas of the heaviest concentration of mining activity. We discuss production trends, resources, and the quality of in-place and clean coal for those and other major coals in the region. ?? 1994 Oxford University Press.

  12. Coal-fired power generaion, new air quality regulations, and future U.S. coal production

    USGS Publications Warehouse

    Attanasi, E.D.; Root, D.H.

    1999-01-01

    Tighter new regulation of stack gas emissions and competition in power generation are driving electrical utilities to demand cleaner, lower sulfur coal. Historical data on sulfur content of produced coals shows little variability in coal quality for individual mines and individual coal-producing counties over relatively long periods of time. If coal-using power generators follow the compliance patterns established in Phase I of the 1990 Clean Air Act Amendments, then the industry's response to the tighter Phase II emissions standards will result in large amounts of coal production shifting from higher sulfur areas to areas with lower cost low sulfur coal. One reason this shift will likely occur is that currently only 30% of U.S. coal-fired electrical generating capacity is equipped with flue-gas scrubbers. In 1995, coal mines in the higher sulfur areas of the Illinois Basin and Northern and Central Appalachia employed 78% of all coal miners (>70,000 miners). A substantial geographical redistribution of the nation's coal supplies will likely lead to economic dislocations that will reach beyond local coal-producing areas.

  13. Chemical analyses in the World Coal Quality Inventory

    USGS Publications Warehouse

    Tewalt, Susan J.; Belkin, Harvey E.; SanFilipo, John R.; Merrill, Matthew D.; Palmer, Curtis A.; Warwick, Peter D.; Karlsen, Alexander W.; Finkelman, Robert B.; Park, Andy J.

    2010-01-01

    The main objective of the World Coal Quality Inventory (WoCQI) was to collect and analyze a global set of samples of mined coal during a time period from about 1995 to 2006 (Finkelman and Lovern, 2001). Coal samples were collected by foreign collaborators and submitted to country specialists in the U.S. Geological Survey (USGS) Energy Program. However, samples from certain countries, such as Afghanistan, India, and Kyrgyzstan, were collected collaboratively in the field with USGS personnel. Samples were subsequently analyzed at two laboratories: the USGS Inorganic Geochemistry Laboratory located in Denver, CO and a commercial laboratory (Geochemical Testing, Inc.) located in Somerset, PA. Thus the dataset, which is in Excel (2003) format and includes 1,580 samples from 57 countries, does not have the inter-laboratory variability that is present in many compilations. Major-, minor-, and trace-element analyses from the USGS laboratory, calculated to a consistent analytical basis (dry, whole-coal) and presented with available sample identification information, are sorted alphabetically by country name. About 70 percent of the samples also have data from the commercial laboratory, which are presented on an as-received analytical basis. The USGS initiated a laboratory review of quality assurance in 2008, covering quality control and methodology used in inorganic chemical analyses of coal, coal power plant ash, water, and sediment samples. This quality control review found that data generated by the USGS Inorganic Geochemistry Laboratory from 1996 through 2006 were characterized by quality practices that did not meet USGS requirements commonly in use at the time. The most serious shortcomings were (1) the adjustment of raw sample data to standards when the instrument values for those standards exceeded acceptable limits or (2) the insufficient use of multiple standards to provide adequate quality assurance. In general, adjustment of raw data to account for instrument

  14. Coping with coal quality impacts on power plant operation and maintenance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatt, R.

    1998-12-31

    The electric power industry is rapidly changing due to deregulation. The author was present one hot day in June of this year, when a southeastern utility company was selling electricity for $5,000.00 per megawatt with $85.00 cost. Typical power cost range from the mid teens at night to about $30.00 on a normal day. The free market place will challenge the power industry in many ways. Fuel is the major cost in electric power. In a regulated industry the cost of fuel was passed on to the customers. Fuels were chosen to minimize problems such as handling, combustion, ash depositsmore » and other operational and maintenance concerns. Tight specifications were used to eliminate or minimize coals that caused problems. These tight specifications raised the price of fuel by minimizing competition. As the power stations become individual profit centers, plant management must take a more proactive role in fuel selection. Understanding how coal quality impacts plant performance and cost, allows better fuel selection decisions. How well plants take advantage of their knowledge may determine whether they will be able to compete in a free market place. The coal industry itself can provide many insights on how to survive in this type of market. Coal mines today must remain competitive or be shut down. The consolidation of the coal industry indicates the trends that can occur in a competitive market. These trends have already started, and will continue in the utility industry. This paper will discuss several common situations concerning coal quality and potential solutions for the plant to consider. All these examples have mill maintenance and performance issues in common. This is indicative of how important pulverizers are to the successful operation of a power plant.« less

  15. Coal systems analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warwick, P.D.

    This collection of papers provides an introduction to the concept of coal systems analysis and contains examples of how coal systems analysis can be used to understand, characterize, and evaluate coal and coal gas resources. Chapter are: Coal systems analysis: A new approach to the understanding of coal formation, coal quality and environmental considerations, and coal as a source rock for hydrocarbons by Peter D. Warwick. Appalachian coal assessment: Defining the coal systems of the Appalachian Basin by Robert C. Milici. Subtle structural influences on coal thickness and distribution: Examples from the Lower Broas-Stockton coal (Middle Pennsylvanian), Eastern Kentucky Coalmore » Field, USA by Stephen F. Greb, Cortland F. Eble, and J.C. Hower. Palynology in coal systems analysis The key to floras, climate, and stratigraphy of coal-forming environments by Douglas J. Nichols. A comparison of late Paleocene and late Eocene lignite depositional systems using palynology, upper Wilcox and upper Jackson Groups, east-central Texas by Jennifer M.K. O'Keefe, Recep H. Sancay, Anne L. Raymond, and Thomas E. Yancey. New insights on the hydrocarbon system of the Fruitland Formation coal beds, northern San Juan Basin, Colorado and New Mexico, USA by W.C. Riese, William L. Pelzmann, and Glen T. Snyder.« less

  16. Understanding selected trace elements behavior in a coal-fired power plant in Malaysia for assessment of abatement technologies.

    PubMed

    Mokhtar, Mutahharah M; Taib, Rozainee M; Hassim, Mimi H

    2014-08-01

    The Proposed New Environmental Quality (Clean Air) Regulation 201X (Draft), which replaces the Malaysia Environmental Quality (Clean Air) 1978, specifies limits to additional pollutants from power generation using fossil fuel. The new pollutants include Hg, HCl, and HF with limits of 0.03, 100, and 15 mg/N-m3 at 6% O2, respectively. These pollutants are normally present in very small concentrations (known as trace elements [TEs]), and hence are often neglected in environmental air quality monitoring in Malaysia. Following the enactment of the new regulation, it is now imperative to understand the TEs behavior and to assess the capability of the existing abatement technologies to comply with the new emission limits. This paper presents the comparison of TEs behavior of the most volatile (Hg, Cl, F) and less volatile (As, Be, Cd, Cr, Ni, Se, Pb) elements in subbituminous and bituminous coal and coal combustion products (CCP) (i.e., fly ash and bottom ash) from separate firing of subbituminous and bituminous coal in a coal-fired power plant in Malaysia. The effect of air pollution control devices configuration in removal of TEs was also investigated to evaluate the effectiveness of abatement technologies used in the plant. This study showed that subbituminous and bituminous coals and their CCPs have different TEs behavior. It is speculated that ash content could be a factor for such diverse behavior In addition, the type of coal and the concentrations of TEs in feed coal were to some extent influenced by the emission of TEs in flue gas. The electrostatic precipitator (ESP) and seawater flue gas desulfurization (FGD) used in the studied coal-fired power plant were found effective in removing TEs in particulate and vapor form, respectively, as well as complying with the new specified emission limits. Implications: Coals used by power plants in Peninsular Malaysia come from the same supplier (Tenaga Nasional Berhad Fuel Services), which is a subsidiary of the Malaysia

  17. Navajo coal and air quality in Shiprock, New Mexico

    USGS Publications Warehouse

    Bunnell, Joseph E.; Garcia, Linda V.

    2006-01-01

    Among the Navajo people, high levels of respiratory disease, such as asthma, exist in a population with low rates of cigarette smoking. Air quality outdoors and indoors affects respiratory health. Many Navajo Nation residents burn locally mined coal in their homes for heat, as coal is the most economical energy source. The U.S. Geological Survey and Dine College, in cooperation with the Navajo Division of Health, are conducting a study in the Shiprock, New Mexico, area to determine if indoor use of this coal might be contributing to some of the respiratory health problems experienced by the residents. Researchers in this study will (1) examine respiratory health data, (2) identify stove type and use, (3) analyze samples of coal that are used locally, and (4) measure and characterize air quality inside selected homes. This Fact Sheet summarizes the interim results of the study in both English and Navajo.

  18. Analysis of hard coal quality for narrow size fraction under 20 mm

    NASA Astrophysics Data System (ADS)

    Niedoba, Tomasz; Pięta, Paulina

    2018-01-01

    The paper presents the results of an analysis of hard coal quality diversion in narrow size fraction by using taxonomic methods. Raw material samples were collected in selected mines of Upper Silesian Industrial Region and they were classified according to the Polish classification as types 31, 34.2 and 35. Then, each size fraction was characterized in terms of the following properties: density, ash content, calorific content, volatile content, total sulfur content and analytical moisture. As a result of the analysis it can be stated that the best quality in the entire range of the tested size fractions was the 34.2 coking coal type. At the same time, in terms of price parameters, high quality of raw material characterised the following size fractions: 0-6.3 mm of 31 energetic coal type and 0-3.15 mm of 35 coking coal type. The methods of grouping (Ward's method) and agglomeration (k-means method) have shown that the size fraction below 10 mm was characterized by higher quality in all the analyzed hard coal types. However, the selected taxonomic methods do not make it possible to identify individual size fraction or hard coal types based on chosen parameters.

  19. Groundwater-quality data associated with abandoned underground coal mine aquifers in West Virginia, 1973-2016: Compilation of existing data from multiple sources

    USGS Publications Warehouse

    McAdoo, Mitchell A.; Kozar, Mark D.

    2017-11-14

    This report describes a compilation of existing water-quality data associated with groundwater resources originating from abandoned underground coal mines in West Virginia. Data were compiled from multiple sources for the purpose of understanding the suitability of groundwater from abandoned underground coal mines for public supply, industrial, agricultural, and other uses. This compilation includes data collected for multiple individual studies conducted from July 13, 1973 through September 7, 2016. Analytical methods varied by the time period of data collection and requirements of the independent studies.This project identified 770 water-quality samples from 294 sites that could be attributed to abandoned underground coal mine aquifers originating from multiple coal seams in West Virginia.

  20. National coal resource assessment non-proprietary data: Location, stratigraphy, and coal quality for selected tertiary coal in the Northern Rocky Mountains and Great Plains region

    USGS Publications Warehouse

    Flores, Romeo M.; Ochs, A.M.; Stricker, G.D.; Ellis, M.S.; Roberts, S.B.; Keighin, C.W.; Murphy, E.C.; Cavaroc, V.V.; Johnson, R.C.; Wilde, E.M.

    1999-01-01

    One of the objectives of the National Coal Resource Assessment in the Northern Rocky Mountains and Great Plains region was to compile stratigraphic and coal quality-trace-element data on selected and potentially minable coal beds and zones of the Fort Union Formation (Paleocene) and equivalent formations. In order to implement this objective, drill-hole information was compiled from hard-copy and digital files of the: (1) U.S. Bureau of Land Management (BLM) offices in Casper, Rawlins, and Rock Springs, Wyoming, and in Billings, Montana, (2) State geological surveys of Montana, North Dakota, and Wyoming, (3) Wyoming Department of Environmental Quality in Cheyenne, (4) U.S. Office of Surface Mining in Denver, Colorado, (5) U.S. Geological Survey, National Coal Resource Data System (NCRDS) in Reston, Virginia, (6) U.S. Geological Survey coal publications, (7) university theses, and (8) mining companies.

  1. Relationships between sedimentation, depositional environments, and coal quality: upper Potomac coalfield, West Virginia and Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jake, T.R.

    1987-09-01

    Evaluations were made of sedimentation patterns and depositional environments from approximately 450 core logs and 225 surface exposures in the Upper Potomac coalfield. The relationships between the clastic depositional facies and the distribution and quality of the Bakerstown and upper Freeport coals were also investigated. Data from 61 Bakerstown and 35 upper Freeport coal samples from selected cores indicate a change from uniform coal quality to highly variable coal quality when moving from related interchannel and bay-fill facies to channel, channel-fill, levee, and crevasse-splay facies. Areas of uniform coal quality range from 20-26% ash and 55-62% fixed carbon (weight percent,more » dry basis), whereas areas of highly variable coal quality range from 26-54% ash and 33-55% fixed carbon. The channel and related facies represent areas where increased fresh water was introduced into the topogenous swamp system, causing increased microbial degradation and the concentration of authigenic minerals within the peat material. These conditions, combined with the introduction of detrital minerals, resulted in areas of lower quality coal.« less

  2. From in situ coal to the final coal product: A case study of the Danville Coal Member (Indiana)

    USGS Publications Warehouse

    Mastalerz, Maria; Padgett, P.L.

    1999-01-01

    A surface coal mine operation and preparation plant in southwestern Indiana was sampled to examine variations in coal quality and coal petrography parameters for the Danville Coal Member of the Dugger Formation (Pennsylvanian-Desmoinesian, Westphalian D). Representative samples from in situ coal, preparation plant feeds, and a final coal product were collected in order to compare coal quality, coal petrography, trace element concentrations, and ash chemistry of the coal to those of the product. Coal quality parameters of the in situ samples and various feeds, coarse refuse, and final product were variable. The quality of the final coal product was best predicted by the coal quality of the clean coal feed (from the middle portions of the seam). Some trace element contents, especially lead and arsenic, varied between the coal feeds and the product. Lead contents increased in the feeds and product compared to the channel sample of the raw coal, possibly due to contamination in the handling process.A surface coal mine operation and preparation plant in southwestern Indiana was sampled to examine variations in coal quality and coal petrography parameters for the Danville Coal Member of the Dugger Formation (Pennsylvanian-Desmoinesian, Westphalian D). Representative samples from in situ coal, preparation plant feeds, and a final coal product were collected in order to compare coal quality, coal petrography, trace element concentrations, and ash chemistry of the coal to those of the product. Coal quality parameters of the in situ samples and various feeds, coarse refuse, and final product were variable. The quality of the final coal product was best predicted by the coal quality of the clean coal feed (from the middle portions of the seam). Some trace element contents, especially lead and arsenic, varied between the coal feeds and the product. Lead contents increased in the feeds and product compared to the channel sample of the raw coal, possibly due to contamination in

  3. Mercury in coal and the impact of coal quality on mercury emissions from combustion systems

    USGS Publications Warehouse

    Kolker, A.; Senior, C.L.; Quick, J.C.

    2006-01-01

    The proportion of Hg in coal feedstock that is emitted by stack gases of utility power stations is a complex function of coal chemistry and properties, combustion conditions, and the positioning and type of air pollution control devices employed. Mercury in bituminous coal is found primarily within Fe-sulfides, whereas lower rank coal tends to have a greater proportion of organic-bound Hg. Preparation of bituminous coal to reduce S generally reduces input Hg relative to in-ground concentrations, but the amount of this reduction varies according to the fraction of Hg in sulfides and the efficiency of sulfide removal. The mode of occurrence of Hg in coal does not directly affect the speciation of Hg in the combustion flue gas. However, other constituents in the coal, notably Cl and S, and the combustion characteristics of the coal, influence the species of Hg that are formed in the flue gas and enter air pollution control devices. The formation of gaseous oxidized Hg or particulate-bound Hg occurs post-combustion; these forms of Hg can be in part captured in the air pollution control devices that exist on coal-fired boilers, without modification. For a given coal type, the capture efficiency of Hg by pollution control systems varies according to type of device and the conditions of its deployment. For bituminous coal, on average, more than 60% of Hg in flue gas is captured by fabric filter (FF) and flue-gas desulfurization (FGD) systems. Key variables affecting performance for Hg control include Cl and S content of the coal, the positioning (hot side vs. cold side) of the system, and the amount of unburned C in coal ash. Knowledge of coal quality parameters and their effect on the performance of air pollution control devices allows optimization of Hg capture co-benefit. ?? 2006 Elsevier Ltd. All rights reserved.

  4. Quality of economically extractable coal beds in the Gillette coal field as compared with other Tertiary coal beds in the Powder River basin, Wyoming and Montana

    USGS Publications Warehouse

    Ellis, Margaret S.

    2002-01-01

    The Powder River Basin, and specifically the Gillette coal field, contains large quantities of economically extractable coal resources. These coal resources have low total sulfur content and ash yield, and most of the resources are subbituminous in rank. A recent U.S Geological Survey study of economically extractable coal in the Gillette coal field focused on five coal beds, the Wyodak rider, Upper Wyodak, Canyon, Lower Wyodak-Werner, and Gates/Kennedy. This report compares the coal quality of these economically extractable coal beds to coal in the Wyodak-Anderson coal zone in the Powder River Basin and in the Gillette coal field (Flores and others, 1999) and other produced coal in the Gillette coal field (Glass, 2000). The Upper Wyodak, Canyon, and Lower Wyodak/Werner beds are within the Wyodak-Anderson coal zone. Compared with all coal in the Wyodak-Anderson coal zone, both throughout the Powder River Basin and just within the Gillette coal field; the thick, persistent Upper Wyodak coal bed in the Gillette coal field has higher mean gross calorific value (8,569 Btu/lb), lower mean ash yield (5.8 percent), and lower mean total sulfur content (0.46 percent).

  5. Boiler Briquette Coal versus Raw Coal: Part II-Energy, Greenhouse Gas, and Air Quality Implications.

    PubMed

    Zhang, Junfeng; Ge, Su; Bai, Zhipeng

    2001-04-01

    The objective of this paper is to conduct an integrated analysis of the energy, greenhouse gas, and air quality impacts of a new type of boiler briquette coal (BB-coal) in contrast to those of the raw coal from which the BB-coal was formulated (R-coal). The analysis is based on the source emissions data and other relevant data collected in the present study and employs approaches including the construction of carbon, energy, and sulfur balances. The results show that replacing R-coal with BB-coal as the fuel for boilers such as the one tested would have multiple benefits, including a 37% increase in boiler thermal efficiency, a 25% reduction in fuel demand, a 26% reduction in CO 2 emission, a 17% reduction in CO emission, a 63% reduction in SO 2 emission, a 97% reduction in fly ash and fly ash carbon emission, a 22% reduction in PM 2.5 mass emission, and a 30% reduction in total emission of five toxic hazardous air pollutant (HAP) metals contained in PM 10 . These benefits can be achieved with no changes in boiler hardware and with a relatively small amount of tradeoffs: a 30% increase in PM 10 mass emission and a 9-16% increase in fuel cost.

  6. Boiler briquette coal versus raw coal: Part II--Energy, greenhouse gas, and air quality implications.

    PubMed

    Zhang, J; Ge, S; Bai, Z

    2001-04-01

    The objective of this paper is to conduct an integrated analysis of the energy, greenhouse gas, and air quality impacts of a new type of boiler briquette coal (BB-coal) in contrast to those of the raw coal from which the BB-coal was formulated (R-coal). The analysis is based on the source emissions data and other relevant data collected in the present study and employs approaches including the construction of carbon, energy, and sulfur balances. The results show that replacing R-coal with BB-coal as the fuel for boilers such as the one tested would have multiple benefits, including a 37% increase in boiler thermal efficiency, a 25% reduction in fuel demand, a 26% reduction in CO2 emission, a 17% reduction in CO emission, a 63% reduction in SO2 emission, a 97% reduction in fly ash and fly ash carbon emission, a 22% reduction in PM2.5 mass emission, and a 30% reduction in total emission of five toxic hazardous air pollutant (HAP) metals contained in PM10. These benefits can be achieved with no changes in boiler hardware and with a relatively small amount of tradeoffs: a 30% increase in PM10 mass emission and a 9-16% increase in fuel cost.

  7. Air quality as a constraint to the use of coal in California

    NASA Technical Reports Server (NTRS)

    Austin, T. C.

    1978-01-01

    Low-NOx burners, wet scrubbing systems, baghouses and ammonia injection systems are feasible for use on large combustion sources such as utility boilers. These devices, used in combination with coal handling techniques which minimize fugitive dust and coal transportation related emissions, should enable new power plants and large industrial boilers to burn coal without the adverse air quality impacts for which coal became notorious.

  8. Navajo coal and air quality in Shiprock, New Mexico

    USGS Publications Warehouse

    Bunnell, Joseph E.; Garcia, Linda V.

    2006-01-01

    Among the Navajo people, high levels of respiratory disease, such as asthma, exist in a population with low rates of cigarette smoking. Air quality outdoors and indoors affects respiratory health. Many Navajo Nation residents burn locally mined coal in their homes for heat, as coal is the most economical energy source. The U.S. Geological Survey and Dine College, in cooperation with the Navajo Division of Health, are conducting a study in the Shiprock, New Mexico, area to determine if indoor use of this coal might be contributing to some of the respiratory health problems experienced by the residents. Researchers in this study will (1) examine respiratory health data, (2) identify stove type and use, (3) analyze samples of coal that are used locally, and (4) measure and characterize air quality inside selected homes. This Fact Sheet summarizes the interim results of the study in both English and Navajo. This Fact Sheet is available in three versions: * English [800-KB PDF file ] * Navajo [computer must have Navajo language fonts installed - 304-KB PDF file] * Image of the Navajo language version [19.8-MB PDF file

  9. Quality of selected coal seams from Indiana: Implications for carbonization

    USGS Publications Warehouse

    Walker, R.; Mastalerz, Maria; Padgett, P.

    2001-01-01

    The chemical properties of two high-volatile bituminous coals, the Danville Coal Member of the Dugger Formation and the Lower Block Coal Member of the Brazil Formation from southern Indiana, were compared to understand the differences in their coking behavior. It was determined that of the two, the Lower Block has better characteristics for coking. Observed factors that contribute to the differences in the coking behavior of the coals include carbon content, organic sulfur content, and oxygen/carbon (O/C) ratios. The Lower Block coal has greater carbon content than the Danville coal, leading to a lower O/C ratio, which is more favorable for coking. Organic sulfur content is higher in the Lower Block coal, and a strong correlation was found between organic sulfur and plasticity. The majority of the data for both seams plot in the Type III zone on a van Krevelen diagram, and several samples from the Lower Block coal plot into the Type II zone, suggesting a perhydrous character for those samples. This divergence in properties between the Lower Block and Danville coals may account for the superior coking behavior of the Lower Block coal. ?? 2001 Elsevier Science B.V. All rights reserved.

  10. Environmental impact of coal mining and coal seam gas production on surface water quality in the Sydney basin, Australia.

    PubMed

    Ali, A; Strezov, V; Davies, P; Wright, I

    2017-08-01

    The extraction of coal and coal seam gas (CSG) will generate produced water that, if not adequately treated, will pollute surface and groundwater systems. In Australia, the discharge of produced water from coal mining and related activities is regulated by the state environment agency through a pollution licence. This licence sets the discharge limits for a range of analytes to protect the environment into which the produced water is discharged. This study reports on the impact of produced water from coal mine activities located within or discharging into high conservation environments, such as National Parks, in the outer region of Sydney, Australia. The water samples upstream and downstream from the discharge points from six mines were taken, and 110 parameters were tested. The results were assessed against a water quality index (WQI) which accounts for pH, turbidity, dissolved oxygen, biochemical oxygen demand, total dissolved solids, total phosphorus, nitrate nitrogen and E .coli. The water quality assessment based on the trace metal contents against various national maximum admissible concentration (MAC) and their corresponding environmental impacts was also included in the study which also established a base value of water quality for further study. The study revealed that impacted water downstream of the mine discharge points contained higher metal content than the upstream reference locations. In many cases, the downstream water was above the Australia and New Zealand Environment Conservation Council and international water quality guidelines for freshwater stream. The major outliers to the guidelines were aluminium (Al), iron (Fe), manganese (Mn), nickel (Ni) and zinc (Zn). The WQI of surface water at and downstream of the discharge point was lower when compared to upstream or reference conditions in the majority of cases. Toxicology indices of metals present in industrial discharges were used as an additional tool to assess water quality, and the newly

  11. Quality of Selected Hungarian Coals

    USGS Publications Warehouse

    Landis, E.R.; Rohrbacher, T.J.; Gluskoter, H.J.; Fodor, B.; Gombar, G.

    2007-01-01

    As part of a program conducted jointly by the U.S. Geological Survey and the Hungarian Geological Survey under the auspices of the United States-Hungarian Science and Technology Fund, a total of 39 samples from five coal mines in Hungary were selected for analysis. The mine areas sampled represent most of the coal mined recently in Hungary. Almost all the coal is used to generate electricity. Coals from the five mines (four underground, one surface) reflect differences in age, depositional setting, organic and inorganic components of the original sediments, and deformational history. Classified according to the ranking system of the American Society for Testing and Materials, the coals range in rank from lignite B (Pliocene[?] coals) to high volatile A bituminous (Jurassic coals). With respect to grade classification, based on seam-weighted averages of moisture, ash, and sulfur contents: (1) all contain high moisture (more than 10 percent), (2) all except the Eocene coals are high (more than 15 percent) in ash yield, and (3) two (Jurassic and Eocene coals) are high in sulfur (more than 3 percent) and three (Cretaceous, Miocene, and Pliocene coals) have medium sulfur contents (1 to 3 percent). Average heat values range from 4,000 to 8,650 British thermal units per pound.

  12. Coal blending preparation for non-carbonized coal briquettes

    NASA Astrophysics Data System (ADS)

    Widodo; Fatimah, D.; Estiaty, L. M.

    2018-02-01

    Referring to the national energy policy targets for the years 2025, the government has launched the use of coal briquettes as an alternative energy replacement for kerosene and firewood. Non-carbonized briquettes in the form of coal briquettes as well as bio-coal briquettes are used in many small-medium industries and households, and are rarely used by large industries. The standard quality of coal briquettes used as raw material for non-carbonized briquettes is a minimum calorific value of 4,400 kcal/kg (adb); total sulfur at a maximum of 1% (adb), and water content at <12% (adb). The formation of coal deposits depends on the origin of the coal-forming materials (plants), the environment of deposition, and the geological conditions of the surrounding area, so that the coal deposits in each region will be different as well as the amount and also the quality. Therefore, the quantity and the quality of coal in each area are different to be eligible in the making of briquettes to do blending. In addition to the coal blending, it is also necessary to select the right materials in the making of coal briquettes and bio-coal briquettes. The formulation of the right mixture of material in the making of briquettes, can be produced of good quality and environmental friendly.

  13. [Evaluation of social demographic aspect of life quality of coal extraction workers in Kouzbass enterprises].

    PubMed

    Ivoĭlov, V M; Semenikhin, V A; Odintseva, O V; Shternis, T A

    2014-01-01

    For assessing influence of social factors on life quality of workers in coal extraction enterpirses of Kemerovo region, the authors used questionnaire SF-36. Life quality parameters of workers engaged into coal extraction in Kemerovo region appeared to lower with age from 20 to 64 years. Life quality parameters on scales of pain, physical functioning and general health are invertedly correlated with age and length of service in hazardous work conditions for coal extraction workers. Life quality of the miners is influenced by the following factors: marital status, educational level and income level of the workers.

  14. Ground-Water Quality in the Vicinity of Coal-Refuse Areas Reclaimed with Biosolids in Fulton County, Illinois

    USGS Publications Warehouse

    Morrow, William S.

    2007-01-01

    The Metropolitan Water Reclamation District of Greater Chicago has applied biosolids, followed by revegetation, to reclaim three coal-refuse areas. Most of the reclamation at the three sites was done from 1989 through 1992, and included the application of lime, clay, and various loads of biosolids up to 1,000 dry tons per acre. Water samples collected from 12 monitoring wells installed in the vicinity of the three reclaimed coal-refuse areas were analyzed to better understand the hydrogeology and water-quality effects. Ground water probably flows along preferential paths in the disturbed coal-refuse areas, and is impeded by undisturbed glacial till. Most of the samples contained elevated concentrations of sulfate, iron, and manganese, constituents associated with ground water in coal-mined areas. Concentrations of aluminum, cadmium, nickel, or zinc were somewhat elevated in samples from four wells, and greatest in water samples with pH less than 5. The smaller nutrient concentrations indicate that the applied biosolids are not identifiably affecting nutrients or metal concentrations in shallow ground water near the refuse piles. The coal refuse likely is the primary influence on the chemical characterization of ground-water in the area.

  15. Variability of Mercury Content in Coal Matter From Coal Seams of The Upper Silesia Coal Basin

    NASA Astrophysics Data System (ADS)

    Wierzchowski, Krzysztof; Chećko, Jarosław; Pyka, Ireneusz

    2017-12-01

    The process of identifying and documenting the quality parameters of coal, as well as the conditions of coal deposition in the seam, is multi-stage and extremely expensive. The taking and analyzing of seam samples is the method of assessment of the quality and quantity parameters of coals in deep mines. Depending on the method of sampling, it offers quite precise assessment of the quality parameters of potential commercial coals. The main kind of seam samples under consideration are so-called "documentary seam samples", which exclude dirt bands and other seam contaminants. Mercury content in coal matter from the currently accessible and exploited coal seams of the Upper Silesian Coal Basin (USCB) was assessed. It was noted that the mercury content in coal seams decreases with the age of the seam and, to a lesser extent, seam deposition depth. Maps of the variation of mercury content in selected lithostratigraphic units (layers) of the Upper Silesian Coal Basin have been created.

  16. Thermogravimetric and model-free kinetic studies on CO2 gasification of low-quality, high-sulphur Indian coals

    NASA Astrophysics Data System (ADS)

    Das, Tonkeswar; Saikia, Ananya; Mahanta, Banashree; Choudhury, Rahul; Saikia, Binoy K.

    2016-10-01

    Coal gasification with CO2 has emerged as a cleaner and more efficient way for the production of energy, and it offers the advantages of CO2 mitigation policies through simultaneous CO2 sequestration. In the present investigation, a feasibility study on the gasification of three low-quality, high-sulphur coals from the north-eastern region (NER) of India in a CO2 atmosphere using thermogravimetric analysis (TGA-DTA) has been made in order to have a better understanding of the physical and chemical characteristics in the process of gasification of coal. Model-free kinetics was applied to determine the activation energies (E) and pre-exponential factors (A) of the CO2 gasification process of the coals. Multivariate non-linear regression analyses were performed to find out the formal mechanisms, kinetic model, and the corresponding kinetic triplets. The results revealed that coal gasification with CO2 mainly occurs in the temperature range of 800∘-1400∘C and a maximum of at around 1100∘C. The reaction mechanisms responsible for CO2 gasification of the coals were observed to be of the ` nth order with autocatalysis (CnB)' and ` nth order (Fn) mechanism'. The activation energy of the CO2 gasification was found to be in the range 129.07-146.81 kJ mol-1.

  17. Quality of life of coal dust workers without pneumoconiosis in mainland China.

    PubMed

    Yu, Hong-Mei; Ren, Xiao-Wei; Chen, Qian; Zhao, Jing-Yi; Zhu, Ting-Juan; Guo, Zhi-Xi

    2008-01-01

    The purpose of this cross-sectional study was to evaluate the quality of life (QOL) of coal dust workers without pneumoconiosis in mainland China. Three hundred five coal dust workers and 200 non-dust workers without pneumoconiosis from five coal mines in Shanxi province were enrolled in this study. The Chinese World Health Organization Quality of Life-brief version (WHOQOL-BREF) questionnaire was used. Socio-demographic, working, and health factors were also collected. Multiple stepwise regression analysis was used to identify significant factors related to the four domain scores of WHOQOL-BREF. All functional domains of the Chinese WHOQOL-BREF were significantly worse in coal dust workers compared to non-dust workers except for psychological health. For the physical domain of QOL, educational level, working hours, and work danger were the significant factors. In the psychological domain, types of job, welfare satisfaction, work danger, hobbies, smoking, one-child family, and marital status were the predictive factors. Working hours, welfare satisfaction, educational level, and birthplace were the predictive factors for the social domain of QOL. Finally, the predictors for the environmental domain of QOL were types of job, working hours, welfare satisfaction, work danger, self-reported social status, smoking, and drinking. Coal dust workers without pneumoconiosis had worse QOL than non-dust workers but their subjective feelings were positive. There were four distinct models for the various domains of QOL. Corresponding health policies could be developed to improve their QOL.

  18. National Coal Quality Inventory (NaCQI) and U.S. Geological Survey Coal Quality Databases

    USGS Publications Warehouse

    ,

    1999-01-01

    Coal will remain a very significant part of U.S. energy needs (fig.l), even though there will continue to be concern about environmental impacts associated with its use. Currently, about 88 percent of U.S. coal production is used by electric utilities. The remaining 12 percent is either exported or used domestically for other industrial applications, such as coke for steel production.

  19. Flotation and flocculation chemistry of coal and oxidized coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somasundaran, P.

    1990-01-01

    The objective of this research project is to understand the fundamentals involved in the flotation and flocculation of coal and oxidized coals and elucidate mechanisms by which surface interactions between coal and various reagents enhance coal beneficiation. An understanding of the nature of the heterogeneity of coal surfaces arising from the intrinsic distribution of chemical moieties is fundamental to the elucidation of mechanism of coal surface modification and its role in interfacial processes such as flotation, flocculation and agglomeration. A new approach for determining the distribution in surface properties of coal particles was developed in this study and various techniquesmore » capable of providing such information were identified. Distributions in surface energy, contact angle and wettability were obtained using novel techniques such as centrifugal immersion and film flotation. Changes in these distributions upon oxidation and surface modifications were monitored and discussed. An approach to the modelling of coal surface site distributions based on thermodynamic information obtained from gas adsorption and immersion calorimetry is proposed. Polyacrylamide and dodecane was used to alter the coal surface. Methanol adsorption was also studied. 62 figs.« less

  20. Stream water quality in the coal region of West Virginia and Maryland

    Treesearch

    Kenneth L. Dyer

    1982-01-01

    This report is a compilation of water quality data for 118 small streams sampled in 27 counties of West Virginia and nine streams in two counties of western Maryland. Forty-eight of these streams drain unmined watersheds; 79 drain areas where coal has been surface mined. Most of these streams were sampled at approximate monthly intervals. The water quality data from...

  1. CAMD studies of coal structure and coal liquefaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faulon, J.L.; Carlson, G.A.

    The macromolecular structure of coal is essential to understand the mechanisms occurring during coal liquefaction. Many attempts to model coal structure can be found in the literature. More specifically for high volatile bituminous coal, the subject of interest the most commonly quoted models are the models of Given, Wiser, Solomon, and Shinn. In past work, the authors`s have used computer-aided molecular design (CAMD) to develop three-dimensional representations for the above coal models. The three-dimensional structures were energy minimized using molecular mechanics and molecular dynamics. True density and micopore volume were evaluated for each model. With the exception of Given`s model,more » the computed density values were found to be in agreement with the corresponding experimental results. The above coal models were constructed by a trial and error technique consisting of a manual fitting of the-analytical data. It is obvious that for each model the amount of data is small compared to the actual complexity of coal, and for all of the models more than one structure can be built. Hence, the process by which one structure is chosen instead of another is not clear. In fact, all the authors agree that the structure they derived was only intended to represent an {open_quotes}average{close_quotes} coal model rather than a unique correct structure. The purpose of this program is further develop CAMD techniques to increase the understanding of coal structure and its relationship to coal liquefaction.« less

  2. Geology, coal quality, and resources of the Antaramut-Kurtan-Dzoragukh coal field, north-central Armenia

    USGS Publications Warehouse

    Pierce, B.S.; Martirosyan, A.; Malkhasian, G.; Harutunian, S.; Harutunian, G.

    2001-01-01

    The Antaramut-Kurta-Dzoragukh (AKD) coal deposit is a previously unrecognized coal field in north-central Armenia. Coal has been known to exist in the general vicinity since the turn of the century, but coal was thought to be restricted to a small (1 km2) area only near the village of Antaramut. However, through detailed field work and exploratory drilling, this coal deposit has been expanded to at least 20 km2, and thus renamed the Antaramut-Kurtan-Dzoragukh coal field, for the three villages that the coal field encompasses. The entire coal-bearing horizon, a series of tuffaceous sandstones, siltstones, and claystones, is approximately 50 m thick. The AKD coal field contains two coal beds, each greater than 1 m thick, and numerous small rider beds, with a total resource of approximately 31,000,000 metric tonnes. The coals are late Eocene in age, high volatile bituminous in rank, relatively high in ash yield (approximately 40%, as-determined basis) and moderate in sulfur content (approximately 3%, as-determined basis). The two coal beds (No. 1 and No. 2), on a moist, mineral-matter-free basis, have high calorific values of 32.6 MJ/kg (7796 cal/g) and 36.0 MJ/kg (8599 cal/g), respectively. Coal is one of the few indigenous fossil fuel resources occurring in Armenia and thus, the AKD coal field could potentially provide fuel for heating and possibly energy generation in the Armenian energy budget. Published by Elsevier Science B.V.

  3. An overall index of environmental quality in coal mining areas and energy facilities.

    PubMed

    Vatalis, Konstantinos I; Kaliampakos, Demetrios C

    2006-12-01

    An approach to measuring environmental quality and trends in coal mining and industrial areas was attempted in this work. For this purpose, the establishment of a reference scale characterizing the status of environmental quality is proposed by developing an Environmental Quality Index (EQI). The methodology involves three main components: social research, the opinion of environmental experts, and the combination of new or existing indices. A survey of public opinion was carried out to identify the main environmental problems in the region of interest. Environmental experts carried out a survey, and the weights of specific environmental problems were obtained through a fuzzy Delphi method and pairwise comparison. The weight attributed to each environmental problem was computed, using new or existing indices (subindices) in the relevant literature. The EQI comprises a combination of the subindices with their own weights. The methodology was applied to a heavily industrialized coal basin in northwestern Macedonia, Greece. The results show that the new index may be used as a reliable tool for evaluating environmental quality in different areas. In addition, the study of EQI trends on an interannual basis can provide useful information on the efficiency of environmental policies already implemented by the responsible authorities.

  4. Progress in donor assisted coal liquefaction: Hydroaromatic compound formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kottenstette, R.J.; Stephens, H.P.

    1993-12-31

    The role of hydrogen donor compounds in coal liquefaction has been extensively investigated since the mid 1960`s using model compounds and process derived hydrogen donor solvents. Our recent research and that of other investigators have shown that two model compounds in particular have great efficacy in solvating low rank coals. 1,2,3,10b tetrahydrofluoranthene (H{sub 4}Fl) and 1,2,3,6,7,8 hexahydropyrene (H{sub 6}Py) have been used to dissolve Wyodak coal to > 95% soluble material as measured by tetrahydrofuran (THF). Although these hydrogen donors are very effective, they may not be found in any significant concentrations in actual liquefaction process recycle solvents. Therefore, studiesmore » with process derived recycle materials are necessary to understand donor solvent chemistry. The objective of this paper is to present results of solvent hydrogenation experiments using heavy distillate solvents produced during testing at the Wilsonville Advanced Coal Liquefaction Test Facility. We evaluated the impact of hydrogenation conditions upon hydrogen donor formation in process derived distillates and compared these process derived solvents with the highly effective H{sub 4}Fl and H{sub 6}Py donors in coal liquefaction tests. This paper presents data on reaction conditions used for distillate hydrotreating and subsequent coal liquefaction, with an aim toward understanding the relationship between reaction conditions and donor solvent quality in recycle distillates.« less

  5. Trends of multiple air pollutants emissions from residential coal combustion in Beijing and its implication on improving air quality for control measures

    NASA Astrophysics Data System (ADS)

    Xue, Yifeng; Zhou, Zhen; Nie, Teng; Wang, Kun; Nie, Lei; Pan, Tao; Wu, Xiaoqing; Tian, Hezhong; Zhong, Lianhong; Li, Jing; Liu, Huanjia; Liu, Shuhan; Shao, Panyang

    2016-10-01

    Residential coal combustion is considered to be an important source of air pollution in Beijing. However, knowledge regarding the emission characteristics of residential coal combustion and the related impacts on the air quality is very limited. In this study, we have developed an emission inventory for multiple hazardous air pollutants (HAPs) associated with residential coal combustion in Beijing for the period of 2000-2012. Furthermore, a widely used regional air quality model, the Community Multi-Scale Air Quality model (CMAQ), is applied to analyze the impact of residential coal combustion on the air quality in Beijing in 2012. The results show that the emissions of primary air pollutants from residential coal combustion have basically remained the same levels during the past decade, however, along with the strict emission control imposed on major industrial sources, the contribution of residential coal combustion emissions to the overall emissions from anthropogenic sources have increased obviously. In particular, the contributions of residential coal combustion to the total air pollutants concentrations of PM10, SO2, NOX, and CO represent approximately 11.6%, 27.5%, 2.8% and 7.3%, respectively, during the winter heating season. In terms of impact on the spatial variation patterns, the distributions of the pollutants concentrations are similar to the distribution of the associated primary HAPs emissions, which are highly concentrated in the rural-urban fringe zones and rural suburb areas. In addition, emissions of primary pollutants from residential coal combustion are forecasted by using a scenario analysis. Generally, comprehensive measures must be taken to control residential coal combustion in Beijing. The best way to reduce the associated emissions from residential coal combustion is to use economic incentive means to promote the conversion to clean energy sources for residential heating and cooking. In areas with reliable energy supplies, the coal used

  6. Coals of Hungary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landis, E.R.; Rohrbacher, T.J.; Gluskoter, H.

    1999-07-01

    As part of the activities conducted under the U.S. Hungarian Science and Technology Fund, a total of 39 samples from five coal mines in Hungary were selected for standard coal analyses and major, minor and trace elements analysis. The mine areas sampled were selected to provide a spectrum of coal quality information for comparison with other coal areas in central Europe and worldwide. All of the areas are of major importance in the energy budget of Hungary. The five sample sites contain coal in rocks of Jurassic, Cretaceous, Eocene, Miocene, and Pliocene age. The coals, from four underground and onemore » surface mine, range in rank from high volatile bituminous to lignite B. Most of the coal produced from the mines sampled is used to generate electricity. Some of the power plants that utilize the coals also provide heat for domestic and process usage. The standard coal analysis program is based on tests performed in accordance with standards of the American Society for Testing and Materials (ASTM). Proximate and ultimate analyses were supplemented by determinations of the heating value, equilibrium moisture, forms of sulfur, free-swelling index, ash fusion temperatures (both reducing and oxidizing), apparent specific gravity and Hardgrove Grindability index. The major, minor and trace element analyses were performed in accordance with standardized procedures of the U.S. Geological Survey. The analytical results will be available in the International Coal Quality Data Base of the USGS. The results of the program provide data for comparison with test data from Europe and information of value to potential investors or cooperators in the coal industry of Hungary and Central Europe.« less

  7. Hydrotreating of coal-derived liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lott, S.E.; Stohl, F.V.; Diegert, K.V.

    1995-12-31

    To develop a database relating hydrotreating parameters to feed and product quality by experimentally evaluating options for hydrotreating whole coal liquids, distillate cuts of coal liquids, petroleum, and blends of coal liquids with petroleum.

  8. Geochemical database of feed coal and coal combustion products (CCPs) from five power plants in the United States

    USGS Publications Warehouse

    Affolter, Ronald H.; Groves, Steve; Betterton, William J.; William, Benzel; Conrad, Kelly L.; Swanson, Sharon M.; Ruppert, Leslie F.; Clough, James G.; Belkin, Harvey E.; Kolker, Allan; Hower, James C.

    2011-01-01

    The principal mission of the U.S. Geological Survey (USGS) Energy Resources Program (ERP) is to (1) understand the processes critical to the formation, accumulation, occurrence, and alteration of geologically based energy resources; (2) conduct scientifically robust assessments of those resources; and (3) study the impacts of energy resource occurrence and (or) their production and use on both the environment and human health. The ERP promotes and supports research resulting in original, geology-based, non-biased energy information products for policy and decision makers, land and resource managers, other Federal and State agencies, the domestic energy industry, foreign governments, non-governmental groups, and academia. Investigations include research on the geology of oil, gas, and coal, and the impacts associated with energy resource occurrence, production, quality, and utilization. The ERP's focus on coal is to support investigations into current issues pertaining to coal production, beneficiation and (or) conversion, and the environmental impact of the coal combustion process and coal combustion products (CCPs). To accomplish these studies, the USGS combines its activities with other organizations to address domestic and international issues that relate to the development and use of energy resources.

  9. Nanominerals, fullerene aggregates, and hazardous elements in coal and coal combustion-generated aerosols: An environmental and toxicological assessment.

    PubMed

    Saikia, Jyotilima; Narzary, Bardwi; Roy, Sonali; Bordoloi, Manobjyoti; Saikia, Prasenjit; Saikia, Binoy K

    2016-12-01

    Studies on coal-derived nanoparticles as well as nano-minerals are important in the context of the human health and the environment. The coal combustion-generated aerosols also affect human health and environmental quality aspects in any coal-fired station. In this study, the feed coals and their combustion-generated aerosols from coal-fired boilers of two tea industry facilities were investigated for the presence of nanoparticles/nano minerals, fullerene aggregates, and potentially hazardous elements (PHEs). The samples were characterized by using X-ray diffraction (XRD), Time-of-flight secondary ion mass spectroscopy (TOF-SIMS), High resolution-transmission electron microscopy/energy dispersive spectroscopy (HR-TEM/EDS) and Ultra Violet-visible spectroscopy (UV-Vis) to know their extent of environmental risks to the human health when present in coals and aerosols. The feed coals contain mainly clay minerals, whilst glass fragments, spinel, quartz, and other minerals occur in lesser quantities. The PM samples contain potentially hazardous elements (PHEs) like As, Pb, Cd and Hg. Enrichment factor of the trace elements in particulate matters (PMs) was calculated to determine their sources. The aerosol samples were also found to contain nanomaterials and ultrafine particles. The fullerene aggregates along with potentially hazardous elements were also detected in the aerosol samples. The cytotoxicity studies on the coal combustion-generated PM samples show their potential risk to the human health. This detailed investigation on the inter-relationship between the feed coals and their aerosol chemistry will be useful for understanding the extent of environmental hazards and related human health risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Coal burning issues. [Book - monograph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, A.E.S.

    1980-01-01

    The results of the scoping phase of an interdisciplinary assessment of the impact of the increased use of coal are reported in this monograph. Subject areas include: coal availability and coal mining; an energetics analysis of coal quality; coal transportation; coal burning technology; synthetic fuels from coal; technological innovations; water resources; atmospheric pollution; air pollution dispersion modeling; atmospheric modifications; solid waste and trace element impacts; agriculture; health effects of air pollution resulting from coal combustion; quantitative public policy assessments; financing capacity growth and coal conversions in the electric utility industry; coal and the states - a public choice perspective; andmore » federal regulatory and legal aspects.« less

  11. Coal Formation and Geochemistry

    NASA Astrophysics Data System (ADS)

    Orem, W. H.; Finkelman, R. B.

    2003-12-01

    Coal is one of the most complex and challenging natural materials to analyze and to understand. Unlike most rocks, which consist predominantly of crystalline mineral grains, coal is largely an assemblage of amorphous, degraded plant remains metamorphosed to various degrees and intermixed with a generous sprinkling of minute syngenetic, diagenetic, epigenetic, and detrital mineral grains, and containing within its structure various amounts of water, oils, and gases. Each coal is unique, having been derived from different plant sources over geologic time, having experienty -45ced different thermal histories, and having been exposed to varying geologic processes. This diversity presents a challenge to constructing a coherent picture of coal geochemistry and the processes that influence the chemical composition of coal.Despite the challenge coal presents to geochemists, a thorough understanding of the chemistry and geology of this complex natural substance is essential because of its importance to our society. Coal is, and will remain for sometime, a crucial source of energy for the US and for many other countries (Figure 1). In the USA, more than half of the electricity is generated by coal-fired power plants, and almost 90% of the coal mined in the USA is sold for electricity generation (Pierce et al., 1996). It is also an important source of coke for steel production, chemicals, pharmaceuticals, and even perfumes ( Schobert, 1987). It may also, in some cases, be an economic source of various mineral commodities. The utilization of coal through mining, transport, storage, combustion, and the disposal of the combustion by-products, also presents a challenge to geochemists because of the wide range of environmental and human health problems arising from these activities. The sound and effective use of coal as a natural resource requires a better understanding of the geochemistry of coal, i.e., the chemical and mineralogical characteristics of the coal that control its

  12. Economic and environmental evaluations of extractable coal resources conducted by the U. S. Geological Survey

    USGS Publications Warehouse

    Ellis, M.S.; Rohrbacher, T.J.; Carter, M.D.; Molnia, C.L.; Osmonson, L.M.; Scott, D.C.

    2001-01-01

    The Economic and Environmental Evaluations of Extractable Coal Resources (E4CR) project integrates economic analyses of extractable coal resources with environmental and coal quality considerations in order to better understand the contribution that coal resources can make to help meet the Nation’s future energy needs. The project utilizes coal resource information derived from the recent National Coal Resource Assessment (NCRA), National Oil and Gas Assessment (NOGA), and Coal Availability and Recoverability Studies (CARS) conducted by the U.S. Geological Survey and other State and Federal cooperating agencies. The E4CR evaluations are designed to augment economic models created by the U.S. Geological Survey CARS and NCRA projects and by the Department of Energy/Energy Information Administration (DOE/EIA). E4CR evaluations are conducted on potentially minable coal beds within selected coalfields in the United States. Emphasis is placed on coalfields containing Federally owned coal and within or adjacent to Federal lands, as shown in U.S. Geological Survey Fact Sheets 012-98, 145-99, and 011-00 (U.S. Geological Survey, 1998, 1999, 2000). Other considerations for the selection of study areas include coal quality, potential environmental impact of coal production activities and coal utilization, the potential for coalbed methane development from the coal, and projected potential for future mining. Completion dates for the E4CR studies loosely follow the schedule for analogous NOGA studies to allow for a comparison of different energy resources in similar geographic areas.

  13. Influences of Coal Ash Leachates and Emergent Macrophytes on Water Quality in Wetland Microcosms

    EPA Science Inventory

    The storage of coal combustion residue (CCR) in surface water impoundments may have an impact on nearby water quality and aquatic ecosystems. CCR contains leachable trace elements that can enter nearby waters through spills and monitored discharge. It is important, therefore, to ...

  14. The World Coal Quality Inventory (WoCQI)

    USGS Publications Warehouse

    Finkelman, Robert B.; Lovern, Vivian S.

    2001-01-01

    The Issue Policymakers around the world require accurate information on coal, particularly information on coal properties and characteristics, to make informed decisions regarding the best use of indigenous resources, international import needs and export opportunities, domestic and foreign policy objectives, technology transfer opportunities, foreign investment prospects, environmental and health assessments, and byproduct use and disposal issues.

  15. Appalachian coal assessment: Defining the coal systems of the Appalachian basin

    USGS Publications Warehouse

    Milici, R.C.

    2005-01-01

    The coal systems concept may be used to organize the geologic data for a relatively large, complex area, such as the Appalachian basin, in order to facilitate coal assessments in the area. The concept is especially valuable in subjective assessments of future coal production, which would require a detailed understanding of the coal geology and coal chemistry of the region. In addition, subjective assessments of future coal production would be enhanced by a geographical information system that contains the geologic and geochemical data commonly prepared for conventional coal assessments. Coal systems are generally defined as one or more coal beds or groups of coal beds that have had the same or similar genetic history from their inception as peat deposits, through their burial, diagenesis, and epigenesis to their ultimate preservation as lignite, bituminous coal, or anthracite. The central and northern parts of the Appalachian basin contain seven coal systems (Coal Systems A-G). These systems may be defined generally on the following criteria: (1) on the primary characteristics of their paleopeat deposits, (2) on the stratigraphic framework of the Paleozoic coal measures, (3) on the relative abundance of coal beds within the major stratigraphic groupings, (4) on the amount of sulfur related to the geologic and climatic conditions under which paleopeat deposits accumulated, and (5) on the rank of the coal (lignite to anthracite). ??2005 Geological Society of America.

  16. Phyto-bioconversion of hard coal in the Cynodon dactylon/coal rhizosphere.

    PubMed

    Igbinigie, Eric E; Mutambanengwe, Cecil C Z; Rose, Peter D

    2010-03-01

    Fundamental processes involved in the microbial degradation of coal and its derivatives have been well documented. A mutualistic interaction between plant roots and certain microorganisms to aid growth of plants such as Cynodon dactylon (Bermuda grass) on hard coal dumps has recently been suggested. In the present study coal bioconversion activity of nonmycorrhizal fungi was investigated in the C. dactylon/coal rhizosphere. Fungal growth on 2% Duff-agar, gutation formation on nitric acid treated coal and submerged culture activity in nitrogen-rich and -deficient broth formed part of the screening and selection of the fungi. The selected fungal isolates were confirmed to be found in pristine C. dactylon/coal rhizosphere. To simulate bioconversion, a fungal aliquot of this rhizosphere was used as inoculum for a Perfusate fixed bed bioreactor, packed with coal. The results demonstrate an enhanced coal bioconversion facilitated by low molecular weight organics and the bioconversion of coal may be initiated by an introduction of nitrogen moieties to the coal substrate. These findings suggest a phyto-bioconversion of hard coal involving plant and microbes occurring in the rhizosphere to promote the growth of C. dactylon. An understanding of this relationship can serve as a benchmark for coal dumps rehabilitation as well as for the industrial scale bioprocessing of hard coal.

  17. Flash pyrolysis of coal, coal maceral, and coal-derived pyrite with on-line characterization of volatile sulfur compounds

    USGS Publications Warehouse

    Chou, I.-Ming; Lake, M.A.; Griffin, R.A.

    1988-01-01

    A Pyroprobe flash pyrolysis-gas chromatograph equipped with a flame photometric detector was used to study volatile sulfur compounds produced during the thermal decomposition of Illinois coal, coal macerals and coal-derived pyrite. Maximum evolution of volatile organic sulfur compounds from all coal samples occurred at a temperature of approximately 700??C. At this temperature, the evolution of thiophene, its alkyl isomers, and short-chain dialkyl sulfide compounds relative to the evolution of benzothiophene and dibenzothiophene compounds was greater from coal high in organic sulfur than from coal low in organic sulfur. The variation in the evolution of sulfur compounds observed for three separate coal macerals (exinite, vitrinite, and inertinite) was similar to that observed for whole coal samples. However, the variation trend for the macerals was much more pronounced. Decomposition of coal-derived pyrite with the evolution of elemental sulfur was detected at a temperature greater than 700??C. The results of this study indicated that the gas chromotographic profile of the volatile sulfur compounds produced during flash pyrolysis of coals and coal macerals varied as a function of the amount of organic sulfur that occurred in the samples. Characterization of these volatile sulfur compounds provides a better understanding of the behavior of sulfur in coal during the thermolysis process, which could be incorporated in the design for coal cleaning using flash pyrolysis techniques. ?? 1988.

  18. Coal supply for California

    NASA Technical Reports Server (NTRS)

    Yancik, J. J.

    1978-01-01

    The potential sources and qualities of coals available for major utility and industrial consumers in California are examined and analyzed with respect to those factors that would affect the reliability of supplies. Other considerations, such as the requirements and assurances needed by the coal producers to enter into long-term contracts and dedicate large reserves of coal to these contracts are also discussed. Present and potential future mining contraints on coal mine operators are identified and analyzed with respect to their effect on availability of supply.

  19. Using simulated maps to interpret the geochemistry, formation and quality of the Blue Gem Coal Bed, Kentucky, USA

    USGS Publications Warehouse

    Geboy, Nicholas J.; Olea, Ricardo A.; Engle, Mark A.; Martin-Fernandez, Jose Antonio

    2013-01-01

    This study presents geostatistical simulations of coal-quality parameters, major oxides and trace metals for an area covering roughly 812 km2 of the Blue Gem coal bed in southeastern Kentucky, USA. The Blue Gem, characterized by low ash yield and low sulfur content, is an important economic resource. Past studies have characterized the Blue Gem's geochemistry, palynology and petrography and inferred a depositional setting of a planar peat deposit that transitioned to slightly domed later in its development. These studies have focused primarily on vertical geochemical trends within the coal bed. Simulated maps of chemical elements derived from 45 measured sample locations across the study area provide an opportunity to observe changes in the horizontal direction within the coal bed. As the Blue Gem coal bed shows significant vertical chemical trends, care was taken in this study to try to select samples from a single, middle portion of the coal. By revealing spatial distribution patterns of elements across the middle of the bed, associations between different components of the coal can be seen. The maps therefore help to provide a picture of the coal-forming peat bog at an instant in geologic time and allow interpretation of a depositional setting in the horizontal direction. Results from this middle portion of the coal suggest an association of SiO2 with both K2O and TiO2 in different parts of the study area. Further, a pocket in the southeast of the study area shows elevated concentrations of elements attributable to observed carbonate-phase minerals (MgO, CaO, Ba and Sr) as well as elements commonly associated with sulfide-phase minerals (Cu, Mo and Ni). Areas of relatively high ash yield are observed in the north and south of the mapped area, in contrast to the low ash yields seen towards the east. Additionally, we present joint probability maps where multiple coal-quality parameters are plotted simultaneously on one figure. This application allows researchers

  20. Effects of coal mine drainage on the water quality of small receiving streams in Washington, 1975-77

    USGS Publications Warehouse

    Packard, F.A.; Skinner, E.L.; Fuste, L.A.

    1988-01-01

    Drainage from abandoned coal mines in western and central Washington has minimal environmental impact. Water quality characteristics that have the most significant environmental impact are suspended sediment and turbidity. Water quality data from 51 abandoned coal mines representing 11 major coal bearing areas indicate that less than 1% of the mine drainage has a pH of 4.5 or less. Fifty percent of the drainage is alkaline and has pH 7.0 and greater, and about 95% of the drainage has pH 6.0 and greater. Less than 2% is acidified to a pH of 5.6, a point where water and free (atmospheric) carbon dioxide are in equilibrium. The area where pH 5.6 or less is most likely to occur is in the Centralia/Chehalis mine district. No significant difference in diversity of benthic organisms was found between stations above and below the mine drainage. However, within the 50-ft downstream reach ostracods were more abundant than above the mine drainage and mayflies, stoneflies, and caddisflies were less abundant than at the control site. Correlations to water quality measurements show that these faunal changes are closely associated with iron and sulfate concentrations. (USGS)

  1. CoalVal-A coal resource valuation program

    USGS Publications Warehouse

    Rohrbacher, Timothy J.; McIntosh, Gary E.

    2010-01-01

    CoalVal is a menu-driven Windows program that produces cost-of-mining analyses of mine-modeled coal resources. Geological modeling of the coal beds and some degree of mine planning, from basic prefeasibility to advanced, must already have been performed before this program can be used. United States Geological Survey mine planning is done from a very basic, prefeasibility standpoint, but the accuracy of CoalVal's output is a reflection of the accuracy of the data entered, both for mine costs and mine planning. The mining cost analysis is done by using mine cost models designed for the commonly employed, surface and underground mining methods utilized in the United States. CoalVal requires a Microsoft Windows? 98 or Windows? XP operating system and a minimum of 1 gigabyte of random access memory to perform operations. It will not operate on Microsoft Vista?, Windows? 7, or Macintosh? operating systems. The program will summarize the evaluation of an unlimited number of coal seams, haulage zones, tax entities, or other area delineations for a given coal property, coalfield, or basin. When the reader opens the CoalVal publication from the USGS website, options are provided to download the CoalVal publication manual and the CoalVal Program. The CoalVal report is divided into five specific areas relevant to the development and use of the CoalVal program: 1. Introduction to CoalVal Assumptions and Concepts. 2. Mine Model Assumption Details (appendix A). 3. CoalVal Project Tutorial (appendix B). 4. Program Description (appendix C). 5. Mine Model and Discounted Cash Flow Formulas (appendix D). The tutorial explains how to enter coal resource and quality data by mining method; program default values for production, operating, and cost variables; and ones own operating and cost variables into the program. Generated summary reports list the volume of resource in short tons available for mining, recoverable short tons by mining method; the seam or property being mined

  2. Surfactant-Assisted Coal Liquefaction

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Sharma, Pramod K.

    1993-01-01

    Obtaining liquid fuels from coal which are economically competitive with those obtained from petroleum based sources is a significant challenge for the researcher as well as the chemical industry. Presently, the economics of coal liquefaction are not favorable because of relatively intense processing conditions (temperatures of 430 degrees C and pressures of 2200 psig), use of a costly catalyst, and a low quality product slate of relatively high boiling fractions. The economics could be made more favorable by achieving adequate coal conversions at less intense processing conditions and improving the product slate. A study has been carried out to examine the effect of a surfactant in reducing particle agglomeration and improving hydrodynamics in the coal liquefaction reactor to increase coal conversions...

  3. Coal Combustion Science quarterly progress report, April--June 1992. Task 1, Coal devolatilization: Task 2, Coal char combustion; Task 3, Fate of mineral matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardesty, D.R.; Hurt, R.H.; Baxter, L.L.

    1992-09-01

    The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: The characterization of the physical and chemical processes that constitute the early devolatilization phase of coal combustion: Characterization of the combustion behavior of selected coals under conditions relevant to industria pulverized coal-fired furnaces; and to establish a quantitative understanding of themore » mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distributions of mineral species in the unreacted coal, and the local gas temperature and composition.« less

  4. Composition and quality of coals in the Huaibei Coalfield, Anhui, China

    USGS Publications Warehouse

    Zheng, Lingyun; Liu, Gaisheng; Wang, L.; Chou, C.-L.

    2008-01-01

    The Huaibei Coalfield, Anhui Province, China, is one of the largest coalfields in China. The coals of Permian age are used mainly for power generation. Coal compositions and 47 trace elements of the No. 10 Coal of the Shanxi Formation, the No. 7, 5, and 4 Coals of the Lower Shihezi Formation, and the No. 3 Coal of the Upper Shihezi Formation from the Huaibei Coalfield were studied. The results indicate that the Huaibei coals have low ash, moisture, and sulfur contents, but high volatile matter and calorific value. The ash yield increases stratigraphically upwards, but the volatile matter and total sulfur contents show a slight decrease from the lower to upper seams. Magmatic intrusion into the No. 5 Coal resulted in high ash, volatile matter, and calorific value, but low moisture value in the coal. Among the studied 47 trace elements, Ba, Co, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Th, U, V, and Zn are of environmental concerns. Four elements Hg, Mo, Zn, and Sb are clearly enriched in the coals as compared with the upper continental crust. ?? 2007 Elsevier B.V. All rights reserved.

  5. Deep-coal potential in the Appalachian Coal Basin, USA: The Kentucky model

    USGS Publications Warehouse

    Haney, D.C.; Chesnut, D.R.

    1997-01-01

    The Eastern Kentucky Coal Field is located in the Appalachian Basin of the United States and occupies an area of approximately 15,000 square kilometers. The coal beds range from a few centimeters to several meters in thickness and consist of high-grade bituminous coal. Currently the amount of coal mined by surface methods exceeds underground extraction; however, there is a steady and gradual shift toward underground mining. In the future, as near-surface resources are depleted, this trend toward increased underground mining will continue. Knowledge about deeper coals is essential for future economic development of resources. Preliminary investigations indicate that coal-bearing strata with deep-mining potential exist in several parts of eastern Kentucky, especially along the Eastern Kentucky Syncline. Eastern Kentucky coals are Westphalian A through D; however, current production is from major beds of Westphalian A and B. Because coals that occur above drainage are more easily accessible and are generally of better quality, most of the current mining takes place in formations that are at or near the surface. In the future, however, due to environmental regulations and increased demands, it will be necessary to attempt to utilize deeper coals about which little is known. Future development of deep resources will require data from boreholes and high-resolution geophysical-logging techniques. There is also potential for coal-bed methane from the deeper coals which could be an important resource in the Appalachian Coal Basin where a natural gas distribution system already exists.

  6. Understanding the fate and transport of petroleum hydrocarbons from coal tar within gasholders.

    PubMed

    Coulon, Frédéric; Orsi, Roberto; Turner, Claire; Walton, Chris; Daly, Paddy; Pollard, Simon J T

    2009-02-01

    Coal tars have been identified as posing a threat to human health due to their toxic, mutagenic and carcinogenic characteristics. Workers involved in former gasholders decommissioning are potentially exposed to relevant concentrations of volatile and semi-volatile hydrocarbons upon opening up derelict tanks and during tar excavation/removal. While information on contaminated sites air-quality and its implications on medium-long term exposure is available, acute exposure issues associated with the execution of critical tasks are less understood. Calculations indicated that the concentration of a given contaminant in the gasholder vapour phase only depends on the coal tar composition, being only barely affected by the presence of water in the gasholder and the tar volume/void space ratio. Fugacity modelling suggested that risk-critical compounds such as benzene, naphthalene and other monocyclic and polycyclic aromatic hydrocarbons may gather in the gasholder air phase at significant concentrations. Gasholder emissions were measured on-site and compared with the workplace exposure limits (WELs) currently in use in UK. While levels for most of the toxic compounds were far lower than WELs, benzene air-concentrations where found to be above the accepted threshold. In addition due to the long exposure periods involved in gasholder decommissioning and the significant contribution given by naphthalene to the total coal tar vapour concentration, the adoption of a WEL for naphthalene may need to be considered to support operators in preventing human health risk at the workplace. The Level I fugacity approach used in this study demonstrated its suitability for applications to sealed environments such as gasholders and its further refining could provide a useful tool for land remediation risk assessors.

  7. Hydrogeology, groundwater flow, and groundwater quality of an abandoned underground coal-mine aquifer, Elkhorn Area, West Virginia

    USGS Publications Warehouse

    Kozar, Mark D.; McCoy, Kurt J.; Britton, James Q.; Blake, B.M.

    2017-01-01

    The Pocahontas No. 3 coal seam in southern West Virginia has been extensively mined by underground methods since the 1880’s. An extensive network of abandoned mine entries in the Pocahontas No. 3 has since filled with good-quality water, which is pumped from wells or springs discharging from mine portals (adits), and used as a source of water for public supplies. This report presents results of a three-year investigation of the geology, hydrology, geochemistry, and groundwater flow processes within abandoned underground coal mines used as a source of water for public supply in the Elkhorn area, McDowell County, West Virginia. This study focused on large (> 500 gallon per minute) discharges from the abandoned mines used as public supplies near Elkhorn, West Virginia. Median recharge calculated from base-flow recession of streamflow at Johns Knob Branch and 12 other streamflow gaging stations in McDowell County was 9.1 inches per year. Using drainage area versus mean streamflow relationships from mined and unmined watersheds in McDowell County, the subsurface area along dip of the Pocahontas No. 3 coal-mine aquifer contributing flow to the Turkey Gap mine discharge was determined to be 7.62 square miles (mi2), almost 10 times larger than the 0.81 mi2 surface watershed. Results of this investigation indicate that groundwater flows down dip beneath surface drainage divides from areas up to six miles east in the adjacent Bluestone River watershed. A conceptual model was developed that consisted of a stacked sequence of perched aquifers, controlled by stress-relief and subsidence fractures, overlying a highly permeable abandoned underground coal-mine aquifer, capable of substantial interbasin transfer of water. Groundwater-flow directions are controlled by the dip of the Pocahontas No. 3 coal seam, the geometry of abandoned mine workings, and location of unmined barriers within that seam, rather than surface topography. Seven boreholes were drilled to intersect

  8. Coal Quality and Major, Minor, and Trace Elements in the Powder River, Green River, and Williston Basins, Wyoming and North Dakota

    USGS Publications Warehouse

    Stricker, Gary D.; Flores, Romeo M.; Trippi, Michael H.; Ellis, Margaret S.; Olson, Carol M.; Sullivan, Jonah E.; Takahashi, Kenneth I.

    2007-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Wyoming Reservoir Management Group (RMG) of the Bureau of Land Management (BLM) and nineteen independent coalbed methane (CBM) gas operators in the Powder River and Green River Basins in Wyoming and the Williston Basin in North Dakota, collected 963 coal samples from 37 core holes (fig. 1; table 1) between 1999 and 2005. The drilling and coring program was in response to the rapid development of CBM, particularly in the Powder River Basin (PRB), and the needs of the RMG BLM for new and more reliable data for CBM resource estimates and reservoir characterization. The USGS and BLM entered into agreements with the gas operators to drill and core Fort Union coal beds, thus supplying core samples for the USGS to analyze and provide the RMG with rapid, real-time results of total gas desorbed, coal quality, and high pressure methane adsorption isotherm data (Stricker and others, 2006). The USGS determined the ultimate composition of all coal core samples; for selected samples analyses also included proximate analysis, calorific value, equilibrium moisture, apparent specific gravity, and forms of sulfur. Analytical procedures followed those of the American Society of Testing Materials (ASTM; 1998). In addition, samples from three wells (129 samples) were analyzed for major, minor, and trace element contents. Ultimate and proximate compositions, calorific value, and forms of sulfur are fundamental parameters in evaluating the economic value of a coal. Determining trace element concentrations, along with total sulfur and ash yield, is also essential to assess the environmental effects of coal use, as is the suitability of the coal for cleaning, gasification, liquefaction, and other treatments. Determination of coal quality in the deeper part (depths greater than 1,000 to 1,200 ft) of the PRB (Rohrbacher and others, 2006; Luppens and others, 2006) is especially important, because these coals are targeted for future

  9. Hydrochemical characteristics and quality assessment of deep groundwater from the coal-bearing aquifer of the Linhuan coal-mining district, Northern Anhui Province, China.

    PubMed

    Lin, Man-Li; Peng, Wei-Hua; Gui, He-Rong

    2016-04-01

    There is little information available about the hydrochemical characteristics of deep groundwater in the Linhuan coal-mining district, Northern Anhui Province, China. In this study, we report information about the physicochemical parameters, major ions, and heavy metals of 17 groundwater samples that were collected from the coal-bearing aquifer. The results show that the concentrations of total dissolved solids, electrical conductivity, and potassium and sodium (K(+) + Na(+)) in most of the groundwater samples exceeded the guidelines of the World Health Organization (WHO) and the Chinese National Standards for Drinking Water Quality (GB 5749-2006). The groundwater from the coal-bearing aquifer was dominated by the HCO3·Cl-K + Na and HCO3·SO4-K + Na types. Analysis with a Gibbs plot suggested that the major ion chemistry of the groundwater was primarily controlled by weathering of rocks and that the coal-bearing aquifer in the Linhuan coal-mining district was a relatively closed system. K(+) and Na(+) originated from halite and silicate weathering reactions, while Ca(2+) and Mg(2+) originated from the dissolution of calcite, dolomite, and gypsum or anhydrite. Ion exchange reactions also had an influence on the formation of major ions in groundwater. The concentrations of selected heavy metals decreased in the order Mn > Zn > Cr > Cu > Ni > Pb. In general, the heavy metal concentrations were low; however, the Cr, Mn, and Ni concentrations in some of the groundwater samples exceeded the standards outlined by the WHO, the GB 5749-2006, and the Chinese National Standards for Groundwater (GB/T 14848-93). Analysis by various indices (% Na, SAR, and EC), a USSL diagram, and a Wilcox diagram showed that both the salinity and alkalinity of the groundwater were high, such that the groundwater could not be used for irrigating agricultural land without treatment. These results will be significant for water resource exploiting and utilization in

  10. Dry cleaning of Turkish coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cicek, T.

    2008-07-01

    This study dealt with the upgrading of two different type of Turkish coal by a dry cleaning method using a modified air table. The industrial size air table used in this study is a device for removing stones from agricultural products. This study investigates the technical and economical feasibility of the dry cleaning method which has never been applied before on coals in Turkey. The application of a dry cleaning method on Turkish coals designated for power generation without generating environmental pollution and ensuring a stable coal quality are the main objectives of this study. The size fractions of 5-8,more » 3-5, and 1-3 mm of the investigated coals were used in the upgrading experiments. Satisfactory results were achieved with coal from the Soma region, whereas the upgrading results of Hsamlar coal were objectionable for the coarser size fractions. However, acceptable results were obtained for the size fraction 1-3 mm of Hsamlar coal.« less

  11. Development of a coal quality analyzer for application to power plants based on laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Gong, Yao; Li, Yufang; Wang, Xin; Fan, Juanjuan; Dong, Lei; Ma, Weiguang; Yin, Wangbao; Jia, Suotang

    2015-11-01

    It is vitally important for a power plant to determine the coal property rapidly to optimize the combustion process. In this work, a fully software-controlled laser-induced breakdown spectroscopy (LIBS) based coal quality analyzer comprising a LIBS apparatus, a sampling equipment, and a control module, has been designed for possible application to power plants for offering rapid and precise coal quality analysis results. A closed-loop feedback pulsed laser energy stabilization technology is proposed to stabilize the Nd: YAG laser output energy to a preset interval by using the detected laser energy signal so as to enhance the measurement stability and applied in a month-long monitoring experiment. The results show that the laser energy stability has been greatly reduced from ± 5.2% to ± 1.3%. In order to indicate the complex relationship between the concentrations of the analyte of interest and the corresponding plasma spectra, the support vector regression (SVR) is employed as a non-linear regression method. It is shown that this SVR method combined with principal component analysis (PCA) enables a significant improvement in cross-validation accuracy by using the calibration set of coal samples. The root mean square error for prediction of ash content, volatile matter content, and calorific value decreases from 2.74% to 1.82%, 1.69% to 1.22%, and 1.23 MJ/kg to 0.85 MJ/kg, respectively. Meanwhile, the corresponding average relative error of the predicted samples is reduced from 8.3% to 5.48%, 5.83% to 4.42%, and 5.4% to 3.68%, respectively. The enhanced levels of accuracy obtained with the SVR combined with PCA based calibration models open up avenues for prospective prediction in coal properties.

  12. Clean coal initiatives in Indiana

    USGS Publications Warehouse

    Bowen, B.H.; Irwin, M.W.; Sparrow, F.T.; Mastalerz, Maria; Yu, Z.; Kramer, R.A.

    2007-01-01

    Purpose - Indiana is listed among the top ten coal states in the USA and annually mines about 35 million short tons (million tons) of coal from the vast reserves of the US Midwest Illinois Coal Basin. The implementation and commercialization of clean coal technologies is important to the economy of the state and has a significant role in the state's energy plan for increasing the use of the state's natural resources. Coal is a substantial Indiana energy resource and also has stable and relatively low costs, compared with the increasing costs of other major fuels. This indigenous energy source enables the promotion of energy independence. The purpose of this paper is to outline the significance of clean coal projects for achieving this objective. Design/methodology/approach - The paper outlines the clean coal initiatives being taken in Indiana and the research carried out at the Indiana Center for Coal Technology Research. Findings - Clean coal power generation and coal for transportation fuels (coal-to-liquids - CTL) are two major topics being investigated in Indiana. Coking coal, data compilation of the bituminous coal qualities within the Indiana coal beds, reducing dependence on coal imports, and provision of an emissions free environment are important topics to state legislators. Originality/value - Lessons learnt from these projects will be of value to other states and countries.

  13. Characterization of seven United States coal regions. The development of optimal terrace pit coal mining systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wimer, R.L.; Adams, M.A.; Jurich, D.M.

    1981-02-01

    This report characterizes seven United State coal regions in the Northern Great Plains, Rocky Mountain, Interior, and Gulf Coast coal provinces. Descriptions include those of the Fort Union, Powder River, Green River, Four Corners, Lower Missouri, Illinois Basin, and Texas Gulf coal resource regions. The resource characterizations describe geologic, geographic, hydrologic, environmental and climatological conditions of each region, coal ranks and qualities, extent of reserves, reclamation requirements, and current mining activities. The report was compiled as a basis for the development of hypothetical coal mining situations for comparison of conventional and terrace pit surface mining methods, under contract to themore » Department of Energy, Contract No. DE-AC01-79ET10023, entitled The Development of Optimal Terrace Pit Coal Mining Systems.« less

  14. Map showing general chemical quality of ground water in the Kaiparowits coal-basin area, Utah

    USGS Publications Warehouse

    Price, Don

    1977-01-01

    This is one of a series of maps that describe the geology and related natural resources in the Kaiparowits coal-basin area. Chemical analyses of water from about 40 widely scattered springs, 20 coal-exploration holes in the Kaiparowits Plateau, and 7 water wells in the vicinity of the communities of Escalante and Glen Canyon were used to compile this map. All the water samples were from depths of less than 1,000 feet (305 m). Water-quality data were also available from a number of petroleum wells and exploration holes more than 5,000 feet (1,524 m) deep; however, those data were used with considerable discretion because water produced by deep petroleum wells and exploration holes usually is more saline than water found at shallower depths at the drilling sites.Most of the chemical analyses used were collected by the U.S. Geological Survey in cooperation with State, local, and other Federal agencies. Published sources of data included Phoenix (1963), Iorns, Hembree, and Phoenix (1964), Cooley (1965), Feltis (1966), and Goode (1966, 1969), and the Environmental Impact Statement of the proposed Kaiparowits power project (U.S. Bureau of Land Management, 1976).Little or no ground-water-quality data were available for large areas in the Kaiparowits coal basin. In those areas, the indicated ranged of dissolved-solids concentrations in water from springs and wells are inferred largely from the geology as compiled by Stokes (1964) and Hackman and Wyant (1973). This is especially true for those areas where the designated ranges of dissolved-solids concentrations are 100-1,000 and 500-3,000 mg/l (milligrams per liter).El Paso Natural Gas Co., Resources Co., Kaiser Engineers, and Southern California Edison Co. provided ground-water samples and specific water-quality data collected from their exploratory drill holes on the Kaiparowits Plateau. The cooperation of those firms is gratefully acknowledged.

  15. Application studies of RFID technology in the process of coal logistics transport

    NASA Astrophysics Data System (ADS)

    Qiao, Bingqin; Chang, Xiaoming; Hao, Meiyan; Kong, Dejin

    2012-04-01

    For quality control problems in coal transport, RFID technology has been proposed to be applied to coal transportation process. The whole process RFID traceability system from coal production to consumption has been designed and coal supply chain logistics tracking system integration platform has been built, to form the coal supply chain traceability and transport tracking system and providing more and more transparent tracking and monitoring of coal quality information for consumers of coal. Currently direct transport and combined transport are the main forms of coal transportation in China. The means of transport are cars, trains and ships. In the booming networking environment of RFID technology, the RFID technology will be applied to coal logistics and provide opportunity for the coal transportation tracking in the process transportation.

  16. Statistical summaries of water-quality data for two coal areas of Jackson County, Colorado

    USGS Publications Warehouse

    Kuhn, Gerhard

    1982-01-01

    Statistical summaries of water-quality data are compiled for eight streams in two separate coal areas of Jackson County, Colo. The quality-of-water data were collected from October 1976 to September 1980. For inorganic constituents, the maximum, minimum, and mean concentrations, as well as other statistics are presented; for minor elements, only the maximum, minimum, and mean values are included. Least-squares equations (regressions) are also given relating specific conductance of the streams to the concentration of the major ions. The observed range of specific conductance was 85 to 1,150 micromhos per centimeter for the eight sites. (USGS)

  17. Microbial solubilization of coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, J.A.; Fredrickson, J.K.; Stewart, D.L.

    1988-11-01

    Microbial solubilization of coal may serve as a first step in a process to convert low-rank coals or coal-derived products to other fuels or products. For solubilization of coal to be an economically viable technology, a mechanistic understanding of the process is essential. Leonardite, a highly oxidized, low-rank coal, has been solubilized by the intact microorganism, cell-free filtrate, and cell-free enzyme of /ital Coriolus versicolor/. A spectrophotometric conversion assay was developed to quantify the amount of biosolubilized coal. In addition, a bituminous coal, Illinois No. 6, was solubilized by a species of /ital Penicillium/, but only after the coal hadmore » been preoxidized in air. Model compounds containing coal-related functionalities have been incubated with the leonardite-degrading fungus, its cell-free filtrate, and purified enzyme. The amount of degradation was determined by gas chromatography and the degradation products were identified by gas chromatography/mass spectrometry. We have also separated the cell-free filtrate of /ital C. versicolor/ into a <10,000 MW and >10,000 MW fraction by ultrafiltration techniques. Most of the coal biosolubilization activity is contained in the <10,000 MW fraction while the model compound degradation occurs in the >10,000 MW fraction. The >10,000 MW fraction appears to contain an enzyme with laccase-like activity. 10 refs., 8 figs., 5 tabs.« less

  18. Palynology in coal systems analysis-The key to floras, climate, and stratigraphy of coal-forming environments

    USGS Publications Warehouse

    Nichols, D.J.

    2005-01-01

    Palynology can be effectively used in coal systems analysis to understand the nature of ancient coal-forming peat mires. Pollen and spores preserved in coal effectively reveal the floristic composition of mires, which differed substantially through geologic time, and contribute to determination of depositional environment and paleo- climate. Such applications are most effective when integrated with paleobotanical and coal-petrographic data. Examples of previous studies of Miocene, Carboniferous, and Paleogene coal beds illustrate the methods and results. Palynological age determinations and correlations of deposits are also important in coal systems analysis to establish stratigraphic setting. Application to studies of coalbed methane generation shows potential because certain kinds of pollen are associated with gas-prone lithotypes. ??2005 Geological Society of America.

  19. A geostatistical approach to predicting sulfur content in the Pittsburgh coal bed

    USGS Publications Warehouse

    Watson, W.D.; Ruppert, L.F.; Bragg, L.J.; Tewalt, S.J.

    2001-01-01

    The US Geological Survey (USGS) is completing a national assessment of coal resources in the five top coal-producing regions in the US. Point-located data provide measurements on coal thickness and sulfur content. The sample data and their geologic interpretation represent the most regionally complete and up-to-date assessment of what is known about top-producing US coal beds. The sample data are analyzed using a combination of geologic and Geographic Information System (GIS) models to estimate tonnages and qualities of the coal beds. Traditionally, GIS practitioners use contouring to represent geographical patterns of "similar" data values. The tonnage and grade of coal resources are then assessed by using the contour lines as references for interpolation. An assessment taken to this point is only indicative of resource quantity and quality. Data users may benefit from a statistical approach that would allow them to better understand the uncertainty and limitations of the sample data. To develop a quantitative approach, geostatistics were applied to the data on coal sulfur content from samples taken in the Pittsburgh coal bed (located in the eastern US, in the southwestern part of the state of Pennsylvania, and in adjoining areas in the states of Ohio and West Virginia). Geostatistical methods that account for regional and local trends were applied to blocks 2.7 mi (4.3 km) on a side. The data and geostatistics support conclusions concerning the average sulfur content and its degree of reliability at regional- and economic-block scale over the large, contiguous part of the Pittsburgh outcrop, but not to a mine scale. To validate the method, a comparison was made with the sulfur contents in sample data taken from 53 coal mines located in the study area. The comparison showed a high degree of similarity between the sulfur content in the mine samples and the sulfur content represented by the geostatistically derived contours. Published by Elsevier Science B.V.

  20. The National Coal Resource Assessment Overview

    USGS Publications Warehouse

    Pierce, Brenda S.; Dennen, Kristin O.

    2009-01-01

    The U.S. Geological Survey (USGS) has completed the National Coal Resource Assessment (NCRA), a multiyear project by the USGS Energy Resources Program, in partnership with State geological surveys in the coal producing regions of the United States. The NCRA is the first digital national coal-resource assessment. Coal beds and zones were assessed in five regions that account for more than 90 percent of the Nation's coal production - (1) the Appalachian Basin, (2) the Illinois Basin, (3) the Gulf Coastal Plain, (4) the Colorado Plateau, and (5) the Northern Rocky Mountains and Great Plains. The purpose of this Professional Paper, USGS Professional Paper 1625-F, is to present a tabulation and overview of the assessment results, insight into the methods used in the NCRA, and supplemental information on coal quality, economics, and other factors that affect coal production in the United States.

  1. Thickness and quality of Springfield Coal Member, Gibson County, Indiana, as a function of differential compaction of precursor sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eggert, D.L.

    1983-09-01

    The Springfield Coal Member is a time transgressive coal that formed during the Pennsylvanian on a delta platform within the slowly subsiding Illinois basin. In Gibson County, Indiana, the locations of the major Galatia channel and the minor Leslie Cemetery channel were determined by differential compaction of precursor sediments beneath this platform. The springfield coal is thick proximal to both channels, but proximal to the Galatia channel it is either a low-sulfur or a high-sulfur coal. It is a low-sulfur coal where it is underlain by a thick platform of shale with some sandstone and overlain by nonmarine shale. Itmore » is a high-sulfur coal where it is underlain by a thick platform of fluvial sandstone and overlain by brackish to marine rocks. Distal to both channels the coal is thin and high in sulfur. At distal locations the Springfield is underlain by a platform of either thick bay-fill sandstone or fluvial sandstone and overlain by brackish to marine shale and limestone. Compaction of pre-Springfield delta sediments allowed for accumulation of thicker peat along the axis of more rapid local subsidence. Compaction of muddy parts of the delta platform proximal to the Galatia channel resulted in rapid subsidence and the deposition of nonmarine shale over the peat. In the areas underlain by bay-fill and fluvial sandstone where compaction was less, the peat became a relatively thin and high-sulfur coal. Differences in coal thickness and quality in this 500 mi/sup 2/ (1,300 km/sup 2/) area of Gibson County can be explained largely by differential compaction and deltaic sedimentation.« less

  2. Radioactivity of coals and ash and slag wastes at coal-fired thermal power plants

    NASA Astrophysics Data System (ADS)

    Krylov, D. A.; Sidorova, G. P.

    2013-04-01

    This paper presents an analysis of published data on the content of radioactive nuclides in coals originating from various coal deposits, and in ash and slag wastes produced at coal-fired thermal power plants, as well as in fly ash emitted from thermal power plants into the atmosphere. Problems related to the use of coals with an elevated content of natural radionuclides (NRNs) and methods of their solution implemented at the Urtuyskoe coalfield are dealt with. Data on the analysis of Transbaikal coals for the NRN content, as well as weighted mean content of uranium and thorium in coals from the Siberian Region, are given. In order to reduce irradiation of plant personnel and the population of the areas where coal producers and coal-fired thermal power plants are located, it is necessary to organize very careful control of the NRN content in both coals and products of their combustion that are released into the environment. To solve the problem related to the control of radioactivity, the centralized approach and creation of a proper normative base are needed. Experience gained in developing the Urtuyskoe coalfield shows that it is possible to create an efficient system of coal quality control with respect to the radiation hygiene factor and provide protection of the environment and health of the population.

  3. Mapping and prediction of Coal Workers' Pneumoconiosis with bioavailable iron content in the bituminous coals

    USGS Publications Warehouse

    Huang, X.; Li, W.; Attfield, M.D.; Nadas, A.; Frenkel, K.; Finkelman, R.B.

    2005-01-01

    Based on the first National Study of Coal Workers' Pneumoconiosis (CWP) and the U.S. Geological Survey database of coal quality, we show that the prevalence of CWP in seven coal mine regions correlates with levels of bioavailable iron (BAI) in the coals from that particular region (correlation coefficient r = 0.94, p < 0.0015). CWP prevalence is also correlated with contents of pyritic sulfur (r = 0.91, p < 0.0048) or total iron (r = 0.85, p < 0.016) but not with coal rank (r = 0.59, p < 0.16) or silica (r = 0.28, p < 0.54). BAI was calculated using our model, taking into account chemical interactions of pyrite, sulfuric acid, calcite, and total iron. That is, iron present in coals can become bioavailable by pyrite oxidation, which produces ferrous sulfate and sulfuric acid. Calcite is the major component in coals that neutralizes the available acid and inhibits iron's bioavailabiity. Therefore, levels of BAI in the coals are determined by the available amounts of acid after neutralization of calcite and the amount of total iron in the coals. Using the linear fit of CWP prevalence and the calculated BAI in the seven coal mine regions, we have derived and mapped the pneumoconiotic potencies of 7,000 coal samples. Our studies indicate that levels of BAI in the coals may be used to predict coal's toxicity, even before large-scalen mining.

  4. Assessing U.S. coal resources and reserves

    USGS Publications Warehouse

    Shaffer, Brian N.

    2017-09-27

    The U.S. Coal Resources and Reserves Assessment Project, as part of the U.S. Geological Survey (USGS) Energy Resources Program, conducts systematic, geology-based, regional assessments of significant coal beds in major coal basins in the United States. These assessments detail the quantity, quality, location, and economic potential of the Nation’s remaining coal resources and reserves and provide objective scientific information that assists in the formulation of energy strategies, environmental policies, land-use management practices, and economic projections.

  5. Subtle structural influences on coal thickness and distribution: Examples from the Lower Broas-Stockton coal (Middle Pennsylvanian), Eastern Kentucky Coal Field, USA

    USGS Publications Warehouse

    Greb, S.F.; Eble, C.F.; Hower, J.C.

    2005-01-01

    The Lower Broas-Stockton coal is a heavily mined coal of the Central Appalachian Basin. Coal thickness, distribution, composition, and stratigraphic position were compared with basement structure, gas and oil field trends, and sequence strat- igraphic and paleoclimate interpretations to better understand the geology of the Stockton coal bed in eastern Kentucky. The thickest coal occurs south of the Warfield structural trend and east of the Paint Creek Uplift, two basement-related structures. Along the Warfield trend, coal beds in the underlying Peach Orchard coal zone locally merge with the Stockton coal to form a seam more than 3 m thick. Other areas of thick coal occur in elongate trends. Two pairs of elongate, conjugate trends in Stockton coal thickness are interpreted as regional paleofractures that influenced paleotopography and groundwater during peat accumulation. Compositional group analyses indicate that the Stockton peat infilled depressions in the paleotopography as a topogenous to soligenous mire codominated by tree ferns and lycopsid trees. Flooding from adjacent paleochannels is indicated by partings and seam splits along the margins of the mineable coal body. One or more increments of low-vitrinite coal, dominated by tree ferns and shrubby, Densosporites-producing lycopsids occur at all sample sites. Similar assemblages have been previously used to identify ombrogenous, domed mire origins for Early and Middle Pennsylvanian coals in which ash yields were less than 10%. It is difficult, however, to reconcile ombrogenous conditions with the partings in the Stockton coal in this area. Low-ash, low-vitrinite increments may have been formed in topogenous to soligenous mires with periodic drying or water-table fluctuations, rather than widespread doming. This is consistent with interpretations of increasingly seasonal paleoclimates in the late Middle and Late Pennsylvanian and fracture-influenced groundwater conditions. ??2005 Geological Society of America.

  6. LIBS Analysis for Coal

    NASA Astrophysics Data System (ADS)

    E. Romero, Carlos; De Saro, Robert

    Coal is a non-uniform material with large inherent variability in composition, and other important properties, such as calorific value and ash fusion temperature. This quality variability is very important when coal is used as fuel in steam generators, since it affects boiler operation and control, maintenance and availability, and the extent and treatment of environmental pollution associated with coal combustion. On-line/in situ monitoring of coal before is fed into a boiler is a necessity. A very few analytical techniques like X-ray fluorescence and prompt gamma neutron activation analysis are available commercially with enough speed and sophistication of data collection for continuous coal monitoring. However, there is still a need for a better on-line/in situ technique that has higher selectivity, sensitivity, accuracy and precision, and that is safer and has a lower installation and operating costs than the other options. Laser induced breakdown spectroscopy (LIBS) is ideal for coal monitoring in boiler applications as it need no sample preparation, it is accurate and precise it is fast, and it can detect all of the elements of concern to the coal-fired boiler industry. LIBS data can also be adapted with advanced data processing techniques to provide real-time information required by boiler operators nowadays. This chapter summarizes development of LIBS for on-line/in situ coal applications in utility boilers.

  7. A comparative analysis of health-related quality of life for residents of U.S. counties with and without coal mining.

    PubMed

    Zullig, Keith J; Hendryx, Michael

    2010-01-01

    We compared health-related quality of life (HRQOL) in mining and non-mining counties in and out of Appalachia using the 2006 Behavioral Risk Factor Surveillance System (BRFSS) survey. Dependent variables included self-rated health, the number of poor physical and mental health days, the number of activity limitation days (in the last 30 days), and the Centers for Disease Control and Prevention Healthy Days Index. Independent variables included the presence of coal mining, Appalachian region residence, metropolitan status, primary care physician supply, and BRFSS behavioral (e.g., smoking, body mass index, and alcohol consumption) and demographic (e.g., age, gender, race, and income) variables. We compared dependent variables across a four-category variable: Appalachia (yes/ no) and coal mining (yes/no). We used SUDAAN Multilog and multiple linear regression models with post-hoc least-squares means to test for Appalachian coal-mining effects after adjusting for covariates. Residents of coal-mining counties inside and outside of Appalachia reported significantly fewer healthy days for both physical and mental health, and poorer self-rated health (p < 0.0005) when compared with referent U.S. non-coal-mining counties, but disparities were greatest for people residing in Appalachian coal-mining areas. Furthermore, results remained consistent in separate analyses by gender and age. Coal-mining areas are characterized by greater socioeconomic disadvantage, riskier health behaviors, and environmental degradation that are associated with reduced HRQOL.

  8. Application of LIBS and TMA for the determination of combustion predictive indices of coals and coal blends

    NASA Astrophysics Data System (ADS)

    Ctvrtnickova, T.; Mateo, M. P.; Yañez, A.; Nicolas, G.

    2011-04-01

    Presented work brings results of Laser-Induced Breakdown Spectroscopy (LIBS) and Thermo-Mechanical Analysis (TMA) of coals and coal blends used in coal fired power plants all over Spain. Several coal specimens, its blends and corresponding laboratory ash were analyzed by mentioned techniques and results were compared to standard laboratory methods. The indices of slagging, which predict the tendency of coal ash deposition on the boiler walls, were determined by means of standard chemical analysis, LIBS and TMA. The optimal coal suitable to be blended with the problematic national lignite coal was suggested in order to diminish the slagging problems. Used techniques were evaluated based on the precision, acquisition time, extension and quality of information they could provide. Finally, the applicability of LIBS and TMA to the successful calculation of slagging indices is discussed and their substitution of time-consuming and instrumentally difficult standard methods is considered.

  9. Mapping and Prediction of Coal Workers’ Pneumoconiosis with Bioavailable Iron Content in the Bituminous Coals

    PubMed Central

    Huang, Xi; Li, Weihong; Attfield, Michael D.; Nádas, Arthur; Frenkel, Krystyna; Finkelman, Robert B.

    2005-01-01

    Based on the first National Study of Coal Workers’ Pneumoconiosis (CWP) and the U.S. Geological Survey database of coal quality, we show that the prevalence of CWP in seven coal mine regions correlates with levels of bioavailable iron (BAI) in the coals from that particular region (correlation coefficient r = 0.94, p < 0.0015). CWP prevalence is also correlated with contents of pyritic sulfur (r = 0.91, p < 0.0048) or total iron (r = 0.85, p < 0.016) but not with coal rank (r = 0.59, p < 0.16) or silica (r = 0.28, p < 0.54). BAI was calculated using our model, taking into account chemical interactions of pyrite, sulfuric acid, calcite, and total iron. That is, iron present in coals can become bioavailable by pyrite oxidation, which produces ferrous sulfate and sulfuric acid. Calcite is the major component in coals that neutralizes the available acid and inhibits iron’s bioavailability. Therefore, levels of BAI in the coals are determined by the available amounts of acid after neutralization of calcite and the amount of total iron in the coals. Using the linear fit of CWP prevalence and the calculated BAI in the seven coal mine regions, we have derived and mapped the pneumoconiotic potencies of 7,000 coal samples. Our studies indicate that levels of BAI in the coals may be used to predict coal’s toxicity, even before large-scale mining. PMID:16079064

  10. Statistical summaries of water-quality data for streams draining coal-mined areas, southeastern Kansas

    USGS Publications Warehouse

    Bevans, Hugh E.; Diaz, Arthur M.

    1980-01-01

    Summaries of descriptive statistics are compiled for 14 data-collection sites located on streams draining areas that have been shaft mined and strip mined for coal in Cherokee and Crawford Counties in southeastern Kansas. These summaries include water-quality data collected from October 1976 through April 1979. Regression equations relating specific conductance and instantaneous streamflow to concentrations of bicarbonate, sulfate, chloride, fluoride, calcium, magnesium, sodium, potassium, silica, and dissolved solids are presented.

  11. Hydrogeochemistry and coal-associated bacterial populations from a methanogenic coal bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnhart, Elliott P.; Weeks, Edwin P.; Jones, Elizabeth J. P.

    hydrocarbons. As a result, identifying microorganisms involved in coal degradation and the ydrogeochemical conditions that promote their activity is crucial to understanding and improving in situ CBM production.« less

  12. Hydrogeochemistry and coal-associated bacterial populations from a methanogenic coal bed

    DOE PAGES

    Barnhart, Elliott P.; Weeks, Edwin P.; Jones, Elizabeth J. P.; ...

    2016-05-04

    hydrocarbons. As a result, identifying microorganisms involved in coal degradation and the ydrogeochemical conditions that promote their activity is crucial to understanding and improving in situ CBM production.« less

  13. Thiophenic Sulfur Compounds Released During Coal Pyrolysis

    PubMed Central

    Xing, Mengwen; Kong, Jiao; Dong, Jie; Jiao, Haili; Li, Fan

    2013-01-01

    Abstract Thiophenic sulfur compounds are released during coal gasification, carbonization, and combustion. Previous studies indicate that thiophenic sulfur compounds degrade very slowly in the environment, and are more carcinogenic than polycyclic aromatic hydrocarbons and nitrogenous compounds. Therefore, it is very important to study the principle of thiophenic sulfur compounds during coal conversion, in order to control their emission and promote clean coal utilization. To realize this goal and understand the formation mechanism of thiophenic sulfur compounds, this study focused on the release behavior of thiophenic sulfur compounds during coal pyrolysis, which is an important phase for all coal thermal conversion processes. The pyrolyzer (CDS-5250) and gas chromatography–mass spectrometry (Focus GC-DSQII) were used to analyze thiophenic sulfur compounds in situ. Several coals with different coal ranks and sulfur contents were chosen as experimental samples, and thiophenic sulfur compounds of the gas produced during pyrolysis under different temperatures and heating rates were investigated. Levels of benzothiophene and dibenzothiophene were obtained during pyrolysis at temperatures ranging from 200°C to 1300°C, and heating rates ranging from 6°C/ms to 14°C/ms and 6°C/s to 14°C/s. Moreover, the relationship between the total amount of benzothiophene and dibenzothiophene released during coal pyrolysis and the organic sulfur content in coal was also discussed. This study is beneficial for understanding the formation and control of thiophenic sulfur compounds, since it provides a series of significant results that show the impact that operation conditions and organic sulfur content in coal have on the amount and species of thiophenic sulfur compounds produced during coal pyrolysis. PMID:23781126

  14. Underground Coal Thermal Treatment: Task 6 Topical Report, Utah Clean Coal Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, P.J.; Deo, M.; Edding, E.G.

    The long-term objective of this task is to develop a transformational energy production technology by in- situ thermal treatment of a coal seam for the production of substitute natural gas and/or liquid transportation fuels while leaving much of the coal’s carbon in the ground. This process converts coal to a high-efficiency, low-greenhouse gas (GHG) emitting fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This task focused on three areas: Experimental. The Underground Coal Thermal Treatment (UCTT) team focused on experiments at two scales, bench-top and slightly larger, to develop data to understand themore » feasibility of a UCTT process as well as to develop validation/uncertainty quantification (V/UQ) data for the simulation team. Simulation. The investigators completed development of High Performance Computing (HPC) simulations of UCTT. This built on our simulation developments over the course of the task and included the application of Computational Fluid Dynamics (CFD)- based tools to perform HPC simulations of a realistically sized domain representative of an actual coal field located in Utah. CO 2 storage. In order to help determine the amount of CO 2 that can be sequestered in a coal formation that has undergone UCTT, adsorption isotherms were performed on coals treated to 325, 450, and 600°C with slow heating rates. Raw material was sourced from the Sufco (Utah), Carlinville (Illinois), and North Antelope (Wyoming) mines. The study indicated that adsorptive capacity for the coals increased with treatment temperature and that coals treated to 325°C showed less or similar capacity to the untreated coals.« less

  15. Trace elements in coal. Environmental and health significance

    USGS Publications Warehouse

    Finkelman, R.B.

    1999-01-01

    Trace elements can have profound adverse effects on the health of people burning coal in homes or living near coal deposits, coal mines, and coal- burning power plants. Trace elements such as arsenic emitted from coal- burning power plants in Europe and Asia have been shown to cause severe health problems. Perhaps the most widespread health problems are caused by domestic coal combustion in developing countries where millions of people suffer from fluorosis and thousands from arsenism. Better knowledge of coal quality characteristics may help to reduce some of these health problems. For example, information on concentrations and distributions of potentially toxic elements in coal may help delineate areas of a coal deposit to be avoided. Information on the modes of occurrence of these elements and the textural relations of the minerals in coal may help to predict the behavior of the potentially toxic trace metals during coal cleaning, combustion, weathering, and leaching.

  16. General surface and groundwater quality in a coal-resource area near Durango, southwestern Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, D.L.

    1986-01-01

    A general description of surface and groundwater quality in a coal-resource area near Durango, southwestern Colorado is given. Dissolved-solids concentrations were less than 1,000 mg/l in streams, except in the Alkali Gulch, Basin Creek, and carbon Junction Canyon drainage basins. Median concentrations of dissolved boron, iron, manganese, and zinc were less than 35 microg/l; median concentrations of dissolved lead and selenium were less than 1 microg/l. 10 refs., 11 figs., 10 tabs.

  17. Ambient air quality and emission characteristics in and around a non-recovery type coke oven using high sulphur coal.

    PubMed

    Saikia, Jyotilima; Saikia, Prasenjit; Boruah, Ratan; Saikia, Binoy K

    2015-10-15

    The objective of this study is to determine the concentrations of gaseous species and aerosols in and around a non-recovery type coke making oven using high sulphur coals. In this paper, physico-chemical properties of the feed coal sample are reported along with the collection and measurement of the emitted gases (SO2, NO2, and NH3) and aerosol particles (PM2.5, PM10) during the coal carbonization in the oven. The coals used are from northeast India and they are high sulphur in nature. The concentrations of the gases e.g., SO2, NO2 and NH3 emitted are observed to be within the limit of National Ambient Air Quality Standard for 24h. The mean PM10 and PM2.5 concentrations are found to be 125.4 μg/m(3) and 48.6 μg/m(3) respectively, as measured during three days of coke oven operations. About 99% of the SO2 in flue gases is captured by using an alkali treatment during the coke oven operation. A Principal Component Analysis (PCA) after Centred Log Ratio (clr) transformation is also performed to know the positive and negative correlation among the coal properties and the emission parameters. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Comparison of the Eastern and Western Kentucky coal fields (Pennsylvanian), USA-why are coal distribution patterns and sulfur contents so different in these coal fields?

    USGS Publications Warehouse

    Greb, S.F.; Eble, C.F.; Chesnut, D.R.

    2002-01-01

    More than 130 Mt of Pennsylvanian coal is produced annually from two coal fields in Kentucky. The Western Kentucky Coal Field occurs in part of the Illinois Basin, an intercratonic basin, and the Eastern Kentucky Coal Field occurs in the Central Appalachian Basin, a foreland basin. The basins are only separated by 140 km, but mined western Kentucky coal beds exhibit significantly higher sulfur values than eastern Kentucky coals. Higher-sulfur coal beds in western Kentucky have generally been inferred to be caused by more marine influences than for eastern Kentucky coals. Comparison of strata in the two coal fields shows that more strata and more coal beds accumulated in the Eastern than Western Kentucky Coal Field in the Early and Middle Pennsylvanian, inferred to represent greater generation of tectonic accommodation in the foreland basin. Eastern Kentucky coal beds exhibit a greater tendency toward splitting and occurring in zones than time-equivalent western Kentucky coal beds, which is also inferred to represent foreland accommodation influences, overprinted by autogenic sedimentation effects. Western Kentucky coal beds exhibit higher sulfur values than their eastern counterparts, but western Kentucky coals occurring in Langsettian through Bolsovian strata can be low in sulfur content. Eastern Kentucky coal beds may increase in sulfur content beneath marine zones, but generally are still lower in sulfur than mined Western Kentucky coal beds, indicating that controls other than purely marine influences must have influenced coal quality. The bulk of production in the Eastern Kentucky Coal Field is from Duckmantian and Bolsovian coal beds, whereas production in the Western Kentucky Coal Field is from Westphalian D coals. Langsettian through Bolsovian paleoclimates in eastern Kentucky were favorable for peat doming, so numerous low-sulfur coals accumulated. These coals tend to occur in zones and are prone to lateral splitting because of foreland tectonic and

  19. The contribution of residential coal combustion to the air quality in Beijing-Tianjin-Hebei (BTH), China: A case study

    NASA Astrophysics Data System (ADS)

    Li, X.; Li, G.; Junji, C.

    2017-12-01

    In the present study, a persistent heavy haze episode from 13 to 20 January 2014 in Beijing-Tianjin-Hebei (BTH) is simulated using the WRF-CHEM model to evaluate the contribution of residential coal combustion to the air quality. The residential coal used in BTH is replaced by the water-quenched semi-coke with much lower emission factors (EFs) in simulations. The EFs of OC for water-quenched semi-coke (0.12 g kg-1) is 2.42 times lower than that for residential coal used in Beijing-Tianjin (0.29 g kg-1) and 9.17 times in Hebei (1.1 g kg-1). The WRF-CHEM model reasonably well reproduces the spatial distributions and temporal variations of PM2.5 mass concentrations in BTH against the observations over monitoring sites and the temporal variations of aerosol species compared to the AMS measurements in Beijing. On average, the PM2.5 concentration is reduced by around 20 µg m-3 due to the residential coal replacement. Organic aerosols constitute about 62.3% of the PM2.5 reduction in BTH, much higher than the contribution from sulfate (7.0%), nitrate (3.1%), and ammonium (3.1%). In addition, the usage of water-quenched semi-coke in BTH also significantly reduces polycyclic aromatic hydrocarbon (PAHs) concentrations by 50-450 ng m-3 on average. Therefore, the usage of water-quenched semi-coke in BTH could considerably reduce the emissions of air pollutants and decrease the PM2.5 level, beneficial to improvement of the air quality in BTH.

  20. Air quality impact assessment of multiple open pit coal mines in northern Colombia.

    PubMed

    Huertas, José I; Huertas, María E; Izquierdo, Sebastián; González, Enrique D

    2012-01-01

    The coal mining region in northern Colombia is one of the largest open pit mining regions of the world. In 2009, there were 8 mining companies in operation with an approximate coal production of ∼70 Mtons/year. Since 2007, the Colombian air quality monitoring network has reported readings that exceed the daily and annual air quality standards for total suspended particulate (TSP) matter and particles with an equivalent aerodynamic diameter smaller than 10 μm (PM₁₀) in nearby villages. This paper describes work carried out in order to establish an appropriate clean air program for this region, based on the Colombian national environmental authority requirement for modeling of TSP and PM(10) dispersion. A TSP and PM₁₀ emission inventory was initially developed, and topographic and meteorological information for the region was collected and analyzed. Using this information, the dispersion of TSP was modeled in ISC3 and AERMOD using meteorological data collected by 3 local stations during 2008 and 2009. The results obtained were compared to actual values measured by the air quality monitoring network. High correlation coefficients (>0.73) were obtained, indicating that the models accurately described the main factors affecting particle dispersion in the region. The model was then used to forecast concentrations of particulate matter for 2010. Based on results from the model, areas within the modeling region were identified as highly, fairly, moderately and marginally polluted according to local regulations. Additionally, the contribution particulate matter to the pollution at each village was estimated. Using these predicted values, the Colombian environmental authority imposed new decontamination measures on the mining companies operating in the region. These measures included the relocation of three villages financed by the mine companies based on forecasted pollution levels. Copyright © 2011. Published by Elsevier Ltd.

  1. Domestic coal resource evaluations: Changes in the coal availability and recoverability studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, M.D.; Rohrbacher, T.J.

    1996-12-31

    Coal availability and recoverability studies conducted during the past six years show that, in some regions of the US, economically minable coal resources are not as abundant as have been reported in the past. The US Geological Survey (USGS), US Bureau of Mines (USBM), and State geological agencies have completed detailed resource analysis in the first 15 7.5-minute quadrangle areas in the Central and Northern Appalachian regions and the Illinois Basin. Findings indicate that, in these study areas, 50% of the original coal resource is available for mining, one-half of the remaining resource (or approximately 25% of the original resource)more » is recoverable utilizing current mining technology, and a mere 8% of the total resource can be extracted and marketed profitably. Three major events during 1995 and 1996 have added flexibility, versatility, continuity, and useability to the studies: (1) establishment of the USGS`s National Coal Resource Assessment program in 1995, (2) inclusion of the USBM`s Coal Recoverability Studies into the USGS`s Coal Availability Studies (after the abolishment of the USBM in 1996), and, perhaps most significantly, (3) the new ability to study multiple quadrangle areas in single models (thus allowing a more regional approach) in a similar time frame. Together, these events will allow coal resource information--location, quantity, quality, social and environmental considerations, minability, and economics--to be accessed in databases through one entity.« less

  2. Hydrogeochemistry and coal-associated bacterial populations from a methanogenic coal bed

    USGS Publications Warehouse

    Barnhart, Elliott P.; Weeks, Edwin P.; Jones, Elizabeth J.P.; Ritter, Daniel J.; McIntosh, Jennifer C.; Clark, Arthur C.; Ruppert, Leslie F.; Cunningham, Alfred B.; Vinson, David S.; Orem, William H.; Fields, Matthew W.

    2016-01-01

    hydrocarbons. Identifying microorganisms involved in coal degradation and the hydrogeochemical conditions that promote their activity is crucial to understanding and improving in situ CBM production.

  3. The U.S. Geological Survey coal quality (COALQUAL) database version 3.0

    USGS Publications Warehouse

    Palmer, Curtis A.; Oman, Charles L.; Park, Andy J.; Luppens, James A.

    2015-12-21

    Because of database size limits during the development of COALQUAL Version 1.3, many analyses of individual bench samples were merged into whole coal bed averages. The methodology for making these composite intervals was not consistent. Size limits also restricted the amount of georeferencing information and forced removal of qualifier notations such as "less than detection limit" (<) information, which can cause problems when using the data. A review of the original data sheets revealed that COALQUAL Version 2.0 was missing information that was needed for a complete understanding of a coal section. Another important database issue to resolve was the USGS "remnant moisture" problem. Prior to 1998, tests for remnant moisture (as-determined moisture in the sample at the time of analysis) were not performed on any USGS major, minor, or trace element coal analyses. Without the remnant moisture, it is impossible to convert the analyses to a usable basis (as-received, dry, etc.). Based on remnant moisture analyses of hundreds of samples of different ranks (and known residual moisture) reported after 1998, it was possible to develop a method to provide reasonable estimates of remnant moisture for older data to make it more useful in COALQUAL Version 3.0. In addition, COALQUAL Version 3.0 is improved by (1) adding qualifiers, including statistical programming to deal with the qualifiers; (2) clarifying the sample compositing problems; and (3) adding associated samples. Version 3.0 of COALQUAL also represents the first attempt to incorporate data verification by mathematically crosschecking certain analytical parameters. Finally, a new database system was designed and implemented to replace the outdated DOS program used in earlier versions of the database.

  4. Geotechnical approaches to coal ash content control in mining of complex structure deposits

    NASA Astrophysics Data System (ADS)

    Batugin, SA; Gavrilov, VL; Khoyutanov, EA

    2017-02-01

    Coal deposits having complex structure and nonuniform quality coal reserves require improved processes of production quality control. The paper proposes a method to present coal ash content as components of natural and technological dilution. It is chosen to carry out studies on the western site of Elginsk coal deposit, composed of four coal beds of complex structure. The reported estimates of coal ash content in the beds with respect to five components point at the need to account for such data in confirmation exploration, mine planning and actual mining. Basic means of analysis and control of overall ash content and its components are discussed.

  5. Coal from the equator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darling, P.

    1995-10-01

    In the mid-1970s PT Rio Tinto Indonesia, a wholly owned subsidiary of CRA of Australia, entered into an agreement with BP of the United Kingdom to explore jointly for coal in Indonesia on a 50:50 basis. In 1978, the government of Indonesia invited tenders from foreign companies for the exploration and development of coal resources in eastern and southern Kalimantan (Borneo). The CRA-BP joint venture was successful in bidding for an area of 7,900 km{sup 2} in two blocks extending 300 km along the coast of eastern Kalimantan. In April 1982, PT Kaltim Prima Coal (KPC) entered into an agreementmore » with the Indonesian State Coal Company whereby it could explore, produce, and market coal from the agreed blocks for a period of 30 years. From 1982 to 1986, detailed exploration led to the delineation of several propsects of which the most promising was near the small town of Sangatta, 200 km north of Balikpapan and less than one degree north of the equator. After this exploration period KPC relinquished all but 1,962 km{sup 2} of the original agreement area. In its simplest form, the mining operation can be described as: a series of open pits, coal preparation facilities, 13.7 km of overland conveyor to the coast, and a marine terminal capable of handling bulk carriers of up to 200K dwt. The remote location necessities a fully supportive infrastructure, including a power station, housing, schools, hospitals, water supply, and recreational facilities. In 1994 the mine produced 10M mt coal of which 70% was Prima coal, one of the highest quality internationally traded thermal coals.« less

  6. General surface- and ground-water quality in a coal-resource area near Durango, southwestern Colorado

    USGS Publications Warehouse

    Butler, D.L.

    1986-01-01

    A general description of surface and groundwater quality in a coal-resource area near Durango, southwestern Colorado is given. Dissolved-solids concentrations were less than 1,000 mg/l in streams, except in the Alkali Gulch, Basin Creek, and Carbon Junction Canyon drainage basins. Median concentrations of dissolved boron, iron, manganese, and zinc were less than 35 microg/l; median concentrations of dissolved lead and selenium were less than 1 microg/l. (USGS)

  7. Open-pit coal mine production sequencing incorporating grade blending and stockpiling options: An application from an Indian mine

    NASA Astrophysics Data System (ADS)

    Kumar, Ashish; Chatterjee, Snehamoy

    2017-05-01

    Production scheduling is a crucial aspect of the mining industry. An optimal and efficient production schedule can increase the profits manifold and reduce the amount of waste to be handled. Production scheduling for coal mines is necessary to maintain consistency in the quality and quantity parameters of coal supplied to power plants. Irregularity in the quality parameters of the coal can lead to heavy losses in coal-fired power plants. Moreover, the stockpiling of coal poses environmental and fire problems owing to low incubation periods. This article proposes a production scheduling formulation for open-pit coal mines including stockpiling and blending opportunities, which play a major role in maintaining the quality and quantity of supplied coal. The proposed formulation was applied to a large open-pit coal mine in India. This contribution provides an efficient production scheduling formulation for coal mines after utilizing the stockpile coal within the incubation periods with the maximization of discounted cash flows. At the same time, consistency is maintained in the quality and quantity of coal to power plants through blending and stockpiling options to ensure smooth functioning.

  8. Exploring consumer understanding and preferences for pharmacy quality information

    PubMed Central

    Shiyanbola, Olayinka O.; Mort, Jane R.

    2014-01-01

    Objective: To describe consumer understanding of pharmacy quality measures and consumer preferences for pharmacy quality information. Methods: Semi-structured focus group design was combined with survey methods. Adults who filled prescription medications for self-reported chronic illnesses at community pharmacies discussed their understanding of Pharmacy Quality Alliance approved quality measures. Questions examined preference of pharmacy quality information rating systems (e.g. stars versus percentages) and desired data display/formats. During the focus group, participants completed a survey examining their understanding of each pharmacy quality measure. All focus group discussions were transcribed verbatim. Data were analyzed using thematic analysis and descriptive statistics. Results: Thirty-four individuals participated (mean age= 62.85; SD=16.05). Participants were unfamiliar with quality measures information and their level of understanding differed for each quality measure. Surveys indicated 94.1% understood “Drug-Drug Interactions” and “Helping Patients Get Needed Medications” better than other measures (e.g., 76.5% understood “Suboptimal Treatment of Hypertension in Patients with Diabetes”). Qualitative analysis indicated participants preferred an overall pharmacy rating for quick access and use. However, participants also wanted quality measures information displayed by health conditions. Participants favored comparison of their pharmacy to city data instead of state data. Most participants liked star ratings better than percentages, letter grades, or numerical ratings. Conclusions: Individuals who have a chronic illness and regularly use community pharmacies are interested in pharmacy quality measures. However, specific quality measures were not understood by some participants. Participants had specific preferences for the display of pharmacy quality information which will be helpful in the design of appropriate quality report systems. PMID

  9. Coal bed sequestration of carbon dioxide

    USGS Publications Warehouse

    Stanton, Robert; Flores, Romeo M.; Warwick, Peter D.; Gluskoter, Harold J.; Stricker, Gary D.

    2001-01-01

    Geologic sequestration of CO2 generated from fossil fuel combustion may be an environmentally attractive method to reduce the amount of greenhouse gas emissions. Of the geologic options, sequestering CO2 in coal beds has several advantages. For example, CO2 injection can enhance methane production from coal beds; coal can trap CO2 for long periods of time; and potential major coal basins that contain ideal beds for sequestration are near many emitting sources of CO2.One mission of the Energy Resources Program of the U.S. Geological Survey is to maintain assessment information of the Nation’s resources of coal, oil, and gas. The National Coal Resources Assessment Project is currently completing a periodic assessment of 5 major coal-producing regions of the US. These regions include the Powder River and Williston and other Northern Rocky Mountain basins (Fort Union Coal Assessment Team, 1999), Colorado Plateau area (Kirschbaum and others, 2000), Gulf Coast Region, Appalachian Basin, and Illinois Basin. The major objective of this assessment is to estimate available coal resources and quality for the major producing coal beds of the next 25 years and produce digital databases and maps. Although the focus of this work has been on coal beds with the greatest potential for mining, it serves as a basis for future assessments of the coal beds for other uses such as coal bed methane resources, in situ gasification, and sites for sequestration of CO2. Coal bed methane production combined with CO2 injection and storage expands the use of a coal resource and can provide multiple benefits including increased methane recovery, methane drainage of a resource area, and the long-term storage of CO2.

  10. 3D Geological Modeling of CoalBed Methane (CBM) Resources in the Taldykuduk Block Karaganda Coal Basin, Kazakhstan

    NASA Astrophysics Data System (ADS)

    Sadykov, Raman; Kiponievich Ogay, Evgeniy; Royer, Jean-Jacques; Zhapbasbayev, Uzak; Panfilova, Irina

    2015-04-01

    Coal Bed Methane (CBM) is gas stored in coal layers. It can be extracted from wells after hydraulic fracturing and/or solvent injection, and secondary recovery techniques such as CO2 injection. Karaganda Basin is a very favorable candidate region to develop CBM production for the following reasons: (i) Huge gas potential; (ii) Available technologies for extracting and commercializing the gas produced by CBM methods; (iii) Experience in degassing during underground mining operations for safety reasons; (iv) Local needs in energy for producing electricity for the industrial and domestic market. The objectives of this work are to model the Taldykuduk block coal layers and their properties focusing on Coal Bed Methane production. It is motivated by the availability of large coal bed methane resources in Karaganda coal basin which includes 4 300 Bm3 equivalent 2 billion tons of coal (B = billion = 109) with gas content 15-25 m3/t of coal (for comparison San Juan basin (USA) has < 20 m3/t). The CBM reserves estimations are about: Saransk block, 26.3 Bm3 and Taldykuduk block, 23.5 Bm3. Methane (CH4) can be considered as an environmentally-friendly fuel compared to coal. Actually, the methane extracted during mining is released in the atmosphere, collecting it for recovering energy will reduce CO2 equivalent emissions by 36 Mt, good news regarding climate warming issues. The exploitation method will be based on a EOR technology consisting in injecting CO2 which replaces methane in pores because it has a higher adsorption capacity than CH4; exploiting CBM by CO2 injection provides thus a safe way to sequestrate CO2 in adsorbed form. The 3D geological model was built on Gocad/Skua using the following available data set: 926 wells and large area (7 x 12 km). No seismic data; coal type and chemical components (S, ash, …); unreliable available cross-section & maps due to old acquisition; quality mature coal; complex heterogeneous fractures network reported on geological cross

  11. Soil quality index for evaluation of reclaimed coal mine spoil.

    PubMed

    Mukhopadhyay, S; Masto, R E; Yadav, A; George, J; Ram, L C; Shukla, S P

    2016-01-15

    Success in the remediation of mine spoil depends largely on the selection of appropriate tree species. The impacts of remediation on mine soil quality cannot be sufficiently assessed by individual soil properties. However, combination of soil properties into an integrated soil quality index provides a more holistic status of reclamation potentials of tree species. Remediation potentials of four tree species (Acacia auriculiformis, Cassia siamea, Dalbergia sissoo, and Leucaena leucocephala) were studied on reclaimed coal mine overburden dumps of Jharia coalfield, Dhanbad, India. Soil samples were collected under the canopies of the tree species. Comparative studies on the properties of soils in the reclaimed and the reference sites showed improvements in soil quality parameters of the reclaimed site: coarse fraction (-20.4%), bulk density (-12.8%), water holding capacity (+0.92%), pH (+25.4%), EC (+2.9%), cation exchange capacity (+46.6%), organic carbon (+91.5%), N (+60.6%), P (+113%), K (+19.9%), Ca (+49.6%), Mg (+12.2%), Na (+19.6%), S (+46.7%), total polycyclic aromatic hydrocarbons (-71.4%), dehydrogenase activity (+197%), and microbial biomass carbon (+115%). Principal component analysis (PCA) was used to identify key mine soil quality indicators to develop a soil quality index (SQI). Selected indicators include: coarse fraction, pH, EC, soil organic carbon, P, Ca, S, and dehydrogenase activity. The indicator values were converted into a unitless score (0-1.00) and integrated into SQI. The calculated SQI was significantly (P<0.001) correlated with tree biomass and canopy cover. Reclaimed site has 52-93% higher SQI compared to the reference site. Higher SQI values were obtained for sites reclaimed with D.sissoo (+93.1%) and C.siamea (+86.4%). Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The fate of mercury in coal utilization byproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William Aljoe; Thomas Feeley; James Murphy

    2005-05-01

    The US Department of Energy National Energy Technology Laboratory's (DOE/NETL's) research has helped to further scientific understanding of the environmental characteristics of coal-utilization by-products (CUBs) in both disposal and beneficial utilization applications. The following general observations can be drawn from results of the research that has been carried out to date: There appears to be only minimal mercury release to the environment in typical disposal or utilization applications for CUBs generated using activated carbon injection (ACI) control technologies; There appears to be only minimal mercury release to the environment in typical disposal and utilization applications for CUBs generated using wetmore » FGD control technologies. The potential release of mercury from wet FGD gypsum during the manufacture of wallboard is still under evaluation; The amount of mercury leached from CUB samples tested by DOE/NETL is significantly lower than the federal drinking water standards and water quality criteria for the protection of aquatic life; in many cases, leachate concentrations were below the standard test method detection limits. DOE/NETL will continue to partner with industry and other key stakeholders in carrying out research to better understand the fate of mercury and other trace elements in the byproducts from coal combustion. 16 refs., 6 tabs.« less

  13. Nanometre-sized pores in coal: Variations between coal basins and coal origin

    USGS Publications Warehouse

    Sakurovs, Richard; Koval, Lukas; Grigore, Mihaela; Sokolava, Anna; Ruppert, Leslie F.; Melnichenko, Yuri B.

    2018-01-01

    We have used small angle neutron scattering (SANS) to investigate the differences in methane and hexane penetration in pores in bituminous coal samples from the U.S., Canada, South Africa, and China, and maceral concentrates from Australian coals. This work is an extension of previous work that showed consistent differences between the extent of penetration by methane into 10–20 nm size pores in inertinite in bituminous coals from Australia, North America and Poland.In this study we have confirmed that there are differences in the response of inertinite to methane and hexane penetration in coals sourced from different coal basins. Inertinite in Permian Australian coals generally has relatively high numbers of pores in the 2.5–250 nm size range and the pores are highly penetrable by methane and hexane; coals sourced from Western Canada had similar penetrability to these Australian coals. However, the penetrability of methane and hexane into inertinite from the Australian Illawarra Coal Measures (also Permian) is substantially less than that of the other Australian coals; there are about 80% fewer 12 nm pores in Illawarra inertinite compared to the other Australian coals examined. The inertinite in coals sourced from South Africa and China had accessibility intermediate between the Illawarra coals and the other Australian coals.The extent of hexane penetration was 10–20% less than CD4 penetration into the same coal and this difference was most pronounced in the 5–50 nm pore size range. Hexane and methane penetrability into the coals showed similar trends with inertinite content.The observed variations in inertinite porosity between coals from different coal regions and coal basins may explain why previous studies differ in their observations of the relationships between gas sorption behavior, permeability, porosity, and maceral composition. These variations are not simply a demarcation between Northern and Southern Hemisphere coals.

  14. Origin and influence of coal mine drainage on streams of the United States

    USGS Publications Warehouse

    Powell, J.D.

    1988-01-01

    Degradation of water quality related to oxidation of iron disulfide minerals associated with coal is a naturally occurring process that has been observed since the late seventeenth century, many years before commencement of commercial coal mining in the United States. Disturbing coal strata during mining operations accelerates this natural deterioration of water quality by exposing greater surface areas of reactive minerals to the weathering effects of the atmosphere, hydrosphere, and biosphere. Degraded water quality in the temperate eastern half of the United States is readily detected because of the low mineralization of natural water. Maps are presented showing areas in the eastern United States where concentrations of chemical constituents in water affected by coal mining (pH, dissolved sulfate, total iron, total manganese) exceed background values and indicate effects of coal mining. Areas in the East most affected by mine drainage are in western Pennsylvania, southern Ohio, western Maryland, West Virginia, southern Illinois, western Kentucky, northern Missouri, and southern Iowa. Effects of coal mining on water quality in the more arid western half of the United States are more difficult to detect because of the high degree of mineralization of natural water. Normal background concentrations of constituents are not useful in evaluating effects of coal mine drainage on streams in the more arid West. Three approaches to reduce the effects of coal mining on water quality are: (1) exclusion of oxygenated water from reactive minerals, (2) neutralization of the acid produced, (3) retardation of acid-producing bacteria population in spoil material, by application of detergents that do not produce byproducts requiring disposal. These approaches can be used to help prevent further degradation of water quality in streams by future mining. ?? 1988 Springer-Verlag New York Inc.

  15. GIS representation of coal-bearing areas in Antarctica

    USGS Publications Warehouse

    Merrill, Matthew D.

    2016-03-11

    Understanding the distribution of coal-bearing geologic units in Antarctica provides information that can be used in sedimentary, geomorphological, paleontological, and climatological studies. This report is a digital compilation of information on Antarctica’s coal-bearing geologic units found in the literature. It is intended to be used in small-scale spatial geographic information system (GIS) investigations and as a visual aid in the discussion of Antarctica’s coal resources or in other coal-based geologic investigations. Instead of using spatially insignificant point markers to represent large coal-bearing areas, this dataset uses polygons to represent actual coal-bearing lithologic units. Specific locations of coal deposits confirmed from the literature are provided in the attribution for the coal-bearing unit polygons. Coal-sample-location data were used to confirm some reported coal-bearing geology. The age and extent of the coal deposits indicated in the literature were checked against geologic maps ranging from local scale at 1:50,000 to Antarctic continental scale at 1:5,000,000; if satisfactory, the map boundaries were used to generate the polygons for the coal-bearing localities.

  16. The US Geological Survey's national coal resource assessment: The results

    USGS Publications Warehouse

    Ruppert, Leslie F.; Kirschbaum, Mark A.; Warwick, Peter D.; Flores, Romeo M.; Affolter, Ronald H.; Hatch, Joseph R.

    2002-01-01

    The US Geological Survey and the State geological surveys of many coal-bearing States recently completed a new assessment of the top producing coal beds and coal zones in five major producing coal regions—the Appalachian Basin, Gulf Coast, Illinois Basin, Colorado Plateau, and Northern Rocky Mountains and Great Plains. The assessments, which focused on both coal quality and quantity, utilized geographic information system technology and large databases. Over 1,600,000 million short tons of coal remain in over 60 coal beds and coal zones that were assessed. Given current economic, environmental, and technological restrictions, the majority of US coal production will occur in that portion of the assessed coal resource that is lowest in sulfur content. These resources are concentrated in parts of the central Appalachian Basin, Colorado Plateau, and the Northern Rocky Mountains.

  17. Depositional controls on coal distribution and quality in the Eocene Brunner Coal Measures, Buller Coalfield, South Island, New Zealand

    USGS Publications Warehouse

    Flores, R.M.; Sykes, R.

    1996-01-01

    The Buller Coalfield on the West Coast of the South Island, New Zealand, contains the Eocene Brunner Coal Measures. The coal measures unconformably overlie Paleozoic-Cretaceous basement rocks and are conformably overlain by, and laterally interfinger with, the Eocene marine Kaiata Formation. This study examines the lithofacies frameworks of the coal measures in order to interpret their depositional environments. The lower part of the coal measures is dominated by conglomeratic lithofacies that rest on a basal erosional surface and thicken in paleovalleys incised into an undulating peneplain surface. These lithofacies are overlain by sandstone, mudstone and organic-rich lithofacies of the upper part of the coal measures. The main coal seam of the organic-rich lithofacies is thick (10-20 m), extensive, locally split, and locally absent. This seam and associated coal seams in the Buller Coalfield are of low- to high-volatile bituminous rank (vitrinite reflectance between 0.65% and 1.75%). The main seam contains a variable percentage of ash and sulphur. These values are related to the thickening and areal distribution of the seam, which in turn, were controlled by the nature of clastic deposition and peat-forming mire systems, marine transgression and local tidal incursion. The conglomeratic lithofacies represent deposits of trunk and tributary braided streams that rapidly aggraded incised paleovalleys during sea-level stillstands. The main seam represents a deposit of raised mires that initially developed as topogenous mires on abandoned margins of inactive braidbelts. Peat accumulated in mires as a response to a rise in the water table, probably initially due to gradual sea-level rise and climate, and the resulting raised topography served as protection from floods. The upper part of the coal measures consists of sandstone lithofacies of flu vial origin and bioturbated sandstone, mudstone and organic-rich lithofacies, which represent deposits of paralic (deltaic

  18. A study of the United States coal resources

    NASA Technical Reports Server (NTRS)

    Ferm, J. C.; Muthig, P. J.

    1982-01-01

    Geologically significant coal resources were identified. Statistically controlled tonnage estimates for each resource type were prepared. Particular emphasis was placed on the identification and description of coals in terms of seam thickness, inclination, depth of cover, discontinuities caused by faulting and igneous intrusion, and occurrence as isolated or multiseam deposits. The national resource was organized into six major coal provinces: the Appalachian Plateau, the Interior Basins, the Gulf Coastal Plain, the Rocky Mountain Basins, the High Plains, and North Alaska. Each basin within a province was blocked into subareas of homogeneous coal thickness. Total coal tonnage for a subarea was estimated from an analysis of the cumulative coal thickness derived from borehole or surface section records and subsequently categorized in terms of seam thickness, dip, overburden, multiseam proportions, coal quality, and tonnage impacted by severe faulting and igneous intrusions. Confidence intervals were calculated for both subarea and basin tonnage estimates.

  19. Influence of additives on the increase of the heating value of Bayah’s coal with upgrading brown coal (UBC) method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heriyanto, Heri; Widya Ernayati, K.; Umam, Chairul

    UBC (upgrading brown coal) is a method of improving the quality of coal by using oil as an additive. Through processing in the oil media, not just the calories that increase, but there is also water repellent properties and a decrease in the tendency of spontaneous combustion of coal products produced. The results showed a decrease in the water levels of natural coal bayah reached 69%, increase in calorific value reached 21.2%. Increased caloric value and reduced water content caused by the water molecules on replacing seal the pores of coal by oil and atoms C on the oil thatmore » is bound to increase the percentage of coal carbon. As a result of this experiment is, the produced coal has better calorific value, the increasing of this new calorific value up to 23.8% with the additive waste lubricant, and the moisture content reduced up to 69.45%.« less

  20. Application of techniques to identify coal-mine and power-generation effects on surface-water quality, San Juan River basin, New Mexico and Colorado

    USGS Publications Warehouse

    Goetz, C.L.; Abeyta, Cynthia G.; Thomas, E.V.

    1987-01-01

    Numerous analytical techniques were applied to determine water quality changes in the San Juan River basin upstream of Shiprock , New Mexico. Eight techniques were used to analyze hydrologic data such as: precipitation, water quality, and streamflow. The eight methods used are: (1) Piper diagram, (2) time-series plot, (3) frequency distribution, (4) box-and-whisker plot, (5) seasonal Kendall test, (6) Wilcoxon rank-sum test, (7) SEASRS procedure, and (8) analysis of flow adjusted, specific conductance data and smoothing. Post-1963 changes in dissolved solids concentration, dissolved potassium concentration, specific conductance, suspended sediment concentration, or suspended sediment load in the San Juan River downstream from the surface coal mines were examined to determine if coal mining was having an effect on the quality of surface water. None of the analytical methods used to analyzed the data showed any increase in dissolved solids concentration, dissolved potassium concentration, or specific conductance in the river downstream from the mines; some of the analytical methods used showed a decrease in dissolved solids concentration and specific conductance. Chaco River, an ephemeral stream tributary to the San Juan River, undergoes changes in water quality due to effluent from a power generation facility. The discharge in the Chaco River contributes about 1.9% of the average annual discharge at the downstream station, San Juan River at Shiprock, NM. The changes in water quality detected at the Chaco River station were not detected at the downstream Shiprock station. It was not possible, with the available data, to identify any effects of the surface coal mines on water quality that were separable from those of urbanization, agriculture, and other cultural and natural changes. In order to determine the specific causes of changes in water quality, it would be necessary to collect additional data at strategically located stations. (Author 's abstract)

  1. Coal Combustion Science quarterly progress report, April--June 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardesty, D.R.; Hurt, R.H.; Baxter, L.L.

    1992-09-01

    The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: The characterization of the physical and chemical processes that constitute the early devolatilization phase of coal combustion: Characterization of the combustion behavior of selected coals under conditions relevant to industria pulverized coal-fired furnaces; and to establish a quantitative understanding of themore » mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distributions of mineral species in the unreacted coal, and the local gas temperature and composition.« less

  2. "Folk" Understandings of Quality in UK Higher Hospitality Education

    ERIC Educational Resources Information Center

    Wood, Roy

    2015-01-01

    Purpose: The purpose of this paper is to provide an overview of the evolution of "folk" understandings of quality in higher hospitality education and the consequent implications of these understandings for current quality concerns in the field. Design/methodology/approach: The paper combines a historical survey of the stated topic…

  3. Life Cycle Assessment of Coal-fired Power Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spath, P. L.; Mann, M. K.; Kerr, D. R.

    1999-09-01

    Coal has the largest share of utility power generation in the US, accounting for approximately 56% of all utility-produced electricity (US DOE, 1998). Therefore, understanding the environmental implications of producing electricity from coal is an important component of any plan to reduce total emissions and resource consumption. A life cycle assessment (LCA) on the production of electricity from coal was performed in order to examine the environmental aspects of current and future pulverized coal boiler systems. Three systems were examined: (1) a plant that represents the average emissions and efficiency of currently operating coal-fired power plants in the US (thismore » tells us about the status quo), (2) a new coal-fired power plant that meets the New Source Performance Standards (NSPS), and (3) a highly advanced coal-fired power plant utilizing a low emission boiler system (LEBS).« less

  4. Liquefaction Of Coal With Surfactant And Disposable Catalyst

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Sharma, Pramod K.

    1996-01-01

    Fuels derived from coal more competitive with petroleum products. Improved coal-liquefaction process exploits synergistic effects of disposable iron oxide catalyst and cheap anionic surfactant. Efficiency of conversion achieved in significantly higher than efficiencies obtained with addition of either surfactant or catalyst alone. No costly pretreatment necessary, and increase in conversion achieved under processing conditions milder than those used heretofore in liquefaction of coal. Quality of distillates obtained after liquefaction in process expected superior to distillates obtained after liquefaction by older techniques.

  5. Trace element geochemistry and mineralogy of coal from Samaleswari open cast coal block (S-OCB), Eastern India

    NASA Astrophysics Data System (ADS)

    Saha, Debasree; Chatterjee, Debashis; Chakravarty, Sanchita; Mazumder, Madhurina

    2018-04-01

    Coal samples of Samaleswari open cast coal block (S-OCB) are high ash (Aad, mean value 35.43%) and low sulphur content (St, on dry basis, mean value 0.91% < 1%) in quality. The stratigraphic variation of volatile matter and fixed carbon (dry ash-free) reflect a progress of coal metamorphism with depth that accordance to the coal rank variation from lignite to high volatile bituminous in the studied borehole. The younger coal seams have greater detrital minerals (quartz, illite, rutile) influence whereas older coal seams have greater authigenic mineral (kaolinite, dolomite, siderite, apatite) contribution that are possibly due to subsidence and sediment transportation. In S-OCB coal trace elements affinities in-between mineral and organic fraction are identified with statistical hierarchical cluster analysis. The work is further supported by the use of chemical fractionation experiment that reveals the multi mode of occurrence of several environmentally concern and interested trace elements (Sb, As, Be, Cd, Cr, Co, Cu, Pb, Mn, Ni, Zn). Among the analysed trace elements Co, Mn and Zn have major silicate association along with significant carbonate/oxide/monosulfide association. Whereas As, Cd, Cu, Pb and Ni have dominant pyritic association with notable silicate and carbonate/oxide/monosulfide association. The rest three elements (Sb, Be, Cr) have principally organic association with minor silicate and carbonate/oxide/monosulfide association. The stratigraphic variation of organo-mineral matrix content and detrital-authigenic mineral ratio are primarily related to coal rank. Geochemical character of coal also reflects a light towards proper utilisation of S-OCB coal from technical and environmental view point.

  6. Synergistic Effect of Co-utilization of Coal and Biomass Char: An Overview

    NASA Astrophysics Data System (ADS)

    Paiman, M. E. S.; Hamzah, N. S.; Idris, S. S.; Rahman, N. A.; Ismail, K.

    2018-05-01

    Global concerns on impact of greenhouse gases emission, mostly released from coal-fired power plant, and the depletion of fossil fuel particularly coal, has led the production of electricity from alternatives resources such as co-utilization technologies. Previous studies proved that the co-utilization of coal and biomass/biomass chars has significantly reduced the emission of greenhouse gases either during the pyrolysis, combustion or gasification process in laboratories, pilots as well as in the industrial scales. Interestingly, most of the studies reported the presence of synergistic effect during the co-utilization processes particularly between coal and biomass char while some are not. Biomass chars were found to have porous and highly disorder carbon structure and belong to the class of most reactive carbon material, resulting to be more reactive than those hard coal and lignite. Up to date, microwave assisted pyrolysis is one of the best and latest techniques employed to produce better quality of biomass chars and it is also reduce the processing cost. Lot of works has been done regarding on the existence of synergistic effects during its co-utilization. However, the knowledge is limited to thermal and product characteristics so far. Even so, the specific reasons behind its existence are yet to understand well. Therefore, in this paper, the emphasis will be given on the synergistic effects on emission characteristics of co-utilization of coal and biomass chars so that it can be apply in energy-based industries to help in reduction of the greenhouse gases emission.

  7. Implications of Use of Coal-Tar-Based Pavement Sealcoat on Urban Water Quality

    NASA Astrophysics Data System (ADS)

    Van Metre, P. C.

    2015-12-01

    Coal-tar-based (CT) sealcoat is used to protect and improve the appearance of asphalt pavement of driveways and parking lots primarily in the central and eastern U.S. and in Canada. CT sealcoat typically is 20 to 35% crude coal tar or coal-tar pitch and contains from 50,000 to 100,000 mg/kg polycyclic aromatic hydrocarbons (PAH), about 1,000 times more than asphalt-based (AS) sealcoat or asphalt itself. Tires and snowplows abrade the friable sealcoat surface into fine particles—median total PAH concentrations in dust from CT-sealcoated pavement are 2,200 mg/kg compared to a median concentration of 11 mg/kg for dust from unsealed pavement. Use of CT sealcoat has several implications for urban streams and lakes. Source apportionment modeling has indicated that, in regions where CT sealcoat is prevalent, particles from sealcoated pavement are contributing the majority of the PAHs to recently deposited lake sediment, often resulting in sediment concentrations above toxicity thresholds based on effects-based sediment quality guidelines. Acute 2-day laboratory toxicity testing of simulated runoff from CT-sealcoated pavement to a cladoceran (Ceriodaphnia dubia) and fathead minnows (Pimephales promelas) demonstrated that toxicity continues for samples collected for weeks or months following sealcoat application and that toxicity is enhanced by exposure to UV light. Using the fish-liver cell line RTL-W1, runoff collected as much as 36 days following CT-sealcoat application has been demonstrated to cause DNA damage and impair DNA repair capacity. These results demonstrate that CT runoff is a potential hazard to aquatic ecosystems and that exposure to sunlight can enhance toxicity and genetic damage. Recent research has provided direct evidence that restricting use of CT sealcoat in a watershed can lead to a substantial reduction in PAH concentrations in receiving water bodies.

  8. Economic effects of western Federal land-use restrictions on U.S. coal markets

    USGS Publications Warehouse

    Watson, William Downing; Medlin, A.L.; Krohn, K.K.; Brookshire, D.S.; Bernknopf, R.L.

    1991-01-01

    Current regulations on land use in the Western United States affect access to surface minable coal resources. This U.S. Geological Survey study analyzes the long-term effects of Federal land-use restrictions on the national cost of meeting future coal demands. The analysis covers 45 years. The U.S. Bureau of Land Management has determined the environmental, aesthetic, and economic values of western Federal coal lands and has set aside certain areas from surface coal mining to protect other valued land uses, including agricultural, environmental, and aesthetic uses. Although there are benefits to preserving natural areas and to developing areas for other land uses, these restrictions produce long-term national and regional costs that have not been estimated previously. The Dynamic Coal Allocation Model integrates coal supply (coal resource tonnage and coal quality by mining cost for 60 coal supply regions) with coal demand (in 243 regions) for the entire United States. The model makes it possible to evaluate the regional economic impacts of coal supply restrictions wherever they might occur in the national coal market. The main factors that the economic methodology considers are (1) coal mining costs, (2) coal transportation costs, (3) coal flue gas desulfurization costs, (4) coal demand, (5) regulations to control sulfur dioxide discharges, and (6) specific reductions in coal availability occurring as a result of land-use restrictions. The modeling system combines these economic factors with coal deposit quantity and quality information--which is derived from the U.S. Geological Survey's National Coal Resources Data System and the U.S. Department of Energy's Demonstrated Reserve Base--to determine a balance between supply and demand so that coal is delivered at minimum cost.

  9. Using ground and intact coal Samples to evaluate hydrocarbon fate during supercritical CO2 injection into coal beds: effects of particle size and coal moisture

    USGS Publications Warehouse

    Kolak, Jon; Hackley, Paul C.; Ruppert, Leslie F.; Warwick, Peter D.; Burruss, Robert

    2015-01-01

    accessibility of supercritical CO2 to coal matrix porosity, limiting the extent to which hydrocarbons are mobilized. Conversely, the enhanced recovery of some surrogates from core plugs relative to dry, ground coal samples might indicate that, once mobilized, supercritical CO2 is capable of transporting these constituents through coal beds. These results underscore the need for using intact coal samples, and for better characterization of forms of water in coal, to understand fate and transport of organic compounds during supercritical CO2 injection into coal beds.

  10. Variations in pore characteristics in high volatile bituminous coals: Implications for coal bed gas content

    USGS Publications Warehouse

    Mastalerz, Maria; Drobniak, A.; Strapoc, D.; Solano-Acosta, W.; Rupp, J.

    2008-01-01

    The Seelyville Coal Member of the Linton Formation (Pennsylvanian) in Indiana was studied to: 1) understand variations in pore characteristics within a coal seam at a single location and compare these variations with changes occurring between the same coal at different locations, 2) elaborate on the influence of mineral-matter and maceral composition on mesopore and micropore characteristics, and 3) discuss implications of these variations for coal bed gas content. The coal is high volatile bituminous rank with R0 ranging from 0.57% to 0.60%. BET specific surface areas (determined by nitrogen adsorption) of the coals samples studied range from 1.8 to 22.9??m2/g, BJH adsorption mesopore volumes from 0.0041 to 0.0339??cm3/g, and micropore volumes (determined by carbon dioxide adsorption) from 0.0315 to 0.0540??cm3/g. The coals that had the largest specific surface areas and largest mesopore volumes occur at the shallowest depths, whereas the smallest values for these two parameters occur in the deepest coals. Micropore volumes, in contrast, are not depth-dependent. In the coal samples examined for this study, mineral-matter content influenced both specific surface area as well as mesopore and micropore volumes. It is especially clear in the case of micropores, where an increase in mineral-matter content parallels the decrease of micropore volume of the coal. No obvious relationships were observed between the total vitrinite content and pore characteristics but, after splitting vitrinite into individual macerals, we see that collotelinite influences both meso- and micropore volume positively, whereas collodetrinite contributes to the reduction of mesopore and micropore volumes. There are large variations in gas content within a single coal at a single location. Because of this variability, the entire thickness of the coal must be desorbed in order to determine gas content reliably and to accurately calculate the level of gas saturation. ?? 2008 Elsevier B.V. All

  11. Coal resources of the United States, A progress report, November 1, 1950

    USGS Publications Warehouse

    Averitt, Paul; Berryhill, Louise R.

    1950-01-01

    Interest in the quantity and quality of the coal reserves of the United States has increased greatly since the end of World War II, principally because of the growing realization that the ultimate reserves of petroleum and natural gas, although largely undefined, still. have finite limits. With the greatly increased use of petroleum and natural gas, it has become further apparent that the reserves of these two fuels, whatever their ultimate limits may prove to be, are being consumed at a rate far surpassing that anticipated a few years ago. At some time in the future, therefore, the contribution of coal to the total production of energy in this country must inevitably be enlarged to include some of the needs now served by petroleum and natural gas. Although coal-bearing rocks cover 14 percent of the total area of the United States (fig. 1) and contain enormous reserves, it is equally apparent that reserves of coal also have limits. In the extensively mined sections in the East it is already increasingly difficult to locate new areas containing thick beds of high-rank and high-quality coal to replace areas that have been mined out. Furthermore, a considerable part of the total reserves of the United States consists of coal of lignite and subbituminous ranks and coal contained in thin beds that can be mined only with great difficulty and expense. At the present time, therefore, the depletion of reserves of high-rank and high-quality coal, particularly the Eastern coal that is suitable for the manufacture of metallurgical coke, is a more serious problem than the percentage depletion of the total coal reserves. Recognizing the need for more detailed estimates of coal reserves than those that have been available in the past, the U. S. Geological Survey is now preparing a reappraisal of the coal reserves of the United States in which primary emphasis is placed on the amounts of coal in separate categories according to rank,thickness of coal, and thickness of overburden

  12. Indoor Air Quality in Central Appalachia Homes Impacted by Wood and Coal Use

    PubMed Central

    Paulin, Laura M.; Williams, D’Ann; Oberweiser, Charles; Diette, Gregory B.; Breysse, Patrick N.; McCormack, Meredith M.; Matsui, Elizabeth C.; Peng, Roger; Metts, Tricia A.; Hansel, Nadia N.

    2016-01-01

    Though the high prevalence of biomass fuel use in the developing world is widely known, the use of burning biomass for cooking and heating in the developed world is under-recognized. Combustion materials including coal and wood are also used for heating in some areas of the United States. We conducted a pilot study to assess the feasibility of conducting indoor environmental monitoring in rural Appalachia. We sought to explore the type of biomass being used for home heating and its impact upon indoor air quality in non-heating and heating seasons. Residential indoor air monitoring for particulate matter (PM) and nitrogen dioxide (NO2) was conducted in Lee County, Virginia. Homes had evidence of poor indoor air quality with high concentrations of indoor PM and a large burden of cigarette smoking. Further characterization of indoor combustion material use in this region to determine the health impacts associated with such exposures is warranted. PMID:27738549

  13. Preliminary report on methodology for calculating coal resources of the Wyodak-Anderson coal zone, Powder River basin, Wyoming and Montana

    USGS Publications Warehouse

    Ellis, Margaret S.; Gunther, Gregory L.; Flores, Romeo M.; Stricker, Gary D.; Ochs, Allan M.; Schuenemeyer, John H.

    1998-01-01

    The National Coal Resource Assessment of the Wyodak-Anderson coal zone includes reports on the geology, stratigraphy, quality, and quantity of coal. The calculation of resources is only one aspect of the assessment. Without thorough documentation of the coal resource study and the methods used, the results of our study could be misinterpreted. The task of calculating coal resources included many steps, the use of several commercial software programs, and the incorporation of custom programs. The methods used for calculating coal resources for the Wyodak-Anderson coal zone vary slightly from the methods used in other study areas, and by other workers in the National Coal Resource Assessment. The Wyodak-Anderson coal zone includes up to 10 coal beds in any given location. The net coal thickness of the zone at each data point location was calculated by summing the thickness of all of the coal beds that were greater than 2.5 ft thick. The amount of interburden is not addressed or reported in this coal resource assessment. The amount of overburden reported is the amount of rock above the stratigraphically highest coal bed in the zone. The resource numbers reported do not include coal within mine or lease areas, in areas containing mapped Wyodak-Anderson clinker, or in areas where the coal is extrapolated to be less than 2.5 ft thick. The resources of the Wyodak-Anderson coal zone are reported in Ellis and others (1998). A general description of how the resources were calculated is included in that report. The purpose of this report is to document in more detail some of the parameters and methods used, define our spatial data, compare resources calculated using different grid options and calculation methods, and explain the application of confidence limits to the resource calculation.

  14. Quality and petrographic characteristics of Paleocene coals from the Hanna basin, Wyoming

    USGS Publications Warehouse

    Pierce, B.S.

    1996-01-01

    Coal beds from the Ferris and Hanna Formations, in the Hanna basin, south-central Wyoming, exhibit distinct differences in ash yield, sulfur content, and petrographic and palynologic constituents. These differences are interpreted to be controlled by tectonic changes of the Hanna basin and adjoining uplifts during evolutionary development, which, in turn, controlled mire chemistry and sedimentation. These conditions created two very different settings under which the peats developed during deposition of the Ferris and the Hanna Formations. In addition, there appears to be a geographic (latitudinal) and/or climatic control on the coal characteristics manifested by major differences of Paleocene coals in the Hanna basin compared to those in the Raton basin in Colorado and New Mexico and the Powder River basin in Wyoming.Coal beds from the Ferris and Hanna Formations, in the Hanna basin, south-central Wyoming, exhibit distinct differences in ash yield, sulfur content, and petrographic and palynologic constituents. These differences are interpreted to be controlled by tectonic changes of the Hanna basin and adjoining uplifts during evolutionary development, which, in turn, controlled mire chemistry and sedimentation. These conditions created two very different settings under which the peats developed during deposition of the Ferris and the Hanna Formations. In addition, there appears to be a geographic (latitudinal) and/or climatic control on the coal characteristics manifested by major differences of Paleocene coals in the Hanna basin compared to those in the Raton basin in Colorado and New Mexico and the Powder River basin in Wyoming.

  15. Temporal trends and spatial variation characteristics of primary air pollutants emissions from coal-fired industrial boilers in Beijing, China.

    PubMed

    Xue, Yifeng; Tian, Hezhong; Yan, Jing; Zhou, Zhen; Wang, Junling; Nie, Lei; Pan, Tao; Zhou, Junrui; Hua, Shenbing; Wang, Yong; Wu, Xiaoqing

    2016-06-01

    Coal-fired combustion is recognized as a significant anthropogenic source of atmospheric compounds in Beijing, causing heavy air pollution events and associated deterioration in visibility. Obtaining an accurate understanding of the temporal trends and spatial variation characteristics of emissions from coal-fired industrial combustion is essential for predicting air quality changes and evaluating the effectiveness of current control measures. In this study, an integrated emission inventory of primary air pollutants emitted from coal-fired industrial boilers in Beijing is developed for the period of 2007-2013 using a technology-based approach. Future emission trends are projected through 2030 based on current energy-related and emission control policies. Our analysis shows that there is a general downward trend in primary air pollutants emissions because of the implementation of stricter local emission standards and the promotion by the Beijing municipal government of converting from coal-fired industrial boilers to gas-fired boilers. However, the ratio of coal consumed by industrial boilers to total coal consumption has been increasing, raising concerns about the further improvement of air quality in Beijing. Our estimates indicate that the total emissions of PM10, PM2.5, SO2, NOx, CO and VOCs from coal-fired industrial boilers in Beijing in 2013 are approximately 19,242 t, 13,345 t, 26,615 t, 22,965 t, 63,779 t and 1406 t, respectively. Under the current environmental policies and relevant energy savings and emission control plans, it may be possible to reduce NOx and other air pollutant emissions by 94% and 90% by 2030, respectively, if advanced flue gas purification technologies are implemented and coal is replaced with natural gas in the majority of existing boilers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. One-Step Coal Liquefaction

    NASA Technical Reports Server (NTRS)

    Qader, S. A.

    1984-01-01

    Steam injection improves yield and quality of product. Single step process for liquefying coal increases liquid yield and reduces hydrogen consumption. Principal difference between this and earlier processes includes injection of steam into reactor. Steam lowers viscosity of liquid product, so further upgrading unnecessary.

  17. Advanced physical fine coal cleaning: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-12-01

    The contract objective was to demonstrate Advanced Energy Dynamics, Inc., (AED) Ultrafine Coal (UFC) electrostatic physical fine coal cleaning process as capable of: producing clean coal products of no greater than 2% ash; significantly reducing the pyritic sulfur content below that achievable with state-of-the-art coal cleaning; recovering over 80% of the available energy content in the run-of-mine coal; producing product and refuse with surface moisture below 30%. Originally the demonstration was to be of a Charger/Disc System at the Electric Power Research Institute (EPRI) Coal Quality Development Center (CQDC) at Homer City, Pennsylvania. As a result of the combination ofmore » Charger/Disc System scale-up problems and parallel development of an improved Vertical-Belt Separator, DOE issued a contract modification to perform additional laboratory testing and optimization of the UFC Vertical-Belt Separator System at AED. These comparative test results, safety analyses and an economic analysis are discussed in this report. 29 refs., 25 figs., 41 tabs.« less

  18. Flow in Coal Seams: An Unconventional Challenge

    NASA Astrophysics Data System (ADS)

    Armstrong, R. T.; Mostaghimi, P.; Jing, Y.; Gerami, A.

    2016-12-01

    A significant unconventional resource for energy is the methane gas stored in shallow coal beds, known as coal seam gas. An integrated imaging and modelling framework is developed for analysing petrophysical behaviour of coals. X-ray micro-computed tomography (micro-CT) is applied using a novel contrast agent method for visualising micrometer-sized fractures in coal. The technique allows for the visualisation of coal features not visible with conventional imaging methods. A Late Permian medium volatile bituminous coal from Moura Coal Mine (Queensland, Australia) is imaged and the resulting three-dimensional coal fracture system is extracted for fluid flow simulations. The results demonstrate a direct relationship between coal lithotype and permeability. Scanning electron microscope and energy dispersive spectrometry (SEM-EDS) together with X-ray diffraction (XRD) methods are used for identifying mineral matters at high resolution. SEM high-resolution images are also used to calibrate the micro-CT images and measure the exact aperture size of fractures. This leads to a more accurate estimation of permeability using micro-CT images. To study the significance of geometry and topology of the fracture system, a fracture reconstruction method based on statistical properties of coal is also developed. The network properties including the frequency, aperture size distribution, length, and spacing of the imaged coal fracture system. This allows for a sensitivity analysis on the effects that coal fracture topology and geometry has on coal petrophysical properties. Furthermore, we generate microfluidic chips based on coal fracture observations. The chip is used for flow experiments to visualise multi-fluid processes and measure recovery of gas. A combined numerical and experimental approach is applied to obtain relative permeability curves for different regions of interest. A number of challenges associated with coal samples are discussed and insights are provided for better

  19. Biogenic coal-to-methane conversion efficiency decreases after repeated organic amendment

    USGS Publications Warehouse

    Davis, Katherine J.; Barnhart, Elliott P.; Fields, Matthew W.; Gerlach, Robin

    2018-01-01

    Addition of organic amendments to coal-containing systems can increase the rate and extent of biogenic methane production for 60–80 days before production slows or stops. Understanding the effect of repeated amendment additions on the rate and extent of enhanced coal-dependent methane production is important if biological coal-to-methane conversion is to be enhanced on a commercial scale. Microalgal biomass was added at a concentration of 0.1 g/L to microcosms with and without coal on days 0, 76, and 117. Rates of methane production were enhanced after the initial amendment but coal-containing treatments produced successively decreasing amounts of methane with each amendment. During the first amendment period, 113% of carbon added as amendment was recovered as methane, whereas in the second and third amendment periods, 39% and 32% of carbon added as amendment was recovered as methane, respectively. Additionally, algae-amended coal treatments produced ∼38% more methane than unamended coal treatments and ∼180% more methane than amended coal-free treatments after one amendment. However, a second amendment addition resulted in only an ∼25% increase in methane production for coal versus noncoal treatments and a third amendment addition resulted in similar methane production in both coal and noncoal treatments. Successive amendment additions appeared to result in a shift from coal-to-methane conversion to amendment-to-methane conversion. The reported results indicate that a better understanding is needed of the potential impacts and efficiencies of repeated stimulation for enhanced coal-to-methane conversion.

  20. Block coals from Indiana: Inferences on changing depositional environment

    USGS Publications Warehouse

    Mastalerz, Maria; Padgett, P.L.; Eble, C.F.

    2000-01-01

    Significant differences in coal petrography, palynology and coal quality were found between the Lower Block and Upper Block Coal Members (Brazil Formation, Pennsylvanian) in Daviess County, Indiana. The Lower Block Coal Member ranges in thickness from 51 to 74 cm and the Upper Block Coal Member ranges from 20 to 65 cm. Average sulfur content and ash yield of the Lower Block coal (0.98%, 7.65%) are lower than in the Upper Block coal. Megascopically, the coals show distinct differences. The Lower Block is a banded coal with numerous thin fusain horizons and a thin clay parting in the lower third of the seam. The Upper Block coal has a dulling-upward trend, with a bright clarain found at the base that grades into a clarain and then into a durain in the upper portion of the seam. Vitrinite content of the Lower Block coal ranges from 63% to 78%, with the highest vitrinite content found in the middle portion of the seam. In the Upper Block coal, vitrinite content ranges from 40% to 83%, with the highest values found in the lower part of the seam. Ash yield is higher in the upper part of the Upper Block coal, reaching up to 40%. The Lower Block coal is dominated by lycopod trees and tree ferns. The Upper Block coal shows marked differences in spore assemblages between lower and upper parts of the seam. The lower half is dominated by large lycopod trees and tree ferns, similar to the Lower Block coal. The upper half is dominated by small lycopods, mainly Densosporites and Radiizonates. These differences between the Lower Block and Upper Block Coal Members are significant correlation tools applicable to mining exploration and chronostratigraphy. (C) 2000 Elsevier Science B.V. All rights reserved.Significant differences in coal petrography, palynology and coal quality were found between the Lower Block and Upper Block Coal Members (Brazil Formation, Pennsylvanian) in Daviess County, Indiana. The Lower Block Coal Member ranges in thickness from 51 to 74 cm and the Upper Block

  1. Executive summary - Geologic assessment of coal in the Gulf of Mexico coastal plain, U.S.A.

    USGS Publications Warehouse

    Warwick, Peter D.; Warwick, Peter D.; Karlsen, Alexander K.; Merrill, Matthew D.; Valentine, Brett J.

    2011-01-01

    The National Coal Resource Assessment (NCRA) project of the U.S. Geological Survey (USGS) has assessed the quantity and quality of the nation's coal deposits that potentially could be mined during the next few decades. For eight years, geologic, geochemical, and resource information was collected and compiled for the five major coal-producing regions of the United States: the Appalachian Basin, Illinois Basin, Northern Rocky Mountains and Great Plains, Colorado Plateau, and the western part of the Gulf of Mexico Coastal Plain (Gulf Coast) region (Figure 1). In particular, the NCRA assessed resource estimates, compiled coal-quality information, and characterized environmentally sensitive trace elements, such as arsenic and mercury, that are mentioned in the 1990 Clean Air Act Amendments (U.S. Environmental Protection Agency, 1990). The results of the USGS coal assessment efforts may be found at: http://energy.cr.usgs.gov/coal/coal-assessments/index.html and a summary of the results from all assessment areas can be found in Ruppert et al. (2002) and Dennen (2009).Detailed assessments of the major coal-producing areas for the Gulf Coast region along with reviews of the stratigraphy, coal quality, resources, and coalbed methane potential of the Cretaceous, Paleocene, and Eocene coal deposits are presented in this report (Chapters 5-10).

  2. The impact of three recent coal-fired power plant closings on Pittsburgh air quality: A natural experiment.

    PubMed

    Russell, Marie C; Belle, Jessica H; Liu, Yang

    2017-01-01

    Relative to the rest of the United States, the region of southwestern Pennsylvania, including metropolitan Pittsburgh, experiences high ambient concentrations of fine particulate matter (PM 2.5 ), which is known to be associated with adverse respiratory and cardiovascular health impacts. This study evaluates whether the closing of three coal-fired power plants within the southwestern Pennsylvania region resulted in a significant decrease in PM 2.5 concentration. Both PM 2.5 data obtained from EPA ground stations in the study region and aerosol optical depth (AOD) data retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments onboard the Terra and Aqua satellites were used to investigate regional air quality from January 2011 through December 2014. The impact of the plant closings on PM 2.5 concentration and AOD was evaluated using a series of generalized additive models. The model results show that monthly fuel consumption of the Elrama plant, which closed in October of 2012, and monthly fuel consumption of both the Mitchell and Hatfield's Ferry plants, which closed in October of 2013, were significant predictors of both PM 2.5 concentration and AOD at EPA ground stations in the study region, after controlling for multiple meteorological factors and long-term, region-wide air quality improvements. The model's power to predict PM 2.5 concentration increased from an adjusted R 2 of 0.61 to 0.68 after excluding data from ground stations with higher uncertainty due to recent increases in unconventional natural gas extraction activities. After preliminary analyses of mean PM 2.5 concentration and AOD showed a downward trend following each power plant shutdown, results from a series of generalized additive models confirmed that the activity of the three plants that closed, measured by monthly fuel consumption, was highly significant in predicting both AOD and PM 2.5 at 12 EPA ground stations; further research on PM 2.5 emissions from

  3. Potential effects of surface coal mining on the hydrology of the Circle West coal tracts, McCone County, eastern Montana

    USGS Publications Warehouse

    Cannon, M.R.

    1984-01-01

    The Circle West coal tracts in McCone County, Montana, contain about 460 million tons of recoverable coal reserves. Estimates of coal reserves for the tract are based predominantly on the S coal bed, which averages about 16 ft in thickness. About 175 million tons, or 38%, of the recoverable coal is Federally owned and has been identified for potential lease sale. A hydrologic study has been conducted in the potential lease area to describe existing hydrologic systems and to assess potential effects of surface coal mining on local water resources. Geohydrologic data collected from wells and drill holes indicate that shallow aquifers exist in sandstone and coal beds of the Tongue River Member of the Fort Union Formation (Paleocene age). These shallow aquifers generally have small values of hydraulic conductivity (0.1 to 380 ft/day) and typically yield from 2 to 20 gal/min to stock and domestic wells. Where coal is extremely fractured or the thickness of saturated sandstone is large, some wells can yield in excess of 70 gal/min. Chemical analyses indicate that most shallow aquifers contain a sodium sulfate bicarbonate type water. Surface water resources of the area consist of intermittent streamflow in parts of the Nelson and Timber Creek basins plus a large network of reservoirs. The reservoirs provide a large part of the water supply for area livestock and irrigation. Water quality data for Nelson and Timber Creeks indicate that the water generally is a sodium sulfate type and has a large concentration (181 to 6,960 mg/L) of dissolved solids. Mining of the S coal bed in the Circle West coal tracts would permanently remove shallow coal and sandstone aquifers, resulting in the loss of shallow stock wells. Mining would destroy livestock reservoirs, alter runoff characteristics of Nelson Creek, and temporarily lower water levels in shallow aquifers near the mine. Leaching of soluble constituents from mine spoils may cause a long-term degradation of the quality of water

  4. Statutory complexity disguises agency capture in Citizens Coal Council v. EPA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullen, R.

    2007-07-01

    In Citizens Coal Council v. EPA, an en banc panel for the Sixth Circuit Court of Appeals considered a challenge to EPA regulations promulgated pursuant to the Clean Water Act (CWA). The EPA promulgated the regulations in an attempt to incentivize coal companies to remine once abandoned mine sites. Petitioners, two nonprofit environmental organizations, claimed that the regulations violated the Clean Water Act and Administrative Procedure Act by allowing coal companies to remine without adhering to any enforceable pollution limitations. The EPA countered that more remining would improve water quality at abandoned sites. The Sixth Circuit rejected Petitioners' claims, findingmore » that the EPA's regulations were reasonably consistent with the CWA's goal of restoring the integrity of the nation's waters. In so holding, the court struggled to understand the meaning of the CWA's complex procedural and technical language, and allowed the EPA to justify the rule based on the CWA's broad statement of purpose. Such superficial judicial review sets a dangerous precedent in environmental law, because it exacerbates the risk of agency capture. A captured agency promulgates regulations that benefit-industry, not the environment. Without the judiciary acting as a meaningful check against agency capture, the public loses a valuable tool in the fight against major-industrial polluters like the domestic coal industry. Citizens Coal Council therefore stands as a cautionary tale, a warning sign that the judiciary may be unable to identify agency capture where the regulations at issue are promulgated pursuant to a complex statute like the Clean Water Act.« less

  5. Understanding and using quality information for quality improvement: The effect of information presentation.

    PubMed

    Zwijnenberg, Nicolien C; Hendriks, Michelle; Delnoij, Diana M J; de Veer, Anke J E; Spreeuwenberg, Peter; Wagner, Cordula

    2016-12-01

    To examine how information presentation affects the understanding and use of information for quality improvement. An experimental design, testing 22 formats, and showing information on patient safety culture. Formats differed in visualization, outcomes and benchmark information. Respondents viewed three randomly selected presentation formats in an online survey, completing several tasks per format. The hospital sector in the Netherlands. A volunteer sample of healthcare professionals, mainly nurses, working in hospitals. Main Outcome Measure(s): The degree to which information is understandable and usable (accurate choice for quality improvement, sense of urgency to change and appraisal of one's own performance). About 115 healthcare professionals participated (response rate 25%), resulting in 345 reviews. Information in tables (P = 0.007) and bar charts (P < 0.0001) was better understood than radars. Presenting outcomes on a 5-point scale (P < 0.001) or as '% positive responders' (P < 0.001) was better understood than '% negative responders'. Formats without benchmarks were better understood than formats with benchmarks. Use: Bar charts resulted in more accurate choices than tables (P = 0.003) and radars (P < 0.001). Outcomes on a 5-point scale resulted in more accurate choices than '% negative responders' (P = 0.007). Presenting '% positive responders' resulted in a higher sense of urgency to change than outcomes on a 5-point scale (P = 0.002). Benchmark information had inconsistent effects on the appraisal of one's own performances. Information presentation affects healthcare professionals' understanding and use of quality information. Our findings supplement the further understanding on how quality information can be best communicated to healthcare professionals for realizing quality improvements. © The Author 2016. Published by Oxford University Press in association with the International Society for Quality in Health Care. All rights reserved

  6. Health impacts of domestic coal use in China

    USGS Publications Warehouse

    Finkelman, R.B.; Belkin, H.E.; Zheng, B.

    1999-01-01

    Domestic coal combustion has had profound adverse effects on the health of millions of people worldwide. In China alone several hundred million people commonly burn raw coal in unvented stoves that permeate their homes with high levels of toxic metals and organic compounds. At least 3,000 people in Guizhou Province in southwest China are suffering from severe arsenic poisoning. The primary source of the arsenic appears to be consumption of chili peppers dried over fires fueled with high-arsenic coal. Coal samples in the region were found to contain up to 35,000 ppm arsenic. Chili peppers dried over high-arsenic coal fires adsorb 500 ppm arsenic on average. More than 10 million people in Guizhou Province and surrounding areas suffer from dental and skeletal fluorosis. The excess fluorine is caused by eating corn dried over burning briquettes made from high-fluorine coals and high-fluorine clay binders. Polycyclic aromatic hydrocarbons formed during coal combustion are believed to cause or contribute to the high incidence of esophageal and lung cancers in parts of China. Domestic coal combustion also has caused selenium poisoning and possibly mercury poisoning. Better knowledge of coal quality parameters may help to reduce some of these health problems. For example, information on concentrations and distributions of potentially toxic elements in coal may help delineate areas of a coal deposit to be avoided. Information on the modes of occurrence of these elements and the textural relations of the minerals and macerals in coal may help predict the behavior of the potentially toxic components during coal combustion.

  7. Health impacts of domestic coal use in China

    PubMed Central

    Finkelman, Robert B.; Belkin, Harvey E.; Zheng, Baoshan

    1999-01-01

    Domestic coal combustion has had profound adverse effects on the health of millions of people worldwide. In China alone several hundred million people commonly burn raw coal in unvented stoves that permeate their homes with high levels of toxic metals and organic compounds. At least 3,000 people in Guizhou Province in southwest China are suffering from severe arsenic poisoning. The primary source of the arsenic appears to be consumption of chili peppers dried over fires fueled with high-arsenic coal. Coal samples in the region were found to contain up to 35,000 ppm arsenic. Chili peppers dried over high-arsenic coal fires adsorb 500 ppm arsenic on average. More than 10 million people in Guizhou Province and surrounding areas suffer from dental and skeletal fluorosis. The excess fluorine is caused by eating corn dried over burning briquettes made from high-fluorine coals and high-fluorine clay binders. Polycyclic aromatic hydrocarbons formed during coal combustion are believed to cause or contribute to the high incidence of esophageal and lung cancers in parts of China. Domestic coal combustion also has caused selenium poisoning and possibly mercury poisoning. Better knowledge of coal quality parameters may help to reduce some of these health problems. For example, information on concentrations and distributions of potentially toxic elements in coal may help delineate areas of a coal deposit to be avoided. Information on the modes of occurrence of these elements and the textural relations of the minerals and macerals in coal may help predict the behavior of the potentially toxic components during coal combustion. PMID:10097053

  8. Coal-oil coprocessing at HTI - development and improvement of the technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stalzer, R.H.; Lee, L.K.; Hu, J.

    1995-12-31

    Co-Processing refers to the combined processing of coal and petroleum-derived heavy oil feedstocks. The coal feedstocks used are those typically utilized in direct coal liquefaction: bituminous, subbituminous, and lignites. Petroleum-derived oil, is typically a petroleum residuum, containing at least 70 W% material boiling above 525{degrees}C. The combined coal and oil feedstocks are processed simultaneously with the dual objective of liquefying the coal and upgrading the petroleum-derived residuum to lower boiling (<525{degrees}C) premium products. HTI`s investigation of the Co-Processing technology has included work performed in laboratory, bench and PDU scale operations. The concept of co-processing technology is quite simple and amore » natural outgrowth of the work done with direct coal liquefaction. A 36 month program to evaluate new process concepts in coal-oil coprocessing at the bench-scale was begun in September 1994 and runs until September 1997. Included in this continuous bench-scale program are provisions to examine new improvements in areas such as: interstage product separation, feedstock concentrations (coal/oil), improved supported/dispersed catalysts, optimization of reactor temperature sequencing, and in-line hydrotreating. This does not preclude other ideas from DOE contracts and other sources that can lead to improved product quality and economics. This research work has led to important findings which significantly increased liquid yields, improved product quality, and improved process economics.« less

  9. Organic petrology of Paleocene Marcelina Formation coals, Paso Diablo mine, western Venezuela: Tectonic controls on coal type

    USGS Publications Warehouse

    Hackley, P.C.; Martinez, M.

    2007-01-01

    About 7??Mt of high volatile bituminous coal are produced annually from the four coal zones of the Upper Paleocene Marcelina Formation at the Paso Diablo open-pit mine of western Venezuela. As part of an ongoing coal quality study, we have characterized twenty-two coal channel samples from the mine using organic petrology techniques. Samples also were analyzed for proximate-ultimate parameters, forms of sulfur, free swelling index, ash fusion temperatures, and calorific value. Six of the samples represent incremental benches across the 12-13??m thick No. 4 bed, the stratigraphically lowest mined coal, which is also mined at the 10??km distant Mina Norte open-pit. Organic content of the No. 4 bed indicates an upward increase of woody vegetation and/or greater preservation of organic material throughout the life of the original mire(s). An upward increase in telovitrinite and corresponding decrease in detrovitrinite and inertinite illustrate this trend. In contrast, stratigraphically higher coal groups generally exhibit a 'dulling upward' trend. The generally high inertinite content, and low ash yield and sulfur content, suggest that the Paso Diablo coals were deposited in rain-fed raised mires, protected from clastic input and subjected to frequent oxidation and/or moisture stress. However, the two thinnest coal beds (both 0.7??m thick) are each characterized by lower inertinite and higher telovitrinite content relative to the rest of Paso Diablo coal beds, indicative of less well-established raised mire environments prior to drowning. Foreland basin Paleocene coals of western Venezuela, including the Paso Diablo deposit and time-correlative coal deposits of the Ta??chira and Me??rida Andes, are characterized by high inertinite and consistently lower ash and sulfur relative to Eocene and younger coals of the area. We interpret these age-delimited coal quality characteristics to be due to water availability as a function of the tectonic control of subsidence rate. It

  10. Bio-coal briquettes using low-grade coal

    NASA Astrophysics Data System (ADS)

    Estiaty, L. M.; Fatimah, D.; Widodo

    2018-02-01

    The technology in using briquettes for fuel has been widely used in many countries for both domestic and industrial purposes. Common types of briquette used are coal, peat, charcoal, and biomass. Several researches have been carried out in regards to the production and the use of briquettes. Recently, researches show that mixing coal and biomass will result in an environmentally friendly briquette with better combustion and physical characteristics. This type of briquette is known as bio-coal briquettes. Bio-coal briquettes are made from agriculture waste and coal, which are readily available, cheap and affordable. Researchers make these bio-coal briquettes with different aims and objectives, depending on the issues to address, e.g. utilizing agricultural waste as an alternative energy to replace fossil fuels that are depleting its reserves, adding coal to biomass in order to add calorific value to bio-coal briquette, and adding biomass to coal to improve its chemical and physical properties. In our research, biocoal briquettes are made to utilize low grade coal. The biomass we use, however, is different from the ones used in past researches because it has undergone fermentation. The benefits of using such biomass are 1. Fermentation turns the hemi cellulose into a simpler form, so that the burning activation energy decreases while the calorific value increases. 2. Enzym produced will bind to heavy metals from coal as co-factors, forming metals that are environmentally friendly.

  11. 78 FR 14115 - Notice of Invitation To Participate; Coal Exploration License Application WYW181224, WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-04

    ... amended by the Federal Coal Leasing Amendments Act of 1976, and to Bureau of Land Management (BLM... structural and quality information of the coal. The BLM regulations at 43 CFR 3410 require the publication of an invitation to participate in the coal exploration in the Federal Register. The Federal coal...

  12. 76 FR 31626 - Notice of Invitation To Participate; Coal Exploration License Application WYW180006, WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... amended by the Federal Coal Leasing Amendments Act of 1976, and to Bureau of Land Management (BLM... structural and quality information about the coal. The BLM regulations at 43 CFR 3410 require the publication of an invitation to participate in the coal exploration in the Federal Register. The Federal coal...

  13. Characterization of Coal Porosity for Naturally Tectonically Stressed Coals in Huaibei Coal Field, China

    PubMed Central

    Li, Xiaoshi; Hou, Quanlin; Li, Zhuo; Wei, Mingming

    2014-01-01

    The enrichment of coalbed methane (CBM) and the outburst of gas in a coal mine are closely related to the nanopore structure of coal. The evolutionary characteristics of 12 coal nanopore structures under different natural deformational mechanisms (brittle and ductile deformation) are studied using a scanning electron microscope (SEM) and low-temperature nitrogen adsorption. The results indicate that there are mainly submicropores (2~5 nm) and supermicropores (<2 nm) in ductile deformed coal and mesopores (10~100 nm) and micropores (5~10 nm) in brittle deformed coal. The cumulative pore volume (V) and surface area (S) in brittle deformed coal are smaller than those in ductile deformed coal which indicates more adsorption space for gas. The coal with the smaller pores exhibits a large surface area, and coal with the larger pores exhibits a large volume for a given pore volume. We also found that the relationship between S and V turns from a positive correlation to a negative correlation when S > 4 m2/g, with pore sizes <5 nm in ductile deformed coal. The nanopore structure (<100 nm) and its distribution could be affected by macromolecular structure in two ways. Interconversion will occur among the different size nanopores especially in ductile deformed coal. PMID:25126601

  14. Understanding Quality Assurance: A Cross Country Case Study

    ERIC Educational Resources Information Center

    Choon Boey Lim, Fion

    2008-01-01

    Purpose: The purpose of this paper is to examine the level of understanding between an Australian university and its offshore partner institution, on quality assurance. It attempts to highlight the dynamics of quality assurance policy implementation within and across institutions for an offshore degree. Design/methodology/approach: The study used…

  15. Large-eddy simulation of pulverized coal swirl jet flame

    NASA Astrophysics Data System (ADS)

    Muto, Masaya; Watanabe, Hiroaki; Kurose, Ryoichi; Komori, Satoru; Balusamy, Saravanan; Hochgreb, Simone

    2013-11-01

    Coal is an important energy resource for future demand for electricity, as coal reserves are much more abundant than those of other fossil fuels. In pulverized coal fired power plants, it is very important to improve the technology for the control of environmental pollutants such as nitrogen oxide, sulfur oxide and ash particles including unburned carbon. In order to achieve these requirements, understanding the pulverized coal combustion mechanism is necessary. However, the combustion process of the pulverized coal is not well clarified so far since pulverized coal combustion is a complicated phenomenon in which the maximum flame temperature exceeds 1500 degrees Celsius and some substances which can hardly be measured, for example, radical species and highly reactive solid particles are included. Accordingly, development of new combustion furnaces and burners requires high cost and takes a long period. In this study, a large-eddy simulation (LES) is applied to a pulverized coal combustion field and the results will be compared with the experiment. The results show that present LES can capture the general feature of the pulverized coal swirl jet flame.

  16. Cleavage and crosslinking of polymeric coal structures during pyrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMillen, D.F.; Malhotra, R.

    1992-02-01

    The ultimate objective of this project was to develop a better understanding of volatiles production to help optimize the yield and character of condensable coproducts during coal pyrolysis or mild gasification. The specific objectives were to (1) Develop pyrolysis procedures that minimize secondary reactions; and (2) Develop coal pretreatments that current knowledge suggests will prorate bond scission or prevent retrograde reactions. Our approach was to study the pyrolysis of coals and tar-loaded coals by using several techniques that span a range of heating rates and pressures. Slow-heating pyrolyses were performed at low pressures in the inlet of a field ionizationmore » mass spectrometer and at atmospheric pressures in a thermogravimetric analyzer. Moderately rapid-heating pyrolyses were performed in a vacuum TGA apparatus and in sealed silica ampules heated in a molten-salt bath. The fastest heating rates were achieved with laser pyrolysis at about 30,000 X/s. The high tar yield seen in this work where the entire volume of the coal particle becomes hot and fluid at very nearly the same time, taken together with the evident non-vapor transport of the tar under these conditions, emphasizes the importance of better understanding the development of fluidity during coal heating. This specifically includes the profound effects--long-recognized but poorly understood that mild oxidation has in suppressing coal fluidity. It also includes the more recently recognized fact that heating in the presence of an inert gas produced substantially greater fluidity than does heating in the presence of combustion gases, even if the conditions are very fuel rich and all the oxygen itself has already been consumed when the coal particles are encountered.« less

  17. Quality, Readability, and Understandability of German Booklets Addressing Melanoma Patients.

    PubMed

    Brütting, Julia; Reinhardt, Lydia; Bergmann, Maike; Schadendorf, Dirk; Weber, Christiane; Tilgen, Wolfgang; Berking, Carola; Meier, Friedegund

    2018-05-07

    Booklets are the preferably used form among patient education materials and are often handed out during medical consultations in dermatological oncology settings. However, little is known about how beneficial they are and whether they correspond to essential quality characteristics. To assess the quality, readability, and understandability of currently freely available booklets written in German addressing melanoma patients (MP). Melanoma booklets in accordance with predefined criteria were searched and analyzed. Three reviewers independently assessed their quality and understandability by applying the DISCERN tool and PEMAT-P. The Flesch Reading Ease Score (FRES) was calculated to determine readability. Nine booklets addressing MP were analyzed. The overall median DISCERN score was 3.6 (interquartile range (IQR) 2.9-4.1), median PEMAT-P score was 91% (IQR 83-94.5), and median FRES was 43 (IQR 33.5-47.5), indicating a medium quality, a high application of understandability elements, but low readability in at least half of the booklets. Incomplete reporting on treatments and insufficient meta-information caused the main quality deficits. There is a need of content and didactic revision of German booklets for MP to raise their quality and to make them beneficial and understandable for more patients. An adaption in accordance with evidence-based criteria and an even stronger involvement of MP in assessment and development of patient education material are considered to be the best approaches.

  18. Health and air quality benefits of policies to reduce coal-fired power plant emissions: a case study in North Carolina.

    PubMed

    Li, Ya-Ru; Gibson, Jacqueline MacDonald

    2014-09-02

    We analyzed sulfur dioxide (SO2) emissions and fine particulate sulfate (PM2.5 sulfate) concentrations in the southeastern United States during 2002-2012, in order to evaluate the health impacts in North Carolina (NC) of the NC Clean Smokestacks Act of 2002. This state law required progressive reductions (beyond those mandated by federal rules) in pollutant emissions from NC's coal-fired power plants. Although coal-fired power plants remain NC's leading SO2 source, a trend analysis shows significant declines in SO2 emissions (-20.3%/year) and PM2.5 sulfate concentrations (-8.7%/year) since passage of the act. Emissions reductions were significantly greater in NC than in neighboring states, and emissions and PM2.5 sulfate concentration reductions were highest in NC's piedmont region, where 9 of the state's 14 major coal-fired power plants are located. Our risk model estimates that these air quality improvements decreased the risk of premature death attributable to PM2.5 sulfate in NC by about 63%, resulting in an estimated 1700 (95% CI: 1500, 1800) deaths prevented in 2012. These findings lend support to recent studies predicting that implementing the proposed federal Cross-State Air Pollution Rule (recently upheld by the U.S. Supreme Court) could substantially decrease U.S. premature deaths attributable to coal-fired power plant emissions.

  19. Soil quality and carbon sequestration in a reclaimed coal mine spoil of Jharia coalfield, India

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sangeeta; Masto, Reginald; Ram, Lal

    2016-04-01

    Revegetation of coal mine spoil helps in carbon storage and the success of remediation depend on the selection of appropriate tree species. A study was conducted at the coalmine overburden dumps of Jharia Coalfield, Dhanbad, India to evaluate the impact of revegetation on the overall soil quality and carbon sequestration. Morphological parameters (tree height, diameter at breast height, tree biomass, wood specific gravity) of the dominant tree species (Acacia auriculiformis, Cassia siamea, Dalbergia sissoo and Leucaena leucocephala) growing on the mine spoil was recorded. Mine spoil samples were collected under the canopy cover of different tree species and analyzed for soil physical, chemical, and biological parameters. In general reclaimed sites had better soil quality than the reference site. For instance, D. sissoo and C. siamea improved soil pH (+28.5%, +27.9%), EC (+15.65%, +19%), cation exchange capacity (+58.7%, +52.3%), organic carbon (+67.5%, +79.5%), N (+97.2%, +75.7%), P (+98.2%, +76.9%), K (+31.8%, +37.4%), microbial biomass carbon (+143%, +164%) and dehydrogenase activity (+228%, +262%) as compared to the unreclaimed reference coal mine site. The concentration of polycyclic aromatic hydrocarbons (PAHs) decreased significantly in the reclaimed site than the reference spoil, C. siamea was found to be more promising for PAH degradation. The overall impact of tree species on the quality of reclaimed mine spoil cannot be assessed by individual soil parameters, as most of the parameters are interlinked and difficult to interpret. However, combination of soil properties into an integrated soil quality index provides a more meaningful assessment of reclamation potential of tree species. Principal component analysis (PCA) was used to identify key mine soil quality indicators to develop a soil quality index (SQI). Coarse fraction, pH, EC, soil organic carbon, P, Ca, S, and dehydrogenase activity were the most critical properties controlling growth of tree

  20. Lung disease and coal mining: what pulmonologists need to know.

    PubMed

    Go, Leonard H T; Krefft, Silpa D; Cohen, Robert A; Rose, Cecile S

    2016-03-01

    Coal mine workers are at risk for a range of chronic respiratory diseases including coal workers' pneumoconiosis, diffuse dust-related fibrosis, and chronic obstructive pulmonary disease. The purpose of this review is to describe coal mining processes and associated exposures to inform the diagnostic evaluation of miners with respiratory symptoms. Although rates of coal workers' pneumoconiosis declined after regulations were enacted in the 1970s, more recent data shows a reversal in this downward trend. Rapidly progressive pneumoconiosis with progressive massive fibrosis (complicated coal workers' pneumoconiosis) is being observed with increased frequency in United States coal miners, with histologic findings of silicosis and mixed-dust pneumoconiosis. There is increasing evidence of decline in lung function in individuals with pneumoconiosis. Multiple recent cohort studies suggest increased risk of lung cancer in coal miners. A detailed understanding of coal mining methods and processes allows clinicians to better evaluate and confirm chronic lung diseases caused by inhalational hazards in the mine atmosphere.

  1. Enrichment of reactive macerals in coal: its characterization and utilization in coke making

    NASA Astrophysics Data System (ADS)

    Nag, Debjani; Kopparthi, P.; Dash, P. S.; Saxena, V. K.; Chandra, S.

    2018-01-01

    Macerals in coal are of different types: reactive and inert. These macerals are differ in their physical and chemical properties. Column flotation method has been used to separate the reactive macerals in a non-coking coal. The enriched coal is then characterized in order to understand the changes in the coking potential by different techniques. It is then used in making of metallurgical coke by proper blending with other coals. Enriched coal enhance the properties of metallurgical coke. This shows a path of utilization of non-coking coal in metallurgical coke making.

  2. Coal Tar and Coal-Tar Pitch

    Cancer.gov

    Learn about coal-tar products, which can raise your risk of skin cancer, lung cancer, and other types of cancer. Examples of coal-tar products include creosote, coal-tar pitch, and certain preparations used to treat skin conditions such as eczema, psoriasis, and dandruff.

  3. Mercury and halogens in coal: Chapter 2

    USGS Publications Warehouse

    Kolker, Allan; Quick, Jeffrey C.; Granite, Evan J.; Pennline, Henry W.; Senior, Constance L.

    2014-01-01

    Apart from mercury itself, coal rank and halogen content are among the most important factors inherent in coal that determine the proportion of mercury captured by conventional controls during coal combustion. This chapter reviews how mercury in coal occurs, gives available concentration data for mercury in U.S. and international commercial coals, and provides an overview of the natural variation in halogens that influence mercury capture. Three databases, the U.S. Geological Survey coal quality (USGS COALQUAL) database for in-ground coals, and the 1999 and 2010 U.S. Environmental Protection Agency (EPA) Information Collection Request (ICR) databases for coals delivered to power stations, provide extensive results for mercury and other parameters that are compared in this chapter. In addition to the United States, detailed characterization of mercury is available on a nationwide basis for China, whose mean values in recent compilations are very similar to the United States in-ground mean of 0.17 ppm mercury. Available data for the next five largest producers (India, Australia, South Africa, the Russian Federation, and Indonesia) are more limited and with the possible exceptions of Australia and the Russian Federation, do not allow nationwide means for mercury in coal to be calculated. Chlorine in coal varies as a function of rank and correspondingly, depth of burial. As discussed elsewhere in this volume, on a proportional basis, bromine is more effective than chlorine in promoting mercury oxidation in flue gas and capture by conventional controls. The ratio of bromine to chlorine in coal is indicative of the proportion of halogens present in formation waters within a coal basin. This ratio is relatively constant except in coals that have interacted with deep-basin brines that have reached halite saturation, enriching residual fluids in bromine. Results presented here help optimize mercury capture by conventional controls and provide a starting point for

  4. Water quality of selected streams in the coal area of southeastern Montana. Water-resources investigations (final)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knapton, J.R.; McKinley, P.W.

    1977-08-01

    This report summarizes and evaluates water-quality data collected at 35 stream sites in the coal region of southeastern Montana. Sarpy Creek, Armells Creek, and Rosebud Creek sometimes have dissolved-solids concentrations that cause water to be marginal for agricultural purposes. At times of rainfall and snowmelt, the runoff water mixes with the base-flow component to improve the overall quality. Water in the Tongue River generally showed a downstream degradation in which some changes were related to the lithology of the aquifers contributing water to streamflow. Water from Pumpkin Creek and Mizpah Creek is used mostly for cattle watering. To some extentmore » water is used for irrigation although the salinity hazard was often high. The chemical quality of the Powder River changed little during flow downstream. High sediment loads of the river acted as transporting agents for many of the plant nutrients and trace-element constituents.« less

  5. Depletion of Appalachian coal reserves - how soon?

    USGS Publications Warehouse

    Milici, R.C.

    2000-01-01

    Much of the coal consumed in the US since the end of the last century has been produced from the Pennsylvanian strata of the Appalachian basin. Even though quantities mined in the past are less than they are today, this basin yielded from 70% to 80% of the nation's annual coal production from the end of the last century until the early 1970s. During the last 25 years, the proportion of the nation's coal that was produced annually from the Appalachian basin has declined markedly, and today it is only about 40% of the total. The amount of coal produced annually in the Appalachian basin, however, has been rising slowly over the last several decades, and has ranged generally from 400 to 500 million tons (Mt) per year. A large proportion of Appalachian historical production has come from relatively few counties in southwestern Pennsylvania, northern and southern West Virginia, eastern Kentucky, Virginia and Alabama. Many of these counties are decades past their years of peak production and several are almost depleted of economic deposits of coal. Because the current major consumer of Appalachian coal is the electric power industry, coal quality, especially sulfur content, has a great impact on its marketability. High-sulfur coal deposits in western Pennsylvania and Ohio are in low demand when compared with the lower sulfur coals of Virginia and southern West Virginia. Only five counties in the basin that have produced 500 Mt or more exhibit increasing rates of production at relatively high levels. Of these, six are in the central part of the basin and only one, Greene County, Pennsylvania, is in the northern part of the basin. Decline rate models, based on production decline rates and the decline rate of the estimated, 'potential' reserve, indicate that Appalachian basin annual coal production will be 200 Mt or less by the middle of the next century. Published by Elsevier Science B.V.Much of the coal consumed in the US since the end of the last century has been produced

  6. Health-related quality-of-life of coal-based sponge iron plant workers in Barjora, India: a cross-sectional study.

    PubMed

    Chattopadhyay, Kaushik; Chattopadhyay, Chaitali; Kaltenthaler, Eva

    2014-09-04

    During the last decade, coal-based sponge iron plants, a highly polluted industry, have grown rapidly in Barjora, India. Understanding their workers' perception of health is essential in people-centered healthcare. The aim of the study was to assess their health-related quality-of-life (HRQoL), and to determine factors that independently predict their HRQoL. Cross-sectional study. Coal-based sponge iron plants in Barjora, India. 258 coal-based sponge iron plant workers. HRQoL was measured using the EuroQol-5D-5L. The response rate was 100%. Participants with problems in mobility, self-care, usual activities, pain/discomfort and anxiety/depression were 23.3%, 5.1%, 10.9%, 39.5% and 45.5%, respectively. 36.8% of participants reported health state 11111 (no problem in any EQ-5D dimension). The mean visual analogue scale (EQ-VAS) was 69.8 (18.5 SD). The odds of mobility problems decreased with age (OR 0.95, 95% CI 0.91 to 0.99, p=0.016), were lower in participants with presence/history of any respiratory disease (0.27, 0.13 to 0.55, p<0.001), scheduled caste/scheduled tribe/other backward class workers (0.44, 0.22 to 0.89, p=0.021), manual workers (0.40, 0.16 to 0.99, p=0.047) and non-smokers (2.63, 1.27 to 5.46, p=0.009). The odds of pain/discomfort and anxiety/depression were lower in participants with any respiratory disease (0.44, 0.24 to 0.79, p=0.006; and 0.52, 0.29 to 0.92, p=0.026, respectively). The EQ-VAS was worse in manual participants (coefficient -6.91, 95% CI -12.40 to -1.41, p=0.014), with any respiratory disease (-8.13, -13.12 to -3.13, p=0.002), alcohol drinkers (-4.81, -9.47 to -0.15, p=0.043), literates (7.70, 0.97 to 14.43, p=0.025) and Hindus (13.41, 2.62 to 24.20, p=0.015). Many coal-based sponge iron plant workers in Barjora have problems in their HRQoL, and the predictors of different aspects of HRQoL were identified. The study findings could be taken into consideration in future interventional studies aimed at improving the HRQoL of these

  7. Rehabilitation consumers' use and understanding of quality information: a health literacy perspective.

    PubMed

    Magasi, Susan; Durkin, Elizabeth; Wolf, Michael S; Deutsch, Anne

    2009-02-01

    To explore consumers' use and understanding of quality information about postacute rehabilitation facilities. Thematic, semistructured interviews. Two skilled nursing facilities and 2 inpatient rehabilitation facilities in a large Midwestern city. Rehabilitation inpatients (n=17) with stroke, hip fractures, and joint replacements and care partners (n=12) of rehabilitation inpatients. None. None. Health literacy imposed barriers to participants' understanding of quality information. Using the Institute of Medicine's Health Literacy Framework, we identified specific barriers that limited participants' abilities to (1) obtain quality information, (2) process and understand quality information, and (3) make appropriate decisions about the quality of a rehabilitation facility. Participants tended to rely on informal and nonquality information when choosing a rehabilitation facility. Given the barriers imposed by low health literacy, rehabilitation providers have a responsibility to present quality information in a way that consumers, especially those with low health literacy, can use and understand.

  8. Analyses of geological and hydrodynamic controls on methane emissions experienced in a Lower Kittanning coal mine

    PubMed Central

    Karacan, C. Özgen; Goodman, Gerrit V.R.

    2015-01-01

    This paper presents a study assessing potential factors and migration paths of methane emissions experienced in a room-and-pillar mine in Lower Kittanning coal, Indiana County, Pennsylvania. Methane emissions were not excessive at idle mining areas, but significant methane was measured during coal mining and loading. Although methane concentrations in the mine did not exceed 1% limit during operation due to the presence of adequate dilution airflow, the source of methane and its migration into the mine was still a concern. In the course of this study, structural and depositional properties of the area were evaluated to assess complexity and sealing capacity of roof rocks. Composition, gas content, and permeability of Lower Kittanning coal, results of flotation tests, and geochemistry of groundwater obtained from observation boreholes were studied to understand the properties of coal and potential effects of old abandoned mines within the same area. These data were combined with the data obtained from exploration boreholes, such as depths, elevations, thicknesses, ash content, and heat value of coal. Univariate statistical and principal component analyses (PCA), as well as geostatistical simulations and co-simulations, were performed on various spatial attributes to reveal interrelationships and to establish area-wide distributions. These studies helped in analyzing groundwater quality and determining gas-in-place (GIP) of the Lower Kittanning seam. Furthermore, groundwater level and head on the Lower Kittanning coal were modeled and flow gradients within the study area were examined. Modeling results were interpreted with the structural geology of the Allegheny Group of formations above the Lower Kittanning coal to understand the potential source of gas and its migration paths. Analyses suggested that the source of methane was likely the overlying seams such as the Middle and Upper Kittanning coals and Freeport seams of the Allegheny Group. Simulated ground

  9. Physical environment and hydrologic characteristics of coal-mining areas in Missouri

    USGS Publications Warehouse

    Vaill, J.E.; Barks, James H.

    1980-01-01

    Hydrologic information for the north-central and western coal-mining regions of Missouri is needed to define the hydrologic system in these areas of major historic and planned coal development. This report describes the physical setting, climate, coal-mining practices, general hydrologic system, and the current (1980) hydrologie data base in these two coal-mining regions. Streamflow in both mining regions is poorly sustained. Stream water quality generally varies with location and the magnitude of coal-mining activity in a watershed. Streams in non coal-mining areas generally have dissolved-solids concentrations less than 400 milligrams per liter. Acid-mine drainage has seriously affected some streams by reducing the pH to less than 4.0 and increasing the dissolved-solids concentrations to greater than 1,000 milligrams per liter. This has resulted in fish kills in some instances. Ground-water movement is impeded both laterally and vertically in both mining regions, especially in western Missouri, because of the low hydraulic conductivity of the rocks of Pennsylvanian age. The quality of ground water varies widely depending on location and depth. Ground water commonly contains high concentrations of iron and sulfate, and dissolved-solids concentrations generally are greater than 1,000 milligrams per liter.

  10. Geochemistry of Selected Coal Samples from Sumatra, Kalimantan, Sulawesi, and Papua, Indonesia

    USGS Publications Warehouse

    Belkin, Harvey E.; Tewalt, Susan J.

    2007-01-01

    and ash (generally <1 and < 10 wt.%, respectively). Coal mining for both local use and for export has a very strong future in Indonesia although, at present, there are concerns about the strong need for a major revision in mining laws and foreign investment policies (Wahju, 2004; United States Embassy Jakarta, 2004). The World Coal Quality Inventory (WoCQI) program of the U.S. Geological Survey (Tewalt and others, 2005) is a cooperative project with about 50 countries (out of 70 coal-producing countries world-wide). The WoCQI initiative has collected and published extensive coal quality data from the world's largest coal producers and consumers. The important aspects of the WoCQI program are; (1) samples from active mines are collected, (2) the data have a high degree of internal consistency with a broad array of coal quality parameters, and (3) the data are linked to GIS and available through the world-wide-web. The coal quality parameters include proximate and ultimate analysis, sulfur forms, major-, minor-, and trace-element concentrations and various technological tests. This report contains geochemical data from a selected group of Indonesian coal samples from a range of coal types, localities, and ages collected for the WoCQI program.

  11. Process for coal liquefaction employing selective coal feed

    DOEpatents

    Hoover, David S.; Givens, Edwin N.

    1983-01-01

    An improved coal liquefaction process is provided whereby coal conversion is improved and yields of pentane soluble liquefaction products are increased. In this process, selected feed coal is pulverized and slurried with a process derived solvent, passed through a preheater and one or more dissolvers in the presence of hydrogen-rich gases at elevated temperatures and pressures, following which solids, including mineral ash and unconverted coal macerals, are separated from the condensed reactor effluent. The selected feed coals comprise washed coals having a substantial amount of mineral matter, preferably from about 25-75%, by weight, based upon run-of-mine coal, removed with at least 1.0% by weight of pyritic sulfur remaining and exhibiting vitrinite reflectance of less than about 0.70%.

  12. Method of extracting coal from a coal refuse pile

    DOEpatents

    Yavorsky, Paul M.

    1991-01-01

    A method of extracting coal from a coal refuse pile comprises soaking the coal refuse pile with an aqueous alkali solution and distributing an oxygen-containing gas throughout the coal refuse pile for a time period sufficient to effect oxidation of coal contained in the coal refuse pile. The method further comprises leaching the coal refuse pile with an aqueous alkali solution to solubilize and extract the oxidized coal as alkali salts of humic acids and collecting the resulting solution containing the alkali salts of humic acids. Calcium hydroxide may be added to the solution of alkali salts of humic acid to form precipitated humates useable as a low-ash, low-sulfur solid fuel.

  13. The energy-water quality nexus: insights from the 2008 coal ash spill in Tennessee

    NASA Astrophysics Data System (ADS)

    Vengosh, A.; Ruhl, L.; Dwyer, G. S.; Hsu-Kim, H.; Deonarine, A.

    2010-12-01

    Energy production consumes a large volume of water. The USGS estimated that about 52 percent of the total USA fresh surface-water withdrawal in 2000 was for thermoelectric consumption (fresh water use ~188 for thermoelectric out of 563 billion cubic meters a year total water withdrawal in the USA). While water availability and possible changes induced from climate change and increasing demands for other sectors are important limiting factors, this presentation highlights the critical long-term impact on water quality. The Clean Smokestacks Act was enacted to reduce emissions from coal-fired power plants through installation of scrubbers and selective catalytic reduction, aiming to cut emissions of sulfur dioxide, nitrogen oxides and mercury. In addition to the capture of these air pollutants, volatile elements are attached to the residual coal combustion products (CCPs). Consequently, toxic metals concentrations in CCPs are extremely high and become mobile upon interaction of CCPs with aquatic solutions. In particular, several studies have demonstrated the high mobilization of boron, arsenic, selenium, barium and other toxic oxi-anions and metals from CCPs. The 2008 coal ash spill in Kingston, Tennessee, where approximately 4.1 million cubic meters of coal ash was spilled onto the surrounding land surface and into the adjacent Emory and Clinch Rivers, has demonstrated the possible impact of CCPs on the environment. An eighteen-month survey has revealed elevated levels of contaminants in surface water with restricted water exchange and in pore water extracted from the bottom sediments, downstream from the spill. Our research has shown that arsenic concentration in the pore water reached to 2,000 ppb due to the reducing conditions and the high mobility of the non-charged arsenic species. Generation of CCPs however is not restricted to a single accidental release, as over five hundred power plants nationwide generate approximately 130 million tons of CCPs each year

  14. Morphology and systematics of cordaites of Pennsylvanian coal swamps of Euramerica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costanza, S.H.

    1984-01-01

    Cordaites are extinct coniferophytic shrubs and trees of the Late Paleozoic. They were most prominent in tropical coal swamps existing from the Westphalian A-B boundary of Western Europe to the middle Desmoinesian (Westphalian D) of midcontinental United States. Structurally preserved coal-ball cordaites from Pennsylvanian Euramerican coals were analyzed for whole plant understanding, morphological variation, and indications of ecological tolerances. Organ assemblages for individual species were established from coals where coal balls contain single cordaitean seed species. Cordaitean organ assemblages were stratigraphically compiled, compared, and cross-correlated. Cordaitean assemblage comparisons of most known coals with coal balls confirm organ assemblages established formore » Pennsylvanioxylon, and indicate that Mesoxylon bore Mitrospermum ovules. Mesoxylon and Pennsylvanioxylon are the only coal-swamp Pennsylvanian cordaitean genera recognized herein. They are consistently different in stem xylem development, leaf and branch trace formation, in amount of cortical sclerenchyma and associated organs. Morphology of coal-swamp cordaites, especially cortical aerenchyma in Pennsylvanioxylon, indicates semi-aquatic ecological adaptation. Coal-swamp cordaitean lineages may demonstrate both gradualistic and punctuational evolutionary changes.« less

  15. Survey of electric utility demand for coal. [1972-1992; by utility and state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asbury, J.G.; Caruso, J.V.; Kouvalis, A.

    1979-08-01

    This report presents the results of a survey of electric utility demand for coal in the United States. The sources of survey information are: (1) Federal Energy Regulatory Commission Form 423 data on utility coal purchases during the period July 1972 through December 1978 and (2) direct telephone survey data on utility coal-purchase intentions for power plants to be constructed by 1992. Price and quantity data for coal used in existing plants are presented to illustrate price and market-share trends in individual coal-consuming states during recent years. Coal source, quality, quantity, and transportation data are reported for existing and plannedmore » generating plants.« less

  16. Computational Studies for Underground Coal Gasification (UCG) Process

    NASA Astrophysics Data System (ADS)

    Chatterjee, Dipankar

    2017-07-01

    Underground coal gasification (UCG) is a well proven technology in order to access the coal lying either too deep underground, or is otherwise too costly to be extracted using the conventional mining methods. UCG product gas is commonly used as a chemical feedstock or as fuel for power generation. During the UCG process, a cavity is formed in the coal seam during its conversion to gaseous products. The cavity grows in a three-dimensional fashion as the gasification proceeds. The UCG process is indeed a result of several complex interactions of various geo-thermo-mechanical processes such as the fluid flow, heat and mass transfer, chemical reactions, water influx, thermo-mechanical failure, and other geological aspects. The rate of the growth of this cavity and its shape will have a significant impact on the gas flow patterns, chemical kinetics, temperature distributions, and finally the quality of the product gas. It has been observed that there is insufficient information available in the literature to provide clear insight into these issues. It leaves us with a great opportunity to investigate and explore the UCG process, both from the experimental as well as theoretical perspectives. In the development and exploration of new research, experiment is undoubtedly very important. However, due to the excessive cost involvement with experimentation it is not always recommended for the complicated process like UCG. Recently, with the advent of the high performance computational facilities it is quite possible to make alternative experimentation numerically of many physically involved problems using certain computational tools like CFD (computational fluid dynamics). In order to gain a comprehensive understanding of the underlying physical phenomena, modeling strategies have frequently been utilized for the UCG process. Keeping in view the above, the various modeling strategies commonly deployed for carrying out mathematical modeling of UCG process are described here in

  17. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caroline Clifford; Andre Boehman; Chunshan Song

    2008-03-31

    commercial fuels ({approx}60 ON for coal-based gasoline and {approx}20 CN for coal-based diesel fuel). Therefore, the allowable range of blending levels was studied where the blend would achieve acceptable performance. However, in both cases of the coal-based fuels, their ignition characteristics may make them ideal fuels for advanced combustion strategies where lower ON and CN are desirable. Task 3 was designed to develop new approaches for producing ultra clean fuels and value-added chemicals from refinery streams involving coal as a part of the feedstock. It consisted of the following three parts: (1) desulfurization and denitrogenation which involves both new adsorption approach for selective removal of nitrogen and sulfur and new catalysts for more effective hydrotreating and the combination of adsorption denitrogenation with hydrodesulfurization; (2) saturation of two-ring aromatics that included new design of sulfur resistant noble-metal catalysts for hydrogenation of naphthalene and tetralin in middle distillate fuels, and (3) value-added chemicals from naphthalene and biphenyl, which aimed at developing value-added organic chemicals from refinery streams such as 2,6-dimethylnaphthalene and 4,4{prime}-dimethylbiphenyl as precursors to advanced polymer materials. Major advances were achieved in this project in designing the catalysts and sorbent materials, and in developing fundamental understanding. The objective of Task 4 was to evaluate the effect of introducing coal into an existing petroleum refinery on the fuel oil product, specifically trace element emissions. Activities performed to accomplish this objective included analyzing two petroleum-based commercial heavy fuel oils (i.e., No. 6 fuel oils) as baseline fuels and three co-processed fuel oils, characterizing the atomization performance of a No. 6 fuel oil, measuring the combustion performance and emissions of the five fuels, specifically major, minor, and trace elements when fired in a watertube boiler

  18. Mercury in Eastern Kentucky coals: Geologic aspects and possible reduction strategies

    USGS Publications Warehouse

    Hower, J.C.; Eble, C.F.; Quick, J.C.

    2005-01-01

    Mercury emissions from US coal-fired power plants will be regulated by the US Environmental Protection Agency (USEPA) before the end of the decade. Because of this, the control of Hg in coal is important. Control is fundamentally based on the knowledge of the amounts of Hg in mined, beneficiated, and as-fired coal. Eastern Kentucky coals, on a reserve district level, have Hg contents similar to the USA average for coal at mines. Individual coals show greater variation at the bench scale, with Hg enrichment common in the top bench, often associated with enhanced levels of pyritic sulfur. Some of the variation between parts of eastern Kentucky is also based on the position relative to major faults. The Pine Mountain thrust fault appears to be responsible for elemental enrichment, including Hg, in coals on the footwall side of the thrust. Eastern Kentucky coals shipped to power plants in 1999, the year the USEPA requested coal quality information on coal deliveries, indicate that coals shipped from the region have 0.09 ppm Hg, compared to 0.10 ppm for all delivered coals in the USA. On an equal energy basis, and given equal concentrations of Hg, the high volatile bituminous coals from eastern Kentucky would emit less Hg than lower rank coals from other USA regions. ?? 2005 Elsevier B.V. All rights reserved.

  19. Mapping of coal quality using stochastic simulation and isometric logratio transformation with an application to a Texas lignite

    USGS Publications Warehouse

    Olea, Ricardo A.; Luppens, James A.

    2015-01-01

    Coal is a chemically complex commodity that often contains most of the natural elements in the periodic table. Coal constituents are conventionally grouped into four components (proximate analysis): fixed carbon, ash, inherent moisture, and volatile matter. These four parts, customarily measured as weight losses and expressed as percentages, share all properties and statistical challenges of compositional data. Consequently, adequate modeling should be done in terms of a logratio transformation, a requirement that is commonly overlooked by modelers. The transformation of choice is the isometric logratio transformation because of its geometrical and statistical advantages. The modeling is done through a series of realizations prepared by applying sequential simulation for the purpose of displaying the parts in maps incorporating uncertainty. The approach makes realistic assumptions and the results honor the data and basic considerations, such as percentages between 0 and 100, all four parts adding to 100% at any location in the study area, and a style of spatial fluctuation in the realizations equal to that of the data. The realizations are used to prepare different results, including probability distributions across a deposit, E-type maps displaying average properties, and probability maps summarizing joint fluctuations of several parts. Application of these maps to a lignite bed clearly delineates the deposit boundary, reveals a channel cutting across, and shows that the most favorable coal quality is to the north and deteriorates toward the southeast.

  20. Environmental monitoring handbook for coal conversion facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salk, M.S.; DeCicco, S.G.

    1978-05-01

    The primary objectives of the Department of Energy's (DOE) coal conversion program are to demonstrate the environmental acceptability, technical feasibility, and economic viability of various technologies for gaseous, liquid, and solid fuels from coal. The Environmental Monitoring Handbook for Coal Conversion Facilities will help accomplish the objective of environmental acceptability by guiding the planning and execution of socioeconomic and environmental monitoring programs for demonstration facilities. These programs will provide information adequate to (1) predict, insofar as is possible, the potential impacts of construction and operation of a coal conversion plant, (2) verify the occurrence of these or any other impactsmore » during construction and operation, (3) determine the adequacy of mitigating measures to protect the environment, (4) develop effluent source terms for process discharges, and (5) determine the effectiveness of pollution control equipment. Although useful in a variety of areas, the handbook is intended primarily for contractors who, as industrial partners with DOE, are building coal conversion plants. For the contractor it is a practical guide on (1) the methodology for developing site- and process-specific environmental monitoring programs, (2) state-of-the-art sampling and analytical techniques, and (3) impact analyses.To correspond to the phases of project activity, the subject matter is divided into four stages of monitoring: (1) a reconnaissance or synoptic survey, (2) preconstruction or baseline, (3) construction, and (4) operation, including process monitoring (prepared by Radian Corp., McLean, Va.). For each stage of monitoring, guidelines are given on socioeconomics, aquatic and terrestrial ecology, air quality and meteorology, surface and groundwater quality, geohydrology and soil survey, and surface water hydrology.« less

  1. Distribution and Fate of Mercury in Pulverized Bituminous Coal-Fired Power Plants in Coal Energy-Dominant Huainan City, China.

    PubMed

    Chen, Bingyu; Liu, Guijian; Sun, Ruoyu

    2016-05-01

    A better understanding on the partitioning behavior of mercury (Hg) during coal combustion in large-scale coal-fired power plants is fundamental for drafting Hg-emission control regulations. Two large coal-fired utility boilers, equipped with electrostatic precipitators (ESPs) and a wet flue gas desulfurization (WFGD) system, respectively, in coal energy-dominant Huainan City, China, were selected to investigate the distribution and fate of Hg during coal combustion. In three sampling campaigns, we found that Hg in bottom ash was severely depleted with a relative enrichment (RE) index <7 %, whereas the RE index for fly ash (9-54%) was comparatively higher and variable. Extremely high Hg was concentrated in gypsum (≤4500 ng/g), which is produced in the WFGD system. Mass balance calculation shows that the shares of Hg in bottom ash, fly ash, WFGD products (gypsum, effluents, sludge), and stack emissions were <2, 17-32, 7-22, and 54-82%, respectively. The Hg-removal efficiencies of ESPs, WFGD, and ESPs + WFGD were 17-32, 10-29, and 36-46%, respectively. The Hg-emission factor of studied boilers was in a high range of 0.24-0.29 g Hg/t coal. We estimated that Hg emissions in all Huainan coal-fired power plants varied from 1.8 Mg in 2003 to 7.3 Mg in 2010.

  2. Water quality trends in the Blackwater River watershed, West Virginia

    USGS Publications Warehouse

    Smith, Jessica; Welsh, Stuart A.; Anderson, James T.; Fortney, Ronald H.

    2015-01-01

    An understanding of historic and current water quality is needed to manage and improve aquatic communities within the Blackwater River watershed, WV. The Blackwater River, which historically offered an excellent Salvelinus fontinalis (Brook Trout) fishery, has been affected by logging, coal mining, use of off-road vehicles, and land development. Using information-theoretic methods, we examined trends in water quality at 12 sites in the watershed for the 14 years of 1980–1993. Except for Beaver Creek, downward trends in acidity and upward trends in alkalinity, conductivity, and hardness were consistent with decreases in hydrogen ion concentration. Water-quality trends for Beaver Creek were inconsistent with the other sites and reflect ongoing coal-mining influences. Dissolved oxygen trended downward, possibly due to natural conditions, but remained above thresholds that would be detrimental to aquatic life. Water quality changed only slightly within the watershed from 1980–1993, possibly reflecting few changes in development and land uses during this time. These data serve as a baseline for future water-quality studies and may help to inform management planning.

  3. What component of coal causes coal workers' pneumoconiosis?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCunney, R.J.; Morfeld, P.; Payne, S.

    2009-04-15

    The objective was to evaluate the component of coal responsible for coal workers' pneumoconiosis (CWP). A literature search of PubMED was conducted to address studies that have evaluated the risk of CWP based on the components of coal. The risk of CWP (CWP) depends on the concentration and duration of exposure to coal dust. Epidemiology studies have shown inverse links between CWP and quartz content. Coal from the USA and Germany has demonstrated links between iron content and CWP; these same studies indicate virtually no role for quartz. In vitro studies indicate strong mechanistic links between iron content in coalmore » and reactive oxygen species, which play a major role in the inflammatory response associated with CWP. The active agent within coal appears to be iron, not quartz. By identifying components of coal-before mining activities, the risk of developing CWP may be reduced.« less

  4. Improving Competitiveness of U.S. Coal Dialogue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokkinos, Angelos

    The Improving Competitiveness of U.S. Coal Dialogue held in September 2017 explored a broad range of technical developments that have the potential to improve U.S. coal competitiveness in domestic and overseas markets. The workshop is one in a series of events hosted by DOE to gather expert input on challenges and opportunities for reviving the coal economy. This event brought together coal industry experts to review developments in a broad range of technical areas such as conventional physical (e.g. dense-medium) technologies, and dry coal treatments; thermal, chemical, and bio-oxidation coal upgrading technologies; coal blending; and applications for ultrafine coal andmore » waste streams. The workshop was organized to focus on three main discussion topics: Challenges and Opportunities for Improving U.S. Coal Competitiveness in Overseas Markets, Mineral Processing, and Technologies to Expand the Market Reach of Coal Products. In each session, invited experts delivered presentations to help frame the subsequent group discussion. Throughout the discussions, participants described many possible areas of research and development (R&D) in which DOE involvement could help to produce significant outcomes. In addition, participants discussed a number of open questions—those that the industry has raised or investigated but not yet resolved. In discussing the three topics, the participants suggested potential areas of research and issues for further investigation. As summarized in Table ES-1, these crosscutting suggestions centered on combustion technologies, coal quality, coal processing, environmental issues, and other issues. The discussions at this workshop will serve as an input that DOE considers in developing initiatives that can be pursued by government and industry. This workshop generated strategies that described core research concepts, identified implementation steps, estimated benefits, clarified roles of government and industry, and outlined next steps

  5. Hydrology of area 25, Eastern Region, Interior Coal Province, Illinois

    USGS Publications Warehouse

    Zuehls, E.E.; Ryan, G.L.; Peart, D.B.; Fitzgerald, K.K.

    1981-01-01

    The eastern region of the Interior Coal Province has been divided into 11 hydrologic study areas. Area 25, located in west-central Illinois, includes the Spoon River and small tributaries to the Illinois River. Pennsylvanian age rocks underlie most of the study area. Illinois, with the largest reserves of bituminous coal, is second only to Montana in total coal reserves. Loess soils cover most of the study area. Agriculture is the dominant land use. Surface water provides 97% of all the water used. Precipitation averages 34 to 35 inches. Water-quality data has been collected at over 31 sites. Analysis for specific conductance, pH, alkalinity, iron, manganese, sulfate and many trace elements and other water-quality constituents have been completed. These data are available from computer storage through the National Water Data Storage and Retrieval System (WATSTORE). (USGS)

  6. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report, December 31, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doyle, F.M.

    1993-12-31

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The results will provide fundamental insight into oxidation, in term of the bulk and surface chemistry, the microstructure, and the semiconductor properties of the pyrite. During the thirteenth quarter, wet oxidation tests were done on coal samples from the Pennsylvania State Coal Bank. As-received and oxidized coal samples were studied bymore » Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy to detect functional groups that might be responsible for changing the hydrophobicity of coal samples. Coal samples from the Pennsylvania State Coal Bank were oxidized for 5 hours at room temperature using 10% H{sub 2}O{sub 2} at pH 1.0, 1.0 M HNO{sub 3} or 0.05 M Fe{sub 2}(SO{sub 4}){sub 3} at pH 1.0. Details of the experimental procedure used in the wet oxidation tests were provided in our September 30, 1993 report, along with results of ion-exchange analysis and film flotation tests on as-received and oxidized coal samples. Table II shows the weight percentage of carboxylic and phenolic group oxygen generated by oxidation with different treatments, as determined by ion-exchange. DRIFT spectroscopic analysis was done on as-received and oxidized samples to identify different functionalities directly, to supplement the information on carboxylic and phenolic groups obtained indirectly by ion-exchange methods. The procedure for DRIFT analysis was reported in our June 30, 1993 report.« less

  7. Quantitative Modelling of Trace Elements in Hard Coal.

    PubMed

    Smoliński, Adam; Howaniec, Natalia

    2016-01-01

    The significance of coal in the world economy remains unquestionable for decades. It is also expected to be the dominant fossil fuel in the foreseeable future. The increased awareness of sustainable development reflected in the relevant regulations implies, however, the need for the development and implementation of clean coal technologies on the one hand, and adequate analytical tools on the other. The paper presents the application of the quantitative Partial Least Squares method in modeling the concentrations of trace elements (As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Rb, Sr, V and Zn) in hard coal based on the physical and chemical parameters of coal, and coal ash components. The study was focused on trace elements potentially hazardous to the environment when emitted from coal processing systems. The studied data included 24 parameters determined for 132 coal samples provided by 17 coal mines of the Upper Silesian Coal Basin, Poland. Since the data set contained outliers, the construction of robust Partial Least Squares models for contaminated data set and the correct identification of outlying objects based on the robust scales were required. These enabled the development of the correct Partial Least Squares models, characterized by good fit and prediction abilities. The root mean square error was below 10% for all except for one the final Partial Least Squares models constructed, and the prediction error (root mean square error of cross-validation) exceeded 10% only for three models constructed. The study is of both cognitive and applicative importance. It presents the unique application of the chemometric methods of data exploration in modeling the content of trace elements in coal. In this way it contributes to the development of useful tools of coal quality assessment.

  8. Quantitative Modelling of Trace Elements in Hard Coal

    PubMed Central

    Smoliński, Adam; Howaniec, Natalia

    2016-01-01

    The significance of coal in the world economy remains unquestionable for decades. It is also expected to be the dominant fossil fuel in the foreseeable future. The increased awareness of sustainable development reflected in the relevant regulations implies, however, the need for the development and implementation of clean coal technologies on the one hand, and adequate analytical tools on the other. The paper presents the application of the quantitative Partial Least Squares method in modeling the concentrations of trace elements (As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Rb, Sr, V and Zn) in hard coal based on the physical and chemical parameters of coal, and coal ash components. The study was focused on trace elements potentially hazardous to the environment when emitted from coal processing systems. The studied data included 24 parameters determined for 132 coal samples provided by 17 coal mines of the Upper Silesian Coal Basin, Poland. Since the data set contained outliers, the construction of robust Partial Least Squares models for contaminated data set and the correct identification of outlying objects based on the robust scales were required. These enabled the development of the correct Partial Least Squares models, characterized by good fit and prediction abilities. The root mean square error was below 10% for all except for one the final Partial Least Squares models constructed, and the prediction error (root mean square error of cross–validation) exceeded 10% only for three models constructed. The study is of both cognitive and applicative importance. It presents the unique application of the chemometric methods of data exploration in modeling the content of trace elements in coal. In this way it contributes to the development of useful tools of coal quality assessment. PMID:27438794

  9. Current experiences in applied underground coal gasification

    NASA Astrophysics Data System (ADS)

    Peters, Justyn

    2010-05-01

    The world is experiencing greater stress on its ability to mine and exploit energy resources such as coal, through traditional mining methods. The resources available by extraction from traditional mining methods will have a finite time and quantity. In addition, the high quality coals available are becoming more difficult to find substantially increasing exploration costs. Subsequently, new methods of extraction are being considered to improve the ability to unlock the energy from deep coals and improve the efficiency of the exploitation of the resources while also considering the mitigation of global warming. Underground Coal Gasification (UCG) is a leading commercial technology that is able to maximize the exploitation of the deep coal through extraction of the coal as a syngas (CO and H2) in situ. The syngas is then brought to the surface and efficiently utilized in any of combined cycle power generation, liquid hydrocarbon transport fuel production, fertilizer production or polymer production. Commercial UCG has been successfully operating for more than 50 years at the Yerostigaz facility in Angren, Uzbekistan. Yerostigaz is the only remaining UCG site in the former Soviet Union. Linc Energy currently owns 91.6% of this facility. UCG produces a high quality synthetic gas (syngas), containing carbon monoxide, hydrogen and methane. UCG produced syngas can be economically used for a variety of purposes, including: the production of liquid fuels when combined with Gas to Liquids (GTL) technology power generation in gas turbine combined cycle power stations a feedstock for different petrochemical processes, for example producing chemicals or other gases such as hydrogen, methane, ammonia, methanol and dimethyl ether Linc Energy has proven the combined use of UCG to Gas to Liquids (GTL) technologies. UCG to GTL technologies have the ability to provide energy alternatives to address increasing global demand for energy products. With these technologies, Linc Energy is

  10. Coal resource assessments using coal availability and recoverability methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohrbacher, T.J.

    1997-12-01

    The U.S. Geological Survey (USGS), in conjunction with state geological surveys and other federal agencies, has initiated a study and developed methodology to reassess the nation`s major coal resources. This study differs from previous coal resource assessments of the USGS, U.S. Bureau of Mines, and the Department of Energy`s Energy Information Administration, because this program: (1) Identifies and characterizes the coal beds and coal zones that will provide the bulk of the nation`s coal-derived energy during the first quarter of the twenty-first century; (2) organizes geologic, chemical, environmental, and geographic information in digital format and makes these data available tomore » the public through the Internet or other digital media, such as CD ROMs; (3) includes coal resource availability and coal recoverability analyses for selected areas; (4) provides economic assessments and coal recoverability analyses for selected areas; (5) provides methodology to perform socio-economic impact analysis related to coal mining in specific geographical areas as small as a county.« less

  11. Study on surface morphology and physicochemical properties of raw and activated South African coal and coal fly ash

    NASA Astrophysics Data System (ADS)

    Mishra, S. B.; Langwenya, S. P.; Mamba, B. B.; Balakrishnan, M.

    South African coal and coal fly ash were selected as the raw materials to be used for study of their morphology and physicochemical properties and their respective activated carbons for adsorption applications. Coal and fly ash were individually steam activated at a temperature range of 550-1000 °C for 1 h in a muffle furnace using cylindrical stainless steel containers. Scanning electron micrographs revealed a change in surface morphology with more mineral matter available on the surface of the coal particles due to increased devolatilization. However, in the case of fly ash, the macerals coalesced to form agglomerates and the presence of unburnt carbon constituted pores of diameter between 50 and 100 nm. The BET surface area of coal improved significantly from 5.31 to 52.12 m 2/g whereas in case of fly ash the surface area of the raw sample which was originally 0.59 m 2/g and upon activation increased only up to 2.04 m 2/g. The chemical composition of the fly ash confirmed that silica was the major component which was approximately 60% by weight fraction. The impact of this study was to highlight the importance of using raw materials such as coal and a waste product, in the form of coal ash, in order to produce affordable activated carbon that can be used in drinking water treatment. This would therefore ensure that the quality of water supplied to communities for drinking is not contaminated especially by toxic organic compounds.

  12. Possible environmental effects of increased coal use in California

    NASA Technical Reports Server (NTRS)

    Carey, D. L.

    1978-01-01

    If coal is to be utilized in California it must be made compatible with the state's drive toward restoring environmental quality. The impacts resulting from coal's mining and transportation, or from water consumption, water quality degradation and electric transmission line routing can probably be adequately mitigated through strong and early planning efforts, the use of improved control and process technologies, and sincere utility commitment. The socioeconomic impacts may prove somewhat more difficult to satisfactorily mitigate. Of greatest concern is adequate control of generated air pollutants and disposal of solid and liquid wastes since acceptable technologies or handling techniques have yet to be conclusively demonstrated.

  13. Accidents in Coal Mining from Perspective of Risk Theory

    NASA Astrophysics Data System (ADS)

    Khamidullina, E. A.; Timofeeva, S. S.; Smirnov, G. I.

    2017-11-01

    Introduction. The indicators of the safety system quality in the technosphere include risk indicators. The purpose of this work is to assess the social risk of coal mining since coal mining is associated with specific working conditions, and any emergency situation immediately jeopardizes thelives of many people at the same time. Methods. The work is based on the analysis of statistical information. Results and discussion. The F/N curve of coal mining for the 70-year period (1943-2012) was constructed, and the normative values of the social risk of Russia and other industrialized countries were discussed. Judging by the F/N diagram, only the frequency of accidents with a large number of deaths can correspond to the normative level indicating an exceptionally high level of coal mining risk.

  14. 13. Coal ejectors mounted on aft bulkhead of coal bunker. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Coal ejectors mounted on aft bulkhead of coal bunker. Ejectors were used to flush overboard live coals and clinkers from firebed (pipe for carrying coals overboard has been removed from ejector in foreground). Coal doors from bunker appear beside ejector in foreground). Coal doors from bunker appear beside ejectors at deck; note firing shovels in background against hull. - Steamboat TICONDEROGA, Shelburne Museum Route 7, Shelburne, Chittenden County, VT

  15. Interfacial properties and coal cleaning in the LICADO process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, S.M.B.

    1986-01-01

    The LICADO LIquid CArbon DiOxide process is currently being investigated as a new technique for cleaning coal. It relies on the relative wettability of clean coal and mineral particles between liquid CO/sub 2/ and water so that when liquid CO/sub 2/ is dispersed into a coal-water slurry, it tends to form agglomerates with the clean coal particles and float them to the liquid CO/sub 2/ phase. The mineral particles, on the other hand, remain in the aqueous phase as refuse. Since the surface/interfacial properties of fine coal particles play such an important role in this coal cleaning operation, an understandingmore » of their behavior becomes indispensable. In order to understand the separation mechanisms involved in the LICADO process, it is necessary to study the interfacial interactions occurring in the CO/sub 2/-water-coal system. It is believed that a relationship between the process performance and the wetting characteristics of the coal/refuse particles can be established. Upper Freeport -200 mesh coal from Indiana County, PA with 23.5% ash content was selected for the experimental work. A specially designed high pressure experimental unit, equipped with necessary optical and photographic accessories, was constructed for this study. Contact angles were also measured on the coal surface under two different sample pretreatment conditions: water-first-wet and liquid CO/sub 2/-first-wet. The results infer that an optimum mixing is necessary to provide sufficient shear force to expose the clean coal particles to the CO/sub 2/ droplets. The coal maceral and mineral association on the coal particle surface was determined based on the reflective grey level distinction between the mineral and Litho-type of various coal components.« less

  16. Standards for the classification of public coal lands

    USGS Publications Warehouse

    Bass, N. Wood; Smith, Henry L.; Horn, George Henry

    1970-01-01

    In order to provide uniformity in the classification of coal lands in the public domain, certain standards have been prepared from time to time by the U.S. Geological Survey. The controlling factors are the depth, quality, and thickness of the coal beds. The first regulations were issued April 8, 1907; others followed in 1908, 1909, and 1913. Except for minor changes in 1959, the regulations of 1913, which were described in U.S. Geological Survey Bulletin 537, have been the guiding principles for coal-land classification. Changes made herein from the standards previously used are: (1) a maximum depth of 6,000 feet instead of 5,000 feet, (2) a maximum depth of 1,000 feet instead of 500 feet for coals of minimum thickness, (3) use of Btu (British thermal unit) values for as-received foal instead of air-dried, and (4) a minimum Btu value of 4,000 for as-received coal instead of 8,000 for air-dried. An additional modification is that the maximum thickness of 8 feet which was designated in the Classification Chart for Coal Lands in 1959 is changed to 6 feet. The effect of these changes will be the classification of a greater amount of the withdrawn land as coal land than was done under earlier regulations.

  17. Liquefaction of calcium-containing subbituminous coals and coals of lower rank

    DOEpatents

    Brunson, Roy J.

    1979-01-01

    An improved process for the treatment of a calcium-containing subbituminous coal and coals of lower rank to form insoluble, thermally stable calcium salts which remain within the solids portions of the residue on liquefaction of the coal, thereby suppressing the formation of scale, made up largely of calcium carbonate which normally forms within the coal liquefaction reactor (i.e., coal liquefaction zone), e.g., on reactor surfaces, lines, auxiliary equipment and the like. An oxide of sulfur, in liquid phase, is contacted with a coal feed sufficient to impregnate the pores of the coal. The impregnated coal, in particulate form, can thereafter be liquefied in a coal liquefaction reactor (reaction zone) at coal liquefaction conditions without significant formation of scale.

  18. National coal resource investigations of the United States Geological Survey

    USGS Publications Warehouse

    Wood, Gordon H.

    1977-01-01

    The objective of this report is to provide a record of some of the goals and accomplishments of the coal resource investigations of the U. S. Geological Survey for 1977. Successful completion of these goals will aid the Nation in the years ahead because proper usage of coal resource data may lessen economic displacements resulting from the energy shortage.This report is concerned only with one mineral fuel -- coal -- and only with coal resource investigations in the Geologic Division of the U. S. Geological Survey. Other divisions involved with coal or coal-related work are the Conservation, Water Resources, and Topographic Divisions. It is one of a series of reports on the energy resource studies conducted by the Geological Survey that provide a public record of the objectives, activities, and accomplishments of these programs. Similar reports have been prepared on oil and gas, oil shale, uranium, thorium, and energy-related industrial minerals.This report includes descriptions of the program, each sub-element of the program, individual projects, and a selected list of program publications from 1970-76. It also describes how the program is responsive to Presidential pronouncements and Congressional mandates. The program is cooperative with several Federal bureaus, many state agencies, universities, and industry. This coordination assures that the program supplements the work of these interested groups and is not duplicative.A scientific program such as the coal resource investigations is difficult for the non-involved person to understand solely from the existing reports on various studies made in the program. This report provides an explanation that the scientist, decision maker, personnel of other government agencies, and the layman can use to relate various activities and to gain a better understanding of the relation of coal to the Nation's requirements for energy and of the importance of a carefully planned program on this energy resource.

  19. Quality-of-water data and statistical summary for selected coal-mined strip pits in Crawford and Cherokee counties, southeastern Kansas

    USGS Publications Warehouse

    Pope, Larry M.; Diaz, A.M.

    1982-01-01

    Quality-of-water data, collected October 21-23, 1980, and a statistical summary are presented for 42 coal-mined strip pits in Crawford and Cherokee Counties, Southeastern Kansas. The statistical summary includes minimum and maximum observed values , mean, and standard deviation. Simple linear regression equations relating specific conductance, dissolved solids, and acidity to concentrations of dissolved solids, sulfate, calcium, and magnesium, potassium, aluminum, and iron are also presented. (USGS)

  20. Hydrology of area 18, Eastern Coal Province, Tennessee

    USGS Publications Warehouse

    May, V.J.

    1981-01-01

    The Eastern Coal Province is divided into 24 hydrologic reporting areas. This report describes the hydrology of area 18 which is located in the Cumberland River basin in central Tennessee near the southern end of the Province. Hydrologic information and sources are presented as text, tables, maps, and other illustrations designed to be useful to mine owners, operators, and consulting engineers in implementing permit applications that comply with the environmental requirements of the ' Surface Mining Control and Reclamation Act of 1977. ' Area 18 encompasses parts of three physiographic regions; from east to west the Cumberland Plateau, Highland Rim, and Central Basin. The Plateau is underlain by sandstones and shales, with thin interbedded coal beds, of Pennsylvanian age. The Highland Rim and Central Basin are underlain by limestone and dolomite of Mississippian age. Field and laboratory analyses of chemical and physical water-quality parameters of streamflow samples show no widespread water quality problems. Some streams, however, in the heavily mined areas have concentrations of sulfate, iron, manganese, and sediment above natural levels, and pH values below natural levels. Mine seepage and direct mine drainage were not sampled. Ground water occurs in and moves through fractures in the sandstones and shales and solution openings in the limestones and dolomites. Depth to water is variable, ranging from about 5 to 70 feet below land-surface in the limestones and dolomites, and 15 to 40 feet in the coal-bearing rocks. The quality of ground water is generally good. Locally, in coal-bearing rocks, acidic water and high concentrations of manganese, chloride, and iron have been detected. (USGS)

  1. Environmental impacts of coal mine and thermal power plant to the surroundings of Barapukuria, Dinajpur, Bangladesh.

    PubMed

    Hossain, Md Nazir; Paul, Shitangsu Kumar; Hasan, Md Muyeed

    2015-04-01

    The study was carried out to analyse the environmental impacts of coal mine and coal-based thermal power plant to the surrounding environment of Barapukuria, Dinajpur. The analyses of coal, water, soil and fly ash were carried out using standard sample testing methods. This study found that coal mining industry and coal-based thermal power plant have brought some environmental and socio-economic challenges to the adjacent areas such as soil, water and air pollution, subsidence of agricultural land and livelihood insecurity of inhabitants. The pH values, heavy metal, organic carbon and exchangeable cations of coal water treated in the farmland soil suggest that coal mining deteriorated the surrounding water and soil quality. The SO4(2-) concentration in water samples was beyond the range of World Health Organisation standard. Some physico-chemical properties such as pH, conductivity, moisture content, bulk density, unburned carbon content, specific gravity, water holding capacity, liquid and plastic limit were investigated on coal fly ash of Barapukuria thermal power plant. Air quality data provided by the Barapukuria Coal Mining Company Limited were contradictory with the result of interview with the miners and local inhabitants. However, coal potentially contributes to the development of economy of Bangladesh but coal mining deteriorates the environment by polluting air, water and soil. In general, this study includes comprehensive baseline data for decision makers to evaluate the feasibility of coal power industry at Barapukuria and the coalmine itself.

  2. Coal desulfurization by chlorinolysis production and combustion test evaluation of product coals

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Daly, D.

    1982-01-01

    Laboratory-scale screening tests were carried out on coal from Harrison County, Ohio to establish chlorination and hydrodesulfurization conditions for the batch reactor production of chlorinolysis and chlorinolysis-hydrodesulfurized coals. In addition, three bituminous coals, were treated on the lab scale by the chlorinolysis process to provide 39 to 62% desulfurization. Two bituminous coals and one subbituminous coal were then produced in 11 to 15 pound lots as chlorinolysis and hydrodesulfurized coals. The chlorinolysis coals had a desulfurization of 29-69%, reductions in voltatiles and hydrogen. Hydrodesulfurization provided a much greater desulfurization (56-86%), reductions in volatiles and hydrogen. The three coals were combustion tested in the Penn State ""plane flame furnace'' to determine ignition and burning characteristics. All three coals burned well to completion as: raw coals, chlorinolysis processed coals, and hydrodesulfurized coals. The hydrodesulfurized coals experienced greater ignition delays and reduced burning rates than the other coals because of the reduced volatile content. It is thought that the increased open pore volume in the desulfurized-devolatilized coals compensates in part for the decreased volatiles effect on ignition and burning.

  3. Chemistry of thermally altered high volatile bituminous coals from southern Indiana

    USGS Publications Warehouse

    Walker, R.; Mastalerz, Maria; Brassell, S.; Elswick, E.; Hower, J.C.; Schimmelmann, A.

    2007-01-01

    The optical properties and chemical characteristics of two thermally altered Pennsylvanian high volatile bituminous coals, the non-coking Danville Coal Member (Ro = 0.55%) and the coking Lower Block Coal Member (Ro = 0.56%) were investigated with the purpose of understanding differences in their coking behavior. Samples of the coals were heated to temperatures of 275????C, 325????C, 375????C and 425????C, with heating times of up to one hour. Vitrinite reflectance (Ro%) rises with temperature in both coals, with the Lower Block coal exhibiting higher reflectance at 375????C and 425????C compared to the Danville coal. Petrographic changes include the concomitant disappearance of liptinites and development of vesicles in vitrinites in both coals, although neither coal developed anisotropic coke texture. At 375????C, the Lower Block coal exhibits a higher aromatic ratio, higher reflectance, higher carbon content, and lower oxygen content, all of which indicate a greater degree of aromatization at this temperature. The Lower Block coal maintains a higher CH2/CH3 ratio than the Danville coal throughout the heating experiment, indicating that the long-chain unbranched aliphatics contained in Lower Block coal liptinites are more resistant to decomposition. As the Lower Block coal contains significant amounts of liptinite (23.6%), the contribution of aliphatics from these liptinites appears to be the primary cause of its large plastic range and high fluidity. ?? 2006 Elsevier B.V. All rights reserved.

  4. Cleavage and crosslinking of polymeric coal structures during pyrolysis. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMillen, D.F.; Malhotra, R.

    1992-02-01

    The ultimate objective of this project was to develop a better understanding of volatiles production to help optimize the yield and character of condensable coproducts during coal pyrolysis or mild gasification. The specific objectives were to (1) Develop pyrolysis procedures that minimize secondary reactions; and (2) Develop coal pretreatments that current knowledge suggests will prorate bond scission or prevent retrograde reactions. Our approach was to study the pyrolysis of coals and tar-loaded coals by using several techniques that span a range of heating rates and pressures. Slow-heating pyrolyses were performed at low pressures in the inlet of a field ionizationmore » mass spectrometer and at atmospheric pressures in a thermogravimetric analyzer. Moderately rapid-heating pyrolyses were performed in a vacuum TGA apparatus and in sealed silica ampules heated in a molten-salt bath. The fastest heating rates were achieved with laser pyrolysis at about 30,000 X/s. The high tar yield seen in this work where the entire volume of the coal particle becomes hot and fluid at very nearly the same time, taken together with the evident non-vapor transport of the tar under these conditions, emphasizes the importance of better understanding the development of fluidity during coal heating. This specifically includes the profound effects--long-recognized but poorly understood that mild oxidation has in suppressing coal fluidity. It also includes the more recently recognized fact that heating in the presence of an inert gas produced substantially greater fluidity than does heating in the presence of combustion gases, even if the conditions are very fuel rich and all the oxygen itself has already been consumed when the coal particles are encountered.« less

  5. Recommended procedures and methodology of coal description

    USGS Publications Warehouse

    Chao, E.C.; Minkin, J.A.; Thompson, C.L.

    1983-01-01

    This document is the result of a workshop on coal description held for the Branch of Coal Resources of the U.S. Geological Survey in March 1982. It has been prepared to aid and encourage the field-oriented coal scientist to participate directly in petrographic coal-description activities. The objectives and past and current practices of coal description vary widely. These are briefly reviewed and illustrated with examples. Sampling approaches and techniques for collecting columnar samples of fresh coal are also discussed. The recommended procedures and methodology emphasize the fact that obtaining a good megascopic description of a coal bed is much better done in the laboratory with a binocular microscope and under good lighting conditions after the samples have been cut and quickly prepared. For better observation and cross-checking using a petrographic microscope for identification purposes, an in-place polishing procedure (requiring less than 2 min) is routinely used. Methods for using both the petrographic microscope and an automated image analysis system are also included for geologists who have access to such instruments. To describe the material characteristics of a coal bed in terms of microlithotypes or lithotypes, a new nomenclature of (V), (E), (1), (M). (S). (X1). (X2) and so on is used. The microscopic description of the modal composition of a megascopically observed lithologic type is expressed in terms of (VEIM); subscripts are used to denote the volume percentage of each constituent present. To describe a coal-bed profile, semiquantitative data (without microscopic study) and quantitative data (with microscopic study) are presented in ready-to-understand form. The average total composition of any thickness interval or of the entire coal bed can be plotted on a triangular diagram having V, E, and I+ M +S as the apices. The modal composition of any mixed lithologies such as (X1), (X2), and so on can also be plotted on such a triangular ternary diagram

  6. Coal Research

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Coal slurries are "clean" pulverized coal mixed with oil or water. Significant fuel savings can be realized when using coal slurries. Advanced Fuels Technology (AFT) utilized a COSMIC program, (Calculation of Complex Chemical Equilibrium Compositions), which provides specific capabilities for determining combustion products. The company has developed a cleaning process that removes much of the mineral sulphur and ash from the coals.

  7. Potential effects of surface coal mining on the hydrology of the upper Otter Creek-Pasture Creek Area, Moorehead coal field, southeastern Montana

    USGS Publications Warehouse

    McClymonds, N.E.; Moreland, J.A.

    1988-01-01

    The combined upper Otter Creek-Pasture Creek area, south of Ashland, Montana, contains large reserves of Federal coal for potential lease sale. A hydrologic study was conducted in the area to describe existing hydrologic systems and generalized groundwater quality, to assess potential effects of surface mining on local water resources, and to evaluate the potential for reclamation of those water resources. Principal aquifers are coal beds and sandstone in the upper Tongue River Member of the Fort Union Formation (Paleocene age), and sand and gravel in alluvium (Pleistocene and Holocene age). Hydraulic conductivity determined from aquifer tests was about 0.004 to 16 ft/d for coal or sandstone aquifers and 1 to 290 ft/d for alluvial aquifers. Dissolved-solids concentrations in water from bedrock ranged from 1,160 to 4,390 mg/L. In alluvium, the concentrations were 1,770 to 12,600 mg/L. Surface water is available from interrupted flow along downstream reaches of Otter and Pasture Creeks, from stock ponds, and from springs. Most stock ponds are dry by midsummer. Mining of coal in the Anderson, Dietz, and Canyon beds would lower the potentiometric surface within coal and sandstone aquifers. Alluvium along Otter Creek, its main tributaries, and Pasture Creek would be removed at the mines. Planned structuring of the spoils and reconstruction of alluvial aquifers could minimize downstream changes in water quality. Although mining would alter the existing hydrologic systems and destroy several shallow wells and stock ponds, alternative water supplies are available. (USGS)

  8. 30 CFR 74.9 - Quality assurance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH COAL MINE... registration under ISO Q9001-2000, American National Standard, Quality Management Systems-Requirements... ISO Q9001-2000, American National Standard, Quality Management Systems-Requirements. The Director of...

  9. Coal liquefaction process utilizing coal/CO.sub.2 slurry feedstream

    DOEpatents

    Comolli, Alfred G.; McLean, Joseph B.

    1989-01-01

    A coal hydrogenation and liquefaction process in which particulate coal feed is pressurized to an intermediate pressure of at least 500 psig and slurried with CO.sub.2 liquid to provide a flowable coal/CO.sub.2 slurry feedstream, which is further pressurized to at least 1000 psig and fed into a catalytic reactor. The coal particle size is 50-375 mesh (U.S. Sieve Series) and provides 50-80 W % coal in the coal/CO.sub.2 slurry feedstream. Catalytic reaction conditions are maintained at 650.degree.-850.degree. F. temperature, 1000-4000 psig hydrogen partial pressure and coal feed rate of 10-100 lb coal/hr ft.sup.3 reactor volume to produce hydrocarbon gas and liquid products. The hydrogen and CO.sub.2 are recovered from the reactor effluent gaseous fraction, hydrogen is recycled to the catalytic reactor, and CO.sub.2 is liquefied and recycled to the coal slurrying step. If desired, two catalytic reaction stages close coupled together in series relation can be used. The process advantageously minimizes the recycle and processing of excess hydrocarbon liquid previously needed for slurrying the coal feed to the reactor(s).

  10. Trends in coal use - global, EU and Poland

    NASA Astrophysics Data System (ADS)

    Suwała, Wojciech; Wyrwa, Artur; Olkuski, Tadeusz

    2017-11-01

    That aim of this paper is to compare trends in global, European use of coal with tendencies in Poland, one of heavy coal dependent countries. Polish power generation is unique among OECD countries, the share of both hard coal and lignite in power generation reaches 81% [1]. Climate policy of European Union is to phase out intensive greenhouse gases sectors, thus to transform Polish power generation into less carbon intensive. Although such policy is generally accepted in Poland, the paste and practically proposed regulation that excludes coal generation from capacity mechanisms, is considered as threat to energy security. Coal is the base for generation for one simple reason, abundant in European scale hard coal reserves and significant capacities in lignite. Natural gas reserves allow to supply about 1/3 of consumption, but prices and supplies dependent hitherto on contracts with GAZPROM did not allow to develop significant generation capacities. Renewable resources are limited, there is not much possibilities for hydro, wind and solar. Poland is also one of the countries of poor air quality, traditional coal based space heating systems plus obsolete car fleet generate vast emissions, especially during the winter. Only recently this became top priority of environmental authorities. This situation is subject to transformation, government, managers are aware that the role of coal needs to be decreased, but there are two main questions, the paste of transformation and the future energy mix. The paper attempts to answer the question whether the expected changes in Polish energy mix are comparable or differ from the global and European tendencies.

  11. Activities of the Institute of Chemical Processing of Coal at Zabrze

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreszer, K.

    1995-12-31

    The Institute of Chemical Processing of Coal at Zabrze was established in 1955. The works on carbochemical technologies have been, therefore, carried out at the Institute for 40 years. The targets of the Institute`s activities are research, scientific and developing works regarding a sensible utilization of fuels via their processing into more refined forms, safe environment, highly efficient use of energy carriers and technological products of special quality. The Institute of Chemical Processing of Coal has been dealing with the following: optimized use of home hard coals; improvement of classic coal coking technologies, processing and utilization of volatile coking products;more » production technologies of low emission rate fuels for communal management; analyses of coal processing technologies; new technologies aimed at increasing the efficiency of coal utilization for energy-generating purposes, especially in industry and studies on the ecological aspects of these processes; production technologies of sorbents and carbon activating agents and technologies of the utilization; rationalization of water and wastes management in the metallurgical and chemical industries in connection with removal of pollution especially dangerous to the environment from wastes; utilization technologies of refined materials (electrode cokes, binders, impregnating agents) for making electrodes, refractories and new generation construction carbon materials; production technologies of high quality bituminous and bituminous and resin coating, anti-corrosive and insulation materials; environmentally friendly utilization technologies for power station, mine and other wastes, and dedusting processes in industrial gas streams.« less

  12. Quarterly Coal Distribution

    EIA Publications

    2017-01-01

    The Quarterly Coal Distribution Report (QCDR) provides detailed U.S. domestic coal distribution data by coal origin state, coal destination state, mode of transportation, and consuming sector. Quarterly data for all years are preliminary and will be superseded by the release of the corresponding Annual Coal Distribution Report.

  13. Coal resources of the Sonda coal field, Sindh Province, Pakistan

    USGS Publications Warehouse

    Thomas, R.E.; Riaz, Khan M.; Ahmed, Khan S.

    1993-01-01

    Approximately 4.7 billion t of original coal resources, ranging from lignite A to subbituminous C in rank, are estimated to be present in the Sonda coal field. These resources occur in 10 coal zones in the Bara Formation of Paleocene age. The Bara Formation does not out crop in the area covered by this report. Thin discontinuous coal beds also occur in the Sonhari Member of the Laki Formation, of Paleocene and Eocene age, but they are unimportant as a resource of the Sonda coal field. The coal resource assessment was based on 56 exploratory drill holes that were completed in the Sonda field between April 1986 and February 1988. The Sonda coal field is split into two, roughly equal, areas by the southwestward flowing Indus River, a major barrier to the logistics of communications between the two halves. As a result the two halves, called the Sonda East and Sonda West areas, were evaluated at different times by slightlydifferent techniques; but, because the geology is consistent between the two areas, the results of both evaluations have been summarized in this report. The resource estimates for the Sonda East area, approximately 1,700 million t, were based on the thickest coal bed in each zone at each drill hole. This method gives a conservative estimate of the total amount of coal in the Sonda East area. The resource estimates for the Sonda West area, approximately 3,000 million t, were based on cumulative coal bed thicknesses within each coal zone, resulting in a more liberal estimate. In both cases, minimum parameters for qualifying coal were a thickness of 30 cm or greater and no more than 50% ash; partings thicker than 1 cm were excluded. The three most important coal zones in the Sonda field are the Inayatabad, the Middle Sonda and the Lower Sonda. Together, these three coal zones contain 50% of the total resources. Isopachs were constructed for the thickest coal beds in these three coal zones and indicate large variations in thickness over relatively small

  14. Potential effects of surface coal mining on the hydrology of the Little Bear Creek area, Moorhead coal field, southeastern Montana

    USGS Publications Warehouse

    McClymonds, N.E.

    1986-01-01

    The Little Bear Creek area of the Moorhead Coal Field, 27 miles south of Ashland, Montana, contains large reserves of Federally owned coal that have been identified for potential lease sale. A hydrologic study was conducted in the area to describe existing hydrologic system and to assess potential effects of surface mining on local water resources. Hydrologic data collected from private wells, observation wells, test holes and springs indicate that the aquifers are coal and sandstone beds in the upper part of the Tongue River Member, Fort Union Formation (Paleocene age), and sand and gravel layers of valley alluvium (Pleistocene and Holocene age). Surface water is available from ephemeral flow along stretches of the main streams, and from stock ponds throughout the area. Mining the Anderson and Dietz coal beds would destroy one stock well and several stock ponds, would possibly interfere with the flow of one spring, and would lower the potentiometric surface within the coal and sandstone aquifers. The alluvial aquifer beneath Little Bear Creek and Davidson Draw would be removed at the mine site, as would sandstone and coal aquifers above the mine floor. Although mining would alter existing hydrologic systems, alternative water supplies are available. Planned structuring of the spoils and reconstruction of the alluvial aquifers could minimize downstream water-quality degradation. (USGS)

  15. Carbon dioxide from coal combustion: Variation with rank of US coal

    USGS Publications Warehouse

    Quick, J.C.; Glick, D.C.

    2000-01-01

    Carbon dioxide from combustion of US coal systematically varies with ASTM rank indices, allowing the amount of CO2 produced per net unit of energy to be predicted for individual coals. No single predictive equation is applicable to all coals. Accordingly, we provide one equation for coals above high volatile bituminous rank and another for lower rank coals. When applied to public data for commercial coals from western US mines these equations show a 15% variation of kg CO2 (net GJ)-1. This range of variation suggests reduction of US CO2 emissions is possible by prudent selection of coal for combustion. Maceral and mineral content are shown to slightly affect CO2 emissions from US coal. We also suggest that CO2 emissions increased between 6 and 8% in instances where Midwestern US power plants stopped burning local, high-sulfur bituminous coal and started burning low-sulfur, subbituminous C rank coal from the western US.

  16. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song

    2006-05-17

    This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasolinemore » fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible

  17. Rosebud SynCoal Partnership, SynCoal{reg_sign} demonstration technology update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheldon, R.W.

    1997-12-31

    An Advanced Coal Conversion Process (ACCP) technology being demonstrated in eastern Montana (USA) at the heart of one of the world`s largest coal deposits is providing evidence that the molecular structure of low-rank coals can be altered successfully to produce a unique product for a variety of utility and industrial applications. The product is called SynCoal{reg_sign} and the process has been developed by the Rosebud SynCoal Partnership (RSCP) through the US Department of Energy`s multi-million dollar Clean Coal Technology Program. The ACCP demonstration process uses low-pressure, superheated gases to process coal in vibrating fluidized beds. Two vibratory fluidized processing stagesmore » are used to heat and convert the coal. This is followed by a water spray quench and a vibratory fluidized stage to cool the coal. Pneumatic separators remove the solid impurities from the dried coal. There are three major steps to the SynCoal{reg_sign} process: (1) thermal treatment of the coal in an inert atmosphere, (2) inert gas cooling of the hot coal, and (3) removal of ash minerals. When operated continuously, the demonstration plant produces over 1,000 tons per day (up to 300,000 tons per year) of SynCoal{reg_sign} with a 2% moisture content, approximately 11,800b Btu/lb and less than 1.0 pound of SO{sub 2} per million Btu. This product is obtained from Rosebud Mine sub-bituminous coal which starts with 25% moisture, 8,600 Btu/lb and approximately 1.6 pounds of SO{sub 2} per million Btu.« less

  18. Hydrologic monitoring of selected streams in coal fields of central and southern Utah; summary of data collected, August 1978-September 1984

    USGS Publications Warehouse

    Price, Don; Plantz, G.G.

    1987-01-01

    The U.S. Geological Survey conducted a coal-hydrology monitoring program in coal-field areas of central and southern Utah during August 1978-September 1984 to determine possible hydrologic impacts of future mining and to provide a better understanding of the hydrologic systems of the coal resource areas monitored. Data were collected at 19 gaging stations--18 stations in the Price, San Rafael, and Dirty Devil River basins, and 1 in the Kanab Creek Basin. Streamflow data were collected continuously at 11 stations and seasonally at 5 stations. At the other three stations streamflow data were collected continuously during the 1979 water year and then seasonally for the rest of their periods of record. Types of data collected at each station included quantity and quality of streamflow; suspended sediment concentrations; and descriptions of stream bottom sediments, benthic invertebrate, and phytoplankton samples. Also, base flow measurements were made annually upstream from 12 of the gaging stations. Stream bottom sediment sampled at nearly all the monitoring sites contained small to moderate quantities of coal, which may be attributed chiefly to pre-monitoring mining. Streamflow sampled at several sites contained large concentrations of sulfate and dissolved solids. Also, concentrations of various trace elements at 10 stations, and phenols at 18 stations, exceeded the criteria of the EPA for drinking water. This may be attributed to contemporary (water years 1979-84) mine drainage activities. The data collected during the complete water years (1979-84) of monitoring do provide a better understanding of the hydrologic systems of the coal field areas monitored. The data also provide a definite base by which to evaluate hydrologic impacts of continued or increased coal mining in those areas. (Author 's abstract)

  19. A practical application of photogrammetry to performing rib characterization measurements in an underground coal mine using a DSLR camera

    PubMed Central

    Slaker, Brent A.; Mohamed, Khaled M.

    2017-01-01

    Understanding coal mine rib behavior is important for inferring pillar loading conditions as well as ensuring the safety of miners who are regularly exposed to ribs. Due to the variability in the geometry of underground openings and ground behavior, point measurements often fail to capture the true movement of mine workings. Photogrammetry is a potentially fast, cheap, and precise supplemental measurement tool in comparison to extensometers, tape measures, or laser range meters, but its application in underground coal has been limited. The practical use of photogrammetry was tested at the Safety Research Coal Mine, National Institute for Occupational Safety and Health (NIOSH). A commercially available, digital single-lens reflex (DSLR) camera was used to perform the photogrammetric surveys for the experiment. Several experiments were performed using different lighting conditions, distances to subject, camera settings, and photograph overlaps, with results summarized as follows: the lighting method was found to be insignificant if the scene was appropriately illuminated. It was found that the distance to the subject has a minimal impact on result accuracy, and that camera settings have a significant impact on the photogrammetric quality of images. An increasing photograph resolution was preferable when measuring plane orientations; otherwise a high point cloud density would likely be excessive. Focal ratio (F-stop) changes affect the depth of field and image quality in situations where multiple angles are necessary to survey cleat orientations. Photograph overlap is very important to proper three-dimensional reconstruction, and at least 60% overlap between photograph pairs is ideal to avoid unnecessary post-processing. The suggestions and guidelines proposed are designed to increase the quality of photogrammetry inputs and outputs as well as minimize processing time, and serve as a starting point for an underground coal photogrammetry study. PMID:28663826

  20. A practical application of photogrammetry to performing rib characterization measurements in an underground coal mine using a DSLR camera.

    PubMed

    Slaker, Brent A; Mohamed, Khaled M

    2017-01-01

    Understanding coal mine rib behavior is important for inferring pillar loading conditions as well as ensuring the safety of miners who are regularly exposed to ribs. Due to the variability in the geometry of underground openings and ground behavior, point measurements often fail to capture the true movement of mine workings. Photogrammetry is a potentially fast, cheap, and precise supplemental measurement tool in comparison to extensometers, tape measures, or laser range meters, but its application in underground coal has been limited. The practical use of photogrammetry was tested at the Safety Research Coal Mine, National Institute for Occupational Safety and Health (NIOSH). A commercially available, digital single-lens reflex (DSLR) camera was used to perform the photogrammetric surveys for the experiment. Several experiments were performed using different lighting conditions, distances to subject, camera settings, and photograph overlaps, with results summarized as follows: the lighting method was found to be insignificant if the scene was appropriately illuminated. It was found that the distance to the subject has a minimal impact on result accuracy, and that camera settings have a significant impact on the photogrammetric quality of images. An increasing photograph resolution was preferable when measuring plane orientations; otherwise a high point cloud density would likely be excessive. Focal ratio (F-stop) changes affect the depth of field and image quality in situations where multiple angles are necessary to survey cleat orientations. Photograph overlap is very important to proper three-dimensional reconstruction, and at least 60% overlap between photograph pairs is ideal to avoid unnecessary post-processing. The suggestions and guidelines proposed are designed to increase the quality of photogrammetry inputs and outputs as well as minimize processing time, and serve as a starting point for an underground coal photogrammetry study.

  1. Use of overburden rocks from open-pit coal mines and waste coals of Western Siberia for ceramic brick production with a defect-free structure

    NASA Astrophysics Data System (ADS)

    Stolboushkin, A. Yu; Ivanov, A. I.; Storozhenko, G. I.; Syromyasov, V. A.; Akst, D. V.

    2017-09-01

    The rational technology for the production of ceramic bricks with a defect-free structure from coal mining and processing wastes was developed. The results of comparison of physical and mechanical properties and the structure of ceramic bricks manufactured from overburden rocks and waste coal with traditional for semi-dry pressing mass preparation and according to the developed method are given. It was established that a homogeneous, defect-free brick texture obtained from overburden rocks of open-pit mines and waste coal improves the quality of ceramic wall materials produced by the method of compression molding by more than 1.5 times compared to the brick with a traditional mass preparation.

  2. Broadening our understanding of clinical quality: from attribution error to situated cognition.

    PubMed

    Artino, A R; Durning, S J; Waechter, D M; Leary, K L; Gilliland, W R

    2012-02-01

    The tendency to overestimate the influence of personal characteristics on outcomes, and to underestimate the influence of situational factors, is known as the fundamental attribution error. We argue that medical-education researchers and policy makers may be guilty of this error in their quest to understand clinical quality. We suggest that to truly understand clinical quality, they must examine situational factors, which often have a strong influence on the quality of clinical encounters.

  3. Coal and Energy.

    ERIC Educational Resources Information Center

    Bryant, Reba; And Others

    This teaching unit explores coal as an energy resource. Goals, student objectives, background information, and activity options are presented for each major section. The sections are: (1) an introduction to coal (which describes how and where coal was formed and explains the types of coal); (2) the mining of coal (including the methods and ways of…

  4. Water-quality monitoring for a pilot piling removal field evaluation, Coal Creek Slough, Washington, 2008-09

    USGS Publications Warehouse

    Nilsen, Elena B.; Alvarez, David A.

    2011-01-01

    Significant Findings Water and sediment quality monitoring was conducted before and after the removal of a piling field located in Coal Creek Slough near Longview, Washington. Passive chemical samplers and continuous water-quality monitoring instruments were deployed at the piling removal site, Coal Creek Slough Site 1 (CCS1), and at a comparison site, Coal Creek Slough Site 2 (CCS2), before (2008) and after (2009) piling removal. Surface and subsurface (core) sediment samples were collected before and after piling removal and were analyzed for grain size, organic carbon content, and chemicals of concern. Significant findings from this study include: * Phenanthrene was the only compound detected in wood piling samples analyzed for a large suite of semivolatile organic compounds and polycyclic aromatic hydrocarbons (PAHs). Metals potentially associated with wood treatment were detected in the wood piling samples at low concentrations. * Organic carbon was slightly lower in core samples from CCS1 in pre-removal (2008) and post-removal (2009) samples than in surface samples from both sites in both years. * Grain-size class distributions were relatively uniform between sites and years. * Thirty-four out of 110 chemicals of concern were detected in sediments. Eight of those detected were anthropogenic waste indicator (AWI) compounds, 18 were PAHs, 4 were sterols, and 4 were metals potentially associated with wood treatment. * Nearly all reported concentrations of chemicals of concern in sediments are qualified as estimates, primarily due to interferences in extracts resulting from complex sample matrices. Indole, perylene, and fluoranthene are reported without qualification for some of the samples, and the metals are reported without qualification for all samples. * The highest frequency of detection of chemicals of concern was seen in the pre-removal surface samples at both sites. * AWI compounds were detected less frequently and at lower concentrations during the post

  5. PULVERIZED COAL COMBUSTION: POLLUTANT FORMATION AND CONTROL, 1970-1980

    EPA Science Inventory

    The report documents the support role of EPA's Air and Energy Engineering Research Laboratory in the major research effort directed by EPA in the l970s to understand pollutant formation during pulverized coal combustion (PCC). Understanding the conversion of fuel nitrogen to nit...

  6. 76 FR 53483 - Notice of Invitation To Participate; Coal Exploration License Application NMNM 126245, New Mexico

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ..., as amended by the Federal Coal Leasing Amendments Act of 1976, and to Bureau of Land Management (BLM... program is to gain structural and quality information about the coal. The BLM regulations at 43 CFR 3410 require the publication of an invitation to participate in the coal exploration in the Federal Register...

  7. Coal Fields and Federal Lands of the Conterminous United States

    USGS Publications Warehouse

    Biewick, Laura

    1997-01-01

    The map depicts the relationship of coal and public lands in the conterminous U. S. Multiple GIS layers are being created for the purpose of deriving estimates of how much coal is owned and administered by the Federal government. Federal coal areas have a profound effect on land-management decisions. Regulatory agencies attempt to balance energy development with alternative land-use and environmental concerns. A GIS database of Federal lands used in energy resource assessments is being developed by the U. S. Geological Survey (USGS) in cooperation with the U.S. Bureau of Land Management (BLM) to integrate information on status of public land, and minerals owned by the Federal government with geologic information on coal resources, other spatial data, coal quality characteristics, and coal availability for development. Using national-scale data we estimate that approximately 60 percent of the area underlain by coal-bearing rocks in the conterminous United States are under Federal surface. Coal produced from Federal leases has tripled from about 12 percent of the total U.S. production in 1976 to almost 34 percent in 1995 (Energy Information Administration website ftp://ftp.eia.doe.gov/pub/coal/cia_95_tables/t13p01.txt). The reason for this increase is demand for low-sulfur coal for use in power plants and the fact that large reserves of this low-sulfur coal are in the western interior U.S., where the Federal government owns the rights to most of the coal reserves. The map was created using Arc/Info 7.0.3 on a UNIX system. The HPGL2 plot file for this map is available from the USGS Energy Resource Surveys Team from http://energy.cr.usgs.gov:8080/energy/coal.html.

  8. [Coal fineness effect on primary particulate matter features during pulverized coal combustion].

    PubMed

    Lü, Jian-yi; Li, Ding-kai

    2007-09-01

    Three kinds of coal differed from fineness were burned in a laboratory-scale drop tube furnace for combustion test, and an 8-stage Andersen particle impactor was employed for sampling the primary particulate matter (PM), in order to study coal fineness effect on primary PM features during pulverized coal combustion. It has been shown that the finer the coal was, the finer the PM produced. PM, emission amount augmented with coal fineness decreased, and the amount of PM10 increased from 13 mg/g to 21 mg/g respectively generated by coarse coal and fine coal. The amount of PM2.5 increased from 2 mg/g to 8 mg/g at the same condition. Constituents and content in bulk ash varied little after three different fineness coal combustion, while the appearance of grading PM differed visibly. The value of R(EE) increased while the coal fineness deceased. The volatility of trace elements which were investigated was Pb > Cr > Zn > Cu > Ni in turn. The concentration of poisonous trace elements was higher which generated from fine coal combustion. The volatilization capacity was influenced little by coal fineness, but the volatilization extent was influenced differently by coal fineness. Fine coal combustion affects worse environment than coarse coal does.

  9. Hydrology of coal-lease areas near Durango, Colorado

    USGS Publications Warehouse

    Brooks, Tom

    1985-01-01

    The U.S. Bureau of Land Management leases Federal lands and minerals for coal mining near Durango, Colorado. This report addresses the hydrologic suitability of those lands for coal leasing; the report describes the general hydrology of the Durango area and, more specifically, the hydrology of the Stollsteimer Creek study area 32 miles east of the Durango and the Hay Gulch study area, 12 miles southwest of Durango. The most productive aquifers in the Durango study area are Quaternary alluvium and the tertiary Animas Formation. Water wells completed in alluvium typically yield 5 to 20 gallons/min; wells completed is the Animas Formation yield as much as 50 gallons/min. Water quality in these aquifers is variable, but it generally is suitable for domestic use. The coal-bearing Cretaceous Fruitland and Menefee Formations are mined by surface methods at the Chimney Rock Mine in the Stollsteimer Creek study area and by underground methods at the National King Coal Mine in the Hay Gulch study area. Effects of surface mining in the Stollsteimer Creek area are: (1) Dewatering of an alluvial aquifer; and (2) Local degradation of alluvium water quality by spoil-pile effluent. Effects of underground mining in the Hay Gulch area are: (1) Introduction of water with greater dissolved-solids concentrations into the upper Hay Gulch alluvium from mine runoff; (2) Subsidence fracturing which could dewater streams and the alluvial aquifer. (USGS)

  10. Chemical composition and some trace element contents in coals and coal ash from Tamnava-Zapadno Polje Coal Field, Serbia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vukasinovic-Pesic, V.; Rajakovic, L.J.

    2009-07-01

    The chemical compositions and trace element contents (Zn, Cu, Co, Cr, Ni, Pb, Cd, As, B, Hg, Sr, Se, Be, Ba, Mn, Th, V, U) in coal and coal ash samples from Tamnava-Zapadno Polje coal field in Serbia were studied. The coal from this field belongs to lignite. This high volatility coal has high moisture and low S contents, moderate ash yield, and high calorific value. The coal ash is abundant in alumosilicates. Many trace elements such as Ni > Cd > Cr > B > As > Cu > Co > Pb > V > Zn > Mn inmore » the coal and Ni > Cr > As > B > Cu > Co = Pb > V > Zn > Mn in the coal ash are enriched in comparison with Clarke concentrations.« less

  11. Coal combustion products

    USGS Publications Warehouse

    Kalyoncu, R.S.; Olson, D.W.

    2001-01-01

    Coal-burning powerplants, which supply more than half of U.S. electricity, also generate coal combustion products, which can be both a resource and a disposal problem. The U.S. Geological Survey collaborates with the American Coal Ash Association in preparing its annual report on coal combustion products. This Fact Sheet answers questions about present and potential uses of coal combustion products.

  12. Human action quality evaluation based on fuzzy logic with application in underground coal mining.

    PubMed

    Ionica, Andreea; Leba, Monica

    2015-01-01

    The work system is defined by its components, their roles and the relationships between them. Any work system gravitates around the human resource and the interdependencies between human factor and the other components of it. Researches in this field agreed that the human factor and its actions are difficult to quantify and predict. The objective of this paper is to apply a method of human actions evaluation in order to estimate possible risks and prevent possible system faults, both at human factor level and at equipment level. In order to point out the importance of the human factor influence on all the elements of the working systems we propose a fuzzy logic based methodology for quality evaluation of human actions. This methodology has a multidisciplinary character, as it gathers ideas and methods from: quality management, ergonomics, work safety and artificial intelligence. The results presented refer to a work system with a high degree of specificity, namely, underground coal mining and are valuable for human resources risk evaluation pattern. The fuzzy logic evaluation of the human actions leads to early detection of possible dangerous evolutions of the work system and alarm the persons in charge.

  13. A preliminary review of coal exploration activities conducted by the government of Armenia and the coal resource potential of Armenia

    USGS Publications Warehouse

    Warwick, Peter D.; Pierce, B.S.; Landis, E.R.

    1993-01-01

    A coal resource assessment team from the U.S. Geological Survey (USGS), in cooperation with the Armenian Department of Underground Resources (DUR) and elements of the Ministry of Energy and Fuel, has completed an initial visit to Armenia under the auspices of the U.S. Agency for International Development JUSAID). The visit included discussions of the coal resources, identification of problems associated with on-going exploration and development activities, and field visits to selected solid fuel areas. The USGS team will return in November with a draft of the final report for discussion of conclusions and recommendations with Armenian counterparts, representatives of USAID, and the American Embassy. The final report, which will contain tabulated coal-sample analytical results and detailed recommendations, will be submitted to the USAID by the end of December 1993.Preliminary conclusions are that: 1) Armenia has usable deposits of coal that could form a viable, though relatively small, component of Armenia's energy budget; 2) on-going exploration and development activities must be augmented and expedited to increase understanding of the coal resource potential and subsequent utilization; 3) deficiencies in supplies (primarily fuel) and equipment (replacement of aging parts and units) have greatly reduced the gathering of necessary resource data; and 4) training of Armenian counterparts in conducting and managing coal exploration activities is desirable.

  14. Attitudes toward Women Coal Miners in an Appalachian Coal Community.

    ERIC Educational Resources Information Center

    Trent, Roger B.; Stout-Wiegand, Nancy

    1987-01-01

    In a coal mining community, a survey revealed that the level of negative sentiment toward women coal miners was substantial and varied by gender role. Male coal miners were negative toward female co-workers, but they supported women's right to coal mine jobs, while female homemakers did not. (Author/CH)

  15. Trace elemental analysis of bituminuos coals using the Heidelberg proton microprobe

    USGS Publications Warehouse

    Chen, J.R.; Kneis, H.; Martin, B.; Nobiling, R.; Traxel, K.; Chao, E.C.T.; Minkin, J.A.

    1981-01-01

    Trace elements in coal can occur as components of either the organic constituents (macerals) or the inorganic constituents (minerals). Studies of the concentrations and distribution of the trace elements are vital to understanding the geochemical millieu in which the coal was formed and in evaluating the attempts to recover rare but technologically valuable metals. In addition, information on the trace element concentrations is important in predicting the environmental impact of burning particular coals, as many countries move toward greater utilization of coal reserves for energy production. Traditionally, the optical and the electron microscopes and more recently the electron microprobe have been used in studying the components of coal. The proton-induced X-ray emission (PIXE) microprobe offers a new complementary approach with an order of magnitude or more better minimum detection limit. We present the first measurements with a PIXE microprobe of the trace element concentrations of bituminous coal samples. Elemental analyses of the coal macerals-vitrinite, exinite, and inertinite-are discussed for three coal samples from the Eastern U.S.A., three samples from the Western U.S.A., and one sample from the Peoples Republic of China. ?? 1981.

  16. Health impacts of coal and coal use: Possible solutions

    USGS Publications Warehouse

    Finkelman, R.B.; Orem, W.; Castranova, V.; Tatu, C.A.; Belkin, H.E.; Zheng, B.; Lerch, H.E.; Maharaj, S.V.; Bates, A.L.

    2002-01-01

    Coal will be a dominant energy source in both developed and developing countries for at least the first half of the 21st century. Environmental problems associated with coal, before mining, during mining, in storage, during combustion, and postcombustion waste products are well known and are being addressed by ongoing research. The connection between potential environmental problems with human health is a fairly new field and requires the cooperation of both the geoscience and medical disciplines. Three research programs that illustrate this collaboration are described and used to present a range of human health problems that are potentially caused by coal. Domestic combustion of coal in China has, in some cases, severely affected human health. Both on a local and regional scale, human health has been adversely affected by coals containing arsenic, fluorine, selenium, and possibly, mercury. Balkan endemic nephropathy (BEN), an irreversible kidney disease of unknown origin, has been related to the proximity of Pliocene lignite deposits. The working hypothesis is that groundwater is leaching toxic organic compounds as it passes through the lignites and that these organics are then ingested by the local population contributing to this health problem. Human disease associated with coal mining mainly results from inhalation of particulate matter during the mining process. The disease is Coal Worker's Pneumoconiosis characterized by coal dust-induced lesions in the gas exchange regions of the lung; the coal worker's "black lung disease". ?? 2002 Elsevier Science B.V. All rights reserved.

  17. Liquefaction of calcium-containing subbituminous coals and coals of lower rank

    DOEpatents

    Gorbaty, Martin L.; Taunton, John W.

    1980-01-01

    A process for the treatment of a calcium-containing subbituminous coal and coals of lower rank to form insoluble, thermally stable calcium salts which remain within the solids portions of the residue on liquefaction of the coal, thereby suppressing the formation scale, made up largely of calcium carbonate deposits, e.g., vaterite, which normally forms within the coal liquefaction reactor (i.e., coal liquefaction zone), e.g., on reactor surfaces, lines, auxiliary equipment and the like. A solution of a compound or salt characterized by the formula MX, where M is a Group IA metal of the Periodic Table of the Elements, and X is an anion which is capable of forming water-insoluble, thermally stable calcium compounds, is maintained in contact with a particulate coal feed sufficient to impregnate said salt or compound into the pores of the coal. On separation of the impregnated particulate coal from the solution, the coal can be liquefied in a coal liquefaction reactor (reaction zone) at coal liquefaction conditions without significant formation of vaterite or other forms of calcium carbonate on reactor surfaces, auxiliary equipment and the like; and the Group IA metal which remains within the liquefaction bottoms catalyzes the reaction when the liquefaction bottoms are subjected to a gasification reaction.

  18. Oxidation and carbonisation of coals: a case study of coal fire affected coals from the Wuda coalfield, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Kus, Jolanta; Meyer, Uwe; Ma, Jianwei; Chen-Brauchler, Dai

    2010-05-01

    At the coalfield of Wuda (Inner Mongolia, PR China) extensive underground coal fires cause widespread thermal and oxidative effects in coal seams. Within phase B of the Coal Fire Research Project of the Sino-German Initiative, methods for innovative fire-extinguishing technologies were investigated in multifaceted research approaches. Extensive investigations of oxidative and thermally affected coal seams in coal fire zone 18 were conducted in 2008 prior to application of new fire-extinguishing methods. We present results from the outcrop of coal seam No. 4 in the fire zone 18. The coal of seam No. 4 is of Early Permian age and belongs stratigraphically to the Shanxi Formation. The unaffected coal displays a high volatile bituminous A rank with a background value of random vitrinite reflectance ranging from 0.90 to 0.96 % Rr. Coal channel samples were coallected at actively extracted coal faces along multiple profiles with surface temperatures ranging from about 50° to 600°C. Microscopic examinations revealed a variety of products of coal exposure to the fire. Within coal samples, a marked rise in vitrinite reflectance from background values to 5.55% Rr (6.00 % Rmax) is encountered. In addition, a number of coal samples showed suppressed vitrinite reflectances ranging between 0.82 to 0.88% Rr. Further, seemingly heat unaffected coal samples display intensive development of oxidations rims at coal grain edges and cracks as well as shrinkage cracks and formation of iron oxides/hydroxides. Instead, thermally affected coal samples with higher coalification grade are further characterised by development of macropores (devolatilisation pores) in vitrinitic streaks, transformation of liptinite to meta-liptinite and micrinite as well as by natural coke particles of mostly porous nature and fine to coarse grained anisotropic mosaic. Coal petrographic investigations confirmed a hypothesis that both, oxidations as well as low temperature carbonisation govern the thermal

  19. Hydrology and potential effects of mining in the Quitchupah and Pines coal-lease tracts, central Utah

    USGS Publications Warehouse

    Thiros, Susan A.; Cordy, G.E.

    1991-01-01

    Bydrologic data were collected for the proposed Quitchupah and Pines coal-lease tracts in Sevier and Bnery Counties, Utah, in order to describe the hydrology and potential effects of mining on the hydrologic system. The Quitchupah and Pines coal-lease tracts are near the Southern Utah Fuel Company coal mine in an area of the central Wasatch Plateau that is characterized by a relatively flat plateau deeply dissected by steep-sided canyons.Surface water in the Quitchupah and Pines study area drains to two perennial streams, Muddy Creek to the north and Quitchupah Creek to the south. Peak streamflow is usually in May and June in response to snowmelt runoff; however, thunderstorms can cause short-term high flows in late summer and fall. The specific conductance of surface water in and near the study area measured during the 1987 water year ranged from 440 (iS/cm to 860 (iS/cm. Suspended-sediment concentrations ranged from 17 to 10,900 mg/L in the Quitchupah Creek drainage and 34 to 312 mg/L in the Muddy Creek drainage.Stable-isotope studies indicate that recharge to aquifers in the study area is by seepage of snowmelt into rock outcrops. Discharge from the aquifers is at springs, seeps, mines, and zones of seepage in streambeds. The chemical quality of ground water is related to the mineralogy of the formations with which the water has contact. Water from the upper part of the Cast legate Sandstone has the smallest concentration of dissolved solids, 61 mg/L, and water from the North Horn Formation has the largest concentration, 1,080 mg/L.Observed effects of underground coal mining at the nearby active mine are considered indicative of the changes that can be expected in the Quitchupah and Pines coal-lease tracts. Subsidence above the mined area could cause dewatering of the Blackhawk Formation and the Star Point Sandstone, changes in the natural drainage patterns, and alteration of both surface- and ground-water quality. Additional studies are needed to gain a better

  20. Distribution and mode of occurrence of selenium in US coals

    USGS Publications Warehouse

    Coleman, L.; Bragg, L.J.; Finkelman, R.B.

    1993-01-01

    Selenium excess and deficiency have been established as the cause of various health problems in man and animals. Combustion of fossil fuels, especially coal, may be a major source of the anthropogenic introduction of selenium in the environment. Coal is enriched in selenium relative to selenium's concentration in most other rocks and relative to selenium in the Earth's crust. Data from almost 9,000 coal samples have been used to determine the concentration and distribution of selenium in US coals. The geometric mean concentration of selenium in US coal is 1.7 ppm. The highest mean selenium value (geometric mean 4.7 ppm) is in the Texas Region. Atlantic Coast (Virginia and North Carolina) and Alaska coals have the lowest geometric means (0.2 and 0.42 ppm, respectively). All western coal regions have mean selenium concentrations of less than 2.0 ppm. In contrast, all coal basins east of the Rocky Mountains (except for several small basins in Rhode Island, Virginia, and North Carolina) have mean selenium values of 1.9 or greater. Generally, variations in selenium concentration do not correlate with variations in ash yield, pyritic sulphur, or organic sulphur concentrations. This may be the result of multiple sources of selenium; however, in some non-marine basins with restricted sources of selenium, selenium has positive correlations with other coal quality parameters. Selenium occurs in several forms in coal but appears to be chiefly associated with the organic fraction, probably substituting for organic sulphur. Other important forms of selenium in coal are selenium-bearing pyrite, selenium-bearing galena, and lead selenide (clausthalite). Water-soluble and ion-exchangeable selenium also have been reported. ?? 1993 Copyright Science and Technology Letters.

  1. High pressure rotary piston coal feeder for coal gasification applications

    DOEpatents

    Gencsoy, Hasan T.

    1977-05-24

    The subject development is directed to an apparatus for feeding pulverized coal into a coal gasifier operating at relatively high pressures and elevated temperatures. This apparatus is a rotary piston feeder which comprises a circular casing having a coal loading opening therein diametrically opposed from a coal discharge and contains a rotatable discoid rotor having a cylinder in which a reciprocateable piston is disposed. The reciprocation of the piston within the cylinder is provided by a stationary conjugate cam arrangement whereby the pulverized coal from a coal hopper at atmospheric pressure can be introduced into the cylinder cavity and then discharged therefrom into the high-pressure gasifier without the loss of high pressure gases from within the latter.

  2. The leaching characteristics of selenium from coal fly ashes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, T.; Wang, J.; Burken, J.G.

    2007-11-15

    The leaching characteristics of selenium from several bituminous and subbituminous coal fly ashes under different pH conditions were investigated using batch methods. Results indicated that pH had a significant effect on selenium leaching from bituminous coal ash. The minimum selenium leaching occurred in the pH range between 3 and 4, while the maximum selenium leaching occurred at pH 12. The release of selenium from subbituminous coal ashes was very low for the entire experimental pH range, possibly due to the high content of calcium which can form hydration or precipitation products as a sink for selenium. The adsorption results formore » different selenium species indicated that Se(VI) was hardly adsorbable on either bituminous coal ashes or subbitumminous coal ashes at any pH. However, Se(I) was highly adsorbed by bituminous coal ashes under acidic pH conditions and was mostly removed by subbitumminous coal ashes across the entire pH range. This result suggests that the majority of selenium released from the tested fly ashes was Se(IV). A speciation-based model was developed to simulate the adsorption of Se(IV) on bituminous coal fly ash, and the pH-independent adsorption constants of HSeO{sup 3-} and SeO{sub 3}{sup 2-} were determined. The modeling approach is useful for understanding and predicting the release process of selenium from fly ash.« less

  3. Health Implications of Increased Coal Use in the Western States

    PubMed Central

    Guidotti, Tee L.

    1979-01-01

    The National Energy Plan proposed by President Carter provides for the rapid development of coal resources in the United States, particularly in the West. The potential consequences for health of this development were considered by the Advisory Committee on Health and Environmental Effects of Increased Coal Utilization, reporting to the Department of Energy. Their report recommended rigid adherence to pertinent existing regulations, improved environmental monitoring, expanded research in selected relevant topics and development of procedures for selecting the sites of new coal-fired power plants. Although the report was a major exercise in technology assessment, it is fundamentally a cautious document that proposes no new solutions or approaches. A review of occupational and community health problems associated with coal mining and coal utilization suggests that lessons from past experiences, especially in Appalachia, cannot be applied to the West uncritically. The two regions are fundamentally different in scale, topography and social development. In the West, future problems related to coal are likely to derive from unknown risks associated with coal processing technologies, land reclamation and water quality at the sites of power generation, and extensive social and demographic changes at centers of industrial activity that may have secondary effects on health. Additional considerations should supplement the recommendations of the Advisory Committee report. PMID:483803

  4. Health implications of increased coal use in the Western States.

    PubMed

    Guidotti, T L

    1979-07-01

    The National Energy Plan proposed by President Carter provides for the rapid development of coal resources in the United States, particularly in the West. The potential consequences for health of this development were considered by the Advisory Committee on Health and Environmental Effects of Increased Coal Utilization, reporting to the Department of Energy. Their report recommended rigid adherence to pertinent existing regulations, improved environmental monitoring, expanded research in selected relevant topics and development of procedures for selecting the sites of new coal-fired power plants. Although the report was a major exercise in technology assessment, it is fundamentally a cautious document that proposes no new solutions or approaches. A review of occupational and community health problems associated with coal mining and coal utilization suggests that lessons from past experiences, especially in Appalachia, cannot be applied to the West uncritically. The two regions are fundamentally different in scale, topography and social development. In the West, future problems related to coal are likely to derive from unknown risks associated with coal processing technologies, land reclamation and water quality at the sites of power generation, and extensive social and demographic changes at centers of industrial activity that may have secondary effects on health. Additional considerations should supplement the recommendations of the Advisory Committee report.

  5. Electricity from Coal Combustion: Improving the hydrophobicity of oxidized coals

    NASA Astrophysics Data System (ADS)

    Seehra, Mohindar; Singh, Vivek

    2011-03-01

    To reduce pollution and improve efficiency, undesirable mineral impurities in coals are usually removed in coal preparation plants prior to combustion first by crushing and grinding coals followed by gravity separation using surfactant aided water flotation. However certain coals in the US are not amendable to this process because of their poor flotation characteristics resulting in a major loss of an energy resource. This problem has been linked to surface oxidation of mined coals which make these coals hydrophilic. In this project, we are investigating the surface and water flotation properties of the eight Argonne Premium (AP) coals using x-ray diffraction, IR spectroscopy and zeta potential measurements. The role of the surface functional groups, (phenolic -OH and carboxylic -COOH), produced as a result of chemisorptions of O2 on coals in determining their flotation behavior is being explored. The isoelectric point (IEP) in zeta potential measurements of good vs. poor floaters is being examined in order to improved the hydrophobicity of poor floating coals (e.g. Illinois #6). Results from XRD and IR will be presented along with recent findings from zeta potential measurements, and use of additives to improve hydrophobicity. Supported by USDOE/CAST, Contract #DE-FC26-05NT42457.

  6. Bituminous coal production in the Appalachian Basin; past, present, and future

    USGS Publications Warehouse

    Milici, R.C.

    1999-01-01

    This report on Appalachian basin coal production consists of four maps and associated graphs and tables, with links to the basic data that were used to construct the maps. Plate 1 shows the time (year) of maximum coal production, by county. For illustration purposes, the years of maximum production are grouped into decadal units. Plate 2 shows the amount of coal produced (tons) during the year of maximum coal production for each county. Plate 3 illustrates the cumulative coal production (tons) for each county since about the beginning of the 20th century. Plate 4 shows 1996 annual production by county. During the current (third) cycle of coal production in the Appalachian basin, only seven major coal-producing counties (those with more than 500 million tons cumulative production), including Greene County, Pa.; Boone, Kanawha, Logan, Mingo, and Monongalia Counties, W.Va.; and Pike County, Ky., exhibit a general increase in coal production. Other major coal-producing counties have either declined to a small percentage of their maximum production or are annually maintaining a moderate level of production. In general, the areas with current high coal production have large blocks of coal that are suitable for mining underground with highly efficient longwall methods, or are occupied by very large scale, relatively low cost surface mining operations. The estimated cumulative production for combined bituminous and anthracite coal is about 100 billion tons or less for the Appalachian basin. In general, it is anticipated that the remaining resources will be progressively of lower quality, will cost more to mine, and will become economical only as new technologies for extraction, beneficiation, and consumption are developed, and then only if prices for coal increase.

  7. Coal desulfurization process

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.; Gavalas, G. R.; Ganguli, P. S.; Kalfayan, S. H.

    1978-01-01

    A method for chlorinolysis of coal is an organic solvent at a moderate temperautre and atmospheric pressure has been proven to be effective in removing sulfur, particularly the organic sulfur, from coal. Chlorine gas is bubbled through a slurry of moist coal in chlorinated solvent. The chlorinated coal is separated, hydrolyzed and the dechlorinated. Preliminary results of treating a high sulfutr (4.77%S) bituminous coal show that up to 70% organic sulfur, 90% hyritic sulfur and 76% total sulfur can be removed. The treated coal is dechlorinated by heating at 500 C. The presence of moisture helps to remove organic sulfur.

  8. acme: The Amendable Coal-Fire Modeling Exercise. A C++ Class Library for the Numerical Simulation of Coal-Fires

    NASA Astrophysics Data System (ADS)

    Wuttke, Manfred W.

    2017-04-01

    At LIAG, we use numerical models to develop and enhance understanding of coupled transport processes and to predict the dynamics of the system under consideration. Topics include geothermal heat utilization, subrosion processes, and spontaneous underground coal fires. Although the details make it inconvenient if not impossible to apply a single code implementation to all systems, their investigations go along similar paths: They all depend on the solution of coupled transport equations. We thus saw a need for a modular code system with open access for the various communities to maximize the shared synergistic effects. To this purpose we develop the oops! ( open object-oriented parallel solutions) - toolkit, a C++ class library for the numerical solution of mathematical models of coupled thermal, hydraulic and chemical processes. This is used to develop problem-specific libraries like acme( amendable coal-fire modeling exercise), a class library for the numerical simulation of coal-fires and applications like kobra (Kohlebrand, german for coal-fire), a numerical simulation code for standard coal-fire models. Basic principle of the oops!-code system is the provision of data types for the description of space and time dependent data fields, description of terms of partial differential equations (pde), their discretisation and solving methods. Coupling of different processes, described by their particular pde is modeled by an automatic timescale-ordered operator-splitting technique. acme is a derived coal-fire specific application library, depending on oops!. If specific functionalities of general interest are implemented and have been tested they will be assimilated into the main oops!-library. Interfaces to external pre- and post-processing tools are easily implemented. Thus a construction kit which can be arbitrarily amended is formed. With the kobra-application constructed with acme we study the processes and propagation of shallow coal seam fires in particular in

  9. Geologic setting and water quality of selected basins in the active coal-mining areas of Ohio, 1987-88

    USGS Publications Warehouse

    Sedam, A.C.

    1991-01-01

    This report presents hydrologic data from selected drainage basins in the active coal-mining areas of Ohio from July 1987 through October 1988. The study area is mostly within the unglaciated part of eastern Ohio along the western edge of the Appalachian Plateaus physiographic province. The 1987-88 work is the second phase of a 7-year study to assess baseline water quality in Ohio's coal region. The data collection network consisted of 41 long-term surface-water sites in 21 basins. The sites were measured and sampled twice yearly at low flow. In addition, six individual basins (three each year) selected for a more detailed representation of surface-water and ground-water quality. In 1987, the Sandy Creek, Middle Tuscarawas River and Sugar Creek, and Lower Tuscarawas River basins were chosen. In 1988, the Short and Wheeling Creeks, Upper Wills Creek, and Upper Raccoon Creek basins were chosen. Because of their proximity to the glaciated region and outwash drainage, the basins studied intensively in 1987 contain more shallow productive aquifers than do the basins studied in detail for 1988, in which shallow ground-water sources are very localized. Chemical analyses for 202 surface-water and 24 ground-water samples are presented. For field measurements made at surface-water sites, the specific conductance ranged from 295 to 3150 ? S/cm (microsiemens per centimeter at 25 degrees Celsius). For pH, the range was 2.8 to 8.6. Alkalinity ranged from 5 to 305 mg/L (milligrams per liter) as CaCO3.

  10. Apparatus and method for feeding coal into a coal gasifier

    DOEpatents

    Bissett, Larry A.; Friggens, Gary R.; McGee, James P.

    1979-01-01

    This invention is directed to a system for feeding coal into a gasifier operating at high pressures. A coal-water slurry is pumped to the desired pressure and then the coal is "dried" prior to feeding the coal into the gasifier by contacting the slurry with superheated steam in an entrained bed dryer for vaporizing the water in the slurry.

  11. Carbon dioxide and methane sorption in high volatile bituminous coals from Indiana, USA

    USGS Publications Warehouse

    Mastalerz, Maria; Gluskoter, Harold J.; Rupp, J.

    2004-01-01

    Samples of coals from several coalbeds in Indiana were analyzed for CO2 and CH4 sorption capacity using a high-pressure adsorption isotherm technique. Coal quality and petrographic composition of the coals were determined to study their relationships to the volume of CO2 and CH4 that could be sorbed into the coal. At the temperature of 17 ??C and 400 psi (??? 2.8 MPa), the coals can sorb (on dry ash-free basis) from 4 to 6.3 m3/ton (128-202 scf/ton) of CH4 and 19.5-24.6 m3/ton4 (624 to 788 scf/ton) of CO2. The ratio of CO2/CH4 at these conditions ranges from 3.5 to 5.3 and decreases with an increasing pressure for all coals. The coals studied are of a very similar coal rank (Ro from 0.48 to 0.62%) but of varying petrographic composition, and CO2 sorption volumes appear to be positively correlated to the content of maceral telocollinite. ?? 2004 Elsevier B.V. All rights reserved.

  12. Underground thermal generation of hydrocarbons from dry, southwestern coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanderborgh, N.E.; Elliott, G.R.B.

    1978-01-01

    The LASL underground coal conversion concept produces intermediate-BTU fuel gas for nearby industries such as ''minemouth'' electric power plants, plus major byproducts in the form of liquid and gaseous hydrocarbons for feedstocks to chemical plants e.g., substitute natural gas (SNG) producers. The concept involves controlling the water influx and drying the coal, generating hydrocarbons, by pyrolysis and finally gasifying the residual char with O/sub 2//CO/sub 2/ or air/CO/sub 2/ mixtures to produce industrial fuel gases. Underground conversion can be frustrated by uncontrolled water in the coal bed. Moisture can (a) prevent combustion, (b) preclude fuel gas formation by lowering reactionmore » zone temperatures and creating kinetic problems, (c) ruin product gas quality by dropping temperatures into a thermodynamically unsatisfactory regime, (d) degrade an initially satisfactory fuel gas by consuming carbon monoxide, (e) waste large amounts of heat, and (f) isolate reaction zones so that the processing will bypass blocks of coal.« less

  13. Recommended procedures and techniques for the petrographic description of bituminous coals

    USGS Publications Warehouse

    Chao, E.C.T.; Minkin, J.A.; Thompson, C.L.

    1982-01-01

    Modern coal petrology requires rapid and precise description of great numbers of coal core or bench samples in order to acquire the information required to understand and predict vertical and lateral variation of coal quality for correlation with coal-bed thickness, depositional environment, suitability for technological uses, etc. Procedures for coal description vary in accordance with the objectives of the description. To achieve our aim of acquiring the maximum amount of quantitative information within the shortest period of time, we have adopted a combined megascopic-microscopic procedure. Megascopic analysis is used to identify the distinctive lithologies present, and microscopic analysis is required only to describe representative examples of the mixed lithologies observed. This procedure greatly decreases the number of microscopic analyses needed for adequate description of a sample. For quantitative megascopic description of coal microlithotypes, microlithotype assemblages, and lithotypes, we use (V) for vitrite or vitrain, (E) for liptite, (I) for inertite or fusain, (M) for mineral layers or lenses other than iron sulfide, (S) for iron sulfide, and (X1), (X2), etc. for mixed lithologies. Microscopic description is expressed in terms of V representing the vitrinite maceral group, E the exinite group, I the inertinite group, and M mineral components. volume percentages are expressed as subscripts. Thus (V)20(V80E10I5M5)80 indicates a lithotype or assemblage of microlithotypes consisting of 20 vol. % vitrite and 80% of a mixed lithology having a modal maceral composition V80E10I5M5. This bulk composition can alternatively be recalculated and described as V84E8I4M4. To generate these quantitative data rapidly and accurately, we utilize an automated image analysis system (AIAS). Plots of VEIM data on easily constructed ternary diagrams provide readily comprehended illustrations of the range of modal composition of the lithologic units making up a given coal

  14. 15. VIEW OF COAL TRESTLE LOOKING NORTHEAST. COAL DUMPED FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW OF COAL TRESTLE LOOKING NORTHEAST. COAL DUMPED FROM HOPPER CARS COULD BE CRUSHED AND LOADED ON A CONVEYOR THAT PARALLELED THE TRACK TO THE EAST (LEFT) AND CARRIED IT TO A 1000 TON BUNKER LOCATED ON THE NORTH SIDE OF THE EAST BOILER ROOM. COAL COULD ALSO GO THROUGH THE CRUSHER AND BE DIVERTED TO THE CONVEYOR SHOWN IN THE LEFT FOREGROUND. COAL PILES FORMED UNDER THE CONVEYOR WOULD BE MOVED AND SHAPED BY BULLDOZER. A GROUND LEVEL HOPPER WAS LOCATED TO THE RIGHT OF THE SLOPING HOUSING WHICH EXTENDS FROM THE SOUTH SIDE OF THE COAL TRESTLE. THIS HOPPER FED A CONVEYOR LOCATED WITHIN THE SLOPING HOUSING. COAL DROPPED INTO THE HOPPER WOULD BE CONVEYED INTO THE CRUSHER UNDER THE TRESTLE AND THEN DIVERTED TO THE CONVEYOR WHICH LOADED THE 1000 TON BUNKER. THE COAL HANDLING SYSTEM WAS DESIGNED BY GIBBS AND HILL IN 1947. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  15. Hydrologic reconnaissance of the Kolob, Alton, and Kaiparowits Plateau coal fields, south-central Utah

    USGS Publications Warehouse

    Plantz, Gerald G.

    1985-01-01

    The study area in south-central Utah (fig. 1) is noted for its large coal reserves in the Alton, Kolob, and Kaiparowits Plateau coal fields. The area also is noted for its scenic beauty and general scarcity of water. Although there has been very little development of the coal resources through 1983, there is a potential for large-scale development with both surface- and underground-mining methods. Mining of coal could have significant effects on the quantity and quality of the water resources. The purpose of this atlas is to define the surface- and ground-water resources of the area and to identify the potential effects on these resources by coal mining.

  16. Impacts of coal burning on ambient PM2.5 pollution in China

    NASA Astrophysics Data System (ADS)

    Ma, Qiao; Cai, Siyi; Wang, Shuxiao; Zhao, Bin; Martin, Randall V.; Brauer, Michael; Cohen, Aaron; Jiang, Jingkun; Zhou, Wei; Hao, Jiming; Frostad, Joseph; Forouzanfar, Mohammad H.; Burnett, Richard T.

    2017-04-01

    High concentration of fine particles (PM2.5), the primary concern about air quality in China, is believed to closely relate to China's large consumption of coal. In order to quantitatively identify the contributions of coal combustion in different sectors to ambient PM2. 5, we developed an emission inventory for the year 2013 using up-to-date information on energy consumption and emission controls, and we conducted standard and sensitivity simulations using the chemical transport model GEOS-Chem. According to the simulation, coal combustion contributes 22 µg m-3 (40 %) to the total PM2. 5 concentration at national level (averaged in 74 major cities) and up to 37 µg m-3 (50 %) in the Sichuan Basin. Among major coal-burning sectors, industrial coal burning is the dominant contributor, with a national average contribution of 10 µg m-3 (17 %), followed by coal combustion in power plants and the domestic sector. The national average contribution due to coal combustion is estimated to be 18 µg m-3 (46 %) in summer and 28 µg m-3 (35 %) in winter. While the contribution of domestic coal burning shows an obvious reduction from winter to summer, contributions of coal combustion in power plants and the industrial sector remain at relatively constant levels throughout the year.

  17. Coal feed lock

    DOEpatents

    Pinkel, I. Irving

    1978-01-01

    A coal feed lock is provided for dispensing coal to a high pressure gas producer with nominal loss of high pressure gas. The coal feed lock comprises a rotor member with a diametral bore therethrough. A hydraulically activated piston is slidably mounted in the bore. With the feed lock in a charging position, coal is delivered to the bore and then the rotor member is rotated to a discharging position so as to communicate with the gas producer. The piston pushes the coal into the gas producer. The rotor member is then rotated to the charging position to receive the next load of coal.

  18. New method of feeding coal - Continuous extrusion of fully plastic coal

    NASA Technical Reports Server (NTRS)

    Ryason, P. R.; England, C.

    1978-01-01

    Continuous feeding of coal in a compressing screw extruder is described as a method of introducing coal into pressurized systems. The method utilizes the property of many bituminous coals of softening at temperatures from 350 to 400 C. Coal is then fed much in the manner of common thermoplastics, using screw extruders. Preliminary results show that coals can be extruded at rates of about 3.3 kg/MJ, similar to those for plastics.

  19. GIS Representation of Coal-Bearing Areas in Africa

    USGS Publications Warehouse

    Merrill, Matthew D.; Tewalt, Susan J.

    2008-01-01

    extent, without regard to the underlying geology base or topographic constraints. Indication of the presence of African coal is based on multiple sources. However, the quality of the sources varies and there is often disagreement in the literature. This dataset includes the rank, age, and location of coal in Africa as well as the detailed source information responsible for each coal-bearing polygon. The dataset is not appropriate for use in resource assessments of any kind. Attributes necessary for tasks, such as number of coal seams, thickness of seams, and depth to coal are rarely provided in the literature and accordingly not represented in this data set. Small-scale investigations, representations and display uses are most appropriate for this product. This product is the first to show coal distribution as bounded by actual geologic contacts for the entire African continent. In addition to the spatial component of this dataset, complete references to source material are provided for each polygon, making this product a useful first step resource in African coal research. Greater detail regarding the creation of this dataset as well as the sources used is provided in the metadata file for the Africa_coal.shp file.

  20. Mining geology of the Pond Creek seam, Pikeville Formation, Middle Pennsylvanian, in part of the Eastern Kentucky Coal Field, USA

    USGS Publications Warehouse

    Greb, S.F.; Popp, J.T.

    1999-01-01

    The Pond Creek seam is one of the leading producers of coal in the Eastern Kentucky Coal Field. The geologic factors that affect mining were investigated in several underground mines and categorized in terms of coal thickness, coal quality, and roof control. The limits of mining and thick coal are defined by splitting along the margin of the coal body. Within the coal body, local thickness variation occurs because of (1) leader coal benches filling narrow, elongated depressions, (2) rider coal benches coming near to or merging with the main bench, (3) overthrust coal benches being included along paleochannel margins, (4) cutouts occuring beneath paleochannels, and (5) very hard and unusual rock partings occuring along narrow, elongated trends. In the study area, the coal is mostly mined as a compliance product: sulfur contents are less than 1% and ash yields are less than 10%. Local increases in sulfur occur beneath sandstones, and are inferred to represent post-depositional migration of fluids through porous sands into the coal. Run-of-mine quality is also affected by several mine-roof conditions and trends of densely concentrated rock partings, which lead to increased in- and out-of-seam dilution and overall ash content of the mined coal. Roof control is largely a function of a heterolithic facies mosaic of coastal-estuarine origin, regional fracture trends, and unloading stress related to varying mine depth beneath the surface. Lateral variability of roof facies is the rule in most mines. The largest falls occur beneath modern valleys and parallel fractures, along paleochannel margins, within tidally affected 'stackrock,' and beneath rider coals. Shale spalling, kettlebottoms, and falls within other more isolated facies also occur. Many of the lithofacies, and falls related to bedding weaknesses within or between lithofacies, occur along northeast-southwest trends, which can be projected in advance of mining. Fracture-related falls occur independently of

  1. Associations between social understanding, sibling relationship quality, and siblings' conflict strategies and outcomes.

    PubMed

    Recchia, Holly E; Howe, Nina

    2009-01-01

    Sibling relationship quality and social understanding (second-order false belief, conflict interpretation, and narrative conflict perspective references) were examined as unique and interactive correlates of sibling conflict behavior in 62 dyads (older M age = 8.39 years and younger M age = 6.06 years). High-quality relationships were associated with positive conflict processes. Younger siblings' second-order false belief scores were negatively associated with constructive conflict strategies, and older siblings' narrative self-referential focus was negatively associated with compromise. Associations between younger children's social understanding (conflict interpretation and narrative perspective references) and siblings' dyadic conflict behavior were moderated by relationship quality. Results suggest that links between social understanding and conflict behavior should be considered in conjunction with the quality of children's relationships.

  2. Looking southeast at coal conveyor leading from the coal unloading ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking southeast at coal conveyor leading from the coal unloading station to the coal elevator. - Wheeling-Pittsburgh Steel Corporation, Allenport Works, Boiler House, Route 88 on West bank of Monongahela River, Allenport, Washington County, PA

  3. Low-pressure hydrocracking of coal-derived Fischer-Tropsch waxes to diesel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieter Leckel

    2007-06-15

    Coal-derived low-temperature Fischer-Tropsch (LTFT) wax was hydrocracked at pressures of 3.5-7.0 MPa using silica-alumina-supported sulfided NiW/NiMo and an unsulfided noble metal catalyst, modified with MoO{sub 3}. A low-pressure operation at 3.5 MPa produced a highly isomerized diesel, having low cloud points (from -12 to -28{sup o}C) combined with high cetane numbers (69-73). These properties together with the extremely low sulfur ({lt}5 ppm) and aromatic ({lt}0.5%) contents place coal/liquid (CTL) derived distillates as highly valuable blending components to achieve Eurograde diesel specifications. The upgrading of coal-based LTFT waxes through hydrocracking to high-quality diesel fuel blend components in combination with commercial-feasible coal-integratedmore » gasification combined cycle (coal-IGCC) CO{sub 2} capture and storage schemes should make CTL technology more attractive. 28 refs., 7 figs., 8 tabs.« less

  4. EVALUATION OF ANALYSIS OF GAS CONTENT AND COAL PROPERTIES OF MAJOR COAL BEARING REGIONS OF THE UNITED STATES

    EPA Science Inventory

    The report is a compilation of quality assured data on gas content and coalbed reservoir properties for 11 major coal bearing regions in the U.S. The primary source of these data is the U.S. Bureau of Mines (BOM) gas content measurements program conducted during the 1970s and 198...

  5. Opportunities for wind and solar to displace coal and associated health impacts in Texas

    NASA Astrophysics Data System (ADS)

    Cohan, D. S.; Strasert, B.; Slusarewicz, J.

    2017-12-01

    Texas uses more coal for power production than any other state, but also leads the nation in wind power while lagging in solar. Many analysts expect that more than half of coal power plants may close within the next decade, unable to compete with cheaper natural gas and renewable electricity. To what extent could displacing coal with wind and solar yield benefits for air quality, health, and climate? Here, we present modeling of the ozone, particulate matter, and associated health impacts of each of 15 coal power plants in Texas, using the CAMx model for air quality and BenMAP for health effects. We show that health impacts from unscrubbed coal plants near urban areas can be an order of magnitude larger than some other facilities. We then analyze the temporal patterns of generation that could be obtained from solar and wind farms in various regions of Texas that could displace these coal plants. We find that winds along the southern Gulf coast of Texas exhibit strikingly different temporal patterns than in west Texas, peaking on summer afternoons rather than winter nights. Thus, wind farms from the two regions along with solar farms could provide complementary sources of power to displace coal. We quantify several metrics to characterize the extent to which wind and solar farms in different regions provide complementary sources of power that can reliably displace traditional sources of electricity.

  6. Coal recovery process

    DOEpatents

    Good, Robert J.; Badgujar, Mohan

    1992-01-01

    A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

  7. Annual Coal Distribution

    EIA Publications

    2016-01-01

    The Annual Coal Distribution Report (ACDR) provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing state. All data for the report year are final and this report supersedes all data in the quarterly distribution reports.

  8. Organic matter in a coal ball: Peat or coal?

    USGS Publications Warehouse

    Hatcher, P.G.; Lyons, P.C.; Thompson, C.L.; Brown, F.W.; Maciel, G.E.

    1982-01-01

    Chemical analyses of morphologically preserved organic matter in a Carboniferous coal ball reveal that the material is coalified to a rank approximately equal to that of the surrounding coal. Hence, the plant tissues in the coal ball were chemically altered by coalification processes and were not preserved as peat. Copyright ?? 1982 AAAS.

  9. Rockburst Disaster Prediction of Isolated Coal Pillar by Electromagnetic Radiation Based on Frictional Effect

    PubMed Central

    Zhao, Tongbin; Yin, Yanchun; Xiao, Fukun; Tan, Yunliang; Zou, Jianchao

    2014-01-01

    Based on the understanding that charges generated during coal cracking are due to coal particle friction, a microstructure model was developed by considering four different variation laws of friction coefficient. Firstly, the frictional energy release of coal sample during uniaxial compressive tests was investigated and discussed. Then electromagnetic radiation method was used to predict the potential rockburst disaster in isolated coal pillar mining face, Muchengjian Colliery. The results indicate that the friction coefficient of coal particles decreases linearly with the increase of axial loading force. In predicting the strain-type rockburst, the high stress state of coal must be closely monitored. Field monitoring shows that electromagnetic radiation signal became abnormal before the occurrence of rockburst during isolated coal pillar mining. Furthermore, rockburst tends to occur at the early and ending stages of isolated coal pillar extraction. Mine-site investigation shows the occurrence zone of rockburst is consistent with the prediction, proving the reliability of the electromagnetic radiation method to predict strain-type rockburst disaster. PMID:25054186

  10. Rockburst disaster prediction of isolated coal pillar by electromagnetic radiation based on frictional effect.

    PubMed

    Zhao, Tongbin; Yin, Yanchun; Xiao, Fukun; Tan, Yunliang; Zou, Jianchao

    2014-01-01

    Based on the understanding that charges generated during coal cracking are due to coal particle friction, a microstructure model was developed by considering four different variation laws of friction coefficient. Firstly, the frictional energy release of coal sample during uniaxial compressive tests was investigated and discussed. Then electromagnetic radiation method was used to predict the potential rockburst disaster in isolated coal pillar mining face, Muchengjian Colliery. The results indicate that the friction coefficient of coal particles decreases linearly with the increase of axial loading force. In predicting the strain-type rockburst, the high stress state of coal must be closely monitored. Field monitoring shows that electromagnetic radiation signal became abnormal before the occurrence of rockburst during isolated coal pillar mining. Furthermore, rockburst tends to occur at the early and ending stages of isolated coal pillar extraction. Mine-site investigation shows the occurrence zone of rockburst is consistent with the prediction, proving the reliability of the electromagnetic radiation method to predict strain-type rockburst disaster.

  11. Rate of coal hydroliquefaction: correlation to coal structure. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldwin, R.M.; Voorhees, K.J.; Durfee, S.L.

    This report summarizes the research carried out on DOE grant No. FG22-83PC60784. The work was divided into two phases. The first phase consisted of a series of coal liquefaction rate measurements on seven different coals from the Exxon sample bank, followed by correlation with parent coal properties. The second phase involved characterization of the coals by pyrolysis/mass spectrometry and subsequent correlations of the Py/MS patterns with various liquefaction reactivity parameters. The hydroliquefaction reactivities for a suite of 7 bituminous and subbituminous coals were determined on a kinetic basis. These reactivities were correlated fairly successfully with the following parent coal properties:more » volatile matter, H/C and O/C ratios, vitrinite reflectance, and calorific value. The total surface areas of the coals were experimentally determined. Reactivity was shown to be independent of surface area. Following completion of the batch reactor experiments, the seven coals investigated were analyzed by pyrolysis/mass spectrometry. The pyrolysis spectra were then submitted to factor analysis in order to extract significant features of the coal for use in correlational efforts. These factors were then related to a variety of liquefaction reactivity definitions, including both rate and extent of liquefaction to solvent solubility classifications (oils, asphaltenes, preasphaltenes, etc.). In general, extent of reaction was found to correlate best with the Py/MS data. 37 refs., 25 figs., 11 tabs.« less

  12. 39. BOILER HOUSE, COAL CONVEYOR LEADING FROM COAL TOWER No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. BOILER HOUSE, COAL CONVEYOR LEADING FROM COAL TOWER No. 1 (WEST) (NOTE: COAL CARS No. 9 & 5 IN BACKGROUND) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  13. 35. BOILER HOUSE, TRACK FOR COAL CARS LEADING TO COAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. BOILER HOUSE, TRACK FOR COAL CARS LEADING TO COAL TOWER No. 2 (NOTE: SKYLIGHT ABOVE; COAL CARS IN FAR BACKGROUND) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  14. 34. BOILER HOUSE, COAL CONVEYOR AND TURNAROUND TRACK FOR COAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. BOILER HOUSE, COAL CONVEYOR AND TURN-AROUND TRACK FOR COAL CARS (NOTE: COAL CAR No. 6 IN FAR BACK GROUND) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  15. Electrical Resistivity Tomography for coal fire mapping over Jharia coal field, India

    NASA Astrophysics Data System (ADS)

    Pal, S. K.; Kumar, S.; Bharti, A. K.; Pathak, V. K.; Kumar, R.

    2016-12-01

    Over the decades, coal fires are serious global concern posing grievous hazards to the valuable energy resources, local environments and human life. The coal seam and coal mine fires may be initiated due to improper mining activities, exothermic reactions, lighting, forest fire and other anthropic activities, which burn the coal and may continue underground for decades. The burning of concealed coal seams is a complex process involving numerous ill-defined parameters. Generally, the coal exhibits resistivity of 100 to 500Ωm at normal temperature conditions. During the pyrolysis process, at temperatures greater than 6500C coal became a good conductor with a resistivity of approximately 1 Ωm. The present study deals with the mapping of coal fire over Jharia coal field, India using Electrical Resistivity Tomography (ERT). A state-of-the-art 61-channel 64 electrode FlashRES-Universal ERT data acquisition system has been used for data acquisition in the field. The ERT data have been collected using Gradient array and processed in FlashRES Universal survey data checking program for removing noisy data. Then, filtered output data have been inverted using a 2.5D resistivity inversion program. Low resistivity anomalies over 80m-125m and 320m-390m along the profile are inferred to be active coal fire in seam- XVI at a depth of 25m -35m(Figure 1). High resistivity anomaly over 445m - 510m at a depth of 25m -35m has been delineated, due to void associated with complete combustion of seam- XVI coal, followed by char and ash formation resulting from the coal seam fire. Results prove the efficacy of the ERT study comprising Gradient array for coal fire mapping over, Jharia coal field, India.

  16. Nitrogen in Chinese coals

    USGS Publications Warehouse

    Wu, D.; Lei, J.; Zheng, B.; Tang, X.; Wang, M.; Hu, Jiawen; Li, S.; Wang, B.; Finkelman, R.B.

    2011-01-01

    Three hundred and six coal samples were taken from main coal mines of twenty-six provinces, autonomous regions, and municipalities in China, according to the resource distribution and coal-forming periods as well as the coal ranks and coal yields. Nitrogen was determined by using the Kjeldahl method at U. S. Geological Survey (USGS), which exhibit a normal frequency distribution. The nitrogen contents of over 90% Chinese coal vary from 0.52% to 1.41% and the average nitrogen content is recommended to be 0.98%. Nitrogen in coal exists primarily in organic form. There is a slight positive relationship between nitrogen content and coal ranking. ?? 2011 Science Press, Institute of Geochemistry, CAS and Springer Berlin Heidelberg.

  17. Microbial solubilization of coal

    DOEpatents

    Strandberg, G.W.; Lewis, S.N.

    1988-01-21

    The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

  18. Brecciated and mineralized coals in Union County Western Kentucky coal field

    USGS Publications Warehouse

    Hower, J.C.; Williams, D.A.; Eble, C.F.; Sakulpitakphon, T.; Moecher, D.P.

    2001-01-01

    Coals from the D-2 and D-3 boreholes in the Grove Center 7 1/2 min quadrangle, Union County, KY, have been found to be highly brecciated and mineralized. The mineralization is dominated by a carbonate assemblage with minor sulfides and sulfates. Included among the secondary minerals is the lead selenide, clausthalite. Overall, the emplacement of secondary vein minerals was responsible for raising the rank of the coals from the 0.6-0.7% Rmax range found in the area to as high as 0.95-0.99% Rmax. A 1.3-m-thick coal found in one of the boreholes is unique among known Western Kentucky coals in having less than 50% vitrinite. Semifusinite and fusinite dominate the maceral assemblages. The coal is also low in sulfur coal, which is unusual for the Illinois Basin. It has an ash yield of less than 10%; much of it dominated by pervasive carbonate veining. The age of the thick coal in core D-2 is similar to that of the Elm Lick coal bed, found elsewhere in the Western Kentucky coalfield. The coals in D-3 are younger, having Stephanian palynomorph assemblages. ?? 2001 Elsevier Science B.V. All rights reserved.

  19. Coal desulfurization

    NASA Technical Reports Server (NTRS)

    Corcoran, William H. (Inventor); Vasilakos, Nicholas P. (Inventor); Lawson, Daniel D. (Inventor)

    1982-01-01

    A method for enhancing solubilizing mass transport of reactive agents into and out of carbonaceous materials, such as coal. Solubility parameters of mass transfer and solvent media are matched to individual peaks in the solubility parameter spectrum of coals to enhance swelling and/or dissolution. Methanol containing reactive agent carriers are found particularly effective for removing organic sulfur from coals by chlorinolysis.

  20. A big picture look at big coal: Teaching students to link societal and environmental issues

    NASA Astrophysics Data System (ADS)

    Sojka, S. L.

    2014-12-01

    The environmental impact of coal mining and burning of coal is evident and generally easy to understand. However, students often struggle to understand the social impacts of coal mining. A jigsaw activity culminating in a mock town hall meeting helps students link social, economic and environmental impacts of coal mining. Students are divided into four groups and assigned the task of researching the environmental, social, economic or health impacts of coal mining in West Virginia. When students have completed the research, they are assigned a role for the town hall. Roles include local community members, direct employees of the coal industry, business owners from industries related to coal mining, and environmentalists. One student from each research area is assigned to each role, forcing students to consider environmental, social, health and economic aspects of coal mining in choosing an appropriate position for their role. Students have 30 minutes to prepare their positions and then present for 2-5 minutes in the simulated town hall. We then have open class discussion and review the positions. Finally, students are required to write a letter to the editor of the local paper. The specific topic for the town hall and letters can be varied based on current events and could include new regulations on power plants, mine safety, government funding of alternative energy supplies or a range of other topics. This approach forces students to consider all aspects of the issue. In addition, because students have to assume a role, they are more aware of the direct impact that coal mining has on individuals' lives.

  1. The migration law of overlay rock and coal in deeply inclined coal seam with fully mechanized top coal caving.

    PubMed

    Liu, Jian; Chen, Shan-Le; Wang, Hua-Jun; Li, Yu-Cheng; Geng, Xiaowei

    2015-07-01

    In a mine area, some environment geotechnics problems always occure, induced by mined-out region such as the subsidence and cracks at ground level, deformation and destruction of buildings, landslides destruction of water resources and the ecological environment. In order to research the migration of surrounding rock and coal in steeply inclined super high seams which used fully mechanized top coal caving, a working face of a certain mine was made as an example, analyzed the migration law of the overlay rock and coal under different caving ratio of fully mechanized top coal caving with numerical simulation analysis. The results suggest that the laws of overlay rock deformation caused by deeply inclined coal seam were different from horizontal coal seam. On the inclined direction, with an increase of dip angle and caving ratio, the vertical displacement of overlay rock and coal became greater, the asymmetric phenomenon of vertical displacement became obvious. On the trend direction, active region and transition region in goaf became smaller along with the increase of mining and caving ratio. On the contrary, the stable region area became greater. Therefore, there was an essential difference between the mechanism of surface movement deformation with deeply inclined coal seam and that with horizontal coal seam.

  2. Coal resources, reserves and peak coal production in the United States

    USGS Publications Warehouse

    Milici, Robert C.; Flores, Romeo M.; Stricker, Gary D.

    2013-01-01

    In spite of its large endowment of coal resources, recent studies have indicated that United States coal production is destined to reach a maximum and begin an irreversible decline sometime during the middle of the current century. However, studies and assessments illustrating coal reserve data essential for making accurate forecasts of United States coal production have not been compiled on a national basis. As a result, there is a great deal of uncertainty in the accuracy of the production forecasts. A very large percentage of the coal mined in the United States comes from a few large-scale mines (mega-mines) in the Powder River Basin of Wyoming and Montana. Reported reserves at these mines do not account for future potential reserves or for future development of technology that may make coal classified currently as resources into reserves in the future. In order to maintain United States coal production at or near current levels for an extended period of time, existing mines will eventually have to increase their recoverable reserves and/or new large-scale mines will have to be opened elsewhere. Accordingly, in order to facilitate energy planning for the United States, this paper suggests that probabilistic assessments of the remaining coal reserves in the country would improve long range forecasts of coal production. As it is in United States coal assessment projects currently being conducted, a major priority of probabilistic assessments would be to identify the numbers and sizes of remaining large blocks of coal capable of supporting large-scale mining operations for extended periods of time and to conduct economic evaluations of those resources.

  3. Comparison Analysis of Coal Biodesulfurization and Coal's Pyrite Bioleaching with Acidithiobacillus ferrooxidans

    PubMed Central

    Hong, Fen-Fen; He, Huan; Liu, Jin-Yan; Tao, Xiu-Xiang; Zheng, Lei; Zhao, Yi-Dong

    2013-01-01

    Acidithiobacillus ferrooxidans (A. ferrooxidans) was applied in coal biodesulfurization and coal's pyrite bioleaching. The result showed that A. ferrooxidans had significantly promoted the biodesulfurization of coal and bioleaching of coal's pyrite. After 16 days of processing, the total sulfur removal rate of coal was 50.6%, and among them the removal of pyritic sulfur was up to 69.9%. On the contrary, after 12 days of processing, the coal's pyrite bioleaching rate was 72.0%. SEM micrographs showed that the major pyrite forms in coal were massive and veinlets. It seems that the bacteria took priority to remove the massive pyrite. The sulfur relative contents analysis from XANES showed that the elemental sulfur (28.32%) and jarosite (18.99%) were accumulated in the biotreated residual coal. However, XRD and XANES spectra of residual pyrite indicated that the sulfur components were mainly composed of pyrite (49.34%) and elemental sulfur (50.72%) but no other sulfur contents were detected. Based on the present results, we speculated that the pyrite forms in coal might affect sulfur biooxidation process. PMID:24288464

  4. Wellbeing Understanding in High Quality Healthcare Informatics and Telepractice.

    PubMed

    Fiorini, Rodolfo A; De Giacomo, Piero; L'Abate, Luciano

    2016-01-01

    The proper use of healthcare informatics technology and multidimensional conceptual clarity are fundamental to create and boost outstanding clinical and telepractice results. Avoiding even terminology ambiguities is mandatory for high quality of care service. For instance, well-being or wellbeing is a different way to write the same concept only, or there is a good deal of ambiguity around the meanings of these terms the way they are written. In personal health, healthcare and healthcare informatics, this kind of ambiguity and lack of conceptual clarity has been called out repeatedly over the past 50 years. It is time to get the right, terse scenario. We present a brief review to develop and achieve ultimate wellbeing understanding for practical high quality healthcare informatics and telepractice application. This article presents an innovative point of view on deeper wellbeing understanding towards its increased clinical effective application.

  5. Potential effects of surface coal mining on the hydrology of the Greenleaf-Miller area, Ashland coal field, southeastern Montana

    USGS Publications Warehouse

    Levings, G.W.

    1982-01-01

    The Greenleaf-Miller area of the Ashland coal field contains reserves of Federal coal that have been identified for potential lease sale. A hydrologic study was conducted in the potential lease area in 1981 to describe the existing hydrologic system and to assess potential impacts of surface coal mining on local water resources. The hydrologic data collected from wells, test holes, and springs were used to identify aquifers in the alluvium (Pleistocene and Holocene age) and the Tongue River member of the Fort Union Formation (Paleocene age). Coal, clinker, and sandstone beds comprise the aquifers in the Tongue River Member. Most streams are ephemeral and flow only as a result of precipitation. The only perennial surface-water flow in the study area is along short reaches downstream from springs. A mine plan for the area is not available; thus, the location of mine cuts, direction and rate of the mine expansion, and duration of mining are unknown. The mining of the Sawyer and Knoblock coal beds in the Tonge River Member would effect ground-water flow in the area. Declines in the potentiometric surface would be caused by dewatering where the mine pits intersect the water table. Wells and springs would be removed in the mine area; however, deeper aquifers are available as replacement sources of water. The chemical quality of the ground water would change after moving through the spoils. The change would be an increase in the concentration of dissolved solids. (USGS)

  6. Service quality: understanding and implementing the concept in the clinical laboratory. Match service quality to consumer expectations.

    PubMed

    O'Connor, S J

    1989-01-01

    The increasingly competitive health-care marketplace has mandated that health-care managers pay careful attention to the issue of quality from the perspective of the consumer. The importance of this issue is underscored by the fact that numerous health-care institutions and associations have recently begun to recognize the urgent need to obtain a greater understanding of service quality in a health-care situation. This article suggests means to understand, identify, improve, and implement effective approaches to this vital aspect of the marketing mix.

  7. ASTM clustering for improving coal analysis by near-infrared spectroscopy.

    PubMed

    Andrés, J M; Bona, M T

    2006-11-15

    Multivariate analysis techniques have been applied to near-infrared (NIR) spectra coals to investigate the relationship between nine coal properties (moisture (%), ash (%), volatile matter (%), fixed carbon (%), heating value (kcal/kg), carbon (%), hydrogen (%), nitrogen (%) and sulphur (%)) and the corresponding predictor variables. In this work, a whole set of coal samples was grouped into six more homogeneous clusters following the ASTM reference method for classification prior to the application of calibration methods to each coal set. The results obtained showed a considerable improvement of the error determination compared with the calibration for the whole sample set. For some groups, the established calibrations approached the quality required by the ASTM/ISO norms for laboratory analysis. To predict property values for a new coal sample it is necessary the assignation of that sample to its respective group. Thus, the discrimination and classification ability of coal samples by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) in the NIR range was also studied by applying Soft Independent Modelling of Class Analogy (SIMCA) and Linear Discriminant Analysis (LDA) techniques. Modelling of the groups by SIMCA led to overlapping models that cannot discriminate for unique classification. On the other hand, the application of Linear Discriminant Analysis improved the classification of the samples but not enough to be satisfactory for every group considered.

  8. Coal and Coal/Biomass-Based Power Generation

    EPA Science Inventory

    For Frank Princiotta's book, Global Climate Change--The Technology Challenge Coal is a key, growing component in power generation globally. It generates 50% of U.S. electricity, and criteria emissions from coal-based power generation are being reduced. However, CO2 emissions m...

  9. Process for changing caking coals to noncaking coals

    DOEpatents

    Beeson, Justin L.

    1980-01-01

    Caking coals are treated in a slurry including alkaline earth metal hydroxides at moderate pressures and temperatures in air to form noncaking carbonaceous material. Hydroxides such as calcium hydroxide, magnesium hydroxide or barium hydroxide are contemplated for slurrying with the coal to interact with the agglomerating constituents. The slurry is subsequently dewatered and dried in air at atmospheric pressure to produce a nonagglomerating carbonaceous material that can be conveniently handled in various coal conversion and combustion processes.

  10. Statistical analysis of surface-water-quality data in and near the coal-mining region of southwestern Indiana, 1957-80

    USGS Publications Warehouse

    Martin, Jeffrey D.; Crawford, Charles G.

    1987-01-01

    The Surface Mining Control and Reclamation Act of 1977 requires that applications for coal-mining permits contain information about the water quality of streams at and near a proposed mine. To meet this need for information, streamflow, specific conductance, pH, and concentrations of total alkalinity, sulfate, dissolved solids, suspended solids, total iron, and total manganese at 37 stations were analyzed to determine the spatial and seasonal variations in water quality and to develop equations for predicting water quality. The season of lowest median streamflow was related to the size of the drainage area. Median streamflow was least during fall at 15 of 16 stations having drainage areas greater than 1,000 square miles but was least during summer at 17 of 21 stations having drainage areas less than 1,000 square miles. In general, the season of lowest median specific conductance occurred during the season of highest streamflow except at stations on the Wabash River. Median specific conductance was least during summer at 9 of 9 stations on the Wabash River, but was least during winter or spring (the seasons of highest streamflow) at 27 of the remaining 28 stations. Linear, inverse, semilog, log-log, and hyperbolic regression models were used to investigate the functional relations between water-quality characteristics and streamflow. Of 186 relations investigated, 143 were statistically significant. Specific conductance and concentrations of total alkalinity and sulfate were negatively related to streamflow at all stations except for a positive relation between total alkalinity concentration and streamflow at Patoka River near Princeton. Concentrations of total alkalinity and sulfate were positively related to specific conductance at all stations except for a negative relation at Patoka River near Princeton and for a positive and negative relation at Patoka River at Jasper. Most of these relations are good, have small confidence intervals, and will give reliable

  11. Direct energy balance based active disturbance rejection control for coal-fired power plant.

    PubMed

    Sun, Li; Hua, Qingsong; Li, Donghai; Pan, Lei; Xue, Yali; Lee, Kwang Y

    2017-09-01

    The conventional direct energy balance (DEB) based PI control can fulfill the fundamental tracking requirements of the coal-fired power plant. However, it is challenging to deal with the cases when the coal quality variation is present. To this end, this paper introduces the active disturbance rejection control (ADRC) to the DEB structure, where the coal quality variation is deemed as a kind of unknown disturbance that can be estimated and mitigated promptly. Firstly, the nonlinearity of a recent power plant model is analyzed based on the gap metric, which provides guidance on how to set the pressure set-point in line with the power demand. Secondly, the approximate decoupling effect of the DEB structure is analyzed based on the relative gain analysis in frequency domain. Finally, the synthesis of the DEB based ADRC control system is carried out based on multi-objective optimization. The optimized ADRC results show that the integrated absolute error (IAE) indices of the tracking performances in both loops can be simultaneously improved, in comparison with the DEB based PI control and H ∞ control system. The regulation performance in the presence of the coal quality variation is significantly improved under the ADRC control scheme. Moreover, the robustness of the proposed strategy is shown comparable with the H ∞ control. Copyright © 2017. Published by Elsevier Ltd.

  12. Process for hydrogenating coal and coal solvents

    DOEpatents

    Tarrer, Arthur R.; Shridharani, Ketan G.

    1983-01-01

    A novel process is described for the hydrogenation of coal by the hydrogenation of a solvent for the coal in which the hydrogenation of the coal solvent is conducted in the presence of a solvent hydrogenation catalyst of increased activity, wherein the hydrogenation catalyst is produced by reacting ferric oxide with hydrogen sulfide at a temperature range of 260.degree. C. to 315.degree. C. in an inert atmosphere to produce an iron sulfide hydrogenation catalyst for the solvent. Optimally, the reaction temperature is 275.degree. C. Alternately, the reaction can be conducted in a hydrogen atmosphere at 350.degree. C.

  13. After a century-Revised Paleogene coal stratigraphy, correlation, and deposition, Powder River Basin, Wyoming and Montana

    USGS Publications Warehouse

    Flores, Romeo M.; Spear, Brianne D.; Kinney, Scott A.; Purchase, Peter A.; Gallagher, Craig M.

    2010-01-01

    The stratigraphy, correlation, mapping, and depositional history of coal-bearing strata in the Paleogene Fort Union and Wasatch Formations in the Powder River Basin were mainly based on measurement and description of outcrops during the early 20th century. Subsequently, the quality and quantity of data improved with (1) exploration and development of oil, gas, and coal during the middle 20th century and (2) the onset of coalbed methane (CBM) development during the late 20th and early 21st centuries that resulted in the drilling of more than 26,000 closely spaced wells with accompanying geophysical logs. The closeness of the data control points, which average 0.5 mi (805 m) apart, made for better accuracy in the subsurface delineation and correlation of coal beds that greatly facilitated the construction of regional stratigraphic cross sections and the assessment of resources. The drillhole data show that coal beds previously mapped as merged coal zones, such as the Wyodak coal zone in the Wyoming part of the Powder River Basin, gradually thinned into several discontinuous beds and sequentially split into as many as 7 hierarchical orders westward and northward. The thinning and splitting of coal beds in these directions were accompanied by as much as a ten-fold increase in the thicknesses of sandstone-dominated intervals within the Wyodak coal zone. This probably resulted from thrust loading by the eastern front of the Bighorn uplift accompanied by vertical displacement along lineaments that caused subsidence of the western axial part of the Powder River Basin during Laramide deformation in Late Cretaceous and early Tertiary time. Accommodation space was thereby created for synsedimentary alluvial infilling that controlled thickening, thinning, splitting, pinching out, and areal distribution of coal beds. Equally important was differential subsidence between this main accommodation space and adjoining areas, which influenced the overlapping, for example, of the

  14. Economics and coal resource appraisal: strippable coal in the Illinois Basin ( USA).

    USGS Publications Warehouse

    Attanasi, E.D.; Green, E.K.

    1981-01-01

    Because coal is expected to provide an increasing part of U.S. energy supply, it is crucial for long term planning that coal-resource appraisals convey sufficient information regarding the degree of economic resource scarcity as coal consumption increases. Argues that coal-resource estimates, as they are now made, will not give warning of future supply difficulties. A method for incorporating an economic dimension into appraisals of strippable coal resources is presented and applied to a major producing region, the Illinois part of the Illinois basin? In particular, a long-run incremental cost function (that is unit costs vs. cumulative reserves extracted) is estimated for strippable coal in Illinois. -from Authors

  15. Continuous coal processing method

    NASA Technical Reports Server (NTRS)

    Ryason, P. R. (Inventor)

    1980-01-01

    A coal pump is provided in which solid coal is heated in the barrel of an extruder under pressure to a temperature at which the coal assumes plastic properties. The coal is continuously extruded, without static zones, using, for example, screw extrusion preferably without venting through a reduced diameter die to form a dispersed spray. As a result, the dispersed coal may be continuously injected into vessels or combustors at any pressure up to the maximum pressure developed in the extrusion device. The coal may be premixed with other materials such as desulfurization aids or reducible metal ores so that reactions occur, during or after conversion to its plastic state. Alternatively, the coal may be processed and caused to react after extrusion, through the die, with, for example, liquid oxidizers, whereby a coal reactor is provided.

  16. Predicting Water Quality Problems Associated with Coal Fly Ash Disposal Facilities Using a Trace Element Partitioning Study

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S.; Donahoe, R. J.; Graham, E. Y.

    2006-12-01

    For much of the U.S., coal-fired power plants are the most important source of electricity for domestic and industrial use. Large quantities of fly ash and other coal combustion by-products are produced every year, the majority of which is impounded in lagoons and landfills located throughout the country. Many older fly ash disposal facilities are unlined and have been closed for decades. Fly ash often contains high concentrations of toxic trace elements such as arsenic, boron, chromium, molybdenum, nickel, selenium, lead, strontium and vanadium. Trace elements present in coal fly ash are of potential concern due to their toxicity, high mobility in the environment and low drinking water MCL values. Concern about the potential release of these toxic elements into the environment due to leaching of fly ash by acid rain, groundwater or acid mine drainage has prompted the EPA to develop national standards under the subtitle D of the Resource Conservation and Recovery Act (RCRA) to regulate ash disposal in landfills and surface impoundments. An attempt is made to predict the leaching of toxic elements into the environment by studying trace element partitioning in coal fly ash. A seven step sequential chemical extraction procedure (SCEP) modified from Filgueiras et al. (2002) is used to determine the trace element partitioning in seven coal fly ash samples collected directly from electric power plants. Five fly ash samples were derived from Eastern Bituminous coal, one derived from Western Sub-bituminous coal and the other derived from Northern Lignite. The sequential chemical extraction procedure gives valuable information on the association of trace elements: 1) soluble fraction, 2) exchangeable fraction, 3) acid soluble fraction, 4) easily reducible fraction, 5) moderately reducible fraction, 6) poorly reducible fraction and 7) oxidizable organics/sulfide fraction. The trace element partitioning varies with the composition of coal fly ash which is influenced by the

  17. Coal Data Browser

    EIA Publications

    The Coal Data Browser gives users easy access to coal information from EIA's electricity and coal surveys as well as data from the Mine Safety and Health Administration and trade information from the U.S. Census Bureau. Users can also see the shipment data from individual mines that deliver coal to the U.S. electric power fleet, have the ability to track supplies delivered to a given power plant, and to see which mines serve each particular plant.

  18. Understanding human quality judgment in assessing online forum contents for thread retrieval purpose

    NASA Astrophysics Data System (ADS)

    Ismail, Zuriati; Salim, Naomie; Huspi, Sharin Hazlin

    2017-10-01

    Compared to traditional materials or journals, user-generated contents are not peer-reviewed. Lack of quality control and the explosive growth of web contents make the task of finding quality information on the web especially critical. The existence of new facilities for producing web contents such as forum makes this issue more significant. This study focuses on online forums threads or discussion, where the forums contain valuable human-generated information in a form of discussions. Due to the unique structure of the online forum pages, special techniques are required to organize and search for information in these forums. Quality biased retrieval is a retrieval approach that search for relevant document and prioritized higher quality documents. Despite major concern of quality content and recent development of quality biased retrieval, there is an urgent need to understand how quality content is being judged, for retrieval and performance evaluation purposes. Furthermore, even though there are various studies on the quality of information, there is no standard framework that has been established. The primary aim of this paper is to contribute to the understanding of human quality judgment in assessing online forum contents. The foundation of this study is to compare and evaluate different frameworks (for quality biased retrieval and information quality). This led to the finding that many quality dimensions are redundant and some dimensions are understood differently between different studies. We conducted a survey on crowdsourcing community to measure the importance of each quality dimensions found in various frameworks. Accuracy and ease of understanding are among top important dimensions while threads popularity and contents manipulability are among least important dimensions. This finding is beneficial in evaluating contents of online forum.

  19. Correlation between the critical viscosity and ash fusion temperatures of coal gasifier ashes

    DOE PAGES

    Hsieh, Peter Y.; Kwong, Kyei-Sing; Bennett, James

    2015-09-27

    Coal gasification yields synthesis gas, an important intermediate in chemical manufacturing. It is also vital to the production of liquid fuels through the Fischer-Tropsch process and electricity in Integrated Gasification Combined Cycle power generation. Minerals naturally present in coal become molten in entrained-flow slagging gasifiers. Molten coal ash slag penetrates and dissolves refractory bricks, leading to costly plant shutdowns. The extent of coal ash slag penetration and refractory brick dissolution depends on the slag viscosity, the gasification temperature, and the composition of slag and bricks. We measured the viscosity of several synthetic coal ash slags with a high-temperature rotary viscometermore » and their ash fusion temperatures through optical image analysis. All measurements were made in a carbon monoxide-carbon dioxide reducing atmosphere that approximates coal gasification conditions. Empirical correlation models based on ash fusion temperatures were used to calculate critical viscosity temperatures based on the coal ash compositions. These values were then compared with those obtained from thermodynamic phase-transition models. An understanding of slag viscosity as a function of ash composition is important to reducing refractory wear in slagging coal gasifiers, which would help to reduce the cost and environmental impact of coal for chemical and electricity production.« less

  20. Correlation between the critical viscosity and ash fusion temperatures of coal gasifier ashes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Peter Y.; Kwong, Kyei-Sing; Bennett, James

    Coal gasification yields synthesis gas, an important intermediate in chemical manufacturing. It is also vital to the production of liquid fuels through the Fischer-Tropsch process and electricity in Integrated Gasification Combined Cycle power generation. Minerals naturally present in coal become molten in entrained-flow slagging gasifiers. Molten coal ash slag penetrates and dissolves refractory bricks, leading to costly plant shutdowns. The extent of coal ash slag penetration and refractory brick dissolution depends on the slag viscosity, the gasification temperature, and the composition of slag and bricks. We measured the viscosity of several synthetic coal ash slags with a high-temperature rotary viscometermore » and their ash fusion temperatures through optical image analysis. All measurements were made in a carbon monoxide-carbon dioxide reducing atmosphere that approximates coal gasification conditions. Empirical correlation models based on ash fusion temperatures were used to calculate critical viscosity temperatures based on the coal ash compositions. These values were then compared with those obtained from thermodynamic phase-transition models. An understanding of slag viscosity as a function of ash composition is important to reducing refractory wear in slagging coal gasifiers, which would help to reduce the cost and environmental impact of coal for chemical and electricity production.« less

  1. Geologic setting and water quality of selected basins in the active coal-mining areas of Ohio, 1989-91, with a summary of water quality for 1985-91

    USGS Publications Warehouse

    Sedam, A.C.; Francy, D.S.

    1993-01-01

    This report presents streamwater- and ground-water-quality data collected to characterize the baseline water quality for 21 drainage basins in the coal-mining region of eastern Ohio. The study area is mostly within the unglaciated part of eastern Ohio along the western edge of the Appalachian Plateaus Physiographic Province. The data collected from 1989-91 and presented in this report represent the third and final phase of a 7-year study to assess baseline water quality in Ohio's coal region during 1985-1991. During 1989-91, 246 samples from 41 streamwater sites were collected periodically from a long-term site network. Ranges and medians of measurements made at the long-term streamwater sites were following: specific conductance, 270 to 5,170 and 792 microsiemens per centimeter at 25 degrees Celsius; pH, 2.7 to 9.1 and 7.8; alkalinity, 1 to 391 and 116 mg/L (milligrams per liter). Ranges and medians of laboratory analyses of the same samples were the following: dissolved sulfate, 13 to 2,100 and 200 mg/L; dissolved aluminum, <10 to 17,000 and 300 ? /L (micrograms per liter); dissolved iron, <10 to 53,000 and 60 ? /L; and dissolved manganese, <10 to 17,000 and 295 ? /L. The ranges for concentrations of total recoverable aluminum, iron, and manganese were similar to the ranges of concentrations found for dissolved constituents. Medians of total recoverable aluminum and iron were about 10 times greater than the medians of dissolved aluminum and iron. During 1989-91, once-only sample collections were done at 45 streamwater sites in nine basins chosen for synoptic sampling. At several sites in the Middle Hocking River basin and Leading Creek basin, water had low pH and high concentrations of dissolved aluminum, iron and manganese. These water-quality characteristics are commonly associated with ace mine drainage. Throughout the entire 7-year study (1985-91), medians for most constituents at the long-term streamwater-sampling sites were fairly consistent, despite the

  2. Modeling of CO 2 sequestration in coal seams: Role of CO 2 -induced coal softening on injectivity, storage efficiency and caprock deformation: Original Research Article: Modeling of CO 2 sequestration in coal seams

    DOE PAGES

    Ma, Tianran; Rutqvist, Jonny; Liu, Weiqun; ...

    2017-01-30

    An effective and safe operation for sequestration of CO 2 in coal seams requires a clear understanding of injection-induced coupled hydromechanical processes such as the evolution of pore pressure, permeability, and induced caprock deformation. In this study, CO 2 injection into coal seams was studied using a coupled flow-deformation model with a new stress-dependent porosity and permeability model that considers CO 2 -induced coal softening. Based on triaxial compression tests of coal samples extracted from the site of the first series of enhanced coalbed methane field tests in China, a softening phenomenon that a substantial (one-order-of-magnitude) decrease of Young's modulusmore » and an increase of Poisson's ratio with adsorbed CO 2 content was observed. Such softening was considered in the numerical simulation through an exponential relation between elastic properties (Young's modulus and Poisson's ratio) and CO 2 pressure considering that CO 2 content is proportional to the CO 2 pressure. Our results of the numerical simulation show that the softening of the coal strongly affects the CO 2 sequestration performance, first by impeding injectivity and stored volume (cumulative injection) during the first week of injection, and thereafter by softening mediated rebound in permeability that tends to increase injectivity and storage over the longer term. A sensitivity study shows that stronger CO 2 -induced coal softening and higher CO 2 injection pressure contribute synergistically to increase a significant increase of CO 2 injectivity and adsorption, but also result in larger caprock deformations and uplift. This study demonstrates the importance of considering the CO 2 -induced softening when analyzing the performance and environmental impact of CO 2 -sequestration operations in unminable coal seams.« less

  3. Modeling of CO 2 sequestration in coal seams: Role of CO 2 -induced coal softening on injectivity, storage efficiency and caprock deformation: Original Research Article: Modeling of CO 2 sequestration in coal seams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Tianran; Rutqvist, Jonny; Liu, Weiqun

    An effective and safe operation for sequestration of CO 2 in coal seams requires a clear understanding of injection-induced coupled hydromechanical processes such as the evolution of pore pressure, permeability, and induced caprock deformation. In this study, CO 2 injection into coal seams was studied using a coupled flow-deformation model with a new stress-dependent porosity and permeability model that considers CO 2 -induced coal softening. Based on triaxial compression tests of coal samples extracted from the site of the first series of enhanced coalbed methane field tests in China, a softening phenomenon that a substantial (one-order-of-magnitude) decrease of Young's modulusmore » and an increase of Poisson's ratio with adsorbed CO 2 content was observed. Such softening was considered in the numerical simulation through an exponential relation between elastic properties (Young's modulus and Poisson's ratio) and CO 2 pressure considering that CO 2 content is proportional to the CO 2 pressure. Our results of the numerical simulation show that the softening of the coal strongly affects the CO 2 sequestration performance, first by impeding injectivity and stored volume (cumulative injection) during the first week of injection, and thereafter by softening mediated rebound in permeability that tends to increase injectivity and storage over the longer term. A sensitivity study shows that stronger CO 2 -induced coal softening and higher CO 2 injection pressure contribute synergistically to increase a significant increase of CO 2 injectivity and adsorption, but also result in larger caprock deformations and uplift. This study demonstrates the importance of considering the CO 2 -induced softening when analyzing the performance and environmental impact of CO 2 -sequestration operations in unminable coal seams.« less

  4. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization whichmore » have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.« less

  5. Understanding quality patient care and the role of the practicing nurse.

    PubMed

    Owens, Laura D; Koch, Robert W

    2015-03-01

    Nurses play a vital role in improving the safety and quality of patient care. The authors provide the front-line nurse providers with an overview of critical concepts related to quality management of patient care. A historical approach provides the reader with an overview of the trajectory or the quality in health care movement. Furthermore, the article provides the nurse with a basic understanding of national and international organizations that focus on quality patient care. A brief introduction of measures of quality care is presented as well as implications for nursing practice. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Prospects for the development of coal-steam plants in Russia

    NASA Astrophysics Data System (ADS)

    Tumanovskii, A. G.

    2017-06-01

    Evaluation of the technical state of the modern coal-fired power plants and quality of coal consumed by Russian thermal power plants (TPP) is provided. Measures aimed at improving the economic and environmental performance of operating 150-800 MW coal power units are considered. Ways of efficient use of technical methods of NO x control and electrostatic precipitators' upgrade for improving the efficiency of ash trapping are summarized. Examples of turbine and boiler equipment efficiency upgrading through its deep modernization are presented. The necessity of the development and introduction of new technologies in the coal-fired power industry is shown. Basic technical requirements for a 660-800 MW power unit with the steam conditions of 28 MPa, 600/600°C are listed. Design solutions taking into account features of Russian coal combustion are considered. A field of application of circulating fluidized bed (CFB) boilers and their effectiveness are indicated. The results of development of a new generation coal-fired TPP, including a steam turbine with an increased efficiency of the compartments and disengaging clutch, an elevated steam conditions boiler, and a highly efficient NO x /SO2 and ash particles emission control system are provided. In this case, the resulting ash and slag are not to be sent to the ash dumps and are to be used to a maximum advantage. Technical solutions to improve the efficiency of coal gasification combined cycle plants (CCP) are considered. A trial plant based on a 16 MW gas turbine plant (GTP) and an air-blown gasifier is designed as a prototype of a high-power CCP. The necessity of a state-supported technical reequipment and development program of operating coal-fired power units, as well as putting into production of new generation coal-fired power plants, is noted.

  7. Inventing pollution: coal, smoke, and culture in Britain since 1800

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Thorsheim

    2006-07-01

    Peter Throsheim explains that, for much of the nineteenth century, few people in Britain even considered coal smoke to be pollution. To them, pollution meant miasma: invisible gases generated by decomposing plant and animal matter. Far from viewing coal smoke as pollution, most people considered smoke to be a valuable disinfectant, for its carbon and sulfur were thought capable of rendering miasma harmless. The book examines the radically new understanding of pollution that emerged in the late nineteenth century, one that centered not on organic decay but on coal combustion. This change, it is argued, gave birth to the smoke-abatementmore » movement and to new ways of thinking about the relationships among humanity, technology, and the environment.« less

  8. Coal Markets

    EIA Publications

    2017-01-01

    Summarizes spot coal prices by coal commodity regions (i.e., Central Appalachia (CAP), Northern Appalachia (NAP), Illinois Basin (ILB), Power River Basin (PRB), and Uinta Basin (UIB)) in the United States.

  9. Quality by design approach for understanding the critical quality attributes of cyclosporine ophthalmic emulsion.

    PubMed

    Rahman, Ziyaur; Xu, Xiaoming; Katragadda, Usha; Krishnaiah, Yellela S R; Yu, Lawrence; Khan, Mansoor A

    2014-03-03

    Restasis is an ophthalmic cyclosporine emulsion used for the treatment of dry eye syndrome. There are no generic products for this product, probably because of the limitations on establishing in vivo bioequivalence methods and lack of alternative in vitro bioequivalence testing methods. The present investigation was carried out to understand and identify the appropriate in vitro methods that can discriminate the effect of formulation and process variables on critical quality attributes (CQA) of cyclosporine microemulsion formulations having the same qualitative (Q1) and quantitative (Q2) composition as that of Restasis. Quality by design (QbD) approach was used to understand the effect of formulation and process variables on critical quality attributes (CQA) of cyclosporine microemulsion. The formulation variables chosen were mixing order method, phase volume ratio, and pH adjustment method, while the process variables were temperature of primary and raw emulsion formation, microfluidizer pressure, and number of pressure cycles. The responses selected were particle size, turbidity, zeta potential, viscosity, osmolality, surface tension, contact angle, pH, and drug diffusion. The selected independent variables showed statistically significant (p < 0.05) effect on droplet size, zeta potential, viscosity, turbidity, and osmolality. However, the surface tension, contact angle, pH, and drug diffusion were not significantly affected by independent variables. In summary, in vitro methods can detect formulation and manufacturing changes and would thus be important for quality control or sameness of cyclosporine ophthalmic products.

  10. Estimation of Coal Reserves for UCG in the Upper Silesian Coal Basin, Poland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bialecka, Barbara

    One of the prospective methods of coal utilization, especially in case of coal resources which are not mineable by means of conventional methods, is underground coal gasification (UCG). This technology allows recovery of coal energy 'in situ' and thus avoid the health and safety risks related to people which are inseparable from traditional coal extraction techniques.In Poland most mining areas are characterized by numerous coal beds where extraction was ceased on account of technical and economic reasons or safety issues. This article presents estimates of Polish hard coal resources, broken down into individual mines, that can constitute the basis ofmore » raw materials for the gasification process. Five mines, representing more than 4 thousand tons, appear to be UCG candidates.« less

  11. Effect of temperature on the permeability of gas adsorbed coal under triaxial stress conditions

    NASA Astrophysics Data System (ADS)

    Li, Xiangchen; Yan, Xiaopeng; Kang, Yili

    2018-04-01

    The combined effects of gas sorption, stress and temperature play a significant role in the changing behavior of gas permeability in coal seams. The effect of temperature on nitrogen and methane permeability of naturally fractured coal is investigated. Coal permeability, P-wave velocity and axial strain were simultaneously measured under two effective stresses and six different temperatures. The results showed that the behavior of nitrogen and methane permeability presented nonmonotonic changes with increasing temperature. The variation in the P-wave velocity and axial strain showed a good correspondence with coal permeability. A higher effective stress limited the bigger deformation and caused the small change in permeability. Methane adsorption and desorption significantly influence the mechanical properties of coal and play an important role in the variations in coal permeability. The result of coal permeability during a complete stress-strain process showed that the variation in permeability is determined by the evolution of the internal structure. The increase in the temperature of the gas saturated coal causes the complex interaction between matrix swelling, matrix shrinkage and micro-fracture generation, which leads to the complex changes in coal structure and permeability. These results are helpful to understand the gas transport mechanism for exploiting coal methane by heat injection.

  12. Understanding and Achieving Quality in Sure Start Children's Centres: Practitioners' Perspectives

    ERIC Educational Resources Information Center

    Cottle, Michelle

    2011-01-01

    This article focuses on some of the issues that shape understandings of professional practice in the rapidly expanding context of children's centres in England. Drawing on data from an ESRC-funded project exploring practitioners' understandings of quality and success, the perspectives of 115 practitioners working in 11 Sure Start Children's…

  13. Mercury content of the Springfield coal, Indiana and Kentucky

    USGS Publications Warehouse

    Hower, J.C.; Mastalerz, Maria; Drobniak, A.; Quick, J.C.; Eble, C.F.; Zimmerer, M.J.

    2005-01-01

    With pending regulation of mercury emissions in United States power plants, its control at every step of the combustion process is important. An understanding of the amount of mercury in coal at the mine is the first step in this process. The Springfield coal (Middle Pennsylvanian) is one of the most important coal resources in the Illinois Basin. In Indiana and western Kentucky, Hg contents range from 0.02 to 0.55 ppm. The variation within small areas is comparable to the variation on a basin basis. Considerable variation also exists within the coal column, ranging from 0.04 to 0.224 ppm at one Kentucky site. Larger variations likely exist, since that site does not represent the highest whole-seam Hg nor was the collection of samples done with optimization of trace element variations in mind. Estimates of Hg capture by currently installed pollution control equipment range from 9-53% capture by cold-side electrostatic precipitators (ESP) and 47-81% Hg capture for ESP + flue-gas desulfurization (FGD). The high Cl content of many Illinois basin coals and the installation of Selective Catalytic Reduction of NOx enhances the oxidation of Hg species, improving the ability of ESPs and FGDs to capture Hg. ?? 2005 Elsevier B.V. All rights reserved.

  14. 78 FR 28242 - Proposed Information Collection; Cleanup Program for Accumulations of Coal and Float Coal Dusts...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... Program for Accumulations of Coal and Float Coal Dusts, Loose Coal, and Other Combustibles AGENCY: Mine... collection for developing and updating a cleanup program for accumulations of coal and float coal dusts, loose coal, and other combustibles in underground coal mines. DATES: All comments must be postmarked or...

  15. Create a Consortium and Develop Premium Carbon Products from Coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank Rusinko; John Andresen; Jennifer E. Hill

    2006-01-01

    The objective of these projects was to investigate alternative technologies for non-fuel uses of coal. Special emphasis was placed on developing premium carbon products from coal-derived feedstocks. A total of 14 projects, which are the 2003 Research Projects, are reported herein. These projects were categorized into three overall objectives. They are: (1) To explore new applications for the use of anthracite in order to improve its marketability; (2) To effectively minimize environmental damage caused by mercury emissions, CO{sub 2} emissions, and coal impounds; and (3) To continue to increase our understanding of coal properties and establish coal usage in non-fuelmore » industries. Research was completed in laboratories throughout the United States. Most research was performed on a bench-scale level with the intent of scaling up if preliminary tests proved successful. These projects resulted in many potential applications for coal-derived feedstocks. These include: (1) Use of anthracite as a sorbent to capture CO{sub 2} emissions; (2) Use of anthracite-based carbon as a catalyst; (3) Use of processed anthracite in carbon electrodes and carbon black; (4) Use of raw coal refuse for producing activated carbon; (5) Reusable PACs to recycle captured mercury; (6) Use of combustion and gasification chars to capture mercury from coal-fired power plants; (7) Development of a synthetic coal tar enamel; (8) Use of alternative binder pitches in aluminum anodes; (9) Use of Solvent Extracted Carbon Ore (SECO) to fuel a carbon fuel cell; (10) Production of a low cost coal-derived turbostratic carbon powder for structural applications; (11) Production of high-value carbon fibers and foams via the co-processing of a low-cost coal extract pitch with well-dispersed carbon nanotubes; (12) Use of carbon from fly ash as metallurgical carbon; (13) Production of bulk carbon fiber for concrete reinforcement; and (14) Characterizing coal solvent extraction processes. Although some of

  16. Hydromechanical Advanced Coal Excavator

    NASA Technical Reports Server (NTRS)

    Estus, Jay M.; Summers, David

    1990-01-01

    Water-jet cutting reduces coal dust and its hazards. Advanced mining system utilizes full-face, hydromechanical, continuous miner. Coal excavator uses high-pressure water-jet lances, one in each of cutting heads and one in movable lance, to make cuts across top, bottom and middle height, respectively, of coal face. Wedge-shaped cutting heads advance into lower and upper cuts in turn, thereby breaking coal toward middle cut. Thrust cylinders and walking pads advance excavator toward coal face.

  17. Hydrodesulfurization of chlorinized coal

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Rohatgi, N. K. (Inventor)

    1983-01-01

    A method of desulfurization is described in which high sulfur coals are desulfurized by low temperature chlorinolysis of coal in liquid media, preferably water, followed by hydrodesulfurization at a temperature above 500 C. The coals are desulfurized to an extent of up to 90% by weight and simultaneously dechlorinated to a chlorine content below 0.1% by weight. The product coals have lower volatiles loss, lower oxygen and nitrogen content and higher fixed carbon than raw coals treated with hydrogen under the same conditions. Heating the chlorinated coal to a temperature above 500 C. in inert gas such as nitrogen results in significantly less desulfurization.

  18. Coal pump development phase 3

    NASA Technical Reports Server (NTRS)

    Kushida, R. O.; Sankur, V. D.; Gerbracht, F. G.; Mahajan, V.

    1980-01-01

    Techniques for achieving continuous coal sprays were studied. Coazial injection with gas and pressure atomization were studied. Coal particles, upon cooling, were found to be porous and fragile. Reactivity tests on the extruded coal showed overall conversion to gases and liquids unchanged from that of the raw coal. The potentials for applications of the coal pump to eight coal conversion processes were examined.

  19. Modeling gas displacement kinetics in coal with Maxwell-Stefan diffusion theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, X.R.; Wang, G.X.; Massarotto, P.

    2007-12-15

    The kinetics of binary gas counter-diffusion and Darcy flow in a large coal sample were modeled, and the results compared with data from experimental laboratory investigations. The study aimed for a better understanding of the CO{sub 2}-sequestration enhanced coalbed methane (ECBM) recovery process. The transport model used was based on the bidisperse diffusion mechanism and Maxwell-Stefan (MS) diffusion theory. This provides an alternative approach to simulate multicomponent gas diffusion and flow in bulk coals. A series of high-stress core flush tests were performed on a large coal sample sourced from a Bowen Basin coal mine in Queensland, Australia to investigatemore » the kinetics of one gas displacing another. These experimental results were used to derive gas diffusivities, and to examine the predictive capability of the diffusion model. The simulations show good agreements with the displacement experiments revealing that MS diffusion theory is superior for describing diffusion of mixed gases in coals compared with the constant Fick diffusivity model. The optimized effective micropore and macropore diffusivities are comparable with experimental measurements achieved by other researchers.« less

  20. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edward Levy; Nenad Sarunac; Harun Bilirgen

    2005-04-01

    This is the ninth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, comparative analyses were performed for lignite and PRB coals to determine how unit performance varies with coal product moisture. Results are given showing how the coal product moisture level and coal rank affect parameters such as boiler efficiency, station service power needed for fans and pulverizers and net unit heat rate. Results are also givenmore » for the effects of coal drying on cooling tower makeup water and comparisons are made between makeup water savings for various times of the year.« less

  1. Preliminary investigation on the effects of primary airflow to coal particle distribution in coal-fired boilers

    NASA Astrophysics Data System (ADS)

    Noor, N. A. W. Mohd; Hassan, H.; Hashim, M. F.; Hasini, H.; Munisamy, K. M.

    2017-04-01

    This paper presents an investigation on the effects of primary airflow to coal fineness in coal-fired boilers. In coal fired power plant, coal is pulverized in a pulverizer, and it is then transferred to boiler for combustion. Coal need to be ground to its desired size to obtain maximum combustion efficiency. Coarse coal particle size may lead to many performance problems such as formation of clinker. In this study, the effects of primary airflow to coal particles size and coal flow distribution were investigated by using isokinetic coal sampling and computational fluid dynamic (CFD) modelling. Four different primary airflows were tested and the effects to resulting coal fineness were recorded. Results show that the optimum coal fineness distribution is obtained at design primary airflow. Any reduction or increase of air flow rate results in undesirable coal fineness distribution.

  2. Coal-oil slurry preparation

    DOEpatents

    Tao, John C.

    1983-01-01

    A pumpable slurry of pulverized coal in a coal-derived hydrocarbon oil carrier which slurry is useful as a low-ash, low-sulfur clean fuel, is produced from a high sulfur-containing coal. The initial pulverized coal is separated by gravity differentiation into (1) a high density refuse fraction containing the major portion of non-coal mineral products and sulfur, (2) a lowest density fraction of low sulfur content and (3) a middlings fraction of intermediate sulfur and ash content. The refuse fraction (1) is gasified by partial combustion producing a crude gas product from which a hydrogen stream is separated for use in hydrogenative liquefaction of the middlings fraction (3). The lowest density fraction (2) is mixed with the liquefied coal product to provide the desired fuel slurry. Preferably there is also separately recovered from the coal liquefaction LPG and pipeline gas.

  3. Continuous bench-scale slurry catalyst testing direct coal liquefaction rawhide sub-bituminous coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauman, R.F.; Coless, L.A.; Davis, S.M.

    In 1992, the Department of Energy (DOE) sponsored research to demonstrate a dispersed catalyst system using a combination of molybdenum and iron precursors for direct coal liquefaction. This dispersed catalyst system was successfully demonstrated using Black Thunder sub-bituminous coal at Wilsonville, Alabama by Southern Electric International, Inc. The DOE sponsored research continues at Exxon Research and Development Laboratories (ERDL). A six month continuous bench-scale program using ERDL`s Recycle Coal Liquefaction Unit (RCLU) is planned, three months in 1994 and three months in 1995. The initial conditions in RCLU reflect experience gained from the Wilsonville facility in their Test Run 263.more » Rawhide sub-bituminous coal which is similar to the Black Thunder coal tested at Wilsonville was used as the feed coal. A slate of five dispersed catalysts for direct coal liquefaction of Rawhide sub-bituminous coal has been tested. Throughout the experiments, the molybdenum addition rate was held constant at 100 wppm while the iron oxide addition rate was varied from 0.25 to 1.0 weight percent (dry coal basis). This report covers the 1994 operations and accomplishments.« less

  4. Geomorphology of coal seam fires

    NASA Astrophysics Data System (ADS)

    Kuenzer, Claudia; Stracher, Glenn B.

    2012-02-01

    Coal fires occur in underground natural coal seams, in exposed surface seams, and in coal storage or waste piles. The fires ignite through spontaneous combustion or natural or anthropogenic causes. They are reported from China, India, USA, South Africa, Australia, and Russia, as well as many other countries. Coal fires lead to loss of a valuable resource (coal), the emission of greenhouse-relevant and toxic gases, and vegetation deterioration. A dangerous aspect of the fires is the threat to local mines, industries, and settlements through the volume loss underground. Surface collapse in coal fire areas is common. Thus, coal fires are significantly affecting the evolution of the landscape. Based on more than a decade of experience with in situ mapping of coal fire areas worldwide, a general classification system for coal fires is presented. Furthermore, coal seam fire geomorphology is explained in detail. The major landforms associated with, and induced by, these fires are presented. The landforms include manifestations resulting from bedrock surface fracturing, such as fissures, cracks, funnels, vents, and sponges. Further manifestations resulting from surface bedrock subsidence include sinkholes, trenches, depressions, partial surface subsidence, large surface subsidence, and slides. Additional geomorphologic coal fire manifestations include exposed ash layers, pyrometamorphic rocks, and fumarolic minerals. The origin, evolution, and possible future development of these features are explained, and examples from in situ surveys, as well as from high-resolution satellite data analyses, are presented. The geomorphology of coal fires has not been presented in a systematic manner. Knowledge of coal fire geomorphology enables the detection of underground coal fires based on distinct surface manifestations. Furthermore, it allows judgments about the safety of coal fire-affected terrain. Additionally, geomorphologic features are indicators of the burning stage of fires

  5. Advanced coal conversion process demonstration. Technical progress report for the period July 1, 1995--September 30, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-05-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from July 1, 1995 through September 30, 1995. The ACCP Demonstration Project is a US Department of Energy (DOE) Clean Coal Technology Project. This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, andmore » volatile sulfur compounds. After thermal upgrading, the cola is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.« less

  6. National Coal Utilization Assessment. a preliminary assessment of the health and environmental effects of coal utilization in the Midwest. Volume I. Energy scenarios, technology characterizations, air and water resource impacts, and health effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-01-01

    This report presents an initial evaluation of the major health and environmental issues associated with increased coal use in the six midwestern states of Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin. Using an integrated assessment approach, the evaluation proceeds from a base-line scenario of energy demand and facility siting for 1975-2020. Emphasis is placed on impacts from coal extraction, land reclamation, coal combustion for electrical generation, and coal gasification. The range of potential impacts and constraints is illustrated by a second scenario that represents an expected upper limit for coal utilization in Illinois. The following are among the more significantmore » issues identified and evaluated in this study: If environmental and related issues can be resolved, coal will continue to be a major source of energy for the Midwest; existing sulfur emission constraints will increase use of western coal; the resource requirements and environmental impacts of coal utilization will require major significant environmental and economic tradeoffs in site selection; short-term (24-hr) ambient standards for sulfur dioxide will limit the sizes of coal facilities or require advanced control technologies; an impact on public health may result from long-range transport of airborne sulfur emissions from coal facilities in the Midwest; inadequately controlled effluents from coal gasification may cause violations of water-quality standards; the major ecological effects of coal extraction are from pre-mining and post-reclamation land use; and sulfur dioxide is the major potential contributor to effects on vegetation of atmospheric emissions from coal facilities.« less

  7. Regional characterization and resource evaluation of Paleocene and Eocene coal-bearing rocks in Pakistan

    USGS Publications Warehouse

    Durrani, N.A.; Warwick, Peter D.

    1991-01-01

    Field work drilling, and other related studies carried out from 1985 to 1988 to assess the quantity and quality of the coal resources of southern Sindh. Sixty-eight holes drilled in the Lakhra/Jherruck, Thatta, and Indus East coal fields indicate that presently known and mined coal fields in southern Sindh are not isolated coal occurrences. Rather, much of southern Sindh, including the Thar Desert, is underlain by strata that contain coal beds.More than 400 core and mine samples were collected for proximate and ultimate analysis and determination of major, minor and trace elements; also, lithologie logs were prepared from description of rock cuttings and core. Original coal resources of 1,080 million tones have been estimated for 7 out of 9 coal zones in parts of the Lakhra area, where coal-bed thicknesses range from a few centimeters to 5 m. In the Sonda/Jherruk area, 3,700 million tones of coal have been identified, the thickest coal bed intercepted being 6.3 meters. The apparent rank of the coal in these fields ranges from lignite A to sub-bituminous C. Averaged analytical results on an as received basis indicate the coal beds contain 28.4 % moisture, 18,3 % ash, 4.7 % sulfur, 25,2 % fixed carbon, 27.9 % volatile matter, and 33.1% oxygen. Average calorific value for Lakhra coal samples is about 3,660 Kcal/kg, whereas that of Sonda/Jherruk samples is about 3,870 Kcal/kg. Geophysical logs were obtained for the drill holes, and cores and rock cuttings are available from the GSP for further study and reference.The second phase of the project began in 1987 with surface exploration in the Salt Range coal field of Punjab Province, the Sor Range and Khost-Sharig-Harnai coal fields of Baluchistan, and the Makarwal and Cherat coal fields of NWFP. These are briefly discussed here.

  8. Productivity, job satisfaction, and health and safety in the coal industry: the participatory alternative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-01-01

    This is a conference which presents results and ideas on workplace participation in the coal industry. It discusses the theory of the quality circle groups for developing their own production rates and design goals. It presents the results of different coal company participation in this idea and how to implement this option. Individual topics are entered into the Data Base as separate items.

  9. Low-rank coal study : national needs for resource development. Volume 2. Resource characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-11-01

    Comprehensive data are presented on the quantity, quality, and distribution of low-rank coal (subbituminous and lignite) deposits in the United States. The major lignite-bearing areas are the Fort Union Region and the Gulf Lignite Region, with the predominant strippable reserves being in the states of North Dakota, Montana, and Texas. The largest subbituminous coal deposits are in the Powder River Region of Montana and Wyoming, The San Juan Basin of New Mexico, and in Northern Alaska. For each of the low-rank coal-bearing regions, descriptions are provided of the geology; strippable reserves; active and planned mines; classification of identified resources bymore » depth, seam thickness, sulfur content, and ash content; overburden characteristics; aquifers; and coal properties and characteristics. Low-rank coals are distinguished from bituminous coals by unique chemical and physical properties that affect their behavior in extraction, utilization, or conversion processes. The most characteristic properties of the organic fraction of low-rank coals are the high inherent moisture and oxygen contents, and the correspondingly low heating value. Mineral matter (ash) contents and compositions of all coals are highly variable; however, low-rank coals tend to have a higher proportion of the alkali components CaO, MgO, and Na/sub 2/O. About 90% of the reserve base of US low-rank coal has less than one percent sulfur. Water resources in the major low-rank coal-bearing regions tend to have highly seasonal availabilities. Some areas appear to have ample water resources to support major new coal projects; in other areas such as Texas, water supplies may be constraining factor on development.« less

  10. Coal pump

    DOEpatents

    Bonin, John H.; Meyer, John W.; Daniel, Jr., Arnold D.

    1983-01-01

    A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

  11. SUBMICROSCOPIC ( less than 1 mu m) MINERAL CONTENTS OF VITRINITES IN SELECTED BITUMINOUS COAL BEDS.

    USGS Publications Warehouse

    Minkin, J.A.; Chao, E.C.T.; Thompson, C.L.; Wandless, M.-V.; Dulong, F.T.; Larson, R.R.; Neuzil, S.G.; ,

    1983-01-01

    An important aspect of the petrographic description of coal is the characterization of coal quality, including chemical attributes. For geologic investigations, data on the concentrations, distribution, and modes of occurrence of minor and trace elements provide a basis for reconstructing the probable geochemical environment of the swamp material that was converted into peat, and the geochemical conditions that prevailed during and subsequent to coalification. We have been using electron (EPMA) and proton (PIXE) microprobe analytical methods to obtain data on the chemical characteristics of specific coal constituents in their original associations within coal samples. The present study is aimed at evaluation of the nature of mineral occurrences and heterogeneous elemental concentrations within vitrinites. Vitrinites are usually the most abundant, and therefore most important, maceral group in bituminous coal. 8 refs.

  12. Boiler Briquette Coal versus Raw Coal: Part I-Stack Gas Emissions.

    PubMed

    Ge, Su; Bai, Zhipeng; Liu, Weili; Zhu, Tan; Wang, Tongjian; Qing, Sheng; Zhang, Junfeng

    2001-04-01

    Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM 10 and PM 2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM 10 , 0.38 for PM 25 , 20.7 for SO 2 , and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM 10 , 0.30 for PM 2 5 , 7.5 for SO 2 , and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM 10 , 0.87 for PM 25 , 46.7 for SO 2 , and 15 for CO, while those of the BB-coal were 2.51 for PM 10 , 0.79 for PM 2.5 , 19.9 for SO 2 , and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/ steam conversion factors, were 0.23 for PM 10 , 0.12 for PM 2.5 , 6.4 for SO 2 , and 2.0 for CO, while those of the BB-coal were 0.30 for PM 10 , 0.094 for PM 2.5 , 2.4 for SO 2 , and 1.7 for CO. PM 10 and PM 2.5 elemental compositions are also presented for both types of coal tested in the study.

  13. Boiler briquette coal versus raw coal: Part I--Stack gas emissions.

    PubMed

    Ge, S; Bai, Z; Liu, W; Zhu, T; Wang, T; Qing, S; Zhang, J

    2001-04-01

    Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM10 and PM2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM10, 0.38 for PM2.5, 20.7 for SO2, and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM10, 0.30 for PM2.5, 7.5 for SO2, and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM10, 0.87 for PM2.5, 46.7 for SO2, and 15 for CO, while those of the BB-coal were 2.51 for PM10, 0.79 for PM2.5, 19.9 for SO2, and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/steam conversion factors, were 0.23 for PM10, 0.12 for PM2.5, 6.4 for SO2, and 2.0 for CO, while those of the BB-coal were 0.30 for PM10, 0.094 for PM2.5, 2.4 for SO2, and 1.7 for CO. PM10 and PM2.5 elemental compositions are also presented for both types of coal tested in the study.

  14. A study of leakage rates through mine seals in underground coal mines

    PubMed Central

    Schatzel, Steven J.; Krog, Robert B.; Mazzella, Andrew; Hollerich, Cynthia; Rubinstein, Elaine

    2015-01-01

    The National Institute for Occupational Safety and Health conducted a study on leakage rates through underground coal mine seals. Leakage rates of coal bed gas into active workings have not been well established. New seal construction standards have exacerbated the knowledge gap in our understanding of how well these seals isolate active workings near a seal line. At a western US underground coal mine, we determined seal leakage rates ranged from about 0 to 0.036 m3/s for seven 340 kPa seals. The seal leakage rate varied in essentially a linear manner with variations in head pressure at the mine seals. PMID:26322119

  15. Bibliography of the Gulf of Mexico coastal plain coal geology

    USGS Publications Warehouse

    Hook, Robert W.; Warwick, Peter D.; Karlsen, Alexander W.; Tewalt, Susan J.; Warwick, Peter D.; Karlsen, Alexander K.; Merrill, Matthew D.; Tewalt, Susan J.

    2011-01-01

    Unlike scientific literature pertaining to most other coal-bearing regions in the conterminous United States, this bibliography on the coal geology of the Gulf Coastal Plain is dominated by work from the late 20th century. Although coals of this region were mined commercially in the late 1800s and early 1900s, they were eclipsed by the production and use of oil and gas in the middle 1920s and were not mined again as a significant fuel source until the 1970s. As a result, the literature consists mainly of a relatively small number of pre-1920 contributions in state and federal reports, followed by a plethora of technical papers, symposia proceedings, field guides, theses, dissertations, and abstracts over the past 40 years.The purpose of this chapter is to record the present work used by U.S. Geological Survey personnel preparing the Gulf Coast Coal Resource Assessment and to furnish an introduction to the larger body of sedimentary, stratigraphic, paleontologic, geochemical, hydrologic, and mining literature that exists in the region. This bibliography is an update of an earlier compilation (Tewalt et al., 1990). Despite its length, it is not exhaustive. Nor is it restricted to papers that focus solely upon coals because an understanding of these coals is rooted in the general geologic literature of the Gulf Coastal Plain.

  16. Hydrogen from coal

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Hydrogen production from coal by hydrogasification is described. The process involves the solubilization of coal to form coal liquids, which are hydrogasified to produce synthetic pipeline gas; steam reforming this synthetic gas by a nuclear heat source produces hydrogen. A description is given of the hydrogen plant, its performance, and its effect on the environment.

  17. Microbial conversion of coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bean, R.M.

    1989-10-01

    The objectives of this project were to describe in detail the degradation of coals by fungi and microbes, to expand the range of applicability of the process to include new microbes and other coal types, to identify the means by which biosolubilization of coal is accomplished, and to explore means to enhance the rates and extent of coal bioconversion. The project was initiated in a response to the discovery by Dr. Martin Cohen at the University of Hartford, of a fungal strain of Coriolus versicolor that would render a solid coal substance, leonardite, into a liquid product. The project hasmore » identified the principal agent of leonardite solubilization as a powerful metal chelator, most likely a fungal-produced siderophore. Another nonlaccase enzyme has also been identified as a unique biosolubilizing agent produced by C. versicolor. Assays were developed for the quantitative determination of biological coal conversion, and for the determination of potency of biosolubilizing agent. Screening studies uncovered several microbial organisms capable of coal biodegradation, and led to the discovery that prolonged heating in air at the moderate temperature of 150{degree}C allowed the biodegradation of Illinois {number sign}6 coal to material soluble in dilute base. Chemical studies showed that leonardite biosolubilization was accompanied by relatively small change in composition, while solubilization of Illinois {number sign}6 coal involves considerable oxidation of the coal. 24 refs., 32 figs., 27 tabs.« less

  18. Navajo Coal Combustion and Respiratory Health Near Shiprock, New Mexico

    PubMed Central

    Bunnell, Joseph E.; Garcia, Linda V.; Furst, Jill M.; Lerch, Harry; Olea, Ricardo A.; Suitt, Stephen E.; Kolker, Allan

    2010-01-01

    Indoor air pollution has been identified as a major risk factor for acute and chronic respiratory diseases throughout the world. In the sovereign Navajo Nation, an American Indian reservation located in the Four Corners area of the USA, people burn coal in their homes for heat. To explore whether/how indoor coal combustion might contribute to poor respiratory health of residents, this study examined respiratory health data, identified household risk factors such as fuel and stove type and use, analyzed samples of locally used coal, and measured and characterized fine particulate airborne matter inside selected homes. In twenty-five percent of homes surveyed coal was burned in stoves not designed for that fuel, and indoor air quality was frequently found to be of a level to raise concerns. The average winter 24-hour PM2.5 concentration in 20 homes was 36.0 μg/m3. This is the first time that PM2.5 has been quantified and characterized inside Navajo reservation residents' homes. PMID:20671946

  19. Navajo Coal Combustion and Respiratory Health Near Shiprock, New Mexico

    DOE PAGES

    Bunnell, Joseph E.; Garcia, Linda V.; Furst, Jill M.; ...

    2010-01-01

    Indoormore » air pollution has been identified as a major risk factor for acute and chronic respiratory diseases throughout the world. In the sovereign Navajo Nation, an American Indian reservation located in the Four Corners area of the USA, people burn coal in their homes for heat. To explore whether/how indoor coal combustion might contribute to poor respiratory health of residents, this study examined respiratory health data, identified household risk factors such as fuel and stove type and use, analyzed samples of locally used coal, and measured and characterized fine particulate airborne matter inside selected homes. In twenty-five percent of homes surveyed coal was burned in stoves not designed for that fuel, and indoor air quality was frequently found to be of a level to raise concerns. The average winter 24-hour PM 2.5 concentration in 20 homes was 36.0  μ g/ m 3 . This is the first time that PM 2.5 has been quantified and characterized inside Navajo reservation residents' homes.« less

  20. The national coal-resources data system of the U.S. geological survey

    USGS Publications Warehouse

    Carter, M.D.

    1976-01-01

    The National Coal Resources Data System (NCRDS) was designed by the U.S. Geological Survey (USGS) to meet the increasing demands for rapid retrieval of information on coal location, quantity, quality, and accessibility. An interactive conversational query system devised by the USGS retrieves information from the data bank through a standard computer terminal. The system is being developed in two phases. Phase I, which currently is available on a limited basis, contains published areal resource and chemical data. The primary objective of this phase is to retrieve, calculate, and tabulate coal-resource data by area on a local, regional, or national scale. Factors available for retrieval include: state, county, quadrangle, township, coal field, coal bed, formation, geologic age, source and reliability of data, and coal-bed rank, thickness, overburden, and tonnage, or any combinations of variables. In addition, the chemical data items include individual values for proximate and ultimate analyses, BTU value, and several other physical and chemical tests. Information will be validated and deleted or updated as needed. Phase II is being developed to store, retrieve, and manipulate basic point source coal data (e.g., field observations, drill-hole logs), including geodetic location; bed thickness; depth of burial; moisture; ash; sulfur; major-, minor-, and trace-element content; heat value; and characteristics of overburden, roof rocks, and floor rocks. The computer system may be used to generate interactively structure-contour or isoline maps of the physical and chemical characteristics of a coal bed or to calculate coal resources. ?? 1976.

  1. Coal and Open-pit surface mining impacts on American Lands (COAL)

    NASA Astrophysics Data System (ADS)

    Brown, T. A.; McGibbney, L. J.

    2017-12-01

    Mining is known to cause environmental degradation, but software tools to identify its impacts are lacking. However, remote sensing, spectral reflectance, and geographic data are readily available, and high-performance cloud computing resources exist for scientific research. Coal and Open-pit surface mining impacts on American Lands (COAL) provides a suite of algorithms and documentation to leverage these data and resources to identify evidence of mining and correlate it with environmental impacts over time.COAL was originally developed as a 2016 - 2017 senior capstone collaboration between scientists at the NASA Jet Propulsion Laboratory (JPL) and computer science students at Oregon State University (OSU). The COAL team implemented a free and open-source software library called "pycoal" in the Python programming language which facilitated a case study of the effects of coal mining on water resources. Evidence of acid mine drainage associated with an open-pit coal mine in New Mexico was derived by correlating imaging spectrometer data from the JPL Airborne Visible/InfraRed Imaging Spectrometer - Next Generation (AVIRIS-NG), spectral reflectance data published by the USGS Spectroscopy Laboratory in the USGS Digital Spectral Library 06, and GIS hydrography data published by the USGS National Geospatial Program in The National Map. This case study indicated that the spectral and geospatial algorithms developed by COAL can be used successfully to analyze the environmental impacts of mining activities.Continued development of COAL has been promoted by a Startup allocation award of high-performance computing resources from the Extreme Science and Engineering Discovery Environment (XSEDE). These resources allow the team to undertake further benchmarking, evaluation, and experimentation using multiple XSEDE resources. The opportunity to use computational infrastructure of this caliber will further enable the development of a science gateway to continue foundational COAL

  2. Influence of Geological Structure on Coal and Gas Outburst Occurrences in Turkish Underground Coal Mines

    NASA Astrophysics Data System (ADS)

    Esen, Olgun; Özer, Samet Can; Fişne, Abdullah

    2015-04-01

    Coal and gas outbursts are sudden and violent releases of gas and in company with coal that result from a complex function of geology, stress regime with gas pressure and gas content of the coal seam. The phenomena is referred to as instantaneous outbursts and have occurred in virtually all the major coal producing countries and have been the cause of major disasters in the world mining industry. All structures from faults to joints and cleats may supply gas or lead to it draining away. Most geological structures influence the way in which gas can drain within coal seams. From among all the geological factors two groups can be distinguished: parameters characterising directly the occurrence and geometry of the coal seams; parameters characterising the tectonic disturbances of the coal seams and neighbouring rocks. Also dykes may act as gas barriers. When the production of the coal seam is advanced in mine working areas, these barriers are failed mostly in the weak and mylonitized zones. Geology also plays a very important role in the outburst process. Coal seams of complex geological structure including faults, folds, and fractured rocks are liable to outbursts if coal seams and neighbouring rocks have high gas content level. The purpose of the study is to enlighten the coal industry in Turkey to improving mine safety in underground coal production and decrease of coal and gas outburst events due to increasing depth of mining process. In Turkey; the years between 1969 and 2013, the number of 90 coal and gas outbursts took place in Zonguldak Hard Coal Basin in both Kozlu and Karadon Collieries. In this study the liability to coal and gas outburst of the coal seams are investigated by measuring the strength of coal and the rock pressure. The correlation between these measurements and the event locations shows that the geological structures resulted in 52 events out of 90 events; 19 events close to the fault zones, 25 events thorough the fault zones and 8 events in

  3. Collaborative simulations and experiments for a novel yield model of coal devolatilization in oxy-coal combustion conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iavarone, Salvatore; Smith, Sean T.; Smith, Philip J.

    Oxy-coal combustion is an emerging low-cost “clean coal” technology for emissions reduction and Carbon Capture and Sequestration (CCS). The use of Computational Fluid Dynamics (CFD) tools is crucial for the development of cost-effective oxy-fuel technologies and the minimization of environmental concerns at industrial scale. The coupling of detailed chemistry models and CFD simulations is still challenging, especially for large-scale plants, because of the high computational efforts required. The development of scale-bridging models is therefore necessary, to find a good compromise between computational efforts and the physical-chemical modeling precision. This paper presents a procedure for scale-bridging modeling of coal devolatilization, inmore » the presence of experimental error, that puts emphasis on the thermodynamic aspect of devolatilization, namely the final volatile yield of coal, rather than kinetics. The procedure consists of an engineering approach based on dataset consistency and Bayesian methodology including Gaussian-Process Regression (GPR). Experimental data from devolatilization tests carried out in an oxy-coal entrained flow reactor were considered and CFD simulations of the reactor were performed. Jointly evaluating experiments and simulations, a novel yield model was validated against the data via consistency analysis. In parallel, a Gaussian-Process Regression was performed, to improve the understanding of the uncertainty associated to the devolatilization, based on the experimental measurements. Potential model forms that could predict yield during devolatilization were obtained. The set of model forms obtained via GPR includes the yield model that was proven to be consistent with the data. Finally, the overall procedure has resulted in a novel yield model for coal devolatilization and in a valuable evaluation of uncertainty in the data, in the model form, and in the model parameters.« less

  4. Collaborative simulations and experiments for a novel yield model of coal devolatilization in oxy-coal combustion conditions

    DOE PAGES

    Iavarone, Salvatore; Smith, Sean T.; Smith, Philip J.; ...

    2017-06-03

    Oxy-coal combustion is an emerging low-cost “clean coal” technology for emissions reduction and Carbon Capture and Sequestration (CCS). The use of Computational Fluid Dynamics (CFD) tools is crucial for the development of cost-effective oxy-fuel technologies and the minimization of environmental concerns at industrial scale. The coupling of detailed chemistry models and CFD simulations is still challenging, especially for large-scale plants, because of the high computational efforts required. The development of scale-bridging models is therefore necessary, to find a good compromise between computational efforts and the physical-chemical modeling precision. This paper presents a procedure for scale-bridging modeling of coal devolatilization, inmore » the presence of experimental error, that puts emphasis on the thermodynamic aspect of devolatilization, namely the final volatile yield of coal, rather than kinetics. The procedure consists of an engineering approach based on dataset consistency and Bayesian methodology including Gaussian-Process Regression (GPR). Experimental data from devolatilization tests carried out in an oxy-coal entrained flow reactor were considered and CFD simulations of the reactor were performed. Jointly evaluating experiments and simulations, a novel yield model was validated against the data via consistency analysis. In parallel, a Gaussian-Process Regression was performed, to improve the understanding of the uncertainty associated to the devolatilization, based on the experimental measurements. Potential model forms that could predict yield during devolatilization were obtained. The set of model forms obtained via GPR includes the yield model that was proven to be consistent with the data. Finally, the overall procedure has resulted in a novel yield model for coal devolatilization and in a valuable evaluation of uncertainty in the data, in the model form, and in the model parameters.« less

  5. Leaching characteristics of arsenic and selenium from coal fly ash: role of calcium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian Wang; Jianmin Wang; Yulin Tang

    2009-05-15

    Understanding the leaching behavior of arsenic (As) and selenium (Se) in coal fly ash is important in evaluating the potential environmental impact of coal fly ash. Batch experiments were employed to systematically investigate the leaching behavior of As and Se in two major types of coal fly ashes, bituminous coal ash and sub-bituminous coal ash, and to determine the underlying processes that control As and Se leaching. The effects of pH, solid/liquid (S/L) ratio, calcium addition, and leaching time on the release of As and Se were studied. Overall, bituminous coal ash leached significantly more As and Se than sub-bituminousmore » coal ash, and Se was more readily leachable, in both absolute concentration and relative fraction, than As for both types of fly ashes. Adsorption/desorption played a major role on As and Se leaching from bituminous coal ashes. However, calcium precipitation played the most important role in reducing As and Se leaching from sub-bituminous coal ashes in the entire experimental pH range. The leaching of As and Se from bituminous coal ashes generally increased with increases in the S/L ratio and leaching time. However, for sub-bituminous coal ashes, the leaching of As was not detected under most experimental conditions, while the leaching of Se increased with increases in the S/L ratio and leaching time. As{sup V} and Se{sup IV} were found to be the major species in all ash leachates in this study. 46 refs., 7 figs., 1 tab.« less

  6. Retirement Satisfaction among Coal Miners: A Correlational Study.

    ERIC Educational Resources Information Center

    Clark, Diane J.; And Others

    Because of increases in life expectancy and early retirement, the quality of life during retirement is of concern to many people. Previous research has found that health and adequate income have consistently been related to life satisfaction during retirement. Several satisfaction measures were administered to a group of 55 retired coal miners.…

  7. Comparison of Mortality Disparities in Central Appalachian Coal- and Non-Coal-Mining Counties.

    PubMed

    Woolley, Shannon M; Meacham, Susan L; Balmert, Lauren C; Talbott, Evelyn O; Buchanich, Jeanine M

    2015-06-01

    Determine whether select cause of death mortality disparities in four Appalachian regions is associated with coal mining or other factors. We calculated direct age-adjusted mortality rates and associated 95% confidence intervals by sex and study group for each cause of death over 5-year time periods from 1960 to 2009 and compared mean demographic and socioeconomic values between study groups via two-sample t tests. Compared with non-coal-mining areas, we found higher rates of poverty in West Virginia and Virginia (VA) coal counties. All-cause mortality rates for males and females were higher in coal counties across all time periods. Virginia coal counties had statistically significant excesses for many causes of death. We found elevated mortality and poverty rates in coal-mining compared with non-coal-mining areas of West Virginia and VA. Future research should examine these findings in more detail at the individual level.

  8. Coal: the new black

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tullo, A.H.; Tremblay, J.-F.

    2008-03-15

    Long eclipsed by oil and natural gas as a raw material for high-volume chemicals, coal is making a comeback, with oil priced at more than $100 per barrel. It is relatively cheap feedstock for chemicals such as methanol and China is building plants to convert coal to polyolefins on a large scale and interest is spreading worldwide. Over the years several companies in the US and China have made fertilizers via the gasification of coal. Eastman in Tennessee gasifies coal to make methanol which is then converted to acetic acid, acetic anhydride and acetate fiber. The future vision is tomore » convert methanol to olefins. UOP and Lurgi are the major vendors of this technology. These companies are the respective chemical engineering arms of Honeywell and Air Liquide. The article reports developments in China, USA and India on coal-to-chemicals via coal gasification or coal liquefaction. 2 figs., 2 photo.« less

  9. Enhancement of Operating Efficiency Of The Central Coal-Preparation Plant of "MMK - UGOL" Ltd. Under Current Conditions

    NASA Astrophysics Data System (ADS)

    Basarygin, Maksim

    2017-11-01

    In this article the subject of enhancement of operating efficiency of the central coal-preparation plant of OOO "MMK-UGOL" is encompassed. Modern trends in the development of technologies and equipment for coal beneficiation are due to the following requirements: improving competitiveness of coal products, improvement of quality of marketable products, reduction of coal production cost, environmental requirements: polluting emission abatement, prepared coal saving, improvement of the effectiveness of resource conservation; complex mechanization and beneficiation process automation. In the article the contemporary problems of raw coal benefication under current conditions of the increased dilution of withdrawable coals with rock fractions are considered. Comparative analysis of efficiency of application of modern concentrating equipment under the conditions of the CCPP of OOO "MMK-UGOL" is carried out on the basis of research works. Particular attention is paid to dehydration of produced coal concentrate with content of volatile agents of more than 35.0% and content of fine-dispersed particles in flotation concentrate of more than 50.0%. Comparative analysis of the coal concentrate dehydration technologies is conducted.

  10. Coal liquefaction and hydrogenation

    DOEpatents

    Schindler, Harvey D.; Chen, James M.

    1985-01-01

    Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

  11. Characterization of the chemical variation of feed coal and coal combustion products from a power plant utilizing low sulfur Powder River Basin coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Affolter, R.H.; Brownfield, M.E.; Cathcart, J.D.

    2000-07-01

    The US Geological Survey and the University of Kentucky Center for Applied Energy Research, in collaboration with an Indiana utility, are studying a coal-fired power plant burning Powder River Basin coal. This investigation involves a systematic study of the chemical and mineralogical characteristics of feed coal and coal combustion products (CCPs) from a 1,300-megawatt (MW) power unit. The main goal of this study is to characterize the temporal chemical variability of the feed coal, fly ash, and bottom ash by looking at the major-, minor-, and trace-element compositions and their associations with the feed coal mineralogy. Emphasis is also placedmore » on the abundance and modes of occurrence of elements of potential environmental concern that may affect the utilization of these CCPs and coals.« less

  12. An overview of the geological controls in underground coal gasification

    NASA Astrophysics Data System (ADS)

    Mohanty, Debadutta

    2017-07-01

    Coal’s reign will extend well into this millennium as the global demand for coal is expected to increase on average by 2-1% per year through 2019. Enhanced utilization of the domestic coal resource through clean coal technologies is necessary to meet the energy needs while achieving reduced emissions. Underground coal gasification (UCG) is one of such potential technologies. Geology of the area plays decisive role throughout the life of a UCG project and imperative for every phase of the project cycle starting from planning, site selection, design to cessation of operations and restoration of the site. Impermeable over/underlying strata with low porosity and less deformation are most suitable for UCG processes as they act as seal between the coal seam and the surrounding aquifers while limiting the degree of subsidence. Inrush of excess water into the gasification chamber reduces the efficacy of the process and may even quench the reactions in progress. Presence of fresh water aquifer in the vicinity of target coal seam should be abandoned in order to avoid groundwater contamination. UCG is not a proven technology that is still evolving and there are risks that need to be monitored and managed. Effective shutdown programme should intend at minimising the post-burn contaminant generation by flushing out potential organic and inorganic contaminants from the underground strata and treating contaminants, and to restore ground water quality to near baseline conditions.

  13. Memorandum of Understanding on Surface Coal Mining Operations Resulting in Placement of Excess Spoil Fills in the Waters of the United States

    EPA Pesticide Factsheets

    MOU on Surface Coal Mining Operations establishes a process for improving coordination in the review of permit applications required for surface coal mining and reclamation in waters of the United States

  14. Higher coronary heart disease and heart attack morbidity in Appalachian coal mining regions.

    PubMed

    Hendryx, Michael; Zullig, Keith J

    2009-11-01

    This study analyzes the U.S. 2006 Behavioral Risk Factor Surveillance System survey data (N=235,783) to test whether self-reported cardiovascular disease rates are higher in Appalachian coal mining counties compared to other counties after control for other risks. Dependent variables include self-reported measures of ever (1) being diagnosed with cardiovascular disease (CVD) or with a specific form of CVD including (2) stroke, (3) heart attack, or (4) angina or coronary heart disease (CHD). Independent variables included coal mining, smoking, BMI, drinking, physician supply, diabetes co-morbidity, age, race/ethnicity, education, income, and others. SUDAAN Multilog models were estimated, and odds ratios tested for coal mining effects. After control for covariates, people in Appalachian coal mining areas reported significantly higher risk of CVD (OR=1.22, 95% CI=1.14-1.30), angina or CHD (OR=1.29, 95% CI=1.19-1.39) and heart attack (OR=1.19, 95% CI=1.10-1.30). Effects were present for both men and women. Cardiovascular diseases have been linked to both air and water contamination in ways consistent with toxicants found in coal and coal processing. Future research is indicated to assess air and water quality in coal mining communities in Appalachia, with corresponding environmental programs and standards established as indicated.

  15. Rationale for continuing R&D in direct coal conversion to produce high quality transportation fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, R.D.; McIlvried, H.G.; Gray, D.

    1995-12-31

    For the foreseeable future, liquid hydrocarbon fuels will play a significant role in the transportation sector of both the United States and the world. Factors favoring these fuels include convenience, high energy density, and the vast existing infrastructure for their production and use. At present the U.S. consumes about 26% of the world supply of petroleum, but this situation is expected to change because of declining domestic production and increasing competition for imports from countries with developing economies. A scenario and time frame are developed in which declining world resources will generate a shortfall in petroleum supply that can bemore » allieviated in part by utilizing the abundant domestic coal resource base. One option is direct coal conversion to liquid transportation fuels. Continued R&D in coal conversion technology will results in improved technical readiness that can significantly reduce costs so that synfuels can compete economically in a time frame to address the shortfall.« less

  16. HINDERED DIFFUSION OF COAL LIQUIDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theodore T. Tsotsis; Muhammad Sahimi; Ian A. Webster

    1996-01-01

    It was the purpose of the project described here to carry out careful and detailed investigations of petroleum and coal asphaltene transport through model porous systems under a broad range of temperature conditions. The experimental studies were to be coupled with detailed, in-depth statistical and molecular dynamics models intended to provide a fundamental understanding of the overall transport mechanisms and a more accurate concept of the asphaltene structure. The following discussion describes some of our accomplishments.

  17. Petrology, mineralogy and geochemistry of mined coals, western Venezuela

    USGS Publications Warehouse

    Hackley, Paul C.; Warwick, Peter D.; González, Eligio

    2005-01-01

    related to construction of the Andean orogen. Values of maximum reflectance of vitrinite in oil (Ro max) range between 0.42% and 0.85% and generally are consistent with the high-volatile bituminous rank classification obtained through ASTM methods. X-ray diffraction analyses of low-temperature ash residues indicate that kaolinite, quartz, illite and pyrite dominate the inorganic fraction of most samples; plagioclase, potassium feldspar, calcite, siderite, ankerite, marcasite, rutile, anatase and apatite are present in minor or trace concentrations. Semiquantitative values of volume percent pyrite content show a strong correlation with pyritic sulfur and some sulfide-hosted trace element concentrations (As and Hg). This work provides a modern quality dataset for the western Venezuela coal deposits currently being exploited and will serve as the foundation for an ongoing coal quality research program in Venezuela.

  18. Cytotoxicity and genotoxicity induced by coal and coal fly ash particles samples in V79 cells.

    PubMed

    León-Mejía, Grethel; Silva, Luis F O; Civeira, Matheus S; Oliveira, Marcos L S; Machado, Miriana; Villela, Izabel Vianna; Hartmann, Andreas; Premoli, Suziane; Corrêa, Dione Silva; Da Silva, Juliana; Henriques, João Antônio Pêgas

    2016-12-01

    Exposure to coal and coal ashes can cause harmful effects in in vitro and in vivo systems, mainly by the induction of oxidative damage. The aim of this work was to assess cytotoxic and genotoxic effects using the V79 cell line treated with coal and coal fly ash particles derived from a coal power plant located in Santa Catarina, Brazil. Two coal samples (COAL11 and COAL16) and two coal fly ash samples (CFA11 and CFA16) were included in this study. COAL16 was co-firing with a mixture of fuel oil and diesel oil. The comet assay data showed that exposure of V79 cells to coal and coal fly ash particles induced primary DNA lesions. Application of lesion-specific endonucleases (FPG and ENDO III) demonstrated increased DNA effects indicating the presence of high amounts of oxidative DNA lesions. The cytokinesis-block micronucleus cytome assay analysis showed that exposure of V79 cells to high concentrations of coal and coal fly ash particles induced cytotoxic effects (apoptosis and necrosis) and chromosomal instability (nucleoplasmic bridges, nuclear buds, and micronucleus (MN) formation). These results may be associated with compounds contained in the surface of the particles as hazardous elements, ultrafine/nanoparticles, and polycyclic aromatic hydrocarbons (PAHs) which were detected in the samples. Graphical abstract ᅟ.

  19. Unionism and Productivity in West Virginia Coal Mining.

    ERIC Educational Resources Information Center

    Boal, William M.

    1990-01-01

    This study presents econometric estimates of the effects of unionism on productivity in 83 West Virginia coal mines in the early 1920s. Results show that unionism significantly reduced productivity at small mines but not at large mines. The author ascribes this effect to systematic differences between small and large operations in the quality of…

  20. Continuous bench-scale slurry catalyst testing direct coal liquefaction of rawhide sub-bituminous coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauman, R.F.; Coless, L.A.; Davis, S.M.

    In 1992, the Department of Energy (DOE) sponsored research to demonstrate a dispersed catalyst system using a combination of molybdenum and iron precursors for direct coal liquefaction. This dispersed catalyst system was successfully demonstrated using Black Thunder sub-bituminous coal at Wilsonville, Alabama by Southern Electric International, Inc. The DOE sponsored research continues at Exxon Research and Development Laboratories (ERDL). A six month continuous bench-scale program using ERDL`s Recycle Coal Liquefaction Unit (RCLU) is planned, three months in 1994 and three months in 1995. The initial conditions in RCLU reflect experience gained from the Wilsonville facility in their Test Run 263.more » Rawhide sub-bituminous coal which is similar to the Black Thunder coal tested at Wilsonville was used as the feed coal. A slate of five dispersed catalysts for direct coal liquefaction of Rawhide sub-bituminous coal has been tested. Throughout the experiments, the molybdenum addition rate was held constant at 100 wppm while the iron oxide addition rate was varied from 0.25 to 1.0 weight percent (dry coal basis). This report covers the 1994 operations and accomplishments.« less

  1. Characterization of coal liquids derived from the H-coal process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmes, S.A.; Woodward, P.W.; Sturm, G.P. Jr.

    1976-11-01

    Compositional data of coal liquid products derived from the H-Coal process were obtained. Two overhead products (one from the fuel oil mode of operation and the other from the syncrude mode of operation) were prepared by Hydrocarbon Research, Inc. from Illinois No. 6 coal. The compositional data of these products are tabulated, and characteristics of the materials are discussed. Separation and characterization methods, with slight modification, as developed by the Bureau of Mines-API Research Project 60 for characterizing heavy ends of petroleum, were successfully used in analyzing coal liquid distillates within the boiling range 200/sup 0/ to 540/sup 0/C. Distillatesmore » boiling below 200/sup 0/C were separated and analyzed using chromatographic and spectral techniques.« less

  2. Numerical simulation of trace element transport on subsurface environment pollution in coal mine spoil.

    PubMed

    Qiang, Xue; Bing, Liang; Hui-yun, Wang; Lei, Liu

    2006-01-01

    An understanding of the dynamic behavior of trace elements leaching from coal mine spoil is important in predicting the groundwater quality. The relationship between trace element concentrations and leaching times, pH values of the media is studied. Column leaching tests conducted in the laboratory showed that there was a close correlation between pH value and trace element concentrations. The longer the leaching time, the higher the trace element concentrations. Different trace elements are differently affected by pH values of leaching media. A numerical model for water flow and trace element transport has been developed based on analyzing the characteristics of migration and transformation of trace elements leached from coal mine spoil. Solutions to the coupled model are accomplished by Eulerian-Lagrangian localized adjoint method. Numerical simulation shows that rainfall intensity determined maximum leaching depth. As rainfall intensity is 3.6ml/s, the outflow concentrations indicate a breakthrough of trace elements beyond the column base, with peak concentration at 90cm depth. And the subsurface pollution range has a trend of increase with time. The model simulations are compared to experimental results of trace element concentrations, with reasonable agreement between them. The analysis and modeling of trace elements suggested that the infiltration of rainwater through the mine spoil might lead to potential groundwater pollution. It provides theoretical evidence for quantitative assessment soil-water quality of trace element transport on environment pollution.

  3. Minor element distribution in iron disulfides in coal: a geochemical review

    USGS Publications Warehouse

    Kolker, Allan

    2012-01-01

    Electron beam microanalysis of coal samples in U.S. Geological Survey (USGS) labs confirms that As is the most abundant minor constituent in Fe disulfides in coal and that Se, Ni, and other minor constituents are present less commonly and at lower concentrations than those for As. In nearly all cases, Hg occurs in Fe disulfides in coal at concentrations below detection by electron beam instruments. Its presence is shown by laser ablation ICP-MS, by selective leaching studies of bulk coal, and by correlation with Fe disulfide proxies such as total Fe and pyritic sulfur. Multiple generations of Fe disulfides are present in coal. These commonly show grain-to-grain and within-grain minor- or trace element compositional variation that is a function of the early diagenetic, coalification, and post-coalification history of the coal. Framboidal pyrite is almost always the earliest Fe disulfide generation, as shown by overgrowths of later Fe disulfides which may include pyrite or marcasite. Cleat- (or vein) pyrite (or marcasite) is typically the latest Fe disulfide generation, as shown by cross-cutting relations. Cleat pyrite forms by fluid migration within a coal basin and consequently may be enriched in elements such as As by deposition from compaction-driven fluids, metal enriched basinal brines or hydrothermal fluids. In some cases, framboidal pyrite shows preferential Ni enrichment with respect to co-occurring pyrite forms. This is consistent with bacterial complexing of metals in anoxic sediments and derivation of framboidal pyrite from greigite (Fe3S4), an Fe monosulfide precursor to framboidal pyrite having the thio-spinel structure which accommodates transition metals. Elements such as As, Se, and Sb substitute for S in the pyrite structure whereas metals, including transition metals, Hg and Pb, are thought to substitute for Fe. Understanding the distribution of minor and trace elements in Fe disulfides in coal has important implications for their availability to

  4. Naturally Occurring Radioactive Materials in Uranium-Rich Coals and Associated Coal Combustion Residues from China.

    PubMed

    Lauer, Nancy; Vengosh, Avner; Dai, Shifeng

    2017-11-21

    Most coals in China have uranium concentrations up to 3 ppm, yet several coal deposits are known to be enriched in uranium. Naturally occurring radioactive materials (NORM) in these U-rich coals and associated coal combustion residues (CCRs) have not been well characterized. Here we measure NORM (Th, U, 228 Ra, 226 Ra, and 210 Pb) in coals from eight U-rich coal deposits in China and the associated CCRs from one of these deposits. We compared NORM in these U-rich coals and associated CCRs to CCRs collected from the Beijing area and natural loess sediments from northeastern China. We found elevated U concentrations (up to 476 ppm) that correspond to low 232 Th/ 238 U and 228 Ra/ 226 Ra activity ratios (≪1) in the coal samples. 226 Ra and 228 Ra activities correlate with 238 U and 232 Th activities, respectively, and 226 Ra activities correlate well with 210 Pb activities across all coal samples. We used measured NORM activities and ash yields in coals to model the activities of CCRs from all U-rich coals analyzed in this study. The activities of measured and modeled CCRs derived from U-rich coals exceed the standards for radiation in building materials, particularly for CCRs originating from coals with U > 10 ppm. Since beneficial use of high-U Chinese CCRs in building materials is not a suitable option, careful consideration needs to be taken to limit potential air and water contamination upon disposal of U- and Ra-rich CCRs.

  5. Low temperature pyrolysis of coal or oil shale in the presence of calcium compounds

    DOEpatents

    Khan, M. Rashid

    1988-01-01

    A coal pyrolysis technique or process is described in which particulate coal is pyrolyzed in the presence of about 5 to 21 wt. % of a calcium compound selected from calcium oxide, calcined (hydrate) dolomite, or calcined calcium hydrate to produce a high quality hydrocarbon liquid and a combustible product gas which are characterized by low sulfur content. The pyrolysis is achieved by heating the coal-calcium compound mixture at a relatively slow rate at a temperature of about 450.degree. to 700.degree. C. over a duration of about 10 to 60 minutes in a fixed or moving bed reactor. The gas exhibits an increased yield in hydrogen and C.sub.1 -C.sub.8 hydrocarbons and a reduction in H.sub.2 S over gas obtainable by pyrolyzing cola without the calcium compound. The liquid product obtained is of a sufficient quality to permit its use directly as a fuel and has a reduced sulfur and oxygen content which inhibits polymerization during storage.

  6. Pharmaceutical quality by design: product and process development, understanding, and control.

    PubMed

    Yu, Lawrence X

    2008-04-01

    The purpose of this paper is to discuss the pharmaceutical Quality by Design (QbD) and describe how it can be used to ensure pharmaceutical quality. The QbD was described and some of its elements identified. Process parameters and quality attributes were identified for each unit operation during manufacture of solid oral dosage forms. The use of QbD was contrasted with the evaluation of product quality by testing alone. The QbD is a systemic approach to pharmaceutical development. It means designing and developing formulations and manufacturing processes to ensure predefined product quality. Some of the QbD elements include: Defining target product quality profile; Designing product and manufacturing processes; Identifying critical quality attributes, process parameters, and sources of variability; Controlling manufacturing processes to produce consistent quality over time. Using QbD, pharmaceutical quality is assured by understanding and controlling formulation and manufacturing variables. Product testing confirms the product quality. Implementation of QbD will enable transformation of the chemistry, manufacturing, and controls (CMC) review of abbreviated new drug applications (ANDAs) into a science-based pharmaceutical quality assessment.

  7. Atmospheric emission of mercury due to combustion of steam coal and domestic coal in China

    NASA Astrophysics Data System (ADS)

    Wang, Shaobin; Luo, Kunli

    2017-08-01

    To study the mercury emission due to the combustion of steam coal and domestic coal in China, we analyzed the mercury contents of coal, fly ash, bottom ash and sluicing water in thermal power plants, steam boilers as well as domestic coal-stoves, in Shaanxi, Shanxi, Shandong and Yunnan Provinces. This study conduct an estimate of the Hg emission rates from steam coal and domestic coal combustion based on the method of mass distribution ratio of fly ash and bottom ash. The results show that the Hg emission rate of coal combustion in thermal power plants is about 50.21% (electrostatic precipitators + wet flue gas desulfurization), and that in heating boilers is about 67.23%, and 92.28% in industrial boilers without flue gas desulphurisation equipment. Furthermore, Hg emission rate is 83.61% due to domestic coal combustion in coal-stoves. The Hg emission amount into the atmosphere from power and heat generation, industrial boilers, domestic coal-stoves and spontaneous combustion of coal gangue is roughly estimated to be 133 ± 4, 100 ± 17, 11 ± 0.1 and 47 ± 26 tons in China in 2014, respectively, and the total Hg emission amount from this paper is estimated at 292 tons. The trends of Hg emission in China from 1991 to 2014 show an accelerating growth after 2002. The proportion of mercury emission due to thermal power, heating generation and industrial energy utilization continuously increased. The atmospheric emission of mercury due to combustion of steam coal, domestic coal and coal gangue accounts nearly 50% in total anthropogenic Hg emissions in China, indicating one of the largest sources of Hg emission in China which should draw more public and scientific attention in the future.

  8. Changing patterns of Pennsylvanian coal-swamp vegetation and implications of climatic control on coal occurrence

    USGS Publications Warehouse

    Phillips, T.L.; Peppers, R.A.

    1984-01-01

    Improved regional and interregional stratigraphic correlations of Pennsylvanian strata permit comparisons of vegetational changes in Euramerican coal swamps. The coal-swamp vegetation is known directly from in situ coal-ball peat deposits from more than 65 coals in the United States and Europe. Interpretations of coal-swamp floras on the basis of coal-ball peat studies are extended to broader regional and stratigraphic patterns by use of coal palynology. Objectives of the quantitative analyses of the vegetation in relation to coal are to determine the botanical constituents at the peat stage and their environmental implications for plant growth and peat accumulation. Morphological and paleoecological analyses provide a basis for deducing freshwater regimes of coal swamps. Changes in composition of Pennsylvanian coal-swamp vegetation are quire similar from one paralic coal region to another and show synchrony that is attributable to climate. Paleobotany and paleogeography of the Euramerican province indicate a moist tropical paleoclimate. Rainfall, runoff and evapotranspiration were the variable climatic controls in the distribution of coal-swamp vegetation, peat accumulation and coal resources. In relative terms of climatic wetness the Pennsylvanian Period is divisible into five intervals, which include two relatively drier intervals that developed during the Lower-Middle and Middle-Upper Pennsylvanian transitions. The climate during Early Pennsylvanian time was moderately wet and the median in moisture availability. Early Middle Pennsylvanian was drier, probably seasonally dry-wet; late Middle Pennsylvanian was the wettest in the Midcontinent; early Late Pennsylvanian was the driest; and late Late Pennsylvanian was probably the wettest in the Dunkard Basin. The five climatic intervals represent a general means of dividing coal resources within each region into groups with similar botanical constituents and environments of peat accumulation. Regional differences in

  9. Thermal effects from the release of selenium from a coal combustion during high-temperature processing: a review.

    PubMed

    Hu, Jianjun; Sun, Qiang; He, Huan

    2018-05-01

    The release of selenium (Se) during coal combustion can have serious impacts on the ecological environment and human health. Therefore, it is very important to study the factors that concern the release of Se from coal combustion. In this paper, the characteristics of the release of Se from coal combustion, pyrolysis, and gasification of different coal species under different conditions are studied. The results show that the amount of released Se increases at higher combustion temperatures. There are obvious increases in the amount of released Se especially in the temperature range of 300 to 800 °C. In addition, more Se is released from the coal gasification than coal combustion process, but more Se is released from coal combustion than pyrolysis. The type of coal, rate of heating, type of mineral ions, and combustion atmosphere have different effects on the released percentage of Se. Therefore, having a good understanding of the factors that surround the release of Se during coal combustion, and then establishing the combustion conditions can reduce the impacts of this toxic element to humans and the environment.

  10. Geologic and geomorphic controls of coal development in some Tertiary Rocky Mountain basins, USA

    USGS Publications Warehouse

    Flores, R.M.

    1993-01-01

    Previous investigations have not well defined the controls on the development of minable coals in fluvial environments. This study was undertaken to provide a clearer understanding of these controls, particularly in of the lower Tertiary coal-bearing deposits of the Raton and Powder River basins in the Rocky Mountain region of the United States. In this region, large amounts of coals accumulated in swamps formed in the flow-through fluvial systems that infilled these intermontane basins. Extrabasinal and intrabasinal tectonism partly controlled the stratigraphic and facies distributions of minable coal deposits. The regional accumulation of coals was favored by the rapid basin subsidence coupled with minimal uplift of the source area. During these events, coals developed in swamps associated with anastomosed and meandering fluvial systems and alluvial fans. The extensive and high rate of sediment input from these fluvial systems promoted the formation of ombrotrophic, raised swamps, which produced low ash and anomalously thick coals. The petrology and palynology of these coals, and the paleobotany of the associated sediments, suggest that ombrotrophic, raised swamps were common in the Powder River Basin, where the climate during the early Tertiary was paratropical. The paleoecology of these swamps is identical to that of the modern ombrotrophic, raised swamps of the Baram and Mahakam Rivers of Borneo. ?? 1993.

  11. Coal-Sizing Auger

    NASA Technical Reports Server (NTRS)

    Lewis, E. V.

    1985-01-01

    Aft end of auger, like forward, face-piercing end, equipped with hard cutting bits such as diamonds. As auger breaks face, pulls broken coal lumps into jaws and forces them into hardened throat section. There, cutting bits chew up lumps: Clearance between throat and auger shaft sets maximum size for coal particles that pass through. Auger motion pushes coal particles into mixing chamber, where paddles combine them with water.

  12. Formulation of low solids coal water slurry from advanced coal cleaning waste fines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battista, J.J.; Morrison, J.L.; Lambert, A.

    1997-07-01

    GPU Genco, the New York State Electric and Gas Corporation (NYSEG), Penn State University and the Homer City Coal Processing Corporation are conducting characterization and formulation tests to determine the suitability of using minus 325 mesh coal waste fines as a low solids coal water slurry (CWS) co-firing fuel. The fine coal is contained in a centrifuge effluent stream at the recently modified Homer City Coal Preparation Plant. Recovering, thickening and then co-firing this material with pulverized coal is one means of alleviating a disposal problem and increasing the Btu recovery for the adjacent power plant. The project team ismore » currently proceeding with the design of a pilot scale system to formulate the effluent into a satisfactory co-firing fuel on a continuous basis for combustion testing at Seward Station. The ultimate goal is to burn the fuel at the pulverized coal units at the Homer City Generating Station. This paper presents the success to date of the slurry characterization and pilot scale design work. In addition, the paper will update GPU Genco`s current status for the low solids coal water slurry co-firing technology and will outline the company`s future plans for the technology.« less

  13. Considerations on coal gasification

    NASA Technical Reports Server (NTRS)

    Franzen, J. E.

    1978-01-01

    Commercial processes for the gasification of coal with oxygen are discussed. The Koppers-Totzek process for the gasification of coal dust entrained in a stream of gasifying agents is described in particular detail. The outlook for future applications of coal gasification is presented.

  14. Moist caustic leaching of coal

    DOEpatents

    Nowak, Michael A.

    1994-01-01

    A process for reducing the sulfur and ash content of coal. Particulate coal is introduced into a closed heated reaction chamber having an inert atmosphere to which is added 50 mole percent NaOH and 50 mole percent KOH moist caustic having a water content in the range of from about 15% by weight to about 35% by weight and in a caustic to coal weight ratio of about 5 to 1. The coal and moist caustic are kept at a temperature of about 300.degree. C. Then, water is added to the coal and caustic mixture to form an aqueous slurry, which is washed with water to remove caustic from the coal and to produce an aqueous caustic solution. Water is evaporated from the aqueous caustic solution until the water is in the range of from about 15% by weight to about 35% by weight and is reintroduced to the closed reaction chamber. Sufficient acid is added to the washed coal slurry to neutralize any remaining caustic present on the coal, which is thereafter dried to produce desulfurized coal having not less than about 90% by weight of the sulfur present in the coal feed removed and having an ash content of less than about 2% by weight.

  15. Method for fluorinating coal

    DOEpatents

    Huston, John L.; Scott, Robert G.; Studier, Martin H.

    1978-01-01

    Coal is fluorinated by contact with fluorine gas at low pressure. After pial fluorination, when the reaction rate has slowed, the pressure is slowly increased until fluorination is complete, forming a solid fluorinated coal of approximate composition CF.sub.1.55 H.sub.0.15. The fluorinated coal and a solid distillate resulting from vacuum pyrolysis of the fluorinated coal are useful as an internal standard for mass spectrometric unit mass assignments from about 100 to over 1500.

  16. Petrographic and Vitrinite Reflectance Analyses of a Suite of High Volatile Bituminous Coal Samples from the United States and Venezuela

    USGS Publications Warehouse

    Hackley, Paul C.; Kolak, Jonathan J.

    2008-01-01

    This report presents vitrinite reflectance and detailed organic composition data for nine high volatile bituminous coal samples. These samples were selected to provide a single, internally consistent set of reflectance and composition analyses to facilitate the study of linkages among coal composition, bitumen generation during thermal maturation, and geochemical characteristics of generated hydrocarbons. Understanding these linkages is important for addressing several issues, including: the role of coal as a source rock within a petroleum system, the potential for conversion of coal resources to liquid hydrocarbon fuels, and the interactions between coal and carbon dioxide during enhanced coalbed methane recovery and(or) carbon dioxide sequestration in coal beds.

  17. Water-quality data for two surface coal mines reclaimed with alkaline waste or urban sewage sludge, Clarion County, Pennsylvania, May 1983 through November 1989

    USGS Publications Warehouse

    Dugas, D.L.; Cravotta, C.A.; Saad, D.A.

    1993-01-01

    Water-quality and other hydrologic data for two surface coal mines in Clarion County, Pa., were collected during 1983-89 as part of studies conducted by the U.S. Geological Survey in cooperation with the Pennsylvania Department of Environmental Resources. Water samples were collected from streams, seeps, monitor wells, and lysimeters on a monthly basis to evaluate changes in water quality resulting from the addition of alkaline waste or urban sewage sludge to the reclaimed mine-spoil surface. The mines are about 3.5 miles apart and were mined for bituminous coal of the upper and lower Clarion seams of the Allegheny Group of Pennsylvanian age. The coal had high sulfur (greater than 2 weight percent) concentrations. Acidic mine drainage is present at both mines. At one mine, about 8 years after mining was completed, large quantities (greater than 400 tons per acre) of alkaline waste consisting of limestone and lime-kiln flue dust were applied on two 2.5-acre plots within the 65-acre mine area. Water-quality data for the alkaline-addition plots and surrounding area were collected for 1 year before and 3 years after application of the alkaline additives (May 1983-July 1987). Data collected for the alkaline-addition study include ground-water level, surface-water discharge rate, temperature, specific conductance, pH, and concentrations of alkalinity, acidity, sulfate, iron (total and ferrous), manganese, aluminum, calcium, and magnesium. At the other mine, about 3.5 years after mining was completed, urban sewage sludge was applied over 60 acres within the 150-acre mine area. Waterquality data for the sludge-addition study were collected for 3.5 years after the application of the sludge (June 1986-December 1989). Data collected for the sludge-addition study include the above constituents plus dissolved oxygen, redox potential (Eh), and concentrations of dissolved solids, phosphorus, nitrogen species, sulfide, chloride, silica, sodium, potassium, cyanide, arsenic, barium

  18. Coal cleaning: An underutilized solution?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godfrey, R.L.

    1995-12-31

    Custom Coals Corporation is based in Pittsburgh, Pennsylvania. It is involved in the construction and operation of advanced coal cleaning facilities. The company has initially chosen to focus on Pennsylvania`s vast reserves of coal, because these coal provide a superior feedstock for the Technology. In a $76 million project co-sponsored by the U.S. Department of Energy, Custom Coals is constructing its first coal cleaning facility. The DOE chose to participate with the company in the project pursuant to a competition it sponsored under Round IV of Its Clean Cod Technology program. Thirty-one companies submitted 33 projects seeking approximately $2.3 billionmore » of funding against the $600 million available. The company`s project was one of nine proposals accepted and was the only pre-combustion cleaning technology awarded. The project includes both the construction of a 500 ton per hour coal cleaning facility utilizing the company`s proprietary technologies and a series of power plant test bums on a variety of U.S. coals during a 12-month demonstration program. Three U.S. coal seams - Sewickley, Lower Freeport and Illinois No. 5 - will supply the initial feedstock for the demonstration project. These seams represent a broad range of raw cod qualifies. The processed coals will then be distributed to a number of generating stations for combustion. The 300 megawatt Martins Creek Plant of Pennsylvania Power & Light Co., near Allentown, Pennsylvania, will burn Carefree Coal, the 60 megawatt Whitewater Valley Power Station of Richmond Power and Light (in Indiana) and the Ashtabula, Ohio unit of Centerior Energy will burn Self-Scrubbing Coal. Following these demonstrations, the plant will begin full-scale commercial operation, providing two million tons of Pennsylvania compliance coals to electric power utilities.« less

  19. Characterization of feed coal and coal combustion products from power plants in Indiana and Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brownfield, M.E.; Affolter, R.H.; Cathcart, J.D.

    1999-07-01

    The US Geological Survey, Kentucky Geological Survey, and the University of Kentucky Center for Applied Energy Research are collaborating with Indiana and Kentucky utilities to determine the physical and chemical properties of feed coal and coal combustion products (CCP) from three coal-fired power plants. These three plants are designated as Units K1, K2, and I1 and burn high-, moderate-, and low-sulfur coals, respectively. Over 200 samples of feed coal and CCP were analyzed by various chemical and mineralogical methods to determine mode of occurrence and distribution of trace elements in the CCP. Generally, feed coals from all 3 Units containmore » mostly well-crystallized kaolinite and quartz. Comparatively, Unit K1 feed coals have higher amounts of carbonates, pyrite and sphalerite. Unit K2 feed coals contain higher kaolinite and illite/muscovite when compared to Unit K1 coals. Unit I1 feed coals contain beta-form quartz and alumino-phosphates with minor amounts of calcite, micas, anatase, and zircon when compared to K1 and K2 feed coals. Mineralogy of feed coals indicate that the coal sources for Units K1 and K2 are highly variable, with Unit K1 displaying the greatest mineralogic variability; Unit I1 feed coal however, displayed little mineralogic variation supporting a single source. Similarly, element contents of Units K1 and K2 feed coals show more variability than those of Unit I1. Fly ash samples from Units K1 and K2 consist mostly of glass, mullite, quartz, and spines group minerals. Minor amounts of illite/muscovite, sulfates, hematite, and corundum are also present. Spinel group minerals identified include magnetite, franklinite, magnesioferrite, trevorite, jacobisite, and zincochromite. Scanning Electron Microscope analysis reveals that most of the spinel minerals are dendritic intergrowths within aluminum silicate glass. Unit I1 fly ash samples contain glass, quartz, perovskite, lime, gehlenite, and apatite with minor amounts of periclase

  20. Coal geology of the Paleocene-Eocene Calvert Bluff Formation (Wilcox Group) and the Eocene Manning Formation (Jackson Group) in east-central Texas; field trip guidebook for the Society for Organic Petrology, Twelfth Annual Meeting, The Woodlands, Texas, August 30, 1995

    USGS Publications Warehouse

    Warwick, Peter D.; Crowley, Sharon S.

    1995-01-01

    The Jackson and Wilcox Groups of eastern Texas (fig. 1) are the major lignite producing intervals in the Gulf Region. Within these groups, the major lignite-producing formations are the Paleocene-Eocene Calvert Bluff Formation (Wilcox) and the Eocene Manning Formation (Jackson). According to the Keystone Coal Industry Manual (Maclean Hunter Publishing Company, 1994), the Gulf Coast basin produces about 57 million short tons of lignite annually. The state of Texas ranks number 6 in coal production in the United States. Most of the lignite is used for electric power generation in mine-mouth power plant facilities. In recent years, particular interest has been given to lignite quality and the distribution and concentration of about a dozen trace elements that have been identified as potential hazardous air pollutants (HAPs) by the 1990 Clean Air Act Amendments. As pointed out by Oman and Finkelman (1994), Gulf Coast lignite deposits have elevated concentrations of many of the HAPs elements (Be, Cd, Co, Cr, Hg, Mn, Se, U) on a as-received gm/mmBtu basis when compared to other United States coal deposits used for fuel in thermo-electric power plants. Although regulations have not yet been established for acceptable emissions of the HAPs elements during coal burning, considerable research effort has been given to the characterization of these elements in coal feed stocks. The general purpose of the present field trip and of the accompanying collection of papers is to investigate how various aspects of east Texas lignite geology might collectively influence the quality of the lignite fuel. We hope that this collection of papers will help future researchers understand the complex, multifaceted interrelations of coal geology, petrology, palynology and coal quality, and that this introduction to the geology of the lignite deposits of east Texas might serve as a stimulus for new ideas to be applied to other coal basins in the U.S. and abroad.

  1. Characteristics of an open-cut coal mine fire pollution event

    NASA Astrophysics Data System (ADS)

    Reisen, Fabienne; Gillett, Rob; Choi, Jason; Fisher, Gavin; Torre, Paul

    2017-02-01

    On 9 February 2014, embers from a nearby grass/shrub fire spotted into an unused part of the Hazelwood open-cut brown coal mine located in the Latrobe Valley of Victoria, Australia and started a fire that spread rapidly and extensively throughout the mine under strong south-westerly winds and burned over a period of 45 days. The close proximity of the town to the coal mine and the low buoyancy of the smoke plume led to the accumulation of dense smoke levels in the township of Morwell (population of 14,000) particularly under south-westerly winds. A maximum daily PM2.5 concentration of 731 μg m-3 and 8-h CO concentration of 33 ppm were measured at Morwell South, the closest residential area located approximately 500 m from the mine. These concentrations were significantly higher than national air quality standards. Air quality monitoring undertaken in the Latrobe Valley showed that smoke from the Hazelwood mine fire affected a wide area, with particle air quality standards also exceeded in Traralgon (population of 25,000) located approximately 13 km from the mine. Pollutant levels were significantly elevated in February, decreased in March once the fire abated and then returned to background levels once the fire was declared safe at the end of March. While the smoke extent was of a similar order of magnitude to other major air pollution events worldwide, a closer look at emissions ratios showed that the open combustion of lignite brown coal in the Hazelwood mine was different to open combustion of biomass, including peat. It suggested that the dominant combustion process was char combustion. While particle and carbon monoxide monitoring started approximately 4 days after the fire commenced when smoke levels were very high, targeted monitoring of air toxics only began on 26 February (17 days after the fire) when smoke levels had subsided. Limited research on emission factors from open-cut coal mine fires make it difficult to assess the likely concentrations of air

  2. Superacid Catalyzed Coal Conversion Chemistry. Final Technical Report, September 1, 1983-September 1, 1986

    DOE R&D Accomplishments Database

    Olah, G. A.

    1986-01-01

    This research project involved the study of a raw comparatively mild coal conversion process. The goal of the project was to study model systems to understand the basic chemistry involved and to provide a possible effective pretreatment of coal which significantly improves liquefaction-depolymerization under mild conditions. The conversion process operates at relatively low temperatures (170 degrees C) and pressures and uses an easily recyclable, stable superacid catalysts (HF-BF{sub 3}). It consequently offers an attractive alternative to currently available processes. From the present studies it appears that the modification of coal structure by electrophilic alkylation and subsequent reaction of alkylated coal with HF-BF{sub 3}-H{sub 2} system under mild conditions considerably improves the extractability of coal in pyridine and cyclohexane. On the other hand, nitration of coal and its subsequent reaction with HF-BF{sub 3}H{sub 2} decreases the pyridine and cyclohexane extractability. Study of model compounds under conditions identical with the superacidic HF/BF{sub 3}/H{sub 2} system provided significant information about the basic chemistry of the involved cleavage-hydrogenation reactions.

  3. Effects of Gas Pressure on the Failure Characteristics of Coal

    NASA Astrophysics Data System (ADS)

    Xie, Guangxiang; Yin, Zhiqiang; Wang, Lei; Hu, Zuxiang; Zhu, Chuanqi

    2017-07-01

    Several experiments were conducted using self-developed equipment for visual gas-solid coupling mechanics. The raw coal specimens were stored in a container filled with gas (99% CH4) under different initial gas pressure conditions (0.0, 0.5, 1.0, and 1.5 MPa) for 24 h prior to testing. Then, the specimens were tested in a rock-testing machine, and the mechanical properties, surface deformation and failure modes were recorded using strain gauges, an acoustic emission (AE) system and a camera. An analysis of the fractals of fragments and dissipated energy was performed to understand the changes observed in the stress-strain and crack propagation behaviour of the gas-containing coal specimens. The results demonstrate that increased gas pressure leads to a reduction in the uniaxial compression strength (UCS) of gas-containing coal and the critical dilatancy stress. The AE, surface deformation and fractal analysis results show that the failure mode changes during the gas state. Interestingly, a higher initial gas pressure will cause the damaged cracks and failure of the gas-containing coal samples to become severe. The dissipated energy characteristic in the failure process of a gas-containing coal sample is analysed using a combination of fractal theory and energy principles. Using the theory of fracture mechanics, based on theoretical analyses and calculations, the stress intensity factor of crack tips increases as the gas pressure increases, which is the main cause of the reduction in the UCS and critical dilatancy stress and explains the influence of gas in coal failure. More serious failure is created in gas-containing coal under a high gas pressure and low exterior load.

  4. Using Lagrangian Coherent Structures to understand coastal water quality

    NASA Astrophysics Data System (ADS)

    Fiorentino, L. A.; Olascoaga, M. J.; Reniers, A.; Feng, Z.; Beron-Vera, F. J.; MacMahan, J. H.

    2012-09-01

    The accumulation of pollutants near the shoreline can result in low quality coastal water with negative effects on human health. To understand the role of mixing by tidal flows in coastal water quality we study the nearshore Lagrangian circulation. Specifically, we reveal Lagrangian Coherent Structures (LCSs), i.e., distinguished material curves which shape global mixing patterns and thus act as skeletons of the Lagrangian circulation. This is done using the recently developed geodesic theory of transport barriers. Particular focus is placed on Hobie Beach, a recreational subtropical marine beach located in Virginia Key, Miami, Florida. According to studies of water quality, Hobie Beach is characterized by high microbial levels. Possible sources of pollution in Hobie Beach include human bather shedding, dog fecal matter, runoff, and sand efflux at high tides. Consistent with the patterns formed by satellite-tracked drifter trajectories, the LCSs extracted from simulated currents reveal a Lagrangian circulation favoring the retention near the shoreline of pollutants released along the shoreline, which can help explain the low quality water registered at Hobie Beach.

  5. Understanding real-world implementation quality and "active ingredients" of PBIS.

    PubMed

    Molloy, Lauren E; Moore, Julia E; Trail, Jessica; Van Epps, John James; Hopfer, Suellen

    2013-12-01

    Programs delivered in the "real world" often look substantially different from what was originally intended by program developers. Depending on which components of a program are being trimmed or altered, such modifications may seriously undermine the effectiveness of a program. In the present study, these issues are explored within a widely used school-based, non-curricular intervention, Positive Behavioral Intervention and Supports. The present study takes advantage of a uniquely large dataset to gain a better understanding of the "real-world" implementation quality of PBIS and to take a first step toward identifying the components of PBIS that "matter most" for student outcomes. Data from 27,689 students and 166 public primary and secondary schools across seven states included school and student demographics, indices of PBIS implementation quality, and reports of problem behaviors for any student who received an office discipline referral during the 2007-2008 school year. Results of the present study identify three key components of PBIS that many schools are failing to implement properly, three program components that were most related to lower rates of problem behavior (i.e., three "active ingredients" of PBIS), and several school characteristics that help to account for differences across schools in the quality of PBIS implementation. Overall, findings highlight the importance of assessing implementation quality in "real-world" settings, and the need to continue improving understanding of how and why programs work. Findings are discussed in terms of their implications for policy.

  6. Effective Use of Discovery Learning to Improve Understanding of Factors That Affect Quality

    ERIC Educational Resources Information Center

    Mukherjee, Arup

    2015-01-01

    Undergraduate business majors are required to take a course in operations management. In this course, a great deal of emphasis is put on developing a good understanding of quality because this is likely to be the only required course that covers this important topic. Quality of output exhibits a great deal of variation. To produce high quality on…

  7. Preschool Teachers' Understanding of Quality in Preschool: A Comparative Study in Three European Countries

    ERIC Educational Resources Information Center

    Brodin, J.; Hollerer, L.; Renblad, K.; Stancheva-Popkostadinova, V.

    2015-01-01

    The aim of this article is to highlight the concept "quality" with a special focus on preschool teachers' understanding and compare what preschool teachers in Austria, Bulgaria and Sweden regard as quality. Although quality is at high degree a subjective concept, some aspects are regarded decisive for good quality. A questionnaire was…

  8. Concentrated Brine Treatment using New Energy in Coal Mine Evaporation Ponds

    NASA Astrophysics Data System (ADS)

    Li, Ting; Li, Jingfeng

    2017-12-01

    Recently, more and more coal mine water is being advanced treated and reused in China. The concentrated brine that results from advanced treatment methods can only be evaporated in an evaporation pond. Because of limited treatment capabilities and winter freezing, evaporation ponds often overflow, causing environment contamination. In this paper, based on analysis of brine water quality and economic-technical feasibility, we present a suitable treatment method for brine in evaporation ponds as electrodialysis using solar energy. In addition, we propose a new system to treat brine in coal mine evaporation ponds, which is powered by solar and wind. The operating efficiency of this treatment system proposed in this paper can meet the concentrated brine treatment demands in most coal mines in western mining areas of China and it places the photovoltaic power generation plates on the surface of the evaporation pond on a fixed floating island, which reduces any risk associated with land acquisition. This system can enhance brine treatment efficiency, requires a reduced evaporation pond area, increases the utilization of coal mine water, and minimizes the risk of environment contamination.

  9. GIS data models for coal geology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McColloch, G.H. Jr.; Timberlake, K.J.; Oldham, A.V.

    A variety of spatial data models can be applied to different aspects of coal geology. The simple vector data models found in various Computer Aided Drafting (CAD) programs are sometimes used for routine mapping and some simple analyses. However, more sophisticated applications that maintain the topological relationships between cartographic elements enhance analytical potential. Also, vector data models are best for producing various types of high quality, conventional maps. The raster data model is generally considered best for representing data that varies continuously over a geographic area, such as the thickness of a coal bed. Information is lost when contour linesmore » are threaded through raster grids for display, so volumes and tonnages are more accurately determined by working directly with raster data. Raster models are especially well suited to computationally simple surface-to-surface analysis, or overlay functions. Another data model, triangulated irregular networks (TINs) are superior at portraying visible surfaces because many TIN programs support break fines. Break lines locate sharp breaks in slope such as those generated by bodies of water or ridge crests. TINs also {open_quotes}honor{close_quotes} data points so that a surface generated from a set of points will be forced to pass through those points. TINs or grids generated from TINs, are particularly good at determining the intersections of surfaces such as coal seam outcrops and geologic unit boundaries. No single technique works best for all coal-related applications. The ability to use a variety of data models, and transform from one model to another is essential for obtaining optimum results in a timely manner.« less

  10. Review of China's Low-Carbon City Initiative and Developments in the Coal Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fridley, David; Khanna, Nina Zheng; Hong, Lixuan

    As China continues its double-digit economic growth, coal remains the principal fuel for the country’s primary energy consumption and electricity generation. China’s dependence on coal in coming years makes its carbon emission intensity reduction targets more difficult to achieve, particularly given rising electricity demand from a growing number of Chinese cities. This paradox has led the government to pursue cleaner and more efficient development of the coal industry on the supply side and “low carbon” development of cities on the demand side. To understand and assess how China may be able to meet its energy and carbon intensity reduction targets,more » this report looks at the recent development of low carbon cities as well as new developments and trends in the coal industry. Specifically, we review low-carbon city and related eco-city development in China before delving into a comparison of eight pilot lowcarbon city plans to highlight their strengths and weaknesses in helping achieve national energy and carbon targets. We then provide insights into the future outlook for China’s coal industry by evaluating new and emerging trends in coal production, consumption, transport, trade and economic performance.« less

  11. Installation of a stoker-coal preparation plant in Krakow, Poland. Technical progress report No. 8, January 1996--March 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozelle, P.

    The work being performed under this Cooperative Agreement between the United States Department of Energy (DOE) and EFH Coal Company (Participant) is one part of the assessment program in the Support for Eastern European Democracy (SEED) Act of 1989 (P.L. 101-179). In October 1991, a Memorandum of Understanding (MOU) titled {open_quotes}Collaboration on the Krakow Clean Fossil Fuels and Energy Efficiency Program, A Project of Elimination of Low Emission Sources in Krakow{close_quotes} was signed by the DOE and the Ministry of Environmental Protection, Natural Resources and Forestry of the Republic of Poland, that describes the cooperation that is being undertaken bymore » the respective governments to accomplish the goals of this program. The DOE has selected eight U.S. companies to work with the government of Poland to improve the country`s air quality, particularly around the historic city of Krakow. Although the program is focused on Krakow, it is intended to serve as a model for similar pollution control programs throughout Poland and, hopefully, much of Eastern Europe. The objective of this program is to design, construct, and operate a coal beneficiation facility that will produce a low-ash, double sized stoker coal for burning in a typical traveling-gate stoker.« less

  12. Leaching behavior of rare earth elements in fort union lignite coals of North America

    DOE PAGES

    Laudal, Daniel A.; Benson, Steven A.; Addleman, Raymond Shane; ...

    2018-03-30

    Fort Union lignite coal samples were subjected to a series of aqueous leaching experiments to understand the extraction behavior of the rare earth elements (REE). This testing was aimed at understanding the modes of occurrence of the REE in the lignite coals, as well as to provide foundational data for development of rare earth extraction processes. In a first series of tests, a sequential leaching process was used to investigate modes of occurrence of the REE of select lignite coals. The tests involved sequential exposure to solvents consisting of water, ammonium acetate and dilute hydrochloric acid (HCl). The results indicatedmore » that water and ammonium acetate extracted very little of the REE, indicating the REE are not present as water soluble or ion-exchangeable forms. However, the data shows that a large percentage of the REE were extracted with the hydrochloric acid (80–95 wt%), suggesting presence in HCl-soluble mineral forms such as carbonates, and/or presence as organic complexes. A second series of tests was performed involving single-step leaching with dilute acids and various operating parameters, including acid type, acid concentration, acid/coal contact time and coal particle size. For select samples, additional tests were performed to understand the results of leaching, including float-sink density separations and humic acid extraction. The results have shown that the majority of REE in Fort Union lignites appear to be associated weakly with the organic matrix of the coals, most likely as coordination complexes of carboxylic acid groups. The light REE and heavy REE exhibit different behaviors, however. The extractable light REE appear to have association both in acid-soluble mineral forms and as organic complexes, whereas the extractable heavy REE appear to be almost solely associated with the organics. In conclusion, scandium behavior was notably different than yttrium and the lanthanides, and the data suggests the extractable content is

  13. Leaching behavior of rare earth elements in fort union lignite coals of North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laudal, Daniel A.; Benson, Steven A.; Addleman, Raymond Shane

    Fort Union lignite coal samples were subjected to a series of aqueous leaching experiments to understand the extraction behavior of the rare earth elements (REE). This testing was aimed at understanding the modes of occurrence of the REE in the lignite coals, as well as to provide foundational data for development of rare earth extraction processes. In a first series of tests, a sequential leaching process was used to investigate modes of occurrence of the REE of select lignite coals. The tests involved sequential exposure to solvents consisting of water, ammonium acetate and dilute hydrochloric acid (HCl). The results indicatedmore » that water and ammonium acetate extracted very little of the REE, indicating the REE are not present as water soluble or ion-exchangeable forms. However, the data shows that a large percentage of the REE were extracted with the hydrochloric acid (80–95 wt%), suggesting presence in HCl-soluble mineral forms such as carbonates, and/or presence as organic complexes. A second series of tests was performed involving single-step leaching with dilute acids and various operating parameters, including acid type, acid concentration, acid/coal contact time and coal particle size. For select samples, additional tests were performed to understand the results of leaching, including float-sink density separations and humic acid extraction. The results have shown that the majority of REE in Fort Union lignites appear to be associated weakly with the organic matrix of the coals, most likely as coordination complexes of carboxylic acid groups. The light REE and heavy REE exhibit different behaviors, however. The extractable light REE appear to have association both in acid-soluble mineral forms and as organic complexes, whereas the extractable heavy REE appear to be almost solely associated with the organics. In conclusion, scandium behavior was notably different than yttrium and the lanthanides, and the data suggests the extractable content is

  14. Coal Extraction - Environmental Prediction

    USGS Publications Warehouse

    Cecil, C. Blaine; Tewalt, Susan J.

    2002-01-01

    Coal from the Appalachian region has supplied energy to the Nation for more than 200 years. Appalachian coal fueled America through a civil war and helped win two world wars. Appalachian coal has also provided fuel for keeping America warm in the winter and cool in the summer and has served as the basis for the steel, automobile, organic chemicals, chlorine, and aluminum industries. These benefits have not come without environmental costs, however. Coal extraction and utilization have had significant environmental impacts.

  15. Data evaluation of trace elements determined in Nigerian coal using cluster procedures.

    PubMed

    Ewa, I O B

    2004-05-01

    Large data-sets of elements determined by instrumental neutron activation analysis (INAA) require meaningful interpretation in order to determine the pattern of their existence in host matrices. This could be achieved using cluster procedures. Element abundances (Al, As, Ba, Br, Ca, Ce, Cs, Dy, Eu, Fe, Ga, Gd, Hf, K, La, Lu, Mg, Mn, Na, O, Rb, Sb, Sc, Sm, Sr, Ta, Tb, Th, Ti, U, V, Yb, Zn and Zr) of prepared and run-of-mine coals from eight principal mines (Onyeama, Ogbete, Enugu, Gombe, Asaba-Ugwashi, Okaba, Afikpo and Lafia ) in Nigeria were determined by INAA. Quality control of the measurements was assured by the re-determination of a standard reference material, NIST 1632a. These data-sets were then tested for multi-variate statistics using METHOD = SINGLE in the cluster procedure. The computer-assisted package SAS was used to generate the dendrograms while the algorithm used was stored Euclidean distances. The results showed a recognition pattern, useful for the interpretation of coalification histories and the prediction of fuel ranking for Nigerian coals. High segregation of coal fly ash was observed, while metallurgical coal grouped together with high-ranking coals of Okaba, Enugu and Obi (Lafia). Further work revealed some of these coals as having high gross calorific value (7908 kcal kg(-1) for Enugu coal; 7200 kcal kg(-1) for Okaba) and low sulphur thereby making them efficient fuel materials.

  16. Characterization of coals for circulating fluidized bed combustion by pilot scale tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, L.A.; Cabanillas, A.C.; Becerra, J.O. de

    1995-12-31

    The major part of the Spanish coal supply is low range coal with both high ash (20--40%) and sulfur (1--8%) content. The use of this coal, by conventional combustion processes in power and industrial plants, implies a very high environmental impact. The Circulating Fluidized Bed Combustion process enables an efficient use of this coal. The Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas is carrying out a program with the intention of assisting companies in evaluating fuel quality impact, using atmospheric fluidized bed combustion. This paper reviews the major results of the fuel program in order to determine the fluidized bedmore » combustion performance of four fuels. Two lignites, a bituminous coal and an anthracite. The two lignites have very high sulfur content (7% and 8%) but the sulfur is organic in one case and pyritic in the other. The bituminous coal and the anthracite have 1% and 2% sulfur content respectively and the sulfur is pyritic in these cases. In order to reduce the sulfur in the flue gases, a high calcium content limestone has been used as sorbent. The combustion trials have been done in a circulating fluidized bed pilot plant with a 200 mm inside diameter and a height of 6.5 m. The influence of temperature, fluidization velocity, oxygen excess, Ca/S ratio and coal properties have been studied in relation to the combustion efficiency, sulfur retention, CO and NO{sub x} emissions.« less

  17. Coal desulfurization by aqueous chlorination

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Vasilakos, N.; Corcoran, W. H.; Grohmann, K.; Rohatgi, N. K. (Inventor)

    1982-01-01

    A method of desulfurizing coal is described in which chlorine gas is bubbled through an aqueous slurry of coal at low temperature below 130 degrees C., and at ambient pressure. Chlorinolysis converts both inorganic and organic sulfur components of coal into water soluble compounds which enter the aqueous suspending media. The media is separated after chlorinolysis and the coal dechlorinated at a temperature of from 300 C to 500 C to form a non-caking, low-sulfur coal product.

  18. Classification of Structural Coal-Controlling Styles and Analysis on Structural Coal-Controlling Actions

    NASA Astrophysics Data System (ADS)

    Zhan, Wen-feng

    2017-11-01

    Tectonism was the primary geologic factors for controlling the formation, deformation, and occurrence of coal measures. As the core of a new round of prediction and evaluation on the coalfield resource potential, the effect of coal-controlling structure was further strengthened and deepened in related researches. By systematically combing the tectonic coal-controlling effect and structure, this study determined the geodynamical classification basis for coal-controlling structures. According to the systematic analysis and summary on the related research results, the coal-controlling structure was categorized into extensional structure, compressive structure, shearing and rotational structure, inverted structure, as well as the sliding structure, syndepositional structure with coalfield structure characteristics. In accordance with the structure combination and distribution characteristics, the six major classes were further classified into 32 subclasses. Moreover, corresponding mode maps were drawn to discuss the basic characteristics and effect of the coal-controlling structures.

  19. Evaluation of an enhanced gravity-based fine-coal circuit for high-sulfur coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, M.K.; Samal, A.R.; Palit, A.

    One of the main objectives of this study was to evaluate a fine-coal cleaning circuit using an enhanced gravity separator specifically for a high sulfur coal application. The evaluation not only included testing of individual unit operations used for fine-coal classification, cleaning and dewatering, but also included testing of the complete circuit simultaneously. At a scale of nearly 2 t/h, two alternative circuits were evaluated to clean a minus 0.6-mm coal stream utilizing a 150-mm-diameter classifying cyclone, a linear screen having a projected surface area of 0.5 m{sup 2}, an enhanced gravity separator having a bowl diameter of 250 mmmore » and a screen-bowl centrifuge having a bowl diameter of 500 mm. The cleaning and dewatering components of both circuits were the same; however, one circuit used a classifying cyclone whereas the other used a linear screen as the classification device. An industrial size coal spiral was used to clean the 2- x 0.6-mm coal size fraction for each circuit to estimate the performance of a complete fine-coal circuit cleaning a minus 2-mm particle size coal stream. The 'linear screen + enhanced gravity separator + screen-bowl circuit' provided superior sulfur and ash-cleaning performance to the alternative circuit that used a classifying cyclone in place of the linear screen. Based on these test data, it was estimated that the use of the recommended circuit to treat 50 t/h of minus 2-mm size coal having feed ash and sulfur contents of 33.9% and 3.28%, respectively, may produce nearly 28.3 t/h of clean coal with product ash and sulfur contents of 9.15% and 1.61 %, respectively.« less

  20. Restoring Forests and Associated Ecosystem Services on Appalachian Coal Surface Mines

    NASA Astrophysics Data System (ADS)

    Zipper, Carl E.; Burger, James A.; Skousen, Jeffrey G.; Angel, Patrick N.; Barton, Christopher D.; Davis, Victor; Franklin, Jennifer A.

    2011-05-01

    Surface coal mining in Appalachia has caused extensive replacement of forest with non-forested land cover, much of which is unmanaged and unproductive. Although forested ecosystems are valued by society for both marketable products and ecosystem services, forests have not been restored on most Appalachian mined lands because traditional reclamation practices, encouraged by regulatory policies, created conditions poorly suited for reforestation. Reclamation scientists have studied productive forests growing on older mine sites, established forest vegetation experimentally on recent mines, and identified mine reclamation practices that encourage forest vegetation re-establishment. Based on these findings, they developed a Forestry Reclamation Approach (FRA) that can be employed by coal mining firms to restore forest vegetation. Scientists and mine regulators, working collaboratively, have communicated the FRA to the coal industry and to regulatory enforcement personnel. Today, the FRA is used routinely by many coal mining firms, and thousands of mined hectares have been reclaimed to restore productive mine soils and planted with native forest trees. Reclamation of coal mines using the FRA is expected to restore these lands' capabilities to provide forest-based ecosystem services, such as wood production, atmospheric carbon sequestration, wildlife habitat, watershed protection, and water quality protection to a greater extent than conventional reclamation practices.

  1. Mechanical Coal-Face Fracturer

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1984-01-01

    Radial points on proposed drill bit take advantage of natural fracture planes of coal. Radial fracture points retracted during drilling and impacted by piston to fracture coal once drilling halts. Group of bits attached to array of pneumatic drivers to fracture large areas of coal face.

  2. Cumulative potential hydrologic impacts of surface coal mining in the eastern Powder River structural basin, northeastern Wyoming

    USGS Publications Warehouse

    Martin, L.J.; Naftz, D.L.; Lowham, H.W.; Rankl, J.G.

    1988-01-01

    There are 16 existing and six proposed surface coal mines in the eastern Powder River structural basin of northeastern Wyoming. Coal mining companies predict water level declines of 5 ft or more in the Wasatch aquifer to extend form about 1,000 to about 2,000 ft beyond the mine pits. The predicted 5 ft water level decline in the Wyodak coal aquifer generally extends 4-8 mi beyond the lease areas. About 3,000 wells are in the area of potential cumulative water level declines resulting from all anticipated mining. Of these 3,000 wells, about 1,200 are outside the areas of anticipated mining: about 1,000 wells supply water for domestic or livestock uses, and about 200 wells supply water for municipal, industrial, irrigation, and miscellaneous uses. The 1,800 remaining wells are used by coal mining companies. Future surface coal mining probably will result in postmining groundwater of similar quality to that currently present in the study area. By use of geochemical modeling techniques, the results of a hypothetical reaction path exercise indicate the potential for marked improvements in postmining water quality because of chemical reactions as postmining groundwater with a large dissolved solids concentration (3,540 mg/L) moves into a coal aquifer with relatively small dissolved solids concentrations (910 mg/L). Results of the modeling exercise also indicate geochemical conditions that are most ideal for large decreases in dissolved solids concentrations in coal aquifers receiving recharge from a spoil aquifer. (Lantz-PTT)

  3. Coal Activities for Secondary Students.

    ERIC Educational Resources Information Center

    American Coal Foundation, Washington, DC.

    This collection of lesson plans designed for teachers of 4th- through 12th-grade students utilizes an assortment of teaching strategies for topics related to coal and the coal industry. Activities cover the following topics: coal formation; coal identification; "the geologist's dilemma" (a supply and demand activity); geologic time and…

  4. Higher coronary heart disease and heart attack morbidity in Appalachian coal mining regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendryx, M.; Zullig, K.J.

    This study analyzes the U.S. 2006 Behavioral Risk Factor Surveillance System survey data (N = 235,783) to test whether self-reported cardiovascular disease rates are higher in Appalachian coal mining counties compared to other counties after control for other risks. Dependent variables include self-reported measures of ever (1) being diagnosed with cardiovascular disease (CVD) or with a specific form of CVD including (2) stroke, (3) heart attack, or (4) angina or coronary heart disease (CHD). Independent variables included coal mining, smoking, BMI, drinking, physician supply, diabetes co-morbidity, age, race/ethnicity, education, income, and others. SUDAAN Multilog models were estimated, and odds ratiosmore » tested for coal mining effects. After control for covariates, people in Appalachian coal mining areas reported significantly higher risk of CVD (OR = 1.22, 95% CI = 1.14-1.30), angina or CHO (OR = 1.29, 95% C1 = 1.19-1.39) and heart attack (OR = 1.19, 95% C1 = 1.10-1.30). Effects were present for both men and women. Cardiovascular diseases have been linked to both air and water contamination in ways consistent with toxicants found in coal and coal processing. Future research is indicated to assess air and water quality in coal mining communities in Appalachia, with corresponding environmental programs and standards established as indicated.« less

  5. Experimental study on the minimum ignition temperature of coal dust clouds in oxy-fuel combustion atmospheres.

    PubMed

    Wu, Dejian; Norman, Frederik; Verplaetsen, Filip; Van den Bulck, Eric

    2016-04-15

    BAM furnace apparatus tests were conducted to investigate the minimum ignition temperature of coal dusts (MITC) in O2/CO2 atmospheres with an O2 mole fraction from 20 to 50%. Three coal dusts: Indonesian Sebuku coal, Pittsburgh No.8 coal and South African coal were tested. Experimental results showed that the dust explosion risk increases significantly with increasing O2 mole fraction by reducing the minimum ignition temperature for the three tested coal dust clouds dramatically (even by 100°C). Compared with conventional combustion, the inhibiting effect of CO2 was found to be comparatively large in dust clouds, particularly for the coal dusts with high volatile content. The retardation effect of the moisture content on the ignition of dust clouds was also found to be pronounced. In addition, a modified steady-state mathematical model based on heterogeneous reaction was proposed to interpret the observed experimental phenomena and to estimate the ignition mechanism of coal dust clouds under minimum ignition temperature conditions. The analysis revealed that heterogeneous ignition dominates the ignition mechanism for sub-/bituminous coal dusts under minimum ignition temperature conditions, but the decrease of coal maturity facilitates homogeneous ignition. These results improve our understanding of the ignition behaviour and the explosion risk of coal dust clouds in oxy-fuel combustion atmospheres. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. 30 CFR 75.1709 - Accumulations of methane and coal dust on surface coal-handling facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Accumulations of methane and coal dust on surface coal-handling facilities. 75.1709 Section 75.1709 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES...

  7. 30 CFR 75.1709 - Accumulations of methane and coal dust on surface coal-handling facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Accumulations of methane and coal dust on surface coal-handling facilities. 75.1709 Section 75.1709 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES...

  8. 30 CFR 75.1709 - Accumulations of methane and coal dust on surface coal-handling facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Accumulations of methane and coal dust on surface coal-handling facilities. 75.1709 Section 75.1709 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES...

  9. 30 CFR 75.1709 - Accumulations of methane and coal dust on surface coal-handling facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Accumulations of methane and coal dust on surface coal-handling facilities. 75.1709 Section 75.1709 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES...

  10. Improved coal-slurry pipeline

    NASA Technical Reports Server (NTRS)

    Dowler, W. L.

    1979-01-01

    High strength steel pipeline carries hot mixture of powdered coal and coal derived oil to electric-power-generating station. Slurry is processed along way to remove sulfur, ash, and nitrogen and to recycle part of oil. System eliminates hazards and limitations associated with anticipated coal/water-slurry pipelines.

  11. Sulfur compounds in coal

    NASA Technical Reports Server (NTRS)

    Attar, A.; Corcoran, W. H.

    1977-01-01

    The literature on the chemical structure of the organic sulfur compounds (or functional groups) in coal is reviewed. Four methods were applied in the literature to study the sulfur compounds in coal: direct spectrometric and chemical analysis, depolymerization in drastic conditions, depolymerization in mild conditions, and studies on simulated coal. The data suggest that most of the organic sulfur in coal is in the form of thiophenic structures and aromatic and aliphatic sulfides. The relative abundance of the sulfur groups in bituminous coal is estimated as 50:30:20%, respectively. The ratio changes during processing and during the chemical analysis. The main effects are the transformation during processing of sulfides to the more stable thiophenic compounds and the elimination of hydrogen sulfide.

  12. Study on dynamic multi-objective approach considering coal and water conflict in large scale coal group

    NASA Astrophysics Data System (ADS)

    Feng, Qing; Lu, Li

    2018-01-01

    In the process of coal mining, destruction and pollution of groundwater in has reached an imminent time, and groundwater is not only related to the ecological environment, but also affect the health of human life. Similarly, coal and water conflict is still one of the world's problems in large scale coal mining regions. Based on this, this paper presents a dynamic multi-objective optimization model to deal with the conflict of the coal and water in the coal group with multiple subordinate collieries and arrive at a comprehensive arrangement to achieve environmentally friendly coal mining strategy. Through calculation, this paper draws the output of each subordinate coal mine. And on this basis, we continue to adjust the environmental protection parameters to compare the coal production at different collieries at different stages under different attitude of the government. At last, the paper conclude that, in either case, it is the first arrangement to give priority to the production of low-drainage, high-yield coal mines.

  13. Bioconversion of Coal: Hydrologic indicators of the extent of coal biodegradation under different redox conditions and coal maturity, Velenje Basin case study, Slovenia

    NASA Astrophysics Data System (ADS)

    Kanduč, Tjaša; Grassa, Fausto; Lazar, Jerneja; Jamnikar, Sergej; Zavšek, Simon; McIntosh, Jennifer

    2014-05-01

    Underground mining of coal and coal combustion for energy has significant environmental impacts. In order to reduce greenhouse gas emissions, other lower -carbon energy sources must be utilized. Coalbed methane (CBM) is an important source of relatively low-carbon energy. Approximately 20% of world's coalbed methane is microbial in origin (Bates et al., 2011). Interest in microbial CBM has increased recently due to the possibility of stimulating methanogenesis. Despite increasing interest, the hydrogeochemical conditions and mechanisms for biodegradation of coal and microbial methane production are poorly understood. This project aims to examine geochemical characteristics of coalbed groundwater and coalbed gases in order to constrain biogeochemical processes to better understand the entire process of coal biodegradation of coal to coalbed gases. A better understanding of geochemical processes in CBM areas may potentially lead to sustainable stimulation of microbial methanogenesis at economical rates. Natural analogue studies of carbon dioxide occurring in the subsurface have the potential to yield insights into mechanisms of carbon dioxide storage over geological time scales (Li et al., 2013). In order to explore redox processes related to methanogenesis and determine ideal conditions under which microbial degradation of coal is likely to occur, this study utilizes groundwater and coalbed gas samples from Velenje Basin. Determination of the concentrations of methane, carbondioxide, nitrogen, oxygen, argon was performed with homemade NIER mass spectrometer. Isotopic composition of carbon dioxide, isotopic composition of methane, isotopic composition of deuterium in methane was determined with Europa-Scientific IRMS with an ANCA-TG preparation module and Thermo Delta XP GC-TC/CF-IRMS coupled to a TRACE GC analyzer. Total alkalinity of groundwater was measured by Gran titration. Major cations were analyzed by ICP-OES and anions by IC method. Isotopic composition of

  14. Drivers for the renaissance of coal

    PubMed Central

    Steckel, Jan Christoph; Edenhofer, Ottmar; Jakob, Michael

    2015-01-01

    Coal was central to the industrial revolution, but in the 20th century it increasingly was superseded by oil and gas. However, in recent years coal again has become the predominant source of global carbon emissions. We show that this trend of rapidly increasing coal-based emissions is not restricted to a few individual countries such as China. Rather, we are witnessing a global renaissance of coal majorly driven by poor, fast-growing countries that increasingly rely on coal to satisfy their growing energy demand. The low price of coal relative to gas and oil has played an important role in accelerating coal consumption since the end of the 1990s. In this article, we show that in the increasingly integrated global coal market the availability of a domestic coal resource does not have a statistically significant impact on the use of coal and related emissions. These findings have important implications for climate change mitigation: If future economic growth of poor countries is fueled mainly by coal, ambitious mitigation targets very likely will become infeasible. Building new coal power plant capacities will lead to lock-in effects for the next few decades. If that lock-in is to be avoided, international climate policy must find ways to offer viable alternatives to coal for developing countries. PMID:26150491

  15. Coal combustion system

    DOEpatents

    Wilkes, Colin; Mongia, Hukam C.; Tramm, Peter C.

    1988-01-01

    In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.

  16. Hydrologic assessment, Eastern Coal Province Area 23, Alabama

    USGS Publications Warehouse

    Harkins, J.R.

    1980-01-01

    The Eastern Coal Province is divided into 24 separate hydrologic reporting areas. The division is based on hydrologic factors, location, size, and mining activity. Hydrologic units (drainage basins) or parts of units are combined to form each area. Area 23 is located at the southern end of the Eastern Coal Province, in the Mobile River basin, includes the Warrior, Cahaba, and edges of the Plateau coal fields in Alabama, and covers an area of 4,716 square miles. It is underlain by the Coker and Pottsville Formations and the pre-Pennsylvanian rocks. The Pottsville Formation contains coal beds and is overlain by the Coker Formation in the western and southern parts of the area. The pre-Pennsylvanian rocks crop out in two northeast-southwest trending belts or ridges along and near the eastern boundary where folding and faulting is common. The outcrop of rocks along the western ridge forms the divide between the Warrior and the Cahaba coal fields. Hydrologic problems relating to surface mining are (1) erosion and sedimentation, (2) decline in ground-water levels, and (3) degradation of water quality. Average annual sediment yields can increase by four magnitudes in surface mined areas from 20 tons per square mile per year from areas not affected by mining to 300,000 tons per square mile per year from mined areas. Sediment yields increase drastically when vegetation is removed from the highly erosive soils and from unregulated surface mining operations. Decline in ground-water levels can occur in and near surface-mining areas when excavation extends below the static water level in the aquifer. (USGS)

  17. 30 CFR 75.1709 - Accumulations of methane and coal dust on surface coal-handling facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Accumulations of methane and coal dust on... Miscellaneous § 75.1709 Accumulations of methane and coal dust on surface coal-handling facilities. [Statutory Provisions] Adequate measures shall be taken to prevent methane and coal dust from accumulating in excessive...

  18. Relationship between Maceral of Coal and Coal-bed Methane adsorption ability in Sihe Coalmine of Qinshui Basin, China

    NASA Astrophysics Data System (ADS)

    Wang, M. S.; Zou, G. G.; Zhu, R. B.

    2018-05-01

    Maceral components and its content of coal were divided based on the microscopic characteristics of coal. The Langmuir volume and the Langmuir pressure were tested, and the Langmuir volume represents the adsorption capacity of coal. The formation of coal bed methane is affected by the partition of the maceral components in coal. Therefore, the relationship between maceral composition and coal bed methane adsorption capacity of coal was analyzed. The results show that the maceral components of coal are dominated by vitrinite and inertinite in the study area, and the content of inertinite is below 32%. The vitrinite group has a negative linear correlation with the Langmuir volume, and the inertia composition has a positive linear correlation with it. The cellular structures in the inertinite are the main site of coal bed methane enrichment. The microstructure of coal affects the coalbed methane content and the stage of hydrocarbon generation in coal. This indicates that the microstructure of coal is one of the important factors influencing the adsorption capacity of coal seam.

  19. Coal worker's pneumoconiosis

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000130.htm Coal worker's pneumoconiosis To use the sharing features on this page, please enable JavaScript. Coal worker's pneumoconiosis (CWP) is a lung disease that ...

  20. Fluidized coal combustion

    NASA Technical Reports Server (NTRS)

    Moynihan, P. I.; Young, D. L.

    1979-01-01

    Fluidized-bed coal combustion process, in which pulverized coal and limestone are burned in presence of forced air, may lead to efficient, reliable boilers with low sulfur dioxide and nitrogen dioxide emissions.

  1. Indonesian coal mining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2008-11-15

    The article examines the opportunities and challenges facing the Indonesian coal mining industry and how the coal producers, government and wider Indonesian society are working to overcome them. 2 figs., 1 tab.

  2. Coal ash by-product reutilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muncy, J.; Miller, B.

    1997-09-01

    Potomac Electric Power Company (PEPCO) has as part of its vision and value statement that, ``We are responsible stewards of environmental and corporate resources.`` With this moral imperative in mind, a project team was charged with initiating the Coal Pile Liner Project--installing a membrane liner under the existing coal storage pile at the Morgantown Generating Station. The existing coal yard facilities were constructed prior to the current environmental regulations, and it became necessary to upgrade the storage facilities to be environmentally friendly. The project team had two objectives in this project: (1) prevent coal pile leachate from entering the groundwatermore » system; (2) test the viability of using coal ash by-products as an aggregate substitute for concrete applications. Both objectives were met, and two additional benefits were achieved as well: (1) the use of coal ash by-products as a coal liner produced significant cost savings to the project directly; (2) the use of coal ash by-products reduced plant operation and maintenance expenses.« less

  3. Applicability of the mixture of bituminous coal and anthracite to conventional pulverized coal firing boiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takano, Shin-Ichi; Kiga, Takashi; Miyamae, Shigehiro

    1994-12-31

    In some future, it is expected for Japanese power stations to be hard to get a high-grade coal like a bituminous coal. We conducted therefore pilot scale tests of pulverized blends of bituminous coal and anthracite using a 1.2MWt tunnel furnace in order to evaluate the applicability of the blends of bituminous coal and anthracite to conventional pulverized coal firing boilers. One kind of bituminous coal and two kinds of anthracite, one was of low ash content and another was of high ash content, were prepared for the test. Previously to pilot scale tests, coal properties and ash properties ofmore » the blends of bituminous coal and anthracite were analyzed to estimate the characteristics of combustion, ash deposition, and so on. In the test, we investigated the combustion efficiency, NOx emission, characteristics of ignition stability and grindability changing the blend rate of anthracite. Results of our study indicated that the critical restrictions on the blending rate of anthracite were unburnt carbon in fly ash and NOx emission as for coals tested. The acceptable limitation on blending rate of anthracite was 10 and 20%, respectively for two kinds of conventional pulverized coal fired boiler. Concerning to the grindability, it became worse with increasing the blending rate of anthracite from grindability test using a roller mill, while it became better estimating from HGI.« less

  4. Cleaning and dewatering fine coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Roe-Hoan; Eraydin, Mert K.; Freeland, Chad

    Fine coal is cleaned of its mineral matter impurities and dewatered by mixing the aqueous slurry containing both with a hydrophobic liquid, subjecting the mixture to a phase separation. The resulting hydrophobic liquid phase contains coal particles free of surface moisture and droplets of water stabilized by coal particles, while the aqueous phase contains the mineral matter. By separating the entrained water droplets from the coal particles mechanically, a clean coal product of substantially reduced mineral matter and moisture contents is obtained. The spent hydrophobic liquid is separated from the clean coal product and recycled. The process can also bemore » used to separate one type of hydrophilic particles from another by selectively hydrophobizing one.« less

  5. Chem I Supplement: The Geochemistry of Coal: I. The Classification and Origin of Coal.

    ERIC Educational Resources Information Center

    Schobert, Harold H.

    1989-01-01

    Discusses the composition and properties of various types of coal. Follows the origin of coal and amounts available in the ground. Explores the anaerobic decay needed to produce coal. Touches upon the greenhouse effect. (MVL)

  6. Review of methodological and experimental LIBS techniques for coal analysis and their application in power plants in China

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Zhang, Lei; Zhao, Shu-Xia; Li, Yu-Fang; Gong, Yao; Dong, Lei; Ma, Wei-Guang; Yin, Wang-Bao; Yao, Shun-Chun; Lu, Ji-Dong; Xiao, Lian-Tuan; Jia, Suo-Tang

    2016-12-01

    Laser-induced breakdown spectroscopy (LIBS) is an emerging analytical spectroscopy technique. This review presents the main recent developments in China regarding the implementation of LIBS for coal analysis. The paper mainly focuses on the progress of the past few years in the fundamentals, data pretreatment, calibration model, and experimental issues of LIBS and its application to coal analysis. Many important domestic studies focusing on coal quality analysis have been conducted. For example, a proposed novel hybrid quantification model can provide more reproducible quantitative analytical results; the model obtained the average absolute errors (AREs) of 0.42%, 0.05%, 0.07%, and 0.17% for carbon, hydrogen, volatiles, and ash, respectively, and a heat value of 0.07 MJ/kg. Atomic/ionic emission lines and molecular bands, such as CN and C2, have been employed to generate more accurate analysis results, achieving an ARE of 0.26% and a 0.16% limit of detection (LOD) for the prediction of unburned carbon in fly ashes. Both laboratory and on-line LIBS apparatuses have been developed for field application in coal-fired power plants. We consider that both the accuracy and the repeatability of the elemental and proximate analysis of coal have increased significantly and further efforts will be devoted to realizing large-scale commercialization of coal quality analyzer in China.

  7. Characteristics of coking coal burnout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, M.; Bailey, J.G.

    An attempt was made to clarify the characteristics of coking coal burnout by the morphological analysis of char and fly ash samples. Laboratory-scale combustion testing, simulating an ignition process, was carried out for three kinds of coal (two coking coals and one non-coking coal for reference), and sampled chars were analyzed for size, shape and type by image analysis. The full combustion process was examined in industrial-scale combustion testing for the same kinds of coal. Char sampled at the burner outlet and fly ash at the furnace exit were also analyzed. The difference between the char type, swelling properties, agglomeration,more » anisotropy and carbon burnout were compared at laboratory scale and at industrial scale. As a result, it was found that coking coals produced chars with relatively thicker walls, which mainly impeded char burnout, especially for low volatile coals.« less

  8. Engineering Graphene Films from Coal

    NASA Astrophysics Data System (ADS)

    Vijapur, Santosh H.

    Graphene is a unique material with remarkable properties suitable for a wide array of applications. Chemical vapor deposition (CVD) is a simple technique for synthesis of large area and high quality graphene films on various metal substrates. Among the metal substrates, copper has been shown to be an excellent support for the growth of graphene films. Traditionally, hydrocarbon gases are used for the graphene synthesis via CVD. Unconventional solid carbon sources such as various polymers and food waste have also shown great potential for synthesis of graphene films. Coal is one such carbon enriched and abundantly available unconventional source. Utilization of coal as a carbon source to synthesize large area, transparent, and high quality few-layer graphene films via CVD has been demonstrated in the present work. Hydrocarbon gases are released as products of coal pyrolysis at temperatures ≥400 °C. This study hypothesized that, these hydrocarbon gases act as precursors for the synthesis of graphene films on the copper substrate. Hence, atmospheric pressure CVD and low temperature of 400 °C were utilized initially for the production of graphene films. These conditions were suitable for the formation of amorphous carbon (a-C) films but not crystalline graphene films that were the objective of this work. The synthesized a-C films on the copper substrate were shown to be uniform and transparent with large surface area. The thickness and surface roughness of the a-C films were determined to have typical values of 5 nm and 0.55 nm, respectively. The a-C film has >95 % optical transmittance and sheet resistivity of 0.6 MO sq-1. These values are comparable to other carbon thin films synthesized at higher temperatures. Further, the a-C films were transferred onto any type of substrate such as silicon wafer and titanium foil, and can be utilized for diverse applications. However, crystalline graphene films were not produced by implementing atmospheric pressure CVD and low

  9. 40. BOILER HOUSE, BEGINNING OF COAL CONVEYOR FROM COAL TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. BOILER HOUSE, BEGINNING OF COAL CONVEYOR FROM COAL TOWER No. 1 (FIFTH FLOOR OR CABLE ROAD FLOOR SHOWN IN DRAWING No. 6 OF 13) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  10. Cost and performance of coal-based energy in Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Temchin, J.; DeLallo, M.R.

    1998-07-01

    As part of the US Department of Energy's (DOE) efforts to establish the strategic benefits of Clean Coal Technologies (CCT), there is a need to evaluate the specific market potential where coal is a viable option. One such market is Brazil, where significant growth in economic development requires innovative and reliable technologies to support the use of domestic coal. While coal is Brazil's most abundant and economic fossil energy resource, it is presently under utilized in the production of electrical power. This report presents conceptual design for pulverized coal (PC) and circulating fluidized-bed combustion (CFBC) options with resulting capital, operatingmore » and financial parameters based on Brazil application conditions. Recent PC and CFBC plant capital costs have dropped with competition in the generation market and have established a competitive position in power generation. Key issues addressed in this study include: Application of market based design approach for FBC and PC, which is competitive within the current domestic, and international power generation markets. Design, fabrication, purchase, and construction methods which reduce capital investment while maintaining equipment quality and plant availability. Impact on coast and performance from application of Brazilian coals, foreign trade and tax policies, construction logistics, and labor requirements. Nominal production values of 200 MWe and 400 MWe were selected for the CFBC power plant and 400 MWe for the PC. The 400 MWe size was chosen to be consistent with the two largest Brazilian PC units. Fluidized bed technology, with limited experience in single units over 200 MW, would consist of two 200 MWe circulating fluidized bed boilers supplying steam to one steam turbine for the 400 MWe capacity. A 200 MWe capacity unit was also developed for CFBC option to support opportunities in re-powering and where specific site or other infrastructure constraints limit production.« less

  11. Geochemistry of vanadium (V) in Chinese coals.

    PubMed

    Liu, Yuan; Liu, Guijian; Qu, Qinyuan; Qi, Cuicui; Sun, Ruoyu; Liu, Houqi

    2017-10-01

    Vanadium in coals may have potential environmental and economic impacts. However, comprehensive knowledge of the geochemistry of V in coals is lacking. In this study, abundances, distribution and modes of occurrence of V are reviewed by compiling >2900 reported Chinese coal samples. With coal reserves in individual provinces as the weighting factors, V in Chinese coals is estimated to have an average abundance of 35.81 μg/g. Large variation of V concentration is observed in Chinese coals of different regions, coal-forming periods, and maturation ranks. According to the concentration coefficient of V in coals from individual provinces, three regions are divided across Chinese coal deposits. Vanadium in Chinese coals is probably influenced by sediment source and sedimentary environment, supplemented by late-stage hydrothermal fluids. Specifically, hydrothermal fluids have relatively more significant effect on the enrichment of V in local coal seams. Vanadium in coals is commonly associated with aluminosilicate minerals and organic matter, and the modes of V occurrence in coal depend on coal-forming environment and coal rank. The Chinese V emission inventory during coal combustion is estimated to be 4906 mt in 2014, accounting for 50.55 % of global emission. Vanadium emissions by electric power plants are the largest contributor.

  12. Formation and retention of methane in coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seamsmore » and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.« less

  13. Process for improving soluble coal yield in a coal deashing process

    DOEpatents

    Rhodes, Donald E.

    1980-01-01

    Coal liquefaction products are contacted with a deashing solvent and introduced into a first separation zone. The first separation zone is maintained at an elevated temperature and pressure, determined to maximize the recovery of soluble coal products, to cause said coal liquefaction products to separate into a first light phase and a first heavy phase. Under these conditions the heavy phase while still fluid-like in character is substantially non-flowable. Flowability is returned to the fluid-like heavy phase by the introduction of an additional quantity of deashing solvent into the first separation zone at a location below the interface between the first light and heavy phases or into the heavy phase withdrawal conduit during withdrawal of the first heavy phase and prior to any substantial pressure reduction. The first heavy phase then is withdrawn from the first separation zone for additional downstream processing without plugging either the withdrawal conduit or the downstream apparatus. The first light phase comprising the soluble coal products is withdrawn and recovered in an increased yield to provide a more economical coal deashing process.

  14. Multiplex CARS temperature measurements in a coal-fired MHD environment

    NASA Astrophysics Data System (ADS)

    Beiting, E. J.

    1986-01-01

    Multiplex CARS spectra of nitrogen were recorded in an environment that simulates the post-magnet gas stream of a coal-fired MHD generator. The presence of coal fly ash and potassium seed created a weakly ionized, highly luminous medium with a high number density of relatively large (1-50 microns) diameter particles. Maximum temperatures of 2500 K were measured with a spatial resolution of 5 mm. The precision optical alignment necessary for folded BOXCARS phasematching was maintained for the long distances (greater than 10 m) necessary to route the laser beams from the CARS instrument to the combustion facility. The increased luminosity caused by the injection of potassium seed did not impede the recovery of good quality spectra. The coal fly ash particles precipitated laser induced breakdown which, in turn, led to the generation of a coherent interference with N2 spectra. Techniques to overcome this problem are discussed. The accuracy of the temperature measurements are estimated to be + or - 3 percent.

  15. Preliminary report on coal resources of the Wyodak-Anderson coal zone, Powder River Basin, Wyoming and Montana

    USGS Publications Warehouse

    Ellis, Margaret S.; Gunther, Gregory L.; Flores, Romeo M.; Ochs, Allen M.; Stricker, Gary D.; Roberts, Steven B.; Taber, Thomas T.; Bader, Lisa R.; Schuenemeyer, John H.

    1998-01-01

    The National Coal Resource Assessment (NCRA) project by the U.S. Geological Survey is designed to assess US coal with the greatest potential for development in the next 20 to 30 years. Coal in the Wyodak-Anderson (WA) coal zone in the Powder River Basin of Wyoming and Montana is plentiful, clean, and compliant with EPA emissions standards. This coal is considered to be very desirable for development for use in electric power generation. The purpose of this NCRA study was to compile all available data relating to the Wyodak- Anderson coal, correlate the beds that make up the WA coal zone, create digital files pertaining to the study area and the WA coal, and produce a variety of reports on various aspects of the assessed coal unit. This report contains preliminary calculations of coal resources for the WA coal zone and is one of many products of the NCRA study. Coal resource calculations in this report were produced using both public and confidential data from many sources. The data was manipulated using a variety of commercially available software programs and several custom programs. A general description of the steps involved in producing the resource calculations is described in this report.

  16. Understanding Human Accomplishment: Quality Education Program Study. Booklet 9 (Description).

    ERIC Educational Resources Information Center

    Bucks County Public Schools, Doylestown, PA.

    Categories of effective and ineffective behavior in regard to Goal Nine of the Quality Education Program (regarding student understanding of human accomplishment) are listed. Both the rationales for areas of effective student behavior and the categories of teacher strategies are also included. (See TM 001 375 for project description.) (MS)

  17. Selected worldwide coal activities of the U.S. Geological Survey, with emphasis on their environmental applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SanFilipo, J.R.; Warwick, P.D.

    1995-12-31

    Many of the underdeveloped and developing nations of the world face severe shortages of energy fuels, and many of the industrialized nations that are abandoning centrally-planned economies face collapsing energy distribution networks. These energy-poor nations are typically among the most environmentally stressed. This results in part from the direct effects of outmoded energy technologies and the low quality of available fuel, but it is also a result of the poverty and lack of social and technological infrastructure that invariably attends energy deficits. For such nations, the orderly development of underutilized indigenous coal resources and the upgrading of existing coal technologiesmore » can lead to economically viable sources of energy that are relatively benign from an environmental standpoint, and can contribute to long-term political stability as well. The US Geological Survey has participated in coal studies in a variety of such international settings in recent years. Most of these studies have been commodity related, focusing on coal resource assessments in nations with acute energy shortages and coal quality studies in areas where development has had recognizable environmental impacts. Training of counterparts from the host countries and the transfer of technology are an integral part of the international programs, with the primary goal of developing the ability of the host country to integrate geosciences into energy-policy decision-making.« less

  18. Brownfields Grant Recipients' Road Map to Understanding Quality Assurance Project Plans

    EPA Pesticide Factsheets

    The U.S. EPA prepared this publication to help recipients of an EPA Brownfields Assessment Grant design and complete site assessment projects more efficiently and effectively by increasing their awareness and understanding of the importance of quality ...

  19. Annual Coal Report

    EIA Publications

    2016-01-01

    Provides information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience, including Congress, federal and state agencies, the coal industry, and the general public.

  20. Comparison of coal/solid recovered fuel (SRF) with coal/refuse derived fuel (RDF) in a fluidised bed reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagland, S.T.; Kilgallon, P.; Coveney, R.

    2011-06-15

    An experimental study was undertaken to compare the differences between municipal solid waste (MSW) derived solid recovered fuel (SRF) (complying with CEN standards) and refuse derived fuel (RDF). Both fuels were co-combusted with coal in a 50 kW fluidised bed combustor and the metal emissions were compared. Synthetic SRF was prepared in the laboratory by grinding major constituents of MSW such as paper, plastic, textile and wood. RDF was obtained from a local mechanical treatment plant. Heavy metal emissions in flue gas and ash samples from the (coal + 10% SRF) fuel mixture were found to be within the acceptablemore » range and were generally lower than that obtained for coal + 10% RDF fuel mixture. The relative distribution of heavy metals in ash components and the flue gas stream shows the presence of a large fraction (up to 98%) of most of the metals in the ash (except Hg and As). Thermo-gravimetric (TG) analysis of SRF constituents was performed to understand the behaviour of fuel mixtures in the absence and presence of air. The results obtained from the experimental study will enhance the confidence of fuel users towards using MSW-derived SRF as an alternative fuel.« less

  1. Impact of surface coal mining on soil hydraulic properties

    Treesearch

    X. Liu; J. Q. Wu; P. W. Conrad; S. Dun; C. S. Todd; R. L. McNearny; William Elliot; H. Rhee; P. Clark

    2016-01-01

    Soil erosion is strongly related to soil hydraulic properties. Understanding how surface coal mining affects these properties is therefore important in developing effective management practices to control erosion during reclamation. To determine the impact of mining activities on soil hydraulic properties, soils from undisturbed areas, areas of roughly graded mine...

  2. Eocene bituminous coal deposits of the Claiborne group, Webb County, Texas

    USGS Publications Warehouse

    Hook, Robert W.; Warwick, Peter D.; Warwick, Peter D.; Karlsen, Alexander K.; Merrill, Matthew D.; Valentine, Brett J.

    2011-01-01

    the synclinal axis of the basin.The following summary is based upon published and unpublished reports; drillhole records (geophysical logs, descriptions of cores and cuttings); coal-quality data obtained from the permit files of the Railroad Commission of Texas and recent sampling by the U.S. Geological Survey (USGS); a preliminary review of proprietary data acquired recently by the USGS; and field work conducted by the USGS since 1994. A total of approximately 200 drillhole records was examined.

  3. Impregnating Coal With Calcium Carbonate

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Voecks, Gerald E.; Gavalas, George R.

    1991-01-01

    Relatively inexpensive process proposed for impregnating coal with calcium carbonate to increase rates of gasification and combustion of coal and to reduce emission of sulfur by trapping sulfur in calcium sulfide. Process involves aqueous-phase reactions between carbon dioxide (contained within pore network of coal) and calcium acetate. Coal impregnated with CO2 by exposing it to CO2 at high pressure.

  4. Weaving Ecosystem Service Assessment into Environmental Impact Assessments of Thar Coal Field: Impact of Coal Mining on Socio-Ecological Systems of Rural Communities.

    NASA Astrophysics Data System (ADS)

    Hina, A.

    2016-12-01

    The Research takes into account Block II Mining and Power Plant Project of Thar Coal field in Pakistan by carrying out ecosystem service assessment of the region to identify the impact on important ecosystem service losses and the contribution of mining companies to mitigate the socio-economic problems as a part of their Corporate Social Responsibility (CSR). The study area includes 7 rural settlements, around 921 households and 7000 individuals, dependent on agriculture and livestock for their livelihoods. Currently, the project has adopted the methods of strip mining (also called open-cut mining, open-cast mining, and stripping), undergoing removing the overburden in strips to enable excavation of the coal seams. Since the consequences of mine development can easily spill across community and ecological boundaries, the rising scarcity of some ecosystem services makes the case to examine both project impact and dependence on ecosystem services. A preliminary Ecosystem Service review of Thar Coal Field identifies key ecosystems services owing to both high significance of project impact and high project dependence are highlighted as: the hydrogeological study results indicate the presence of at least three aquifer zones: one above the coal zone (the top aquifer), one within the coal and the third below the coal zone. Hence, Water is identified as a key ecosystem service to be addressed and valued due to its high dependency in the area for livestock, human wellbeing, agriculture and other purposes. Crop production related to agricultural services, in association with supply services such as soil quality, fertility, and nutrient recycling and water retention need to be valued. Cultural services affected in terms of land use change and resettlement and rehabilitation factors are recommended to be addressed.

  5. Desulfurizing Coal By Chlorinolysis and Hydrogenation

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Rohatgi, N. K.

    1983-01-01

    85 percent of organic and pyritic sulfur in coal removed by combination of chlorinolysis and hydrogeneration. Coal is fed to hydrogenator after chlorination. Coal flows against hydrogen current increasing mixing and reducing hydrogen consumption. Excess hydrogen is recovered from gaseous reaction products. Product coal contained 62.5 percent less total sulfur than same coal after chlorination.

  6. Tribological properties of coal slurries

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.; Schrubens, Dale L.

    1987-01-01

    A pin-on-disk tribometer was used to study the tribological properties of methyl alcohol-coal slurries. Friction coefficients, steel pin wear rates and wear surface morphological studies were conducted on AISI 440C HT and M-50 bearing steels which were slid dry and in solutions of methyl alcohol, methyl alcohol-fine coal particles, and methyl alcohol-fine coal particles-flocking additive. The latter was an oil derived from coal and originally intended to be added to the coal slurry to improve the sedimentation and rheology properties. The results of this study indicated that the addition of the flocking additive to the coal slurry markedly improved the tribological properties, especially wear. In addition, the type of steel was found to be very important in determining the type of wear that took place. Cracks and pits were found on the M-50 steel pin wear surfaces that slid in the coal slurries while 440C HT steel pins showed none.

  7. Advanced Characterization of Rare Earth Elements in Coal Utilization Byproducts

    NASA Astrophysics Data System (ADS)

    Verba, C.; Scott, M.; Dieterich, M.; Poston, J.; Collins, K.

    2016-12-01

    Rare earth elements (REE) in various forms (e.g., crystalline mineral phases; adsorbed/absorbed state on and into organic macerals, neoformed glass from flyash or bottom ash) from domestic feedstocks such as coal deposits to coal utilization byproducts (CUB) have the potential to reduce foreign REE dependence and increase domestic resource security. Characterization is critical for understanding environmental risks related to their fate and transport as well as determining the most practical and economical techniques for concentrating the REE and converting them into chemical stocks for manufacturing. Several complementary electron microscopy (SEM-EDS, EPMA-WDS, FIB-SEM, cathodoluminescence, and XRD) and post image processing techniques were used to understand REE transition from coal to CUB. Sites of interest were identified and imaged and respective elemental x-ray maps acquired and montaged. Pixel classification of SEM imagers was completed using image analysis techniques to quantify the distribution of REE associated features. Quantitative elemental analysis of phases were completed using EMPA-WDS followed by FIB-SEM. The FIB-SEM results were reconstructed into 3D volumes and features of interest (e.g. monazite) were analyzed to determine the structure and volumetric estimation of REEs and thus predict detrital REE phases to ICP-MS results. Trace minerals were identified as pyrite, zircon, REE-phosphates' (monazite, xenotime), and barite within the coal tailings. In CUB, amorphous aluminosilicates, iron oxide cenospheres, and calcium oxides were present; monazite appear to be unaltered and unaffected by the combustion process in these samples. Thermal decomposition may have occurred due to presence of detrital zircon and xenotime and subsequent thin Ca-oxide coating enriched in trace REEs.

  8. Process development for production of coal/sorbent agglomerates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, D.M.

    1991-01-01

    The goal of this work was to develop a process flow diagram to economically produce a clean-burning fuel from fine Illinois coal. To accomplish this, the process of pelletizing fine coal with calcium hydroxide, a sulfur capturing sorbent, was investigated. Carbonation, which is the reaction of calcium hydroxide with carbon dioxide (in the presence of moisture) to produce a bonding matrix of calcium carbonate, was investigated as a method for improving pellet quality and reducing binder costs. Proper moisture level is critical to allow the reaction to occur. If too much moisture is present in a pellet, the pore spacesmore » are filled and carbon dioxide must diffuse through the water to reach the calcium hydroxide and react. This severely slows or stops the reaction. The ideal situation is when there is just enough moisture to coat the calcium hydroxide allowing for the reaction to proceed. The process has been successfully demonstrated on a pilot-scale as a method of hardening iron ore pellets (Imperato, 1966). Two potential combustion options are being considered for the coal/calcium hydroxide pellets: fluidized bed combustors and industrial stoker boilers.« less

  9. Analysis of fine coal pneumatic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathur, M.P.; Rohatgi, N.D.; Klinzing, G.E.

    1987-01-01

    Many fossil fuel energy processes depend on the movement of solids by pneumatic transport. Despite the considerable amount of work reported in the literature on pneumatic transport, the design of new industrial systems for new products continues to rely to a great extent on empiricism. A pilot-scale test facility has been constructed at Pittsburgh Energy Technology Center (PETC) and is equipped with modern sophisticated measuring techniques (such as Pressure Transducers, Auburn Monitors, Micro Motion Mass flowmeters) and an automatic computer-controlled data acquisition system to study the effects of particle pneumatic transport. Pittsburgh Seam and Montana rosebud coals of varying sizemore » consist and moisture content were tested in the atmospheric and pressurized coal flow test loops (AP/CFTL and HP/CFTL) at PETC. The system parameters included conveying gas velocity, injector tank pressure, screw conveyor speed, pipe radius, and pipe bends. In the following report, results from the coal flow tests were presented and analyzed. Existing theories and correlations on two-phase flows were reviewed. Experimental data were compared with values calculated from empirically or theoretically derived equations available in the literature, and new correlations were proposed, when applicable, to give a better interpretation of the data and a better understanding of the various flow regimes involved in pneumatic transport. 55 refs., 56 figs., 6 tabs.« less

  10. Coal liquefaction quenching process

    DOEpatents

    Thorogood, Robert M.; Yeh, Chung-Liang; Donath, Ernest E.

    1983-01-01

    There is described an improved coal liquefaction quenching process which prevents the formation of coke with a minimum reduction of thermal efficiency of the coal liquefaction process. In the process, the rapid cooling of the liquid/solid products of the coal liquefaction reaction is performed without the cooling of the associated vapor stream to thereby prevent formation of coke and the occurrence of retrograde reactions. The rapid cooling is achieved by recycling a subcooled portion of the liquid/solid mixture to the lower section of a phase separator that separates the vapor from the liquid/solid products leaving the coal reactor.

  11. Fluidized bed coal desulfurization

    NASA Technical Reports Server (NTRS)

    Ravindram, M.

    1983-01-01

    Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.

  12. Mercury stable isotope signatures of world coal deposits and historical coal combustion emissions.

    PubMed

    Sun, Ruoyu; Sonke, Jeroen E; Heimbürger, Lars-Eric; Belkin, Harvey E; Liu, Guijian; Shome, Debasish; Cukrowska, Ewa; Liousse, Catherine; Pokrovsky, Oleg S; Streets, David G

    2014-07-01

    Mercury (Hg) emissions from coal combustion contribute approximately half of anthropogenic Hg emissions to the atmosphere. With the implementation of the first legally binding UNEP treaty aimed at reducing anthropogenic Hg emissions, the identification and traceability of Hg emissions from different countries/regions are critically important. Here, we present a comprehensive world coal Hg stable isotope database including 108 new coal samples from major coal-producing deposits in South Africa, China, Europe, India, Indonesia, Mongolia, former USSR, and the U.S. A 4.7‰ range in δ(202)Hg (-3.9 to 0.8‰) and a 1‰ range in Δ(199)Hg (-0.6 to 0.4‰) are observed. Fourteen (p < 0.05) to 17 (p < 0.1) of the 28 pairwise comparisons between eight global regions are statistically distinguishable on the basis of δ(202)Hg, Δ(199)Hg or both, highlighting the potential application of Hg isotope signatures to coal Hg emissions tracing. A revised coal combustion Hg isotope fractionation model is presented, and suggests that gaseous elemental coal Hg emissions are enriched in the heavier Hg isotopes relative to oxidized forms of emitted Hg. The model explains to first order the published δ(202)Hg observations on near-field Hg deposition from a power plant and global scale atmospheric gaseous Hg. Yet, model uncertainties appear too large at present to permit straightforward Hg isotope source identification of atmospheric forms of Hg. Finally, global historical (1850-2008) coal Hg isotope emission curves were modeled and indicate modern-day mean δ(202)Hg and Δ(199)Hg values for bulk coal emissions of -1.2 ± 0.5‰ (1SD) and 0.05 ± 0.06‰ (1SD).

  13. Committed CO2 Emissions of China's Coal-fired Power Plants

    NASA Astrophysics Data System (ADS)

    Suqin, J.

    2016-12-01

    The extent of global warming is determined by the cumulative effects of CO2 in the atmosphere. Coal-fired power plants, the largest anthropogenic source of CO2 emissions, produce large amount of CO2 emissions during their lifetimes of operation (committed emissions), which thus influence the future carbon emission space under specific targets on mitigating climate change (e.g., the 2 degree warming limit relative to pre-industrial levels). Comprehensive understanding of committed CO2 emissions for coal-fired power generators is urgently needed in mitigating global climate change, especially in China, the largest global CO2emitter. We calculated China's committed CO2 emissions from coal-fired power generators installed during 1993-2013 and evaluated their impact on future emission spaces at the provincial level, by using local specific data on the newly installed capacities. The committed CO2 emissions are calculated as the product of the annual coal consumption from newly installed capacities, emission factors (CO2emissions per unit crude coal consumption) and expected lifetimes. The sensitivities about generators lifetimes and the drivers on provincial committed emissions are also analyzed. Our results show that these relatively recently installed coal-fired power generators will lead to 106 Gt of CO2 emissions over the course of their lifetimes, which is more than three times the global CO2 emissions from fossil fuels in 2010. More than 80% (85 Gt) of their total committed CO2 will be emitted after 2013, which are referred to as the remaining emissions. Due to the uncertainties of generators lifetime, these remaining emissions would increase by 45 Gt if the lifetimes of China's coal-fired power generators were prolonged by 15 years. Furthermore, the remaining emissions are very different among various provinces owing to local developments and policy disparities. Provinces with large amounts of secondary industry and abundant coal reserves have higher committed

  14. Petrography and microanalysis of Pennsylvanian coal-ball concretions (Herrin Coal, Illinois Basin, USA): Bearing on fossil plant preservation and coal-ball origins

    NASA Astrophysics Data System (ADS)

    Siewers, Fredrick D.; Phillips, Tom L.

    2015-11-01

    Petrographic analyses of 25 coal balls from well-studied paleobotanical profiles in the Middle Pennsylvanian Herrin Coal (Westphalian D, Illinois Basin) and five select coal balls from university collections, indicate that Herrin Coal-ball peats were permineralized by fibrous and non-fibrous carbonates. Fibrous carbonates occur in fan-like to spherulitic arrays in many intracellular (within tissue) pores, and are best developed in relatively open extracellular (between plant) pore spaces. Acid etched fibrous carbonates appear white under reflected light and possess a microcrystalline texture attributable to abundant microdolomite. Scanning electron microscopy, X-ray diffraction, and electron microprobe analysis demonstrate that individual fibers have a distinct trigonal prism morphology and are notable for their magnesium content (≈ 9-15 mol% MgCO3). Non-fibrous carbonates fill intercrystalline spaces among fibers and pores within the peat as primary precipitates and neomorphic replacements. In the immediate vicinity of plant cell walls, non-fibrous carbonates cut across fibrous carbonates as a secondary, neomorphic phase attributed to coalification of plant cell walls. Dolomite occurs as diagenetic microdolomite associated with the fibrous carbonate phase, as sparite replacements, and as void-filling cement. Maximum dolomite (50-59 wt.%) is in the top-of-seam coal-ball zone at the Sahara Mine, which is overlain by the marine Anna Shale. Coal-ball formation in the Herrin Coal began with the precipitation of fibrous high magnesium calcite. The trigonal prism morphology of the carbonate fibers suggests rapid precipitation from super-saturated, meteoric pore waters. Carbonate precipitation from marine waters is discounted on the basis of stratigraphic, paleobotanical, and stable isotopic evidence. Most non-fibrous carbonate is attributable to later diagenetic events, including void-fill replacements, recrystallization, and post-depositional fracture fills. Evidence

  15. Coal Combustion Behavior in New Ironmaking Process of Top Gas Recycling Oxygen Blast Furnace

    NASA Astrophysics Data System (ADS)

    Zhou, Zhenfeng; Xue, Qingguo; Tang, Huiqing; Wang, Guang; Wang, Jingsong

    2017-10-01

    The top gas recycling oxygen blast furnace (TGR-OBF) is a new ironmaking process which can significantly reduce the coke ratio and emissions of carbon dioxide. To better understand the coal combustion characteristics in the TGR-OBF, a three dimensional model was developed to simulate the lance-blowpipe-tuyere-raceway of a TGR-OBF. The combustion characteristics of pulverized coal in TGR-OBF were investigated. Furthermore, the effects of oxygen concentration and temperature were also analyzed. The simulation results show that the coal burnout increased by 16.23% compared to that of the TBF. The oxygen content has an obvious effect on the burnout. At 70% oxygen content, the coal burnout is only 21.64%, with a decrease of 50.14% compared to that of TBF. Moreover, the effect of oxygen temperature is also very obvious.

  16. Fate of the naturally occurring radioactive materials during treatment of acid mine drainage with coal fly ash and aluminium hydroxide.

    PubMed

    Madzivire, Godfrey; Maleka, Peane P; Vadapalli, Viswanath R K; Gitari, Wilson M; Lindsay, Robert; Petrik, Leslie F

    2014-01-15

    Mining of coal is very extensive and coal is mainly used to produce electricity. Coal power stations generate huge amounts of coal fly ash of which a small amount is used in the construction industry. Mining exposes pyrite containing rocks to H2O and O2. This results in the oxidation of FeS2 to form H2SO4. The acidic water, often termed acid mine drainage (AMD), causes dissolution of potentially toxic elements such as, Fe, Al, Mn and naturally occurring radioactive materials such as U and Th from the associated bedrock. This results in an outflow of AMD with high concentrations of sulphate ions, Fe, Al, Mn and naturally occurring radioactive materials. Treatment of AMD with coal fly ash has shown that good quality water can be produced which is suitable for irrigation purposes. Most of the potentially toxic elements (Fe, Al, Mn, etc) and substantial amounts of sulphate ions are removed during treatment with coal fly ash. This research endeavours to establish the fate of the radioactive materials in mine water with coal fly ash containing radioactive materials. It was established that coal fly ash treatment method was capable of removing radioactive materials from mine water to within the target water quality range for drinking water standards. The alpha and beta radioactivity of the mine water was reduced by 88% and 75% respectively. The reduced radioactivity in the mine water was due to greater than 90% removal of U and Th radioactive materials from the mine water after treatment with coal fly ash as ThO2 and UO2. No radioisotopes were found to leach from the coal fly ash into the mine water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Application of mine water leaching protocol on coal fly ash to assess leaching characteristics for suitability as a mine backfill material.

    PubMed

    Madzivire, Godfrey; Ramasenya, Koena; Tlowana, Supi; Coetzee, Henk; Vadapalli, Viswanath R K

    2018-04-16

    Over the years, coal mining in the Mpumalanga Province of South Africa has negatively affected the environment by causing pollution of water resources, land subsidence and spontaneous coal combustion. Previous studies show that in-situ treatment of acid mine drainage (AMD) using coal fly ash (CFA) from local power stations was possible and sludge recovered out of such treatment can be used to backfill mines. In this article, the authors have attempted to understand the leaching characteristics of CFA when placed underground as a backfill material using the mine water leaching protocol (MWLP). The results show that the migration of contaminants between the coal fly ash and the AMD in the mine voids depends on the pH and quality of the mine water. While backfilling mine voids with CFA can neutralize and scavenge between 50% and 95% of certain environmentally sensitive elements from AMD such as Fe, Al, Zn, Cu, Ni, Co and Mn. At this moment, it is also important to point out that certain scavenged/removed contaminants from the AMD during initial phases of backfilling can be remobilized by the influx of acidic water into the mine voids. It has therefore been concluded that, while CFA can be used to backfill mine voids, the influx of fresh acidic mine water should be avoided to minimize the remobilization of trapped contaminants such as Fe, Al, Mn and As. However, the pozzolanic material resulting from the CFA-AMD interaction could prevent such influx.

  18. Iron catalyzed coal liquefaction process

    DOEpatents

    Garg, Diwakar; Givens, Edwin N.

    1983-01-01

    A process is described for the solvent refining of coal into a gas product, a liquid product and a normally solid dissolved product. Particulate coal and a unique co-catalyst system are suspended in a coal solvent and processed in a coal liquefaction reactor, preferably an ebullated bed reactor. The co-catalyst system comprises a combination of a stoichiometric excess of iron oxide and pyrite which reduce predominantly to active iron sulfide catalysts in the reaction zone. This catalyst system results in increased catalytic activity with attendant improved coal conversion and enhanced oil product distribution as well as reduced sulfide effluent. Iron oxide is used in a stoichiometric excess of that required to react with sulfur indigenous to the feed coal and that produced during reduction of the pyrite catalyst to iron sulfide.

  19. Associations between Social Understanding, Sibling Relationship Quality, and Siblings' Conflict Strategies and Outcomes

    ERIC Educational Resources Information Center

    Recchia, Holly E.; Howe, Nina

    2009-01-01

    Sibling relationship quality and social understanding (second-order false belief, conflict interpretation, and narrative conflict perspective references) were examined as unique and interactive correlates of sibling conflict behavior in 62 dyads (older M age = 8.39 years and younger M age = 6.06 years). High-quality relationships were associated…

  20. Coal assessments and coal research in the Appalachian basin: Chapter D.4 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Tewalt, Susan J.; Ruppert, Leslie F.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    State geological surveys are concentrating on mapping and correlating coal beds and coal zones and studying CBM potential and production. Both State surveys and the USGS are researching the potential for carbon dioxide sequestration in unmined coal beds and other geologic reservoirs. In addition, the State geological surveys continue their long-term collaboration with the USGS and provide coal stratigraphic data to the National Coal Resources Data System (NCRDS).

  1. Flash hydrogenation of coal

    DOEpatents

    Manowitz, Bernard; Steinberg, Meyer; Sheehan, Thomas V.; Winsche, Warren E.; Raseman, Chad J.

    1976-01-01

    A process for the hydrogenation of coal comprising the contacting of powdered coal with hydrogen in a rotating fluidized bed reactor. A rotating fluidized bed reactor suitable for use in this process is also disclosed. The coal residence time in the reactor is limited to less than 5 seconds while the hydrogen contact time is not in excess of 0.2 seconds.

  2. ArcView Coal Evaluation User's Guide

    USGS Publications Warehouse

    Watson, William

    2007-01-01

    Purpose: The objective of the ArcView Coal Evaluation (ACE) is to estimate the amount and location of coal available to be mined by various coal mining technologies, based on the geologic coverages developed in the National Coal Resource Assessment (NCRA) which are the starting coverages used in the Geographic Information Systems (GIS) evaluation of coal resources. The ACE Users Guide provides many examples of how to apply technical limits based upon mining technology. The methods, which are iterative for any given mining technology, should transfer directly by mining technology to other coal beds.

  3. Modes of occurrence of mercury and other trace elements in coals from the warrior field, Black Warrior Basin, Northwestern Alabama

    USGS Publications Warehouse

    Diehl, S.F.; Goldhaber, M.B.; Hatch, J.R.

    2004-01-01

    The mineralogic residence and abundance of trace metals is an important environmental issue. Data from the USGS coal quality database show that potentially toxic elements, including Hg, As, Mo, Se, Cu, and Tl are enriched in a subset of coal samples in the Black Warrior Basin of Alabama, USA. Although the coal as-mined typically is low in these elements, localized enrichments occur in high-pyrite coals and near faults. Microscopic analyses demonstrate that the residence of these elements is dominantly in a late-stage pyrite associated with structurally disrupted coal. Further, our data suggest addition of Hg to the coal matrix as well. The source of these trace elements was hydrothermal fluids driven into the Black Warrior Basin by Alleghanian age tectonism. ?? 2004 Published by Elsevier B.V.

  4. Hydrology of an abandoned coal-mining area near McCurtain, Haskell County, Oklahoma

    USGS Publications Warehouse

    Slack, L.J.

    1983-01-01

    Water quality was investigated from October 1980 to May 1983 in an area of abandoned coal mines in Haskell county, Oklahoma. Bedrock in the area is shale, siltstone, sandstone, and the McAlester (Stigler) and Hartshorne coals of the McAlester Formation and Hartshorne Sandstone of Pennsylvanian age. The two coal beds, upper and lower Hartshorne, associated with the Hartshorne Sandstone converge or are separated by a few feet or less of bony coal or shale in the McCurtain area. Many small faults cut the Hartshorne coal in all the McCurtain-area mines. The main avenues of water entry to and movement through the bedrock are the exposed bedding-plane openings between layers of sandstone, partings between laminae of shale, fractures and joints developed during folding and faulting laminae of shale, fractures and joints developed during folding and faulting of the brittle rocks, and openings caused by surface mining--the overburden being shattered and broken to form spoil. Water-table conditions exist in bedrock and spoil in the area. Mine pond water is in direct hydraulic connections with water in the spoil piles and the underlying Hartshorne Sandstone. Sulfate is the best indicator of the presence of coal-mine drainage in both surface and ground water in the Oklahoma coal field. Median sulfate concentrations for four sites on Mule Creek ranged from 26 to 260 milligrams per liter. Median sulfate concentrations increased with increased drainage from unreclaimed mined areas. The median sulfate concentration in Mule Creek where it drains the reclaimed area is less than one-third of that at the next site downstream where the stream begins to drain abandoned (unreclaimed) mine lands. Water from Mule Creek predominantly is a sodium sulfate type. Maximum and median values for specific conductance and concentrations of calcium, magnesium, sodium, sulfate, chloride, dissolved solids, and alkalinity increase as Mule Creek flows downstream and drains increasing areas of abandoned

  5. Macromolecular structure of coals. 6. Mass spectroscopic analysis of coal-derived liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooker, D.T.; Lucht, L.M.; Peppas, N.A.

    1986-02-01

    The macromolecular structure of coal networks was analyzed by depolymerizing coal samples using the Sternberg reductive alkylation and the Miyake alkylation techniques. Electron impact mass spectra showed peaks of greater abundance of 125-132, 252-260, 383-391, and 511-520 m/z ratios. Based on analysis of the patterns of the spectra, the cluster size of the cross-linked structure of bituminous coals was determined as 126-130. Various chemical species were identified.

  6. Study of Natural Radioactivity in Coal Samples of Baganuur Coal Mine, Mongolia

    NASA Astrophysics Data System (ADS)

    Altangerel, M.; Norov, N.; Altangerel, D.

    2009-03-01

    Coal and soil samples from Baganuur Coal Mine (BCM) of Mongolia have been investigated. The activities of 226Ra, 232Th and 40K have been measured by gamma-ray spectrometry using shielded HPGe detector. Contents of natural radionuclide elements (U, Th and K) have been determined. Also the activities and contents of radionuclide of ashes were determined which generated in Thermal Power Plant ♯3 of Ulaanbaatar from coal supplied from BCM.

  7. Dry coal feeder development program at Ingersoll-Rand Research, Incorporated. [for coal gasification systems

    NASA Technical Reports Server (NTRS)

    Mistry, D. K.; Chen, T. N.

    1977-01-01

    A dry coal screw feeder for feeding coal into coal gasification reactors operating at pressures up to 1500 psig is described. Results on the feeder under several different modes of operation are presented. In addition, three piston feeder concepts and their technical and economical merits are discussed.

  8. Coal-bed methane potential in Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campen, E.

    1991-06-01

    Montana's coal resources are the second largest of the US, with coal underlying approximately 35% of the state. These resources are estimated at 478 billion tons. Associated coal-bed methane resources are estimated to be 14 tcf. The coals of Montana range from Jurassic to early Tertiary in age and from lignite to low-volatile bituminous in rank. Thickness, rank, maceral composition, and proximate and ultimate analyses all vary vertically and laterally. The state contains eight major coal resource areas. A large percentage of Montana's coal consists of the Paleocene Fort Union lignites of eastern Montana, generally considered of too low amore » rank to contain significant methane resources. Most of the state's other coal deposits are higher in rank and contain many recorded methane shows. During Cretaceous and Tertiary times, regressive-transgressive cycles resulted in numerous coal-bearing sequences. Major marine regressions allowed the formation of large peat swamps followed by transgressions which covered the swamps with impervious marine shales, preventing the already forming methane from escaping. About 75% of Montana's coal is less than 1,000 ft below the ground's surface, making it ideal for methane production. Associated water appears to be fresh, eliminating environmental problems. Pipelines are near to most of the major coal deposits. Exploration for coal-bed methane in Montana is still in its infancy but at this time shows commercial promise.« less

  9. Palynomorphs of Permian Gondwana coal from borehole GDH-38, Barapukuria Coal Basin, Bangladesh

    USGS Publications Warehouse

    Akhtar, A.; Kosanke, R.M.

    2000-01-01

    Thirty-two core samples of Permian Gondwana coal from three coal beds of borehole GDH-38, Barapukuria Coal Basin, Dinajpur, the north-northwestern part of Bangladesh, have been collected for palynological analysis. All samples except one yielded palynomorphs and some samples contain well-preserved and abundant palynomorphs of the gymnospermal and cryptogamic groups that are considered to be useful for future correlation studies. The lower coal bed (331.6-372.5 m) can easily be differentiated from the upper two coal beds by the presence of Alisporites, Cordaitina, Corisaccites, Hamiapollenites, Leuckisporites, Nuskoisporites, Tumoripollenites, Vestgisporites and Vittatina. It is difficult to palynologically differentiate the middle (198.1-208 m) and upper (162.3-172.9 m) coal beds as they contain a very limited number of specimens by which they can be identified. The middle bed is distinguished by the presence of Microbaculispora and Weylandites and the upper bed by the presence of a single taxon Acanthotriletes. Some of the vesiculate or saccate taxa extracted from these coal beds are typical of those occurring in Permian strata of Gondwana in India, South Africa, South America, Russia, Australia and Antarctica. They are thought to be derived from Glossopteris flora, which is characterised by an abundance of Pteridospermic plants of the gymnosperm group. ?? 2000 Elsevier Science Limited. All rights reserved.

  10. Comparison of air pollutant emissions and household air quality in rural homes using improved wood and coal stoves

    NASA Astrophysics Data System (ADS)

    Du, Wei; Shen, Guofeng; Chen, Yuanchen; Zhu, Xi; Zhuo, Shaojie; Zhong, Qirui; Qi, Meng; Xue, Chunyu; Liu, Guangqing; Zeng, Eddy; Xing, Baoshan; Tao, Shu

    2017-10-01

    Air pollutant emissions, fuel consumption, and household air pollution were investigated in rural Hubei, central China, as a revisited evaluation of an intervention program to replace coal use by wood in gasifier stoves. Measured emission factors were comparable to the results measured two years ago when the program was initiated. Coal combustion produced significantly higher emissions of CO2, CH4, and SO2 compared with wood combustion; however, wood combustion in gasifier stoves had higher emissions of primary PM2.5 (particles with diameter less than 2.5 μm), Elemental Carbon (EC) and Organic Carbon (OC). In terms of potential impacts on climate, although the use of wood in gasifier stoves produced more black carbon (6.37 vs 910 gCO2e per day per capita from coal and wood use) and less SO2 (-684 vs -312), obvious benefits could be obtained owing to greater OC emissions (-15.4 vs -431), fewer CH4 emissions (865 vs 409) and, moreover, a reduction of CO2 emissions. The total GWC100 (Global Warming Potential over a time horizon of 100 years) would decrease by approximately 90% if coal use were replaced with renewable wood burned in gasifier stoves. However, similar levels of ambient particles and higher indoor OC and EC were found at homes using wood gasifier stoves compared to the coal-use homes. This suggests critical investigations on potential health impacts from the carbon-reduction intervention program.

  11. Hydrology of area 51, northern Great Plains and Rocky Mountain coal provinces, Wyoming and Montana

    USGS Publications Warehouse

    Peterson, David A.; Mora, K.L.; Lowry, Marlin E.; Rankl, James G.; Wilson, James F.; Lowham, H.W.; Ringen, Bruce H.

    1987-01-01

    This report is one of a series designed to characterize the hydrology of drainage basins within coal provinces, nationwide. Area 51 (in the Rocky Mountain Coal Province) includes all or part of the Shoshone, Bighorn, Greybull, Wind, and Popo Agie River drainage basins - a total of 11,800 sq mi. Area 51 contains more than 18 million tons of strippable bituminous coal and extensive deposits of subbituminous coal, in the arid and semiarid basins. The report represents a summary of results of water resources investigations of the U.S. Geological Survey, some of which were conducted in cooperation with State and other Federal agencies. More than 30 individual topics are discussed in brief texts that are accompanied by maps, graphs, photographs , and illustrations. Primary topics in the reports are physiography, resources and economy, surface-water quantity and quality, and groundwater. (USGS)

  12. From in-situ coal to fly ash: A study of coal mines and power plants from Indiana

    USGS Publications Warehouse

    Mastalerz, Maria; Hower, J.C.; Drobniak, A.; Mardon, S.M.; Lis, G.

    2004-01-01

    This paper presents data on the properties of coal and fly ash from two coal mines and two power plants that burn single-source coal from two mines in Indiana. One mine is in the low-sulfur (5%) Springfield Coal Member of the Petersburg Formation (Pennsylvanian). Both seams have comparable ash contents (???11%). Coals sampled at the mines (both raw and washed fractions) were analyzed for proximate/ultimate/sulfur forms/heating value, major oxides, trace elements and petrographic composition. The properties of fly ash from these coals reflect the properties of the feed coal, as well as local combustion and post-combustion conditions. Sulfur and spinel content, and As, Pb and Zn concentrations of the fly ash are the parameters that most closely reflect the properties of the source coal. ?? 2004 Elsevier B.V. All rights reserved.

  13. Exporting coal through technology and countertrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borissoff, E.

    1985-08-01

    Straightforward coal exporting on a simple price-and-delivery basis is becoming increasingly difficult for US suppliers. Technology and countertrade are two tools which could help coal suppliers' exports and, at the same time, satisfy the needs of their overseas customers. Neither would complicate the established process of coal exporting, but both would offer the prospect of increased sales and higher profits. Technical selling involves demonstrating to a customer that US steam coal is more competitive when burned in boiler designed specifically to burn that coal efficiently. To do this, the exporter must know the chemical characteristic of his coal and establishmore » a working relationship with his customers' purchasing agents and boiler chiefs. Technical selling to new users offers even more opportunities. Countertrade occurs when the customer pays for coal or a coal/boiler package with something other than US dollars.« less

  14. Water Quality and Geochemical Modeling of Water at an Abandoned Coal Mine Reclaimed With Coal Combustion By-Products

    USGS Publications Warehouse

    Haefner, Ralph J.

    2002-01-01

    An abandoned coal mine in eastern Ohio was reclaimed with 125 tons per acre of pressurized fluidized bed combustion (PFBC) by-product. Water quality at the site (known as the Fleming site) was monitored for 7 years after reclamation; samples included water from soil-suction lysimeters (interstitial water), wells, and spring sites established downgradient of the application area. This report presents a summary of data collected at the Fleming site during the period September 1994 through June 2001. Additionally, results of geochemical modeling are included in this report to evaluate the potential fate of elements derived from the PFBC by-product. Chemical analyses of samples of interstitial waters within the PFBC by-product application area indicated elevated levels of pH and specific conductance and elevated concentrations of boron, calcium, chloride, fluoride, magnesium, potassium, strontium, and sulfate compared to water samples collected in a control area where traditional reclamation methods were used. Magnesium-to-calcium (Mg:Ca) mole ratios and sulfur-isotope ratios were used to trace the PFBC by-product leachate and showed that little, if any, leachate reached ground water. Concentrations of most constituents in interstitial waters in the application-area decreased during the seven sampling rounds and approached background concentrations observed in the control area; however, median pH in the application area remained above 6, indicating that some acid-neutralizing capacity was still present. Although notable changes in water quality were observed in interstitial waters during the study period, quality of ground water and spring water remained poor. Water from the Fleming site was not potable, given exceedances of primary and secondary Maximum Contaminant Levels (MCLs) for inorganic constituents in drinking water set by the U.S. Environmental Protection Agency. Only fluoride and sulfate, which were found in higher concentrations in application

  15. Coal extrusion in the plastic state

    NASA Technical Reports Server (NTRS)

    England, C.; Ryason, P. R.

    1977-01-01

    Continuous feeding of coal in a compressing screw extruder is described as a method of introducing coal into pressurized systems. The method utilizes the property of many bituminous coals of softening at temperatures from 350 to 425 C. Coal is then fed, much in the manner of common thermoplastic