NASA Astrophysics Data System (ADS)
Sakata, Kenichi
Aplasma-interface is considered the most mysterious part of an inductively coupled plasma mass spectrometer system in terms of understanding its operational mechanism. After a brief explanation of the basic structure of the inductively coupled plasma mass spectrometer and how it works, the plasma-interface is discussed in regard to its complex operation and approaches to investigating its behavior. In particular, the position and shape of the plasma boundary seem to be important to understand the instrument's sensitivity.
On improved understanding of plasma-chemical processes in complex low-temperature plasmas
NASA Astrophysics Data System (ADS)
Röpcke, Jürgen; Loffhagen, Detlef; von Wahl, Eric; Nave, Andy S. C.; Hamann, Stephan; van Helden, Jean-Piere H.; Lang, Norbert; Kersten, Holger
2018-05-01
Over the last years, chemical sensing using optical emission spectroscopy (OES) in the visible spectral range has been combined with methods of mid infrared laser absorption spectroscopy (MIR-LAS) in the molecular fingerprint region from 3 to 20 μm, which contains strong rotational-vibrational absorption bands of a large variety of gaseous species. This optical approach established powerful in situ diagnostic tools to study plasma-chemical processes of complex low-temperature plasmas. The methods of MIR-LAS enable to detect stable and transient molecular species in ground and excited states and to measure the concentrations and temperatures of reactive species in plasmas. Since kinetic processes are inherent to discharges ignited in molecular gases, high time resolution on sub-second timescales is frequently desired for fundamental studies as well as for process monitoring in applied research and industry. In addition to high sensitivity and good temporal resolution, the capacity for broad spectral coverage enabling multicomponent detection is further expanding the use of OES and MIR-LAS techniques. Based on selected examples, this paper reports on recent achievements in the understanding of complex low-temperature plasmas. Recently, a link with chemical modeling of the plasma has been provided, which is the ultimate objective for a better understanding of the chemical and reaction kinetic processes occurring in the plasma. Contribution to the Topical Issue "Fundamentals of Complex Plasmas", edited by Jürgen Meichsner, Michael Bonitz, Holger Fehske, Alexander Piel.
Laboratory Investigation of Space and Planetary Dust Grains
NASA Technical Reports Server (NTRS)
Spann, James
2005-01-01
Dust in space is ubiquitous and impacts diverse observed phenomena in various ways. Understanding the dominant mechanisms that control dust grain properties and its impact on surrounding environments is basic to improving our understanding observed processes at work in space. There is a substantial body of work on the theory and modeling of dust in space and dusty plasmas. To substantiate and validate theory and models, laboratory investigations and space borne observations have been conducted. Laboratory investigations are largely confined to an assembly of dust grains immersed in a plasma environment. Frequently the behaviors of these complex dusty plasmas in the laboratory have raised more questions than verified theories. Space borne observations have helped us characterize planetary environments. The complex behavior of dust grains in space indicates the need to understand the microphysics of individual grains immersed in a plasma or space environment.
Understanding Environmental Tobacco Smoke Exposure and Effects in Asthmatic Children through Determination of Urinary Cotinine and Targeted Metabolomics of Plasma Introduction Asthma is a complex disease with multiple triggers and causal factors, Exposure to environmental tob...
NASA Astrophysics Data System (ADS)
Lemon, C.; Chen, M.; O'Brien, T. P.; Toffoletto, F.; Sazykin, S.; Wolf, R.; Kumar, V.
2006-12-01
We present simulation results of the Rice Convection Model-Equilibrium (RCM-E) that test and compare the effect on the storm time ring current of varying the plasma sheet source population characteristics at 6.6 Re during magnetic storms. Previous work has shown that direct injection of ionospheric plasma into the ring current is not a significant source of ring current plasma, suggesting that the plasma sheet is the only source. However, storm time processes in the plasma sheet and inner magnetosphere are very complex, due in large part to the feedback interactions between the plasma distribution, magnetic field, and electric field. We are particularly interested in understanding the role of the plasma sheet entropy parameter (PV^{5/3}, where V=\\int ds/B) in determining the strength and distribution of the ring current in both the main and recovery phases of a storm. Plasma temperature and density can be measured from geosynchrorous orbiting satellites, and these are often used to provide boundary conditions for ring current simulations. However, magnetic field measurements in this region are less commonly available, and there is a relatively poor understanding of the interplay between the plasma and the magnetic field during magnetic storms. The entropy parameter is a quantity that incorporates both the plasma and the magnetic field, and understanding its role in the ring current injection and recovery is essential to describing the processes that are occuring during magnetic storms. The RCM-E includes the physics of feedback between the plasma and both the electric and magnetic fields, and is therefore a valuable tool for understanding these complex storm-time processes. By contrasting the effects of different plasma boundary conditions at geosynchronous orbit, we shed light on the physical processes involved in ring current injection and recovery.
ESCRT-dependent degradation of ubiquitylated plasma membrane proteins in plants.
Isono, Erika; Kalinowska, Kamila
2017-12-01
To control the abundance of plasma membrane receptors and transporters is crucial for proper perception and response to extracellular signals from surrounding cells and the environment. Posttranslational modification of plasma membrane proteins, especially ubiquitin conjugation or ubiquitylation, is key for the determination of stability for many transmembrane proteins localized on the cell surface. The targeted degradation is ensured by a complex network of proteins among which the endosomal sorting complex required for transport (ESCRT) plays a central role. This review focuses on progresses made in recent years on the understanding of the function of the ESCRT machinery in the degradation of ubiquitylated plasma membrane proteins in plants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Malmström, Erik; Kilsgård, Ola; Hauri, Simon; Smeds, Emanuel; Herwald, Heiko; Malmström, Lars; Malmström, Johan
2016-01-01
The plasma proteome is highly dynamic and variable, composed of proteins derived from surrounding tissues and cells. To investigate the complex processes that control the composition of the plasma proteome, we developed a mass spectrometry-based proteomics strategy to infer the origin of proteins detected in murine plasma. The strategy relies on the construction of a comprehensive protein tissue atlas from cells and highly vascularized organs using shotgun mass spectrometry. The protein tissue atlas was transformed to a spectral library for highly reproducible quantification of tissue-specific proteins directly in plasma using SWATH-like data-independent mass spectrometry analysis. We show that the method can determine drastic changes of tissue-specific protein profiles in blood plasma from mouse animal models with sepsis. The strategy can be extended to several other species advancing our understanding of the complex processes that contribute to the plasma proteome dynamics. PMID:26732734
Molecular Diagnostics of Fusion and Laboratory Plasmas
NASA Astrophysics Data System (ADS)
Fantz, U.
2005-05-01
The presence of molecules in the cold scrape-off layer of fusion experiments and industrial plasmas requires an understanding of the molecular dynamics in these low temperature plasmas. Suitable diagnostic methods can provide an insight in molecular processes in the plasma volume as well as for plasma surface interactions. A very simple but powerful technique is the molecular emission spectroscopy. Spectra are obtained easily, whereas interpretation might be very complex and relies on the availability of atomic and molecular data. Examples are given for hydrogen plasmas and plasmas with hydrocarbons which both are of importance in industrial applications as well as in fusion experiments.
Diagnostic study of multiple double layer formation in expanding RF plasma
NASA Astrophysics Data System (ADS)
Chakraborty, Shamik; Paul, Manash Kumar; Roy, Jitendra Nath; Nath, Aparna
2018-03-01
Intensely luminous double layers develop and then expand in size in a visibly glowing RF discharge produced using a plasma source consisting of a semi-transparent cylindrical mesh with a central electrode, in a linear plasma chamber. Although RF discharge is known to be independent of device geometry in the absence of magnetic field, the initiation of RF discharge using such a plasma source results in electron drift and further expansion of the plasma in the vessel. The dynamics of complex plasma structures are studied through electric probe diagnostics in the expanding RF plasma. The measurements made to study the parametric dependence of evolution of double layer structures are analyzed and presented here. The plasma parameter measurements suggest that the complex potential structures initially form with low potential difference between the layers and then gradually expand producing burst oscillations. The present study provides interesting information about the stability of plasma sheath and charge particle dynamics in it that are important to understand the underlying basic sheath physics along with applications in plasma acceleration and propulsion.
An experimental study of phase transitions in a complex plasma
NASA Astrophysics Data System (ADS)
Smith, Bernard Albert Thomas, II
In semiconductor manufacturing, contamination due to particulates significantly decreases the yield and quality of device fabrication, therefore increasing the cost of production. Dust particle clouds can be found in almost all plasma processing environments including both plasma etching devices and in plasma deposition processes. Dust particles suspended within such plasmas will acquire an electric charge from collisions with free electrons in the plasma. If the ratio of inter-particle potential energy to the average kinetic energy is sufficient, the particles will form either a "liquid" structure with short range ordering or a crystalline structure with long range ordering. Otherwise, the dust particle system will remain in a gaseous state. Many experiments have been conducted over the past decade on such complex plasmas to discover the character of the systems formed, but more work is needed to fully understand these structures. This paper describes the processes involved in setting up the CASPER GEC RF Reference Cell and the modifications necessary to examine complex plasmas. Research conducted to characterize the system is outlined to demonstrate that the CASPER Cell behaves as other GEC Cells. In addition, further research performed shows the behavior of the complex plasma system in the CASPER Cell is similar to complex plasmas studied by other groups in this field. Along the way analysis routines developed specifically for this system are described. New research involving polydisperse dust distributions is carried out in the system once the initial characterization is finished. Next, a system to externally vary the DC bias in the CASPER Cell is developed and characterized. Finally, new research conducted to specifically examine how the complex plasma system reacts to a variable DC bias is reported. Specifically, the response of the interparticle spacing to various system parameters (including the external DC bias) is examined. Also, a previously unreported phenomenon, namely layer splitting, is examined.
NASA Technical Reports Server (NTRS)
Goldstein, R.; Miller, L. N.; Fossum, E.; Pain, B.; Randolph, J. E.; Turner, P. R.; Cutting, E.
1995-01-01
In the decades since the advent of in situ plasma measurements on board spacecraft, the instrumentation has grown bigger, heavier, and more complex as our understanding of space plasmas improves and our appetite for more information increases...There has thus been a recent interest in the miniaturization of both spacecraft and the instrument payload... This paper describes the results and status of an ongoing design study to understand the problems and trade space of fully integrating an instrument into a micro-spacecraft.
NASA Technical Reports Server (NTRS)
Chang, Tom
2005-01-01
We have achieved all the goals stated in our grant proposal. Specifically, these include: 1. The understanding of the complexity induced nonlinear spatiotemporal coherent structures and the coexisting propagating modes. 2. The understanding of the intermittent turbulence and energization process of the observed Bursty Bulk Flows (BBF's) in the Earth s magnetotail. 3. The development of "anisotropic three-dimensional complexity" in the plasma sheet due to localized merging and interactions of the magnetic coherent structures. 4. The study of fluctuation-induced nonlinear instabilities and their role in the reconfiguration of magnetic topologies in the magnetotail based on the concepts of the dynamic renormalization group. 5. The acceleration of ions due to the intermittent turbulence of propagating and nonpropagating fluctuations. In the following, we include lists of our published papers, invited talks, and professional activities. A detailed description of our accomplished research results is given..
Magnetosphere-ionosphere interactions: Near Earth manifestations of the plasma universe
NASA Technical Reports Server (NTRS)
Faelthammar, Carl-Gunne
1986-01-01
As the universe consists almost entirely of plasma, the understanding of astrophysical phenomena must depend critically on the understanding of how matter behaves in the plasma state. In situ observations in the near Earth cosmical plasma offer an excellent opportunity of gaining such understanding. The near Earth cosmical plasma not only covers vast ranges of density and temperature, but is the site of a rich variety of complex plasma physical processes which are activated as a results of the interactions between the magnetosphere and the ionosphere. The geomagnetic field connects the ionosphere, tied by friction to the Earth, and the magnetosphere, dynamically coupled to the solar wind. This causes an exchange of energy an momentum between the two regions. The exchange is executed by magnetic-field-aligned electric currents, the so-called Birkeland currents. Both directly and indirectly (through instabilities and particle acceleration) these also lead to an exchange of plasma, which is selective and therefore causes chemical separation. Another essential aspect of the coupling is the role of electric fields, especially magnetic field aligned (parallel) electric fields, which have important consequences both for the dynamics of the coupling and, especially, for energization of charged particles.
Self-Organized Criticality, Multifractals, and Intermittent Turbulence in Earth's Magnetotail
NASA Technical Reports Server (NTRS)
Chang, Tom
2004-01-01
We have achieved all the goals stated in our grant proposal in collaboration with Dr. C.C. Wu of the University of California at Los Angeles. Specifically, these include: The understanding of the complexity induced nonlinear spatiotemporal structures and the coexisting propagating modes. The development of plasma resonances and coherent structures in space plasmas. The study of fluctuation-induced nonlinear instabilities and their role in the reconfiguration of magnetic topologies in the magnetotail. The development of "anisotropic three-dimensional complexity" in the plasma sheet due to localized merging and interactions of the magnetic coherent structures and associated topological phase transitions. The understanding of the intermittent turbulence and energization process of the observed Bursty Bulk Flows (BBF's) in the Earth s magnetotail. The acceleration of ions due to the intermittent turbulence of propagating arid nonpropagating fluctuations In the following, we include lists of our published papers, invited talks, and professional activities. A detailed description of our accomplished research results is given in Section IV.
[What is the contribution of Stewart's concept in acid-base disorders analysis?].
Quintard, H; Hubert, S; Ichai, C
2007-05-01
To explain the different approaches for interpreting acid-base disorders; to develop the Stewart model which offers some advantages for the pathophysiological understanding and the clinical interpretation of acid-base imbalances. Record of french and english references from Medline data base. The keywords were: acid-base balance, hyperchloremic acidosis, metabolic acidosis, strong ion difference, strong ion gap. Data were selected including prospective and retrospective studies, reviews, and case reports. Acid-base disorders are commonly analysed by using the traditional Henderson-Hasselbalch approach which attributes the variations in plasma pH to the modifications in plasma bicarbonates or PaCO2. However, this approach seems to be inadequate because bicarbonates and PaCO2 are completely dependent. Moreover, it does not consider the role of weak acids such as albuminate, in the determination of plasma pH value. According to the Stewart concept, plasma pH results from the degree of plasma water dissociation which is determined by 3 independent variables: 1) strong ion difference (SID) which is the difference between all the strong plasma cations and anions; 2) quantity of plasma weak acids; 3) PaCO2. Thus, metabolic acid-base disorders are always induced by a variation in SID (decreased in acidosis) or in weak acids (increased in acidosis), whereas respiratory disorders remains the consequence of a change in PaCO2. These pathophysiological considerations are important to analyse complex acid-base imbalances in critically ill patients. For example, due to a decrease in weak acids, hypoalbuminemia increases SID which may counter-balance a decrease in pH and an elevated anion gap. Thus if using only traditional tools, hypoalbuminemia may mask a metabolic acidosis, because of a normal pH and a normal anion gap. In this case, the association of metabolic acidosis and alkalosis is only expressed by respectively a decreased SID and a decreased weak acids concentration. This concept allows to establish the relationship between hyperchloremic acidosis and infusion of solutes which contain large concentration of chloride such as NaCl 0.9%. Finally, the Stewart concept permits to understand that sodium bicarbonate as well as sodium lactate induces plasma alkalinization. In fact, sodium remains in plasma, whereas anion (lactate or bicarbonate) are metabolized leading to an increase in plasma SID. Due to its simplicity, the traditional Henderson-Hasselbalch approach of acid-base disorders, remains commonly used. However, it gives an inadequate pathophysiological analysis which may conduct to a false diagnosis, especially with complex acid-base imbalances. Despite its apparent complexity, the Stewart concept permits to understand precisely the mechanisms of acid-base disorders. It has to become the most appropriate approach to analyse complex acid-base abnormalities.
NASA Astrophysics Data System (ADS)
Brandt, C.; Thakur, S. C.; Tynan, G. R.
2016-04-01
Complexities of flow patterns in the azimuthal cross-section of a cylindrical magnetized helicon plasma and the corresponding plasma dynamics are investigated by means of a novel scheme for time delay estimation velocimetry. The advantage of this introduced method is the capability of calculating the time-averaged 2D velocity fields of propagating wave-like structures and patterns in complex spatiotemporal data. It is able to distinguish and visualize the details of simultaneously present superimposed entangled dynamics and it can be applied to fluid-like systems exhibiting frequently repeating patterns (e.g., waves in plasmas, waves in fluids, dynamics in planetary atmospheres, etc.). The velocity calculations are based on time delay estimation obtained from cross-phase analysis of time series. Each velocity vector is unambiguously calculated from three time series measured at three different non-collinear spatial points. This method, when applied to fast imaging, has been crucial to understand the rich plasma dynamics in the azimuthal cross-section of a cylindrical linear magnetized helicon plasma. The capabilities and the limitations of this velocimetry method are discussed and demonstrated for two completely different plasma regimes, i.e., for quasi-coherent wave dynamics and for complex broadband wave dynamics involving simultaneously present multiple instabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandt, C.; Max-Planck-Institute for Plasma Physics, Wendelsteinstr. 1, D-17491 Greifswald; Thakur, S. C.
2016-04-15
Complexities of flow patterns in the azimuthal cross-section of a cylindrical magnetized helicon plasma and the corresponding plasma dynamics are investigated by means of a novel scheme for time delay estimation velocimetry. The advantage of this introduced method is the capability of calculating the time-averaged 2D velocity fields of propagating wave-like structures and patterns in complex spatiotemporal data. It is able to distinguish and visualize the details of simultaneously present superimposed entangled dynamics and it can be applied to fluid-like systems exhibiting frequently repeating patterns (e.g., waves in plasmas, waves in fluids, dynamics in planetary atmospheres, etc.). The velocity calculationsmore » are based on time delay estimation obtained from cross-phase analysis of time series. Each velocity vector is unambiguously calculated from three time series measured at three different non-collinear spatial points. This method, when applied to fast imaging, has been crucial to understand the rich plasma dynamics in the azimuthal cross-section of a cylindrical linear magnetized helicon plasma. The capabilities and the limitations of this velocimetry method are discussed and demonstrated for two completely different plasma regimes, i.e., for quasi-coherent wave dynamics and for complex broadband wave dynamics involving simultaneously present multiple instabilities.« less
NASA Technical Reports Server (NTRS)
Stone, N. H.; Samir, Uri
1986-01-01
Attempts to gain an understanding of spacecraft plasma dynamics via experimental investigation of the interaction between artificially synthesized, collisionless, flowing plasmas and laboratory test bodies date back to the early 1960's. In the past 25 years, a number of researchers have succeeded in simulating certain limited aspects of the complex spacecraft-space plasma interaction reasonably well. Theoretical treatments have also provided limited models of the phenomena. Several active experiments were recently conducted from the space shuttle that specifically attempted to observe the Orbiter-ionospheric interaction. These experiments have contributed greatly to an appreciation for the complexity of spacecraft-space plasma interaction but, so far, have answered few questions. Therefore, even though the plasma dynamics of hypersonic spacecraft is fundamental to space technology, it remains largely an open issue. A brief overview is provided of the primary results from previous ground-based experimental investigations and the preliminary results of investigations conducted on the STS-3 and Spacelab 2 missions. In addition, several, as yet unexplained, aspects of the spacecraft-space plasma interaction are suggested for future research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shibata, T., E-mail: shibat@post.j-parc.jp; Ueno, A.; Oguri, H.
A numerical model of plasma transport and electromagnetic field in the J-PARC (Japan Proton Accelerator Research Complex) radio frequency ion source has been developed to understand the relation between antenna coil heat loadings and plasma production/transport processes. From the calculation, the local plasma density increase is observed in the region close to the antenna coil. Electrons are magnetized by the magnetic field line with absolute magnetic flux density 30–120 Gauss which leads to high local ionization rate. The results suggest that modification of magnetic configuration can be made to reduce plasma heat flux onto the antenna.
Optical Analysis Of The Vacuum Arc Plasma Generated In Cup-Shape Contacts
NASA Astrophysics Data System (ADS)
Pavelescu, G.; Pavelescu, D.; Dumitrescu, G.; Anghelita, P.; Gherendi, F.
2007-04-01
In this paper are presented the results of the optical analysis on the rotating arc plasma, generated in the vacuum low voltage circuit breaker with cup-shaped contacts. An adequate experimental setup was used for single shot time and spatial resolved spectroscopy in order to analyze the evolution of the vacuum arc plasma. Different current interruption situations are correlated with plasma spectral diagnosis. The study is aimed to contribute to a better understanding of the complex phenomena that take place in the interruption process of high currents that appears in the short-circuit regime of electrical networks.
Harper, Benjamin W J; Morris, Thomas T; Gailer, Jürgen; Aldrich-Wright, Janice R
2016-10-01
Platinum(II) complexes have demonstrated considerable success in the treatment of cancer, but severe toxic side effects drive the search for new complexes with increased tumour selectivity and better efficacy. A critical concept that has to be considered in the context of designing novel Pt complexes is their interactions with biomolecules other than DNA. To this end, here the interactions of 16 previously reported bisintercalating (2,2':6',2″-terpyridine)platinum(II) complexes, [{Pt(terpy)} 2 μ-(X)] n+ (where X is a linker) with glutathione (GSH) by means of 1 H and 195 Pt NMR spectroscopy were investigated. The GSH half-life (GSH t 1/2 ) was determined following the incubation of each [{Pt(terpy)} 2 μ-(X)] n+ complex with GSH (8mM). It was observed that complexes 1-7, 11, 12 and 14-16 reacted more rapidly than cisplatin, whereas complexes 8-10, 13 and 17 reacted more slowly (≥200min). There was no apparent correlation between linker length and the GSH t 1/2 . In order to understand these interactions, two complexes: 1 (t 1/2 <1min) and a previously studied 17 [Pt(5,6-dimethyl-1,10-phenanthroline)(1S,2S-diaminocyclohexane)] (56MESS) (GSH t 1/2 =4080min) were incubated with rabbit plasma. A "metallomics" approach was used to analyse plasma for all platinum species at the 5 and the 60min time point and provided results that were congruent with the reaction of the selected Pt complexes with GSH. Our studies demonstrate that the combined application of NMR spectroscopy, cytotoxicity studies and a metallomics approach can contribute to better understand the interaction of [{Pt(terpy)} 2 μ-(X)] n+ complexes with biomolecules to better assess which compounds may be advanced to in vivo studies. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Henriquez, Miguel F.; Thompson, Derek S.; Kenily, Shane; Khaziev, Rinat; Good, Timothy N.; McIlvain, Julianne; Siddiqui, M. Umair; Curreli, Davide; Scime, Earl E.
2016-10-01
Understanding particle distributions in plasma boundary regions is critical to predicting plasma-surface interactions. Ions in the presheath exhibit complex behavior because of collisions and due to the presence of boundary-localized electric fields. Complete understanding of particle dynamics is necessary for understanding the critical problems of tokamak wall loading and Hall thruster channel wall erosion. We report measurements of 3D argon ion velocity distribution functions (IVDFs) in the vicinity of an absorbing boundary oriented obliquely to a background magnetic field. Measurements were obtained via argon ion laser induced fluorescence throughout a spatial volume upstream of the boundary. These distribution functions reveal kinetic details that provide a point-to-point check on particle-in-cell and 1D3V Boltzmann simulations. We present the results of this comparison and discuss some implications for plasma boundary interaction physics.
Waves associated to COMPLEX EVENTS observed by STEREO
NASA Astrophysics Data System (ADS)
Siu Tapia, A. L.; Blanco-Cano, X.; Kajdic, P.; Aguilar-Rodriguez, E.; Russell, C. T.; Jian, L. K.; Luhmann, J. G.
2012-12-01
Complex Events are formed by two or more large-scale solar wind structures which interact in space. Typical cases are interactions of: (i) a Magnetic Cloud/Interplanetary Coronal Mass Ejection (MC/ICME) with another MC/ICME transient; and (ii) an ICME followed by a Stream Interaction Region (SIR). Complex Events are of importance for space weather studies and studying them can enhance our understanding of collisionless plasma physics. Some of these structures can produce or enhance southward magnetic fields, a key factor in geomagnetic storm generation. Using data from the STEREO mission during the years 2006-2011, we found 17 Complex Events preceded by a shock wave. We use magnetic field and plasma data to study the micro-scale structure of the shocks, and the waves associated to these shocks and within Complex Events structures. To determine wave characteristics we perform Power Spectra and Minimum Variance Analysis. We also use PLASTIC WAP protons data to study foreshock extensions and the relationship between Complex Regions and particle acceleration to suprathermal energies.
Measurement of net electric charge and dipole moment of dust aggregates in a complex plasma.
Yousefi, Razieh; Davis, Allen B; Carmona-Reyes, Jorge; Matthews, Lorin S; Hyde, Truell W
2014-09-01
Understanding the agglomeration of dust particles in complex plasmas requires knowledge of basic properties such as the net electrostatic charge and dipole moment of the dust. In this study, dust aggregates are formed from gold-coated mono-disperse spherical melamine-formaldehyde monomers in a radiofrequency (rf) argon discharge plasma. The behavior of observed dust aggregates is analyzed both by studying the particle trajectories and by employing computer models examining three-dimensional structures of aggregates and their interactions and rotations as induced by torques arising from their dipole moments. These allow the basic characteristics of the dust aggregates, such as the electrostatic charge and dipole moment, as well as the external electric field, to be determined. It is shown that the experimental results support the predicted values from computer models for aggregates in these environments.
An experiment on the dynamics of ion implantation and sputtering of surfaces
NASA Astrophysics Data System (ADS)
Wright, G. M.; Barnard, H. A.; Kesler, L. A.; Peterson, E. E.; Stahle, P. W.; Sullivan, R. M.; Whyte, D. G.; Woller, K. B.
2014-02-01
A major impediment towards a better understanding of the complex plasma-surface interaction is the limited diagnostic access to the material surface while it is undergoing plasma exposure. The Dynamics of ION Implantation and Sputtering Of Surfaces (DIONISOS) experiment overcomes this limitation by uniquely combining powerful, non-perturbing ion beam analysis techniques with a steady-state helicon plasma exposure chamber, allowing for real-time, depth-resolved in situ measurements of material compositions during plasma exposure. Design solutions are described that provide compatibility between the ion beam analysis requirements in the presence of a high-intensity helicon plasma. The three primary ion beam analysis techniques, Rutherford backscattering spectroscopy, elastic recoil detection, and nuclear reaction analysis, are successfully implemented on targets during plasma exposure in DIONISOS. These techniques measure parameters of interest for plasma-material interactions such as erosion/deposition rates of materials and the concentration of plasma fuel species in the material surface.
ISS Plasma Interaction: Measurements and Modeling
NASA Technical Reports Server (NTRS)
Barsamian, H.; Mikatarian, R.; Alred, J.; Minow, J.; Koontz, S.
2004-01-01
Ionospheric plasma interaction effects on the International Space Station are discussed in the following paper. The large structure and high voltage arrays of the ISS represent a complex system interacting with LEO plasma. Discharge current measurements made by the Plasma Contactor Units and potential measurements made by the Floating Potential Probe delineate charging and magnetic induction effects on the ISS. Based on theoretical and physical understanding of the interaction phenomena, a model of ISS plasma interaction has been developed. The model includes magnetic induction effects, interaction of the high voltage solar arrays with ionospheric plasma, and accounts for other conductive areas on the ISS. Based on these phenomena, the Plasma Interaction Model has been developed. Limited verification of the model has been performed by comparison of Floating Potential Probe measurement data to simulations. The ISS plasma interaction model will be further tested and verified as measurements from the Floating Potential Measurement Unit become available, and construction of the ISS continues.
An experiment on the dynamics of ion implantation and sputtering of surfaces.
Wright, G M; Barnard, H A; Kesler, L A; Peterson, E E; Stahle, P W; Sullivan, R M; Whyte, D G; Woller, K B
2014-02-01
A major impediment towards a better understanding of the complex plasma-surface interaction is the limited diagnostic access to the material surface while it is undergoing plasma exposure. The Dynamics of ION Implantation and Sputtering Of Surfaces (DIONISOS) experiment overcomes this limitation by uniquely combining powerful, non-perturbing ion beam analysis techniques with a steady-state helicon plasma exposure chamber, allowing for real-time, depth-resolved in situ measurements of material compositions during plasma exposure. Design solutions are described that provide compatibility between the ion beam analysis requirements in the presence of a high-intensity helicon plasma. The three primary ion beam analysis techniques, Rutherford backscattering spectroscopy, elastic recoil detection, and nuclear reaction analysis, are successfully implemented on targets during plasma exposure in DIONISOS. These techniques measure parameters of interest for plasma-material interactions such as erosion/deposition rates of materials and the concentration of plasma fuel species in the material surface.
Foundations of atmospheric pressure non-equilibrium plasmas
NASA Astrophysics Data System (ADS)
Bruggeman, Peter J.; Iza, Felipe; Brandenburg, Ronny
2017-12-01
Non-equilibrium plasmas have been intensively studied over the past century in the context of material processing, environmental remediation, ozone generation, excimer lamps and plasma display panels. Research on atmospheric pressure non-equilibrium plasmas intensified over the last two decades leading to a large variety of plasma sources that have been developed for an extended application range including chemical conversion, medicine, chemical analysis and disinfection. The fundamental understanding of these discharges is emerging but there remain a lot of unexplained phenomena in these intrinsically complex plasmas. The properties of non-equilibrium plasmas at atmospheric pressure span over a huge range of electron densities as well as heavy particle and electron temperatures. This paper provides an overview of the key underlying processes that are important for the generation and stabilization of atmospheric pressure non-equilibrium plasmas. The unique physical and chemical properties of theses discharges are also summarized.
PumpKin: A tool to find principal pathways in plasma chemical models
NASA Astrophysics Data System (ADS)
Markosyan, A. H.; Luque, A.; Gordillo-Vázquez, F. J.; Ebert, U.
2014-10-01
PumpKin is a software package to find all principal pathways, i.e. the dominant reaction sequences, in chemical reaction systems. Although many tools are available to integrate numerically arbitrarily complex chemical reaction systems, few tools exist in order to analyze the results and interpret them in relatively simple terms. In particular, due to the large disparity in the lifetimes of the interacting components, it is often useful to group reactions into pathways that recycle the fastest species. This allows a researcher to focus on the slow chemical dynamics, eliminating the shortest timescales. Based on the algorithm described by Lehmann (2004), PumpKin automates the process of finding such pathways, allowing the user to analyze complex kinetics and to understand the consumption and production of a certain species of interest. We designed PumpKin with an emphasis on plasma chemical systems but it can also be applied to atmospheric modeling and to industrial applications such as plasma medicine and plasma-assisted combustion.
Ke, Zhigang; Huang, Qing
2016-01-01
Although blood coagulation facilitated by non-thermal plasma has been reported several years ago, the insight to the involved mechanisms is still rather limited. In this work, we report our discovery of a new mechanism for the haem-promoted blood-coagulation caused by non-thermal plasma treatment. The reason for the haem role is due to that its oxidized form, namely, hematin, can promote the dityrosine cross-linking of fibrinogen, the most important coagulation protein, to form a membrane-like layer on the surface of the treated blood with plasma exposure. Both haem and non-thermal-plasma generated hydrogen peroxide are requisite for the cross-linking process. We confirmed that fibrinogen can coordinate with the haem iron to form a protein-haem complex which shows pseudo-peroxidase activity, and in the presence of hydrogen peroxide, the complex can induce the dityrosine formation between fibrinogen molecules, leading to the fibrin network necessary for the blood coagulation. Understanding of such an underlying mechanism can be useful to guide more efficient application of non-thermal plasma in the management of hemostasis, thrombosis and etc. PMID:27229173
Nanoparticle forming reactive plasmas: a multidiagnostic approach
NASA Astrophysics Data System (ADS)
Hinz, Alexander; Wahl, Erik von; Faupel, Franz; Strunskus, Thomas; Kersten, Holger
2018-05-01
With an ever increasing interest in functional materials based on nanoparticles a large amount of research in this field is dedicated to the development of new production methods for nanoparticles. A promising class of methods for the production of nanoparticles is reactive plasmas. However, since the particle formation process and the interaction between the particles and the plasma are so far not completely understood, it remains difficult to control the particle formation. As the interaction between the nanoparticles and the plasma in which they are dispersed is complex the use of one or two diagnostics often provides only an incomplete understanding of the involved processes. Thus a multidiagnostic approach is needed. This contribution reviews the latest results from the study of nanoparticle formation in a hydrocarbon-based reactive plasma by such a multidiagnostic approach. It is shown that the use of various diagnostics like an IV-probe, optical emission spectroscopy, and a multipole resonance probe in conjunction with an investigation of the particle formation provides a much more detailed picture of these interesting, yet challenging, systems. Contribution to the Topical Issue "Fundamentals of Complex Plasmas", edited by Jürgen Meichsner, Michael Bonitz, Holger Fehske, Alexander Piel.
Bartschat, Klaus; Kushner, Mark J.
2016-01-01
Electron collisions with atoms, ions, molecules, and surfaces are critically important to the understanding and modeling of low-temperature plasmas (LTPs), and so in the development of technologies based on LTPs. Recent progress in obtaining experimental benchmark data and the development of highly sophisticated computational methods is highlighted. With the cesium-based diode-pumped alkali laser and remote plasma etching of Si3N4 as examples, we demonstrate how accurate and comprehensive datasets for electron collisions enable complex modeling of plasma-using technologies that empower our high-technology–based society. PMID:27317740
Titan's Variable Plasma Interaction
NASA Astrophysics Data System (ADS)
Ledvina, S. A.; Brecht, S. H.
2015-12-01
Cassini observations have found that the plasma and magnetic field conditions upstream of Titan are far more complex than they were thought to be after the Voyager encounter. Rymer et al., (2009) used the Cassini Plasma Spectrometer (CAPS) electron observations to classify the plasma conditions along Titan's orbit into 5 types (Plasma Sheet, Lobe, Mixed, Magnetosheath and Misc.). Nemeth et al., (2011) found that the CAPS ion observations could also be separated into the same plasma regions as defined by Rymer et al. Additionally the T-96 encounter found Titan in the solar wind adding a sixth classification. Understanding the effects of the variable upstream plasma conditions on Titan's plasma interaction and the evolution of Titan's ionosphere/atmosphere is one of the main objectives of the Cassini mission. To compliment the mission we perform hybrid simulations of Titan's plasma interaction to examine the effects of the incident plasma distribution function and the flow velocity. We closely examine the results on Titan's induced magnetosphere and the resulting pickup ion properties.
Insight into hydrogenation of graphene: Effect of hydrogen plasma chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felten, A.; Nittler, L.; Pireaux, J.-J.
2014-11-03
Plasma hydrogenation of graphene has been proposed as a tool to modify the properties of graphene. However, hydrogen plasma is a complex system and controlled hydrogenation of graphene suffers from a lack of understanding of the plasma chemistry. Here, we correlate the modifications induced on monolayer graphene studied by Raman spectroscopy with the hydrogen ions energy distributions obtained by mass spectrometry. We measure the energy distribution of H{sup +}, H{sub 2}{sup +}, and H{sub 3}{sup +} ions for different plasma conditions showing that their energy strongly depends on the sample position, pressure, and plasma power and can reach values asmore » high as 45 eV. Based on these measurements, we speculate that under specific plasma parameters, protons should possess enough energy to penetrate the graphene sheet. Therefore, a graphene membrane could become, under certain conditions, transparent to both protons and electrons.« less
Plasma Processes for Semiconductor Fabrication
NASA Astrophysics Data System (ADS)
Hitchon, W. N. G.
1999-01-01
Plasma processing is a central technique in the fabrication of semiconductor devices. This self-contained book provides an up-to-date description of plasma etching and deposition in semiconductor fabrication. It presents the basic physics and chemistry of these processes, and shows how they can be accurately modeled. The author begins with an overview of plasma reactors and discusses the various models for understanding plasma processes. He then covers plasma chemistry, addressing the effects of different chemicals on the features being etched. Having presented the relevant background material, he then describes in detail the modeling of complex plasma systems, with reference to experimental results. The book closes with a useful glossary of technical terms. No prior knowledge of plasma physics is assumed in the book. It contains many homework exercises and serves as an ideal introduction to plasma processing and technology for graduate students of electrical engineering and materials science. It will also be a useful reference for practicing engineers in the semiconductor industry.
Anklesaria, Jenifer H.; Jagtap, Dhanashree D.; Pathak, Bhakti R.; Kadam, Kaushiki M.; Joseph, Shaini; Mahale, Smita D.
2013-01-01
Prostate Secretory Protein of 94 amino acids (PSP94) is one of the major proteins present in the human seminal plasma. Though several functions have been predicted for this protein, its exact role either in sperm function or in prostate pathophysiology has not been clearly defined. Attempts to understand the mechanism of action of PSP94 has led to the search for its probable binding partners. This has resulted in the identification of PSP94 binding proteins in plasma and seminal plasma from human. During the chromatographic separation step of proteins from human seminal plasma by reversed phase HPLC, we had observed that in addition to the main fraction of PSP94, other fractions containing higher molecular weight proteins also showed the presence of detectable amounts of PSP94. This prompted us to hypothesize that PSP94 could be present in the seminal plasma complexed with other protein/s of higher molecular weight. One such fraction containing a major protein of ∼47 kDa, on characterization by mass spectrometric analysis, was identified to be Prostatic Acid Phosphatase (PAP). The ability of PAP present in this fraction to bind to PSP94 was demonstrated by affinity chromatography. Co-immunoprecipitation experiments confirmed the presence of PSP94-PAP complex both in the fraction studied and in the fresh seminal plasma. In silico molecular modeling of the PSP94-PAP complex suggests that β-strands 1 and 6 of PSP94 appear to interact with domain 2 of PAP, while β-strands 7 and 10 with domain 1 of PAP. This is the first report which suggests that PSP94 can bind to PAP and the PAP-bound PSP94 is present in human seminal plasma. PMID:23469287
Predator-prey dynamics stabilised by nonlinearity explain oscillations in dust-forming plasmas
NASA Astrophysics Data System (ADS)
Ross, A. E.; McKenzie, D. R.
2016-04-01
Dust-forming plasmas are ionised gases that generate particles from a precursor. In nature, dust-forming plasmas are found in flames, the interstellar medium and comet tails. In the laboratory, they are valuable in generating nanoparticles for medicine and electronics. Dust-forming plasmas exhibit a bizarre, even puzzling behaviour in which they oscillate with timescales of seconds to minutes. Here we show how the problem of understanding these oscillations may be cast as a predator-prey problem, with electrons as prey and particles as predators. The addition of a nonlinear loss term to the classic Lotka-Volterra equations used for describing the predator-prey problem in ecology not only stabilises the oscillations in the solutions for the populations of electrons and particles in the plasma but also explains the behaviour in more detail. The model explains the relative phase difference of the two populations, the way in which the frequency of the oscillations varies with the concentration of the precursor gas, and the oscillations of the light emission, determined by the populations of both species. Our results demonstrate the value of adopting an approach to a complex physical science problem that has been found successful in ecology, where complexity is always present.
The effects of upstream plasma properties on Titan's ionosphere
NASA Astrophysics Data System (ADS)
Ledvina, S. A.; Brecht, S. H.
2016-12-01
Cassini observations have found that the plasma and magnetic field conditions upstream of Titan are far more complex than they were thought to be after the Voyager encounter. Rymer et al., (2009) used the Cassini Plasma Spectrometer (CAPS) electron observations to classify the plasma conditions along Titan's orbit into 5 types (Plasma Sheet, Lobe, Mixed, Magnetosheath and Misc.). Nemeth et al., (2011) found that the CAPS ion observations could also be separated into the same plasma regions as defined by Rymer et al. Additionally the T-96 encounter found Titan in the solar wind adding a sixth classification. Understanding the effects of the variable upstream plasma conditions on Titan's plasma interaction and the evolution of Titan's ionosphere/atmosphere is one of the main objectives of the Cassini mission. To compliment the mission we perform hybrid simulations of Titan's plasma interaction to examine how the properties of the incident plasma (composition, density, temperature etc…) affect Titan's ionosphere. We examine how much ionospheric plasma is lost from Titan as well as the amount of mass and energy deposited into Titan's atmosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharjee, Saurav, E-mail: sauravtsk.bhattacharjee@gmail.com; Das, Nilakshi
2015-10-15
A systematic theoretical investigation has been carried out on the role of dust charging dynamics on the nature and stability of DIA (Dust Ion Acoustic) mode in complex plasma. The study has been made for both linear and non-linear scale regime of DIA mode. The observed results have been characterized in terms of background plasma responses towards dust surface responsible for dust charge fluctuation, invoking important dusty plasma parameters, especially the ion flow speed and dust size. The linear analyses confirm the nature of instability in DIA mode in presence of dust charge fluctuation. The instability shows a damping ofmore » DIA mode in subsonic flow regime followed by a gradual growth in instability in supersonic limit of ion flow. The strength of non-linearity and their existence domain is found to be driven by different dusty plasma parameters. As dust is ubiquitous in interstellar medium with plasma background, the study also addresses the possible effect of dust charging dynamics in gravito-electrostatic characterization and the stability of dust molecular clouds especially in proto-planetary disc. The observations are influential and interesting towards the understanding of dust settling mechanism and formation of dust environments in different regions in space.« less
Cross-Scale: a multi-spacecraft mission to study cross-scale coupling in space plasmas
NASA Astrophysics Data System (ADS)
Fujimoto, M.; Schwartz, S.; Horbury, T.; Louarn, P.; Baumjohann, W.
Collisionless astrophysical plasmas exhibit complexity on many scales if we are to understand their properties and effects we must measure this complexity We can identify a small number of processes and phenomena one of which is dominant in almost every space plasma region of interest shocks reconnection turbulence and boundaries These processes act to transfer energy between locations scales and modes However this transfer is characterised by variability and 3D structures on at least three scales electron kinetic ion kinetic and fluid It is the interaction between physical processes at these scales that is the key to understanding these phenomena and predicting their effects However current and planned multi-spacecraft missions such as Cluster and MMS only study variations on one scale in 3D at any given time We must measure the three scales simultaneously completely to understand the energy transfer processes ESA fs Cosmic Vision 2015-2025 exercise revealed a broad consensus for a mission to study these issues commonly known as M3 In parallel Japanese scientists have been studying a similar mission concept SCOPE We have taken ideas from both of these mission proposals and produced a concept called Cross-Scale Cross-Scale would comprise three nested groups each consisting of four spacecraft with similar instrumentation Each group would have a different spacecraft separation at approximately the electron and ion gyroradii and a larger MHD scale We would therefore be able to measure variations on all three important physical scales
NASA Technical Reports Server (NTRS)
Zimmerman, M. I.; Farrell, W. M.; Poppe, A. R.
2014-01-01
We present results from a new grid-free 2D plasma simulation code applied to a small, unmagnetized body immersed in the streaming solar wind plasma. The body was purposely modeled as an irregular shape in order to examine photoemission and solar wind plasma flow in high detail on the dayside, night-side, terminator and surface-depressed 'pocket' regions. Our objective is to examine the overall morphology of the various plasma interaction regions that form around a small body like a small near-Earth asteroid (NEA). We find that the object obstructs the solar wind flow and creates a trailing wake region downstream, which involves the interplay between surface charging and ambipolar plasma expansion. Photoemission is modeled as a steady outflow of electrons from illuminated portions of the surface, and under direct illumination the surface forms a non-monotonic or ''double-sheath'' electric potential upstream of the body, which is important for understanding trajectories and equilibria of lofted dust grains in the presence of a complex asteroid geometry. The largest electric fields are found at the terminators, where ambipolar plasma expansion in the body-sized night-side wake merges seamlessly with the thin photoelectric sheath on the dayside. The pocket regions are found to be especially complex, with nearby sunlit regions of positive potential electrically connected to unlit negative potentials and forming adjacent natural electric dipoles. For objects near the surface, we find electrical dissipation times (through collection of local environmental solar wind currents) that vary over at least 5 orders of magnitude: from 39 Micro(s) inside the near-surface photoelectron cloud under direct sunlight to less than 1 s inside the particle-depleted night-side wake and shadowed pocket regions
Entropy: A Unifying Path for Understanding Complexity in Natural, Artificial and Social Systems
2011-07-01
data in what concerns its consequences. Definitively the BG entropy can only be understood nowadays as a first, most important, step, but not as the...applications to natural systems (trapped ions, spin-glass, dusty plasma, earthquakes, turbulence, astrophysical objects, cosmology , black holes, etc
Koldsø, Heidi; Shorthouse, David; Hélie, Jean; Sansom, Mark S. P.
2014-01-01
Cell membranes are complex multicomponent systems, which are highly heterogeneous in the lipid distribution and composition. To date, most molecular simulations have focussed on relatively simple lipid compositions, helping to inform our understanding of in vitro experimental studies. Here we describe on simulations of complex asymmetric plasma membrane model, which contains seven different lipids species including the glycolipid GM3 in the outer leaflet and the anionic lipid, phosphatidylinositol 4,5-bisphophate (PIP2), in the inner leaflet. Plasma membrane models consisting of 1500 lipids and resembling the in vivo composition were constructed and simulations were run for 5 µs. In these simulations the most striking feature was the formation of nano-clusters of GM3 within the outer leaflet. In simulations of protein interactions within a plasma membrane model, GM3, PIP2, and cholesterol all formed favorable interactions with the model α-helical protein. A larger scale simulation of a model plasma membrane containing 6000 lipid molecules revealed correlations between curvature of the bilayer surface and clustering of lipid molecules. In particular, the concave (when viewed from the extracellular side) regions of the bilayer surface were locally enriched in GM3. In summary, these simulations explore the nanoscale dynamics of model bilayers which mimic the in vivo lipid composition of mammalian plasma membranes, revealing emergent nanoscale membrane organization which may be coupled both to fluctuations in local membrane geometry and to interactions with proteins. PMID:25340788
Koldsø, Heidi; Shorthouse, David; Hélie, Jean; Sansom, Mark S P
2014-10-01
Cell membranes are complex multicomponent systems, which are highly heterogeneous in the lipid distribution and composition. To date, most molecular simulations have focussed on relatively simple lipid compositions, helping to inform our understanding of in vitro experimental studies. Here we describe on simulations of complex asymmetric plasma membrane model, which contains seven different lipids species including the glycolipid GM3 in the outer leaflet and the anionic lipid, phosphatidylinositol 4,5-bisphophate (PIP2), in the inner leaflet. Plasma membrane models consisting of 1500 lipids and resembling the in vivo composition were constructed and simulations were run for 5 µs. In these simulations the most striking feature was the formation of nano-clusters of GM3 within the outer leaflet. In simulations of protein interactions within a plasma membrane model, GM3, PIP2, and cholesterol all formed favorable interactions with the model α-helical protein. A larger scale simulation of a model plasma membrane containing 6000 lipid molecules revealed correlations between curvature of the bilayer surface and clustering of lipid molecules. In particular, the concave (when viewed from the extracellular side) regions of the bilayer surface were locally enriched in GM3. In summary, these simulations explore the nanoscale dynamics of model bilayers which mimic the in vivo lipid composition of mammalian plasma membranes, revealing emergent nanoscale membrane organization which may be coupled both to fluctuations in local membrane geometry and to interactions with proteins.
A survey of dusty plasma physics
NASA Astrophysics Data System (ADS)
Shukla, P. K.
2001-05-01
Two omnipresent ingredients of the Universe are plasmas and charged dust. The interplay between these two has opened up a new and fascinating research area, that of dusty plasmas, which are ubiquitous in different parts of our solar system, namely planetary rings, circumsolar dust rings, the interplanetary medium, cometary comae and tails, as well as in interstellar molecular clouds, etc. Dusty plasmas also occur in noctilucent clouds in the arctic troposphere and mesosphere, cloud-to-ground lightening in thunderstorms containing smoke-contaminated air over the United States, in the flame of a humble candle, as well as in microelectronic processing devices, in low-temperature laboratory discharges, and in tokamaks. Dusty plasma physics has appeared as one of the most rapidly growing fields of science, besides the field of the Bose-Einstein condensate, as demonstrated by the number of published papers in scientific journals and conference proceedings. In fact, it is a truly interdisciplinary science because it has many potential applications in astrophysics (viz. in understanding the formation of dust clusters and structures, instabilities of interstellar molecular clouds and star formation, decoupling of magnetic fields from plasmas, etc.) as well as in the planetary magnetospheres of our solar system [viz. Saturn (particularly, the physics of spokes and braids in the B and F rings), Jupiter, Uranus, Neptune, and Mars] and in strongly coupled laboratory dusty plasmas. Since a dusty plasma system involves the charging and dynamics of massive charged dust grains, it can be characterized as a complex plasma system providing new physics insights. In this paper, the basic physics of dusty plasmas as well as numerous collective processes are discussed. The focus will be on theoretical and experimental observations of charging processes, waves and instabilities, associated forces, the dynamics of rotating and elongated dust grains, and some nonlinear structures (such as dust ion-acoustic shocks, Mach cones, dust voids, vortices, etc). The latter are typical in astrophysical settings and in several laboratory experiments. It appears that collective processes in a complex dusty plasma would have excellent future perspectives in the twenty-first century, because they have not only potential applications in interplanetary space environments, or in understanding the physics of our universe, but also in advancing our scientific knowledge in multidisciplinary areas of science.
ICPP: Introduction to Dusty Plasma Physics
NASA Astrophysics Data System (ADS)
Kant Shukla, Padma
2000-10-01
Two omnipresent ingredients of the Universe are plasmas and charged dust. The interplay between these two has opened up a new and fascinating research area, that of dusty plasmas, which are ubiquitous in in different parts of our solar system, namely planetary rings, circumsolar dust rings, interplanetary medium, cometary comae and tails, interstellar molecular clouds, etc. Dusty plasmas also occur in noctilucent clouds in the arctic troposphere and mesosphere, cloud-to-ground lightening in thunderstorms containing smoke-contaminated air over the US, in the flame of humble candle, as well as in microelectronics and in low-temperature laboratory discharges. In the latter, charged dust grains are strongly correlated. Dusty plasma physics has appeared as one of the most rapidly growing field of science, besides the field of the Bose-Einstein condensate, as demonstrated by the number of published papers in scientific journals and conference proceedings. In fact, it is a truly interdisciplinary science because it has many potential applications in astrophysics (viz. in understanding the formation of dust clusters and structures, instabilities of interstellar molecular clouds and star formation, decoupling of magnetic fields from plasmas, etc.) as well as in the planetary magnetospheres of our solar system [viz. the Saturn (particularly, the physics of spokes and braids in B and F rings), Jupiter, Uranus, Neptune, and Mars] and in strongly coupled laboratory dusty plasmas. Since dusty plasma system involves the charging and the dynamics of extremely massive charged dust particulates, it can be characterized as a complex plasma system with new physics insights. In this talk, I shall describe the basic physics of dusty plasmas and present the status of numerous collective processes that are relevant to space research and laboratory experiments. The focus will be on theoretical and experimental observations of novel waves and instabilities, various forces, and some nonlinear structures (such as dust ion-acoustic shocks, Mach cones, dust voids, vortices, etc). The latter are typical in astrophysical settings and in microgravity experiments. It appears that collective processes in a complex dusty plasma would have excellent future perspectives in the twenty first century, because they have not only potential applications in interplanetary space environments, or in understanding the physics of our universe, but also in advancing our scientific knowledge in multi-disciplinary areas of science.
Predator-prey dynamics stabilised by nonlinearity explain oscillations in dust-forming plasmas
Ross, A. E.; McKenzie, D. R.
2016-01-01
Dust-forming plasmas are ionised gases that generate particles from a precursor. In nature, dust-forming plasmas are found in flames, the interstellar medium and comet tails. In the laboratory, they are valuable in generating nanoparticles for medicine and electronics. Dust-forming plasmas exhibit a bizarre, even puzzling behaviour in which they oscillate with timescales of seconds to minutes. Here we show how the problem of understanding these oscillations may be cast as a predator-prey problem, with electrons as prey and particles as predators. The addition of a nonlinear loss term to the classic Lotka-Volterra equations used for describing the predator-prey problem in ecology not only stabilises the oscillations in the solutions for the populations of electrons and particles in the plasma but also explains the behaviour in more detail. The model explains the relative phase difference of the two populations, the way in which the frequency of the oscillations varies with the concentration of the precursor gas, and the oscillations of the light emission, determined by the populations of both species. Our results demonstrate the value of adopting an approach to a complex physical science problem that has been found successful in ecology, where complexity is always present. PMID:27046237
Fractal and multifractal models for extreme bursts in space plasmas.
NASA Astrophysics Data System (ADS)
Watkins, Nicholas; Chapman, Sandra; Credgington, Dan; Rosenberg, Sam; Sanchez, Raul
2010-05-01
Space plasmas may be said to show at least two types of "universality". One type arises from the fact that plasma physics underpins all astrophysical systems, while another arises from the generic properties of coupled nonlinear physical systems, a branch of the emerging science of complexity. Much work in complexity science is contributing to the physical understanding of the ways by which complex interactions in such systems cause driven or random perturbations to be nonlinearly amplified in amplitude and/or spread out over a wide range of frequencies. These mechanisms lead to non-Gaussian fluctuations and long-ranged temporal memory (referred to by Mandelbrot as the "Noah" and "Joseph" effects, respectively). This poster discusses a standard toy model (linear fractional stable motion, LFSM) which combines the Noah and Joseph effects in a controllable way. I will describe how LFSM is being used to explore the interplay of the above two effects in the distribution of bursts above thresholds, with applications to extreme events in space time series. I will describe ongoing work to improve the accuracy of maximum likelihood-based estimation of burst size and waiting time distributions for LFSM first reported in Watkins et al [Space Science Review, 2005; PRE, 2009]. The relevance of turbulent cascades to space plasmas necessitates comparison between this model and multifractal models, and early results will be described [Watkins et al, PRL comment, 2009].
Effective Parameters in Axial Injection Suspension Plasma Spray Process of Alumina-Zirconia Ceramics
NASA Astrophysics Data System (ADS)
Tarasi, F.; Medraj, M.; Dolatabadi, A.; Oberste-Berghaus, J.; Moreau, C.
2008-12-01
Suspension plasma spray (SPS) is a novel process for producing nano-structured coatings with metastable phases using significantly smaller particles as compared to conventional thermal spraying. Considering the complexity of the system there is an extensive need to better understand the relationship between plasma spray conditions and resulting coating microstructure and defects. In this study, an alumina/8 wt.% yttria-stabilized zirconia was deposited by axial injection SPS process. The effects of principal deposition parameters on the microstructural features are evaluated using the Taguchi design of experiment. The microstructural features include microcracks, porosities, and deposition rate. To better understand the role of the spray parameters, in-flight particle characteristics, i.e., temperature and velocity were also measured. The role of the porosity in this multicomponent structure is studied as well. The results indicate that thermal diffusivity of the coatings, an important property for potential thermal barrier applications, is barely affected by the changes in porosity content.
NASA Astrophysics Data System (ADS)
Neyts, Erik C.; Yusupov, Maksudbek; Verlackt, Christof C.; Bogaerts, Annemie
2014-07-01
Plasma medicine is a rapidly evolving multidisciplinary field at the intersection of chemistry, biochemistry, physics, biology, medicine and bioengineering. It holds great potential in medical, health care, dentistry, surgical, food treatment and other applications. This multidisciplinary nature and variety of possible applications come along with an inherent and intrinsic complexity. Advancing plasma medicine to the stage that it becomes an everyday tool in its respective fields requires a fundamental understanding of the basic processes, which is lacking so far. However, some major advances have already been made through detailed experiments over the last 15 years. Complementary, computer simulations may provide insight that is difficult—if not impossible—to obtain through experiments. In this review, we aim to provide an overview of the various simulations that have been carried out in the context of plasma medicine so far, or that are relevant for plasma medicine. We focus our attention mostly on atomistic simulations dealing with plasma-biomolecule interactions. We also provide a perspective and tentative list of opportunities for future modelling studies that are likely to further advance the field.
On the rogue waves propagation in non-Maxwellian complex space plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Tantawy, S. A., E-mail: samireltantawy@yahoo.com; El-Awady, E. I., E-mail: eielawady@hotmail.com; Tribeche, M., E-mail: mouloudtribeche@yahoo.fr, E-mail: mtribeche@usthb.dz
2015-11-15
The implications of the non-Maxwellian electron distributions (nonthermal/or suprathermal/or nonextensive distributions) are examined on the dust-ion acoustic (DIA) rogue/freak waves in a dusty warm plasma. Using a reductive perturbation technique, the basic set of fluid equations is reduced to a nonlinear Schrödinger equation. The latter is used to study the nonlinear evolution of modulationally unstable DIA wavepackets and to describe the rogue waves (RWs) propagation. Rogue waves are large-amplitude short-lived wave groups, routinely observed in space plasmas. The possible region for the rogue waves to exist is defined precisely for typical parameters of space plasmas. It is shown that themore » RWs strengthen for decreasing plasma nonthermality and increasing superthermality. For nonextensive electrons, the RWs amplitude exhibits a bit more complex behavior, depending on the entropic index q. Moreover, our numerical results reveal that the RWs exist with all values of the ion-to-electron temperature ratio σ for nonthermal and superthermal distributions and there is no limitation for the freak waves to propagate in both two distributions in the present plasma system. But, for nonextensive electron distribution, the bright- and dark-type waves can propagate in this case, which means that there is a limitation for the existence of freak waves. Our systematic investigation should be useful in understanding the properties of DIA solitary waves that may occur in non-Maxwellian space plasmas.« less
Addressing the challenges of plasma-surface interactions in NSTX-U*
Kaita, Robert; Abrams, Tyler; Jaworski, Michael; ...
2015-04-01
The importance of conditioning plasma-facing components (PFCs) has long been recognized as a critical element in obtaining high-performance plasmas in magnetic confinement devices. Lithium coatings, for example, have been used for decades for conditioning PFCs. Since the initial studies on the Tokamak Fusion Test Reactor, experiments on devices with different aspect ratios and magnetic geometries like the National Spherical Torus Experiment (NSTX) continue to show the relationship between lithium PFCs and good confinement and stability. While such results are promising, their empirical nature do not reflect the detailed relationship between PFCs and the dynamic conditions that occur in the tokamakmore » environment. A first step developing an understanding such complexity will be taken in the upgrade to NSTX (NSTX-U) that is nearing completion. New measurement capabilities include the Materials Analysis and Particle Probe (MAPP) for in situ surface analysis of samples exposed to tokamak plasmas. The OEDGE suite of codes, for example, will provide a new way to model the underlying mechanisms for such material migration in NSTX-U. This will lead to a better understanding of how plasma-facing surfaces evolve during a shot, and how the composition of the plasma facing surface influences the discharge performance we observe. This paper will provide an overview of these capabilities, and highlight their importance for NSTX-U plans to transition from carbon to high-Z PFCs.« less
In situ AFM imaging of apolipoprotein A-I directly derived from plasma HDL.
Gan, Chaoye; Wang, Zhexuan; Chen, Yong
2017-04-01
The major apolipoproteins of plasma lipoproteins play vital roles in the structural integrity and physiological functions of lipoproteins. More than ten structural models of apolipoprotein A-I (apoA-I), the major apolipoprotein of high-density lipoprotein (HDL), have been developed successively. In these models, apoA-I was supposed to organize in a ring-shaped form. To date, however, there is no direct evidence under physiological condition. Here, atomic force microscopy (AFM) was used to in situ visualize the organization of apoA-I, which was exposed via depletion of the lipid component of plasma HDL pre-immobilized on functionalized mica sheets. For the first time, the ring-shaped coarse structure and three detailed structures (crescent-shaped, gapped "O"-shaped, and parentheses-shaped structures, respectively) of apoA-I in plasma HDL, which have the ability of binding scavenger receptors, were directly observed and quantitatively measured by AFM. The three detailed structures probably represent the different extents to which the lipid component of HDL was depleted. Data on lipid depletion of HDL may provide clues to understand lipid insertion of HDL. These data provide important information for the understanding of the structure/maturation of plasma HDL. Moreover, they suggest a powerful method for directly visualizing the major apolipoproteins of plasma lipoproteins or the protein component of lipoprotein-like lipid-protein complexes. Copyright © 2017 Elsevier B.V. All rights reserved.
Theory of magnetic reconnection in solar and astrophysical plasmas.
Pontin, David I
2012-07-13
Magnetic reconnection is a fundamental process in a plasma that facilitates the release of energy stored in the magnetic field by permitting a change in the magnetic topology. In this paper, we present a review of the current state of understanding of magnetic reconnection. We discuss theoretical results regarding the formation of current sheets in complex three-dimensional magnetic fields and describe the fundamental differences between reconnection in two and three dimensions. We go on to outline recent developments in modelling of reconnection with kinetic theory, as well as in the magnetohydrodynamic framework where a number of new three-dimensional reconnection regimes have been identified. We discuss evidence from observations and simulations of Solar System plasmas that support this theory and summarize some prominent locations in which this new reconnection theory is relevant in astrophysical plasmas.
Dynamics of the formation and loss of boron atoms in a H2/B2H6 microwave plasma
NASA Astrophysics Data System (ADS)
Duluard, C. Y.; Aubert, X.; Sadeghi, N.; Gicquel, A.
2016-09-01
For further improvements in doped-diamond deposition technology, an understanding of the complex chemistry in H2/CH4/B2H6 plasmas is of general importance. In this context, a H2/B2H6 plasma ignited by microwave power in a near resonant cavity at high pressure (100-200 mbar) is studied to measure the B-atom density in the ground state. The discharge is ignited in the gas mixture (0-135 ppm B2H6 in H2) by a 2.45 GHz microwave generator, leading to the formation of a hemispheric plasma core, surrounded by a faint discharge halo filling the remaining reactor volume. Measurements with both laser induced fluorescence and resonant absoption with a boron hollow cathode lamp indicate that the B-atom density is higher in the halo than in the plasma core. When the absorption line-of-sight is positioned in the halo, the absorption is so strong that the upper detection limit is reached. To understand the mechanisms of creation and loss of boron atoms, time-resolved absorption measurements have been carried out in a pulsed plasma regime (10 Hz, duty cycle 50%). The study focuses on the influence of the total pressure, the partial pressure of B2H6, as well as the source power, on the growth and decay rates of boron atoms when the plasma is turned off.
Perspectives on High-Energy-Density Physics
NASA Astrophysics Data System (ADS)
Drake, R. Paul
2008-11-01
Much of 21st century plasma physics will involve work to produce, understand, control, and exploit very non-traditional plasmas. High-energy density (HED) plasmas are often examples, variously involving strong Coulomb interactions and few particles per Debeye sphere, dominant radiation effects, strongly relativistic effects, or strongly quantum-mechanical behavior. Indeed, these and other modern plasma systems often fall outside the early standard theoretical definitions of ``plasma''. This presentation will focus on two types of HED plasmas that exhibit non-traditional behavior. Our first example will be the plasmas produced by extremely strong shock waves. Shock waves are present across the entire realm of plasma densities, often in space or astrophysical contexts. HED shock waves (at pressures > 1 Mbar) enable studies in many areas, from equations of state to hydrodynamics to radiation hydrodynamics. We will specifically consider strongly radiative shocks, in which the radiative energy fluxes are comparable to the mechanical energy fluxes that drive the shocks. Modern HED facilities can produce such shocks, which are also present in dense, energetic, astrophysical systems such as supernovae. These shocks are also excellent targets for advanced simulations due to their range of spatial scales and complex radiation transport. Our second example will be relativistic plasmas. In general, these vary from plasmas containing relativistic particle beams, produced for some decades in the laboratory, to the relativistic thermal plasmas present for example in pulsar winds. Laboratory HED relativistic plasmas to date have been those produced by laser beams of irradiance ˜ 10^18 to 10^22 W/cm^2 or by accelerator-produced HED electron beams. These have applications ranging from generation of intense x-rays to production of proton beams for radiation therapy to acceleration of electrons. Here we will focus on electron acceleration, a spectacular recent success and a rare example in which simplicity emerges from the complexity present in the plasma state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahlburg, Jill; Corones, James; Batchelor, Donald
Fusion is potentially an inexhaustible energy source whose exploitation requires a basic understanding of high-temperature plasmas. The development of a science-based predictive capability for fusion-relevant plasmas is a challenge central to fusion energy science, in which numerical modeling has played a vital role for more than four decades. A combination of the very wide range in temporal and spatial scales, extreme anisotropy, the importance of geometric detail, and the requirement of causality which makes it impossible to parallelize over time, makes this problem one of the most challenging in computational physics. Sophisticated computational models are under development for many individualmore » features of magnetically confined plasmas and increases in the scope and reliability of feasible simulations have been enabled by increased scientific understanding and improvements in computer technology. However, full predictive modeling of fusion plasmas will require qualitative improvements and innovations to enable cross coupling of a wider variety of physical processes and to allow solution over a larger range of space and time scales. The exponential growth of computer speed, coupled with the high cost of large-scale experimental facilities, makes an integrated fusion simulation initiative a timely and cost-effective opportunity. Worldwide progress in laboratory fusion experiments provides the basis for a recent FESAC recommendation to proceed with a burning plasma experiment (see FESAC Review of Burning Plasma Physics Report, September 2001). Such an experiment, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world’s energy security. An integrated simulation capability would dramatically enhance the utilization of such a facility and lead to optimization of toroidal fusion plasmas in general. This science-based predictive capability, which was cited in the FESAC integrated planning document (IPPA, 2000), represents a significant opportunity for the DOE Office of Science to further the understanding of fusion plasmas to a level unparalleled worldwide.« less
Lymberopoulos, Dimitris P.; Economou, Demetre J.
1995-01-01
Over the past few years multidimensional self-consistent plasma simulations including complex chemistry have been developed which are promising tools for furthering our understanding of reactive gas plasmas and for reactor design and optimization. These simulations must be benchmarked against experimental data obtained in well-characterized systems such as the Gaseous Electronics Conference (GEC) reference cell. Two-dimensional simulations relevant to the GEC Cell are reviewed in this paper with emphasis on fluid simulations. Important features observed experimentally, such as off-axis maxima in the charge density and hot spots of metastable species density near the electrode edges in capacitively-coupled GEC cells, have been captured by these simulations. PMID:29151756
Mencarelli, Chiara; Bode, Gerard H.; Losen, Mario; Kulharia, Mahesh; Molenaar, Peter C.; Veerhuis, Robert; Steinbusch, Harry W. M.; De Baets, Marc H.; Nicolaes, Gerry A. F.; Martinez-Martinez, Pilar
2012-01-01
Serum amyloid P component (SAP) is a non-fibrillar glycoprotein belonging to the pentraxin family of the innate immune system. SAP is present in plasma, basement membranes, and amyloid deposits. This study demonstrates, for the first time, that the Goodpasture antigen-binding protein (GPBP) binds to human SAP. GPBP is a nonconventional Ser/Thr kinase for basement membrane type IV collagen. Also GPBP is found in plasma and in the extracellular matrix. In the present study, we demonstrate that GPBP specifically binds SAP in its physiological conformations, pentamers and decamers. The START domain in GPBP is important for this interaction. SAP and GPBP form complexes in blood and partly colocalize in amyloid plaques from Alzheimer disease patients. These data suggest the existence of complexes of SAP and GPBP under physiological and pathological conditions. These complexes are important for understanding basement membrane, blood physiology, and plaque formation in Alzheimer disease. PMID:22396542
Electron kinetics at the plasma interface
NASA Astrophysics Data System (ADS)
Bronold, Franz Xaver; Fehske, Holger; Pamperin, Mathias; Thiessen, Elena
2018-05-01
The most fundamental response of an ionized gas to a macroscopic object is the formation of the plasma sheath. It is an electron depleted space charge region, adjacent to the object, which screens the object's negative charge arising from the accumulation of electrons from the plasma. The plasma sheath is thus the positively charged part of an electric double layer whose negatively charged part is inside the wall. In the course of the Transregional Collaborative Research Center SFB/TRR24 we investigated, from a microscopic point of view, the elementary charge transfer processes responsible for the electric double layer at a floating plasma-wall interface and made first steps towards a description of the negative part of the layer inside the wall. Below we review our work in a colloquial manner, describe possible extensions, and identify key issues which need to be resolved to make further progress in the understanding of the electron kinetics across plasma-wall interfaces. Contribution to the Topical Issue "Fundamentals of Complex Plasmas", edited by Jürgen Meichsner, Michael Bonitz, Holger Fehske, Alexander Piel.
The presence of silver nanoparticles (AgNPs) in aquatic environments could potentially cause adverse impacts on ecosystems and human health. However, current understanding of the environmental fate and transport of AgNPs is still limited because their properties in complex enviro...
Structuring in complex plasma for nonlinearly screened dust particles
NASA Astrophysics Data System (ADS)
Tsytovich, Vadim; Gusein-zade, Namik
2014-03-01
An explanation is proposed for the recently discovered effect of spontaneous dusty plasma structuring (and the appearance of compact dust structures) under conditions of nonlinear dust screening. Physical processes are considered that make homogenous dusty plasma universally unstable and lead to the appearance of structures. It is shown for the first time that the efficiency of structuring increases substantially in the presence of plasma flows caused by the charging of nonlinearly screened dust grains. General results are obtained for arbitrary nonlinear screening, and special attention is paid to the model of nonlinear screening often used since 1964. The growth rate of structuring instability is derived. It is shown that, in the case of nonlinear screening, the structuring has a threshold determined by the friction of grains against the neutral gas. The theoretically obtained threshold agrees with recent experimental observations. The dispersion relation for dusty plasma structuring is shown to be similar to the dispersion relation for gravitational instability with an effective gravitational constant. The effective dust attraction caused by this instability is shown to be collective, and the dependence of the effective gravitational constant on the dust-to-ion density ratio is found explicitly for the first time. It is demonstrated that the proposed method of calculation of dust attraction by using the effective gravitational constant is the most efficient and straightforward. Understanding of the role of nonlinear screening gives deeper physical grounds for the theoretical interpretation of the observed phenomenon of dust crystal formation in complex plasmas.
Summer Research Experiences with a Laboratory Tokamak
NASA Astrophysics Data System (ADS)
Farley, N.; Mauel, M.; Navratil, G.; Cates, C.; Maurer, D.; Mukherjee, S.; Shilov, M.; Taylor, E.
1998-11-01
Columbia University's Summer Research Program for Secondary School Science Teachers seeks to improve middle and high school student understanding of science. The Program enhances science teachers' understanding of the practice of science by having them participate for two consecutive summers as members of laboratory research teams led by Columbia University faculty. In this poster, we report the research and educational activities of two summer internships with the HBT-EP research tokamak. Research activities have included (1) computer data acquisition and the representation of complex plasma wave phenomena as audible sounds, and (2) the design and construction of pulsed microwave systems to experience the design and testing of special-purpose equipment in order to achieve a specific technical goal. We also present an overview of the positive impact this type of plasma research involvement has had on high school science teaching.
Servidio, S; Chasapis, A; Matthaeus, W H; Perrone, D; Valentini, F; Parashar, T N; Veltri, P; Gershman, D; Russell, C T; Giles, B; Fuselier, S A; Phan, T D; Burch, J
2017-11-17
Plasma turbulence is investigated using unprecedented high-resolution ion velocity distribution measurements by the Magnetospheric Multiscale mission (MMS) in the Earth's magnetosheath. This novel observation of a highly structured particle distribution suggests a cascadelike process in velocity space. Complex velocity space structure is investigated using a three-dimensional Hermite transform, revealing, for the first time in observational data, a power-law distribution of moments. In analogy to hydrodynamics, a Kolmogorov approach leads directly to a range of predictions for this phase-space transport. The scaling theory is found to be in agreement with observations. The combined use of state-of-the-art MMS data sets, novel implementation of a Hermite transform method, and scaling theory of the velocity cascade opens new pathways to the understanding of plasma turbulence and the crucial velocity space features that lead to dissipation in plasmas.
Heinze, Michael; Herre, Madeleine; Massalski, Carolin; Hermann, Isabella; Conrad, Udo; Roos, Werner
2013-03-15
The plasma membrane of the California poppy is known to harbour a PLA2 (phospholipase A2) that is associated with the Gα protein which facilitates its activation by a yeast glycoprotein, thereby eliciting the biosynthesis of phytoalexins. To understand the functional architecture of the protein complex, we titrated purified plasma membranes with the Gα protein (native or recombinant) and found that critical amounts of this subunit keep PLA2 in a low-activity state from which it is released either by elicitor plus GTP or by raising the Gα concentration, which probably causes oligomerization of Gα, as supported by FRET (fluorescence resonance energy transfer)-orientated fluorescence imaging and a semiquantitative split-ubiquitin assay. All effects of Gα were blocked by specific antibodies. A low-Gα mutant showed elevated PLA2 activity and lacked the GTP-dependent stimulation by elicitor, but regained this capability after pre-incubation with Gα. The inhibition by Gα and the GTP-dependent stimulation of PLA2 were diminished by inhibitors of peptidylprolyl cis-trans isomerases. A cyclophilin was identified by sequence in the plasma membrane and in immunoprecipitates with anti-Gα antibodies. We conclude that soluble and target-associated Gα interact at the plasma membrane to build complexes of varying architecture and signal amplification. Protein-folding activity is probably required to convey conformational transitions from Gα to its target PLA2.
A Renormalization-Group Interpretation of the Connection between Criticality and Multifractals
NASA Astrophysics Data System (ADS)
Chang, Tom
2014-05-01
Turbulent fluctuations in space plasmas beget phenomena of dynamic complexity. It is known that dynamic renormalization group (DRG) may be employed to understand the concept of forced and/or self-organized criticality (FSOC), which seems to describe certain scaling features of space plasma turbulence. But, it may be argued that dynamic complexity is not just a phenomenon of criticality. It is therefore of interest to inquire if DRG may be employed to study complexity phenomena that are distinctly more complicated than dynamic criticality. Power law scaling generally comes about when the DRG trajectory is attracted to the vicinity of a fixed point in the phase space of the relevant dynamic plasma parameters. What happens if the trajectory lies within a domain influenced by more than one single fixed point or more generally if the transformation underlying the DRG is fully nonlinear? The global invariants of the group under such situations (if they exist) are generally not power laws. Nevertheless, as we shall argue, it may still be possible to talk about local invariants that are power laws with the nonlinearity of transformation prescribing a specific phenomenon as crossovers. It is with such concept in mind that we may provide a connection between the properties of dynamic criticality and multifractals from the point of view of DRG (T. Chang, Chapter VII, "An Introduction to Space Plasma Complexity", Cambridge University Press, 2014). An example in terms of the concepts of finite-size scaling (FSS) and rank-ordered multifractal analysis (ROMA) of a toy model shall be provided. Research partially supported by the US National Science Foundation and the European Community's Seventh Framework Programme (FP7/ 2007-2013) under Grant agreement no. 313038/STORM.
Streamers and their applications
NASA Astrophysics Data System (ADS)
Pemen, A. J. M.
2011-10-01
In this invited lecture we give an overview of our 15 years of experience on streamer plasma research. Efforts are directed to integrating the competence areas of plasma physics, pulsed power technology and chemical processing. The current status is the development of a large scale pulsed corona system for gas treatment. Applications on biogas conditioning, VOC removal, odor abatement and control of traffic emissions have been demonstrated. Detailed research on electrical and chemical processes resulted in a boost of efficiencies. Energy transfer efficiency to the plasma was raised to above 90%. Simultaneous improvement of the plasma chemistry resulted in a highly efficient radical generation: O-radical production up to 50% of the theoretical maximum has been achieved. A major challenge in pulsed power driven streamers is to unravel, understand and ultimately control the complex interactions between the transient plasma, electrical circuits, and process. Even more a challenge is to yield electron energies that fit activation energies of the process. We will discuss our ideas on adjusting pulsed power waveforms and plasma reactor settings to obtain more controlled catalytic processing: the ``Chemical Transistor'' concept.
Dynamics of HIV-1 RNA Near the Plasma Membrane during Virus Assembly.
Sardo, Luca; Hatch, Steven C; Chen, Jianbo; Nikolaitchik, Olga; Burdick, Ryan C; Chen, De; Westlake, Christopher J; Lockett, Stephen; Pathak, Vinay K; Hu, Wei-Shau
2015-11-01
To increase our understanding of the events that lead to HIV-1 genome packaging, we examined the dynamics of viral RNA and Gag-RNA interactions near the plasma membrane by using total internal reflection fluorescence microscopy. We labeled HIV-1 RNA with a photoconvertible Eos protein via an RNA-binding protein that recognizes stem-loop sequences engineered into the viral genome. Near-UV light exposure causes an irreversible structural change in Eos and alters its emitted fluorescence from green to red. We studied the dynamics of HIV-1 RNA by photoconverting Eos near the plasma membrane, and we monitored the population of photoconverted red-Eos-labeled RNA signals over time. We found that in the absence of Gag, most of the HIV-1 RNAs stayed near the plasma membrane transiently, for a few minutes. The presence of Gag significantly increased the time that RNAs stayed near the plasma membrane: most of the RNAs were still detected after 30 min. We then quantified the proportion of HIV-1 RNAs near the plasma membrane that were packaged into assembling viral complexes. By tagging Gag with blue fluorescent protein, we observed that only a portion, ∼13 to 34%, of the HIV-1 RNAs that reached the membrane were recruited into assembling particles in an hour, and the frequency of HIV-1 RNA packaging varied with the Gag expression level. Our studies reveal the HIV-1 RNA dynamics on the plasma membrane and the efficiency of RNA recruitment and provide insights into the events leading to the generation of infectious HIV-1 virions. Nascent HIV-1 particles assemble on plasma membranes. During the assembly process, HIV-1 RNA genomes must be encapsidated into viral complexes to generate infectious particles. To gain insights into the RNA packaging and virus assembly mechanisms, we labeled and monitored the HIV-1 RNA signals near the plasma membrane. Our results showed that most of the HIV-1 RNAs stayed near the plasma membrane for only a few minutes in the absence of Gag, whereas most HIV-1 RNAs stayed at the plasma membrane for 15 to 60 min in the presence of Gag. Our results also demonstrated that only a small proportion of the HIV-1 RNAs, approximately 1/10 to 1/3 of the RNAs that reached the plasma membrane, was incorporated into viral protein complexes. These studies determined the dynamics of HIV-1 RNA on the plasma membrane and obtained temporal information on RNA-Gag interactions that lead to RNA encapsidation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Assembly and activation of neurotrophic factor receptor complexes.
Simi, Anastasia; Ibáñez, Carlos F
2010-04-01
Neurotrophic factors play important roles in the development and function of both neuronal and glial elements of the central and peripheral nervous systems. Their functional diversity is in part based on their ability to interact with alternative complexes of receptor molecules. This review focuses on our current understanding of the mechanisms that govern the assembly and activation of neurotrophic factor receptor complexes. The realization that many, if not the majority, of these complexes exist in a preassembled form at the plasma membrane has forced the revision of classical ligand-mediated oligomerization models, and led to the discovery of novel mechanisms of receptor activation and generation of signaling diversity which are likely to be shared by many different classes of receptors.
Theory of interstellar medium diagnostics
NASA Technical Reports Server (NTRS)
Fahr, H. J.
1983-01-01
The theoretical interpretation of observed interplanetary resonance luminescence patterns is used as one of the must promising methods to determine the state of the local interstellar medium (LISM). However, these methods lead to discrepant results that would be hard to understand in the framework of any physical LISM scenario. Assuming that the observational data are reliable, two possibilities which could help to resolve these discrepancies are discussed: (1) the current modeling of resonance luminescence patterns is unsatisfactory and has to be improved, and (2) the extrapolated interstellar parameters are not indicative of the unperturbed LISM state, but rather designate an intermediate state attained in the outer regions of the solar system. It is shown that a quantitative treatment of the neutral gas-plasma interaction effects in the interface between the heliospheric and the interstellar plasmas is of major importance for the correct understanding of the whole complex.
NASA Technical Reports Server (NTRS)
Zheng, Yihua
2010-01-01
The Earth's inner magnetosphere, a vast volume in space spanning from 1.5 Re (Earth radii) to 10 Re, is a host to a variety of plasma populations (with energy from 1 eV to few MeV) and physical processes where most of which involve plasma and field coupling. As a gigantic particle accelerator, the inner magnetosphere includes three overlapping regions: the plasmasphere, the ring current, and the Van Allen radiation belt. The complex structures and dynamics of these regions are externally driven by solar activities and internally modulated by intricate interactions and coupling. As a major constituent of Space Weather, the inner magnetosphere is both scientifically intriguing and practically important to our society. In this presentation, I will discuss our recent results from the Comprehensive Ring Current Model, in the context of our current understanding of the inner magnetosphere in general and challenges ahead in making further progresses.
NASA Technical Reports Server (NTRS)
Zheng, Yihua
2011-01-01
The Earth's inner magnetosphere, a vast volume in space spanning from 1.5 Re (Earth radii) to 10 Re, is a host to a variety of plasma populations (with energy from 1 eV to few MeV) and physical processes where most of which involve plasma and field coupling. As a gigantic particle accelerator, the inner magnetosphere includes three overlapping regions: the plasmasphere, the ring current, and the Van Allen radiation belt. The complex structures and dynamics of these regions are externally driven by solar activities and internally modulated by intricate interactions and coupling. As a major constituent of Space Weather, the inner magnetosphere is both scientifically intriguing and practically important to our society. In this presentation, I will discuss our recent results from the Comprehensive Ring Current Model, in the context of our current understanding of the inner magnetosphere in general and challenges ahead in making further progresses.
Fatty acid profiles from the plasma membrane and detergent resistant membranes of two plant species.
Carmona-Salazar, Laura; El Hafidi, Mohammed; Gutiérrez-Nájera, Nora; Noyola-Martínez, Liliana; González-Solís, Ariadna; Gavilanes-Ruíz, Marina
2015-01-01
It is essential to establish the composition of the plant plasma membrane in order to understand its organization and behavior under continually changing environments. Knowledge of the lipid phase, in particular the fatty acid (FA) complex repertoire, is important since FAs determine many of the physical-chemical membrane properties. FAs are constituents of the membrane glycerolipid and sphingolipid backbones and can also be linked to some sterols. In addition, FAs are components of complex lipids that can constitute membrane micro-domains, and the use of detergent-resistant membranes is a common approach to study their composition. The diversity and cellular allocation of the membrane lipids containing FAs are very diverse and the approaches to analyze them provide only general information. In this work, a detailed FA analysis was performed using highly purified plasma membranes from bean leaves and germinating maize embryos and their respective detergent-resistant membrane preparations. The analyses showed the presence of a significant amount of very long chain FAs (containing 28C, 30C and 32C), in both plasma membrane preparations from bean and maize, that have not been previously reported. Herein is demonstrated that a significant enrichment of very long chain saturated FAs and saturated FAs can occur in detergent-resistant membrane preparations, as compared to the plasma membranes from both plant species. Considering that a thorough analysis of FAs is rarely performed in purified plasma membranes and detergent-resistant membranes, this work provides qualitative and quantitative evidence on the contributions of the length and saturation of FAs to the organization of the plant plasma membrane and detergent-resistant membranes. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Maheux, S.; Frache, G.; Thomann, J. S.; Clément, F.; Penny, C.; Belmonte, T.; Duday, D.
2016-09-01
Cold atmospheric plasma is thought to be a promising tool for numerous biomedical applications due to its ability to generate a large diversity of reactive species in a controlled way. In some cases, it can also generate pulsed electric fields at the zone of treatment, which can induce processes such as electroporation in cell membranes. However, the interaction of these reactive species and the pulse electric field with cells in a physiological medium is very complex, and we still need a better understanding in order to be useful for future applications. A way to reach this goal is to work with model cell membranes such as liposomes, with the simplest physiological liquid and in a controlled atmosphere in order to limit the number of parallel reactions and processes. In this paper, where this approach has been chosen, 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) small unilamellar vesicles (SUV) have been synthesized in a phosphate buffered aqueous solution, and this solution has been treated by a nanosecond pulsed plasma jet under a pure nitrogen atmosphere. It is only the composition of the plasma gas that has been changed in order to generate different cocktails of reactive species. After the quantification of the main plasma reactive species in the phosphate buffered saline (PBS) solution, structural, surface charge state, and chemical modifications generated on the plasma treated liposomes, due to the interaction with the plasma reactive species, have been carefully characterized. These results allow us to further understand the effect of plasma reactive species on model cell membranes in physiological liquids. The permeation through the liposomal membrane and the reaction of plasma reactive species with molecules encapsulated inside the liposomes have also been evaluated. New processes of degradation are finally presented and discussed, which come from the specific conditions of plasma treatment under the pure nitrogen atmosphere.
NASA Astrophysics Data System (ADS)
Srinivasan, Vasudevan
Air plasma spray is inherently complex due to the deviation from equilibrium conditions, three dimensional nature, multitude of interrelated (controllable) parameters and (uncontrollable) variables involved, and stochastic variability at different stages. The resultant coatings are complex due to the layered high defect density microstructure. Despite the widespread use and commercial success for decades in earthmoving, automotive, aerospace and power generation industries, plasma spray has not been completely understood and prime reliance for critical applications such as thermal barrier coatings on gas turbines are yet to be accomplished. This dissertation is aimed at understanding the in-flight particle state of the plasma spray process towards designing coatings and achieving coating reliability with the aid of noncontact in-flight particle and spray stream sensors. Key issues such as the phenomena of optimum particle injection and the definition of spray stream using particle state are investigated. Few strategies to modify the microstructure and properties of Yttria Stabilized Zirconia coatings are examined systematically using the framework of process maps. An approach to design process window based on design relevant coating properties is presented. Options to control the process for enhanced reproducibility and reliability are examined and the resultant variability is evaluated systematically at the different stages in the process. The 3D variability due to the difference in plasma characteristics has been critically examined by investigating splats collected from the entire spray footprint.
Magnetic field effects and waves in complex plasmas
NASA Astrophysics Data System (ADS)
Kählert, Hanno; Melzer, André; Puttscher, Marian; Ott, Torben; Bonitz, Michael
2018-05-01
Magnetic fields can modify the physical properties of a complex plasma in various different ways. Weak magnetic fields in the mT range affect only the electrons while strong fields in the Tesla regime also magnetize the ions. In a rotating dusty plasma, the Coriolis force substitutes the Lorentz force and can be used to create an effective magnetization for the strongly coupled dust particles while leaving electrons and ions unaffected. Here, we present a summary of our recent experimental and theoretical work on magnetized complex plasmas. We discuss the dynamics of dust particles in magnetized discharges, the wave spectra of strongly coupled plasmas, and the excitations in confined plasmas. Contribution to the Topical Issue "Fundamentals of Complex Plasmas", edited by Jürgen Meichsner, Michael Bonitz, Holger Fehske, Alexander Piel.
Inertial Confinement Fusion quarterly report, January-March 1998, volume 8, number 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruer, W
1998-03-31
The coupling of laser light with plasmas is one of the key physics issues for the use of high-power lasers for inertial fusion, high-energy-density physics, and scientific stockpile stewardship. The coupling physics is extremely rich and challenging, particularly in the large plasmas to be accessed on the National Ignition Facility (NIF). The coupling mechanisms span the gamut from classical inverse bremsstrahlung absorption to a variety of nonlinear optical processes. These include stimulated Raman scattering (SRS) from electron plasma waves, stimulated Brillouin scattering (SBS) from ion sound waves, resonant decay into electron plasma and ion sound waves, and laser beam filamentation.more » These processes depend on laser intensity and produce effects such as changes in the efficiency and location of the energy deposition or generation of a component of very energetic electrons, which can preheat capsules. Coupling physics issues have an extremely high leverage. The coupling models are clearly very important ingredients for detailed calculations of laser-irradiated target behavior. Improved understanding and models enable a more efficient use of laser facilities, which becomes even more important as these facilities become larger and more expensive. Advances in the understanding also allow a more timely and cost-effective identification of new applications of high-power lasers, such as for generation of high-temperature hohlraums and compact x-ray sources, or for discovery of advanced fusion schemes. Finally, the interaction of intense electromagnetic waves with ionized media is a fundamental topic of interest to numerous areas of applied science and is an excellent test bed for advancing plasma science and computational modeling of complex phenomena. This issue of the ICF Quarterly Report is dedicated to laser--plasma interactions. The eight articles present a cross section of the broad progress in understanding the key interaction issues, such as laser beam bending, spraying, and scattering, as well as scaling the Nova results to NIF.« less
Structure Formation in Complex Plasma - Quantum Effects in Cryogenic Complex Plasmas
2014-09-26
pipe at the flange attached to the inner Dewar bottle. The temperature of the gas in the glass tube is controlled by the cryogenic liquid , liquid ...dust particles. The supersonic flow was possible to make in a complex plasma since dust acoustic wave is characterized by a sound speed of a few cm...through the illumination of laser light on dust particles. The supersonic flow was possible to make in a complex plasma since dust acoustic wave is
The genetic network controlling plasma cell differentiation.
Nutt, Stephen L; Taubenheim, Nadine; Hasbold, Jhagvaral; Corcoran, Lynn M; Hodgkin, Philip D
2011-10-01
Upon activation by antigen, mature B cells undergo immunoglobulin class switch recombination and differentiate into antibody-secreting plasma cells, the endpoint of the B cell developmental lineage. Careful quantitation of these processes, which are stochastic, independent and strongly linked to the division history of the cell, has revealed that populations of B cells behave in a highly predictable manner. Considerable progress has also been made in the last few years in understanding the gene regulatory network that controls the B cell to plasma cell transition. The mutually exclusive transcriptomes of B cells and plasma cells are maintained by the antagonistic influences of two groups of transcription factors, those that maintain the B cell program, including Pax5, Bach2 and Bcl6, and those that promote and facilitate plasma cell differentiation, notably Irf4, Blimp1 and Xbp1. In this review, we discuss progress in the definition of both the transcriptional and cellular events occurring during late B cell differentiation, as integrating these two approaches is crucial to defining a regulatory network that faithfully reflects the stochastic features and complexity of the humoral immune response. 2011 Elsevier Ltd. All rights reserved.
Plasma Parameters From Reentry Signal Attenuation
Statom, T. K.
2018-02-27
This study presents the application of a theoretically developed method that provides plasma parameter solution space information from measured RF attenuation that occurs during reentry. The purpose is to provide reentry plasma parameter information from the communication signal attenuation. The theoretical development centers around the attenuation and the complex index of refraction. The methodology uses an imaginary index of the refraction matching algorithm with a tolerance to find suitable solutions that satisfy the theory. The imaginary matching terms are then used to determine the real index of refraction resulting in the complex index of refraction. Then a filter is usedmore » to reject nonphysical solutions. Signal attenuation-based plasma parameter properties investigated include the complex index of refraction, plasma frequency, electron density, collision frequency, propagation constant, attenuation constant, phase constant, complex plasma conductivity, and electron mobility. RF plasma thickness attenuation is investigated and compared to the literature. Finally, similar plasma thickness for a specific signal attenuation can have different plasma properties.« less
Plasma Parameters From Reentry Signal Attenuation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Statom, T. K.
This study presents the application of a theoretically developed method that provides plasma parameter solution space information from measured RF attenuation that occurs during reentry. The purpose is to provide reentry plasma parameter information from the communication signal attenuation. The theoretical development centers around the attenuation and the complex index of refraction. The methodology uses an imaginary index of the refraction matching algorithm with a tolerance to find suitable solutions that satisfy the theory. The imaginary matching terms are then used to determine the real index of refraction resulting in the complex index of refraction. Then a filter is usedmore » to reject nonphysical solutions. Signal attenuation-based plasma parameter properties investigated include the complex index of refraction, plasma frequency, electron density, collision frequency, propagation constant, attenuation constant, phase constant, complex plasma conductivity, and electron mobility. RF plasma thickness attenuation is investigated and compared to the literature. Finally, similar plasma thickness for a specific signal attenuation can have different plasma properties.« less
The Plasma Instrument for Magnetic Sounding (PIMS) on The Europa Clipper Mission
NASA Astrophysics Data System (ADS)
Westlake, Joseph H.; McNutt, Ralph L.; Kasper, Justin C.; Case, Anthony W.; Grey, Matthew P.; Kim, Cindy K.; Battista, Corina C.; Rymer, Abigail; Paty, Carol S.; Jia, Xianzhe; Stevens, Michael L.; Khurana, Krishan; Kivelson, Margaret G.; Slavin, James A.; Korth, Haje H.; Smith, Howard T.; Krupp, Norbert; Roussos, Elias; Saur, Joachim
2016-10-01
The Europa Clipper mission is equipped with a sophisticated suite of 9 instruments to study Europa's interior and ocean, geology, chemistry, and habitability from a Jupiter orbiting spacecraft. The Plasma Instrument for Magnetic Sounding (PIMS) on Europa Clipper is a Faraday Cup based plasma instrument whose heritage dates back to the Voyager spacecraft. PIMS will measure the plasma that populates Jupiter's magnetosphere and Europa's ionosphere. The science goals of PIMS are to: 1) estimate the ocean salinity and thickness by determining Europa's magnetic induction response, corrected for plasma contributions; 2) assess mechanisms responsible for weathering and releasing material from Europa's surface into the atmosphere and ionosphere; and 3) understand how Europa influences its local space environment and Jupiter's magnetosphere and vice versa.Europa is embedded in a complex Jovian magnetospheric plasma, which rotates with the tilted planetary field and interacts dynamically with Europa's ionosphere affecting the magnetic induction signal. Plasma from Io's temporally varying torus diffuses outward and mixes with the charged particles in Europa's own torus producing highly variable plasma conditions at Europa. PIMS works in conjunction with the Interior Characterization of Europa using Magnetometry (ICEMAG) investigation to probe Europa's subsurface ocean. This investigation exploits currents induced in Europa's interior by the moon's exposure to variable magnetic fields in the Jovian system to infer properties of Europa's subsurface ocean such as its depth, thickness, and conductivity. This technique was successfully applied to Galileo observations and demonstrated that Europa indeed has a subsurface ocean. While these Galileo observations contributed to the renewed interest in Europa, due to limitations in the observations the results raised major questions that remain unanswered. PIMS will greatly refine our understanding of Europa's global liquid ocean by accounting for contributions to the magnetic field from plasma currents.In this presentation we describe the principles of PIMS operations, detail the PIMS science goals, and discuss how to assess Europa's induction response.
The Plasma Instrument for Magnetic Sounding (PIMS) onboard the Europa Clipper Mission
NASA Astrophysics Data System (ADS)
Westlake, Joseph H.; McNutt, Ralph L.; Kasper, Justin C.; Rymer, Abigail; Case, Anthony; Battista, Corina; Cochrane, Corey; Coren, David; Crew, Alexander; Grey, Matthew; Jia, Xianzhe; Khurana, Krishan; Kim, Cindy; Kivelson, Margaret G.; Korth, Haje; Krupp, Norbert; Paty, Carol; Roussos, Elias; Stevens, Michael; Slavin, James A.; Smith, Howard T.; Saur, Joachim
2017-10-01
Europa is embedded in a complex Jovian magnetospheric plasma, which rotates with the tilted planetary field and interacts dynamically with Europa’s ionosphere affecting the magnetic induction signal. Plasma from Io’s temporally varying torus diffuses outward and mixes with the charged particles in Europa’s own torus producing highly variable plasma conditions. Onboard the Europa Clipper spacecraft the Plasma Instrument for Magnetic Sounding (PIMS) works in conjunction with the Interior Characterization of Europa using Magnetometry (ICEMAG) investigation to probe Europa’s subsurface ocean. This investigation exploits currents induced in Europa’s interior by the moon’s exposure to variable magnetic fields in the Jovian system to infer properties of Europa’s subsurface ocean such as its depth, thickness, and conductivity. This technique was successfully applied to Galileo observations and demonstrated that Europa indeed has a subsurface ocean. While these Galileo observations contributed to the renewed interest in Europa, due to limitations in the observations the results raised major questions that remain unanswered. PIMS will greatly refine our understanding of Europa’s global liquid ocean by accounting for contributions to the magnetic field from plasma currents.The Europa Clipper mission is equipped with a sophisticated suite of 9 instruments to study Europa's interior and ocean, geology, chemistry, and habitability from a Jupiter orbiting spacecraft. PIMS on Europa Clipper is a Faraday Cup based plasma instrument whose heritage dates back to the Voyager spacecraft. PIMS will measure the plasma that populates Jupiter’s magnetosphere and Europa’s ionosphere. The science goals of PIMS are to: 1) estimate the ocean salinity and thickness by determining Europa’s magnetic induction response, corrected for plasma contributions; 2) assess mechanisms responsible for weathering and releasing material from Europa’s surface into the atmosphere and ionosphere; and 3) understand how Europa influences its local space environment and Jupiter’s magnetosphere and vice versa.In this presentation we describe the principles of PIMS operations, detail the PIMS science goals, and discuss how to assess Europa's induction response.
The Plasma Instrument for Magnetic Sounding (PIMS) on The Europa Clipper Mission
NASA Astrophysics Data System (ADS)
Westlake, J. H.; McNutt, R. L., Jr.; Kasper, J. C.; Battista, C.; Case, A. W.; Cochrane, C.; Grey, M.; Jia, X.; Kivelson, M.; Kim, C.; Korth, H.; Khurana, K. K.; Krupp, N.; Paty, C. S.; Roussos, E.; Rymer, A. M.; Stevens, M. L.; Slavin, J. A.; Smith, H. T.; Saur, J.; Coren, D.
2017-12-01
The Europa Clipper mission is equipped with a sophisticated suite of 9 instruments to study Europa's interior and ocean, geology, chemistry, and habitability from a Jupiter orbiting spacecraft. The Plasma Instrument for Magnetic Sounding (PIMS) on Europa Clipper is a Faraday Cup based plasma instrument whose heritage dates back to the Voyager spacecraft. PIMS will measure the plasma that populates Jupiter's magnetosphere and Europa's ionosphere. The science goals of PIMS are to: 1) estimate the ocean salinity and thickness by determining Europa's magnetic induction response, corrected for plasma contributions; 2) assess mechanisms responsible for weathering and releasing material from Europa's surface into the atmosphere and ionosphere; and 3) understand how Europa influences its local space environment and Jupiter's magnetosphere and vice versa. Europa is embedded in a complex Jovian magnetospheric plasma, which rotates with the tilted planetary field and interacts dynamically with Europa's ionosphere affecting the magnetic induction signal. Plasma from Io's temporally varying torus diffuses outward and mixes with the charged particles in Europa's own torus producing highly variable plasma conditions at Europa. PIMS works in conjunction with the Interior Characterization of Europa using Magnetometry (ICEMAG) investigation to probe Europa's subsurface ocean. This investigation exploits currents induced in Europa's interior by the moon's exposure to variable magnetic fields in the Jovian system to infer properties of Europa's subsurface ocean such as its depth, thickness, and conductivity. This technique was successfully applied to Galileo observations and demonstrated that Europa indeed has a subsurface ocean. While these Galileo observations contributed to the renewed interest in Europa, due to limitations in the observations the results raised major questions that remain unanswered. PIMS will greatly refine our understanding of Europa's global liquid ocean by accounting for contributions to the magnetic field from plasma currents. In this presentation we describe the principles of PIMS operations, detail the PIMS science goals, and discuss how to assess Europa's induction response.
Dynamical transitions associated with turbulence in a helicon plasma
NASA Astrophysics Data System (ADS)
Light, Adam D.; Tian, Li; Chakraborty Thakur, Saikat; Tynan, George R.
2017-10-01
Diagnostic capabilities are often cited as a limiting factor in our understanding of transport in fusion devices. Increasingly advanced multichannel diagnostics are being applied to classify transport regimes and to search for ``trigger'' features that signal an oncoming dynamical event, such as an ELM or an L-H transition. In this work, we explore a technique that yields information about global properties of plasma dynamics from a single time series of a relevant plasma quantity. Electrostatic probe data from the Controlled Shear Decorrelation eXperiment (CSDX) is analyzed using recurrence quantification analysis (RQA) in the context of previous work on the transition to weak drift-wave turbulence. The recurrence characteristics of a phase space trajectory provide a quantitative means to classify dynamics and identify transitions in a complex system. We present and quantify dynamical variations in the plasma variables as a function of the background magnetic field strength. A dynamical transition corresponding to the emergence of broadband fluctuations is identified using RQA measures.
Super-Resolution Microscopy: Shedding Light on the Cellular Plasma Membrane.
Stone, Matthew B; Shelby, Sarah A; Veatch, Sarah L
2017-06-14
Lipids and the membranes they form are fundamental building blocks of cellular life, and their geometry and chemical properties distinguish membranes from other cellular environments. Collective processes occurring within membranes strongly impact cellular behavior and biochemistry, and understanding these processes presents unique challenges due to the often complex and myriad interactions between membrane components. Super-resolution microscopy offers a significant gain in resolution over traditional optical microscopy, enabling the localization of individual molecules even in densely labeled samples and in cellular and tissue environments. These microscopy techniques have been used to examine the organization and dynamics of plasma membrane components, providing insight into the fundamental interactions that determine membrane functions. Here, we broadly introduce the structure and organization of the mammalian plasma membrane and review recent applications of super-resolution microscopy to the study of membranes. We then highlight some inherent challenges faced when using super-resolution microscopy to study membranes, and we discuss recent technical advancements that promise further improvements to super-resolution microscopy and its application to the plasma membrane.
A table top experiment to study plasma confined by a dipole magnet
NASA Astrophysics Data System (ADS)
Bhattacharjee, Sudeep; Baitha, Anuj Ram
2016-10-01
There has been a long quest to understand charged particle generation, confinement and underlying complex processes in a plasma confined by a dipole magnet. Our earth's magnetosphere is an example of such a naturally occurring system. A few laboratory experiments have been designed for such investigations, such as the Levitated Dipole Experiment (LDX) at MIT, the Terella experiment at Columbia university, and the Ring Trap-1 (RT-1) experiment at the University of Tokyo. However, these are large scale experiments, where the dipole magnetic field is created with superconducting coils, thereby, necessitating power supplies and stringent cryogenic requirements. We report a table top experiment to investigate important physical processes in a dipole plasma. A strong cylindrical permanent magnet, is employed to create the dipole field inside a vacuum chamber. The magnet is suspended and cooled by circulating chilled water. The plasma is heated by electromagnetic waves of 2.45 GHz and a second frequency in the range 6 - 11 GHz. Some of the initial results of measurements and numerical simulation of magnetic field, visual observations of the first plasma, and spatial measurements of plasma parameters will be presented.
Effects of Coulomb Coupling on the Stopping Power of Plasmas
NASA Astrophysics Data System (ADS)
Bernstein, David; Daligault, Jerome; Baalrud, Scott
2017-10-01
Stopping power of charged particles in plasma is important for a detailed understanding of particle and energy transport in plasmas, such as those found in fusion applications. Although stopping power is rather well understood for weakly coupled plasmas, this is less the case for strongly coupled plasmas. In order to shed light on the effects of strong Coulomb coupling, we have conducted detailed molecular dynamics simulations of the stopping power of a One-Component Plasma (OCP) across a wide range of conditions. The OCP allows first-principle computations that are not possible with more complex models, enabling rigorous tests of analytical theories. The molecular dynamics simulations were compared to two analytical theories that attempt to extend traditional weakly-coupled theories into the strong coupling regime. The first is based on the binary approximation, which accounts for strong coupling via an effective scattering cross section derived from the effective potential theory. The second is based on the dielectric function formulation with the inclusion of a local field corrections. Work supported by LANL LDRD project 20150520ER and ir Force Office of Scientific Research under Award Number FA9550-16-1-0221.
Weck, P J; Schaffner, D A; Brown, M R; Wicks, R T
2015-02-01
The Bandt-Pompe permutation entropy and the Jensen-Shannon statistical complexity are used to analyze fluctuating time series of three different turbulent plasmas: the magnetohydrodynamic (MHD) turbulence in the plasma wind tunnel of the Swarthmore Spheromak Experiment (SSX), drift-wave turbulence of ion saturation current fluctuations in the edge of the Large Plasma Device (LAPD), and fully developed turbulent magnetic fluctuations of the solar wind taken from the Wind spacecraft. The entropy and complexity values are presented as coordinates on the CH plane for comparison among the different plasma environments and other fluctuation models. The solar wind is found to have the highest permutation entropy and lowest statistical complexity of the three data sets analyzed. Both laboratory data sets have larger values of statistical complexity, suggesting that these systems have fewer degrees of freedom in their fluctuations, with SSX magnetic fluctuations having slightly less complexity than the LAPD edge I(sat). The CH plane coordinates are compared to the shape and distribution of a spectral decomposition of the wave forms. These results suggest that fully developed turbulence (solar wind) occupies the lower-right region of the CH plane, and that other plasma systems considered to be turbulent have less permutation entropy and more statistical complexity. This paper presents use of this statistical analysis tool on solar wind plasma, as well as on an MHD turbulent experimental plasma.
On the Construction and Dynamics of Knotted Fields
NASA Astrophysics Data System (ADS)
Kedia, Hridesh
Representing a physical field in terms of its field lines has often enabled a deeper understanding of complex physical phenomena, from Faraday's law of magnetic induction, to the Helmholtz laws of vortex motion, to the free energy density of liquid crystals in terms of the distortions of the lines of the director field. At the same time, the application of ideas from topology--the study of properties that are invariant under continuous deformations--has led to robust insights into the nature of complex physical systems from defects in crystal structures, to the earth's magnetic field, to topological conservation laws. The study of knotted fields, physical fields in which the field lines encode knots, emerges naturally from the application of topological ideas to the investigation of the physical phenomena best understood in terms of the lines of a field. A knot--a closed loop tangled with itself which can not be untangled without cutting the loop--is the simplest topologically non-trivial object constructed from a line. Remarkably, knots in the vortex (magnetic field) lines of a dissipationless fluid (plasma), persist forever as they are transported by the flow, stretching and rotating as they evolve. Moreover, deeply entwined with the topology-preserving dynamics of dissipationless fluids and plasmas, is an additional conserved quantity--helicity, a measure of the average linking of the vortex (magnetic field) lines in a fluid (plasma)--which has had far-reaching consequences for fluids and plasmas. Inspired by the persistence of knots in dissipationless flows, and their far-reaching physical consequences, we seek to understand the interplay between the dynamics of a field and the topology of its field lines in a variety of systems. While it is easy to tie a knot in a shoelace, tying a knot in the the lines of a space-filling field requires contorting the lines everywhere to match the knotted region. The challenge of analytically constructing knotted field configurations has impeded a deeper understanding of the interplay between topology and dynamics in fluids and plasmas. We begin by analytically constructing knotted field configurations which encode a desired knot in the lines of the field, and show that their helicity can be tuned independently of the encoded knot. The nonlinear nature of the physical systems in which these knotted field configurations arise, makes their analytical study challenging. We ask if a linear theory such as electromagnetism can allow knotted field configurations to persist with time. We find analytical expressions for an infinite family of knotted solutions to Maxwell's equations in vacuum and elucidate their connections to dissipationless flows. We present a design rule for constructing such persistently knotted electromagnetic fields, which could possibly be used to transfer knottedness to matter such as quantum fluids and plasmas. An important consequence of the persistence of knots in classical dissipationless flows is the existence of an additional conserved quantity, helicity, which has had far-reaching implications. To understand the existence of analogous conserved quantities, we ask if superfluids, which flow without dissipation just like classical dissipationless flows, have an additional conserved quantity akin to helicity. We address this question using an analytical approach based on defining the particle relabeling symmetry--the symmetry underlying helicity conservation--in superfluids, and find that an analogous conserved quantity exists but vanishes identically owing to the intrinsic geometry of complex scalar fields. Furthermore, to address the question of a ``classical limit'' of superfluid vortices which recovers classical helicity conservation, we perform numerical simulations of \\emph{bundles} of superfluid vortices, and find behavior akin to classical viscous flows.
The role of plasma/neutral source and loss processes in shaping the giant planet magnetospheres
NASA Astrophysics Data System (ADS)
Delamere, P. A.
2014-12-01
The giant planet magnetospheres are filled with neutral and ionized gases originating from satellites orbiting deep within the magnetosphere. The complex chemical and physical pathways for the flow of mass and energy in this partially ionized plasma environment is critical for understanding magnetospheric dynamics. The flow of mass at Jupiter and Saturn begins, primarily, with neutral gases emanating from Io (~1000 kg/s) and Enceladus (~200 kg/s). In addition to ionization losses, the neutral gases are absorbed by the planet, its rings, or escape at high speeds from the magnetosphere via charge exchange reactions. The net result is a centrifugally confined torus of plasma that is transported radially outward, distorting the magnetic field into a magnetodisc configuration. Ultimately the plasma is lost to the solar wind. A critical parameter for shaping the magnetodisc and determining its dynamics is the radial plasma mass transport rate (~500 kg/s and ~50 kg/s for Jupiter and Saturn respectively). Given the plasma transport rates, several simple properties of the giant magnetodiscs can be estimated including the physical scale of the magnetosphere, the magnetic flux transport, and the magnitude of azimuthal magnetic field bendback. We will discuss transport-related magnetic flux conservation and the mystery of plasma heating—two critical issues for shaping the giant planet magnetospheres.
An Atmospheric Pressure Plasma Setup to Investigate the Reactive Species Formation.
Gorbanev, Yury; Soriano, Robert; O'Connell, Deborah; Chechik, Victor
2016-11-03
Non-thermal atmospheric pressure ('cold') plasmas have received increased attention in recent years due to their significant biomedical potential. The reactions of cold plasma with the surrounding atmosphere yield a variety of reactive species, which can define its effectiveness. While efficient development of cold plasma therapy requires kinetic models, model benchmarking needs empirical data. Experimental studies of the source of reactive species detected in aqueous solutions exposed to plasma are still scarce. Biomedical plasma is often operated with He or Ar feed gas, and a specific interest lies in investigation of the reactive species generated by plasma with various gas admixtures (O2, N2, air, H2O vapor, etc.) Such investigations are very complex due to difficulties in controlling the ambient atmosphere in contact with the plasma effluent. In this work, we addressed common issues of 'high' voltage kHz frequency driven plasma jet experimental studies. A reactor was developed allowing the exclusion of ambient atmosphere from the plasma-liquid system. The system thus comprised the feed gas with admixtures and the components of the liquid sample. This controlled atmosphere allowed the investigation of the source of the reactive oxygen species induced in aqueous solutions by He-water vapor plasma. The use of isotopically labelled water allowed distinguishing between the species originating in the gas phase and those formed in the liquid. The plasma equipment was contained inside a Faraday cage to eliminate possible influence of any external field. The setup is versatile and can aid in further understanding the cold plasma-liquid interactions chemistry.
An Atmospheric Pressure Plasma Setup to Investigate the Reactive Species Formation
Gorbanev, Yury; Soriano, Robert; O'Connell, Deborah; Chechik, Victor
2016-01-01
Non-thermal atmospheric pressure ('cold') plasmas have received increased attention in recent years due to their significant biomedical potential. The reactions of cold plasma with the surrounding atmosphere yield a variety of reactive species, which can define its effectiveness. While efficient development of cold plasma therapy requires kinetic models, model benchmarking needs empirical data. Experimental studies of the source of reactive species detected in aqueous solutions exposed to plasma are still scarce. Biomedical plasma is often operated with He or Ar feed gas, and a specific interest lies in investigation of the reactive species generated by plasma with various gas admixtures (O2, N2, air, H2O vapor, etc.) Such investigations are very complex due to difficulties in controlling the ambient atmosphere in contact with the plasma effluent. In this work, we addressed common issues of 'high' voltage kHz frequency driven plasma jet experimental studies. A reactor was developed allowing the exclusion of ambient atmosphere from the plasma-liquid system. The system thus comprised the feed gas with admixtures and the components of the liquid sample. This controlled atmosphere allowed the investigation of the source of the reactive oxygen species induced in aqueous solutions by He-water vapor plasma. The use of isotopically labelled water allowed distinguishing between the species originating in the gas phase and those formed in the liquid. The plasma equipment was contained inside a Faraday cage to eliminate possible influence of any external field. The setup is versatile and can aid in further understanding the cold plasma-liquid interactions chemistry. PMID:27842375
Electron impact ionization of plasma important SiClX (X = 1-4) molecules: theoretical cross sections
NASA Astrophysics Data System (ADS)
Kothari, Harshit N.; Pandya, Siddharth H.; Joshipura, K. N.
2011-06-01
Electron impact ionization of SiClX (X = 1-4) molecules is less studied but an important process for understanding and modelling the interactions of silicon-chlorine plasmas with different materials. The SiCl3 radical is a major chloro-silicon species involved in the CVD (chemical vapour deposition) of silicon films from SiCl4/Ar microwave plasmas. We report in this paper the total ionization cross sections for electron collisions on these silicon compounds at incident energies from the ionization threshold to 2000 eV. We employ the 'complex scattering potential-ionization contribution' method and identify the relative importance of various channels, with ionization included in the cumulative inelastic scattering. New results are also presented on these exotic molecular targets. This work is significant in view of the paucity of theoretical studies on the radicals SiClX (X = 1-3) and on SiCl4.
Liu, Han-Yuan; Chen, Wei-Liang; Ober, Christopher K; Daniel, Susan
2018-01-23
Reconstituted supported lipid bilayers (SLB) are widely used as in vitro cell-surface models because they are compatible with a variety of surface-based analytical techniques. However, one of the challenges of using SLBs as a model of the cell surface is the limited complexity in membrane composition, including the incorporation of transmembrane proteins and lipid diversity that may impact the activity of those proteins. Additionally, it is challenging to preserve the transmembrane protein native orientation, function, and mobility in SLBs. Here, we leverage the interaction between cell plasma membrane vesicles and polyelectrolyte brushes to create planar bilayers from cell plasma membrane vesicles that have budded from the cell surface. This approach promotes the direct incorporation of membrane proteins and other species into the planar bilayer without using detergent or reconstitution and preserves membrane constituents. Furthermore, the structure of the polyelectrolyte brush serves as a cushion between the planar bilayer and rigid supporting surface, limiting the interaction of the cytosolic domains of membrane proteins with this surface. Single particle tracking was used to analyze the motion of GPI-linked yellow fluorescent proteins (GPI-YFP) and neon-green fused transmembrane P2X2 receptors (P2X2-neon) and shows that this platform retains over 75% mobility of multipass transmembrane proteins in its native membrane environment. An enzyme accessibility assay confirmed that the protein orientation is preserved and results in the extracellular domain facing toward the bulk phase and the cytosolic side facing the support. Because the platform presented here retains the complexity of the cell plasma membrane and preserves protein orientation and mobility, it is a better representative mimic of native cell surfaces, which may find many applications in biological assays aimed at understanding cell membrane phenomena.
Mesoscopic chaos mediated by Drude electron-hole plasma in silicon optomechanical oscillators
Wu, Jiagui; Huang, Shu-Wei; Huang, Yongjun; Zhou, Hao; Yang, Jinghui; Liu, Jia-Ming; Yu, Mingbin; Lo, Guoqiang; Kwong, Dim-Lee; Duan, Shukai; Wei Wong, Chee
2017-01-01
Chaos has revolutionized the field of nonlinear science and stimulated foundational studies from neural networks, extreme event statistics, to physics of electron transport. Recent studies in cavity optomechanics provide a new platform to uncover quintessential architectures of chaos generation and the underlying physics. Here, we report the generation of dynamical chaos in silicon-based monolithic optomechanical oscillators, enabled by the strong and coupled nonlinearities of two-photon absorption induced Drude electron–hole plasma. Deterministic chaotic oscillation is achieved, and statistical and entropic characterization quantifies the chaos complexity at 60 fJ intracavity energies. The correlation dimension D2 is determined at 1.67 for the chaotic attractor, along with a maximal Lyapunov exponent rate of about 2.94 times the fundamental optomechanical oscillation for fast adjacent trajectory divergence. Nonlinear dynamical maps demonstrate the subharmonics, bifurcations and stable regimes, along with distinct transitional routes into chaos. This provides a CMOS-compatible and scalable architecture for understanding complex dynamics on the mesoscopic scale. PMID:28598426
Li, Hui; Huang, Xiaoyan; Zeng, Zaohai; Peng, Xuan-Xian; Peng, Bo
2016-09-01
Elucidating the complex pathogen-host interaction is essential for a comprehensive understanding of how these remarkable agents invade their hosts and how the hosts defend against these invaders. During the infection, pathogens interact intensively with host to enable their survival, which can be revealed through their interactome. Edwardsiella tarda is a Gram-negative bacterial pathogen causing huge economic loss in aquaculture and a spectrum of intestinal and extraintestinal diseases in humans. E. tarda is an ideal model for host-pathogen investigation as it infects fish in three distinct steps: entering the host, circulating through the blood and establishing infection. We adopted a previous established proteomic approach that inactivated E. tarda cells and covalent crosslink fish plasma proteins were used to capture plasma proteins and bacterial outer membrane proteins, respectively. By the combinatorial use of proteomic and biochemical approaches, six plasma proteins and seven outer membrane proteins (OMPs) were identified. Interactions among these proteins were validated with protein-array, far-Western blotting and co-immunoprecipitation. At last, seventeen plasma protein-bacteria protein-protein interaction were confirmed to be involved in the interaction network, forming a complex interactome. Compared to our previous results, different host proteins were detected, whereas some of the bacterial proteins were similar, which indicates that hosts adopt tissue-specific strategies to cope with the same pathogen during infection. Thus, our results provide a robust demonstration of both bacterial initiators and host receptors or interacting proteins to further explore infection and anti-infective mechanisms between hosts and microbes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Plasma levels of soluble interleukin 1 receptor accessory protein are reduced in obesity.
Bozaoglu, Kiymet; Attard, Chantal; Kulkarni, Hemant; Cummings, Nik; Diego, Vincent P; Carless, Melanie A; Shields, Katherine A; Johnson, Matthew P; Kowlessur, Sudhir; Dyer, Thomas D; Comuzzie, Anthony G; Almasy, Laura; Zimmet, Paul; Moses, Eric K; Göring, Harald H H; Curran, Joanne E; Blangero, John; Jowett, Jeremy B M
2014-09-01
Adipokines actuate chronic, low-grade inflammation through a complex network of immune markers, but the current understanding of these networks is incomplete. The soluble isoform of the IL-1 receptor accessory protein (sIL1RAP) occupies an important position in the inflammatory pathways involved in obesity. The pathogenetic and clinical influences of sIL1RAP are unknown. The objective of the study was to elucidate whether plasma levels of sIL1RAP are reduced in obesity, using affluent clinical, biochemical, and genetic data from two diverse cohorts. The study was conducted in two cohorts: the San Antonio Family Heart Study (n = 1397 individuals from 42 families) and South Asians living in Mauritius, n = 230). Plasma sIL1RAP levels were measured using an ELISA. The genetic basis of sIL1RAP levels were investigated using both a large-scale gene expression profiling study and a genome-wide association study. A significant decrease in plasma sIL1RAP levels were observed in obese subjects, even after adjustment for age and sex. The sIL1RAP levels demonstrated a strong inverse association with obesity measures in both populations. All associations were more significant in females. Plasma sIL1RAP levels were significantly heritable, correlated with IL1RAP transcript levels (NM_134470), showed evidence for shared genetic influences with obesity measures and were significantly associated with the rs2885373 single-nucleotide polymorphism (P = 6.7 × 10(-23)) within the IL1RAP gene. Plasma sIL1RAP levels are reduced in obesity and can potentially act as biomarkers of obesity. Mechanistic studies are required to understand the exact contribution of sIL1RAP to the pathogenesis of obesity.
Cold plasma decontamination of foods.
Niemira, Brendan A
2012-01-01
Cold plasma is a novel nonthermal food processing technology that uses energetic, reactive gases to inactivate contaminating microbes on meats, poultry, fruits, and vegetables. This flexible sanitizing method uses electricity and a carrier gas, such as air, oxygen, nitrogen, or helium; antimicrobial chemical agents are not required. The primary modes of action are due to UV light and reactive chemical products of the cold plasma ionization process. A wide array of cold plasma systems that operate at atmospheric pressures or in low pressure treatment chambers are under development. Reductions of greater than 5 logs can be obtained for pathogens such as Salmonella, Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus. Effective treatment times can range from 120 s to as little as 3 s, depending on the food treated and the processing conditions. Key limitations for cold plasma are the relatively early state of technology development, the variety and complexity of the necessary equipment, and the largely unexplored impacts of cold plasma treatment on the sensory and nutritional qualities of treated foods. Also, the antimicrobial modes of action for various cold plasma systems vary depending on the type of cold plasma generated. Optimization and scale up to commercial treatment levels require a more complete understanding of these chemical processes. Nevertheless, this area of technology shows promise and is the subject of active research to enhance efficacy.
Antimicrobial Applications of Ambient--Air Plasmas
NASA Astrophysics Data System (ADS)
Pavlovich, Matthew John
The emerging field of plasma biotechology studies the applications of the plasma phase of matter to biological systems. "Ambient-condition" plasmas created at or near room temperature and atmospheric pressure are especially promising for biomedical applications because of their convenience, safety to patients, and compatibility with existing medical technology. Plasmas can be created from many different gases; plasma made from air contains a number of reactive oxygen and nitrogen species, or RONS, involved in various biological processes, including immune activity, signaling, and gene expression. Therefore, ambient-condition air plasma is of particular interest for biological applications. To understand and predict the effects of treating biological systems with ambient-air plasma, it is necessary to characterize and measure the chemical species that these plasmas produce. Understanding both gaseous chemistry and the chemistry in plasma-treated aqueous solution is important because many biological systems exist in aqueous media. Existing literature about ambient-air plasma hypothesizes the critical role of reactive oxygen and nitrogen species; a major aim of this dissertation is to better quantify RONS by produced ambient-air plasma and understand how RONS chemistry changes in response to different plasma processing conditions. Measurements imply that both gaseous and aqueous chemistry are highly sensitive to operating conditions. In particular, chemical species in air treated by plasma exist in either a low-power ozone-dominated mode or a high-power nitrogen oxide-dominated mode, with an unstable transition region at intermediate discharge power and treatment time. Ozone (O3) and nitrogen oxides (NO and NO2, or NOx) are mutually exclusive in this system and that the transition region corresponds to the transition from ozone- to nitrogen oxides-mode. Aqueous chemistry agrees well with to air plasma chemistry, and a similar transition in liquid-phase composition from ozone mode to nitrogen oxides mode occurs as the discharge power increases. One prominent example of plasma biotechnology is the use of plasma-derived reactive species as a novel disinfectant. Ambient-air plasma is an attractive means of disinfection because it is non-thermal, expends a small amount of power, and requires only air and electricity to operate. Both solid surfaces and liquid volumes can be effectively and efficiently decontaminated by the reactive oxygen and nitrogen species that plasma generates. Dry surfaces are decontaminated most effectively by the plasma operating in NOx mode and less effectively in ozone mode, with the weakest antibacterial effects in the transition region, and neutral reactive species are more influential in surface disinfection than charged particles. Aqueous bacterial inactivation correlates well with ozone concentration, suggesting that ozone is the dominant species for bacterial inactivation under the condition of a low-power discharge. Alternatively, air plasma operating in the higher-power, nitrogen oxides-rich mode can create a persistently antibacterial solution. Finally, when near-UV (UVA) treatment follows plasma treatment of bacterial suspension, the antimicrobial effect exceeds the effect predicted from the two treatments alone, and addition of nitrite to aqueous solution, followed by photolysis of nitrite by UVA photons, is hypothesized as the primary mechanism of synergy. The results presented in this dissertation underscore the dynamic nature of air plasma chemistry and the importance of careful chemical characterization of plasma devices intended for biological applications. The complexity of atmospheric pressure plasma devices, and their sensitivity to subtle differences in design and operation, can lead to different results with different mechanisms.
Genetic studies of plasma analytes identify novel potential biomarkers for several complex traits
Deming, Yuetiva; Xia, Jian; Cai, Yefei; Lord, Jenny; Del-Aguila, Jorge L.; Fernandez, Maria Victoria; Carrell, David; Black, Kathleen; Budde, John; Ma, ShengMei; Saef, Benjamin; Howells, Bill; Bertelsen, Sarah; Bailey, Matthew; Ridge, Perry G.; Hefti, Franz; Fillit, Howard; Zimmerman, Earl A.; Celmins, Dzintra; Brown, Alice D.; Carrillo, Maria; Fleisher, Adam; Reeder, Stephanie; Trncic, Nadira; Burke, Anna; Tariot, Pierre; Reiman, Eric M.; Chen, Kewei; Sabbagh, Marwan N.; Beiden, Christine M.; Jacobson, Sandra A.; Sirrel, Sherye A.; Doody, Rachelle S.; Villanueva-Meyer, Javier; Chowdhury, Munir; Rountree, Susan; Dang, Mimi; Kowall, Neil; Killiany, Ronald; Budson, Andrew E.; Norbash, Alexander; Johnson, Patricia Lynn; Green, Robert C.; Marshall, Gad; Johnson, Keith A.; Sperling, Reisa A.; Snyder, Peter; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Bernick, Charles; Munic, Donna; Stern, Yaakov; Honig, Lawrence S.; Bell, Karen L.; Relkin, Norman; Chaing, Gloria; Ravdin, Lisa; Paul, Steven; Flashman, Laura A.; Seltzer, Marc; Hynes, Mary L.; Santulli, Robert B.; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Friedl, Karl; Murali Doraiswamy, P.; Petrella, Jeffrey R.; Borges-Neto, Salvador; James, Olga; Wong, Terence; Coleman, Edward; Schwartz, Adam; Cellar, Janet S.; Levey, Allan L.; Lah, James J.; Behan, Kelly; Scott Turner, Raymond; Johnson, Kathleen; Reynolds, Brigid; Pearlson, Godfrey D.; Blank, Karen; Anderson, Karen; Obisesan, Thomas O.; Wolday, Saba; Allard, Joanne; Lerner, Alan; Ogrocki, Paula; Tatsuoka, Curtis; Fatica, Parianne; Farlow, Martin R.; Saykin, Andrew J.; Foroud, Tatiana M.; Shen, Li; Faber, Kelly; Kim, Sungeun; Nho, Kwangsik; Marie Hake, Ann; Matthews, Brandy R.; Brosch, Jared R.; Herring, Scott; Hunt, Cynthia; Albert, Marilyn; Onyike, Chiadi; D’Agostino, Daniel; Kielb, Stephanie; Graff-Radford, Neill R; Parfitt, Francine; Kendall, Tracy; Johnson, Heather; Petersen, Ronald; Jack, Clifford R.; Bernstein, Matthew; Borowski, Bret; Gunter, Jeff; Senjem, Matt; Vemuri, Prashanthi; Jones, David; Kantarci, Kejal; Ward, Chad; Mason, Sara S.; Albers, Colleen S.; Knopman, David; Johnson, Kris; Chertkow, Howard; Hosein, Chris; Mintzer, Jacob; Spicer, Kenneth; Bachman, David; Grossman, Hillel; Mitsis, Effie; Pomara, Nunzio; Hernando, Raymundo; Sarrael, Antero; Potter, William; Buckholtz, Neil; Hsiao, John; Kittur, Smita; Galvin, James E.; Cerbone, Brittany; Michel, Christina A.; Pogorelec, Dana M.; Rusinek, Henry; de Leon, Mony J; Glodzik, Lidia; De Santi, Susan; Johnson, Nancy; Chuang-Kuo; Kerwin, Diana; Bonakdarpour, Borna; Weintraub, Sandra; Grafman, Jordan; Lipowski, Kristine; Mesulam, Marek-Marsel; Scharre, Douglas W.; Kataki, Maria; Adeli, Anahita; Kaye, Jeffrey; Quinn, Joseph; Silbert, Lisa; Lind, Betty; Carter, Raina; Dolen, Sara; Borrie, Michael; Lee, T-Y; Bartha, Rob; Martinez, Walter; Villena, Teresa; Sadowsky, Carl; Khachaturian, Zaven; Ott, Brian R.; Querfurth, Henry; Tremont, Geoffrey; Frank, Richard; Fleischman, Debra; Arfanakis, Konstantinos; Shah, Raj C.; deToledo-Morrell, Leyla; Sorensen, Greg; Finger, Elizabeth; Pasternack, Stephen; Rachinsky, Irina; Drost, Dick; Rogers, John; Kertesz, Andrew; Furst, Ansgar J.; Chad, Stevan; Yesavage, Jerome; Taylor, Joy L.; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Robin Hsiung, Ging-Yuek; Mudge, Benita; Assaly, Michele; Fox, Nick; Schultz, Susan K.; Boles Ponto, Laura L.; Shim, Hyungsub; Ekstam Smith, Karen; Burns, Jeffrey M.; Swerdlow, Russell H.; Brooks, William M.; Marson, Daniel; Griffith, Randall; Clark, David; Geldmacher, David; Brockington, John; Roberson, Erik; Natelson Love, Marissa; DeCarli, Charles; Carmichael, Owen; Olichney, John; Maillard, Pauline; Fletcher, Evan; Nguyen, Dana; Preda, Andrian; Potkin, Steven; Mulnard, Ruth A.; Thai, Gaby; McAdams-Ortiz, Catherine; Landau, Susan; Jagust, William; Apostolova, Liana; Tingus, Kathleen; Woo, Ellen; Silverman, Daniel H.S.; Lu, Po H.; Bartzokis, George; Thompson, Paul; Donohue, Michael; Thomas, Ronald G.; Walter, Sarah; Gessert, Devon; Brewer, James; Vanderswag, Helen; Sather, Tamie; Jiminez, Gus; Balasubramanian, Archana B.; Mason, Jennifer; Sim, Iris; Aisen, Paul; Davis, Melissa; Morrison, Rosemary; Harvey, Danielle; Thal, Lean; Beckett, Laurel; Neylan, Thomas; Finley, Shannon; Weiner, Michael W.; Hayes, Jacqueline; Rosen, Howard J.; Miller, Bruce L.; Perry, David; Massoglia, Dino; Brawman-Mentzer, Olga; Schuff, Norbert; Smith, Charles D.; Hardy, Peter; Sinha, Partha; Oates, Elizabeth; Conrad, Gary; Koeppe, Robert A.; Lord, Joanne L.; Heidebrink, Judith L.; Arnold, Steven E.; Karlawish, Jason H.; Wolk, David; Clark, Christopher M.; Trojanowki, John Q.; Shaw, Leslie M.; Lee, Virginia; Korecka, Magdalena; Figurski, Michal; Toga, Arthur W.; Crawford, Karen; Neu, Scott; Schneider, Lon S.; Pawluczyk, Sonia; Beccera, Mauricio; Teodoro, Liberty; Spann, Bryan M.; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Foster, Norm; Montine, Tom; Fruehling, J. Jay; Harding, Sandra; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M.; Petrie, Eric C.; Peskind, Elaine; Li, Gail; Porsteinsson, Anton P.; Goldstein, Bonnie S.; Martin, Kim; Makino, Kelly M.; Ismail, M. Saleem; Brand, Connie; Smith, Amanda; Ashok Raj, Balebail; Fargher, Kristin; Kuller, Lew; Mathis, Chet; Ann Oakley, Mary; Lopez, Oscar L.; Simpson, Donna M.; Sink, Kaycee M.; Gordineer, Leslie; Williamson, Jeff D.; Garg, Pradeep; Watkins, Franklin; Cairns, Nigel J.; Raichle, Marc; Morris, John C.; Householder, Erin; Taylor-Reinwald, Lisa; Holtzman, David; Ances, Beau; Carroll, Maria; Creech, Mary L.; Franklin, Erin; Mintun, Mark A.; Schneider, Stacy; Oliver, Angela; Duara, Ranjan; Varon, Daniel; Greig, Maria T.; Roberts, Peggy; Varma, Pradeep; MacAvoy, Martha G.; Carson, Richard E.; van Dyck, Christopher H.; Davies, Peter; Holtzman, David; Morris, John C.; Bales, Kelly; Pickering, Eve H.; Lee, Jin-Moo; Heitsch, Laura; Kauwe, John; Goate, Alison; Piccio, Laura; Cruchaga, Carlos
2016-01-01
Genome-wide association studies of 146 plasma protein levels in 818 individuals revealed 56 genome-wide significant associations (28 novel) with 47 analytes. Loci associated with plasma levels of 39 proteins tested have been previously associated with various complex traits such as heart disease, inflammatory bowel disease, Type 2 diabetes, and multiple sclerosis. These data suggest that these plasma protein levels may constitute informative endophenotypes for these complex traits. We found three potential pleiotropic genes: ABO for plasma SELE and ACE levels, FUT2 for CA19-9 and CEA plasma levels, and APOE for ApoE and CRP levels. We also found multiple independent signals in loci associated with plasma levels of ApoH, CA19-9, FetuinA, IL6r, and LPa. Our study highlights the power of biological traits for genetic studies to identify genetic variants influencing clinically relevant traits, potential pleiotropic effects, and complex disease associations in the same locus.
Ikeda, Saiko; Uchida, Tomono; Ichikawa, Tomio; Watanabe, Takashi; Uekaji, Yukiko; Nakata, Daisuke; Terao, Keiji; Yano, Tomohiro
2010-01-01
To determine the bioavailability of tocotrienol complex with gamma-cyclodextrin, the effects of tocotrienol/gamma-cyclodextrin complex on tocotrienol concentration in rat plasma and tissues were studied. Rats were administered by oral gavage an emulsion containing tocotrienol, tocotrienol with gamma-cyclodextrin, or tocotrienol/gamma-cyclodextrin complex. At 3 h after administration, the plasma gamma-tocotrienol concentration of the rats administered tocotrienol/gamma-cyclodextrin complex was higher than that of the rats administered tocotrienol and gamma-cyclodextrin. In order to determine the effect of complexation on tocotrienol absorption, rats were injected with Triton WR1339, which prevents the catabolism of triacylglycerol-rich lipoprotein by lipoprotein lipase, and then administered by oral gavage an emulsion containing tocotrienol, tocotrienol with gamma-cyclodextrin, or tocotrienol/gamma-cyclodextrin complex. The plasma gamma-tocotrienol concentration of the Triton-treated rats administered tocotrienol/gamma-cyclodextrin complex was higher than that of the other Triton-treated rats. These results suggest that complexation of tocotrienol with gamma-cyclodextrin elevates plasma and tissue tocotrienol concentrations by enhancing intestinal absorption.
Simulating the dynamics of complex plasmas.
Schwabe, M; Graves, D B
2013-08-01
Complex plasmas are low-temperature plasmas that contain micrometer-size particles in addition to the neutral gas particles and the ions and electrons that make up the plasma. The microparticles interact strongly and display a wealth of collective effects. Here we report on linked numerical simulations that reproduce many of the experimental results of complex plasmas. We model a capacitively coupled plasma with a fluid code written for the commercial package comsol. The output of this model is used to calculate forces on microparticles. The microparticles are modeled using the molecular dynamics package lammps, which we extended to include the forces from the plasma. Using this method, we are able to reproduce void formation, the separation of particles of different sizes into layers, lane formation, vortex formation, and other effects.
NASA Astrophysics Data System (ADS)
Schwabe, M.; Du, C.-R.; Huber, P.; Lipaev, A. M.; Molotkov, V. I.; Naumkin, V. N.; Zhdanov, S. K.; Zhukhovitskii, D. I.; Fortov, V. E.; Thomas, H. M.
2018-03-01
Complex plasmas are low temperature plasmas that contain microparticles in addition to ions, electrons, and neutral particles. The microparticles acquire high charges, interact with each other and can be considered as model particles for effects in classical condensed matter systems, such as crystallization and fluid dynamics. In contrast to atoms in ordinary systems, their movement can be traced on the most basic level, that of individual particles. In order to avoid disturbances caused by gravity, experiments on complex plasmas are often performed under microgravity conditions. The PK-3 Plus Laboratory was operated on board the International Space Station from 2006 - 2013. Its heart consisted of a capacitively coupled radio-frequency plasma chamber. Microparticles were inserted into the low-temperature plasma, forming large, homogeneous complex plasma clouds. Here, we review the results obtained with recent analyzes of PK-3 Plus data: We study the formation of crystallization fronts, as well as the microparticle motion in, and structure of crystalline complex plasmas. We investigate fluid effects such as wave transmission across an interface, and the development of the energy spectra during the onset of turbulent microparticle movement. We explore how abnormal particles move through, and how macroscopic spheres interact with the microparticle cloud. These examples demonstrate the versatility of the PK-3 Plus Laboratory.
Plasmakristall-4: New complex (dusty) plasma laboratory on board the International Space Station
NASA Astrophysics Data System (ADS)
Pustylnik, M. Y.; Fink, M. A.; Nosenko, V.; Antonova, T.; Hagl, T.; Thomas, H. M.; Zobnin, A. V.; Lipaev, A. M.; Usachev, A. D.; Molotkov, V. I.; Petrov, O. F.; Fortov, V. E.; Rau, C.; Deysenroth, C.; Albrecht, S.; Kretschmer, M.; Thoma, M. H.; Morfill, G. E.; Seurig, R.; Stettner, A.; Alyamovskaya, V. A.; Orr, A.; Kufner, E.; Lavrenko, E. G.; Padalka, G. I.; Serova, E. O.; Samokutyayev, A. M.; Christoforetti, S.
2016-09-01
New complex-plasma facility, Plasmakristall-4 (PK-4), has been recently commissioned on board the International Space Station. In complex plasmas, the subsystem of μm-sized microparticles immersed in low-pressure weakly ionized gas-discharge plasmas becomes strongly coupled due to the high (103-104 e) electric charge on the microparticle surface. The microparticle subsystem of complex plasmas is available for the observation at the kinetic level, which makes complex plasmas appropriate for particle-resolved modeling of classical condensed matter phenomena. The main purpose of PK-4 is the investigation of flowing complex plasmas. To generate plasma, PK-4 makes use of a classical dc discharge in a glass tube, whose polarity can be switched with the frequency of the order of 100 Hz. This frequency is high enough not to be felt by the relatively heavy microparticles. The duty cycle of the polarity switching can be also varied allowing to vary the drift velocity of the microparticles and (when necessary) to trap them. The facility is equipped with two videocameras and illumination laser for the microparticle imaging, kaleidoscopic plasma glow observation system and minispectrometer for plasma diagnostics and various microparticle manipulation devices (e.g., powerful manipulation laser). Scientific experiments are programmed in the form of scripts written with the help of specially developed C scripting language libraries. PK-4 is mainly operated from the ground (control center CADMOS in Toulouse, France) with the support of the space station crew. Data recorded during the experiments are later on delivered to the ground on the removable hard disk drives and distributed to participating scientists for the detailed analysis.
Plasmakristall-4: New complex (dusty) plasma laboratory on board the International Space Station.
Pustylnik, M Y; Fink, M A; Nosenko, V; Antonova, T; Hagl, T; Thomas, H M; Zobnin, A V; Lipaev, A M; Usachev, A D; Molotkov, V I; Petrov, O F; Fortov, V E; Rau, C; Deysenroth, C; Albrecht, S; Kretschmer, M; Thoma, M H; Morfill, G E; Seurig, R; Stettner, A; Alyamovskaya, V A; Orr, A; Kufner, E; Lavrenko, E G; Padalka, G I; Serova, E O; Samokutyayev, A M; Christoforetti, S
2016-09-01
New complex-plasma facility, Plasmakristall-4 (PK-4), has been recently commissioned on board the International Space Station. In complex plasmas, the subsystem of μm-sized microparticles immersed in low-pressure weakly ionized gas-discharge plasmas becomes strongly coupled due to the high (10 3 -10 4 e) electric charge on the microparticle surface. The microparticle subsystem of complex plasmas is available for the observation at the kinetic level, which makes complex plasmas appropriate for particle-resolved modeling of classical condensed matter phenomena. The main purpose of PK-4 is the investigation of flowing complex plasmas. To generate plasma, PK-4 makes use of a classical dc discharge in a glass tube, whose polarity can be switched with the frequency of the order of 100 Hz. This frequency is high enough not to be felt by the relatively heavy microparticles. The duty cycle of the polarity switching can be also varied allowing to vary the drift velocity of the microparticles and (when necessary) to trap them. The facility is equipped with two videocameras and illumination laser for the microparticle imaging, kaleidoscopic plasma glow observation system and minispectrometer for plasma diagnostics and various microparticle manipulation devices (e.g., powerful manipulation laser). Scientific experiments are programmed in the form of scripts written with the help of specially developed C scripting language libraries. PK-4 is mainly operated from the ground (control center CADMOS in Toulouse, France) with the support of the space station crew. Data recorded during the experiments are later on delivered to the ground on the removable hard disk drives and distributed to participating scientists for the detailed analysis.
Cold Plasmas for Biofilm Control: Opportunities and Challenges.
Gilmore, Brendan F; Flynn, Padrig B; O'Brien, Séamus; Hickok, Noreen; Freeman, Theresa; Bourke, Paula
2018-06-01
Bacterial biofilm infections account for a major proportion of chronic and medical device associated infections in humans, yet our ability to control them is compromised by their inherent tolerance to antimicrobial agents. Cold atmospheric plasma (CAP) represents a promising therapeutic option. CAP treatment of microbial biofilms represents the convergence of two complex phenomena: the production of a chemically diverse mixture of reactive species and intermediates, and their interaction with a heterogeneous 3D interface created by the biofilm extracellular polymeric matrix. Therefore, understanding these interactions and physiological responses to CAP exposure are central to effective management of infectious biofilms. We review the unique opportunities and challenges for translating CAP to the management of biofilms. Copyright © 2018. Published by Elsevier Ltd.
Plant Endoplasmic Reticulum-Plasma Membrane Contact Sites.
Wang, Pengwei; Hawes, Chris; Hussey, Patrick J
2017-04-01
The endoplasmic reticulum (ER) acts as a superhighway with multiple sideroads that connects the different membrane compartments including the ER to the plasma membrane (PM). ER-PM contact sites (EPCSs) are a common feature in eukaryotic organisms, but have not been studied well in plants owing to the lack of molecular markers and to the difficulty in resolving the EPCS structure using conventional microscopy. Recently, however, plant protein complexes required for linking the ER and PM have been identified. This is a further step towards understanding the structure and function of plant EPCSs. We highlight some recent studies in this field and suggest several hypotheses that relate to the possible function of EPCSs in plants. Copyright © 2016. Published by Elsevier Ltd.
Eastwood, Jonathan P
2008-12-13
The basic physics underpinning space weather is reviewed, beginning with a brief overview of the main causes of variability in the near-Earth space environment. Although many plasma phenomena contribute to space weather, one of the most important is magnetic reconnection, and recent cutting edge research in this field is reviewed. We then place this research in context by discussing a number of specific types of space weather in more detail. As society inexorably increases its dependence on space, the necessity of predicting and mitigating space weather will become ever more acute. This requires a deep understanding of the complexities inherent in the plasmas that fill space and has prompted the development of a new generation of scientific space missions at the international level.
Spectroscopic studies of MW plasmas containing HMDSO, O2 and N2
NASA Astrophysics Data System (ADS)
Nave, Andy; Roepcke, Juergen; Mitschker, Felix; Awakowicz, Peter
2015-09-01
The deposition of SiOx layers based on organosilicon plasmas is used to implement advantageous mechanical, electrical, and/or optical properties on various substrates. The development of such coating processes resulting in a wide range of chemical and physical film properties, using hexamethyldisiloxane (HMDSO) as a precursor, has been in the center of interest of various studies. In plasma, the dissociation of HMDSO into a large amount of fragments is a complex chemical phenomenon. The monitoring of the precursor and of formed species is very valuable to understand the plasma chemistry. Infrared absorption spectroscopy based on lead salt lasers and EC Quantum Cascade Laser have been used to monitor the concentrations of HMDSO, and of the reaction products CH4, C2H2, C2H4,C2H6, CO, CO2 and CH3 as a function of the HMDSO/O2 mixture ratio, and the power at various pressures in a MW plasma deposition reactor. Optical emission spectroscopy has been applied as complementary diagnostics to evaluate electron density and electron temperature. Supported by the German Research Foundation within SFB-TR24 and SFB-TR87.
Golas, Avantika; Yeh, Chyi-Huey Josh; Pitakjakpipop, Harit; Siedlecki, Christopher A.; Vogler, Erwin A.
2012-01-01
Activation of blood plasma coagulation in vitro by contact with material surfaces is demonstrably dependent on plasma-volume-to-activator-surface-area ratio. The only plausible explanation consistent with current understanding of coagulation-cascade biochemistry is that procoagulant stimulus arising from the activation complex of the intrinsic pathway is dependent on activator surface area. And yet, it is herein shown that activation of the blood zymogen factor XII (Hageman factor, FXII) dissolved in buffer, protein cocktail, heat-denatured serum, and FXI deficient plasma does not exhibit activator surface-area dependence. Instead, a highly-variable burst of procoagulant-enzyme yield is measured that exhibits no measurable kinetics, sensitivity to mixing, or solution-temperature dependence. Thus, FXII activation in both buffer and protein-containing solutions does not exhibit characteristics of a biochemical reaction but rather appears to be a “mechanochemical” reaction induced by FXII molecule interactions with hydrophilic activator particles that do not formally adsorb blood proteins from solution. Results of this study strongly suggest that activator surface-area dependence observed in contact activation of plasma coagulation does not solely arise at the FXII activation step of the intrinsic pathway. PMID:23117212
Immunoadsorption for collagen and rheumatic diseases.
Yamaji, Ken
2017-10-01
The field of therapeutics has seen remarkable progress in the recent years, which has made mainstream drug treatment possible for collagen and rheumatic diseases. However, treatment of intractable cases where drug effectiveness is poor is a challenge. Furthermore, organ damage, concurrent illnesses or allergic reactions make adequate drug therapy impossible. For such cases, therapeutic apheresis is very significant, and it is important how this should be valued related to drug therapies. Therapeutic apheresis for collagen and rheumatic diseases involves the removal of factors that cause and exacerbate the disease; the aim of immunoadsorption, in particular, is to improve the clinical condition of patients with autoimmune disease by selectively removing pathogenic immune complexes and autoantibodies from their plasma. Immunoadsorption, in particular, unlike plasma exchange and DFPP, utilizes a high-affinity column that selectively removes autoantibodies and immune complexes, leaving other plasma components intact. There is no need to replenish fresh frozen plasma or blood products such as albumin and gamma globulin preparations. Immunoadsorption is thus superior in terms of safety, as the risk of infection or allergic reaction relating to these preparations can be avoided. We anticipate future investigations of application of synchronized therapy using drugs and therapeutic apheresis, most notably immunoadsorption, in combination to treat intractable clinical conditions such as collagen and rheumatic diseases. In this paper, our discussion includes the indications for immunoadsorption such as collagen and rheumatic diseases, the relevant conditions and types, as well as the latest understanding related to methods and clinical efficacy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Statistical Analysis of Variation in the Human Plasma Proteome
Corzett, Todd H.; Fodor, Imola K.; Choi, Megan W.; ...
2010-01-01
Quantifying the variation in the human plasma proteome is an essential prerequisite for disease-specific biomarker detection. We report here on the longitudinal and individual variation in human plasma characterized by two-dimensional difference gel electrophoresis (2-D DIGE) using plasma samples from eleven healthy subjects collected three times over a two week period. Fixed-effects modeling was used to remove dye and gel variability. Mixed-effects modeling was then used to quantitate the sources of proteomic variation. The subject-to-subject variation represented the largest variance component, while the time-within-subject variation was comparable to the experimental variation found in a previous technical variability study where onemore » human plasma sample was processed eight times in parallel and each was then analyzed by 2-D DIGE in triplicate. Here, 21 protein spots had larger than 50% CV, suggesting that these proteins may not be appropriate as biomarkers and should be carefully scrutinized in future studies. Seventy-eight protein spots showing differential protein levels between different individuals or individual collections were identified by mass spectrometry and further characterized using hierarchical clustering. The results present a first step toward understanding the complexity of longitudinal and individual variation in the human plasma proteome, and provide a baseline for improved biomarker discovery.« less
Statistical analysis of variation in the human plasma proteome.
Corzett, Todd H; Fodor, Imola K; Choi, Megan W; Walsworth, Vicki L; Turteltaub, Kenneth W; McCutchen-Maloney, Sandra L; Chromy, Brett A
2010-01-01
Quantifying the variation in the human plasma proteome is an essential prerequisite for disease-specific biomarker detection. We report here on the longitudinal and individual variation in human plasma characterized by two-dimensional difference gel electrophoresis (2-D DIGE) using plasma samples from eleven healthy subjects collected three times over a two week period. Fixed-effects modeling was used to remove dye and gel variability. Mixed-effects modeling was then used to quantitate the sources of proteomic variation. The subject-to-subject variation represented the largest variance component, while the time-within-subject variation was comparable to the experimental variation found in a previous technical variability study where one human plasma sample was processed eight times in parallel and each was then analyzed by 2-D DIGE in triplicate. Here, 21 protein spots had larger than 50% CV, suggesting that these proteins may not be appropriate as biomarkers and should be carefully scrutinized in future studies. Seventy-eight protein spots showing differential protein levels between different individuals or individual collections were identified by mass spectrometry and further characterized using hierarchical clustering. The results present a first step toward understanding the complexity of longitudinal and individual variation in the human plasma proteome, and provide a baseline for improved biomarker discovery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hübner, M.; Lang, N.; Röpcke, J.
2015-01-19
Dielectric etching plasma processes for modern interlevel dielectrics become more and more complex by the introduction of new ultra low-k dielectrics. One challenge is the minimization of sidewall damage, while etching ultra low-k porous SiCOH by fluorocarbon plasmas. The optimization of this process requires a deeper understanding of the concentration of the CF{sub 2} radical, which acts as precursor in the polymerization of the etch sample surfaces. In an industrial dielectric etching plasma reactor, the CF{sub 2} radical was measured in situ using a continuous wave quantum cascade laser (cw-QCL) around 1106.2 cm{sup −1}. We measured Doppler-resolved ro-vibrational absorption lines andmore » determined absolute densities using transitions in the ν{sub 3} fundamental band of CF{sub 2} with the aid of an improved simulation of the line strengths. We found that the CF{sub 2} radical concentration during the etching plasma process directly correlates to the layer structure of the etched wafer. Hence, this correlation can serve as a diagnostic tool of dielectric etching plasma processes. Applying QCL based absorption spectroscopy opens up the way for advanced process monitoring and etching controlling in semiconductor manufacturing.« less
Single photon emission from plasma treated 2D hexagonal boron nitride.
Xu, Zai-Quan; Elbadawi, Christopher; Tran, Toan Trong; Kianinia, Mehran; Li, Xiuling; Liu, Daobin; Hoffman, Timothy B; Nguyen, Minh; Kim, Sejeong; Edgar, James H; Wu, Xiaojun; Song, Li; Ali, Sajid; Ford, Mike; Toth, Milos; Aharonovich, Igor
2018-05-03
Artificial atomic systems in solids are becoming increasingly important building blocks in quantum information processing and scalable quantum nanophotonic networks. Amongst numerous candidates, 2D hexagonal boron nitride has recently emerged as a promising platform hosting single photon emitters. Here, we report a number of robust plasma and thermal annealing methods for fabrication of emitters in tape-exfoliated hexagonal boron nitride (hBN) crystals. A two-step process comprising Ar plasma etching and subsequent annealing in Ar is highly robust, and yields an eight-fold increase in the concentration of emitters in hBN. The initial plasma-etching step generates emitters that suffer from blinking and bleaching, whereas the two-step process yields emitters that are photostable at room temperature with emission wavelengths greater than ∼700 nm. Density functional theory modeling suggests that the emitters might be associated with defect complexes that contain oxygen. This is further confirmed by generating the emitters via annealing hBN in air. Our findings advance the present understanding of the structure of quantum emitters in hBN and enhance the nanofabrication toolkit needed to realize integrated quantum nanophotonic circuits.
Hall effect in the coma of 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Huang, Z.; Tóth, G.; Gombosi, T. I.; Jia, X.; Combi, M. R.; Hansen, K. C.; Fougere, N.; Shou, Y.; Tenishev, V.; Altwegg, K.; Rubin, M.
2018-04-01
Magnetohydrodynamics simulations have been carried out in studying the solar wind and cometary plasma interactions for decades. Various plasma boundaries have been simulated and compared well with observations for comet 1P/Halley. The Rosetta mission, which studies comet 67P/Churyumov-Gerasimenko, challenges our understanding of the solar wind and comet interactions. The Rosetta Plasma Consortium observed regions of very weak magnetic field outside the predicted diamagnetic cavity. In this paper, we simulate the inner coma with the Hall magnetohydrodynamics equations and show that the Hall effect is important in the inner coma environment. The magnetic field topology becomes complex and magnetic reconnection occurs on the dayside when the Hall effect is taken into account. The magnetic reconnection on the dayside can generate weak magnetic field regions outside the global diamagnetic cavity, which may explain the Rosetta Plasma Consortium observations. We conclude that the substantial change in the inner coma environment is due to the fact that the ion inertial length (or gyro radius) is not much smaller than the size of the diamagnetic cavity.
NASA Astrophysics Data System (ADS)
Spence, Harlan; Reeves, Geoffrey
2012-07-01
The Radiation Belt Storm Probes (RBSP) mission will launch in late summer 2012 and begin its exploration of acceleration and dynamics of energetic particles in the inner magnetosphere. In this presentation, we discuss opportunities afforded by the RBSP Energetic Particle, Composition, and Thermal plasma (ECT) instrument suite to advance our understanding of acceleration processes in the radiation belts. The RBSP-ECT instrument suite comprehensively measures the electron and major ion populations of the inner magnetosphere, from the lowest thermal plasmas of the plasmasphere, to the hot plasma of the ring current, to the relativistic populations of the radiation belts. Collectively, the ECT measurements will reveal the complex cross-energy coupling of these colocated particle populations, which along with concurrent RBSP wave measurements, will permit various wave-particle acceleration mechanisms to be tested. We review the measurement capabilities of the RBSP-ECT instrument suite, and demonstrate several examples of how these measurements will be used to explore candidate acceleration mechanisms and dynamics of radiation belt particles.
Martinez-Pinna, Roxana; Gonzalez de Peredo, Anne; Monsarrat, Bernard; Burlet-Schiltz, Odile; Martin-Ventura, Jose Luis
2014-08-01
To find potential biomarkers of abdominal aortic aneurysms (AAA), we performed a differential proteomic study based on human plasma-derived microvesicles. Exosomes and microparticles isolated from plasma of AAA patients and control subjects (n = 10 each group) were analyzed by a label-free quantitative MS-based strategy. Homemade and publicly available software packages have been used for MS data analysis. The application of two kinds of bioinformatic tools allowed us to find differential protein profiles from AAA patients. Some of these proteins found by the two analysis methods belong to main pathological mechanisms of AAA such as oxidative stress, immune-inflammation, and thrombosis. Data analysis from label-free MS-based experiments requires the use of sophisticated bioinformatic approaches to perform quantitative studies from complex protein mixtures. The application of two of these bioinformatic tools provided us a preliminary list of differential proteins found in plasma-derived microvesicles not previously associated to AAA, which could help us to understand the pathological mechanisms related to this disease. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Complex degree of mutual anisotropy in diagnostics of biological tissues physiological changes
NASA Astrophysics Data System (ADS)
Ushenko, Yu. A.; Dubolazov, O. V.; Karachevtcev, A. O.; Zabolotna, N. I.
2011-05-01
To characterize the degree of consistency of parameters of the optically uniaxial birefringent protein nets of blood plasma a new parameter - complex degree of mutual anisotropy is suggested. The technique of polarization measuring the coordinate distributions of the complex degree of mutual anisotropy of blood plasma is developed. It is shown that statistic approach to the analysis of complex degree of mutual anisotropy distributions of blood plasma is effective in the diagnosis and differentiation of acute inflammation - acute and gangrenous appendicitis.
Complex degree of mutual anisotropy in diagnostics of biological tissues physiological changes
NASA Astrophysics Data System (ADS)
Ushenko, Yu. A.; Dubolazov, A. V.; Karachevtcev, A. O.; Zabolotna, N. I.
2011-09-01
To characterize the degree of consistency of parameters of the optically uniaxial birefringent protein nets of blood plasma a new parameter - complex degree of mutual anisotropy is suggested. The technique of polarization measuring the coordinate distributions of the complex degree of mutual anisotropy of blood plasma is developed. It is shown that statistic approach to the analysis of complex degree of mutual anisotropy distributions of blood plasma is effective in the diagnosis and differentiation of acute inflammation - acute and gangrenous appendicitis.
3-Dimensional Modeling of Capacitively and Inductively Coupled Plasma Etching Systems
NASA Astrophysics Data System (ADS)
Rauf, Shahid
2008-10-01
Low temperature plasmas are widely used for thin film etching during micro and nano-electronic device fabrication. Fluid and hybrid plasma models were developed 15-20 years ago to understand the fundamentals of these plasmas and plasma etching. These models have significantly evolved since then, and are now a major tool used for new plasma hardware design and problem resolution. Plasma etching is a complex physical phenomenon, where inter-coupled plasma, electromagnetic, fluid dynamics, and thermal effects all have a major influence. The next frontier in the evolution of fluid-based plasma models is where these models are able to self-consistently treat the inter-coupling of plasma physics with fluid dynamics, electromagnetics, heat transfer and magnetostatics. We describe one such model in this paper and illustrate its use in solving engineering problems of interest for next generation plasma etcher design. Our 3-dimensional plasma model includes the full set of Maxwell equations, transport equations for all charged and neutral species in the plasma, the Navier-Stokes equation for fluid flow, and Kirchhoff's equations for the lumped external circuit. This model also includes Monte Carlo based kinetic models for secondary electrons and stochastic heating, and can take account of plasma chemistry. This modeling formalism allows us to self-consistently treat the dynamics in commercial inductively and capacitively coupled plasma etching reactors with realistic plasma chemistries, magnetic fields, and reactor geometries. We are also able to investigate the influence of the distributed electromagnetic circuit at very high frequencies (VHF) on the plasma dynamics. The model is used to assess the impact of azimuthal asymmetries in plasma reactor design (e.g., off-center pump, 3D magnetic field, slit valve, flow restrictor) on plasma characteristics at frequencies from 2 -- 180 MHz. With Jason Kenney, Ankur Agarwal, Ajit Balakrishna, Kallol Bera, and Ken Collins.
Comparison of Global Martian Plasma Models in the Context of MAVEN Observations
NASA Astrophysics Data System (ADS)
Egan, Hilary; Ma, Yingjuan; Dong, Chuanfei; Modolo, Ronan; Jarvinen, Riku; Bougher, Stephen; Halekas, Jasper; Brain, David; Mcfadden, James; Connerney, John; Mitchell, David; Jakosky, Bruce
2018-05-01
Global models of the interaction of the solar wind with the Martian upper atmosphere have proved to be valuable tools for investigating both the escape to space of the Martian atmosphere and the physical processes controlling this complex interaction. The many models currently in use employ different physical assumptions, but it can be difficult to directly compare the effectiveness of the models since they are rarely run for the same input conditions. Here we present the results of a model comparison activity, where five global models (single-fluid MHD, multifluid MHD, multifluid electron pressure MHD, and two hybrid models) were run for identical conditions corresponding to a single orbit of observations from the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. We find that low-altitude ion densities are very similar across all models and are comparable to MAVEN ion density measurements from periapsis. Plasma boundaries appear generally symmetric in all models and vary only slightly in extent. Despite these similarities there are clear morphological differences in ion behavior in other regions such as the tail and southern hemisphere. These differences are observable in ion escape loss maps and are necessary to understand in order to accurately use models in aiding our understanding of the Martian plasma environment.
Strop, Pavel; Kaiser, Stephen E; Vrljic, Marija; Brunger, Axel T
2008-01-11
SNARE proteins form a complex that leads to membrane fusion between vesicles, organelles, and plasma membrane in all eukaryotic cells. We report the 1.7A resolution structure of the SNARE complex that mediates exocytosis at the plasma membrane in the yeast Saccharomyces cerevisiae. Similar to its neuronal and endosomal homologues, the S. cerevisiae SNARE complex forms a parallel four-helix bundle in the center of which is an ionic layer. The S. cerevisiae SNARE complex exhibits increased helix bending near the ionic layer, contains water-filled cavities in the complex core, and exhibits reduced thermal stability relative to mammalian SNARE complexes. Mutagenesis experiments suggest that the water-filled cavities contribute to the lower stability of the S. cerevisiae complex.
Molecular dynamic simulation of weakly magnetized complex plasmas
NASA Astrophysics Data System (ADS)
Funk, Dylan; Konopka, Uwe; Thomas, Edward
2017-10-01
A complex plasma consists of the usual plasma components (electrons, ions and neutrals), as well as a heavier component made of solid, micrometer-sized particles. The particles are in general highly charged as a result of the interaction with the other plasma components. The static and dynamic properties of a complex plasma such as its crystal structure or wave properties are influenced by many forces acting on the individual particles such as the dust particle interaction (a screened Coulomb interaction), neutral (Epstein) drag, the particle inertia and various plasma drag or thermophoretic forces. To study the behavior of complex plasmas we setup an experiment accompanying molecular dynamic simulation. We will present the approach taken in our simulation and give an overview of experimental situations that we want to cover with our simulation such as the particle charge under microgravity condition as performed on the PK-4 space experiment, or to study the detailed influences of high magnetic fields. This work was supported by the US Dept. of Energy (DE-SC0016330), NSF (PHY-1613087) and JPL/NASA (JPL-RSA 1571699).
Turbulent complex (dusty) plasma
NASA Astrophysics Data System (ADS)
Zhdanov, Sergey; Schwabe, Mierk
2017-04-01
As a paradigm of complex system dynamics, solid particles immersed into a weakly ionized plasma, so called complex (dusty) plasmas, were (and continue to be) a subject of many detailed studies. Special types of dynamical activity have been registered, in particular, spontaneous pairing, entanglement and cooperative action of a great number of particles resulting in formation of vortices, self-propelling, tunneling, and turbulent movements. In the size domain of 1-10 mkm normally used in experiments with complex plasmas, the characteristic dynamic time-scale is of the order of 0.01-0.1 s, and these particles can be visualized individually in real time, providing an atomistic (kinetic) level of investigations. The low-R turbulent flow induced either by the instability in a complex plasma cloud or formed behind a projectile passing through the cloud is a typical scenario. Our simulations showed formation of a fully developed system of vortices and demonstrated that the velocity structure functions scale very close to the theoretical predictions. As an important element of self-organization, cooperative and turbulent particle motions are present in many physical, astrophysical, and biological systems. Therefore, experiments with turbulent wakes and turbulent complex plasma oscillations are a promising mean to observe and study in detail the anomalous transport on the level of individual particles.
Dynamic complexity: plant receptor complexes at the plasma membrane.
Burkart, Rebecca C; Stahl, Yvonne
2017-12-01
Plant receptor complexes at the cell surface perceive many different external and internal signalling molecules and relay these signals into the cell to regulate development, growth and immunity. Recent progress in the analyses of receptor complexes using different live cell imaging approaches have shown that receptor complex formation and composition are dynamic and take place at specific microdomains at the plasma membrane. In this review we focus on three prominent examples of Arabidopsis thaliana receptor complexes and how their dynamic spatio-temporal distribution at the PM has been studied recently. We will elaborate on the newly emerging concept of plasma membrane microdomains as potential hubs for specific receptor complex assembly and signalling outputs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Advanced computations in plasma physics
NASA Astrophysics Data System (ADS)
Tang, W. M.
2002-05-01
Scientific simulation in tandem with theory and experiment is an essential tool for understanding complex plasma behavior. In this paper we review recent progress and future directions for advanced simulations in magnetically confined plasmas with illustrative examples chosen from magnetic confinement research areas such as microturbulence, magnetohydrodynamics, magnetic reconnection, and others. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales together with access to powerful new computational resources. In particular, the fusion energy science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPP's to produce three-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of turbulence self-regulation by zonal flows. It should be emphasized that these calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to stimulate improved cross-cutting collaborations with other fields and also to help attract bright young talent to plasma science.
Advanced Computation in Plasma Physics
NASA Astrophysics Data System (ADS)
Tang, William
2001-10-01
Scientific simulation in tandem with theory and experiment is an essential tool for understanding complex plasma behavior. This talk will review recent progress and future directions for advanced simulations in magnetically-confined plasmas with illustrative examples chosen from areas such as microturbulence, magnetohydrodynamics, magnetic reconnection, and others. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales together with access to powerful new computational resources. In particular, the fusion energy science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop MPP's to produce 3-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of turbulence self-regulation by zonal flows. It should be emphasized that these calculations, which typically utilized billions of particles for tens of thousands time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to stimulate improved cross-cutting collaborations with other fields and also to help attract bright young talent to plasma science.
Magnetic Field Effects on Plasma Plumes
NASA Technical Reports Server (NTRS)
Ebersohn, F.; Shebalin, J.; Girimaji, S.; Staack, D.
2012-01-01
Here, we will discuss our numerical studies of plasma jets and loops, of basic interest for plasma propulsion and plasma astrophysics. Space plasma propulsion systems require strong guiding magnetic fields known as magnetic nozzles to control plasma flow and produce thrust. Propulsion methods currently being developed that require magnetic nozzles include the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR) [1] and magnetoplasmadynamic thrusters. Magnetic nozzles are functionally similar to de Laval nozzles, but are inherently more complex due to electromagnetic field interactions. The two crucial physical phenomenon are thrust production and plasma detachment. Thrust production encompasses the energy conversion within the nozzle and momentum transfer to a spacecraft. Plasma detachment through magnetic reconnection addresses the problem of the fluid separating efficiently from the magnetic field lines to produce maximum thrust. Plasma jets similar to those of VASIMR will be studied with particular interest in dual jet configurations, which begin as a plasma loops between two nozzles. This research strives to fulfill a need for computational study of these systems and should culminate with a greater understanding of the crucial physics of magnetic nozzles with dual jet plasma thrusters, as well as astrophysics problems such as magnetic reconnection and dynamics of coronal loops.[2] To study this problem a novel, hybrid kinetic theory and single fluid magnetohydrodynamic (MHD) solver known as the Magneto-Gas Kinetic Method is used.[3] The solver is comprised of a "hydrodynamic" portion based on the Gas Kinetic Method and a "magnetic" portion that accounts for the electromagnetic behaviour of the fluid through source terms based on the resistive MHD equations. This method is being further developed to include additional physics such as the Hall effect. Here, we will discuss the current level of code development, as well as numerical simulation results
C-2W Magnetic Measurement Suite
NASA Astrophysics Data System (ADS)
Roche, T.; Thompson, M. C.; Griswold, M.; Knapp, K.; Koop, B.; Ottaviano, A.; Tobin, M.; TAE, Tri Alpha Energy, Inc. Team
2017-10-01
Commissioning and early operations are underway on C-2W, Tri Alpha Energy's new FRC experiment. The increased complexity level of this machine requires an equally enhanced diagnostic capability. A fundamental component of any magnetically confined fusion experiment is a firm understanding of the magnetic field itself. C-2W is outfitted with over 700 magnetic field probes, 550 internal and 150 external. Innovative in-vacuum annular flux loop / B-dot combination probes will provide information about plasma shape, size, pressure, energy, total temperature, and trapped flux when coupled with establish theoretical interpretations. The massive Mirnov array, consisting of eight rings of eight 3D probes, will provide detailed information about plasma motion, stability, and MHD modal content with the aid of singular value decomposition (SVD) analysis. Internal Rogowski probes will detect the presence of axial currents flowing in the plasma jet in multiple axial locations. Initial data from this array of diagnostics will be presented along with some interpretation and discussion of the analysis techniques used.
Proteomic profiling of human plasma for cancer biomarker discovery.
Huang, Zhao; Ma, Linguang; Huang, Canhua; Li, Qifu; Nice, Edouard C
2017-03-01
Over the past decades, substantial advances have been made in both the early diagnosis and accurate prognosis of many cancers because of the impressive development of novel proteomic strategies. However, it remains difficult to standardize proteomic approaches. In addition, the heterogeneity of proteins in distinct tissues results in incomplete population of the whole proteome, which inevitably limits its clinical practice. As one of the most complex proteomes in the human body, the plasma proteome contains secreted proteins originating from multiple organs and tissues, making it a favorable matrix for comprehensive biomarker discovery. Here, we will discuss the roles of plasma proteome profiling in cancer biomarker discovery and validation, and highlight both the inherent advantages and disadvantages. Although several hurdles lay ahead, further advances in this technology will greatly increase our understanding of cancer biology, reveal new biomarkers and biomarker panels, and open a new avenue for more efficient early diagnosis and surveillance of cancer, leading toward personalized medicine. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Proton probing of a relativistic laser interaction with near-critical plasma
NASA Astrophysics Data System (ADS)
Willingale, Louise; Zulick, C.; Thomas, A. G. R.; Maksimchuk, A.; Krushelnick, K.; Nilson, P. M.; Stoeckl, C.; Sangster, T. C.; Nazarov, W.
2014-10-01
The Omega EP laser (1000 J in 10 ps pulses) was used to investigate a relativistic intensity laser interaction with near-critical density plasma using a transverse proton beam to diagnose the large electromagnetic fields generated. A very low density foam target mounted in a washer provided the near-critical density conditions. The fields from a scaled, two-dimensional particle-in-cell simulation were inputed into a particle-tracking code to create simulated proton probe images. This allows us to understand the origins of the complex features in the experimental images, including a rapidly expanding sheath field, evidence for ponderomotive channeling and fields at the foam-washer interface. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0002028.
VEGF signaling inside vascular endothelial cells and beyond
Eichmann, Anne; Simons, Michael
2014-01-01
Vascular endothelial growth factor-A (VEGF-A) has long been recognized as the key regulator of vascular development and function in health and disease. VEGF is a secreted polypeptide that binds to transmembrane tyrosine kinase VEGF receptors on the plasma membrane, inducing their dimerization, activation and assembly of a membrane-proximal signaling complex. Recent studies have revealed that many key events of VEGFR signaling occur inside the endothelial cell and are regulated by endosomal receptor trafficking. Plasma membrane VEGFR interacting molecules, including vascular guidance receptors Neuropilins and Ephrins also regulate VEGFR endocytosis and trafficking. VEGF signaling is increasingly recognized for its roles outside of the vascular system, notably during neural development, and blood vessels regulate epithelial branching morphogenesis. We review here recent advances in our understanding of VEGF signaling and its biological roles. PMID:22366328
A Global Modeling Framework for Plasma Kinetics: Development and Applications
NASA Astrophysics Data System (ADS)
Parsey, Guy Morland
The modern study of plasmas, and applications thereof, has developed synchronously with com- puter capabilities since the mid-1950s. Complexities inherent to these charged-particle, many- body, systems have resulted in the development of multiple simulation methods (particle-in-cell, fluid, global modeling, etc.) in order to both explain observed phenomena and predict outcomes of plasma applications. Recognizing that different algorithms are chosen to best address specific topics of interest, this thesis centers around the development of an open-source global model frame- work for the focused study of non-equilibrium plasma kinetics. After verification and validation of the framework, it was used to study two physical phenomena: plasma-assisted combustion and the recently proposed optically-pumped rare gas metastable laser. Global models permeate chemistry and plasma science, relying on spatial averaging to focus attention on the dynamics of reaction networks. Defined by a set of species continuity and energy conservation equations, the required data and constructed systems are conceptually similar across most applications, providing a light platform for exploratory and result-search parameter scan- ning. Unfortunately, it is common practice for custom code to be developed for each application-- an enormous duplication of effort which negatively affects the quality of the software produced. Presented herein, the Python-based Kinetic Global Modeling framework (KGMf) was designed to support all modeling phases: collection and analysis of reaction data, construction of an exportable system of model ODEs, and a platform for interactive evaluation and post-processing analysis. A symbolic ODE system is constructed for interactive manipulation and generation of a Jacobian, both of which are compiled as operation-optimized C-code. Plasma-assisted combustion and ignition (PAC/PAI) embody the modernization of burning fuel by opening up new avenues of control and optimization. With applications ranging from engineefficiency and pollution control to stabilized operation of scramjet technology in hypersonic flows, developing an understanding of the underlying plasma chemistry is of the utmost importance. While the use of equilibrium (thermal) plasmas in the combustion process extends back to the ad- vent of the spark-ignition engine, works from the last few decades have demonstrated fundamental differences between PAC and classical combustion theory. The KGMf is applied to nanosecond- discharge systems in order to analyze the effects of electron energy distribution assumptions on reaction kinetics and highlight the usefulness of 0D modeling in systems defined by coupled and complex physics. With fundamentally different principles involved, the concept of optically-pumped rare gas metastable lasing (RGL) presents a novel opportunity for scalable high-powered lasers by taking advantage of similarities in the electronic structure of elements while traversing the periodic ta- ble. Building from the proven concept of diode-pumped alkali vapor lasers (DPAL), RGL systems demonstrate remarkably similar spectral characteristics without problems associated with heated caustic vapors. First introduced in 2012, numerical studies on the latent kinetics remain immature. This work couples an analytic model developed for DPAL with KGMf plasma chemistry to bet- ter understand the interaction of a non-equilibrium plasma with the induced laser processes and determine if optical pumping could be avoided through careful discharge selection.
Biosynthesis of plant cell wall polysaccharides.
Gibeaut, D M; Carpita, N C
1994-09-01
The cell wall is the principal structural element of plant form. Cellulose, long crystals of several dozen glucan chains, forms the microfibrillar foundation of plant cell walls and is synthesized at the plasma membrane. Except for callose, all other noncellulosic components are secreted to the cell surface and form a porous matrix assembled around the cellulose microfibrils. These diverse noncellulosic polysaccharides and proteins are made in the endomembrane system. Many questions about the biosynthesis and modification within the Golgi apparatus and integration of cell components at the cell surface remain unanswered. The lability of synthetic complexes upon isolation is one reason for slow progress. However, with new methods of membrane isolation and analysis of products in vitro, recent advances have been made in purifying active synthases from plasma membrane and Golgi apparatus. Likely synthase polypeptides have been identified by affinity-labeling techniques, but we are just beginning to understand the unique features of the coordinated assembly of complex polysaccharides. Nevertheless, such progress renews hope that the first gene of a synthase for a wall polysaccharide from higher plants is within our grasp.
Plasma and cellular fibronectin: distinct and independent functions during tissue repair
2011-01-01
Fibronectin (FN) is a ubiquitous extracellular matrix (ECM) glycoprotein that plays vital roles during tissue repair. The plasma form of FN circulates in the blood, and upon tissue injury, is incorporated into fibrin clots to exert effects on platelet function and to mediate hemostasis. Cellular FN is then synthesized and assembled by cells as they migrate into the clot to reconstitute damaged tissue. The assembly of FN into a complex three-dimensional matrix during physiological repair plays a key role not only as a structural scaffold, but also as a regulator of cell function during this stage of tissue repair. FN fibrillogenesis is a complex, stepwise process that is strictly regulated by a multitude of factors. During fibrosis, there is excessive deposition of ECM, of which FN is one of the major components. Aberrant FN-matrix assembly is a major contributing factor to the switch from normal tissue repair to misregulated fibrosis. Understanding the mechanisms involved in FN assembly and how these interplay with cellular, fibrotic and immune responses may reveal targets for the future development of therapies to regulate aberrant tissue-repair processes. PMID:21923916
2016-06-08
forces. Plasmas in hypersonic and astrophysical flows are one of the most typical examples of such conductive fluids. Though MHD models are a low...remain powerful tools in helping researchers to understand the complex physical processes in the geospace environment. For example, the ideal MHD...vertex level within each physical time step. For this reason and the method’s DG ingredient, the method was named as the space-time discontinuous Galerkin
Coherent control of plasma dynamics
NASA Astrophysics Data System (ADS)
He, Zhaohan
2014-10-01
The concept of coherent control - precise measurement or determination of a process through control of the phase of an applied oscillating field - has been applied to numerous systems with great success. Here, we demonstrate the use of coherent control on plasma dynamics in a laser wakefield electron acceleration experiment. A tightly focused femtosecond laser pulse (10 mJ, 35 fs) was used to generate electron beams by plasma wakefield acceleration in the density down ramp. The technique is based on optimization of the electron beam using a deformable mirror adaptive optical system with an iterative evolutionary genetic algorithm. The image of the electrons on a scintillator screen was processed and used in a fitness function as direct feedback for the optimization algorithm. This coherent manipulation of the laser wavefront leads to orders of magnitude improvement to the electron beam properties such as the peak charge and beam divergence. The laser beam optimized to generate the best electron beam was not the one with the ``best'' focal spot. When a particular wavefront of laser light interacts with plasma, it can affect the plasma wave structures and trapping conditions of the electrons in a complex way. For example, Raman forward scattering, envelope self-modulation, relativistic self-focusing, and relativistic self-phase modulation and many other nonlinear interactions modify both the pulse envelope and phase as the pulse propagates, in a way that cannot be easily predicted and that subsequently dictates the formation of plasma waves. The optimal wavefront could be successfully determined via the heuristic search under laser-plasma conditions that were not known a priori. Control and shaping of the electron energy distribution was found to be less effective, but was still possible. Particle-in-cell simulations were performed to show that the mode structure of the laser beam can affect the plasma wave structure and trapping conditions of electrons, which subsequently produces electron beams with a different divergence. The proof-of-principle demonstration of coherent control for plasmas opens new possibilities for future laser-based accelerators and their applications. This study should also enable a significantly improved understanding of the complex dynamics of laser plasma interactions. This work was supported by DARPA under Contract No. N66001-11-1-4208, the NSF under Contract No. 0935197 and MCubed at the University of Michigan.
Electron-Driven Processes: From Single Collision Experiments to High-Pressure Discharge Plasmas
NASA Astrophysics Data System (ADS)
Becker, Kurt
2001-10-01
Plasmas are complex systems which consist of various groups of interacting particles (neutral atoms and molecules in their ground states and in excite states, electrons, and positive and negative ions). In principle, one needs to understand and describe all interactions between these particles in order to model the properties of the plasma and to predict its behavior. However, two-body interactions are often the only processes of relevance and only a subset of all possible collisional interactions are important. The focus of this talk is on collisional and radiative processes in low-temperature plasmas, both at low and high pressures. We will limit the discussion (i) to ionization and dissociation processes in molecular low-pressure plasmas and (ii) to collisional and radiative processes in high-pressure plasmas in rare gases and mixtures of rare gases and N2, O2, and H2. Electron-impact dissociation processes can be divided into dissociative excitation and dissociation into neutral ground-state fragments. Neutral molecular dissociation has only recently received attention from experimentalists and theorists because of the serious difficulties associated with the investigation of these processes. Collisional and radiative processes in high-pressure plasmas provide a fertile environment to the study of interactions that go beyond binary collisions involving ground-state species. Step-wise processes and three-body collisions begin to dominate the behavior of such plasmas. We will discuss examples of such processes as they relate to high-pressure rare gas discharge plasmas. Work supported by NSF, DOE, DARPA, NASA, and ABA Inc.
Novel diagnostics for direct measurements of radical densities in atmospheric pressure plasma jets
NASA Astrophysics Data System (ADS)
Wagenaars, Erik
2017-10-01
Atmospheric-pressure plasma jets (APPJs) are widely studied for potential applications in industry and healthcare, e.g. surface modification of plastics, plasma medicine and photoresist removal. These plasmas can operate in open air, remain at room temperature and still have a non-equilibrium chemistry. Even though the exact mechanisms through which APPJs affect target surfaces remain largely unknown, it is clear that reactive species play a pivotal role in the success of APPJs. Therefore, reactive species diagnostics of APPJs play an important role in further developing our understanding of the plasma chemistry and will enable increases in treatment efficacy. Two-photon Absorption Laser Induced Fluorescence (TALIF) is a well-known technique for the measurement of absolute densities of atomic radicals such as O, N and H. Unfortunately, application of this technique on APPJs that are operating under realistic conditions for applications, i.e. in open air and with complex admixtures, is not straightforward. The highly collisional environment of APPJs means that collisional quenching of the laser-excited state becomes significant and needs to be taken into account. For well-controlled atmospheres and simple admixtures the effect can be estimated using quenching coefficients, however under realistic operating conditions the identity and density of the quenching partners is unknown due to the complexity of the plasma chemistry. I will present a picosecond TALIF diagnostic which uses a sub-nanosecond laser and iCCD camera that allows the measurement of the quenching-affected fluorescence decay rate directly, enabling absolute measurements of O and N density maps in the open-air effluent of an APPJ. The author acknowledges his collaborators at UoY, A. West, J. Bredin, S. Schroeter, K. Niemi, T. Gans, J. Dedrick and D. O'Connell and support from the UK EPSRC (EP/K018388/1 & EP/H003797/1).
Complex Plasma Physics and Rising Above the Gathering Storm
NASA Astrophysics Data System (ADS)
Hyde, Truell
2008-11-01
Research in complex plasma is prevalent across a variety of regimes ranging from the majority of plasma processing environments to many astrophysical settings. Dust particles suspended within such plasmas acquire a charge from collisions with electrons and ions in the plasma. Depending upon the ratio of their interparticle potential energy to their average kinetic energy, once charged these particles can form a gaseous, liquid or crystalline structure with short to longer range ordering. The field of complex plasmas thus offers research opportunities across a wide range of academic disciplines including physics, chemistry, biology, mathematics, electrical engineering and nanoscience. The field of complex plasmas also offers unique educational research opportunities for combating many of the issues raised in Rising Above the Gathering Storm, recently published by the National Academies Press. CASPER's Educational Outreach programs, supported by the National Science Foundation, the Department of Education and the Department of Labor takes advantage of these opportunities through a variety of avenues including a REU / RET program, a High School Scholars Program, integrated curriculum development and the CASPER Physics Circus. Together, these programs impact thousands of students and parents while providing K-12 teachers with curriculum, supporting hands-on material and support for introducing plasma and basic physical science concepts into the classroom. Both research results and educational outreach concepts from the above will be discussed.
Strong-Field Control of Laser Filamentation Mechanisms
NASA Astrophysics Data System (ADS)
Levis, Robert; Romanov, Dmitri; Filin, Aleskey; Compton, Ryan
2008-05-01
The propagation of short strong-file laser pulses in gas and solution phases often result in formation of filaments. This phenomenon involves many nonlinear processes including Kerr lensing, group velocity dispersion, multi-photon ionization, plasma defocusing, intensity clamping, and self-steepening. Of these, formation and dynamics of pencil-shape plasma areas plays a crucial role. The fundamental understanding of these laser-induced plasmas requires additional effort, because the process is highly nonlinear and complex. We studied the ultrafast laser-generated plasma dynamics both experimentally and theoretically. Ultrafast plasma dynamics was probed using Coherent Anti-Stokes Raman Scattering. The measurements were made in a room temperature gas maintained at 1 atm in a flowing cell. The time dependent scattering was measured by delaying the CARS probe with respect to the intense laser excitation pulse. A general trend is observed between the spacing of the ground state and the first allowed excited state with the rise time for the noble gas series and the molecular gases. This trend is consistent with our theoretical model, which considers the ultrafast dynamics of the strong field generated plasma as a three-step process; (i) strong-field ionization followed by the electron gaining considerable kinetic energy during the pulse; (ii) immediate post-pulse dynamics: fast thermalization, impact-ionization-driven electron multiplication and cooling; (iii) ensuing relaxation: evolution to electron-ion equilibrium and eventual recombination.
NASA Astrophysics Data System (ADS)
Korreck, K. E.; Klein, K. G.; Maruca, B.; Alterman, B. L.
2017-12-01
The evolution of the solar wind from the corona to the Earth and throughout the heliosphere is a complex interplay between local micro kinetics and large scale expansion effects. These processes in the solar wind need to be separated in order to understand and distinguish the dominant mechanism for heating and acceleration of the solar wind. With the upcoming launch in 2018 of Parker Solar Probe and the launch of Solar Orbiter after, addressing the local and global phenomena will be enabled with in situ measurements. Parker Solar Probe will go closer to the Sun than any previous mission enabling the ability to examine the solar wind at an early expansion age. This work examines the predictions for what will be seen inside of the 0.25 AU (54 solar radii) where Parker Solar Probe will take measurements and lays the groundwork for disentangling the expansion and collisional effects. In addition, methods of thermal plasma data analysis to determine the stability of the plasma in the Parker Solar Probe measurements will be discussed.
Simulation of dust voids in complex plasmas
NASA Astrophysics Data System (ADS)
Goedheer, W. J.; Land, V.
2008-12-01
In dusty radio-frequency (RF) discharges under micro-gravity conditions often a void is observed, a dust free region in the discharge center. This void is generated by the drag of the positive ions pulled out of the discharge by the electric field. We have developed a hydrodynamic model for dusty RF discharges in argon to study the behaviour of the void and the interaction between the dust and the plasma background. The model is based on a recently developed theory for the ion drag force and the charging of the dust. With this model, we studied the plasma inside the void and obtained an understanding of the way it is sustained by heat generated in the surrounding dust cloud. When this heating mechanism is suppressed by lowering the RF power, the plasma density inside the void decreases, even below the level where the void collapses, as was recently shown in experiments on board the International Space Station. In this paper we present results of simulations of this collapse. At reduced power levels the collapsed central cloud behaves as an electronegative plasma with corresponding low time-averaged electric fields. This enables the creation of relatively homogeneous Yukawa balls, containing more than 100 000 particles. On earth, thermophoresis can be used to balance gravity and obtain similar dust distributions.
Vortex formation in a complex plasma
NASA Astrophysics Data System (ADS)
Ishihara, Osamu
Complex plasma experiments in ground-based laboratories as well as in microgravity conditions have shown the formation of vortex structures in various conditions (e.g., 1,2,3,4). The vortex structures formed in a complex plasma are visible by naked eyes with the help of irradiating laser and the individual dust particles in the structure give us the opportunity to study detailed physics of the commonly observed natural phenomena known such as tornadoes, typhoons, hurricanes and dust devils. Based on the Navier-Stokes equation with proper complex plasma conditions we analyze as much as possible in a universal way the vortex structure and clarifies the role of the controlling parameters like flow velocity and external magnetic field. 1. G. E. Morfill,H. M. Thomas, U. Konopka,H. Rothermel, M. Zuzic, A. Ivlev, and J. Goree, Phys,. Rev. Lett. 83, 1598 (1999). 2. E. Nebbat and R. Annou, Phys. Plasmas 17, 093702 (2010). 3. Y. Saitou and O. Ishihara, Phys. Rev. Lett. 111, 185003 (2013). 4. V. N. Tsytovich and N. G. Gusein-zade, Plasma Phys. Rep. 39, 515 (2013).
Plasma Levels of Soluble Interleukin 1 Receptor Accessory Protein Are Reduced in Obesity
Attard, Chantal; Kulkarni, Hemant; Cummings, Nik; Diego, Vincent P.; Carless, Melanie A.; Shields, Katherine A.; Johnson, Matthew P.; Kowlessur, Sudhir; Dyer, Thomas D.; Comuzzie, Anthony G.; Almasy, Laura; Zimmet, Paul; Moses, Eric K.; Göring, Harald H. H.; Curran, Joanne E.; Blangero, John; Jowett, Jeremy B. M.
2014-01-01
Context: Adipokines actuate chronic, low-grade inflammation through a complex network of immune markers, but the current understanding of these networks is incomplete. The soluble isoform of the IL-1 receptor accessory protein (sIL1RAP) occupies an important position in the inflammatory pathways involved in obesity. The pathogenetic and clinical influences of sIL1RAP are unknown. Objective: The objective of the study was to elucidate whether plasma levels of sIL1RAP are reduced in obesity, using affluent clinical, biochemical, and genetic data from two diverse cohorts. Design, Setting, and Participants: The study was conducted in two cohorts: the San Antonio Family Heart Study (n = 1397 individuals from 42 families) and South Asians living in Mauritius, n = 230). Main Outcome Measures: Plasma sIL1RAP levels were measured using an ELISA. The genetic basis of sIL1RAP levels were investigated using both a large-scale gene expression profiling study and a genome-wide association study. Results: A significant decrease in plasma sIL1RAP levels were observed in obese subjects, even after adjustment for age and sex. The sIL1RAP levels demonstrated a strong inverse association with obesity measures in both populations. All associations were more significant in females. Plasma sIL1RAP levels were significantly heritable, correlated with IL1RAP transcript levels (NM_134470), showed evidence for shared genetic influences with obesity measures and were significantly associated with the rs2885373 single-nucleotide polymorphism (P = 6.7 × 10−23) within the IL1RAP gene. Conclusions: Plasma sIL1RAP levels are reduced in obesity and can potentially act as biomarkers of obesity. Mechanistic studies are required to understand the exact contribution of sIL1RAP to the pathogenesis of obesity. PMID:24915116
NASA Astrophysics Data System (ADS)
Zhukhovitskii, D. I.; Fortov, V. E.; Molotkov, V. I.; Lipaev, A. M.; Naumkin, V. N.; Thomas, H. M.; Ivlev, A. V.; Schwabe, M.; Morfill, G. E.
2015-02-01
We report the first observation of the Mach cones excited by a larger microparticle (projectile) moving through a cloud of smaller microparticles (dust) in a complex plasma with neon as a buffer gas under microgravity conditions. A collective motion of the dust particles occurs as propagation of the contact discontinuity. The corresponding speed of sound was measured by a special method of the Mach cone visualization. The measurement results are incompatible with the theory of ion acoustic waves. The estimate for the pressure in a strongly coupled Coulomb system and a scaling law for the complex plasma make it possible to derive an evaluation for the speed of sound, which is in a reasonable agreement with the experiments in complex plasmas.
Wahl, S M; Boger, J K; Michael, V; Duffy, L K
1992-01-01
The hemoglobin and a hemoglobin binding protein have been characterized in the Arctic fish (Coregonus sardinella). The evolutionary significance of the hemoglobin and plasma protein differences between fish and mammals is still unresolved. Blood samples from the Alaskan Least Cisco were separated into plasma and hemoglobin fractions and the proteins in these fractions were analyzed both by alkaline agarose gel electrophoresis, by isolelectric focusing, and by capillary electrophoresis. Staining the plasma proteins gels with o-dianisidine revealed hemoglobin containing protein complexes. A hemoglobin-containing band was observed in hemolyzed plasma which did not migrate with free hemoglobin, and is believed to be hemoglobin-haptoglobin complex. Size exclusion chromatography further characterized the hemoglobin as disassociating freely into dimers, and hemoglobin-haptoglobin complex having a molecular weight greater then 200,000 daltons.
How synthetic membrane systems contribute to the understanding of lipid-driven endocytosis.
Schubert, Thomas; Römer, Winfried
2015-11-01
Synthetic membrane systems, such as giant unilamellar vesicles and solid supported lipid bilayers, have widened our understanding of biological processes occurring at or through membranes. Artificial systems are particularly suited to study the inherent properties of membranes with regard to their components and characteristics. This review critically reflects the emerging molecular mechanism of lipid-driven endocytosis and the impact of model membrane systems in elucidating the complex interplay of biomolecules within this process. Lipid receptor clustering induced by binding of several toxins, viruses and bacteria to the plasma membrane leads to local membrane bending and formation of tubular membrane invaginations. Here, lipid shape, and protein structure and valency are the essential parameters in membrane deformation. Combining observations of complex cellular processes and their reconstitution on minimal systems seems to be a promising future approach to resolve basic underlying mechanisms. This article is part of a Special Issue entitled: Mechanobiology. Copyright © 2015 Elsevier B.V. All rights reserved.
Advanced laser diagnostics for diamond deposition research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruger, C.H.; Owano, T.G.; Wahl, E.H.
Chemical Vapor Deposition (CVD) using thermal plasmas is attractive for diamond synthesis applications due to the inherently high reactant densities and throughput, but the associated high gas-phase collision rates in the boundary layer above the substrate produce steep thermal and species gradients which can drive the complex plasma chemistry away from optimal conditions. To understand and control these environments, accurate measurements of temperature and species concentrations within the reacting boundary layer are needed. This is challenging in atmospheric pressure reactors due to the highly luminous environment, steep thermal and species gradients, and small spatial scales. The applicability of degenerate four-wavemore » mixing (DFWM) as a spectroscopic probe of atmospheric pressure reacting plasmas has been investigated. This powerful, nonlinear technique has been applied to the measurement of temperature and radical species concentrations in the boundary layer of a diamond growth substrate immersed in a flowing atmospheric pressure plasma. In-situ measurements of CH and C{sub 2} radicals have been performed to determine spatially resolved profiles of vibrational temperature, rotational temperature, and species concentration. Results of these measurements are compared with the predictions of a detailed numerical simulation.« less
Plasma total antioxidant capacity (TAC) in obese Malaysian subjects.
Lim, S H; Fan, S H; Say, Y H
2012-12-01
There is a pressing need to better understand the complex biochemical pathways that lead to the pathogenesis of obesity. Increased oxidative stress and decreased antioxidant capacity have been identified to be associated with obesity. Therefore, the objectives of this study were to determine the plasma total antioxidant capacity (TAC) levels of Malaysian subjects and to evaluate its potential association with obesity and related anthropometric measurements. Plasma TAC of 362 multi-ethnic Malaysian subjects from the Kampar Health Clinic (138 males, 224 females; 124 ethnic Malays, 152 Chinese, 86 Indians; 192 non-obese, 170 obese) was measured using Trolox equivalent antioxidant capacity (TEAC) 96-well plate assay. Plasma TAC was significantly lower in obese subjects (M +/- SE = 292 +/- 10.4 micromol/L) compared to non-obese subjects (397 +/- 8.58 micromol/L), whereas it was significantly higher in males and those in the 21-30 age group. Those with salty food preference and practising a strict vegetarian diet also had significantly higher plasma TAC. However, no association was found for other dietary habits (coffee intake) and lifestyle factors (physical activity, smoking). Plasma TAC was also significantly negatively correlated with diastolic blood pressure, waist and hip circumferences, weight, body mass index, total body fat, % subcutaneous fat, visceral fat level, resting metabolism and % skeletal muscle. Plasma TAC was found to be associated with obesity, strict vegetarian practice, salty food preference and all obesity anthropometric indicators, except systolic blood pressure and pulse rate. Obese people have decreased plasma TAC indicating a compromised systemic antioxidant defence and increased oxidative stress.
NASA Technical Reports Server (NTRS)
Smyth, William H.
2001-01-01
This project has two overall objectives. One objective is to advance our general understanding of both the comet neutral atmosphere and the cometary plasma in the atmosphere and ion tall. The other objective is to obtain specific key information about comet Hale-Bopp that is generally important for Hale-Bopp studies. The primary emphasis in this project is to analyze, in a self-consistent manner, excellent quality high resolution image and line profile observations obtained by the University of Wisconsin for H, O, OH, and H2O+ emissions from the inner coma, outer coma, and ion tail of Hale-Bopp. The information on the spatial and velocity distributions of H2O neutral and ionized photo-products in the inner coma, outer coma, and in the H2O+ ion tail is of substantial and direct importance in the development of an integrated understanding of the complex structure and dynamics of the neutral and plasma species in the atmosphere of Hale-Bopp in particular and comets in general. The H2O production rate of Hale-Bopp is determined and, together with the other information related to the structure and dynamics of the neutral and plasma atmospheres obtained in this study, provide critical information important for a wide variety of research conducted by other groups.
Computing the complex : Dusty plasmas in the presence of magnetic fields and UV radiation
NASA Astrophysics Data System (ADS)
Land, V.
2007-12-01
About 90% of the visible universe is plasma. Interstellar clouds, stellar cores and atmospheres, the Solar wind, the Earth's ionosphere, polar lights, and lightning are all plasma; ionized gases, consisting of electrons, ions, and neutrals. Not only many industries, like the microchip and solar cell industry, but also future fusion power stations, rely heavily on the use of plasma. More and more, home appliances include plasma technologies, like compact fluorescent light sources, and plasma screens. Dust particles, which can disrupt plasma processes, enter these plasmas, through chemical reactions in the plasma, or through interactions between plasma and walls. For instance, during microchip fabrication, dust particles can destroy the tiny, nanometre-sized structures on the surface of these chips. On the other hand, dust particles orbiting Young Stellar Objects coagulate and form the seeds of planets. In order to understand fundamental processes, such as planet formation, or to optimize industrial plasma processes, a thorough description of dusty plasma is necessary. Dust particles immersed in plasma collect ions and electrons from the plasma and charge up electrically. Therefore, the presence of dust changes plasma, while at the same time many forces start acting on the dust. Therefore, the dust and plasma become coupled, making dusty plasma a very complex medium to describe, in which many length and time scales play a role, from the Debye length to the length of the electrodes, and from the inverse plasma frequencies to the dust transport times. Using a self-consistent fluid model, we simulate these multi-scale dusty plasmas in radio frequency discharges under micro-gravity. We show that moderate non-linear scattering of ions by the dust particles is the most important aspect in the calculation of the ion drag force. This force is also responsible for the formation of a dust-free 'void' in dusty plasma under micro-gravity, caused by ions moving from the centre of the void towards the outside of the discharge. The void thus requires electron-impact ionizations inside the void. The electrons gain the energy for these ionizations inside the dust cloud surrounding the void, however. We show that a growing electron temperature gradient is responsible for the transport of electron energy from the surrounding dust cloud into the void. An axial magnetic field in the discharge magnetizes the electrons. This changes the ambipolar flux of ions through the bulk of the discharge. The ion drag force changes, resulting in a differently shaped void and faster void formation. Experiments in a direct current discharge, show a response of both dust and plasma in the E?B direction, when a magnetic field is applied. The dust response consists of two phases: an initial fast phase, and a later, slow phase. Using a Particle-In-Cell plus Monte Carlo model, we show that the dust charge can be reduced by adding a flux of ultraviolet radiation. A source of ultraviolet light can thus serve as a tool to manipulate dusty plasmas, but might also be important for the coagulation of dust particles around young stars and planet formation in general.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhukhovitskii, D. I., E-mail: dmr@ihed.ras.ru; Fortov, V. E.; Molotkov, V. I.
2015-02-15
We report the first observation of the Mach cones excited by a larger microparticle (projectile) moving through a cloud of smaller microparticles (dust) in a complex plasma with neon as a buffer gas under microgravity conditions. A collective motion of the dust particles occurs as propagation of the contact discontinuity. The corresponding speed of sound was measured by a special method of the Mach cone visualization. The measurement results are incompatible with the theory of ion acoustic waves. The estimate for the pressure in a strongly coupled Coulomb system and a scaling law for the complex plasma make it possiblemore » to derive an evaluation for the speed of sound, which is in a reasonable agreement with the experiments in complex plasmas.« less
Plasmakristall-4: A microgravity complex plasma facility on the way to launch
NASA Astrophysics Data System (ADS)
Pustylnik, Mikhail; Thomas, Hubertus; Fortov, Vladimir; Thoma, Markus; Lipaev, Andrey; Morfill, Gregor; Molotkov, Vladimir; Usachev, Alexander; Zobnin, Andrey; Tarantik, Karl; Albrecht, Sebastian; Deysenroth, Christian; Rau, Christian; Mitic, Slobodan; Nosenko, Vladimir; Fink, Martin; Prof
Complex plasmas, a special case of dusty plasmas, are one of the most interesting physical objects to be studied under microgravity conditions. A way from dusty plasmas to complex plasmas was revealed when strong coupling phenomena in the dust subsystem were first theoretically predicted and then observed under ground laboratory conditions. Complex plasmas are, therefore, dusty plasmas, which are prepared intentionally to study generic phenomena of condensed matter physics. Complex plasmas have several advantages in this respect: Real-time, virtually undamped dynamics of the system can be resolved on the kinetic level, i.e. on the level of single microparticles. Under ground laboratory conditions the microparticles are strongly affected by the gravitational force, which has to be compensated by strong electrostatic forces. Therefore, the volume occupied by the microparticles is limited to sheath region. This makes formation of uniform 3D structures under ground condition almost impossible. Microgravity is therefore essential for studying 3D complex plasma systems. The next lab for complex plasma research under mug-conditions will be PK-4, a joint Russian-European project. The special feature of PK-4 (with respect to its predecessor PK-3 Plus on the ISS) is that it will allow to study the fluid phenomena. Geometry of the plasma chamber (a glass tube with the working part of about 200 mm long and 30 mm diameter) implies presence of micropaticle flows along its axis. A custom-made power supply will create either a DC or polarity-switched discharge inside the chamber filled with either neon or argon. In the DC mode the negatively-charged microparticles will drift opposite to the electric field. Polarity switching can be done with up to several kHz frequency, which will allow the discharge to change polarity, whereas heavy microparticles will be insensitive to such fast variations of the electric field. In this way, microparticles will be trapped inside the plasma chamber. For the diagnostics of the microparticles, two CCD cameras and an illumination laser sheet are available. Cameras and the laser focal plane are movable along the plasma chamber and cover almost the entire working area. Moving the laser sheet and cameras across the plasma chamber axis will allow to obtain information on the 3D structure of the microparticle clouds. Background plasma may be monitored by the so-called plasma glow camera, which produces three kaleidoscopic images of the plasma. Two of these images are filtered for two neon spectral lines and the third one represents the integral glow. Also, a spectrometer whose receiving optics is movable together with the cameras is available as a diagnostic means. Several microparticles manipulation techniques are implemented in PK-4, starting from simple discharge current modulation to using a powerful infrared laser exerting radiation pressure on microparticles. The experiment is going to be conducted on board of the International Space Station. The launch is scheduled to October 2014. Even before being launched into orbit, the PK-4 project already delivered lots of interesting scientific results, obtained in ground laboratory and parabolic flight experiments and numerical simulations. First of all, the kinetic model of the discharge was built and the discharge parameters, such as electron density and temperature, number density of metastable atoms were measured. Diagnostic methods are being further developed to be used on orbit. Then, the microscopic properties of the microparticles (i.e. their charge and forces acting on them) were determined using dynamic methods. Size dynamics (growth and etching) of microparticles in PK-4 discharges were studied. Collective plasma phenomena (such as e.g. dust-acoustic) waves were investigated. And, finally, the interdisciplinary experiments, making a link between the PK-4 plasmas and real condensed matter were conducted. Such phenomenon as electrorheology was successfully modelled with PK-4 complex plasmas in a parabolic flight. A review of the results and a roadmap for future orbital operations will be presented in this contribution.
Giant plasma membrane vesicles: models for understanding membrane organization.
Levental, Kandice R; Levental, Ilya
2015-01-01
The organization of eukaryotic membranes into functional domains continues to fascinate and puzzle cell biologists and biophysicists. The lipid raft hypothesis proposes that collective lipid interactions compartmentalize the membrane into coexisting liquid domains that are central to membrane physiology. This hypothesis has proven controversial because such structures cannot be directly visualized in live cells by light microscopy. The recent observations of liquid-liquid phase separation in biological membranes are an important validation of the raft hypothesis and enable application of the experimental toolbox of membrane physics to a biologically complex phase-separated membrane. This review addresses the role of giant plasma membrane vesicles (GPMVs) in refining the raft hypothesis and expands on the application of GPMVs as an experimental model to answer some of key outstanding problems in membrane biology. Copyright © 2015 Elsevier Inc. All rights reserved.
VEGF signaling inside vascular endothelial cells and beyond.
Eichmann, Anne; Simons, Michael
2012-04-01
Vascular endothelial growth factor-A (VEGF-A) has long been recognized as the key regulator of vascular development and function in health and disease. VEGF is a secreted polypeptide that binds to transmembrane tyrosine kinase VEGF receptors on the plasma membrane, inducing their dimerization, activation and assembly of a membrane-proximal signaling complex. Recent studies have revealed that many key events of VEGFR signaling occur inside the endothelial cell and are regulated by endosomal receptor trafficking. Plasma membrane VEGFR interacting molecules, including vascular guidance receptors Neuropilins and Ephrins also regulate VEGFR endocytosis and trafficking. VEGF signaling is increasingly recognized for its roles outside of the vascular system, notably during neural development, and blood vessels regulate epithelial branching morphogenesis. We review here recent advances in our understanding of VEGF signaling and its biological roles. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wijeratne, Sitara; Botello, Eric; Yeh, Hui-Chun; Zhou, Zhou; Bergeron, Angela; Frey, Eric; Moake, Joel; Dong, Jing-Fei; Kiang, Ching-Hwa
2011-10-01
Single-molecule manipulation allows us to study the real-time kinetics of complex cellular processes. The mechanochemistry of different forms of von Willebrand factor (VWF) and their receptor-ligand binding kinetics can be probed by atomic force microscopy (AFM). Since plasma VWF can be activated upon shear, the structural and functional properties of VWF that are critical in mediating thrombus formation become important. Here we characterized the mechanical resistance to domain unfolding of VWF to determine its conformational states. We found the shear-induced conformational changes, hence the mechanical property, can be detected by the change in unfolding forces. The relaxation rate of such effect is much longer than expected. Our results offer an insight in establishing strategies for regulating VWF adhesion activity, increasing our understanding of surface-induced thrombosis as mediated by VWF.
Advancing the understanding of plasma transport in mid-size stellarators
NASA Astrophysics Data System (ADS)
Hidalgo, Carlos; Talmadge, Joseph; Ramisch, Mirko; TJ-II, the; HXS; TJ-K Teams
2017-01-01
The tokamak and the stellarator are the two main candidate concepts for magnetically confining fusion plasmas. The flexibility of the mid-size stellarator devices together with their unique diagnostic capabilities make them ideally suited to study the relation between magnetic topology, electric fields and transport. This paper addresses advances in the understanding of plasma transport in mid-size stellarators with an emphasis on the physics of flows, transport control, impurity and particle transport and fast particles. The results described here emphasize an improved physics understanding of phenomena in stellarators that complements the empirical approach. Experiments in mid-size stellarators support the development of advanced plasma scenarios in Wendelstein 7-X (W7-X) and, in concert with better physics understanding in tokamaks, may ultimately lead to an advance in the prediction of burning plasma behaviour.
Overview of Solar Radio Bursts and their Sources
NASA Astrophysics Data System (ADS)
Golla, Thejappa; MacDowall, Robert J.
2018-06-01
Properties of radio bursts emitted by the Sun at frequencies below tens of MHz are reviewed. In this frequency range, the most prominent radio emissions are those of solar type II, complex type III and solar type IV radio bursts, excited probably by the energetic electron populations accelerated in completely different environments: (1) type II bursts are due to non-relativistic electrons accelerated by the CME driven interplanetary shocks, (2) complex type III bursts are due to near-relativistic electrons accelerated either by the solar flare reconnection process or by the SEP shocks, and (3) type IV bursts are due to relativistic electrons, trapped in the post-eruption arcades behind CMEs; these relativistic electrons probably are accelerated by the continued reconnection processes occurring beneath the CME. These radio bursts, which can serve as the natural plasma probes traversing the heliosphere by providing information about various crucial space plasma parameters, are also an ideal instrument for investigating acceleration mechanisms responsible for the high energy particles. The rich collection of valuable high quality radio and high time resolution in situ wave data from the WAVES experiments of the STEREO A, STEREO B and WIND spacecraft has provided an unique opportunity to study these different radio phenomena and understand the complex physics behind their excitation. We have developed Monte Carlo simulation techniques to estimate the propagation effects on the observed characteristics of these low frequency radio bursts. We will present some of the new results and describe how one can use these radio burst observations for space weather studies. We will also describe some of the non-linear plasma processes detected in the source regions of both solar type III and type II radio bursts. The analysis and simulation techniques used in these studies will be of immense use for future space based radio observations.
On the possibility of collective attraction in complex plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaudhuri, M.; Morfill, G. E.; Kompaneets, R.
2010-06-15
An investigation on the possible collective electric attraction between like-charged dust particles has been performed in an isotropic homogeneous complex (dusty) plasma in which a balance between plasma creation due to ionization and plasma loss due to the absorption on dust particles has been reached. The analysis is made on the basis of a self-consistent fluid model, which includes plasma ionization, plasma loss on dust particles, dust charge variations, and ion-neutral friction. It is shown that the interaction potential can have an attractive part in the stability regime of the ionization-absorption balance with respect to ion perturbations only under verymore » limited circumstances.« less
Modelling and simulation techniques for membrane biology.
Burrage, Kevin; Hancock, John; Leier, André; Nicolau, Dan V
2007-07-01
One of the most important aspects of Computational Cell Biology is the understanding of the complicated dynamical processes that take place on plasma membranes. These processes are often so complicated that purely temporal models cannot always adequately capture the dynamics. On the other hand, spatial models can have large computational overheads. In this article, we review some of these issues with respect to chemistry, membrane microdomains and anomalous diffusion and discuss how to select appropriate modelling and simulation paradigms based on some or all the following aspects: discrete, continuous, stochastic, delayed and complex spatial processes.
NASA Technical Reports Server (NTRS)
Smyth, William H.
2004-01-01
Progress in research to understand the three-dimensional nature of the Europagenic plasma torus is summarized. Efforts to improve the plasma torus description near Europa's orbit have included a better understanding of Europa's orbit and an improved description of the planetary magnetic field. New plasma torus chemistry for molecular and atomic species has been introduced and implemented in Europa neutral cloud models. Preliminary three-dimensional model calculations for Europa's neutral clouds and their plasma sources are presented.
Lis-Kuberka, Jolanta; Berghausen-Mazur, Marta; Kątnik-Prastowska, Iwona; Orczyk-Pawiłowicz, Magdalena
2018-05-15
The variable fibronectin (FN) molecular forms are known to be engaged in coagulation and fibrinolysis pathways as well as tissue remodeling and repair processes. Some of them seem to be indispensable molecules within intensive biological processes associated with delivery. The aim of the study was to evaluate the FN molecular status in maternal and cord plasma after vaginal birth and cesarean section (C-section). The study included nonpregnant women's plasma samples (n = 31) and puerperal and cord plasma samples collected from 49 mothers who delivered healthy newborns at term by vaginal birth (n = 25) and C-section (n = 24). The maternal and cord plasma FN concentrations and presence and relative ratios of different FN-fibrin complexes were determined by ELISA and sodium dodecyl sulfate (SDS) -agarose immunoblotting, respectively. FN concentration in puerperal plasma after vaginal birth (232.08 ± 71.8 mg/L) and C-section (228.17 ± 71.2 mg/L) was significantly higher than in the plasma of nonpregnant women (190.00 ± 48.75 mg/L). In contrast, FN concentration in cord plasma of the C-section group (101.95 ± 30.3 mg/L) was significantly lower than that of the vaginal birth group (121.80 ± 22.2 mg/L). Immunoblotting of puerperal and cord plasma distinguished the most abundant dimeric plasma FN form, the 220-280-kDa FN degradation products and 750-1900-kDa FN-fibrin complexes, which occurred more frequently and in higher amounts in puerperal and cord plasma groups than the nonpregnant women group, although independently of the mode of delivery. Occurrence and relative amount of delivery-associated FN-fibrin complexes in both puerperal and cord plasmas might be bound with the physiological adaptive mechanisms reducing the risk of hemorrhage and intensive remodeling and repair processes after delivery.
Hwangbo, Cheol; Park, Juhee; Lee, Jeong-Hyung
2011-09-23
The integrin-linked kinase (ILK)-PINCH1-α-parvin (IPP) complex functions as a signaling platform for integrins that modulates various cellular processes. ILK functions as a central adaptor for the assembly of IPP complex. We report here that mda-9/syntenin, a positive regulator of cancer metastasis, regulates the activation of Akt (also known as protein kinase B) by facilitating ILK adaptor function during adhesion to type I collagen (COL-I) in human breast cancer cells. COL-I stimulation induced the phosphorylation and plasma membrane translocation of Akt. Inhibition of mda-9/syntenin or expression of mutant ILK (E359K) significantly blocked the translocation of both ILK and Akt to the plasma membrane. mda-9/syntenin associated with ILK, and this association was increased at the plasma membrane by COL-I stimulation. Knockdown of mda-9/syntenin impaired COL-I-induced association of ILK with Akt and plasma membrane targeting of ILK-Akt complex. These results demonstrated that mda-9/syntenin regulates the activation of Akt by controlling the plasma membrane targeting of Akt via a mechanism that facilitates the association of Akt with ILK at the plasma membrane during adhesion to COL-I. On a striking note, inhibition of mda-9/syntenin impaired COL-I-induced plasma membrane translocation of the IPP complex and assembly of integrin β1-IPP signaling complexes. Thus, our study defines the role of mda-9/syntenin in ILK adaptor function and describes a new mechanism of mda-9/syntenin for regulation of cell migration.
Nussey, Daniel H.; Watt, Kathryn A.; Clark, Abigail; Pilkington, Jill G.; Pemberton, Josephine M.; Graham, Andrea L.; McNeilly, Tom N.
2014-01-01
Despite our rapidly advancing mechanistic understanding of vertebrate immunity under controlled laboratory conditions, the links between immunity, infection and fitness under natural conditions remain poorly understood. Antibodies are central to acquired immune responses, and antibody levels circulating in vivo reflect a composite of constitutive and induced functional variants of diverse specificities (e.g. binding antigens from prevalent parasites, self tissues or novel non-self sources). Here, we measured plasma concentrations of 11 different antibody types in adult females from an unmanaged population of Soay sheep on St Kilda. Correlations among antibody measures were generally positive but weak, and eight of the measures independently predicted body mass, strongyle parasite egg count or survival over the subsequent winter. These independent and, in some cases, antagonistic relationships point to important multivariate immunological heterogeneities affecting organismal health and fitness in natural systems. Notably, we identified a strong positive association between anti-nematode immunoglobulin (Ig) G antibodies in summer and subsequent over-winter survival, providing rare evidence for a fitness benefit of helminth-specific immunity under natural conditions. Our results highlight both the evolutionary and ecological importance and the complex nature of the immune phenotype in the wild. PMID:24500168
Plasmaspheric Plumes Observed by the CLUSTER and IMAGE Spacecraft
NASA Technical Reports Server (NTRS)
Fung, S. F.; Benson, R. F.; Garcia, L. N.; Adrian, M. L.; Sandel, B.; Goldstein, M. L.
2008-01-01
Global IMAGE/EUV observations have revealed complex changes in plasmaspheric structures as the plasmasphere responds to geomagnetic activity while remaining under varying degrees of influence by co-rotation, depending on the radial distance. The complex plasmaspheric dynamics, with different scales of variability, is clearly far from being well understood. There is now renewed interest in the plasmasphere due to its apparent connections with the development of the ring current and radiation belt, and loss of ionospheric plasmas. Early in the mission, the Cluster spacecraft only crossed the plasmapause (L - 4) occasionally and made measurements of the outer plasmasphere and plasmaspheric drainage plumes. The study by Darrouzet et al. [2006] provided detailed analyses of in situ Cluster observations and IMAGE EUV observations of three plasmaspheric plumes detected in April-June, 2002. Within the next couple of years, Cluster orbit will change, causing perigee to migrate to lower altitudes, and thus providing excellent opportunities to obtain more detailed measurements of the plasmasphere. In this paper, we report our analyses of the earlier Cluster-IMAGE events by incorporating the different perspectives provided by the IMAGE Radio Plasma Imager (RPI) observations. We will discuss our new understanding of the structure and dynamics of the Cluster-IMAGE events.
Automated Processing of Plasma Samples for Lipoprotein Separation by Rate-Zonal Ultracentrifugation.
Peters, Carl N; Evans, Iain E J
2016-12-01
Plasma lipoproteins are the primary means of lipid transport among tissues. Defining alterations in lipid metabolism is critical to our understanding of disease processes. However, lipoprotein measurement is limited to specialized centers. Preparation for ultracentrifugation involves the formation of complex density gradients that is both laborious and subject to handling errors. We created a fully automated device capable of forming the required gradient. The design has been made freely available for download by the authors. It is inexpensive relative to commercial density gradient formers, which generally create linear gradients unsuitable for rate-zonal ultracentrifugation. The design can easily be modified to suit user requirements and any potential future improvements. Evaluation of the device showed reliable peristaltic pump accuracy and precision for fluid delivery. We also demonstrate accurate fluid layering with reduced mixing at the gradient layers when compared to usual practice by experienced laboratory personnel. Reduction in layer mixing is of critical importance, as it is crucial for reliable lipoprotein separation. The automated device significantly reduces laboratory staff input and reduces the likelihood of error. Overall, this device creates a simple and effective solution to formation of complex density gradients. © 2015 Society for Laboratory Automation and Screening.
Modeling magnetic field amplification in nonlinear diffusive shock acceleration
NASA Astrophysics Data System (ADS)
Vladimirov, Andrey
2009-02-01
This research was motivated by the recent observations indicating very strong magnetic fields at some supernova remnant shocks, which suggests in-situ generation of magnetic turbulence. The dissertation presents a numerical model of collisionless shocks with strong amplification of stochastic magnetic fields, self-consistently coupled to efficient shock acceleration of charged particles. Based on a Monte Carlo simulation of particle transport and acceleration in nonlinear shocks, the model describes magnetic field amplification using the state-of-the-art analytic models of instabilities in magnetized plasmas in the presence of non-thermal particle streaming. The results help one understand the complex nonlinear connections between the thermal plasma, the accelerated particles and the stochastic magnetic fields in strong collisionless shocks. Also, predictions regarding the efficiency of particle acceleration and magnetic field amplification, the impact of magnetic field amplification on the maximum energy of accelerated particles, and the compression and heating of the thermal plasma by the shocks are presented. Particle distribution functions and turbulence spectra derived with this model can be used to calculate the emission of observable nonthermal radiation.
Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Pair Jets
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Mizuno, Y.
2005-01-01
Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created by relativistic pair jets are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet propagating through an ambient plasma with and without initial magnetic fields. The growth rates of the Weibel instability depends on the distribution of pair jets. Simulations show that the Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.
Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Pair Jets
NASA Technical Reports Server (NTRS)
Nishikawa, K. I.; Hardee, P.; Hededal, C. B.; Richardson, G.; Sol, H.; Preece, R.; Fishman, G. J.
2004-01-01
Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating into an ambient plasma. We find that the growth times depend on the Lorenz factors of jets. The jets with larger Lorenz factors grow slower. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The small scale magnetic field structure generated by the Weibel instability is appropriate to the generation of "jitter" radiation from deflected electrons (positrons) as opposed to synchrotron radiation. The jitter radiation resulting from small scale magnetic field structures may be important for understanding the complex time structure and spectral evolution observed in gamma-ray bursts or other astrophysical sources containing relativistic jets and relativistic collisionless shocks.
Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics
NASA Astrophysics Data System (ADS)
Hansen, Stephanie
2017-10-01
The burning core of an inertial confinement fusion (ICF) plasma at stagnation is surrounded by a shell of warm, dense matter whose properties are difficult both to model (due to a complex interplay of thermal, degeneracy, and strong coupling effects) and to diagnose (due to low emissivity and high opacity). We demonstrate a promising technique to study the warm dense shells of ICF plasmas based on the fluorescence emission of dopants or impurities in the shell material. This emission, which is driven by x-rays produced in the hot core, exhibits signature changes in response to compression and heating. High-resolution measurements of absorption and fluorescence features can refine our understanding of the electronic structure of material under high compression, improve our models of density-driven phenomena such as ionization potential depression and plasma polarization shifts, and help diagnose shell density, temperature, mass distribution, and residual motion in ICF plasmas at stagnation. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. This work was supported by the U.S. Department of Energy, Office of Science Early Career Research Program, Office of Fusion Energy Sciences under FWP-14-017426.
Unraveling the Complexities of the Upper Atmosphere as a System
NASA Astrophysics Data System (ADS)
Fuller-Rowell, T. J.
2016-12-01
The Earth's upper atmosphere responds as a system to external forcing from the Sun, magnetosphere, and lower atmosphere. The underlying system components comprise a highly dynamic, non-linear neutral fluid supporting fast propagating wave fields, advective transport, dissipation, and chemical changes, coupled to an active plasma constrained by all-encompassing magnetic and electric fields. More importantly, the plasma and more massive neutral gas are intimately coupled. Ion-neutral coupling can drive winds ten-times hurricane strength making inertia a dominant force; it can sometimes wipe out 90% of the plasma, and at other times allow plasma content to explode with dangerous consequences. Ion-neutral dissipation can result in intense heating, allowing the atmosphere to expand to double its normal size, dragging Earth orbiting satellites to the ground. The thermospheric dynamo, ultimately driven by the solar and magnetosphere dynamos, redistributes equatorial plasma and can drive structure, steep gradients, and irregularities. A single satellite sampling the medium is suitable for uncovering perhaps one or two of the many interacting processes, in what could be called discovery mode science. Without a three-dimensional imaging capability, a single satellite cannot explore the interaction and balance between the multiple of processes actually present. Unraveling the system-wide or global response requires multi-point in-situ constellation-type measurements, together with available two-dimensional imaging. Modeling the system can create an illusion of understanding, but until we really look we will never know.
NASA Astrophysics Data System (ADS)
Seepersad, Yohan
The state of plasma is widely known as a gas-phase phenomenon, but plasma in liquids have also received significant attention over the last century. Generating plasma in liquids however is theoretically challenging, and this problem is often overcome via liquid-gas phase transition preceding the actual plasma formation. In this sense, plasma forms in gas bubbles in the liquid. Recent work at the Drexel Plasma Institute has shown that nanosecond pulsed electric fields can initiate plasma in liquids without any initial cavitation phase, at voltages below theoretical direct-ionization thresholds. This unique regime is poorly understood and does not fit into any current descriptive mechanisms. As with all new phenomena, a complete fundamental description is paramount to understanding its usefulness to practical applications. The primary goals of this research were to qualitatively and quantitatively understand the phenomenon of nanosecond pulsed discharge in liquids as a means to characterizing properties that may open up niche application possibilities. Analysis of the plasma was based on experimental results from non-invasive, sub-nanosecond time-resolved optical diagnostics, including direct imaging, transmission imaging (Schlieren and shadow), and optical emission spectroscopy. The physical characteristics of the plasma were studied as a function of variations in the electric field amplitude and polarity, liquid permittivity, and pulse duration. It was found that the plasma size and emission intensity was dependent on the permittivity of the liquid, as well as the voltage polarity, and the structure and dynamics were explained by a 'cold-lightning' mechanism. The under-breakdown dynamics at the liquid-electrode interface were investigated by transmission imaging to provide evidence for a novel mechanism for initiation based on the electrostriction. This mechanism was proposed by collaborators on the project and developed alongside the experimental work in this research. Finally, analysis of emission spectra obtained from the OH(A-X) band at 308 nm by the excited hydroxyl radical was performed to quantify the temperature parameters of the plasma. Boltzmann analysis was performed to quantify the rotational temperature of OH which correlates well to the liquid temperature, and Stark broadening of the ionic lines belonging to hydrogen and oxygen was analysed to estimate electron temperature. It was found that the liquid temperature remained close to bulk temperature with T_(n,i)<500 K, and that the electron temperature was very high Te˜6-10 eV. Finally, based on the characterization of the plasma parameters, several potential avenues for applications of this regime of plasma will be suggested. The complex physical and chemical dynamics established when plasma is generated within a liquid medium has unlocked new and fascinating possibilities in the areas of biomedicine, water treatment, material synthesis and nanoscience. The high density, low temperature plasma formed could potentially be harnessed to unlock new applications across these fields and more.
ERIC Educational Resources Information Center
Korkmaz, Saadet Deniz; Ayas, Bahadir; Aybek, Eren Can; Pat, Suat
2018-01-01
The purpose of this study was to investigate the effectiveness of the experimental system design related to plasma state on the gifted students' understanding on the subject of the plasma state. To test the research hypothesis, one group pretest-posttest research model was carried out with 18 eighth-grade (4 girls and 14 boys) gifted students in…
Mechanics of Cellulose Synthase Complexes in Living Plant Cells
NASA Astrophysics Data System (ADS)
Zehfroosh, Nina; Liu, Derui; Ramos, Kieran P.; Yang, Xiaoli; Goldner, Lori S.; Baskin, Tobias I.
The polymer cellulose is one of the major components of the world's biomass with unique and fascinating characteristics such as its high tensile strength, renewability, biodegradability, and biocompatibility. Because of these distinctive aspects, cellulose has been the subject of enormous scientific and industrial interest, yet there are still fundamental open questions about cellulose biosynthesis. Cellulose is synthesized by a complex of transmembrane proteins called ``Cellulose Synthase A'' (CESA) in the plasma membrane. Studying the dynamics and kinematics of the CESA complex will help reveal the mechanism of cellulose synthesis and permit the development and validation of models of CESA motility. To understand what drives these complexes through the cell membrane, we used total internal reflection fluorescence microscopy (TIRFM) and variable angle epi-fluorescence microscopy to track individual, fluorescently-labeled CESA complexes as they move in the hypocotyl and root of living plants. A mean square displacement analysis will be applied to distinguish ballistic, diffusional, and other forms of motion. We report on the results of these tracking experiments. This work was funded by NSF/PHY-1205989.
Uzer, Gunes; Fuchs, Robyn K; Rubin, Janet; Thompson, William R
2016-06-01
Numerous factors including chemical, hormonal, spatial, and physical cues determine stem cell fate. While the regulation of stem cell differentiation by soluble factors is well-characterized, the role of mechanical force in the determination of lineage fate is just beginning to be understood. Investigation of the role of force on cell function has largely focused on "outside-in" signaling, initiated at the plasma membrane. When interfaced with the extracellular matrix, the cell uses integral membrane proteins, such as those found in focal adhesion complexes to translate force into biochemical signals. Akin to these outside-in connections, the internal cytoskeleton is physically linked to the nucleus, via proteins that span the nuclear membrane. Although structurally and biochemically distinct, these two forms of mechanical coupling influence stem cell lineage fate and, when disrupted, often lead to disease. Here we provide an overview of how mechanical coupling occurs at the plasma and nuclear membranes. We also discuss the role of force on stem cell differentiation, with focus on the biochemical signals generated at the cell membrane and the nucleus, and how those signals influence various diseases. While the interaction of stem cells with their physical environment and how they respond to force is complex, an understanding of the mechanical regulation of these cells is critical in the design of novel therapeutics to combat diseases associated with aging, cancer, and osteoporosis. Stem Cells 2016;34:1455-1463. © 2016 AlphaMed Press.
Magnetospheric plasma interactions
NASA Astrophysics Data System (ADS)
Faelthammar, Carl-Gunne
1994-04-01
The Earth's magnetosphere (including the ionosphere) is our nearest cosmical plasma system and the only one accessible to mankind for extensive empirical study by in situ measurements. As virtually all matter in the universe is in the plasma state, the magnetosphere provides an invaluable sample of cosmical plasma from which we can learn to better understand the behavior of matter in this state, which is so much more complex than that of unionized matter. It is therefore fortunate that the magnetosphere contains a wide range of different plasma populations, which vary in density over more than six powers of ten and even more in equivalent temperature. Still more important is the fact that its dual interaction with the solar wind above and the atmosphere below make the magnetopshere the site of a large number of plasma phenomena that are of fundamental interest in plasma physics as well as in astrophysics and cosmology. The interaction of the rapidly streaming solar wind plasma with the magnetosphere feeds energy and momentum, as well as matter, into the magnetosphere. Injection from the solar wind is a source of plasma populations in the outer magnetosphere, although much less dominating than previously thought. We now know that the Earth's own atmosphere is the ultimate source of much of the plasma in large regions of the magnetosphere. The input of energy and momentum drives large scale convection of magnetospheric plasma and establishes a magnetospheric electric field and large scale electric current systems that car ry millions of ampere between the ionosphere and outer space. These electric fields and currents play a crucial role in generating one of the the most spectacular among natural phenomena, the aurora, as well as magnetic storms that can disturb man-made systems on ground and in orbit. The remarkable capability of accelerating charged particles, which is so typical of cosmical plasmas, is well represented in the magnetosphere, where mechanisms of such acceleration can be studied in detail. In situ measurements in the magnetosphere have revealed an unexpected tendency of cosmical plasmas to form cellular structure, and shown that the magnetospheric plasma sustains previously unexpected, and still not fully explained, chemical separation mechanisms, which are likely to operate in other cosmical plasmas as well.
Zaklit, Josette; Craviso, Gale L; Leblanc, Normand; Yang, Lisha; Vernier, P Thomas; Chatterjee, Indira
2017-10-01
Nanosecond-duration electric pulses (NEPs) can permeabilize the endoplasmic reticulum (ER), causing release of Ca 2+ into the cytoplasm. This study used experimentation coupled with numerical modeling to understand the lack of Ca 2+ mobilization from Ca 2+ -storing organelles in catecholamine-secreting adrenal chromaffin cells exposed to 5-ns pulses. Fluorescence imaging determined a threshold electric (E) field of 8 MV/m for mobilizing intracellular Ca 2+ whereas whole-cell recordings of membrane conductance determined a threshold E-field of 3 MV/m for causing plasma membrane permeabilization. In contrast, a 2D numerical model of a chromaffin cell, which was constructed with internal structures representing a nucleus, mitochondrion, ER, and secretory granule, predicted that exposing the cell to the same 5-ns pulse electroporated the plasma and ER membranes at the same E-field amplitude, 3-4 MV/m. Agreement of the numerical simulations with the experimental results was obtained only when the ER interior conductivity was 30-fold lower than that of the cytoplasm and the ER membrane permittivity was twice that of the plasma membrane. A more realistic intracellular geometry for chromaffin cells in which structures representing multiple secretory granules and an ER showed slight differences in the thresholds necessary to porate the membranes of the secretory granules. We conclude that more sophisticated cell models together with knowledge of accurate dielectric properties are needed to understand the effects of NEPs on intracellular membranes in chromaffin cells, information that will be important for elucidating how NEPs porate organelle membranes in other cell types having a similarly complex cytoplasmic ultrastructure.
Space Weather Studies Using the Low-Latitude Ionospheric Sensor Network (LISN)
NASA Astrophysics Data System (ADS)
Valladares, C. E.; Pacheco, E.
2014-12-01
LISN is an array of small instruments that operates as a real-time distributed observatory to understand the complex day-to-day variability and the extreme state of disturbance that occurs in the South American low-latitude ionosphere nearly every day after sunset. The LISN observatory aims to forecast the initiation and transport of plasma bubbles across the South American continent. The occurrence of this type of plasma structures and their embedded irregularities poses a prominent natural hazard to communication, navigation and high precision pointing systems. As commercial and military aviation is increasingly reliant on Global Navigation Satellite Systems (GNSS) any interruption due to ionospheric irregularities or errors due to large density gradients constitutes a serious threat to passengers and crew. Therefore, it is important to understand the conditions and sources that contribute to the formation of these irregularities. To achieve high quality regional nowcasts and forecasts, the LISN system was designed to include a dense coverage of the South American landmass with 47 GPS receivers, 5 flux-gate magnetometers distributed on 2 base lines and 3 Vertical Incidence Pulsed Ionospheric Radar (VIPIR) ionosondes deployed along the same magnetic meridian that intersects the magnetic equator at 68° W. This presentation will provide a summary of recent instrument installations and new processing techniques that have been developed under the LISN project. We will also present the results of recent efforts to detect TIDs and TEC plasma depletions on a near real-time basis. We will describe a method to estimate the zonal velocity and tilt of the plasma bubbles/depletions by combining observations of TEC depletions acquired with adjacent receivers, making it possible to predict precisely their future locations.
NASA Astrophysics Data System (ADS)
Angelsky, O. V.; Ushenko, Yu. A.; Balanetska, V. O.
2011-09-01
To characterize the degree of consistency of parameters of the optically uniaxial birefringent protein nets of blood plasma a new parameter - complex degree of mutual anisotropy is suggested. The technique of polarization measuring the coordinate distributions of the complex degree of mutual anisotropy of blood plasma is developed. It is shown that statistic approach to the analysis of the complex degree of mutual anisotropy distributions of blood plasma is effective during the diagnostics and differentiation of an acute inflammatory processes as well as acute and gangrenous appendicitis.
Complex Plasmas under free fall conditions aboard the International Space Station
NASA Astrophysics Data System (ADS)
Konopka, Uwe; Thomas, Edward, Jr.; Funk, Dylan; Doyle, Brandon; Williams, Jeremiah; Knapek, Christina; Thomas, Hubertus
2017-10-01
Complex Plasmas are dynamically dominated by massive, highly negatively charged, micron-sized particles. They are usually strongly coupled and as a result can show fluid-like behavior or undergo phase transitions to form crystalline structures. The dynamical time scale of these systems is easily accessible in experiments because of the relatively high mass/inertia of the particles. However, the high mass also leads to sedimentation effects and as a result prevents the conduction of large scale, fully three dimensional experiments that are necessary to utilize complex plasmas as model systems in the transition to continuous media. To reduce sedimentation influences it becomes necessary to perform experiments in a free-fall (``microgravity'') environment, such as the ISS based experiment facility ``Plasma-Kristall-4'' (``PK-4''). In our paper we will present our recently started research activities to investigate the basic properties of complex plasmas by utilizing the PK-4 experiment facility aboard the ISS. We further give an overview of developments towards the next generation experiment facility ``Ekoplasma'' (formerly named ``PlasmaLab'') and discuss potential additional small-scale space-based experiment scenarios. This work was supported by the JPL/NASA (JPL-RSA 1571699), the US Dept. of Energy (DE-SC0016330) and the NSF (PHY-1613087).
Instrumentation for Epitaxial Growth of Complex Oxides
2015-12-17
synthesis of complex oxide heterostructures. A RF oxygen plasma source was acquired to increase the oxidizing ability of the growth environment, an...improvement that will prove critical in stabilizing materials with high oxidization states. The plasma source and accompanying electronics were purchased...2014 14-Aug-2015 Approved for Public Release; Distribution Unlimited Final Report: Instrumentation for Epitaxial Growth of Complex Oxides The views
Moeller, Curt H.; Mudd, J. Brian
1982-01-01
Filipin was used as a cytochemical probe for membrane sterols in the root storage tissue of the red beet Beta vulgaris L. and the chloroplasts of Spinacia oleracea L. In unfixed beet tissue, filipin lysed the cells. Freeze-fracture replicas revealed that the filipin-sterol complexes were tightly aggregated in the plasma membrane, while in thin section the complexes corrugated the plasma membrane. If the cells were fixed with glutaraldehyde prior to the filipin treatment, the cell structure was preserved. Filipin-induced lesions were dispersed or clustered loosely in the plasma membrane. A few filipin-sterol complexes were observed in the tonoplast. In spinach chloroplasts, filipin-sterol complexes were limited to the outer membrane of the envelope and were not found in the inner membrane of the envelope or in the lamellar membranes. If the filipin-sterol complexes accurately mapped the distribution of membrane sterols, then sterol was located predominantly in the plasma membrane of the red beet and in the outer membrane of the chloroplast envelope. Furthermore, the sterol may be heterogenously distributed laterally in both these membranes. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:16662716
Targeting complement-mediated immunoregulation for cancer immunotherapy.
Kolev, Martin; Markiewski, Maciej M
2018-06-01
Complement was initially discovered as an assembly of plasma proteins "complementing" the cytolytic activity of antibodies. However, our current knowledge places this complex system of several plasma proteins, receptors, and regulators in the center of innate immunity as a bridge between the initial innate responses and adaptive immune reactions. Consequently, complement appears to be pivotal for elimination of pathogens, not only as an early response defense, but by directing the subsequent adaptive immune response. The discovery of functional intracellular complement and its roles in cellular metabolism opened novel avenues for research and potential therapeutic implications. The recent studies demonstrating immunoregulatory functions of complement in the tumor microenvironment and the premetastatic niche shifted the paradigm on our understanding of functions of the complement system in regulating immunity. Several complement proteins, through their interaction with cells in the tumor microenvironment and in metastasis-targeted organs, contribute to modulating tumor growth, antitumor immunity, angiogenesis, and therefore, the overall progression of malignancy and, perhaps, responsiveness of cancer to different therapies. Here, we focus on recent progress in our understanding of immunostimulatory vs. immunoregulatory functions of complement and potential applications of these findings to the design of novel therapies for cancer patients. Copyright © 2018 Elsevier Ltd. All rights reserved.
Using the tools of the trade to understand plasma interactions at Jupiter and Saturn
NASA Astrophysics Data System (ADS)
Kivelson, Margaret G.
2017-10-01
For more than half a century, we have been learning how magnetospheres work. Fluid motions and electromagnetic interactions combine to produce the plasma and field environment of a planet. Kinetic responses often control the dynamics. Initial descriptions of the terrestrial magnetosphere were often theoretical (e.g., Chapman and Ferraro, Dungey) before an explosion of spacecraft data provided an atlas of the system and its temporal variations. The basic structure and dynamics of the terrestrial magnetosphere are now largely understood. A different situation exists for the magnetospheres of Jupiter, Saturn, and their moons. Data acquired from spacecraft flybys or from orbit have characterized many aspects of these systems, but measurements are far more limited than at Earth both in space and in time. Even after Cassini’s mission to Saturn and Juno’s prime mission at Jupiter have ended, large regions in the plasma environments of these planets will remain unexplored. No monitors are available to characterize the upstream solar wind. Theory is challenged by the complexity introduced by dynamical effects of the planets’ rapid rotation and the unfamiliar parameter regimes governing interactions with their large moons. Simulation has come to the rescue, providing computational models designed to incorporate the effects of rotation or to describe moon-magnetosphere interactions. Yet simulations must be viewed with appropriate skepticism as they invariably require some compromise with reality. This talk will describe a symbiotic approach to understanding the dynamics of giant planet magnetospheres and the plasma interactions between magnetospheric plasma and large moons. Data acquired along a spacecraft trajectory are compared with values extracted from a virtual spacecraft moving through the same path in the simulation. If results are similar, we use the simulation to identify the processes responsible for puzzling aspects of the signatures. If results differ, modifications of the simulation, such as changed boundary conditions, can improve agreement and provide more convincing insight into the properties of the systems.
TOPICAL REVIEW: Advances and challenges in computational plasma science
NASA Astrophysics Data System (ADS)
Tang, W. M.; Chan, V. S.
2005-02-01
Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behaviour. Recent advances in simulations of magnetically confined plasmas are reviewed in this paper, with illustrative examples, chosen from associated research areas such as microturbulence, magnetohydrodynamics and other topics. Progress has been stimulated, in particular, by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modelling. This was enabled by two key factors: (a) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (b) access to powerful new computational resources. Excellent progress has been made in developing codes for which computer run-time and problem-size scale well with the number of processors on massively parallel processors (MPPs). Examples include the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPPs to produce three-dimensional, general geometry, nonlinear particle simulations that have accelerated advances in understanding the nature of turbulence self-regulation by zonal flows. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In looking towards the future, the current results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. This should produce the scientific excitement which will help to (a) stimulate enhanced cross-cutting collaborations with other fields and (b) attract the bright young talent needed for the future health of the field of plasma science.
Advances and challenges in computational plasma science
NASA Astrophysics Data System (ADS)
Tang, W. M.
2005-02-01
Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behaviour. Recent advances in simulations of magnetically confined plasmas are reviewed in this paper, with illustrative examples, chosen from associated research areas such as microturbulence, magnetohydrodynamics and other topics. Progress has been stimulated, in particular, by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modelling. This was enabled by two key factors: (a) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (b) access to powerful new computational resources. Excellent progress has been made in developing codes for which computer run-time and problem-size scale well with the number of processors on massively parallel processors (MPPs). Examples include the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPPs to produce three-dimensional, general geometry, nonlinear particle simulations that have accelerated advances in understanding the nature of turbulence self-regulation by zonal flows. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In looking towards the future, the current results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. This should produce the scientific excitement which will help to (a) stimulate enhanced cross-cutting collaborations with other fields and (b) attract the bright young talent needed for the future health of the field of plasma science.
MAVEN Observations of Magnetic Reconnection on the Dayside Martian Magnetosphere
NASA Astrophysics Data System (ADS)
DiBraccio, Gina A.; Espley, Jared R.; Connerney, John E. P.; Brain, David A.; Halekas, Jasper S.; Mitchell, David L.; Harada, Yuki; Hara, Takuya
2015-04-01
The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission offers a unique opportunity to investigate the complex solar wind-planetary interaction at Mars. The Martian magnetosphere is formed as the interplanetary magnetic field (IMF) drapes around the planet's ionosphere and localized crustal magnetic fields. As the solar wind interacts with this induced magnetosphere, magnetic reconnection can occur at any location where a magnetic shear is present. Reconnection between the IMF and the induced and crustal fields facilitates a direct plasma exchange between the solar wind and the Martian ionosphere. Here we address the occurrence of magnetic reconnection on the dayside magnetosphere of Mars using MAVEN magnetic field and plasma data. When reconnection occurs on the dayside, a non-zero magnetic field component normal to the obstacle, B_N, will result. Using minimum variance analysis, we measure BN by transforming Magnetometer data into boundary-normal coordinates. Selected events are then further examined to identify plasma heating and energization, in the form of Alfvénic outflow jets, using Solar Wind Ion Analyzer measurements. Additionally, the topology of the crustal fields is validated from electron pitch angle distributions provided by the Solar Wind Electron Analyzer. To understand which parameters are responsible for the onset of reconnection, we test the dependency of the dimensionless reconnection rate, calculated from BN measurements, on magnetic field shear angle and plasma beta (the ratio of plasma pressure to magnetic pressure). We assess the global impact of reconnection on Mars' induced magnetosphere by combining analytical models with MAVEN observations to predict the regions where reconnection may occur. Using this approach we examine how IMF orientation and magnetosheath parameters affect reconnection on a global scale. With the aid of analytical models we are able to assess the role of reconnection on a global scale to better understand which factors drive these dynamics in the space environment of Mars.
A radio-frequency sheath model for complex waveforms
NASA Astrophysics Data System (ADS)
Turner, M. M.; Chabert, P.
2014-04-01
Plasma sheaths driven by radio-frequency voltages occur in contexts ranging from plasma processing to magnetically confined fusion experiments. An analytical understanding of such sheaths is therefore important, both intrinsically and as an element in more elaborate theoretical structures. Radio-frequency sheaths are commonly excited by highly anharmonic waveforms, but no analytical model exists for this general case. We present a mathematically simple sheath model that is in good agreement with earlier models for single frequency excitation, yet can be solved for arbitrary excitation waveforms. As examples, we discuss dual-frequency and pulse-like waveforms. The model employs the ansatz that the time-averaged electron density is a constant fraction of the ion density. In the cases we discuss, the error introduced by this approximation is small, and in general it can be quantified through an internal consistency condition of the model. This simple and accurate model is likely to have wide application.
Collins, Carina A; Leslie, Michelle E; Peck, Scott C; Heese, Antje
2017-01-01
The plasma membrane (PM) forms a barrier between a plant cell and its environment. Proteins at this subcellular location play diverse and complex roles, including perception of extracellular signals to coordinate cellular changes. Analyses of PM proteins, however, are often limited by the relatively low abundance of these proteins in the total cellular protein pool. Techniques traditionally used for enrichment of PM proteins are time consuming, tedious, and require extensive optimization. Here, we provide a simple and reproducible enrichment procedure for PM proteins from Arabidopsis thaliana seedlings starting from total microsomal membranes isolated by differential centrifugation. To enrich for PM proteins, total microsomes are treated with the nonionic detergent Brij-58 to decrease the abundance of contaminating organellar proteins. This protocol combined with the genetic resources available in Arabidopsis provides a powerful tool that will enhance our understanding of proteins at the PM.
Outline for a Spheromak Proof of Principle Experiment
NASA Astrophysics Data System (ADS)
Woodruff, Simon; Macnab, Angus
2007-11-01
A possible means for reducing reactor core complexity and size (and hence cost) could lie with research into the Spheromak concept: a plasma ring with no coils linking the plasma. Much progress has been made in the last 20 years, and now tokamak-like confinement is being reported, with work focusing on understanding beta-limits, transport and novel means of generating magnetic fields both in sustained and pulsed scenarios. Spheromak research is maturing, with many experiments integrated into a national program to resolve well defined critical physics issues. This poster summarizes the work from the last 20 years both as a historical overview and an outline of the present status. A natural consequence is to suggest the possibility of a Next-Step Spheromak, or advanced Proof of Principle device that will build on recent success and address many of the remaining critical issues in preparation for a Spheromak BPX.
Probing the Mechanical Properties of Plasma von Willebrand Factor Using Atomic Force Microscopy
NASA Astrophysics Data System (ADS)
Wijeratne, Sitara; Botello, Eric; Frey, Eric; Kiang, Ching-Hwa; Dong, Jing-Fei; Yeh, Hui-Chun
2010-03-01
Single-molecule manipulation allows us to study the real time kinetics of many complex cellular processes. The mechanochemistry of different forms of von Willebrand factor (VWF) and their receptor-ligand binding kinetics can be unraveled by atomic force microscopy (AFM). Since plasma VWF can be activated upon shear, the structural and functional properties of VWF are critical in mediating thrombus formation become important. Here we characterized the mechanical resistance to domain unfolding of VWF to determine the conformational states of VWF. We found the shear induced conformational, hence mechanical property changes can be detected by the change in unfolding forces. The relaxation rate of such effect is much longed than expected. This supports the model of lateral association VWF under shear stress. Our results offer an insight in establishing strategies for regulating VWF adhesion activity, increasing our understanding of surface-induced thrombosis as mediated by VWF.
Space environments and their effects on space automation and robotics
NASA Technical Reports Server (NTRS)
Garrett, Henry B.
1990-01-01
Automated and robotic systems will be exposed to a variety of environmental anomalies as a result of adverse interactions with the space environment. As an example, the coupling of electrical transients into control systems, due to EMI from plasma interactions and solar array arcing, may cause spurious commands that could be difficult to detect and correct in time to prevent damage during critical operations. Spacecraft glow and space debris could introduce false imaging information into optical sensor systems. The presentation provides a brief overview of the primary environments (plasma, neutral atmosphere, magnetic and electric fields, and solid particulates) that cause such adverse interactions. The descriptions, while brief, are intended to provide a basis for the other papers presented at this conference which detail the key interactions with automated and robotic systems. Given the growing complexity and sensitivity of automated and robotic space systems, an understanding of adverse space environments will be crucial to mitigating their effects.
Metabolic responses in Candida tropicalis to complex inhibitors during xylitol bioconversion.
Wang, Shizeng; Li, Hao; Fan, Xiaoguang; Zhang, Jingkun; Tang, Pingwah; Yuan, Qipeng
2015-09-01
During xylitol fermentation, Candida tropicalis is often inhibited by inhibitors in hemicellulose hydrolysate. The mechanisms involved in the metabolic responses to inhibitor stress and the resistances to inhibitors are still not clear. To understand the inhibition mechanisms and the metabolic responses to inhibitors, a GC/MS-based metabolomics approach was performed on C. tropicalis treated with and without complex inhibitors (CI, including furfural, phenol and acetic acid). Partial least squares discriminant analysis was used to determine the metabolic variability between CI-treated groups and control groups, and 25 metabolites were identified as possible entities responsible for the discrimination caused by inhibitors. We found that xylose uptake rate and xylitol oxidation rate were promoted by CI treatment. Metabolomics analysis showed that the flux from xylulose to pentose phosphate pathway increased, and tricarboxylic acid cycle was disturbed by CI. Moreover, the changes in levels of 1,3-propanediol, trehalose, saturated fatty acids and amino acids showed different mechanisms involved in metabolic responses to inhibitor stress. The increase of 1,3-propanediol was considered to be correlated with regulating redox balance and osmoregulation. The increase of trehalose might play a role in protein stabilization and cellular membranes protection. Saturated fatty acids could cause the decrease of membrane fluidity and make the plasma membrane rigid to maintain the integrity of plasma membrane. The deeper understanding of the inhibition mechanisms and the metabolic responses to inhibitors will provide us with more information on the metabolism regulation during xylitol bioconversion and the construction of industrial strains with inhibitor tolerance for better utilization of bioresource. Copyright © 2015 Elsevier Inc. All rights reserved.
Penetration of Large Scale Electric Field to Inner Magnetosphere
NASA Astrophysics Data System (ADS)
Chen, S. H.; Fok, M. C. H.; Sibeck, D. G.; Wygant, J. R.; Spence, H. E.; Larsen, B.; Reeves, G. D.; Funsten, H. O.
2015-12-01
The direct penetration of large scale global electric field to the inner magnetosphere is a critical element in controlling how the background thermal plasma populates within the radiation belts. These plasma populations provide the source of particles and free energy needed for the generation and growth of various plasma waves that, at critical points of resonances in time and phase space, can scatter or energize radiation belt particles to regulate the flux level of the relativistic electrons in the system. At high geomagnetic activity levels, the distribution of large scale electric fields serves as an important indicator of how prevalence of strong wave-particle interactions extend over local times and radial distances. To understand the complex relationship between the global electric fields and thermal plasmas, particularly due to the ionospheric dynamo and the magnetospheric convection effects, and their relations to the geomagnetic activities, we analyze the electric field and cold plasma measurements from Van Allen Probes over more than two years period and simulate a geomagnetic storm event using Coupled Inner Magnetosphere-Ionosphere Model (CIMI). Our statistical analysis of the measurements from Van Allan Probes and CIMI simulations of the March 17, 2013 storm event indicate that: (1) Global dawn-dusk electric field can penetrate the inner magnetosphere inside the inner belt below L~2. (2) Stronger convections occurred in the dusk and midnight sectors than those in the noon and dawn sectors. (3) Strong convections at multiple locations exist at all activity levels but more complex at higher activity levels. (4) At the high activity levels, strongest convections occur in the midnight sectors at larger distances from the Earth and in the dusk sector at closer distances. (5) Two plasma populations of distinct ion temperature isotropies divided at L-Shell ~2, indicating distinct heating mechanisms between inner and outer radiation belts. (6) CIMI simulations reveal alternating penetration and shielding electric fields during the main phase of the geomagnetic storm, indicating an impulsive nature of the large scale penetrating electric field in regulating the gain and loss of radiation belt particles. We will present the statistical analysis and simulations results.
Review of inductively coupled plasmas: Nano-applications and bistable hysteresis physics
NASA Astrophysics Data System (ADS)
Lee, Hyo-Chang
2018-03-01
Many different gas discharges and plasmas exhibit bistable states under a given set of conditions, and the history-dependent hysteresis that is manifested by intensive quantities of the system upon variation of an external parameter has been observed in inductively coupled plasmas (ICPs). When the external parameters (such as discharge powers) increase, the plasma density increases suddenly from a low- to high-density mode, whereas decreasing the power maintains the plasma in a relatively high-density mode, resulting in significant hysteresis. To date, a comprehensive description of plasma hysteresis and a physical understanding of the main mechanism underlying their bistability remain elusive, despite many experimental observations of plasma bistability conducted under radio-frequency ICP excitation. This fundamental understanding of mode transitions and hysteresis is essential and highly important in various applied fields owing to the widespread use of ICPs, such as semiconductor/display/solar-cell processing (etching, deposition, and ashing), wireless light lamp, nanostructure fabrication, nuclear-fusion operation, spacecraft propulsion, gas reformation, and the removal of hazardous gases and materials. If, in such applications, plasma undergoes a mode transition and hysteresis occurs in response to external perturbations, the process result will be strongly affected. Due to these reasons, this paper comprehensively reviews both the current knowledge in the context of the various applied fields and the global understanding of the bistability and hysteresis physics in the ICPs. At first, the basic understanding of the ICP is given. After that, applications of ICPs to various applied fields of nano/environmental/energy-science are introduced. Finally, the mode transition and hysteresis in ICPs are studied in detail. This study will show the fundamental understanding of hysteresis physics in plasmas and give open possibilities for applications to various applied fields to find novel control knob and optimizing processing conditions.
Estradiol's interesting life at the cell's plasma membrane.
Caldwell, J D; Gebhart, V M; Jirikowski, G F
2016-07-01
Clearly, we have presented here evidence of a very complex set of mechanisms and proteins involved with various and intricate actions of steroids at the plasma membrane. Steroids do MUCH more at the plasma membrane than simply passing passively through it. They may sit in the membrane; they are bound by numerous proteins in the membrane, including ERs, SHBG, steroid-binding globulin receptors, and perhaps elements of cellular architecture such as tubulin. It also seems likely that the membrane itself responds graphically to the presence of steroids by actually changing its shape as well, perhaps, as accumulating steroids. Clara Szego suggested in the 1980s that actions of E2 at one level would act synergistically with its actions at another level (e.g. membrane actions would complement nuclear actions). Given the sheer number of proteins involved in steroid actions, just at the membrane level, it seems unlikely that every action of a steroid on every potential protein effector will act to the same end. It seems more likely that these multiple effects and sites of effect of steroids contribute to the confusion that exists as to what actions steroids always have. For example, there is confusion with regard to synthetic agents (SERMs etc.) that have different and often opposite actions depending on which organ they act upon. A better understanding of the basic actions of steroids should aid in understanding the variability of their clinical effects. Copyright © 2016 Elsevier Inc. All rights reserved.
Tran, Mai L; McCarthy, Thomas W; Sun, Hao; Wu, Shu-Zon; Norris, Joanna H; Bezanilla, Magdalena; Vidali, Luis; Anderson, Charles T; Roberts, Alison W
2018-01-15
Results from live cell imaging of fluorescently tagged Cellulose Synthase (CESA) proteins in Cellulose Synthesis Complexes (CSCs) have enhanced our understanding of cellulose biosynthesis, including the mechanisms of action of cellulose synthesis inhibitors. However, this method has been applied only in Arabidopsis thaliana and Brachypodium distachyon thus far. Results from freeze fracture electron microscopy of protonemal filaments of the moss Funaria hygrometrica indicate that a cellulose synthesis inhibitor, 2,6-dichlorobenzonitrile (DCB), fragments CSCs and clears them from the plasma membrane. This differs from Arabidopsis, in which DCB causes CSC accumulation in the plasma membrane and a different cellulose synthesis inhibitor, isoxaben, clears CSCs from the plasma membrane. In this study, live cell imaging of the moss Physcomitrella patens indicated that DCB and isoxaben have little effect on protonemal growth rates, and that only DCB causes tip rupture. Live cell imaging of mEGFP-PpCESA5 and mEGFP-PpCESA8 showed that DCB and isoxaben substantially reduced CSC movement, but had no measureable effect on CSC density in the plasma membrane. These results suggest that DCB and isoxaben have similar effects on CSC movement in P. patens and Arabidopsis, but have different effects on CSC intracellular trafficking, cell growth and cell integrity in these divergent plant lineages.
Maekawa, Masashi; Yang, Yanbo; Fairn, Gregory D.
2016-01-01
Cholesterol is an essential structural component of cellular membranes in eukaryotes. Cholesterol in the exofacial leaflet of the plasma membrane is thought to form membrane nanodomains with sphingolipids and specific proteins. Additionally, cholesterol is found in the intracellular membranes of endosomes and has crucial functions in membrane trafficking. Furthermore, cellular cholesterol homeostasis and regulation of de novo synthesis rely on transport via both vesicular and non-vesicular pathways. Thus, the ability to visualize and detect intracellular cholesterol, especially in the plasma membrane, is critical to understanding the complex biology associated with cholesterol and the nanodomains. Perfringolysin O (PFO) theta toxin is one of the toxins secreted by the anaerobic bacteria Clostridium perfringens and this toxin forms pores in the plasma membrane that causes cell lysis. It is well understood that PFO recognizes and binds to cholesterol in the exofacial leaflets of the plasma membrane, and domain 4 of PFO (D4) is sufficient for the binding of cholesterol. Recent studies have taken advantage of this high-affinity cholesterol-binding domain to create a variety of cholesterol biosensors by using a non-toxic PFO or the D4 in isolation. This review highlights the characteristics and usefulness of, and the principal findings related to, these PFO-derived cholesterol biosensors. PMID:27005662
Maekawa, Masashi; Yang, Yanbo; Fairn, Gregory D
2016-03-08
Cholesterol is an essential structural component of cellular membranes in eukaryotes. Cholesterol in the exofacial leaflet of the plasma membrane is thought to form membrane nanodomains with sphingolipids and specific proteins. Additionally, cholesterol is found in the intracellular membranes of endosomes and has crucial functions in membrane trafficking. Furthermore, cellular cholesterol homeostasis and regulation of de novo synthesis rely on transport via both vesicular and non-vesicular pathways. Thus, the ability to visualize and detect intracellular cholesterol, especially in the plasma membrane, is critical to understanding the complex biology associated with cholesterol and the nanodomains. Perfringolysin O (PFO) theta toxin is one of the toxins secreted by the anaerobic bacteria Clostridium perfringens and this toxin forms pores in the plasma membrane that causes cell lysis. It is well understood that PFO recognizes and binds to cholesterol in the exofacial leaflets of the plasma membrane, and domain 4 of PFO (D4) is sufficient for the binding of cholesterol. Recent studies have taken advantage of this high-affinity cholesterol-binding domain to create a variety of cholesterol biosensors by using a non-toxic PFO or the D4 in isolation. This review highlights the characteristics and usefulness of, and the principal findings related to, these PFO-derived cholesterol biosensors.
Characterizing Suspension Plasma Spray Coating Formation Dynamics through Curvature Measurements
NASA Astrophysics Data System (ADS)
Chidambaram Seshadri, Ramachandran; Dwivedi, Gopal; Viswanathan, Vaishak; Sampath, Sanjay
2016-12-01
Suspension plasma spraying (SPS) enables the production of variety of microstructures with unique mechanical and thermal properties. In SPS, a liquid carrier (ethanol/water) is used to transport the sub-micrometric feedstock into the plasma jet. Considering complex deposition dynamics of SPS technique, there is a need to better understand the relationships among spray conditions, ensuing particle behavior, deposition stress evolution and resultant properties. In this study, submicron yttria-stabilized zirconia particles suspended in ethanol were sprayed using a cascaded arc plasma torch. The stresses generated during the deposition of the layers (termed evolving stress) were monitored via the change in curvature of the substrate measured using an in situ measurement apparatus. Depending on the deposition conditions, coating microstructures ranged from feathery porous to dense/cracked deposits. The evolving stresses and modulus were correlated with the observed microstructures and visualized via process maps. Post-deposition bi-layer curvature measurement via low temperature thermal cycling was carried out to quantify the thermo-elastic response of different coatings. Lastly, preliminary data on furnace cycle durability of different coating microstructures were evaluated. This integrated study involving in situ diagnostics and ex situ characterization along with process maps provides a framework to describe coating formation mechanisms, process parametrics and microstructure description.
Cold atmospheric plasma sterilization: from bacteria to biomolecules
NASA Astrophysics Data System (ADS)
Kong, Michael
2009-10-01
Although ionized gases have been known to have biological effects for more than 100 years, their impact on the practice in healthcare service became very significant only recently. Today, plasma-based surgical tools are used for tissue reduction and blood coagulation as surgical procedures. Most significant however is the speed at which low-temperature gas plasmas are finding new applications in medicine and biology, including plasma sterilization, wound healing, and cancer therapies just to name a few. In the terminology of biotechnology, the ``pipeline'' is long and exciting. This presentation reviews the current status of the field with a particular emphasis on plasma inactivation of microorganisms and biomolecules, for which comprehensive scientific evidence has been obtained. Some of the early speculations of biocidal plasma species are now being confirmed through a combination of optical emission spectroscopy, laser-induced fluorescence, mass spectrometry, fluid simulation and biological sensing with mutated bacteria. Similarly, fundamental studies are being performed to examine cell components targeted by gas plasmas, from membrane, through lipid and membrane proteins, to DNA. Scientific challenge is significant, as the usual complexity of plasma dynamics and plasma chemistry is compounded by the added complication that cells are live and constantly evolving. Nevertheless, the current understanding of plasma inactivation currently provides strong momentum for plasma decontamination technologies to be realized in healthcare. We will discuss the issue of protein and tissue contaminations of surgical instruments and how cold atmospheric plasmas may be used to degrade and reduce their surface load. In the context of plasma interaction with biomolecules, we will consider recent data of plasma degradation of adhesion proteins of melanoma cells. These adhesion proteins are important for cancer cell migration and spread. If low-temperature plasmas could be used to degrade them, it could form a control strategy for cancer spread. This adds to the option of plasma-triggered programmed cell death (apoptosis). Whilst opportunities thus highlighted are significant and exciting, the underpinning science poses many open questions. The presentation will then discuss main requirements for plasma sources appropriate for their biomedical applications, in terms of the scope of up-scaling, the ability to treat uneven surfaces of varying materials, the range of plasma chemistry, and the control of plasma instabilities. Finally a perspective will be offered, in terms of both opportunities and challenges.
Magnetic Reconnection in the Solar Chromosphere
NASA Astrophysics Data System (ADS)
Lukin, Vyacheslav S.; Ni, Lei; Murphy, Nicholas Arnold
2017-08-01
We report on the most recent efforts to accurately and self-consistently model magnetic reconnection processes in the context of the solar chromosphere. The solar chromosphere is a notoriously complex and highly dynamic boundary layer of the solar atmosphere where local variations in the plasma parameters can be of the order of the mean values. At the same time, the interdependence of the physical processes such as magnetic field evolution, local and global energy transfer between internal and electromagnetic plasma energy, radiation transport, plasma reactivity, and dissipation mechanisms make it a particularly difficult system to self-consistently model and understand. Several recent studies have focused on the micro-physics of multi-fluid magnetic reconnection at magnetic nulls in the weakly ionized plasma environment of the lower chromosphere[1-3]. Here, we extend the previous work by considering a range of spatial scales and magnetic field strengths in a configuration with component magnetic reconnection, i.e., for magnetic reconnection with a guide field. We show that in all cases the non-equilibrium reactivity of the plasma and the dynamic interaction among the plasma processes play important roles in determining the structure of the reconnection region. We also speculate as to the possible observables of chromospheric magnetic reconnection and the likely plasma conditions required for generation of Ellerman and IRIS bombs.[1] Leake, Lukin, Linton, and Meier, “Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma,” ApJ 760 (2012).[2] Leake, Lukin, and Linton, “Magnetic reconnection in a weakly ionized plasma,” PoP 20 (2013).[3] Murphy and Lukin, “Asymmetric magnetic reconnection in weakly ionized chromospheric plasmas,” ApJ 805 (2015).[*Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
Ideal gas behavior of a strongly coupled complex (dusty) plasma.
Oxtoby, Neil P; Griffith, Elias J; Durniak, Céline; Ralph, Jason F; Samsonov, Dmitry
2013-07-05
In a laboratory, a two-dimensional complex (dusty) plasma consists of a low-density ionized gas containing a confined suspension of Yukawa-coupled plastic microspheres. For an initial crystal-like form, we report ideal gas behavior in this strongly coupled system during shock-wave experiments. This evidence supports the use of the ideal gas law as the equation of state for soft crystals such as those formed by dusty plasmas.
Bioavailability of an R-α-Lipoic Acid/γ-Cyclodextrin Complex in Healthy Volunteers
Ikuta, Naoko; Okamoto, Hinako; Furune, Takahiro; Uekaji, Yukiko; Terao, Keiji; Uchida, Ryota; Iwamoto, Kosuke; Miyajima, Atsushi; Hirota, Takashi; Sakamoto, Norihiro
2016-01-01
R-α-lipoic acid (R-LA) is a cofactor of mitochondrial enzymes and a very strong antioxidant. R-LA is available as a functional food ingredient but is unstable against heat or acid. Stabilized R-LA was prepared through complexation with γ-cyclodextrin (CD), yielding R-LA/CD. R-LA/CD was orally administered to six healthy volunteers and showed higher plasma levels with an area under the plasma concentration-time curve that was 2.5 times higher than that after oral administration of non-complexed R-LA, although the time to reach the maximum plasma concentration and half-life did not differ. Furthermore, the plasma glucose level after a single oral administration of R-LA/CD or R-LA was not affected and no side effects were observed. These results indicate that R-LA/CD could be easily absorbed in the intestine. In conclusion, γ-CD complexation is a promising technology for delivering functional but unstable ingredients like R-LA. PMID:27314343
Velocity Space Degrees of Freedom of Plasma Fluctuations
NASA Astrophysics Data System (ADS)
Mattingly, Sean
2017-10-01
Small scale wave modes are becoming more important in plasma physics. Examples include turbulent cascades in the solar wind, the energetics of fusion plasma electrostatic turbulence and transport, and low temperature basic plasma physics experiments. In order to improve our understanding of these modes, I present an advance in experimental plasma diagnostics and use it to show the first measurement of a plasma ion velocity-space cross-correlation matrix. From this matrix I determine the eigenmodes of fluctuations on the ion distribution function as a function of frequency. I also determine the relative strengths of these modes - these are the velocity space degrees of freedom of plasma fluctuations. This measurement can detect the aforementioned smaller scale modes in plasmas through a localized measurement. The locality of this measurement means that it may be applied to plasmas in which a single - point velocity sensitive diagnostic is available and multipoint measurements may be difficult. Examples include in situ measurements of space plasmas, fusion plasmas, trapped plasmas, and laser cooled plasmas. This fact, combined with the new perspective it can give on small scale plasma fluctuations, means it may be used to further research on the above cited subjects. Much work remains on fully understanding this measurement. This measurement opens a velocity space interpretation of small scale plasma wave modes, and understanding this perspective from theory requires the application or invention of new mathematical tools. I discuss open problems to follow up on, which include questions from experimental, theoretical, and instrumentation perspectives. NSF-DOE Program Grant DE-FG02-99ER54543.
Recent development in deciphering the structure of luminescent silver nanodots
NASA Astrophysics Data System (ADS)
Choi, Sungmoon; Yu, Junhua
2017-05-01
Matrix-stabilized silver clusters and stable luminescent few-atom silver clusters, referred to as silver nanodots, show notable difference in their photophysical properties. We present recent research on deciphering the nature of silver clusters and nanodots and understanding the factors that lead to variations in luminescent mechanisms. Due to their relatively simple structure, the matrix-stabilized clusters have been well studied. However, the single-stranded DNA (ssDNA)-stabilized silver nanodots that show the most diverse emission wavelengths and the best photophysical properties remain mysterious species. It is clear that their photophysical properties highly depend on their protection scaffolds. Analyses from combinations of high-performance liquid chromatography, inductively coupled plasma-atomic emission spectroscopy, electrophoresis, and mass spectrometry indicate that about 10 to 20 silver atoms form emissive complexes with ssDNA. However, it is possible that not all of the silver atoms in the complex form effective emission centers. Investigation of the nanodot structure will help us understand why luminescent silver nanodots are stable in aqueous solution and how to further improve their chemical and photophysical properties.
Hepatic Steatosis as a Marker of Metabolic Dysfunction
Fabbrini, Elisa; Magkos, Faidon
2015-01-01
Nonalcoholic fatty liver disease (NAFLD) is the liver manifestation of the complex metabolic derangements associated with obesity. NAFLD is characterized by excessive deposition of fat in the liver (steatosis) and develops when hepatic fatty acid availability from plasma and de novo synthesis exceeds hepatic fatty acid disposal by oxidation and triglyceride export. Hepatic steatosis is therefore the biochemical result of an imbalance between complex pathways of lipid metabolism, and is associated with an array of adverse changes in glucose, fatty acid, and lipoprotein metabolism across all tissues of the body. Intrahepatic triglyceride (IHTG) content is therefore a very good marker (and in some cases may be the cause) of the presence and the degree of multiple-organ metabolic dysfunction. These metabolic abnormalities are likely responsible for many cardiometabolic risk factors associated with NAFLD, such as insulin resistance, type 2 diabetes mellitus, and dyslipidemia. Understanding the factors involved in the pathogenesis and pathophysiology of NAFLD will lead to a better understanding of the mechanisms responsible for the metabolic complications of obesity, and hopefully to the discovery of novel effective treatments for their reversal. PMID:26102213
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miloshevsky, Alexander; Harilal, Sivanandan S.; Miloshevsky, Gennady, E-mail: gennady@purdue.edu
2014-04-15
Plasma expansion with shockwave formation during laser ablation of materials in a background gasses is a complex process. The spatial and temporal evolution of pressure, temperature, density, and velocity fields is needed for its complete understanding. We have studied the expansion of femtosecond (fs) laser-ablated aluminum (Al) plumes in Argon (Ar) gas at 0.5 and 1 atmosphere (atm). The expansion of the plume is investigated experimentally using shadowgraphy and fast-gated imaging. The computational fluid dynamics (CFD) modeling is also carried out. The position of the shock front measured by shadowgraphy and fast-gated imaging is then compared to that obtained frommore » the CFD modeling. The results from the three methods are found to be in good agreement, especially during the initial stage of plasma expansion. The computed time- and space-resolved fields of gas-dynamic parameters have provided valuable insights into the dynamics of plasma expansion and shockwave formation in fs-pulse ablated Al plumes in Ar gas at 0.5 and 1 atm. These results are compared to our previous data on nanosecond (ns) laser ablation of Al [S. S. Harilal et al., Phys. Plasmas 19, 083504 (2012)]. It is observed that both fs and ns plumes acquire a nearly spherical shape at the end of expansion in Ar gas at 1 atm. However, due to significantly lower pulse energy of the fs laser (5 mJ) compared to pulse energy of the ns laser (100 mJ) used in our studies, the values of pressure, temperature, mass density, and velocity are found to be smaller in the fs laser plume, and their time evolution occurs much faster on the same time scale. The oscillatory shock waves clearly visible in the ns plume are not observed in the internal region of the fs plume. These experimental and computational results provide a quantitative understanding of plasma expansion and shockwave formation in fs-pulse and ns-pulse laser ablated Al plumes in an ambient gas at atmospheric pressures.« less
Dissipative dark soliton in a complex plasma.
Heidemann, R; Zhdanov, S; Sütterlin, R; Thomas, H M; Morfill, G E
2009-04-03
The observation of a dark soliton in a three-dimensional complex plasma containing monodisperse microparticles is presented. We perform our experiments using neon gas in the bulk plasma of an rf discharge. A gas temperature gradient of 500K/m is applied to balance gravity and to levitate the particles in the bulk plasma. The wave is excited by a short voltage pulse on the electrodes of the radio frequency discharge chamber. It is found that the wave propagates with constant speed. The propagation time of the dark soliton is approximately 20 times longer than the damping time.
Dissipative Dark Soliton in a Complex Plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidemann, R.; Zhdanov, S.; Suetterlin, R.
2009-04-03
The observation of a dark soliton in a three-dimensional complex plasma containing monodisperse microparticles is presented. We perform our experiments using neon gas in the bulk plasma of an rf discharge. A gas temperature gradient of 500K/m is applied to balance gravity and to levitate the particles in the bulk plasma. The wave is excited by a short voltage pulse on the electrodes of the radio frequency discharge chamber. It is found that the wave propagates with constant speed. The propagation time of the dark soliton is approximately 20 times longer than the damping time.
Complexity and Intermittent Turbulence in Space Plasmas
NASA Technical Reports Server (NTRS)
Chang, Tom; Tam, Sunny W. Y.; Wu, Cheng-Chin
2004-01-01
Sporadic and localized interactions of coherent structures arising from plasma resonances can be the origin of "complexity" of the coexistence of non- propagating spatiotemporal fluctuations and propagating modes in space plasmas. Numerical simulation results are presented to demonstrate the intermittent character of the non-propagating fluctuations. The technique of the dynamic renormalization-group is introduced and applied to the study of scale invariance of such type of multiscale fluctuations. We also demonstrate that the particle interactions with the intermittent turbulence can lead to the efficient energization of the plasma populations. An example related to the ion acceleration processes in the auroral zone is provided.
Fedoseienko, Alina; Wijers, Melinde; Wolters, Justina C; Dekker, Daphne; Smit, Marieke; Huijkman, Nicolette; Kloosterhuis, Niels; Klug, Helene; Schepers, Aloys; Willems van Dijk, Ko; Levels, Johannes H M; Billadeau, Daniel D; Hofker, Marten H; van Deursen, Jan; Westerterp, Marit; Burstein, Ezra; Kuivenhoven, Jan Albert; van de Sluis, Bart
2018-06-08
COMMD (copper metabolism MURR1 domain)-containing proteins are a part of the CCC (COMMD-CCDC22 [coiled-coil domain containing 22]-CCDC93 [coiled-coil domain containing 93]) complex facilitating endosomal trafficking of cell surface receptors. Hepatic COMMD1 inactivation decreases CCDC22 and CCDC93 protein levels, impairs the recycling of the LDLR (low-density lipoprotein receptor), and increases plasma low-density lipoprotein cholesterol levels in mice. However, whether any of the other COMMD members function similarly as COMMD1 and whether perturbation in the CCC complex promotes atherogenesis remain unclear. The main aim of this study is to unravel the contribution of evolutionarily conserved COMMD proteins to plasma lipoprotein levels and atherogenesis. Using liver-specific Commd1 , Commd6 , or Commd9 knockout mice, we investigated the relation between the COMMD proteins in the regulation of plasma cholesterol levels. Combining biochemical and quantitative targeted proteomic approaches, we found that hepatic COMMD1, COMMD6, or COMMD9 deficiency resulted in massive reduction in the protein levels of all 10 COMMDs. This decrease in COMMD protein levels coincided with destabilizing of the core (CCDC22, CCDC93, and chromosome 16 open reading frame 62 [C16orf62]) of the CCC complex, reduced cell surface levels of LDLR and LRP1 (LDLR-related protein 1), followed by increased plasma low-density lipoprotein cholesterol levels. To assess the direct contribution of the CCC core in the regulation of plasma cholesterol levels, Ccdc22 was deleted in mouse livers via CRISPR/Cas9-mediated somatic gene editing. CCDC22 deficiency also destabilized the complete CCC complex and resulted in elevated plasma low-density lipoprotein cholesterol levels. Finally, we found that hepatic disruption of the CCC complex exacerbates dyslipidemia and atherosclerosis in ApoE3*Leiden mice. Collectively, these findings demonstrate a strong interrelationship between COMMD proteins and the core of the CCC complex in endosomal LDLR trafficking. Hepatic disruption of either of these CCC components causes hypercholesterolemia and exacerbates atherosclerosis. Our results indicate that not only COMMD1 but all other COMMDs and CCC components may be potential targets for modulating plasma lipid levels in humans. © 2018 American Heart Association, Inc.
How can laboratory plasma experiments contribute to space and &astrophysics?
NASA Astrophysics Data System (ADS)
Yamada, M.
Plasma physics plays key role in a wide range of phenomena in the universe, from laboratory plasmas to the magnetosphere, the solar corona, and to the tenuous interstellar and intergalactic gas. Despite the huge difference in physical scales, there are striking similarities in plasma behavior of laboratory and space plasmas. Similar plasma physics problems have been investigated independently by both laboratory plasma physicists and astrophysicists. Since 1991, cross fertilization has been increased among laboratory plasma physicists and space physicists through meeting such as IPELS [Interrelationship between Plasma Experiments in the Laboratory and Space] meeting. The advances in laboratory plasma physics, along with the recent surge of astronomical data from satellites, make this moment ripe for research collaboration to further advance plasma physics and to obtain new understanding of key space and astrophysical phenomena. The recent NRC review of astronomy and astrophysics notes the benefit that can accrue from stronger connection to plasma physics. The present talk discusses how laboratory plasma studies can contribute to the fundamental understandings of the space and astrophysical phenomena by covering common key physics topics such as magnetic reconnection, dynamos, angular momentum transport, ion heating, and magnetic self-organization. In particular, it has recently been recognized that "physics -issue- dedicated" laboratory experiments can contribute significantly to the understanding of the fundamental physics for space-astrophysical phenomena since they can create fundamental physics processes in controlled manner and provide well-correlated plasma parameters at multiple plasma locations simultaneously. Such dedicated experiments not only can bring about better understanding of the fundamental physics processes but also can lead to findings of new physics principles as well as new ideas for fusion plasma confinement. Several dedicated experiments have provided the fundamental physics data for magnetic reconnection [1]. Linear plasma devices have been utilized to investigate Whistler waves and Alfven wave phenomena [2,3]. A rotating gallium disk experiment has been initiated to study magneto-rotational instability [4]. This talk also presents the most recent progress of these dedicated laboratory plasma research. 1. M. Yamada et al., Phys. Plasmas 4, 1936, (1997) 2. R. Stenzel, Phys. Rev. Lett. 65, 3001 (1991) 3. W. Gekelman et al, Plasma Phys. Contr. Fusion, v42, B15-B26, Suppl.12B (2000) 4. H. Ji, J. Goodman, A. Kageyama Mon. Not. R. Astron. Soc. 325, L1- (2001)
[Study of the interrelations of ethmozine, cordarone and phenycaberan with heparin].
Tolstopiatov, B I
1981-01-01
Cordarone, etmozin and phenycaberan form complexes with heparin. Etmozin and phenycaberan form complexes insoluble in an aqueous medium and exhibit a pronounced antiheparin action in in-vitro experiments. Cordarone and heparin form a complex which is soluble in an aqueous medium. This complex potentiates the biological activity of the anticoagulant. In experiments on rabbits cordarone and phenycaberan increase plasma tolerance to heparin followed by its lowering as compared with controls in experiments with phenycaberan. Etmozin decreases plasma tolerance to heparin.
Flame propagation in two-dimensional solids: Particle-resolved studies with complex plasmas
NASA Astrophysics Data System (ADS)
Yurchenko, S. O.; Yakovlev, E. V.; Couëdel, L.; Kryuchkov, N. P.; Lipaev, A. M.; Naumkin, V. N.; Kislov, A. Yu.; Ovcharov, P. V.; Zaytsev, K. I.; Vorob'ev, E. V.; Morfill, G. E.; Ivlev, A. V.
2017-10-01
Using two-dimensional (2D) complex plasmas as an experimental model system, particle-resolved studies of flame propagation in classical 2D solids are carried out. Combining experiments, theory, and molecular dynamics simulations, we demonstrate that the mode-coupling instability operating in 2D complex plasmas reveals all essential features of combustion, such as an activated heat release, two-zone structure of the self-similar temperature profile ("flame front"), as well as thermal expansion of the medium and temperature saturation behind the front. The presented results are of relevance for various fields ranging from combustion and thermochemistry, to chemical physics and synthesis of materials.
Laser-excited pulse propagation in a crystallized complex plasma
NASA Astrophysics Data System (ADS)
Nosenko, V.; Nunomura, S.; Goree, J.
2000-10-01
A complex plasma, so-called in analogy with complex fluids, is an ionized gas containing small solid particles. This medium is also called a dusty plasma. The particles acquire a large negative electric charge. In an experiment, polymer microspheres were shaken into a parallel-plate rf plasma. The particles were levitated by the electric field in the sheath above the lower electrode. The particles settled in a single horizontal layer, and were arranged in a hexagonal lattice. They were imaged using a video camera to record the particle motion. Like any crystal, this so-called ``plasma crystal'' sustains compressional sound waves, which can be launched as a pulse. By modulating an argon laser beam directed tangentially at the lattice, we launched a pulsed wave in the lattice. We evaluated the pulse shape and propagation speed, while varying the pulse power and duration. This allowed a test for dispersion and nonlinearity, as well as a test of whether the pulse has the properties of a shock.
Understanding the Magnetosphere: The Counter-intuitive Simplicity of Cosmic Electrodynamics
NASA Astrophysics Data System (ADS)
Vasyliūnas, V. M.
2008-12-01
Planetary magnetospheres exhibit an amazing variety of phenomena, unlimited in complexity if followed into endlessly fine detail. The challenge of theory is to understand this variety and complexity, ultimately by seeing how the observed effects follow from the basic equations of physics (a point emphasized by Eugene Parker). The basic equations themselves are remarkably simple, only their consequences being exceedingly complex (a point emphasized by Fred Hoyle). In this lecture I trace the development of electrodynamics as an essential ingredient of magnetospheric physics, through the three stages it has undergone to date. Stage I is the initial application of MHD concepts and constraints (sometimes phrased in equivalent single-particle terms). Stage II is the classical formulation of self-consistent coupling between magnetosphere and ionosphere. Stage III is the more recent recognition that properly elucidating time sequence and cause-effect relations requires Maxwell's equations combined with the unique constraints of large-scale plasma. Problems and controversies underlie the transition from each stage to the following. For each stage, there are specific observed aspects of the magnetosphere that can be understood at its level; also, each stage implies a specific way to formulate unresolved questions (particularly important in this age of extensive multi-point observations and ever-more-detailed numerical simulations).
Features of behavior of the plasma area formed by explosion spent in range of heights of 100-1000 km
NASA Astrophysics Data System (ADS)
Vasilev, Mikhail; Kholodov, Alexander; Stupitsky, Evgeny; Repin, Andrew
Explosive plasma experiments remain the important means of research of geophysical effects in the top ionosphere and magnetosphere. In particular their results can be useful for development of full model of powerful geomagnetic storms. Scientific and applied value of such experiments depends on our ability to simulate them numerically and to understand the physical processes. Complexity of mathematical modelling of such experiments is caused by two circumstances - complexity and variety of physical processes, and large-scale three-dimensional current of plasma. It's important to note that not all features of the processes under consideration are well known and well modelled. And plasma parameters in the indignant area can vary up to 5-7 orders. During last several years we have developed universal enough 3D algorithm for the simulation of large-scale movement of the plasma, based on MHD approach. Diffusion of a magnetic field and the ionization structure of plasma and air is considered. The full algorithm includes the most initial the radiation-gas dynamic stage, a stage of inertial scattering when the charging structure of plasma is formed, a stage of braking of plasma a geomagnetic field and the rarefied ionosphere and later (down to 100-500 s) the stage of convective movements of plasma in a geomagnetic field and the rarefied ionosphere. The algorithm is based on special updating of a monotonous conservative variant of grid-characteristic method 2-3 orders of the approximation, including splitting on spatial variables. Calculations of explosion of energy about 1015 J are executed for some heights from a range of 100-1000 km. Character of development of current essentially varies depending on height. For 100-120 km current is close to bi-dimensional, in an initial stage the shock wave is formed, and for the period of 40-60 seconds the plasma area rises up to 300 km. At heights more than 150 km current, for a while more than 5 seconds are got with character of a powerful ascending jet. The wave comes off plasma the magneto sonic wave and quickly extends along a surface of globe. With increase in height of explosion (400-700 km) the jet gets flat character with primary distribution of weight in a plane of a magnetic meridian. It is gradually developed on a magnetic field, saving the certain inclination in relation to it. At explosions at heights more than 400 km scales current of plasma make more than 1000 km. It is shown, that the plasma area is a source of global low-frequency electromagnetic disturbance. Their parameters are estimated. At energy more than certain size, becomes possible having dug magnetosphere and global infringements in its structure, which depends on height and breadth of explosion. The developed numerical method allows to investigate a relaxation magnetosphere after such artificial indignations and at powerful magnetic storms.
Interaction of a supersonic particle with a three-dimensional complex plasma
NASA Astrophysics Data System (ADS)
Zaehringer, E.; Schwabe, M.; Zhdanov, S.; Mohr, D. P.; Knapek, C. A.; Huber, P.; Semenov, I. L.; Thomas, H. M.
2018-03-01
The influence of a supersonic projectile on a three-dimensional complex plasma is studied. Micron sized particles in a low-temperature plasma formed a large undisturbed system in the new "Zyflex" chamber during microgravity conditions. A supersonic probe particle excited a Mach cone with Mach number M ≈ 1.5-2 and double Mach cone structure in the large weakly damped particle cloud. The speed of sound is measured with different methods and particle charge estimations are compared to the calculations from standard theories. The high image resolution enables the study of Mach cones in microgravity on the single particle level of a three-dimensional complex plasma and gives insight to the dynamics. A heating of the microparticles is discovered behind the supersonic projectile but not in the flanks of the Mach cone.
NASA Astrophysics Data System (ADS)
Zhdanova, Nadezda; Shirshin, Evgeny; Fadeev, Victor; Priezzhev, Alexander
2016-04-01
Among all plasma proteins human serum albumin (HSA) is the most studied one as it is the main transport protein and can bind a wide variety of ligands especially fatty acids (FAs). The concentration of FAs bound to HSA in human blood plasma differs by three times under abnormal conditions (fasting, physical exercises or in case of social important diseases). In the present study a surfactant sodium dodecyl sulfate (SDS) was used to simulate FAs binding to HSA. It was shown that the increase of Tyr fluorescence of human blood plasma due to SDS addition can be completely explained by HSA-SDS complex formation. Binding parameters of SDS-HSA complex (average number of sites and apparent constant of complex formation) were determined from titration curves based on tyrosine (Tyr) fluorescence.
NASA Astrophysics Data System (ADS)
Mishra, Rohini
Present ultra high power lasers are capable of producing high energy density (HED) plasmas, in controlled way, with a density greater than solid density and at a high temperature of keV (1 keV ˜ 11,000,000° K). Matter in such extreme states is particularly interesting for (HED) physics such as laboratory studies of planetary and stellar astrophysics, laser fusion research, pulsed neutron source etc. To date however, the physics in HED plasma, especially, the energy transport, which is crucial to realize applications, has not been understood well. Intense laser produced plasmas are complex systems involving two widely distinct temperature distributions and are difficult to model by a single approach. Both kinetic and collisional process are equally important to understand an entire process of laser-solid interaction. By implementing atomic physics models, such as collision, ionization, and radiation damping, self consistently, in state-of-the-art particle-in-cell code (PICLS) has enabled to explore the physics involved in the HED plasmas. Laser absorption, hot electron transport, and isochoric heating physics in laser produced hot dense plasmas are studied with a help of PICLS simulations. In particular, a novel mode of electron acceleration, namely DC-ponderomotive acceleration, is identified in the super intense laser regime which plays an important role in the coupling of laser energy to a dense plasma. Geometric effects on hot electron transport and target heating processes are examined in the reduced mass target experiments. Further, pertinent to fast ignition, laser accelerated fast electron divergence and transport in the experiments using warm dense matter (low temperature plasma) is characterized and explained.
Micromachined probes for laboratory plasmas
NASA Astrophysics Data System (ADS)
Chiang, Franklin Changta
As we begin to find more applications for plasmas in our everyday lives, the ability to characterize and understand their inner workings becomes increasingly important. Much of our current understanding of plasma physics comes from investigations conducted in diffuse, outer space plasmas where experimenters have no control over the environment or experimental conditions and one measures interesting phenomena only by chance when the spacecraft or satellite passes through them. Ideally, experiments should be performed in a controlled environment, where plasma events can be deliberately and reliably created when wanted and probes placed precisely within the plasma. Unfortunately, often due to their size, probes used in outer space are unsuitable for use in high-density laboratory plasmas, and constructing probes that can be used in terrestrial plasmas is a considerable challenge. This dissertation presents the development, implementation, and experimental results of three micromachined probes capable of measuring voltage and electric field, ion energies, and changing magnetic fields (B-dot) in laboratory plasmas.
Zhang, Daping; Wu, Lei; Chow, Diana S-L; Tam, Vincent H; Rios, Danielle R
2016-01-05
The determination of dopamine facilitates better understanding of the complex brain disorders in the central nervous system and the regulation of endocrine system, cardiovascular functions and renal functions in the periphery. The purpose of this study was to develop a highly sensitive and reliable assay for the quantification of dopamine in human neonate plasma. Dopamine was extracted from human plasma by strong cation exchange (SCX) solid phase extraction (SPE), and subsequently derivatized with propionic anhydride. The derivatized analyte was separated by a Waters Acquity UPLC BEH C18 column using gradient elution at 0.4 ml/min with mobile phases A (0.2% formic acid in water [v/v]) and B (MeOH-ACN [v/v, 30:70]). Analysis was performed under positive electrospray ionization tandem mass spectrometer (ESI-MS/MS) in the multiple reaction monitoring (MRM) mode. The stable and relatively non-polar nature of the derivatized analyte enables reliable quantification of dopamine in the range of 10-1000 pg/ml using 200 μl of plasma sample. The method was validated with intra-day and inter-day precision less than 7%, and the intra-day and inter-day accuracy of 91.9-101.9% and 92.3-102.6%, respectively. The validated assay was applied to quantify dopamine levels in two preterm neonate plasma samples. In conclusion, a sensitive and selective LC-MS/MS method has been developed and validated, and successfully used for the determination of plasma dopamine levels in preterm neonates. Copyright © 2015 Elsevier B.V. All rights reserved.
de Wet, Heidi; Proks, Peter
2015-10-01
Sulphonylureas stimulate insulin secretion from pancreatic β-cells primarily by closing ATP-sensitive K(+) channels in the β-cell plasma membrane. The mechanism of channel inhibition by these drugs is unusually complex. As direct inhibitors of channel activity, sulphonylureas act only as partial antagonists at therapeutic concentrations. However, they also exert an additional indirect inhibitory effect via modulation of nucleotide-dependent channel gating. In this review, we summarize current knowledge and recent advances in our understanding of the molecular mechanism of action of these drugs. © 2015 Authors; published by Portland Press Limited.
The Role of Microbiota on the Gut Immunology.
Min, Yang Won; Rhee, Poong-Lyul
2015-05-01
The human gut contains >100 trillion microbes. This microbiota plays a crucial role in the gut homeostasis. Importantly, the microbiota contributes to the development and regulation of the gut immune system. Dysbiosis of the gut microbiota could also cause several intestinal and extraintestinal diseases. Many experimental studies help us to understand the complex interplay between the host and microbiota. This review presents our current understanding of the mucosal immune system and the role of gut microbiota for the development and functionality of the mucosal immunity, with a particular focus on gut-associated lymphoid tissues, mucosal barrier, TH17 cells, regulatory T cells, innate lymphoid cells, dendritic cells, and IgA-producing B cells and plasma cells. Comparative studies using germ-free and conventionally-raised animals reveal that the presence of microbiota is important for the development and regulation of innate and adaptive immune systems. The host-microbial symbiosis seems necessary for gut homeostasis. However, the precise mechanisms by which microbiota contributes to development and functionality of the immune system remain to be elucidated. Understanding the complex interplay between the host and microbiota and further investigation of the host-microbiota relationship could provide us the insight into the therapeutic and/or preventive strategy for the disorders related to dysbiosis of the gut microbiota. Copyright © 2015 Elsevier HS Journals, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Seurig, R.; Burfeindt, J.; Castegini, R.; Griethe, W.; Hofmann, P.
2002-01-01
On March 03, 2001, the PKE-Nefedov plasma experiment was successfully put into operation on board ISS. This complex plasma experiment is the predecessor for the semi-autonomous multi-user facility IMPF (International Microgravity Plasma Facility) to be flown in 2006 with an expected operational lifetime of 10 years. IMPF is envisioned to be an international research facility for investigators in the field of multi-component plasmas containing ions, electrons, and charged microparticles. This research filed is often referred to as "complex plasmas". The actual location of IMPF on ISS is not decided yet; potential infrastructure under consideration are EXPRESS Rack, Standard Interface Rack SIR, European Drawer Rack EDR, or a to be designed custom rack infrastructure on the Russian Segment. The actual development status of the DLR funded Pre-phase B Study for IMPF will be presented. For this phase, IMPF was assumed to be integrated in an EXPRESS Rack requiring four middeck lockers with two 4-PU ISIS drawers for accommodation. Technical and operational challenges, like a 240 Mbytes/sec continuous experimental data stream for 60 minutes, will be addressed. The project was funded by the German Space Agency (DLR) and was performed in close cooperation with scientists from the Max-Planck-Institute for Extraterrestical Physics in Munich, Germany.
HIV Trafficking Between Blood and Semen During Early Untreated HIV Infection.
Chaillon, Antoine; Smith, Davey M; Vanpouille, Christophe; Lisco, Andrea; Jordan, Parris; Caballero, Gemma; Vargas, Milenka; Gianella, Sara; Mehta, Sanjay R
2017-01-01
Understanding the dynamics of HIV across anatomic compartments is important to design effective eradication strategies. In this study, we evaluated viral trafficking between blood and semen during primary HIV infection in 6 antiretroviral-naive men who have sex with men. Deep sequencing data of HIV env were generated from longitudinal blood plasma, peripheral blood mononuclear cells, and seminal plasma samples. The presence or absence of viral compartmentalization was assessed using tree-based Slatkin-Maddison and distance-based Fst methods. Phylogeographic analyses were performed using a discrete Bayesian asymmetric approach of diffusion with Markov jump count estimation to evaluate the gene flow between blood and semen during primary HIV infection. Levels of DNA from human herpesviruses and selected inflammatory cytokines were also measured on genital secretions collected at baseline to evaluate potential correlates of increased viral migration between anatomic compartments. We detected varying degrees of compartmentalization in all 6 individuals evaluated. None of them maintained viral compartmentalization between blood and seminal plasma throughout the analyzed time points. Phylogeographic analyses revealed that the HIV population circulating in blood plasma populated the seminal compartment during the earliest stages of infection. In our limited data set, we found no association between local inflammation or herpesvirus shedding at baseline and viral trafficking between semen and blood. The early spread of virus from blood plasma to genital tract and the complex viral interplay between these compartments suggest that viral eradication efforts will require monitoring viral subpopulations in anatomic sites and viral trafficking during the course of infection.
NASA Astrophysics Data System (ADS)
Hospodarsky, G. B.; Pisa, D.; Santolik, O.; Kurth, W. S.; Soucek, J.; Basovnik, M.; Gurnett, D. A.; Arridge, C. S.
2015-12-01
Langmuir waves are commonly observed in the upstream regions of planetary and interplanetary shock. Solar wind electrons accelerated at the shock front are reflected back into the solar wind and can form electron beams. In regions with beams, the electron distribution becomes unstable and electrostatic waves can be generated. The process of generation and the evolution of electrostatic waves strongly depends on the solar wind electron distribution and generally exhibits complex behavior. Langmuir waves can be identified as intense narrowband emission at a frequency very close to the local plasma frequency and weaker broadband waves below and above the plasma frequency deeper in the downstream region. We present a detailed study of Langmuir waves detected upstream of the Saturnian bowshock by the Cassini spacecraft. Using data from the Radio and Plasma Wave Science (RPWS), Magnetometer (MAG) and Cassini Plasma Spectrometer (CAPS) instruments we have analyzed several periods containing the extended waveform captures by the Wideband Receiver. Langmuir waves are a bursty emission highly controlled by variations in solar wind conditions. Unfortunately due to a combination of instrumental field of view and sampling period, it is often difficult to identify the electron distribution function that is unstable and able to generate Langmuir waves. We used an electrostatic version of particle-in-cell simulation of the Langmuir wave generation process to reproduce some of the more subtle observed spectral features and help understand the late stages of the instability and interactions in the solar wind plasma.
Laser Diagnostic Method for Plasma Sheath Potential Mapping
NASA Astrophysics Data System (ADS)
Walsh, Sean P.
Electric propulsion systems are gaining popularity in the aerospace field as a viable option for long term positioning and thrusting applications. In particular, Hall thrusters have shown promise as the primary propulsion engine for space probes during interplanetary journeys. However, the interaction between propellant xenon ions and the ceramic channel wall continues to remain a complex issue. The most significant source of power loss in Hall thrusters is due to electron and ion currents through the sheath to the channel wall. A sheath is a region of high electric field that separates a plasma from a wall or surface in contact. Plasma electrons with enough energy to penetrate the sheath may result emission of a secondary electron from the wall. With significant secondary electron emission (SEE), the sheath voltage is reduced and so too is the electron retarding electric field. Therefore, a lower sheath voltage further increases the particle loss to the wall of a Hall thruster and leads to plasma cooling and lower efficiency. To further understand sheath dynamics, laser-induced fluorescence is employed to provide a non-invasive, in situ, and spatially resolved technique for measuring xenon ion velocity. By scanning the laser wavelength over an electronic transition of singly ionized xenon and collecting the resulting fluorescence, one can determine the ion velocity from the Doppler shifted absorption. Knowing the velocity at multiple points in the sheath, it can be converted to a relative electric potential profile which can reveal a lot about the plasma-wall interaction and the severity of SEE. The challenge of adequately measuring sheath potential profiles is optimizing the experiment to maximize the signal-to-noise ratio. A strong signal with low noise, enables high resolution measurements and increases the depth of measurement in the sheath, where the signal strength is lowest. Many improvements were made to reduce the background luminosity, increase the fluorescence intensity and collection efficiency, and optimize the signal processing equipment. Doing so has allowed for a spatial resolution of 60 microns and a maximum depth of measurement of 2 mm depending on conditions. Sheaths surrounding common Hall thruster ceramics at various plasma conditions were measured in an attempt to determine the effect of SEE and a numerical analysis of the plasma-wall interactions was conducted to further understand the phenomena and compare against obtained data.
Coagulation parameters following equine herpesvirus type 1 infection in horses.
Wilson, M E; Holz, C L; Kopec, A K; Dau, J J; Luyendyk, J P; Soboll Hussey, G
2018-04-15
Equine herpesvirus type 1 (EHV-1) is the cause of respiratory disease, abortion storms, and outbreaks of herpesvirus myeloencephalopathy (EHM). Infection of the spinal cord is characterised by multifocal regions of virally infected vascular endothelium, associated with vasculitis, thrombosis and haemorrhage that result in ischaemia and organ dysfunction. However, the mechanism of thrombosis in affected horses is unknown. To evaluate tissue factor (TF) procoagulant activity and thrombin-antithrombin complex (TAT) levels in horses following infection with EHV-1. In vitro and in vivo studies following experimental EHV-1 infection. Horses were infected with EHV-1 and levels of peripheral blood mononuclear cell (PBMC)-associated TF activity; plasma and cerebrospinal fluid (CSF)-derived microvesicle (MV)-associated TF activity and TAT complexes in plasma were examined. EHV-1 infection increased PBMC TF procoagulant activity in vitro and in vivo. In infected horses, this increase was observed during the acute infection and was most marked at the onset and end of viraemia. However, no significant differences were observed between the horses that showed signs of EHM and the horses that did not develop EHM. Significant changes in MV-associated TF procoagulant activity and TAT complexes were not observed in infected horses. A small number of horses typically exhibit clinical EHM following experimental infection. The results indicate that EHV-1 infection increases PBMC-associated TF procoagulant activity in vivo and in vitro. Additional in vivo studies are needed to better understand the role of TF-dependent coagulation during EHM pathogenesis in horses. © 2018 EVJ Ltd.
NASA Astrophysics Data System (ADS)
Genco, Filippo
Damage to plasma-facing components (PFC) due to various plasma instabilities is still a major concern for the successful development of fusion energy and represents a significant research obstacle in the community. It is of great importance to fully understand the behavior and lifetime expectancy of PFC under both low energy cycles during normal events and highly energetic events as disruptions, Edge-Localized Modes (ELM), Vertical Displacement Events (VDE), and Run-away electron (RE). The consequences of these high energetic dumps with energy fluxes ranging from 10 MJ/m2 up to 200 MJ/m 2 applied in very short periods (0.1 to 5 ms) can be catastrophic both for safety and economic reasons. Those phenomena can cause a) large temperature increase in the target material b) consequent melting, evaporation and erosion losses due to the extremely high heat fluxes c) possible structural damage and permanent degradation of the entire bulk material with probable burnout of the coolant tubes; d) plasma contamination, transport of target material into the chamber far from where it was originally picked. The modeling of off-normal events such as Disruptions and ELMs requires the simultaneous solution of three main problems along time: a) the heat transfer in the plasma facing component b) the interaction of the produced vapor from the surface with the incoming plasma particles c) the transport of the radiation produced in the vapor-plasma cloud. In addition the moving boundaries problem has to be considered and solved at the material surface. Considering the carbon divertor as target, the moving boundaries are two since for the given conditions, carbon doesn't melt: the plasma front and the moving eroded material surface. The current solution methods for this problem use finite differences and moving coordinates system based on the Crank-Nicholson method and Alternating Directions Implicit Method (ADI). Currently Particle-In-Cell (PIC) methods are widely used for solving complex dynamics problems involving distorted plasma hydrodynamic problems and plasma physics. The PIC method solves the hydrodynamic equations solving all field equations tracking at the same time "sample particles" or pseudo-particles (representative of the much more numerous real ones) as the move under the influence of diffusion or magnetic force. The superior behavior of the PIC techniques over the more classical Lagrangian finite difference methods stands in the fact that detailed information about the particles are available at all times as well as mass and momentum transport values are constantly provided. This allows with a relative small number of particles to well describe the behavior of plasma even in presence of highly distorted flows without losing accuracy. The radiation transport equation is solved at each time step calculating for each cell the opacity and emissivity coefficients. Photon radiation continuum and line fluxes are also calculated per the entire domain and provide useful information for the entire energetic calculation of the system which in the end provides the total values of erosion and lifetime of the target material. In this thesis, a new code named HEIGHTS-PIC code has been created and modified using a new approach of the PIC technique to solve the three physics problems involved integrating each of them as a continuum providing insight on the plasma behavior, evolution along time and physical understanding of the very complex phenomena taking place. The results produced with the models are compared with the well-known and benchmarked HEIGHTS package and also with existing experimental results especially produced in Russia at the TRINITI facility. Comparisons with LASER experiments are also discussed.
Study of Cryogenic Complex Plasma
2008-10-27
nitrogen or liquid helium) and dust particles are introduced in the plasma. In YD-2, a cryogenic plasma is produced in the vapor of liquid helium above the...cryogenic liquid ( liquid nitrogen or liquid helium) and dust particles are introduced in the plasma. In YD-2, a cryogenic plasma is produced in the vapor...cryogenic liquid ( liquid nitrogen or liquid helium) in the Dewar bottle produces a stable plasma. We have been successful in producing a plasma (1
The neuronal porosome complex in health and disease
Naik, Akshata R; Lewis, Kenneth T
2015-01-01
Cup-shaped secretory portals at the cell plasma membrane called porosomes mediate the precision release of intravesicular material from cells. Membrane-bound secretory vesicles transiently dock and fuse at the base of porosomes facing the cytosol to expel pressurized intravesicular contents from the cell during secretion. The structure, isolation, composition, and functional reconstitution of the neuronal porosome complex have greatly progressed, providing a molecular understanding of its function in health and disease. Neuronal porosomes are 15 nm cup-shaped lipoprotein structures composed of nearly 40 proteins, compared to the 120 nm nuclear pore complex composed of >500 protein molecules. Membrane proteins compose the porosome complex, making it practically impossible to solve its atomic structure. However, atomic force microscopy and small-angle X-ray solution scattering studies have provided three-dimensional structural details of the native neuronal porosome at sub-nanometer resolution, providing insights into the molecular mechanism of its function. The participation of several porosome proteins previously implicated in neurotransmission and neurological disorders, further attest to the crosstalk between porosome proteins and their coordinated involvement in release of neurotransmitter at the synapse. PMID:26264442
Singh, Richa; Pacheco-Andrade, Romario; Almiahuob, Mohamed Y. Mahmoud
2015-01-01
The Na+K+2Cl− cotransporter-1 (Slc12a2, NKCC1) is widely distributed and involved in cell volume/ion regulation. Functional NKCC1 locates in the plasma membrane of all cells studied, particularly in the basolateral membrane of most polarized cells. Although the mechanisms involved in plasma membrane sorting of NKCC1 are poorly understood, it is assumed that N-glycosylation is necessary. Here, we characterize expression, N-glycosylation, and distribution of NKCC1 in COS7 cells. We show that ~25% of NKCC1 is complex N-glycosylated whereas the rest of it corresponds to core/high-mannose and hybrid-type N-glycosylated forms. Further, ~10% of NKCC1 reaches the plasma membrane, mostly as core/high-mannose type, whereas ~90% of NKCC1 is distributed in defined intracellular compartments. In addition, inhibition of the first step of N-glycan biosynthesis with tunicamycin decreases total and plasma membrane located NKCC1 resulting in almost undetectable cotransport function. Moreover, inhibition of N-glycan maturation with swainsonine or kifunensine increased core/hybrid-type NKCC1 expression but eliminated plasma membrane complex N-glycosylated NKCC1 and transport function. Together, these results suggest that (i) NKCC1 is delivered to the plasma membrane of COS7 cells independently of its N-glycan nature, (ii) most of NKCC1 in the plasma membrane is core/hybrid-type N-glycosylated, and (iii) the minimal proportion of complex N-glycosylated NKCC1 is functionally active. PMID:26351455
Ligot, S; Guillaume, M; Gerbaux, P; Thiry, D; Renaux, F; Cornil, J; Dubois, P; Snyders, R
2014-04-17
The focus of this work is on the growth mechanism of ethyl lactate-based plasma polymer film (ELPPF) that could be used as barrier coatings. In such an application, the ester density of the plasma polymer has to be controlled to tune the degradation rate of the material. Our strategy consists of correlating the plasma chemistry evaluated by RGA mass spectrometry and understanding, via DFT calculations, the chemistry of the synthesized thin films. The theoretical calculations helped us to understand the plasma chemistry in plasma ON and OFF conditions. From these data it is unambiguously shown that the signal m/z 75 can directly be correlated with the precursor density in the plasma phase. The combination of XPS and chemical derivatization experiments reveal that the ester content in the ELPFF can be tailored from 2 to 18 at. % by decreasing the RF power, which is perfectly correlated with the evolution of the plasma chemistry. Our results also highlight that the ELPPF chemistry, especially the ester content, is affected by the plasma mode of operation (continuous or pulsed discharge, at similar injected mean power) for similar ester content in the plasma. This could be related to different energy conditions at the interface of the growing films that could affect the sticking coefficient of the ester-bearing fragments.
NASA Astrophysics Data System (ADS)
Brennan, D. P.; Finn, J. M.
2014-10-01
Feedback stabilization of magnetohydrodynamic (MHD) modes in a tokamak is studied in a cylindrical model with a resistive wall, plasma resistivity, viscosity, and toroidal rotation. The control is based on a linear combination of the normal and tangential components of the magnetic field just inside the resistive wall. The feedback includes complex gain, for both the normal and for the tangential components, and it is known that the imaginary part of the feedback for the former is equivalent to plasma rotation [J. M. Finn and L. Chacon, Phys. Plasmas 11, 1866 (2004)]. The work includes (1) analysis with a reduced resistive MHD model for a tokamak with finite β and with stepfunction current density and pressure profiles, and (2) computations with a full compressible visco-resistive MHD model with smooth decreasing profiles of current density and pressure. The equilibria are stable for β = 0 and the marginal stability values βrp,rw < βrp,iw < βip,rw < βip,iw (resistive plasma, resistive wall; resistive plasma, ideal wall; ideal plasma, resistive wall; and ideal plasma, ideal wall) are computed for both models. The main results are: (a) imaginary gain with normal sensors or plasma rotation stabilizes below βrp,iw because rotation suppresses the diffusion of flux from the plasma out through the wall and, more surprisingly, (b) rotation or imaginary gain with normal sensors destabilizes above βrp,iw because it prevents the feedback flux from entering the plasma through the resistive wall to form a virtual wall. A method of using complex gain Gi to optimize in the presence of rotation in this regime with β > βrp,iw is presented. The effect of imaginary gain with tangential sensors is more complicated but essentially destabilizes above and below βrp,iw.
Cold atmospheric-pressure plasma induces DNA-protein crosslinks through protein oxidation.
Guo, Li; Zhao, Yiming; Liu, Dingxin; Liu, Zhichao; Chen, Chen; Xu, Ruobing; Tian, Miao; Wang, Xiaohua; Chen, Hailan; Kong, Michael G
2018-05-03
Reactive oxygen and nitrogen species (ROS and RNS) generated by cold atmospheric-pressure plasma could damage genomic DNA, although the precise type of these DNA damage induced by plasma are poorly characterized. Understanding plasma-induced DNA damage will help to elucidate the biological effect of plasma and guide the application of plasma in ROS-based therapy. In this study, it was shown that ROS and RNS generated by physical plasma could efficiently induce DNA-protein crosslinks (DPCs) in bacteria, yeast, and human cells. An in vitro assay showed that plasma treatment resulted in the formation of covalent DPCs by activating proteins to crosslink with DNA. Mass spectrometry and hydroperoxide analysis detected oxidation products induced by plasma. DPC formation were alleviated by singlet oxygen scavenger, demonstrating the importance of singlet oxygen in this process. These results suggested the roles of DPC formation in DNA damage induced by plasma, which could improve the understanding of the biological effect of plasma and help to develop a new strategy in plasma-based therapy including infection and cancer therapy.
Bow shock formation in a complex plasma.
Saitou, Y; Nakamura, Y; Kamimura, T; Ishihara, O
2012-02-10
A bow shock is observed in a two-dimensional supersonic flow of charged microparticles in a complex plasma. A thin conducting needle is used to make a potential barrier as an obstacle for the particle flow in the complex plasma. The flow is generated and the flow velocity is controlled by changing a tilt angle of the device under the gravitational force. A void, microparticle-free region, is formed around the potential barrier surrounding the obstacle. The flow is bent around the leading edge of the void and forms an arcuate structure when the flow is supersonic. The structure is characterized by the bow shock as confirmed by a polytropic hydrodynamic theory as well as numerical simulation.
Complex Dynamics of Equatorial Scintillation
NASA Astrophysics Data System (ADS)
Piersanti, Mirko; Materassi, Massimo; Forte, Biagio; Cicone, Antonio
2017-04-01
Radio power scintillation, namely highly irregular fluctuations of the power of trans-ionospheric GNSS signals, is the effect of ionospheric plasma turbulence. The scintillation patterns on radio signals crossing the medium inherit the ionospheric turbulence characteristics of inter-scale coupling, local randomness and large time variability. On this basis, the remote sensing of local features of the turbulent plasma is feasible by studying radio scintillation induced by the ionosphere. The distinctive character of intermittent turbulent media depends on the fluctuations on the space- and time-scale statistical properties of the medium. Hence, assessing how the signal fluctuation properties vary under different Helio-Geophysical conditions will help to understand the corresponding dynamics of the turbulent medium crossed by the signal. Data analysis tools, provided by complex system science, appear to be best fitting to study the response of a turbulent medium, as the Earth's equatorial ionosphere, to the non-linear forcing exerted by the Solar Wind (SW). In particular we used the Adaptive Local Iterative Filtering, the Wavelet analysis and the Information theory data analysis tool. We have analysed the radio scintillation and ionospheric fluctuation data at low latitude focusing on the time and space multi-scale variability and on the causal relationship between forcing factors from the SW environment and the ionospheric response.
Mu, Jingqing; Gao, Xun; Li, Qing; Yang, Xiaomei; Yang, Wenling; Sun, Xu; Bi, Kaishun; Zhang, Huifen
2017-08-01
Guanxin Shutong Capsule, an effective traditional Chinese medicine, is widely used for coronary heart disease clinically. Volatile components are one of its important bioactive constituents. To better understand the material basis for the therapeutic effects, the components of Guanxin Shutong Capsule absorbed into the blood and their metabolites were identified based on gas chromatography with mass spectrometry coupled with vortex-ultrasound-assisted dispersive liquid-liquid microextraction. As a result, three prototypes and 15 metabolites were identified or tentatively characterized in rat plasma. Subsequently, a pharmacokinetic study was carried out to monitor the concentrations of the main bioactive constituents and metabolites (isoborneol, borneol, eugenol, and camphor) by gas chromatography with mass spectrometry in rat plasma following oral administration of single herb extract and different combinations of herbs in this prescription. Compared to other groups, a statistically significant difference of the pharmacokinetic properties was obtained when the total complex prescription was administered, indicating possible drug-drug interactions among the complex ingredients of Guanxin Shutong Capsule. These findings provided an experimental basis concerning the clinical application and medicinal efficacy of Guanxin Shutong Capsule in the treatment of coronary heart disease. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Soft plasma electrolysis with complex ions for optimizing electrochemical performance
NASA Astrophysics Data System (ADS)
Kamil, Muhammad Prisla; Kaseem, Mosab; Ko, Young Gun
2017-03-01
Plasma electrolytic oxidation (PEO) was a promising surface treatment for light metals to tailor an oxide layer with excellent properties. However, porous coating structure was generally exhibited due to excessive plasma discharges, restraining its performance. The present work utilized ethylenediaminetetraacetic acid (EDTA) and Cu-EDTA complexing agents as electrolyte additives that alter the plasma discharges to improve the electrochemical properties of Al-1.1Mg alloy coated by PEO. To achieve this purpose, PEO coatings were fabricated under an alternating current in silicate electrolytes containing EDTA and Cu-EDTA. EDTA complexes were found to modify the plasma discharging behaviour during PEO that led to a lower porosity than that without additives. This was attributed to a more homogeneous electrical field throughout the PEO process while the coating growth would be maintained by an excess of dissolved Al due to the EDTA complexes. When Cu-EDTA was used, the number of discharge channels in the coating layer was lower than that with EDTA due to the incorporation of Cu2O and CuO altering the dielectric behaviour. Accordingly, the sample in the electrolyte containing Cu-EDTA constituted superior corrosion resistance to that with EDTA. The electrochemical mechanism for excellent corrosion protection was elucidated in the context of equivalent circuit model.
Soft plasma electrolysis with complex ions for optimizing electrochemical performance
Kamil, Muhammad Prisla; Kaseem, Mosab; Ko, Young Gun
2017-01-01
Plasma electrolytic oxidation (PEO) was a promising surface treatment for light metals to tailor an oxide layer with excellent properties. However, porous coating structure was generally exhibited due to excessive plasma discharges, restraining its performance. The present work utilized ethylenediaminetetraacetic acid (EDTA) and Cu-EDTA complexing agents as electrolyte additives that alter the plasma discharges to improve the electrochemical properties of Al-1.1Mg alloy coated by PEO. To achieve this purpose, PEO coatings were fabricated under an alternating current in silicate electrolytes containing EDTA and Cu-EDTA. EDTA complexes were found to modify the plasma discharging behaviour during PEO that led to a lower porosity than that without additives. This was attributed to a more homogeneous electrical field throughout the PEO process while the coating growth would be maintained by an excess of dissolved Al due to the EDTA complexes. When Cu-EDTA was used, the number of discharge channels in the coating layer was lower than that with EDTA due to the incorporation of Cu2O and CuO altering the dielectric behaviour. Accordingly, the sample in the electrolyte containing Cu-EDTA constituted superior corrosion resistance to that with EDTA. The electrochemical mechanism for excellent corrosion protection was elucidated in the context of equivalent circuit model. PMID:28281672
Theory of Electromagnetic Surface Waves in Plasma with Smooth Boundaries
NASA Astrophysics Data System (ADS)
Kuzelev, M. V.
2018-05-01
A theory of nonpotential surface waves in plasma with smooth boundaries is developed. The complex frequencies of surface waves for plasma systems of different geometries and different profiles of the plasma density are calculated. Expressions for the rates of collisionless damping of surface waves due to their resonance interaction with local plasma waves of continuous spectrum are obtained. The influence of collisions in plasma is also considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebrahimi, Fatima
2014-07-31
Large-scale magnetic fields have been observed in widely different types of astrophysical objects. These magnetic fields are believed to be caused by the so-called dynamo effect. Could a large-scale magnetic field grow out of turbulence (i.e. the alpha dynamo effect)? How could the topological properties and the complexity of magnetic field as a global quantity, the so called magnetic helicity, be important in the dynamo effect? In addition to understanding the dynamo mechanism in astrophysical accretion disks, anomalous angular momentum transport has also been a longstanding problem in accretion disks and laboratory plasmas. To investigate both dynamo and momentum transport,more » we have performed both numerical modeling of laboratory experiments that are intended to simulate nature and modeling of configurations with direct relevance to astrophysical disks. Our simulations use fluid approximations (Magnetohydrodynamics - MHD model), where plasma is treated as a single fluid, or two fluids, in the presence of electromagnetic forces. Our major physics objective is to study the possibility of magnetic field generation (so called MRI small-scale and large-scale dynamos) and its role in Magneto-rotational Instability (MRI) saturation through nonlinear simulations in both MHD and Hall regimes.« less
Understanding disruptions in tokamaksa)
NASA Astrophysics Data System (ADS)
Zakharov, Leonid E.; Galkin, Sergei A.; Gerasimov, Sergei N.; contributors, JET-EFDA
2012-05-01
This paper describes progress achieved since 2007 in understanding disruptions in tokamaks, when the effect of plasma current sharing with the wall was introduced into theory. As a result, the toroidal asymmetry of the plasma current measurements during vertical disruption event (VDE) on the Joint European Torus was explained. A new kind of plasma equilibria and mode coupling was introduced into theory, which can explain the duration of the external kink 1/1 mode during VDE. The paper presents first results of numerical simulations using a free boundary plasma model, relevant to disruptions.
Cooperative particle motion in complex (dusty) plasmas
NASA Astrophysics Data System (ADS)
Zhdanov, Sergey; Morfill, Gregor
2014-05-01
Strongly coupled complex (dusty) plasmas give us a unique opportunity to go beyond the limits of continuous media and study various generic processes occurring in liquids or solids at the kinetic level. A particularly interesting and challenging topic is to study dynamic cooperativity at local and intermediate scales. As an important element of self-organization, cooperative particle motion is present in many physical, astrophysical and biological systems. As a rule, cooperative dynamics, bringing to life 'abnormal' effects like enhanced diffusion, self-dragging, or self-propelling of particles, hold aspects of 'strange' kinetics. The synergy effects are also important. Such kind of cooperative behavior was evidenced for string-like formations of colloidal rods, dynamics of mono- and di-vacancies in 2d colloidal crystals. Externally manipulated 'dust molecules' and self-assembled strings in driven 3d particle clusters were other noticeable examples. There is a certain advantage to experiment with complex plasmas merely because these systems are easy to manipulate in a controllable way. We report on the first direct observation of microparticle cooperative movements occurring under natural conditions in a 2d complex plasma.
Integrative systems and synthetic biology of cell-matrix adhesion sites.
Zamir, Eli
2016-09-02
The complexity of cell-matrix adhesion convolves its roles in the development and functioning of multicellular organisms and their evolutionary tinkering. Cell-matrix adhesion is mediated by sites along the plasma membrane that anchor the actin cytoskeleton to the matrix via a large number of proteins, collectively called the integrin adhesome. Fundamental challenges for understanding how cell-matrix adhesion sites assemble and function arise from their multi-functionality, rapid dynamics, large number of components and molecular diversity. Systems biology faces these challenges in its strive to understand how the integrin adhesome gives rise to functional adhesion sites. Synthetic biology enables engineering intracellular modules and circuits with properties of interest. In this review I discuss some of the fundamental questions in systems biology of cell-matrix adhesion and how synthetic biology can help addressing them.
Ramprasath, Vanu Ramkumar; Jones, Peter J H
2016-01-01
The objective was to determine safety and efficacy of health supplements "Beyond Tangy Tangerine," a multivitamin/mineral complex and combination of multivitamin/mineral complex, "Osteofx," a bone healthy supplement and "Ultimate Essential Fatty Acids" in Sprague Dawley rats consuming high-fat diets. Initially a pilot study was conducted which confirmed palatability and acceptability of supplements. In a second study, rats (n = 15/group) were randomized to Control; Multivitamin/mineral complex (2 g/kg BW) or Combination (2 g Multivitamin/mineral complex, 1.5 g Bone healthy supplement and 0.34 g Essential fatty acids/kg BW). No differences were observed in BW change, feed intake, organ weights or bone mineral composition with supplementations compared to control. Multivitamin/mineral complex supplementation decreased abdominal white adipose tissue weights (WAT) (p = .005), total (p = .033) and fat mass (p = .040), plasma IL-6 (p = .016) and ALKP (p = .038) and elevated plasma calcium (p < .001), phosphorus (p = .038), total protein (p = .002), albumin (p = .014) and globulin (p = .018), compared to control. Similarly, combination supplementation reduced WAT (p < .001), total (p = .023) and fat mass (p = .045), plasma triglycerides (p = .018), IL-6 (p = .002) and ALKP (p < .001) with increases in plasma calcium (p = .031), phosphorus (p < .001) compared to control. Results indicate that consuming either supplement can be considered safe and improves overall health by reducing inflammation, abdominal fat mass and plasma triglycerides, as well as promote bone health.
Cellulose synthase complexes display distinct dynamic behaviors during xylem transdifferentiation.
Watanabe, Yoichiro; Schneider, Rene; Barkwill, Sarah; Gonzales-Vigil, Eliana; Hill, Joseph L; Samuels, A Lacey; Persson, Staffan; Mansfield, Shawn D
2018-06-05
In plants, plasma membrane-embedded CELLULOSE SYNTHASE (CESA) enzyme complexes deposit cellulose polymers into the developing cell wall. Cellulose synthesis requires two different sets of CESA complexes that are active during cell expansion and secondary cell wall thickening, respectively. Hence, developing xylem cells, which first undergo cell expansion and subsequently deposit thick secondary walls, need to completely reorganize their CESA complexes from primary wall- to secondary wall-specific CESAs. Using live-cell imaging, we analyzed the principles underlying this remodeling. At the onset of secondary wall synthesis, the primary wall CESAs ceased to be delivered to the plasma membrane and were gradually removed from both the plasma membrane and the Golgi. For a brief transition period, both primary wall- and secondary wall-specific CESAs coexisted in banded domains of the plasma membrane where secondary wall synthesis is concentrated. During this transition, primary and secondary wall CESAs displayed discrete dynamic behaviors and sensitivities to the inhibitor isoxaben. As secondary wall-specific CESAs were delivered and inserted into the plasma membrane, the primary wall CESAs became concentrated in prevacuolar compartments and lytic vacuoles. This adjustment in localization between the two CESAs was accompanied by concurrent decreased primary wall CESA and increased secondary wall CESA protein abundance. Our data reveal distinct and dynamic subcellular trafficking patterns that underpin the remodeling of the cellulose biosynthetic machinery, resulting in the removal and degradation of the primary wall CESA complex with concurrent production and recycling of the secondary wall CESAs. Copyright © 2018 the Author(s). Published by PNAS.
Nondiffusive transport regimes for suprathermal ions in turbulent plasmas
NASA Astrophysics Data System (ADS)
Bovet, A.; Fasoli, A.; Ricci, P.; Furno, I.; Gustafson, K.
2015-04-01
The understanding of the transport of suprathermal ions in the presence of turbulence is important for fusion plasmas in the burning regime that will characterize reactors, and for space plasmas to understand the physics of particle acceleration. Here, three-dimensional measurements of a suprathermal ion beam in the toroidal plasma device TORPEX are presented. These measurements demonstrate, in a turbulent plasma, the existence of subdiffusive and superdiffusive transport of suprathermal ions, depending on their energy. This result stems from the unprecedented combination of uniquely resolved measurements and first-principles numerical simulations that reveal the mechanisms responsible for the nondiffusive transport. The transport regime is determined by the interaction of the suprathermal ion orbits with the turbulent plasma dynamics, and is strongly affected by the ratio of the suprathermal ion energy to the background plasma temperature.
A Science Strategy for Space Physics
NASA Technical Reports Server (NTRS)
1995-01-01
This report by the Committee on Solar and Space Physics and the Committee on Solar-Terrestrial Research recommends the major directions for scientific research in space physics for the coming decade. As a field of science, space physics has passed through the stage of simply looking to see what is out beyond Earth's atmosphere. It has become a 'hard' science, focusing on understanding the fundamental interactions between charged particles, electromagnetic fields, and gases in the natural laboratory consisting of the galaxy, the Sun, the heliosphere, and planetary magnetospheres, ionospheres, and upper atmospheres. The motivation for space physics research goes far beyond basic physics and intellectual curiosity, however, because long-term variations in the brightness of the Sun virtually affect the habitability of the Earth, while sudden rearrangements of magnetic fields above the solar surface can have profound effects on the delicate balance of the forces that shape our environment in space and on the human technology that is sensitive to that balance. The several subfields of space physics share the following objectives: to understand the fundamental laws or processes of nature as they apply to space plasmas and rarefied gases both on the microscale and in the larger complex systems that constitute the domain of space physics; to understand the links between changes in the Sun and the resulting effects at the Earth, with the eventual goal of predicting the significant effects on the terrestrial environment; and to continue the exploration and description of the plasmas and rarefied gases in the solar system.
Dohan Ehrenfest, David M; Bielecki, Tomasz; Mishra, Allan; Borzini, Piero; Inchingolo, Francesco; Sammartino, Gilberto; Rasmusson, Lars; Everts, Peter A
2012-06-01
In the field of platelet concentrates for surgical use, most products are termed Platelet-Rich Plasma (PRP). Unfortunately, this term is very general and incomplete, leading to many confusions in the scientific database. In this article, a panel of experts discusses this issue and proposes an accurate and simple terminology system for platelet concentrates for surgical use. Four main categories of products can be easily defined, depending on their leukocyte content and fibrin architecture: Pure Platelet-Rich Plasma (P-PRP), such as cell separator PRP, Vivostat PRF or Anitua's PRGF; Leukocyteand Platelet-Rich Plasma (L-PRP), such as Curasan, Regen, Plateltex, SmartPReP, PCCS, Magellan, Angel or GPS PRP; Pure Plaletet-Rich Fibrin (P-PRF), such as Fibrinet; and Leukocyte- and Platelet-Rich Fibrin (L-PRF), such as Choukroun's PRF. P-PRP and L-PRP refer to the unactivated liquid form of these products, their activated versions being respectively named P-PRP gels and L-PRP gels. The purpose of this search for a terminology consensus is to plead for a more serious characterization of these products. Researchers have to be aware of the complex nature of these living biomaterials, in order to avoid misunderstandings and erroneous conclusions. Understanding the biomaterials or believing in the magic of growth factors ? From this choice depends the future of the field.
Tutorial: Physics and modeling of Hall thrusters
NASA Astrophysics Data System (ADS)
Boeuf, Jean-Pierre
2017-01-01
Hall thrusters are very efficient and competitive electric propulsion devices for satellites and are currently in use in a number of telecommunications and government spacecraft. Their power spans from 100 W to 20 kW, with thrust between a few mN and 1 N and specific impulse values between 1000 and 3000 s. The basic idea of Hall thrusters consists in generating a large local electric field in a plasma by using a transverse magnetic field to reduce the electron conductivity. This electric field can extract positive ions from the plasma and accelerate them to high velocity without extracting grids, providing the thrust. These principles are simple in appearance but the physics of Hall thrusters is very intricate and non-linear because of the complex electron transport across the magnetic field and its coupling with the electric field and the neutral atom density. This paper describes the basic physics of Hall thrusters and gives a (non-exhaustive) summary of the research efforts that have been devoted to the modelling and understanding of these devices in the last 20 years. Although the predictive capabilities of the models are still not sufficient for a full computer aided design of Hall thrusters, significant progress has been made in the qualitative and quantitative understanding of these devices.
NASA Astrophysics Data System (ADS)
Suksila, Thada
Since its invention at the University of Stuttgart, Germany in the mid-1960, scientists have been trying to understand and explain the mechanism of the plasma interaction inside the magnetoplasmadynamics (MPD) thruster. Because this thruster creates a larger level of efficiency than combustion thrusters, this MPD thruster is the primary cadidate thruster for a long duration (planetary) spacecraft. However, the complexity of this thruster make it difficult to fully understand the plasma interaction in an MPD thruster while operating the device. That is, there is a great deal of physics involved: the fluid dynamics, the electromagnetics, the plasma dynamics, and the thermodynamics. All of these physics must be included when an MPD thruster operates. In recent years, a computer simulation helped scientists to simulate the experiments by programing the physics theories and comparing the simulation results with the experimental data. Many MPD thruster simulations have been conducted: E. Niewood et al.[5], C. K. J. Hulston et al.[6], K. D. Goodfellow[3], J Rossignol et al.[7]. All of these MPD computer simulations helped the scientists to see how quickly the system responds to the new design parameters. For this work, a 1D MPD thruster simulation was developed to find the voltage drop between the cathode and the plasma regions. Also, the properties such as thermal conductivity, electrical conductivity and heat capacity are temperature and pressure dependent. These two conductivity and heat capacity are usually definded as constant values in many other models. However, this 1D and 2D cylindrical symmetry MPD thruster simulations include both temperature and pressure effects to the electrical, thermal conductivities and heat capacity values interpolated from W. F. Ahtye [4]. Eventhough, the pressure effect is also significant; however, in this study the pressure at 66 Pa was set as a baseline. The 1D MPD thruster simulation includes the sheath region, which is the interface between the plasma and the cathode regions. This sheath model [3] has been fully combined in the 1D simulation. That is, the sheath model calculates the heat flux and the sheath voltage by giving the temperature and the current density. This sheath model must be included in the simulation, as the sheath region is treated differently from the main plasma region. For our 2D cylindrical symmetry simulation, the dimensions of the cathode, the anode, the total current, the pressure, the type of gases, the work function can be changed in the input process as needed for particular interested. Also, the sheath model is still included and fully integrated in this 2D cylindrical symmetry simulation at the cathode surface grids. In addition, the focus of the 2D cylindrical symmetry simulation is to connect the properties on the plasma and the cathode regions on the cathode surface until the MPD thruster reach steady state and estimate the plasma arc attachement edge, electroarc edge, on the cathode surface. Finally, we can understand more about the behavior of an MPD thruster under many different conditions of 2D cylindrical symmetry MPD thruster simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oehrlein, Gottlieb S.; Seog, Joonil; Graves, David
2014-09-24
Low temperature plasma (LTP) treatment of biological tissue is a promising path toward sterilization of bacteria due to its versatility and ability to operate under well-controlled and relatively mild conditions. The present collaborative research of an interdisciplinary team of investigators at University of Maryland, College Park (UMD), and University of California, Berkeley (UCB) focused on establishing our knowledge on low temperature plasma-induced chemical modifications in biomolecules that result in inactivation due to various plasma species, including ions, reactive radicals, and UV/VUV photons. The overall goals of the project were to identify the mechanisms by which low and atmospheric pressure plasmamore » (APP) deactivates endotoxic biomolecules. Additionally, we wanted to understand how deactivation processes depend on the interaction of APP with the environment. Various low pressure plasma sources, a vacuum beam system and several atmospheric pressure plasma sources were used to accomplish these objectives. In our work we elucidated for the first time the role of ions, VUV photons and radicals in biological deactivation of model endotoxic biomolecules, both in a UHV beam system and an inductively coupled, low pressure plasma system, and established the associated atomistic modifications in biomolecules. While we showed that both ions and VUV photons can be very efficient in deactivation of biomolecules, significant etching and/or deep modification (~200 nm) were accompanied by these biological effects. One of the most important findings in this work is that the significant deactivation and surface modification can occur with minimal etching using radical species. However, if radical fluxes and corresponding etch rates are relatively high, for example, at atmospheric pressure, inactivation of endotoxic biomolecule film may require near-complete removal of the film. These findings motivated further work at atmospheric pressure using several types of low temperature plasma sources with modified geometry where radical induced interactions generally dominate due to short mean free paths of ions and VUV photons. In these conditions we demonstrated the importance of environmental interactions of plasma species when APP sources are used to modify biomolecules. This is evident from both gas phase characterization data and in-situ surface characterization of treated biomolecules. Environmental interactions can produce unexpected outcomes due to the complex reactions of reactive species with the atmosphere which determine the composition of reactive fluxes and atomistic changes in biomolecules. Overall, this work elucidated a richer spectrum of scientific opportunities and challenges for the field of low temperature plasma-biomolecule surface interactions than initially anticipated, in particular, for plasma sources operating at atmospheric pressure. The insights produced in this work, e.g. demonstration of the importance of environmental interactions, are generally important for applications of APP to materials modifications. Thus one major contributions of this research has been the establishment of methodologies to study the interaction of plasma with bio-molecules in a systemic and rigorous manner. In particular, our studies of atmospheric pressure plasma sources using very well-defined experimental conditions enabled us to correlate atomistic surface modifications of biomolecules with changes in their biological function. The clarification of the role of ions, VUV photons and radicals in deactivation of biomolecules during low pressure and atmospheric pressure plasma-biomolecule interaction has broad implications, e.g. for the emerging field of plasma medicine. The development of methods to detect the effects of plasma treatment on immune-active biomolecules will lay a fundamental foundation to enhance our understanding of the effect of plasma on biological systems. be helpful in many future studies.« less
Methods of chemically converting first materials to second materials utilizing hybrid-plasma systems
Kong, Peter C.; Grandy, Jon D.
2002-01-01
In one aspect, the invention encompasses a method of chemically converting a first material to a second material. A first plasma and a second plasma are formed, and the first plasma is in fluid communication with the second plasma. The second plasma comprises activated hydrogen and oxygen, and is formed from a water vapor. A first material is flowed into the first plasma to at least partially ionize at least a portion of the first material. The at least partially ionized first material is flowed into the second plasma to react at least some components of the first material with at least one of the activated hydrogen and activated oxygen. Such converts at least some of the first material to a second material. In another aspect, the invention encompasses a method of forming a synthetic gas by flowing a hydrocarbon-containing material into a hybrid-plasma system. In yet another aspect, the invention encompasses a method of degrading a hydrocarbon-containing material by flowing such material into a hybrid-plasma system. In yet another aspect, the invention encompasses a method of releasing an inorganic component of a complex comprising the inorganic component and an other component, wherein the complex is flowed through a hybrid-plasma system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
L.P. Ku and A.H. Boozer
Characteristics of modular coils for quasi-axisymmetric stellarators that are related to the plasma aspect ratio, number of field periods and rotational transform have been examined systematically. It is observed that, for a given plasma aspect ratio, the coil complexity tends to increase with the increased number of field periods. For a given number of field periods, the toroidal excursion of coil winding is reduced as the plasma aspect ratio is increased. It is also clear that the larger the coil-plasma separation is, the more complex the coils become. It is further demonstrated that it is possible to use other typesmore » of coils to complement modular coils to improve both the physics and the modular coil characteristics.« less
Contact activation of blood-plasma coagulation
NASA Astrophysics Data System (ADS)
Golas, Avantika
Surface engineering of biomaterials with improved hemocompatibility is an imperative, given the widespread global need for cardiovascular devices. Research summarized in this dissertation focuses on contact activation of FXII in buffer and blood plasma frequently referred to as autoactivation. The extant theory of contact activation imparts FXII autoactivation ability to negatively charged, hydrophilic surfaces. According to this theory, contact activation of plasma involves assembly of proteins comprising an "activation complex" on activating surfaces mediated by specific chemical interactions between complex proteins and the surface. This work has made key discoveries that significantly improve our core understanding of contact activation and unravel the existing paradigm of plasma coagulation. It is shown herein that contact activation of blood factor XII (FXII, Hageman factor) in neat-buffer solution exhibits a parabolic profile when scaled as a function of silanized-glass-particle activator surface energy (measured as advancing water adhesion tension t°a=g° Iv costheta in dyne/cm, where g°Iv is water interfacial tension in dyne/cm and theta is the advancing contact angle). Nearly equal activation is observed at the extremes of activator water-wetting properties --36 < t°a < 72 dyne/cm (O° ≤ theta < 120°), falling sharply through a broad minimum within the 20 < t°a < 40 dyne/cm (55° < theta < 75°). Furthermore, contact activation of FXII in buffer solution produces an ensemble of protein fragments exhibiting either procoagulant properties in plasma (proteolysis of blood factor XI or prekallikrein), amidolytic properties (cleavage of s-2302 chromogen), or the ability to suppress autoactivation through currently unknown biochemistry. The relative proportions of these fragments depend on activator surface chemistry/energy. We have also discovered that contact activation is moderated by adsorption of plasma proteins unrelated to coagulation through an "adsorption-dilution" effect that blocks FXII contact with hydrophobic activator surfaces. The adsorption-dilution effect explains the apparent specificity for hydrophilic activators pursued by earlier investigators. Finally a comparison of FXII autoactivation in buffer, serum, protein cocktail, and plasma solutions is shown herein. Activation of blood plasma coagulation in vitro by contact with material surfaces is demonstrably dependent on plasma-volume-to-activator-surface-area ratio. However, activation of factor XII dissolved in buffer, protein cocktail, heat-denatured serum, and FXI deficient plasma does not exhibit activator surface-area dependence. Instead, a highly-variable burst of procoagulant-enzyme yield is measured that exhibits no measurable kinetics, sensitivity to mixing, or solution-temperature dependence. Thus, FXII activation in both buffer and protein-containing solutions does not exhibit characteristics of a biochemical reaction but rather appears to be a "mechanochemical" reaction induced by FXII molecule interactions with hydrophilic activator particles that do not formally adsorb blood proteins from solution. Results strongly suggest that activator surface-area dependence observed in contact activation of plasma coagulation does not solely arise at the FXII activation step of the intrinsic pathway.
The THS Experiment: Simulating Titans Atmospheric Chemistry at Low Temperature (200K)
NASA Technical Reports Server (NTRS)
Sciamma-O'Brien, Ella; Upton, Kathleen; Beauchamp, Jack L.; Salama, Farid; Contreras, Cesar Sanchez; Bejaoui, Salma; Foing, Bernard; Pascale, Ehrenfreund
2015-01-01
In Titan's atmosphere, composed mainly of N2 (95-98%) and CH4 (2-5%), a complex chemistry occurs at low temperature, and leads to the production of heavy organic molecules and subsequently solid aerosols. Here, we used the Titan Haze Simulation (THS) experiment, an experimental setup developed at the NASA Ames COSmIC simulation facility to study Titan's atmospheric chemistry at low temperature. In the THS, the chemistry is simulated by plasma in the stream of a supersonic expansion. With this unique design, the gas is cooled to Titan-like temperature ( approximately 150K) before inducing the chemistry by plasma, and remains at low temperature in the plasma discharge (approximately 200K). Different N2-CH4-based gas mixtures can be injected in the plasma, with or without the addition of heavier precursors present as trace elements on Titan, in order to monitor the evolution of the chemical growth. Both the gas- and solid phase products resulting from the plasma-induced chemistry can be monitored and analyzed using a combination of complementary in situ and ex situ diagnostics. A recent mass spectrometry[1] study of the gas phase has demonstrated that the THS is a unique tool to probe the first and intermediate steps of Titan's atmospheric chemistry at Titan-like temperature. In particular, the mass spectra obtained in a N2-CH4-C2H2-C6H6 mixture are relevant for comparison to Cassini's CAPS-IBS instrument. The results of a complementary study of the solid phase are consistent with the chemical growth evolution observed in the gas phase. Grains and aggregates form in the gas phase and can be jet deposited on various substrates for ex situ analysis. Scanning Electron Microscopy images show that more complex mixtures produce larger aggregates. A mass spectrometry analysis of the solid phase has detected the presence of aminoacetonitrile, a precursor of glycine, in the THS aerosols. X-ray Absorption Near Edge Structure (XANES) measurements also show the presence of imine and nitrile functional groups, showing evidence of nitrogen chemistry. These complementary studies show the high potential of THS to better understand Titan's chemistry and the origin of aerosol formation.
An Experimental Study of a Pulsed Electromagnetic Plasma Accelerator
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Eskridge, Richard; Lee, Mike; Smith, James; Martin, Adam; Markusic, Tom E.; Cassibry, Jason T.; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) pulsed electromagnetic plasma accelerator (PEPA-0). Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.
2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.
Quasi-two-dimensional complex plasma containing spherical particles and their binary agglomerates.
Chaudhuri, M; Semenov, I; Nosenko, V; Thomas, H M
2016-05-01
A unique type of quasi-two-dimensional complex plasma system was observed which consisted of monodisperse microspheres and their binary agglomerations (dimers). The particles and their dimers levitated in a plasma sheath at slightly different heights and formed two distinct sublayers. The system did not crystallize and may be characterized as a disordered solid. The dimers were identified based on their characteristic appearance in defocused images, i.e., rotating interference fringe patterns. The in-plane and interplane particle separations exhibit nonmonotonic dependence on the discharge pressure.
Tarandovskiy, Ivan D.; Artemenko, Elena O.; Panteleev, Mikhail A.; Sinauridze, Elena I.; Ataullakhanov, Fazoil I.
2013-01-01
Background Thrombin generation assay is a convenient and widely used method for analysis of the blood coagulation system status. Thrombin generation curve (TGC) is usually bell-shaped with a single peak, but there are exceptions. In particular, TGC in platelet-rich plasma (PRP) can sometimes have two peaks. Objective We sought to understand the mechanism underlying the occurrence of two peaks in the PRP thrombin generation curve. Methods Tissue factor-induced thrombin generation in PRP and platelet-poor plasma (PPP) was monitored using continuous measurement of the hydrolysis rate of the thrombin-specific fluorogenic substrate Z-Gly-Gly-Arg-AMC. Expression of phosphatidylserine (PS) and CD62P on the surface of activated platelets was measured by flow cytometry using corresponding fluorescently labeled markers. Results The addition of the P2Y12 receptor antagonist MeS-AMP (160 µM), 83 nM prostaglandin E1 (PGE1), or 1.6% DMSO to PRP caused the appearance of two peaks in the TGC. The PS exposure after thrombin activation on washed platelets in a suspension supplemented with DMSO, PGE1 or MeS-AMP was delayed, which could indicate mechanism of the second peak formation. Supplementation of PRP with 1.6% DMSO plus 830 nM PGE1 mediated the disappearance of the second peak and decreased the amplitude of the first peak. Increasing the platelet concentration in the PRP promoted the consolidation of the two peaks into one. Conclusions Procoagulant tenase and prothrombinase complexes in PRP assemble on phospholipid surfaces containing PS of two types - plasma lipoproteins and the surface of activated platelets. Thrombin generation in the PRP can be two-peaked. The second peak appears in the presence of platelet antagonists as a result of delayed PS expression on platelets, which leads to delayed assembly of the membrane-dependent procoagulant complexes and a second wave of thrombin generation. PMID:23405196
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitra, Vramori; Sarma, Bornali; Sarma, Arun
Recurrence is an ubiquitous feature which provides deep insights into the dynamics of real dynamical systems. A suitable tool for investigating recurrences is recurrence quantification analysis (RQA). It allows, e.g., the detection of regime transitions with respect to varying control parameters. We investigate the complexity of different coexisting nonlinear dynamical regimes of the plasma floating potential fluctuations at different magnetic fields and discharge voltages by using recurrence quantification variables, in particular, DET, L{sub max}, and Entropy. The recurrence analysis reveals that the predictability of the system strongly depends on discharge voltage. Furthermore, the persistent behaviour of the plasma time seriesmore » is characterized by the Detrended fluctuation analysis technique to explore the complexity in terms of long range correlation. The enhancement of the discharge voltage at constant magnetic field increases the nonlinear correlations; hence, the complexity of the system decreases, which corroborates the RQA analysis.« less
Molecular Speciation of Trace Metal Organic Complexes in the Pacific Ocean
NASA Astrophysics Data System (ADS)
Repeta, D.; Boiteau, R. M.; Bundy, R. M.; Babcock-Adams, L.
2017-12-01
Microbial production across approximately one third of the surface ocean is limited by extraordinarily low (picomolar) concentrations of dissolved iron, essentially all of which is complexed to strong organic ligands of unknown composition. Other biologically important trace metals (cobalt, copper, zinc, nickel) are also complexed to strong organic ligands, which again have not been extensively characterized. Nevertheless, organic ligands exert a strong influence on metal bioavailability and toxicity. For example, amendment experiments using commercially available siderophores, organic compounds synthesized by microbes to facilitate iron uptake, show these ligands can both facilitate or impede iron uptake depending on the siderophore composition and available uptake pathways. Over the past few years we have developed analytical techniques using high pressure liquid chromatography interfaced with inductively coupled plasma and electrospray ionization mass spectrometry to identify and quantify trace metal organic complexes in laboratory cultures of marine microbes and in seawater. We found siderophores to be widely distributed in the ocean, particularly in regions characterized by low iron concentrations. We also find chemically distinct complexes of copper, zinc, colbalt and nickel that we have yet to fully characterize. We will discuss some of our recent work on trace metal organic speciation in seawater and laboratory cultures, and outline future efforts to better understand the microbial cycling of trace metal organic complexes in the sea.
NASA Astrophysics Data System (ADS)
Capece, Angela
2014-10-01
Liquid metal plasma-facing components (PFCs) enable in-situ renewal of the surface, thereby offering a solution to neutron damage, erosion, and thermal fatigue experienced by solid PFCs. Lithium in particular has a high chemical affinity for hydrogen, which has resulted in reduced recycling and enhanced plasma performance on many fusion devices including TFTR, T11-M, FTU, CDX-U, LTX, TJ-II, and NSTX. A key component to the improvement in plasma performance is deuterium retention in Li; however, this process is not well understood in the complex tokamak environment. Recent surface science experiments conducted at the Princeton Plasma Physics Laboratory have used electron spectroscopy and temperature programmed desorption to understand the mechanisms for D retention in Li coatings on Mo substrates. The experiments were designed to give monolayer-control of Li films and were conducted in ultrahigh vacuum under controlled environments. An electron cyclotron resonance plasma source was used to deliver a beam of deuterium ions to the surface over a range of ion energies. Our work shows that D is retained as LiD in metallic Li films. However, when oxygen is present in the film, either by diffusion from the subsurface at high temperature or as a contaminant during the deposition process, Li oxides are formed that retain D as LiOD. Experiments indicate that LiD is more thermally stable than LiOD, which decomposes to liberate D2 gas and D2O at temperatures 100 K lower than the LiD decomposition temperature. Other experiments show how D retention varies with substrate temperature to provide insight into the differences between solid and liquid lithium films. This work was supported by DOE Contract No. DE AC02-09CH11466.
Evidence for Involvement of IL-9 and IL-22 in Cows' Milk Allergy in Infants.
Barros, Karina V; Flor Silveira, Vera L; Laranjeira, Marisa S; Wandalsen, Neusa F; Passeti, Susana; de Oliveira, Roberta; Munekata, Regina V; Noakes, Paul S; Miles, Elizabeth A; Calder, Philip C
2017-09-21
Although allergic inflammation is characterized by a T helper (Th) 2-dominant immune response, the discovery of a role for new T cell subsets in inflammatory diseases has added an additional layer of complexity to the understanding of the pathogeneses of allergic diseases. We evaluated plasma cytokine profiles in infants with cows' milk allergy (CMA), who were being treated with an elimination diet. In a prospective, randomized and controlled study, infants (aged 8.4 ± 3.9 months) with CMA were treated with an elimination diet for 120 days, which replaced cows' milk with a hydrolysed soy protein formula ( n = 26) or a free amino acid formula ( n = 20). Blood samples were collected before treatment during active disease (T0) and after 120 days, when symptoms were absent (T1). Plasma cytokine concentrations were measured. Infants with CMA had higher plasma concentrations of interleukin (IL)-4 and IL-13 and lower concentrations of IL-9, IL-17A and interferon-γ, compared with healthy breast-fed infants. At T0, there was a positive correlation between blood eosinophil numbers and plasma concentrations of IL-4, IL-9, IL-17A and IL-22. Treatment with a cows' milk elimination diet resulted in a decrease in plasma IL-4, IL-9, IL-13 and IL-22 and an increase in plasma IL-17A. We conclude that IL-4 and IL-13 are elevated in active CMA. The association of IL-9 and IL-22 with eosinophilia, and the decrease in these two cytokines with cows' milk elimination, suggests that they both play a role in the symptoms observed in CMA and may be important targets for future interventions.
Plasma-water interactions at atmospheric pressure in a dc microplasma
NASA Astrophysics Data System (ADS)
Patel, Jenish; Němcová, Lucie; Mitra, Somak; Graham, William; Maguire, Paul; Švrček, Vladimir; Mariotti, Davide
2013-09-01
Plasma-liquid interactions generate a variety of chemical species that are very useful for the treatment of many materials and that makes plasma-induced liquid chemistry (PiLC) very attractive for industrial applications. The understanding of plasma-induced chemistry with water can open up a vast range of plasma-activated chemistry in liquid with enormous potential for the synthesis of chemical compounds, nanomaterials synthesis and functionalization. However, this basic understanding of the chemistry occurring at the plasma-liquid interface is still poor. In the present study, different properties of water are analysed when processed by plasma at atmospheric-pressure with different conditions. In particular, pH, temperature and conductivity of water are measured against current and time of plasma processing. We also observed the formation of molecular oxygen (O2) and hydrogen peroxide (H2O2) for the same plasma conditions. The current of plasma processing was found to affect the water properties and the production of hydrogen peroxide in water. The relation between the number of electrons injected from plasma in water and the number of H2O2 molecules was established and based on these results a scenario of reactions channels activated by plasma-water interface is concluded.
Diagnostic evaluations of microwave generated helium and nitrogen plasma mixtures
NASA Technical Reports Server (NTRS)
Haraburda, Scott S.; Hawley, Martin C.; Dinkel, Duane W.
1990-01-01
The goal of this work is to continue the development to fundamentally understand the plasma processes as applied to spacecraft propulsion. The diagnostic experiments used are calorimetric, dimensional, and spectroscopic measurements using the TM 011 and TM 012 modes in the resonance cavity. These experimental techniques are highly important in furthering the understanding of plasma phenomena and of designing rocket thrusters. Several experimental results are included using nitrogen and helium gas mixtures.
Prostatic origin of a zinc binding high molecular weight protein complex in human seminal plasma.
Siciliano, L; De Stefano, C; Petroni, M F; Vivacqua, A; Rago, V; Carpino, A
2000-03-01
The profile of the zinc ligand high molecular weight proteins was investigated in the seminal plasma of 55 normozoospermic subjects by size exclusion high performance liquid chromatography (HPLC). The proteins were recovered from Sephadex G-75 gel filtration of seminal plasma in three zinc-containing fractions which were then submitted to HPLC analysis. The results were, that in all the samples, the protein profiles showed two peaks with apparent molecular weight of approximately 660 and approximately 250 kDa. Dialysis experiments revealed that both approximately 660 and approximately 250 kDa proteins were able to uptake zinc against gradient indicating their zinc binding capacity. The HPLC analysis of the whole seminal plasma evidenced only the approximately 660 kDa protein complex as a single well quantifying peak, furthermore a positive correlation between its peak area and the seminal zinc values (P < 0.001) was observed. This suggested a prostatic origin of the approximately 660 kDa protein complex which was then confirmed by the seminal plasma HPLC analysis of a subject with agenesis of the Wolffian ducts. Finally the study demonstrated the presence of two zinc binding proteins, approximately 660 and approximately 250 kDa respectively, in human seminal plasma and the prostatic origin of the approximately 660 kDa.
The North Galactic Pole Rift and the Local Hot Bubble
NASA Technical Reports Server (NTRS)
Snowden, S. L.; Koutroumpa, D.; Kuntz, K. D.; Lallement, R.; Puspitarini, L.
2015-01-01
The North Galactic Pole Rift (NGPR) is one of the few distinct neutral hydrogen clouds at high Galactic latitudes that have well-defined distances. It is located at the edge of the Local Cavity (LC) and provides an important test case for understanding the Local Hot Bubble (LHB), the presumed location for the hot diffuse plasma responsible for much of the observed 1/4 keV emission originating in the solar neighborhood. Using data from the ROSAT All- Sky Survey and the Planck reddening map, we find the path length within the LC (LHB plus Complex of Local Interstellar Clouds) to be 98 plus or minus 27 pc, in excellent agreement with the distance to the NGPR of 98 +/- 6 pc. In addition, we examine another 14 directions that are distributed over the sky where the LC wall is apparently optically thick at 1/4 keV. We find that the data in these directions are also consistent with the LHB model and a uniform emissivity plasma filling most of the LC.
NASA Astrophysics Data System (ADS)
Condamine, F. P.; Šmíd, M.; Renner, O.; Dozières, M.; Thais, F.; Angelo, P.; Bobin, J.-L.; Rosmej, F. B.
2016-05-01
Hot electrons are of key importance to understand many physical processes in plasma physics. They impact strongly on atomic physics as almost all radiative properties are seriously modified. X-ray spectroscopy is of particular interest due to reduced photoabsorption in dense matter. We report on a study of the copper Kα X-ray emission conducted at the ns, kJ laser facility PALS, Prague, Czech Republic. Thin copper foils have been irradiated with 1ω pulses. Two spherically bent quartz Bragg crystal spectrometers with high spectral and spatial resolution have been set up simultaneously to achieve a high level of confidence in the spectral distribution. In particular, an emission on the red wing of the Kα2 transition (λ = 1.5444 Å) could be identified with complex atomic structure calculations. We discuss possible implications for the analysis of non-equilibrium phenomena and present first atomic physics simulations.
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.
2007-01-01
Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron)jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.
Particle acceleration, magnetic field generation, and emission in relativistic pair jets
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Kouveliotou, C.; Fishman, G. J.; Mizuno, Y.
2005-01-01
Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Recent simulations show that the Weibel instability created by relativistic pair jets is responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet propagating through an ambient plasma with and without initial magnetic fields. The growth rates of the Weibel instability depends on the distribution of pair jets. The Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. This instability is also responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron s transverse deflection behind the jet head. The jitter radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.
NASA Technical Reports Server (NTRS)
Nishikawa, K. I.; Ramirez-Ruiz, E.; Hardee, P.; Mizuno, Y.; Fishman. G. J.
2007-01-01
Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.
Kim, Bong-Woo; Lee, Chang Seok; Yi, Jae-Sung; Lee, Joo-Hyung; Lee, Joong-Won; Choo, Hyo-Jung; Jung, Soon-Young; Kim, Min-Sik; Lee, Sang-Won; Lee, Myung-Shik; Yoon, Gyesoon; Ko, Young-Gyu
2010-12-01
Although accumulating proteomic analyses have supported the fact that mitochondrial oxidative phosphorylation (OXPHOS) complexes are localized in lipid rafts, which mediate cell signaling, immune response and host-pathogen interactions, there has been no in-depth study of the physiological functions of lipid-raft OXPHOS complexes. Here, we show that many subunits of OXPHOS complexes were identified from the lipid rafts of human adipocytes, C2C12 myotubes, Jurkat cells and surface biotin-labeled Jurkat cells via shotgun proteomic analysis. We discuss the findings of OXPHOS complexes in lipid rafts, the role of the surface ATP synthase complex as a receptor for various ligands and extracellular superoxide generation by plasma membrane oxidative phosphorylation complexes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Zheng; Gohil, Punit; McKee, George R.
Measurements of long wavelength (kmore » $$\\perp$$p i < 1) density fluctuation characteristics in the edge of both Deuterium (D) and Hydrogen (H) plasmas across the L-H transition on DIII-D demonstrate the existence of single or double bands of low-wavenumber turbulence observed near the edge of H and D plasmas. These are strongly correlated with the L to H-mode transition power threshold (P LH) and can help explain the isotopic and density dependence of P LH, and how the P LH difference is reduced at higher density. Understanding and accurately predicting the L-H power threshold is critical to accessing to H-mode, and operating and achieving high confinement in burning plasmas such as ITER. Above about n e ~ 4 × 10 19 m -3, P LH is seen to converge for H and D, and increases for both with higher density. Surprisingly, the P LH increases significantly at low density in H but not in D plasmas. Two distinct frequency bands of density fluctuations are observed in the D plasmas at low density, n e ~ 1.2-1.5 × 10 19 m -3, but not in H plasmas with similar density, which appears to be correlated to the much lower power threshold in D at low density. Consistently, E × B shear in the region of r/a ~ 0.95-1.0 is larger in D plasmas than in H plasmas at low density; as the P LH increases with increasing density, the dual mode structure disappears while E × B shear becomes similar and small for both D and H plasmas at higher density, n e ~ 5 × 10 19 m -3, where P LH is similar for both D and H plasmas. Lastly, the increased edge fluctuations, increased flow shear, and the dualband nature of edge turbulence correlating with lower P LH may account for the strong isotope and density dependencies of PLH and support current L-H transition theories but suggest a complex behavior that can inform a more complete model of the L-H transition threshold.« less
Yan, Zheng; Gohil, Punit; McKee, George R.; ...
2017-09-18
Measurements of long wavelength (kmore » $$\\perp$$p i < 1) density fluctuation characteristics in the edge of both Deuterium (D) and Hydrogen (H) plasmas across the L-H transition on DIII-D demonstrate the existence of single or double bands of low-wavenumber turbulence observed near the edge of H and D plasmas. These are strongly correlated with the L to H-mode transition power threshold (P LH) and can help explain the isotopic and density dependence of P LH, and how the P LH difference is reduced at higher density. Understanding and accurately predicting the L-H power threshold is critical to accessing to H-mode, and operating and achieving high confinement in burning plasmas such as ITER. Above about n e ~ 4 × 10 19 m -3, P LH is seen to converge for H and D, and increases for both with higher density. Surprisingly, the P LH increases significantly at low density in H but not in D plasmas. Two distinct frequency bands of density fluctuations are observed in the D plasmas at low density, n e ~ 1.2-1.5 × 10 19 m -3, but not in H plasmas with similar density, which appears to be correlated to the much lower power threshold in D at low density. Consistently, E × B shear in the region of r/a ~ 0.95-1.0 is larger in D plasmas than in H plasmas at low density; as the P LH increases with increasing density, the dual mode structure disappears while E × B shear becomes similar and small for both D and H plasmas at higher density, n e ~ 5 × 10 19 m -3, where P LH is similar for both D and H plasmas. Lastly, the increased edge fluctuations, increased flow shear, and the dualband nature of edge turbulence correlating with lower P LH may account for the strong isotope and density dependencies of PLH and support current L-H transition theories but suggest a complex behavior that can inform a more complete model of the L-H transition threshold.« less
Plasma inactivation of microorganisms on sprout seeds in a dielectric barrier discharge.
Butscher, Denis; Van Loon, Hanne; Waskow, Alexandra; Rudolf von Rohr, Philipp; Schuppler, Markus
2016-12-05
Fresh produce is frequently contaminated by microorganisms, which may lead to spoilage or even pose a threat to human health. In particular sprouts are considered to be among the most risky foods sold at retail since they are grown in an environment practically ideal for growth of bacteria and usually consumed raw. Because heat treatment has a detrimental effect on the germination abilities of sprout seeds, alternative treatment technologies need to be developed for microbial inactivation purposes. In this study, non-thermal plasma decontamination of sprout seeds is evaluated as a promising option to enhance food safety while maintaining the seed germination capabilities. In detail, investigations focus on understanding the efficiency of non-thermal plasma inactivation of microorganisms as influenced by the type of microbial contamination, substrate surface properties and moisture content, as well as variations in the power input to the plasma device. To evaluate the impact of these parameters, we studied the reduction of native microbiota or artificially applied E. coli on alfalfa, onion, radish and cress seeds exposed to non-thermal plasma in an atmospheric pressure pulsed dielectric barrier discharge streamed with argon. Plasma treatment resulted in a maximum reduction of 3.4 logarithmic units for E. coli on cress seeds. A major challenge in plasma decontamination of granular food products turned out to be the complex surface topology, where the rough surface with cracks and crevices can shield microorganisms from plasma-generated reactive species, thus reducing the treatment efficiency. However, improvement of the inactivation efficiency was possible by optimizing substrate characteristics such as the moisture level and by tuning the power supply settings (voltage, frequency) to increase the production of reactive species. While the germination ability of alfalfa seeds was considerably decreased by harsh plasma treatment, enhanced germination was observed under mild conditions. In conclusion, the results from this study indicate that cold plasma treatment represents a promising technology for inactivation of bacteria on seeds used for sprout production while preserving their germination properties. Copyright © 2016 Elsevier B.V. All rights reserved.
Computational study of arc discharges: Spark plug and railplug ignitors
NASA Astrophysics Data System (ADS)
Ekici, Ozgur
A theoretical study of electrical arc discharges that focuses on the discharge processes in spark plug and railplug ignitors is presented. The aim of the study is to gain a better understanding of the dynamics of electrical discharges, more specifically the transfer of electrical energy into the gas and the effect of this energy transfer on the flow physics. Different levels of computational models are presented to investigate the types of arc discharges seen in spark plugs and railplugs (i.e., stationary and moving arc discharges). Better understanding of discharge physics is important for a number of applications. For example, improved fuel economy under the constraint of stricter emissions standards and improved plug durability are important objectives of current internal combustion engine designs. These goals can be achieved by improving the existing systems (spark plug) and introducing more sophisticated ignition systems (railplug). In spite of the fact spark plug and railplug ignitors are the focus of this work, the methods presented in this work can be extended to study the discharges found in other applications such as plasma torches, laser sparks, and circuit breakers. The system of equations describing the physical processes in an air plasma is solved using computational fluid dynamics codes to simulate thermal and flow fields. The evolution of the shock front, temperature, pressure, density, and flow of a plasma kernel were investigated for both stationary and moving arcs. Arc propagation between the electrodes under the effects of gas dynamics and electromagnetic processes was studied for moving arcs. The air plasma is regarded as a continuum, single substance material in local thermal equilibrium. Thermophysical properties of high temperature air are used to take into consideration the important processes such as dissociation and ionization. The different mechanisms and the relative importance of several assumptions in gas discharges and thermal plasma modeling were investigated. Considering the complex nature of the studied problem, the computational models aid in analyzing the analytical theory and serve as relatively inexpensive tools when compared to experiments in design process.
Frizzled 7 and PIP2 binding by syntenin PDZ2 domain supports Frizzled 7 trafficking and signalling
NASA Astrophysics Data System (ADS)
Egea-Jimenez, Antonio Luis; Gallardo, Rodrigo; Garcia-Pino, Abel; Ivarsson, Ylva; Wawrzyniak, Anna Maria; Kashyap, Rudra; Loris, Remy; Schymkowitz, Joost; Rousseau, Frederic; Zimmermann, Pascale
2016-07-01
PDZ domain-containing proteins work as intracellular scaffolds to control spatio-temporal aspects of cell signalling. This function is supported by the ability of their PDZ domains to bind other proteins such as receptors, but also phosphoinositide lipids important for membrane trafficking. Here we report a crystal structure of the syntenin PDZ tandem in complex with the carboxy-terminal fragment of Frizzled 7 and phosphatidylinositol 4,5-bisphosphate (PIP2). The crystal structure reveals a tripartite interaction formed via the second PDZ domain of syntenin. Biophysical and biochemical experiments establish co-operative binding of the tripartite complex and identify residues crucial for membrane PIP2-specific recognition. Experiments with cells support the importance of the syntenin-PIP2 interaction for plasma membrane targeting of Frizzled 7 and c-jun phosphorylation. This study contributes to our understanding of the biology of PDZ proteins as key players in membrane compartmentalization and dynamics.
Pre-eruptive Magnetic Reconnection within a Multi-flux-rope System in the Solar Corona
NASA Astrophysics Data System (ADS)
Awasthi, Arun Kumar; Liu, Rui; Wang, Haimin; Wang, Yuming; Shen, Chenglong
2018-04-01
The solar corona is frequently disrupted by coronal mass ejections (CMEs), whose core structure is believed to be a flux rope made of helical magnetic field. This has become a “standard” picture; though, it remains elusive how the flux rope forms and evolves toward eruption. While one-third of the ejecta passing through spacecraft demonstrate a flux-rope structure, the rest have complex magnetic fields. Are they originating from a coherent flux rope, too? Here we investigate the source region of a complex ejecta, focusing on a flare precursor with definitive signatures of magnetic reconnection, i.e., nonthermal electrons, flaring plasma, and bidirectional outflowing blobs. Aided by nonlinear force-free field modeling, we conclude that the reconnection occurs within a system of multiple braided flux ropes with different degrees of coherency. The observation signifies the importance of internal structure and dynamics in understanding CMEs and in predicting their impacts on Earth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Strykowsky, T. Brown, J. Chrzanowski, M. Cole, P. Heitzenroeder, G.H. Neilson, Donald Rej, and M. Viola
The National Compact Stellarator Experiment (NCSX) was designed to test physics principles of an innovative fusion energy confinement device developed by the Princeton Plasma Physics Laboratory (PPPL) and Oak Ridge National Laboratory (ORNL) under contract from the US Department of Energy. The project was technically very challenging, primarily due to the complex component geometries and tight tolerances that were required. As the project matured these challenges manifested themselves in significant cost overruns through all phases of the project (i.e. design, R&D, fabrication and assembly). The project was subsequently cancelled by the DOE in 2008. Although the project was not completed,more » several major work packages, comprising about 65% of the total estimated cost (excluding management and contingency), were completed, providing a data base of actual costs that can be analyzed to understand cost drivers. Technical factors that drove costs included the complex geometry, tight tolerances, material requirements, and performance requirements. Management factors included imposed annual funding constraints that throttled project cash flow, staff availability, and inadequate R&D. Understanding how requirements and design decisions drove cost through this top-down forensic cost analysis could provide valuable insight into the configuration and design of future state-of-the art machines and other devices.« less
Translating transitions – how to decipher peripheral human B cell development
Bemark, Mats
2015-01-01
Abstract During the last two decades our understanding of human B cell differentiation has developed considerably. Our understanding of the human B cell compartment has advanced from a point where essentially all assays were based on the presence or not of class-switched antibodies to a level where a substantial diversity is appreciated among the cells involved. Several consecutive transitional stages that newly formed IgM expressing B cells go through after they leave the bone marrow, but before they are fully mature, have been described, and a significant complexity is also acknowledged within the IgM expressing and class-switched memory B cell compartments. It is possible to isolate plasma blasts in blood to follow the formation of plasma cells during immune responses, and the importance and uniqueness of the mucosal IgA system is now much more appreciated. Current data suggest the presence of at least one lineage of human innate-like B cells akin to B1 and/or marginal zone B cells in mice. In addition, regulatory B cells with the ability to produce IL-10 have been identified. Clinically, B cell depletion therapy is used for a broad range of conditions. The ability to define different human B cell subtypes using flow cytometry has therefore started to come into clinical use, but as our understanding of human B cell development further progresses, B cell subtype analysis will be of increasing importance in diagnosis, to measure the effect of immune therapy and to understand the underlying causes for diseases. In this review the diversity of human B cells will be discussed, with special focus on current data regarding their phenotypes and functions. PMID:26243514
On the Isothermality of Solar Plasmas
NASA Technical Reports Server (NTRS)
Landi, E.; Klimchuk, J. A.
2010-01-01
Recent measurements have shown that the quiet unstructured solar corona observed at the solar limb is close to isothermal, at a temperature that does not appear to change over wide areas or with time. Some in dividual active loop structures have also been found to be nearly iso thermal both along their axis and across their cross-section. Even a complex active region observed at the solar limb has been found to be composed of three distinct isothermal plasmas. If confirmed, these r esults would pose formidable challenges to the current theoretical understanding of the thermal structure and heating of the solar corona. For example, no current theoretical model can explain the excess dens ities and lifetimes of many observed loops if the loops are in fact i sothermal. All of these measurements are based on the so-called emiss ion measure (EM) diagnostic technique that is applied to a set of opt ically thin lines under the assumption of isothermal plasma. It provi des simultaneous measurement of both the temperature and EM. However, no study has ever been carried out to quantify the uncertainties in the technique and to rigorously assess its ability to discriminate bet ween isothermal and multithermal plasmas. Such a study is the topic o f the present work. We define a formal measure of the uncertainty in the EM diagnostic technique that can easily be applied to real data. We here apply it to synthetic data based on a variety of assumed plas ma thermal distributions, and develop a method to quantitatively asse ss the degree of multithermality of a plasma.
Cellulose microfibril deposition: coordinated activity at the plant plasma membrane.
Lindeboom, J; Mulder, B M; Vos, J W; Ketelaar, T; Emons, A M C
2008-08-01
Plant cell wall production is a membrane-bound process. Cell walls are composed of cellulose microfibrils, embedded inside a matrix of other polysaccharides and glycoproteins. The cell wall matrix is extruded into the existing cell wall by exocytosis. This same process also inserts the cellulose synthase complexes into the plasma membrane. These complexes, the nanomachines that produce the cellulose microfibrils, move inside the plasma membrane leaving the cellulose microfibrils in their wake. Cellulose microfibril angle is an important determinant of cell development and of tissue properties and as such relevant for the industrial use of plant material. Here, we provide an integrated view of the events taking place in the not more than 100 nm deep area in and around the plasma membrane, correlating recent results provided by the distinct field of plant cell biology. We discuss the coordinated activities of exocytosis, endocytosis, and movement of cellulose synthase complexes while producing cellulose microfibrils and the link of these processes to the cortical microtubules.
NASA Astrophysics Data System (ADS)
Chubov, S. V.; Soldatov, A. I.
2017-02-01
This article provides the advantages and technical solutions for the use of electronic loads as part of a testing complex of power and management systems of electric and plasma propulsion of three types. The paper shows the parameters that were applied to select the electronic loads and describes their functionality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brennan, D. P.; Finn, J. M.
2014-10-15
Feedback stabilization of magnetohydrodynamic (MHD) modes in a tokamak is studied in a cylindrical model with a resistive wall, plasma resistivity, viscosity, and toroidal rotation. The control is based on a linear combination of the normal and tangential components of the magnetic field just inside the resistive wall. The feedback includes complex gain, for both the normal and for the tangential components, and it is known that the imaginary part of the feedback for the former is equivalent to plasma rotation [J. M. Finn and L. Chacon, Phys. Plasmas 11, 1866 (2004)]. The work includes (1) analysis with a reducedmore » resistive MHD model for a tokamak with finite β and with stepfunction current density and pressure profiles, and (2) computations with a full compressible visco-resistive MHD model with smooth decreasing profiles of current density and pressure. The equilibria are stable for β = 0 and the marginal stability values β{sub rp,rw} < β{sub rp,iw} < β{sub ip,rw} < β{sub ip,iw} (resistive plasma, resistive wall; resistive plasma, ideal wall; ideal plasma, resistive wall; and ideal plasma, ideal wall) are computed for both models. The main results are: (a) imaginary gain with normal sensors or plasma rotation stabilizes below β{sub rp,iw} because rotation suppresses the diffusion of flux from the plasma out through the wall and, more surprisingly, (b) rotation or imaginary gain with normal sensors destabilizes above β{sub rp,iw} because it prevents the feedback flux from entering the plasma through the resistive wall to form a virtual wall. A method of using complex gain G{sub i} to optimize in the presence of rotation in this regime with β > β{sub rp,iw} is presented. The effect of imaginary gain with tangential sensors is more complicated but essentially destabilizes above and below β{sub rp,iw}.« less
Scientific Discovery through Advanced Computing in Plasma Science
NASA Astrophysics Data System (ADS)
Tang, William
2005-03-01
Advanced computing is generally recognized to be an increasingly vital tool for accelerating progress in scientific research during the 21st Century. For example, the Department of Energy's ``Scientific Discovery through Advanced Computing'' (SciDAC) Program was motivated in large measure by the fact that formidable scientific challenges in its research portfolio could best be addressed by utilizing the combination of the rapid advances in super-computing technology together with the emergence of effective new algorithms and computational methodologies. The imperative is to translate such progress into corresponding increases in the performance of the scientific codes used to model complex physical systems such as those encountered in high temperature plasma research. If properly validated against experimental measurements and analytic benchmarks, these codes can provide reliable predictive capability for the behavior of a broad range of complex natural and engineered systems. This talk reviews recent progress and future directions for advanced simulations with some illustrative examples taken from the plasma science applications area. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by the combination of access to powerful new computational resources together with innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning a huge range in time and space scales. In particular, the plasma science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPP's to produce three-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of plasma turbulence in magnetically-confined high temperature plasmas. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to stimulate improved cross-cutting collaborations with other fields and also to help attract bright young talent to the computational science area.
Layer Splitting in a Complex Plasma
NASA Astrophysics Data System (ADS)
Smith, Bernard; Hyde, Truell; Matthews, Lorin; Johnson, Megan; Cook, Mike; Schmoke, Jimmy
2009-11-01
Dust particle clouds are found in most plasma processing environments and many astrophysical environments. Dust particles suspended within such plasmas often acquire an electric charge from collisions with free electrons in the plasma. Depending upon the ratio of interparticle potential energy to average kinetic energy, charged dust particles can form a gaseous, liquid or crystalline structure with short to longer range ordering. An interesting facet of complex plasma behavior is that particle layers appear to split as the DC bias is increased. This splitting of layers points to a phase transition differing from the normal phase transitions found in two-dimensional solids. In 1993, Dubin noted that as the charged particle density of an initially two-dimensional Coulomb crystal increases the system's layers split at specific charge densities. This work modeled ions in a Paul or Penning trap, but may be applicable to dusty plasma systems as well. This work will discuss this possibility along with splitting observed in the CASPER GEC rf Reference Cell at specific pressures and powers.
Fujioka, Rumi; Mochizuki, Nobuo; Ikeda, Masafumi; Sato, Akihiro; Nomura, Shogo; Owada, Satoshi; Yomoda, Satoshi; Tsuchihara, Katsuya; Kishino, Satoshi
2018-01-01
Arctigenin is evaluated for antitumor efficacy in patients with pancreatic cancer. It has an inhibitory activity on mitochondrial complex I.Therefore, plasma lactate level of patients after arctigenin administration was evaluated for biomarker of clinical response and/or adverse effect. Plasma lactate level in 15 patients enrolled in a Phase I clinical trial of GBS-01 rich in arctigenin was analyzed by colorimetric assay. Statistical analyses for association of plasma lactate and clinical responses, pharmacokinetics of arctigenin, and background factors of each patient by multivariate and univariate analyses.In about half of the patients, transient increase of lactate was observed. Correlation between plasma lactate level and pharmacokinetic parameters of arctigenin and its glucuronide conjugate, and clinical outcome was not detected. Regarding to the determinant of lactate level, only slight association with liver function test was detected. Plasma lactate level is primary determined by reutilization rather than production for antitumor effect and dose not serve as a biomarker. Arctigenin, inhibition of mitochondrial complex I, plasma lactate concentration, phase I clinical trial of GBS-01, Cori cycle. PMID:29856804
Fujioka, Rumi; Mochizuki, Nobuo; Ikeda, Masafumi; Sato, Akihiro; Nomura, Shogo; Owada, Satoshi; Yomoda, Satoshi; Tsuchihara, Katsuya; Kishino, Satoshi; Esumi, Hiroyasu
2018-01-01
Arctigenin is evaluated for antitumor efficacy in patients with pancreatic cancer. It has an inhibitory activity on mitochondrial complex I.Therefore, plasma lactate level of patients after arctigenin administration was evaluated for biomarker of clinical response and/or adverse effect. Plasma lactate level in 15 patients enrolled in a Phase I clinical trial of GBS-01 rich in arctigenin was analyzed by colorimetric assay. Statistical analyses for association of plasma lactate and clinical responses, pharmacokinetics of arctigenin, and background factors of each patient by multivariate and univariate analyses.In about half of the patients, transient increase of lactate was observed. Correlation between plasma lactate level and pharmacokinetic parameters of arctigenin and its glucuronide conjugate, and clinical outcome was not detected. Regarding to the determinant of lactate level, only slight association with liver function test was detected. Plasma lactate level is primary determined by reutilization rather than production for antitumor effect and dose not serve as a biomarker. Arctigenin, inhibition of mitochondrial complex I, plasma lactate concentration, phase I clinical trial of GBS-01, Cori cycle.
PlasmaLab/Eco-Plasma - The future of complex plasma research in space
NASA Astrophysics Data System (ADS)
Knapek, Christina; Thomas, Hubertus; Huber, Peter; Mohr, Daniel; Hagl, Tanja; Konopka, Uwe; Lipaev, Andrey; Morfill, Gregor; Molotkov, Vladimir
The next Russian-German cooperation for the investigation of complex plasmas under microgravity conditions on the International Space Station (ISS) is the PlasmaLab/Eco-Plasma project. Here, a new plasma chamber -- the ``Zyflex'' chamber -- is being developed. The chamber is a cylindrical plasma chamber with parallel electrodes and a flexible system geometry. It is designed to extend the accessible plasma parameter range, i.e. neutral gas pressure, plasma density and electron temperature, and also to allow an independent control of the plasma parameters, therefore increasing the experimental quality and expected knowledge gain significantly. With this system it will be possible to reach low neutral gas pressures (which means weak damping of the particle motion) and to generate large, homogeneous 3D particle systems for studies of fundamental phenomena such as phase transitions, dynamics of liquids or phase separation. The Zyflex chamber has already been operated in several parabolic flight campaigns with different configurations during the last years, yielding a promising outlook for its future development. Here, we will present the current status of the project, the technological advancements the Zyflex chamber will offer compared to its predecessors, and the latest scientific results from experiments on ground and in microgravity conditions during parabolic flights. This work and some of the authors are funded by DLR/BMWi (FKZ 50 WP 0700).
Sezgin, Erdinc; Azbazdar, Yagmur; Ng, Xue W; Teh, Cathleen; Simons, Kai; Weidinger, Gilbert; Wohland, Thorsten; Eggeling, Christian; Ozhan, Gunes
2017-08-01
While the cytosolic events of Wnt/β-catenin signaling (canonical Wnt signaling) pathway have been widely studied, only little is known about the molecular mechanisms involved in Wnt binding to its receptors at the plasma membrane. Here, we reveal the influence of the immediate plasma membrane environment on the canonical Wnt-receptor interaction. While the receptors are distributed both in ordered and disordered environments, Wnt binding to its receptors selectively occurs in more ordered membrane environments which appear to cointernalize with the Wnt-receptor complex. Moreover, Wnt/β-catenin signaling is significantly reduced when the membrane order is disturbed by specific inhibitors of certain lipids that prefer to localize at the ordered environments. Similarly, a reduction in Wnt signaling activity is observed in Niemann-Pick Type C disease cells where trafficking of ordered membrane lipid components to the plasma membrane is genetically impaired. We thus conclude that ordered plasma membrane environments are essential for binding of canonical Wnts to their receptor complexes and downstream signaling activity. © 2017 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Lin; Maroudas, Dimitrios, E-mail: maroudas@ecs.umass.edu; Hammond, Karl D.
We report the results of a systematic atomic-scale analysis of the reactions of small mobile helium clusters (He{sub n}, 4 ≤ n ≤ 7) near low-Miller-index tungsten (W) surfaces, aiming at a fundamental understanding of the near-surface dynamics of helium-carrying species in plasma-exposed tungsten. These small mobile helium clusters are attracted to the surface and migrate to the surface by Fickian diffusion and drift due to the thermodynamic driving force for surface segregation. As the clusters migrate toward the surface, trap mutation (TM) and cluster dissociation reactions are activated at rates higher than in the bulk. TM produces W adatoms and immobile complexes ofmore » helium clusters surrounding W vacancies located within the lattice planes at a short distance from the surface. These reactions are identified and characterized in detail based on the analysis of a large number of molecular-dynamics trajectories for each such mobile cluster near W(100), W(110), and W(111) surfaces. TM is found to be the dominant cluster reaction for all cluster and surface combinations, except for the He{sub 4} and He{sub 5} clusters near W(100) where cluster partial dissociation following TM dominates. We find that there exists a critical cluster size, n = 4 near W(100) and W(111) and n = 5 near W(110), beyond which the formation of multiple W adatoms and vacancies in the TM reactions is observed. The identified cluster reactions are responsible for important structural, morphological, and compositional features in the plasma-exposed tungsten, including surface adatom populations, near-surface immobile helium-vacancy complexes, and retained helium content, which are expected to influence the amount of hydrogen re-cycling and tritium retention in fusion tokamaks.« less
Tailored Net-Shape Powder Composites by Spark Plasma Sintering
NASA Astrophysics Data System (ADS)
Khaleghi, Evan Aryan
This dissertation investigates the ability to produce net-shape and tailored composites in spark plasma sintering (SPS), with an analysis of how grain growth, densification, and mechanical properties are affected. Using alumina and four progressively anisotropic dies, we studied the impact of specimen shape on densification. We found specimen shape had an impact on overall densification, but no impact on localized properties. We expected areas of the specimen to densify differently, or have higher grain growth, based on current anisotropy in the specimen during sintering, and preliminary results indicated this, but further investigation showed this did not occur. Overall average grain size and porosity decreased as shape complexity increased. In Fe-V-C steel, we mechanical alloyed two rapidly solidified powders, and used spark sintering to retain the properties imparted during the rapid solidification. We noticed VC grains being produced during densification, which improved the final properties. We conducted spark plasma extrusion (SPE) of aluminum to understand the effect on microstructure. We found, through an analysis of the grain structure, that SPE did have a grain deformation potential, and grain size was severely decreased compared to conventional sintering. Dynamic recrystallization did not occur, due to the reduced temperatures we were able to extrude with SPS. Finally, we examined whether there were particular sintering conditions for SPS that reduced the complexity of the grain growth and porosity relationship to one similar to conventional sintering, of the form G = k G0 ε -1/. We found that although a reasonable case could be made for free sintering, as found in the literature, for hot-pressing and SPS the conditions required go against the common knowledge in grain growth and densification kinetics. We were able to fit our data very well to the model, but the correlated results do not make physical sense.
Structural studies of bovine, equine, and leporine serum albumin complexes with naproxen.
Bujacz, Anna; Zielinski, Kamil; Sekula, Bartosz
2014-09-01
Serum albumin, a protein naturally abundant in blood plasma, shows remarkable ligand binding properties of numerous endogenous and exogenous compounds. Most of serum albumin binding sites are able to interact with more than one class of ligands. Determining the protein-ligand interactions among mammalian serum albumins is essential for understanding the complexity of this transporter. We present three crystal structures of serum albumins in complexes with naproxen (NPS): bovine (BSA-NPS), equine (ESA-NPS), and leporine (LSA-NPS) determined to 2.58 Å (C2), 2.42 Å (P61), and 2.73 Å (P2₁2₁2₁) resolutions, respectively. A comparison of the structurally investigated complexes with the analogous complex of human serum albumin (HSA-NPS) revealed surprising differences in the number and distribution of naproxen binding sites. Bovine and leporine serum albumins possess three NPS binding sites, but ESA has only two. All three complexes of albumins studied here have two common naproxen locations, but BSA and LSA differ in the third NPS binding site. None of these binding sites coincides with the naproxen location in the HSA-NPS complex, which was obtained in the presence of other ligands besides naproxen. Even small differences in sequences of serum albumins from various species, especially in the area of the binding pockets, influence the affinity and the binding mode of naproxen to this transport protein. © 2014 Wiley Periodicals, Inc.
Study of Complex Plasmas with Magnetic Dipoles
2017-10-10
variety of collective behavior manifested in a plasma, especially oscillations or waves characterized by high frequency accompanied by the motion of...behavior manifested in a plasma, especially oscillations or waves characterized by high frequency accompanied by the motion of electrons and/or ions...particles characterized by extremely low frequency modes and the collection of plasma particles characterized by high frequency modes. The interaction of
New method for rekindling the nonlinear solitary waves in Maxwellian complex space plasma
NASA Astrophysics Data System (ADS)
Das, G. C.; Sarma, Ridip
2018-04-01
Our interest is to study the nonlinear wave phenomena in complex plasma constituents with Maxwellian electrons and ions. The main reason for this consideration is to exhibit the effects of dust charge fluctuations on acoustic modes evaluated by the use of a new method. A special method (G'/G) has been developed to yield the coherent features of nonlinear waves augmented through the derivation of a Korteweg-de Vries equation and found successfully the different nature of solitons recognized in space plasmas. Evolutions have shown with the input of appropriate typical plasma parameters to support our theoretical observations in space plasmas. All conclusions are in good accordance with the actual occurrences and could be of interest to further the investigations in experiments and satellite observations in space. In this paper, we present not only the model that exhibited nonlinear solitary wave propagation but also a new mathematical method to the execution.
3D Global Braginskii Simulations of Plasma Dynamics and Turbulence in LAPD
NASA Astrophysics Data System (ADS)
Fisher, Dustin; Rogers, Barrett
2013-10-01
3D global two-fluid simulations are presented in an ongoing effort to identify and understand the plasma dynamics in the Large Plasma Device (LAPD) at UCLA's Basic Science Facility. Modeling is done using a modified version of the Global Braginskii Solver (GBS) that models the plasma from source to edge region on a field-aligned grid using a finite difference method and 4th order Runge-Kutta time stepping. Progress has been made to account for the thermionic cathode emission of fast electrons at the source, the axial dependence of the plasma source, and biasing the front and side walls. Along with trying to understand the effect sheath's and neutrals have in setting the plasma potential, work is being done to model the biasable limiter recently used by colleagues at UCLA to better understand flow shear and particle transport in the LAPD. Comparisons of the zero bias case are presented along with analysis of the growth and dynamics of turbulent structures (such as drift waves) seen in the simulations. Supported through CICART under the auspices of the DOE's EPSCoR Grant No. DE-FG02-10ER46372.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katsouleas, Thomas C.; Sahai, Aakash A.
2016-08-08
There were two goals for this funded project: 1. Studies of plasma wakefields for high repetition-rate plasma collider, and 2. Theoretical study of laser-plasma proton and ion acceleration. For goal 1, an analytical model was developed to determine the ion-motion resulting from the interaction of non-linear “blow-out” wakefields excited by beam-plasma and laser-plasma interactions. This is key to understanding the state of the plasma at timescales of 1 picosecond to a few 10s of picoseconds behind the driver-energy pulse. More information can be found in the document. For goal 2, we analytically and computationally analyzed the longitudinal instabilities of themore » laser-plasma interactions at the critical layer. Specifically, the process of “Doppler-shifted Ponderomotive bunching” is significant to eliminate the very high-energy spread and understand the importance of chirping the laser pulse frequency. We intend to publish the results of the mixing process in 2-D. We intend to publish Chirp-induced transparency. More information can be found in the document.« less
Preliminary results on complex ceramic layers deposition by atmospheric plasma spraying
NASA Astrophysics Data System (ADS)
Florea, Costel; Bejinariu, Costicǎ; Munteanu, Corneliu; Cimpoeşu, Nicanor
2017-04-01
In this article we obtain thin layers from complex ceramic powders using industrial equipment based on atmospheric plasma spraying. We analyze the influence of the substrate material roughness on the quality of the thin layers using scanning electron microscopy (SEM) and X-ray dispersive energy analyze (EDAX). Preliminary results present an important dependence between the surface state and the structural and chemical homogeneity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hramov, Alexander E.; Saratov State Technical University, Politechnicheskaja str., 77, Saratov 410054; Koronovskii, Alexey A.
2012-08-15
The spectrum of Lyapunov exponents is powerful tool for the analysis of the complex system dynamics. In the general framework of nonlinear dynamics, a number of the numerical techniques have been developed to obtain the spectrum of Lyapunov exponents for the complex temporal behavior of the systems with a few degree of freedom. Unfortunately, these methods cannot be applied directly to analysis of complex spatio-temporal dynamics of plasma devices which are characterized by the infinite phase space, since they are the spatially extended active media. In the present paper, we propose the method for the calculation of the spectrum ofmore » the spatial Lyapunov exponents (SLEs) for the spatially extended beam-plasma systems. The calculation technique is applied to the analysis of chaotic spatio-temporal oscillations in three different beam-plasma model: (1) simple plasma Pierce diode, (2) coupled Pierce diodes, and (3) electron-wave system with backward electromagnetic wave. We find an excellent agreement between the system dynamics and the behavior of the spectrum of the spatial Lyapunov exponents. Along with the proposed method, the possible problems of SLEs calculation are also discussed. It is shown that for the wide class of the spatially extended systems, the set of quantities included in the system state for SLEs calculation can be reduced using the appropriate feature of the plasma systems.« less
Plasma physics of extreme astrophysical environments.
Uzdensky, Dmitri A; Rightley, Shane
2014-03-01
Among the incredibly diverse variety of astrophysical objects, there are some that are characterized by very extreme physical conditions not encountered anywhere else in the Universe. Of special interest are ultra-magnetized systems that possess magnetic fields exceeding the critical quantum field of about 44 TG. There are basically only two classes of such objects: magnetars, whose magnetic activity is manifested, e.g., via their very short but intense gamma-ray flares, and central engines of supernovae (SNe) and gamma-ray bursts (GRBs)--the most powerful explosions in the modern Universe. Figuring out how these complex systems work necessarily requires understanding various plasma processes, both small-scale kinetic and large-scale magnetohydrodynamic (MHD), that govern their behavior. However, the presence of an ultra-strong magnetic field modifies the underlying basic physics to such a great extent that relying on conventional, classical plasma physics is often not justified. Instead, plasma-physical problems relevant to these extreme astrophysical environments call for constructing relativistic quantum plasma (RQP) physics based on quantum electrodynamics (QED). In this review, after briefly describing the astrophysical systems of interest and identifying some of the key plasma-physical problems important to them, we survey the recent progress in the development of such a theory. We first discuss the ways in which the presence of a super-critical field modifies the properties of vacuum and matter and then outline the basic theoretical framework for describing both non-relativistic and RQPs. We then turn to some specific astrophysical applications of relativistic QED plasma physics relevant to magnetar magnetospheres and to central engines of core-collapse SNe and long GRBs. Specifically, we discuss the propagation of light through a magnetar magnetosphere; large-scale MHD processes driving magnetar activity and responsible for jet launching and propagation in GRBs; energy-transport processes governing the thermodynamics of extreme plasma environments; micro-scale kinetic plasma processes important in the interaction of intense electric currents flowing through a magnetar magnetosphere with the neutron star surface; and magnetic reconnection of ultra-strong magnetic fields. Finally, we point out that future progress in applying RQP physics to real astrophysical problems will require the development of suitable numerical modeling capabilities.
Qiu, Yihong; Li, Xia; Duan, John Z
2014-02-01
The present study examines how drug's inherent properties and product design influence the evaluation and applications of in vitro-in vivo correlation (IVIVC) for modified-release (MR) dosage forms consisting of extended-release (ER) and immediate-release (IR) components with bimodal drug release. Three analgesic drugs were used as model compounds, and simulations of in vivo pharmacokinetic profiles were conducted using different release rates of the ER component and various IR percentages. Plasma concentration-time profiles exhibiting a wide range of tmax and maximum observed plasma concentration (Cmax) were obtained from superposition of the simulated IR and ER profiles based on a linear IVIVC. It was found that depending on the drug and dosage form design, direct use of the superposed IR and ER data for IVIVC modeling and prediction may (1) be acceptable within errors, (2) become unreliable and less meaningful because of the confounding effect from the non-negligible IR contribution to Cmax, or (3) be meaningless because of the insensitivity of Cmax to release rate change of the ER component. Therefore, understanding the drug, design and drug release characteristics of the product is essential for assessing the validity, accuracy, and reliability of IVIVC of complex MR products obtained via directly modeling of in vivo data. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
Processive motions of MreB micro-filaments coordinate cell wall growth
NASA Astrophysics Data System (ADS)
Garner, Ethan
2012-02-01
Rod-shaped bacteria elongate by the action of cell-wall synthesis complexes linked to underlying dynamic MreB filaments, but how these proteins function to allow continued elongation as a rod remains unknown. To understand how the movement of these filaments relates to cell wall synthesis, we characterized the dynamics of MreB and the cell wall elongation machinery using high-resolution particle tracking in Bacillus subtilis. We found that both MreB and the elongation machinery move in linear paths across the cell, moving at similar rates (˜20nm / second) and angles to the cell body, suggesting they function as single complexes. These proteins move circumferentially around the cell, principally perpendicular to its length. We find that the motions of these complexes are independent, as they can pause and reverse,and also as nearby complexes move independently in both directions across one surface of the cell. Inhibition of cell wall synthesis with antibiotics or depletions in the cell wall synthesis machinery blocked MreB movement, suggesting that the cell wall synthetic machinery is the motor in this system. We propose that bacteria elongate by the uncoordinated, circumferential movements of synthetic complexes that span the plasma membrane and insert radial hoops of new peptidoglycan during their transit.
Pupek, Małgorzata; Pawłowicz, Robert; Lindner, Karolina; Krzyżanowska-Gołąb, Dorota; Lemańska-Perek, Anna; Panaszek, Bernard; Kątnik-Prastowska, Iwona
2016-05-01
Multimorbidity is the co-occurrence of chronic diseases associated with low-grade chronic inflammation of connective tissue. Frequency of occurrence and relative amounts of fibronectin (FN) complexes with fibrin (FN-fibrin) and FN monomer were analyzed in 130 plasma samples of 18 to 94-year-old multimorbid patients in relation to concentrations of FN and extra domain A (EDA)-FN, and C-reactive protein (CRP) as well as to age, number of coexisting chronic diseases and presence of specified diseases. Immunoblotting revealed, besides FN dimer, the presence of FN monomer, and 750-, 1000-, and 1300-kDa FN-fibrin complexes in the multimorbid plasmas. The FN-fibrin complexes appeared more frequently and in higher relative amounts, but FN monomer less frequently and in a lower relative amount in the groups of elderly multimorbid patients, with a higher number of coexisting diseases and with dominance of cardiovascular diseases and osteoarthrosis, and with CRP concentration of 3-5mg/l. In contrast, the normal plasma contained only the FN-fibrin complex of 750 kDa in a lower relative amount, but with an increasing amount with normal aging. Moreover, FN concentration increased and EDA-FN decreased with the number of co-existing diseases and aging of patients, although both concentration values were lower than in the age-matched normal groups. FN concentration was the lowest in the exacerbation of a chronic disease and EDA-FN in the stable chronic disease groups. The alterations in plasma FN molecular status were associated with micro-inflammation and micro-coagulation, as well as multimorbidity of subjects and their physiological aging. Copyright © 2016 Elsevier Inc. All rights reserved.
Vlasov Simulations of Multi-ion Plasma Turbulence in the Solar Wind
NASA Astrophysics Data System (ADS)
Perrone, D.; Valentini, F.; Servidio, S.; Dalena, S.; Veltri, P.
2013-01-01
Hybrid Vlasov-Maxwell simulations are employed to investigate the role of kinetic effects in a two-dimensional turbulent multi-ion plasma, composed of protons, alpha particles, and fluid electrons. In the typical conditions of the solar-wind environment, and in situations of decaying turbulence, the numerical results show that the velocity distribution functions of both ion species depart from the typical configuration of thermal equilibrium. These non-Maxwellian features are quantified through the statistical analysis of the temperature anisotropy, for both protons and alpha particles, in the reference frame given by the local magnetic field. Anisotropy is found to be higher in regions of high magnetic stress. Both ion species manifest a preferentially perpendicular heating, although the anisotropy is more pronounced for the alpha particles, according to solar wind observations. The anisotropy of the alpha particle, moreover, is correlated to the proton anisotropy and also depends on the local differential flow between the two species. Evident distortions of the particle distribution functions are present, with the production of bumps along the direction of the local magnetic field. The physical phenomenology recovered in these numerical simulations reproduces very common measurements in the turbulent solar wind, suggesting that the multi-ion Vlasov model constitutes a valid approach to understanding the nature of complex kinetic effects in astrophysical plasmas.
NASA Technical Reports Server (NTRS)
Nishikawa, K.; Hardee, P. E.; Richardson, G. A.; Preece, R. D.; Sol, H.; Fishman, G. J.
2003-01-01
Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. While some Fermi acceleration may occur at the jet front, the majority of electron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron s transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.
Forum: The challenge of global change
NASA Astrophysics Data System (ADS)
Roederer, Juan G.
1990-09-01
How can we sustain a public sense of the common danger of global change while remaining honest in view of the realities of scientific uncertainty? How can we nurture this sense of common danger without making statements based on half-baked ideas, statistically unreliable results, or oversimplified models? How can we strike a balance between the need to overstate a case to attract the attention of the media and the obligation to adhere strictly to the ethos of science?The task of achieving a scientific understanding of the inner workings of the terrestrial environment is one of the most difficult and ambitious endeavors of humankind. It is full of traps, temptations and deceptions for the participating scientists. We are dealing with a horrendously complex, strongly interactive, highly non-linear system. Lessons learned from disciplines such as plasma physics and solid state physics which have been dealing with complex non-linear systems for decades, are not very encouraging. The first thing one learns is that there are intrinsic, physical limits to the quantitative predictability of a complex system that have nothing to do with the particular techniques employed to model it.
Squeglia, Flavia; Berisio, Rita; Shibuya, Naoto; Kaku, Hanae
2017-11-24
Pattern recognition receptors on the plant cell surface mediate the recognition of microbe-associated molecular patterns, in a process which activates downstream immune signaling. These receptors are plasma membrane-localized kinases which need to be autophosphorylated to activate downstream responses. Perception of attacks from fungi occurs through recognition of chitin, a polymer of an N-acetylglucosamine which is a characteristic component of the cell walls of fungi. This process is regulated in Arabidopsis by chitin elicitor receptor kinase CERK1. A more complex process characterizes rice, in which regulation of chitin perception is operated by a complex composed of OsCERK1, a homolog of CERK1, and the chitin elicitor binding protein OsCEBiP. Recent literature has provided a mechanistic description of the complex regulation of activation of innate immunity in rice and an advance in the structural description of molecular players involved in this process. This review describes the current status of the understanding of molecular events involved in innate immunity activation in rice. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
SRC-2 orchestrates polygenic inputs for fine-tuning glucose homeostasis
Fleet, Tiffany; Zhang, Bin; Lin, Fumin; Zhu, Bokai; Dasgupta, Subhamoy; Stashi, Erin; Tackett, Bryan; Thevananther, Sundararajah; Rajapakshe, Kimal I.; Gonzales, Naomi; Dean, Adam; Mao, Jianqiang; Timchenko, Nikolai; Malovannaya, Anna; Qin, Jun; Coarfa, Cristian; DeMayo, Francesco; Dacso, Clifford C.; Foulds, Charles E.; O’Malley, Bert W.; York, Brian
2015-01-01
Despite extensive efforts to understand the monogenic contributions to perturbed glucose homeostasis, the complexity of genetic events that fractionally contribute to the spectrum of this pathology remain poorly understood. Proper maintenance of glucose homeostasis is the central feature of a constellation of comorbidities that define the metabolic syndrome. The ability of the liver to balance carbohydrate uptake and release during the feeding-to-fasting transition is essential to the regulation of peripheral glucose availability. The liver coordinates the expression of gene programs that control glucose absorption, storage, and secretion. Herein, we demonstrate that Steroid Receptor Coactivator 2 (SRC-2) orchestrates a hierarchy of nutritionally responsive transcriptional complexes to precisely modulate plasma glucose availability. Using DNA pull-down technology coupled with mass spectrometry, we have identified SRC-2 as an indispensable integrator of transcriptional complexes that control the rate-limiting steps of hepatic glucose release and accretion. Collectively, these findings position SRC-2 as a major regulator of polygenic inputs to metabolic gene regulation and perhaps identify a previously unappreciated model that helps to explain the clinical spectrum of glucose dysregulation. PMID:26487680
Lunar Electric Fields: Observations and Implications
NASA Astrophysics Data System (ADS)
Halekas, J. S.; Delory, G. T.; Stubbs, T. J.; Farrell, W. M.; Vondrak, R. R.
2006-12-01
Alhough the Moon is typically thought of as having a relatively dormant environment, it is in fact very electrically active. The lunar surface, not protected by any substantial atmosphere, is directly exposed to solar UV and X-rays as well as solar wind plasma and energetic particles. This creates a complex electrodynamic environment, with the surface typically charging positive in sunlight and negative in shadow, and surface potentials varying over orders of magnitude in response to changing solar illumination and plasma conditions. Observations from the Apollo era and theoretical considerations strongly suggest that surface charging also drives dust electrification and horizontal and vertical dust transport. We present a survey of the lunar electric field environment, utilizing both newly interpreted Lunar Prospector (LP) orbital observations and older Apollo surface observations, and comparing to theoretical predictions. We focus in particular on time periods when the most significant surface charging was observed by LP - namely plasmasheet crossings (when the Moon is in the Earth's magnetosphere) and space weather events. During these time periods, kV-scale potentials are observed, and enhanced surface electric fields can be expected to drive significant horizontal and vertical dust transport. Both dust and electric fields can have serious effects on habitability and operation of machinery, so understanding the coupled dust-plasma-electric field system around the Moon is critically important for planning exploration efforts, in situ resource utilization, and scientific observations on the lunar surface. Furthermore, from a pure science perspective, this represents an excellent opportunity to study fundamental surface-plasma interactions.
High Power LaB6 Plasma Source Performance for the Lockheed Martin Compact Fusion Reactor Experiment
NASA Astrophysics Data System (ADS)
Heinrich, Jonathon
2016-10-01
Lockheed Martin's Compact Fusion Reactor (CFR) concept is a linear encapsulated ring cusp. Due to the complex field geometry, plasma injection into the device requires careful consideration. A high power thermionic plasma source (>0.25MW; >10A/cm2) has been developed with consideration to phase space for optimal coupling. We present the performance of the plasma source, comparison with alternative plasma sources, and plasma coupling with the CFR field configuration. ©2016 Lockheed Martin Corporation. All Rights Reserved.
Montgomery, David S.
2016-04-14
Our understanding of laser-plasma instability (LPI) physics has improved dramatically over the past two decades through advancements in experimental techniques, diagnostics, and theoretical and modeling approaches. We have progressed from single-beam experiments—ns pulses with ~kJ energy incident on hundred-micron-scale target plasmas with ~keV electron temperatures—to ones involving nearly 2 MJ energy in 192 beams onto multi-mm-scale plasmas with temperatures ~4 keV. At the same time, we have also been able to use smaller-scale laser facilities to substantially improve our understanding of LPI physics and evaluate novel approaches to their control. These efforts have led to a change in paradigm formore » LPI research, ushering in an era of engineering LPI to accomplish specific objectives, from tuning capsule implosion symmetry to fixing nonlinear saturation of LPI processes at acceptable levels to enable the exploration of high energy density physics in novel plasma regimes. A tutorial is provided that reviews the progress in the field from the vantage of the foundational LPI experimental results. The pedagogical framework of the simplest models of LPI will be employed, but attention will also be paid to settings where more sophisticated models are needed to understand the observations. Prospects for the application of our improved understanding for inertial fusion (both indirect- and direct-drive) and other applications will also be discussed.« less
Hall, Colin J; Ponnusamy, Thirunavukkarasu; Murphy, Peter J; Lindberg, Mats; Antzutkin, Oleg N; Griesser, Hans J
2014-06-11
Plasma-polymerized organosilicone coatings can be used to impart abrasion resistance and barrier properties to plastic substrates such as polycarbonate. Coating rates suitable for industrial-scale deposition, up to 100 nm/s, can be achieved through the use of microwave plasma-enhanced chemical vapor deposition (PECVD), with optimal process vapors such as tetramethyldisiloxane (TMDSO) and oxygen. However, it has been found that under certain deposition conditions, such coatings are subject to post-plasma changes; crazing or cracking can occur anytime from days to months after deposition. To understand the cause of the crazing and its dependence on processing plasma parameters, the effects of post-plasma reactions on the chemical bonding structure of coatings deposited with varying TMDSO-to-O2 ratios was studied with (29)Si and (13)C solid-state magic angle spinning nuclear magnetic resonance (MAS NMR) using both single-pulse and cross-polarization techniques. The coatings showed complex chemical compositions significantly altered from the parent monomer. (29)Si MAS NMR spectra revealed four main groups of resonance lines, which correspond to four siloxane moieties (i.e., mono (M), di (D), tri (T), and quaternary (Q)) and how they are bound to oxygen. Quantitative measurements showed that the ratio of TMDSO to oxygen could shift the chemical structure of the coating from 39% to 55% in Q-type bonds and from 28% to 16% for D-type bonds. Post-plasma reactions were found to produce changes in relative intensities of (29)Si resonance lines. The NMR data were complemented by Fourier transform infrared (FTIR) spectroscopy. Together, these techniques have shown that the bonding environment of Si is drastically altered by varying the TMDSO-to-O2 ratio during PECVD, and that post-plasma reactions increase the cross-link density of the silicon-oxygen network. It appears that Si-H and Si-OH chemical groups are the most susceptible to post-plasma reactions. Coatings produced at a low TMDSO-to-oxygen ratio had little to no singly substituted moieties, displayed a highly cross-linked structure, and showed less post-plasma reactions. However, these chemically more stable coatings are less compatible mechanically with plastic substrates, because of their high stiffness.
Complex Adaptive System Models and the Genetic Analysis of Plasma HDL-Cholesterol Concentration
Rea, Thomas J.; Brown, Christine M.; Sing, Charles F.
2006-01-01
Despite remarkable advances in diagnosis and therapy, ischemic heart disease (IHD) remains a leading cause of morbidity and mortality in industrialized countries. Recent efforts to estimate the influence of genetic variation on IHD risk have focused on predicting individual plasma high-density lipoprotein cholesterol (HDL-C) concentration. Plasma HDL-C concentration (mg/dl), a quantitative risk factor for IHD, has a complex multifactorial etiology that involves the actions of many genes. Single gene variations may be necessary but are not individually sufficient to predict a statistically significant increase in risk of disease. The complexity of phenotype-genotype-environment relationships involved in determining plasma HDL-C concentration has challenged commonly held assumptions about genetic causation and has led to the question of which combination of variations, in which subset of genes, in which environmental strata of a particular population significantly improves our ability to predict high or low risk phenotypes. We document the limitations of inferences from genetic research based on commonly accepted biological models, consider how evidence for real-world dynamical interactions between HDL-C determinants challenges the simplifying assumptions implicit in traditional linear statistical genetic models, and conclude by considering research options for evaluating the utility of genetic information in predicting traits with complex etiologies. PMID:17146134
Zeller, Michelle P; Al-Habsi, Khalid S; Golder, Mia; Walsh, Geraldine M; Sheffield, William P
2015-07-01
Plasma obtained via whole blood donation processing or via apheresis technology can either be transfused directly to patients or pooled and fractionated into plasma protein products that are concentrates of 1 or more purified plasma protein. The evidence base supporting clinical efficacy in most of the indications for which plasma is transfused is weak, whereas high-quality evidence supports the efficacy of plasma protein products in at least some of the clinical settings in which they are used. Transfusable plasma utilization remains composed in part of applications that fall outside of clinical practice guidelines. Plasma contains all of the soluble coagulation factors and is frequently transfused in efforts to restore or reinforce patient hemostasis. The biochemical complexities of coagulation have in recent years been rationalized in newer cell-based models that supplement the cascade hypothesis. Efforts to normalize widely used clinical hemostasis screening test values by plasma transfusion are thought to be misplaced, but superior rapid tests have been slow to emerge. The advent of non-vitamin K-dependent oral anticoagulants has brought new challenges to clinical laboratories in plasma testing and to clinicians needing to reverse non-vitamin K-dependent oral anticoagulants urgently. Current plasma-related controversies include prophylactic plasma transfusion before invasive procedures, plasma vs prothrombin complex concentrates for urgent warfarin reversal, and the utility of increased ratios of plasma to red blood cell units transfused in massive transfusion protocols. The first recombinant plasma protein products to reach the clinic were recombinant hemophilia treatment products, and these donor-free equivalents to factors VIII and IX are now being supplemented with novel products whose circulatory half-lives have been increased by chemical modification or genetic fusion. Achieving optimal plasma utilization is an ongoing challenge in the interconnected worlds of transfusable plasma, plasma protein products, and recombinant and engineered replacements. Copyright © 2015 Elsevier Inc. All rights reserved.
A Model for the Estimation of Hepatic Insulin Extraction After a Meal.
Piccinini, Francesca; Dalla Man, Chiara; Vella, Adrian; Cobelli, Claudio
2016-09-01
Quantitative assessment of hepatic insulin extraction (HE) after an oral glucose challenge, e.g., a meal, is important to understand the regulation of carbohydrate metabolism. The aim of the current study is to develop a model of system for estimating HE. Nine different models, of increasing complexity, were tested on data of 204 normal subjects, who underwent a mixed meal tolerance test, with frequent measurement of plasma glucose, insulin, and C-peptide concentrations. All these models included a two-compartment model of C-peptide kinetics, an insulin secretion model, a compartmental model of insulin kinetics (with number of compartments ranging from one to three), and different HE descriptions, depending on plasma glucose and insulin. Model performances were compared on the basis of data fit, precision of parameter estimates, and parsimony criteria. The three-compartment model of insulin kinetics, coupled with HE depending on glucose concentration, showed the best fit and a good ability to precisely estimate the parameters. In addition, the model calculates basal and total indices of HE ( HE b and HE tot , respectively), and provides an index of HE sensitivity to glucose ( S G HE ). A new physiologically based HE model has been developed, which allows an improved quantitative description of glucose regulation. The use of the new model provides an in-depth description of insulin kinetics, thus enabling a better understanding of a given subject's metabolic state.
Doppler effects on 3-D non-LTE radiation transport and emission spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giuliani, J. L.; Davis, J.; DasGupta, A.
2010-10-01
Spatially and temporally resolved X-ray emission lines contain information about temperatures, densities, velocities, and the gradients in a plasma. Extracting this information from optically thick lines emitted from complex ions in dynamic, three-dimensional, non-LTE plasmas requires self-consistent accounting for both non-LTE atomic physics and non-local radiative transfer. We present a brief description of a hybrid-structure spectroscopic atomic model coupled to an iterative tabular on-the-spot treatment of radiative transfer that can be applied to plasmas of arbitrary material composition, conditions, and geometries. The effects of Doppler line shifts on the self-consistent radiative transfer within the plasma and the emergent emission andmore » absorption spectra are included in the model. Sample calculations for a two-level atom in a uniform cylindrical plasma are given, showing reasonable agreement with more sophisticated transport models and illustrating the potential complexity - or richness - of radially resolved emission lines from an imploding cylindrical plasma. Also presented is a comparison of modeled L- and K-shell spectra to temporally and radially resolved emission data from a Cu:Ni plasma. Finally, some shortcomings of the model and possible paths for improvement are discussed.« less
Emerging role of chemoprotective agents in the dynamic shaping of plasma membrane organization.
Fuentes, Natividad R; Salinas, Michael L; Kim, Eunjoo; Chapkin, Robert S
2017-09-01
In the context of an organism, epithelial cells by nature are designed to be the defining barrier between self and the outside world. This is especially true for the epithelial cells that form the lining of the digestive tract, which absorb nutrients and serve as a barrier against harmful substances. These cells are constantly bathed by a complex mixture of endogenous (bile acids, mucus, microbial metabolites) and exogenous (food, nutrients, drugs) bioactive compounds. From a cell biology perspective, this type of exposure would directly impact the plasma membrane, which consists of a myriad of complex lipids and proteins. The plasma membrane not only functions as a barrier but also as the medium in which cellular signaling complexes form and function. This property is mediated by the organization of the plasma membrane, which is exquisitely temporally (nanoseconds to minutes) and spatially (nanometers to micrometers) regulated. Since numerous bioactive compounds found in the intestinal lumen can directly interact with lipid membranes, we hypothesize that the dynamic reshaping of plasma membrane organization underlies the chemoprotective effect of select membrane targeted dietary bioactives (MTDBs). This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.
Plasma Metamaterials for Arbitrary Complex-Amplitude Wave Filters
2013-09-10
plasmas as reflectors , 4 absorbers, 4,5 and antennae 6 of electromagnetic waves. In contrast with the other materials in these devices, parameters...are controlled using launching antenna and high-power wave sources. One of the fundamental facts we have learned in microwave plasmas is that...metamaterials.” 29 In this report, we demonstrate the functional composites of plasmas and metamaterials, and the focusing point is verification of
2008-01-01
atmosphere like ours (mix of nitrogen and oxygen) implies a more complex plasma chemistry . For example, one of these difficulties is the interpretation of...due to LSDW have also been observed. KEYWORDS Polymer ablation, Shadowgraphy, Time-resolved laser induced breakdown spectroscopy, Plasma ... chemistry , Organic materials analysis, Expansion of laser-induced plasma 1 INTRODUCTION Laser-Induced Breakdown Spectroscopy (LIBS) traditionally
Dusty Plasma Experimental (DPEx) device for complex plasma experiments with flow
NASA Astrophysics Data System (ADS)
Jaiswal, S.; Bandyopadhyay, P.; Sen, A.
2015-11-01
A versatile table-top dusty plasma experimental device to study flow induced excitations of linear and nonlinear waves/structures in a complex plasma is presented. In this Π-shaped apparatus, a DC glow discharge plasma is produced between a disc shaped anode and a grounded long cathode tray by applying a high voltage DC in the background of a neutral gas (argon) and subsequently a dusty plasma is created by introducing micron sized dust particles that get charged and levitated in the sheath region. A flow of the dust particles is induced in a controlled manner by adjusting the pumping speed and the gas flow rate into the device. A full characterisation of the plasma, using Langmuir and emissive probe data, and that of the dusty plasma using particle tracking data with the help of an idl based (super) Particle Identification and Tracking (sPIT) code is reported. Experimental results on the variation of the dust flow velocity as a function of the neutral pressure and the gas flow rate are given. The neutral drag force acting on the particles and the Epstein coefficient are estimated from the initial acceleration of the particles. The potential experimental capabilities of the device for conducting fundamental studies of flow induced instabilities are discussed.
The Complex Exogenous RNA Spectra in Human Plasma: An Interface with Human Gut Biota?
Wang, Kai; Li, Hong; Yuan, Yue; Etheridge, Alton; Zhou, Yong; Huang, David; Wilmes, Paul; Galas, David
2012-01-01
Human plasma has long been a rich source for biomarker discovery. It has recently become clear that plasma RNA molecules, such as microRNA, in addition to proteins are common and can serve as biomarkers. Surveying human plasma for microRNA biomarkers using next generation sequencing technology, we observed that a significant fraction of the circulating RNA appear to originate from exogenous species. With careful analysis of sequence error statistics and other controls, we demonstrated that there is a wide range of RNA from many different organisms, including bacteria and fungi as well as from other species. These RNAs may be associated with protein, lipid or other molecules protecting them from RNase activity in plasma. Some of these RNAs are detected in intracellular complexes and may be able to influence cellular activities under in vitro conditions. These findings raise the possibility that plasma RNAs of exogenous origin may serve as signaling molecules mediating for example the human-microbiome interaction and may affect and/or indicate the state of human health. PMID:23251414
Cellulose Synthesis and Its Regulation
Li, Shundai; Bashline, Logan; Lei, Lei; Gu, Ying
2014-01-01
Cellulose, the most abundant biopolymer synthesized on land, is made of linear chains of ß (1–4) linked D-glucose. As a major structural component of the cell wall, cellulose is important not only for industrial use but also for plant growth and development. Cellulose microfibrils are tethered by other cell wall polysaccharides such as hemicellulose, pectin, and lignin. In higher plants, cellulose is synthesized by plasma membrane-localized rosette cellulose synthase complexes. Despite the recent advances using a combination of molecular genetics, live cell imaging, and spectroscopic tools, many aspects of the cellulose synthesis remain a mystery. In this chapter, we highlight recent research progress towards understanding the mechanism of cellulose synthesis in Arabidopsis. PMID:24465174
Wall-loss distribution of charge breeding ions in an electron cyclotron resonance ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, S. C.; Oyaizu, M.; Imai, N.
2012-02-15
We investigated the ion-loss distribution on the sidewall of an electron cyclotron resonance (ECR) plasma chamber using the 18-GHz ECR charge breeder at the Tokai Radioactive Ion Accelerator Complex (TRIAC). Similarities and differences between the ion-loss distributions (longitudinal and azimuthal) of different ion species (i.e., radioactive {sup 111}In{sup 1+} and {sup 140}Xe{sup 1+} ions that are typical volatile and nonvolatile elements) was qualitatively discussed to understand the element dependence of the charge breeding efficiency. Especially, the similarities represent universal ion loss characteristics in an ECR charge breeder, which are different from the loss patterns of electrons on the ECRIS wall.
Overview of thermal barrier coatings in diesel engines
NASA Technical Reports Server (NTRS)
Yonushonis, T. M.
1995-01-01
An understanding of delamination mechanisms in thermal barrier coatings has been developed for diesel applications through nondestructive evaluation, structural analysis modeling and engine evaluation of various thermal barrier coatings. This knowledge has resulted in improved thermal barrier coatings which survive abusive cyclic fatigue tests in high output diesel engines. Significant efforts are still required to improve the plasma spray processing capability and the economics for complex geometry diesel engine components. Data obtained from advanced diesel engines on the effect of thermal barrier coatings on engine fuel economy and emission has not been encouraging. Although the underlying metal component temperatures have been reduced through the use of thermal barrier coating, engine efficiency and emission trends have not been promising.
Pitidhammabhorn, Dhanesh; Kantachuvesiri, Surasak; Totemchokchyakarn, Kitti; Kitiyanant, Yindee; Ubol, Sukathida
2006-09-01
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder that affects various organs and systems. Increased apoptosis, together with defects in the uptake of apoptotic bodies, are thought to have a pathogenic role in SLE. By detection of chromatin condensation, 30% of apoptosis was detected in peripheral blood mononuclear cells (PBMC) from Thai patients with active SLE. Therefore, understanding of the molecular processes in PBMC apoptosis may allow us to gain insight into pathophysiology of SLE. Thus, genes involved in the apoptosis of PBMC from these patients were investigated ex vivo by cDNA array analysis. Seventeen apoptosis-related genes were stimulated in active SLE, more than twofold higher than in inactive SLE. These genes are classified into six groups, namely death receptors, death ligands, caspases, bcl-family, and neutral proteases and genes involved in endoplasmic reticulum stress-mediated apoptosis, such as caspase-4 and GADD153. Among those stimulated genes, tumor necrosis factor (TNF) and the TNF-receptor family were drastically up-regulated 60- and 19-fold higher than in healthy controls, respectively. Moreover, the degree of apoptosis correlated with the level of TNF-alpha in plasma, suggesting that the TNF family plays a role in the induction of apoptosis in SLE. To verify this hypothesis, PBMC from healthy individuals were treated with plasma from active SLE patients in the presence or absence of etanercept, a TNF inhibitor. In the presence of etanercept, active SLE plasma reduced the level of apoptosis to 26.43%. In conclusion, massive apoptotic death of PBMC occurred during the active stage of SLE. The molecular pathway of SLE-PBMC apoptosis was mediated at least via TNF/TNFR signaling pathway, which was confirmed by functional test of TNF-alpha in SLE patients' plasma.
NASA Astrophysics Data System (ADS)
Graves, David B.
2012-07-01
Reactive oxygen species (ROS) and the closely related reactive nitrogen species (RNS) are often generated in applications of atmospheric pressure plasmas intended for biomedical purposes. These species are also central players in what is sometimes referred to as ‘redox’ or oxidation-reduction biology. Oxidation-reduction biochemistry is fundamental to all of aerobic biology. ROS and RNS are perhaps best known as disease-associated agents, implicated in diabetes, cancer, heart and lung disease, autoimmune disease and a host of other maladies including ageing and various infectious diseases. These species are also known to play active roles in the immune systems of both animals and plants and are key signalling molecules, among many other important roles. Indeed, the latest research has shown that ROS/RNS play a much more complex and nuanced role in health and ageing than previously thought. Some of the most potentially profound therapeutic roles played by ROS and RNS in various medical interventions have emerged only in the last several years. Recent research suggests that ROS/RNS are significant and perhaps even central actors in the actions of antimicrobial and anti-parasite drugs, cancer therapies, wound healing therapies and therapies involving the cardiovascular system. Understanding the ways ROS/RNS act in established therapies may help guide future efforts in exploiting novel plasma medical therapies. The importance of ROS and RNS to plant biology has been relatively little appreciated in the plasma biomedicine community, but these species are just as important in plants. It appears that there are opportunities for useful applications of plasmas in this area as well.
NASA Astrophysics Data System (ADS)
Magalhaes, F. P.; Lopes, R. M. C.; Rathbun, J. A.; Gonzalez, W. D.; Morgenthaler, J. P.; Echer, E.; Echer, M. P. D. S.
2015-12-01
Io, the innermost of the Jupiter's four Galilean moons, is a remarkable object in the Solar System, due to its intense and energetic volcanic activity. The volcanic sulfur and oxygen in Io's tenuous atmosphere escapes forming an extended neutral cloud around Io and Jupiter. Subsequently, by ionization and pickup ions, a ring of charged particles encircling Jupiter is created, forming the Io plasma torus. Considering this scenario, it is reasonable to expect that the Io plasma torus should be affected by changes in Io's volcanism. Interactions between Io and the Jovian environment is unique and yet not very well understood. Here we present two sets of observations. One from the Galileo Near-Infrared Imaging Spectrograph (NIMS) instrument, which obtained spectral image cubes between 0.7 and 5.2 microns. The other dataset is from ground-based observations of the [SII] 6731 Å emission lines from the Io plasma torus, obtained at McMath-Pierce Solar Telescope, at Kitt Peak. Our dataset from the [SII] 6731 Å emission lines cover more years than the one from the NIMS data. The years presented in this work for a comparative study are from 1998 through 2001. Using the NIMS instrument we were able to identify which volcanoes were active and measure their level of activity. From the [SII] 6731 Å emission lines we were able to trace the densest part of the torus and also the brightness of both ansa. By comparing the results from the Galileo instrument and the ground-based observations, we are exploring how the Io plasma torus responds to large eruptions from Io. We aim with this study to help improve our understanding of this complex coupled system, Jupiter-Io.
Quantification of Chemical Erosion in the DIII-D Divertor
NASA Astrophysics Data System (ADS)
McLean, Adam
2009-11-01
Chemical erosion (CE) yield at the graphite divertor target in DIII-D was measured to be substantially lower in cold near-detached plasma conditions compared to well-attached ones, with major implications for ITER. Current estimates of tritium retention by co-deposition with hydrocarbons (HCs) in ITER place potentially severe restrictions on operation. However, calculations done to date have been based on excessively conservative assumptions, due to limited understanding of cold divertor plasmas (1-5eV) which bridge energy thresholds for complex atomic and molecular processes not present in attached conditions. Hydrocarbon injection through a unique porous graphite plate which realistically simulates secondary reactions of HCs with a graphite surface has been used to measure CE in-situ. For the first time in a divertor, measurements were made at extrinsic CH4 injection rates comparable to the expected intrinsic CE rate of C, with the resulting spectroscopic emissions separated from those of the intrinsic sources. Under cold plasma conditions the contribution of CE-produced C relative to total C sources in the divertor declined dramatically from ˜50% to <15%. Photon efficiencies for products from the breakup of injected CH4 were greater than previous measurements at higher puff rates, indicating the importance of minimizing perturbation to the local plasma. At 350K, the measured CE yield near the outer strike point was ˜2.6% in attachment dropping to only ˜0.5% in cold plasma; results are consistent with some theoretical predications and lab studies. Under full detachment, near total extinction of the CD band occurred, consistent with suppression of net C erosion. These findings have potentially major impact on projected target lifetime and tritium retention in future reactors, and for the PFC choice in ITER.
NASA Astrophysics Data System (ADS)
Lebouvier, A.; Iwarere, S. A.; Ramjugernath, D.; Fulcheri, L.
2013-04-01
This paper deals with a three-dimensional (3D) time-dependent magnetohydrodynamic (MHD) model under peculiar conditions of very high pressures (from 2 MPa up to 10 MPa) and low currents (<1 A). Studies on plasma arc working under these unusual conditions remain almost unexplored because of the technical and technological challenges to develop a reactor able to sustain a plasma at very high pressures. The combined effect of plasma reactivity and high pressure would probably open the way towards new promising applications in various fields: chemistry, lightning, materials or nanomaterial synthesis. A MHD model helps one to understand the complex and coupled phenomena surrounding the plasma which cannot be understood by simply experimentation. The model also provides data which are difficult to directly determine experimentally. The model simulates an experimental-based batch reactor working with helium. The particular reactor in question was used to investigate the Fischer-Tropsch application, fluorocarbon production and CO2 retro-conversion. However, as a first approach in terms of MHD, the model considers the case for helium as a non-reactive working gas. After a detailed presentation of the model, a reference case has been fully analysed (P = 8 MPa, I = 0.35 A) in terms of physical properties. The results show a bending of the arc and displacement of the anodic arc root towards the top of the reactor, due to the combined effects of convection, gravity and electromagnetic forces. A parametric study on the pressure (2-10 MPa) and current (0.25-0.4 A) was then investigated. The operating pressure does not show an influence on the contraction of the arc but higher pressures involve a higher natural convection in the reactor, driven by the density gradients between the cold and hot gas.
Extreme ultraviolet and Soft X-ray diagnostic upgrade on the HBT-EP tokamak: Progress and Results
NASA Astrophysics Data System (ADS)
Desanto, S.; Levesque, J. P.; Battey, A.; Brooks, J. W.; Mauel, M. E.; Navratil, G. A.; Hansen, C. J.
2017-10-01
In order to understand internal MHD mode structure in a tokamak plasma, it is helpful to understand temperature and density fluctuations within that plasma. In the HBT-EP tokamak, the plasma emits bremsstrahlung radiation in the extreme ultraviolet (EUV) and soft x-ray (SXR) regimes, and the emitted power is primarily related to electron density and temperature. This radiation is detected by photodiode arrays located at several different angular positions near the plasma's edge, each array making several views through a poloidal slice of plasma. From these measurements a 2-d emissivity profile of that slice can be reconstructed with tomographic algorithms. This profile cannot directly tell us whether the emissivity is due to electron density, temperature, line emission, or charge recombination; however, when combined with information from other diagnostics, it can provide strong evidence of the type of internal mode or modes depending on the temporal-spatial context. We present ongoing progress and results on the installation of a new system that will eventually consist of four arrays of 16 views each and a separate two-color, 16-chord tangential system, which will provide an improved understanding of the internal structure of HBT-EP plasmas. Supported by U.S. DOE Grant DE-FG02-86ER5322.
The Spectral Web of stationary plasma equilibria. I. General theory
NASA Astrophysics Data System (ADS)
Goedbloed, J. P.
2018-03-01
A new approach to computing the complex spectrum of magnetohydrodynamic waves and instabilities of moving plasmas is presented. It is based on the concept of the Spectral Web, exploiting the self-adjointness of the generalized Frieman-Rotenberg force operator, G, and the Doppler-Coriolis gradient operator parallel to the velocity, U. The problem is solved with an open boundary, where the complementary energy Wcom represents the amount of energy to be delivered to or extracted from the system to maintain a harmonic time-dependence. The eigenvalues are connected by a system of curves in the complex ω-plane, the solution path and the conjugate path (where Wcom is real or imaginary) which together constitute the Spectral Web, having a characteristic geometry that has to be clarified yet, but that has a deep physical significance. It is obtained by straightforward contour plotting of the two paths. The complex eigenvalues, within a specified rectangle of the complex ω-plane, are found by fast, reliable, and accurate iterations. Real and complex oscillation theorems, replacing the familiar tool of counting nodes of eigenfunctions, provide an associated mechanism of mode tracking along the two paths. The Spectral Web method is generalized to toroidal systems and extended to include a resistive wall by accounting for the dissipation in such a wall. It is applied in an accompanying Paper II [J. P. Goedbloed, Phys. Plasmas 25, 032110 (2018).] to a multitude of the basic fundamental instabilities operating in cylindrical plasmas.
Merging for Particle-Mesh Complex Particle Kinetic Modeling of the Multiple Plasma Beams
NASA Technical Reports Server (NTRS)
Lipatov, Alexander S.
2011-01-01
We suggest a merging procedure for the Particle-Mesh Complex Particle Kinetic (PMCPK) method in case of inter-penetrating flow (multiple plasma beams). We examine the standard particle-in-cell (PIC) and the PMCPK methods in the case of particle acceleration by shock surfing for a wide range of the control numerical parameters. The plasma dynamics is described by a hybrid (particle-ion-fluid-electron) model. Note that one may need a mesh if modeling with the computation of an electromagnetic field. Our calculations use specified, time-independent electromagnetic fields for the shock, rather than self-consistently generated fields. While a particle-mesh method is a well-verified approach, the CPK method seems to be a good approach for multiscale modeling that includes multiple regions with various particle/fluid plasma behavior. However, the CPK method is still in need of a verification for studying the basic plasma phenomena: particle heating and acceleration by collisionless shocks, magnetic field reconnection, beam dynamics, etc.
Chlanda, Adrian; Kijeńska, Ewa; Rinoldi, Chiara; Tarnowski, Michał; Wierzchoń, Tadeusz; Swieszkowski, Wojciech
2018-04-01
Electrospun nanofibrous scaffolds are willingly used in tissue engineering applications due to their tunable mechanical, chemical and physical properties. Additionally, their complex openworked architecture is similar to the native extracellular matrix of living tissue. After implantation such scaffolds should provide sufficient mechanical support for cells. Moreover, it is of crucial importance to ensure sterility and hydrophilicity of the scaffold. For this purpose, a low temperature surface plasma treatment can be applied. In this paper, we report physico-mechanical evaluation of stiffness and adhesive properties of electrospun mats after their exposition to low temperature plasma. Complex morphological and mechanical studies performed with an atomic force microscope were followed by scanning electron microscope imaging and a wettability assessment. The results suggest that plasma treatment can be a useful method for the modification of the surface of polymeric scaffolds in a desirable manner. Plasma treatment improves wettability of the polymeric mats without changing their morphology. Copyright © 2018 Elsevier Ltd. All rights reserved.
The drag force on a subsonic projectile in a fluid complex plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivlev, A. V.; Zhukhovitskii, D. I.
2012-09-15
The incompressible Navier-Stokes equation is employed to describe a subsonic particle flow induced in complex plasmas by a moving projectile. Drag forces acting on the projectile in different flow regimes are calculated. It is shown that, along with the regular neutral gas drag, there is an additional force exerted on the projectile due to dissipation in the surrounding particle fluid. This additional force provides significant contribution to the total drag.
Research Activities at Plasma Research Laboratory at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Sharma, S. P.; Rao, M. V. V. S.; Meyyappan, Meyya
2000-01-01
In order to meet NASA's requirements for the rapid development and validation of future generation electronic devices as well as associated materials and processes, enabling technologies are being developed at NASA-Ames Research Center using a multi-discipline approach. The first step is to understand the basic physics of the chemical reactions in the area of plasma reactors and processes. Low pressure glow discharges are indispensable in the fabrication of microelectronic circuits. These plasmas are used to deposit materials and also etch fine features in device fabrication. However, many plasma-based processes suffer from stability and reliability problems leading to a compromise in performance and a potentially increased cost for the semiconductor manufacturing industry. Although a great deal of laboratory-scale research has been performed on many of these processing plasmas, little is known about the gas-phase and surface chemical reactions that are critical in many etch and deposition processes, and how these reactions are influenced by the variation in operating conditions. Such a lack of understanding has hindered the development of process models that can aid in the scaling and improvement of plasma etch and deposition systems. Our present research involves the study of such plasmas. An inductively-coupled plasma (ICP) source in place of the standard upper electrode assembly of the Gaseous Electronics Conference (GEC) radio-frequency (RF) Reference Cell is used to investigate the discharge characteristics. This ICP source generates plasmas with higher electron densities and lower operating pressures than obtainable with the original parallel-plate version of the GEC Cell. This expanded operating regime is more relevant to new generations of industrial plasma systems being used by the microelectronics industry. The research goal is to develop an understanding of the physical phenomena involved in plasma processing and to measure much needed fundamental parameters, such as gas phase and surface reaction rates, species concentration, temperature, ion energy distribution, and electron number density.
Kintzer, Alexander F.; Sterling, Harry J.; Tang, Iok I.; Abdul-Gader, Ali; Miles, Andrew J.; Wallace, B. A.; Williams, Evan R.; Krantz, Bryan A.
2010-01-01
Anthrax is caused by strains of Bacillus anthracis that produce two key virulence factors, anthrax toxin (Atx) and a poly-γ-D-glutamic acid capsule. Atx is comprised of three-proteins: protective antigen (PA) and two enzymes, lethal factor (LF) and edema factor (EF). To disrupt cell function, these components must assemble into holotoxin complexes, which contain either a ring-shaped homooctameric or homoheptameric PA oligomer bound to multiple copies of either LF and/or EF, producing lethal toxin (LT), edema toxin, or mixtures thereof. Once a host cell endocytoses these complexes, PA converts into a membrane-inserted channel that translocates LF and EF into the cytosol. LT may assemble on host cell surfaces or extracellularly in plasma. We show that under physiological conditions in bovine plasma that LT complexes containing heptameric PA aggregate and inactivate more readily than LT complexes containing octameric PA. LT complexes containing octameric PA possess enhanced stability, channel forming activity, and macrophage cytotoxicity relative to those containing heptameric PA. Under physiological conditions, multiple biophysical probes reveal that heptameric PA can prematurely adopt the channel conformation, but octameric PA complexes remain in their soluble prechannel configuration allowing them to resist aggregation and inactivation. We conclude that PA may form an octameric oligomeric state as a means to produce a more stable and active LT complex that may circulate freely in the blood. PMID:20433851
NASA Technical Reports Server (NTRS)
Gilchrist, Brian E.; Hoegy, W. R.; Krause, L. Habash; Minow, J. I.; Coffey, V. N.
2014-01-01
To study the complex interactions between the space environment surrounding the International Space Station (ISS) and the ISS space vehicle, we are exploring a specialized suite of plasma sensors, manipulated by the Space Station Remote Manipulator System (SSRMS) to probe the near-ISS mesosonic plasma ionosphere moving past the ISS. It is proposed that SASSI consists of the NASA Marshall Space Flight Center's (MSFC's) Thermal Ion Capped Hemispherical Spectrometer (TICHS), Thermal Electron Capped Hemispherical Spectrometer (TECHS), Charge Analyzer Responsive to Local Oscillations (CARLO), the Collimated PhotoElectron Gun (CPEG), and the University of Michigan Advanced Langmuir Probe (ALP). There are multiple expected applications for SASSI. Here, we will discuss the study of fundamental plasma physics questions associated with how an emitted plasma plume (such as from the ISS Plasma Contactor Unit (PCU)) responds and expands in a mesosonic magnetoplasma as well as emit and collect current. The ISS PCU Xe plasma plume drifts through the ionosphere and across the Earth's magnetic field, resulting in complex dynamics. This is of practical and theoretical interest pertaining to contamination concerns (e.g. energetic ion scattering) and the ability to collect and emit current between the spacecraft and the ambient plasma ionosphere. This impacts, for example, predictions of electrodynamic tether current performance using plasma contactors as well as decisions about placing high-energy electric propulsion thrusters on ISS. We will discuss the required measurements and connection to proposed instruments for this study.
NASA Astrophysics Data System (ADS)
Habash Krause, L.; Gilchrist, B. E.; Minow, J. I.; Gallagher, D. L.; Hoegy, W. R.; Coffey, V. N.; Willis, E. M.
2014-12-01
We present an overview of a mission concept named Situational Awareness Sensor Suite for the ISS (SASSI) with a special focus here on low-latitude ionospheric plasma turbulence measurements relevant to equatorial spread-F. SASSI is a suite of sensors that improves Space Situational Awareness for the ISS local space environment, as well as unique ionospheric measurements and support active plasma experiments on the ISS. As such, the mission concept has both operational and basic research objectives. We will describe two compelling measurement techniques enabled by SASSI's unique mission architecture. That is, SASSI provides new abilities to 1) measure space plasma potentials in low Earth orbit over ~100 m relative to a common potential, and 2) to investigate multi-scale ionospheric plasma turbulence morphology simultaneously of both ~ 1 cm and ~ 10 m scale lengths. The first measurement technique will aid in the distinction of vertical drifts within equatorial plasma bubbles from the vertical motions of the bulk of the layer due to zonal electric fields. The second will aid in understanding ionospheric plasma turbulence cascading in scale sizes that affect over the horizon radar. During many years of ISS operation, we have conducted effective (but not perfect) human and robotic extravehicular activities within the space plasma environment surrounding the ISS structure. However, because of the complexity of the interaction between the ISS and the space environment, there remain important sources of unpredictable environmental situations that affect operations. Examples of affected systems include EVA safety, solar panel efficiency, and scientific instrument integrity. Models and heuristically-derived best practices are well-suited for routine operations, but when it comes to unusual or anomalous events or situations, there is no substitute for real-time monitoring. SASSI is being designed to deploy and operate a suite of low-cost, medium/high-TRL plasma sensors on the ISS Express Logistics Carrier for long-term observations and the Space Station Remote Manipulator System for short-term focused campaigns. The presentation will include a description of the instrument complement and an overview of the operations concept.
Dissipative instability in a partially ionised prominence plasma slab
NASA Astrophysics Data System (ADS)
Ballai, I.; Pintér, B.; Oliver, R.; Alexandrou, M.
2017-07-01
Aims: We aim to investigate the nature of dissipative instability appearing in a prominence planar thread filled with partially ionised plasma in the incompressible limit. The importance of partial ionisation is investigated in terms of the ionisation factor and the wavelength of sausage and kink waves propagating in the slab. Methods: In order to highlight the role of partial ionisation, we have constructed models describing various situations we can meet in solar prominence fine structure. Matching the solutions for the transversal component of the velocity and total pressure at the interfaces between the prominence slab and surrounding plasmas, we derived a dispersion relation whose imaginary part describes the evolution of the instability. Results were obtained in the limit of weak dissipation. We have investigated the appearance of instabilities in prominence dark plumes using single and two-fluid approximations. Results: Using simple analytical methods, we show that dissipative instabilities appear for flow speeds that are less than the Kelvin-Helmholtz instability threshold. The onset of instability is determined by the equilibrium flow strength, the ionisation factor of the plasma, the wavelength of waves and the ion-neutral collisional rate. For a given wavelength and for ionisation degrees closer to a neutral gas, the propagating waves become unstable for a narrow band of flow speeds, meaning that neutrals have a stabilising effect. Our results show that the partially ionised plasma describing prominence dark plumes becomes unstable only in a two-fluid (charged particles-neutrals) model, that is for periods that are smaller than the ion-neutral collision time. Conclusions: The present study improves our understanding of the complexity of dynamical processes and stability of solar prominences and the role partial ionisation in destabilising the plasma. We showed the necessity of two-fluid approximation when discussing the nature of instabilities: waves in a single fluid approximation show a great deal of stability. Our results clearly show that the problem of partial ionisation introduces new aspects of plasma stability with consequences on the evolution of partially ionised plasmas and solar prominences, in particular.
NASA Astrophysics Data System (ADS)
Matsuda, S.; Kasahara, Y.; Kojima, H.; Kasaba, Y.; Yagitani, S.; Ozaki, M.; Imachi, T.; Ishisaka, K.; Kurita, S.; Ota, M.; Kumamoto, A.; Tsuchiya, F.; Yoshizumi, M.; Matsuoka, A.; Teramoto, M.; Shinohara, I.
2017-12-01
Exploration of energization and Radiation in Geospace (ERG) is a mission for understanding particle acceleration, loss mechanisms, and the dynamic evolution of space storms in the context of cross-energy and cross-regional coupling [Miyoshi et al., 2012]. The ERG (ARASE) satellite was launched on December 20, 2016, and successfully inserted into an orbit. The Plasma Wave Experiment (PWE) is one of the science instruments on board the ERG satellite to measure electric field and magnetic field in the inner magnetosphere. PWE consists of three sub-components, EFD (Electric Field Detector), OFA/WFC (Onboard Frequency Analyzer and Waveform Capture), and HFA (High Frequency Analyzer). Especially, OFA/WFC measures electric and magnetic field spectrum and waveform from a few Hz to 20 kHz. OFA/WFC processes signals detected by a couple of dipole wire-probe antenna (WPT) and tri-axis magnetic search coils (MSC) installed onboard the satellite. The PWE-OFA subsystem calculates and produces three kind of data; OFA-SPEC (power spectrum), OFA-MATRIX (spectrum matrix), and OFA-COMPLEX (complex spectrum). They are continuously processed 24 hours per day and all data are sent to the ground. OFA-MATRIX and OFA-COMPLEX are used for polarization analyses and direction finding of the plasma waves. The PWE-WFC subsystem measures raw (64 kHz sampled) and down-sampled (1 kHz sampled) burst waveform detected by the WPT and the MSC sensors. It activates by a command, automatic triggering, and scheduling. The initial check-out process of the PWE successfully completed, and initial data has been obtained. In this presentation, we introduce onboard processing technique on PWE OFA/WFC and its initial results.
Endoplasmic reticulum-plasma membrane junctions: structure, function and dynamics.
Okeke, Emmanuel; Dingsdale, Hayley; Parker, Tony; Voronina, Svetlana; Tepikin, Alexei V
2016-06-01
Endoplasmic reticulum (ER)-plasma membrane (PM) junctions are contact sites between the ER and the PM; the distance between the two organelles in the junctions is below 40 nm and the membranes are connected by protein tethers. A number of molecular tools and technical approaches have been recently developed to visualise, modify and characterise properties of ER-PM junctions. The junctions serve as the platforms for lipid exchange between the organelles and for cell signalling, notably Ca(2+) and cAMP signalling. Vice versa, signalling events regulate the development and properties of the junctions. Two Ca(2+) -dependent mechanisms of de novo formation of ER-PM junctions have been recently described and characterised. The junction-forming proteins and lipids are currently the focus of vigorous investigation. Junctions can be relatively short-lived and simple structures, forming and dissolving on the time scale of a few minutes. However, complex, sophisticated and multifunctional ER-PM junctions, capable of attracting numerous protein residents and other cellular organelles, have been described in some cell types. The road from simplicity to complexity, i.e. the transformation from simple 'nascent' ER-PM junctions to advanced stable multiorganellar complexes, is likely to become an attractive research avenue for current and future junctologists. Another area of considerable research interest is the downstream cellular processes that can be activated by specific local signalling events in the ER-PM junctions. Studies of the cell physiology and indeed pathophysiology of ER-PM junctions have already produced some surprising discoveries, likely to expand with advances in our understanding of these remarkable organellar contact sites. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Bonuccelli, Gloria; Sotgia, Federica; Schubert, William; Park, David S; Frank, Philippe G; Woodman, Scott E; Insabato, Luigi; Cammer, Michael; Minetti, Carlo; Lisanti, Michael P
2003-10-01
Dystrophin, the protein product of the Duchenne muscular dystrophy (DMD) gene, is absent in the skeletal muscle of DMD patients and mdx mice. At the plasma membrane of skeletal muscle fibers, dystrophin associates with a multimeric protein complex, termed the dystrophin-glycoprotein complex (DGC). Protein members of this complex are normally absent or greatly reduced in dystrophin-deficient skeletal muscle fibers, and are thought to undergo degradation through an unknown pathway. As such, we reasoned that inhibition of the proteasomal degradation pathway might rescue the expression and subcellular localization of dystrophin-associated proteins. To test this hypothesis, we treated mdx mice with the well-characterized proteasomal inhibitor MG-132. First, we locally injected MG-132 into the gastrocnemius muscle, and observed the outcome after 24 hours. Next, we performed systemic treatment using an osmotic pump that allowed us to deliver different concentrations of the proteasomal inhibitor, over an 8-day period. By immunofluorescence and Western blot analysis, we show that administration of the proteasomal inhibitor MG-132 effectively rescues the expression levels and plasma membrane localization of dystrophin, beta-dystroglycan, alpha-dystroglycan, and alpha-sarcoglycan in skeletal muscle fibers from mdx mice. Furthermore, we show that systemic treatment with the proteasomal inhibitor 1) reduces muscle membrane damage, as revealed by vital staining (with Evans blue dye) of the diaphragm and gastrocnemius muscle isolated from treated mdx mice, and 2) ameliorates the histopathological signs of muscular dystrophy, as judged by hematoxylin and eosin staining of muscle biopsies taken from treated mdx mice. Thus, the current study opens new and important avenues in our understanding of the pathogenesis of DMD. Most importantly, these new findings may have clinical implications for the pharmacological treatment of patients with DMD.
Patange, Apurva; Boehm, Daniela; Giltrap, Michelle; Lu, Peng; Cullen, P J; Bourke, Paula
2018-08-01
Generation of wastewater is one of the main environmental sustainability issues across food sector industries. The constituents of food process effluents are often complex and require high energy and processing for regulatory compliance. Wastewater streams are the subject of microbiological and chemical criteria, and can have a significant eco-toxicological impact on the aquatic life. Thus, innovative treatment approaches are required to mitigate environmental impact in an energy efficient manner. Here, dielectric barrier discharge atmospheric cold plasma (ACP) was evaluated for control of key microbial indicators encountered in food industry effluent. This study also investigated the eco-toxicological impact of cold plasma treatment of the effluents using a range of aquatic bioassays. Continuous ACP treatment was applied to synthetic dairy and meat effluents. Microbial inactivation showed treatment time dependence with significant reduction in microbial populations within 120 s, and to undetectable levels after 300 s. Post treatment retention time emerged as critical control parameter which promoted ACP bacterial inactivation efficiency. Moreover, ACP treatment for 20 min achieved significant reduction (≥2 Log 10 ) in Bacillus megaterium endospores in wastewater effluent. Acute aquatic toxicity was assessed using two fish cell lines (PLHC-1 and RTG-2) and a crustacean model (Daphnia magna). Untreated effluents were toxic to the aquatic models, however, plasma treatment limited the toxic effects. Differing sensitivities were observed to ACP treated effluents across the different test bio-assays in the following order: PLHC-1 > RTG-2 ≥ D. magna; with greater sensitivity retained to plasma treated meat effluent than dairy effluent. The toxic effects were dependent on concentration and treatment time of the ACP treated effluent; with 30% cytotoxicity in D. magna and fish cells observed after 24 h of exposure to ACP treated effluent for concentrations up to 5%. The findings suggest the need to employ wider variety of aquatic organisms for better understanding and complete toxicity evaluation of long-term effects. The study demonstrates the potential to tailor ACP system parameters to control pertinent microbial targets (mono/poly-microbial, vegetative or spore form) found in complex and nutritious wastewater effluents whilst maintaining a safe eco-toxicity profile for aquatic species. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandenplas, P.E.
1996-03-01
This paper presents a summary of important parts of `Plasma waves` by J.F. Denisse and J.L.Delcroix, Interscience-Wiley, 1963, itself a translation of `Theorie des Ondes dans les Plasmas`, Dunod, 1959. We shall, however, use S.I. units instead of cgs ones and adopt where necessary more modern notations. A rather complete overview of the complexity of waves in a hot magnetized plasma is given. The effects of collisions have been mostly neglected. 1 fig.
Collisional-Radiative Modeling of Free-Burning Arc Plasma in Argon
2013-06-01
temeratures of electrons and heavy particles was demonstrated. The plasma chemistry is important but yet just one element of the complex arc...description. Therefore, the present work is aimed at the analysis of the plasma chemistry in a way that the model enables a deeper look into the polulations... PLASMA CHEMISTRY The present study aims at analyzing the collisional and radiative processes in argon with a view toward application to non
NASA Astrophysics Data System (ADS)
Yan, Z.; Gohil, P.; McKee, G. R.; Eldon, D.; Grierson, B.; Rhodes, T.; Petty, C. C.
2017-12-01
Measurements of long wavelength ({{k}\\bot }{{ρ }i} < 1) density fluctuation characteristics in the edge of both Deuterium (D) and Hydrogen (H) plasmas across the L-H transition on DIII-D demonstrate the existence of single or double bands of low-wavenumber turbulence observed near the edge of H and D plasmas. These are strongly correlated with the L to H-mode transition power threshold (P LH) and can help explain the isotopic and density dependence of P LH, and how the P LH difference is reduced at higher density. Understanding and accurately predicting the L-H power threshold is critical to accessing to H-mode, and operating and achieving high confinement in burning plasmas such as ITER. Above about n e ~ 4 × 1019 m-3, P LH is seen to converge for H and D, and increases for both with higher density. Surprisingly, the P LH increases significantly at low density in H but not in D plasmas. Two distinct frequency bands of density fluctuations are observed in the D plasmas at low density, n e ~ 1.2-1.5 × 1019 m-3, but not in H plasmas with similar density, which appears to be correlated to the much lower power threshold in D at low density. Consistently, E × B shear in the region of r/a ~ 0.95-1.0 is larger in D plasmas than in H plasmas at low density; as the P LH increases with increasing density, the dual mode structure disappears while E × B shear becomes similar and small for both D and H plasmas at higher density, n e ~ 5 × 1019 m-3, where P LH is similar for both D and H plasmas. The increased edge fluctuations, increased flow shear, and the dual-band nature of edge turbulence correlating with lower P LH may account for the strong isotope and density dependencies of P LH and support current L-H transition theories but suggest a complex behavior that can inform a more complete model of the L-H transition threshold.
ERIC Educational Resources Information Center
Najarian, Maya L.; Chinni, Rosemarie C.
2013-01-01
This laboratory is designed for physical chemistry students to gain experience using laser-induced breakdown spectroscopy (LIBS) in understanding plasma diagnostics. LIBS uses a high-powered laser that is focused on the sample causing a plasma to form. The emission of this plasma is then spectrally resolved and detected. Temperature and electron…
Understanding FRET as a Research Tool for Cellular Studies
Shrestha, Dilip; Jenei, Attila; Nagy, Péter; Vereb, György; Szöllősi, János
2015-01-01
Communication of molecular species through dynamic association and/or dissociation at various cellular sites governs biological functions. Understanding these physiological processes require delineation of molecular events occurring at the level of individual complexes in a living cell. Among the few non-invasive approaches with nanometer resolution are methods based on Förster Resonance Energy Transfer (FRET). FRET is effective at a distance of 1–10 nm which is equivalent to the size of macromolecules, thus providing an unprecedented level of detail on molecular interactions. The emergence of fluorescent proteins and SNAP- and CLIP- tag proteins provided FRET with the capability to monitor changes in a molecular complex in real-time making it possible to establish the functional significance of the studied molecules in a native environment. Now, FRET is widely used in biological sciences, including the field of proteomics, signal transduction, diagnostics and drug development to address questions almost unimaginable with biochemical methods and conventional microscopies. However, the underlying physics of FRET often scares biologists. Therefore, in this review, our goal is to introduce FRET to non-physicists in a lucid manner. We will also discuss our contributions to various FRET methodologies based on microscopy and flow cytometry, while describing its application for determining the molecular heterogeneity of the plasma membrane in various cell types. PMID:25815593
Zhao, Yan; Chang, Cheng; Qin, Peibin; Cao, Qichen; Tian, Fang; Jiang, Jing; Li, Xianyu; Yu, Wenfeng; Zhu, Yunping; He, Fuchu; Ying, Wantao; Qian, Xiaohong
2016-01-21
Human plasma is a readily available clinical sample that reflects the status of the body in normal physiological and disease states. Although the wide dynamic range and immense complexity of plasma proteins are obstacles, comprehensive proteomic analysis of human plasma is necessary for biomarker discovery and further verification. Various methods such as immunodepletion, protein equalization and hyper fractionation have been applied to reduce the influence of high-abundance proteins (HAPs) and to reduce the high level of complexity. However, the depth at which the human plasma proteome has been explored in a relatively short time frame has been limited, which impedes the transfer of proteomic techniques to clinical research. Development of an optimal strategy is expected to improve the efficiency of human plasma proteome profiling. Here, five three-dimensional strategies combining HAP depletion (the 1st dimension) and protein fractionation (the 2nd dimension), followed by LC-MS/MS analysis (the 3rd dimension) were developed and compared for human plasma proteome profiling. Pros and cons of the five strategies are discussed for two issues: HAP depletion and complexity reduction. Strategies A and B used proteome equalization and tandem Seppro IgY14 immunodepletion, respectively, as the first dimension. Proteome equalization (strategy A) was biased toward the enrichment of basic and low-molecular weight proteins and had limited ability to enrich low-abundance proteins. By tandem removal of HAPs (strategy B), the efficiency of HAP depletion was significantly increased, whereas more off-target proteins were subtracted simultaneously. In the comparison of complexity reduction, strategy D involved a deglycosylation step before high-pH RPLC separation. However, the increase in sequence coverage did not increase the protein number as expected. Strategy E introduced SDS-PAGE separation of proteins, and the results showed oversampling of HAPs and identification of fewer proteins. Strategy C combined single Seppro IgY14 immunodepletion, high-pH RPLC fractionation and LC-MS/MS analysis. It generated the largest dataset, containing 1544 plasma protein groups and 258 newly identified proteins in a 30-h-machine-time analysis, making it the optimum three-dimensional strategy in our study. Further analysis of the integrated data from the five strategies showed identical distribution patterns in terms of sequence features and GO functional analysis with the 1929-plasma-protein dataset, further supporting the reliability of our plasma protein identifications. The characterization of 20 cytokines in the concentration range from sub-nanograms/milliliter to micrograms/milliliter demonstrated the sensitivity of the current strategies. Copyright © 2015 Elsevier B.V. All rights reserved.
Vasconcelos, Luís; Lehto, Tõnis; Madani, Fatemeh; Radoi, Vlad; Hällbrink, Mattias; Vukojević, Vladana; Langel, Ülo
2018-02-01
Peptides able to translocate cell membranes while carrying macromolecular cargo, as cell-penetrating peptides (CPPs), can contribute to the field of drug delivery by enabling the transport of otherwise membrane impermeable molecules. Formation of non-covalent complexes between amphipathic peptides and oligonucleotides is driven by electrostatic and hydrophobic interactions. Here we investigate and quantify the coexistence of distinct molecular species in multiple equilibria, namely peptide monomer, peptide self-aggregates and peptide/oligonucleotide complexes. As a model for the complexes, we used a stearylated peptide from the PepFect family, PF14 and siRNA. PF14 has a cationic part and a lipid part, resembling some characteristics of cationic lipids. Fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS) were used to detect distinct molecular entities in solution and at the plasma membrane of live cells. For that, we labeled the peptide with carboxyrhodamine 6G and the siRNA with Cyanine 5. We were able to detect fluorescent entities with diffusional properties characteristic of the peptide monomer as well as of peptide aggregates and peptide/oligonucleotide complexes. Strategies to avoid peptide adsorption to solid surfaces and self-aggregation were developed and allowed successful FCS measurements in solution and at the plasma membrane. The ratio between the detected molecular species was found to vary with pH, peptide concentration and the proximity to the plasma membrane. The present results suggest that the diverse cellular uptake mechanisms, often reported for amphipathic CPPs, might result from the synergistic effect of peptide monomers, self-aggregates and cargo complexes, distributed unevenly at the plasma membrane. Copyright © 2017 Elsevier B.V. All rights reserved.
Andreeva, Alla M; Serebryakova, Marina V; Lamash, Nina E
2017-06-01
One of the most important functions of plasma proteins in vertebrates is their participation in osmotic homeostasis in the organism. Modern concepts about plasma proteins and their capillary filtration are based on a model of large monomeric proteins that are able to penetrate the interstitial space. At the same time, it was revealed that a considerable amount of oligomeric complexes are present in the low-molecular-weight (LM) protein fraction in the extracellular fluids of fishes. The functions of these complexes are unknown. In the present study, we investigated the LM-fraction proteins in the plasma and interstitial fluid (IF) of redfins of the genus Tribolodon. This fish alternatively spends parts of its life cycle in saline and fresh waters. We identified the protein Wap65, serpins and apolipoproteins in this fraction. By combining the methods of 2D-E under native and denaturing conditions with MALDI, we demonstrated that only apolipoproteins formed complexes. We showed that serum apolipoproteins (АроА-I, Аро-14) were present in the form of homooligomeric complexes that were dissociated with the release of monomeric forms of proteins in the course of capillary filtration to IF. Dissociation of homooligomers is not directly correlated with the change in salinity but is correlated with seasonal dynamics. We found that there was a significant decrease in the total protein concentration in IF relative to plasma. Therefore, we suggested that dissociation of homooligomeric complexes from various apolipoproteins supports the isoosmoticity of extracellular fluids relative to capillary wall stabilization through a fluid medium in fish. Copyright © 2017 Elsevier Inc. All rights reserved.
Completing a Ground Truth View of the Global Heliosphere: What Does IMAP Tell Us?
NASA Astrophysics Data System (ADS)
Matthaeus, W. H.
2014-12-01
Recent and planned advances in heliospheric research promise to provide for the first time a fairly complete picture of the processes that shape the Geospace environment and the Heliospheric envelope that defines the magnetic and plasma neighborhood of the Sun. The upcoming Solar Orbiter and Solar probe Plus missions will vastly extend our knowledge of the inner heliospheric drivers that impact the entire system. However to develop understanding of energy and particle transport that controls the Geospace plasma and radiation envirionment, it is necessary to maintain an accurate monitoring of the plasma and electromagnetic properties of the solar wind near 1 AU. To complete understanding of the Heliosphere we must also extend understanding of energy and plasma transport to regions beyond 1 AU and throughout the Heliosphere. This understanding will complete the connection between the the corona, the 1AU environment and the outer boundaries recently explored by the Voyagers and IBEX. This talk will focus on the linkages between inner heliosphere, the Geospace environment and the outer heliosphere, with an emphasis on what an L1 monitor such as IMAP can provde for the next decade of great discoveries in space physics.
Cell biochemistry studied by single-molecule imaging.
Mashanov, G I; Nenasheva, T A; Peckham, M; Molloy, J E
2006-11-01
Over the last decade, there have been remarkable developments in live-cell imaging. We can now readily observe individual protein molecules within living cells and this should contribute to a systems level understanding of biological pathways. Direct observation of single fluorophores enables several types of molecular information to be gathered. Temporal and spatial trajectories enable diffusion constants and binding kinetics to be deduced, while analyses of fluorescence lifetime, intensity, polarization or spectra give chemical and conformational information about molecules in their cellular context. By recording the spatial trajectories of pairs of interacting molecules, formation of larger molecular complexes can be studied. In the future, multicolour and multiparameter imaging of single molecules in live cells will be a powerful analytical tool for systems biology. Here, we discuss measurements of single-molecule mobility and residency at the plasma membrane of live cells. Analysis of diffusional paths at the plasma membrane gives information about its physical properties and measurement of temporal trajectories enables rates of binding and dissociation to be derived. Meanwhile, close scrutiny of individual fluorophore trajectories enables ideas about molecular dimerization and oligomerization related to function to be tested directly.
Deploying electromagnetic particle-in-cell (EM-PIC) codes on Xeon Phi accelerators boards
NASA Astrophysics Data System (ADS)
Fonseca, Ricardo
2014-10-01
The complexity of the phenomena involved in several relevant plasma physics scenarios, where highly nonlinear and kinetic processes dominate, makes purely theoretical descriptions impossible. Further understanding of these scenarios requires detailed numerical modeling, but fully relativistic particle-in-cell codes such as OSIRIS are computationally intensive. The quest towards Exaflop computer systems has lead to the development of HPC systems based on add-on accelerator cards, such as GPGPUs and more recently the Xeon Phi accelerators that power the current number 1 system in the world. These cards, also referred to as Intel Many Integrated Core Architecture (MIC) offer peak theoretical performances of >1 TFlop/s for general purpose calculations in a single board, and are receiving significant attention as an attractive alternative to CPUs for plasma modeling. In this work we report on our efforts towards the deployment of an EM-PIC code on a Xeon Phi architecture system. We will focus on the parallelization and vectorization strategies followed, and present a detailed performance evaluation of code performance in comparison with the CPU code.
DUCTILE-PHASE TOUGHENED TUNGSTEN FOR PLASMA-FACING MATERIALS IN FUSION REACTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henager, Charles H.; Setyawan, Wahyu; Roosendaal, Timothy J.
2017-05-01
Tungsten (W) and W-alloys are the leading candidates for plasma-facing components in nuclear fusion reactor designs because of their high melting point, strength retention at high temperatures, high thermal conductivity, and low sputtering yield. However, tungsten is brittle and does not exhibit the required fracture toughness for licensing in nuclear applications. A promising approach to increasing fracture toughness of W-alloys is by ductile-phase toughening (DPT). In this method, a ductile phase is included in a brittle matrix to prevent on inhibit crack propagation by crack blunting, crack bridging, crack deflection, and crack branching. Model examples of DPT tungsten are exploredmore » in this study, including W-Cu and W-Ni-Fe powder product composites. Three-point and four-point notched and/or pre-cracked bend samples were tested at several strain rates and temperatures to help understand deformation, cracking, and toughening in these materials. Data from these tests are used for developing and calibrating crack-bridging models. Finite element damage mechanics models are introduced as a modeling method that appears to capture the complexity of crack growth in these materials.« less
Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells
NASA Astrophysics Data System (ADS)
Hong, Sung-Ha; Szili, Endre J.; Jenkins, A. Toby A.; Short, Robert D.
2014-09-01
This study was designed to enhance our understanding of how reactive oxygen species (ROS), generated ex situ by ionized gas (plasma), can affect the regulation of signalling processes within cells. A model system, comprising of a suspension of phospholipid vesicles (cell mimics) encapsulating a ROS reporter, was developed to study the plasma delivery of ROS into cells. For the first time it was shown that plasma unequivocally delivers ROS into cells over a sustained period and without compromising cell membrane integrity. An important consideration in cell and biological assays is the presence of serum, which significantly reduced the transfer efficiency of ROS into the vesicles. These results are key to understanding how plasma treatments can be tailored for specific medical or biotechnology applications. Further, the phospholipid vesicle ROS reporter system may find use in other studies involving the application of free radicals in biology and medicine.
Chlorination processing of local planetary ores for oxygen and metallurgically important metals
NASA Technical Reports Server (NTRS)
Lynch, D. C.
1989-01-01
The use of chlorine to extract, reclaim, and purify metals has attractive possibilities for extraterrestrial processing of local planetary resources. While a complete cyclic process has been proposed for the recovery of metallurgically significant metals and oxygen, herein the chlorination step of the cycle is examined. An experimental apparatus for reacting refractory materials, such as ilmenite, in a microwave induced plasma is being built. Complex equilibria calculations reveal that stable refractory materials can, under the influence of a plasma, undergo chlorination and yield oxygen as a by-product. These issues and the potential advantages for plasma processing in space are reviewed. Also presented is a discussion of the complex equilibria program used in the analysis.
NASA Astrophysics Data System (ADS)
Siefring, C. L.; Bernhardt, P. A.; Huba, J.; Krall, J.; Roddy, P. A.
2009-12-01
Unique data on ionospheric plasma irregularities from the Naval Research Laboratory (NRL) CITRIS (Scintillation and TEC Receiver in Space) instrument will be presented. CITRIS is a multi-band receiver that recorded TEC (Total Electron Content) and radio scintillations from Low-Earth Orbit (LEO) on STPSat1. The 555+/5 km altitude 35° inclination orbit covers low and mid-latitudes. The measurements require propagation from a transmitter to a receiver through the F-region plasma. CITRIS used both 1) satellite beacons in LEO, such as the NRL CERTO (Coherent Electromagnetic Radio TOmography) beacons and 2) the global network of ground-based DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) beacons. The TEC measurements allow for tracking of ionospheric disturbances and irregularities while the measurements of scintillations can simultaneously characterize their effects. CITRIS was operated in a complementary fashion with the C/NOFS (Communication/Navigations Outages Forecasting System) satellite during most of its first year of operations. C/NOFS carries a three-frequency 150/400/1067 MHz CERTO beacon and is dedicated to the study of Spread-F. In the case of Spread-F, ionospheric irregularities start with large scale size density gradients (100s of km) and cascade through complex processes to short scale sizes (10s of meters). It is typically the 100m-1km scale features that harm communication and navigation systems through scintillations. A multi-sensor approach is needed to completely understand this complex system, such as, the combination of CITRIS remote radio sensing and C/NOFS in-situ data. Several types of irregularities have been studied including Spread-F and the newly discovered dawn-side depletions. Comparisons with the physics based SAMI3 model are being performed to help our understanding of the morphology of the irregularities.
NASA Astrophysics Data System (ADS)
Blechle, Joshua M.
Part I of this dissertation focuses on investigations of nitrogen oxide plasma systems. With increasing concerns over the environmental presence of NxOy species, there is growing interest in utilizing plasma-assisted conversion techniques. Advances, however, have been limited because of the lack of knowledge regarding the fundamental chemistry of these plasma systems. Understanding the kinetics and thermodynamics of processes in these systems is vital to realizing their potential in a range of applications. Unraveling the complex chemical nature of these systems, however, presents numerous challenges. As such, this work serves as a foundational step in the diagnostics and assessment of these NxOy plasmas. The partitioning of energy within the plasma system is essential to unraveling these complications as it provides insight into both gas and surface reactivity. To obtain this information, techniques such as optical emission spectroscopy (OES), broadband absorption spectroscopy (BAS), and laser induced fluorescence (LIF) were utilized to determine species energetics (vibrational, rotational, translational temperatures). These temperature data provide mechanistic insight and establish the relationships between system parameters and energetic outcomes. Additionally, these data are also correlated to surface reactivity data collected with the Imaging of Radicals Interacting with Surfaces (IRIS) technique. IRIS data demonstrate the relationship between internal temperatures of radicals and their observed surface scatter coefficients (S), the latter of which is directly related to surface reactivity (R) [R = 1-S]. Furthermore, time-resolved (TR) spectroscopic techniques, specifically TR-OES, revealed kinetic trends in NO and N2 formation from a range of precursors (NO, N2O, N2/O2). By examining the rate constants associated with the generation and destruction of various plasma species we can investigate possible mechanistic implications. All told, such data provides unparalleled insight into the chemistry of these plasma systems. Part II of this work is focused on understanding the efficacy of a general chemistry recitation program. Such programs can be an valuable tool for improving students' problem solving skills and understanding using methods that are difficult to implement in large lecture settings. Here, general chemistry students at Colorado State University participated in a variety of recitation activities throughout the first semester of a 2-semester general chemistry sequence, including peer-led exercises, games, and scaffolded worksheets. Through weekly surveys, students were asked to evaluate and assess recitation activities for both interest and effectiveness as part of their course homework. Also included in these survey assignments were content questions relevant to the weekly themes, providing a measure of student learning of recitation topics. Student opinions were correlated with content retention, and these data were compared against student responses to a pre-survey administered before the first recitation session. This analysis allows for monitoring students' expectations of recitation courses and how well those expectations are met through the various types of activities employed. Ultimately, this work has found that students have positive feeling with respect to individual assignments, but that perspectives on chemistry and the course in general decrease dramatically from the beginning to the end of the semester. Thus, this work can serve as a significant starting points for future efforts to monitor and record student perceptions in the general chemistry recitation classroom, leading to further investigation into the source of changing attitudes and the role that week-to-week activities have on global course attitudes.
Investigation of Plasmas Having Complex, Dynamic Evolving Morphology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellan, Paul M.
2017-01-03
Three different types of plasmas have been investigated using both experimental and theoretical methods. The first type of plasma is dense, highly ionized, governed by magnetohydrodynamics, and highly dynamic. This plasma is relevant to solar coronal loops, astrophysical jets, and other situations where strong magnetic forces act on the plasma. A well-diagnosed laboratory experiment creates a magnetohydrodynamically driven highly collimated plasma jet. This jet undergoes a kink instability such that it rapidly develops a corkscrew shape. The kink causes lateral acceleration of the jet, and this lateral acceleration drives a Rayleigh-Taylor instability that in turn chokes the current flowing inmore » the jet and causes a magnetic reconnection. The magnetic reconnection causes electron and ion heating as well as emission of whistler waves. This entire sequence of events has been observed, measured in detail, and related to theoretical models. The second type of plasma is a transient rf-produced plasma used as a seed plasma for the magnetohydrodynamic experiments described above. Detailed atomic physics ionization processes have been investigated and modeled. The third type of plasma that has been studied is a dusty plasma where the dust particles are spontaneously growing ice grains. The rapid growth of the ice grains to large size and their highly ordered alignment has been investigated as well as collective motion of the ice grains, including well-defined flows on the surface of nested toroids. In addition to the experimental work described above, several related theoretical models have been developed, most notably a model showing how a complex interaction between gravity and magnetic fields on extremely weakly ionized plasma in an accretion disk provides an electric power source that can drive astrophysical jets associated with the accretion disk. Eighteen papers reporting this work have been published in a wide variety of journals.« less
2016-06-05
have attended and made presen- tations at the annual APS Division of Plasma Physics Meeting, the bi-annual High Energy Laboratory Astrophysics meeting...the AFOSR Space Science Pro- gram Review, the SHINE solar physics meeting, the International Astrophysics Conference, and the workshop “Complex plasma...tor k and Resolving Space-time Ambiguity. GR-Space Physics . submitted. Bellan, P. M., Zhai, X., Chai, K. B., & Ha, B. N. 2015. Complex astrophysical
You, Changjiang; Marquez-Lago, Tatiana T.; Richter, Christian Paolo; Wilmes, Stephan; Moraga, Ignacio; Garcia, K. Christopher; Leier, André; Piehler, Jacob
2016-01-01
The interaction dynamics of signaling complexes is emerging as a key determinant that regulates the specificity of cellular responses. We present a combined experimental and computational study that quantifies the consequences of plasma membrane microcompartmentalization for the dynamics of type I interferon receptor complexes. By using long-term dual-color quantum dot (QD) tracking, we found that the lifetime of individual ligand-induced receptor heterodimers depends on the integrity of the membrane skeleton (MSK), which also proved important for efficient downstream signaling. By pair correlation tracking and localization microscopy as well as by fast QD tracking, we identified a secondary confinement within ~300-nm-sized zones. A quantitative spatial stochastic diffusion-reaction model, entirely parameterized on the basis of experimental data, predicts that transient receptor confinement by the MSK meshwork allows for rapid reassociation of dissociated receptor dimers. Moreover, the experimentally observed apparent stabilization of receptor dimers in the plasma membrane was reproduced by simulations of a refined, hierarchical compartment model. Our simulations further revealed that the two-dimensional association rate constant is a key parameter for controlling the extent of MSK-mediated stabilization of protein complexes, thus ensuring the specificity of this effect. Together, experimental evidence and simulations support the hypothesis that passive receptor confinement by MSK-based microcompartmentalization promotes maintenance of signaling complexes in the plasma membrane. PMID:27957535
Cytochrome bc1 complexes of microorganisms.
Trumpower, B L
1990-01-01
The cytochrome bc1 complex is the most widely occurring electron transfer complex capable of energy transduction. Cytochrome bc1 complexes are found in the plasma membranes of phylogenetically diverse photosynthetic and respiring bacteria, and in the inner mitochondrial membrane of all eucaryotic cells. In all of these species the bc1 complex transfers electrons from a low-potential quinol to a higher-potential c-type cytochrome and links this electron transfer to proton translocation. Most bacteria also possess alternative pathways of quinol oxidation capable of circumventing the bc1 complex, but these pathways generally lack the energy-transducing, protontranslocating activity of the bc1 complex. All cytochrome bc1 complexes contain three electron transfer proteins which contain four redox prosthetic groups. These are cytochrome b, which contains two b heme groups that differ in their optical and thermodynamic properties; cytochrome c1, which contains a covalently bound c-type heme; and a 2Fe-2S iron-sulfur protein. The mechanism which links proton translocation to electron transfer through these proteins is the proton motive Q cycle, and this mechanism appears to be universal to all bc1 complexes. Experimentation is currently focused on understanding selected structure-function relationships prerequisite for these redox proteins to participate in the Q-cycle mechanism. The cytochrome bc1 complexes of mitochondria differ from those of bacteria, in that the former contain six to eight supernumerary polypeptides, in addition to the three redox proteins common to bacteria and mitochondria. These extra polypeptides are encoded in the nucleus and do not contain redox prosthetic groups. The functions of the supernumerary polypeptides of the mitochondrial bc1 complexes are generally not known and are being actively explored by genetically manipulating these proteins in Saccharomyces cerevisiae. Images PMID:2163487
Using 1D theory to understand 3D stagnation of a wire-array Z pinch in the absence of radiation
NASA Astrophysics Data System (ADS)
Yu, Edmund
2015-11-01
Many high-energy-density systems implode towards the axis of symmetry, where it collides on itself, forming a hot plasma. However, experiments show these imploding plasmas develop three-dimensional (3D) structures. As a result, the plasma cannot completely dissipate its kinetic energy at stagnation, instead retaining significant 3D flow. A useful tool for understanding the effects of this residual flow is 3D simulation, but the amount and complexity of information can be daunting. To address this problem, we explore the connection between 3D simulation and one-dimensional (1D) theory. Such a connection, if it exists, is mutually beneficial: 1D theory can provide a clear picture of the underlying dynamics of 3D stagnation. On the other hand, deviations between theory and simulation suggest how 1D theory must be modified to account for 3D effects. In this work, we focus on a 3D, magnetohydrodynamic simulation of a compact wire-array Z pinch. To provide a simpler background against which to test our ideas, we artificially turn off radiation during the stagnation phase. Examination of the initial accumulation of mass on axis reveals oblique collision between jets, shock accretion, and vortex formation. Despite evidence for shock-dominated stagnation, a 1D shockless stagnation solution is more appropriate for describing the global dynamics, in that it reproduces the increase of on-axis density with time. However, the 1D solution must be modified to account for 3D effects: the flows suggest enhanced thermal transport as well as centrifugal force. Upon reaching peak compression, the stagnation transitions to a second phase, in which the high-pressure core on axis expands outward into the remaining imploding plasma. During this phase, a 1D shock solution describes the growth of the shock accretion region, as well as the decrease of on-axis density with time. However, the effect of 3D flows is still present: the on-axis temperature does not cool during expansion, which appears due to ``channels'' of plasma carrying heat to the core center. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockhead Martin Company, for the National Nuclear Security Administration under DE-AC04-94AL85000.
Complexity Reduction of Collisional-Radiative Kinetics for Atomic Plasma
2013-12-23
through collisional and radiative interactions .4–6 The most accurate treatment for these non- equilibrium plasmas requires a state-to-state approach,7–13...CR system versus time, during con- stant-Te plasma evolution from a low -temperature ASDF and low electron number density; as excitation and...Collisional-radiative model in air for earth re-entry problems,” Phys. Plasmas 13, 043502 (2006). 9C. O. Laux, L. Pierrot, and R. J. Gessman, “State-to
Frontiers of beam diagnostics in plasma accelerators: Measuring the ultra-fast and ultra-cold
NASA Astrophysics Data System (ADS)
Cianchi, A.; Anania, M. P.; Bisesto, F.; Chiadroni, E.; Curcio, A.; Ferrario, M.; Giribono, A.; Marocchino, A.; Pompili, R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Mostacci, A.; Bacci, A.; Rossi, A. R.; Serafini, L.; Zigler, A.
2018-05-01
Advanced diagnostics are essential tools in the development of plasma-based accelerators. The accurate measurement of the quality of beams at the exit of the plasma channel is crucial to optimize the parameters of the plasma accelerator. 6D electron beam diagnostics will be reviewed with emphasis on emittance measurement, which is particularly complex due to large energy spread and divergence of the emerging beams, and on femtosecond bunch length measurements.
Different Detector Types Used in Plasma Physics Experiment
NASA Astrophysics Data System (ADS)
Balovnev, A. V.; Manokhin, I. L.; Grigoryeva, I. G.; Kostyushin, V. A.; Savelov, A. S.; Salakhutdinov, G. Kh.
2017-12-01
We analyzed the possibility of using different detector types (semiconductor, scintillator, thermoluminescent, nuclear emulsions) for plasma diagnostics. We investigated the main characteristics of such detectors, on the basis of which an X-ray spectrometer complex was created.
NASA Astrophysics Data System (ADS)
Dobrynin, Danil
2013-09-01
Mechanisms of plasma interaction with living tissues and cells can be quite complex, owing to the complexity of both the plasma and the tissue. Thus, unification of all the mechanisms under one umbrella might not be possible. Here, analysis of interaction of floating electrode dielectric barrier discharge (FE-DBD) with living tissues and cells is presented and biological and physical mechanisms are discussed. In physical mechanisms, charged species are identified as the major contributors to the desired effect and a mechanism of this interaction is proposed. Biological mechanisms are also addressed and a hypothesis of plasma selectivity and its effects is offered. Spatially uniform nanosecond and sub-nanosecond short-pulsed dielectric barrier discharge plasmas are gaining popularity in biological and medical applications due to their increased uniformity, lower plasma temperature, lower surface power density, and higher concentration of the active species produced. In this presentation we will compare microsecond pulsed plasmas with nanosecond driven systems and their applications in biology and medicine with specific focus on wound healing and tissue regeneration. Transition from negative to positive streamer will be discussed with proposed hypothesis of uniformity mechanisms of positive streamer and the reduced dependence on morphology and surface chemistry of the second electrode (human body) being treated. Uniform plasma offers a more uniform delivery of active species to the tissue/surface being treated thus leading to better control over the biological results.
Yamamoto, F; Harada, S; Mitsuyama, T; Harada, Y; Kitahara, Y; Yoshida, M; Nakanishi, Y
2004-02-01
Clarithromycin (CAM) and rifampicin (RFP) have both been recognized to be effective antibiotic agents against Mycobacterium avium complex (MAC) infection. Rifamycin derivatives including RFP and rifabutin modulate the CAM metabolism by inducing the hepatic cytochrome p-450 3A4. To clarify the effect of RFP on the CAM metabolism, we measured the plasma concentration of CAM and 14-R-hydroxyclarithromycin (M-5), the major metabolite of CAM, in 9 patients suffering from MAC infection before and after the addition of RFP. After the addition of RFP, the mean plasma concentration of CAM significantly decreased, while that of M-5 did not. In addition, the amount of CAM + M-5 concentration also significantly decreased. As M-5 is less effective against MAC infection than CAM, more attention should thus be paid to the plasma CAM concentration in patients administered CAM and RFP concomitantly.
New Large Diameter RF Complex Plasma Device
NASA Astrophysics Data System (ADS)
Meyer, John; Nosenko, Volodymyr; Thomas, Hubertus
2016-10-01
The Complex Plasma Research Group at the German Aerospace Center (DLR) in Oberpfaffenhofen has built a new large diameter rf plasma setup for dusty plasma experiments. The vacuum chamber is a stainless steel cylinder 0.90 m in diameter and 0.34 m in height with ports for viewing and measurement. A 0.85 m diameter plate in about the center serves as a powered electrode (13.56 MHz) with the chamber walls as the ground. It is pumped on by one of two Oerlikon turbo pumps with a pumping rate of 1100 l/s or 270 l/s. Argon gas is admitted into the chamber by an MKS mass flow meter and pumping is regulated by a butterfly valve to set pressure for experiments. A manual dropper is used to insert dust into the plasma. The dust is illuminated horizontally by a 660 nm 100 mW laser sheet and viewed from above by a Photron FASTCAM 1024 PCI camera. A vertical laser sheet of 635 nm will be used for side imaging. So far, single-layer plasma crystals of up to 15000 particles have been suspended. The particle velocity fluctuation spectra were measured and from these, the particle charge and screening length were calculated. Future experiments will explore the system-size dependence of the plasma crystal properties.
Lin, Zhili; Chen, Xudong; Ding, Panfeng; Qiu, Weibin; Pu, Jixiong
2017-04-03
The ponderomotive interaction of high-power laser beams with collisional plasma is modeled in the nonrelativistic regime and is simulated using the powerful finite-difference time-domain (FDTD) method for the first time in literature. The nonlinear and dissipative dielectric constant function of the collisional plasma is deduced that takes the ponderomotive effect into account and is implemented in the discrete framework of FDTD algorithms. Maclaurin series expansion approach is applied for implementing the obtained physical model and the time average of the square of light field is extracted by numerically evaluating an integral identity based on the composite trapezoidal rule for numerical integration. Two numerical examples corresponding to two different types of laser beams, Gaussian beam and vortex Laguerre-Gaussian beam, propagating in collisional plasma, are presented for specified laser and plasma parameters to verify the validity of the proposed FDTD-based approach. Simulation results show the anticipated self-focusing and attenuation phenomena of laser beams and the deformation of the spatial density distributions of electron plasma along the beam propagation path. Due to the flexibility of FDTD method in light beam excitation and accurate complex material modeling, the proposed approach has a wide application prospect in the study of the complex laser-plasma interactions in a small scale.
Ogston, Derek; Ogston, C. Marie; Ratnoff, Oscar D.; Forbes, Charles D.
1969-01-01
As demonstrated by others, fibrinolytic activity was generated in diluted, acidified normal plasma exposed to kaolin, a process requiring Hageman factor (Factor XII). Generation was impaired by adsorbing plasma with glass or similar agents under conditions which did not deplete its content of Hageman factor or plasminogen. The defect could be repaired by addition of a noneuglobulin fraction of plasma or an agent or agents eluted from diatomaceous earth which had been exposed to normal plasma. The restorative agent, tentatively called Hageman factor-cofactor, was partially purified by chromatography and had an apparent molecular weight of approximately 165,000. It could be distinguished from plasma thromboplastin antecedent (Factor XI) and plasma kallikrein, other substrates of Hageman factor, and from the streptokinase-activated pro-activator of plasminogen. Evidence is presented that an additional component may be needed for the generation of fibrinolytic activity in mixtures containing Hageman factor, HF-cofactor, and plasminogen. The long-recognized generation of plasmin activity in chloroform-treated euglobulin fractions of plasma was found to be dependent upon the presence of Hageman factor. Whether chloroform activation of plasminogen requires Hageman factor-cofactor was not determined, but glass-adsorbed plasma, containing Hageman factor and plasminogen, did not generate appreciable fibrinolytic or caseinolytic activity. These studies emphasize the complex nature of the mechanisms which lead to the generation of plasmin in human plasma. PMID:4241814
Molecular Signatures of Membrane Protein Complexes Underlying Muscular Dystrophy*
Turk, Rolf; Hsiao, Jordy J.; Smits, Melinda M.; Ng, Brandon H.; Pospisil, Tyler C.; Jones, Kayla S.; Campbell, Kevin P.; Wright, Michael E.
2016-01-01
Mutations in genes encoding components of the sarcolemmal dystrophin-glycoprotein complex (DGC) are responsible for a large number of muscular dystrophies. As such, molecular dissection of the DGC is expected to both reveal pathological mechanisms, and provides a biological framework for validating new DGC components. Establishment of the molecular composition of plasma-membrane protein complexes has been hampered by a lack of suitable biochemical approaches. Here we present an analytical workflow based upon the principles of protein correlation profiling that has enabled us to model the molecular composition of the DGC in mouse skeletal muscle. We also report our analysis of protein complexes in mice harboring mutations in DGC components. Bioinformatic analyses suggested that cell-adhesion pathways were under the transcriptional control of NFκB in DGC mutant mice, which is a finding that is supported by previous studies that showed NFκB-regulated pathways underlie the pathophysiology of DGC-related muscular dystrophies. Moreover, the bioinformatic analyses suggested that inflammatory and compensatory mechanisms were activated in skeletal muscle of DGC mutant mice. Additionally, this proteomic study provides a molecular framework to refine our understanding of the DGC, identification of protein biomarkers of neuromuscular disease, and pharmacological interrogation of the DGC in adult skeletal muscle https://www.mda.org/disease/congenital-muscular-dystrophy/research. PMID:27099343
Composition and chemistry of Titan's thermosphere and ionosphere.
Vuitton, V; Yelle, R V; Lavvas, P
2009-02-28
Titan has long been known to harbour the richest atmospheric chemistry in the Solar System. Until recently, it had been believed that complex hydrocarbons and nitriles were produced through neutral chemistry that would eventually lead to the formation of micrometre sized organic aerosols. However, recent measurements by the Cassini spacecraft are drastically changing our understanding of Titan's chemistry. The Ion and Neutral Mass Spectrometer (INMS) and the Cassini Plasma Spectrometer (CAPS) revealed an extraordinary complex ionospheric composition. INMS detected roughly 50 positive ions with m/z<100 and a density higher than 0.1cm-3. CAPS provided evidence for heavy (up to 350amu) positively and negatively charged (up to 4000amu) ions. These observations all indicate that Titan's ionospheric chemistry is incredibly complex and that molecular growth starts in the upper atmosphere rather than at lower altitude. Here, we review the recent progress made on ionospheric chemistry. The presence of heavy neutrals in the upper atmosphere has been inferred as a direct consequence of the presence of complex positive ions. Benzene (C6H6) is created by ion chemistry at high altitudes and its main photolysis product, the phenyl radical (C6H5), is at the origin of the formation of aromatic species at lower altitude.
Guo, Jun; Wang, Tingzhong; Li, Xian; Shallow, Heidi; Yang, Tonghua; Li, Wentao; Xu, Jianmin; Fridman, Michael D.; Yang, Xiaolong; Zhang, Shetuan
2012-01-01
The human ether-a-go-go-related gene (hERG) encodes the rapidly activating delayed rectifier potassium channel (IKr) which plays an important role in cardiac repolarization. A reduction or increase in hERG current can cause long or short QT syndrome, respectively, leading to fatal cardiac arrhythmias. The channel density in the plasma membrane is a key determinant of the whole cell current amplitude. To gain insight into the molecular mechanisms for the regulation of hERG density at the plasma membrane, we used whole cell voltage clamp, Western blotting, and immunocytochemical methods to investigate the effects of an integral membrane protein, caveolin-3 (Cav3) on hERG expression levels. Our data demonstrate that Cav3, hERG, and ubiquitin-ligase Nedd4-2 interact with each other and form a complex. Expression of Cav3 thus enhances the hERG-Nedd4-2 interaction, leading to an increased ubiquitination and degradation of mature, plasma-membrane localized hERG channels. Disrupting Nedd4-2 interaction with hERG by mutations eliminates the effects of Cav3 on hERG channels. Knockdown of endogenous Cav3 or Nedd4-2 in cultured neonatal rat ventricular myocytes using siRNA led to an increase in native IKr. Our data demonstrate that hERG expression in the plasma membrane is regulated by Cav3 via Nedd4-2. These findings extend our understanding of the regulation of hERG channels and cardiac electrophysiology. PMID:22879586
The Challenge of Incorporating Charged Dust in the Physics of Flowing Plasma Interactions
NASA Astrophysics Data System (ADS)
Jia, Y.; Russell, C. T.; Ma, Y.; Lai, H.; Jian, L.; Toth, G.
2013-12-01
The presence of two oppositely charged species with very different mass ratios leads to interesting physical processes and difficult numerical simulations. The reconnection problem is a classic example of this principle with a proton-electron mass ratio of 1836, but it is not the only example. Increasingly we are discovering situations in which heavy, electrically charged dust particles are major players in a plasma interaction. The mass of a 1mm dust particle is about 2000 proton masses and of a 10 mm dust particle about 2 million proton masses. One example comes from planetary magnetospheres. Charged dust pervades Enceladus' southern plume. The saturnian magnetospheric plasma flows through this dusty plume interacting with the charged dust and ionized plume gas. Multiple wakes are seen downstream. The flow is diverted in one direction. The field aligned-current systems are elsewhere. How can these two wake features be understood? Next we have an example from the solar wind. When asteroids collide in a disruptive collision, the solar wind strips the nano-scale charged dust from the debris forming a dusty plasma cloud that may be over 106km in extent and containing over 100 million kg of dust accelerated to the solar wind speed. How does this occur, especially as rapidly as it appears to happen? In this paper we illustrate a start on understanding these phenomena using multifluid MHD simulations but these simulations are only part of the answer to this complex problem that needs attention from a broader range of the community.
NASA Astrophysics Data System (ADS)
Maszl, Christian
2016-09-01
High power impulse magnetron sputtering (HiPIMS) is a technique to deposit thin films with superior quality. A high ionization degree up to 90% and the natural occurence of high energetic metal ions are the reason why HiPIMS exceeds direct current magnetron sputtering in terms of coating quality. On the other hand HiPIMS suffers from a reduced efficiency, especially if metal films are produced. Therefore, a lot of research is done by experimentalists and theoreticians to clarify the transport mechanisms from target to substrate and to identify the energy source of the energetic metal ions. Magnetron plasmas are prone to a wide range of wave phenomena and instabilities. Especially, during HiPIMS at elevated power/current densities, symmetry breaks and self-organization in the plasma torus are observed. In this scenario localized travelling ionization zones with certain quasi-mode numbers are present which are commonly referred to as spokes. Because of their high rotation speed compared to typical process times of minutes their importance for thin film deposition was underestimated at first. Recent investigations show that spokes have a strong impact on particle transport, are probably the source of the high energetic metal ions and are therefore the essence of HiPIMS plasmas. In this contribution we will describe the current understanding of spokes, discuss implications for thin film synthesis and highlight open questions. This project is supported by the DFG (German Science Foundation) within the framework of the Coordinated Research Center SFB-TR 87 and the Research Department ``Plasmas with Complex Interactions'' at Ruhr-University Bochum.
Design advances of the Core Plasma Thomson Scattering diagnostic for ITER
NASA Astrophysics Data System (ADS)
Scannell, R.; Maslov, M.; Naylor, G.; O'Gorman, T.; Kempenaars, M.; Carr, M.; Bilkova, P.; Bohm, P.; Giudicotti, L.; Pasqualotto, R.; Bassan, M.; Vayakis, G.; Walsh, M.; Huxford, R.
2017-11-01
The Core Plasma Thomson Scattering (CPTS) diagnostic on ITER performs measurements of the electron temperature and density profiles which are critical to the understanding of the ITER plasma. The diagnostic must satisfy the ITER project requirements, which translate to requirements on performance as well as reliability, safety and engineering. The implications are particularly challenging for beam dump lifetime, the need for continuous active alignment of the diagnostic during operation, allowable neutron flux in the interspace and the protection of the first mirror from plasma deposition. The CPTS design has been evolving over a number of years. One recent improvement is that the collection optics have been modified to include freeform surfaces. These freeform surfaces introduce extra complexity to the manufacturing but provide greater flexibility in the design. The greater flexibility introduced allows for example to lower neutron throughput or use fewer surfaces while improving optical performance. Performance assessment has shown that scattering from a 1064 nm laser will be sufficient to meet the measurement requirements, at least for the system at the start of operations. Optical transmission at λ < 600 nm is expected to degrade over the ITER lifetime due to fibre darkening and deposition on the first mirror. For this reason, it is proposed that the diagnostic should additionally include measurements of TS 'depolarised light' and a 1319 nm laser system. These additional techniques have different spectral and polarisation dependencies compared to scattering from a 1064 nm laser and hence provide greater robustness into the inferred measurements of Te and ne in the core.
Self-similar expansion of adiabatic electronegative dusty plasma
NASA Astrophysics Data System (ADS)
Shahmansouri, M.; Bemooni, A.; Mamun, A. A.
2017-12-01
The self-similar expansion of an adiabatic electronegative dusty plasma (consisting of inertialess adiabatic electrons, inertialess adiabatic ions and inertial adiabatic negatively charged dust fluids) is theoretically investigated by employing the self-similar approach. It is found that the effects of the plasma adiabaticity (represented by the adiabatic index ) and dusty plasma parameters (determined by dust temperature and initial dust population) significantly modify the nature of the plasma expansion. The implications of our results are expected to play an important role in understanding the physics of the expansion of space and laboratory electronegative dusty plasmas.
Analysis of radiofrequency discharges in plasma
Kumar, Devendra; McGlynn, Sean P.
1992-01-01
Separation of laser optogalvanic signals in plasma into two components: (1) an ionization rate change component, and (2) a photoacoustic mediated component. This separation of components may be performed even when the two components overlap in time, by measuring time-resolved laser optogalvanic signals in an rf discharge plasma as the rf frequency is varied near the electrical resonance peak of the plasma and associated driving/detecting circuits. A novel spectrometer may be constructed to make these measurements. Such a spectrometer would be useful in better understanding and controlling such processes as plasma etching and plasma deposition.
Latest Researches Advances of Plasma Spraying: From Splat to Coating Formation
NASA Astrophysics Data System (ADS)
Fauchais, P.; Vardelle, M.; Goutier, S.
2016-12-01
The plasma spray process with solid feedstock, mainly ceramics powders, studied since the sixties is now a mature technology. The plasma jet and particle in-flight characterizations are now well established. The use of computer-aided robot trajectory allows spraying on industrial parts with complex geometries. Works about splat formation have shown the importance of: the substrate preheating over the transition temperature to get rid of adsorbates and condensates, substrate chemistry, crystal structure and substrate temperature during the whole coating process. These studies showed that coating properties strongly depend on the splat formation and layering. The first part of this work deals with a summary of conventional plasma spraying key points. The second part presents the current knowledge in plasma spraying with liquid feedstock, technology developed for about two decades with suspensions of particles below micrometers or solutions of precursors that form particles a few micrometers sized through precipitation. Coatings are finely structured and even nanostructured with properties arousing the interest of researchers. However, the technology is by far more complex than the conventional ones. The main conclusions are that models should be developed further, plasma torches and injection setups adapted, and new measuring techniques to reliably characterize these small particles must be designed.
NASA Astrophysics Data System (ADS)
Miotk, R.; Jasiński, M.; Mizeraczyk, J.
2018-03-01
This paper presents the partial electromagnetic optimisation of a 2.45 GHz cylindrical-type microwave plasma source (MPS) operated at atmospheric pressure. The presented device is designed for hydrogen production from liquid fuels, e.g. hydrocarbons and alcohols. Due to industrial requirements regarding low costs for hydrogen produced in this way, previous testing indicated that improvements were required to the electromagnetic performance of the MPS. The MPS has a duct discontinuity region, which is a result of the cylindrical structure located within the device. The microwave plasma is generated in this discontinuity region. Rigorous analysis of the region requires solving a set of Maxwell equations, which is burdensome for complicated structures. Furthermore, the presence of the microwave plasma increases the complexity of this task. To avoid calculating the complex Maxwell equations, we suggest the use of the equivalent circuit method. This work is based upon the idea of using a Weissfloch circuit to characterize the area of the duct discontinuity and the plasma. The resulting MPS equivalent circuit allowed the calculation of a capacitive metallic diaphragm, through which an improvement in the electromagnetic performance of the plasma source was obtained.
Sputtering, Plasma Chemistry, and RF Sheath Effects in Low-Temperature and Fusion Plasma Modeling
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Kruger, Scott E.; McGugan, James M.; Pankin, Alexei Y.; Roark, Christine M.; Smithe, David N.; Stoltz, Peter H.
2016-09-01
A new sheath boundary condition has been implemented in VSim, a plasma modeling code which makes use of both PIC/MCC and fluid FDTD representations. It enables physics effects associated with DC and RF sheath formation - local sheath potential evolution, heat/particle fluxes, and sputtering effects on complex plasma-facing components - to be included in macroscopic-scale plasma simulations that need not resolve sheath scale lengths. We model these effects in typical ICRF antenna operation scenarios on the Alcator C-Mod fusion device, and present comparisons of our simulation results with experimental data together with detailed 3D animations of antenna operation. Complex low-temperature plasma chemistry modeling in VSim is facilitated by MUNCHKIN, a standalone python/C++/SQL code that identifies possible reaction paths for a given set of input species, solves 1D rate equations for the ensuing system's chemical evolution, and generates VSim input blocks with appropriate cross-sections/reaction rates. These features, as well as principal path analysis (to reduce the number of simulated chemical reactions while retaining accuracy) and reaction rate calculations from user-specified distribution functions, will also be demonstrated. Supported by the U.S. Department of Energy's SBIR program, Award DE-SC0009501.
Low-Energy Positron-Matter Interactions Using Trap-Based Beams
2002-06-24
qualitatively by the recent exploitation of nonneutral plasma physics techniques to produce antimatter plasmas and beams in new regimes of parameter space...a quantitative antimatter - matter chemistry, important not only in obtaining a fundamental understanding of nature, but also in using antimatter in...ANNIHILATION MEASUREMENTS The fate of all antimatter in our world is annihilation with ordinary matter. Thus understanding the details of these annihilation
Probing the Structure of Our Solar System's Edge
NASA Astrophysics Data System (ADS)
Hensley, Kerry
2018-02-01
The boundary between the solar wind and the interstellar medium (ISM) at the distant edge of our solar system has been probed remotely and directly by spacecraft, but questions about its properties persist. What can models tell us about the structure of this region?The Heliopause: A Dynamic BoundarySchematic illustrating different boundaries of our solar system and the locations of the Voyager spacecraft. [Walt Feimer/NASA GSFCs Conceptual Image Lab]As our solar system travels through interstellar space, the magnetized solar wind flows outward and pushes back on the oncoming ISM, forming a bubble called the heliosphere. The clash of plasmas generates a boundary region called the heliopause, the shape of which depends strongly on the properties of the solar wind and the local ISM.Much of our understanding of the outer heliosphere and the local ISM comes from observations made by the International Boundary Explorer (IBEX) and the Voyager 1 and Voyager 2 spacecraft. IBEX makes global maps of the flux of neutral atoms, while Voyagers 1 and 2 record the plasma density and magnetic field parameters along their trajectories as they exit the solar system. In order to interpret the IBEX and Voyager observations, astronomers rely on complex models that must capture both global and local effects.Simulations of the plasma density in the meridional plane of the heliosphere due to the interaction of the solar wind with the ISM for the case of a relatively dense ISM with a weak magnetic field. [Adapted from Pogorelov et al. 2017]Modeling the Edge of the Solar SystemIn this study, Nikolai Pogorelov (University of Alabama in Huntsville) and collaborators use a hybrid magneto-hydrodynamical (MHD) and kinetic simulation to capture fully the physical processes happening in the outer heliosphere.MHD models have been used to understand many aspects of plasma flow in the heliosphere. However, they struggle to capture processes that are better described kinetically, like charge exchange or plasma instabilities. Fully kinetic models, on the other hand, are too computationally expensive to be used for global time-dependent simulations.In order to combine the strengths of MHD and kinetic models, the authors also use adaptive mesh refinement a technique in which the grid size is whittled down at key locations where small-scale physics can have a large effect to resolve the important kinetic processes taking place at the heliopause while lowering the overall computational cost.Physics of the BorderTop: Simulation results for the plasma density observed by Voyager 1 along its trajectory. Bottom: Voyager 1 observations of plasma waves. An increase in the plasma wave frequency corresponds to an increase in the ambient plasma density. Click for a closer look. [Adapted from Pogorelov et al. 2017]The authors varied the ISMs density and magnetic field, exploring how this changed the interaction between the ISM and the solar wind. Among their many results, the authors found:There exists a plasma density drop and magnetic field strength increase in the ISM, just beyond the heliopause. This narrow boundary region is similar to a plasma depletion layer formed upstream from the Earths magnetopause as the solar wind streams around it.The authors model for the plasma density along the trajectory of Voyager 1 is consistent with the actual plasma density inferred from Voyager 1s measurements.The heliospheric magnetic field likely dissipates in the region between the termination shock the point at which the solar wind speed drops below the speed of sound and the heliopause.While this work by Pogorelov and collaborators has brought to light new aspects of the boundary between the solar wind and the ISM, the challenge of linking data and models continues. Future simulations will help us further interpret observations by IBEX and the Voyager spacecraft and advance our understanding of how our solar system interacts with the surrounding ISM.CitationN. V. Pogorelov et al 2017ApJ8459. doi:10.3847/1538-4357/aa7d4f
Martos, Laura; Ramón, Luis Andrés; Oto, Julia; Fernández-Pardo, Álvaro; Bonanad, Santiago; Cid, Ana Rosa; Gruber, Andras; Griffin, John H; España, Francisco; Navarro, Silvia; Medina, Pilar
2018-04-01
Activated protein C (APC) is a major regulator of thrombin formation. Two major plasma inhibitors form complexes with APC, protein C inhibitor (PCI) and α 1 -antitrypsin (α 1 AT), and these complexes have been quantified by specific enzyme-linked immunosorbent assays (ELISAs). Also, complexes of APC with α 2 -macroglobulin (α 2 M) have been observed by immunoblotting. Here, we report an ELISA for APC:α 2 M complexes in plasma. Plasma samples were pre-treated with dithiothreitol and then with iodoacetamide. The detection range of the newly developed APC:α 2 M assay was 0.031 to 8.0 ng/mL of complexed APC. Following infusions of APC in humans and baboons, complexes of APC with α 2 M, PCI and α 1 AT were quantified. These complexes as well as circulating APC were also measured in 121 patients with a history of venous thromboembolism (VTE) and 119 matched controls. In all the in vivo experiments, α 2 M was a significant APC inhibitor. The VTE case-control study showed that VTE patients had significantly lower APC:α 2 M and APC levels than the controls ( p < 0.001). Individuals in the lowest quartile of APC:α 2 M or the lowest quartile of APC had approximately four times more VTE risk than those in the highest quartile of APC:α 2 M or of APC. The risk increased for individuals with low levels of both parameters. The APC:α 2 M assay reported here may be useful to help monitor the in vivo fate of APC in plasma. In addition, our results show that a low APC:α 2 M level is associated with increased VTE risk. Schattauer GmbH Stuttgart.
Clark, Kevin D.; Strand, Michael R.
2013-01-01
The phenoloxidase (PO) cascade regulates the melanization of blood (hemolymph) in insects and other arthropods. Most studies indicate that microbial elicitors activate the PO cascade, which results in processing of the zymogen PPO to PO. PO is then thought to oxidize tyrosine and o-diphenols to quinones, which leads to melanin. However, different lines of investigation raise questions as to whether these views are fully correct. Here we report that hemolymph from the silkmoth, Bombyx mori, rapidly melanizes after collection from a wound site. Prior studies indicated that in vitro activated PPO hydroxylates Tyr inefficiently. Measurement of in vivo substrate titers, however, suggested that Tyr was the only PO substrate initially present in B. mori plasma and that it is rapidly metabolized by PO. Fractionation of plasma by gel filtration chromatography followed by bioassays indicated that melanization activity was primarily associated with a high mass complex (∼670 kDa) that contained PO. The prophenoloxidase-activating protease inhibitor Egf1.0 blocked formation of this complex and Tyr metabolism, but the addition of phenylthiourea to plasma before fractionation enhanced complex formation and Tyr metabolism. Mass spectrometry analysis indicated that the complex contained PO plus other proteins. Taken together, our results indicate that wounding alone activates the PO cascade in B. mori. They also suggest that complex formation is required for efficient use of Tyr as a substrate. PMID:23553628
Analysis of glow discharges for understanding the process of film formation
NASA Technical Reports Server (NTRS)
Venugopalan, M.; Avni, R.
1984-01-01
The physical and chemical processes which occur during the formation of different types of films in a variety of glow discharge plasmas are discussed. Emphasis is placed on plasma diagnostic experiments using spectroscopic methods, probe analysis, mass spectrometric sampling and magnetic resonance techniques which are well suited to investigate the neutral and ionized gas phase species as well as some aspects of plasma surface interactions. The results on metallic, semi-conducting and insulating films are reviewed in conjunction with proposed models and the problem encountered under film deposition conditions. It is concluded that the understanding of film deposition process requires additional experimental information on plasma surface interactions of free radicals and the synergetic effects where photon, electron and ion bombardment change the reactivity of the incident radical with the surface.
NASA Astrophysics Data System (ADS)
Obana, Y.; Maruyama, N.; Masahito, N.; Matsuoka, A.; Teramoto, M.; Nomura, R.; Fujimoto, A.; Tanaka, Y.; Shinohara, M.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Tsuchiya, F.; Yoshizumi, M.; Shinohara, I.
2017-12-01
Earth's inner magnetosphere is a complex dynamical region of geo space comprising plasma populations with wide energy ranges, the plasmasphere, ring current, and radiation belts. They form a closely coupled system, thus, the plasmasphere is the lowest energy population in the inner magnetosphere, but the accurate prediction of the evolution of the plasmasphere is critical in understanding the dynamics of the inner magnetosphere, which include even the highest energy population, the radiation belts. In this study, we study plasmaspheric refilling following geomagnetic storms using data from ERG-MGF, ERG-PWE, RBSP-EMFISIS and Ground-based magnetometers. DC magnetic field data measured by ERG-MGF, RBSP-EMFISIS and ground-based magnetometers provides the frequency of the toroidal mode field line resonances. From this information, the equatorial plasma mass density is estimated by solving the MHD wave equation for suitable models of the magnetic field and the field line density distribution. ERG-PWE and RBSP-EMFISIS provide measurements of wave electric and magnetic field, thus we can estimate the local electron density from the plasma wave spectrograms by identifying narrow-band emission at the upper-hybrid resonance frequency. Furthermore, using Ionosphere Plasmasphere Electrodynamics Model (IPE), we calculate the plasmaspheric refilling rates and evaluate the relative contribution of various mechanisms (heating, neutral particle density, composition and wings, etc.) to the refilling rate.
Evidence for Chaotic Edge Turbulence in the Alcator C-Mod Tokamak
NASA Astrophysics Data System (ADS)
Zhu, Ziyan; White, Anne; Carter, Troy; Terry, Jim; Baek, Seung Gyou
2016-10-01
Turbulence greatly reduces the confinement time of magnetic-confined plasmas; understanding the nature of this turbulence and the associated transport is therefore of great importance. This research seeks to establish whether turbulent fluctuations in Alcator C-Mod are chaotic or stochastic. This has an important impact on transport caused by turbulence in C-Mod: stochastic fluctuations sample all of phase space and can lead to diffusive transport, whereas chaotic fluctuations live in a restricted phase space (e.g. on attractors) and a diffusive description may not be valid. By analyzing the time series from an O-Mode reflectometer, turbulent edge density fluctuations in Ohmic plasmas and L-mode plasmas in the Alcator C-Mod tokamak are shown to be chaotic. Supporting evidence for chaos in the edge region includes: the observation of an exponential power spectra (which is associated with Lorentzian-shaped pulses in the time series) and the location of the signal in the Complexity-Entropy plane (C-H plane) and its corresponding Brandt-Pompe (BP) probability distribution. These analysis techniques will be briefly introduced along with a discussion of the analysis results. Different diagnostic techniques, such as Gas Puff Imaging (GPI), could be used to confirm the results. Work supported by the U.S. Department of Energy Office of Science under Agreement DE-FC02-99ER54512 and DE-FC02-07ER54918:011.
A model of fluid and solute exchange in the human: validation and implications.
Bert, J L; Gyenge, C C; Bowen, B D; Reed, R K; Lund, T
2000-11-01
In order to understand better the complex, dynamic behaviour of the redistribution and exchange of fluid and solutes administered to normal individuals or to those with acute hypovolemia, mathematical models are used in addition to direct experimental investigation. Initial validation of a model developed by our group involved data from animal experiments (Gyenge, C.C., Bowen, B.D., Reed, R.K. & Bert, J.L. 1999b. Am J Physiol 277 (Heart Circ Physiol 46), H1228-H1240). For a first validation involving humans, we compare the results of simulations with a wide range of different types of data from two experimental studies. These studies involved administration of normal saline or hypertonic saline with Dextran to both normal and 10% haemorrhaged subjects. We compared simulations with data including the dynamic changes in plasma and interstitial fluid volumes VPL and VIT respectively, plasma and interstitial colloid osmotic pressures PiPL and PiIT respectively, haematocrit (Hct), plasma solute concentrations and transcapillary flow rates. The model predictions were overall in very good agreement with the wide range of experimental results considered. Based on the conditions investigated, the model was also validated for humans. We used the model both to investigate mechanisms associated with the redistribution and transport of fluid and solutes administered following a mild haemorrhage and to speculate on the relationship between the timing and amount of fluid infusions and subsequent blood volume expansion.
NASA Astrophysics Data System (ADS)
Mackey, Katherine R. M.
2016-03-01
The Norman Rostoker Memorial Symposium brought together approximately 150 attendees to share their recent work and to reflect on the contributions of Norman Rostoker to the field of plasma physics and the advancement of fusion as a source of renewable clean energy. The field has changed considerably in a few short decades, with theoretical advances and technological innovations evolving in lock step. Over those same decades, our understanding of human induced climate change has also evolved; measurable changes in Earth's physical, chemical, and biological processes have already been observed, and these will likely intensify in the coming decades. Never before has the need for clean energy been more pronounced, or the need for transformative solutions more pressing. As scientists work with legislators, journalists, and the public to take actions to address the threat of climate change, there is much to be learned from the legacies of innovators like Norman Rostoker, who have tackled complex problems with scientific insight and determination even when the odds were stacked against them. I write this from the perspective on an Earth system scientist who studies photosynthesis and the biogeochemistry of the oceans, and my statements about plasma physics and Norman Rostoker are based on information I gathered from the colloquium and from many enjoyable conversations with his friends and colleagues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackey, Katherine R. M.
The Norman Rostoker Memorial Symposium brought together approximately 150 attendees to share their recent work and to reflect on the contributions of Norman Rostoker to the field of plasma physics and the advancement of fusion as a source of renewable clean energy. The field has changed considerably in a few short decades, with theoretical advances and technological innovations evolving in lock step. Over those same decades, our understanding of human induced climate change has also evolved; measurable changes in Earth’s physical, chemical, and biological processes have already been observed, and these will likely intensify in the coming decades. Never beforemore » has the need for clean energy been more pronounced, or the need for transformative solutions more pressing. As scientists work with legislators, journalists, and the public to take actions to address the threat of climate change, there is much to be learned from the legacies of innovators like Norman Rostoker, who have tackled complex problems with scientific insight and determination even when the odds were stacked against them. I write this from the perspective on an Earth system scientist who studies photosynthesis and the biogeochemistry of the oceans, and my statements about plasma physics and Norman Rostoker are based on information I gathered from the colloquium and from many enjoyable conversations with his friends and colleagues.« less
Improvements to the ICRH antenna time-domain 3D plasma simulation model
NASA Astrophysics Data System (ADS)
Smithe, David N.; Jenkins, Thomas G.; King, J. R.
2015-12-01
We present a summary of ongoing improvements to the 3D time-domain plasma modeling software that has been used to look at ICRH antennas on Alcator C-Mod, NSTX, and ITER [1]. Our past investigations have shown that in low density cases where the slow wave is propagating, strong amplitude lower hybrid resonant fields can occur. Such a scenario could result in significant parasitic power loss in the SOL. The primary resonance broadening in this case is likely collisions with neutral gas, and thus we are upgrading the model to include realistic neutral gas in the SOL, in order to provide a better understanding of energy balance in these situations. Related to this, we are adding a temporal variation capability to the local plasma density in front of the antenna in order to investigate whether the near fields of the antenna could modify the local density sufficiently to initiate a low density situation. We will start with a simple scalar ponderomotive potential density expulsion model [2] for the density evolution, but are also looking to eventually couple to a more complex fluid treatment that would include tensor pressures and convective physics and sources of neutrals and ionization. We also review continued benchmarking efforts, and ongoing and planned improvements to the computational algorithms, resulting from experience gained during our recent supercomputing runs on the Titan supercomputer, including GPU operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bashline, Logan; Li, Shundai; Zhu, Xiaoyu
Here, cellulose biosynthesis is performed exclusively by plasma membrane-localized cellulose synthases (CESAs). Therefore, the trafficking of CESAs to and from the plasma membrane is an important mechanism for regulating cellulose biosynthesis. CESAs were recently identified as cargo proteins of the classic adaptor protein 2 (AP2) complex of the clathrin-mediated endocytosis (CME) pathway. The AP2 complex of the CME pathway is conserved in yeast, animals, and plants, and has been well-characterized in many systems. In contrast, the recently discovered TPLATE complex (TPC), which is proposed to function as a CME adaptor complex, is only conserved in plants and a few othermore » eukaryotes. In this study, we discovered that the TWD40-2 protein, a putative member of the TPC, is also important for the endocytosis of CESAs. Genetic analysis between TWD40-2 and AP2M of the AP2 complex revealed that the roles of TWD40-2 in CME are both distinct from and cooperative with the AP2 complex. Loss of efficient CME in twd40-2-3 resulted in the unregulated overaccumulation of CESAs at the plasma membrane. In seedlings of twd40-2-3 and other CME-deficient mutants, a direct correlation was revealed between endocytic deficiency and cellulose content deficiency, highlighting the importance of controlled CESA endocytosis in regulating cellulose biosynthesis.« less
Bashline, Logan; Li, Shundai; Zhu, Xiaoyu; ...
2015-09-28
Here, cellulose biosynthesis is performed exclusively by plasma membrane-localized cellulose synthases (CESAs). Therefore, the trafficking of CESAs to and from the plasma membrane is an important mechanism for regulating cellulose biosynthesis. CESAs were recently identified as cargo proteins of the classic adaptor protein 2 (AP2) complex of the clathrin-mediated endocytosis (CME) pathway. The AP2 complex of the CME pathway is conserved in yeast, animals, and plants, and has been well-characterized in many systems. In contrast, the recently discovered TPLATE complex (TPC), which is proposed to function as a CME adaptor complex, is only conserved in plants and a few othermore » eukaryotes. In this study, we discovered that the TWD40-2 protein, a putative member of the TPC, is also important for the endocytosis of CESAs. Genetic analysis between TWD40-2 and AP2M of the AP2 complex revealed that the roles of TWD40-2 in CME are both distinct from and cooperative with the AP2 complex. Loss of efficient CME in twd40-2-3 resulted in the unregulated overaccumulation of CESAs at the plasma membrane. In seedlings of twd40-2-3 and other CME-deficient mutants, a direct correlation was revealed between endocytic deficiency and cellulose content deficiency, highlighting the importance of controlled CESA endocytosis in regulating cellulose biosynthesis.« less
New insights into circulating FABP4: Interaction with cytokeratin 1 on endothelial cell membranes.
Saavedra, Paula; Girona, Josefa; Bosquet, Alba; Guaita, Sandra; Canela, Núria; Aragonès, Gemma; Heras, Mercedes; Masana, Lluís
2015-11-01
Fatty acid-binding protein 4 (FABP4) is an adipose tissue-secreted adipokine that is involved in the regulation of energetic metabolism and inflammation. Increased levels of circulating FABP4 have been detected in individuals with cardiovascular risk factors. Recent studies have demonstrated that FABP4 has a direct effect on peripheral tissues, specifically promoting vascular dysfunction; however, its mechanism of action is unknown. The objective of this work was to assess the specific interactions between exogenous FABP4 and the plasma membranes of endothelial cells. Immunofluorescence assays showed that exogenous FABP4 localized along the plasma membranes of human umbilical vein endothelial cells (HUVECs), interacting specifically with plasma membrane proteins. Anti-FABP4 immunoblotting revealed two covalent protein complexes containing FABP4 and its putative receptor; these complexes were approximately 108 kDa and 77 kDa in size. Proteomics and mass spectrometry experiments revealed that cytokeratin 1 (CK1) was the FABP4-binding protein. An anti-CK1 immunoblot confirmed the presence of CK1. FABP4-CK1 complexes were also detected in HAECs, HCASMCs, HepG2 cells and THP-1 cells. Pharmacological FABP4 inhibition by BMS309403 results in a slight decrease in the formation of these complexes, indicating that fatty acids may play a role in FABP4 functionality. In addition, we demonstrated that exogenous FABP4 crosses the plasma membrane to enter the cytoplasm and nucleus in HUVECs. These findings indicate that exogenous FABP4 interacts with plasma membrane proteins, specifically CK1. These data contribute to our current knowledge regarding the mechanism of action of circulating FABP4.
Scattering of Microwaves by Steady-State Plasma Slabs, Columns, and Layers at Atmospheric Pressure
1998-03-01
permeability unity is- (Fig 0) SÖ$ftS?S5 Pressure Plasmas Y=J7(er) . 2071 (1) where y is the complex propagation coefficient, w is the wave...a phase dependence expjtot-Yxl to a i„ ., permeability nnTty,^ J ’°SSy med’Um °f reIat<- ■j^r)^ • (1) where y is the complex propagation...preservation is an. issue. Some examples are food (solid or liquid) sterilization, pharmaceutical applications, and environmental applications ( soil
Brown, R M; Montezinos, D
1976-01-01
Cellulose microfibril biosynthesis, assembly, and orientation in the unicellular green alga, Oocystis, is visualized in association with a linear enzyme complex embedded in the B face of the plasma membrane. Granule bands of the A face and complementary ridges of the B face are postulated to assist in the orientation of recently synthesized microfibrils. A model for microfibril synthesis and orientation is proposed and correlated with current hypotheses regarding cellulose biosynthesis in higher plants.
NASA Astrophysics Data System (ADS)
Schulz-von der Gathen, Volker
2015-09-01
Over the last decade a huge variety of atmospheric pressure plasma jets has been developed and applied for plasma medicine. The efficiency of these non-equilibrium plasmas for biological application is based on the generated amounts of reactive species and radiation. The gas temperatures stay within a range tolerable for temperature-sensitive tissues. The variety of different discharge geometries complicates a direct comparison. In addition, in plasma-medicine the combination of plasma with reactive components, ambient air, as well as biologic tissue - typically also incorporating fluids - results in a complex system. Thus, real progress in plasma-medicine requires a profound knowledge of species, their fluxes and processes hitting biological tissues. That will allow in particular the necessary tailoring of the discharge to fit the conditions. The complexity of the problem can only be overcome by a common effort of many groups and requires a comparison of their results. A reference device based on the already well-investigated micro-scaled atmospheric pressure plasma jet is presented. It is developed in the frame of the European COST initiative MP1101 to establish a publicly available, stable and reproducible source, where required plasma conditions can be investigated. Here we present the design and the ideas behind. The presentation discusses the requirements for the reference source and operation conditions. Biological references are also defined by the initiative. A specific part of the talk will be attributed to the reproducibility of results from various samples of the device. Funding by the DFG within the Package Project PAK816 ``Plasma Cell Interaction in Dermatology'' and the Research Unit FOR 1123 ``Physics of microplasmas'' is gratefully acknowledged.
Investigations of microwave plasmas - Applications in electrothermal thruster systems
NASA Technical Reports Server (NTRS)
Haraburda, Scott S.; Hawley, Martin C.
1989-01-01
Experimental studies which have been conducted to develop understanding of plasma processes used for spacecraft propulsion are reviewed. The techniques discussed are calorimetry and volume measurements using the TM 011 and TM 012 modes in the microwave cavity system. The use of plasmas in electrical propulsion and microwave induction is reviewed. Plasma containment, microwave power production, energy distribution, and the pressure and flow dependence of the energy distribution are addressed. The plasma dimensions and their dependence on pressure, flow, and power are considered.
Investigations of microwave plasmas - Applications in electrothermal thruster systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haraburda, S.S.; Hawley, M.C.
1989-01-01
Experimental studies which have been conducted to develop understanding of plasma processes used for spacecraft propulsion are reviewed. The techniques discussed are calorimetry and volume measurements using the TM 011 and TM 012 modes in the microwave cavity system. The use of plasmas in electrical propulsion and microwave induction is reviewed. Plasma containment, microwave power production, energy distribution, and the pressure and flow dependence of the energy distribution are addressed. The plasma dimensions and their dependence on pressure, flow, and power are considered. 10 refs.
State of the art in medical applications using non-thermal atmospheric pressure plasma
NASA Astrophysics Data System (ADS)
Tanaka, Hiromasa; Ishikawa, Kenji; Mizuno, Masaaki; Toyokuni, Shinya; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Metelmann, Hans-Robert; Hori, Masaru
2017-12-01
Plasma medical science is a novel interdisciplinary field that combines studies on plasma science and medical science, with the anticipation that understanding the scientific principles governing plasma medical science will lead to innovations in the field. Non-thermal atmospheric pressure plasma has been used for medical treatments, such as for cancer, blood coagulation, and wound healing. The interactions that occur between plasma and cells/tissues have been analyzed extensively. Direct and indirect treatment of cells with plasma has broadened the applications of non-thermal atmospheric pressure plasma in medicine. Examples of indirect treatment include plasma-assisted immune-therapy and plasma-activated medium. Controlling intracellular redox balance may be key in plasma cancer treatment. Animal studies are required to test the effectiveness and safety of these treatments for future clinical applications.
Kataev, Anatoly; Zherelova, Olga; Grishchenko, Valery
2016-12-01
Interaction of a HAMLET-like La-OA cytotoxic complex (human α-lactalbumin-oleic acid) and its constituents with the excitable plasmalemma of giant Chara corallina cells was investigated. The voltage-clamp technique was used to study Ca 2+ and Cl - transient currents in the plasmalemma of intact cells. The action of the complex and OA on the target cell membrane has a dose-dependent character. It was found that the La-OA complex has an inhibiting effect on Ca 2+ current across the plasmalemma, while α-lactalbumin alone does not affect the electrophysiological characteristics of the cellular membrane. However, oleic acid blocks Ca 2+ current across the plasmalemma. This is accompanied by the induction of a non-selective conductivity in the cellular membrane, a decrease in the resting potential and plasma membrane resistance of algal cells. We propose that the cytotoxicity of La-OA and other HAMLET-like complexes is determined by oleic acid acting as a blocker of potential-dependent Ca 2+ channels in the plasma membrane of target cells. The presented results show that the study model of green algae C. corallina cells plasmalemma is a convenient tool for the investigation of ion channels in many animal cells.
NASA Technical Reports Server (NTRS)
Spann, Jim
2010-01-01
Heliophysics is the science that includes all aspects of the research needed to understand the Sun and its effects on the Earth and the solar system. Six science targets: 1. Origins of Near-Earth Plasma - to understand the origin and transport of terrestrial plasma from its source to the magnetosphere and solar wind. 2. Solar Energetic Particle Acceleration and Transport - to understand how and where solar eruptions accelerate energetic particles that reach Earth. 3. Ion-Neutral Coupling in the Atmosphere - to understand how neutral winds control ionospheric variability. 4. Climate Impacts of Space Radiation - to understand our atmosphere s response to auroral, radiation belt, and solar energetic particles, and the associated effects on nitric oxide (NO) and ozone. 5. Dynamic Geospace Coupling - to understand how magnetospheric dynamics provides energy into the coupled ionosphere-magnetosphere system. 6. Heliospheric Magnetics - to understand the flow and dynamics of transient magnetic structures form the solar interior to Earth.
Current understanding of the physics of type III solar radio bursts
NASA Technical Reports Server (NTRS)
Papadopoulos, K.
1980-01-01
One of the most exciting plasma physics investigations of recent years has been connected with the understanding of a new strong turbulent plasma state excited by propagating electron beams. This new state is initiated on the linear level by parametric instabilities (OTS, modulational, etc.) and results in a very dynamic state composed of collective clusters of modes called solitons, cavitons, spikons, etc. Introduction of these concepts into the classic beam-plasma interaction problem has rendered quasi-linear and weak turbulence theories inapplicable over most of the interesting parameter range, and helped explain many paradoxes connected with the propagation of beams in the laboratory and space. Following a brief review of these nonlinear notions, the means by which their application to type III solar radiobursts has revolutionized understanding of their propagation, radioemission and scaling properties and has guided the in situ observations towards a more complete understanding are demonstrated. A particular burst (May 16, 1971) is analyzed in detail and compared with numerical predictions.
Park, Bum-Sik; Hong, In-Seok; Jang, Ji-Ho; Jin, Hyunchang; Choi, Sukjin; Kim, Yonghwan
2016-02-01
A 28 GHz electron cyclotron resonance (ECR) ion source is being developed for use as an injector for the superconducting linear accelerator of the Rare Isotope Science Project. Beam extraction from the ECR ion source has been simulated using the KOBRA3-INP software. The simulation software can calculate charged particle trajectories in three dimensional complex magnetic field structures, which in this case are formed by the arrangement of five superconducting magnets. In this study, the beam emittance is simulated to understand the effects of plasma potential, mass-to-charge ratio, and spatial distribution. The results of these simulations and their comparison to experimental results are presented in this paper.
Application of chaos theory to the particle dynamics of asymmetry-induced transport
NASA Astrophysics Data System (ADS)
Eggleston, D. L.
2018-03-01
The techniques of chaos theory are employed in an effort to better understand the complex single-particle dynamics of asymmetry-induced transport in non-neutral plasmas. The dynamical equations are re-conceptualized as describing time-independent trajectories in a four-dimensional space consisting of the radius r, rotating frame angle ψ, axial position z, and axial velocity v. Results include the identification of an integral of the motion, fixed-point analysis of the dynamical equations, the construction and interpretation of Poincaré sections to visualize the dynamics, and, for the case of chaotic motion, numerical calculation of the largest Lyapunov exponent. Chaotic cases are shown to be associated with the overlap of resonance islands formed by the applied asymmetry.
Dynamics of Magnetized Plasma Jets and Bubbles Launched into a Background Magnetized Plasma
NASA Astrophysics Data System (ADS)
Wallace, B.; Zhang, Y.; Fisher, D. M.; Gilmore, M.
2016-10-01
The propagation of dense magnetized plasma, either collimated with mainly azimuthal B-field (jet) or toroidal with closed B-field (bubble), in a background plasma occurs in a number of solar and astrophysical cases. Such cases include coronal mass ejections moving in the background solar wind and extragalactic radio lobes expanding into the extragalactic medium. Understanding the detailed MHD behavior is crucial for correctly modeling these events. In order to further the understanding of such systems, we are investigating the injection of dense magnetized jets and bubbles into a lower density background magnetized plasma using a coaxial plasma gun and a background helicon or cathode plasma. In both jet and bubble cases, the MHD dynamics are found to be very different when launched into background plasma or magnetic field, as compared to vacuum. In the jet case, it is found that the inherent kink instability is stabilized by velocity shear developed due to added magnetic tension from the background field. In the bubble case, rather than directly relaxing to a minimum energy Taylor state (spheromak) as in vacuum, there is an expansion asymmetry and the bubble becomes Rayleigh-Taylor unstable on one side. Recent results will be presented. Work supported by the Army Research Office Award No. W911NF1510480.
Dusty Plasmas on the Lunar Surface
NASA Astrophysics Data System (ADS)
Horanyi, M.; Andersson, L.; Colwell, J.; Ergun, R.; Gruen, E.; McClintock, B.; Peterson, W. K.; Robertson, S.; Sternovsky, Z.; Wang, X.
2006-12-01
The electrostatic levitation and transport of lunar dust remains one of the most interesting and controversial science issues from the Apollo era. This issue is also of great engineering importance in designing human habitats and protecting optical and mechanical devices. As function of time and location, the lunar surface is exposed to solar wind plasma, UV radiation, and/or the plasma environment of our magnetosphere. Dust grains on the lunar surface collect an electrostatic charge; alter the large-scale surface charge density distribution, ?and subsequently develop an interface region to the background plasma and radiation. There are several in situ and remote sensing observations that indicate that dusty plasma processes are likely to be responsible for the mobilization and transport of lunar soil. These processes are relevant to: a) understanding the lunar surface environment; b) develop dust mitigation strategies; c) to understand the basic physical processes involved in the birth and collapse of dust loaded plasma sheaths. This talk will focus on the dusty plasma processes on the lunar surface. We will review the existing body of observations, and will also consider future opportunities for the combination of in situ and remote sensing observations. Our goals are to characterize: a) the temporal variation of the spatial and size distributions of the levitated/transported dust; and b) the surface plasma environment
Ion-Neutral Coupling in Solar Prominences
NASA Technical Reports Server (NTRS)
Gilbert, Holly
2011-01-01
Interactions between ions and neutrals in a partially ionized plasma are important throughout heliophysics, including near the solar surface in prominences. Understanding how ion-neutral coupling affects formation, support, structure, and dynamics of prominences will advance our physical understanding of magnetized systems involving a transition from a weakly ionized dense gas to a fully ionized tenuous plasma. We address the fundamental physics of prominence support, which is normally described in terms of a magnetic force on the prominence plasma that balances the solar gravitational force, and the implications for observations. Because the prominence plasma is only partially ionized, it is necessary to consider the support of the both the ionized and neutral components. Support of the neutrals is accomplished through a frictional interaction between the neutral and ionized components of the plasma, and its efficacy depends strongly on the degree of ionization of the plasma. More specifically, the frictional force is proportional to the relative flow of neutral and ion species, and for a sufficiently weakly ionized plasma, this flow must be relatively large to produce a frictional force that balances gravity. A large relative flow, of course, implies significant draining of neutral particles from the prominence. We evaluate the importance of this draining effect for a hydrogen-helium plasma, and consider the observational evidence for cross-field diffusion of neutral prominence material.
Shiozawa, J A; Jelenska, M M; Jacobson, B S
1987-07-28
Through the application of a unique method for isolating plasma membranes, it was possible to specifically iodinate cytoplasm-exposed plasma membrane proteins in vegetative cells of the cellular slime mold Dictyostelium discoideum. The original procedure [Chaney, L. K., & Jacobson, B. S. (1983) J. Biol. Chem. 258, 10062] which involved coating cells with colloidal silica has been modified to yield a more pure preparation. The presence of the continuous and dense silica pellicle on the outside surface of the isolated plasma membrane permitted the specific labeling of cytoplasm-exposed membrane proteins. Lactoperoxidase-catalyzed iodination was employed to label cell-surface and cytoplasm-exposed membrane proteins. The isolated and radioiodinated membranes were then compared and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The cell-surface and cytoplasmic face labeling patterns were distinct. A total of 65 proteins were found to be accessible to at least one surface of the membrane. Sixteen intermolecular disulfide bond complexes were observed in the plasma membrane of Dictyostelium; most of these complexes involved glycoproteins and, hence, were exposed to the cell surface.
Non-Maxwellian and magnetic field effects in complex plasma wakes★
NASA Astrophysics Data System (ADS)
Ludwig, Patrick; Jung, Hendrik; Kählert, Hanno; Joost, Jan-Philip; Greiner, Franko; Moldabekov, Zhandos; Carstensen, Jan; Sundar, Sita; Bonitz, Michael; Piel, Alexander
2018-05-01
In a streaming plasma, negatively charged dust particles create complex charge distributions on the downstream side of the particle, which are responsible for attractive forces between the like-charged particles. This wake phenomenon is studied by means of refined linear response theory and molecular dynamics simulations as well as in experiments. Particular attention is paid to non-Maxwellian velocity distributions that are found in the plasma sheath and to situations with strong magnetic fields, which are becoming increasingly important. Non-Maxwellian distributions and strong magnetic fields result in a substantial damping of the oscillatory wake potential. The interaction force in particle pairs is explored with the phase-resolved resonance method, which demonstrates the non-reciprocity of the interparticle forces in unmagnetized and magnetized systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takino, Hideo; Shibata, Norio; Itoh, Hiroshi
2006-08-10
We have developed plasma chemical vaporization machining by using a microelectrode for the fabrication of small complex-shaped optical surfaces. In this method, a0.5 mm diameter pipe microelectrode, from which processing gas is drawn in, generates a small localized plasma that is scanned over a work piece under numerical computer control to shape a desired surface. A12 mmx12 mm nonaxisymmetric mirror with a maximum depth of approximately 3 {mu}m was successfully fabricated with a peak-to-valley shape accuracy of 0.04 {mu}m in an area excluding the edges of the mirror. The average surface roughness was 0.58 nm, which is smooth enough formore » optical use.« less
Emerging role of ILK and ELMO2 in the integration of adhesion and migration pathways
Ho, Ernest; Dagnino, Lina
2012-01-01
Integrins and their associated proteins are essential components of the cellular machinery that modulates adhesion and migration. In particular, integrin-linked kinase (ILK), which binds to the cytoplasmic tail of β1 integrins, is required for migration in a variety of cell types. We previously identified engulfment and motility 2 (ELMO2) as an ILK-binding protein in epidermal keratinocytes. Recently, we investigated the biological role of the ILK/ELMO2 complexes, and found that they exist in the cytoplasm. ILK/ELMO2 species are recruited by active RhoG to the plasma membrane, where they induce Rac1 activation and formation of lamellipodia at the leading edge of migrating cells. A large number of growth factors and cytokines induce keratinocyte migration. However, we found that formation of RhoG/ELMO2/ILK complexes occurs selectively upon stimulation by epidermal growth factor, but not by transforming growth factor-β1 or keratinocyte growth factor. Herein we discuss the relevance of these complexes to our understanding of the molecular mechanisms involved in cell migration, as well as their potential functions in morphogenesis and tissue regeneration following injury. PMID:22568984
Emerging role of ILK and ELMO2 in the integration of adhesion and migration pathways.
Ho, Ernest; Dagnino, Lina
2012-01-01
Integrins and their associated proteins are essential components of the cellular machinery that modulates adhesion and migration. In particular, integrin-linked kinase (ILK), which binds to the cytoplasmic tail of β1 integrins, is required for migration in a variety of cell types. We previously identified engulfment and motility 2 (ELMO2) as an ILK-binding protein in epidermal keratinocytes. Recently, we investigated the biological role of the ILK/ELMO2 complexes, and found that they exist in the cytoplasm. ILK/ELMO2 species are recruited by active RhoG to the plasma membrane, where they induce Rac1 activation and formation of lamellipodia at the leading edge of migrating cells. A large number of growth factors and cytokines induce keratinocyte migration. However, we found that formation of RhoG/ELMO2/ILK complexes occurs selectively upon stimulation by epidermal growth factor, but not by transforming growth factor-β1 or keratinocyte growth factor. Herein we discuss the relevance of these complexes to our understanding of the molecular mechanisms involved in cell migration, as well as their potential functions in morphogenesis and tissue regeneration following injury.
Complex Physical, Biophysical and Econophysical Systems
NASA Astrophysics Data System (ADS)
Dewar, Robert L.; Detering, Frank
1. Introduction to complex and econophysics systems: a navigation map / T. Aste and T. Di Matteo -- 2. An introduction to fractional diffusion / B. I. Henry, T.A.M. Langlands and P. Straka -- 3. Space plasmas and fusion plasmas as complex systems / R. O. Dendy -- 4. Bayesian data analysis / M. S. Wheatland -- 5. Inverse problems and complexity in earth system science / I. G. Enting -- 6. Applied fluid chaos: designing advection with periodically reoriented flows for micro to geophysical mixing and transport enhancement / G. Metcalfe -- 7. Approaches to modelling the dynamical activity of brain function based on the electroencephalogram / D. T. J. Liley and F. Frascoli -- 8. Jaynes' maximum entropy principle, Riemannian metrics and generalised least action bound / R. K. Niven and B. Andresen -- 9. Complexity, post-genomic biology and gene expression programs / R. B. H. Williams and O. J.-H. Luo -- 10. Tutorials on agent-based modelling with NetLogo and network analysis with Pajek / M. J. Berryman and S. D. Angus.
Applications of Pulsed Power in Advanced Oxidation and Reduction Processes for Pollution Control
1993-06-01
electrical driver pulse width and rise time, electrical drive circuit coupling to plasma cells, and the role of UV light in the plasma chemistry and...will permit industrial service. Basic understanding of the plasma chemistry has evolved to the point where trends and equipment scaling can be
Real time closed loop control of an Ar and Ar/O2 plasma in an ICP
NASA Astrophysics Data System (ADS)
Faulkner, R.; Soberón, F.; McCarter, A.; Gahan, D.; Karkari, S.; Milosavljevic, V.; Hayden, C.; Islyaikin, A.; Law, V. J.; Hopkins, M. B.; Keville, B.; Iordanov, P.; Doherty, S.; Ringwood, J. V.
2006-10-01
Real time closed loop control for plasma assisted semiconductor manufacturing has been the subject of academic research for over a decade. However, due to process complexity and the lack of suitable real time metrology, progress has been elusive and genuine real time, multi-input, multi-output (MIMO) control of a plasma assisted process has yet to be successfully implemented in an industrial setting. A Splasma parameter control strategy T is required to be adopted whereby process recipes which are defined in terms of plasma properties such as critical species densities as opposed to input variables such as rf power and gas flow rates may be transferable between different chamber types. While PIC simulations and multidimensional fluid models have contributed considerably to the basic understanding of plasmas and the design of process equipment, such models require a large amount of processing time and are hence unsuitable for testing control algorithms. In contrast, linear dynamical empirical models, obtained through system identification techniques are ideal in some respects for control design since their computational requirements are comparatively small and their structure facilitates the application of classical control design techniques. However, such models provide little process insight and are specific to an operating point of a particular machine. An ideal first principles-based, control-oriented model would exhibit the simplicity and computational requirements of an empirical model and, in addition, despite sacrificing first principles detail, capture enough of the essential physics and chemistry of the process in order to provide reasonably accurate qualitative predictions. This paper will discuss the development of such a first-principles based, control-oriented model of a laboratory inductively coupled plasma chamber. The model consists of a global model of the chemical kinetics coupled to an analytical model of power deposition. Dynamics of actuators including mass flow controllers and exhaust throttle are included and sensor characteristics are also modelled. The application of this control-oriented model to achieve multivariable closed loop control of specific species e.g. atomic Oxygen and ion density using the actuators rf power, Oxygen and Argon flow rates, and pressure/exhaust flow rate in an Ar/O2 ICP plasma will be presented.
NASA Astrophysics Data System (ADS)
Petrović, Zoran Lj; Marić, Dragana; Malović, Gordana
2011-03-01
This special issue consists of papers that are associated with invited lectures, workshop papers and hot topic papers presented at the 20th European Sectional Conference on Atomic and Molecular Physics of Ionized Gases (ESCAMPIG XX). This conference was organized in Novi Sad (Serbia) from 13 to 17 July 2010 by the Institute of Physics of the University of Belgrade. It is important to note that this is not a conference 'proceedings'. Following the initial selection process by the International Scientific Committee, all papers were submitted to the journal by the authors and have been fully peer reviewed to the standard required for publication in Plasma Sources Science and Technology (PSST). The papers are based on presentations given at the conference but are intended to be specialized technical papers covering all or part of the topic presented by the author during the meeting. The ESCAMPIG conference is a regular biennial Europhysics Conference of the European Physical Society focusing on collisional and radiative aspects of atomic and molecular physics in partially ionized gases as well as on plasma-surface interaction. The conference focuses on low-temperature plasma sciences in general and includes the following topics: Atomic and molecular processes in plasmas Transport phenomena, particle velocity distribution function Physical basis of plasma chemistry Plasma surface interaction (boundary layers, sheath, surface processes) Plasma diagnostics Plasma and discharges theory and simulation Self-organization in plasmas, dusty plasmas Upper atmospheric plasmas and space plasmas Low-pressure plasma sources High-pressure plasma sources Plasmas and gas flows Laser-produced plasmas During ESCAMPIG XX special sessions were dedicated to workshops on: Atomic and molecular collision data for plasma modeling, organized by Professors Z Lj Petrovic and N Mason Plasmas in medicine, organized by Dr N Puac and Professor G Fridman. The conference topics were represented in the program by 16 invited lectures, 7 selected hot topics, and 191 poster presentations. The largest number of contributed papers was submitted in Topic 5: Plasma diagnostics (37). The workshop topics were addressed by 10 invited lectures, 5 oral presentations and 7 posters. A post-conference workshop with 5 invited lectures was organized, dealing with the data needs for modeling of plasma sources of light. ESCAMPIG XX was attended by 185 scientists from 31 countries. Of the participants, 30% were PhD students (55). The list includes scientists from the USA, Japan, Australia, Mexico and other non-European countries, which indicates the truly international status of the conference. We would like to thank the authors for their efforts in preparing stimulating lectures and interesting articles for the readers of PSST, and the scientific community dealing with ionized gases, plasma sources and atomic, molecular and chemical physics of low-temperature plasmas for continued interest in the field of ESCAMPIG. We would like to thank the organizers of all previous ESCAMPIG conferences for setting the standards for organization and, in particular, the organizers of ESCAMPIG XVIII and XIX for their direct help and insight. Finally the International Scientific Committee and its chairman in particular have worked hard to select the best possible program and to keep us in line with almost 40 years of tradition and standards of the conference. Most importantly this has been the 20th conference. The quality of new papers shows maturity and new vistas in the field that has produced so much fundamental understanding of complex, non-equilibrium, even nonlinear plasmas. At the same time the field has led to some of the key technologies of modern civilization and has shown that responsible science that pays attention to its societal benefits should have no fear for its future. All critical issues studied today were presented at the meeting and only a small part is represented here. For example, discharges in liquids or above liquids were covered by several lectures represented by two papers. Verreycken et al [1] studied optical emission spectroscopy and Rayleigh scattering in discharges above water electrodes in order to measure gas temperature. At the same time Starikovsky et al [2] showed that it is possible to strike a breakdown directly in the liquid phase without gaseous evaporation or bubbles. Another key issue of present-day low-temperature plasma physics is atmospheric pressure discharges. Application of atmospheric pressure microwave plasma was considered by Belmonte et al [3] as a source for plasma-enhanced chemical vapour deposition. Strategies to produce nanosize structures and high deposition rates have also been proposed. Akishev et al [4] presented modeling results showing why spatial reproducibility of the origins of micro-discharges in a dielectric barrier discharge (DBD) is very high while the stochastic nature of the breakdown leads to jitter. Associated with the application of plasmas in many systems is control plasma chemistry. Tanarro and Herrero [5] performed measurements and modeling of dominant species in a hollow cathode discharge with variation of pressure. Dramatic changes in composition were noticed in H2, H2/Ar, and air. For example, NO becomes the second most abundant neutral under some conditions while at high mean energies H2+ ions become more abundant than H3+. Loureiro et al [6] presented the most detailed self-consistent model of discharges in N2, both pure and in mixtures with H2 and CH4. The model includes coupling of different mechanisms in the gas phase and on surfaces. A further example of detailed plasma chemistry and modeling of possible industrial applications is the work of De Bie et al [7] who studied the conversion of methane to more complex hydrocarbons and other gases in a detailed model of kinetic and plasma chemistry of a DBD reactor. Associated with plasma chemistry models but with a completely different final goal is the work of Taccogna et al [8]. They provide a detailed model of negative ion production in an ITER source of fast neutrals for heating of fusion plasma. Low-temperature plasmas have made their most significant impact through application of etching and other plasma techniques in the production of integrated circuits. Associated with this there have been several papers dealing with control of plasmas relevant for plasma etching applications. Czarnetzki et al [9] presented the modeling of an electrical asymmetry effect which allows independent control of plasma symmetry, bias and consequently properties of ions reaching the surfaces. Separate control of the flux and energy of ions from capacitively coupled plasmas, while an interesting fundamental issue, is also one of the key issues in the manufacture of integrated circuits. Makabe and Yagisawa [10] gave a detailed presentation of the top-down model of plasma devices for etching and other plasma-related nanotechnologies. Their paper presents a complex model covering atomic and molecular collisions and transport, plasma kinetics in complex geometries, and plasma interaction with surfaces with the ability to calculate the development of etched profiles, and the damage-inducing potentials within the wafer. Finally, as the basis of all modeling of plasmas, atomic and molecular collision and transport data were a much more prominent part of ESCAMPIG conferences in the past. We tried to initiate the return of elementary processes to ESCAMPIG from numerous specialized conferences by organizing a workshop on the data for modeling. Bartschat and Zatsarinny [11] gave a presentation of the foundation of the B-spline R-matrix method and a number of cross section results that extend the databases for plasma modeling of atomic gases. State-of-the-art calculations presented here focus on threshold regions of electronic excitation cross sections where complex structures exist due to resonances. These threshold regions of the excitation cross sections, however, determine the distribution function in the region of the ionization, The interface between plasma modeling and atomic physics is swarm studies, and those are based on transport theory that has recently become quite complex and versatile. Dujko et al [12] considered a Boltzmann equation solution to the transport of charged particles, especially in crossed electric and magnetic fields. Apart from indicating the necessity to include transport properties in E × B fields in plasma modeling, these results show complexity and kinetic phenomena that require kinetic models to be properly included. Finally, Makabe and Tatsumi [13] presented the structure of a comprehensive model of plasma etching devices and focused on the requirements for the atomic and collision cross section data. The winner of the W Crookes Prize was Zoltán Donkó [14] who gave a review of particle-in-cell and Monte Carlo simulation methods and presented a review of a large number of systems where he and his co-workers have applied this technique. In particular the lecture gives examples of different kinetic phenomena that arise in modeling of different plasmas. This presentation covers both applications in the control of low-pressure capacitively coupled plasmas and DC breakdown and glow discharges as well as the issues of modeling of elementary processes in the gas phase and on surfaces. Finally, to reply to Harold Pinter and his famous quote, apart from the known and the unknown there is the joy of extending the border of the 'known' and sharing it with colleagues at conferences like ESCAMPIG. Every answer that is reached opens new horizons and new realms of the 'unknown' to explore, and conferences like ESCAMPIG have proven to be a continuous source of ideas and inspiration for all colleagues within the field of low-temperature plasmas and elementary processes. We can certainly hope that the 20th ESCAMPIG was no exception in this regard. References Verreycken T, van Gessel A F H, Pageau A and Bruggeman P 2011 Plasma Sources Sci. Technol. 20 024002 Starikovsky A, Yang Y, Cho Y I and Fridman A 2011 Plasma Sources Sci. Technol. 20 024003 Belmonte T, Gries T, Cardoso R P, Arnoult R, Kosior F and Henrion G 2011 Plasma Sources Sci. Technol. 20 024004 Akishev Y, Aponin G, Balakirev A, Grushin M, Karalnik V, Petryakov A and Trushkin N 2011 Plasma Sources Sci. Technol. 20 024005 Tanarro I and Herrero V J 2011 Plasma Sources Sci. Technol. 20 024006 Loureiro J, Guerra V, Sá P A, Pintassilgo C D and Lino da Silva M 2011 Plasma Sources Sci. Technol. 20 024007 De Bie C, Martens T, van Dijk, Paulussen S, Verheyde B and Bogaerts A 2011 Plasma Sources Sci. Technol. 20 024008 Taccogna F, Minelli P, Diomede P, Longo S, Capitelli M and Schneider R 2011 Plasma Sources Sci. Technol. 20 024009 Czarnetzki U, Schulze J, Schungel E and Donkó Z 2011 Plasma Sources Sci. Technol. 20 024010 Makabe T and Yagisawa T 2011 Plasma Sources Sci. Technol. 20 024011 Bartschat K and Zatsarinny O 2011 Plasma Sources Sci. Technol. 20 024012 Dujko S, White R D, Petrovic Z Lj and Robson R E 2011 Plasma Sources Sci. Technol. 20 024013 Makabe T and Tatsumi T 2011 Plasma Sources Sci. Technol. 20 024014 Donkó Z 2011 Plasma Sources Sci. Technol. 20 024001
Merging and Splitting of Plasma Spheroids in a Dusty Plasma
NASA Astrophysics Data System (ADS)
Mikikian, Maxime; Tawidian, Hagop; Lecas, Thomas
2012-12-01
Dust particle growth in a plasma is a strongly disturbing phenomenon for the plasma equilibrium. It can induce many different types of low-frequency instabilities that can be experimentally observed, especially using high-speed imaging. A spectacular case has been observed in a krypton plasma where a huge density of dust particles is grown by material sputtering. The instability consists of well-defined regions of enhanced optical emission that emerge from the electrode vicinity and propagate towards the discharge center. These plasma spheroids have complex motions resulting from their mutual interaction that can also lead to the merging of two plasma spheroids into a single one. The reverse situation is also observed with the splitting of a plasma spheroid into two parts. These results are presented for the first time and reveal new behaviors in dusty plasmas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ricci, P., E-mail: paolo.ricci@epfl.ch; Riva, F.; Theiler, C.
In the present work, a Verification and Validation procedure is presented and applied showing, through a practical example, how it can contribute to advancing our physics understanding of plasma turbulence. Bridging the gap between plasma physics and other scientific domains, in particular, the computational fluid dynamics community, a rigorous methodology for the verification of a plasma simulation code is presented, based on the method of manufactured solutions. This methodology assesses that the model equations are correctly solved, within the order of accuracy of the numerical scheme. The technique to carry out a solution verification is described to provide a rigorousmore » estimate of the uncertainty affecting the numerical results. A methodology for plasma turbulence code validation is also discussed, focusing on quantitative assessment of the agreement between experiments and simulations. The Verification and Validation methodology is then applied to the study of plasma turbulence in the basic plasma physics experiment TORPEX [Fasoli et al., Phys. Plasmas 13, 055902 (2006)], considering both two-dimensional and three-dimensional simulations carried out with the GBS code [Ricci et al., Plasma Phys. Controlled Fusion 54, 124047 (2012)]. The validation procedure allows progress in the understanding of the turbulent dynamics in TORPEX, by pinpointing the presence of a turbulent regime transition, due to the competition between the resistive and ideal interchange instabilities.« less
Lee, Seongju; Chang, Jaerak; Blackstone, Craig
2016-01-01
The endosomal network maintains cellular homeostasis by sorting, recycling and degrading endocytosed cargoes. Retromer organizes the endosomal sorting pathway in conjunction with various sorting nexin (SNX) proteins. The SNX27–retromer complex has recently been identified as a major endosomal hub that regulates endosome-to-plasma membrane recycling by preventing lysosomal entry of cargoes. Here, we show that SNX27 directly interacts with FAM21, which also binds retromer, within the Wiskott–Aldrich syndrome protein and SCAR homologue (WASH) complex. This interaction is required for the precise localization of SNX27 at an endosomal subdomain as well as for recycling of SNX27-retromer cargoes. Furthermore, FAM21 prevents cargo transport to the Golgi apparatus by controlling levels of phosphatidylinositol 4-phosphate, which facilitates cargo dissociation at the Golgi. Together, our results demonstrate that the SNX27–retromer–WASH complex directs cargoes to the plasma membrane by blocking their transport to lysosomes and the Golgi. PMID:26956659
Lee, Seongju; Chang, Jaerak; Blackstone, Craig
2016-03-09
The endosomal network maintains cellular homeostasis by sorting, recycling and degrading endocytosed cargoes. Retromer organizes the endosomal sorting pathway in conjunction with various sorting nexin (SNX) proteins. The SNX27-retromer complex has recently been identified as a major endosomal hub that regulates endosome-to-plasma membrane recycling by preventing lysosomal entry of cargoes. Here, we show that SNX27 directly interacts with FAM21, which also binds retromer, within the Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) complex. This interaction is required for the precise localization of SNX27 at an endosomal subdomain as well as for recycling of SNX27-retromer cargoes. Furthermore, FAM21 prevents cargo transport to the Golgi apparatus by controlling levels of phosphatidylinositol 4-phosphate, which facilitates cargo dissociation at the Golgi. Together, our results demonstrate that the SNX27-retromer-WASH complex directs cargoes to the plasma membrane by blocking their transport to lysosomes and the Golgi.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graves, David Barry
The overriding objective of this work is to bridge the gap between understanding of atmospheric pressure plasma (APP) sources and predictive chemical modifications of biomolecules. A key aspect of this problem is to understand what oxidizing species are created in water adjacent to APP jets that would ultimately affect aqueous biomolecules. We report the production of highly oxidative species in solutions exposed to a self-pulsed corona discharge in air. We examine how the properties of the target solution (pH, conductivity) and the discharge power affect the discharge stability and the production of H2O2. Indigo carmine, a common organic dye, ismore » used as an indicator of oxidative strength and in particular, hydroxyl radical (OH•) production. The observed rate of indigo oxidation in contact with the discharge far exceeds that predicted from reactions based on concentrations of species measured in the bulk solution. The generation of H2O2 and the oxidation of indigo carmine indicate a high concentration of highly oxidizing species such as OH• at the plasma-liquid interface. These results indicate that reactions at the air plasma-liquid interface play a dominant role in species oxidation during direct non-equilibrium atmospheric pressure plasma (NE-APP) treatment.« less
Magnetic Flux Compression Experiments Using Plasma Armatures
NASA Technical Reports Server (NTRS)
Turner, M. W.; Hawk, C. W.; Litchford, R. J.
2003-01-01
Magnetic flux compression reaction chambers offer considerable promise for controlling the plasma flow associated with various micronuclear/chemical pulse propulsion and power schemes, primarily because they avoid thermalization with wall structures and permit multicycle operation modes. The major physical effects of concern are the diffusion of magnetic flux into the rapidly expanding plasma cloud and the development of Rayleigh-Taylor instabilities at the plasma surface, both of which can severely degrade reactor efficiency and lead to plasma-wall impact. A physical parameter of critical importance to these underlying magnetohydrodynamic (MHD) processes is the magnetic Reynolds number (R(sub m), the value of which depends upon the product of plasma electrical conductivity and velocity. Efficient flux compression requires R(sub m) less than 1, and a thorough understanding of MHD phenomena at high magnetic Reynolds numbers is essential to the reliable design and operation of practical reactors. As a means of improving this understanding, a simplified laboratory experiment has been constructed in which the plasma jet ejected from an ablative pulse plasma gun is used to investigate plasma armature interaction with magnetic fields. As a prelude to intensive study, exploratory experiments were carried out to quantify the magnetic Reynolds number characteristics of the plasma jet source. Jet velocity was deduced from time-of-flight measurements using optical probes, and electrical conductivity was measured using an inductive probing technique. Using air at 27-inHg vacuum, measured velocities approached 4.5 km/s and measured conductivities were in the range of 30 to 40 kS/m.
NASA Astrophysics Data System (ADS)
Stauss, Sven; Muneoka, Hitoshi; Terashima, Kazuo
2018-02-01
Plasma science and technology has enabled advances in very diverse fields: micro- and nanotechnology, chemical synthesis, materials fabrication and, more recently, biotechnology and medicine. While many of the currently employed plasma tools and technologies are very advanced, the types of plasmas used in micro- and nanofabrication pose certain limits, for example, in treating heat-sensitive materials in plasma biotechnology and plasma medicine. Moreover, many physical properties of plasmas encountered in nature, and especially outer space, i.e. very-low-temperature plasmas or plasmas that occur in high-density media, are not very well understood. The present review gives a short account of laboratory plasmas generated under ’extreme’ conditions: at cryogenic temperatures and in supercritical fluids. The fundamental characteristics of these cryogenic plasmas and cryoplasmas, and plasmas in supercritical fluids, especially supercritical fluid plasmas, are presented with their main applications. The research on such exotic plasmas is expected to lead to further understanding of plasma physics and, at the same time, enable new applications in various technological fields.
Analysis of radiofrequency discharges in plasma
Kumar, D.; McGlynn, S.P.
1992-08-04
Separation of laser optogalvanic signals in plasma into two components: (1) an ionization rate change component, and (2) a photoacoustic mediated component. This separation of components may be performed even when the two components overlap in time, by measuring time-resolved laser optogalvanic signals in an rf discharge plasma as the rf frequency is varied near the electrical resonance peak of the plasma and associated driving/detecting circuits. A novel spectrometer may be constructed to make these measurements. Such a spectrometer would be useful in better understanding and controlling such processes as plasma etching and plasma deposition. 15 figs.
NASA Astrophysics Data System (ADS)
Engle, Scott G.; Guinan, Edward F.
2012-06-01
To broaden the understanding of classical Cepheid structure, evolution and atmospheres, we have extended our continuing secret lives of Cepheids program by obtaining XMM/Chandra X-ray observations, and Hubble space telescope (HST) / cosmic origins spectrograph (COS) FUV-UV spectra of the bright, nearby Cepheids Polaris, δ Cep and β Dor. Previous studies made with the international ultraviolet explorer (IUE) showed a limited number of UV emission lines in Cepheids. The well-known problem presented by scattered light contamination in IUE spectra for bright stars, along with the excellent sensitivity & resolution combination offered by HST/COS, motivated this study, and the spectra obtained were much more rich and complex than we had ever anticipated. Numerous emission lines, indicating 10^4 K up to ~3 x 10^5 K plasmas, have been observed, showing Cepheids to have complex, dynamic outer atmospheres that also vary with the photospheric pulsation period. The FUV line emissions peak in the phase range φ ∼ 0.8-1.0 and vary by factors as large as 10x. A more complete picture of Cepheid outer atmospheres is accomplished when the HST/COS results are combined with X-ray observations that we have obtained of the same stars with XMM-Newton & Chandra. The Cepheids detected to date have X-ray luminosities of log Lx ~ 28.5-29.1 ergs/sec, and plasma temperatures in the 2-8 x 10^6 K range. Given the phase-timing of the enhanced emissions, the most plausible explanation is the formation of a pulsation-induced shocks that excite (and heat) the atmospheric plasmas surrounding the photosphere. A pulsation-driven α^2 equivalent dynamo mechanism is also a viable and interesting alternative. However, the tight phase-space of enhanced emission (peaking near 0.8-1.0 φ) favor the shock heating mechanism hypothesis.
MHD processes in the outer heliosphere
NASA Technical Reports Server (NTRS)
Burlaga, L. F.
1984-01-01
The magnetic field measurements from Voyager and the magnetohydrodynamic (MHD) processes in the outer heliosphere are reviewed. A bibliography of the experimental and theoretical work concerning magnetic fields and plasmas observed in the outer heliosphere is given. Emphasis in this review is on basic concepts and dynamical processes involving the magnetic field. The theory that serves to explain and unify the interplanetary magnetic field and plasma observations is magnetohydrodynamics. Basic physical processes and observations that relate directly to solutions of the MHD equations are emphasized, but obtaining solutions of this complex system of equations involves various assumptions and approximations. The spatial and temporal complexity of the outer heliosphere and some approaches for dealing with this complexity are discussed.
Akgoz, Muslum; Kalyanaraman, Vani; Gautam, N.
2008-01-01
On activation of a receptor the G protein βγ complex translocates away from the receptor on the plasma membrane to the Golgi complex. The rate of translocation is influenced by the type of γ subunit associated with the G protein. Complementary approaches — imaging living cells expressing fluorescent protein tagged G proteins and assaying reconstituted receptors and G proteins in vitro — were used to identify mechanisms at the basis of the translocation process. Translocation of Gβγ containing mutant γ subunits with altered prenyl moieties showed that the differences in the prenyl moieties were not sufficient to explain the differential effects of geranylgeranylated γ5 and farnesylated γ11 on the translocation process. The translocation properties of Gβγ were altered dramatically by mutating the C terminal tail region of the γ subunit. The translocation characteristics of these mutants suggest that after receptor activation, Gβγ retains contact with a receptor through the γ subunit C terminal domain and that differential interaction of the activated receptor with this domain controls Gβγ translocation from the plasma membrane. PMID:16517125
A review of laser-plasma interaction physics of indirect-drive fusion
NASA Astrophysics Data System (ADS)
Kirkwood, R. K.; Moody, J. D.; Kline, J.; Dewald, E.; Glenzer, S.; Divol, L.; Michel, P.; Hinkel, D.; Berger, R.; Williams, E.; Milovich, J.; Yin, L.; Rose, H.; MacGowan, B.; Landen, O.; Rosen, M.; Lindl, J.
2013-10-01
The National Ignition Facility (NIF) has been designed, constructed and has recently begun operation to investigate the ignition of nuclear fusion with a laser with up to 1.8 MJ of energy per pulse. The concept for fusion ignition on the NIF, as first proposed in 1990, was based on an indirectly driven spherical capsule of fuel in a high-Z hohlraum cavity filled with low-Z gas (Lindl et al 2004 Phys. Plasmas 11 339). The incident laser energy is converted to x-rays with keV energy on the hohlraums interior wall. The x-rays then impinge on the surface of the capsule, imploding it and producing the fuel conditions needed for ignition. It was recognized at the inception that this approach would potentially be susceptible to scattering of the incident light by the plasma created in the gas and the ablated material in the hohlraum interior. Prior to initial NIF operations, expectations for laser-plasma interaction (LPI) in ignition-scale experiments were based on experimentally benchmarked simulations and models of the plasma effects that had been carried out as part of the original proposal for NIF and expanded during the 13-year design and construction period. The studies developed the understanding of the stimulated Brillouin scatter, stimulated Raman scatter and filamentation that can be driven by the intense beams. These processes produce scatter primarily in both the forward and backward direction, and by both individual beams and collective interaction of multiple beams. Processes such as hot electron production and plasma formation and transport were also studied. The understanding of the processes so developed was the basis for the design and planning of the recent experiments in the ignition campaign at NIF, and not only indicated that the plasma instabilities could be controlled to maximize coupling, but predicted that, for the first time, they would be beneficial in controlling drive symmetry. The understanding is also now a critical component in the worldwide effort to produce a fusion energy source with a laser (Lindl et al 2011 Nucl. Fusion 51 094024, Collins et al 2012 Phys. Plasmas 19 056308) and has recently received its most critical test yet with the inception of the NIF experiments with ignition-scale indirect-drive targets (Landen et al 2010 Phys. Plasmas 17 056301, Edwards et al 2011 Phys. Plasmas 18 051003, Glenzer et al 2011 Phys. Rev. Lett. 106 085004, Haan et al 2011 Phys. Plasmas 18 051001, Landen et al 2011 Phys. Plasmas 18 051001, Lindl et al 2011 Nucl. Fusion 51 094024). In this paper, the data obtained in the first complete series of coupling experiments in ignition-scale hohlraums is reviewed and compared with the preceding work on the physics of LPIs with the goal of recognizing aspects of our understanding that are confirmed by these experiments and recognizing and motivating areas that need further modeling. Understanding these hohlraum coupling experiments is critical as they are only the first step in a campaign to study indirectly driven implosions under the conditions of ignition by inertial confinement at NIF, and in the near future they are likely to further influence ignition plans and experimental designs.
NASA Technical Reports Server (NTRS)
Murphy, Gerald B.; Lonngren, Karl E.
1986-01-01
The discoveries and experiments of the Plasma Diagnostic Package (PDP) on the OSS 1 and Spacelab 2 missions are reviewed, these results are compared with those of other space and laboratory experiments, and the implications for the understanding of large body interactions in a low Earth orbit (LEO) plasma environment are discussed. First a brief review of the PDP investigation, its instrumentation and experiments is presented. Next a summary of PDP results along with a comparison of those results with similar space or laboratory experiments is given. Last of all the implications of these results in terms of understanding fundamental physical processes that take place with large bodies in LEO is discussed and experiments to deal with these vital questions are suggested.
Féthière, James; Venzke, David; Madden, Dean R; Böttcher, Bettina
2005-12-06
V-ATPases are multisubunit membrane protein complexes that use the energy provided by ATP hydrolysis to generate a proton gradient across various intracellular and plasma membranes. In doing so, they maintain an acidic pH in the lumen of intracellular organelles and acidify extracellular milieu to support specific cellular functions. V-ATPases are structurally similar to the F1F0-ATP synthase, with an intrinsic membrane domain (V0) and an extrinsic peripheral domain (V1) joined by several connecting elements. To gain a clear functional understanding of the catalytic mechanism, and of the stability requirements for regulatory processes in the enzyme, a clear topology of the enzyme has to be established. In particular, the composition and arrangement of the peripheral stator subunits must be firmly settled, as these play specific roles in catalysis and regulation. We have designed a strategy allowing us to coexpress different combinations of these subunits to delineate specific interactions. In this study, we report the interaction between the peripheral stator EG complex and subunits C and H of the V-ATPase from the yeast Saccharomyces cerevisae. A combination of analytical gel filtration, native gel electrophoresis, and ultracentrifugation analysis allowed us to ascertain the homogeneity and molar mass of the purified EGC complex as well as of the EG complex, supporting the formation of 1:1(:1) stoichiometric complexes. The EGC complex can be formed in vitro by combining equimolar amounts of subunit C and the EG subcomplex and results most likely from the initial interaction between subunits E and C.
Yamada, Tsuyoshi; Kanda, Yutaka; Takayama, Makoto; Hashimoto, Akitoshi; Sugihara, Tsutomu; Satoh-Kubota, Ai; Suzuki-Takanami, Eri; Yano, Keiichi; Iida, Shigeru; Satoh, Mitsuo
2016-01-01
The structure of the N-linked oligosaccharides attached to antithrombin (AT) has been shown to affect its anticoagulant activity and pharmacokinetics. Human AT has biantennary complex-type oligosaccharides with the unique feature of lacking a core fucose, which affects its biological activities by changing its heparin-binding affinity. In human plasma, AT circulates as a mixture of the α-form bearing four oligosaccharides and the β-form lacking an oligosaccharide at Asn135. However, it remains unclear how the immature high-mannose-type oligosaccharides produced by mammalian cells affect biological activities of AT. Here, we succeeded in directly comparing the activities between the high-mannose and complex types. Interestingly, although there were no substantial differences in thrombin inhibitory activity, the high-mannose type showed higher heparin-binding affinity. The anticoagulant activities were increased by heparin and correlated with the heparin-binding affinity, resulting in the strongest anticoagulant activity being displayed in the β-form with the high-mannose type. In pharmacokinetic profiling, the high-mannose type showed a much shorter plasma half-life than the complex type. The β-form was found to have a prolonged plasma half-life compared with the α-form for the high-mannose type; conversely, the α-form showed a longer half-life than the β-form for the complex-type. The present study highlights that AT physiological activities are strictly controlled not only by a core fucose at the reducing end but also by the high-mannose-type structures at the nonreducing end. The β-form with the immature high-mannose type appears to function as a more potent anticoagulant than the AT typically found in human plasma, once it emerges in the blood. PMID:26747427
Yamada, Tsuyoshi; Kanda, Yutaka; Takayama, Makoto; Hashimoto, Akitoshi; Sugihara, Tsutomu; Satoh-Kubota, Ai; Suzuki-Takanami, Eri; Yano, Keiichi; Iida, Shigeru; Satoh, Mitsuo
2016-05-01
The structure of the N-linked oligosaccharides attached to antithrombin (AT) has been shown to affect its anticoagulant activity and pharmacokinetics. Human AT has biantennary complex-type oligosaccharides with the unique feature of lacking a core fucose, which affects its biological activities by changing its heparin-binding affinity. In human plasma, AT circulates as a mixture of the α-form bearing four oligosaccharides and the β-form lacking an oligosaccharide at Asn135. However, it remains unclear how the immature high-mannose-type oligosaccharides produced by mammalian cells affect biological activities of AT. Here, we succeeded in directly comparing the activities between the high-mannose and complex types. Interestingly, although there were no substantial differences in thrombin inhibitory activity, the high-mannose type showed higher heparin-binding affinity. The anticoagulant activities were increased by heparin and correlated with the heparin-binding affinity, resulting in the strongest anticoagulant activity being displayed in the β-form with the high-mannose type. In pharmacokinetic profiling, the high-mannose type showed a much shorter plasma half-life than the complex type. The β-form was found to have a prolonged plasma half-life compared with the α-form for the high-mannose type; conversely, the α-form showed a longer half-life than the β-form for the complex-type. The present study highlights that AT physiological activities are strictly controlled not only by a core fucose at the reducing end but also by the high-mannose-type structures at the nonreducing end. The β-form with the immature high-mannose type appears to function as a more potent anticoagulant than the AT typically found in human plasma, once it emerges in the blood. © The Author 2016. Published by Oxford University Press.
Structure Formation in Complex Plasma
2011-08-24
Dewer bottle (upper figures) or in the vapor of liquid helium (lower figures). Liq. He Ring electrode Particles Green Laser RF Plasma ... Ring electrode CCD camera Prism mirror Liq. He Glass Tube Liq. N2 Glass Dewar Acrylic particles Gas Helium Green Laser CCD camera Pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2008-09-01
Low temperature plasma science (LTPS) is a field on the verge of an intellectual revolution. Partially ionized plasmas (often referred to as gas discharges) are used for an enormous range of practical applications, from light sources and lasers to surgery and making computer chips, among many others. The commercial and technical value of low temperature plasmas (LTPs) is well established. Modern society would simply be less advanced in the absence of LTPs. Much of this benefit has resulted from empirical development. As the technology becomes more complex and addresses new fields, such as energy and biotechnology, empiricism rapidly becomes inadequatemore » to advance the state of the art. The focus of this report is that which is less well understood about LTPs - namely, that LTPS is a field rich in intellectually exciting scientific challenges and that addressing these challenges will result in even greater societal benefit by placing the development of plasma technologies on a solid science foundation. LTPs are unique environments in many ways. Their nonequilibrium and chemically active behavior deviate strongly from fully ionized plasmas, such as those found in magnetically confined fusion or high energy density plasmas. LTPs are strongly affected by the presence of neutral species-chemistry adds enormous complexity to the plasma environment. A weakly to partially ionized gas is often characterized by strong nonequilibrium in the velocity and energy distributions of its neutral and charged constituents. In nonequilibrium LTP, electrons are generally hot (many to tens of electron volts), whereas ions and neutrals are cool to warm (room temperature to a few tenths of an electron volt). Ions and neutrals in thermal LTP can approach or exceed an electron volt in temperature. At the same time, ions may be accelerated across thin sheath boundary layers to impact surfaces, with impact energies ranging up to thousands of electron volts. These moderately energetic electrons can efficiently create reactive radical fragments and vibrationally and electronically excited species from collisions with neutral molecules. These chemically active species can produce unique structures in the gas phase and on surfaces, structures that cannot be produced in other ways, at least not in an economically meaningful way. Photons generated by electron impact excited species in the plasma can interact more or less strongly with other species in the plasma or with the plasma boundaries, or they can escape from the plasma. The presence of boundaries around the plasma creates strong gradients where plasma properties change dramatically. It is in these boundary regions where externally generated electromagnetic radiation interacts most strongly with the plasma, often producing unique responses. And it is at bounding surfaces where complex plasma-surface interactions occur. The intellectual challenges associated with LTPS center on several themes, and these are discussed in the chapters that follow this overview. These themes are plasma-surface interactions; kinetic, nonlinear properties of LTP; plasmas in multiphase media; scaling laws for LTP; and crosscutting themes: diagnostics, modeling, and fundamental data.« less
Plasma in a Pulsed Discharge Environment
NASA Technical Reports Server (NTRS)
Remy, J.; Bienier, L.; Salama, F.
2005-01-01
The plasma generated in a pulsed slit discharge nozzle is used to form molecular ions in an astrophysically relevant environment. The plasma has been characterized as a glow discharge in the abnormal regime. Laboratory studies help understand the formation processes of polycyclic aromatic hydrocarbon (PAH) ions that are thought to be the source of the ubiquitous unidentified infrared bands.
Industrial Applications of Low Temperature Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bardsley, J N
2001-03-15
The use of low temperature plasmas in industry is illustrated by the discussion of four applications, to lighting, displays, semiconductor manufacturing and pollution control. The type of plasma required for each application is described and typical materials are identified. The need to understand radical formation, ionization and metastable excitation within the discharge and the importance of surface reactions are stressed.
Electrostatic plasma simulation by Particle-In-Cell method using ANACONDA package
NASA Astrophysics Data System (ADS)
Blandón, J. S.; Grisales, J. P.; Riascos, H.
2017-06-01
Electrostatic plasma is the most representative and basic case in plasma physics field. One of its main characteristics is its ideal behavior, since it is assumed be in thermal equilibrium state. Through this assumption, it is possible to study various complex phenomena such as plasma oscillations, waves, instabilities or damping. Likewise, computational simulation of this specific plasma is the first step to analyze physics mechanisms on plasmas, which are not at equilibrium state, and hence plasma is not ideal. Particle-In-Cell (PIC) method is widely used because of its precision for this kind of cases. This work, presents PIC method implementation to simulate electrostatic plasma by Python, using ANACONDA packages. The code has been corroborated comparing previous theoretical results for three specific phenomena in cold plasmas: oscillations, Two-Stream instability (TSI) and Landau Damping(LD). Finally, parameters and results are discussed.
Iuliano, Rodolfo; Raso, Cinzia; Quintiero, Alfina; Pera, Ilaria Le; Pichiorri, Flavia; Palumbo, Tiziana; Palmieri, Dario; Pattarozzi, Alessandra; Florio, Tullio; Viglietto, Giuseppe; Trapasso, Francesco; Croce, Carlo Maria; Fusco, Alfredo
2009-03-01
Regulation of receptor-type phosphatases can involve the formation of higher-order structures, but the exact role played in this process by protein domains is not well understood. In this study we show the formation of different higher-order structures of the receptor-type phosphatase PTPRJ, detected in HEK293A cells transfected with different PTPRJ expression constructs. In the plasma membrane PTPRJ forms dimers detectable by treatment with the cross-linking reagent BS(3) (bis[sulfosuccinimidyl]suberate). However, other PTPRJ complexes, dependent on the formation of disulfide bonds, are detected by treatment with the oxidant agent H(2)O(2) or by a mutation Asp872Cys, located in the eighth fibronectin type III domain of PTPRJ. A deletion in the eighth fibronectin domain of PTPRJ impairs its dimerization in the plasma membrane and increases the formation of PTPRJ complexes dependent on disulfide bonds that remain trapped in the cytoplasm. The deletion mutant maintains the catalytic activity but is unable to carry out inhibition of proliferation on HeLa cells, achieved by the wild type form, since it does not reach the plasma membrane. Therefore, the intact structure of the eighth fibronectin domain of PTPRJ is critical for its localization in plasma membrane and biological function.
Parton, Robert G; Tillu, Vikas A; Collins, Brett M
2018-04-23
Caveolae are one of the most abundant and striking features of the plasma membrane of many mammalian cell types. These surface pits have fascinated biologists since their discovery by the pioneers of electron microscopy in the middle of the last century, but we are only just starting to understand their multiple functions. Molecular understanding of caveolar formation is advancing rapidly and we now know that sculpting the membrane to generate the characteristic bulb-shaped caveolar pit involves the coordinated action of integral membrane proteins and peripheral membrane coat proteins in a process dependent on their multiple interactions with membrane lipids. The resulting structure is further stabilised by protein complexes at the caveolar neck. Caveolae can bud to generate an endocytic carrier but can also be disassembled in response to specific stimuli to function as a mechanoprotective device. These structures have also been linked to numerous signalling pathways. Here, we will briefly summarise the current molecular and structural understanding of caveolar formation and dynamics, discuss how the crucial structural components of caveolae work together to generate a dynamic sensing domain, and discuss the implications of recent studies on the diverse roles proposed for caveolae in different cells and tissues. Copyright © 2018 Elsevier Ltd. All rights reserved.
Drift kinetic effects on plasma response in high beta spherical tokamak experiments
NASA Astrophysics Data System (ADS)
Wang, Zhirui; Park, Jong-Kyu; Menard, Jonathan E.; Liu, Yueqiang; Kaye, Stanley M.; Gerhardt, Stefan
2018-01-01
The high β plasma response to rotating n=1 external magnetic perturbations is numerically studied and compared with the National Spherical Torus Experiment (NSTX). The hybrid magnetohydrodynamic(MHD)-kinetic modeling shows that drift kinetic effects are important in resolving the disagreement of plasma response between the ideal MHD prediction and the NSTX experimental observation when plasma pressure reaches and exceeds the no-wall limit (Troyon et al 1984 Plasma Phys. Control. Fusion 26 209). Since the external rotating fields and high plasma rotation are presented in the NSTX experiments, the importance of the resistive wall effect and plasma rotation in determining the plasma response is also identified, where the resistive wall suppresses the plasma response through the wall eddy current. The inertial energy due to plasma rotation destabilizes the plasma. The complexity of the plasma response in this study indicates that MHD modeling, including comprehensive physics, e.g. the drift kinetic effects, resistive wall and plasma rotation, are essential in order to reliably predict the plasma behavior in a high beta spherical tokamak device.
NASA Astrophysics Data System (ADS)
Nikolaeva, L. S.; Semenov, A. N.
2018-02-01
The anticoagulant activity of high-molecular-weight heparin is increased by developing a new highly active heparin complex with glutamate using the thermodynamic model of chemical equilibria based on pH-metric data. The anticoagulant activity of the developed complexes is estimated in the pH range of blood plasma according to the drop in the calculated equilibrium Ca2+ concentration associated with the formation of mixed ligand complexes of Ca2+ ions, heparin (Na4hep), and glutamate (H2Glu). A thermodynamic model is calculated by mathematically modelling chemical equilibria in the CaCl2-Na4hep-H2Glu-H2O-NaCl system in the pH range of 2.30 ≤ pH ≤ 10.50 in diluted saline that acts as a background electrolyte (0.154 M NaCl) at 37°C and initial concentrations of the main components of ν × 10-3 M, where n ≤ 4. The thermodynamic model is used to determine the main complex of the monomeric unit of heparin with glutamate (HhepGlu5-) and the most stable mixed ligand complex of Ca2+ with heparin and glutamate (Ca2hepGlu2-) in the pH range of blood plasma (6.80 ≤ pH ≤ 7.40). It is concluded that the Ca2hepGlu2- complex reduces the Ca2+ concentration 107 times more than the Ca2+ complex with pure heparin. The anticoagulant effect of the developed HhepGlu5- complex is confirmed in vitro and in vivo via coagulation tests on the blood plasma of laboratory rats. Additional antithrombotic properties of the developed complex are identified. The new highly active anticoagulant, HhepGlu5- complex with additional antithrombotic properties, is patented.
Zhao, LiYing; Sakagami, Hiroyuki; Suzuki, Tatsuo
2014-10-01
We systematically investigated the purification process of post-synaptic density (PSD) and post-synaptic membrane rafts (PSRs) from the rat forebrain synaptic plasma membranes by examining the components and the structures of the materials obtained after the treatment of synaptic plasma membranes with TX-100, n-octyl β-d-glucoside (OG) or 3-([3-cholamidopropyl]dimethylammonio)-2-hydroxy-1-propanesulfonate (CHAPSO). These three detergents exhibited distinct separation profiles for the synaptic subdomains. Type I and type II PSD proteins displayed mutually exclusive distribution. After TX-100 treatment, type I PSD was recovered in two fractions: a pellet and an insoluble fraction 8, which contained partially broken PSD-PSR complexes. Conventional PSD was suggested to be a mixture of these two PSD pools and did not contain type II PSD. An association of type I PSD with PSRs was identified in the TX-100 treatment, and those with type II PSD in the OG and CHAPSO treatments. An association of GABA receptors with gephyrin was easily dissociated. OG at a high concentration solubilized the type I PSD proteins. CHAPSO treatment resulted in a variety of distinct fractions, which contained certain novel structures. Two different pools of GluA, either PSD or possibly raft-associated, were identified in the OG and CHAPSO treatments. These results are useful in advancing our understanding of the structural organization of synapses at the molecular level. We systematically investigated the purification process of post-synaptic density (PSD) and synaptic membrane rafts by examining the structures obtained after treatment of the SPMs with TX-100, n-octyl β-d-glucoside or CHAPSO. Differential distribution of type I and type II PSD, synaptic membrane rafts, and other novel subdomains in the SPM give clues to understand the structural organization of synapses at the molecular level. © 2014 International Society for Neurochemistry.
A Fusion Nuclear Science Facility for a fast-track path to DEMO
Garofalo, Andrea M.; Abdou, M.; Canik, John M.; ...
2014-10-01
An accelerated fusion energy development program, a “fast-track” approach, requires developing an understanding of fusion nuclear science (FNS) in parallel with research on ITER to study burning plasmas. A Fusion Nuclear Science Facility (FNSF) in parallel with ITER provides the capability to resolve FNS feasibility issues related to power extraction, tritium fuel sustainability, and reliability, and to begin construction of DEMO upon the achievement of Q~10 in ITER. Fusion nuclear components, including the first wall (FW)/blanket, divertor, heating/fueling systems, etc. are complex systems with many inter-related functions and different materials, fluids, and physical interfaces. These in-vessel nuclear components must operatemore » continuously and reliably with: (a) Plasma exposure, surface particle & radiation loads, (b) High energy 2 neutron fluxes and their interactions in materials (e.g. peaked volumetric heating with steep gradients, tritium production, activation, atomic displacements, gas production, etc.), (c) Strong magnetic fields with temporal and spatial variations (electromagnetic coupling to the plasma including off-normal events like disruptions), and (d) a High temperature, high vacuum, chemically active environment. While many of these conditions and effects are being studied with separate and multiple effect experimental test stands and modeling, fusion nuclear conditions cannot be completely simulated outside the fusion environment. This means there are many new multi-physics, multi-scale phenomena and synergistic effects yet to be discovered and accounted for in the understanding, design and operation of fusion as a self-sustaining, energy producing system, and significant experimentation and operational experience in a true fusion environment is an essential requirement. In the following sections we discuss the FNSF objectives, describe the facility requirements and a facility concept and operation approach that can accomplish those objectives, and assess the readiness to construct with respect to several key FNSF issues: materials, steady-state operation, disruptions, power exhaust, and breeding blanket. Finally we present our conclusions.« less
Nagayama, T.; Bailey, J. E.; Loisel, G.; ...
2016-02-05
Recently, frequency-resolved iron opacity measurements at electron temperatures of 170–200 eV and electron densities of (0.7 – 4.0) × 10 22 cm –3 revealed a 30–400% disagreement with the calculated opacities [J. E. Bailey et al., Nature (London) 517, 56 (2015)]. The discrepancies have a high impact on astrophysics, atomic physics, and high-energy density physics, and it is important to verify our understanding of the experimental platform with simulations. Reliable simulations are challenging because the temporal and spatial evolution of the source radiation and of the sample plasma are both complex and incompletely diagnosed. In this article, we describe simulationsmore » that reproduce the measured temperature and density in recent iron opacity experiments performed at the Sandia National Laboratories Z facility. The time-dependent spectral irradiance at the sample is estimated using the measured time- and space-dependent source radiation distribution, in situ source-to-sample distance measurements, and a three-dimensional (3D) view-factor code. The inferred spectral irradiance is used to drive 1D sample radiation hydrodynamics simulations. The images recorded by slit-imaged space-resolved spectrometers are modeled by solving radiation transport of the source radiation through the sample. We find that the same drive radiation time history successfully reproduces the measured plasma conditions for eight different opacity experiments. These results provide a quantitative physical explanation for the observed dependence of both temperature and density on the sample configuration. Simulated spectral images for the experiments without the FeMg sample show quantitative agreement with the measured spectral images. The agreement in spectral profile, spatial profile, and brightness provides further confidence in our understanding of the backlight-radiation time history and image formation. Furthermore, these simulations bridge the static-uniform picture of the data interpretation and the dynamic-gradient reality of the experiments, and they will allow us to quantitatively assess the impact of effects neglected in the data interpretation.« less
Plasma chemistry as a tool for green chemistry, environmental analysis and waste management.
Mollah, M Y; Schennach, R; Patscheider, J; Promreuk, S; Cocke, D L
2000-12-15
The applications of plasma chemistry to environmental problems and to green chemistry are emerging fields that offer unique opportunities for advancement. There has been substantial progress in the application of plasmas to analytical diagnostics and to waste reduction and waste management. This review discusses the chemistry and physics necessary to a basic understanding of plasmas, something that has been missing from recent technical reviews. The current status of plasmas in environmental chemistry is summarized and emerging areas of application for plasmas are delineated. Plasmas are defined and discussed in terms of their properties that make them useful for environmental chemistry. Information is drawn from diverse fields to illustrate the potential applications of plasmas in analysis, materials modifications and hazardous waste treatments.
NASA Astrophysics Data System (ADS)
Stafford, Luc
Advances in electronics and photonics critically depend upon plasma-based materials processing either for transferring small lithographic patterns into underlying materials (plasma etching) or for the growth of high-quality films. This thesis deals with the etching mechanisms of materials using high-density plasmas. The general objective of this work is to provide an original framework for the plasma-material interaction involved in the etching of advanced materials by putting the emphasis on complex oxides such as SrTiO3, (Ba,Sr)TiO 3 and SrBi2Ta2O9 films. Based on a synthesis of the descriptions proposed by different authors to explain the etching characteristics of simple materials in noble and halogenated plasma mixtures, we propose comprehensive rate models for physical and chemical plasma etching processes. These models have been successfully validated using experimental data published in literature for Si, Pt, W, SiO2 and ZnO. As an example, we have been able to adequately describe the simultaneous dependence of the etch rate on ion and reactive neutral fluxes and on the ion energy. From an exhaustive experimental investigation of the plasma and etching properties, we have also demonstrated that the validity of the proposed models can be extended to complex oxides such as SrTiO3, (Ba,Sr)TiO 3 and SrBi2Ta2O9 films. We also reported for the first time physical aspects involved in plasma etching such as the influence of the film microstructural properties on the sputter-etch rate and the influence of the positive ion composition on the ion-assisted desorption dynamics. Finally, we have used our deep investigation of the etching mechanisms of STO films and the resulting excellent control of the etch rate to fabricate a ridge waveguide for photonic device applications. Keywords: plasma etching, sputtering, adsorption and desorption dynamics, high-density plasmas, plasma diagnostics, advanced materials, photonic applications.
Study of Cryogenic Complex Plasma
2007-04-26
enabled us to detect the formation of the Coulomb crystals as shown in Fig. 2. Liq. He Ring electrode Particles Green Laser RF Plasma ... Ring electrode CCD camera Prism mirror Liq. He Glass Tube Liq. N2 Glass Dewar Acrylic particles Gas Helium Green Laser CCD camera Pressure
Hydrodynamic Model for Density Gradients Instability in Hall Plasmas Thrusters
NASA Astrophysics Data System (ADS)
Singh, Sukhmander
2017-10-01
There is an increasing interest for a correct understanding of purely growing electromagnetic and electrostatic instabilities driven by a plasma gradient in a Hall thruster devices. In Hall thrusters, which are typically operated with xenon, the thrust is provided by the acceleration of ions in the plasma generated in a discharge chamber. The goal of this paper is to study the instabilities due to gradients of plasma density and conditions for the growth rate and real part of the frequency for Hall thruster plasmas. Inhomogeneous plasmas prone a wide class of eigen modes induced by inhomogeneities of plasma density and called drift waves and instabilities. The growth rate of the instability has a dependences on the magnetic field, plasma density, ion temperature and wave numbers and initial drift velocities of the plasma species.
ISS Local Environment Spectrometers (ISLES)
NASA Technical Reports Server (NTRS)
Krause, Linda Habash; Gilchrist, Brian E.
2014-01-01
In order to study the complex interactions between the space environment surrounding the ISS and the ISS surface materials, we propose to use lowcost, high-TRL plasma sensors on the ISS robotic arm to probe the ISS space environment. During many years of ISS operation, we have been able to condut effective (but not perfect) extravehicular activities (both human and robotic) within the perturbed local ISS space environment. Because of the complexity of the interaction between the ISS and the LEO space environment, there remain important questions, such as differential charging at solar panel junctions (the so-called "triple point" between conductor, dielectric, and space plasma), increased chemical contamination due to ISS surface charging and/or thruster activation, water dumps, etc, and "bootstrap" charging of insulating surfaces. Some compelling questions could synergistically draw upon a common sensor suite, which also leverages previous and current MSFC investments. Specific questions address ISS surface charging, plasma contactor plume expansion in a magnetized drifting plasma, and possible localized contamination effects across the ISS.
Andreeva, A M; Lamas, N E; Serebryakova, M V; Ryabtseva, I P; Bolshakov, V V
2015-02-01
Reorganization of the low-molecular-weight fraction of cyprinid plasma was analyzed using various electrophoretic techniques (disc electrophoresis, electrophoresis in polyacrylamide concentration gradient, in polyacrylamide with urea, and in SDS-polyacrylamide). The study revealed coordinated changes in the low-molecular-weight protein fractions with seasonal dynamics and related reproductive rhythms of fishes. We used cultured species of the Cyprinidae family with sequenced genomes for the detection of these interrelations in fresh-water and anadromous cyprinid species. The common features of organization of fish low-molecular-weight plasma protein fractions made it possible to make reliable identification of their proteins. MALDI mass-spectrometry analysis revealed the presence of the same proteins (hemopexin, apolipoproteins, and serpins) in the low-molecular-weight plasma fraction in wild species and cultured species with sequenced genomes (carp, zebrafish). It is found that the proteins of the first two classes are organized as complexes made of protein oligomers. Stoichiometry of these complexes changes in concordance with the seasonal and reproductive rhythms.
The complex nature of storm-time ion dynamics: Transport and local acceleration
Denton, M. H.; Reeves, G. D.; Thomsen, M. F.; ...
2016-09-29
Data from the Van Allen Probes Helium, Oxygen, Proton, and Electron (HOPE) spectrometers reveal hitherto unresolved spatial structure and dynamics in ion populations. Complex regions of O + dominance, at energies from a few eV to >10 keV, are observed throughout the magnetosphere. Isolated regions on the dayside that are rich in energetic O + might easily be interpreted as strong energization of ionospheric plasma. In this paper, we demonstrate, however, that both the energy spectrum and the limited magnetic local time extent of these features can be explained by energy-dependent drift of particles injected on the nightside 24 hmore » earlier. Particle tracing simulations show that the energetic O + can originate in the magnetotail, not in the ionosphere. Finally, enhanced wave activity is colocated with the heavy ion-rich plasma, and we further conclude that the waves were not a source of free energy for accelerating ionospheric plasma but rather the consequence of the arrival of substorm-injected plasma.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghoos, K., E-mail: kristel.ghoos@kuleuven.be; Dekeyser, W.; Samaey, G.
2016-10-01
The plasma and neutral transport in the plasma edge of a nuclear fusion reactor is usually simulated using coupled finite volume (FV)/Monte Carlo (MC) codes. However, under conditions of future reactors like ITER and DEMO, convergence issues become apparent. This paper examines the convergence behaviour and the numerical error contributions with a simplified FV/MC model for three coupling techniques: Correlated Sampling, Random Noise and Robbins Monro. Also, practical procedures to estimate the errors in complex codes are proposed. Moreover, first results with more complex models show that an order of magnitude speedup can be achieved without any loss in accuracymore » by making use of averaging in the Random Noise coupling technique.« less
Paris, Daniel H; Stephan, Femke; Bulder, Ingrid; Wouters, Diana; van der Poll, Tom; Newton, Paul N; Day, Nicholas P J; Zeerleder, Sacha
2015-01-01
Cell-mediated immunity is essential in protection against rickettsial illnesses, but the role of neutrophils in these intracellular vasculotropic infections remains unclear. This study analyzed the plasma levels of nucleosomes, FSAP-activation (nucleosome-releasing factor), and neutrophil activation, as evidenced by neutrophil-elastase (ELA) complexes, in sympatric Lao patients with scrub typhus and murine typhus. In acute scrub typhus elevated nucleosome levels correlated with lower GCS scores, raised respiratory rate, jaundice and impaired liver function, whereas neutrophil activation correlated with fibrinolysis and high IL-8 plasma levels, a recently identified predictor of severe disease and mortality. Nucleosome and ELA complex levels were associated with a 4.8-fold and 4-fold increased risk of developing severe scrub typhus, beyond cut off values of 1,040 U/ml for nucleosomes and 275 U/ml for ELA complexes respectively. In murine typhus, nucleosome levels associated with pro-inflammatory cytokines and the duration of illness, while ELA complexes correlated strongly with inflammation markers, jaundice and increased respiratory rates. This study found strong correlations between circulating nucleosomes and neutrophil activation in patients with scrub typhus, but not murine typhus, providing indirect evidence that nucleosomes could originate from neutrophil extracellular trap (NET) degradation. High circulating plasma nucleosomes and ELA complexes represent independent risk factors for developing severe complications in scrub typhus. As nucleosomes and histones exposed on NETs are highly cytotoxic to endothelial cells and are strongly pro-coagulant, neutrophil-derived nucleosomes could contribute to vascular damage, the pro-coagulant state and exacerbation of disease in scrub typhus, thus indicating a detrimental role of neutrophil activation. The data suggest that increased neutrophil activation relates to disease progression and severe complications, and increased plasma levels of nucleosomes and ELA complexes represent independent risk factors for developing severe scrub typhus.
Paris, Daniel H.; Stephan, Femke; Bulder, Ingrid; Wouters, Diana; van der Poll, Tom; Newton, Paul N.; Day, Nicholas P. J.; Zeerleder, Sacha
2015-01-01
Cell-mediated immunity is essential in protection against rickettsial illnesses, but the role of neutrophils in these intracellular vasculotropic infections remains unclear. This study analyzed the plasma levels of nucleosomes, FSAP-activation (nucleosome-releasing factor), and neutrophil activation, as evidenced by neutrophil-elastase (ELA) complexes, in sympatric Lao patients with scrub typhus and murine typhus. In acute scrub typhus elevated nucleosome levels correlated with lower GCS scores, raised respiratory rate, jaundice and impaired liver function, whereas neutrophil activation correlated with fibrinolysis and high IL-8 plasma levels, a recently identified predictor of severe disease and mortality. Nucleosome and ELA complex levels were associated with a 4.8-fold and 4-fold increased risk of developing severe scrub typhus, beyond cut off values of 1,040 U/ml for nucleosomes and 275 U/ml for ELA complexes respectively. In murine typhus, nucleosome levels associated with pro-inflammatory cytokines and the duration of illness, while ELA complexes correlated strongly with inflammation markers, jaundice and increased respiratory rates. This study found strong correlations between circulating nucleosomes and neutrophil activation in patients with scrub typhus, but not murine typhus, providing indirect evidence that nucleosomes could originate from neutrophil extracellular trap (NET) degradation. High circulating plasma nucleosomes and ELA complexes represent independent risk factors for developing severe complications in scrub typhus. As nucleosomes and histones exposed on NETs are highly cytotoxic to endothelial cells and are strongly pro-coagulant, neutrophil-derived nucleosomes could contribute to vascular damage, the pro-coagulant state and exacerbation of disease in scrub typhus, thus indicating a detrimental role of neutrophil activation. The data suggest that increased neutrophil activation relates to disease progression and severe complications, and increased plasma levels of nucleosomes and ELA complexes represent independent risk factors for developing severe scrub typhus. PMID:26317419
Thruster Plume Plasma Diagnostics: A Ground Chamber Experiment for a 2-Kilowatt Arcjet
NASA Technical Reports Server (NTRS)
Galofaro, Joel T.; Vayner, Boris V.; Hillard, G. Barry; Chornak, Michael T.
2005-01-01
Although detailed near field (0 to 3 cm) information regarding the exhaust plume of a two kilowatt arc jet is available (refs. 1 to 6), there is virtually little or no information (outside of theoretical extrapolations) available concerning the far field (2.6 to 6.1 m). Furthermore real information about the plasma at distances between (3 to 6 m) is of critical importance to high technology satellite companies in understanding the effect of arc jet plume exhausts on space based power systems. It is therefore of utmost importance that one understands the exact nature of the interaction between the arc jet plume, the spacecraft power system and the surrounding electrical plasma environment. A good first step in understanding the nature of the interactions lies in making the needed plume parameter measurements in the far field. All diagnostic measurements are performed inside a large vacuum system (12 m diameter by 18 m high) with a full scale arc jet and solar array panel in the required flight configuration geometry. Thus, necessary information regarding the plume plasma parameters in the far field is obtained. Measurements of the floating potential, the plasma potential, the electron temperature, number density, density distribution, debye length, and plasma frequency are obtained at various locations about the array (at vertical distances from the arc jet nozzle: 2.6, 2.7, 2.8, 3.2, 3.6, 4.0, 4.9, 5.0, 5.4, 5.75, and 6.14 m). Plasma diagnostic parameters are measured for both the floating and grounded configurations of the arc jet anode and array. Spectroscopic optical measurements are then acquired in close proximity to the nozzle, and contamination measurements are made in the vicinity of the array utilizing a mass spectrometer and two Quartz Crystal Microbalances (QCM's).
Understanding anode and cathode behaviour in high-pressure discharge lamps
NASA Astrophysics Data System (ADS)
Flesch, P.; Neiger, M.
2005-09-01
High-intensity discharge (HID) lamps have widespread and modern areas of application including general lighting, video/movie projection (e.g. UHP lamp), street/industrial lighting, and automotive headlight lamps (D2/xenon lamp). Even though HID lamps have been known for several decades now, the important plasma-electrode interactions are still not well understood. Because HID lamps are usually operated on ac (electrodes switch alternately from anode to cathode phase), time-dependent simulations including realistic and verified anode and cathode models are essential. Therefore, a recently published investigation of external laser heating of an electrode during anode and cathode phase in an operating HID lamp [28] provided the basis for our present paper. These measurements revealed impressive influences of the external laser heating on electrode fall voltage and electrode temperature. Fortunately, the effects are very different during anode and cathode phase. Thus, by comparing the experimental findings with results from our numerical simulations we can learn much about the principles of electrode behaviour and explain in detail the differences between anode and cathode phase. Furthermore, we can verify our model (which includes plasma column, hot plasma spots in front of the electrodes, constriction zones and near-electrode non-local thermal equilibrium-plasma as well as anode and cathode) that accounts for all relevant physical processes concerning plasma, electrodes and interactions between them. Moreover, we investigate the influence of two different notions concerning ionization and recombination in the near electrode plasma on the numerical results. This improves our physical understanding of near-electrode plasma likewise and further increases the confidence in the model under consideration. These results are important for the understanding and the further development of HID lamps which, due to their small dimensions, are often experimentally inaccessible. Thus, modelling becomes more and more important.
Density waves at the interface of a binary complex plasma
NASA Astrophysics Data System (ADS)
Yang, Li; Schwabe, Mierk; Zhdanov, Sergey; Thomas, Hubertus M.; Lipaev, Andrey M.; Molotkov, Vladimir I.; Fortov, Vladimir E.; Zhang, Jing; Du, Cheng-Ran
2017-01-01
Density waves were studied in a phase-separated binary complex plasma under microgravity conditions. For the big particles, waves were self-excited by the two-stream instability, while for small particles, they were excited by heartbeat instability with the presence of reversed propagating pulses of a different frequency. By studying the dynamics of wave crests at the interface, we recognize a “collision zone” and a “merger zone” before and after the interface, respectively. The results provide a generic picture of wave-wave interaction at the interface between two “mediums”.
Diagnostic for Plasma Enhanced Chemical Vapor Deposition and Etch Systems
NASA Technical Reports Server (NTRS)
Cappelli, Mark A.
1999-01-01
In order to meet NASA's requirements for the rapid development and validation of future generation electronic devices as well as associated materials and processes, enabling technologies ion the processing of semiconductor materials arising from understanding etch chemistries are being developed through a research collaboration between Stanford University and NASA-Ames Research Center, Although a great deal of laboratory-scale research has been performed on many of materials processing plasmas, little is known about the gas-phase and surface chemical reactions that are critical in many etch and deposition processes, and how these reactions are influenced by the variation in operating conditions. In addition, many plasma-based processes suffer from stability and reliability problems leading to a compromise in performance and a potentially increased cost for the semiconductor manufacturing industry. Such a lack of understanding has hindered the development of process models that can aid in the scaling and improvement of plasma etch and deposition systems. The research described involves the study of plasmas used in semiconductor processes. An inductively coupled plasma (ICP) source in place of the standard upper electrode assembly of the Gaseous Electronics Conference (GEC) radio-frequency (RF) Reference Cell is used to investigate the discharge characteristics and chemistries. This ICP source generates plasmas with higher electron densities (approximately 10(exp 12)/cu cm) and lower operating pressures (approximately 7 mTorr) than obtainable with the original parallel-plate version of the GEC Cell. This expanded operating regime is more relevant to new generations of industrial plasma systems being used by the microelectronics industry. The motivation for this study is to develop an understanding of the physical phenomena involved in plasma processing and to measure much needed fundamental parameters, such as gas-phase and surface reaction rates. species concentration, temperature, ion energy distribution, and electron number density. A wide variety of diagnostic techniques are under development through this consortium grant to measure these parameters. including molecular beam mass spectrometry (MBMS). Fourier transform infrared (FTIR) spectroscopy, broadband ultraviolet (UV) absorption spectroscopy, a compensated Langmuir probe. Additional diagnostics. Such as microwave interferometry and microwave absorption for measurements of plasma density and radical concentrations are also planned.
Werner, Marco; Auth, Thorsten; Beales, Paul A; Fleury, Jean Baptiste; Höök, Fredrik; Kress, Holger; Van Lehn, Reid C; Müller, Marcus; Petrov, Eugene P; Sarkisov, Lev; Sommer, Jens-Uwe; Baulin, Vladimir A
2018-04-03
Synthetic polymers, nanoparticles, and carbon-based materials have great potential in applications including drug delivery, gene transfection, in vitro and in vivo imaging, and the alteration of biological function. Nature and humans use different design strategies to create nanomaterials: biological objects have emerged from billions of years of evolution and from adaptation to their environment resulting in high levels of structural complexity; in contrast, synthetic nanomaterials result from minimalistic but controlled design options limited by the authors' current understanding of the biological world. This conceptual mismatch makes it challenging to create synthetic nanomaterials that possess desired functions in biological media. In many biologically relevant applications, nanomaterials must enter the cell interior to perform their functions. An essential transport barrier is the cell-protecting plasma membrane and hence the understanding of its interaction with nanomaterials is a fundamental task in biotechnology. The authors present open questions in the field of nanomaterial interactions with biological membranes, including: how physical mechanisms and molecular forces acting at the nanoscale restrict or inspire design options; which levels of complexity to include next in computational and experimental models to describe how nanomaterials cross barriers via passive or active processes; and how the biological media and protein corona interfere with nanomaterial functionality. In this Perspective, the authors address these questions with the aim of offering guidelines for the development of next-generation nanomaterials that function in biological media.
Relevance of advanced nuclear fusion research: Breakthroughs and obstructions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coppi, Bruno, E-mail: coppi@mit.edu
2016-03-25
An in depth understanding of the collective modes that can be excited in a wide range of high-energy plasmas is necessary to advance nuclear fusion research in parallel with other fields that include space and astrophysics in particular. Important achievements are shown to have resulted from implementing programs based on this reality, maintaining a tight connection with different areas of investigations. This involves the undertaking of a plurality of experimental approaches aimed at understanding the physics of fusion burning plasmas. At present, the most advanced among these is the Ignitor experiment involving international cooperation, that is designed to investigate burningmore » plasma regimes near ignition for the first time.« less
A Laboratory Astrophysical Jet to Study Canonical Flux Tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, Setthivoine
Understanding the interaction between plasma flows and magnetic fields remains a fundamental problem in plasma physics, with important applications to astrophysics, fusion energy, and advanced space propulsion. For example, flows are of primary importance in astrophysical jets even if it is not fully understood how jets become so long without becoming unstable. Theories for the origin of magnetic fields in the cosmos rely on flowing charged fluids that should generate magnetic fields, yet this remains to be demonstrated experimentally. Fusion energy reactors can be made smaller with flows that improve stability and confinement. Advanced space propulsion could be more efficientmore » with collimated and stable plasma flows through magnetic nozzles but must eventually detach from the nozzle. In all these cases, there appears to be a spontaneous emergence of flowing and/or magnetic structures, suggesting a form of self-organization in plasmas. Beyond satisfying simple intellectual curiosity, understanding plasma self-organization could enable the development of methods to control plasma structures for fusion energy, space propulsion, and other applications. The research project has therefore built a theory and an experiment to investigate the interaction between magnetic fields and plasma flows. The theory is called canonical field theory for short, and the experiment is called Mochi after a rice cake filled with surprising, yet delicious fillings.« less
Expression of plasma membrane receptor genes during megakaryocyte development
Sun, Sijie; Wang, Wenjing; Latchman, Yvette; Gao, Dayong; Aronow, Bruce
2013-01-01
Megakaryocyte (MK) development is critically informed by plasma membrane-localized receptors that integrate a multiplicity of environmental cues. Given that the current understanding about receptors and ligands involved in megakaryocytopoiesis is based on single targets, we performed a genome-wide search to identify a plasma membrane receptome for developing MKs. We identified 40 transmembrane receptor genes as being upregulated during MK development. Seven of the 40 receptor-associated genes were selected to validate the dataset. These genes included: interleukin-9 receptor (IL9R), transforming growth factor, β receptor II (TGFBR2), interleukin-4 receptor (IL4R), colony stimulating factor-2 receptor-beta (CSFR2B), adiponectin receptor (ADIPOR2), thrombin receptor (F2R), and interleukin-21 receptor (IL21R). RNA and protein analyses confirmed their expression in primary human MKs. Matched ligands to IL9R, TGFBR2, IL4R, CSFR2B, and ADIPOR2 affected megakaryocytopoiesis. IL9 was unique in its ability to increase the number of MKs formed. In contrast, MK colony formation was inhibited by adiponectin, TGF-β, IL4, and GM-CSF. The thrombin-F2R axis affected platelet function, but not MK development, while IL21 had no apparent detectable effects. ADP-induced platelet aggregation was suppressed by IL9, TGF-β, IL4, and adiponectin. Overall, six of seven of the plasma membrane receptors were confirmed to have functional roles in MK and platelet biology. Also, results show for the first time that adiponectin plays a regulatory role in MK development. Together these data support a strong likelihood that the 40 transmembrane genes identified as being upregulated during MK development will be an important resource to the research community for deciphering the complex repertoire of environmental cues regulating megakaryocytopoiesis and/or platelet function. PMID:23321270
Resonant magnetic perturbations of edge-plasmas in toroidal confinement devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, T. E.
Controlling the boundary layer in fusion-grade, high-performance, plasma discharges is essential for the successful development of toroidal magnetic confinement power generating systems. A promising approach for controlling the boundary plasma is based on the use of small, externally applied, edge resonant magnetic perturbation (RMP) fields (δmore » $$b_⊥^{ext}$$ ≈ $$10^{-4}$$ → $$10^{-3}$$ T). A long-term focus area in tokamak fusion research has been to find methods, involving the use of non-axisymmetric magnetic perturbations to reduce the intense particle and heat fluxes to the wall. Experimental RMP research has progressed from the early pioneering work on tokamaks with material limiters in the 1970s, to present day research in separatrix-limited tokamaks operated in high-confinement mode, which is primarily aimed at the mitigation of the intermittent fluxes due edge localized modes. At the same time the theoretical research has evolved from analytical models to numerical simulations, including the full 3D complexities of the problem. Following the first demonstration of ELM suppression in the DIII-D tokamak during 2003, there has been a rapid worldwide growth in theoretical, numerical and experimental edge RMP research resulting in the addition of ELM control coils to the ITER baseline design [A. Loarte, et al., Nucl. Fusion 54 (2014) 033007]. This review provides an overview of edge RMP research including a summary of the early theoretical and numerical background along with recent experimental results on improved particle and energy confinement in tokamaks triggered by edge RMP fields. The topics covered make up the basic elements needed for developing a better understanding of 3D magnetic perturbation physics, which is required in order to utilize the full potential of edge RMP fields in fusion relevant high performance, H-mode, plasmas.« less
Acute spinal cord injury changes the disposition of some, but not all drugs given intravenously.
García-López, P; Martínez-Cruz, A; Guízar-Sahagún, G; Castañeda-Hernández, G
2007-09-01
Experimental laboratory investigations in paraplegic rats. In order to understand why acute spinal cord injury (SCI) changes the disposition of some, but not all drugs given intravenously (i.v.), pharmacokinetic parameters of drugs with different pharmacological properties were evaluated to determine the influence of SCI on physiological processes such as distribution, metabolism and excretion. Mexico City, Mexico. Rats were subjected to severe SCI (contusion) at T-9 level; pharmacokinetic studies of phenacetin, naproxen or gentamicin were performed 24 h after. These drugs were not chosen as markers because of their therapeutic properties, but because of their pharmacokinetic characteristics. Additional studies including plasma proteins, liver and renal function tests, and micro-vascular hepatic blood flow, were also performed at the same time after injury. Acute SCI significantly reduced distribution of drugs with intermediate and low binding to plasma proteins (phenacetin 30% and gentamicin 10%, respectively), but distribution did not change when naproxen - a drug highly bound to plasma proteins (99%) - was used, in absence of changes in plasma proteins. Metabolism was significantly altered only for a drug with liver blood flow - limited clearance (phenacetin) and not for a drug with liver capacity-limited clearance (naproxen). The liver function test did not change, whereas the hepatic micro-vascular blood flow significantly decreased after SCI. Renal excretion, evaluated by gentamicin clearance, was significantly reduced as a consequence of SCI, without significant changes in serum creatinine. Changes in drug disposition associated to acute SCI are complex and generalization is not possible. They are highly dependent on each drug properties as well as on the altered physiological processes. Results motivate the quest for strategies to improve disposition of selective i.v. drugs during spinal shock, in an effort to avoid therapeutic failure.
Resonant magnetic perturbations of edge-plasmas in toroidal confinement devices
Evans, T. E.
2015-11-13
Controlling the boundary layer in fusion-grade, high-performance, plasma discharges is essential for the successful development of toroidal magnetic confinement power generating systems. A promising approach for controlling the boundary plasma is based on the use of small, externally applied, edge resonant magnetic perturbation (RMP) fields (δmore » $$b_⊥^{ext}$$ ≈ $$10^{-4}$$ → $$10^{-3}$$ T). A long-term focus area in tokamak fusion research has been to find methods, involving the use of non-axisymmetric magnetic perturbations to reduce the intense particle and heat fluxes to the wall. Experimental RMP research has progressed from the early pioneering work on tokamaks with material limiters in the 1970s, to present day research in separatrix-limited tokamaks operated in high-confinement mode, which is primarily aimed at the mitigation of the intermittent fluxes due edge localized modes. At the same time the theoretical research has evolved from analytical models to numerical simulations, including the full 3D complexities of the problem. Following the first demonstration of ELM suppression in the DIII-D tokamak during 2003, there has been a rapid worldwide growth in theoretical, numerical and experimental edge RMP research resulting in the addition of ELM control coils to the ITER baseline design [A. Loarte, et al., Nucl. Fusion 54 (2014) 033007]. This review provides an overview of edge RMP research including a summary of the early theoretical and numerical background along with recent experimental results on improved particle and energy confinement in tokamaks triggered by edge RMP fields. The topics covered make up the basic elements needed for developing a better understanding of 3D magnetic perturbation physics, which is required in order to utilize the full potential of edge RMP fields in fusion relevant high performance, H-mode, plasmas.« less
Drift kinetic effects on the plasma response in high beta spherical tokamak experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhirui; Park, Jong-Kyu; Menard, Jonathan E.
The high β plasma response to rotating n = 1 external magnetic perturbations is numerically studied and compared with the National Spherical Torus Experiment (NSTX). The hybrid magnetohydrodynamic(MHD)-kinetic modeling shows that drift kinetic effects are important in resolving the disagreement of plasma response between the ideal MHD prediction and the NSTX experimental observation when plasma pressure reaches and exceeds the no-wall limit. Since the external rotating fields and high plasma rotation are presented in the NSTX experiments, the importance of the resistive wall effect and plasma rotation in determining the plasma response is also identified, where the resistive wall suppressesmore » the plasma response through the wall eddy current. The inertial energy due to plasma rotation destabilizes the plasma. In conclusion, the complexity of the plasma response in this study indicates that MHD modeling, including comprehensive physics, e.g. the drift kinetic effects, resistive wall and plasma rotation, are essential in order to reliably predict the plasma behavior in a high beta spherical tokamak device.« less
Drift kinetic effects on the plasma response in high beta spherical tokamak experiments
Wang, Zhirui; Park, Jong-Kyu; Menard, Jonathan E.; ...
2017-09-21
The high β plasma response to rotating n = 1 external magnetic perturbations is numerically studied and compared with the National Spherical Torus Experiment (NSTX). The hybrid magnetohydrodynamic(MHD)-kinetic modeling shows that drift kinetic effects are important in resolving the disagreement of plasma response between the ideal MHD prediction and the NSTX experimental observation when plasma pressure reaches and exceeds the no-wall limit. Since the external rotating fields and high plasma rotation are presented in the NSTX experiments, the importance of the resistive wall effect and plasma rotation in determining the plasma response is also identified, where the resistive wall suppressesmore » the plasma response through the wall eddy current. The inertial energy due to plasma rotation destabilizes the plasma. In conclusion, the complexity of the plasma response in this study indicates that MHD modeling, including comprehensive physics, e.g. the drift kinetic effects, resistive wall and plasma rotation, are essential in order to reliably predict the plasma behavior in a high beta spherical tokamak device.« less
Recent developments in the understanding of equatorial ionization anomaly: A review
NASA Astrophysics Data System (ADS)
Balan, N.; Souza, J.; Bailey, G. J.
2018-06-01
A brief review of the recent developments in the understanding of the equatorial plasma fountain (EPF) and equatorial ionization anomaly (EIA) under quiet and active conditions is presented. It is clarified that (1) the EPF is not upward ExB plasma drift at the equator followed by downward plasma diffusion, but it is field perpendicular ExB plasma drift and field-aligned plasma diffusion acting together all along the field lines at all altitudes and plasma flowing in the direction of the resultant. (2) The EIA is formed not from the accumulation of plasma at the crests but mainly from the removal of plasma from around the equator by the upward ExB drift with small accumulations when the crests are within approximately ±20° magnetic latitude. The accumulations reduce with increasing latitude and become zero by approximately ±25°. (3) An asymmetric neutral wind makes EPF and EIA asymmetric with stronger fountain and stronger crest usually occurring in opposite hemispheres especially at equinoxes when winter anomaly is absent. (4) During the early stages of daytime main phase of major geomagnetic storms, the plasma fountain becomes a super fountain and the EIA becomes strong not due to the eastward prompt penetration electric field (PPEF) alone but due to the combined effect of eastward PPEF and storm-time equatorward winds (SEW). (5) During the later stages of the storms when EIA gets inhibited a peak sometimes occurs around the equator not due to westward electric fields but mainly due to the convergence of plasma from both hemispheres due to SEW.
Mammalian gamete plasma membranes re-assessments and reproductive implications
USDA-ARS?s Scientific Manuscript database
Establishment of the diploid status occurs with the fusion of female and male gametes. Both the mammalian oocyte and spermatozoa are haploid cells surrounded with plasma membranes that are rich in various proteins playing a crucial role during fertilization. Fertilization is a complex and ordered st...
NASA Astrophysics Data System (ADS)
Jovović, Jovica; Stojadinović, Stevan; Vasilić, Rastko; Tadić, Nenad; Šišović, Nikola M.
2017-05-01
This paper presents the research focused on the determination of micro-arc plasma composition during cathodic plasma electrolysis of AISI304 stainless steel in water solution of sodium hydroxide. The complex line shape of several Fe I spectral lines was observed and, by means of a dedicated fitting procedure based on the spectral line broadening theory and H2O thermal decomposition data, the mole fraction of micro-arc plasma constituents (H2, Fe, O, H, H2O, and OH) was determined. Subsequent characterization of the cathodic plasma electrolysis product formed during the process revealed that it consists of Fe-nanoparticles with median diameter of approximately 60 nm.
Newly developed double neural network concept for reliable fast plasma position control
NASA Astrophysics Data System (ADS)
Jeon, Young-Mu; Na, Yong-Su; Kim, Myung-Rak; Hwang, Y. S.
2001-01-01
Neural network is considered as a parameter estimation tool in plasma controls for next generation tokamak such as ITER. The neural network has been reported to be so accurate and fast for plasma equilibrium identification that it may be applied to the control of complex tokamak plasmas. For this application, the reliability of the conventional neural network needs to be improved. In this study, a new idea of double neural network is developed to achieve this. The new idea has been applied to simple plasma position identification of KSTAR tokamak for feasibility test. Characteristics of the concept show higher reliability and fault tolerance even in severe faulty conditions, which may make neural network applicable to plasma control reliably and widely in future tokamaks.
This paper shows that an understanding of the nature of the x-ray and neutron producing processes in the plasma focus requires a study of the ’fine...structure’ of the plasma focus and that this fine structure study requires diagnostic techniques with spacial resolution down to 50 micrometers and
Full-Particle Simulations on Electrostatic Plasma Environment near Lunar Vertical Holes
NASA Astrophysics Data System (ADS)
Miyake, Y.; Nishino, M. N.
2015-12-01
The Kaguya satellite and the Lunar Reconnaissance Orbiter have observed a number of vertical holes on the terrestrial Moon [Haruyama et al., GRL, 2009; Robinson et al., PSS, 2012], which have spatial scales of tens of meters and are possible lava tube skylights. The hole structure has recently received particular attention, because the structure gives an important clue to the complex volcanic history of the Moon. The holes also have high potential as locations for constructing future lunar bases, because of fewer extra-lunar rays/particles and micrometeorites reaching the hole bottoms. In this sense, these holes are not only interesting in selenology, but are also significant from the viewpoint of electrostatic environments. The subject can also be an interesting resource of research in comparative planetary science, because hole structures have been found in other solar system bodies such as the Mars. The lunar dayside electrostatic environment is governed by electrodynamic interactions among the solar wind plasma, photoelectrons, and the charged lunar surface, providing topologically complex boundaries to the plasma. We use the three-dimensional, massively-parallelized, particle-in-cell simulation code EMSES [Miyake and Usui, POP, 2009] to simulate the near-hole plasma environment on the Moon [Miyake and Nishino, Icarus, 2015]. We took into account the solar wind plasma downflow, photoelectron emission from the sunlit part of the lunar surface, and plasma charge deposition on the surface. The simulation domain consists of 400×400×2000 grid points and contains about 25 billion plasma macro-particles. Thus, we need to use supercomputers for the simulations. The vertical wall of the hole introduces a new boundary for both photo and solar wind electrons. The current balance condition established at a hole bottom is altered by the limited solar wind electron penetration into the hole and complex photoelectron current paths inside the hole. The self-consistent modeling not only reproduces intense differential charging between sunlit and shadowed surfaces, but also reveals the potential difference between sunlit surfaces inside and outside the hole. The results demonstrate the uniqueness of the near-hole plasma environment as well as provide useful knowledge for future landing missions.
Rizzo, M R; Barbieri, M; Grella, R; Passariello, N; Paolisso, G
2005-06-01
Aim our study is to compare the effects of repaglinide vs glimepiride administration on cardiovascular risk factors after meal test. Thus, after 2 weeks washout period, a 3-month randomised, cross-over parallel group trial of repaglinide (1 mg x 2/day) vs glimepiride (2 mg/day) in 14 patients with type 2 diabetes "naive" on diet treatment was made. Both treatments significantly declined plasma glucose, total-cholesterol, LDL-cholesterol, triglycerides, PAI-1, PAP levels and increased HDL-cholesterol. Lowering in plasma PAI-1 and PAP levels was significantly greater in repaglinide group. Furthermore, repaglinide administration resulted in a significant decrease in fasting plasma free fatty acids, fibrinogen, thrombin-antithrombin complex and reaction product of malondialdehyde with thiobarbituric acid (TBARS) levels, in absence of significant difference in fasting plasma insulin levels. Decrease in plasma TBARS levels correlated with the decrease in Plasminogen Activator Inhibitor-1 (r = 0.72; P < 0.003) and free fatty acids concentrations (r = 0.62; P < 0.01). Analysis of the insulin and glucose concentrations throughout the meal test revealed that AUC for glucose (758 +/- 19 vs 780 +/- 28 mg/Lxmin; P = 0.02) was significantly lower after repaglinide than glimepiride administration despite similar AUC for insulin (2327 +/- 269 vs 2148 +/- 292 mU/Lxmin; P = 0.105). At time 120' of meal test, repaglinide vs glimepiride administration was associated with a significant decline in plasma triglycerides, free fatty acids, fibrinogen, Plasminogen Activator Inhibitor-1, plasmin-alpha(2)-antiplasmin complex, thrombin-antithrombin complex, TBARS levels and increase in plasma HDL-cholesterol levels. In repaglinide group a negative correlation between insulin secretion during 1st phase of meal-test and plasma TBARS levels (r = -0.55; P < 0.03) at time 120' was found. Such correlation was lost after adjusting for changes in postprandial hyperglycaemia (r = -0.48; P < 0.09). In conclusion, our results support the hypothesis that repaglinide is more efficient than glimepiride on controlling for postprandial glucose excursion and may have beneficial effect on reducing cardiovascular risk factors.
Pieters, Marlien; Barnard, Sunelle A; Loots, Du Toit; Rijken, Dingeman C
2017-01-01
Due to controversial evidence in the literature pertaining to the activity of plasminogen activator inhibitor-1 in platelets, we examined the effects of residual platelets present in plasma (a potential pre-analytical variable) on various plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays. Blood samples were collected from 151 individuals and centrifuged at 352 and 1500 g to obtain plasma with varying numbers of platelet. In a follow-up study, blood samples were collected from an additional 23 individuals, from whom platelet-poor (2000 g), platelet-containing (352 g) and platelet-rich plasma (200 g) were prepared and analysed as fresh-frozen and after five defrost-refreeze cycles (to determine the contribution of in vitro platelet degradation). Plasminogen activator inhibitor-1 activity, plasminogen activator inhibitor-1 antigen, tissue plasminogen activator/plasminogen activator inhibitor-1 complex, plasma clot lysis time, β-thromboglobulin and plasma platelet count were analysed. Platelet α-granule release (plasma β-thromboglobulin) showed a significant association with plasminogen activator inhibitor-1 antigen levels but weak associations with plasminogen activator inhibitor-1 activity and a functional marker of fibrinolysis, clot lysis time. Upon dividing the study population into quartiles based on β-thromboglobulin levels, plasminogen activator inhibitor-1 antigen increased significantly across the quartiles while plasminogen activator inhibitor-1 activity and clot lysis time tended to increase in the 4th quartile only. In the follow-up study, plasma plasminogen activator inhibitor-1 antigen was also significantly influenced by platelet count in a concentration-dependent manner. Plasma plasminogen activator inhibitor-1 antigen levels increased further after complete platelet degradation. Residual platelets in plasma significantly influence plasma plasminogen activator inhibitor-1 antigen levels mainly through release of latent plasminogen activator inhibitor-1 with limited effects on plasminogen activator inhibitor-1 activity, tissue plasminogen activator/plasminogen activator inhibitor-1 complex or plasma clot lysis time. Platelets may however also have functional effects on plasma fibrinolytic potential in the presence of high platelet counts, such as in platelet-rich plasma.
The geomagnetic field - An explanation for the microturbulence in coaxial gun plasmas
NASA Technical Reports Server (NTRS)
Mather, J. W.; Ahluwalia, H. S.
1988-01-01
The complexity introduced by the geomagnetic field in several regions of a coaxial gun plasma device is described. It is shown that the annihilation of the swept-up geomagnetic flux, trapped within the highly compressed turbulent plasma, provides an explanation for varied performance and experimental results. The results indicate that the device should be aligned along the direction of the local geomagnetic field or enclosed in a mu-metal shield.
Chaotic density fluctuations in L-mode plasmas of the DIII-D tokamak
Maggs, J. E.; Rhodes, Terry L.; Morales, G. J.
2015-03-05
Analysis of the time series obtained with the Doppler backscattering system (DBS) in the DIII-D tokamak shows that intermediate wave number plasma density fluctuations in low confinement (L-mode) tokamak plasmas are chaotic. Here, the supporting evidence is based on the shape of the power spectrum; the location of the signal in the complexity-entropy plane (C-H plane); and the population of the corresponding Bandt-Pompe probability distributions.
Glow and Dust in Plasma Boundaries
NASA Astrophysics Data System (ADS)
Land, Victor; Douglass, Angela; Qiao, Ke; Zhang, Zhuanhao; Matthews, Lorin S.; Hyde, Truell
2013-04-01
The sheath region is probed in different complex plasma experiments using dust particles in addition to measurement of the optical emission originating from the plasma. The local maximum in optical emission coincides with the breaking of quasi-neutrality at the sheath boundary as indicated by the vertical force profile reconstructed from dust particle trajectories, as well as by the local onset of dust density waves in high density dust clouds suspended in a dielectric box.
Recent advances in ultrafast-laser-based spectroscopy and imaging for reacting plasmas and flames
NASA Astrophysics Data System (ADS)
Patnaik, Anil K.; Adamovich, Igor; Gord, James R.; Roy, Sukesh
2017-10-01
Reacting flows and plasmas are prevalent in a wide array of systems involving defense, commercial, space, energy, medical, and consumer products. Understanding the complex physical and chemical processes involving reacting flows and plasmas requires measurements of key parameters, such as temperature, pressure, electric field, velocity, and number densities of chemical species. Time-resolved measurements of key chemical species and temperature are required to determine kinetics related to the chemical reactions and transient phenomena. Laser-based, noninvasive linear and nonlinear spectroscopic approaches have proved to be very valuable in providing key insights into the physico-chemical processes governing reacting flows and plasmas as well as validating numerical models. The advent of kilohertz rate amplified femtosecond lasers has expanded the multidimensional imaging of key atomic species such as H, O, and N in a significant way, providing unprecedented insight into preferential diffusion and production of these species under chemical reactions or electric-field driven processes. These lasers not only provide 2D imaging of chemical species but have the ability to perform measurements free of various interferences. Moreover, these lasers allow 1D and 2D temperature-field measurements, which were quite unimaginable only a few years ago. The rapid growth of the ultrafast-laser-based spectroscopic measurements has been fueled by the need to achieve the following when measurements are performed in reacting flows and plasmas. They are: (1) interference-free measurements (collision broadening, photolytic dissociation, Stark broadening, etc), (2) time-resolved single-shot measurements at a rate of 1-10 kHz, (3) spatially-resolved measurements, (4) higher dimensionality (line, planar, or volumetric), and (5) simultaneous detection of multiple species. The overarching goal of this article is to review the current state-of-the-art ultrafast-laser-based spectroscopic techniques and their remarkable development in the past two decades in meeting one or all of the above five goals for the spectroscopic measurement of temperature, number density of the atomic and molecular species, and electric field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, T. E.
Controlling the boundary layer in fusion-grade, high-performance, plasma discharges is essential for the successful development of toroidal magnetic confinement power generating systems. A promising approach for controlling the boundary plasma is based on the use of small, externally applied, edge resonant magnetic perturbation (RMP) fields (δmore » $$b_⊥^{ext}$$ ≈ $$10^{-4}$$ → $$10^{-3}$$ T). A long-term focus area in tokamak fusion research has been to find methods, involving the use of non-axisymmetric magnetic perturbations to reduce the intense particle and heat fluxes to the wall. Experimental RMP research has progressed from the early pioneering work on tokamaks with material limiters in the 1970s, to present day research in separatrix-limited tokamaks operated in high-confinement mode, which is primarily aimed at the mitigation of the intermittent fluxes due edge localized modes. At the same time the theoretical research has evolved from analytical models to numerical simulations, including the full 3D complexities of the problem. Following the first demonstration of ELM suppression in the DIII-D tokamak during 2003, there has been a rapid worldwide growth in theoretical, numerical and experimental edge RMP research resulting in the addition of ELM control coils to the ITER baseline design [A. Loarte, et al., Nucl. Fusion 54 (2014) 033007]. This review provides an overview of edge RMP research including a summary of the early theoretical and numerical background along with recent experimental results on improved particle and energy confinement in tokamaks triggered by edge RMP fields. The topics covered make up the basic elements needed for developing a better understanding of 3D magnetic perturbation physics, which is required in order to utilize the full potential of edge RMP fields in fusion relevant high performance, H-mode, plasmas.« less
Evans, T. E.
2016-03-01
Controlling the boundary layer in fusion-grade, high-performance, plasma discharges is essential for the successful development of toroidal magnetic confinement power generating systems. A promising approach for controlling the boundary plasma is based on the use of small, externally applied, edge resonant magnetic perturbation (RMP) fields (δmore » $$b_⊥^{ext}$$ ≈ $$10^{-4}$$ → $$10^{-3}$$ T). A long-term focus area in tokamak fusion research has been to find methods, involving the use of non-axisymmetric magnetic perturbations to reduce the intense particle and heat fluxes to the wall. Experimental RMP research has progressed from the early pioneering work on tokamaks with material limiters in the 1970s, to present day research in separatrix-limited tokamaks operated in high-confinement mode, which is primarily aimed at the mitigation of the intermittent fluxes due edge localized modes. At the same time the theoretical research has evolved from analytical models to numerical simulations, including the full 3D complexities of the problem. Following the first demonstration of ELM suppression in the DIII-D tokamak during 2003, there has been a rapid worldwide growth in theoretical, numerical and experimental edge RMP research resulting in the addition of ELM control coils to the ITER baseline design [A. Loarte, et al., Nucl. Fusion 54 (2014) 033007]. This review provides an overview of edge RMP research including a summary of the early theoretical and numerical background along with recent experimental results on improved particle and energy confinement in tokamaks triggered by edge RMP fields. The topics covered make up the basic elements needed for developing a better understanding of 3D magnetic perturbation physics, which is required in order to utilize the full potential of edge RMP fields in fusion relevant high performance, H-mode, plasmas.« less
Organization and Dynamics of Receptor Proteins in a Plasma Membrane.
Koldsø, Heidi; Sansom, Mark S P
2015-11-25
The interactions of membrane proteins are influenced by their lipid environment, with key lipid species able to regulate membrane protein function. Advances in high-resolution microscopy can reveal the organization and dynamics of proteins and lipids within living cells at resolutions <200 nm. Parallel advances in molecular simulations provide near-atomic-resolution models of the dynamics of the organization of membranes of in vivo-like complexity. We explore the dynamics of proteins and lipids in crowded and complex plasma membrane models, thereby closing the gap in length and complexity between computations and experiments. Our simulations provide insights into the mutual interplay between lipids and proteins in determining mesoscale (20-100 nm) fluctuations of the bilayer, and in enabling oligomerization and clustering of membrane proteins.
Towards Plasma-Based Water Purification: Challenges and Prospects for the Future
NASA Astrophysics Data System (ADS)
Foster, John
2016-10-01
Freshwater scarcity derived from climate change, pollution, and over-development has led to serious consideration for water reuse. Advanced water treatment technologies will be required to process wastewater slated for reuse. One new and emerging technology that could potentially address the removal micropollutants in both drinking water as well as wastewater slated for reuse is plasma-based water purification. Plasma in contact with liquid water generates reactive species that attack and ultimately mineralize organic contaminants in solution. This interaction takes place in a boundary layer centered at the plasma-liquid interface. An understanding of the physical processes taking place at this interface, though poorly understood, is key to the optimization of plasma water purifiers. High electric field conditions, large density gradients, plasma-driven chemistries, and fluid dynamic effects prevail in this multiphase region. The region is also the source function for longer-lived reactive species that ultimately treat the water. Here, we review the need for advanced water treatment methods and in the process, make the case for plasma-based methods. Additionally, we survey the basic methods of interacting plasma with liquid water (including a discussion of breakdown processes in water), the current state of understanding of the physical processes taking place at the plasma-liquid interface, and the role that these processes play in water purification. The development of diagnostics usable in this multiphase environment along modeling efforts aimed at elucidating physical processes taking place at the interface are also detailed. Key experiments that demonstrate the capability of plasma-based water treatment are also reviewed. The technical challenges to the implementation of plasma-based water reactors are also discussed. NSF CBET 1336375 and DOE DE-SC0001939.
High-resolution Imaging of Deuterium-Tritium Capsule Implosions on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Bachmann, Benjamin; Rygg, Ryan; Collins, Gilbert; Patel, Pravesh
2017-10-01
Highly-resolved 3-D simulations of inertial confinement fusion (ICF) implosions predict a hot spot plasma that exhibits complex micron-scale structure originating from a variety of 3-D perturbations. Experimental diagnosis of these conditions requires high spatial resolution imaging techniques. X-ray penumbral imaging can improve the spatial resolution over pinhole imaging while simultaneously increasing the detected photon yield at x-ray energies where the ablator opacity becomes negligible. Here we report on the first time-integrated x-ray penumbral imaging experiments of ICF capsule implosions at the National Ignition Facility that achieved spatial resolution as high as 4 micrometer. 6 to 30 keV hot spot images from layered DT implosions will be presented from a variety of experimental ICF campaigns, revealing previously unseen detail. It will be discussed how these and future results can be used to improve our physics understanding of inertially confined fusion plasmas by enabling spatially resolved measurements of hot spot properties, such as radiation energy, temperature or derived quantities. This work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.
LES of a Jet Excited by the Localized Arc Filament Plasma Actuators
NASA Technical Reports Server (NTRS)
Brown, Clifford A.
2011-01-01
The fluid dynamics of a high-speed jet are governed by the instability waves that form in the free-shear boundary layer of the jet. Jet excitation manipulates the growth and saturation of particular instability waves to control the unsteady flow structures that characterize the energy cascade in the jet.The results may include jet noise mitigation or a reduction in the infrared signature of the jet. The Localized Arc Filament Plasma Actuators (LAFPA) have demonstrated the ability to excite a high-speed jets in laboratory experiments. Extending and optimizing this excitation technology, however, is a complex process that will require many tests and trials. Computational simulations can play an important role in understanding and optimizing this actuator technology for real-world applications. Previous research has focused on developing a suitable actuator model and coupling it with the appropriate computational fluid dynamics (CFD) methods using two-dimensional spatial flow approximations. This work is now extended to three-dimensions (3-D) in space. The actuator model is adapted to a series of discrete actuators and a 3-D LES simulation of an excited jet is run. The results are used to study the fluid dynamics near the actuator and in the jet plume.
Radiation from Accelerated Particles in Shocks and Reconnections
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Zhang, B.; Niemiec, J.; Medvedev, M.; Hardee, P.; Mizuno, Y.; Nordlund, A.; Frederiksen, J. T.; Sol, H.; Pohl, M.;
2011-01-01
Plasma instabilities are responsible not only for the onset and mediation of collisionless shocks but also for the associated acceleration of particles. We have investigated particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. These magnetic fields contribute to the electrons transverse deflection and, more generally, relativistic acceleration behind the shock. We have calculated, self-consistently, the radiation from electrons accelerated in the turbulent magnetic fields. We found that the synthetic spectra depend on the Lorentz factor of the jet, its thermal temperature and strength of the generated magnetic fields. We are currently investigating the specific case of a jet colliding with an anti-parallel magnetized ambient medium. The properties of the radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants.
Physics and chemistry of complex oxide etching and redeposition control
NASA Astrophysics Data System (ADS)
Margot, Joëlle
2012-10-01
Since its introduction in the 1970s, plasma etching has become the universal method for fine-line pattern transfer onto thin films and is anticipated to remain so in foreseeable future. Despite many success stories, plasma etching processes fail to meet the needs for several of the newest materials involved in advanced devices for photonic, electronic and RF applications like ferroelectrics, electro-optic materials, high-k dielectrics, giant magnetoresistance materials and unconventional conductors. In this context, the work achieved over the last decade on the etching of multicomponent oxides thin films such as barium strontium titanate (BST), strontium titanate (STO) and niobate of calcium and barium (CBN) will be reviewed. These materials present a low reactivity with usual etching gases such as fluorinated and chlorinated gases, their etching is mainly governed by ion sputtering and reactive gases sometimes interact with surface materials to form compounds that inhibit etching. The etching of platinum will also be presented as an example of unconventional conductor materials for which severe redeposition limits the achievable etching quality. Finally, it will be shown how simulation can help to understand the etching mechanisms and to define avenues for higher quality patterning.
NASA Technical Reports Server (NTRS)
Berchem, J.; Raeder, J.; Ashour-Abdalla, M.; Frank, L. A.; Paterson, W. R.; Ackerson, K. L.; Kokubun, S.; Yamamoto, T.; Lepping, R. P.
1998-01-01
Understanding the large-scale dynamics of the magnetospheric boundary is an important step towards achieving the ISTP mission's broad objective of assessing the global transport of plasma and energy through the geospace environment. Our approach is based on three-dimensional global magnetohydrodynamic (MHD) simulations of the solar wind-magnetosphere- ionosphere system, and consists of using interplanetary magnetic field (IMF) and plasma parameters measured by solar wind monitors upstream of the bow shock as input to the simulations for predicting the large-scale dynamics of the magnetospheric boundary. The validity of these predictions is tested by comparing local data streams with time series measured by downstream spacecraft crossing the magnetospheric boundary. In this paper, we review results from several case studies which confirm that our MHD model reproduces very well the large-scale motion of the magnetospheric boundary. The first case illustrates the complexity of the magnetic field topology that can occur at the dayside magnetospheric boundary for periods of northward IMF with strong Bx and By components. The second comparison reviewed combines dynamic and topological aspects in an investigation of the evolution of the distant tail at 200 R(sub E) from the Earth.
Transcriptional profiling of the parr–smolt transformation in Atlantic salmon
Robertson, Laura S.; McCormick, Stephen D.
2012-01-01
The parr–smolt transformation in Atlantic salmon (Salmo salar) is a complex developmental process that culminates in the ability to migrate to and live in seawater. We used GRASP 16K cDNA microarrays to identify genes that are differentially expressed in the liver, gill, hypothalamus, pituitary, and olfactory rosettes of smolts compared to parr. Smolts had higher levels of gill Na+/K+-ATPase activity, plasma cortisol and plasma thyroid hormones relative to parr. Across all five tissues, stringent microarray analyses identified 48 features that were differentially expressed in smolts compared to parr. Using a less stringent method we found 477 features that were differentially expressed at least 1.2-fold in smolts, including 172 features in the gill. Smolts had higher mRNA levels of genes involved in transcription, protein biosynthesis and folding, electron transport, oxygen transport, and sensory perception and lower mRNA levels for genes involved in proteolysis. Quantitative RT-PCR was used to confirm differential expression in select genes identified by microarray analyses and to quantify expression of other genes known to be involved in smolting. This study expands our understanding of the molecular processes that underlie smolting in Atlantic salmon and identifies genes for further investigation.