Sample records for understanding earth processes

  1. The Contribution of GGOS to Understanding Dynamic Earth Processes

    NASA Astrophysics Data System (ADS)

    Gross, Richard

    2017-04-01

    Geodesy is the science of the Earth's shape, size, gravity and rotation, including their evolution in time. Geodetic observations play a major role in the solid Earth sciences because they are fundamental for the understanding and modeling of Earth system processes. Changes in the Earth's shape, its gravitational field, and its rotation are caused by external forces acting on the Earth system and internal processes involving mass transfer and exchange of angular and linear momentum. Thus, variations in these geodetic quantities of the Earth reflect and constrain mechanical and thermo-dynamic processes in the Earth system. Mitigating the impact on human life and property of natural hazards such as earthquakes, volcanic eruptions, debris flows, landslides, land subsidence, sea level change, tsunamis, floods, storm surges, hurricanes and extreme weather is an important scientific task to which geodetic observations make fundamental contributions. Geodetic observations can be used to monitor the pre-eruptive deformation of volcanoes and the pre-seismic deformation of earthquake fault zones, aiding in the issuance of volcanic eruption and earthquake warnings. They can also be used to rapidly estimate earthquake fault motion, aiding in the modeling of tsunami genesis and the issuance of tsunami warnings. Geodetic observations are also used in other areas of the Earth sciences, not just the solid Earth sciences. For example, geodesy contributes to atmospheric science by supporting both observation and prediction of the weather by geo-referencing meteorological observing data and by globally tracking change in stratospheric mass and lower tropospheric water vapor fields. Geodetic measurements of refraction profiles derived from satellite occultation data are routinely assimilated into numerical weather prediction models. Geodesy contributes to hydrologic studies by providing a unique global reference system for measurements of: sub-seasonal, seasonal and secular movements

  2. Understanding Student Cognition about Complex Earth System Processes Related to Climate Change

    NASA Astrophysics Data System (ADS)

    McNeal, K. S.; Libarkin, J.; Ledley, T. S.; Dutta, S.; Templeton, M. C.; Geroux, J.; Blakeney, G. A.

    2011-12-01

    The Earth's climate system includes complex behavior and interconnections with other Earth spheres that present challenges to student learning. To better understand these unique challenges, we have conducted experiments with high-school and introductory level college students to determine how information pertaining to the connections between the Earth's atmospheric system and the other Earth spheres (e.g., hydrosphere and cryosphere) are processed. Specifically, we include psychomotor tests (e.g., eye-tracking) and open-ended questionnaires in this research study, where participants were provided scientific images of the Earth (e.g., global precipitation and ocean and atmospheric currents), eye-tracked, and asked to provide causal or relational explanations about the viewed images. In addition, the students engaged in on-line modules (http://serc.carleton.edu/eslabs/climate/index.html) focused on Earth system science as training activities to address potential cognitive barriers. The developed modules included interactive media, hands-on lessons, links to outside resources, and formative assessment questions to promote a supportive and data-rich learning environment. Student eye movements were tracked during engagement with the materials to determine the role of perception and attention on understanding. Students also completed a conceptual questionnaire pre-post to determine if these on-line curriculum materials assisted in their development of connections between Earth's atmospheric system and the other Earth systems. The pre-post results of students' thinking about climate change concepts, as well as eye-tracking results, will be presented.

  3. Impact Craters on Earth: Lessons for Understanding Martian Geological Materials and Processes

    NASA Astrophysics Data System (ADS)

    Osinski, G. R.

    2015-12-01

    Impact cratering is one of the most ubiquitous geological processes in the Solar System and has had a significant influence on the geological evolution of Mars. Unlike the Moon and Mercury, the Martian impact cratering record is notably diverse, which is interpreted to reflect interactions during the impact process with target volatiles and/or the atmosphere. The Earth also possesses a volatile-rich crust and an atmosphere and so is one of the best analogues for understanding the effects of impact cratering on Mars. Furthermore, fieldwork at terrestrial craters and analysis of samples is critical to ground-truth observations made based on remote sensing data from Martian orbiters, landers, and rovers. In recent years, the effect of target lithology on various aspects of the impact cratering process has emerged as a major research topic. On Mars, volatiles have been invoked to be the primary factor influencing the morphology of ejecta deposits - e.g., the formation of single-, double- and multiple-layered ejecta deposits - and central uplifts - e.g., the formation of so-called "central pit" craters. Studies of craters on Earth have also shown that volatiles complicate the identification of impactites - i.e., rocks produced and/or affected by impact cratering. Identifying impactites on Earth is challenging, often requiring intensive and multi-technique laboratory analysis of hand specimens. As such, it is even more challenging to recognize such materials in remote datasets. Here, observations from the Haughton (d = 23 km; Canada), Ries (d = 24 km; Germany), Mistastin (d = 28 km; Canada), Tunnunik, (d = 28 km; Canada), and West Clearwater Lake (d = 36 km; Canada) impact structures are presented. First, it is shown that some impactites mimic intrusive, volcanic, volcanoclastic and in some cases sedimentary clastic rocks. Care should, therefore, be taken in the identification of seemingly unusual igneous rocks at rover landing sites as they may represent impact melt

  4. Understanding our Changing Planet: NASA's Earth Science Enterprise

    NASA Technical Reports Server (NTRS)

    Forehand, Lon; Griner, Charlotte (Editor); Greenstone, Renny (Editor)

    1999-01-01

    NASA has been studying the Earth and its changing environment by observing the atmosphere, oceans, land, ice, and snow and their influence on climate and weather since the agency's creation. This study has lead to a new approach to understanding the interaction of the Earth's systems, Earth System Science. The Earth Science Enterprise, NASA's comprehensive program for Earth System Science, uses satellites and other tools to intensively study the Earth. The Earth Science Enterprise has three main components: (1) a series of Earth-observing satellites, (2) an advanced data system and (3) teams of scientist who study the data. Key areas of study include: (1) clouds, (2) water and energy cycles, (3) oceans, (4) chemistry of the atmosphere, (5) land surface, water and ecosystems processes; (6) glaciers and polar ice sheets, and (7) the solid earth.

  5. The Critical Zone: A Necessary Framework for Understanding Surface Earth Processes

    NASA Astrophysics Data System (ADS)

    Dietrich, W. E.

    2016-12-01

    One definition of the critical zone is: the thin veneer of Earth that extends from the top of the vegetation to the base of weathered bedrock. With this definition we can envision the critical zone as a distinct entity with a well-defined top and a fairly well-defined bottom that is distributed across terrestrial earth landscapes. It is a zone of co-evolving processes and, importantly, much of this zone is well below the soil mantle (and commonly more than 10 times thicker than the soil). Weathering advance into fresh bedrock creates a hydrologically-conductive skin that mediates runoff and solute chemistry, stores water used by vegetation, releases water as baseflow to streams, influences soil production and hillslope evolution, and feeds gasses to the atmosphere. Especially in seasonally dry environments, rock moisture in the critical zone, i.e. moisture that is exchangeable and potentially mobile in the matrix and fractures of the bedrock, can be a significant source of water to plants and is a previously unrecognized large component of the water budget that matters to climate models. First observations on the systematic variation of the critical zone across hillslopes have led to four distinct theories representing four distinct processes for what controls the depth to fresh bedrock (and thus the thickness of this zone across a hillslope). These theories are motivating geophysical surveys, deep drilling, and other actions to parameterize and explore the power of these models. Studies at the NSF-supported Critical Zone Observatories have taught us that the critical zone is an entity and that enduring field studies reveal key processes. A challenge we now face is how to include this emerging understanding of the critical zone into models of reactive transport, hydrologic processes and water supply, critical zone structure, landscape evolution, and climate.

  6. Earth Surface Processes, Landforms and Sediment Deposits

    NASA Astrophysics Data System (ADS)

    Bridge, John; Demicco, Robert

    Earth surface processes, landforms and sediment deposits are intimately related - involving erosion of rocks, generation of sediment, and transport and deposition of sediment through various Earth surface environments. These processes, and the landforms and deposits that they generate, have a fundamental bearing on engineering, environmental and public safety issues; on recovery of economic resources; and on our understanding of Earth history. This unique textbook brings together the traditional disciplines of sedimentology and geomorphology to explain Earth surface processes, landforms and sediment deposits in a comprehensive and integrated way. It is the ideal resource for a two-semester course in sedimentology, stratigraphy, geomorphology, and Earth surface processes from the intermediate undergraduate to beginning graduate level. The book is also accompanied by a website hosting illustrations and material on field and laboratory methods for measuring, describing and analyzing Earth surface processes, landforms and sediments.

  7. Why is understanding when Plate Tectonics began important for understanding Earth?

    NASA Astrophysics Data System (ADS)

    Korenaga, J.

    2015-12-01

    Almost all kinds of geological activities on Earth depend critically on the operation of plate tectonics, but did plate tectonics initiate right after the solidification of a putative magma ocean, or did it start much later, e.g., sometime during the Archean? This problem of the initiation of plate tectonics in the Earth history presents us a unique combination of observational and theoretical challenges. Finding geological evidence for the onset of plate tectonics is difficult because plate tectonics is a dynamic process that continuously destroys a remnant of the past. We therefore need to rely on more secondary traces, the interpretation of which often involves theoretical considerations. At the same time, it is still hard to predict, on a firm theoretical ground, when plate tectonics should have prevailed, because there is no consensus on why plate tectonics currently takes place on Earth. Knowing when plate tectonics began is one thing, and understanding why it did so is another. The initiation of plate tectonics is one of the last frontiers in earth science, which encourages a concerted effort from both geologists and geophysicists to identify key geological evidence and distinguish between competing theories of early Earth evolution. Such an endeavor is essential to arrive at a self-contained theory for the evolution of terrestrial planets.

  8. Understanding Global Change: Tools for exploring Earth processes and biotic change through time

    NASA Astrophysics Data System (ADS)

    Bean, J. R.; White, L. D.; Berbeco, M.

    2014-12-01

    Teaching global change is one of the great pedagogical challenges of our day because real understanding entails integrating a variety of concepts from different scientific subject areas, including chemistry, physics, and biology, with a variety of causes and impacts in the past, present, and future. With the adoption of the Next Generation Science Standards, which emphasize climate change and other human impacts on natural systems, there has never been a better time to provide instructional support to educators on these topics. In response to this clear need, the University of California Museum of Paleontology, in collaboration with the National Center for Science Education, developed a new web resource for teachers and students titled "Understanding Global Change" (UGC) that introduces the drivers and impacts of global change. This website clarifies the connections among deep time, modern Earth system processes, and anthropogenic influences, and provides K-16 instructors with a wide range of easy-to-use tools, strategies, and lesson plans for communicating these important concepts regarding global change and the basic Earth systems processes. In summer 2014, the UGC website was field-tested during a workshop with 25 K-12 teachers and science educators. Feedback from participants helped the UGC team develop and identify pedagogically sound lesson plans and instructional tools on global change. These resources are accessible through UGC's searchable database, are aligned with NGSS and Common Core, and are categorized by grade level, subject, and level of inquiry-based instruction (confirmation, structured, guided, open). Providing a range of content and tools at levels appropriate for teachers is essential because our initial needs assessment found that educators often feel that they lack the content knowledge and expertise to address complex, but relevant global change issues, such as ocean acidification and deforestation. Ongoing needs assessments and surveys of

  9. Understanding earth system models: how Global Sensitivity Analysis can help

    NASA Astrophysics Data System (ADS)

    Pianosi, Francesca; Wagener, Thorsten

    2017-04-01

    Computer models are an essential element of earth system sciences, underpinning our understanding of systems functioning and influencing the planning and management of socio-economic-environmental systems. Even when these models represent a relatively low number of physical processes and variables, earth system models can exhibit a complicated behaviour because of the high level of interactions between their simulated variables. As the level of these interactions increases, we quickly lose the ability to anticipate and interpret the model's behaviour and hence the opportunity to check whether the model gives the right response for the right reasons. Moreover, even if internally consistent, an earth system model will always produce uncertain predictions because it is often forced by uncertain inputs (due to measurement errors, pre-processing uncertainties, scarcity of measurements, etc.). Lack of transparency about the scope of validity, limitations and the main sources of uncertainty of earth system models can be a strong limitation to their effective use for both scientific and decision-making purposes. Global Sensitivity Analysis (GSA) is a set of statistical analysis techniques to investigate the complex behaviour of earth system models in a structured, transparent and comprehensive way. In this presentation, we will use a range of examples across earth system sciences (with a focus on hydrology) to demonstrate how GSA is a fundamental element in advancing the construction and use of earth system models, including: verifying the consistency of the model's behaviour with our conceptual understanding of the system functioning; identifying the main sources of output uncertainty so to focus efforts for uncertainty reduction; finding tipping points in forcing inputs that, if crossed, would bring the system to specific conditions we want to avoid.

  10. Understanding Geomorphological Processes on the Earth's Surface from Laboratory Experiments and the Role of Communities of Practice in Generating Reusable Data

    NASA Astrophysics Data System (ADS)

    Hsu, L.

    2016-12-01

    Geomorphological processes move masses of sediment across the face of the Earth, from mountain tops to hillslopes, rivers, flood plains, and coastlines, on a range of temporal and spatial scales that span many orders of magnitude. These processes, sometimes spanning millennia and sometimes occurring catastrophically, affect human communities that live on and near these surface landforms. Experiments conveniently scale these processes to time and space that can be observed and measured in the laboratory. As a result, the research community has produced remarkable experimental datasets for processes such as particle transport, hillslope erosion, channel migration, and coastline evolution. These datasets build a collection that quantifies a wide range of environmental processes and contributes to hazards mitigation and the understanding of long-term effects of climate and tectonics on landscape evolution. However, technology and data acquisition rates are outgrowing capabilities for storing, maintaining, and serving the data. Solutions that improve preservation, reuse, and attribution of geomorphological data from unique experimental set-ups are germinating at different research centers. These solutions allow the cross-disciplinary data integration that is often necessary to achieving a mechanistic and holistic understanding of the processes that shape the Earth's surface. Communities of practice such as the Sediment Experimentalist Network (SEN) and the U.S. Geological Survey's Community for Data Integration (USGS CDI) play a critical role in effectively facilitating information exchange about tools, methods, and results that accelerate experimental success. Through community interactions and a culture change to generate data more fit for reuse, broad challenges in reproducibility, scaling, and integration may be addressed, leading to more rapid progress in Earth surface process research.

  11. Geobiology: A Conceptual Framework for Understanding Earth's Surface

    NASA Astrophysics Data System (ADS)

    Sumner, D. Y.

    2016-12-01

    A topic of study becomes a new field when it provides a useful conceptual framework for understanding suites of important processes. Geobiology integrates microbial biology with Earth sciences in a way that allows us to ask - and answer - deeper questions about Earth and the life on it. Recent studies of the oxidation of Earth's surface exemplify the impact of Geobiology as a new field. For decades, scientists have understood that Earth's surface was oxidized by photosynthesis. Geochemical records indicate dramatic redox changes both globally, e.g. the loss of MIF sulfur signatures due to formation of an ozone layer, and locally, as preserved in sedimentary rocks. However, these records depend critically on the dynamics of both the global biosphere and local microbial ecology. For example, an increase in global redox due to photosynthetic iron oxidation has different biogeochemical implications than an increase from oxygenic photosynthesis; O2 reacts very differently with organic matter and minerals than iron oxyhydroxides do, influencing microbial ecology as well as potential geochemical signatures in sedimentary rocks. Thus, studies of modern microbial communities provide insights into the interactions among metabolisms and geochemical gradients that have shaped Earth's redox history. For example, the ability of cyanobacteria to create O2 oases in benthic mats and soils on land provides a new framework for evaluating redox-sensitive elemental fluxes to the ocean. Similarly, genomic studies of Cyanobacteria have revealed close relatives, Melainabacteria, that are mostly obligate anaerobes. The evolutionary relationships between these two groups, as preserved in their genomes, reflect important microbial processes that led to oxidation of Earth's surface. By combining insights from microbial biology and sedimentary geochemistry, geobiologists will develop significantly more accurate models of the interactions between life and Earth.

  12. Online Student Learning and Earth System Processes

    NASA Astrophysics Data System (ADS)

    Mackay, R. M.

    2002-12-01

    Many students have difficulty understanding dynamical processes related to Earth's climate system. This is particularly true in Earth System Science courses designed for non-majors. It is often tempting to gloss over these conceptually difficult topics and have students spend more study time learning factual information or ideas that require rather simple linear thought processes. Even when the professor is ambitious and tackles the more difficult ideas of system dynamics in such courses, they are typically greeted with frustration and limited success. However, an understanding of generic system concepts and processes is quite arguably an essential component of any quality liberal arts education. We present online student-centered learning modules that are designed to help students explore different aspects of Earth's climate system (see http://www.cs.clark.edu/mac/physlets/GlobalPollution/maintrace.htm for a sample activity). The JAVA based learning activities are designed to: be assessable to anyone with Web access; be self-paced, engaging, and hands-on; and make use of past results from science education research. Professors can use module activities to supplement lecture, as controlled-learning-lab activities, or as stand-alone homework assignments. Acknowledgement This work was supported by NASA Office of Space Science contract NASW-98037, Atmospheric and Environmental Research Inc. of Lexington, MA., and Clark College.

  13. Laurel Clark Earth Camp: Building a Framework for Teacher and Student Understanding of Earth Systems

    NASA Astrophysics Data System (ADS)

    Colodner, D.; Buxner, S.; Schwartz, K.; Orchard, A.; Titcomb, A.; King, B.; Baldridge, A.; Thomas-Hilburn, H.; Crown, D. A.

    2013-04-01

    Laurel Clark Earth Camp is designed to inspire teachers and students to study their world through field experiences, remote sensing investigations, and hands on exploration, all of which lend context to scientific inquiry. In three different programs (for middle school students, for high school students, and for teachers) participants are challenged to understand Earth processes from the perspectives of both on-the ground inspection and from examination of satellite images, and use those multiple perspectives to determine best practices on both a societal and individual scale. Earth Camp is a field-based program that takes place both in the “natural” and built environment. Middle School Earth Camp introduces students to a variety of environmental science, engineering, technology, and societal approaches to sustainability. High School Earth Camp explores ecology and water resources from southern Arizona to eastern Utah, including a 5 day rafting trip. In both camps, students compare environmental change observed through repeat photography on the ground to changes observed from space. Students are encouraged to utilize their camp experience in considering their future course of study, career objectives, and lifestyle choices. During Earth Camp for Educators, teachers participate in a series of weekend workshops to explore relevant environmental science practices, including water quality testing, biodiversity surveys, water and light audits, and remote sensing. Teachers engage students, both in school and after school, in scientific investigations with this broad based set of tools. Earth Stories from Space is a website that will assist in developing skills and comfort in analyzing change over time and space using remotely sensed images. Through this three-year NASA funded program, participants will appreciate the importance of scale and perspective in understanding Earth systems and become inspired to make choices that protect the environment.

  14. NASA's Earth Science Data Systems Standards Process Experiences

    NASA Technical Reports Server (NTRS)

    Ullman, Richard E.; Enloe, Yonsook

    2007-01-01

    NASA has impaneled several internal working groups to provide recommendations to NASA management on ways to evolve and improve Earth Science Data Systems. One of these working groups is the Standards Process Group (SPC). The SPG is drawn from NASA-funded Earth Science Data Systems stakeholders, and it directs a process of community review and evaluation of proposed NASA standards. The working group's goal is to promote interoperability and interuse of NASA Earth Science data through broader use of standards that have proven implementation and operational benefit to NASA Earth science by facilitating the NASA management endorsement of proposed standards. The SPC now has two years of experience with this approach to identification of standards. We will discuss real examples of the different types of candidate standards that have been proposed to NASA's Standards Process Group such as OPeNDAP's Data Access Protocol, the Hierarchical Data Format, and Open Geospatial Consortium's Web Map Server. Each of the three types of proposals requires a different sort of criteria for understanding the broad concepts of "proven implementation" and "operational benefit" in the context of NASA Earth Science data systems. We will discuss how our Standards Process has evolved with our experiences with the three candidate standards.

  15. Connecting Earth Systems: Developing Holistic Understanding through the Earth-System-Science Model

    ERIC Educational Resources Information Center

    Gagnon, Valoree; Bradway, Heather

    2012-01-01

    For many years, Earth science concepts have been taught as thematic units with lessons in nice, neat chapter packages complete with labs and notes. But compartmentalized Earth science no longer exists, and implementing teaching methods that support student development of holistic understandings can be a time-consuming and difficult task. While…

  16. How the World Gains Understanding of a Planet: Analysis of Scientific Understanding in Earth Sciences and of the Communication of Earth-Scientific Explanation

    NASA Astrophysics Data System (ADS)

    Voute, S.; Kleinhans, M. G.; de Regt, H.

    2010-12-01

    A scientific explanation for a phenomenon is based on relevant theory and initial and background conditions. Scientific understanding, on the other hand, requires intelligibility, which means that a scientist can recognise qualitative characteristic consequences of the theory without doing the actual calculations, and apply it to develop further explanations and predictions. If explanation and understanding are indeed fundamentally different, then it may be possible to convey understanding of earth-scientific phenomena to laymen without the full theoretical background. The aim of this thesis is to analyze how scientists and laymen gain scientific understanding in Earth Sciences, based on the newest insights in the philosophy of science, pedagogy, and science communication. All three disciplines have something to say about how humans learn and understand, even if at very different levels of scientists, students, children or the general public. If different disciplines with different approaches identify and quantify the same theory in the same manner, then there is likely to be something “real” behind the theory. Comparing methodology and learning styles of the different disciplines within the Earth Sciences and by critically analyze earth-scientific exhibitions in different museums may provide insight in the different approaches for earth-scientific explanation and communication. In order to gain earth-scientific understanding, a broad suite of tools is used, such as maps and images, symbols and diagrams, cross-sections and sketches, categorization and classification, modelling, laboratory experiments, (computer) simulations and analogies, remote sensing, and fieldwork. All these tools have a dual nature, containing both theoretical and embodied components. Embodied knowledge is created by doing the actual modelling, intervening in experiments and doing fieldwork. Scientific practice includes discovery and exploration, data collection and analyses, verification

  17. Discovering and measuring a layered Earth: A foundational laboratory for developing students' understanding of Earth's interior structure

    NASA Astrophysics Data System (ADS)

    Hubenthal, M.; Braile, L. W.; Olds, S. E.; Taber, J.

    2010-12-01

    Geophysics research is continuously revealing new insights about Earth’s interior structure. Before students can grasp theses new complexities, they first must internalize the 1st order layered structure of Earth and comprehend how seismology contributes to the development of such models. Earth structure is of course covered in most introductory geoscience courses, though all too often instruction of this content is limited to didactic methods that make little effort to inspire or engage the minds of students. In the process, students are expected to blindly accept our understanding of the unseen and abstract. Thus, it is not surprising then that many students can draw a layered Earth diagram, yet not know that knowledge of Earth’s interior is based on information from earthquakes. Cognitive learning theory would suggest that what has been missing from instruction of Earth structure is a feasible method to present students with seismic evidence in a manner that allows students to become minds-on with the content; discovering or dispelling the presence of a layered Earth for themselves. Recent advances in serving seismic data to a non-seismologist audience have made the development of such laboratory investigations possible. In this exercise students use an inquiry approach to examine seismic evidence and determine that the Earth cannot have a homogeneous composition. Further they use the data to estimate the dimensions of Earth’s outer core. To reach these conclusions, students are divided into two teams, theoreticians and seismologists, to test the simplest hypothesis for Earth's internal structure; a homogeneous Earth. The theoreticians create a scale model of a homogeneous Earth and predict when seismic waves should arrive at various points on the model. Simultaneously, seismologists interpret a seismic record section from a recent earthquake noting when seismic waves arrive at various points around Earth. The two groups of students then compare the

  18. Constructing Understanding in Primary Science: An Exploration of Process and Outcomes in the Topic Areas of Light and the Earth in Space

    ERIC Educational Resources Information Center

    Thurston, Allen; Grant, G.; Topping, K. J.

    2006-01-01

    This study explored the process and outcomes of constructivist methods of enhancing science understanding in the topic areas of light and the earth in space. The sample was drawn from a group of 41 nine-year-old children, delivered in four two-hour weekly sessions. Each session involved different combinations of interactive discussion and…

  19. The Denali EarthScope Education Partnership: Creating Opportunities for Learning About Solid Earth Processes in Alaska and Beyond.

    NASA Astrophysics Data System (ADS)

    Roush, J. J.; Hansen, R. A.

    2003-12-01

    The Geophysical Institute of the University of Alaska Fairbanks, in partnership with Denali National Park and Preserve, has begun an education outreach program that will create learning opportunities in solid earth geophysics for a wide sector of the public. We will capitalize upon a unique coincidence of heightened public interest in earthquakes (due to the M 7.9 Denali Fault event of Nov. 3rd, 2002), the startup of the EarthScope experiment, and the construction of the Denali Science & Learning Center, a premiere facility for science education located just 43 miles from the epicenter of the Denali Fault earthquake. Real-time data and current research results from EarthScope installations and science projects in Alaska will be used to engage students and teachers, national park visitors, and the general public in a discovery process that will enhance public understanding of tectonics, seismicity and volcanism along the boundary between the Pacific and North American plates. Activities will take place in five program areas, which are: 1) museum displays and exhibits, 2) outreach via print publications and electronic media, 3) curriculum development to enhance K-12 earth science education, 4) teacher training to develop earth science expertise among K-12 educators, and 5) interaction between scientists and the public. In order to engage the over 1 million annual visitors to Denali, as well as people throughout Alaska, project activities will correspond with the opening of the Denali Science and Learning Center in 2004. An electronic interactive kiosk is being constructed to provide public access to real-time data from seismic and geodetic monitoring networks in Alaska, as well as cutting edge visualizations of solid earth processes. A series of print publications and a website providing access to real-time seismic and geodetic data will be developed for park visitors and the general public, highlighting EarthScope science in Alaska. A suite of curriculum modules

  20. Understanding the Role of Biology in the Global Environment: NASA'S Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Townsend, William F.

    1996-01-01

    NASA has long used the unique perspective of space as a means of expanding our understanding of how the Earth's environment functions. In particular, the linkages between land, air, water, and life-the elements of the Earth system-are a focus for NASA's Mission to Planet Earth. This approach, called Earth system science, blends together fields like meteorology, biology, oceanography, and atmospheric science. Mission to Planet Earth uses observations from satellites, aircraft, balloons, and ground researchers as the basis for analysis of the elements of the Earth system, the interactions between those elements, and possible changes over the coming years and decades. This information is helping scientists improve our understanding of how natural processes affect us and how we might be affecting them. Such studies will yield improved weather forecasts, tools for managing agriculture and forests, information for fishermen and local planners, and, eventually, an enhanced ability to predict how the climate will change in the future. NASA has designed Mission to Planet Earth to focus on five primary themes: Land Cover and Land Use Change; Seasonal to Interannual Climate Prediction; Natural Hazards; Long-Term Climate Variability; and Atmosphere Ozone.

  1. Advancing Capabilities for Understanding the Earth System Through Intelligent Systems, the NSF Perspective

    NASA Astrophysics Data System (ADS)

    Gil, Y.; Zanzerkia, E. E.; Munoz-Avila, H.

    2015-12-01

    The National Science Foundation (NSF) Directorate for Geosciences (GEO) and Directorate for Computer and Information Science (CISE) acknowledge the significant scientific challenges required to understand the fundamental processes of the Earth system, within the atmospheric and geospace, Earth, ocean and polar sciences, and across those boundaries. A broad view of the opportunities and directions for GEO are described in the report "Dynamic Earth: GEO imperative and Frontiers 2015-2020." Many of the aspects of geosciences research, highlighted both in this document and other community grand challenges, pose novel problems for researchers in intelligent systems. Geosciences research will require solutions for data-intensive science, advanced computational capabilities, and transformative concepts for visualizing, using, analyzing and understanding geo phenomena and data. Opportunities for the scientific community to engage in addressing these challenges are available and being developed through NSF's portfolio of investments and activities. The NSF-wide initiative, Cyberinfrastructure Framework for 21st Century Science and Engineering (CIF21), looks to accelerate research and education through new capabilities in data, computation, software and other aspects of cyberinfrastructure. EarthCube, a joint program between GEO and the Advanced Cyberinfrastructure Division, aims to create a well-connected and facile environment to share data and knowledge in an open, transparent, and inclusive manner, thus accelerating our ability to understand and predict the Earth system. EarthCube's mission opens an opportunity for collaborative research on novel information systems enhancing and supporting geosciences research efforts. NSF encourages true, collaborative partnerships between scientists in computer sciences and the geosciences to meet these challenges.

  2. Understanding stellar activity and flares to search for Earth-like exoplanets

    NASA Astrophysics Data System (ADS)

    Del Sordo, Fabio

    2015-08-01

    The radial velocity method is a powerful way to search for exoplanetary systems and it led to many discoveries of exoplanets in the last 20 years. Nowadays, understanding stellar activity, flares and noise is a key factor for achieving a substantial improvement in such technique.Radial-velocity data are time-series containing the effect of both planets and stellar disturbances: the detection of Earth-like planets requires to improve the signal-to-noise ratio, i.e. it is central to understand the noise present in the data. Noise is caused by physical processes which operate on different time-scales, oftentimes acting in a non-periodic fashion. We present here an approach to such problem: to look for multifractal structures in the time-series coming from radial velocity measurements, identifying the underlying long-range correlations and fractal scaling properties, connecting them to the underlying physical processes (stellar oscillations, stellar wind, granulation, rotation, magnetic activity). This method has been previously applied to satellite data related to Arctic sea albedo, relevant for identify trends and noise in the Arctic sea ice (Agarwal, Moon, Wettlaufer, 2012). Here we suggest to use such analysis for exoplanetary data related to possible Earth-like planets.

  3. Parabolic flights as Earth analogue for surface processes on Mars

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.

    2017-04-01

    The interpretation of landforms and environmental archives on Mars with regards to habitability and preservation of traces of life requires a quantitative understanding of the processes that shaped them. Commonly, qualitative similarities in sedimentary rocks between Earth and Mars are used as an analogue to reconstruct the environments in which they formed on Mars. However, flow hydraulics and sedimentation differ between Earth and Mars, requiring a recalibration of models describing runoff, erosion, transport and deposition. Simulation of these processes on Earth is limited because gravity cannot be changed and the trade-off between adjusting e.g. fluid or particle density generates other mismatches, such as fluid viscosity. Computational Fluid Dynamics offer an alternative, but would also require a certain degree of calibration or testing. Parabolic flights offer a possibility to amend the shortcomings of these approaches. Parabolas with reduced gravity last up to 30 seconds, which allows the simulation of sedimentation processes and the measurement of flow hydraulics. This study summarizes the experience gathered during four campaigns of parabolic flights, aimed at identifying potential and limitations of their use as an Earth analogue for surface processes on Mars.

  4. Satellite probes plasma processes in earth orbit

    NASA Technical Reports Server (NTRS)

    Christensen, Andrew B.; Reasoner, David L.

    1992-01-01

    The mission of the DOD/NASA Combined Release and Radiation Effects Satellite (CRRES) is to deepen understanding of the earth's near-space environment, including the radiation belts and the ionosphere; this will help spacecraft designers protect against radiation-belt particles that affect onboard electronics, solar panel arrays, and crewmembers. Attention is presently given to CRRES's study of ionospheric plasma processes through releases of Ba, Ca, Sr, and Li at altitudes of 400-36,000 km.

  5. The Moon: Keystone to Understanding Planetary Geological Processes and History

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Extensive and intensive exploration of the Earth's Moon by astronauts and an international array of automated spacecraft has provided an unequaled data set that has provided deep insight into geology, geochemistry, mineralogy, petrology, chronology, geophysics and internal structure. This level of insight is unequaled except for Earth. Analysis of these data sets over the last 35 years has proven fundamental to understanding planetary surface processes and evolution, and is essential to linking surface processes with internal and thermal evolution. Much of the understanding that we presently have of other terrestrial planets and outer planet satellites derives from the foundation of these data. On the basis of these data, the Moon is a laboratory for understanding of planetary processes and a keystone for providing evolutionary perspective. Important comparative planetology issues being addressed by lunar studies include impact cratering, magmatic activity and tectonism. Future planetary exploration plans should keep in mind the importance of further lunar exploration in continuing to build solid underpinnings in this keystone to planetary evolution. Examples of these insights and applications to other planets are cited.

  6. Earth observing satellite: Understanding the Earth as a system

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald

    1990-01-01

    There is now a plan for global studies which include two very large efforts. One is the International Geosphere/Biosphere Program (IGBP) sponsored by the International Council of Scientific Unions. The other initiative is Mission to Planet Earth, an unbrella program for doing three kinds of space missions. The major one is the Earth Observation Satellite (EOS). EOS is large polar orbiting satellites with heavy payloads. Two will be placed in orbit by NASA, one by the Japanese and one or two by ESA. The overall mission measurement objectives of EOS are summarized: (1) the global distribution of energy input to and energy output from the Earth; (2) the structure, state variables, composition, and dynamics of the atmosphere from the ground to the mesopause; (3) the physical and biological structure, state, composition, and dynamics of the land surface, including terrestrial and inland water ecosystems; (4) the rates, important sources and sinks, and key components and processes of the Earth's biogeochemical cycles; (5) the circulation, surface temperature, wind stress, sea state, and the biological activity of the oceans; (6) the extent, type, state, elevation, roughness, and dynamics of glaciers, ice sheets, snow and sea ice, and the liquid equivalent of snow in the global cryosphere; (7) the global rates, amounts, and distribution of precipitation; and (8) the dynamic motions of the Earth (geophysics) as a whole, including both rotational dynamics and the kinematic motions of the tectonic plates.

  7. Make Earth science education as dynamic as Earth itself

    NASA Astrophysics Data System (ADS)

    Lautenbacher, Conrad C.; Groat, Charles G.

    2004-12-01

    The images of rivers spilling over their banks and washing away entire towns, buildings decimated to rubble by the violent shaking of the Earth's plates, and molten lava flowing up from inside the Earth's core are constant reminders of the power of the Earth. Humans are simply at the whim of the forces of Mother Nature—or are we? Whether it is from a great natural disaster, a short-term weather event like El Nino, or longer-term processes like plate tectonics, Earth processes affect us all. Yet,we are only beginning to scratch the surface of our understanding of Earth sciences. We believe the day will come when our understanding of these dynamic Earth processes will prompt better policies and decisions about saving lives and property. One key place to start is in America's classrooms.

  8. Land management: data availability and process understanding for global change studies.

    PubMed

    Erb, Karl-Heinz; Luyssaert, Sebastiaan; Meyfroidt, Patrick; Pongratz, Julia; Don, Axel; Kloster, Silvia; Kuemmerle, Tobias; Fetzel, Tamara; Fuchs, Richard; Herold, Martin; Haberl, Helmut; Jones, Chris D; Marín-Spiotta, Erika; McCallum, Ian; Robertson, Eddy; Seufert, Verena; Fritz, Steffen; Valade, Aude; Wiltshire, Andrew; Dolman, Albertus J

    2017-02-01

    In the light of daunting global sustainability challenges such as climate change, biodiversity loss and food security, improving our understanding of the complex dynamics of the Earth system is crucial. However, large knowledge gaps related to the effects of land management persist, in particular those human-induced changes in terrestrial ecosystems that do not result in land-cover conversions. Here, we review the current state of knowledge of ten common land management activities for their biogeochemical and biophysical impacts, the level of process understanding and data availability. Our review shows that ca. one-tenth of the ice-free land surface is under intense human management, half under medium and one-fifth under extensive management. Based on our review, we cluster these ten management activities into three groups: (i) management activities for which data sets are available, and for which a good knowledge base exists (cropland harvest and irrigation); (ii) management activities for which sufficient knowledge on biogeochemical and biophysical effects exists but robust global data sets are lacking (forest harvest, tree species selection, grazing and mowing harvest, N fertilization); and (iii) land management practices with severe data gaps concomitant with an unsatisfactory level of process understanding (crop species selection, artificial wetland drainage, tillage and fire management and crop residue management, an element of crop harvest). Although we identify multiple impediments to progress, we conclude that the current status of process understanding and data availability is sufficient to advance with incorporating management in, for example, Earth system or dynamic vegetation models in order to provide a systematic assessment of their role in the Earth system. This review contributes to a strategic prioritization of research efforts across multiple disciplines, including land system research, ecological research and Earth system modelling. © 2016

  9. Understanding Divergent Evolution Among Earth-like Planets, the Case for Venus Exploration

    NASA Astrophysics Data System (ADS)

    Crisp, D.

    2001-11-01

    Venus was once considered to be Earth's twin because of its similar size, mass, and solar distance. Prevailing theories early in the 20th century alternately characterized it as a hot, lifeless desert or a cool, habitable swamp. Venus was therefore the target of intense scrutiny during the first three decades of the space age. Those studies found that although Venus and Earth apparently formed in similar parts of the solar nebula, sharing common inventories of refractory and volatile constituents, these two planets followed dramatically different evolutionary paths. While the Earth evolved into the only known oasis for life, Venus developed an almost unimaginably inhospitable environment for such an Earth-like planet. Some features of Venus can be understood as products of its location in the solar system, but other properties and processes governing the evolution and present state of its interior, surface, and climate remain mysterious or even contradictory. A more comprehensive understanding of these factors is clearly essential as NASA embarks on efforts to detect and then characterize Earth-like planets in other solar systems. As part of the National Research Council's effort to identify themes and priorities for solar system exploration over the next decade, an open community panel was formed to provide input on future Venus exploration. A comprehensive investigation of the processes driving the divergent evolution of Venus is emerging as the primary focus. In other words, why is Venus a failed Earth? From this theme, we will define specific measurement objectives, instrument requirements, and mission requirements. Priorities will then be based on a number of factors including the needs for simultaneous or correlative measurements, technology readiness, and available opportunities.

  10. Understanding Coupled Earth-Surface Processes through Experiments and Models (Invited)

    NASA Astrophysics Data System (ADS)

    Overeem, I.; Kim, W.

    2013-12-01

    Traditionally, both numerical models and experiments have been purposefully designed to ';isolate' singular components or certain processes of a larger mountain to deep-ocean interconnected source-to-sink (S2S) transport system. Controlling factors driven by processes outside of the domain of immediate interest were treated and simplified as input or as boundary conditions. Increasingly, earth surface processes scientists appreciate feedbacks and explore these feedbacks with more dynamically coupled approaches to their experiments and models. Here, we discuss key concepts and recent advances made in coupled modeling and experimental setups. In addition, we emphasize challenges and new frontiers to coupled experiments. Experiments have highlighted the important role of self-organization; river and delta systems do not always need to be forced by external processes to change or develop characteristic morphologies. Similarly modeling f.e. has shown that intricate networks in tidal deltas are stable because of the interplay between river avulsions and the tidal current scouring with both processes being important to develop and maintain the dentritic networks. Both models and experiment have demonstrated that seemingly stable systems can be perturbed slightly and show dramatic responses. Source-to-sink models were developed for both the Fly River System in Papua New Guinea and the Waipaoa River in New Zealand. These models pointed to the importance of upstream-downstream effects and enforced our view of the S2S system as a signal transfer and dampening conveyor belt. Coupled modeling showed that deforestation had extreme effects on sediment fluxes draining from the catchment of the Waipaoa River in New Zealand, and that this increase in sediment production rapidly shifted the locus of offshore deposition. The challenge in designing coupled models and experiments is both technological as well as intellectual. Our community advances to make numerical model coupling more

  11. The esa earth explorer land surface processes and interactions mission

    NASA Astrophysics Data System (ADS)

    Labandibar, Jean-Yves; Jubineau, Franck; Silvestrin, Pierluigi; Del Bello, Umberto

    2017-11-01

    The European Space Agency (ESA) is defining candidate missions for Earth Observation. In the class of the Earth Explorer missions, dedicated to research and pre-operational demonstration, the Land Surface Processes and Interactions Mission (LSPIM) will acquire the accurate quantitative measurements needed to improve our understanding of the nature and evolution of biosphere-atmosphere interactions and to contribute significantly to a solution of the scaling problems for energy, water and carbon fluxes at the Earth's surface. The mission is intended to provide detailed observations of the surface of the Earth and to collect data related to ecosystem processes and radiation balance. It is also intended to address a range of issues important for environmental monitoring, renewable resources assessment and climate models. The mission involves a dedicated maneuvering satellite which provides multi-directional observations for systematic measurement of Land Surface BRDF (BiDirectional Reflectance Distribution Function) of selected sites on Earth. The satellite carries an optical payload : PRISM (Processes Research by an Imaging Space Mission), a multispectral imager providing reasonably high spatial resolution images (50 m over 50 km swath) in the whole optical spectral domain (from 450 nm to 2.35 μm with a resolution close to 10 nm, and two thermal bands from 8.1 to 9.1 μm). This paper presents the results of the Phase A study awarded by ESA, led by ALCATEL Space Industries and concerning the design of LSPIM.

  12. Quantitative Modeling of Earth Surface Processes

    NASA Astrophysics Data System (ADS)

    Pelletier, Jon D.

    This textbook describes some of the most effective and straightforward quantitative techniques for modeling Earth surface processes. By emphasizing a core set of equations and solution techniques, the book presents state-of-the-art models currently employed in Earth surface process research, as well as a set of simple but practical research tools. Detailed case studies demonstrate application of the methods to a wide variety of processes including hillslope, fluvial, aeolian, glacial, tectonic, and climatic systems. Exercises at the end of each chapter begin with simple calculations and then progress to more sophisticated problems that require computer programming. All the necessary computer codes are available online at www.cambridge.org/9780521855976. Assuming some knowledge of calculus and basic programming experience, this quantitative textbook is designed for advanced geomorphology courses and as a reference book for professional researchers in Earth and planetary science looking for a quantitative approach to Earth surface processes.

  13. More details...
  14. From pattern to process: The strategy of the Earth Observing System: Volume 2: EOS Science Steering Committee report

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Earth Observing System (EOS) represents a new approach to the study of the Earth. It consists of remotely sensed and correlative in situ observations designed to address important, interrelated global-scale processes. There is an urgent need to study the Earth as a complete, integrated system in order to understand and predict changes caused by human activities and natural processes. The EOS approach is based on an information system concept and designed to provide a long-term study of the Earth using a variety of measurement methods from both operational and research satellite payloads and continuing ground-based Earth science studies. The EOS concept builds on the foundation of the earlier, single-discipline space missions designed for relatively short observation periods. Continued progress in our understanding of the Earth as a system will come from EOS observations spanning several decades using a variety of contemporaneous measurements.

  15. Earthing the human body influences physiologic processes.

    PubMed

    Sokal, Karol; Sokal, Pawel

    2011-04-01

    This study was designed to answer the question: Does the contact of the human organism with the Earth via a copper conductor affect physiologic processes? Subjects and experiments: Five (5) experiments are presented: experiment 1-effect of earthing on calcium-phosphate homeostasis and serum concentrations of iron (N = 84 participants); experiment 2-effect of earthing on serum concentrations of electrolytes (N = 28); experiment 3-effect of earthing on thyroid function (N = 12); experiment 4-effect of earthing on glucose concentration (N = 12); experiment 5-effect of earthing on immune response to vaccine (N = 32). Subjects were divided into two groups. One (1) group of people was earthed, while the second group remained without contact with the Earth. Blood and urine samples were examined. Earthing of an electrically insulated human organism during night rest causes lowering of serum concentrations of iron, ionized calcium, inorganic phosphorus, and reduction of renal excretion of calcium and phosphorus. Earthing during night rest decreases free tri-iodothyronine and increases free thyroxine and thyroid-stimulating hormone. The continuous earthing of the human body decreases blood glucose in patients with diabetes. Earthing decreases sodium, potassium, magnesium, iron, total protein, and albumin concentrations while the levels of transferrin, ferritin, and globulins α1, α2, β, and γ increase. These results are statistically significant. Earthing the human body influences human physiologic processes. This influence is observed during night relaxation and during physical activity. Effect of the earthing on calcium-phosphate homeostasis is the opposite of that which occurs in states of weightlessness. It also increases the activity of catabolic processes. It may be the primary factor regulating endocrine and nervous systems.

  16. Earth Systems Education: Origins and Opportunities. Science Education for Global Understanding. Second Edition.

    ERIC Educational Resources Information Center

    University of Northern Colorado, Greeley.

    This publication introduces and provides a framework for Earth Systems Education (ESE), an effort to establish within U.S. schools more effective programs designed to increase the public's understanding of the Earth system. The publication presents seven "understandings" around which curriculum can be organized and materials selected in…

  17. Native American Students' Understanding of Geologic Time Scale: 4th-8th Grade Ojibwe Students' Understanding of Earth's Geologic History

    ERIC Educational Resources Information Center

    Nam, Younkyeong; Karahan, Engin; Roehrig, Gillian

    2016-01-01

    Geologic time scale is a very important concept for understanding long-term earth system events such as climate change. This study examines forty-three 4th-8th grade Native American--particularly Ojibwe tribe--students' understanding of relative ordering and absolute time of Earth's significant geological and biological events. This study also…

  18. Feedbacks between geomorphology and biota controlling Earth surface processes and landforms: A review of foundation concepts and current understandings

    NASA Astrophysics Data System (ADS)

    Corenblit, Dov; Baas, Andreas C. W.; Bornette, Gudrun; Darrozes, José; Delmotte, Sébastien; Francis, Robert A.; Gurnell, Angela M.; Julien, Frédéric; Naiman, Robert J.; Steiger, Johannes

    2011-06-01

    This review article presents recent advances in the field of biogeomorphology related to the reciprocal coupling between Earth surface processes and landforms, and ecological and evolutionary processes. The aim is to present to the Earth Science community ecological and evolutionary concepts and associated recent conceptual developments for linking geomorphology and biota. The novelty of the proposed perspective is that (1) in the presence of geomorphologic-engineer species, which modify sediment and landform dynamics, natural selection operating at the scale of organisms may have consequences for the physical components of ecosystems, and particularly Earth surface processes and landforms; and (2) in return, these modifications of geomorphologic processes and landforms often feed back to the ecological characteristics of the ecosystem (structure and function) and thus to biological characteristics of engineer species and/or other species (adaptation and speciation). The main foundation concepts from ecology and evolutionary biology which have led only recently to an improved conception of landform dynamics in geomorphology are reviewed and discussed. The biogeomorphologic macroevolutionary insights proposed explicitly integrate geomorphologic niche-dimensions and processes within an ecosystem framework and reflect current theories of eco-evolutionary and ecological processes. Collectively, these lead to the definition of an integrated model describing the overall functioning of biogeomorphologic systems over ecological and evolutionary timescales.

  19. Earthing the Human Body Influences Physiologic Processes

    PubMed Central

    Sokal, Karol

    2011-01-01

    Abstract Objectives This study was designed to answer the question: Does the contact of the human organism with the Earth via a copper conductor affect physiologic processes? Subjects and experiments Five (5) experiments are presented: experiment 1—effect of earthing on calcium–phosphate homeostasis and serum concentrations of iron (N = 84 participants); experiment 2—effect of earthing on serum concentrations of electrolytes (N = 28); experiment 3—effect of earthing on thyroid function (N = 12); experiment 4—effect of earthing on glucose concentration (N = 12); experiment 5—effect of earthing on immune response to vaccine (N = 32). Subjects were divided into two groups. One (1) group of people was earthed, while the second group remained without contact with the Earth. Blood and urine samples were examined. Results Earthing of an electrically insulated human organism during night rest causes lowering of serum concentrations of iron, ionized calcium, inorganic phosphorus, and reduction of renal excretion of calcium and phosphorus. Earthing during night rest decreases free tri-iodothyronine and increases free thyroxine and thyroid-stimulating hormone. The continuous earthing of the human body decreases blood glucose in patients with diabetes. Earthing decreases sodium, potassium, magnesium, iron, total protein, and albumin concentrations while the levels of transferrin, ferritin, and globulins α1, α2, β, and γ increase. These results are statistically significant. Conclusions Earthing the human body influences human physiologic processes. This influence is observed during night relaxation and during physical activity. Effect of the earthing on calcium–phosphate homeostasis is the opposite of that which occurs in states of weightlessness. It also increases the activity of catabolic processes. It may be the primary factor regulating endocrine and nervous systems. PMID:21469913

  20. Physical Processes Controlling Earth's Climate

    NASA Technical Reports Server (NTRS)

    Genio, Anthony Del

    2013-01-01

    As background for consideration of the climates of the other terrestrial planets in our solar system and the potential habitability of rocky exoplanets, we discuss the basic physics that controls the Earths present climate, with particular emphasis on the energy and water cycles. We define several dimensionless parameters relevant to characterizing a planets general circulation, climate and hydrological cycle. We also consider issues associated with the use of past climate variations as indicators of future anthropogenically forced climate change, and recent advances in understanding projections of future climate that might have implications for Earth-like exoplanets.

  21. Scenarios of Earth system change in western Canada: Conceptual understanding and process insights from the Changing Cold Regions Network

    NASA Astrophysics Data System (ADS)

    DeBeer, C. M.; Wheater, H. S.; Pomeroy, J. W.; Stewart, R. E.; Turetsky, M. R.; Baltzer, J. L.; Pietroniro, A.; Marsh, P.; Carey, S.; Howard, A.; Barr, A.; Elshamy, M.

    2017-12-01

    The interior of western Canada has been experiencing rapid, widespread, and severe hydroclimatic change in recent decades, and this is projected to continue in the future. To better assess future hydrological, cryospheric and ecological states and fluxes under future climates, a regional hydroclimate project was formed under the auspices of the Global Energy and Water Exchanges (GEWEX) project of the World Climate Research Programme; the Changing Cold Regions Network (CCRN; www.ccrnetwork.ca) aims to understand, diagnose, and predict interactions among the changing Earth system components at multiple spatial scales over the Mackenzie and Saskatchewan River basins of western Canada. A particular challenge is in applying land surface and hydrological models under future climates, as system changes and cold regions process interactions are not often straightforward, and model structures and parameterizations based on historical observations and understanding of contemporary system functioning may not adequately capture these complexities. To address this and provide guidance and direction to the modelling community, CCRN has drawn insights from a multi-disciplinary perspective on the process controls and system trajectories to develop a set of feasible scenarios of change for the 21st century across the region. This presentation will describe CCRN's efforts towards formalizing these insights and applying them in a large-scale modelling context. This will address what are seen as the most critical processes and key drivers affecting hydrological, cryospheric and ecological change, how these will most likely evolve in the coming decades, and how these are parameterized and incorporated as future scenarios for terrestrial ecology, hydrological functioning, permafrost state, glaciers, agriculture, and water management.

  1. Activites to Support and Assess Student Understanding of Earth Data

    NASA Astrophysics Data System (ADS)

    Prothero, W. A.; Regev, J.

    2004-12-01

    In order to use data effectively, learners must construct a mental model that allows them to understand and express spatial relationships in data, relationships between different data types, and relationships between the data and a theoretical model. Another important skill is the ability to identify gross patterns and distinguish them from details that may require increasingly sophisticated models. Students must also be able to express their understanding, both to help them frame their understanding for themselves, and for assessment purposes. Research in learning unequivocally shows that writing about a subject increases understanding of that subject. In UCSB's general education oceanography class, a series of increasingly demanding activities culminates in two science papers that use earth data. These activities are: 1) homework problems, 2) in-class short writing activities, 3) lab section exploration activities and presentations, and 4) the science paper. The subjects of the two papers are: Plate Tectonics and Ocean and Climate. Each student is a member of a group that adopts a country and must relate their paper to the environment of their country. Data are accessed using the "Our Dynamic Planet" and "Global Ocean Data Viewer" (GLODV) CD's. These are integrated into EarthEd Online, a software package which supports online writing, review, commenting, and return to the student. It also supports auto-graded homework assignments, grade calculation, and other class management functions. The writing assignments emphasize the construction of a scientific argument. This process is explained explicitly, requiring statements that: 1) include an observation or description of an observation (e.g. elevation profiles, quakes), 2) name features based on the observation (e.g. trench, ridge), 3) describe of features (e.g. trends NW, xxxkm long), 4) describe relationships between features (e.g. quakes are parallel to trench), 5) describe a model or theory (e.g. cartoon type

  2. Why Earth Science?

    ERIC Educational Resources Information Center

    Smith, Michael J.

    2004-01-01

    This article briefly describes Earth science. The study of Earth science provides the foundation for an understanding of the Earth, its processes, its resources, and its environment. Earth science is the study of the planet in its entirety, how its lithosphere, atmosphere, hydrosphere, and biosphere work together as systems and how they affect…

  3. Chinese and Australian children's understandings of the Earth: a cross cultural study of conceptual development

    NASA Astrophysics Data System (ADS)

    Tao, Ying; Oliver, Mary; Venville, Grady

    2013-06-01

    The purpose of this study was to explore Chinese and Australian primary children's conceptual understandings of the Earth. The research was conducted in the interpretive paradigm and was designed to be descriptive with comparative and cross sectional elements. Participants were Year 3 and Year 6 children from three schools in Hunan Province, central south China ( n = 38) and Year 3 and Year 6 children from three schools in Western Australia ( n = 36). In-depth interviews including drawings were carried out to explore the participants' conceptual understandings of the Earth's shape, gravity, day/night cycle and seasons. The results showed that, regardless of different cultures, children from the same year group constructed similar concepts about the Earth. The Year 3 children were more likely than the Year 6 children to demonstrate intuitive conceptions of a round and flat Earth. The Year 6 children were more likely to demonstrate consistent understandings of a spherical Earth. The findings supported the universality of entrenched presuppositions hypothesis. Cultural mediation was found to have a subtle impact on children's understanding of the Earth. A model of conceptual development is proposed.

  4. Flexible Description and Adaptive Processing of Earth Observation Data through the BigEarth Platform

    NASA Astrophysics Data System (ADS)

    Gorgan, Dorian; Bacu, Victor; Stefanut, Teodor; Nandra, Cosmin; Mihon, Danut

    2016-04-01

    The Earth Observation data repositories extending periodically by several terabytes become a critical issue for organizations. The management of the storage capacity of such big datasets, accessing policy, data protection, searching, and complex processing require high costs that impose efficient solutions to balance the cost and value of data. Data can create value only when it is used, and the data protection has to be oriented toward allowing innovation that sometimes depends on creative people, which achieve unexpected valuable results through a flexible and adaptive manner. The users need to describe and experiment themselves different complex algorithms through analytics in order to valorize data. The analytics uses descriptive and predictive models to gain valuable knowledge and information from data analysis. Possible solutions for advanced processing of big Earth Observation data are given by the HPC platforms such as cloud. With platforms becoming more complex and heterogeneous, the developing of applications is even harder and the efficient mapping of these applications to a suitable and optimum platform, working on huge distributed data repositories, is challenging and complex as well, even by using specialized software services. From the user point of view, an optimum environment gives acceptable execution times, offers a high level of usability by hiding the complexity of computing infrastructure, and supports an open accessibility and control to application entities and functionality. The BigEarth platform [1] supports the entire flow of flexible description of processing by basic operators and adaptive execution over cloud infrastructure [2]. The basic modules of the pipeline such as the KEOPS [3] set of basic operators, the WorDeL language [4], the Planner for sequential and parallel processing, and the Executor through virtual machines, are detailed as the main components of the BigEarth platform [5]. The presentation exemplifies the development

  5. Not So Rare Earth? New Developments in Understanding the Origin of the Earth and Moon

    NASA Technical Reports Server (NTRS)

    Righter, Kevin

    2007-01-01

    A widely accepted model for the origin of the Earth and Moon has been a somewhat specific giant impact scenario involving an impactor to proto-Earth mass ratio of 3:7, occurring 50-60 Ma after T(sub 0), when the Earth was only half accreted, with the majority of Earth's water then accreted after the main stage of growth, perhaps from comets. There have been many changes to this specific scenario, due to advances in isotopic and trace element geochemistry, more detailed, improved, and realistic giant impact and terrestrial planet accretion modeling, and consideration of terrestrial water sources other than high D/H comets. The current scenario is that the Earth accreted faster and differentiated quickly, the Moon-forming impact could have been mid to late in the accretion process, and water may have been present during accretion. These new developments have broadened the range of conditions required to make an Earth-Moon system, and suggests there may be many new fruitful avenues of research. There are also some classic and unresolved problems such as the significance of the identical O isotopic composition of the Earth and Moon, the depletion of volatiles on the lunar mantle relative to Earth's, the relative contribution of the impactor and proto-Earth to the Moon's mass, and the timing of Earth's possible atmospheric loss relative to the giant impact.

  6. Understanding erosion process using rare earth element tracers in a preformed interrill-rill system

    USDA-ARS?s Scientific Manuscript database

    Tracking sediment source and movement is essential to fully understanding soil erosion processes. The objectives of this study were to identify dominant erosion process and to characterize the effects of upslope interrill erosion on downslope interrill and rill erosion in a preformed interrill-rill ...

  7. Understanding the biological underpinnings of ecohydrological processes

    NASA Astrophysics Data System (ADS)

    Huxman, T. E.; Scott, R. L.; Barron-Gafford, G. A.; Hamerlynck, E. P.; Jenerette, D.; Tissue, D. T.; Breshears, D. D.; Saleska, S. R.

    2012-12-01

    has precluded determination of sufficient theoretical development. Understanding the land-surface response and feedback to climate change requires a mechanistic understanding of the coupling of ecological and hydrological processes and an expansion of theory from the life sciences to appropriately contribute to the broader Earth system science goal.

  8. Mission to Planet Earth: A program to understand global environmental change

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A description of Mission to Planet Earth, a program to understand global environmental change, is presented. Topics discussed include: changes in the environment; global warming; ozone depletion; deforestation; and NASA's role in global change research.

  9. Sedimentary Processes on Earth, Mars, Titan, and Venus

    NASA Astrophysics Data System (ADS)

    Grotzinger, J. P.; Hayes, A. G.; Lamb, M. P.; McLennan, S. M.

    The production, transport and deposition of sediment occur to varying degrees on Earth, Mars, Venus, and Titan. These sedimentary processes are significantly influenced by climate that affects production of sediment in source regions (weathering), and the mode by which that sediment is transported (wind vs. water). Other, more geological, factors determine where sediments are deposited (topography and tectonics). Fluvial and marine processes dominate Earth both today and in its geologic past, aeolian processes dominate modern Mars although in its past fluvial processes also were important, Venus knows only aeolian processes, and Titan shows evidence of both fluvial and aeolian processes. Earth and Mars also feature vast deposits of sedimentary rocks, spanning billions of years of planetary history. These ancient rocks preserve the long-term record of the evolution of surface environments, including variations in climate state. On Mars, sedimentary rocks record the transition from wetter, neutral-pH weathering, to brine-dominated low-pH weathering, to its dry current state.

  10. Understanding trends in observations of forest disturbance and their underlying causal processes

    Treesearch

    Karen Schleeweis; Samuel N. Goward; Chengquan Huang; Jeffrey Masek; Gretchen G. Moisen

    2012-01-01

    Estimates of forest canopy areal extent, configuration, and change have been developed from satellite-based imagery and ground-based inventories to improve understanding of forest dynamics and how they interact with other Earth systems across many scales. The number of these types of studies has grown in recent years, yet few have assessed the multiple change processes...

  11. Climate modeling. [for use in understanding earth's radiation budget

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The requirements for radiation measurements suitable for the understanding, improvement, and verification of models used in performing climate research are considered. Both zonal energy balance models and three dimensional general circulation models are considered, and certain problems are identified as common to all models. Areas of emphasis include regional energy balance observations, spectral band observations, cloud-radiation interaction, and the radiative properties of the earth's surface.

  12. Thermodynamic Investigation of the Reduction-Distillation Process for Rare Earth Metals Production

    NASA Astrophysics Data System (ADS)

    Judge, W. D.; Azimi, G.

    2017-10-01

    Owing to their high vapor pressure, the four rare earth metals samarium, europium, thulium, and ytterbium are produced by reduction-distillation whereby their oxides are reduced with metallic lanthanum in vacuo, and the produced metal is subsequently vaporized off. Here, we performed a thorough thermodynamic investigation to establish a fundamental understanding of the reduction-distillation process. Thermodynamic functions including vapor pressures, Gibbs free energies, and enthalpies of reaction were calculated and compared with available experimental data. Furthermore, the kinetics of the process was explored and theoretical evaporation rates were calculated from thermodynamic data. The thermodynamic model developed in this work can help optimize processing conditions to maximize the yield and improve the overall process.

  13. Process to remove rare earth from IFR electrolyte

    DOEpatents

    Ackerman, John P.; Johnson, Terry R.

    1994-01-01

    The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner.

  14. Process to remove rare earth from IFR electrolyte

    DOEpatents

    Ackerman, J.P.; Johnson, T.R.

    1992-01-01

    The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner.

  15. Process to remove rare earth from IFR electrolyte

    DOEpatents

    Ackerman, J.P.; Johnson, T.R.

    1994-08-09

    The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner. 1 fig.

  16. MiTEP's Collaborative Field Course Design Process Based on Earth Science Literacy Principles

    NASA Astrophysics Data System (ADS)

    Engelmann, C. A.; Rose, W. I.; Huntoon, J. E.; Klawiter, M. F.; Hungwe, K.

    2010-12-01

    process piloted as ESI I and ESI II was successful in improving MiTEP teacher understanding of Earth Science content and that it was helpful to use the ESLP framework. Ultimately, a small sample of student scores will look at the impact on student learning in the MiTEP teacher classrooms.

  17. Radar Imaging of Europa's Subsurface Properties and Processes: The View from Earth

    NASA Astrophysics Data System (ADS)

    Blankenship, D. D.; Moore, W. B.; Young, D. A.; Peters, M. E.

    2007-12-01

    A primary objective of future Europa studies will be to characterize the distribution of shallow subsurface water as well as to identify any ice-ocean interface. Another objective will be to understand the formation of surface and subsurface features associated with interchange processes between any ocean and the surface. Achieving these objectives will require either direct or inferred knowledge of the position of any ice/water interfaces as well as any brine or layer pockets. We will review the hypothesized processes that control the thermal, compositional and structural (TCS) properties, and therefore the dielectric character, of the subsurface of Europa's icy shell. Our approach will be to extract the TCS properties for various subsurface processes thought to control the formation of major surface (e.g., ridges/bands, lenticulae, chaos, cratering...) and subsurface (e.g., rigid shell eutectics, diapirs, accretionary lenses ...) features on Europa. We will then assess the spectrum of analog processes and TCS properties represented by Earth's cryosphere including both Arctic and Antarctic ice sheets, ice shelves and valley glaciers. There are few complete analogs over the full TCS space but, because of the wide range of ice thickness, impurities and strain rates for Earth's cryosphere, there are many more analogs than many Earth and planetary researchers might imagine for significant portions of this space (e.g., bottom crevasses, marine ice shelf/subglacial lake accretion, surging polythermal glaciers...).Our ultimate objective is to use these Earth analog studies to define the radar imaging approach for Europa's subsurface that will be most useful for supporting/refuting the hypotheses for the formation of major surface/subsurface features as well as for "pure" exploration of Europa's icy shell and its interface with the underlying ocean.

  18. Earth observing system: 1989 reference handbook

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA is studying a coordinated effort called the Mission to Planet Earth to understand global change. The goals are to understand the Earth as a system, and to determine those processes that contribute to the environmental balance, as well as those that may result in changes. The Earth Observing System (Eos) is the centerpiece of the program. Eos will create an integrated scientific observing system that will enable multidisciplinary study of the Earth including the atmosphere, oceans, land surface, polar regions, and solid Earth. Science goals, the Eos data and information system, experiments, measuring instruments, and interdisciplinary investigations are described.

  19. Understanding the shape of the Earth and measuring its size

    NASA Astrophysics Data System (ADS)

    Baltatzis, Evangelos; Galanaki, Angeliki

    2016-04-01

    Most elementary students have problems and misconceptions regarding the shape of the Earth. Teachers often contribute to this confusion telling the students that the Earth is almost spherical, but not explaining to them, how the Earth can be spherical while it appears. It would be helpful for students to understand how humanity came with the idea of the spherical Earth (to be precise the Earth is ellipsoid). Historically, most cultures describe the Earth as flat. That changes with the ancient Greek culture. We don't know exactly how the Greeks first understood the spherical shape of the Earth, but some Greek philosophers give some arguments why the Earth must be a sphere. We can discuss these arguments and observations with the students. First, if someone travels in the south, he can see the southern constellations rise higher above the horizon. We can give students pictures of the night sky in southern regions and compare them with observations of ''their'' night sky. Second, in the lunar eclipse we can see the round shadow of the Earth. Third, whenever a ship is on the horizon, his low part is invisible . This is known as "hull-down". Moreover, the low part of mountains is invisible from the sea, due to the curvature of the Earth. It is always better to make these observations in real life but it can also be done via videos and pictures. The realization of the spherical shape of the Earth was sine qua non for the first good measurement of its size. In the second part of the project, following the ancient mathematician Eratosthenes's steps, students can measure the size of the Earth, , find pleasure in doing experimental work and realize how important mathematics is in everyday life. Two sticks, situated a long distance away from each other, can give us approximately the circumference , the radius and the diameter of the Earth. Eratosthenes used geometry combined to the knowledge of ancient Greek culture that the Earth is spherical (360°). He knew the distance

  20. Understanding the origin of the solar cyclic activity for an improved earth climate prediction

    NASA Astrophysics Data System (ADS)

    Turck-Chièze, Sylvaine; Lambert, Pascal

    This review is dedicated to the processes which could explain the origin of the great extrema of the solar activity. We would like to reach a more suitable estimate and prediction of the temporal solar variability and its real impact on the Earth climatic models. The development of this new field is stimulated by the SoHO helioseismic measurements and by some recent solar modelling improvement which aims to describe the dynamical processes from the core to the surface. We first recall assumptions on the potential different solar variabilities. Then, we introduce stellar seismology and summarize the main SOHO results which are relevant for this field. Finally we mention the dynamical processes which are presently introduced in new solar models. We believe that the knowledge of two important elements: (1) the magnetic field interplay between the radiative zone and the convective zone and (2) the role of the gravity waves, would allow to understand the origin of the grand minima and maxima observed during the last millennium. Complementary observables like acoustic and gravity modes, radius and spectral irradiance from far UV to visible in parallel to the development of 1D-2D-3D simulations will improve this field. PICARD, SDO, DynaMICCS are key projects for a prediction of the next century variability. Some helioseismic indicators constitute the first necessary information to properly describe the Sun-Earth climatic connection.

  1. P/M Processing of Rare Earth Modified High Strength Steels.

    DTIC Science & Technology

    1980-12-01

    AA094 165 TRW INC CLEVELAND OH MATERIALS TECHNOLOGY F 6 P/N PROCESSING OF RARE EARTH MODIFIED HIGH STRENGTH STEELS DEC So A A SHEXM(ER NOOŕT76-C...LEVEL’ (7 PIM PROCESSING OF RARE EARTH MODIFIED HIGH STRENGTH STEELS By A. A. SHEINKER 00 TECHNICAL REPORT Prepared for Office of Naval Research...Processing of Rare Earth Modified High 1 Technical -’ 3t eC"Strength Steels * 1dc4,093Se~ 9PEFRIGOGNZTONAEADADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

  2. How Earth Educators Can Help Students Develop a Holistic Understanding of Sustainability

    NASA Astrophysics Data System (ADS)

    Curren, R. R.; Metzger, E. P.

    2017-12-01

    With their expert understanding of planetary systems, Earth educators play a pivotal role in helping students understand the scientific dimensions of solution-resistant ("wicked") challenges to sustainability that arise from complex interactions between intertwined and co-evolving natural and human systems. However, teaching the science of sustainability in isolation from consideration of human values and social dynamics leaves students with a fragmented understanding and obscures the underlying drivers of unsustainability. Geoscience instructors who wish to address sustainability in their courses may feel ill-equipped to engage students in investigation of the fundamental nature of sustainability and its social and ethical facets. This presentation will blend disciplinary perspectives from Earth system science, philosophy, psychology, and anthropology to: 1) outline a way to conceptualize sustainability that synthesizes scientific, social, and ethical perspectives and 2) provide an overview of resources and teaching strategies designed to help students connect science content to the socio-political dimensions of sustainability through activities and assignments that promote active learning, systems thinking, reflection, and collaborative problem-solving.

  3. Spatial abilities, Earth science conceptual understanding, and psychological gender of university non-science majors

    NASA Astrophysics Data System (ADS)

    Black, Alice A. (Jill)

    Research has shown the presence of many Earth science misconceptions and conceptual difficulties that may impede concept understanding, and has also identified a number of categories of spatial ability. Although spatial ability has been linked to high performance in science, some researchers believe it has been overlooked in traditional education. Evidence exists that spatial ability can be improved. This correlational study investigated the relationship among Earth science conceptual understanding, three types of spatial ability, and psychological gender, a self-classification that reflects socially-accepted personality and gender traits. A test of Earth science concept understanding, the Earth Science Concepts (ESC) test, was developed and field tested from 2001 to 2003 in 15 sections of university classes. Criterion validity was .60, significant at the .01 level. Spearman/Brown reliability was .74 and Kuder/Richardson reliability was .63. The Purdue Visualization of Rotations (PVOR) (mental rotation), the Group Embedded Figures Test (GEFT) (spatial perception), the Differential Aptitude Test: Space Relations (DAT) (spatial visualization), and the Bem Inventory (BI) (psychological gender) were administered to 97 non-major university students enrolled in undergraduate science classes. Spearman correlations revealed moderately significant correlations at the .01 level between ESC scores and each of the three spatial ability test scores. Stepwise regression analysis indicated that PVOR scores were the best predictor of ESC scores, and showed that spatial ability scores accounted for 27% of the total variation in ESC scores. Spatial test scores were moderately or weakly correlated with each other. No significant correlations were found among BI scores and other test scores. Scantron difficulty analysis of ESC items produced difficulty ratings ranging from 33.04 to 96.43, indicating the percentage of students who answered incorrectly. Mean score on the ESC was 34

  4. Publications of the Western Earth Surface Processes Team 2006

    USGS Publications Warehouse

    Powell, Charles L.; Stone, Paul

    2007-01-01

    The Western Earth Surface Processes Team (WESPT) of the U.S. Geological Survey (USGS) conducts geologic mapping, earth-surface process investigations, and related topical earth science studies in the western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues such as ground-water quality, landslides and other potential geologic hazards, and land-use decisions. Areas of primary emphasis in 2006 included southern California, the San Francisco Bay region, the Mojave Desert, the Colorado Plateau region of northern Arizona, and the Pacific Northwest. The team has its headquarters in Menlo Park, California, and maintains smaller field offices at several other locations in the western United States. This compilation gives the bibliographical citations for 123 new publications, most of which are available online using the hyperlinks provided.

  5. Quantifying Atmospheric Moist Processes from Earth Observations. Really?

    NASA Astrophysics Data System (ADS)

    Shepson, P. B.; Cambaliza, M. O. L.; Salmon, O. E.; Heimburger, A. M. F.; Davis, K. J.; Lauvaux, T.; McGowan, L. E.; Miles, N.; Richardson, S.; Sarmiento, D. P.; Hardesty, M.; Karion, A.; Sweeney, C.; Iraci, L. T.; Hillyard, P. W.; Podolske, J. R.; Gurney, K. R.; Patarasuk, R.; Razlivanov, I. N.; Song, Y.; O'Keeffe, D.; Turnbull, J. C.; Vimont, I.; Whetstone, J. R.; Possolo, A.; Prasad, K.; Lopez-Coto, I.

    2014-12-01

    The amount of water in the Earth's atmosphere is tiny compared to all other sources of water on our planet, fresh or otherwise. However, this tiny amount of water is fundamental to most aspects of human life. The tiny amount of water that cycles from the Earth's surface, through condensation into clouds in the atmosphere returning as precipitation falling is not only natures way of delivering fresh water to land-locked human societies but it also exerts a fundamental control on our climate system producing the most important feedbacks in the system. The representation of these processes in Earth system models contain many errors that produce well now biases in the hydrological cycle. Surprisingly the parameterizations of these important processes are not well validated with observations. Part of the reason for this situation stems from the fact that process evaluation is difficult to achieve on the global scale since it has commonly been assumed that the static observations available from snap-shots of individual parameters contain little information on processes. One of the successes of the A-Train has been the development of multi-parameter analysis based on the multi-sensor data produced by the satellite constellation. This has led to new insights on how water cycles through the Earth's atmosphere. Examples of these insights will be highlighted. It will be described how the rain formation process has been observed and how this has been used to constrain this process in models, with a huge impact. How these observations are beginning to reveal insights on deep convection and examples of the use these observations applied to models will also be highlighted as will the effects of aerosol on clouds on radiation.

  6. Quantifying Atmospheric Moist Processes from Earth Observations. Really?

    NASA Astrophysics Data System (ADS)

    Stephens, G. L.

    2015-12-01

    The amount of water in the Earth's atmosphere is tiny compared to all other sources of water on our planet, fresh or otherwise. However, this tiny amount of water is fundamental to most aspects of human life. The tiny amount of water that cycles from the Earth's surface, through condensation into clouds in the atmosphere returning as precipitation falling is not only natures way of delivering fresh water to land-locked human societies but it also exerts a fundamental control on our climate system producing the most important feedbacks in the system. The representation of these processes in Earth system models contain many errors that produce well now biases in the hydrological cycle. Surprisingly the parameterizations of these important processes are not well validated with observations. Part of the reason for this situation stems from the fact that process evaluation is difficult to achieve on the global scale since it has commonly been assumed that the static observations available from snap-shots of individual parameters contain little information on processes. One of the successes of the A-Train has been the development of multi-parameter analysis based on the multi-sensor data produced by the satellite constellation. This has led to new insights on how water cycles through the Earth's atmosphere. Examples of these insights will be highlighted. It will be described how the rain formation process has been observed and how this has been used to constrain this process in models, with a huge impact. How these observations are beginning to reveal insights on deep convection and examples of the use these observations applied to models will also be highlighted as will the effects of aerosol on clouds on radiation.

  7. Sun-earth environment study to understand earthquake prediction

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.

    2007-05-01

    Earthquake prediction is possible by looking into the location of active sunspots before it harbours energy towards earth. Earth is a restless planet the restlessness turns deadly occasionally. Of all natural hazards, earthquakes are the most feared. For centuries scientists working in seismically active regions have noted premonitory signals. Changes in thermosphere, Ionosphere, atmosphere and hydrosphere are noted before the changes in geosphere. The historical records talk of changes of the water level in wells, of strange weather, of ground-hugging fog, of unusual behaviour of animals (due to change in magnetic field of the earth) that seem to feel the approach of a major earthquake. With the advent of modern science and technology the understanding of these pre-earthquake signals has become stronger enough to develop a methodology of earthquake prediction. A correlation of earth directed coronal mass ejection (CME) from the active sunspots has been possible to develop as a precursor of the earthquake. Occasional local magnetic field and planetary indices (Kp values) changes in the lower atmosphere that is accompanied by the formation of haze and a reduction of moisture in the air. Large patches, often tens to hundreds of thousands of square kilometres in size, seen in night-time infrared satellite images where the land surface temperature seems to fluctuate rapidly. Perturbations in the ionosphere at 90 - 120 km altitude have been observed before the occurrence of earthquakes. These changes affect the transmission of radio waves and a radio black out has been observed due to CME. Another heliophysical parameter Electron flux (Eflux) has been monitored before the occurrence of the earthquakes. More than hundreds of case studies show that before the occurrence of the earthquakes the atmospheric temperature increases and suddenly drops before the occurrence of the earthquakes. These changes are being monitored by using Sun Observatory Heliospheric observatory

  8. Carbon cycling and snowball Earth.

    PubMed

    Goddéris, Yves; Donnadieu, Yannick

    2008-12-18

    The possibility that Earth witnessed episodes of global glaciation during the latest Precambrian challenges our understanding of the physical processes controlling the Earth's climate. Peltier et al. suggest that a 'hard snowball Earth' state may have been prevented owing to the release of CO(2) from the oxidation of dissolved organic carbon (DOC) in the ocean as the temperature decreased. Here we show that the model of Peltier et al. is not self-consistent as it implies large fluctuations of the ocean alkalinity content without providing any processes to account for it. Our findings suggest that the hard snowball Earth hypothesis is still valid.

  9. Facilitating NASA Earth Science Data Processing Using Nebula Cloud Computing

    NASA Astrophysics Data System (ADS)

    Chen, A.; Pham, L.; Kempler, S.; Theobald, M.; Esfandiari, A.; Campino, J.; Vollmer, B.; Lynnes, C.

    2011-12-01

    better performance than the local machine. Much of the difference was due to newer equipment in the Nebula than the legacy computer, which is suggestive of a potential economic advantage beyond elastic power, i.e., access to up-to-date hardware vs. legacy hardware that must be maintained past its prime to amortize the cost. In addition to a trade study of advantages and challenges of porting complex processing to the cloud, a tutorial was developed to enable further progress in utilizing the Nebula for Earth Science applications and understanding better the potential for Cloud Computing in further data- and computing-intensive Earth Science research. In particular, highly bursty computing such as that experienced in the user-demand-driven Giovanni system may become more tractable in a Cloud environment. Our future work will continue to focus on migrating more GES DISC's applications/instances, e.g. Giovanni instances, to the Nebula platform and making matured migrated applications to be in operation on the Nebula.

  10. Dynamics of the Earth's Inner Magnetosphere and its Connection to the Ionosphere: Current Understanding and Challenges

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua

    2010-01-01

    The Earth's inner magnetosphere, a vast volume in space spanning from 1.5 Re (Earth radii) to 10 Re, is a host to a variety of plasma populations (with energy from 1 eV to few MeV) and physical processes where most of which involve plasma and field coupling. As a gigantic particle accelerator, the inner magnetosphere includes three overlapping regions: the plasmasphere, the ring current, and the Van Allen radiation belt. The complex structures and dynamics of these regions are externally driven by solar activities and internally modulated by intricate interactions and coupling. As a major constituent of Space Weather, the inner magnetosphere is both scientifically intriguing and practically important to our society. In this presentation, I will discuss our recent results from the Comprehensive Ring Current Model, in the context of our current understanding of the inner magnetosphere in general and challenges ahead in making further progresses.

  11. Dynamics of the Earth's Inner Magnetosphere and Its Connection to the Ionosphere: Current Understanding and Challenges

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua

    2011-01-01

    The Earth's inner magnetosphere, a vast volume in space spanning from 1.5 Re (Earth radii) to 10 Re, is a host to a variety of plasma populations (with energy from 1 eV to few MeV) and physical processes where most of which involve plasma and field coupling. As a gigantic particle accelerator, the inner magnetosphere includes three overlapping regions: the plasmasphere, the ring current, and the Van Allen radiation belt. The complex structures and dynamics of these regions are externally driven by solar activities and internally modulated by intricate interactions and coupling. As a major constituent of Space Weather, the inner magnetosphere is both scientifically intriguing and practically important to our society. In this presentation, I will discuss our recent results from the Comprehensive Ring Current Model, in the context of our current understanding of the inner magnetosphere in general and challenges ahead in making further progresses.

  12. The Australian Computational Earth Systems Simulator

    NASA Astrophysics Data System (ADS)

    Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.

    2001-12-01

    behaviour of earth systems. ACcESS represents a part of Australia's contribution to the APEC Cooperation for Earthquake Simulation (ACES) international initiative. Together with other national earth systems science initiatives including the Japanese Earth Simulator and US General Earthquake Model projects, ACcESS aims to provide a driver for scientific advancement and technological breakthroughs including: quantum leaps in understanding of earth evolution at global, crustal, regional and microscopic scales; new knowledge of the physics of crustal fault systems required to underpin the grand challenge of earthquake prediction; new understanding and predictive capabilities of geological processes such as tectonics and mineralisation.

  13. Automating the Processing of Earth Observation Data

    NASA Technical Reports Server (NTRS)

    Golden, Keith; Pang, Wan-Lin; Nemani, Ramakrishna; Votava, Petr

    2003-01-01

    NASA s vision for Earth science is to build a "sensor web": an adaptive array of heterogeneous satellites and other sensors that will track important events, such as storms, and provide real-time information about the state of the Earth to a wide variety of customers. Achieving this vision will require automation not only in the scheduling of the observations but also in the processing of the resulting data. To address this need, we are developing a planner-based agent to automatically generate and execute data-flow programs to produce the requested data products.

  14. Reverse engineering nuclear properties from rare earth abundances in the r process

    NASA Astrophysics Data System (ADS)

    Mumpower, M. R.; McLaughlin, G. C.; Surman, R.; Steiner, A. W.

    2017-03-01

    The bulk of the rare earth elements are believed to be synthesized in the rapid neutron capture process or r process of nucleosynthesis. The solar r-process residuals show a small peak in the rare earths around A∼ 160, which is proposed to be formed dynamically during the end phase of the r process by a pileup of material. This abundance feature is of particular importance as it is sensitive to both the nuclear physics inputs and the astrophysical conditions of the main r process. We explore the formation of the rare earth peak from the perspective of an inverse problem, using Monte Carlo studies of nuclear masses to investigate the unknown nuclear properties required to best match rare earth abundance sector of the solar isotopic residuals. When nuclear masses are changed, we recalculate the relevant β-decay properties and neutron capture rates in the rare earth region. The feedback provided by this observational constraint allows for the reverse engineering of nuclear properties far from stability where no experimental information exists. We investigate a range of astrophysical conditions with this method and show how these lead to different predictions in the nuclear properties influential to the formation of the rare earth peak. We conclude that targeted experimental campaigns in this region will help to resolve the type of conditions responsible for the production of the rare earth nuclei, and will provide new insights into the longstanding problem of the astrophysical site(s) of the r process.

  15. Understanding Earth's Albedo Effect

    ERIC Educational Resources Information Center

    Fidler, Chuck

    2012-01-01

    Earth and space science in the middle school classroom are composed of intricately intertwined sets of conceptual systems (AAAS 1993; NRC 1996). Some systems of study, such as the water and rock cycles, are quite explicit and often found as stand-alone middle school science units. Other phenomena are not so apparent, yet they play an extremely…

  16. Teaching Earth Signals Analysis Using the Java-DSP Earth Systems Edition: Modern and Past Climate Change

    ERIC Educational Resources Information Center

    Ramamurthy, Karthikeyan Natesan; Hinnov, Linda A.; Spanias, Andreas S.

    2014-01-01

    Modern data collection in the Earth Sciences has propelled the need for understanding signal processing and time-series analysis techniques. However, there is an educational disconnect in the lack of instruction of time-series analysis techniques in many Earth Science academic departments. Furthermore, there are no platform-independent freeware…

  17. Is the Earth Flat or Round? Primary School Children's Understandings of the Planet Earth: The Case of Turkish Children

    ERIC Educational Resources Information Center

    Ozsoy, Sibel

    2012-01-01

    The purpose of this study is to explore primary school children's understandings about the shape of the Earth. The sample is consisted of 124 first-graders from five primary schools located in an urban city of Turkey. The data of the study were collected through children's drawings and semi-structured interviews. Results obtained from the drawings…

  18. The Earth System Documentation (ES-DOC) Software Process

    NASA Astrophysics Data System (ADS)

    Greenslade, M. A.; Murphy, S.; Treshansky, A.; DeLuca, C.; Guilyardi, E.; Denvil, S.

    2013-12-01

    Earth System Documentation (ES-DOC) is an international project supplying high-quality tools & services in support of earth system documentation creation, analysis and dissemination. It is nurturing a sustainable standards based documentation eco-system that aims to become an integral part of the next generation of exa-scale dataset archives. ES-DOC leverages open source software, and applies a software development methodology that places end-user narratives at the heart of all it does. ES-DOC has initially focused upon nurturing the Earth System Model (ESM) documentation eco-system and currently supporting the following projects: * Coupled Model Inter-comparison Project Phase 5 (CMIP5); * Dynamical Core Model Inter-comparison Project (DCMIP); * National Climate Predictions and Projections Platforms Quantitative Evaluation of Downscaling Workshop. This talk will demonstrate that ES-DOC implements a relatively mature software development process. Taking a pragmatic Agile process as inspiration, ES-DOC: * Iteratively develops and releases working software; * Captures user requirements via a narrative based approach; * Uses online collaboration tools (e.g. Earth System CoG) to manage progress; * Prototypes applications to validate their feasibility; * Leverages meta-programming techniques where appropriate; * Automates testing whenever sensibly feasible; * Streamlines complex deployments to a single command; * Extensively leverages GitHub and Pivotal Tracker; * Enforces strict separation of the UI from underlying API's; * Conducts code reviews.

  19. Reverse engineering nuclear properties from rare earth abundances in the r process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mumpower, Matthew Ryan; McLaughlin, G. C.; Surman, R.

    The bulk of the rare earth elements are believed to be synthesized in the rapid neutron capture process or r process of nucleosynthesis. The solar r-process residuals show a small peak in the rare earths aroundmore » $$A\\sim 160$$, which is proposed to be formed dynamically during the end phase of the r process by a pileup of material. This abundance feature is of particular importance as it is sensitive to both the nuclear physics inputs and the astrophysical conditions of the main r process. Here, we explore the formation of the rare earth peak from the perspective of an inverse problem, using Monte Carlo studies of nuclear masses to investigate the unknown nuclear properties required to best match rare earth abundance sector of the solar isotopic residuals. When nuclear masses are changed, we recalculate the relevant β-decay properties and neutron capture rates in the rare earth region. The feedback provided by this observational constraint allows for the reverse engineering of nuclear properties far from stability where no experimental information exists. We investigate a range of astrophysical conditions with this method and show how these lead to different predictions in the nuclear properties influential to the formation of the rare earth peak. Finally, we conclude that targeted experimental campaigns in this region will help to resolve the type of conditions responsible for the production of the rare earth nuclei, and will provide new insights into the longstanding problem of the astrophysical site(s) of the r process.« less

  20. Reverse engineering nuclear properties from rare earth abundances in the r process

    DOE PAGES

    Mumpower, Matthew Ryan; McLaughlin, G. C.; Surman, R.; ...

    2017-02-01

    The bulk of the rare earth elements are believed to be synthesized in the rapid neutron capture process or r process of nucleosynthesis. The solar r-process residuals show a small peak in the rare earths aroundmore » $$A\\sim 160$$, which is proposed to be formed dynamically during the end phase of the r process by a pileup of material. This abundance feature is of particular importance as it is sensitive to both the nuclear physics inputs and the astrophysical conditions of the main r process. Here, we explore the formation of the rare earth peak from the perspective of an inverse problem, using Monte Carlo studies of nuclear masses to investigate the unknown nuclear properties required to best match rare earth abundance sector of the solar isotopic residuals. When nuclear masses are changed, we recalculate the relevant β-decay properties and neutron capture rates in the rare earth region. The feedback provided by this observational constraint allows for the reverse engineering of nuclear properties far from stability where no experimental information exists. We investigate a range of astrophysical conditions with this method and show how these lead to different predictions in the nuclear properties influential to the formation of the rare earth peak. Finally, we conclude that targeted experimental campaigns in this region will help to resolve the type of conditions responsible for the production of the rare earth nuclei, and will provide new insights into the longstanding problem of the astrophysical site(s) of the r process.« less

  1. The toxicological geochemistry of Earth materials: An overview of processes and the interdisciplinary methods used to understand them

    USGS Publications Warehouse

    Plumlee, Geoffrey S.; Morman, Suzette A.; Ziegler, Thomas L.

    2006-01-01

    A broad spectrum of earth materials have been linked to, blamed for, and/or debated as sources for disease. In some cases, the links are clear. For example, excessive exposures to mineral dusts have long been recognized for their role in diseases such as: asbestosis, mesothelioma, and lung cancers (asbestos); silicosis and lung cancer (silica dusts); and coal-workers pneumoconiosis (coal dust). Lead poisoning, particularly in toddlers and young children, has been conclusively linked to involuntary ingestion of soils or other materials contaminated with lead-rich paint particles, leaded gasoline combustion byproducts, and some types of lead-rich mine wastes or smelter particulates. Waters with naturally elevated arsenic contents are common in many regions of the globe, and consumption of these waters has been documented as the source of arsenic-related diseases affecting thousands of people in south Asia and other regions. Exposure to dusts or soils containing pathogens has been documented as the cause of regionally common diseases such as valley fever (coccidioidomycosis) and much rarer diseases such as anthrax. Links between many other earth materials and specific diseases, although suspected, are less clear or are debated. For example, it has been suggested that geographic clusters of diseases such as leukemia are related to exposures to waters or atmospheric particulates containing organic or metal contaminants; however, for many clusters the exact causal relationships between disease and environmental exposure are difficult to prove conclusively. Even for many diseases in which the causal relationship is clear, such as in asbestosis and mesothelioma triggered by asbestos exposure, the minimum exposures needed to trigger disease, the influence of genetic factors, and the exact mechanisms of toxicity are still incompletely understood and are the focus of considerable debate within the public health community. Hence, understanding the health effects resulting from

  2. Looking Down on the Earth: How Satellites Have Revolutionized Our Understanding of Our Home Planet

    NASA Astrophysics Data System (ADS)

    Freilich, Michael

    2017-04-01

    Earth is a complex, dynamic system we do not yet fully understand. The Earth system, like the human body, comprises diverse components that interact in complex ways. We need to understand the Earth's atmosphere, lithosphere, hydrosphere, cryosphere, and biosphere as a single connected system. Our planet is changing on all spatial and temporal scales. This presentation will highlight how satellite observations are revolutionizing our understanding of and its response to natural or human-induced changes, and to improve prediction of climate, weather, and natural hazards. Bio: MICHAEL H. FREILICH, Director of the Earth Science Division, Science Mission Directorate at NASA Headquarters. Prior to NASA, he was a Professor and Associate Dean in the College of Oceanic and Atmospheric Sciences at Oregon State University. He received Ph.D. in Oceanography from Scripps Institution of Oceanography (Univ. of CA., San Diego) in 1982. Dr. Freilich's research focuses on the determination, validation, and geophysical analysis of ocean surface wind velocity measured by satellite-borne microwave radar and radiometer instruments. He has developed scatterometer and altimeter wind model functions, as well as innovative validation techniques for accurately quantifying the accuracy of spaceborne environmental measurements. Dr. Freilich has served on many NASA, National Research Council (NRC), and research community advisory and steering groups, including the WOCE Science Steering Committee, the NASA EOS Science Executive Committee, the NRC Ocean Studies Board, and several NASA data system review committees. Freilich's non-scientific passions include nature photography and soccer refereeing at the youth, high school, and adult levels.

  3. Looking Down on the Earth: How Satellites Have Revolutionized Our Understanding of Our Home Planet

    NASA Astrophysics Data System (ADS)

    Freilich, Michael

    2016-04-01

    Earth is a complex, dynamic system we do not yet fully understand. The Earth system, like the human body, comprises diverse components that interact in complex ways. We need to understand the Earth's atmosphere, lithosphere, hydrosphere, cryosphere, and biosphere as a single connected system. Our planet is changing on all spatial and temporal scales. This presentation will highlight how satellite observations are revolutionizing our understanding of and its response to natural or human-induced changes, and to improve prediction of climate, weather, and natural hazards. Bio: MICHAEL H. FREILICH, Director of the Earth Science Division, Science Mission Directorate at NASA Headquarters. Prior to NASA, he was a Professor and Associate Dean in the College of Oceanic and Atmospheric Sciences at Oregon State University. He received Ph.D. in Oceanography from Scripps Institution of Oceanography (Univ. of CA., San Diego) in 1982. Dr. Freilich's research focuses on the determination, validation, and geophysical analysis of ocean surface wind velocity measured by satellite-borne microwave radar and radiometer instruments. He has developed scatterometer and altimeter wind model functions, as well as innovative validation techniques for accurately quantifying the accuracy of spaceborne environmental measurements. Dr. Freilich has served on many NASA, National Research Council (NRC), and research community advisory and steering groups, including the WOCE Science Steering Committee, the NASA EOS Science Executive Committee, the NRC Ocean Studies Board, and several NASA data system review committees. Freilich's non-scientific passions include nature photography and soccer refereeing at the youth, high school, and adult levels.

  4. Teaching through Trade Books: Humans and the Earth

    ERIC Educational Resources Information Center

    Royce, Christine Anne

    2016-01-01

    This column includes activities inspired by children's literature. Elementary students are beginning to understand the Earth's natural processes and humans' impact on the Earth. Humans need the natural resources that the Earth produces, use these resources to develop civilizations, and make decisions to offset the damage they cause, as well as…

  5. Earth Science Week 2009, "Understanding Climate", Highlights and News Clippings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robeck, Edward C.

    2010-01-05

    The American Geological Institute (AGI) proposes to expand its influential Earth Science Week Program in 2009, with the support of the U.S. Department of Energy, to disseminate DOE's key messages, information, and resources on climate education and to include new program components. These components, ranging from online resources to live events and professional networks, would significantly increase the reach and impact of AGI's already successful geoscience education and public awareness effort in the United States and abroad in 2009, when the campaign's theme will be "Understanding Climate."

  6. Understanding the Earth Systems of Malawi: Ecological Sustainability, Culture, and Place-Based Education

    ERIC Educational Resources Information Center

    Glasson, George E.; Frykholm, Jeffrey A.; Mhango, Ndalapa A.; Phiri, Absalom D.

    2006-01-01

    The purpose of this 2-year study was to investigate Malawian teacher educators' perspectives and dispositions toward teaching about ecological sustainability issues in Malawi, a developing country in sub-Sahara Africa. This study was embedded in a larger theoretical framework of investigating earth systems science through the understanding of…

  7. Contributions to Public Understanding of Science by the Lamont-Doherty Earth Observatory (II): Web-Based Projects for Teachers and Students

    NASA Astrophysics Data System (ADS)

    Passow, M. J.; Kastens, K. A.; Goodwillie, A. M.; Brenner, C.

    2009-12-01

    The Lamont-Doherty Earth Observatory of Columbia University (LDEO) continues its long history of contributions to public understanding of Science. Highlights of current efforts are described in paired posters. Part 2 focuses on web-based activities that foster access to LDEO cutting-edge research for worldwide audiences. “Geoscience Data Puzzles" are activities that purposefully present a high ratio of insight-to-effort for students. Each Puzzle uses selected authentic data to illuminate fundamental Earth processes typically taught in Earth Science curricula. Data may be in the form of a graph, table, map, image or combination of the above. Some Puzzles involve downloading a simple Excel file, but most can be worked from paper copies. Questions guide students through the process of data interpretion. Most Puzzles involve calculations, with emphasis on the too-seldom-taught skill of figuring out what math process is useful to answer an unfamiliar question or solve a problem. Every Puzzle offers "Aha" insights, when the connection between data and process or data and problem comes clear in a rewarding burst of illumination. Time needed to solve a Puzzle is between 15 minutes and an hour. “GeoMapApp” is a free, map-based data exploration and visualization application from the LDEO Marine Geoscience Data System group. GeoMapApp provides direct access to hundreds of data sets useful to geoscience educators, including continuously-updated Global Multi-Resolution Topography compilations that incorporates high-resolution bathymetry in the oceans and Space Shuttle elevations over land. A new User Guide, multi-media tutorials and webinar offer follow-along help and examples. “Virtual Ocean” integrates GeoMapApp functionality with NASA World Wind code to provide a powerful new 3-D platform for interdisciplinary geoscience research and education. Both GeoMapApp and Virtual Ocean foster scientific understanding and provide training in new data visualization

  8. Understanding MSFC/Earth Science Office Within NASA

    NASA Technical Reports Server (NTRS)

    Rickman, Doug

    2010-01-01

    This slide presentation reviews the role of the Marshal's Earth Science Office (ESO) and the relationship of the office to the NASA administration, the National Research Council and NASA's Science Directorate. The presentation also reviews the strategic goals for Earth Science, and briefly reviews the ESO's international partners that NASA is cooperating with.

  9. A strategy for Earth science from space in the 1980s. Part 1: Solid earth and oceans

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The report develops a ten-year science strategy for investigating the solid earth and dynamics of world oceans from Earth orbit. The strategy begins from the premise that earth studies have proceeded to the point where further advances in understanding Earth processes must be based on a global perspective and that the U.S. is technically ready to begin a global study approach from Earth orbit. The major areas of study and their fundamental problems are identified. The strategy defines the primary science objectives to be addressed and the essential measurements and precision to achieve them.

  10. GlobPermafrost- How Space-BasedEarth Observation Supports Understanding of Permafrost

    NASA Astrophysics Data System (ADS)

    Bartsch, Annett; Grosse, Guido; Kaab, Andreas; Westermann, Sebastian; Strozzi, Tazio; Wiesmann, Andreas; Duguay, Claude; Seifert, Frank Martin; Obu, Jaroslav; Goler, Robert

    2016-08-01

    The GlobPermafrost project develops, validates and implements Earth Observation (EO) products to support research communities and international organisations in their work on better understanding permafrost characteristics and dynamics. To facilitate usability of these products by the target audience, user requirements with respect to the planned products have been requested and collected through an online community survey as well as by interview. This paper provides an overview on the planned thematic EO products as well as results of the user requirement survey.

  11. The Earth's Mantle Is Solid: Teachers' Misconceptions About the Earth and Plate Tectonics.

    ERIC Educational Resources Information Center

    King, Chris

    2000-01-01

    Discusses the misconceptions revealed by the teachers' answers and outlines more accurate answers and explanations based on established evidence and uses these to provide a more complete understanding of plate tectonic process and the structure of Earth. (Author/YDS)

  12. Understanding Interdependencies between Heterogeneous Earth Observation Systems When Applied to Federal Objectives

    NASA Astrophysics Data System (ADS)

    Gallo, J.; Sylak-Glassman, E.

    2017-12-01

    We will present a method for assessing interdependencies between heterogeneous Earth observation (EO) systems when applied to key Federal objectives. Using data from the National Earth Observation Assessment (EOA), we present a case study that examines the frequency that measurements from each of the Landsat 8 sensors are used in conjunction with heterogeneous measurements from other Earth observation sensors to develop data and information products. This EOA data allows us to map the most frequent interactions between Landsat measurements and measurements from other sensors, identify high-impact data and information products where these interdependencies occur, and identify where these combined measurements contribute most to meeting a key Federal objective within one of the 13 Societal Benefit Areas used in the EOA study. Using a value-tree framework to trace the application of data from EO systems to weighted key Federal objectives within the EOA study, we are able to estimate relative contribution of individual EO systems to meeting those objectives, as well as the interdependencies between measurements from all EO systems within the EOA study. The analysis relies on a modified Delphi method to elicit relative levels of reliance on individual measurements from EO systems, including combinations of measurements, from subject matter experts. This results in the identification of a representative portfolio of all EO systems used to meet key Federal objectives. Understanding the interdependencies among a heterogeneous set of measurements that modify the impact of any one individual measurement on meeting a key Federal objective, especially if the measurements originate from multiple agencies or state/local/tribal, international, academic, and commercial sources, can impact agency decision-making regarding mission requirements and inform understanding of user needs.

  13. Catalytic processes in the atmospheres of earth and Venus

    NASA Technical Reports Server (NTRS)

    Demore, W. B.; Yung, Y. L.

    1982-01-01

    Photochemical processes in planetary atmospheres are strongly influenced by catalytic effects of minor constituents. Catalytic cycles in the atmospheres of Earth and Venus are closely related. For example, chlorine oxides (ClOx) act as catalysts in the two atmospheres. On earth, they serve to convert odd oxygen (atomic oxygen and ozone) to molecular oxygen. On Venus they have a similar effect, but in addition they accelerate the reactions of atomic and molecular oxygen with carbon monoxide. The latter process occurs by a unique combination of ClOx catalysis and sulful dioxide photosensitization. The mechanism provides an explanation for the very low extent of carbon dioxide decomposition by sunlight in the Venus atmosphere.

  14. Chemical evolution of the Earth: Equilibrium or disequilibrium process?

    NASA Technical Reports Server (NTRS)

    Sato, M.

    1985-01-01

    To explain the apparent chemical incompatibility of the Earth's core and mantle or the disequilibrium process, various core forming mechanisms have been proposed, i.e., rapid disequilibrium sinking of molten iron, an oxidized core or protocore materials, and meteorite contamination of the upper mantle after separation from the core. Adopting concepts used in steady state thermodynamics, a method is devised for evaluating how elements should distribute stable in the Earth's interior for the present gradients of temperature, pressure, and gravitational acceleration. Thermochemical modeling gives useful insights into the nature of chemical evolution of the Earth without overly speculative assumptions. Further work must be done to reconcile siderophile elements, rare gases, and possible light elements in the outer core.

  15. Quasi-static MHD processes in earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Voigt, Gerd-Hannes

    1988-01-01

    An attempt is made to use the MHD equilibrium theory to describe the global magnetic field configuration of earth's magnetosphere and its time evolution under the influence of magnetospheric convection. To circumvent the difficulties inherent in today's MHD codes, use is made of a restriction to slowly time-dependent convection processes with convective velocities well below the typical Alfven speed. This restriction leads to a quasi-static MHD theory. The two-dimensional theory is outlined, and it is shown how sequences of two-dimensional equilibria evolve into a steady state configuration that is likely to become tearing mode unstable. It is then concluded that magnetospheric substorms occur periodically in earth's magnetosphere, thus being an integral part of the entire convection cycle.

  16. Understanding, representing and communicating earth system processes in weather and climate within CNRCWP

    NASA Astrophysics Data System (ADS)

    Sushama, Laxmi; Arora, Vivek; de Elia, Ramon; Déry, Stephen; Duguay, Claude; Gachon, Philippe; Gyakum, John; Laprise, René; Marshall, Shawn; Monahan, Adam; Scinocca, John; Thériault, Julie; Verseghy, Diana; Zwiers, Francis

    2017-04-01

    The Canadian Network for Regional Climate and Weather Processes (CNRCWP) provides significant advances and innovative research towards the ultimate goal of reducing uncertainty in numerical weather prediction and climate projections for Canada's Northern and Arctic regions. This talk will provide an overview of the Network and selected results related to the assessment of the added value of high-resolution modelling that has helped fill critical knowledge gaps in understanding the dynamics of extreme temperature and precipitation events and the complex land-atmosphere interactions and feedbacks in Canada's northern and Arctic regions. In addition, targeted developments in the Canadian regional climate model, that facilitate direct application of model outputs in impact and adaptation studies, particularly those related to the water, energy and infrastructure sectors will also be discussed. The close collaboration between the Network and its partners and end users contributed significantly to this effort.

  17. Geophysical Monitoring of Geodynamic Processes of Central Armenia Earth Crust

    NASA Astrophysics Data System (ADS)

    Avetyan, R.; Pashayan, R.

    2016-12-01

    The method of geophysical monitoring of earth crust was introduced. It allows by continuous supervision to track modern geodynamic processes of Armenia. Methodological practices of monitoring come down to allocation of a signal which reflects deformation of rocks. The indicators of deformations are not only deviations of geophysical indicators from certain background values, but also parameters of variations of these indicators. Data on changes of parameters of barometric efficiency and saw tooth oscillations of underground water level before seismic events were received. Low-amplitude periodic fluctuations of water level are the reflection of geodynamic processes taking place in upper levels of earth crust. There were recorded fluctuations of underground water level resulting from luni-solar tides and enabling to control the systems of borehole-bed in changes of voluminous deformations. The slow lowering (raising) of underground water level in the form of trend reflects long-period changes of stress-deformative state of environment. Application of method promotes identification of medium-term precursors on anomalous events of variations of geomagnetic field, change of content of subsoil radon, dynamics of level of underground water, geochemistry and water temperature. Increase of activity of geodynamic processes in Central Armenian tectonic complex is observed to change macro component Na+, Ca2+, Mg2-, CL-, SO42-, HCO3-, H4SiO4, pH and gas - CO2 structure of mineral water. Modern geodynamic movements of earth crust of Armenia are the result of seismic processes and active geodynamics of deep faults of longitudinal and transversal stretching. Key Words: monitoring, hydrogeodynamics, geomagnetic field, seismicity, deformation, earth crust

  18. Earth Observation Services (Image Processing Software)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    San Diego State University and Environmental Systems Research Institute, with other agencies, have applied satellite imaging and image processing techniques to geographic information systems (GIS) updating. The resulting images display land use and are used by a regional planning agency for applications like mapping vegetation distribution and preserving wildlife habitats. The EOCAP program provides government co-funding to encourage private investment in, and to broaden the use of NASA-developed technology for analyzing information about Earth and ocean resources.

  19. Middle school students' understanding of the natural history of the Earth and life on Earth as a function of deep time

    NASA Astrophysics Data System (ADS)

    Pulling, Azalie Cecile

    The purpose of this study was to use deep time, that is geologic time as a mechanism to explore middle school students' understanding of the natural history of the earth and the evolution of life on earth. Geologic time is a logical precursor to middle school students' understanding of biological evolution. This exploratory, mixed model study used qualitative and quantitative methods in each stage of the research to explore sixth grade students, understanding of geologic time, their worldviews (e.g., conceptual ecology), and conceptual change. The study included fifty-nine students in the large group study and four case studies. The primary data collection instrument was the Geologic Timeline Survey. Additional data collection instruments and methods (e.g., concept evaluation statement, journal entries, word associations, interviews, and formal tests) were used to triangulate the study findings. These data were used to create narrative modal profiles of the categories of student thinking that emerged from the large group analysis: Middle School (MS) Scientists (correct science), MS Protoscientists (approaching correct science), MS Prescientists (dinosaur understanding), and MS Pseudoscientists (fundamental religious understanding). Case studies were used to provide a thick description of each category. This study discovered a pattern of student thinking about geologic time that moved along a knowledge continuum from pseudoscience (fundamental creationist understanding) to prescience (everyday-science understanding) to science (correct or approaching correct science). The researcher described the deep-seated misconceptions produced by the prescience thinking level, e.g., dinosaur misconceptions, and cautioned the science education community about using dinosaurs as a glamour-science topic. The most limiting conceptual frameworks found in this study were prescience (a dinosaur focus) and pseudoscience (a fundamental religious focus). An understanding of geologic time

  20. Educating the Public about Deep-Earth Science

    NASA Astrophysics Data System (ADS)

    Cronin, V. S.

    2010-12-01

    The nature of Earth’s interior is an active frontier of scientific research. Much of our current understanding of sub-crustal Earth is based on knowledge acquired in the last 2-3 decades, made possible by public funding and by dense seismic arrays, satellite remote sensing, increases in computer power that enable use of enhanced numerical techniques, improved theoretical and experimental knowledge of high PT mineral physics and chemistry, and a vigorous scientific community that has been trained to take advantage of these opportunities. An essential component of science is effective communication; therefore, providing for public education about science is a responsibility of the research community. Current public understanding of Earth’s interior is meager at best. In pre-college texts and in non-technical mass media, Earth's interior is typically visualized as an onion or baseball of concentric different-colored shells along whose upper surface "crustal" plates move like packages on conveyor belts of convecting mantle. Or the crust is thought to float on a molten mantle, as in the 19th century ideas of William Lowthian Green. Misconceptions about Earth that are brought to the undergraduate classroom must be confronted frankly and replaced by current understanding based on good science. Persistent ignorance has consequences. What do we want the public to know? First, the public should understand that knowledge of Earth's interior is important, not irrelevant. The public should know that deep-Earth processes result in Earth's dynamic magnetic field. Deep-Earth processes affect how radiation from the Sun reaches Earth, consequently affecting the atmosphere, the oceans, and the viability of life on Earth. The composition and differentiated structure of Earth's interior is a result of the early accretionary history of Earth and the Earth-Moon system. The public should also know that lithospheric tectonics, with all of its consequences (dynamic topography, volcanoes

  1. Mental models and other misconceptions in children's understanding of the earth.

    PubMed

    Panagiotaki, Georgia; Nobes, Gavin; Potton, Anita

    2009-09-01

    This study investigated the claim (e.g., Vosniadou & Brewer's, 1992) that children have naive "mental models" of the earth and believe, for example, that the earth is flat or hollow. It tested the proposal that children appear to have these misconceptions because they find the researchers' tasks and questions to be confusing and ambiguous. Participants were 6- and 7-year-olds (N=127) who were given either the mental model theorists' original drawing task or a new version in which the same instructions and questions were rephrased to minimize ambiguity and, thus, possible misinterpretation. In response to the new version, children gave substantially more indication of having scientific understanding and less of having naive mental models, suggesting that the misconceptions reported by the mental model theorists are largely methodological artifacts. There were also differences between the responses to the original version and those reported by Vosniadou and Brewer, indicating that other factors, such as cohort and cultural effects, are also likely to help explain the discrepant findings of previous research.

  2. Understanding rhizosphere processes to enhance phytoextraction of germanium and rare earth elements

    NASA Astrophysics Data System (ADS)

    Wiche, Oliver

    2017-04-01

    Germanium (Ge) and rare earth elements (REEs) are economically valuable raw materials that are not actually rare in terms of concentrations in soils but they are hardly available for plant uptake due to interactions with organic matter (SOM), secondary soil constituents such as Fe/Mn oxides and P bearing soil fractions. Processes in the rhizosphere might influence availability of Ge and REEs in the soil-plant system, since lowering of the pH and presence of carboxylates and siderophores (small molecules that strongly chelate Fe and other elements) strongly influences the chemical speciation of Ge and REEs in soil and consequently this comprehensive knowledge helps us to improve phytomining. In a series of field and greenhouse experiments 16 plant species from the functional groups of grasses, herbs and legumes were tested with regard to their accumulation efficiency of Ge and REEs in shoots. Subsequently, we conducted mixed culture experiments in which inefficient species (e.g. cereals like Avena sativa, Hordeum vulgare, Panicum miliaceum) were cultivated in mixed cultures with efficient species (Lupinus albus, Lupinus angustifolius). Based on the plant concentrations a principal component analysis (PCA) was performed to identify significant factors that explain the accumulation behavior of different plant species with regard to Ge, REEs, Si, Fe and Mn. In this analysis Mn was used to identify plant species with efficient mechanisms to access sparingly available P-resources in soils. Particularly in nonmycorrhizal species concentrations of Mn in leaves often indicate a carboxylate based P-mobilising strategy. Herbaceous plant species accumulated significantly higher amounts of REEs while grasses accumulated significantly higher amounts of Ge. Concentrations of Ge in shoots of grasses correlated significantly positive with Si, but negatively with concentrations of Mn. Indeed, the results of the PCA clearly show that plants with high Mn concentrations tend to have

  3. The role of impacting processes in the chemical evolution of the atmosphere of primordial Earth

    NASA Technical Reports Server (NTRS)

    Mukhin, Lev M.; Gerasimov, M. V.

    1991-01-01

    The role of impacting processes in the chemical evolution of the atmosphere of primordial Earth is discussed. The following subject areas are covered: (1) Earth's initial atmosphere; (2) continuous degassing; (3) impact processes and the Earth's protoatmosphere; and (4) the evolution of an impact-generated atmosphere.

  4. EARTH SYSTEM ATLAS: A Platform for Access to Peer-Reviewed Information about process and change in the Earth System

    NASA Astrophysics Data System (ADS)

    Sahagian, D.; Prentice, C.

    2004-12-01

    A great deal of time, effort and resources have been expended on global change research to date, but dissemination and visualization of the key pertinent data sets has been problematical. Toward that end, we are constructing an Earth System Atlas which will serve as a single compendium describing the state of the art in our understanding of the Earth system and how it has responded to and is likely to respond to natural and anthropogenic perturbations. The Atlas is an interactive web-based system of data bases and data manipulation tools and so is much more than a collection of pre-made maps posted on the web. It represents a tool for assembling, manipulating, and displaying specific data as selected and customized by the user. Maps are created "on the fly" according to user-specified instructions. The information contained in the Atlas represents the growing body of data assembled by the broader Earth system research community, and can be displayed in the form of maps and time series of the various relevant parameters that drive and are driven by changes in the Earth system at various time scales. The Atlas is designed to display the information assembled by the global change research community in the form of maps and time series of all the relevant parameters that drive or are driven by changes in the Earth System at various time scales. This will serve to provide existing data to the community, but also will help to highlight data gaps that may hinder our understanding of critical components of the Earth system. This new approach to handling Earth system data is unique in several ways. First and foremost, data must be peer-reviewed. Further, it is designed to draw on the expertise and products of extensive international research networks rather than on a limited number of projects or institutions. It provides explanatory explanations targeted to the user's needs, and the display of maps and time series can be customize by the user. In general, the Atlas is

  5. Understanding the Deep Earth: Slabs, Drips, Plumes and More - An On the Cutting Edge Workshop

    NASA Astrophysics Data System (ADS)

    Williams, M. L.; Mogk, D. W.; McDaris, J. R.

    2010-12-01

    Exciting new science is emerging from the study of the deep Earth using a variety of approaches: observational instrumentation (e.g. EarthScope’s USArray; IRIS), analysis of rocks (xenoliths, isotopic tracers), experimental methods (COMPRES facilities), and modeling (physical and computational, e.g. CIG program). New images and models of active faults, subducting plates, mantle drips, and rising plumes are spurring a new excitement about deep Earth processes and connections between Earth’s internal systems, the plate tectonic system, and the physiography of Earth’s surface. The integration of these lines of research presents unique opportunities and also challenges in geoscience education. How can we best teach about the architecture, composition, and processes of Earth where it is hidden from direct observation. How can we make deep Earth science relevant and meaningful to students across the geoscience curriculum? And how can we use the exciting new discoveries about Earth processes to attract new students into science? To explore the intersection of research and teaching about the deep Earth, a virtual workshop was convened in February 2010 for experts in deep Earth research and undergraduate geoscience education. The six-day workshop consisted of online plenary talks, large and small group discussions, asynchronous contributions using threaded listservs and web-based work spaces, as well as development and review of new classroom and laboratory activities. The workshop goals were to: 1) help participants stay current about data, tools, services, and research related to the deep earth, 2) address the "big science questions" related to deep earth (e.g. plumes, slabs, drips, post-perovskite, etc.) and explore exciting new scientific approaches, 3) to consider ways to effectively teach about "what can't be seen", at least not directly, and 4) develop and review classroom teaching activities for undergraduate education using these data, tools, services, and

  6. Sensitivities of Earth's core and mantle compositions to accretion and differentiation processes

    NASA Astrophysics Data System (ADS)

    Fischer, Rebecca A.; Campbell, Andrew J.; Ciesla, Fred J.

    2017-01-01

    The Earth and other terrestrial planets formed through the accretion of smaller bodies, with their core and mantle compositions primarily set by metal-silicate interactions during accretion. The conditions of these interactions are poorly understood, but could provide insight into the mechanisms of planetary core formation and the composition of Earth's core. Here we present modeling of Earth's core formation, combining results of 100 N-body accretion simulations with high pressure-temperature metal-silicate partitioning experiments. We explored how various aspects of accretion and core formation influence the resulting core and mantle chemistry: depth of equilibration, amounts of metal and silicate that equilibrate, initial distribution of oxidation states in the disk, temperature distribution in the planet, and target:impactor ratio of equilibrating silicate. Virtually all sets of model parameters that are able to reproduce the Earth's mantle composition result in at least several weight percent of both silicon and oxygen in the core, with more silicon than oxygen. This implies that the core's light element budget may be dominated by these elements, and is consistent with ≤1-2 wt% of other light elements. Reproducing geochemical and geophysical constraints requires that Earth formed from reduced materials that equilibrated at temperatures near or slightly above the mantle liquidus during accretion. The results indicate a strong tradeoff between the compositional effects of the depth of equilibration and the amounts of metal and silicate that equilibrate, so these aspects should be targeted in future studies aiming to better understand core formation conditions. Over the range of allowed parameter space, core and mantle compositions are most sensitive to these factors as well as stochastic variations in what the planet accreted as a function of time, so tighter constraints on these parameters will lead to an improved understanding of Earth's core composition.

  7. Using the Earth as a guide to martian mass movement processes: From form to process

    NASA Astrophysics Data System (ADS)

    Lanza, N.; Newsom, H. E.; Osterloo, M. M.; Okubo, C. H.

    2011-12-01

    The discovery of gully features on Mars has led to renewed interest in hillslope processes on that planet, in particular mass movement and the morphologies that it produces. Mass movement is a collection of gravity-driven processes that act to move materials down a hillslope. Here, we examine how mass movements on hillslopes may be expected to differ on Earth and Mars as the result of gravity differences between these planets. Downslope movement of unconsolidated materials is generally controlled by the bulk shear strength of these materials. Although the relationship between gravity and shear strength is largely dependent on variables that are independent of gravity, the lower gravity on Mars is expected to produce some systematic changes in mass movement behaviors that may in turn create morphological features that are observably different from their terrestrial counterparts. After scaling for gravity and modifying empirically derived relationships, we may expect the following differences on martian hillslopes when compared to their terrestrial counterparts: ==On Mars, hillslopes may have steeper angles of repose in fine grained (< ~2 mm) materials, even when dry. No change in angle of repose is expected for larger particles; ==An increase in soil moisture content (e.g., excess pore pressure) is expected to weaken unconsolidated slope materials more on Mars for a particular regolith type, which in turn may produce --An increase in creep rates for a given pore pressure, and --An increase in effectiveness of frost heave to transport materials downslope; ==Processes triggered by saturation may occur at lower pore pressures on Mars; --A smaller amount of fluid is needed to achieve failure; ==Shorter runout lengths are expected for rapid mass movements; ==On Mars, overland flow will exert a proportionally lower shear stress on slope materials; --In cohesive materials, the same volume of water will detach sediments of smaller sizes. On Earth, mass movement processes

  8. Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2013-07-01

    The dancing glow of the aurorae, the long tendrils of light that seem to reach up into space, has mesmerized scientists for centuries. More than a beautiful display, the aurorae tell us about the Earth—about its atmosphere, its magnetic field, and its relationship with the Sun. As technology developed, researchers looking beyond Earth's borders discovered an array of auroral processes on planets throughout the solar system. In the AGU monograph Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets, editors Andreas Keiling, Eric Donovan, Fran Bagenal, and Tomas Karlsson explore the many open questions that permeate the science of auroral physics and the relatively recent field of extraterrestrial aurorae. In this interview, Eos talks to Karlsson about extraterrestrial aurorae, Alfvén waves, and the sounds of the northern lights.

  9. Design requirements for operational earth resources ground data processing

    NASA Technical Reports Server (NTRS)

    Baldwin, C. J.; Bradford, L. H.; Burnett, E. S.; Hutson, D. E.; Kinsler, B. A.; Kugle, D. R.; Webber, D. S.

    1972-01-01

    Realistic tradeoff data and evaluation techniques were studied that permit conceptual design of operational earth resources ground processing systems. Methodology for determining user requirements that utilize the limited information available from users is presented along with definitions of sensor capabilities projected into the shuttle/station era. A tentative method is presented for synthesizing candidate ground processing concepts.

  10. The Sun: Source of the Earth's Energy

    NASA Technical Reports Server (NTRS)

    Thompson, Barbara J.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    The Sun is the primary source of the Earth's energy. However, due to the complexity in the way the energy affects Earth, the various solar sources of the energy, and the variation exhibited by the Sun it is difficult to understand and predict the Earth's response to solar drivers. In addition to visible light the radiant energy of the Sun can exhibit variation in nearly all wavelengths, which can vary over nearly all timescales. Depending on the wavelength of the incident radiation the light can deposit energy in a wide variety or locations and drive processes from below Earth's surface to interplanetary space. Other sources of energy impacting Earth include energetic particles, magnetic fields, and mass and flow variations in the solar wind. Many of these variable energetic processes cannot be coupled and recent results continue to demonstrate that the complex dynamics of the Sun can have a great range of measurable impacts on Earth.

  11. Rare Earth Extraction from NdFeB Magnet Using a Closed-Loop Acid Process.

    PubMed

    Kitagawa, Jiro; Uemura, Ryohei

    2017-08-14

    There is considerable interest in extraction of rare earth elements from NdFeB magnets to enable recycling of these elements. In practical extraction methods using wet processes, the acid waste solution discharge is a problem that must be resolved to reduce the environmental impact of the process. Here, we present an encouraging demonstration of rare earth element extraction from a NdFeB magnet using a closed-loop hydrochloric acid (HCl)-based process. The extraction method is based on corrosion of the magnet in a pretreatment stage and a subsequent ionic liquid technique for Fe extraction from the HCl solution. The rare earth elements are then precipitated using oxalic acid. Triple extraction has been conducted and the recovery ratio of the rare earth elements from the solution is approximately 50% for each extraction process, as compared to almost 100% recovery when using a one-shot extraction process without the ionic liquid but with sufficient oxalic acid. Despite its reduced extraction efficiency, the proposed method with its small number of procedures at almost room temperature is still highly advantageous in terms of both cost and environmental friendliness. This study represents an initial step towards realization of a closed-loop acid process for recycling of rare earth elements.

  12. Potential synergy: the thorium fuel cycle and rare earths processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ault, T.; Wymer, R.; Croff, A.

    2013-07-01

    The use of thorium in nuclear power programs has been evaluated on a recurring basis. A concern often raised is the lack of 'thorium infrastructure'; however, for at least a part of a potential thorium fuel cycle, this may less of a problem than previously thought. Thorium is frequently encountered in association with rare earth elements and, since the U.S. last systematically evaluated the large-scale use of thorium (the 1970's,) the use of rare earth elements has increased ten-fold to approximately 200,000 metric tons per year. Integration of thorium extraction with rare earth processing has been previously described and top-levelmore » estimates have been done on thorium resource availability; however, since ores and mining operations differ markedly, what is needed is process flowsheet analysis to determine whether a specific mining operation can feasibly produce thorium as a by-product. Also, the collocation of thorium with rare earths means that, even if a thorium product stream is not developed, its presence in mining waste streams needs to be addressed and there are previous instances where this has caused issues. This study analyzes several operational mines, estimates the mines' ability to produce a thorium by-product stream, and discusses some waste management implications of recovering thorium. (authors)« less

  13. MT+, integrating magnetotellurics to determine earth structure, physical state, and processes

    USGS Publications Warehouse

    Bedrosian, P.A.

    2007-01-01

    As one of the few deep-earth imaging techniques, magnetotellurics provides information on both the structure and physical state of the crust and upper mantle. Magnetotellurics is sensitive to electrical conductivity, which varies within the earth by many orders of magnitude and is modified by a range of earth processes. As with all geophysical techniques, magnetotellurics has a non-unique inverse problem and has limitations in resolution and sensitivity. As such, an integrated approach, either via the joint interpretation of independent geophysical models, or through the simultaneous inversion of independent data sets is valuable, and at times essential to an accurate interpretation. Magnetotelluric data and models are increasingly integrated with geological, geophysical and geochemical information. This review considers recent studies that illustrate the ways in which such information is combined, from qualitative comparisons to statistical correlation studies to multi-property inversions. Also emphasized are the range of problems addressed by these integrated approaches, and their value in elucidating earth structure, physical state, and processes. ?? Springer Science+Business Media B.V. 2007.

  14. Uderstanding Snowball Earth Deglaciation

    NASA Astrophysics Data System (ADS)

    Abbot, D. S.

    2012-12-01

    Earth, a normally clement planet comfortably in its star's habitable zone, suffered global or nearly global glaciation at least twice during the Neoproterozoic era (at about 635 and 710 million years ago). Viewed in the context of planetary evolution, these pan-global glaciations (Snowball Earth events) were extremely rapid, lasting only a few million years. The dramatic effect of the Snowball Earth events on the development of the planet can be seen through their link to rises in atmospheric oxygen and evolutionary innovations. These potential catastrophes on an otherwise clement planet can be used to gain insight into planetary habitability more generally. Since Earth is not currently a Snowball, a sound deglaciation mechanism is crucial for the viability of the Snowball Earth hypothesis. The traditional deglaciation mechanism is a massive build up of CO2 due to reduced weathering during Snowball Earth events until tropical surface temperatures reach the melting point. Once initiated, such a deglaciation might happen on a timescale of only dozens of thousands of years and would thrust Earth from the coldest climate in its history to the warmest. Therefore embedded in Snowball Earth events is an even more rapid and dramatic environmental change. Early global climate model simulations raised doubt about whether Snowball Earth deglaciation could be achieved at a CO2 concentration low enough to be consistent with geochemical data, which represented a potential challenge to the Snowball Earth hypothesis. Over the past few years dust and clouds have emerged as the essential missing additional processes that would allow Snowball Earth deglaciation at a low enough CO2 concentration. I will discuss the dust and cloud mechanisms and the modeling behind these ideas. This effort is critical for the broader implications of Snowball Earth events because understanding the specific deglaciation mechanism determines whether similar processes could happen on other planets.

  15. The Effect of Improved Sub-Daily Earth Rotation Models on Global GPS Data Processing

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Choi, K. K.

    2017-12-01

    Throughout the various International GNSS Service (IGS) products, strong periodic signals have been observed around the 14 day period. This signal is clearly visible in all IGS time-series such as those related to orbit ephemerides, Earth rotation parameters (ERP) and ground station coordinates. Recent studies show that errors in the sub-daily Earth rotation models are the main factors that induce such noise. Current IGS orbit processing standards adopted the IERS 2010 convention and its sub-daily Earth rotation model. Since the IERS convention had published, recent advances in the VLBI analysis have made contributions to update the sub-daily Earth rotation models. We have compared several proposed sub-daily Earth rotation models and show the effect of using those models on orbit ephemeris, Earth rotation parameters and ground station coordinates generated by the NGS global GPS data processing strategy.

  16. Exposing earth surface process model simulations to a large audience

    NASA Astrophysics Data System (ADS)

    Overeem, I.; Kettner, A. J.; Borkowski, L.; Russell, E. L.; Peddicord, H.

    2015-12-01

    The Community Surface Dynamics Modeling System (CSDMS) represents a diverse group of >1300 scientists who develop and apply numerical models to better understand the Earth's surface. CSDMS has a mandate to make the public more aware of model capabilities and therefore started sharing state-of-the-art surface process modeling results with large audiences. One platform to reach audiences outside the science community is through museum displays on 'Science on a Sphere' (SOS). Developed by NOAA, SOS is a giant globe, linked with computers and multiple projectors and can display data and animations on a sphere. CSDMS has developed and contributed model simulation datasets for the SOS system since 2014, including hydrological processes, coastal processes, and human interactions with the environment. Model simulations of a hydrological and sediment transport model (WBM-SED) illustrate global river discharge patterns. WAVEWATCH III simulations have been specifically processed to show the impacts of hurricanes on ocean waves, with focus on hurricane Katrina and super storm Sandy. A large world dataset of dams built over the last two centuries gives an impression of the profound influence of humans on water management. Given the exposure of SOS, CSDMS aims to contribute at least 2 model datasets a year, and will soon provide displays of global river sediment fluxes and changes of the sea ice free season along the Arctic coast. Over 100 facilities worldwide show these numerical model displays to an estimated 33 million people every year. Datasets storyboards, and teacher follow-up materials associated with the simulations, are developed to address common core science K-12 standards. CSDMS dataset documentation aims to make people aware of the fact that they look at numerical model results, that underlying models have inherent assumptions and simplifications, and that limitations are known. CSDMS contributions aim to familiarize large audiences with the use of numerical

  17. Chinese and Australian Children's Understandings of the Earth: A Cross Cultural Study of Conceptual Development

    ERIC Educational Resources Information Center

    Tao, Ying; Oliver, Mary; Venville, Grady

    2013-01-01

    The purpose of this study was to explore Chinese and Australian primary children's conceptual understandings of the Earth. The research was conducted in the interpretive paradigm and was designed to be descriptive with comparative and cross sectional elements. Participants were Year 3 and Year 6 children from three schools in Hunan Province,…

  18. Students' Understanding of Large Numbers as a Key Factor in Their Understanding of Geologic Time

    ERIC Educational Resources Information Center

    Cheek, Kim A.

    2012-01-01

    An understanding of geologic time is comprised of 2 facets. Events in Earth's history can be placed in relative and absolute temporal succession on a vast timescale. Rates of geologic processes vary widely, and some occur over time periods well outside human experience. Several factors likely contribute to an understanding of geologic time, one of…

  19. Using 3D Printers to Model Earth Surface Topography for Increased Student Understanding and Retention

    NASA Astrophysics Data System (ADS)

    Thesenga, David; Town, James

    2014-05-01

    In February 2000, the Space Shuttle Endeavour flew a specially modified radar system during an 11-day mission. The purpose of the multinational Shuttle Radar Topography Mission (SRTM) was to "obtain elevation data on a near-global scale to generate the most complete high-resolution digital topographic database of Earth" by using radar interferometry. The data and resulting products are now publicly available for download and give a view of the landscape removed of vegetation, buildings, and other structures. This new view of the Earth's topography allows us to see previously unmapped or poorly mapped regions of the Earth as well as providing a level of detail that was previously unknown using traditional topographic mapping techniques. Understanding and appreciating the geographic terrain is a complex but necessary requirement for middle school aged (11-14yo) students. Abstract in nature, topographic maps and other 2D renderings of the Earth's surface and features do not address the inherent spatial challenges of a concrete-learner and traditional methods of teaching can at times exacerbate the problem. Technological solutions such as 3D-imaging in programs like Google Earth are effective but lack the tactile realness that can make a large difference in learning comprehension and retention for these young students. First developed in the 1980's, 3D printers were not commercial reality until recently and the rapid rise in interest has driven down the cost. With the advent of sub US1500 3D printers, this technology has moved out of the high-end marketplace and into the local office supply store. Schools across the US and elsewhere in the world are adding 3D printers to their technological workspaces and students have begun rapid-prototyping and manufacturing a variety of projects. This project attempted to streamline the process of transforming SRTM data from a GeoTIFF format by way of Python code. The resulting data was then inputted into a CAD-based program for

  20. Geological Mapping of Fortuna Tessera (V-2): Venus and Earth's Archean Process Comparisons

    NASA Technical Reports Server (NTRS)

    Head, James W.; Hurwitz,D. M.; Ivanov, M. A.; Basilevsky, A. T.; Kumar, P. Senthil

    2008-01-01

    The geological features, structures, thermal conditions, interpreted processes, and outstanding questions related to both the Earth's Archean and Venus share many similarities and we are using a problem-oriented approach to Venus mapping, guided by insight from the Archean record of the Earth, to gain new insight into the evolution of Venus and Earth's Archean. The Earth's preserved and well-documented Archean record provides important insight into high heat-flux tectonic and magmatic environments and structures and the surface of Venus reveals the current configuration and recent geological record of analogous high-temperature environments unmodified by subsequent several billion years of segmentation and overprinting, as on Earth. Elsewhere we have addressed the nature of the Earth's Archean, the similarities to and differences from Venus, and the specific Venus and Earth-Archean problems on which progress might be made through comparison. Here we present the major goals of the Venus-Archean comparison and show how preliminary mapping of the geology of the V-2 Fortuna Tessera quadrangle is providing insight on these problems. We have identified five key themes and questions common to both the Archean and Venus, the assessment of which could provide important new insights into the history and processes of both planets.

  1. Earth from Space: The Power of Perspective

    NASA Astrophysics Data System (ADS)

    Abdalati, W.

    2016-12-01

    Throughout history, humans have always valued the view from above, seeking high ground to survey the land, find food, assess threats, and understand their immediate environment. The advent of aircraft early in the 20th century took this capability literally to new levels, as aerial photos of farm lands, hazards, military threats, etc. provided new opportunities for security and prosperity. And in 1960, with the launch of the first weather satellite, TIROS, we came to know our world in ways that were not possible before, as we saw the Earth as a system of interacting components. In the decades since, our ability to understand the Earth System and its dynamic components has been transformed profoundly and repeatedly by satellite observations. From examining changes in sea level, to deformation of the Earth surface, to ozone depletion, to the Earth's energy balance, satellites have helped us understand our changing planet in ways that would not have otherwise been possible. The challenge moving forward is to continue to evolve beyond watching Earth processes unfold and understanding the underlying mechanisms of change, to anticipating future conditions, more comprehensively than we do today, for the benefit of society. The capabilities to do so are well within our reach, and with appropriate investments in observing systems, research, and activities that support translating observations into societal value, we can realize the full potential of this tremendous space-based perspective. Doing so will not just change our views of the Earth, but will improve our relationship with it.

  2. Techno-Economic Assessment for Integrating Biosorption into Rare Earth Recovery Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Yongqin; Sutherland, John; Jin, Hongyue

    The current uncertainty in the global supply of rare earth elements (REEs) necessitates the development of novel extraction technologies that utilize a variety of REE source materials. Herein, we examined the techno-economic performance of integrating a biosorption approach into a large-scale process for producing salable total rare earth oxides (TREOs) from various feedstocks. An airlift bioractor is proposed to carry out a biosorption process mediated by bioengineered rare earth-adsorbing bacteria. Techno-econmic asssements were compared for three distinctive categories of REE feedstocks requiring different pre-processing steps. Key parameters identified that affect profitability include REE concentration, composition of the feedstock, and costsmore » of feedstock pretreatment and waste management. Among the 11 specific feedstocks investigated, coal ash from the Appalachian Basin was projected to be the most profitable, largely due to its high-value REE content. Its cost breakdown includes pre-processing (primarily leaching) (8077.71%), biosorption (1619.04%), and oxalic acid precipitation and TREO roasting (3.35%). Surprisingly, biosorption from the high-grade Bull Hill REE ore is less profitable due to high material cost and low production revenue. Overall, our results confirmed that the application of biosorption to low-grade feedstocks for REE recovery is economically viable.« less

  3. Understanding of Earth and Space Science Concepts: Strategies for Concept-Building in Elementary Teacher Preparation

    ERIC Educational Resources Information Center

    Bulunuz, Nermin; Jarrett, Olga S.

    2009-01-01

    This research is concerned with preservice teacher understanding of six earth and space science concepts that are often taught in elementary school: the reason for seasons, phases of the moon, why the wind blows, the rock cycle, soil formation, and earthquakes. Specifically, this study examines the effect of readings, hands-on learning stations,…

  4. Classroom virtual lab experiments as teaching tools for explaining how we understand planetary processes

    NASA Astrophysics Data System (ADS)

    Hill, C. N.; Schools, H.; Research Team Members

    2012-12-01

    This presentation will report on a classroom pilot study in which we teamed with school teachers in four middle school classes to develop and deploy course modules that connect the real-world to virtual forms of laboratory experiments.The broad goal is to help students realize that seemingly complex Earth system processes can be connected to basic properties of the planet and that this can be illustrated through idealized experiment. Specifically the presentation will describe virtual modules based on on-demand cloud computing technologies that allow students to test the notion that pole equator gradients in radiative forcing together with rotation can explain characteristic patterns of flow in the atmosphere. The module developed aligns with new Massachusetts science standard requirements regarding understanding of weather and climate processes. These new standards emphasize an appreciation of differential solar heating and a qualitative understanding of the significance of rotation. In our preliminary classroom pilot studies we employed pre and post evaluation tests to establish that the modules had increased student knowledge of phenomenology and terms. We will describe the results of these tests as well as results from anecdotal measures of student response. This pilot study suggests that one way to help make Earth science concepts more tractable to a wider audience is through virtual experiments that distill phenomena down, but still retain enough detail that students can see the connection to the real world. Modern computer technology and developments in research models appear to provide an opportunity for more work in this area. We will describe some follow-up possibilities that we envisage.

  5. Keeping Earth at work: Using thermodynamics to develop a holistic theory of the Earth system

    NASA Astrophysics Data System (ADS)

    Kleidon, Axel

    2010-05-01

    The Earth system is unique among terrestrial planets in that it is maintained in a state far from thermodynamic equilibrium. Practically all processes are irreversible in their nature, thereby producing entropy, and these would act to destroy this state of disequilibrium. In order to maintain disequilibrium in steady state, driving forces are required that perform the work to maintain the Earth system in a state far from equilibrium. To characterize the functioning of the Earth system and the interactions among its subsystems we need to consider all terms of the first and second law of thermodynamics. While the global energy balance is well established in climatology, the global entropy and work balances receive little, if any, attention. Here I will present first steps in developing a holistic theory of the Earth system including quantifications of the relevant terms that is based on the first and second laws of thermodynamics. This theory allows us to compare the significance of different processes in driving and maintaining disequilibrium, allows us to explore interactions by investigating the role of power transfer among processes, and specifically illustrate the significance of life in driving planetary disequilibrium. Furthermore, the global work balance demonstrates the significant impact of human activity and it provides an estimate for the availability of renewable sources of free energy within the Earth system. Hence, I conclude that a holistic thermodynamic theory of the Earth system is not just some academic exercise of marginal use, but essential for a profound understanding of the Earth system and its response to change.

  6. Satellite on-board processing for earth resources data

    NASA Technical Reports Server (NTRS)

    Bodenheimer, R. E.; Gonzalez, R. C.; Gupta, J. N.; Hwang, K.; Rochelle, R. W.; Wilson, J. B.; Wintz, P. A.

    1975-01-01

    Results of a survey of earth resources user applications and their data requirements, earth resources multispectral scanner sensor technology, and preprocessing algorithms for correcting the sensor outputs and for data bulk reduction are presented along with a candidate data format. Computational requirements required to implement the data analysis algorithms are included along with a review of computer architectures and organizations. Computer architectures capable of handling the algorithm computational requirements are suggested and the environmental effects of an on-board processor discussed. By relating performance parameters to the system requirements of each of the user requirements the feasibility of on-board processing is determined for each user. A tradeoff analysis is performed to determine the sensitivity of results to each of the system parameters. Significant results and conclusions are discussed, and recommendations are presented.

  7. Nonlinear dynamics of global atmospheric and Earth system processes

    NASA Technical Reports Server (NTRS)

    Saltzman, Barry

    1993-01-01

    During the past eight years, we have been engaged in a NASA-supported program of research aimed at establishing the connection between satellite signatures of the earth's environmental state and the nonlinear dynamics of the global weather and climate system. Thirty-five publications and four theses have resulted from this work, which included contributions in five main areas of study: (1) cloud and latent heat processes in finite-amplitude baroclinic waves; (2) application of satellite radiation data in global weather analysis; (3) studies of planetary waves and low-frequency weather variability; (4) GCM studies of the atmospheric response to variable boundary conditions measurable from satellites; and (5) dynamics of long-term earth system changes. Significant accomplishments from the three main lines of investigation pursued during the past year are presented and include the following: (1) planetary atmospheric waves and low frequency variability; (2) GCM studies of the atmospheric response to changed boundary conditions; and (3) dynamics of long-term changes in the global earth system.

  8. The Group on Earth Observations and the Global Earth Observation System of Systems

    NASA Astrophysics Data System (ADS)

    Achache, J.

    2006-05-01

    The Group on Earth Observations (GEO) is leading a worldwide effort to build a Global Earth Observation System of Systems (GEOSS) over the next 10 years. The GEOSS vision, articulated in its 10-Year Implementation Plan, represents the consolidation of a global scientific and political consensus: the assessment of the state of the Earth requires continuous and coordinated observation of our planet at all scales. GEOSS aims to achieve comprehensive, coordinated and sustained observations of the Earth system in order to improve monitoring of the state of the Earth; increase understanding of Earth processes; and enhance prediction of the behaviour of the Earth system. After the World Summit on Sustainable Development in 2002 highlighted the urgent need for coordinated observations relating to the state of the Earth, GEO was established at the Third Earth Observation Summit in February 2005 and the GEOSS 10-Year Implementation Plan was endorsed. GEO currently involves 60 countries; the European Commission; and 43 international organizations and has begun implementation of the GEOSS 10-Year Implementation Plan. GEO programme activities cover nine societal benefit areas (Disasters; Health; Energy; Climate; Water; Weather; Ecosystems; Agriculture; Biodiversity) and five transverse or crosscutting elements (User Engagement; Architecture; Data Management; Capacity Building; Outreach). All these activities have as their final goal the establishment of the "system of systems" which will yield a broad range of basic societal benefits, including the reduction of loss of life and property from tsunamis, hurricanes, and other natural disasters; improved water resource and energy management; and improved understanding of environmental factors significant to public health. As a "system of systems", GEOSS will work with and build upon existing national, regional, and international systems to provide comprehensive, coordinated Earth observations from thousands of instruments worldwide

  9. Understanding the Earth's Mantle Through Advanced Elasticity Measurements

    NASA Astrophysics Data System (ADS)

    Marquardt, Hauke; Schulze, Kirsten; Kurnosov, Alexander; Buchen, Johannes; Frost, Daniel; Boffa Ballaran, Tiziana; Marquardt, Katharina; Kawazoe, Takaaki

    2017-04-01

    Constraints on the inner structure, chemical and mineralogical composition as well as dynamics of Earth's mantle can be derived through comparison of laboratory elasticity data to seismological observables. A quantitative knowledge of the elastic properties of mantle minerals, and their variations with chemical composition, at pressure and temperature conditions of Earth's mantle is key to construct reliable synthetic mineral physics-based seismic velocity models to be compared to seismic observables. We will discuss results of single-crystal elasticity measurements on Earth mantle minerals that have been conducted using the combined Brillouin scattering and x-ray diffraction (XRD) system at BGI Bayreuth in combination with advanced sample preparation using the focused ion beam (FIB) technique [1] that allows for tailoring sizes and shapes of tiny single-crystals. In our experiments, multiple FIB-prepared single-crystals were loaded in a single sample chamber of a resistively-heated diamond-anvil cell (DAC). The possiblity to measure simultaneously acoustic wave velocities and density (unit-cell parameters) in the DAC in combination with the multi-sample approach facilitates direct quantification of the effects of chemical substitution on the elasticity and seismic wave velocities at non-ambient conditions. Our experimental approach eliminates uncertainties arising from the combination of data collected under (potentially) different conditions in several DAC runs, in different laboratories and/or from using different pressure-temperature sensors. We will present our recent experiments on the elasticity of single-crystal Fe-Al-bearing bridgmanite in the lower mantle and discuss implications for the composition and oxidation state of Earth's lower mantle. We will further discuss our laboratory data on the effects of 'water' and iron on the seismic wave velocities of ringwoodite in Earth's transition zone and outline implications for mapping 'water' in the transition

  10. Elasticity of the Earth's Lower Mantle Minerals at High Pressures: Implications to Understanding Seismic Observations of the Deep Mantle

    NASA Astrophysics Data System (ADS)

    Lin, J. F.; Yang, J.; Fu, S.

    2017-12-01

    Elasticity of the candidate lower-mantle minerals at relevant P-T conditions of the region provides critical information in understanding seismic profiles, compositional and mineralogical models, and geodynamic processes of the Earth's interior. Here we will discuss recent major research advances in the investigation of the elasticity of major lower-mantle minerals in a high-pressure diamond anvil cell coupled with Brillouin Light Scattering, Impulsive Stimulated Scattering (ISS), and X-ray diffraction. These have permitted direct and reliable measurements of both Vp and Vs to derive full elastic constants of single-crystal ferropericlase and (Fe, Al)-bearing bridgmanite as well as velocity profiles of polycrystalline silicate post-perovskite at relevant lower-mantle pressures. The effects of the spin transition on the single-crystal elasticity of ferropericlase are now well understood experimentally and theoretically1,2: the spin transition causes drastic softening in elastic constants involving the compressive stress component (C11 and C12) due to the additional Gibbs free energy term arising from the mixing of the high-spin and low-spin states, while the elastic constant(s) related to the shear stress component (C44) is not affected. This leads to significant reduction in VP/VS ratio within the spin transition of ferropericlase in the mid-lower mantle. The derived single-crystal Cij of bridgmanite at lower mantle pressures display relatively small elastic Vp and Vs anisotropies as compared to the ferropericlase counterpart. Using thermoelastic modelling, we will discuss the application of the elasticity of ferropericlase, bridgmanite, and silicate post-perovskite at relevant conditions of the Earth's lower mantle to differentiate the role of the thermal vs. chemical perturbations as well as the spin transition and iron partitioning effects in the reported seismic lateral heterogeneity in lower mantle as well as the D″ zone region3,4. We will address how recent

  11. The Effects of Hands-On Learning Stations on Building American Elementary Teachers' Understanding about Earth and Space Science Concepts

    ERIC Educational Resources Information Center

    Bulunuz, Nermin; Jarrett, Olga S.

    2010-01-01

    Research on conceptual change indicates that not only children, but also teachers have incomplete understanding or misconceptions on science concepts. This mixed methods study was concerned with in-service teachers' understanding of four earth and space science concepts taught in elementary school: reason for seasons, phases of the moon, rock…

  12. On the management and processing of earth resources information

    NASA Technical Reports Server (NTRS)

    Skinner, C. W.; Gonzalez, R. C.

    1973-01-01

    The basic concepts of a recently completed large-scale earth resources information system plan are reported. Attention is focused throughout the paper on the information management and processing requirements. After the development of the principal system concepts, a model system for implementation at the state level is discussed.

  13. SITE DEMONSTRATION BULLETIN - ENHANCED IN-SITU BIOREMEDIATION PROCESS, EARTH TECH, INC.

    EPA Science Inventory

    The USEPA conducted an evaluation of the Enhanced In-situ Bioremediation process, a biostimulation technology developed by the USDOE at the Westinghouse Savannah River Plant site in Aiken, SC. DOE has licensed the process to Earth Tech, Inc. The evaluation described in this bulle...

  14. The Link Between Rare-Earth Peak Formation and the Astrophysical Site of the R Process

    DOE PAGES

    Mumpower, Matthew R.; McLaughlin, Gail C.; Surman, Rebecca; ...

    2016-12-20

    The primary astrophysical source of the rare-earth elements is the rapid neutron capture process (r process). The rare-earth peak that is seen in the solar r-process residuals has been proposed to originate as a pile-up of nuclei during the end of the r process. Here, we introduce a new method utilizing Monte Carlo studies of nuclear masses in the rare-earth region, that includes self-consistently adjusting β-decay rates and neutron capture rates, to find the mass surfaces necessary for the formation of the rare-earth peak. We demonstrate our method with two types of astrophysical scenario, one corresponding to conditions typical ofmore » hot winds from core-collapse supernovae and stellar-mass accretion disks, and one corresponding to conditions typical of the ejection of the material from the tidal tails of neutron star mergers. In each type of astrophysical condition, this method successfully locates a region of enhanced stability in the mass surface that is responsible for the rare-earth peak. Finally, for each scenario, we find that the change in the mass surface has qualitatively different features, thus future measurements can shed light on the type of environment in which the r process occurred.« less

  15. The Link Between Rare-Earth Peak Formation and the Astrophysical Site of the R Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mumpower, Matthew R.; McLaughlin, Gail C.; Surman, Rebecca

    The primary astrophysical source of the rare-earth elements is the rapid neutron capture process (r process). The rare-earth peak that is seen in the solar r-process residuals has been proposed to originate as a pile-up of nuclei during the end of the r process. Here, we introduce a new method utilizing Monte Carlo studies of nuclear masses in the rare-earth region, that includes self-consistently adjusting β-decay rates and neutron capture rates, to find the mass surfaces necessary for the formation of the rare-earth peak. We demonstrate our method with two types of astrophysical scenario, one corresponding to conditions typical ofmore » hot winds from core-collapse supernovae and stellar-mass accretion disks, and one corresponding to conditions typical of the ejection of the material from the tidal tails of neutron star mergers. In each type of astrophysical condition, this method successfully locates a region of enhanced stability in the mass surface that is responsible for the rare-earth peak. Finally, for each scenario, we find that the change in the mass surface has qualitatively different features, thus future measurements can shed light on the type of environment in which the r process occurred.« less

  16. THE LINK BETWEEN RARE-EARTH PEAK FORMATION AND THE ASTROPHYSICAL SITE OF THE R PROCESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mumpower, Matthew R.; McLaughlin, Gail C.; Surman, Rebecca

    The primary astrophysical source of the rare-earth elements is the rapid neutron capture process ( r process). The rare-earth peak that is seen in the solar r -process residuals has been proposed to originate as a pile-up of nuclei during the end of the r process. We introduce a new method utilizing Monte Carlo studies of nuclear masses in the rare-earth region, that includes self-consistently adjusting β -decay rates and neutron capture rates, to find the mass surfaces necessary for the formation of the rare-earth peak. We demonstrate our method with two types of astrophysical scenario, one corresponding to conditionsmore » typical of hot winds from core-collapse supernovae and stellar-mass accretion disks, and one corresponding to conditions typical of the ejection of the material from the tidal tails of neutron star mergers. In each type of astrophysical condition, this method successfully locates a region of enhanced stability in the mass surface that is responsible for the rare-earth peak. For each scenario, we find that the change in the mass surface has qualitatively different features, thus future measurements can shed light on the type of environment in which the r process occurred.« less

  17. Crew Earth Observations: Twelve Years of Documenting Earth from the International Space Station

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia A.; Stefanov, William L.; Willis, Kimberley; Runco, Susan; Wilkinson, M. Justin; Dawson, Melissa; Trenchard, Michael

    2012-01-01

    The Crew Earth Observations (CEO) payload was one of the initial experiments aboard the International Space Station, and has been continuously collecting data about the Earth since Expedition 1. The design of the experiment is simple: using state-of-the-art camera equipment, astronauts collect imagery of the Earth's surface over defined regions of scientific interest and also document dynamic events such as storms systems, floods, wild fires and volcanic eruptions. To date, CEO has provided roughly 600,000 images of Earth, capturing views of features and processes on land, the oceans, and the atmosphere. CEO data are less rigorously constrained than other remote sensing data, but the volume of data, and the unique attributes of the imagery provide a rich and understandable view of the Earth that is difficult to achieve from the classic remote sensing platforms. In addition, the length-of-record of the imagery dataset, especially when combined with astronaut photography from other NASA and Russian missions starting in the early 1960s, provides a valuable record of changes on the surface of the Earth over 50 years. This time period coincides with the rapid growth of human settlements and human infrastructure.

  18. Exploring the Earth System through online interactive models

    NASA Astrophysics Data System (ADS)

    Coogan, L. A.

    2013-12-01

    Upper level Earth Science students commonly have a strong background of mathematical training from Math courses, however their ability to use mathematical models to solve Earth Science problems is commonly limited. Their difficulty comes, in part, because of the nature of the subject matter. There is a large body of background ';conceptual' and ';observational' understanding and knowledge required in the Earth Sciences before in-depth quantification becomes useful. For example, it is difficult to answer questions about geological processes until you can identify minerals and rocks and understand the general geodynamic implications of their associations. However, science is fundamentally quantitative. To become scientists students have to translate their conceptual understanding into quantifiable models. Thus, it is desirable for students to become comfortable with using mathematical models to test hypotheses. With the aim of helping to bridging the gap between conceptual understanding and quantification I have started to build an interactive teaching website based around quantitative models of Earth System processes. The site is aimed at upper-level undergraduate students and spans a range of topics that will continue to grow as time allows. The mathematical models are all built for the students, allowing them to spend their time thinking about how the ';model world' changes in response to their manipulation of the input variables. The web site is divided into broad topics or chapters (Background, Solid Earth, Ocean and Atmosphere, Earth history) and within each chapter there are different subtopic (e.g. Solid Earth: Core, Mantle, Crust) and in each of these individual webpages. Each webpage, or topic, starts with an introduction to the topic, followed by an interactive model that the students can use sliders to control the input to and watch how the results change. This interaction between student and model is guided by a series of multiple choice questions that

  19. How Cognitive Processes Aid Program Understanding.

    DTIC Science & Technology

    1985-06-01

    information critical to program understanding are...are used in conjunction with a ;rcgrarrrer ’s nowledge base and categories cf information critical to prcgrar understanding are identified. The model... understanding . Further, the study contends that the effectiveness of these processes is aeleraent upon the extent of the programmer’s knowledge base.

  20. Virtual Earth System Laboratory (VESL): Effective Visualization of Earth System Data and Process Simulations

    NASA Astrophysics Data System (ADS)

    Quinn, J. D.; Larour, E. Y.; Cheng, D. L. C.; Halkides, D. J.

    2016-12-01

    The Virtual Earth System Laboratory (VESL) is a Web-based tool, under development at the Jet Propulsion Laboratory and UC Irvine, for the visualization of Earth System data and process simulations. It contains features geared toward a range of applications, spanning research and outreach. It offers an intuitive user interface, in which model inputs are changed using sliders and other interactive components. Current capabilities include simulation of polar ice sheet responses to climate forcing, based on NASA's Ice Sheet System Model (ISSM). We believe that the visualization of data is most effective when tailored to the target audience, and that many of the best practices for modern Web design/development can be applied directly to the visualization of data: use of negative space, color schemes, typography, accessibility standards, tooltips, etc cetera. We present our prototype website, and invite input from potential users, including researchers, educators, and students.

  1. Virtual Earth System Laboratory (VESL): A Virtual Research Environment for The Visualization of Earth System Data and Process Simulations

    NASA Astrophysics Data System (ADS)

    Cheng, D. L. C.; Quinn, J. D.; Larour, E. Y.; Halkides, D. J.

    2017-12-01

    The Virtual Earth System Laboratory (VESL) is a Web application, under continued development at the Jet Propulsion Laboratory and UC Irvine, for the visualization of Earth System data and process simulations. As with any project of its size, we have encountered both successes and challenges during the course of development. Our principal point of success is the fact that VESL users can interact seamlessly with our earth science simulations within their own Web browser. Some of the challenges we have faced include retrofitting the VESL Web application to respond to touch gestures, reducing page load time (especially as the application has grown), and accounting for the differences between the various Web browsers and computing platforms.

  2. Earth Science Literacy: Building Community Consensus

    NASA Astrophysics Data System (ADS)

    Wysession, M.; Ladue, N.; Budd, D.; Campbell, K.; Conklin, M.; Lewis, G.; Raynolds, R.; Ridky, R.; Ross, R.; Taber, J.; Tewksbury, B.; Tuddenham, P.

    2008-12-01

    During 2008, the Earth Sciences Literacy Initiative (ESLI) constructed a framework of earth science "Big Ideas" and "Supporting Concepts". Following the examples of recent literacy efforts in the ocean, atmosphere and climate research communities, ESLI has distilled the fundamental understandings of the earth science community into a document that all members of the community will be able to refer to when working with educators, policy-makers, the press and members of the general public. This document is currently in draft form for review and will be published for public distribution in 2009. ESLI began with the construction of an organizing committee of a dozen people who represent a wide array of earth science backgrounds. This group then organized and ran two workshops in 2008: a 2-week online content workshop and a 3-day intensive writing workshop. For both workshops, participants were chosen so as to cover the full breadth of earth science related to the solid earth, surficial processes, and fresh-water hydrology. The asynchronous online workshop included 350 scientists and educators participating from around the world and was a powerful way to gather ideas and information while retaining a written record of all interactions. The writing workshop included 35 scientists, educators and agency representatives to codify the extensive input of the online workshop. Since September, 2008, drafts of the ESLI literacy framework have been circulated through many different channels to make sure that the document accurately reflects the current understandings of earth scientists and to ensure that it is widely accepted and adopted by the earth science communities.

  3. An open source Bayesian Monte Carlo isotope mixing model with applications in Earth surface processes

    NASA Astrophysics Data System (ADS)

    Arendt, Carli A.; Aciego, Sarah M.; Hetland, Eric A.

    2015-05-01

    The implementation of isotopic tracers as constraints on source contributions has become increasingly relevant to understanding Earth surface processes. Interpretation of these isotopic tracers has become more accessible with the development of Bayesian Monte Carlo (BMC) mixing models, which allow uncertainty in mixing end-members and provide methodology for systems with multicomponent mixing. This study presents an open source multiple isotope BMC mixing model that is applicable to Earth surface environments with sources exhibiting distinct end-member isotopic signatures. Our model is first applied to new δ18O and δD measurements from the Athabasca Glacier, which showed expected seasonal melt evolution trends and vigorously assessed the statistical relevance of the resulting fraction estimations. To highlight the broad applicability of our model to a variety of Earth surface environments and relevant isotopic systems, we expand our model to two additional case studies: deriving melt sources from δ18O, δD, and 222Rn measurements of Greenland Ice Sheet bulk water samples and assessing nutrient sources from ɛNd and 87Sr/86Sr measurements of Hawaiian soil cores. The model produces results for the Greenland Ice Sheet and Hawaiian soil data sets that are consistent with the originally published fractional contribution estimates. The advantage of this method is that it quantifies the error induced by variability in the end-member compositions, unrealized by the models previously applied to the above case studies. Results from all three case studies demonstrate the broad applicability of this statistical BMC isotopic mixing model for estimating source contribution fractions in a variety of Earth surface systems.

  4. Baltic Earth - Earth System Science for the Baltic Sea Region

    NASA Astrophysics Data System (ADS)

    Meier, Markus; Rutgersson, Anna; Lehmann, Andreas; Reckermann, Marcus

    2014-05-01

    The Baltic Sea region, defined as its river catchment basin, spans different climate and population zones, from a temperate, highly populated, industrialized south with intensive agriculture to a boreal, rural north. It encompasses most of the Scandinavian Peninsula in the west; most of Finland and parts of Russia, Belarus, and the Baltic states in the east; and Poland and small parts of Germany and Denmark in the south. The region represents an old cultural landscape, and the Baltic Sea itself is among the most studied sea areas of the world. Baltic Earth is the new Earth system research network for the Baltic Sea region. It is the successor to BALTEX, which was terminated in June 2013 after 20 years and two successful phases. Baltic Earth stands for the vision to achieve an improved Earth system understanding of the Baltic Sea region. This means that the research disciplines of BALTEX continue to be relevant, i.e. atmospheric and climate sciences, hydrology, oceanography and biogeochemistry, but a more holistic view of the Earth system encompassing processes in the atmosphere, on land and in the sea as well as in the anthroposphere shall gain in importance in Baltic Earth. Specific grand research challenges have been formulated, representing interdisciplinary research questions to be tackled in the coming years. A major means will be scientific assessments of particular research topics by expert groups, similar to the BACC approach, which shall help to identify knowledge gaps and develop research strategies. Preliminary grand challenges and topics for which Working Groups have been installed include: • Salinity dynamics in the Baltic Sea • Land-Sea biogeochemical feedbacks in the Baltic Sea region • Natural hazards and extreme events in the Baltic Sea region • Understanding sea level dynamics in the Baltic Sea • Understanding regional variability of water and energy exchange • Utility of Regional Climate Models • Assessment of Scenario Simulations

  5. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    which students investigate the different interactions involved in hurricane generation, steering, and intensification. Students analyze a variety of visualization resources looking for patterns in occurrence and to develop an understanding of hurricane structure. They download archived data about past hurricanes and produce temporal and spatial plots to discover patterns in hurricane life cycles. They investigate the relationship between hurricane wind speed and factors such as barometric pressure and sea surface temperature by conducting spreadsheet analyses on archived data. They also conduct hands-on laboratory experiments in order to understand the physical processes that underpin energy transfer in convection, condensation, and latent heat. These activities highlight Earth science as a vital, rich, invigorating course, employing state-of-the-art technologies and in-depth labs with high relevance for our daily lives and the future.

  6. Understanding Global Change: Frameworks and Models for Teaching Systems Thinking

    NASA Astrophysics Data System (ADS)

    Bean, J. R.; Mitchell, K.; Zoehfeld, K.; Oshry, A.; Menicucci, A. J.; White, L. D.; Marshall, C. R.

    2017-12-01

    The scientific and education communities must impart to teachers, students, and the public an understanding of how the various factors that drive climate and global change operate, and why the rates and magnitudes of these changes related to human perturbation of Earth system processes today are cause for deep concern. Even though effective educational modules explaining components of the Earth and climate system exist, interdisciplinary learning tools are necessary to conceptually link the causes and consequences of global changes. To address this issue, the Understanding Global Change Project at the University of California Museum of Paleontology (UCMP) at UC Berkeley developed an interdisciplinary framework that organizes global change topics into three categories: (1) causes of climate change, both human and non-human (e.g., burning of fossil fuels, deforestation, Earth's tilt and orbit), (2) Earth system processes that shape the way the Earth works (e.g., Earth's energy budget, water cycle), and (3) the measurable changes in the Earth system (e.g., temperature, precipitation, ocean acidification). To facilitate student learning about the Earth as a dynamic, interacting system, a website will provide visualizations of Earth system models and written descriptions of how each framework topic is conceptually linked to other components of the framework. These visualizations and textual summarizations of relationships and feedbacks in the Earth system are a unique and crucial contribution to science communication and education, informed by a team of interdisciplinary scientists and educators. The system models are also mechanisms by which scientists can communicate how their own work informs our understanding of the Earth system. Educators can provide context and relevancy for authentic datasets and concurrently can assess student understanding of the interconnectedness of global change phenomena. The UGC resources will be available through a web-based platform and

  7. Crew Earth Observations

    NASA Technical Reports Server (NTRS)

    Runco, Susan

    2009-01-01

    Crew Earth Observations (CEO) takes advantage of the crew in space to observe and photograph natural and human-made changes on Earth. The photographs record the Earth's surface changes over time, along with dynamic events such as storms, floods, fires and volcanic eruptions. These images provide researchers on Earth with key data to better understand the planet.

  8. Titan Saturn System Mission (TSSM) Enables Comparative Climatology with Earth

    NASA Astrophysics Data System (ADS)

    Reh, Kim; Lunine, J.; Coustenis, A.; Matson, D.; Beauchamp, P.; Erd, C.; Lebreton, J.

    2009-09-01

    Titan is a complex world more like the Earth than any other: it has a dense mostly nitrogen atmosphere and active climate and meteorological cycles where the working fluid, methane, behaves under Titan conditions the way that water does on Earth. Its geology, from lakes and seas to broad river valleys and mountains, while carved in ice is, in its balance of processes, again most like Earth. Beneath this panoply of Earth-like processes an ice crust floats atop what appears to be a liquid water ocean. The Titan Saturn System Mission would seek to understand Titan as a system, in the same way that one would ask this question about Venus, Mars, and the Earth. How are distinctions between Titan and other worlds in the solar systems understandable in the context of the complex interplay of geology, hydrology, meteorology, and aeronomy? Is Titan an analogue for some aspect of Earth's history, past or future? Why is Titan endowed with an atmosphere when Ganymede is not? Titan is also rich in organic molecules_more so in its surface and atmosphere than anyplace in the solar system, including Earth (excluding our vast carbonate sediments). These molecules were formed in the atmosphere, deposited on the surface and, in coming into contact with liquid water may undergo an aqueous chemistry that could replicate aspects of life's origins. The second goal of the proposed TSSM mission is to understand the chemical cycles that generate and destroy organics and assess the likelihood that they can tell us something of life's origins. This work was performed at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA.

  9. Strategy for earth explorers in global earth sciences

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The goal of the current NASA Earth System Science initiative is to obtain a comprehensive scientific understanding of the Earth as an integrated, dynamic system. The centerpiece of the Earth System Science initiative will be a set of instruments carried on polar orbiting platforms under the Earth Observing System program. An Earth Explorer program can open new vistas in the earth sciences, encourage innovation, and solve critical scientific problems. Specific missions must be rigorously shaped by the demands and opportunities of high quality science and must complement the Earth Observing System and the Mission to Planet Earth. The committee believes that the proposed Earth Explorer program provides a substantial opportunity for progress in the earth sciences, both through independent missions and through missions designed to complement the large scale platforms and international research programs that represent important national commitments. The strategy presented is intended to help ensure the success of the Earth Explorer program as a vital stimulant to the study of the planet.

  10. A Sun-Earth-Moon Activity to Develop Student Understanding of Lunar Phases and Frames of Reference

    ERIC Educational Resources Information Center

    Ashmann, Scott

    2012-01-01

    The Moon is an ever-present subject of observation, and it is a recurring topic in the science curriculum from kindergarten's basic observations through graduate courses' mathematical analyses of its orbit. How do students come to comprehend Earth's nearest neighbor? What is needed for them to understand the lunar phases and other phenomena and…

  11. Research and Teaching About the Deep Earth

    NASA Astrophysics Data System (ADS)

    Williams, Michael L.; Mogk, David W.; McDaris, John

    2010-08-01

    Understanding the Deep Earth: Slabs, Drips, Plumes and More; Virtual Workshop, 17-19 February and 24-26 February 2010; Images and models of active faults, subducting plates, mantle drips, and rising plumes are spurring new excitement about deep-Earth processes and connections between Earth's internal systems and plate tectonics. The new results and the steady progress of Earthscope's USArray across the country are also providing a special opportunity to reach students and the general public. The pace of discoveries about the deep Earth is accelerating due to advances in experimental, modeling, and sensing technologies; new data processing capabilities; and installation of new networks, especially the EarthScope facility. EarthScope is an interdisciplinary program that combines geology and geophysics to study the structure and evolution of the North American continent. To explore the current state of deep-Earth science and ways in which it can be brought into the undergraduate classroom, 40 professors attended a virtual workshop given by On the Cutting Edge, a program that strives to improve undergraduate geoscience education through an integrated cooperative series of workshops and Web-based resources. The 6-day two-part workshop consisted of plenary talks, large and small group discussions, and development and review of new classroom and laboratory activities.

  12. Process for preparing higher oxides of the alkali and alkaline earth metals

    NASA Technical Reports Server (NTRS)

    Sadhukhan, P.; Bell, A. (Inventor)

    1978-01-01

    High purity inorganic higher oxides of the alkali and alkaline earth metals are prepared by subjecting the hydroxide of the alkali and alkaline earth metal to a radio frequency discharge sustained in oxygen. The process is particulary adaptable to the production of high purity potassium superoxide by subjecting potassium hydroxide to glow discharge sustained in oxygen under the pressure of about 0.75 to 1.00 torr.

  13. Understanding Water-Energy-Ecology Nexus from an Integrated Earth-Human System Perspective

    NASA Astrophysics Data System (ADS)

    Li, H. Y.; Zhang, X.; Wan, W.; Zhuang, Y.; Hejazi, M. I.; Leung, L. R.

    2017-12-01

    Both Earth and human systems exert notable controls on streamflow and stream temperature that influence energy production and ecosystem health. An integrated water model representing river processes and reservoir regulations has been developed and coupled to a land surface model and an integrated assessment model of energy, land, water, and socioeconomics to investigate the energy-water-ecology nexus in the context of climate change and water management. Simulations driven by two climate change projections following the RCP 4.5 and RCP 8.5 radiative forcing scenarios, with and without water management, are analyzed to evaluate the individual and combined effects of climate change and water management on streamflow and stream temperature in the U.S. The simulations revealed important impacts of climate change and water management on hydrological droughts. The simulations also revealed the dynamics of competition between changes in water demand and water availability in the RCP 4.5 and RCP 8.5 scenarios that influence streamflow and stream temperature, with important consequences to thermoelectricity production and future survival of juvenile Salmon. The integrated water model is being implemented to the Accelerated Climate Modeling for Energy (ACME), a coupled Earth System Model, to enable future investigations of the energy-water-ecology nexus in the integrated Earth-Human system.

  14. Naval EarthMap Observer: overview and data processing

    NASA Astrophysics Data System (ADS)

    Bowles, Jeffrey H.; Davis, Curtiss O.; Carney, Megan; Clamons, Dean; Gao, Bo-Cai; Gillis, David; Kappus, Mary E.; Lamela, G.; Montes, Marcos J.; Palmadesso, Peter J.; Rhea, J.; Snyder, William A.

    1999-12-01

    We present an overview of the Naval EarthMap Observer (NEMO) spacecraft and then focus on the processing of NEMO data both on-board the spacecraft and on the ground. The NEMO spacecraft provides for Joint Naval needs and demonstrates the use of hyperspectral imagery for the characterization of the littoral environment and for littoral ocean model development. NEMO is being funded jointly by the U.S. government and commercial partners. The Coastal Ocean Imaging Spectrometer (COIS) is the primary instrument on the NEMO and covers the spectral range from 400 to 2500 nm at 10-nm resolution with either 30 or 60 m work GSD. The hyperspectral data is processed on-board the NEMO using NRL's Optical Real-time Automated Spectral Identification System (ORASIS) algorithm that provides for real time analysis, feature extraction and greater than 10:1 data compression. The high compression factor allows for ground coverage of greater than 106 km2/day. Calibration of the sensor is done with a combination of moon imaging, using an onboard light source and vicarious calibration using a number of earth sites being monitored for that purpose. The data will be atmospherically corrected using ATREM. Algorithms will also be available to determine water clarity, bathymetry and bottom type.

  15. Welcome to NASA's Earth Science Enterprise: Educational CD-ROM Activity Supplement

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Since its inception in 1958, NASA has been studying the Earth and its changing environment by observing the atmosphere, oceans, land, ice, and snow, and their influence on weather and climate. We now understand that the key to gaining a better understanding of the global environment is exploring how the Earth's systems of air, land, water, and life interact with each other. This approach-called Earth Systems Science-blends together fields like meteorology, oceanography, geology, and biology. In 1991, NASA launched a more comprehensive program to study the Earth as an integrated environmental system. They call it NASA's Earth Science Enterprise. A major component of the Earth Science Enterprise is the Earth Observing System (EOS). EOS is series of satellites to be launched over the next two decades that will be used to intensively study the Earth, with the hopes of expanding our under- standing of how natural processes affect us, and how we might be affecting them. Such studies will yield improved weather forecasts, tools for managing agriculture and forests, information for fishermen and local planners, and, eventually, the ability to predict how the climate will change in the future. Today's program is laying the foundation for long-term environmental and climate monitoring and prediction. Potentially, this will provide the understanding needed in the future to support difficult decisions regarding the Earth's environment.

  16. Using Statistical Process Control for detecting anomalies in multivariate spatiotemporal Earth Observations

    NASA Astrophysics Data System (ADS)

    Flach, Milan; Mahecha, Miguel; Gans, Fabian; Rodner, Erik; Bodesheim, Paul; Guanche-Garcia, Yanira; Brenning, Alexander; Denzler, Joachim; Reichstein, Markus

    2016-04-01

    The number of available Earth observations (EOs) is currently substantially increasing. Detecting anomalous patterns in these multivariate time series is an important step in identifying changes in the underlying dynamical system. Likewise, data quality issues might result in anomalous multivariate data constellations and have to be identified before corrupting subsequent analyses. In industrial application a common strategy is to monitor production chains with several sensors coupled to some statistical process control (SPC) algorithm. The basic idea is to raise an alarm when these sensor data depict some anomalous pattern according to the SPC, i.e. the production chain is considered 'out of control'. In fact, the industrial applications are conceptually similar to the on-line monitoring of EOs. However, algorithms used in the context of SPC or process monitoring are rarely considered for supervising multivariate spatio-temporal Earth observations. The objective of this study is to exploit the potential and transferability of SPC concepts to Earth system applications. We compare a range of different algorithms typically applied by SPC systems and evaluate their capability to detect e.g. known extreme events in land surface processes. Specifically two main issues are addressed: (1) identifying the most suitable combination of data pre-processing and detection algorithm for a specific type of event and (2) analyzing the limits of the individual approaches with respect to the magnitude, spatio-temporal size of the event as well as the data's signal to noise ratio. Extensive artificial data sets that represent the typical properties of Earth observations are used in this study. Our results show that the majority of the algorithms used can be considered for the detection of multivariate spatiotemporal events and directly transferred to real Earth observation data as currently assembled in different projects at the European scale, e.g. http://baci-h2020.eu

  17. Project Copernicus: An Earth observing system

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Hunsaker Aerospace Corporation is presenting this proposal for Project Copernicus to fulfill the need for space-based remote sensing of Earth. Concentration is on data acquisition. Copernicus is designed to be a flexible system of spacecraft in a low near-polar orbit. The goal is to acquire data so that the scientists may begin to understand many Earth processes and interactions. The mission objective of Copernicus is to provide a space-based, remote-sensing measurement data acquisition and transfer system for 15 years. A description of the design project is presented.

  18. Space Shuttle earth observations photography - Data listing process

    NASA Technical Reports Server (NTRS)

    Lulla, Kamlesh

    1992-01-01

    The data listing process of the electronic data base of the Catalogs of Space Shuttle Earth Observations Photography is described. Similar data are recorded for each frame in each role from the mission. At the end of each roll, a computer printout is checked for mistakes, glitches, and typographical errors. After the roll and frames have been corrected, the data listings are ready for transfer to the data base and for development of the catalog.

  19. Earth: Earth Science and Health

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.

    2001-01-01

    A major new NASA initiative on environmental change and health has been established to promote the application of Earth science remote sensing data, information, observations, and technologies to issues of human health. NASA's Earth Sciences suite of Earth observing instruments are now providing improved observations science, data, and advanced technologies about the Earth's land, atmosphere, and oceans. These new space-based resources are being combined with other agency and university resources, data integration and fusion technologies, geographic information systems (GIS), and the spectrum of tools available from the public health community, making it possible to better understand how the environment and climate are linked to specific diseases, to improve outbreak prediction, and to minimize disease risk. This presentation is an overview of NASA's tools, capabilities, and research advances in this initiative.

  20. Structure and dynamics of Earth's lower mantle.

    PubMed

    Garnero, Edward J; McNamara, Allen K

    2008-05-02

    Processes within the lowest several hundred kilometers of Earth's rocky mantle play a critical role in the evolution of the planet. Understanding Earth's lower mantle requires putting recent seismic and mineral physics discoveries into a self-consistent, geodynamically feasible context. Two nearly antipodal large low-shear-velocity provinces in the deep mantle likely represent chemically distinct and denser material. High-resolution seismological studies have revealed laterally varying seismic velocity discontinuities in the deepest few hundred kilometers, consistent with a phase transition from perovskite to post-perovskite. In the deepest tens of kilometers of the mantle, isolated pockets of ultralow seismic velocities may denote Earth's deepest magma chamber.

  1. Earth Science: It's All about the Processes

    ERIC Educational Resources Information Center

    King, Chris

    2013-01-01

    Readers of the draft new English primary science curriculum (DfE, 2012) might be concerned to see that there is much more detail on the Earth science content than previously in the United Kingdom. In this article, Chris King, a professor of Earth Science Education at Keele University and Director of the Earth Science Education Unit (ESEU),…

  2. Blue Marble Matches: Using Earth for Planetary Comparisons

    NASA Technical Reports Server (NTRS)

    Graff, Paige Valderrama

    2009-01-01

    Goal: This activity is designed to introduce students to geologic processes on Earth and model how scientists use Earth to gain a better understanding of other planetary bodies in the solar system. Objectives: Students will: 1. Identify common descriptor characteristics used by scientists to describe geologic features in images. 2. Identify geologic features and how they form on Earth. 3. Create a list of defining/distinguishing characteristics of geologic features 4. Identify geologic features in images of other planetary bodies. 5. List observations and interpretations about planetary body comparisons. 6. Create summary statements about planetary body comparisons.

  3. The Effect of the Conceptual Change Oriented Instruction through Cooperative Learning on 4th Grade Students' Understanding of Earth and Sky Concepts

    ERIC Educational Resources Information Center

    Celikten, Oksan; Ipekcioglu, Sevgi; Ertepinar, Hamide; Geban, Omer

    2012-01-01

    The purpose of this study was to compare the effectiveness of the conceptual change oriented instruction through cooperative learning (CCICL) and traditional science instruction (TI) on 4th grade students' understanding of earth and sky concepts and their attitudes toward earth and sky concepts. In this study, 56 fourth grade students from the…

  4. Nonlinear dynamics of global atmospheric and earth system processes

    NASA Technical Reports Server (NTRS)

    Zhang, Taiping; Verbitsky, Mikhail; Saltzman, Barry; Mann, Michael E.; Park, Jeffrey; Lall, Upmanu

    1995-01-01

    During the grant period, the authors continued ongoing studies aimed at enhancing their understanding of the operation of the atmosphere as a complex nonlinear system interacting with the hydrosphere, biosphere, and cryosphere in response to external radiative forcing. Five papers were completed with support from the grant, representing contributions in three main areas of study: (1) theoretical studies of the interactive atmospheric response to changed biospheric boundary conditions measurable from satellites; (2) statistical-observational studies of global-scale temperature variability on interannual to century time scales; and (3) dynamics of long-term earth system changes associated with ice sheet surges.

  5. Student Geoscientists Explore the Earth during Earth Science Week 2005

    ERIC Educational Resources Information Center

    Benbow, Ann E.; Camphire, Geoff

    2005-01-01

    Taking place October 9-15, Earth Science Week 2005 will celebrate the theme "Geoscientists Explore the Earth." The American Geological Institute (AGI) is organizing the event, as always, to help people better understand and appreciate the Earth sciences and to encourage stewardship of the planet. This year, the focus will be on the wide range of…

  6. Uncovering the Chemistry of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Zeng, Li; Jacobsen, Stein; Sasselov, Dimitar D.

    2015-01-01

    We propose to use evidence from our solar system to understand exoplanets, and in particular, to predict their surface chemistry and thereby the possibility of life. An Earth-like planet, born from the same nebula as its host star, is composed primarily of silicate rocks and an iron-nickel metal core, and depleted in volatile content in a systematic manner. The more volatile (easier to vaporize or dissociate into gas form) an element is in an Earth-like planet, the more depleted the element is compared to its host star. After depletion, an Earth-like planet would go through the process of core formation due to heat from radioactive decay and collisions. Core formation depletes a planet's rocky mantle of siderophile (iron-loving) elements, in addition to the volatile depletion. After that, Earth-like planets likely accrete some volatile-rich materials, called 'late veneer'. The late veneer could be essential to the origins of life on Earth and Earth-like planets, as it also delivers the volatiles such as nitrogen, sulfur, carbon and water to the planet's surface, which are crucial for life to occur. We plan to build an integrative model of Earth-like planets from the bottom up. We would like to infer their chemical compositions from their mass-radius relations and their host stars' elemental abundances, and understand the origins of volatile contents (especially water) on their surfaces, and thereby shed light on the origins of life on them.

  7. Understanding geodesy and geoscience processes through interactive demonstrations for the general public

    NASA Astrophysics Data System (ADS)

    Olds, S. E.; Bartel, B. A.

    2016-12-01

    Hands-on demonstrations are an effective way for novice learners, whether they are students, public, or museum visitors, to experience geoscience processes. UNAVCO and community members have developed hands-on demonstrations of a variety of geophysical processes highlighting the geodetic techniques used to measure these processes. These demonstrations illustrate how observations of changes at the earth's surface can be quantified and inform us about forces within the earth that we can't see. They also emphasize the societal impact of research related to each earth process. In this presentation, we will provide descriptions of a suite of these demonstrations, major concepts covered, materials needed, instructions for assembly and how to lead the demonstration, sample questions to ask participants, weaknesses inherent in the model, and a list of supporting handouts that augment the demonstration. Some of the demonstrations to be highlighted include: volcanic deformation using flour or an augmented-reality sandbox; isostatic rebound from glacial melt using flubber; compression of the Pacific Northwest using springs; and tsunami early warning using a tub of water and foam buoys. We will also discuss the process of developing interactive demonstrations and provide initial feedback from classroom and science festival events. Write-ups of the demonstrations are freely available on the UNAVCO Education website (search terms: UNAVCO geodetic demonstrations).

  8. A Novel Approach to Teaching and Understanding Transformations of Matter in Dynamic Earth Systems

    ERIC Educational Resources Information Center

    Clark, Scott K.; Sibley, Duncan F.; Libarkin, Julie C.; Heidemann, Merle

    2009-01-01

    The need to engage K-12 and post-secondary students in considering the Earth as a dynamic system requires explicit discussion of system characteristics. Fundamentally, dynamic systems involve the movement and change of matter, often through processes that are difficult to see and comprehend. We introduce a novel instructional method, termed…

  9. A Study Of Undergraduate Students' Alternative Conceptions Of Earth's Interior Using Drawing Tasks

    NASA Astrophysics Data System (ADS)

    McAllister, Meredith L.

    2014-12-01

    Learning fundamental geoscience topics such as plate tectonics, earthquakes, and volcanoes requires students to develop a deep understanding of the conceptual models geologists use when describing the structure and dynamics of Earth's interior. Despite the importance of these mental models underlying much of the undergraduate geoscience curriculum, surprisingly little research related to this complex idea exists in the discipline-based science education research literature. To better understand non-science-majoring undergraduates' conceptual models of Earth's interior, student-generated drawings and interviews were used to probe student understanding of the Earth. Ninety-two semi-structured interviews were conducted with non-science-major college students at the beginning of an entry-level geology course at a large Midwestern university. Students were asked to draw a picture of Earth's interior and provide think-aloud explanations of their drawings. The results reveal that students hold a wide range of alternative conceptions about Earth, with only a small fraction having scientifically accurate ideas. Students' understandings ranged from conceptualizing Earth's interior as consisting of horizontal layers of rock and dirt, to more sophisticated views with Earth's interior being composed of concentric layers with unique physical and chemical characteristics. Processes occurring within Earth, such as "convection," were rarely mentioned or explained. These results provide a first-steps basis from which to further explore college students' thinking and contribute to the growing body of knowledge on earth science teaching and geoscience education research.

  10. The Sun/Earth System and Space Weather

    NASA Technical Reports Server (NTRS)

    Poland, Arthur I.; Fox, Nicola; Lucid, Shannon

    2003-01-01

    Solar variability and solar activity are now seen as significant drivers with respect to the Earth and human technology systems. Observations over the last 10 years have significantly advanced our understanding of causes and effects in the Sun/Earth system. On a practical level the interactions between the Sun and Earth dictate how we build our systems in space (communications satellites, GPS, etc), and some of our ground systems (power grids). This talk will be about the Sun/Earth system: how it changes with time, its magnetic interactions, flares, the solar wind, and how the Sun effects human systems. Data will be presented from some current spacecraft which show, for example, how we are able to currently give warnings to the scientific community, the Government and industry about space storms and how this data has improved our physical understanding of processes on the Sun and in the magnetosphere. The scientific advances provided by our current spacecraft has led to a new program in NASA to develop a 'Space Weather' system called 'Living With a Star'. The current plan for the 'Living With a Star' program will also be presented.

  11. The "Earth Physics" Workshops Offered by the Earth Science Education Unit

    ERIC Educational Resources Information Center

    Davies, Stephen

    2012-01-01

    Earth science has a part to play in broadening students' learning experience in physics. The Earth Science Education Unit presents a range of (free) workshops to teachers and trainee teachers, suggesting how Earth-based science activities, which show how we understand and use the planet we live on, can easily be slotted into normal science…

  12. Non-linear processes in the Earth atmosphere boundary layer

    NASA Astrophysics Data System (ADS)

    Grunskaya, Lubov; Valery, Isakevich; Dmitry, Rubay

    2013-04-01

    The work is connected with studying electromagnetic fields in the resonator Earth-Ionosphere. There is studied the interconnection of tide processes of geophysical and astrophysical origin with the Earth electromagnetic fields. On account of non-linear property of the resonator Earth-Ionosphere the tides (moon and astrophysical tides) in the electromagnetic Earth fields are kinds of polyharmonic nature. It is impossible to detect such non-linear processes with the help of the classical spectral analysis. Therefore to extract tide processes in the electromagnetic fields, the method of covariance matrix eigen vectors is used. Experimental investigations of electromagnetic fields in the atmosphere boundary layer are done at the distance spaced stations, situated on Vladimir State University test ground, at Main Geophysical Observatory (St. Petersburg), on Kamchatka pen., on Lake Baikal. In 2012 there was continued to operate the multichannel synchronic monitoring system of electrical and geomagnetic fields at the spaced apart stations: VSU physical experimental proving ground; the station of the Institute of Solar and Terrestrial Physics of Russian Academy of Science (RAS) at Lake Baikal; the station of the Institute of volcanology and seismology of RAS in Paratunka; the station in Obninsk on the base of the scientific and production society "Typhoon". Such investigations turned out to be possible after developing the method of scanning experimental signal of electromagnetic field into non- correlated components. There was used a method of the analysis of the eigen vectors ofthe time series covariance matrix for exposing influence of the moon tides on Ez. The method allows to distribute an experimental signal into non-correlated periodicities. The present method is effective just in the situation when energetical deposit because of possible influence of moon tides upon the electromagnetic fields is little. There have been developed and realized in program components

  13. HMMR (High-Resolution Multifrequency Microwave Radiometer) Earth observing system, volume 2e. Instrument panel report

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Recommendations and background are provided for a passive microwave remote sensing system of the future designed to meet the observational needs of Earth scientist in the next decade. This system, called the High Resolution Multifrequency Microwave Radiometer (HMMR), is to be part of a complement of instruments in polar orbit. Working together, these instruments will form an Earth Observing System (EOS) to provide the information needed to better understand the fundamental, global scale processes which govern the Earth's environment. Measurements are identified in detail which passive observations in the microwave portion of the spectrum could contribute to an Earth Observing System in polar orbit. Requirements are established, e.g., spatial and temporal resolution, for these measurements so that, when combined with the other instruments in the Earth Observing System, they would yield a data set suitable for understanding the fundamental processes governing the Earth's environment. Existing and/or planned sensor systems are assessed in the light of these requirements, and additional sensor hardware needed to meet these observational requirements are defined.

  14. Development of an SP simulation package for understanding fundamentals of self-potential responses at an earth dam

    NASA Astrophysics Data System (ADS)

    Kang, S.; Lim, S. K.; Oldenburg, D.

    2016-12-01

    Fluid flow in an underground porous medium pulls positive ions in the direction of flow and results in a streaming current. This movement of ions in the direction of flow creates a charge imbalance in the system which, in turn, causes conduction currents to flow in the opposite Although, the streaming current only flows in the saturated pores, the conduction currents will flow in the entire medium. The electrical potentials due to the fluid flow can be measured in the same manner as those in a direct current survey. This method is often called the self-potential (SP) method. A number of applications using the SP technique have been investigated including earthquake prediction, the vadose zone flow, locating sinkholes, mineral deposits and volcanic chambers. In this study, we particularly focus on the monitoring of seepage flow through earth dams. Earth dams are usually made of permeable materials and are designed to allow limited amounts of seepage flow from the reservoir. Due to seepage forces, the fine grains in the core can be washed out, and this internal erosion is one the most prevalent failure modes in earth dams. Therefore, identifying and monitoring the region of preferential seepage flow is a key for dam safety assessment. Usually, an earth dam is composed of fine-grained core and coarse-grained cover, which have different hydraulic conductivities. The distribution of hydraulic head, water saturation and fluid flow is found by solving hydrogeologic equations with applied boundary conditions. When a seepage path is induced due to internal erosion, the hydrological properties will be changed and this results in additional fluid flow. This is an additional source of SP signal. Understanding the impact of different sources of the SP signals is thus a crucial factor towards effective use of the SP technique for safety assessment at earth dams. Modelling SP signals requires two essential simulation capabilities: a) computing fluid flow in porous medium and b

  15. Magnetic Nanofluid Rare Earth Element Extraction Process Report, Techno Economic Analysis, and Results for Geothermal Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pete McGrail

    This GDR submission is an interim technical report and raw data files from the first year of testing on functionalized nanoparticles for rare earth element extraction from geothermal fluids. The report contains Rare Earth Element uptake results (percent removal, mg Rare Earth Element/gram of sorbent, distribution coefficient) for the elements of Neodymium, Europium, Yttrium, Dysprosium, and Cesium. A detailed techno economic analysis is also presented in the report for a scaled up geothermal rare earth element extraction process. All rare earth element uptake testing was done on simulated geothermal brines with one rare earth element in each brine. The raremore » earth element uptake testing was conducted at room temperature.« less

  16. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Astrophysics Data System (ADS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  17. Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.

    PubMed

    Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  18. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    PubMed Central

    Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-01-01

    Abstract The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward

  19. Earth materials research: Report of a Workshop on Physics and Chemistry of Earth Materials

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The report concludes that an enhanced effort of earth materials research is necessary to advance the understanding of the processes that shape the planet. In support of such an effort, there are new classes of experiments, new levels of analytical sensitivity and precision, and new levels of theory that are now applicable in understanding the physical and chemical properties of geological materials. The application of these capabilities involves the need to upgrade and make greater use of existing facilities as well as the development of new techniques. A concomitant need is for a sample program involving their collection, synthesis, distribution, and analysis.

  20. Biological and geophysical feedbacks with fire in the Earth system

    NASA Astrophysics Data System (ADS)

    Archibald, S.; Lehmann, C. E. R.; Belcher, C. M.; Bond, W. J.; Bradstock, R. A.; Daniau, A.-L.; Dexter, K. G.; Forrestel, E. J.; Greve, M.; He, T.; Higgins, S. I.; Hoffmann, W. A.; Lamont, B. B.; McGlinn, D. J.; Moncrieff, G. R.; Osborne, C. P.; Pausas, J. G.; Price, O.; Ripley, B. S.; Rogers, B. M.; Schwilk, D. W.; Simon, M. F.; Turetsky, M. R.; Van der Werf, G. R.; Zanne, A. E.

    2018-03-01

    Roughly 3% of the Earth’s land surface burns annually, representing a critical exchange of energy and matter between the land and atmosphere via combustion. Fires range from slow smouldering peat fires, to low-intensity surface fires, to intense crown fires, depending on vegetation structure, fuel moisture, prevailing climate, and weather conditions. While the links between biogeochemistry, climate and fire are widely studied within Earth system science, these relationships are also mediated by fuels—namely plants and their litter—that are the product of evolutionary and ecological processes. Fire is a powerful selective force and, over their evolutionary history, plants have evolved traits that both tolerate and promote fire numerous times and across diverse clades. Here we outline a conceptual framework of how plant traits determine the flammability of ecosystems and interact with climate and weather to influence fire regimes. We explore how these evolutionary and ecological processes scale to impact biogeochemical and Earth system processes. Finally, we outline several research challenges that, when resolved, will improve our understanding of the role of plant evolution in mediating the fire feedbacks driving Earth system processes. Understanding current patterns of fire and vegetation, as well as patterns of fire over geological time, requires research that incorporates evolutionary biology, ecology, biogeography, and the biogeosciences.

  1. Earth Wisdom.

    ERIC Educational Resources Information Center

    Van Matre, Steve

    1985-01-01

    In our human-centered ignorance and arrogance we are rapidly destroying the earth. We must start helping people understand the big picture of ecological concepts. What these concepts mean for our own lives and how we must begin to change our lifestyles in order to live more harmoniously with the earth. (JHZ)

  2. Publications of the Western Earth Surfaces Processes Team 2005

    USGS Publications Warehouse

    Powell, Charles; Stone, Paul

    2007-01-01

    Introduction The Western Earth Surface Processes Team (WESPT) of the U.S. Geological Survey (USGS) conducts geologic mapping, earth-surface process investigations, and related topical earth science studies in the western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues such as ground-water quality, landslides and other potential geologic hazards, and land-use decisions. Areas of primary emphasis in 2005 included southern California, the San Francisco Bay region, the Mojave Desert, the Colorado Plateau region of northern Arizona, and the Pacific Northwest. The team has its headquarters in Menlo Park, California, and maintains smaller field offices at several other locations in the western United States. The results of research conducted by the WESPT are released to the public as a variety of databases, maps, text reports, and abstracts, both through the internal publication system of the USGS and in diverse external publications such as scientific journals and books. This report lists publications of the WESPT released in 2005 as well as additional 2002, 2003, and 2004 publications that were not included in the previous lists (USGS Open-File Reports 03-363, 2004- 1267, 2005-1362). Most of the publications listed were authored or coauthored by WESPT staff. The list also includes some publications authored by non-USGS cooperators with the WESPT, as well as some authored by USGS staff outside the WESPT in cooperation with WESPT projects. Several of the publications listed are available on the World Wide Web; for these, URL addresses are provided. Many of these web publications are USGS Open-File reports that contain large digital databases of geologic map and related information. Information on ordering USGS publications can be found on the World Wide Web at http://www.usgs.gov/pubprod/, or by calling 1-888-ASK-USGS. The U.S. Geological Survey's web

  3. Image data processing system requirements study. Volume 1: Analysis. [for Earth Resources Survey Program

    NASA Technical Reports Server (NTRS)

    Honikman, T.; Mcmahon, E.; Miller, E.; Pietrzak, L.; Yorsz, W.

    1973-01-01

    Digital image processing, image recorders, high-density digital data recorders, and data system element processing for use in an Earth Resources Survey image data processing system are studied. Loading to various ERS systems is also estimated by simulation.

  4. Applying Authentic Data Analysis in Learning Earth Atmosphere

    NASA Astrophysics Data System (ADS)

    Johan, H.; Suhandi, A.; Samsudin, A.; Wulan, A. R.

    2017-09-01

    The aim of this research was to develop earth science learning material especially earth atmosphere supported by science research with authentic data analysis to enhance reasoning through. Various earth and space science phenomenon require reasoning. This research used experimental research with one group pre test-post test design. 23 pre-service physics teacher participated in this research. Essay test was conducted to get data about reason ability. Essay test was analyzed quantitatively. Observation sheet was used to capture phenomena during learning process. The results showed that student’s reasoning ability improved from unidentified and no reasoning to evidence based reasoning and inductive/deductive rule-based reasoning. Authentic data was considered using Grid Analysis Display System (GrADS). Visualization from GrADS facilitated students to correlate the concepts and bring out real condition of nature in classroom activity. It also helped student to reason the phenomena related to earth and space science concept. It can be concluded that applying authentic data analysis in learning process can help to enhance students reasoning. This study is expected to help lecture to bring out result of geoscience research in learning process and facilitate student understand concepts.

  5. NASA's future Earth observation plans

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Paules, Granville E.; McCuistion Ramesh, J. D.

    2004-11-01

    NASA's Science Mission Directorate, working with its domestic and international partners, provides accurate, objective scientific data and analysis to advance our understanding of Earth system processes. Learning more about these processes will enable improved prediction capability for climate, weather, and natural hazards. Earth interactions occur on a continuum of spatial and temporal scales ranging from short-term weather to long-term climate, and from local and regional to global. Quantitatively describing these changes means precisely measuring from space scores of biological and geophysical parameters globally. New missions that SMD will launch in the coming decade will complement the first series of the Earth Observing System. These next generation systematic measurement missions are being planned to extend or enhance the record of science-quality data necessary for understanding and predicting global change. These missions include the NPOESS Preparatory Project, Ocean Surface Topography Mission, Global Precipitation Measurement, Landsat Data Continuity Mission, and an aerosol polarimetry mission called Glory. New small explorer missions will make first of a kind Earth observations. The Orbiting Carbon Observatory will measure sources and sinks of carbon to help the Nation and the world formulate effective strategies to constrain the amount of this greenhouse gas in the atmosphere. Aquarius will measure ocean surface salinity which is key to ocean circulation in the North Atlantic that produces the current era's mild climate in northern Europe. HYDROS will measure soil moisture globally. Soil moisture is critical to agriculture and to managing fresh water resources. NASA continues to design, develop and launch the Nation's civilian operational environmental satellites, in both polar and geostationary orbits, by agreement with the National Oceanic and Atmospheric Administration (NOAA). NASA plans to develop an advanced atmospheric sounder, GIFTS, for

  6. Nonequilibrium thermodynamics and maximum entropy production in the Earth system: applications and implications.

    PubMed

    Kleidon, Axel

    2009-06-01

    The Earth system is maintained in a unique state far from thermodynamic equilibrium, as, for instance, reflected in the high concentration of reactive oxygen in the atmosphere. The myriad of processes that transform energy, that result in the motion of mass in the atmosphere, in oceans, and on land, processes that drive the global water, carbon, and other biogeochemical cycles, all have in common that they are irreversible in their nature. Entropy production is a general consequence of these processes and measures their degree of irreversibility. The proposed principle of maximum entropy production (MEP) states that systems are driven to steady states in which they produce entropy at the maximum possible rate given the prevailing constraints. In this review, the basics of nonequilibrium thermodynamics are described, as well as how these apply to Earth system processes. Applications of the MEP principle are discussed, ranging from the strength of the atmospheric circulation, the hydrological cycle, and biogeochemical cycles to the role that life plays in these processes. Nonequilibrium thermodynamics and the MEP principle have potentially wide-ranging implications for our understanding of Earth system functioning, how it has evolved in the past, and why it is habitable. Entropy production allows us to quantify an objective direction of Earth system change (closer to vs further away from thermodynamic equilibrium, or, equivalently, towards a state of MEP). When a maximum in entropy production is reached, MEP implies that the Earth system reacts to perturbations primarily with negative feedbacks. In conclusion, this nonequilibrium thermodynamic view of the Earth system shows great promise to establish a holistic description of the Earth as one system. This perspective is likely to allow us to better understand and predict its function as one entity, how it has evolved in the past, and how it is modified by human activities in the future.

  7. Exploring Spaceship Earth

    ERIC Educational Resources Information Center

    McInnis, Noel F.

    1973-01-01

    Describes various activities to understand the nature of the earth as a spaceship and its impact on human life. A figure depicting a holocoenotic environmental complex is given which can be used to illustrate various interacting forces on earth. (PS)

  8. Rare Earth Elements in Alberta Oil Sand Process Streams

    DOE PAGES

    Roth, Elliot; Bank, Tracy; Howard, Bret; ...

    2017-04-05

    The concentrations of rare earth elements in Alberta, Canada oil sands and six oil sand waste streams were determined using inductively coupled plasma mass spectrometry (ICP–MS). The results indicate that the rare earth elements (REEs) are largely concentrated in the tailings solvent recovery unit (TSRU) sample compared to the oil sand itself. The concentration of lanthanide elements is ~1100 mg/kg (1100 ppm or 0.11 weight %), which represents a >20× increase in the concentration compared to the oil sand itself and a >7× increase compared to the North American Shale Composite (NASC). The process water, which is used to extractmore » the oil from oil sands, and the water fraction associated with the different waste streams had very low concentrations of REEs that were near or below the detection limits of the instrument, with the highest total concentration of REEs in the water fraction being less than 10 μg/L (ppb). Size and density separations were completed, and the REEs and other potentially interesting and valuable metals, such as Ti and Zr, were concentrated in different fractions. These results give insights into the possibility of recovering REEs from waste streams generated from oil sand processing.« less

  9. Rare Earth Elements in Alberta Oil Sand Process Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Elliot; Bank, Tracy; Howard, Bret

    The concentrations of rare earth elements in Alberta, Canada oil sands and six oil sand waste streams were determined using inductively coupled plasma mass spectrometry (ICP–MS). The results indicate that the rare earth elements (REEs) are largely concentrated in the tailings solvent recovery unit (TSRU) sample compared to the oil sand itself. The concentration of lanthanide elements is ~1100 mg/kg (1100 ppm or 0.11 weight %), which represents a >20× increase in the concentration compared to the oil sand itself and a >7× increase compared to the North American Shale Composite (NASC). The process water, which is used to extractmore » the oil from oil sands, and the water fraction associated with the different waste streams had very low concentrations of REEs that were near or below the detection limits of the instrument, with the highest total concentration of REEs in the water fraction being less than 10 μg/L (ppb). Size and density separations were completed, and the REEs and other potentially interesting and valuable metals, such as Ti and Zr, were concentrated in different fractions. These results give insights into the possibility of recovering REEs from waste streams generated from oil sand processing.« less

  10. Compositional differences between meteorites and near-Earth asteroids.

    PubMed

    Vernazza, P; Binzel, R P; Thomas, C A; DeMeo, F E; Bus, S J; Rivkin, A S; Tokunaga, A T

    2008-08-14

    Understanding the nature and origin of the asteroid population in Earth's vicinity (near-Earth asteroids, and its subset of potentially hazardous asteroids) is a matter of both scientific interest and practical importance. It is generally expected that the compositions of the asteroids that are most likely to hit Earth should reflect those of the most common meteorites. Here we report that most near-Earth asteroids (including the potentially hazardous subset) have spectral properties quantitatively similar to the class of meteorites known as LL chondrites. The prominent Flora family in the inner part of the asteroid belt shares the same spectral properties, suggesting that it is a dominant source of near-Earth asteroids. The observed similarity of near-Earth asteroids to LL chondrites is, however, surprising, as this meteorite class is relatively rare ( approximately 8 per cent of all meteorite falls). One possible explanation is the role of a size-dependent process, such as the Yarkovsky effect, in transporting material from the main belt.

  11. Earth Processes: Reading the Isotopic Code

    NASA Astrophysics Data System (ADS)

    Basu, Asish; Hart, Stan

    Publication of this monograph will coincide, to a precision of a few per mil, with the centenary of Henri Becquerel's discovery of "radiations actives" (C. R. Acad. Sci., Feb. 24, 1896). In 1896 the Earth was only 40 million years old according to Lord Kelvin. Eleven years later, Boltwood had pushed the Earth's age past 2000 million years, based on the first U/Pb chemical dating results. In exciting progression came discovery of isotopes by J. J. Thomson in 1912, invention of the mass spectrometer by Dempster (1918) and Aston (1919), the first measurement of the isotopic composition of Pb (Aston, 1927) and the final approach, using Pb-Pb isotopic dating, to the correct age of the Earth: close—2.9 Ga (Gerling, 1942), closer—3.0 Ga (Holmes, 1949) and closest—4.50 Ga (Patterson, Tilton and Inghram, 1953).

  12. The development of machine technology processing for earth resource survey

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A.

    1970-01-01

    The following technologies are considered for automatic processing of earth resources data: (1) registration of multispectral and multitemporal images, (2) digital image display systems, (3) data system parameter effects on satellite remote sensing systems, and (4) data compression techniques based on spectral redundancy. The importance of proper spectral band and compression algorithm selections is pointed out.

  13. Understanding USGS user needs and Earth observing data use for decision making

    NASA Astrophysics Data System (ADS)

    Wu, Z.

    2016-12-01

    US Geological Survey (USGS) initiated the Requirements, Capabilities and Analysis for Earth Observations (RCA-EO) project in the Land Remote Sensing (LRS) program, collaborating with the National Oceanic and Atmospheric Administration (NOAA) to jointly develop the supporting information infrastructure - The Earth Observation Requirements Evaluation Systems (EORES). RCA-EO enables us to collect information on current data products and projects across the USGS and evaluate the impacts of Earth observation data from all sources, including spaceborne, airborne, and ground-based platforms. EORES allows users to query, filter, and analyze usage and impacts of Earth observation data at different organizational level within the bureau. We engaged over 500 subject matter experts and evaluated more than 1000 different Earth observing data sources and products. RCA-EO provides a comprehensive way to evaluate impacts of Earth observing data on USGS mission areas and programs through the survey of 345 key USGS products and services. We paid special attention to user feedback about Earth observing data to inform decision making on improving user satisfaction. We believe the approach and philosophy of RCA-EO can be applied in much broader scope to derive comprehensive knowledge of Earth observing systems impacts and usage and inform data products development and remote sensing technology innovation.

  14. Titanium stable isotope investigation of magmatic processes on the Earth and Moon

    NASA Astrophysics Data System (ADS)

    Millet, Marc-Alban; Dauphas, Nicolas; Greber, Nicolas D.; Burton, Kevin W.; Dale, Chris W.; Debret, Baptiste; Macpherson, Colin G.; Nowell, Geoffrey M.; Williams, Helen M.

    2016-09-01

    We present titanium stable isotope measurements of terrestrial magmatic samples and lunar mare basalts with the aims of constraining the composition of the lunar and terrestrial mantles and evaluating the potential of Ti stable isotopes for understanding magmatic processes. Relative to the OL-Ti isotope standard, the δ49Ti values of terrestrial samples vary from -0.05 to +0.55‰, whereas those of lunar mare basalts vary from -0.01 to +0.03‰ (the precisions of the double spike Ti isotope measurements are ca. ±0.02‰ at 95% confidence). The Ti stable isotope compositions of differentiated terrestrial magmas define a well-defined positive correlation with SiO2 content, which appears to result from the fractional crystallisation of Ti-bearing oxides with an inferred isotope fractionation factor of ΔTi49oxide-melt = - 0.23 ‰ ×106 /T2. Primitive terrestrial basalts show no resolvable Ti isotope variations and display similar values to mantle-derived samples (peridotite and serpentinites), indicating that partial melting does not fractionate Ti stable isotopes and that the Earth's mantle has a homogeneous δ49Ti composition of +0.005 ± 0.005 (95% c.i., n = 29). Eclogites also display similar Ti stable isotope compositions, suggesting that Ti is immobile during dehydration of subducted oceanic lithosphere. Lunar basalts have variable δ49Ti values; low-Ti mare basalts have δ49Ti values similar to that of the bulk silicate Earth (BSE) while high-Ti lunar basalts display small enrichment in the heavy Ti isotopes. This is best interpreted in terms of source heterogeneity resulting from Ti stable isotope fractionation associated with ilmenite-melt equilibrium during the generation of the mantle source of high-Ti lunar mare basalts. The similarity in δ49Ti between terrestrial samples and low-Ti lunar basalts provides strong evidence that the Earth and Moon have identical stable Ti isotope compositions.

  15. Spaceflight Microbiology: Benefits for Long Duration Spaceflight and Our Understanding of Microorganisms on Earth

    NASA Technical Reports Server (NTRS)

    Ott, C. Mark

    2014-01-01

    Spaceflight microbiology is composed of both operational and experimental components that complement each other in our understanding of microbial interactions and their responses in the microgravity of spaceflight. Operationally, efforts to mitigate microbiological risk to the crew and the spacecraft have historically focused on minimizing the number of detectable organisms, relying heavily on preventative measures, including appropriate vehicle design, crew quarantine prior to flight, and stringent microbial monitoring. Preflight monitoring targets have included the astronauts, spaceflight foods, potable water systems, the vehicle air and surfaces, and the cargo carried aboard the spacecraft. This approach has been very successful for earlier missions; however, the construction and long-term habitation of the International Space Station (ISS) has created the need for additional inflight monitoring of the environment and potable water systems using hardware designed for both in-flight microbial enumeration and sample collection and return to Earth. In addition to operational activities, the ISS is providing a research platform to advance our understanding of microbiomes in the built environment. Adding to the research possibilities of this system are multiple reports of unique changes in microbial gene expression and phenotypic responses, including virulence and biofilm formation, in response to spaceflight culture. The tremendous potential of the ISS research platform led the National Research Council to recommend that NASA utilize the ISS as a microbial observatory. Collectively, the findings from operational and research activities on the ISS are expected to both enable future space exploration and translate to basic and applied research on Earth.

  16. Discover Earth: Earth's Energy Budget or Can You Spare a Sun?

    NASA Technical Reports Server (NTRS)

    Gates, Tom; Peters, Dale E.; Steeley, Jeanne

    1999-01-01

    Discover Earth is a NASA-sponsored project for teachers of grades 5-12, designed to: enhance understanding of the Earth as an integrated system enhance the interdisciplinary approach to science instruction, and provide classroom materials that focus on those goals. Discover Earth is conducted by the Institute for Global Environmental Strategies in collaboration with Dr. Eric Barron, Director, Earth System Science Center, The Pennsylvania State University; and Dr. Robert Hudson, Chair, the Department of Meteorology, University of Maryland at College Park.

  17. Understanding r-process nucleosynthesis with dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Ji, Alexander P.

    2018-06-01

    The Milky Way's faintest dwarf galaxy satellites each sample short, independent bursts of star formation from the first 1-2 Gyr of the universe. Their simple formation history makes them ideal systems to understand how rare events like neutron star mergers contribute to early enrichment of r-process elements. I will focus on the ultra-faint galaxy Reticulum II, which experienced a single prolific r-process event that left ~80% of its stars extremely enriched in r-process elements. I will present abundances of ~40 elements derived from the highest signal-to-noise high-resolution spectrum ever taken for an ultra-faint dwarf galaxy star. Precise measurements of elements from all three r-process peaks reaffirm the universal nature of the r-process abundance pattern from Ba to Ir. The first r-process peak is significantly lower than solar but matches other r-process enhanced stars. This constrains the neutron-richness of r-process ejecta in neutron star mergers. The radioactive element thorium is detected with a somewhat low abundance. Naive application of currently predicted initial production ratios could imply an age >20 Gyr, but more likely indicates that the initial production ratios require revision. The abundance of lighter elements up to Zn are consistent with extremely metal-poor Milky Way halo stars. These elements may eventually provide a way to test for other hypothesized r-process sites, but only after a more detailed understanding of the chemical evolution in this galaxy. Reticulum II provides a clean view of early r-process enrichment that can be used to understand the increasing number of r-process measurements in other dwarf galaxies.

  18. Regional Arctic System Model (RASM): A Tool to Advance Understanding and Prediction of Arctic Climate Change at Process Scales

    NASA Astrophysics Data System (ADS)

    Maslowski, W.; Roberts, A.; Osinski, R.; Brunke, M.; Cassano, J. J.; Clement Kinney, J. L.; Craig, A.; Duvivier, A.; Fisel, B. J.; Gutowski, W. J., Jr.; Hamman, J.; Hughes, M.; Nijssen, B.; Zeng, X.

    2014-12-01

    The Arctic is undergoing rapid climatic changes, which are some of the most coordinated changes currently occurring anywhere on Earth. They are exemplified by the retreat of the perennial sea ice cover, which integrates forcing by, exchanges with and feedbacks between atmosphere, ocean and land. While historical reconstructions from Global Climate and Global Earth System Models (GC/ESMs) are in broad agreement with these changes, the rate of change in the GC/ESMs remains outpaced by observations. Reasons for that stem from a combination of coarse model resolution, inadequate parameterizations, unrepresented processes and a limited knowledge of physical and other real world interactions. We demonstrate the capability of the Regional Arctic System Model (RASM) in addressing some of the GC/ESM limitations in simulating observed seasonal to decadal variability and trends in the sea ice cover and climate. RASM is a high resolution, fully coupled, pan-Arctic climate model that uses the Community Earth System Model (CESM) framework. It uses the Los Alamos Sea Ice Model (CICE) and Parallel Ocean Program (POP) configured at an eddy-permitting resolution of 1/12° as well as the Weather Research and Forecasting (WRF) and Variable Infiltration Capacity (VIC) models at 50 km resolution. All RASM components are coupled via the CESM flux coupler (CPL7) at 20-minute intervals. RASM is an example of limited-area, process-resolving, fully coupled earth system model, which due to the additional constraints from lateral boundary conditions and nudging within a regional model domain facilitates detailed comparisons with observational statistics that are not possible with GC/ESMs. In this talk, we will emphasize the utility of RASM to understand sensitivity to variable parameter space, importance of critical processes, coupled feedbacks and ultimately to reduce uncertainty in arctic climate change projections.

  19. Earth Science Data Analytics: Preparing for Extracting Knowledge from Information

    NASA Technical Reports Server (NTRS)

    Kempler, Steven; Barbieri, Lindsay

    2016-01-01

    Data analytics is the process of examining large amounts of data of a variety of types to uncover hidden patterns, unknown correlations and other useful information. Data analytics is a broad term that includes data analysis, as well as an understanding of the cognitive processes an analyst uses to understand problems and explore data in meaningful ways. Analytics also include data extraction, transformation, and reduction, utilizing specific tools, techniques, and methods. Turning to data science, definitions of data science sound very similar to those of data analytics (which leads to a lot of the confusion between the two). But the skills needed for both, co-analyzing large amounts of heterogeneous data, understanding and utilizing relevant tools and techniques, and subject matter expertise, although similar, serve different purposes. Data Analytics takes on a practitioners approach to applying expertise and skills to solve issues and gain subject knowledge. Data Science, is more theoretical (research in itself) in nature, providing strategic actionable insights and new innovative methodologies. Earth Science Data Analytics (ESDA) is the process of examining, preparing, reducing, and analyzing large amounts of spatial (multi-dimensional), temporal, or spectral data using a variety of data types to uncover patterns, correlations and other information, to better understand our Earth. The large variety of datasets (temporal spatial differences, data types, formats, etc.) invite the need for data analytics skills that understand the science domain, and data preparation, reduction, and analysis techniques, from a practitioners point of view. The application of these skills to ESDA is the focus of this presentation. The Earth Science Information Partners (ESIP) Federation Earth Science Data Analytics (ESDA) Cluster was created in recognition of the practical need to facilitate the co-analysis of large amounts of data and information for Earth science. Thus, from a to

  20. EARTH TECH INC.'S ENHANCED IN-SITU BIOREMEDIATION PROCESS; INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    The USEPA conducted an evaluation of the Enhanced In-situ Bioremediation process, a biostimulation technology developed by the USDOE at the Westinghouse Savannah River Plant site in Aiken, SC. DOE has licensed the process to Earth Tech, Inc. The evaluation described in this bulle...

  1. Understanding and quantifying foliar temperature acclimation for Earth System Models

    NASA Astrophysics Data System (ADS)

    Smith, N. G.; Dukes, J.

    2015-12-01

    Photosynthesis and respiration on land are the two largest carbon fluxes between the atmosphere and Earth's surface. The parameterization of these processes represent major uncertainties in the terrestrial component of the Earth System Models used to project future climate change. Research has shown that much of this uncertainty is due to the parameterization of the temperature responses of leaf photosynthesis and autotrophic respiration, which are typically based on short-term empirical responses. Here, we show that including longer-term responses to temperature, such as temperature acclimation, can help to reduce this uncertainty and improve model performance, leading to drastic changes in future land-atmosphere carbon feedbacks across multiple models. However, these acclimation formulations have many flaws, including an underrepresentation of many important global flora. In addition, these parameterizations were done using multiple studies that employed differing methodology. As such, we used a consistent methodology to quantify the short- and long-term temperature responses of maximum Rubisco carboxylation (Vcmax), maximum rate of Ribulos-1,5-bisphosphate regeneration (Jmax), and dark respiration (Rd) in multiple species representing each of the plant functional types used in global-scale land surface models. Short-term temperature responses of each process were measured in individuals acclimated for 7 days at one of 5 temperatures (15-35°C). The comparison of short-term curves in plants acclimated to different temperatures were used to evaluate long-term responses. Our analyses indicated that the instantaneous response of each parameter was highly sensitive to the temperature at which they were acclimated. However, we found that this sensitivity was larger in species whose leaves typically experience a greater range of temperatures over the course of their lifespan. These data indicate that models using previous acclimation formulations are likely incorrectly

  2. Contribution of thermal infrared images on the understanding of the subsurface/atmosphere exchanges on Earth.

    NASA Astrophysics Data System (ADS)

    Lopez, Teodolina; Antoine, Raphaël; Baratoux, David; Rabinowicz, Michel

    2017-04-01

    High temporal resolution of space-based thermal infrared images (METEOSAT, MODIS) and the development of field thermal cameras have permitted the development of thermal remote sensing in Earth Sciences. Thermal images are influenced by many factors such as atmosphere, solar radiation, topography and physico-chemical properties of the surface. However, considering these limitations, we have discovered that thermal images can be used in order to better understand subsurface hydrology. In order to reduce as much as possible the impact of these perturbing factors, our approach combine 1) field observations and 2) numerical modelling of surface/subsurface thermal processes. Thermal images of the Piton de la Fournaise volcano (Réunion Island), acquired by hand, show that the Formica Leo inactive scoria cone and some fractures close to the Bory-Dolomieu caldera are always warmer, inducing a thermal difference with the surrounding of at least 5°C and a Self-Potential anomaly [1, 2]. Topography cannot explain this thermal behaviour, but Piton de la Fournaise is known as highly permeable. This fact allows the development of an air convection within the whole permeable structure volcanic edifice [2]. Cold air enters the base of the volcano, and exits warmer upslope, as the air is warmed by the geothermal flow [1,2]. Then, we have decided to understand the interaction between subsurface hydrogeological flows and the humidity in the atmosphere. In the Lake Chad basin, regions on both sides of Lake Chad present a different thermal behaviour during the diurnal cycle and between seasons [3]. We propose that this thermal behaviour can only be explained by lateral variations of the surface permeability that directly impact the process of evaporation/condensation cycle. These studies bring new highlights on the understanding of the exchanges between subsurface and the atmosphere, as the presence of a very permeable media and/or variations of the surface permeability may enhance or

  3. Earth System Science Education Interdisciplinary Partnerships

    NASA Astrophysics Data System (ADS)

    Ruzek, M.; Johnson, D. R.

    2002-05-01

    Earth system science in the classroom is the fertile crucible linking science with societal needs for local, national and global sustainability. The interdisciplinary dimension requires fruitful cooperation among departments, schools and colleges within universities and among the universities and the nation's laboratories and agencies. Teaching and learning requires content which brings together the basic and applied sciences with mathematics and technology in addressing societal challenges of the coming decades. Over the past decade remarkable advances have emerged in information technology, from high bandwidth Internet connectivity to raw computing and visualization power. These advances which have wrought revolutionary capabilities and resources are transforming teaching and learning in the classroom. With the launching of NASA's Earth Observing System (EOS) the amount and type of geophysical data to monitor the Earth and its climate are increasing dramatically. The challenge remains, however, for skilled scientists and educators to interpret this information based upon sound scientific perspectives and utilize it in the classroom. With an increasing emphasis on the application of data gathered, and the use of the new technologies for practical benefit in the lives of ordinary citizens, there comes the even more basic need for understanding the fundamental state, dynamics, and complex interdependencies of the Earth system in mapping valid and relevant paths to sustainability. Technology and data in combination with the need to understand Earth system processes and phenomena offer opportunities for new and productive partnerships between researchers and educators to advance the fundamental science of the Earth system and in turn through discovery excite students at all levels in the classroom. This presentation will discuss interdisciplinary partnership opportunities for educators and researchers at the undergraduate and graduate levels.

  4. Publications of the Western Earth Surface Processes Team, 1999

    USGS Publications Warehouse

    Stone, Paul; Powell, Charles L.

    2000-01-01

    The Western Earth Surfaces Processes Team (WESPT) of the U.S. Geological Survey, Geologic Division (USGS, GD), conducts geologic mapping and related topical earth- science studies in the western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues such as ground-water quality, potential geologic hazards, and land-use decisions. Areas of primary emphasis currently include southern California, the San Francisco Bay region, and the Pacific Northwest. The team has its headquarters in Menlo Park, California, and maintains field offices at several other locations in the western United States. The results of research conducted by the WESPT are released to the public as a variety of databases, maps, text reports, and abstracts, both through the internal publication system of the USGS and in diverse external publications such as scientific journals and books. This report lists publications of the WESPT released in 1999 as well as additional 1997 and 1998 publications that were not included in the previous list (USGS Open-file Report 99-302). Most of the publications listed were authored or coauthored by WESPT staff. The list also includes some publications authored by non-USGS cooperators with the WESPT, as well as some authored by USGS staff outside the WESPT in cooperation with WESPT projects.

  5. The Third Tibetan Plateau Atmospheric Scientific Experiment for Understanding the Earth-Atmosphere Coupled System

    NASA Astrophysics Data System (ADS)

    Zhao, P.; Xu, X.; Chen, F.; Guo, X.; Zheng, X.; Liu, L. P.; Hong, Y.; Li, Y.; La, Z.; Peng, H.; Zhong, L. Z.; Ma, Y.; Tang, S. H.; Liu, Y.; Liu, H.; Li, Y. H.; Zhang, Q.; Hu, Z.; Sun, J. H.; Zhang, S.; Dong, L.; Zhang, H.; Zhao, Y.; Yan, X.; Xiao, A.; Wan, W.; Zhou, X.

    2016-12-01

    The Third Tibetan Plateau atmospheric scientific experiment (TIPEX-III) was initiated jointly by the China Meteorological Administration, the National Natural Scientific Foundation, and the Chinese Academy of Sciences. This paper presents the background, scientific objectives, and overall experimental design of TIPEX-III. It was designed to conduct an integrated observation of the earth-atmosphere coupled system over the Tibetan Plateau (TP) from land surface, planetary boundary layer (PBL), troposphere, and stratosphere for eight to ten years by coordinating ground- and air-based measurement facilities for understanding spatial heterogeneities of complex land-air interactions, cloud-precipitation physical processes, and interactions between troposphere and stratosphere. TIPEX-III originally began in 2014, and is ongoing. It established multiscale land-surface and PBL observation networks over the TP and a tropospheric meteorological radiosonde network over the western TP, and executed an integrated observation mission for cloud-precipitation physical features using ground-based radar systems and aircraft campaigns and an observation task for atmospheric ozone, aerosol, and water vapor. The archive, management, and share policy of the observation data are also introduced herein. Some TIPEX-III data have been preliminarily applied to analyze the features of surface sensible and latent heat fluxes, cloud-precipitation physical processes, and atmospheric water vapor and ozone over the TP, and to improve the local precipitation forecast. Furthermore, TIPEX-III intends to promote greater scientific and technological cooperation with international research communities and broader organizations. Scientists working internationally are invited to participate in the field campaigns and to use the TIPEX-III data for their own research.

  6. Investigating action understanding: inferential processes versus action simulation.

    PubMed

    Brass, Marcel; Schmitt, Ruth M; Spengler, Stephanie; Gergely, György

    2007-12-18

    In our daily life, we continuously monitor others' behaviors and interpret them in terms of goals, intentions, and reasons. Despite their central importance for predicting and interpreting each other's actions, the functional mechanisms and neural circuits involved in action understanding remain highly controversial. Two alternative accounts have been advanced. Simulation theory assumes that we understand actions by simulating the observed behavior through a direct matching process that activates the mirror-neuron circuit. The alternative interpretive account assumes that action understanding is based on specialized inferential processes activating brain areas with no mirror properties. Although both approaches recognize the central role of contextual information in specifying action intentions, their respective accounts of this process differ in significant respects. Here, we investigated the role of context in action understanding by using functional brain imaging while participants observed an unusual action in implausible versus plausible contexts. We show that brain areas that are part of a network involved in inferential interpretive processes of rationalization and mentalization but that lack mirror properties are more active when the action occurs in an implausible context. However, no differential activation was found in the mirror network. Our findings support the assumption that action understanding in novel situations is primarily mediated by an inferential interpretive system rather than the mirror system.

  7. The computational challenges of Earth-system science.

    PubMed

    O'Neill, Alan; Steenman-Clark, Lois

    2002-06-15

    The Earth system--comprising atmosphere, ocean, land, cryosphere and biosphere--is an immensely complex system, involving processes and interactions on a wide range of space- and time-scales. To understand and predict the evolution of the Earth system is one of the greatest challenges of modern science, with success likely to bring enormous societal benefits. High-performance computing, along with the wealth of new observational data, is revolutionizing our ability to simulate the Earth system with computer models that link the different components of the system together. There are, however, considerable scientific and technical challenges to be overcome. This paper will consider four of them: complexity, spatial resolution, inherent uncertainty and time-scales. Meeting these challenges requires a significant increase in the power of high-performance computers. The benefits of being able to make reliable predictions about the evolution of the Earth system should, on their own, amply repay this investment.

  8. Modeling Earth's Ring Current Using The CIMI Model

    NASA Astrophysics Data System (ADS)

    Craven, J. D., II; Perez, J. D.; Buzulukova, N.; Fok, M. C. H.

    2015-12-01

    Earth's ring current is a result of the injection of charged particles trapped in the magnetosphere from solar storms. The enhancement of the ring current particles produces magnetic depressions and disturbances to the Earth's magnetic field known as geomagnetic storms, which have been modeled using the comprehensive inner magnetosphere-ionosphere (CIMI) model. The purpose of this model is to identify and understand the physical processes that control the dynamics of the geomagnetic storms. The basic procedure was to use the CIMI model for the simulation of 15 storms since 2009. Some of the storms were run multiple times, but with varying parameters relating to the dynamics of the Earth's magnetic field, particle fluxes, and boundary conditions of the inner-magnetosphere. Results and images were placed in the TWINS online catalog page for further analysis and discussion. Particular areas of interest were extreme storm events. A majority of storms simulated had average DST values of -100 nT; these extreme storms exceeded DST values of -200 nT. The continued use of the CIMI model will increase knowledge of the interactions and processes of the inner-magnetosphere as well as lead to a better understanding of extreme solar storm events for the future advancement of space weather physics.

  9. The Earth Science Vision

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark; Rychekewkitsch, Michael; Andrucyk, Dennis; McConaughy, Gail; Meeson, Blanche; Hildebrand, Peter; Einaudi, Franco (Technical Monitor)

    2000-01-01

    NASA's Earth Science Enterprise's long range vision is to enable the development of a national proactive environmental predictive capability through targeted scientific research and technological innovation. Proactive environmental prediction means the prediction of environmental events and their secondary consequences. These consequences range from disasters and disease outbreak to improved food production and reduced transportation, energy and insurance costs. The economic advantage of this predictive capability will greatly outweigh the cost of development. Developing this predictive capability requires a greatly improved understanding of the earth system and the interaction of the various components of that system. It also requires a change in our approach to gathering data about the earth and a change in our current methodology in processing that data including its delivery to the customers. And, most importantly, it requires a renewed partnership between NASA and its sister agencies. We identify six application themes that summarize the potential of proactive environmental prediction. We also identify four technology themes that articulate our approach to implementing proactive environmental prediction.

  10. From tectonics to tractors: New insight into Earth's changing surface

    NASA Astrophysics Data System (ADS)

    Larsen, I. J.

    2017-12-01

    Weathering and erosion of rock and the transport of sediment continually modify Earth's surface. The transformation and transfer of material by both natural and anthropogenic processes drives global cycles and influences the habitability of our planet. By quantitatively linking erosional and depositional landforms to the processes that form them, we better understand how Earth's surface will evolve in the future, and gain the ability to look into the past to recognize how planetary surfaces evolved when environments were drastically different than today. Many of the recent advances in our understanding of the processes that influence landscape evolution have been driven by the development and application of tools such as cosmogenic nuclides, computational models, and digital topographic data. Here I present results gleaned from applying these tools to a diverse set of landscapes, where erosion is driven by factors ranging from tectonics to tractors, to provide insight into the mechanics, chemistry, and history of Earth's changing surface. I will first examine the landslide response of hillslopes in the Himalaya to spatial gradients in tectonic forcing to assess the paradigm of threshold hillslopes. Second, I will present soil production and chemical weathering rates measured in the Southern Alps of New Zealand to determine the relationship between physical erosion and chemical weathering in one of Earth's most rapidly uplifting landscapes, and discuss the implications for proposed links between mountain uplift and global climate. Third, I will discuss results from numerical flood simulations used to explore the interplay between outburst flood hydraulics and canyon incision in the Channeled Scablands of eastern Washington, and explore the implications for reconstructing discharge in flood-carved canyons on Earth and Mars. Finally, I will present new work that couples high resolution spectral and topographic data to estimate the spatial extent of agriculturally

  11. Publications of Western Earth Surface Processes Team 2001

    USGS Publications Warehouse

    Powell, II; Graymer, R.W.

    2002-01-01

    The Western Earth Surface Processes Team (WESPT) of the U.S. Geological Survey (USGS) conducts geologic mapping and related topical earth-science studies in the Western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues, such as ground-water quality, landslides and other potential geologic hazards, and land-use decisions. Areas of primary emphasis in 2001 included southern California, the San Francisco Bay region, the Pacific Northwest, and the Las Vegas urban corridor. The team has its headquarters in Menlo Park, California, and maintains smaller field offices at several other locations in the Western United States. The results of research conducted by the WESPT are released to the public as a variety of databases, maps, text reports, and abstracts, both through the internal publication system of the USGS and in diverse external publications such as scientific journals and books. This report lists publications of the WESPT released in 2001, as well as additional 1999 and 2000 publications that were not included in the previous list (USGS Open-File Report 00–215 and USGS Open-File Report 01–198). Most of the publications listed were authored or coauthored by WESPT staff. The list also includes some publications authored by non-USGS cooperators with the WESPT, as well as some authored by USGS staff outside the WESPT in cooperation with WESPT projects. Several of the publications listed are available on the World Wide Web; for these, URL addresses are provided. Many of these web publications are USGS Open-File Reports that contain large digital databases of geologic map and related information.

  12. Understanding non-radiative recombination processes of the optoelectronic materials from first principles

    NASA Astrophysics Data System (ADS)

    Shu, Yinan

    The annual potential of the solar energy hit on the Earth is several times larger than the total energy consumption in the world. This huge amount of energy source makes it appealing as an alternative to conventional fuels. Due to the problems, for example, global warming, fossil fuel shortage, etc. arising from utilizing the conventional fuels, a tremendous amount of efforts have been applied toward the understanding and developing cost effective optoelectrical devices in the past decades. These efforts have pushed the efficiency of optoelectrical devices, say solar cells, increases from 0% to 46% as reported until 2015. All these facts indicate the significance of the optoelectrical devices not only regarding protecting our planet but also a large potential market. Empirical experience from experiment has played a key role in optimization of optoelectrical devices, however, a deeper understanding of the detailed electron-by-electron, atom-by-atom physical processes when material upon excitation is the key to gain a new sight into the field. It is also useful in developing the next generation of solar materials. Thanks to the advances in computer hardware, new algorithms, and methodologies developed in computational chemistry and physics in the past decades, we are now able to 1). model the real size materials, e.g. nanoparticles, to locate important geometries on the potential energy surfaces(PESs); 2). investigate excited state dynamics of the cluster models to mimic the real systems; 3). screen large amount of possible candidates to be optimized toward certain properties, so to help in the experiment design. In this thesis, I will discuss the efforts we have been doing during the past several years, especially in terms of understanding the non-radiative decay process of silicon nanoparticles with oxygen defects using ab initio nonadiabatic molecular dynamics as well as the accurate, efficient multireference electronic structure theories we have developed to

  13. The Role of NASA Observations in Understanding Earth System Change

    NASA Technical Reports Server (NTRS)

    Fladeland, Matthew M.

    2009-01-01

    This presentation will introduce a non-technical audience to NASA Earth science research goals and the technologies used to achieve them. The talk will outline the primary science focus areas and then provide overviews of current and planned missions, in addition to instruments, aircraft, and other technologies that are used to turn data into useful information for scientists and policy-makers. This presentation is part of an Earth Day symposium at the University of Mary.

  14. Bringing Earth Magnetism Research into the High School Physics Classroom

    NASA Astrophysics Data System (ADS)

    Smirnov, A. V.; Bluth, G.; Engel, E.; Kurpier, K.; Foucher, M. S.; Anderson, K. L.

    2015-12-01

    We present our work in progress from an NSF CAREER project that aims to integrate paleomagnetic research and secondary school physics education. The research project is aimed at quantifying the strength and geometry of the Precambrian geomagnetic field. Investigation of the geomagnetic field behavior is crucial for understanding the mechanisms of field generation, and the development of the Earth's atmosphere and biosphere, and can serve as a focus for connecting high-level Earth science research with a standard physics curriculum. High school science teachers have participated in each summer field and research component of the project, gaining field and laboratory research experience, sets of rock and mineral samples, and classroom-tested laboratory magnetism activities for secondary school physics and earth science courses. We report on three field seasons of teacher field experiences and two years of classroom testing of paleomagnetic research materials merged into physics instruction on magnetism. Students were surveyed before and after dedicated instruction for both perceptions and attitude towards earth science in general, then more specifically on earth history and earth magnetism. Students were also surveyed before and after instruction on major earth system and magnetic concepts and processes, particularly as they relate to paleomagnetic research. Most students surveyed had a strongly positive viewpoint towards the study of Earth history and the importance of studying Earth Sciences in general, but were significantly less drawn towards more specific topics such as mineralogy and magnetism. Students demonstrated understanding of Earth model and the basics of magnetism, as well as the general timing of life, atmospheric development, and magnetic field development. However, detailed knowledge such as the magnetic dynamo, how the magnetic field has changed over time, and connections between earth magnetism and the development of an atmosphere remained largely

  15. Home area geology and Alabama earth science teachers: A resource to improve the understanding and use of the state's rocks to supplement textbook concepts in earth history

    NASA Astrophysics Data System (ADS)

    Lacefield, James Anderson

    Recent studies have suggested that teachers of earth science in Alabama secondary schools are undertrained in the content areas of the subject. A survey of academic training and certification of active earth science teachers (Hall, 1985) was replicated as part of a study of the current inservice needs of Alabama earth science teachers (Logue & Lacefield, 1995). Only one-third of responding teachers were found to be properly certified to teach the subject; most had been trained for teaching life science. Approximately one-half had never had a course in geology, astronomy, or meteorology--the three primary components of the typical earth science course. Of 32 earth science topics suggested for possible additional inservice workshops, teachers responding to the Logue and Lacefield survey selected Alabama and Southeastern geology as the topic of greatest interest and need. As an alternative to conventional inservice training, an illustrated book on Alabama geologic history was developed for publication. Its purpose was to supply an ongoing, usable geologic reference for Alabama earth science teachers and their students and to promote greater understanding of Alabama geology by the public in general. Entitled Lost Worlds in Alabama Rocks: The Half-Billion Year Record of Change in the State's Life and Landscape, the 82-page book (included as appendix) explains how geologic history is reconstructed using evidence from rocks, surveys the major sets of sedimentary rocks found within the state, details what each means in terms of ancient environment, and describes how Alabama's present landscape can be interpreted to reflect past geologic changes. The resource includes nearly 200 color photographs and graphics and 12 pages of fossil identification guides illustrating the most common fossil organisms found within the state. A selected group of professional geologists and earth science educators evaluated the book for scientific accuracy, format, presentation of content, and

  16. Distinguishing Provenance Equivalence of Earth Science Data

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt; Yesha, Ye; Halem, M.

    2010-01-01

    Reproducibility of scientific research relies on accurate and precise citation of data and the provenance of that data. Earth science data are often the result of applying complex data transformation and analysis workflows to vast quantities of data. Provenance information of data processing is used for a variety of purposes, including understanding the process and auditing as well as reproducibility. Certain provenance information is essential for producing scientifically equivalent data. Capturing and representing that provenance information and assigning identifiers suitable for precisely distinguishing data granules and datasets is needed for accurate comparisons. This paper discusses scientific equivalence and essential provenance for scientific reproducibility. We use the example of an operational earth science data processing system to illustrate the application of the technique of cascading digital signatures or hash chains to precisely identify sets of granules and as provenance equivalence identifiers to distinguish data made in an an equivalent manner.

  17. Towards a more efficient and robust representation of subsurface hydrological processes in Earth System Models

    NASA Astrophysics Data System (ADS)

    Rosolem, R.; Rahman, M.; Kollet, S. J.; Wagener, T.

    2017-12-01

    Understanding the impacts of land cover and climate changes on terrestrial hydrometeorology is important across a range of spatial and temporal scales. Earth System Models (ESMs) provide a robust platform for evaluating these impacts. However, current ESMs lack the representation of key hydrological processes (e.g., preferential water flow, and direct interactions with aquifers) in general. The typical "free drainage" conceptualization of land models can misrepresent the magnitude of those interactions, consequently affecting the exchange of energy and water at the surface as well as estimates of groundwater recharge. Recent studies show the benefits of explicitly simulating the interactions between subsurface and surface processes in similar models. However, such parameterizations are often computationally demanding resulting in limited application for large/global-scale studies. Here, we take a different approach in developing a novel parameterization for groundwater dynamics. Instead of directly adding another complex process to an established land model, we examine a set of comprehensive experimental scenarios using a very robust and establish three-dimensional hydrological model to develop a simpler parameterization that represents the aquifer to land surface interactions. The main goal of our developed parameterization is to simultaneously maximize the computational gain (i.e., "efficiency") while minimizing simulation errors in comparison to the full 3D model (i.e., "robustness") to allow for easy implementation in ESMs globally. Our study focuses primarily on understanding both the dynamics for groundwater recharge and discharge, respectively. Preliminary results show that our proposed approach significantly reduced the computational demand while model deviations from the full 3D model are considered to be small for these processes.

  18. Artificial intelligence applications concepts for the remote sensing and earth science community

    NASA Technical Reports Server (NTRS)

    Campbell, W. J.; Roelofs, L. H.

    1984-01-01

    The following potential applications of AI to the study of earth science are described: (1) intelligent data management systems; (2) intelligent processing and understanding of spatial data; and (3) automated systems which perform tasks that currently require large amounts of time by scientists and engineers to complete. An example is provided of how an intelligent information system might operate to support an earth science project.

  19. The Far Infrared Earth

    NASA Technical Reports Server (NTRS)

    Harries, John; Carli, Bruno; Rizzi, Rolando; Serio, Carmine; Mlynczak, Martin G.; Palchetti, Luca; Maestri, T.; Brindley, H.; Masiello, Guido

    2007-01-01

    The paper presents a review of the far infrared (FIR) properties of the Earth's atmosphere, and the role of these properties in climate. These properties have been relatively poorly understood, and it is one of the purposes of this review to demonstrate that, in recent years, we have made great strides in improving this understanding. Seen from space, the Earth is a cool object, with an effective emitting temperature of about 255 K. This contrasts with a global mean surface temperature of 288 K, and is due primarily to strong absorption of outgoing longwave energy by water vapour, carbon dioxide and clouds (especially ice). A large fraction of this absorption occurs in the FIR, and so the Earth is effectively a FIR planet. The FIR is important in a number of key climate processes, for example the water vapour and cloud feedbacks (especially ice clouds). The FIR is also a spectral region which can be used to remotely sense and retrieve atmospheric composition in the presence of ice clouds. Recent developments in instrumentation have allowed progress in each of these areas, which are described, and proposals for a spaceborne FIR instrument are being formulated. It is timely to review the FIR properties of the clear and cloudy atmosphere, the role of FIR processes in climate, and its use in observing our planet from space.

  20. Science Syllabus for Middle and Junior High Schools. Block D, The Earth's Changing Surface.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of General Education Curriculum Development.

    This syllabus begins with a list of program objectives and performance criteria for the study of three general topic areas in earth science and a list of 22 science processes. Following this information is a listing of concepts and understandings for subtopics within the general topic areas: (1) the earth's surface--surface features, rock…

  1. General Education Engagement in Earth and Planetary Science through an Earth-Mars Analog Curriculum

    NASA Astrophysics Data System (ADS)

    Chan, M. A.; Kahmann-Robinson, J. A.

    2012-12-01

    The successes of NASA rovers on Mars and new remote sensing imagery at unprecedented resolution can awaken students to the valuable application of Earth analogs to understand Mars processes and the possibilities of extraterrestrial life. Mars For Earthlings (MFE) modules and curriculum are designed as general science content introducing a pedagogical approach of integrating Earth science principles and Mars imagery. The content can be easily imported into existing or new general education courses. MFE learning modules introduce students to Google Mars and JMARS software packages and encourage Mars imagery analysis to predict habitable environments on Mars drawing on our knowledge of extreme environments on Earth. "Mars Mission" projects help students develop teamwork and presentation skills. Topic-oriented module examples include: Remote Sensing Mars, Olympus Mons and Igneous Rocks, Surface Sculpting Forces, and Extremophiles. The learning modules package imagery, video, lab, and in-class activities for each topic and are available online for faculty to adapt or adopt in courses either individually or collectively. A piloted MFE course attracted a wide range of non-majors to non-degree seeking senior citizens. Measurable outcomes of the piloted MFE curriculum were: heightened enthusiasm for science, awareness of NASA programs, application of Earth science principles, and increased science literacy to help students develop opinions of current issues (e.g., astrobiology or related government-funded research). Earth and Mars analog examples can attract and engage future STEM students as the next generation of earth, planetary, and astrobiology scientists.

  2. The European Plate Observing System (EPOS) Services for Solid Earth Science

    NASA Astrophysics Data System (ADS)

    Cocco, Massimo; Atakan, Kuvvet; Pedersen, Helle; Consortium, Epos

    2016-04-01

    The European Plate Observing System (EPOS) aims to create a pan-European infrastructure for solid Earth science to support a safe and sustainable society. The main vision of the European Plate Observing System (EPOS) is to address the three basic challenges in Earth Sciences: (i) unravelling the Earth's deformational processes which are part of the Earth system evolution in time, (ii) understanding the geo-hazards and their implications to society, and (iii) contributing to the safe and sustainable use of geo-resources. The mission of EPOS is to monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures in Europe for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. EPOS will improve our ability to better manage the use of the subsurface of the Earth. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. EPOS has now started its Implementation Phase (EPOS-IP). One of the main challenges during the implementation phase is the integration of multidisciplinary data into a single e-infrastructure. Multidisciplinary data are organized and governed by the Thematic Core Services (TCS) and are driven by various scientific communities encompassing a wide spectrum of Earth science disciplines. These include Data, Data-products, Services and Software (DDSS), from seismology, near fault observatories, geodetic observations, volcano observations

  3. Mission operations update for the restructured Earth Observing System (EOS) mission

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita Castro; Chang, Edward S.

    1993-01-01

    The National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS) will provide a comprehensive long term set of observations of the Earth to the Earth science research community. The data will aid in determining global changes caused both naturally and through human interaction. Understanding man's impact on the global environment will allow sound policy decisions to be made to protect our future. EOS is a major component of the Mission to Planet Earth program, which is NASA's contribution to the U.S. Global Change Research Program. EOS consists of numerous instruments on multiple spacecraft and a distributed ground system. The EOS Data and Information System (EOSDIS) is the major ground system developed to support EOS. The EOSDIS will provide EOS spacecraft command and control, data processing, product generation, and data archival and distribution services for EOS spacecraft. Data from EOS instruments on other Earth science missions (e.g., Tropical Rainfall Measuring Mission (TRMM)) will also be processed, distributed, and archived in EOSDIS. The U.S. and various International Partners (IP) (e.g., the European Space Agency (ESA), the Ministry of International Trade and Industry (MITI) of Japan, and the Canadian Space Agency (CSA)) participate in and contribute to the international EOS program. The EOSDIS will also archive processed data from other designated NASA Earth science missions (e.g., UARS) that are under the broad umbrella of Mission to Planet Earth.

  4. Detrital zircons and Earth system evolution

    NASA Astrophysics Data System (ADS)

    McKenzie, R.

    2016-12-01

    Zircon is a mineral commonly produced in silicic magmatism. Therefore, due to its resilience and exceedingly long residence times in the continental crust, detrital zircon records can be used to track processes associated with silicic magmatism throughout Earth history. In this contribution I will address the potential role of preservational biases in zircon record, and further discuss how zircon datasets can be used to help better understand the relationship between lithospheric and Earth system evolution. I will use large compilations of zircon data to trace the composition and weatherability of the continental crust, to evaluate temporal rates of crustal recycling, and finally to track spatiotemporal variation in continental arc magmatism and volcanic CO2 outgassing throughout Earth history. These records demonstrate that secular changes in plate tectonic regimes played a prominent role in modulating conditions of the ocean+atmosphere system and long-term climate state for the last 3 billion years.

  5. Children's Cosmographies: Understanding the Earth's Shape and Gravity.

    ERIC Educational Resources Information Center

    Sneider, Cary; Pulos, Steven

    1983-01-01

    Assessed Nussbaum's developmental model (SE 024 045) using a new sample given no special instructions in spherical earth/gravity concepts. Also identified distribution of notions among students (N=159 in grades three to eight), compared distribution of notions at each age level with those in other studies, and explored role of individual…

  6. A reactive distillation process for the treatment of LiCl-KCl eutectic waste salt containing rare earth chlorides

    NASA Astrophysics Data System (ADS)

    Eun, H. C.; Choi, J. H.; Kim, N. Y.; Lee, T. K.; Han, S. Y.; Lee, K. R.; Park, H. S.; Ahn, D. H.

    2016-11-01

    The pyrochemical process, which recovers useful resources (U/TRU metals) from used nuclear fuel using an electrochemical method, generates LiCl-KCl eutectic waste salt containing radioactive rare earth chlorides (RECl3). It is necessary to develop a simple process for the treatment of LiCl-KCl eutectic waste salt in a hot-cell facility. For this reason, a reactive distillation process using a chemical agent was achieved as a method to separate rare earths from the LiCl-KCl waste salt. Before conducting the reactive distillation, thermodynamic equilibrium behaviors of the reactions between rare earth (Nd, La, Ce, Pr) chlorides and the chemical agent (K2CO3) were predicted using software. The addition of the chemical agent was determined to separate the rare earth chlorides into an oxide form using these equilibrium results. In the reactive distillation test, the rare earth chlorides in LiCl-KCl eutectic salt were decontaminated at a decontamination factor (DF) of more than 5000, and were mainly converted into oxide (Nd2O3, CeO2, La2O3, Pr2O3) or oxychloride (LaOCl, PrOCl) forms. The LiCl-KCl was purified into a form with a very low concentration (<1 ppm) for the rare earth chlorides.

  7. SALICYLATE PROCESS FOR THORIUM SEPARATION FROM RARE EARTHS

    DOEpatents

    Cowan, G.A.

    1959-08-25

    The separation of thorium from rare earths is accomplished by forming an aqueous solution of salts of thorium and rare earths and sufficient acetate buffer to provide a pH of between 2 and 5, adding an ammonium salicylate to the aqueous buffered solution, contacting the resultant solution with a substantially water-immiscible organic solvent mixture of an ether and an ester, and separating the solvent extract phase containing thorium salicylate from the aqueous phase containing the rare earths.

  8. The Earth Information Exchange: A Portal for Earth Science From the ESIP Federation

    NASA Astrophysics Data System (ADS)

    Wertz, R.; Hutchinson, C.; Hardin, D.

    2006-12-01

    The Federation of Earth Science Information Partners is a unique consortium of more than 90 organizations that collect, interpret and develop applications for remotely sensed Earth Observation Information. Included in the ESIP network are NASA, NOAA and USGS data centers, research universities, government research laboratories, supercomputer facilities, education resource providers, information technology innovators, nonprofit organizations and commercial enterprises. The consortium's work is dedicated to providing the most up-to-date, science-based information to researchers and decision-makers who are working to understand and address the environmental, economic and social challenges facing our planet. By increasing the use and usability of Earth observation data and linking it with decision-making tools, the Federation partners leverage the value of these important data resources for the betterment of society and our planet. To further the dissemination of Earth Science data, the Federation is developing the Earth Information Exchange (EIE). The EIE is a portal that will provide access to the vast information holdings of the members' organizations in one web-based location and will provides a robust marketplace in which the products and services needed to use and understand this information can be readily acquired. Since the Federation membership includes the federal government's Earth observing data centers, we believe that the impact of the EIE on Earth science research and education and environmental policy making will be profound. In the EIE, Earth observation data, products and services, are organized by the societal benefits categories defined by the international working group developing the Global Earth Observation System of Systems (GEOSS). The quality of the information is ensured in each of the Exchange's issue areas by maintaining working groups of issue area researchers and practitioners who serve as stewards for their respective communities. The

  9. Deriving Earth Science Data Analytics Requirements

    NASA Technical Reports Server (NTRS)

    Kempler, Steven J.

    2015-01-01

    Data Analytics applications have made successful strides in the business world where co-analyzing extremely large sets of independent variables have proven profitable. Today, most data analytics tools and techniques, sometimes applicable to Earth science, have targeted the business industry. In fact, the literature is nearly absent of discussion about Earth science data analytics. Earth science data analytics (ESDA) is the process of examining large amounts of data from a variety of sources to uncover hidden patterns, unknown correlations, and other useful information. ESDA is most often applied to data preparation, data reduction, and data analysis. Co-analysis of increasing number and volume of Earth science data has become more prevalent ushered by the plethora of Earth science data sources generated by US programs, international programs, field experiments, ground stations, and citizen scientists.Through work associated with the Earth Science Information Partners (ESIP) Federation, ESDA types have been defined in terms of data analytics end goals. Goals of which are very different than those in business, requiring different tools and techniques. A sampling of use cases have been collected and analyzed in terms of data analytics end goal types, volume, specialized processing, and other attributes. The goal of collecting these use cases is to be able to better understand and specify requirements for data analytics tools and techniques yet to be implemented. This presentation will describe the attributes and preliminary findings of ESDA use cases, as well as provide early analysis of data analytics toolstechniques requirements that would support specific ESDA type goals. Representative existing data analytics toolstechniques relevant to ESDA will also be addressed.

  10. Mental Models and other Misconceptions in Children's Understanding of the Earth

    ERIC Educational Resources Information Center

    Panagiotaki, Georgia; Nobes, Gavin; Potton, Anita

    2009-01-01

    This study investigated the claim (e.g., Vosniadou & Brewer's, 1992) that children have naive ''mental models'' of the earth and believe, for example, that the earth is flat or hollow. It tested the proposal that children appear to have these misconceptions because they find the researchers' tasks and questions to be confusing and ambiguous.…

  11. Factors Affecting Student Success with a Google Earth-Based Earth Science Curriculum

    ERIC Educational Resources Information Center

    Blank, Lisa M.; Almquist, Heather; Estrada, Jen; Crews, Jeff

    2016-01-01

    This study investigated to what extent the implementation of a Google Earth (GE)-based earth science curriculum increased students' understanding of volcanoes, earthquakes, plate tectonics, scientific reasoning abilities, and science identity. Nine science classrooms participated in the study. In eight of the classrooms, pre- and post-assessments…

  12. Discover Earth

    NASA Technical Reports Server (NTRS)

    Steele, Colleen

    1998-01-01

    Discover Earth is a NASA-sponsored project for teachers of grades 5-12, designed to: (1) enhance understanding of the Earth as an integrated system; (2) enhance the interdisciplinary approach to science instruction; and (3) provide classroom materials that focus on those goals. Discover Earth is conducted by the Institute for Global Environmental Strategies in collaboration with Dr. Eric Barron, Director, Earth System Science Center, The Pennsylvania State University; and Dr. Robert Hudson, Chair, the Department of Meteorology, University of Maryland at College Park. The enclosed materials: (1) represent only part of the Discover Earth materials; (2) were developed by classroom teachers who are participating in the Discover Earth project; (3) utilize an investigative approach and on-line data; and (4) can be effectively adjusted to classrooms with greater/without technology access. The Discover Earth classroom materials focus on the Earth system and key issues of global climate change including topics such as the greenhouse effect, clouds and Earth's radiation balance, surface hydrology and land cover, and volcanoes and climate change. All the materials developed to date are available on line at (http://www.strategies.org) You are encouraged to submit comments and recommendations about these materials to the Discover Earth project manager, contact information is listed below. You are welcome to duplicate all these materials.

  13. Making Earth Science Data Records for Use in Research Environments (MEaSUREs) Projects Data and Services at the GES DISC

    NASA Technical Reports Server (NTRS)

    Vollmer, Bruce E.; Ostrenga, D.; Savtchenko, A.; Johnson, J.; Wei, J.; Teng, W.; Gerasimov, I.

    2011-01-01

    NASA's Earth Science Program is dedicated to advancing Earth remote sensing and pioneering the scientific use of satellite measurements to improve human understanding of our home planet. Through the MEaSUREs Program, NASA is continuing its commitment to expand understanding of the Earth system using consistent data records. Emphasis is on linking together multiple data sources to form coherent time-series, and facilitating the use of extensive data in the development of comprehensive Earth system models. A primary focus of the MEaSUREs Program is the creation of Earth System Data Records (ESDRs). An ESDR is defined as a unified and coherent set of observations of a given parameter of the Earth system, which is optimized to meet specific requirements for addressing science questions. These records are critical for understanding Earth System processes; for the assessment of variability, long-term trends, and change in the Earth System; and for providing input and validation means to modeling efforts. Seven MEaSUREs projects will be archived and distributed through services at the Goddard Earth Sciences Data and Information Services Center (GES DISC).

  14. NASA's mission to planet Earth: Earth observing system

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The topics covered include the following: global climate change; radiation, clouds, and atmospheric water; the ocean; the troposphere - greenhouse gases; land cover and the water cycle; polar ice sheets and sea level; the stratosphere - ozone chemistry; volcanoes; the Earth Observing System (EOS) - how NASA will support studies of global climate change?; research and assessment - EOS Science Investigations; EOS Data and Information System (EOSDIS); EOS observations - instruments and spacecraft; a national international effort; and understanding the Earth System.

  15. North Pole, South Pole: the quest to understand the mystery of Earth's magnetism

    NASA Astrophysics Data System (ADS)

    Turner, G. M.

    2010-12-01

    The story of the quest to understand Earth’s magnetic field is one of the longest and richest in the history of science. It weaves together Greek philosophy, Chinese mysticism, the development of the compass and navigation, the physics of electromagnetism and the jig-saw like piecing together of the internal structure of the planet beneath our feet. The story begins with Magnes, an old shepherd, trudging up the mountainside after a violent thunder storm, astonished at how the iron studs in his boots stick to the rocks. It was Alexander von Humboldt who, three millennia on, pointed to lightning as the source of such magnetization. The first compass was made 2000 years ago in China - to divine the ways of feng shui - a guide to planting crops, planning streets, orienting buildings and more. It reached Europe as a navigational tool in the 12th century - no-one is quite sure how, but en route it changed from south-pointing to the north-pointing compasses of today. The earliest truly scientific experiments and writings concerned magnets and geomagnetism: Petrus Peregrinus’ Epistola of 1269, and William Gilbert’s De Magnete of1600, in which he declared Magnus magnes globus terrestris ipse est - the Earth itself is a great magnet. By then it was recognized that the compass didn’t point exactly north, and the discrepancy varied from place to place and changed over time - something of a problem for Gilbert’s idea of a geocentric axial dipole. However declination and secular variation were problems well known to Edmund Halley, who, in 1700, charted the angle of declination over the Atlantic Ocean, and in the process introduced the Halleyan line - the contour. Many of the world’s greatest scientists have turned their minds to the problem of magnetism and geomagnetism in particular - Coulomb, Gauss, Faraday, Maxwell - yet in 1905, Einstein described geomagnetism as “one of the great unsolved problems of physics”. In the mid-late nineteenth century new areas of

  16. Investigating Students' Understanding of the Dissolving Process

    ERIC Educational Resources Information Center

    Naah, Basil M.; Sanger, Michael J.

    2013-01-01

    In a previous study, the authors identified several student misconceptions regarding the process of dissolving ionic compounds in water. The present study used multiple-choice questions whose distractors were derived from these misconceptions to assess students' understanding of the dissolving process at the symbolic and particulate levels. The…

  17. Understanding the Role of Air-Sea Interaction on Extreme Rainfall in Aquaplanet and Earth-like CESM2

    NASA Astrophysics Data System (ADS)

    Benedict, J. J.; Clement, A. C.; Medeiros, B.

    2017-12-01

    Extreme precipitation events are associated with anomalous, latitudinally dependent dynamical and convective weather systems. For example, plumes of excessive poleward water vapor transport and topographical effects drive extreme precipitation events in the midlatitudes, while intense tropical precipitation is associated with organized convective systems. In both cases, air-sea fluxes have the potential to contribute significantly to the moisture budget of these storms, but the roles of surface fluxes and upper-ocean processes and their impact on precipitation extremes have yet to be explored in sufficient detail. To examine such mechanisms, we implement a climate model hierarchy that encompasses a spectrum of ocean models, from prescribed-SST to fully dynamic, as well as both aquaplanet and Earth-like lower boundary types within version 2 of the Community Earth System Model (CESM2). Using the CESM2 hierarchy and comparing to observations, we identify key moisture processes and related air-sea interactions that drive extreme precipitation events across different latitudes in Earth-like models and then generalize the analyses in aquaplanet configurations to highlight the most salient features. The analyses are applied to both present-day and global warming conditions to investigate how these fundamental mechanisms might change extreme precipitation events in the future climate.

  18. Communicating Earth Science Applications through Virtual Poster Sessions

    NASA Astrophysics Data System (ADS)

    Favors, J. E.; Childs-Gleason, L. M.; Ross, K. W.; Ruiz, M. L.; Rogers, L.

    2013-12-01

    The DEVELOP National Program addresses environmental and public policy issues through interdisciplinary research projects that apply the lens of NASA Earth observations to community concerns around the globe. Part of NASA's Applied Sciences' Capacity Building Program, DEVELOP bridges the gap between NASA Earth Science and society, building capacity in both participants and partner organizations to better prepare them to handle the challenges that face our society and future generations. Teams of DEVELOP participants partner with decision makers to conduct rapid feasibility projects that highlight fresh applications of NASA's suite of Earth observing sensors, cultivate advanced skills, and increase understanding of NASA Earth Science data and technology. Part of this process involves the creation of short introductory videos that demonstrate the environmental concerns, project methodologies and results, and an overview of how this work will impact decision makers. These videos are presented to the public three times a year in 'virtual poster sessions' (VPS) that provide an interactive way for individuals from around the globe to access the research, understand the capabilities and applications of NASA's Earth science datasets, and interact with the participants through blogging and dialogue sessions. Virtual poster sessions have allowed DEVELOP to introduce NASA's Earth science assets to thousands of viewers around the world. For instance, one fall VPS had over 5,000 visitors from 89 different countries during the two week session. This presentation will discuss lessons learned and statistics related to the series of nine virtual poster sessions that DEVELOP has conducted 2011-2013.

  19. Wind Streaks on Earth; Exploration and Interpretation

    NASA Astrophysics Data System (ADS)

    Cohen-Zada, Aviv Lee; Blumberg, Dan G.; Maman, Shimrit

    2015-04-01

    Wind streaks, one of the most common aeolian features on planetary surfaces, are observable on the surface of the planets Earth, Mars and Venus. Due to their reflectance properties, wind streaks are distinguishable from their surroundings, and they have thus been widely studied by remote sensing since the early 1970s, particularly on Mars. In imagery, these streaks are interpreted as the presence - or lack thereof - of small loose particles on the surface deposited or eroded by wind. The existence of wind streaks serves as evidence for past or present active aeolian processes. Therefore, wind streaks are thought to represent integrative climate processes. As opposed to the comprehensive and global studies of wind streaks on Mars and Venus, wind streaks on Earth are understudied and poorly investigated, both geomorphologically and by remote sensing. The aim of this study is, thus, to fill the knowledge gap about the wind streaks on Earth by: generating a global map of Earth wind streaks from modern high-resolution remotely sensed imagery; incorporating the streaks in a geographic information system (GIS); and overlaying the GIS layers with boundary layer wind data from general circulation models (GCMs) and data from the ECMWF Reanalysis Interim project. The study defines wind streaks (and thereby distinguishes them from other aeolian features) based not only on their appearance in imagery but more importantly on their surface appearance. This effort is complemented by a focused field investigation to study wind streaks on the ground and from a variety of remotely sensed images (both optical and radar). In this way, we provide a better definition of the physical and geomorphic characteristics of wind streaks and acquire a deeper knowledge of terrestrial wind streaks as a means to better understand global and planetary climate and climate change. In a preliminary study, we detected and mapped over 2,900 wind streaks in the desert regions of Earth distributed in

  20. The Earth's magnetosphere as a sample of the plasma universe

    NASA Technical Reports Server (NTRS)

    Faelthammar, Carl-Gunne

    1986-01-01

    Plasma processes in the Earth's neighborhood determine the environmental conditions under which space-based equipment for science or technology must operate. These processes are peculiar to a state of matter that is rare on Earth but dominates the universe as whole. The physical, and especially the electrodynamic, properties of this state of matter is still far from well understood. By fortunate circumstances, the magnetosphere-ionosphere system of the Earth provides a rich sample of widely different plasma populations, and, even more importantly, it is the site of a remarkable variety of plasma processes. In different combinations such processes must be important throughout the universe, which is overwhelmingly dominated by matter in the plasma state. Therefore, observations and experiments in the near-Earth plasma serve a multitude of purposes. They will not only (1) clarify the dynamics of the space environment but also (2) widen the understanding of matter, (3) form a basis for interpretating remote observations of astrophysical objects, thereby even (4) help to reconstruct events that led to the evolution of the solar system. Last but not least they will (5) provide know-how required for adapting space-based technology to the plasma environment. Such observations and experiments will require a close mutual interplay between science and technology.

  1. Studies in geophysics: The Earth's electrical environment

    NASA Astrophysics Data System (ADS)

    The Earth is electrified. Between the surface and the outer reaches of the atmosphere, there is a global circuit that is maintained by worldwide thunderstorm activity and by upper atmospheric dynamo processes. The highest voltages approach a billion volts and are generated within thunderclouds, where lightning is a visual display of the cloud's electrical nature. The largest currents in the circuit, approaching a million amperes, are associated with the aurora. Because there have been significant advances in understanding many of the component parts of the global electric circuit (lightning, cloud electrification, electrical processes in specific atmospheric regions, and telluric currents), a principal research challenge is to understand how these components interact to shape the global circuit. Increased basic understanding in this field has many potential practical applications, including lightning protection, the design of advanced aircraft and spacecraft, and improvements in weather prediction.

  2. Studies in geophysics: The Earth's electrical environment

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Earth is electrified. Between the surface and the outer reaches of the atmosphere, there is a global circuit that is maintained by worldwide thunderstorm activity and by upper atmospheric dynamo processes. The highest voltages approach a billion volts and are generated within thunderclouds, where lightning is a visual display of the cloud's electrical nature. The largest currents in the circuit, approaching a million amperes, are associated with the aurora. Because there have been significant advances in understanding many of the component parts of the global electric circuit (lightning, cloud electrification, electrical processes in specific atmospheric regions, and telluric currents), a principal research challenge is to understand how these components interact to shape the global circuit. Increased basic understanding in this field has many potential practical applications, including lightning protection, the design of advanced aircraft and spacecraft, and improvements in weather prediction.

  3. Voyager Interactive Web Interface to EarthScope

    NASA Astrophysics Data System (ADS)

    Eriksson, S. C.; Meertens, C. M.; Estey, L.; Weingroff, M.; Hamburger, M. W.; Holt, W. E.; Richard, G. A.

    2004-12-01

    Visualization of data is essential in helping scientists and students develop a conceptual understanding of relationships among many complex types of data and keep track of large amounts of information. Developed initially by UNAVCO for study of global-scale geodynamic processes, the Voyager map visualization tools have evolved into interactive, web-based map utilities that can make scientific results accessible to a large number and variety of educators and students as well as the originally targeted scientists. A portal to these map tools can be found at: http://jules.unavco.org. The Voyager tools provide on-line interactive data visualization through pre-determined map regions via a simple HTML/JavaScript interface (for large numbers of students using the tools simultaneously) or through student-selectable areas using a Java interface to a Generic Mapping Tools (GMT) engine. Students can access a variety of maps, satellite images, and geophysical data at a range of spatial scales for the earth and other planets of the solar system. Students can also choose from a variety of base maps (satellite mosaics, global topography, geoid, sea-floor age, strain rate and seismic hazard maps, and others) and can then add a number of geographic and geophysical overlays, for example coastlines, political boundaries, rivers and lakes, earthquake and volcano locations, stress axes, and observed and model plate motion, as well as deformation velocity vectors representing a compilation of over 5000 geodetic measurements from around the world. The related educational website, "Exploring our Dynamic Planet", (http://www.dpc.ucar.edu/VoyagerJr/jvvjrtool.html) incorporates background materials and curricular activities that encourage students to explore Earth processes. One of the present curricular modules is designed for high school students or introductory-level undergraduate non-science majors. The purpose of the module is for students to examine real data to investigate how plate

  4. Analogs from LEO: Mapping Earth Observations to Planetary Science & Astrobiology. (Invited)

    NASA Astrophysics Data System (ADS)

    Hand, K. P.; Painter, T. H.

    2010-12-01

    If, as Charles Lyell articulated ‘the present is the key to the past’ for terrestrial geology, then perhaps by extension the Earth, our planet, is the key to understanding other planets. This is the basic premise behind planetary analogs. Many planetary science missions, however, utilize orbiters and are therefore constrained to remote sensing. This is the reverse of how we developed our understanding of Earth’s environments; remote sensing is a relatively new tool for understanding environments and processes on Earth. Here we present several cases and comparisons between Earth’s cryosphere and icy worlds of the outer Solar System (e.g. Europa, Titan, and Enceladus), where much of our knowledge is limited to remote observations (the sole exception being the Huygens probe to Titan). Three regions are considered: glaciers in the Sierra Nevada, the permafrost lakes of Alaska’s North Slope, and spreading centers of the ocean floor. Two key issues are examined: 1) successes and limitations for understanding processes that shape icy worlds, and 2) successes and limitations for assessing the habitability of icy worlds from orbit. Finally, technological considerations for future orbiting mission to icy worlds are presented.

  5. Earth observations satellite data policy: Process and outcome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaffer, L.R.

    1994-12-31

    The National Aeronautics and Space Administration (NASA) develops, launches, and operates satellites to observe and monitor the Earth and its environment. This study categorizes each program based on the relationship between NASA and external organizations. A program can be an autonomous mission undertaken for NASA`s own constituency, or it can involve a client agency or a partner. These relationships affect how data policy decisions are made and implemented, and how the valuable output of NASA`s Earth observations satellites is managed. The process in NASA for determining which programs will be approved is very informal. Ideas and concepts surface and reachmore » the consciousness of NASA management; if sufficient support is achieved, a proposal can move to the feasibility study phase and from there become an approved and funded mission. The handling of data can be an important consideration in generating political support for program approval. Autonomous programs tend to have decisions made at lower levels and documented informally or not at all. Data policy is part of routine implementation of programs and does not generally rise to the visibility of the agency head or congressional staff or the Executive Office of the President. Responsibility for data management for autonomous missions is retained at NASA centers. Client programs involve higher level decision makers, and are the subject of political interest because they cross agency boundaries. The data policy process includes presidential statements on data access. As part of the client relationship, NASA often provides resources to the client for data handling and analysis, and shares these responsibilities. Data policy for partner programs is the result of bargaining between the partners, either foreign government agencies or private companies.« less

  6. EarthCube - Earth System Bridge: Spanning Scientific Communities with Interoperable Modeling Frameworks

    NASA Astrophysics Data System (ADS)

    Peckham, S. D.; DeLuca, C.; Gochis, D. J.; Arrigo, J.; Kelbert, A.; Choi, E.; Dunlap, R.

    2014-12-01

    In order to better understand and predict environmental hazards of weather/climate, ecology and deep earth processes, geoscientists develop and use physics-based computational models. These models are used widely both in academic and federal communities. Because of the large effort required to develop and test models, there is widespread interest in component-based modeling, which promotes model reuse and simplified coupling to tackle problems that often cross discipline boundaries. In component-based modeling, the goal is to make relatively small changes to models that make it easy to reuse them as "plug-and-play" components. Sophisticated modeling frameworks exist to rapidly couple these components to create new composite models. They allow component models to exchange variables while accommodating different programming languages, computational grids, time-stepping schemes, variable names and units. Modeling frameworks have arisen in many modeling communities. CSDMS (Community Surface Dynamics Modeling System) serves the academic earth surface process dynamics community, while ESMF (Earth System Modeling Framework) serves many federal Earth system modeling projects. Others exist in both the academic and federal domains and each satisfies design criteria that are determined by the community they serve. While they may use different interface standards or semantic mediation strategies, they share fundamental similarities. The purpose of the Earth System Bridge project is to develop mechanisms for interoperability between modeling frameworks, such as the ability to share a model or service component. This project has three main goals: (1) Develop a Framework Description Language (ES-FDL) that allows modeling frameworks to be described in a standard way so that their differences and similarities can be assessed. (2) Demonstrate that if a model is augmented with a framework-agnostic Basic Model Interface (BMI), then simple, universal adapters can go from BMI to a

  7. Understanding Super-Earths with MINERVA-Australis at USQ's Mount Kent Observatory

    NASA Astrophysics Data System (ADS)

    Wittenmyer, Robert; Horner, Jonathan; Kane, Stephen; Plavchan, Peter; Ciardi, David; Eastman, Jason; Johnson, John Asher; Wright, Jason; McCrady, Nate; MINERVA Collaboration

    2018-01-01

    Super Earths, planets between 5-10 Earth masses, are the most common types of planets known, yet are completely absent from our Solar system. As a result, their detailed properties, compositions, and formation mechanisms are poorly understood. NASA's Transiting Exoplanet Survey Satellite (TESS) will identify hundreds of Super-Earths orbiting bright stars, for the first time allowing in-depth characterisation of these planets. At the University of Southern Queensland, we are host to the MINERVA-Australis project, dedicated wholly to the follow-up characterisation and mass measurement of TESS planets. We give an update on the status of MINERVA-Australis and our expected performance. We also present results from the fully operational Northern MINERVA array, with the primary mission of discovering rocky planets orbiting 80 nearby bright stars.

  8. Magnetosphere-ionosphere interactions: Near Earth manifestations of the plasma universe

    NASA Technical Reports Server (NTRS)

    Faelthammar, Carl-Gunne

    1986-01-01

    As the universe consists almost entirely of plasma, the understanding of astrophysical phenomena must depend critically on the understanding of how matter behaves in the plasma state. In situ observations in the near Earth cosmical plasma offer an excellent opportunity of gaining such understanding. The near Earth cosmical plasma not only covers vast ranges of density and temperature, but is the site of a rich variety of complex plasma physical processes which are activated as a results of the interactions between the magnetosphere and the ionosphere. The geomagnetic field connects the ionosphere, tied by friction to the Earth, and the magnetosphere, dynamically coupled to the solar wind. This causes an exchange of energy an momentum between the two regions. The exchange is executed by magnetic-field-aligned electric currents, the so-called Birkeland currents. Both directly and indirectly (through instabilities and particle acceleration) these also lead to an exchange of plasma, which is selective and therefore causes chemical separation. Another essential aspect of the coupling is the role of electric fields, especially magnetic field aligned (parallel) electric fields, which have important consequences both for the dynamics of the coupling and, especially, for energization of charged particles.

  9. The Impact of Guiding Materials on Students' Conceptual Understanding: The Case of "What Is the Earth's Crust Composed of?

    ERIC Educational Resources Information Center

    Çoruhlu, Tülay Senel; Er Nas, Sibel

    2017-01-01

    The aim of this research is to determine the effect of the use of guidance material based on the 5E model on students' conceptual understanding of a topic entitled "What is the earth's crust composed of?" The sample consists of 40 students from the 5th grade (experimental group 20, control group 20). A concept test, a drawing test, and…

  10. Image processing techniques and applications to the Earth Resources Technology Satellite program

    NASA Technical Reports Server (NTRS)

    Polge, R. J.; Bhagavan, B. K.; Callas, L.

    1973-01-01

    The Earth Resources Technology Satellite system is studied, with emphasis on sensors, data processing requirements, and image data compression using the Fast Fourier and Hadamard transforms. The ERTS-A system and the fundamentals of remote sensing are discussed. Three user applications (forestry, crops, and rangelands) are selected and their spectral signatures are described. It is shown that additional sensors are needed for rangeland management. An on-board information processing system is recommended to reduce the amount of data transmitted.

  11. Goddard Cumulus Ensemble (GCE) Model: Application for Understanding Preciptation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The global hydrological cycle is central to climate system interactions and the key to understanding their behavior. Rainfall and its associated precipitation processes are a key link in the hydrologic cycle. Fresh water provided by tropical rainfall and its variability can exert a large impact upon the structure of the upper ocean layer. In addition, approximately two-thirds of the global rain falls in the Tropics, while the associated latent heat release accounts for about three-fourths of the total heat energy for the Earth's atmosphere. Precipitation from convective cloud systems comprises a large portion of tropical heating and rainfall. Furthermore, the vertical distribution of convective latent-heat releases modulates large-scale tropical circulations (e.g., the 30-60-day intraseasonal oscillation), which, in turn, impacts midlatitude weather through teleconnection patterns such as those associated with El Nino. Shifts in these global circulations can result in prolonged periods of droughts and floods, thereby exerting a tremendous impact upon the biosphere and human habitation. And yet, monthly rainfall over the tropical oceans is still not known within a factor of two over large (5 degrees latitude by 5 degrees longitude) areas. Hence, the Tropical Rainfall Measuring Mission (TRMM), a joint U.S./Japan space project, can provide a more accurate measurement of rainfall as well as estimate the four-dimensional structure of diabatic heating over the global tropics. The distributions of rainfall and inferred heating can be used to advance our understanding of the global energy and water cycle. In addition, this information can be used for global circulation and climate models for testing and improving their parameterizations.

  12. Understanding Periodicity as a Process with Gestalt Structure.

    ERIC Educational Resources Information Center

    Shama, Gilli

    1998-01-01

    Presents a two-phase investigation of how Israeli students understand the concept of periodicity. Discusses related research with teachers and students (N=895) employing both qualitative and quantitative research methodologies. Concludes that students understand periodicity as a process. Students' errors and preferences are discussed with…

  13. Earth Science

    NASA Image and Video Library

    1990-10-24

    Solar Vector Magnetograph is used to predict solar flares, and other activities associated with sun spots. This research provides new understanding about weather on the Earth, and solar-related conditions in orbit.

  14. Using EarthLabs to Enhance Earth Science Curriculum in Texas

    NASA Astrophysics Data System (ADS)

    Chegwidden, D. M.; Ellins, K. K.; Haddad, N.; Ledley, T. S.

    2012-12-01

    As an educator in Texas, a state that values and supports an Earth Science curriculum, I find it essential to educate my students who are our future voting citizens and tax payers. It is important to equip them with tools to understand and solve the challenges of solving of climate change. As informed citizens, students can help to educate others in the community with basic knowledge of weather and climate. They can also help to dispose of the many misconceptions that surround the climate change, which is perceived as a controversial topic. As a participant in a NSF-sponsored Texas Earth and Space (TXESS) Revolution teacher professional development program, I was selected to participate in a curriculum development project led by TERC to develop and test education resources for the EarthLabs climate literacy collection. I am involved in the multiple phases of the project, including reviewing labs that comprise the Climate, Weather and Biosphere module during the development phase, pilot teaching the module with my students, participating in research, and delivering professional development to other Texas teachers to expose them to the content found in the module and to encourage them to incorporate it into their teaching. The Climate, Weather and the Biosphere module emphasizes different forms of evidence and requires that learners apply different inquiry-based approaches to build the knowledge they need to develop as climate literate citizens. My involvement with the EarthLabs project has strengthened my overall knowledge and confidence to teach about Earth's climate system and climate change. In addition, the project has produced vigorous classroom discussion among my students as well as encouraged me to collaborate with other educators through our delivery of professional development to other teachers. In my poster, I will share my experiences, describe the impact the curriculum has made on my students, and report on challenges and valuable lessons gained by

  15. Understanding Processes and Timelines for Distributed Photovoltaic

    Science.gov Websites

    data from more than 30,000 PV systems across 87 utilities in 16 states to better understand how solar photovoltaic (PV) interconnection process time frames in the United States. This study includes an analysis of Analysis Metrics" that shows the four steps involved in the utility interconnection process for solar

  16. Public Understanding of Science through Evaluations

    NASA Astrophysics Data System (ADS)

    Dusenbery, P.; Koke, J.

    Evaluation is an integral part of exhibition development. It is usually a 3-phase process: front end, formative and summative. This report will compare science misconception studies of students with a number of front-end museum studies in order to elucidate the similarities and differences between student and general public understanding of science. The Space Science Institute (SSI) has recently conducted a major front-end evaluation of its Alien Earths exhibition. Alien Earths has four interrelated exhibit areas: Our Place in Space, Star Birth, PlanetQuest, and Search for Life. Exhibit visitors will explore the awesome events surrounding the birth of stars and planets; they will join scientists in the hunt for planets outside our solar system including those that may be in ``habitable zones'' around other stars; and finally they will be able to learn about the wide range of conditions for life on Earth and how scientists are looking for signs of life beyond Earth. The front-end evaluation elicited visitors' beliefs about the origins of life, what life is dominant on Earth, and the role indirect evidence plays in science. The front-end evaluation also examined visitors' understanding of the tools used in origins research from grand telescopes to microscopes, their ability to decipher and interpret images of star forming regions, and their fluency with the specific terminology likely to be used in the Alien Earths scripts. Front-end evaluation worked to support concept design and development by developing the visitors' entrance narrative -- their pre-existing knowledge, commonly held misconceptions, and their attitudes and interests towards the topic. This served to identify potential points of access and barriers to efficient communication.

  17. Publications of the Western Earth Surface Processes Team 2000

    USGS Publications Warehouse

    Powell, Charles L.; Stone, Paul

    2001-01-01

    The Western Earth Surface Processes Team (WESP) of the U.S. Geological Survey (USGS) conducts geologic mapping and related topical earth science studies in the western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues such as ground-water quality, potential geologic hazards, and land-use decisions. Areas of primary emphasis in 2000 included southern California, the San Francisco Bay region, the Pacific Northwest, the Las Vegas urban corridor, and selected National Park lands. The team has its headquarters in Menlo Park, California, and maintains smaller field offices at several other locations in the western United States. The results of research conducted by the WESPT are released to the public as a variety of databases, maps, text reports, and abstracts, both through the internal publication system of the USGS and in diverse external publications such as scientific journals and books. This report lists publications of the WESPT released in 2000 as well as additional 1999 publications that were not included in the previous list (USGS Open-file Report 00-215). Most of the publications listed were authored or coauthored by WESPT staff. The list also includes some publications authored by non-USGS cooperators with the WESPT, as well as some authored by USGS staff outside the WESPT in cooperation with WESPT projects. Several of the publications listed are available on the World Wide Web; for these, URL addresses are provided. Many of these Web publications are USGS open-file reports that contain large digital databases of geologic map and related information.

  18. Science-Grade Observing Systems as Process Observatories: Mapping and Understanding Nonlinearity and Multiscale Memory with Models and Observations

    NASA Astrophysics Data System (ADS)

    Barros, A. P.; Wilson, A. M.; Miller, D. K.; Tao, J.; Genereux, D. P.; Prat, O.; Petersen, W. A.; Brunsell, N. A.; Petters, M. D.; Duan, Y.

    2015-12-01

    Using the planet as a study domain and collecting observations over unprecedented ranges of spatial and temporal scales, NASA's EOS (Earth Observing System) program was an agent of transformational change in Earth Sciences over the last thirty years. The remarkable space-time organization and variability of atmospheric and terrestrial moist processes that emerged from the analysis of comprehensive satellite observations provided much impetus to expand the scope of land-atmosphere interaction studies in Hydrology and Hydrometeorology. Consequently, input and output terms in the mass and energy balance equations evolved from being treated as fluxes that can be used as boundary conditions, or forcing, to being viewed as dynamic processes of a coupled system interacting at multiple scales. Measurements of states or fluxes are most useful if together they map, reveal and/or constrain the underlying physical processes and their interactions. This can only be accomplished through an integrated observing system designed to capture the coupled physics, including nonlinear feedbacks and tipping points. Here, we first review and synthesize lessons learned from hydrometeorology studies in the Southern Appalachians and in the Southern Great Plains using both ground-based and satellite observations, physical models and data-assimilation systems. We will specifically focus on mapping and understanding nonlinearity and multiscale memory of rainfall-runoff processes in mountainous regions. It will be shown that beyond technical rigor, variety, quantity and duration of measurements, the utility of observing systems is determined by their interpretive value in the context of physical models to describe the linkages among different observations. Second, we propose a framework for designing science-grade and science-minded process-oriented integrated observing and modeling platforms for hydrometeorological studies.

  19. NASA's Current Earth Science Program

    NASA Technical Reports Server (NTRS)

    Charles, Leslie Bermann

    1998-01-01

    NASA's Earth science program is a scientific endeavor whose goal is to provide long-term understanding of the Earth as an integrated system of land, water, air and life. A highly developed scientific knowledge of the Earth system is necessary to understand how the environment affects humanity, and how humanity may be affecting the environment. The remote sensing technologies used to gather the global environmental data used in such research also have numerous practical applications. Current applications of remote sensing data demonstrate their practical benefits in areas such as the monitoring of crop conditions and yields, natural disasters and forest fires; hazardous waste clean up; and tracking of vector-borne diseases. The long-term availability of environmental data is essential for the continuity of important research and applications efforts. NASA's Earth observation program has undergone many changes in the recent past.

  20. Story-telling, Earth-Sciences and Geoethics

    NASA Astrophysics Data System (ADS)

    Bohle, Martin; Sibilla, Anna; Graells, Robert Casals i.

    2015-04-01

    People are engineers, even the artist. People like stories, even the engineers. Engineering shapes the intersections of humans and their environments including with the geosphere. Geoethics considers values upon which to base practices how to intersect the geosphere. Story-telling is a skilful human practice to describe perception of values in different contexts to influence their application. Traditional earth-centric narrations of rural communities have been lost in the global urbanisation process. These former-time narrations related to the "sacrum" - matters not possible to be explained with reasoning. Science and technology, industrialisation and global urbanisation require an other kind of earth-centric story-telling. Now at the fringe of the Anthropocene, humans can base their earth-centricity on knowledge and scientific thinking. We argue that modern story-telling about the functioning of Earth's systems and the impact of humankind's activities on these systems is needed, also in particular because citizens rarely can notice how the geosphere intersects with their daily dealings; putting weather and disasters aside. Modern earth-centric story-telling would offer citizens opportunities to develop informed position towards humankind's place within earth-systems. We argue that such "earth-science story-lines" should be part of the public discourse to engage citizens who have more or less "expert-knowledge". Understanding the functioning of the Earth is needed for economy and values suitable for an anthropophil society. Multi-faceted discussion of anthropogenic global change and geoengineering took off recently; emerging from discussions about weather and hazard mitigation. Going beyond that example; we illustrate opportunities for rich story-telling on intersections of humans' activities and the geosphere. These 'modern narrations' can weave science, demographics, linguistics and cultural histories into earth-centric stories around daily dealings of citizens

  1. Tunable Light-Guide Image Processing Snapshot Spectrometer (TuLIPSS) for Earth and Moon Observations

    NASA Astrophysics Data System (ADS)

    Tkaczyk, T. S.; Alexander, D.; Luvall, J. C.; Wang, Y.; Dwight, J. G.; Pawlowsk, M. E.; Howell, B.; Tatum, P. F.; Stoian, R.-I.; Cheng, S.; Daou, A.

    2018-02-01

    A tunable light-guide image processing snapshot spectrometer (TuLIPSS) for Earth science research and observation is being developed through a NASA instrument incubator project with Rice University and Marshall Space Flight Center.

  2. Energy Transfer in the Earth-Sun System

    NASA Astrophysics Data System (ADS)

    Lui, A. T. Y.; Kamide, Y.

    2007-02-01

    Conference on Earth-Sun System Exploration: Energy Transfer; Kailua-Kona, Hawaii, USA, 16-20 January 2006; The goal of this conference, which was supported by several agencies and organizations, was to provide a forum for physicists engaged in the Earth-Sun system as well as in laboratory experiments to discuss and exchange knowledge and ideas on physical processes involving energy transfer. The motivation of the conference stemmed from the following realization: Space assets form an important fabric of our society, performing functions such as television broadcasting, cell- phone communication, navigation, and remote monitoring of tropospheric weather. There is increasing awareness of how much our daily activities can be adversely affected by space disturbances stretching all the way back to the Sun. In some of these energetic phenomena, energy in various forms can propagate long distances from the solar surface to the interplanetary medium and eventually to the Earth's immediate space environment, namely, its magnetosphere, ionosphere, and thermosphere. In addition, transformation of energy can take place in these space disturbances, allowing charged-particle energy to be transformed to electromagnetic energy or vice versa. In- depth understanding of energy transformation and transmission in the Earth-Sun system will foster the identification of physical processes responsible for space disturbances and the prediction of their occurrences and effects. Participants came from 15 countries.

  3. Integrative Mapping of Global-Scale Processes and Patterns on "Imaginary Earth" Continental Geometries: A Teaching Tool in an Earth History Course

    ERIC Educational Resources Information Center

    Sunderlin, David

    2009-01-01

    The complexity and interrelatedness of aspects of the geosciences is an important concept to convey in an undergraduate geoscience curriculum. A synthesis capstone project has served to integrate pattern-based learning of an introductory Earth History course into an active and process-based exercise in hypothesis production. In this exercise,…

  4. Insights on How NASA's Earth Observing System (EOS) Monitors Our World Environment

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2000-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, four EOS science missions were launched, representing observations of (1) total solar irradiance, (2) Earth radiation budget, (3) land cover and land use change, (4) ocean processes (vector wind, sea surface temperature, and ocean color), (5) atmospheric processes (aerosol and cloud properties, water vapor, and temperature and moisture profiles), and (6) tropospheric chemistry. In succeeding years many more satellites will be launched that will contribute immeasurably to our understanding of the Earth's environment. In this presentation I will describe how scientists are using EOS data to examine land use and natural hazards, environmental air quality, including dust storms over the world's deserts, cloud and radiation properties, sea surface temperature, and winds over the ocean.

  5. Digital Earth for Earth Sciences and Public Education

    NASA Astrophysics Data System (ADS)

    Foresman, T. W.

    2006-12-01

    Buckminster Fuller was an early advocate for better comprehension of the planet and its resources related to human affairs. A comprehensive vision was articulated by a US Vice President and quickly adopted by the world's oldest country China.. Digital Earth brings fresh perspective on the current state of affairs and connects citizens with scientists through the applications of 3D visualization, spinning globes, virtual Earths, and the current collaboration with Virtual Globes. The prowess of Digital Earth technology has been so successful in both understanding and communicating the more challenging topics for global change and climate change phenomena that China has assigned it priority status with the Ministry of Science and Technology and the Chinese Academy of Sciences. New Zealand has recently begun to adjust its national strategies for sustainability with the technologies of Digital Earth. A comprehensive coverage of the results compiled over the past seven years is presented to place a foundation for the science and engineering community to prepare to align with this compelling science enterprise as a fundamental new paradigm for the registration, storage, and access of science data and information through the emerging Digital Earth Exchange under protocols developed for the Digital Earth Reference Model.

  6. Controlled Directional Solidification of Aluminum - 7 wt Percent Silicon Alloys: Comparison Between Samples Processed on Earth and in the Microgravity Environment Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Tewari, Surendra N.; Erdman, Robert G.; Poirier, David R.

    2012-01-01

    An overview of the international "MIcrostructure Formation in CASTing of Technical Alloys" (MICAST) program is given. Directional solidification processing of metals and alloys is described, and why experiments conducted in the microgravity environment aboard the International Space Station (ISS) are expected to promote our understanding of this commercially relevant practice. Microstructural differences observed when comparing the aluminum - 7 wt% silicon alloys directionally solidified on Earth to those aboard the ISS are presented and discussed.

  7. EarthCube Activities: Community Engagement Advancing Geoscience Research

    NASA Astrophysics Data System (ADS)

    Kinkade, D.

    2015-12-01

    Our ability to advance scientific research in order to better understand complex Earth systems, address emerging geoscience problems, and meet societal challenges is increasingly dependent upon the concept of Open Science and Data. Although these terms are relatively new to the world of research, Open Science and Data in this context may be described as transparency in the scientific process. This includes the discoverability, public accessibility and reusability of scientific data, as well as accessibility and transparency of scientific communication (www.openscience.org). Scientists and the US government alike are realizing the critical need for easy discovery and access to multidisciplinary data to advance research in the geosciences. The NSF-supported EarthCube project was created to meet this need. EarthCube is developing a community-driven common cyberinfrastructure for the purpose of accessing, integrating, analyzing, sharing and visualizing all forms of data and related resources through advanced technological and computational capabilities. Engaging the geoscience community in EarthCube's development is crucial to its success, and EarthCube is providing several opportunities for geoscience involvement. This presentation will provide an overview of the activities EarthCube is employing to entrain the community in the development process, from governance development and strategic planning, to technical needs gathering. Particular focus will be given to the collection of science-driven use cases as a means of capturing scientific and technical requirements. Such activities inform the development of key technical and computational components that collectively will form a cyberinfrastructure to meet the research needs of the geoscience community.

  8. Processing of Phosphorus Slag with Recovery of Rare Earth Metals and Obtaining Silicon Containing Cake

    NASA Astrophysics Data System (ADS)

    Karshigina, Zaure; Abisheva, Zinesh; Bochevskaya, Yelena; Akcil, Ata; Sharipova, Aynash; Sargelova, Elmira

    2016-10-01

    The present research is devoted to the processing of slag generating during the yellow phosphorus production. In this paper are presented studies on leaching of phosphorus production slag by nitric acid with recovery of rare earth metals (REMs) into solution. REMs recovery into the solution achieved 98 % during the leaching process with using 7.5 mol/L of HNO3, liquid-to-solid ratio is 2.6:1, temperature is 60°C, process duration is 1 hour and stirrer speed is 500 rpm. Behaviour during the leaching of associated components such as calcium, aluminium, and iron was studied. After the leaching cake contains ∼⃒75-85 % of SiO2 and it might be useful for obtaining of precipitated silicon dioxide. With the purpose of separation from the impurities, recovery and concentrating of REMs, the obtained solution after leaching was subjected to extraction processing methods. The influence of ratio of organic and aqueous phases (O: A) on the extraction of rare earth metals by tributyl phosphate (TBP) with concentrations from 20 up to 100 % was studied. The REMs extraction with increasing TBP concentration under changes O:A ratio from 1:20 down to 1:1 into the organic phase from the solutions after nitric acid leaching increased from 22.2 up to 99.3%. The duration effect of REMs extraction process was studied by tributyl phosphate. It is revealed that with increasing of duration of the extraction process from 10 to 30 minutes REMs recovery into the organic phase almost did not changed. The behaviour of iron in the extraction process by TBP was studied. It was found that such accompanying components as calcium and aluminium by tributyl phosphate didn't extracted. To construct isotherm of REMs extraction of by tributyl phosphate was used variable volume method. It was calculated three-step extraction is needed for REMs recovery from the solutions after nitric acid leaching of phosphorus production slag. The process of the three-steps counter current extraction of rare earth

  9. Visualizing Earth Materials

    NASA Astrophysics Data System (ADS)

    Cashman, K. V.; Rust, A.; Stibbon, E.; Harris, R.

    2016-12-01

    Earth materials are fundamental to art. They are pigments, they are clay, they provide form and color. Earth scientists, however, rarely attempt to make the physical properties of Earth materials visible through art, and similarly many artists use Earth materials without fully understanding their physical and chemical properties. Here we explore the intersection between art and science through study of the physical properties of Earth materials as characterized in the laboratory, and as transferred to paper using different techniques and suspending media. One focus of this collaboration is volcanic ash. Ash is interesting scientifically because its form provides information on the fundamental processes that drive volcanic eruptions, and determines its transport properties, and thus its potential to affect populations far downwind of the volcano. Ash properties also affect its behavior as an art material. From an aesthetic point of view, ash lends a granular surface to the image; it is also uncontrollable, and thus requires engagement between artist and medium. More fundamentally, using ash in art creates an exchange between the medium and the subject matter, and imparts something of the physical, visceral experience of volcanic landscapes to the viewer. Another component of this work uses powdered rock as a printing medium for geologic maps. Because different types of rock create powders with different properties (grain size distributions and shapes), the geology is communicated not only as color, but also by the physical characteristics of the material as it interacts with the paper. More importantly, the use of actual rocks samples as printing material for geologic maps not only makes a direct connection between the map and the material it represents, but also provides an emotional connection between the map, the viewer and the landscape, its colors, textures and geological juxtapositions. Both case studies provide examples not only of ways in which artists can

  10. Biogeochemical Processes in Microbial Ecosystems

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.

    2001-01-01

    The hierarchical organization of microbial ecosystems determines process rates that shape Earth's environment, create the biomarker sedimentary and atmospheric signatures of life, and define the stage upon which major evolutionary events occurred. In order to understand how microorganisms have shaped the global environment of Earth and, potentially, other worlds, we must develop an experimental paradigm that links biogeochemical processes with ever-changing temporal and spatial distributions of microbial populations and their metabolic properties. Additional information is contained in the original extended abstract.

  11. The precision-processing subsystem for the Earth Resources Technology Satellite.

    NASA Technical Reports Server (NTRS)

    Chapelle, W. E.; Bybee, J. E.; Bedross, G. M.

    1972-01-01

    Description of the precision processor, a subsystem in the image-processing system for the Earth Resources Technology Satellite (ERTS). This processor is a special-purpose image-measurement and printing system, designed to process user-selected bulk images to produce 1:1,000,000-scale film outputs and digital image data, presented in a Universal-Transverse-Mercator (UTM) projection. The system will remove geometric and radiometric errors introduced by the ERTS multispectral sensors and by the bulk-processor electron-beam recorder. The geometric transformations required for each input scene are determined by resection computations based on reseau measurements and image comparisons with a special ground-control base contained within the system; the images are then printed and digitized by electronic image-transfer techniques.

  12. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model.

    PubMed

    Gebauer, S; Grenfell, J L; Stock, J W; Lehmann, R; Godolt, M; von Paris, P; Rauer, H

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O 2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O 2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O 2 , whereas in the upper atmosphere, most O 2 is formed abiotically via CO 2 photolysis. The O 2 bistability found by Goldblatt et al. ( 2006 ) is not observed in our calculations likely due to our detailed CH 4 oxidation scheme. We calculate increased CH 4 with increasing O 2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O 2 is unique. Mixing, CH 4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O 2 fluxes. Regarding exoplanets, different "states" of O 2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases

  13. New worlds on the horizon: Earth-sized planets close to other stars.

    PubMed

    Gaidos, Eric; Haghighipour, Nader; Agol, Eric; Latham, David; Raymond, Sean; Rayner, John

    2007-10-12

    The search for habitable planets like Earth around other stars fulfills an ancient imperative to understand our origins and place in the cosmos. The past decade has seen the discovery of hundreds of planets, but nearly all are gas giants like Jupiter and Saturn. Recent advances in instrumentation and new missions are extending searches to planets the size of Earth but closer to their host stars. There are several possible ways such planets could form, and future observations will soon test those theories. Many of these planets we discover may be quite unlike Earth in their surface temperature and composition, but their study will nonetheless inform us about the process of planet formation and the frequency of Earth-like planets around other stars.

  14. Future Earth: Advancing Civic Understanding of the Anthropocene

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2014-08-01

    The Anthropocene, a term first coined in the 1980s by biologist Eugene Stoermer, is a word that encapsulates a powerful idea—that the world is now in the throes of a novel geological epoch, a period of time in which human activity, not natural cycles, dominates many of Earth's chemical, geological, and biological systems. The growing realization of our importance has caused a reanalysis, both scientifically and ethically, of our relationship with the natural world.

  15. Prospect of Continuous VLBI Measurement of Earth Rotation in Monitoring Geophysical Fluids

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Ma, Chopo; Clark, Thomas

    1998-01-01

    Large-scale mass transports in the geophysical fluids of the Earth system excite Earth's rotational variations in both length-of-day and polar motion. The excitation process is via the conservation of angular momentum. Therefore Earth rotation observations contain information about the integrated angular momentum (consisting of both the mass term and the motion term) of the geophysical fluids, which include atmosphere, hydrosphere, mantle, and the outer and inner cores. Such global information is often important and otherwise unattainable depending on the nature of the mass transport, its magnitude and time scale. The last few years have seen great advances in VLBI measurement of Earth rotation in precision and temporal resolution. These advances have opened new. areas in geophysical fluid studies, such as oceanic tidal angular momentum, atmospheric tides, Earth librations, and rapid atmospheric angular momentum fluctuations. Precision of 10 microseconds in UTI and 200 microarcseconds in polar motion can now be achieved on hourly basis. Building upon this heritage, the multi-network geodetic VLBI project, Continuous Observation of the Rotation of the Earth (CORE), promises to further these studies and to make possible studies on elusive but tell-tale geophysical processes such as oscillatory modes in the core and in the atmosphere. Currently the early phase of CORE is underway. Within a few years into the new mellinnium, the upcoming space gravity missions (such as GRACE) will measure the temporal variations in Earth's gravitational field, thus providing complementary information to that from Earth rotation study for a better understanding of global geophysical fluid processes.

  16. Modeling Earth's Climate

    ERIC Educational Resources Information Center

    Pallant, Amy; Lee, Hee-Sun; Pryputniewicz, Sara

    2012-01-01

    Systems thinking suggests that one can best understand a complex system by studying the interrelationships of its component parts rather than looking at the individual parts in isolation. With ongoing concern about the effects of climate change, using innovative materials to help students understand how Earth's systems connect with each other is…

  17. Earth Science Europe "Is Earth Science Europe an interesting and useful construct?"

    NASA Astrophysics Data System (ADS)

    Ludden, John

    2015-04-01

    In 2014 we managed to have a group of earth scientists from across the spectrum: from academic, survey, industry and government, pull together to create the first output for Earth Science Europe http://www.bgs.ac.uk/earthScienceEurope/downloads/EarthScienceEuropeBrochure.pdf In this document we stated that Earth scientists need a united, authoritative voice to enhance the status and impact of Earth science across Europe. The feeling was that there were many diverse infrastructure and research initiatives spanning the terrestrial and oceanic realms and science ranged from historical geology to active dynamics on Earth, and that a level of coordination and mutual knowledge sharing was necessary. In addition to a better understanding of the Earth in general, we thought there was a need to have Earth Science Europe develop a strategic research capacity in geohazards, georesources and environmental earth sciences, through a roadmap addressing fundamental and societal challenges. This would involve a robust research infrastructure to deliver strategic goals, enabling inspirational research and promoting solutions to societal challenges. In this talk I will propose some next steps and discuss what this "authoritative voice" could look like and ask the question - "is Earth Science Europe and interesting and useful concept?"

  18. The 2009 Earth Science Literacy Principles

    NASA Astrophysics Data System (ADS)

    Wysession, M. E.; Budd, D. A.; Campbell, K. M.; Conklin, M. H.; Kappel, E. S.; Ladue, N.; Lewis, G.; Raynolds, R.; Ridky, R. W.; Ross, R. M.; Taber, J.; Tewksbury, B. J.; Tuddenham, P.

    2009-12-01

    In 2009, the NSF-funded Earth Science Literacy Initiative (ESLI) completed and published a document representing a community consensus about what all Americans should understand about Earth sciences. These Earth Science Literacy Principles, presented as a printed brochure and on the Internet at www.earthscienceliteracy.org, were created through the work of nearly 1000 geoscientists and geoeducators who helped identify nine “big ideas” and seventy-five “supporting concepts” fundamental to terrestrial geosciences. The content scope involved the geosphere and land-based hydrosphere as addressed by the NSF-EAR program, including the fields of geobiology and low-temperature geochemistry, geomorphology and land-use dynamics, geophysics, hydrologic sciences, petrology and geochemistry, sedimentary geology and paleobiology, and tectonics. The ESLI Principles were designed to complement similar documents from the ocean, atmosphere, and climate research communities, with the long-term goal of combining these separate literacy documents into a single Earth System Science literacy framework. The aim of these principles is to educate the public, shape the future of geoscience education, and help guide the development of government policy related to Earth science. For example, K-12 textbooks are currently being written and museum exhibits constructed with these Principles in hand. NPR-funded educational videos are in the process of being made in alignment with the ESLP Principles. US House and Senate representatives on science and education committees have been made aware that the major geoscience organizations have endorsed such a document generated and supported by the community. Given the importance of Earth science in so many societally relevant topics such as climate change, energy and mineral resources, water availability, natural hazards, agriculture, and human impacts on the biosphere, efforts should be taken to ensure that this document is in a position to

  19. The Lifeworld Earth and a Modelled Earth

    ERIC Educational Resources Information Center

    Juuti, Kalle

    2014-01-01

    The goal of this paper is to study the question of whether a phenomenological view of the Earth could be empirically endorsed. The phenomenological way of thinking considers the Earth as a material entity, but not as an object as viewed in science. In the learning science tradition, tracking the process of the conceptual change of the shape of the…

  20. Understanding How Astronauts Adapt to Space and to Earth: Anatomical Studies of Central Vestibular Adaptation

    NASA Technical Reports Server (NTRS)

    Holstein, Gay; Vasques, Marilyn; Aquilina, Rudy (Technical Monitor)

    2002-01-01

    Significant changes take place in the nervous systems of astronauts during and following exposure to microgravity. These changes, particularly in the part of the brain that controls balance, the vestibular system, can cause sensations of rotation, dizziness, and vertigo, as well as space adaptation syndrome. Adaptation to the microgravity environment usually occurs within one week, and a subsequent re-adaptation period of several days is often required upon return to Earth. In order to realize long-term spaceflight, effective countermeasures for these symptoms must be developed. The structural changes that take place in one of the vestibular regions of the brain (the cerebellar cortex) during the process of adaptation to Earth's gravity remain unclear and are the subject of an experiment being conducted on STS-107 by Dr. Gay Holstein of the Mount Sinai School of Medicine in New York. Using the rat as a model, Dr. Holstein and her team will seek to identify the cellular changes underlying the vestibular changes experienced by astronauts.

  1. Integrating Research of the Sun-Earth System

    DOE PAGES

    Jordanova, Vania K.; Borovsky, Joseph E.; Jordanov, Valentin T.

    2017-05-02

    Understanding the complex interactions between the magnetic fields of the Sun and Earth remains an important challenge to space physics research. Processes that occur near the Sun at tens of thousands of kilometers from the Earth can generate geomagnetic storms that affect the entire magnetosphere, down to the upper atmosphere. These storms also threaten the ever more sophisticated technologies that we place into the space environment to sustain us, for example, GPS, the satellites we rely on to monitor our weather, and relays that guide our radio transmissions. Increasingly, we need to develop space weather models that can provide timelymore » and accurate predictions so that we can safeguard our society and the infrastructure we depend on.« less

  2. Integrating Research of the Sun-Earth System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordanova, Vania K.; Borovsky, Joseph E.; Jordanov, Valentin T.

    Understanding the complex interactions between the magnetic fields of the Sun and Earth remains an important challenge to space physics research. Processes that occur near the Sun at tens of thousands of kilometers from the Earth can generate geomagnetic storms that affect the entire magnetosphere, down to the upper atmosphere. These storms also threaten the ever more sophisticated technologies that we place into the space environment to sustain us, for example, GPS, the satellites we rely on to monitor our weather, and relays that guide our radio transmissions. Increasingly, we need to develop space weather models that can provide timelymore » and accurate predictions so that we can safeguard our society and the infrastructure we depend on.« less

  3. Rare earths: Market disruption, innovation, and global supply chains

    USGS Publications Warehouse

    Eggert, Roderick; Wadia, Cyrus; Anderson, Corby; Bauer, Diana; Fields, Fletcher; Meinert, Lawrence D.; Taylor, Patrick

    2016-01-01

    Rare earths, sometimes called the vitamins of modern materials, captured public attention when their prices increased more than ten-fold in 2010 and 2011. As prices fell between 2011 and 2016, rare earths receded from public view—but less visibly they became a major focus of innovative activity in companies, government laboratories and universities. Geoscientists worked to better understand the resource base and improve our knowledge about mineral deposits that will be mines in the future. Process engineers carried out research that is making primary production and recycling more efficient. Materials scientists and engineers searched for substitutes that will require fewer or no rare earths while providing properties comparable or superior to those of existing materials. As a result, even though global supply chains are not significantly different now than they were before the market disruption, the innovative activity motivated by the disruption likely will have far-reaching, if unpredictable, consequences for supply chains of rare earths in the future.

  4. Building a Dashboard of the Planet with Google Earth and Earth Engine

    NASA Astrophysics Data System (ADS)

    Moore, R. T.; Hancher, M.

    2016-12-01

    In 2005 Google Earth, a popular 3-D virtual globe, was first released. Scientists immediately recognized how it could be used to tell stories about the Earth. From 2006 to 2009, the "Virtual Globes" sessions of AGU included innovative examples of scientists and educators using Google Earth, and since that time it has become a commonplace tool for communicating scientific results. In 2009 Google Earth Engine, a cloud-based platform for planetary-scale geospatial analysis, was first announced. Earth Engine was initially used to extract information about the world's forests from raw Landsat data. Since then, the platform has proven highly effective for general analysis of georeferenced data, and users have expanded the list of use cases to include high-impact societal issues such as conservation, drought, disease, food security, water management, climate change and environmental monitoring. To support these use cases, the platform has continuously evolved with new datasets, analysis functions, and user interface tools. This talk will give an overview of the latest Google Earth and Earth Engine functionality that allow partners to understand, monitor and tell stories about of our living, breathing Earth. https://earth.google.com https://earthengine.google.com

  5. PROCESS FOR SEPARATING AMERICIUM AND CURIUM FROM RARE EARTH ELEMENTS

    DOEpatents

    Baybarz, R.D.; Lloyd, M.H.

    1963-02-26

    This invention relates to methods of separating americium and curium values from rare earth values. In accordance with the invention americium, curium, and rare earth values are sorbed on an anion exchange resin. A major portion of the rare earth values are selectively stripped from the resin with a concentrated aqueous solution of lithium chloride, and americium, curium, and a minor portion of rare earth values are then stripped from the resin with a dilute aqueous solution of lithium chloride. The americium and curium values are further purified by increasing the concentration of lithium chloride in the solution to at least 8 molar and selectively extracting rare earth values from the resulting solution with a monoalkylphosphoric acid. (AEC)

  6. Linking Humans to Data: Designing an Enterprise Architecture for EarthCube

    NASA Astrophysics Data System (ADS)

    Xu, C.; Yang, C.; Meyer, C. B.

    2013-12-01

    National Science Foundation (NSF)'s EarthCube is a strategic initiative towards a grand enterprise that holistically incorporates different geoscience research domains. The EarthCube as envisioned by NSF is a community-guided cyberinfrastructure (NSF 2011). The design of EarthCube enterprise architecture (EA) offers a vision to harmonize processes between the operations of EarthCube and its information technology foundation, the geospatial cyberinfrastructure. (Yang et al. 2010). We envision these processes as linking humans to data. We report here on fundamental ideas that would ultimately materialize as a conceptual design of EarthCube EA. EarthCube can be viewed as a meta-science that seeks to advance knowledge of the Earth through cross-disciplinary connections made using conventional domain-based earth science research. In order to build capacity that enables crossing disciplinary chasms, a key step would be to identify the cornerstones of the envisioned enterprise architecture. Human and data inputs are the two key factors to the success of EarthCube (NSF 2011), based upon which three hypotheses have been made: 1) cross disciplinary collaboration has to be achieved through data sharing; 2) disciplinary differences need to be articulated and captured in both computer and human understandable formats; 3) human intervention is crucial for crossing the disciplinary chasms. We have selected the Federal Enterprise Architecture Framework (FEAF, CIO Council 2013) as the baseline for the envisioned EarthCube EA, noting that the FEAF's deficiencies can be improved upon with inputs from three other popular EA frameworks. This presentation reports the latest on the conceptual design of an enterprise architecture in support of EarthCube.

  7. Social Information Processing and Emotional Understanding in Children with LD

    ERIC Educational Resources Information Center

    Bauminger, Nirit; Edelsztein, Hany Schorr; Morash, Janice

    2005-01-01

    The present study aimed to comprehensively examine social cognition processes in children with and without learning disabilities (LD), focusing on social information processing (SIP) and complex emotional understanding capabilities such as understanding complex, mixed, and hidden emotions. Participants were 50 children with LD (age range 9.4-12.7;…

  8. Uncovering the Chemistry of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Zeng, L.; Jacobsen, S. B.; Sasselov, D. D.

    2015-12-01

    We propose to use the evidence from our solar system to understand exoplanets, and in particular, to predict their surface chemistry and thereby the possibility of life. An Earth-like planet, born from the same nebula as its host star, is composed primarily of silicate rocks and an iron-nickel metal core, and depleted in volatile content in a systematic manner. The more volatile (easier to vaporize or dissociate into gas form) an element is in an Earth-like planet, the more depleted the element is compared to its host star. After depletion, an Earth-like planet would go through the process of core formation due to heat from radioactive decay and collisions. Core formation depletes a planet's rocky mantle of siderophile (iron-loving) elements, in addition to the volatile depletion. After that, Earth-like planets likely accrete some volatile-rich materials, called "late veneer". The late veneer could be essential to the origins of life on Earth and Earth-like planets, as it also delivers the volatiles such as nitrogen, sulfur, carbon and water to the planet's surface, which are crucial for life to occur. Here we build an integrative model of Earth-like planets from the bottom up. Thus the chemical compositions of Earth-like planets could be inferred from their mass-radius relations and their host stars' elemental abundances, and the origins of volatile contents (especially water) on their surfaces could be understood, and thereby shed light on the origins of life on them. This elemental abundance model could be applied to other rocky exoplanets in exoplanet systems.

  9. Massive impact-induced release of carbon and sulfur gases in the early Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Marchi, S.; Black, B. A.; Elkins-Tanton, L. T.; Bottke, W. F.

    2016-09-01

    Recent revisions to our understanding of the collisional history of the Hadean and early-Archean Earth indicate that large collisions may have been an important geophysical process. In this work we show that the early bombardment flux of large impactors (>100 km) facilitated the atmospheric release of greenhouse gases (particularly CO2) from Earth's mantle. Depending on the timescale for the drawdown of atmospheric CO2, the Earth's surface could have been subject to prolonged clement surface conditions or multiple freeze-thaw cycles. The bombardment also delivered and redistributed to the surface large quantities of sulfur, one of the most important elements for life. The stochastic occurrence of large collisions could provide insights on why the Earth and Venus, considered Earth's twin planet, exhibit radically different atmospheres.

  10. Framework for Processing Citizens Science Data for Applications to NASA Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Teng, William; Albayrak, Arif

    2017-01-01

    Citizen science (or crowdsourcing) has drawn much high-level recent and ongoing interest and support. It is poised to be applied, beyond the by-now fairly familiar use of, e.g., Twitter for natural hazards monitoring, to science research, such as augmenting the validation of NASA earth science mission data. This interest and support is seen in the 2014 National Plan for Civil Earth Observations, the 2015 White House forum on citizen science and crowdsourcing, the ongoing Senate Bill 2013 (Crowdsourcing and Citizen Science Act of 2015), the recent (August 2016) Open Geospatial Consortium (OGC) call for public participation in its newly-established Citizen Science Domain Working Group, and NASA's initiation of a new Citizen Science for Earth Systems Program (along with its first citizen science-focused solicitation for proposals). Over the past several years, we have been exploring the feasibility of extracting from the Twitter data stream useful information for application to NASA precipitation research, with both "passive" and "active" participation by the twitterers. The Twitter database, which recently passed its tenth anniversary, is potentially a rich source of real-time and historical global information for science applications. The time-varying set of "precipitation" tweets can be thought of as an organic network of rain gauges, potentially providing a widespread view of precipitation occurrence. The validation of satellite precipitation estimates is challenging, because many regions lack data or access to data, especially outside of the U.S. and in remote and developing areas. Mining the Twitter stream could augment these validation programs and, potentially, help tune existing algorithms. Our ongoing work, though exploratory, has resulted in key components for processing and managing tweets, including the capabilities to filter the Twitter stream in real time, to extract location information, to filter for exact phrases, and to plot tweet distributions. The

  11. Applications of neural network methods to the processing of earth observation satellite data.

    PubMed

    Loyola, Diego G

    2006-03-01

    The new generation of earth observation satellites carries advanced sensors that will gather very precise data for studying the Earth system and global climate. This paper shows that neural network methods can be successfully used for solving forward and inverse remote sensing problems, providing both accurate and fast solutions. Two examples of multi-neural network systems for the determination of cloud properties and for the retrieval of total columns of ozone using satellite data are presented. The developed algorithms based on multi-neural network are currently being used for the operational processing of European atmospheric satellite sensors and will play a key role in related satellite missions planed for the near future.

  12. Rehabilitation of adobe buildings. Understanding different materials from Portugal

    NASA Astrophysics Data System (ADS)

    Costa, Cristiana; Rocha, Fernando; Velosa, Ana

    2016-04-01

    Earth construction is the oldest building material known, with documented cases of the use of earth bricks since Mesopotamia around 10 000 BC (Heathcote, 1995). The earth construction exists throughout the majority of the world in different cultures, and for some countries, nowadays it continues to be the main process of construction (Vega et al, 2011). Around 30% of the world's population lives in buildings made of earth materials. Earthen construction is an environmentally friendly technique with a social and cultural contribution; this advantage is increased when this type of construction is applied in developing countries where the material costs counterbalance with labour costs, and where other materials and techniques cannot be available (Ciancio et al, 2013). Studies of materials characterization are required in order to understand the composition and specific properties of the earth buildings, their heterogeneity and their degradation mechanisms. Some adobes from different buildings, ages and regions of Portugal were collected in order to characterize them (mineralogically, chemically and physically). It was possible to understand the composition of these materials and their differences. Main minerals are quartz, feldspars, calcite and phyllosilicates (mica and kaolinite). The mechanical behaviour of these materials isn't the best, but it is possible to improve it with some simple and cheap natural additives (kaolinitic soils). The characterization of these materials allows us to understand the differences between the materials from the different regions (controlled by locally available raw materials). Understanding these materials, and their properties, it is possible to formulate new ones for repair, conservation and rehabilitation works. The adobe bricks are an alternative of kiln baked bricks which has several advantages and one of the most important is that these materials are recyclable. Adobes are an excellent option for building rehabilitation, if

  13. Understanding geological processes: Visualization of rigid and non-rigid transformations

    NASA Astrophysics Data System (ADS)

    Shipley, T. F.; Atit, K.; Manduca, C. A.; Ormand, C. J.; Resnick, I.; Tikoff, B.

    2012-12-01

    Visualizations are used in the geological sciences to support reasoning about structures and events. Research in cognitive sciences offers insights into the range of skills of different users, and ultimately how visualizations might support different users. To understand the range of skills needed to reason about earth processes we have developed a program of research that is grounded in the geosciences' careful description of the spatial and spatiotemporal patterns associated with earth processes. In particular, we are pursuing a research program that identifies specific spatial skills and investigates whether and how they are related to each other. For this study, we focus on a specific question: Is there an important distinction in the geosciences between rigid and non-rigid deformation? To study a general spatial thinking skill we employed displays with non-geological objects that had been altered by rigid change (rotation), and two types of non-rigid change ("brittle" (or discontinuous) and "ductile" (or continuous) deformation). Disciplinary scientists (geosciences and chemistry faculty), and novices (non-science faculty and undergraduate psychology students) answered questions that required them to visualize the appearance of the object before the change. In one study, geologists and chemists were found to be superior to non-science faculty in reasoning about rigid rotations (e.g., what an object would look like from a different perspective). Geologists were superior to chemists in reasoning about brittle deformations (e.g., what an object looked like before it was broken - here the object was a word cut into many fragments displaced in different directions). This finding is consistent with two hypotheses: 1) Experts are good at visualizing the types of changes required for their domain; and 2) Visualization of rigid and non-rigid changes are not the same skill. An additional important finding is that there was a broad range of skill in both rigid and non

  14. EarthShape: A Strategy for Investigating the Role of Biota on Surface Processes

    NASA Astrophysics Data System (ADS)

    Ehlers, T. A.; von Blanckenburg, F.; Übernickel, K.; Paulino, L.

    2016-12-01

    EarthShape - "Earth surface shaping by biota" is a 6-year priority research program funded by the German science foundation (DFG-SPP 1803) that performs soil- and landscape-scale critical zone research at 4 locations along a climate gradient in the Chilean Coastal Cordillera. This region was selected because of its north-south orientation such that it captures a large ecological and climate gradient ranging from hyper-arid to temperate to humid conditions. The sites comprise granitic, previously unglaciated mountain ranges. EarthShape involves an interdisciplinary collaboration between geologists, geomorphologists, ecologists, soil scientists, microbiologists, geophysicists, geochemists, and hydrogeologists including 18 German and 8 Chilean institutions. EarthShape is composed of 4 research clusters representing the process chain from weathering of substrate to deposition of eroded material. Cluster 1 explores micro-biota as the "weathering engine". Investigations in this cluster quantify different mechanisms of biogenic weathering whereby plants, fungi, and bacteria interact with rock in the production of soil. Cluster 2 explores bio-mediated redistribution of material within the weathering zone. Studies in this cluster focus on soil catenas along hill slope profiles to investigate the modification of matter along its transport path. Cluster 3 explores biotic modulation of erosion and sediment routing at the catchment scale. Investigations in this cluster explore the effects of vegetation cover on solute and sediment transport from hill slopes to the channel network. Cluster 4 explores the depositional legacy of coupled biogenic and Earth surface systems. This cluster investigates records of vegetation-land surface interactions in different depositional settings. A final component of EarthShape lies in the integration of results from these 4 clusters using numerical models to bridging between the diverse times scales used by different disciplines.

  15. Crossing disciplines and scales to understand the critical zone

    USGS Publications Warehouse

    Brantley, S.L.; Goldhaber, M.B.; Vala, Ragnarsdottir K.

    2007-01-01

    The Critical Zone (CZ) is the system of coupled chemical, biological, physical, and geological processes operating together to support life at the Earth's surface. While our understanding of this zone has increased over the last hundred years, further advance requires scientists to cross disciplines and scales to integrate understanding of processes in the CZ, ranging in scale from the mineral-water interface to the globe. Despite the extreme heterogeneities manifest in the CZ, patterns are observed at all scales. Explanations require the use of new computational and analytical tools, inventive interdisciplinary approaches, and growing networks of sites and people.

  16. NASA's Earth Science Flight Program Meets the Challenges of Today and Tomorrow

    NASA Technical Reports Server (NTRS)

    Ianson, Eric E.

    2016-01-01

    NASA's capability for better understanding the current state of the Earth system. ESM and ESSP projects often involve partnerships with other US agencies and/or international organizations. This adds to the complexity of mission development, but allows for a greater scientific return on NASA's investments. The Earth Science Airborne Science Program provides manned and unmanned aircraft systems that further science and advance the use of satellite data. NASA uses these assets worldwide in campaigns to investigate extreme weather events, observe Earth system processes, obtain data for Earth science modeling activities, and calibrate instruments flying aboard Earth science spacecraft. The Airborne Science Program has six dedicated aircraft and access to many other platforms. The Earth Science Multi-Mission Operations program acquires, preserves, and distributes observational data from operating spacecraft to support Earth Science research focus areas. The Earth Observing System Data and Information System (EOSDIS), which has been in operations since 1994, primarily accomplishes this. EOSDIS acquires, processes, archives, and distributes Earth Science data and information products. The archiving of NASA Earth Science information happens at eight Distributed Active Archive Centers (DAACs) and four disciplinary data centers located across the United States. The DAACs specialize by topic area, and make their data available to researchers around the world. The DAACs currently house over 9 petabytes of data, growing at a rate of 6.4 terabytes per day. NASA's current Earth Science portfolio is responsive to the National Research Council (NRC) 2007 Earth Science Decadal Survey and well as the 2010 NASA Response to President Obama's Climate Plan. As the program evolves into the future it will leverage the lessons learned from the current missions in operations and development, and plan for adjustments to future objectives in response to the anticipated 2017 NRC Decadal Survey.

  17. A basic introduction to the thermodynamics of the Earth system far from equilibrium and maximum entropy production

    PubMed Central

    Kleidon, A.

    2010-01-01

    The Earth system is remarkably different from its planetary neighbours in that it shows pronounced, strong global cycling of matter. These global cycles result in the maintenance of a unique thermodynamic state of the Earth's atmosphere which is far from thermodynamic equilibrium (TE). Here, I provide a simple introduction of the thermodynamic basis to understand why Earth system processes operate so far away from TE. I use a simple toy model to illustrate the application of non-equilibrium thermodynamics and to classify applications of the proposed principle of maximum entropy production (MEP) to such processes into three different cases of contrasting flexibility in the boundary conditions. I then provide a brief overview of the different processes within the Earth system that produce entropy, review actual examples of MEP in environmental and ecological systems, and discuss the role of interactions among dissipative processes in making boundary conditions more flexible. I close with a brief summary and conclusion. PMID:20368248

  18. A basic introduction to the thermodynamics of the Earth system far from equilibrium and maximum entropy production.

    PubMed

    Kleidon, A

    2010-05-12

    The Earth system is remarkably different from its planetary neighbours in that it shows pronounced, strong global cycling of matter. These global cycles result in the maintenance of a unique thermodynamic state of the Earth's atmosphere which is far from thermodynamic equilibrium (TE). Here, I provide a simple introduction of the thermodynamic basis to understand why Earth system processes operate so far away from TE. I use a simple toy model to illustrate the application of non-equilibrium thermodynamics and to classify applications of the proposed principle of maximum entropy production (MEP) to such processes into three different cases of contrasting flexibility in the boundary conditions. I then provide a brief overview of the different processes within the Earth system that produce entropy, review actual examples of MEP in environmental and ecological systems, and discuss the role of interactions among dissipative processes in making boundary conditions more flexible. I close with a brief summary and conclusion.

  19. Earth Rotation

    NASA Technical Reports Server (NTRS)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  20. Deriving Earth Science Data Analytics Tools/Techniques Requirements

    NASA Astrophysics Data System (ADS)

    Kempler, S. J.

    2015-12-01

    Data Analytics applications have made successful strides in the business world where co-analyzing extremely large sets of independent variables have proven profitable. Today, most data analytics tools and techniques, sometimes applicable to Earth science, have targeted the business industry. In fact, the literature is nearly absent of discussion about Earth science data analytics. Earth science data analytics (ESDA) is the process of examining large amounts of data from a variety of sources to uncover hidden patterns, unknown correlations, and other useful information. ESDA is most often applied to data preparation, data reduction, and data analysis. Co-analysis of increasing number and volume of Earth science data has become more prevalent ushered by the plethora of Earth science data sources generated by US programs, international programs, field experiments, ground stations, and citizen scientists. Through work associated with the Earth Science Information Partners (ESIP) Federation, ESDA types have been defined in terms of data analytics end goals. Goals of which are very different than those in business, requiring different tools and techniques. A sampling of use cases have been collected and analyzed in terms of data analytics end goal types, volume, specialized processing, and other attributes. The goal of collecting these use cases is to be able to better understand and specify requirements for data analytics tools and techniques yet to be implemented. This presentation will describe the attributes and preliminary findings of ESDA use cases, as well as provide early analysis of data analytics tools/techniques requirements that would support specific ESDA type goals. Representative existing data analytics tools/techniques relevant to ESDA will also be addressed.

  1. NASA's Earth Observing System Data and Information System - EOSDIS

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuram K.

    2011-01-01

    This slide presentation reviews the work of NASA's Earth Observing System Data and Information System (EOSDIS), a petabyte-scale archive of environmental data that supports global climate change research. The Earth Science Data Systems provide end-to-end capabilities to deliver data and information products to users in support of understanding the Earth system. The presentation contains photographs from space of recent events, (i.e., the effects of the tsunami in Japan, and the wildfires in Australia.) It also includes details of the Data Centers that provide the data to EOSDIS and Science Investigator-led Processing Systems. Information about the Land, Atmosphere Near-real-time Capability for EOS (LANCE) and some of the uses that the system has made possible are reviewed. Also included is information about how to access the data, and evolutionary plans for the future of the system.

  2. As "Process" As It Can Get: Students' Understanding of Biological Processes.

    ERIC Educational Resources Information Center

    Barak, Judith; Gorodetsky, Malka

    1999-01-01

    Analyzes students' understanding of biological phenomena via the ontological categories of processes and matter. Analysis is based on tenth-grade students' explanations of biological phenomena such as photosynthesis, energy resources, temperature regulation, and the interrelationships between living and nonliving things. (Author/WRM)

  3. The Earth: A Changing Planet

    NASA Astrophysics Data System (ADS)

    Ribas, Núria; Màrquez, Conxita

    2013-04-01

    hours of class time for students from 13 to 14 years of age. During the learning process, different methodological tools of teaching and learning have been used. After reading and understanding news about natural disasters such as earthquakes and eruptions, cooperative group work and an oral presentation are prepared. In addition, it has been very useful to follow-up with some web simulations to predict natural phenomena, which can then be tested in the laboratory. Finally, the students apply their new understanding on a visit to a geological formation, where applying the language learned by observing the rocks, they demonstrate that the planet Earth has changed over the course of many millions of years. Natural hazards are a small and timely demonstration of the ability to change our planet.

  4. Understanding the Sun-Earth Libration Point Orbit Formation Flying Challenges For WFIRST and Starshade

    NASA Technical Reports Server (NTRS)

    Webster, Cassandra M.; Folta, David C.

    2017-01-01

    In order to fly an occulter in formation with a telescope at the Sun-Earth L2 (SEL2) Libration Point, one must have a detailed understanding of the dy-namics that govern the restricted three body system. For initial purposes, a linear approximation is satisfactory, but operations will require a high-fidelity modeling tool along with strategic targeting methods in order to be successful. This paper focuses on the challenging dynamics of the transfer trajectories to achieve the relative positioning of two spacecraft to fly in formation at SEL2, in our case, the Wide-Field Infrared Survey Telescope (WFIRST) and a proposed Starshade. By modeling the formation transfers using a high fidelity tool, an accurate V approximation can be made to as-sist with the development of the subsystem design required for a WFIRST and Starshade formation flight mission.

  5. Using PlayDoh Astronomy for Understanding the Size and Scale of the Earth-Moon System and as a Probe for Spatial Translation Ability

    NASA Astrophysics Data System (ADS)

    Grundstrom, Erika

    2013-01-01

    To help students love science more and to help them understand the vast distances that pervade astronomy, we use kinesthetic modeling of the Earth-Moon system using PlayDoh. When coupled with discussion, we found (in a pilot study) that students of all ages (children up through adults) acquired a more accurate mental representation of the Earth-Moon system. During early September 2012, we devised and implemented a curriculum unit that focused on the Earth-Moon system and how that relates to eclipses for six middle-Tennessee 6th grade public school classrooms. For this unit, we used PlayDoh as the kinesthetic modeling tool. First, we evaluated what the students knew about the size and scale prior to this intervention using paper and model pre-tests. Second, we used the PlayDoh to model the Earth-Moon system and when possible, conducted an immediate post-test. The students then engaged with the PlayDoh model to help them understand eclipses. Third, we conducted a one-month-later delayed post-test. One thing to note is that about half of the students had experienced the PlayDoh modeling part of a 5th grade pilot lesson during May 2012 therefore the pre-test acted as a four-month-later delayed post-test for these students. We find, among other things, that students retain relative size information more readily than relative distance information. We also find differences in how consistent students are when trying to translate the size/scale they have in their heads to the different modes of assessment utilized.

  6. Towards Big Earth Data Analytics: The EarthServer Approach

    NASA Astrophysics Data System (ADS)

    Baumann, Peter

    2013-04-01

    Big Data in the Earth sciences, the Tera- to Exabyte archives, mostly are made up from coverage data whereby the term "coverage", according to ISO and OGC, is defined as the digital representation of some space-time varying phenomenon. Common examples include 1-D sensor timeseries, 2-D remote sensing imagery, 3D x/y/t image timeseries and x/y/z geology data, and 4-D x/y/z/t atmosphere and ocean data. Analytics on such data requires on-demand processing of sometimes significant complexity, such as getting the Fourier transform of satellite images. As network bandwidth limits prohibit transfer of such Big Data it is indispensable to devise protocols allowing clients to task flexible and fast processing on the server. The EarthServer initiative, funded by EU FP7 eInfrastructures, unites 11 partners from computer and earth sciences to establish Big Earth Data Analytics. One key ingredient is flexibility for users to ask what they want, not impeded and complicated by system internals. The EarthServer answer to this is to use high-level query languages; these have proven tremendously successful on tabular and XML data, and we extend them with a central geo data structure, multi-dimensional arrays. A second key ingredient is scalability. Without any doubt, scalability ultimately can only be achieved through parallelization. In the past, parallelizing code has been done at compile time and usually with manual intervention. The EarthServer approach is to perform a samentic-based dynamic distribution of queries fragments based on networks optimization and further criteria. The EarthServer platform is comprised by rasdaman, an Array DBMS enabling efficient storage and retrieval of any-size, any-type multi-dimensional raster data. In the project, rasdaman is being extended with several functionality and scalability features, including: support for irregular grids and general meshes; in-situ retrieval (evaluation of database queries on existing archive structures, avoiding data

  7. Small unmanned aircraft systems for remote sensing and Earth science research

    NASA Astrophysics Data System (ADS)

    Hugenholtz, Chris H.; Moorman, Brian J.; Riddell, Kevin; Whitehead, Ken

    2012-06-01

    To understand and predict Earth-surface dynamics, scientists often rely on access to the latest remote sensing data. Over the past several decades, considerable progress has been made in the development of specialized Earth observation sensors for measuring a wide range of processes and features. Comparatively little progress has been made, however, in the development of new platforms upon which these sensors can be deployed. Conventional platforms are still almost exclusively restricted to piloted aircraft and satellites. For many Earth science research questions and applications these platforms do not yet have the resolution or operational flexibility to provide answers affordably. The most effective remote sensing data match the spatiotemporal scale of the process or feature of interest. An emerging technology comprising unmanned aircraft systems (UAS), also known as unmanned aerial vehicles (UAV), is poised to offer a viable alternative to conventional platforms for acquiring high-resolution remote sensing data with increased operational flexibility, lower cost, and greater versatility (Figure 1).

  8. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Technical Reports Server (NTRS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard; Hearty, Thomas; hide

    2011-01-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole disk Earth model simulations used to better under- stand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute s Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model (Tinetti et al., 2006a,b). This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of approx.100 pixels on the visible disk, and four categories of water clouds, which were defined using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to the Earth s lightcurve, absolute brightness, and spectral data, with a root-mean-square error of typically less than 3% for the multiwavelength lightcurves, and residuals of approx.10% for the absolute brightness throughout the visible and NIR spectral range. We extend our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of approx.7%, and temperature errors of less than 1K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated

  9. Interactive Computing and Processing of NASA Land Surface Observations Using Google Earth Engine

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Burks, Jason; Bell, Jordan

    2016-01-01

    Google's Earth Engine offers a "big data" approach to processing large volumes of NASA and other remote sensing products. h\\ps://earthengine.google.com/ Interfaces include a Javascript or Python-based API, useful for accessing and processing over large periods of record for Landsat and MODIS observations. Other data sets are frequently added, including weather and climate model data sets, etc. Demonstrations here focus on exploratory efforts to perform land surface change detection related to severe weather, and other disaster events.

  10. NASA's Earth science flight program status

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Volz, Stephen M.

    2010-10-01

    NASA's strategic goal to "advance scientific understanding of the changing Earth system to meet societal needs" continues the agency's legacy of expanding human knowledge of the Earth through space activities, as mandated by the National Aeronautics and Space Act of 1958. Over the past 50 years, NASA has been the world leader in developing space-based Earth observing systems and capabilities that have fundamentally changed our view of our planet and have defined Earth system science. The U.S. National Research Council report "Earth Observations from Space: The First 50 Years of Scientific Achievements" published in 2008 by the National Academy of Sciences articulates those key achievements and the evolution of the space observing capabilities, looking forward to growing potential to address Earth science questions and enable an abundance of practical applications. NASA's Earth science program is an end-to-end one that encompasses the development of observational techniques and the instrument technology needed to implement them. This includes laboratory testing and demonstration from surface, airborne, or space-based platforms; research to increase basic process knowledge; incorporation of results into complex computational models to more fully characterize the present state and future evolution of the Earth system; and development of partnerships with national and international organizations that can use the generated information in environmental forecasting and in policy, business, and management decisions. Currently, NASA's Earth Science Division (ESD) has 14 operating Earth science space missions with 6 in development and 18 under study or in technology risk reduction. Two Tier 2 Decadal Survey climate-focused missions, Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) and Surface Water and Ocean Topography (SWOT), have been identified in conjunction with the U.S. Global Change Research Program and initiated for launch in the 2019

  11. Chemical Mechanisms and Their Applications in the Goddard Earth Observing System (GEOS) Earth System Model.

    PubMed

    Nielsen, J Eric; Pawson, Steven; Molod, Andrea; Auer, Benjamin; da Silva, Arlindo M; Douglass, Anne R; Duncan, Bryan; Liang, Qing; Manyin, Michael; Oman, Luke D; Putman, William; Strahan, Susan E; Wargan, Krzysztof

    2017-12-01

    NASA's Goddard Earth Observing System (GEOS) Earth System Model (ESM) is a modular, general circulation model (GCM), and data assimilation system (DAS) that is used to simulate and study the coupled dynamics, physics, chemistry, and biology of our planet. GEOS is developed by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. It generates near-real-time analyzed data products, reanalyses, and weather and seasonal forecasts to support research targeted to understanding interactions among Earth System processes. For chemistry, our efforts are focused on ozone and its influence on the state of the atmosphere and oceans, and on trace gas data assimilation and global forecasting at mesoscale discretization. Several chemistry and aerosol modules are coupled to the GCM, which enables GEOS to address topics pertinent to NASA's Earth Science Mission. This paper describes the atmospheric chemistry components of GEOS and provides an overview of its Earth System Modeling Framework (ESMF)-based software infrastructure, which promotes a rich spectrum of feedbacks that influence circulation and climate, and impact human and ecosystem health. We detail how GEOS allows model users to select chemical mechanisms and emission scenarios at run time, establish the extent to which the aerosol and chemical components communicate, and decide whether either or both influence the radiative transfer calculations. A variety of resolutions facilitates research on spatial and temporal scales relevant to problems ranging from hourly changes in air quality to trace gas trends in a changing climate. Samples of recent GEOS chemistry applications are provided.

  12. Chemical Mechanisms and Their Applications in the Goddard Earth Observing System (GEOS) Earth System Model

    PubMed Central

    Pawson, Steven; Molod, Andrea; Auer, Benjamin; da Silva, Arlindo M.; Douglass, Anne R.; Duncan, Bryan; Liang, Qing; Manyin, Michael; Oman, Luke D.; Putman, William; Strahan, Susan E.; Wargan, Krzysztof

    2017-01-01

    Abstract NASA's Goddard Earth Observing System (GEOS) Earth System Model (ESM) is a modular, general circulation model (GCM), and data assimilation system (DAS) that is used to simulate and study the coupled dynamics, physics, chemistry, and biology of our planet. GEOS is developed by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. It generates near‐real‐time analyzed data products, reanalyses, and weather and seasonal forecasts to support research targeted to understanding interactions among Earth System processes. For chemistry, our efforts are focused on ozone and its influence on the state of the atmosphere and oceans, and on trace gas data assimilation and global forecasting at mesoscale discretization. Several chemistry and aerosol modules are coupled to the GCM, which enables GEOS to address topics pertinent to NASA's Earth Science Mission. This paper describes the atmospheric chemistry components of GEOS and provides an overview of its Earth System Modeling Framework (ESMF)‐based software infrastructure, which promotes a rich spectrum of feedbacks that influence circulation and climate, and impact human and ecosystem health. We detail how GEOS allows model users to select chemical mechanisms and emission scenarios at run time, establish the extent to which the aerosol and chemical components communicate, and decide whether either or both influence the radiative transfer calculations. A variety of resolutions facilitates research on spatial and temporal scales relevant to problems ranging from hourly changes in air quality to trace gas trends in a changing climate. Samples of recent GEOS chemistry applications are provided. PMID:29497478

  13. The EarthLabs Approach to Curriculum and Professional Development: Earth Science Education in the 21st Century

    NASA Astrophysics Data System (ADS)

    Mote, A. S.; Ellins, K. K.; Haddad, N.

    2011-12-01

    Humans are modifying planet Earth at an alarming rate without fully understanding how our actions will affect the atmosphere, hydrosphere, or biosphere. Recognizing the value of educating people to become citizens who can make informed decisions about Earth's resources and challenges, Texas currently offers Earth and Space Science as a rigorous high school capstone course. The new course has created a need for high quality instructional resources and professional development to equip teachers with the most up to date content knowledge, pedagogical approaches, and technological skills to be able to teach a rigorous Earth and Space Science course. As a participant in the NSF-sponsored Texas Earth and Space Science (TXESS) Revolution teacher professional development program, I was selected to participate in a curriculum development project led by TERC to create Earth System Science and climate change resources for the EarthLabs collection. To this end, I am involved in multiple phases of the EarthLabs project, including reviewing the lab-based units during the development phase, pilot teaching the units with my students, participating in research, and ultimately delivering professional development to other teachers to turn them on to the new modules. My partnership with the EarthLabs project has strengthened my teaching practice by increasing my involvement with curriculum development and collaboration and interaction with other Earth science educators. Critically evaluating the lab modules prior to delivering the lessons to my students has prepared me to more effectively teach the EarthLabs modules in my classroom and present the material to other teachers during professional development workshops. The workshop was also strengthened by planning meetings held with EarthLabs partner teachers in which we engaged in lively discussions regarding misconceptions in Earth science, held by both students and adults, and pedagogical approaches to uncover these misconceptions

  14. Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing.

    PubMed

    Midekisa, Alemayehu; Holl, Felix; Savory, David J; Andrade-Pacheco, Ricardo; Gething, Peter W; Bennett, Adam; Sturrock, Hugh J W

    2017-01-01

    Quantifying and monitoring the spatial and temporal dynamics of the global land cover is critical for better understanding many of the Earth's land surface processes. However, the lack of regularly updated, continental-scale, and high spatial resolution (30 m) land cover data limit our ability to better understand the spatial extent and the temporal dynamics of land surface changes. Despite the free availability of high spatial resolution Landsat satellite data, continental-scale land cover mapping using high resolution Landsat satellite data was not feasible until now due to the need for high-performance computing to store, process, and analyze this large volume of high resolution satellite data. In this study, we present an approach to quantify continental land cover and impervious surface changes over a long period of time (15 years) using high resolution Landsat satellite observations and Google Earth Engine cloud computing platform. The approach applied here to overcome the computational challenges of handling big earth observation data by using cloud computing can help scientists and practitioners who lack high-performance computational resources.

  15. Particle Lifting Processes in Dust Devils

    NASA Astrophysics Data System (ADS)

    Neakrase, L. D. V.; Balme, M. R.; Esposito, F.; Kelling, T.; Klose, M.; Kok, J. F.; Marticorena, B.; Merrison, J.; Patel, M.; Wurm, G.

    2016-11-01

    Particle lifting in dust devils on both Earth and Mars has been studied from many different perspectives, including how dust devils could influence the dust cycles of both planets. Here we review our current understanding of particle entrainment by dust devils by examining results from field observations on Earth and Mars, laboratory experiments (at terrestrial ambient and Mars-analog conditions), and analytical modeling. By combining insights obtained from these three methodologies, we provide a detailed overview on interactions between particle lifting processes due to mechanical, thermal, electrodynamical and pressure effects, and how these processes apply to dust devils on Earth and Mars. Experiments and observations have shown dust devils to be effective lifters of dust given the proper conditions on Earth and Mars. However, dust devil studies have yet to determine the individual roles of each of the component processes acting at any given time in dust devils.

  16. Visualization of Earth and Space Science Data at JPL's Science Data Processing Systems Section

    NASA Technical Reports Server (NTRS)

    Green, William B.

    1996-01-01

    This presentation will provide an overview of systems in use at NASA's Jet Propulsion Laboratory for processing data returned by space exploration and earth observations spacecraft. Graphical and visualization techniques used to query and retrieve data from large scientific data bases will be described.

  17. NASA/MSFC FY92 Earth Science and Applications Program Research Review

    NASA Technical Reports Server (NTRS)

    Arnold, James E. (Editor); Leslie, Fred W. (Editor)

    1993-01-01

    A large amount of attention has recently been given to global issues such as the ozone hole, tropospheric temperature variability, etc. A scientific challenge is to better understand atmospheric processes on a variety of spatial and temporal scales in order to predict environmental changes. Measurement of geophysical parameters such as wind, temperature, and moisture are needed to validate theories, provide analyzed data sets, and initialize or constrain numerical models. One of NASA's initiatives is the Mission to Planet Earth Program comprised of an Earth Observation System (EOS) and the scientific strategy to analyze these data. This work describes these efforts in the context of satellite data analysis and fundamental studies of atmospheric dynamics which examine selected processes important to the global circulation.

  18. Next-generation Digital Earth

    PubMed Central

    Goodchild, Michael F.; Guo, Huadong; Annoni, Alessandro; Bian, Ling; de Bie, Kees; Campbell, Frederick; Craglia, Max; Ehlers, Manfred; van Genderen, John; Jackson, Davina; Lewis, Anthony J.; Pesaresi, Martino; Remetey-Fülöpp, Gábor; Simpson, Richard; Skidmore, Andrew; Wang, Changlin; Woodgate, Peter

    2012-01-01

    A speech of then-Vice President Al Gore in 1998 created a vision for a Digital Earth, and played a role in stimulating the development of a first generation of virtual globes, typified by Google Earth, that achieved many but not all the elements of this vision. The technical achievements of Google Earth, and the functionality of this first generation of virtual globes, are reviewed against the Gore vision. Meanwhile, developments in technology continue, the era of “big data” has arrived, the general public is more and more engaged with technology through citizen science and crowd-sourcing, and advances have been made in our scientific understanding of the Earth system. However, although Google Earth stimulated progress in communicating the results of science, there continue to be substantial barriers in the public’s access to science. All these factors prompt a reexamination of the initial vision of Digital Earth, and a discussion of the major elements that should be part of a next generation. PMID:22723346

  19. Next-generation Digital Earth.

    PubMed

    Goodchild, Michael F; Guo, Huadong; Annoni, Alessandro; Bian, Ling; de Bie, Kees; Campbell, Frederick; Craglia, Max; Ehlers, Manfred; van Genderen, John; Jackson, Davina; Lewis, Anthony J; Pesaresi, Martino; Remetey-Fülöpp, Gábor; Simpson, Richard; Skidmore, Andrew; Wang, Changlin; Woodgate, Peter

    2012-07-10

    A speech of then-Vice President Al Gore in 1998 created a vision for a Digital Earth, and played a role in stimulating the development of a first generation of virtual globes, typified by Google Earth, that achieved many but not all the elements of this vision. The technical achievements of Google Earth, and the functionality of this first generation of virtual globes, are reviewed against the Gore vision. Meanwhile, developments in technology continue, the era of "big data" has arrived, the general public is more and more engaged with technology through citizen science and crowd-sourcing, and advances have been made in our scientific understanding of the Earth system. However, although Google Earth stimulated progress in communicating the results of science, there continue to be substantial barriers in the public's access to science. All these factors prompt a reexamination of the initial vision of Digital Earth, and a discussion of the major elements that should be part of a next generation.

  20. Big Earth Data Initiative: Metadata Improvement: Case Studies

    NASA Technical Reports Server (NTRS)

    Kozimor, John; Habermann, Ted; Farley, John

    2016-01-01

    Big Earth Data Initiative (BEDI) The Big Earth Data Initiative (BEDI) invests in standardizing and optimizing the collection, management and delivery of U.S. Government's civil Earth observation data to improve discovery, access use, and understanding of Earth observations by the broader user community. Complete and consistent standard metadata helps address all three goals.

  1. Uncovering the Chemistry of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Zeng, Li; Sasselov, Dimitar; Jacobsen, Stein

    2015-08-01

    We propose to use the evidence from our solar system to understand exoplanets, and in particular, to predict their surface chemistry and thereby the possibility of life. An Earth-like planet, born from the same nebula as its host star, is composed primarily of silicate rocks and an iron-nickel metal core, and depleted in volatile content in a systematic manner. The more volatile (easier to vaporize or dissociate into gas form) an element is in an Earth-like planet, the more depleted the element is compared to its host star. After depletion, an Earth-like planet would go through the process of core formation due to heat from radioactive decay and collisions. Core formation depletes a planet’s rocky mantle of siderophile (iron-loving) elements, in addition to the volatile depletion. After that, Earth-like planets likely accrete some volatile-rich materials, called “late veneer”. The late veneer could be essential to the origins of life on Earth and Earth-like planets, as it also delivers the volatiles such as nitrogen, sulfur, carbon and water to the planet’s surface, which are crucial for life to occur. Here we build an integrative model of Earth-like planets from the bottom up. Thus the chemical compositions of Earth-like planets could be inferred from their mass-radius relations and their host stars’ elemental abundances, and the origins of volatile contents (especially water) on their surfaces could be understood, and thereby shed light on the origins of life on them. This elemental abundance model could be applied to other rocky exoplanets in exoplanet systems.

  2. Precambrian Time - The Story of the Early Earth

    USGS Publications Warehouse

    Lindsey, D.A.

    2007-01-01

    The Precambrian is the least-understood part of Earth history, yet it is arguably the most important. Precambrian time spans almost nine-tenths of Earth history, from the formation of the Earth to the dawn of the Cambrian Period. It represents time so vast and long ago that it challenges all comprehension. The Precambrian is the time of big questions. How old is the Earth? How old are the oldest rocks and continents? What was the early Earth like? What was the early atmosphere like? When did life appear, and what did it look like? And, how do we know this? In recent years, remarkable progress has been made in understanding the early evolution of the Earth and life itself. Yet, the scientific story of the early Earth is still a work in progress, humankind's latest attempt to understand the planet. Like previous attempts, it too will change as we learn more about the Earth. Read on to discover what we know now, in the early 21st century.

  3. Fire in the Earth system.

    PubMed

    Bowman, David M J S; Balch, Jennifer K; Artaxo, Paulo; Bond, William J; Carlson, Jean M; Cochrane, Mark A; D'Antonio, Carla M; Defries, Ruth S; Doyle, John C; Harrison, Sandy P; Johnston, Fay H; Keeley, Jon E; Krawchuk, Meg A; Kull, Christian A; Marston, J Brad; Moritz, Max A; Prentice, I Colin; Roos, Christopher I; Scott, Andrew C; Swetnam, Thomas W; van der Werf, Guido R; Pyne, Stephen J

    2009-04-24

    Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.

  4. Fire in the Earth system

    USGS Publications Warehouse

    Bowman, David M.J.S.; Balch, Jennifer; Artaxo, Paulo; Bond, William J.; Carlson, Jean M.; Cochrane, Mark A.; D'Antonio, Carla M.; DeFries, Ruth S.; Doyle, John C.; Harrison, Sandy P.; Johnston, Fay H.; Keeley, Jon E.; Krawchuk, Meg A.; Kull, Christian A.; Marston, J. Brad; Moritz, Max A.; Prentice, I. Colin; Roos, Christopher I.; Scott, Andrew C.; Swetnam, Thomas W.; van der Werf, Guido R.; Pyne, Stephen

    2009-01-01

    Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.

  5. Spaceborne observations of a changing Earth - Contribution from ESÁ s operating and approved satellite missions.

    NASA Astrophysics Data System (ADS)

    Johannessen, J. A.

    2009-04-01

    The overall vision for ESÁs Earth Observation activities is to play a central role in developing the global capability to understand planet Earth, predict changes, and mitigate negative effects of global change on its populations. Since Earth observation from space first became possible more than forty years ago, it has become central to monitoring and understanding how the dynamics of the Earth System work. The greatest progress has been in meteorology, where space-based observations have become indispensable, but it is now also progressively penetrating many of the fields making up Earth sciences. Exploiting Earth observation from space presents major multidisciplinary challenges to the researches working in the Earth sciences, to the technologists who build the state-of-the-art sensors, and to the scientists interpreting measurements made of processes occurring on or within the Earth's surface and in its atmosphere. The scientific community has shown considerable imagination in rising to these challenges, and in exploiting the latest technological developments to measure from space the complex processes and interactions that occur in the Earth System. In parallel, there has been significant progress in developing computer models that represent the many processes that make up the Earth System, and the interactions and feedback between them. Success in developing this holistic view is inextricably linked to the data provided by Earth Observation systems. Satellites provide the fundamental, consistent, regular and global measurements needed to drive, parameterise, test and improve those Earth System models. These developments, together with changes in society's awareness of the need for information on a changing world, have repetitively supported the decisions on how ESA can best focus its resources, and those of the European community that it serves, in order to address critical issues in Earth System science. Moreover, it is a fact that many operational

  6. Google Earth Engine: a new cloud-computing platform for global-scale earth observation data and analysis

    NASA Astrophysics Data System (ADS)

    Moore, R. T.; Hansen, M. C.

    2011-12-01

    Google Earth Engine is a new technology platform that enables monitoring and measurement of changes in the earth's environment, at planetary scale, on a large catalog of earth observation data. The platform offers intrinsically-parallel computational access to thousands of computers in Google's data centers. Initial efforts have focused primarily on global forest monitoring and measurement, in support of REDD+ activities in the developing world. The intent is to put this platform into the hands of scientists and developing world nations, in order to advance the broader operational deployment of existing scientific methods, and strengthen the ability for public institutions and civil society to better understand, manage and report on the state of their natural resources. Earth Engine currently hosts online nearly the complete historical Landsat archive of L5 and L7 data collected over more than twenty-five years. Newly-collected Landsat imagery is downloaded from USGS EROS Center into Earth Engine on a daily basis. Earth Engine also includes a set of historical and current MODIS data products. The platform supports generation, on-demand, of spatial and temporal mosaics, "best-pixel" composites (for example to remove clouds and gaps in satellite imagery), as well as a variety of spectral indices. Supervised learning methods are available over the Landsat data catalog. The platform also includes a new application programming framework, or "API", that allows scientists access to these computational and data resources, to scale their current algorithms or develop new ones. Under the covers of the Google Earth Engine API is an intrinsically-parallel image-processing system. Several forest monitoring applications powered by this API are currently in development and expected to be operational in 2011. Combining science with massive data and technology resources in a cloud-computing framework can offer advantages of computational speed, ease-of-use and collaboration, as

  7. Magnetohydrodynamic Oscillations in the Solar Corona and Earth's Magnetosphere: Towards Consolidated Understanding

    NASA Astrophysics Data System (ADS)

    Nakariakov, V. M.; Pilipenko, V.; Heilig, B.; Jelínek, P.; Karlický, M.; Klimushkin, D. Y.; Kolotkov, D. Y.; Lee, D.-H.; Nisticò, G.; Van Doorsselaere, T.; Verth, G.; Zimovets, I. V.

    2016-04-01

    Magnetohydrodynamic (MHD) oscillatory processes in different plasma systems, such as the corona of the Sun and the Earth's magnetosphere, show interesting similarities and differences, which so far received little attention and remain under-exploited. The successful commissioning within the past ten years of THEMIS, Hinode, STEREO and SDO spacecraft, in combination with matured analysis of data from earlier spacecraft (Wind, SOHO, ACE, Cluster, TRACE and RHESSI) makes it very timely to survey the breadth of observations giving evidence for MHD oscillatory processes in solar and space plasmas, and state-of-the-art theoretical modelling. The paper reviews several important topics, such as Alfvénic resonances and mode conversion; MHD waveguides, such as the magnetotail, coronal loops, coronal streamers; mechanisms for periodicities produced in energy releases during substorms and solar flares, possibility of Alfvénic resonators along open field lines; possible drivers of MHD waves; diagnostics of plasmas with MHD waves; interaction of MHD waves with partly-ionised boundaries (ionosphere and chromosphere). The review is mainly oriented to specialists in magnetospheric physics and solar physics, but not familiar with specifics of the adjacent research fields.

  8. Stovetop Earth Pecan Pie

    NASA Astrophysics Data System (ADS)

    Robin, C. M.

    2005-12-01

    Many fluid mechanical experiments with direct applications to Earth Science are performed with sugary syrups using conceptually straightforward procedures. Corn syrup has indeed proven to be a godsend for those studying convection and related non-linear phenomena. In addition, however, it gives experimentalists a deep physical intuition for the interior workings of hot planets. The basic concepts behind plate tectonics and mantle convection are not difficult; indeed, although they may not be aware of it, most students probably have a basic intuitive understanding of fluid mechanics gained in their daily life. However, the large size and long time scale of geophysical processes may be quite intimidating to young students. Even a simple geophysical experiment requires a complicated array of coolers, heaters and measuring and recording equipment. It is of interest to introduce students to the geodynamical concepts that can be visualized in a high-tech lab using familiar processes and equipment. Using a homemade apparatus and grocery store supplies, I propose using a 'Stove-top Earth pecan pie' to introduce simple geodynamic concepts to middle- and high-school students. The initially cold syrup heats up and the pecans begin to float (continent formation), the syrup begins to convect (mantle convection), and convection slows down after the heat is removed (secular cooling). Even Wilson cycles can be simulated by moving the pan to one side or the other of the stovetop or heating element. The activity formally introduces students to convection and its application to the earth, and makes them think about plate motion, heat transfer, scaling, and experimental procedures. As an added bonus, they can eat their experiments after recess!

  9. THE ALBEDOS OF KEPLER'S CLOSE-IN SUPER-EARTHS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demory, Brice-Olivier, E-mail: bod21@cam.ac.uk

    Exoplanet research focusing on the characterization of super-Earths is currently limited to the handful of targets orbiting bright stars that are amenable to detailed study. This Letter proposes to look at alternative avenues to probe the surface and atmospheric properties of this category of planets, known to be ubiquitous in our galaxy. I conduct Markov Chain Monte Carlo light-curves analyses for 97 Kepler close-in R{sub P} ≲ 2.0 R {sub ⊕} super-Earth candidates with the aim of detecting their occultations at visible wavelengths. Brightness temperatures and geometric albedos in the Kepler bandpass are constrained for 27 super-Earth candidates. A hierarchicalmore » Bayesian modeling approach is then employed to characterize the population-level reflective properties of these close-in super-Earths. I find median geometric albedos A{sub g} in the Kepler bandpass ranging between 0.16 and 0.30, once decontaminated from thermal emission. These super-Earth geometric albedos are statistically larger than for hot Jupiters, which have medians A{sub g} ranging between 0.06 and 0.11. A subset of objects, including Kepler-10b, exhibit significantly larger albedos (A{sub g} ≳ 0.4). I argue that a better understanding of the incidence of stellar irradation on planetary surface and atmospheric processes is key to explain the diversity in albedos observed for close-in super-Earths.« less

  10. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model

    NASA Astrophysics Data System (ADS)

    Gebauer, S.; Grenfell, J. L.; Stock, J. W.; Lehmann, R.; Godolt, M.; von Paris, P.; Rauer, H.

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O2, whereas in the upper atmosphere, most O2 is formed abiotically via CO2 photolysis. The O2 bistability found by Goldblatt et al. (2006) is not observed in our calculations likely due to our detailed CH4 oxidation scheme. We calculate increased CH4 with increasing O2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O2 is unique. Mixing, CH4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O2 fluxes. Regarding exoplanets, different "states" of O2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases remove O2 that

  11. Publications of the Western Earth Surface Processes Team 2002

    USGS Publications Warehouse

    Powell, Charles; Graymer, R.W.

    2003-01-01

    The Western Earth Surface Processes Team (WESPT) of the U.S. Geological Survey (USGS) conducts geologic mapping and related topical earth science studies in the western United States. This work is focused on areas where modern geologic maps and associated earth-science data are needed to address key societal and environmental issues such as ground-water quality, landslides and other potential geologic hazards, and land-use decisions. Areas of primary emphasis in 2001 included southern California, the San Francisco Bay region, the Pacific Northwest, and the Las Vegas urban corridor. The team has its headquarters in Menlo Park, California, and maintains smaller field offices at several other locations in the western United States. The results of research conducted by the WESPT are released to the public as a variety of databases, maps, text reports, and abstracts, both through the internal publication system of the USGS and in diverse external publications such as scientific journals and books. This report lists publications of the WESPT released in 2002 as well as additional 1998 and 2001 publications that were not included in the previous list (USGS Open-File Report 00-215, USGS Open-File Report 01-198, and USGS Open-File Report 02-269). Most of the publications listed were authored or coauthored by WESPT staff. The list also includes some publications authored by non-USGS cooperators with the WESPT, as well as some authored by USGS staff outside the WESPT in cooperation with WESPT projects. Several of the publications listed are available on the World Wide Web; for these, URL addresses are provided. Many of these web publications are USGS open-file reports that contain large digital databases of geologic map and related information. Information on ordering USGS publications can be found on the World Wide Web or by calling 1-888-ASK-USGS. The U.S. Geological Survey’s web server for geologic information in the western United States is located at http

  12. Understanding Combustion Processes Through Microgravity Research

    NASA Technical Reports Server (NTRS)

    Ronney, Paul D.

    1998-01-01

    A review of research on the effects of gravity on combustion processes is presented, with an emphasis on a discussion of the ways in which reduced-gravity experiments and modeling has led to new understanding. Comparison of time scales shows that the removal of buoyancy-induced convection leads to manifestations of other transport mechanisms, notably radiative heat transfer and diffusional processes such as Lewis number effects. Examples from premixed-gas combustion, non-premixed gas-jet flames, droplet combustion, flame spread over solid and liquid fuels, and other fields are presented. Promising directions for new research are outlined, the most important of which is suggested to be radiative reabsorption effects in weakly burning flames.

  13. Texture evolution during thermomechanical processing in rare earth free magnesium alloys

    NASA Astrophysics Data System (ADS)

    Miller, Victoria Mayne

    The use of wrought magnesium alloys is highly desirable for a wide range of applications where low component weight is desirable due to the high specific strength and stiffness the alloys can achieve. However, the implementation of wrought magnesium has been hindered by the limited room temperature formability which typically results from deformation processing. This work identifies opportunities for texture modification during thermomechanical processing of conventional (rare earth free) magnesium alloys via a combination of experimental investigation and polycrystal plasticity simulations. During deformation, it is observed that a homogeneous distribution of coarse intermetallic particles efficiently weakens deformation texture at all strain levels, while a highly inhomogeneous particle distribution is only effective at high strains. The particle deformation effects are complemented by the addition of alkaline earth solute, which modifies the relative deformation mode activity. During recrystallization, grains with basal orientations recrystallize more readily than off-basal grains, despite similar levels of internal misorientation. Dislocation substructure investigations revealed that this is a result of enhanced nucleation in the basal grains due to the dominance of prismatic slip. This dissertation identifies avenues to enhance the potential formability of magnesium alloys during thermomechanical processing by minimizing the evolved texture strength. The following are the identified key aspects of microstructural control: -Maintaining a fine grain size, likely via Zener pinning, to favorably modify deformation mode activity and homogenize deformation. -Developing a coarse, homogeneously distributed population of coarse intermetallic particles to promote a diffuse deformation texture. -Minimizing the activity of prismatic slip to retard the recrystallization of grains with basal orientations, allowing the development of a more diffuse recrystallization texture.

  14. Understanding the Complexity of Social Issues through Process Drama.

    ERIC Educational Resources Information Center

    O'Mara, Joanne

    2002-01-01

    Attempts to capture the process of understanding and questioning deforestation through process drama (in which students and teacher work both in and out of role to explore a problem, situation, or theme). Notes that moving topics such as the destruction of a rainforest into process drama introduces complexity into social issues. Considers how…

  15. Polar Misunderstandings: Earth's Dynamic Dynamo

    ERIC Educational Resources Information Center

    DiSpezio, Michael A.

    2011-01-01

    This article discusses the movement of Earth's north and south poles. The Earth's poles may be a bit more complex and dynamic than what many students and teachers believe. With better understanding, offer them up as a rich landscape for higher-level critical analysis and subject integration. Possible curriculum tie-ins include magnets, Earth…

  16. Studies of Life on Earth are Important for Mars Exploration

    NASA Technical Reports Server (NTRS)

    DesMarais, D. J.

    1998-01-01

    The search for evidence of the early martian environment and a martian biosphere is benefitted by diverse studies of life on Earth. Most fundamentally, origin-of-life research highlights the challenge in formulating a rigorous definition of life. Because such definitions typically list several of life's most basic properties, they also help to define those observable features that distinguish life and thus might be sought through telescopes, spacecraft, and analyses of extraterrestrial samples. Studies of prebiotic chemistry also help by defining the range of environments and processes that sustain prebiotic organic synthesis. These studies might indicate if and where prebiotic processes occur today on Earth and elsewhere. Such studies should also help to identify which localities are good candidates for the origin of life. A better understanding of the most fundamental principles by which molecules are assembled into living systems will help us to appreciate possible alternatives to the path followed by life on Earth. These perspectives will sharpen our ability to recognize exotic life and/or those environments that can sustain it.

  17. Using the earth system for integrating the science curriculum

    NASA Astrophysics Data System (ADS)

    Mayer, Victor J.

    Content and process instruction from the earth sciences has gone unrepresented in the world's science curricula, especially at the secondary level. As a result there is a serious deficiency in public understanding of the planet on which we all live. This lack includes national and international leaders in politics, business, and science. The earth system science effort now engaging the research talent of the earth sciences provides a firm foundation from the sciences for inclusion of earth systems content into the evolving integrated science curricula of this country and others. Implementing integrated science curricula, especially at the secondary level where potential leaders often have their only exposure to science, can help to address these problems. The earth system provides a conceptual theme as opposed to a disciplinary theme for organizing such integrated curricula, absent from prior efforts. The end of the cold war era is resulting in a reexamination of science and the influence it has had on our planet and society. In the future, science and the curricula that teach about science must seriously address the environmental and social problems left in the wake of over 100 years of preparation for military and economic war. The earth systems education effort provides one such approach to the modernization of science curricula. Earth science educators should assume leadership in helping to establish such curricula in this country and around the world.

  18. Understanding the earth systems of Malawi: Ecological sustainability, culture, and place-based education

    NASA Astrophysics Data System (ADS)

    Glasson, George E.; Frykholm, Jeffrey A.; Mhango, Ndalapa A.; Phiri, Absalom D.

    2006-07-01

    The purpose of this 2-year study was to investigate Malawian teacher educators' perspectives and dispositions toward teaching about ecological sustainability issues in Malawi, a developing country in sub-Sahara Africa. This study was embedded in a larger theoretical framework of investigating earth systems science through the understanding of nature-knowledge-culture systems from local, place-based perspectives. Specifically, we were interested in learning more about eco-justice issues that are related to environmental degradation in Malawi and the potential role of inquiry-oriented pedagogies in addressing these issues. In a science methods course, the African educators' views on deforestation and teaching about ecological sustainability were explored within the context of the local environment and culture. Teachers participated in inquiry pedagogies designed to promote the sharing of perspectives related to the connections between culture and ecological degradation. Strategies encouraging dialogue and reflection included role-playing, class discussions, curriculum development activities, teaching experiences with children, and field trips to a nature preserve. Data were analyzed from postcolonial and critical pedagogy of place theoretical perspectives to better understand the hybridization of viewpoints influenced by both Western and indigenous science and the political hegemonies that impact sustainable living in Malawi. Findings suggested that the colonial legacy of Malawi continues to impact the ecological sustainability issue of deforestation. Inquiry-oriented pedagogies and connections to indigenous science were embraced by the Malawian educators as a means to involve children in investigation, decision making, and ownership of critical environmental issues.

  19. The sustainability of habitability on terrestrial planets: Insights, questions, and needed measurements from Mars for understanding the evolution of Earth-like worlds

    NASA Astrophysics Data System (ADS)

    Ehlmann, B. L.; Anderson, F. S.; Andrews-Hanna, J.; Catling, D. C.; Christensen, P. R.; Cohen, B. A.; Dressing, C. D.; Edwards, C. S.; Elkins-Tanton, L. T.; Farley, K. A.; Fassett, C. I.; Fischer, W. W.; Fraeman, A. A.; Golombek, M. P.; Hamilton, V. E.; Hayes, A. G.; Herd, C. D. K.; Horgan, B.; Hu, R.; Jakosky, B. M.; Johnson, J. R.; Kasting, J. F.; Kerber, L.; Kinch, K. M.; Kite, E. S.; Knutson, H. A.; Lunine, J. I.; Mahaffy, P. R.; Mangold, N.; McCubbin, F. M.; Mustard, J. F.; Niles, P. B.; Quantin-Nataf, C.; Rice, M. S.; Stack, K. M.; Stevenson, D. J.; Stewart, S. T.; Toplis, M. J.; Usui, T.; Weiss, B. P.; Werner, S. C.; Wordsworth, R. D.; Wray, J. J.; Yingst, R. A.; Yung, Y. L.; Zahnle, K. J.

    2016-10-01

    What allows a planet to be both within a potentially habitable zone and sustain habitability over long geologic time? With the advent of exoplanetary astronomy and the ongoing discovery of terrestrial-type planets around other stars, our own solar system becomes a key testing ground for ideas about what factors control planetary evolution. Mars provides the solar system's longest record of the interplay of the physical and chemical processes relevant to habitability on an accessible rocky planet with an atmosphere and hydrosphere. Here we review current understanding and update the timeline of key processes in early Mars history. We then draw on knowledge of exoplanets and the other solar system terrestrial planets to identify six broad questions of high importance to the development and sustaining of habitability (unprioritized): (1) Is small planetary size fatal? (2) How do magnetic fields influence atmospheric evolution? (3) To what extent does starting composition dictate subsequent evolution, including redox processes and the availability of water and organics? (4) Does early impact bombardment have a net deleterious or beneficial influence? (5) How do planetary climates respond to stellar evolution, e.g., sustaining early liquid water in spite of a faint young Sun? (6) How important are the timescales of climate forcing and their dynamical drivers? Finally, we suggest crucial types of Mars measurements (unprioritized) to address these questions: (1) in situ petrology at multiple units/sites; (2) continued quantification of volatile reservoirs and new isotopic measurements of H, C, N, O, S, Cl, and noble gases in rocks that sample multiple stratigraphic sections; (3) radiometric age dating of units in stratigraphic sections and from key volcanic and impact units; (4) higher-resolution measurements of heat flux, subsurface structure, and magnetic field anomalies coupled with absolute age dating. Understanding the evolution of early Mars will feed forward to

  20. The Sustainability of Habitability on Terrestrial Planets: Insights, Questions, and Needed Measurements from Mars for Understanding the Evolution of Earth-Like Worlds

    NASA Technical Reports Server (NTRS)

    Ehlmann, B. L.; Anderson, F. S.; Andrews-Hanna, J.; Catling, D. C.; Christensen, P. R.; Cohen, B. A.; Dressing, C. D.; Edwards, C. S.; Elkins-Tanton, L. T.; Farley, K. A.; hide

    2016-01-01

    What allows a planet to be both within a potentially habitable zone and sustain habitability over long geologic time? With the advent of exoplanetary astronomy and the ongoing discovery of terrestrial-type planets around other stars, our own solar system becomes a key testing ground for ideas about what factors control planetary evolution. Mars provides the solar systems longest record of the interplay of the physical and chemical processes relevant to habitability on an accessible rocky planet with an atmosphere and hydrosphere. Here we review current understanding and update the timeline of key processes in early Mars history. We then draw on knowledge of exoplanets and the other solar system terrestrial planets to identify six broad questions of high importance to the development and sustaining of habitability (unprioritized): (1) Is small planetary size fatal? (2) How do magnetic fields influence atmospheric evolution? (3) To what extent does starting composition dictate subsequent evolution, including redox processes and the availability of water and organics? (4) Does early impact bombardment have a net deleterious or beneficial influence? (5) How do planetary climates respond to stellar evolution, e.g., sustaining early liquid water in spite of a faint young Sun? (6) How important are the timescales of climate forcing and their dynamical drivers? Finally, we suggest crucial types of Mars measurements (unprioritized) to address these questions: (1) in situ petrology at multiple units/sites; (2) continued quantification of volatile reservoirs and new isotopic measurements of H, C, N, O, S, Cl, and noble gases in rocks that sample multiple stratigraphic sections; (3) radiometric age dating of units in stratigraphic sections and from key volcanic and impact units; (4) higher-resolution measurements of heat flux, subsurface structure, and magnetic field anomalies coupled with absolute age dating. Understanding the evolution of early Mars will feed forward to

  1. Microbial contributions to the Precambrian Earth

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Bermudes, D.; Obar, R.

    1986-01-01

    Life has existed on Earth for approximately 3.5 billion years. For most of this time, prokaryotic communities provided the major biological forces changing the Earth. Many changes in atmospheric gas composition occurred during the Archean and Proterozoic eons as a result of microbial activity. Extant microbial communities were used to help understand the dynamics which contributed to these atmospheric changes. The microbial mat communities were characterized according to the organismic constituents. Symbiosis in microbial communities is recognized as a major force in cell evolution. Among the evolutinary enigmas investigated is the problem of the origin of the undulipodia. Undulipodial microtubules are still deployed for major cellular processes such as mitosis and meiosis. Several prokaryotes were tested for the presence of the S1-type protein, so far only spirochetes were found to possess it. The S1-type protein is being sought in cyanobacteria reported to contain microtubules.

  2. Ensuring Credibility of NASA's Earth Science Data (Invited)

    NASA Astrophysics Data System (ADS)

    Maiden, M. E.; Ramapriyan, H. K.; Mitchell, A. E.; Berrick, S. W.; Walter, J.; Murphy, K. J.

    2013-12-01

    The summary description of the Fall 2013 AGU session on 'Data Curation, Credibility, Preservation Implementation, and Data Rescue to Enable Multi-Source Science' identifies four attributes needed to ensure credibility in Earth science data records. NASA's Earth Science Data Systems Program has been working on all four of these attributes: transparency, completeness, permanence, and ease of access and use, by focusing on them and upon improving our practices of them, over many years. As far as transparency or openness, NASA was in the forefront of free and open sharing of data and associated information for Earth observations. The US data policy requires such openness, but allows for the recoup of the marginal cost of distribution of government data and information - but making the data available with no such charge greatly increases their usage in scientific studies and the resultant analyses hasten our collective understanding of the Earth system. NASA's currently available Earth observations comprise primarily those obtained from satellite-borne instruments, suborbital campaigns, and field investigations. These data are complex and must be accompanied by rich metadata and documentation to be understandable. To enable completeness, NASA utilizes standards for data format, metadata content, and required documentation for any data that are ingested into our distributed Earth Observing System Data and Information System, or EOSDIS. NASA is moving to a new metadata paradigm, primarily to enable a fuller description of data quality and fit-for-purpose attributes. This paradigm offers structured approaches for storing quality measures in metadata that include elements such as Positional Accuracy, Lineage and Cloud Cover. NASA exercises validation processes for the Earth Science Data Systems Program to ensure users of EOSDIS have a predictable level of confidence in data as well as assessing the data viability for usage and application. The Earth Science Data Systems

  3. Earth-Science Research for Addressing the Water-Energy Nexus

    NASA Astrophysics Data System (ADS)

    Healy, R. W.; Alley, W. M.; Engle, M.; McMahon, P. B.; Bales, J. D.

    2013-12-01

    In the coming decades, the United States will face two significant and sometimes competing challenges: preserving sustainable supplies of fresh water for humans and ecosystems, and ensuring available sources of energy. This presentation provides an overview of the earth-science data collection and research needed to address these challenges. Uncertainty limits our understanding of many aspects of the water-energy nexus. These aspects include availability of water, water requirements for energy development, energy requirements for treating and delivering fresh water, effects of emerging energy development technologies on water quality and quantity, and effects of future climates and land use on water and energy needs. Uncertainties can be reduced with an integrated approach that includes assessments of water availability and energy resources; monitoring of surface water and groundwater quantity and quality, water use, and energy use; research on impacts of energy waste streams, hydraulic fracturing, and other fuel-extraction processes on water quality; and research on the viability and environmental footprint of new technologies such as carbon capture and sequestration and conversion of cellulosic material to ethanol. Planning for water and energy development requires consideration of factors such as economics, population trends, human health, and societal values; however, sound resource management must be grounded on a clear understanding of the earth-science aspects of the water-energy nexus. Information gained from an earth-science data-collection and research program can improve our understanding of water and energy issues and lay the ground work for informed resource management.

  4. Un-Earth-like interiors of the Earth-like planets

    NASA Astrophysics Data System (ADS)

    Shim, S. H. D.; Nisr, C.; Pagano, M.; Chen, H.; Ko, B.; Noble, S.; Leinenweber, K. D.; Young, P.; Desch, S. J.

    2015-12-01

    A number of exoplanets have been described as "Earth-like" planets (or even exo-earths) based on the mass-radius relations. Yet, significant variations have been documented in elemental abundances of planet-hosting stars, which will result in very different structures and processes in the interiors of rocky exoplanets. Recent data suggest that the Mg/Si ratio can be as small as less than 1 and as large as more than 2, opening the possibilities for the upper mantles to be dominated by pyroxene and olivine, respectively, and the lower mantles to be dominated by bridgmanite and ferropericlase, respectively. The changes in mineralogy will alter key properties, such as discontinuity structures (and therefore scale of mantle mixing), viscosity, and volatiles storage, of the mantle. Partial melting of such mantles would result in different compositions of the crusts, affecting the tectonics. However, the prediction should be made carefully because oxygen fugacity and contents of volatiles can change the mineralogy even for the same bulk composition. In extremely reducing proto-planetary disks, carbides will form instead of oxides and silicates, and become main constituents of planets in the system. Because carbides have high thermal conductivity and low thermal expansivity, internal heat transport of such planets may be dominated by conduction and mantle mixing would be much more limited than that of the Earth. However, the behaviors and properties of carbides need to be understood better at high pressure and high temperature. Some rocky exoplanets may have very thick layers of water and other icy materials. Interactions between ice (or fluid) and rock at extreme conditions would be the key to understand dynamics and habitability of such exoplanets.

  5. MAESTRO: Mathematics and Earth Science Teachers' Resource Organization

    NASA Astrophysics Data System (ADS)

    Courtier, A. M.; Pyle, E. J.; Fichter, L.; Lucas, S.; Jackson, A.

    2013-12-01

    , developed in collaboration between teachers and JMU faculty members, provide a tangible, relevant setting in which students can apply and understand mathematical applications and scientific processes related to evolving Earth systems. Initial results from student questionnaires and teacher focus groups suggest that the anticipated impacts of MAESTRO on students are being realized, including increased valuing of mathematics and Earth science in society and transfer between mathematics and science courses. As a high percentage of students in the MAESTRO schools are of low socio-economic status, they also face the prospect of becoming first-generation college students, hopefully considering STEM academic pathways. MAESTRO will drive the development of challenging and engaging instruction designed to draw a larger pool of students into STEM career pathways.

  6. Processes Understanding of Decadal Climate Variability

    NASA Astrophysics Data System (ADS)

    Prömmel, Kerstin; Cubasch, Ulrich

    2016-04-01

    The realistic representation of decadal climate variability in the models is essential for the quality of decadal climate predictions. Therefore, the understanding of those processes leading to decadal climate variability needs to be improved. Several of these processes are already included in climate models but their importance has not yet completely been clarified. The simulation of other processes requires sometimes a higher resolution of the model or an extension by additional subsystems. This is addressed within one module of the German research program "MiKlip II - Decadal Climate Predictions" (http://www.fona-miklip.de/en/) with a focus on the following processes. Stratospheric processes and their impact on the troposphere are analysed regarding the climate response to aerosol perturbations caused by volcanic eruptions and the stratospheric decadal variability due to solar forcing, climate change and ozone recovery. To account for the interaction between changing ozone concentrations and climate a computationally efficient ozone chemistry module is developed and implemented in the MiKlip prediction system. The ocean variability and air-sea interaction are analysed with a special focus on the reduction of the North Atlantic cold bias. In addition, the predictability of the oceanic carbon uptake with a special emphasis on the underlying mechanism is investigated. This addresses a combination of physical, biological and chemical processes.

  7. The European Plate Observing System (EPOS): Integrating Thematic Services for Solid Earth Science

    NASA Astrophysics Data System (ADS)

    Atakan, Kuvvet; Bailo, Daniele; Consortium, Epos

    2016-04-01

    The mission of EPOS is to monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures in Europe for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. EPOS, during its Implementation Phase (EPOS-IP), will integrate multidisciplinary data into a single e-infrastructure. Multidisciplinary data are organized and governed by the Thematic Core Services (TCS) and are driven by various scientific communities encompassing a wide spectrum of Earth science disciplines. These include Data, Data-products, Services and Software (DDSS), from seismology, near fault observatories, geodetic observations, volcano observations, satellite observations, geomagnetic observations, as well as data from various anthropogenic hazard episodes, geological information and modelling. In addition, transnational access to multi-scale laboratories and geo-energy test-beds for low-carbon energy will be provided. TCS DDSS will be integrated into Integrated Core Services (ICS), a platform that will ensure their interoperability and access to these services by the scientific community as well as other users within the society. This requires dedicated tasks for interactions with the various TCS-WPs, as well as the various distributed ICS (ICS-Ds), such as High Performance Computing (HPC) facilities, large scale data storage

  8. Tylosin sorption to diatomaceous earth: Investigation of physical processes of tylosin in natural systems and development of mitigation methods

    USDA-ARS?s Scientific Manuscript database

    Tylosin is a common livestock antibiotic used as a feed additive that could promote antibiotic resistance in the environment. Management of tylosin’s impact on environmental antibiotic resistance requires better understanding of its physical interactions in the environment. Diatomaceous earth (DE) i...

  9. Complex Cloud and Radiative Processes Unfolding at the Earth's Terminator: A Unique Perspective from the Proposed Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Davis, A. B.; Marshak, A.

    2018-02-01

    The Deep Space Gateway offers a unique vantage for Earth observation using reflected sunlight: day/night or night/day terminators slowly marching across the disc. It's an opportunity to improve our understanding of clouds at that key moment in their daily cycle.

  10. Improving the Representation of Estuarine Processes in Earth System Models

    NASA Astrophysics Data System (ADS)

    Sun, Q.; Whitney, M. M.; Bryan, F.; Tseng, Y. H.

    2016-12-01

    The exchange of freshwater between the rivers and estuaries and the open ocean represents a unique form of scale-interaction in the climate system. The local variability in the terrestrial hydrologic cycle is integrated by rivers over potentially large drainage basins (up to semi-continental scales), and is then imposed on the coastal ocean at the scale of a river mouth. Appropriately treating riverine freshwater discharge into the oceans in Earth system models is a challenging problem. Commonly, the river runoff is discharged into the ocean models with zero salinity and arbitrarily distributed either horizontally or vertically over several grid cells. Those approaches entirely neglect estuarine physical processes that modify river inputs before they reach the open ocean. A physically based Estuary Box Model (EBM) is developed to parameterize the mixing processes in estuaries. The EBM has a two-layer structure representing the mixing processes driven by tides and shear flow within the estuaries. It predicts the magnitude of the mixing driven exchange flow, bringing saltier lower-layer shelf water into the estuary to mix with river water prior to discharge to the upper-layer open ocean. The EBM has been tested against observations and high-resolution three-dimensional simulations of the Columbia River estuary, showing excellent agreement in the predictions of the strength of the exchange flow and the salinity of the discharged water, including modulation with the spring-neap tidal cycle. The EBM is implemented globally at every river discharge point of the Community Earth System Model (CESM). In coupled ocean-sea ice experiments driven by CORE surface forcing, the sea surface salinity (SSS) in the coastal ocean is increased globally compared to the standard model, contributing to a decrease in coastal stratification. The SSS near the mouths of some of the largest rivers is decreased due to the reduction in the area over which riverine fresh water is discharged. The

  11. Understanding Our Environment: Planet.

    ERIC Educational Resources Information Center

    Callister, Jeffrey C.; And Others

    Part of the Understanding Our Environment project that is designed to engage students in investigating specific environmental problems through concrete activities and direct experience, this unit places Earth in the context of its environment-the Universe-then focuses on Earth as seen from satellites. Students analyze patterns formed by the…

  12. Transition Process of Procedural to Conceptual Understanding in Solving Mathematical Problems

    ERIC Educational Resources Information Center

    Fatqurhohman

    2016-01-01

    This article aims to describe the transition process from procedural understanding to conceptual understanding in solving mathematical problems. Subjects in this study were three students from 20 fifth grade students of SDN 01 Sumberberas Banyuwangi selected based on the results of the students' answers. The transition process from procedural to…

  13. A novel sequential process for remediating rare-earth wastewater.

    PubMed

    Cui, Mingcan; Jang, Min; Kang, Kyounglim; Kim, Dukmin; Snyder, Shane A; Khim, Jeehyeong

    2016-02-01

    A novel and economic sequential process consisting of precipitation, adsorption, and oxidation was developed to remediate actual rare-earth (RE) wastewater containing various toxic pollutants, including radioactive species. In the precipitation step, porous air stones (PAS) containing waste oyster shell (WOS), PASWOS, was prepared and used to precipitate most heavy metals with >97% removal efficiencies. The SEM-EDS analysis revealed that PAS plays a key role in preventing the surface coating of precipitants on the surface of WOS and in releasing the dissolved species of WOS successively. For the adsorption step, a polyurethane (PU) impregnated by coal mine drainage sludge (CMDS), PUCMDS, was synthesized and applied to deplete fluoride (F), arsenic (As), uranium (U), and thorium (Th) that remained after precipitation. The continuous-mode sequential process using PAS(WOS), PU(CMDS), and ozone (O3) had 99.9-100% removal efficiencies of heavy metals, 99.3-99.9% of F and As, 95.8-99.4% of U and Th, and 92.4% of COD(Cr) for 100 days. The sequential process can treat RE wastewater economically and effectively without stirred-tank reactors, pH controller, continuous injection of chemicals, and significant sludge generation, as well as the quality of the outlet met the EPA recommended limits. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Quantifying planetary limits of Earth system processes relevant to human activity using a thermodynamic view of the whole Earth system

    NASA Astrophysics Data System (ADS)

    Kleidon, Axel

    2014-05-01

    Food, water, and energy play, obviously, a central role in maintaining human activity. In this contribution, I derive estimates for the fundamental limits on the rates by which these resources are provided by Earth system processes and the levels at which these can be used sustainably. The key idea here is that these resources are, directly or indirectly, generated out of the energy associated with the absorption of sunlight, and that the energy conversions from sunlight to other forms ultimately limit the generation of these resources. In order to derive these conversion limits, we need to trace the links between the processes that generate food, water and energy to the absorption of sunlight. The resource "food" results from biomass production by photosynthesis, which requires light and a sufficient magnitude of gas exchange of carbon dioxide at the surface, which is maintained by atmospheric motion which in turn is generated out of differential radiative heating and cooling. The resource "water" is linked to hydrologic cycling, with its magnitude being linked to the latent heat flux of the surface energy balance and water vapor transport in the atmosphere which is also driven by differential radiative heating and cooling. The availability of (renewable) energy is directly related to the generation of different forms of energy of climate system processes, such as the kinetic energy of atmospheric motion, which, again, relates to radiative heating differences. I use thermodynamics and its limits as a basis to establish the planetary limits of these processes and use a simple model to derive first-order estimates. These estimates compare quite well with observations, suggesting that this thermodynamic view of the whole Earth system provides an objective, physical basis to define and quantify planetary boundaries as well as the factors that shape these boundaries.

  15. Unsupervised SBAS-DInSAR Processing of Space-borne SAR data for Earth Surface Displacement Time Series Generation

    NASA Astrophysics Data System (ADS)

    Casu, F.; de Luca, C.; Lanari, R.; Manunta, M.; Zinno, I.

    2016-12-01

    During the last 25 years, the Differential Synthetic Aperture Radar Interferometry (DInSAR) has played an important role for understanding the Earth's surface deformation and its dynamics. In particular, the large collections of SAR data acquired by a number of space-borne missions (ERS, ENVISAT, ALOS, RADARSAT, TerraSAR-X, COSMO-SkyMed) have pushed toward the development of advanced DInSAR techniques for monitoring the temporal evolution of the ground displacements with an high spatial density. Moreover, the advent of the Copernicus Sentinel-1 (S1) constellation is providing a further increase in the SAR data flow available to the Earth science community, due to its characteristics of global coverage strategy and free and open access data policy. Therefore, managing and storing such a huge amount of data, processing it in an effcient way and maximizing the available archives exploitation are becoming high priority issues. In this work we present some recent advances in the DInSAR field for dealing with the effective exploitation of the present and future SAR data archives. In particular, an efficient parallel SBAS implementation (namely P-SBAS) that takes benefit from high performance computing is proposed. Then, the P-SBAS migration to the emerging Cloud Computing paradigm is shown, together with extensive tests carried out in the Amazon's Elastic Cloud Compute (EC2) infrastructure. Finally, the integration of the P-SBAS processing chain within the ESA Geohazards Exploitation Platform (GEP), for setting up operational on-demand and systematic web tools, open to every user, aimed at automatically processing stacks of SAR data for the generation of SBAS displacement time series, is also illustrated. A number of experimental results obtained by using the ERS, ENVISAT and S1 data in areas characterized by volcanic, seismic and anthropogenic phenomena will be shown. This work is partially supported by: the DPC-CNR agreement, the EPOS-IP project and the ESA GEP project.

  16. A simple enrichment correction factor for improving erosion estimation by rare earth oxide tracers

    USDA-ARS?s Scientific Manuscript database

    Spatially distributed soil erosion data are needed to better understanding soil erosion processes and validating distributed erosion models. Rare earth element (REE) oxides were used to generate spatial erosion data. However, a general concern on the accuracy of the technique arose due to selective ...

  17. Children's Representations of the Earth: A Methodological Comparison

    ERIC Educational Resources Information Center

    Panagiotaki, Georgia; Nobes, Gavin; Banerjee, Robin

    2006-01-01

    Investigation of children's understanding of the earth can reveal much about the origins and development of scientific knowledge. Vosniadou and Brewer (1992) claim that children construct coherent, theory-like mental models of the earth. However, more recent research has indicated that children's knowledge of the earth is fragmented and…

  18. Teaching Climate Change Using System Models: An Understanding Global Change Project Pilot Study

    NASA Astrophysics Data System (ADS)

    Bean, J. R.; Stuhlsatz, M.; Bracey, Z. B.; Marshall, C. R.

    2017-12-01

    Teaching and learning about historical and anthropogenic climate change in the classroom requires integrating instructional resources that address physical, chemical, and biological processes. The Understanding Global Change (UGC) framework and system models developed at the University of California Museum of Paleontology (UCMP) provide visualizations of the relationships and feedbacks between Earth system processes, and the consequences of anthropogenic activities on global climate. This schema provides a mechanism for developing pedagogic narratives that are known to support comprehension and retention of information and relationships. We designed a nine-day instructional unit for middle and high school students that includes a sequence of hands-on, inquiry-based, data rich activities combined with conceptual modeling exercises intended to foster students' development of systems thinking and their understanding of human influences on Earth system processes. The pilot unit, Sea Level Rise in the San Francisco Bay Area, addresses the human causes and consequences of sea level rise and related Earth system processes (i.e., the water cycle and greenhouse effect). Most of the content is not Bay Area specific, and could be used to explore sea level rise in any coastal region. Students completed pre and post assessments, which included questions about the connectedness of components of the Earth system and probed their attitudes towards participating in environmental stewardship activities. Students sequentially drew models representing the content explored in the activities and wrote short descriptions of their system diagrams that were collected by teachers for analysis. We also randomly assigned classes to engage in a very short additional intervention that asked students to think about the role that humans play in the Earth system and to draw themselves into the models. The study will determine if these students have higher stewardship scores and more frequently

  19. The Sun to the Earth - and Beyond: A Decadal Research Strategy in Solar and Space Physics

    NASA Technical Reports Server (NTRS)

    2003-01-01

    in processes observed in solar and space plasmas. Challenge 5: Developing a near-real-time predictive capability for understanding and quantifying the impact on human activities of dynamical processes at the Sun, in the interplanetary medium, and in Earth's magnetosphere and ionosphere. This report summarizes the state of knowledge about the total heliospheric system, poses key scientific questions for further research, and presents an integrated research strategy, with prioritized initiatives, for the next decade. The recommended strategy embraces both basic research programs and targeted basic research activities that will enhance knowledge and prediction of space weather effects on Earth. The report emphasizes the importance of understanding the Sun, the heliosphere, and planetary magnetospheres and ionospheres as astrophysical objects and as laboratories for the investigation of fundamental plasma physics phenomena.

  20. Technology Readiness Level Assessment Process as Applied to NASA Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Leete, Stephen J.; Romero, Raul A.; Dempsey, James A.; Carey, John P.; Cline, Helmut P.; Lively, Carey F.

    2015-01-01

    Technology assessments of fourteen science instruments were conducted within NASA using the NASA Technology Readiness Level (TRL) Metric. The instruments were part of three NASA Earth Science Decadal Survey missions in pre-formulation. The Earth Systematic Missions Program (ESMP) Systems Engineering Working Group (SEWG), composed of members of three NASA Centers, provided a newly modified electronic workbook to be completed, with instructions. Each instrument development team performed an internal assessment of its technology status, prepared an overview of its instrument, and completed the workbook with the results of its assessment. A team from the ESMP SEWG met with each instrument team and provided feedback. The instrument teams then reported through the Program Scientist for their respective missions to NASA's Earth Science Division (ESD) on technology readiness, taking the SEWG input into account. The instruments were found to have a range of TRL from 4 to 7. Lessons Learned are presented; however, due to the competition-sensitive nature of the assessments, the results for specific missions are not presented. The assessments were generally successful, and produced useful results for the agency. The SEWG team identified a number of potential improvements to the process. Particular focus was on ensuring traceability to guiding NASA documents, including the NASA Systems Engineering Handbook. The TRL Workbook has been substantially modified, and the revised workbook is described.

  1. NASA Remote Sensing Data in Earth Sciences: Processing, Archiving, Distribution, Applications at the GES DISC

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory G.

    2005-01-01

    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is one of the major Distributed Active Archive Centers (DAACs) archiving and distributing remote sensing data from the NASA's Earth Observing System. In addition to providing just data, the GES DISC/DAAC has developed various value-adding processing services. A particularly useful service is data processing a t the DISC (i.e., close to the input data) with the users' algorithms. This can take a number of different forms: as a configuration-managed algorithm within the main processing stream; as a stand-alone program next to the on-line data storage; as build-it-yourself code within the Near-Archive Data Mining (NADM) system; or as an on-the-fly analysis with simple algorithms embedded into the web-based tools (to avoid downloading unnecessary all the data). The existing data management infrastructure at the GES DISC supports a wide spectrum of options: from data subsetting data spatially and/or by parameter to sophisticated on-line analysis tools, producing economies of scale and rapid time-to-deploy. Shifting processing and data management burden from users to the GES DISC, allows scientists to concentrate on science, while the GES DISC handles the data management and data processing at a lower cost. Several examples of successful partnerships with scientists in the area of data processing and mining are presented.

  2. Contributions to Public Understanding of Science by the Lamont-Doherty Earth Observatory (I): Programs and Workshops

    NASA Astrophysics Data System (ADS)

    Passow, M. J.; Turrin, M.; Kenna, T. C.; Newton, R.; Buckley, B.

    2009-12-01

    The Lamont-Doherty Earth Observatory of Columbia University (LDEO) continues its long history of contributions to public understanding of Science through “live” and web-based programs that provide teachers, students, and the other access to new discoveries and updates on key issues. We highlight current activities in paired posters. Part 1 focuses on events held at the Palisades, NY, campus. "Earth2Class (E2C)" is a unique program integrating science content with increased understanding about classroom learning and technology. Monthly workshops allow K-14 participants to combine talks by researchers about cutting-edge investigations with acquisition of background knowledge and classroom-ready applications. E2C has sponsored 100 workshops by more than 60 LDEO scientists for hundreds of teachers. A vast array of resources on earth2class.org> includes archived versions of workshops, comprehensive sets of curriculum units, and professional development opportunities. It has been well received by both workshop participants and others who have only accessed the web site. "Hudson River Snapshot Day" celebrates the Hudson River Estuary and educates participants on the uniqueness of our nearby estuary as part of the annual National Estuaries Week. The New York State Department of Environmental Conservation Hudson River Estuary Program and Hudson Basin River Watch coordinate the event. LDEO scientists help coordinate annual data collection by school classes to create a day-in-the-life picture all along the river. LDEO researchers also participate in "River Summer," bringing together participants from a variety of perspectives to look at the Hudson River and foster better understanding of how the same features can appear very differently to artists, writers, political scientists, economists, or scientists. These perspectives aid in recognizing the Hudson’s unique characteristics and history by identifying cross-disciplinary relationships and fostering new

  3. Final Report Collaborative Project. Improving the Representation of Coastal and Estuarine Processes in Earth System Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Frank; Dennis, John; MacCready, Parker

    This project aimed to improve long term global climate simulations by resolving and enhancing the representation of the processes involved in the cycling of freshwater through estuaries and coastal regions. This was a collaborative multi-institution project consisting of physical oceanographers, climate model developers, and computational scientists. It specifically targeted the DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation. The main computational objectives were: 1. To develop computationally efficient, but physically based, parameterizations of estuary and continental shelf mixing processes for use in an Earth System Model (CESM). 2. Tomore » develop a two-way nested regional modeling framework in order to dynamically downscale the climate response of particular coastal ocean regions and to upscale the impact of the regional coastal processes to the global climate in an Earth System Model (CESM). 3. To develop computational infrastructure to enhance the efficiency of data transfer between specific sources and destinations, i.e., a point-to-point communication capability, (used in objective 1) within POP, the ocean component of CESM.« less

  4. Earth Rings for Planetary Environment Control

    NASA Astrophysics Data System (ADS)

    Pearson, Jerome; Oldson, John; Levin, Eugene; Carroll, Joseph

    2002-01-01

    . Earth, lunar, and asteroidal material sources are evaluated; asteroid retrieval is addressed, along with techniques for processing and forming the ring to the proper thickness and density. The ring could consist of particles, or fabricated satellite structures. Environmental concerns and effects on existing satellites in various Earth orbits are addressed. There are uncertainties in our understanding of climate and its control. But it appears that the Earth ring could control the Earth's temperature and its latitudinal variation, make dangerous asteroids useful, reduce the intensity of the Van Allen radiation belts, provide nighttime illumination without power, and create an artificial ionosphere for radio communication.

  5. NASA's Earth Observing Data and Information System

    NASA Technical Reports Server (NTRS)

    Mitchell, Andrew E.; Behnke, Jeanne; Lowe, Dawn; Ramapriyan, H. K.

    2009-01-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of NASA Earth observation program for over 10 years. It is one of the largest civilian science information system in the US, performing ingest, archive and distribution of over 3 terabytes of data per day much of which is from NASA s flagship missions Terra, Aqua and Aura. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. The EOSDIS data centers, collocated with centers of science discipline expertise, archive and distribute standard data products produced by science investigator-led processing systems. Key to the success of EOSDIS is the concept of core versus community requirements. EOSDIS supports a core set of services to meet specific NASA needs and relies on community-developed services to meet specific user needs. EOSDIS offers a metadata registry, ECHO (Earth Observing System Clearinghouse), through which the scientific community can easily discover and exchange NASA s Earth science data and services. Users can search, manage, and access the contents of ECHO s registries (data and services) through user-developed and community-tailored interfaces or clients. The ECHO framework has become the primary access point for cross-Data Center search-and-order of EOSDIS and other Earth Science data holdings archived at the EOSDIS data centers. ECHO s Warehouse Inventory Search Tool (WIST) is the primary web-based client for discovering and ordering cross-discipline data from the EOSDIS data centers. The architecture of the EOSDIS provides a platform for the publication, discovery, understanding and access to NASA s Earth Observation resources and allows for easy integration of new datasets. The EOSDIS also has developed several methods for incorporating socioeconomic data into its data collection. Over the years, we have developed several methods for determining

  6. Hemispheric symmetry of the Earth's Energy Balance as a fundamental constraint on the Earth's climate

    NASA Astrophysics Data System (ADS)

    Stephens, G. L.; Webster, P. J.; OBrien, D. M.

    2013-12-01

    We currently lack a quantitative understanding of how the Earth's energy balance and the poleward energy transport adjust to different forcings that determine climate change. Currently, there are no constraints that guide this understanding. We will demonstrate that the Earth's energy balance exhibits a remarkable symmetry about the equator, and that this symmetry is a necessary condition of a steady state climate. Our analysis points to clouds as the principal agent that highly regulates this symmetry and sets the steady state. The existence of this thermodynamic steady-state constraint on climate and the symmetry required to sustain it leads to important inferences about the synchronous nature of climate changes between hemispheres, offering for example insights on mechanisms that can sustain global ice ages forced by asymmetric hemispheric solar radiation variations or how climate may respond to increases in greenhouse gas concentration. Further inferences regarding cloud effects on climate can also be deduced without resorting to the complex and intricate processes of cloud formation, whose representation continues to challenge the climate modeling community. The constraint suggests cloud feedbacks must be negative buffering the system against change. We will show that this constraint doesn't exist in the current CMIP5 model experiments and the lack of such a constraint suggests there is insufficient buffering in models in response to external forcings

  7. Effect of the Earth's rotation on subduction processes

    NASA Astrophysics Data System (ADS)

    Levin, B. W.; Rodkin, M. V.; Sasorova, E. V.

    2017-09-01

    The role played by the Earth's rotation is very important in problems of physics of the atmosphere and ocean. The importance of inertia forces is traditionally estimated by the value of the Rossby number: if this parameter is small, the Coriolis force considerably affects the character of movements. In the case of convection in the Earth's mantle and movements of lithospheric plates, the Rossby number is quite small; therefore, the effect of the Coriolis force is reflected in the character of movements of the lithospheric plates. Analysis of statistical data on subduction zones verifies this suggestion.

  8. Earth Sciences Division

    NASA Astrophysics Data System (ADS)

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division's research deals with the physical and chemical properties and processes in the earth's crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989, a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will, in the coming years, be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.

  9. Building Thematic and Integrated Services for European Solid Earth Sciences: the EPOS Integrated Approach

    NASA Astrophysics Data System (ADS)

    Harrison, M.; Cocco, M.

    2017-12-01

    EPOS (European Plate Observing System) has been designed with the vision of creating a pan-European infrastructure for solid Earth science to support a safe and sustainable society. In accordance with this scientific vision, the EPOS mission is to integrate the diverse and advanced European Research Infrastructures for solid Earth science relying on new e-science opportunities to monitor and unravel the dynamic and complex Earth System. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. To accomplish its mission, EPOS is engaging different stakeholders, to allow the Earth sciences to open new horizons in our understanding of the planet. EPOS also aims at contributing to prepare society for geo-hazards and to responsibly manage the exploitation of geo-resources. Through integration of data, models and facilities, EPOS will allow the Earth science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and human welfare. The research infrastructures (RIs) that EPOS is coordinating include: i) distributed geophysical observing systems (seismological and geodetic networks); ii) local observatories (including geomagnetic, near-fault and volcano observatories); iii) analytical and experimental laboratories; iv) integrated satellite data and geological information services; v) new services for natural and anthropogenic hazards; vi) access to geo-energy test beds. Here we present the activities planned for the implementation phase focusing on the TCS, the ICS and on their interoperability. We will discuss the data, data-products, software and services (DDSS) presently under

  10. Chemistry teachers’ understanding of science process skills in relation of science process skills assessment in chemistry learning

    NASA Astrophysics Data System (ADS)

    Hikmah, N.; Yamtinah, S.; Ashadi; Indriyanti, N. Y.

    2018-05-01

    A Science process skill (SPS) is a fundamental scientific method to achieve good knowledge. SPS can be categorized into two levels: basic and integrated. Learning SPS helps children to grow as individuals who can access knowledge and know how to acquire it. The primary outcomes of the scientific process in learning are the application of scientific processes, scientific reasoning, accurate knowledge, problem-solving, and understanding of the relationship between science, technology, society, and everyday life’s events. Teachers’ understanding of SPS is central to the application of SPS in a learning process. Following this point, this study aims to investigate the high school chemistry teachers’ understanding of SPS pertains to their assessment of SPS in chemistry learning. The understanding of SPS is measured from the conceptual and operational aspects of SPS. This research uses qualitative analysis method, and the sample consists of eight chemistry teachers selected by random sampling. A semi-structured interview procedure is used to collect the data. The result of the analysis shows that teachers’ conceptual and operational understanding of SPS is weak. It affects the accuracy and appropriateness of the teacher’s selection of SPS assessment in chemistry learning.

  11. Utilizing Earth Observations for Societal Issues

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    2010-01-01

    Over the last four decades a tremendous progress has been made in the Earth science space-based remote sensing observations, technologies and algorithms. Such advancements have improved the predictability by providing lead-time and accuracy of forecast in weather, climate, natural hazards, and natural resources. It has further reduced or bounded the overall uncertainties by partially improving our understanding of planet Earth as an integrated system that is governed by non-linear and chaotic behavior. Many countries such as the US, European Community, Japan, China, Russia, India has and others have invested billions of dollars in developing and launching space-based assets in the low earth (LEO) and geostationary (GEO) orbits. However, the wealth of this scientific knowledge that has potential of extracting monumental socio-economic benefits from such large investments have been slow in reaching the public and decision makers. For instance, there are a number of areas such as water resources and availability, energy forecasting, aviation safety, agricultural competitiveness, disaster management, air quality and public health, which can directly take advantage. Nevertheless, we all live in a global economy that depends on access to the best available Earth Science information for all inhabitants of this planet. This presentation discusses a process to transition Earth science data and products for societal needs including NASA's experience in achieving such objectives. It is important to mention that there are many challenges and issues that pertain to a number of areas such as: (1) difficulties in making a speedy transition of data and information from observations and models to relevant Decision Support Systems (DSS) or tools, (2) data and models inter-operability issues, (3) limitations of spatial, spectral and temporal resolution, (4) communication limitations as dictated by the availability of image processing and data compression techniques. Additionally, the

  12. Interacting with Petabytes of Earth Science Data using Jupyter Notebooks, IPython Widgets and Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Erickson, T. A.; Granger, B.; Grout, J.; Corlay, S.

    2017-12-01

    The volume of Earth science data gathered from satellites, aircraft, drones, and field instruments continues to increase. For many scientific questions in the Earth sciences, managing this large volume of data is a barrier to progress, as it is difficult to explore and analyze large volumes of data using the traditional paradigm of downloading datasets to a local computer for analysis. Furthermore, methods for communicating Earth science algorithms that operate on large datasets in an easily understandable and reproducible way are needed. Here we describe a system for developing, interacting, and sharing well-documented Earth Science algorithms that combines existing software components: Jupyter Notebook: An open-source, web-based environment that supports documents that combine code and computational results with text narrative, mathematics, images, and other media. These notebooks provide an environment for interactive exploration of data and development of well documented algorithms. Jupyter Widgets / ipyleaflet: An architecture for creating interactive user interface controls (such as sliders, text boxes, etc.) in Jupyter Notebooks that communicate with Python code. This architecture includes a default set of UI controls (sliders, dropboxes, etc.) as well as APIs for building custom UI controls. The ipyleaflet project is one example that offers a custom interactive map control that allows a user to display and manipulate geographic data within the Jupyter Notebook. Google Earth Engine: A cloud-based geospatial analysis platform that provides access to petabytes of Earth science data via a Python API. The combination of Jupyter Notebooks, Jupyter Widgets, ipyleaflet, and Google Earth Engine makes it possible to explore and analyze massive Earth science datasets via a web browser, in an environment suitable for interactive exploration, teaching, and sharing. Using these environments can make Earth science analyses easier to understand and reproducible, which may

  13. EarthShape: A Strategy for Investigating the Role of Biota on Surface Processes

    NASA Astrophysics Data System (ADS)

    Übernickel, Kirstin; Ehlers, Todd Alan; von Blanckenburg, Friedhelm; Paulino, Leandro

    2017-04-01

    EarthShape - "Earth surface shaping by biota" is a 6-year priority research program funded by the German science foundation (DFG-SPP 1803) that performs soil- and landscape-scale critical zone research at 4 locations along a climate gradient in Chile, South America. The program is in its first year and involves an interdisciplinary collaboration between geologists, geomorphologists, ecologists, soil scientists, microbiologists, geophysicists, geochemists, hydrogeologists and climatologists including 18 German and 8 Chilean institutions. EarthShape is composed of 4 research clusters representing the process chain from weathering of substrate to deposition of eroded material. Cluster 1 explores micro-biota as the "weathering engine". Investigations in this cluster quantify different mechanisms of biogenic weathering whereby plants, fungi, and bacteria interact with rock in the production of soil. Cluster 2 explores bio-mediated redistribution of material within the weathering zone. Studies in this cluster focus on soil catenas along hill slope profiles to investigate the modification of matter along its transport path. Cluster 3 explores biotic modulation of erosion and sediment routing at the catchment scale. Investigations in this cluster explore the effects of vegetation cover on solute and sediment transport from hill slopes to the channel network. Cluster 4 explores the depositional legacy of coupled biogenic and Earth surface systems. This cluster investigates records of vegetation-land surface interactions in different depositional settings. A final component of EarthShape lies in the integration of results from these 4 clusters using numerical models to bridging between the diverse times scales used by different disciplines. The Chilean Coastal Cordillera between 25° and 40°S was selected to carry out this research because its north-south orientation captures a large ecological and climate gradient. This gradient ranges from hyper-arid (Atacama desert) to

  14. Understanding divergent evolution of Earth-like planets: The case for a Venus exploration program

    NASA Astrophysics Data System (ADS)

    Crisp, D.

    The planet Venus is our most Earth-like neighbor in size, mass, and solar distance. In spite of these similarities, the Venus surface and atmosphere are characterized by some of the most enigmatic features seen anywhere in the solar system. Here, we propose a Venus exploration program designed to explain the origin and divergent evolution of the interiors, surfaces, and atmospheres of the terrestrial planets in our solar system, and provide greater insight into the conditions that may affect the habitability of terrestrial planets in other solar systems. This program includes: - The Noble Gas and Trace Gas Explorer is the highest priority mission because itsdata are vital to our understanding of the origin of Venus. This Discovery classmission requires a single entry probe that will carry the state-of-the-art instrumentsneeded to complete the noble gas and trace gas inventories between the cloud topsand the surface. - The Global Geological Process Mapping Orbiter is a Discovery class mission. Itwill carry a C- and/or X-band radar designed for stereo or interferometric imaging,to provide global maps of the surface at horizontal resolutions of 25 to 50 metersto identify and characterize the geologic processes that have shaped the Venussurface. - The Atmospheric Composition Orbiter is a Discovery class mission that will carryremote sensing instruments for characterizing clouds and trace gas variationsthroughout the atmosphere. This mission will collect the data needed tocharacterize the radiative, chemical, and dynamical processes that are maintainingthe thermal structure and composition of the present atmosphere. - The Atmospheric Dynamics Explorer is a New Frontiers class mission that willdeploy 12 to 24 long-lived balloons over a range of latitudes and altitudes toidentify the mechanisms responsible for maintaining the atmosphericsuperrotation. - The Surface and Interior Explorer is a New Frontiers class mission that will deploythree or more long-lived landers on

  15. The Viability and Style of the Modern Plate-Tectonic Subduction Process in a Hotter Earth

    NASA Astrophysics Data System (ADS)

    van Hunen, J.; van den Berg, A.; Vlaar, N. J.

    2001-12-01

    The Earth was probably warmer during the Archean and Proterozoic, and a 50 to 300 K mantle temperature increase has been suggested. This resulted in a thicker basaltic oceanic crust and underlying harzburgitic layer, and increased buoyancy of the lithosphere. This phenomenon has raised questions about the style or even the existence of plate tectonics in a younger Earth. Buoyant, low-angle subduction (e.g. below overriding plates) could have been more important, but also alternative tectonic styles, such as small-scale layered convection within the thickened crust have been proposed. We conducted 2-D Cartesian numerical model calculations to quantify the viability of the subduction process for an Earth with a higher potential temperature.As the basalt-to-eclogite transition in the crust plays an important role in the buoyancy of the oceanic plate and slab, and therefore also in its propensity to subduct, the kinetics of this phase transition is included in the numerical model. One set of model results suggest that flat subduction below a continuously overriding lithosphere, or lithospheric doubling, can give rise to flat subduction up to a mantle temperature, which is not much higher (38 to 75 K) than today. An even hotter mantle is too weak to support the flat slab, so that fast, steep Benioff subduction develops. We performed another set of model calculations to examine the possibility of modern-style subduction in a hotter Earth, without extra driving forces such as lithospheric doubling. We use again the mechanism of lithospheric doubling, but only to trigger the subduction process, and switch it off after a few million years, when `active' subduction developes. For a mantle temperature increase up to 150 K, we find subduction to be essentially the same as today, but subduction rates increase with increasing mantle temperature and increasing eclogitisation rates. For a 225 K mantle temperature increase, considerable amounts of the dense eclogitic crust

  16. Visualizing Dynamic Weather and Ocean Data in Google Earth

    NASA Astrophysics Data System (ADS)

    Castello, C.; Giencke, P.

    2008-12-01

    Katrina. Climate change. Rising sea levels. Low lake levels. These headliners, and countless others like them, underscore the need to better understand our changing oceans and lakes. Over the past decade, efforts such as the Global Ocean Observing System (GOOS) have added to this understanding, through the creation of interoperable ocean observing systems. These systems, including buoy networks, gliders, UAV's, etc, have resulted in a dramatic increase in the amount of Earth observation data available to the public. Unfortunately, these data tend to be restrictive to mass consumption, owing to large file sizes, incompatible formats, and/or a dearth of user friendly visualization software. Google Earth offers a flexible way to visualize Earth observation data. Marrying high resolution orthoimagery, user friendly query and navigation tools, and the power of OGC's KML standard, Google Earth can make observation data universally understandable and accessible. This presentation will feature examples of meteorological and oceanographic data visualized using KML and Google Earth, along with tools and tips for integrating other such environmental datasets.

  17. Change in Water Cycle- Important Issue on Climate Earth System

    NASA Astrophysics Data System (ADS)

    Singh, Pratik

    Change in Water Cycle- Important Issue on Climate Earth System PRATIK KUMAR SINGH1 1BALDEVRAM MIRDHA INSTITUTE OF TECHNOLOGY,JAIPUR (RAJASTHAN) ,INDIA Water is everywhere on Earth and is the only known substance that can naturally exist as a gas, liquid, and solid within the relatively small range of air temperatures and pressures found at the Earth's surface.Changes in the hydrological cycle as a consequence of climate and land use drivers are expected to play a central role in governing a vast range of environmental impacts.Earth's climate will undergo changes in response to natural variability, including solar variability, and to increasing concentrations of green house gases and aerosols.Further more, agreement is widespread that these changes may profoundly affect atmospheric water vapor concentrations, clouds and precipitation patterns.As we know that ,a warmer climate, directly leading to increased evaporation, may well accelerate the hydrological cycle, resulting in an increase in the amount of moisture circulating through the atmosphere.The Changing Water Cycle programmer will develop an integrated, quantitative understanding of the changes taking place in the global water cycle, involving all components of the earth system, improving predictions for the next few decades of regional precipitation, evapotranspiration, soil moisture, hydrological storage and fluxes.The hydrological cycle involves evaporation, transpiration, condensation, precipitation, and runoff. NASA's Aqua satellite will monitor many aspects of the role of water in the Earth's systems, and will do so at spatial and temporal scales appropriate to foster a more detailed understanding of each of the processes that contribute to the hydrological cycle. These data and the analyses of them will nurture the development and refinement of hydrological process models and a corresponding improvement in regional and global climate models, with a direct anticipated benefit of more accurate weather and

  18. Earth Observations from Space: The First 50 Years of Scientific Achievements

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Observing Earth from space over the past 50 years has fundamentally transformed the way people view our home planet. The image of the "blue marble" is taken for granted now, but it was revolutionary when taken in 1972 by the crew on Apollo 17. Since then the capability to look at Earth from space has grown increasingly sophisticated and has evolved from simple photographs to quantitative measurements of Earth properties such as temperature, concentrations of atmospheric trace gases, and the exact elevation of land and ocean. Imaging Earth from space has resulted in major scientific accomplishments; these observations have led to new discoveries, transformed the Earth sciences, opened new avenues of research, and provided important societal benefits by improving the predictability of Earth system processes. This report highlights the scientific achievements made possible by the first five decades of Earth satellite observations by space-faring nations. It follows on a recent report from the National Research Council (NRC) entitled Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, also referred to as the "decadal survey." Recognizing the increasing need for space observations, the decadal survey identifies future directions and priorities for Earth observations from space. This companion report was requested by the National Aeronautics and Space Administration (NASA) to highlight, through selected examples, important past contributions of Earth observations from space to our current understanding of the planet.

  19. Our Mission to Planet Earth: A guide to teaching Earth system science

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Volcanic eruptions, hurricanes, floods, and El Nino are naturally occurring events over which humans have no control. But can human activities cause additional environmental change? Can scientists predict the global impacts of increased levels of pollutants in the atmosphere? Will the planet warm because increased levels of greenhouse gases, produced by the burning of fossil fuels, trap heat and prevent it from being radiated back into space? Will the polar ice cap melt, causing massive coastal flooding? Have humans initiated wholesale climatic change? These are difficult questions, with grave implications. Predicting global change and understanding the relationships among earth's components have increased in priority for the nation. The National Aeronautics and Space Administration (NASA), along with many other government agencies, has initiated long-term studies of earth's atmosphere, oceans, and land masses using observations from satellite, balloon, and aircraft-borne instruments. NASA calls its research program Mission to Planet Earth. Because NASA can place scientific instruments far above earth's surface, the program allows scientists to explore earth's components and their interactions on a global scale.

  20. Discover Earth: An earth system science program for libraries and their communities

    NASA Astrophysics Data System (ADS)

    Curtis, L.; Dusenbery, P.

    2010-12-01

    The view from space has deepened our understanding of Earth as a global, dynamic system. Instruments on satellites and spacecraft, coupled with advances in ground-based research, have provided us with astonishing new perspectives of our planet. Now more than ever, enhancing the public’s understanding of Earth’s physical and biological systems is vital to helping citizens make informed policy decisions especially when they are faced with the consequences of global climate change. In spite of this relevance, there are many obstacles to achieving broad public understanding of key earth system science (ESS) concepts. Strategies for addressing climate change can only succeed with the full engagement of the general public. As reported by U.S. News and World Report in 2010, small towns in rural America are emerging as the front line in the climate change debate in the country. The Space Science Institute’s National Center for Interactive Learning (NCIL) in partnership with the American Library Association (ALA), the Lunar and Planetary Institute (LPI), and the National Girls Collaborative Project (NGCP) have received funding from NSF to develop a national project called the STAR Library Education Network: a hands-on learning program for libraries and their communities (or STAR-Net for short). STAR stands for Science-Technology, Activities and Resources. There are two distinct components of STAR-Net: Discover Earth and Discover Tech. While the focus for education reform is on school improvement, there is considerable research that supports the role that out-of-school experiences can play in student achievement. Libraries provide an untapped resource for engaging underserved youth and their families in fostering an appreciation and deeper understanding of science and technology topics. The overarching goal of the project is to reach underserved youth and their families with informal STEM learning experiences. The Discover Earth part of STAR_Net will produce ESS

  1. A Sky View of Earth From Suomi NPP

    NASA Image and Video Library

    2015-04-22

    This composite image of southern Africa and the surrounding oceans was captured by six orbits of the NASA/NOAA Suomi National Polar-orbiting Partnership spacecraft on April 9, 2015, by the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument. Tropical Cyclone Joalane can be seen over the Indian Ocean. Winds, tides and density differences constantly stir the oceans while phytoplankton continually grow and die. Orbiting radiometers such as VIIRS allows scientists to track this variability over time and contribute to better understanding of ocean processes that are beneficial to human survival on Earth. The image was created by the Ocean Biology Processing Group at NASA's Goddard Space Flight Center in Greenbelt, Maryland. For more information, please visit: oceancolor.gsfc.nasa.gov/ and www.nasa.gov/npp Image Credit: Ocean Biology Processing Group at NASA's Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. The Earth on the Other Side of Life (Invited)

    NASA Astrophysics Data System (ADS)

    Amundson, R.; Ewing, S. A.; Owen, J. J.

    2010-12-01

    There are important reasons for examining the role of life on Earth surface processes, including better understanding the long term feedbacks between the geosphere and biosphere that maintain Earth habitability, and bracing for the cumulative impact of the Earth’s most invasive species (Homo sapiens) on the earth system. Coming to grips with the importance of life is simply a matter of recognizing the obvious: life mantles most of the planet’s surface and the planet’s climatic boundary conditions would be profoundly different if life on Earth had not evolved. Nearly every process on this planet is mediated in some way by biology . The most difficult aspect of deciphering the exact role of life on Earth surface processes is observationally identifying a “control experiment”- e.g. one where life does not exist. Planetary habitability is linked to the presence of liquid water. Thus, there are two regions on Earth that largely fall outside the rainfall limits of life and that have maintained nearly abiotic conditions for millions of years: the Atacama Desert of northern Chile (warm and very dry) and the Dry Valleys of Antarctica (very cold and dry). Here, we examine the Atacama Desert for the reason that it is the dry end of a continuous decline in rainfall with decreasing latitude in western South America, such that (almost imperceptibly) one eventually crosses a rainfall threshold beyond which most life ceases to exist. The consequence of soil and geomorphic studies along this rainfall gradient have revealed that several important earth surface processes vary montonically with declining rainfall up to the point where vascular plants disappear. At this point, the rates or types of key processes appear to undergo fundamental changes. Geomorphically, soil production/hillslope denudation rates vary within a window of rates over broad ranges in rainfall. However, at the biotic abiotic boundary, erosion rates decline in concert with rainfall. This pattern appears

  3. Understanding r-process Nucleosynthesis through Nuclear Data

    NASA Astrophysics Data System (ADS)

    Surman, Rebecca

    2018-06-01

    The electromagnetic counterpart of the GW170817 neutron star merger provided the first direct evidence of the astrophysical formation of nuclei via rapid neutron capture (r-process) nucleosynthesis. Full understanding of this event from first principles and its role in galactic chemical evolution requires progress in a number of areas. One key area is nuclear physics. A neutron star merger r-process involves thousands of exotic nuclear species, the majority of which have never been studied in the laboratory. Here we will discuss r-process nuclear data needs and how nuclear physics uncertainties influence our interpretation of observed abundance patterns and kilonova signals. We will explore the promise of experimental campaigns at rare isotope beam facilities to reduce these uncertainties, and describe recent efforts to directly connect nuclear data to astrophysical environments via the ‘reverse-engineering’ of unknown nuclear properties from the r-process abundance pattern.

  4. Modeling the Earth system in the Mission to Planet Earth era

    NASA Technical Reports Server (NTRS)

    Unninayar, Sushel; Bergman, Kenneth H.

    1993-01-01

    A broad overview is made of global earth system modeling in the Mission to Planet Earth (MTPE) era for the multidisciplinary audience encompassed by the Global Change Research Program (GCRP). Time scales of global system fluctuation and change are described in Section 2. Section 3 provides a rubric for modeling the global earth system, as presently understood. The ability of models to predict the future state of the global earth system and the extent to which their predictions are reliable are covered in Sections 4 and 5. The 'engineering' use of global system models (and predictions) is covered in Section 6. Section 7 covers aspects of an increasing need for improved transform algorithms and better methods to assimilate this information into global models. Future monitoring and data requirements are detailed in Section 8. Section 9 covers the NASA-initiated concept 'Mission to Planet Earth,' which employs space and ground based measurement systems to provide the scientific basis for understanding global change. Section 10 concludes this review with general remarks concerning the state of global system modeling and observing technology and the need for future research.

  5. Rare-earth-doped materials with application to optical signal processing, quantum information science, and medical imaging technology

    NASA Astrophysics Data System (ADS)

    Cone, R. L.; Thiel, C. W.; Sun, Y.; Böttger, Thomas; Macfarlane, R. M.

    2012-02-01

    Unique spectroscopic properties of isolated rare earth ions in solids offer optical linewidths rivaling those of trapped single atoms and enable a variety of recent applications. We design rare-earth-doped crystals, ceramics, and fibers with persistent or transient "spectral hole" recording properties for applications including high-bandwidth optical signal processing where light and our solids replace the high-bandwidth portion of the electronics; quantum cryptography and information science including the goal of storage and recall of single photons; and medical imaging technology for the 700-900 nm therapeutic window. Ease of optically manipulating rare-earth ions in solids enables capturing complex spectral information in 105 to 108 frequency bins. Combining spatial holography and spectral hole burning provides a capability for processing high-bandwidth RF and optical signals with sub-MHz spectral resolution and bandwidths of tens to hundreds of GHz for applications including range-Doppler radar and high bandwidth RF spectral analysis. Simply stated, one can think of these crystals as holographic recording media capable of distinguishing up to 108 different colors. Ultra-narrow spectral holes also serve as a vibration-insensitive sub-kHz frequency reference for laser frequency stabilization to a part in 1013 over tens of milliseconds. The unusual properties and applications of spectral hole burning of rare earth ions in optical materials are reviewed. Experimental results on the promising Tm3+:LiNbO3 material system are presented and discussed for medical imaging applications. Finally, a new application of these materials as dynamic optical filters for laser noise suppression is discussed along with experimental demonstrations and theoretical modeling of the process.

  6. Understanding scaling through history-dependent processes with collapsing sample space.

    PubMed

    Corominas-Murtra, Bernat; Hanel, Rudolf; Thurner, Stefan

    2015-04-28

    History-dependent processes are ubiquitous in natural and social systems. Many such stochastic processes, especially those that are associated with complex systems, become more constrained as they unfold, meaning that their sample space, or their set of possible outcomes, reduces as they age. We demonstrate that these sample-space-reducing (SSR) processes necessarily lead to Zipf's law in the rank distributions of their outcomes. We show that by adding noise to SSR processes the corresponding rank distributions remain exact power laws, p(x) ~ x(-λ), where the exponent directly corresponds to the mixing ratio of the SSR process and noise. This allows us to give a precise meaning to the scaling exponent in terms of the degree to which a given process reduces its sample space as it unfolds. Noisy SSR processes further allow us to explain a wide range of scaling exponents in frequency distributions ranging from α = 2 to ∞. We discuss several applications showing how SSR processes can be used to understand Zipf's law in word frequencies, and how they are related to diffusion processes in directed networks, or aging processes such as in fragmentation processes. SSR processes provide a new alternative to understand the origin of scaling in complex systems without the recourse to multiplicative, preferential, or self-organized critical processes.

  7. Liquefaction process for solid carbonaceous materials containing alkaline earth metal humates

    DOEpatents

    Epperly, William R.; Deane, Barry C.; Brunson, Roy J.

    1982-01-01

    An improved liquefaction process wherein wall scale and particulate agglomeration during the liquefaction of solid carbonaceous materials containing alkaline earth metal humates is reduced and/or eliminated by subjecting the solid carbonaceous materials to controlled cyclic cavitation during liquefaction. It is important that the solid carbonaceous material be slurried in a suitable solvent or diluent during liquefaction. The cyclic cavitation may be imparted via pressure cycling, cyclic agitation and the like. When pressure cycling or the like is employed an amplitude equivalent to at least 25 psia is required to effectively remove scale from the liquefaction vessel walls.

  8. Successful Heliophysical Programs Emphasizing the Relation of Earth and the Sun

    NASA Astrophysics Data System (ADS)

    Morris, P. A.; Reiff, P.; Sumners, C.; McKay, G. A.

    2007-05-01

    Heliophysical is defined as the interconnectedness of the entire solar-heliospheric-planetary system. Our goals are to introduce easily accessible programs that introduce the Sun and other solar system processes to the public. The programs emphasize the impact of these processes on Earth and its inhabitants over geological time. These types of programs are important as these topics as generally taught as a secondary concept rather than an integrated approach. Space Weather is an excellent mechanism for integrating Earth and space science. Heliophysics, which includes Space Weather, is traditionally part of space science studies, but most students do not understand the effect of the Sun's atmosphere on Earth or the intense effects energetic particles can have on humans, whether traveling through space or exploring the surfaces of the Moon or Mars. Effects are not only limited to space travel and other planetary surfaces but also include effects on Earth's magnetosphere which, in turn, affect radio transmission, GPS accuracy, and on occasion spacecraft loss and terrestrial power outages. Meteoritic impacts are another topic. Impacts on planetary bodies without strong plate tectonic activities provide ample evidence of their occurrence over geological time. As an analog, impacts have also had an extensive record on Earth, but plate tectonics have been responsible for obliterating most of the evidence. We have developed effective and engaging venues for teaching heliophysics, via the internet, CD-Rom's, museum kiosks, and planetarium shows. We have organized workshops for teachers; "NASA Days" and "Sally Ride Festivals" for students, and "Sun-Earth Day" events for the public. Our goals are both to increase k-16 and public literacy on heliophysical processes and to inspire the next generation to enhance the workforce. We will be offering examples of these programs, as well as distributing CD's and DVD's of some of the creative works.

  9. Increased insolation threshold for runaway greenhouse processes on Earth-like planets

    NASA Astrophysics Data System (ADS)

    Leconte, Jérémy; Forget, Francois; Charnay, Benjamin; Wordsworth, Robin; Pottier, Alizée

    2013-12-01

    The increase in solar luminosity over geological timescales should warm the Earth's climate, increasing water evaporation, which will in turn enhance the atmospheric greenhouse effect. Above a certain critical insolation, this destabilizing greenhouse feedback can `run away' until the oceans have completely evaporated. Through increases in stratospheric humidity, warming may also cause evaporative loss of the oceans to space before the runaway greenhouse state occurs. The critical insolation thresholds for these processes, however, remain uncertain because they have so far been evaluated using one-dimensional models that cannot account for the dynamical and cloud feedback effects that are key stabilizing features of the Earth's climate. Here we use a three-dimensional global climate model to show that the insolation threshold for the runaway greenhouse state to occur is about 375 W m-2, which is significantly higher than previously thought. Our model is specifically developed to quantify the climate response of Earth-like planets to increased insolation in hot and extremely moist atmospheres. In contrast with previous studies, we find that clouds have a destabilizing feedback effect on the long-term warming. However, subsident, unsaturated regions created by the Hadley circulation have a stabilizing effect that is strong enough to shift the runaway greenhouse limit to higher values of insolation than are inferred from one-dimensional models. Furthermore, because of wavelength-dependent radiative effects, the stratosphere remains sufficiently cold and dry to hamper the escape of atmospheric water, even at large fluxes. This has strong implications for the possibility of liquid water existing on Venus early in its history, and extends the size of the habitable zone around other stars.

  10. Increased insolation threshold for runaway greenhouse processes on Earth-like planets.

    PubMed

    Leconte, Jérémy; Forget, Francois; Charnay, Benjamin; Wordsworth, Robin; Pottier, Alizée

    2013-12-12

    The increase in solar luminosity over geological timescales should warm the Earth's climate, increasing water evaporation, which will in turn enhance the atmospheric greenhouse effect. Above a certain critical insolation, this destabilizing greenhouse feedback can 'run away' until the oceans have completely evaporated. Through increases in stratospheric humidity, warming may also cause evaporative loss of the oceans to space before the runaway greenhouse state occurs. The critical insolation thresholds for these processes, however, remain uncertain because they have so far been evaluated using one-dimensional models that cannot account for the dynamical and cloud feedback effects that are key stabilizing features of the Earth's climate. Here we use a three-dimensional global climate model to show that the insolation threshold for the runaway greenhouse state to occur is about 375 W m(-2), which is significantly higher than previously thought. Our model is specifically developed to quantify the climate response of Earth-like planets to increased insolation in hot and extremely moist atmospheres. In contrast with previous studies, we find that clouds have a destabilizing feedback effect on the long-term warming. However, subsident, unsaturated regions created by the Hadley circulation have a stabilizing effect that is strong enough to shift the runaway greenhouse limit to higher values of insolation than are inferred from one-dimensional models. Furthermore, because of wavelength-dependent radiative effects, the stratosphere remains sufficiently cold and dry to hamper the escape of atmospheric water, even at large fluxes. This has strong implications for the possibility of liquid water existing on Venus early in its history, and extends the size of the habitable zone around other stars.

  11. Comparative Analysis of Processes for Recovery of Rare Earths from Bauxite Residue

    NASA Astrophysics Data System (ADS)

    Borra, Chenna Rao; Blanpain, Bart; Pontikes, Yiannis; Binnemans, Koen; Van Gerven, Tom

    2016-11-01

    Environmental concerns and lack of space suggest that the management of bauxite residue needs to be re-adressed. The utilization of the residue has thus become a topic high on the agenda for both academia and industry, yet, up to date, it is only rarely used. Nonetheless, recovery of rare earth elements (REEs) with or without other metals from bauxite residue, and utilization of the left-over residue in other applications like building materials may be a viable alternative to storage. Hence, different processes developed by the authors for recovery of REEs and other metals from bauxite residue were compared. In this study, preliminary energy and cost analyses were carried out to assess the feasibility of the processes. These analyses show that the combination of alkali roasting-smelting-quenching-leaching is a promising process for the treatment of bauxite residue and that it is justified to study this process at a pilot scale.

  12. NASA's Earth Science Enterprise's Water and Energy Cycle Focus Area

    NASA Astrophysics Data System (ADS)

    Entin, J. K.

    2004-05-01

    Understanding the Water and Energy cycles is critical towards improving our understanding of climate change, as well as the consequences of climate change. In addition, using results from water and energy cycle research can help improve water resource management, agricultural efficiency, disaster management, and public health. To address this, NASA's Earth Science Enterprise (ESE) has an end-to-end Water and Energy Cycle Focus Area, which along with the ESE's other five focus areas will help NASA answer key Earth Science questions. In an effort to build upon the pre-existing discipline programs, which focus on precipitation, radiation sciences, and terrestrial hydrology, NASA has begun planning efforts to create an implementation plan for integrative research to improve our understanding of the water and energy cycles. The basics of this planning process and the core aspects of the implementation plan will be discussed. Roadmaps will also be used to show the future direction for the entire focus area. Included in the discussion, will be aspects of the end-to-end nature of the Focus Area that encompass current and potential actives to extend research results to operational agencies to enable improved performance of policy and management decision support systems.

  13. Earth science big data at users' fingertips: the EarthServer Science Gateway Mobile

    NASA Astrophysics Data System (ADS)

    Barbera, Roberto; Bruno, Riccardo; Calanducci, Antonio; Fargetta, Marco; Pappalardo, Marco; Rundo, Francesco

    2014-05-01

    The EarthServer project (www.earthserver.eu), funded by the European Commission under its Seventh Framework Program, aims at establishing open access and ad-hoc analytics on extreme-size Earth Science data, based on and extending leading-edge Array Database technology. The core idea is to use database query languages as client/server interface to achieve barrier-free "mix & match" access to multi-source, any-size, multi-dimensional space-time data -- in short: "Big Earth Data Analytics" - based on the open standards of the Open Geospatial Consortium Web Coverage Processing Service (OGC WCPS) and the W3C XQuery. EarthServer combines both, thereby achieving a tight data/metadata integration. Further, the rasdaman Array Database System (www.rasdaman.com) is extended with further space-time coverage data types. On server side, highly effective optimizations - such as parallel and distributed query processing - ensure scalability to Exabyte volumes. In this contribution we will report on the EarthServer Science Gateway Mobile, an app for both iOS and Android-based devices that allows users to seamlessly access some of the EarthServer applications using SAML-based federated authentication and fine-grained authorisation mechanisms.

  14. NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    NASA's Earth Science Data Systems (ESDS) Program has evolved over the last two decades, and currently has several core and community components. Core components provide the basic operational capabilities to process, archive, manage and distribute data from NASA missions. Community components provide a path for peer-reviewed research in Earth Science Informatics to feed into the evolution of the core components. The Earth Observing System Data and Information System (EOSDIS) is a core component consisting of twelve Distributed Active Archive Centers (DAACs) and eight Science Investigator-led Processing Systems spread across the U.S. The presentation covers how the ESDS Program continues to evolve and benefits from as well as contributes to advances in Earth Science Informatics.

  15. A Sky View of Earth From Suomi NPP

    NASA Image and Video Library

    2015-04-22

    This composite image of southern Africa and the surrounding oceans was captured by six orbits of the NASA/NOAA Suomi National Polar-orbiting Partnership spacecraft on April 9, 2015, by the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument. Tropical Cyclone Joalane can be seen over the Indian Ocean. Winds, tides and density differences constantly stir the oceans while phytoplankton continually grow and die. Orbiting radiometers such as VIIRS allows scientists to track this variability over time and contribute to better understanding of ocean processes that are beneficial to human survival on Earth. The image was created by the Ocean Biology Processing Group at NASA's Goddard Space Flight Center in Greenbelt, Maryland.

  16. The Atmospheres of the Terrestrial Planets:Clues to the Origins and Early Evolution of Venus, Earth, and Mars

    NASA Technical Reports Server (NTRS)

    Baines, Kevin H.; Atreya, Sushil K.; Bullock, Mark A.; Grinspoon, David H,; Mahaffy, Paul; Russell, Christopher T.; Schubert, Gerald; Zahnle, Kevin

    2015-01-01

    We review the current state of knowledge of the origin and early evolution of the three largest terrestrial planets - Venus, Earth, and Mars - setting the stage for the chapters on comparative climatological processes to follow. We summarize current models of planetary formation, as revealed by studies of solid materials from Earth and meteorites from Mars. For Venus, we emphasize the known differences and similarities in planetary bulk properties and composition with Earth and Mars, focusing on key properties indicative of planetary formation and early evolution, particularly of the atmospheres of all three planets. We review the need for future in situ measurements for improving our understanding of the origin and evolution of the atmospheres of our planetary neighbors and Earth, and suggest the accuracies required of such new in situ data. Finally, we discuss the role new measurements of Mars and Venus have in understanding the state and evolution of planets found in the habitable zones of other stars.

  17. The Real Reasons for Seasons--Sun-Earth Connections: Unraveling Misconceptions about the Earth and Sun. Grades 6-8. Teacher's Guide. LHS GEMS.

    ERIC Educational Resources Information Center

    Gould, Alan; Willard, Carolyn; Pompea, Stephen

    This guide is aimed at helping students arrive at a clear understanding of seasons as they investigate the connections between the sun and the earth. Activities include: (1) "Name the Season"; (2) "Sun-Earth Survey"; (3) "Trip to the Sun"; (4) "What Shape is Earth's Orbit?"; (5) "Temperatures around the…

  18. Biosignatures of early earths

    NASA Technical Reports Server (NTRS)

    Pilcher, Carl B.

    2003-01-01

    A major goal of NASA's Origins Program is to find habitable planets around other stars and determine which might harbor life. Determining whether or not an extrasolar planet harbors life requires an understanding of what spectral features (i.e., biosignatures) might result from life's presence. Consideration of potential biosignatures has tended to focus on spectral features of gases in Earth's modern atmosphere, particularly ozone, the photolytic product of biogenically produced molecular oxygen. But life existed on Earth for about 1(1/2) billion years before the buildup of atmospheric oxygen. Inferred characteristics of Earth's earliest biosphere and studies of modern microbial ecosystems that share some of those characteristics suggest that organosulfur compounds, particularly methanethiol (CH(3)SH, the sulfur analog of methanol), may have been biogenic products on early Earth. Similar production could take place on extrasolar Earth-like planets whose biota share functional chemical characteristics with Earth life. Since methanethiol and related organosulfur compounds (as well as carbon dioxide) absorb at wavelengths near or overlapping the 9.6-microm band of ozone, there is potential ambiguity in interpreting a feature around this wavelength in an extrasolar planet spectrum.

  19. Biosignatures of early earths.

    PubMed

    Pilcher, Carl B

    2003-01-01

    A major goal of NASA's Origins Program is to find habitable planets around other stars and determine which might harbor life. Determining whether or not an extrasolar planet harbors life requires an understanding of what spectral features (i.e., biosignatures) might result from life's presence. Consideration of potential biosignatures has tended to focus on spectral features of gases in Earth's modern atmosphere, particularly ozone, the photolytic product of biogenically produced molecular oxygen. But life existed on Earth for about 1(1/2) billion years before the buildup of atmospheric oxygen. Inferred characteristics of Earth's earliest biosphere and studies of modern microbial ecosystems that share some of those characteristics suggest that organosulfur compounds, particularly methanethiol (CH(3)SH, the sulfur analog of methanol), may have been biogenic products on early Earth. Similar production could take place on extrasolar Earth-like planets whose biota share functional chemical characteristics with Earth life. Since methanethiol and related organosulfur compounds (as well as carbon dioxide) absorb at wavelengths near or overlapping the 9.6-microm band of ozone, there is potential ambiguity in interpreting a feature around this wavelength in an extrasolar planet spectrum.

  20. This dynamic earth: the story of plate tectonics

    USGS Publications Warehouse

    Kious, W. Jacquelyne; Tilling, Robert I.

    1996-01-01

    In the early 1960s, the emergence of the theory of plate tectonics started a revolution in the earth sciences. Since then, scientists have verified and refined this theory, and now have a much better understanding of how our planet has been shaped by plate-tectonic processes. We now know that, directly or indirectly, plate tectonics influences nearly all geologic processes, past and present. Indeed, the notion that the entire Earth's surface is continually shifting has profoundly changed the way we view our world.People benefit from, and are at the mercy of, the forces and consequences of plate tectonics. With little or no warning, an earthquake or volcanic eruption can unleash bursts of energy far more powerful than anything we can generate. While we have no control over plate-tectonic processes, we now have the knowledge to learn from them. The more we know about plate tectonics, the better we can appreciate the grandeur and beauty of the land upon which we live, as well as the occasional violent displays of the Earth's awesome power.This booklet gives a brief introduction to the concept of plate tectonics and complements the visual and written information in This Dynamic Planet (see Further reading), a map published in 1994 by the U.S. Geological Survey (USGS) and the Smithsonian Institution. The booklet highlights some of the people and discoveries that advanced the development of the theory and traces its progress since its proposal. Although the general idea of plate tectonics is now widely accepted, many aspects still continue to confound and challenge scientists. The earth-science revolution launched by the theory of plate tectonics is not finished.

  1. Harnessing Systems Engineering Methodology in Using Earth Science Research Data for Real Applications

    NASA Technical Reports Server (NTRS)

    Habib, Shahid; Policelli, Fritz S.; Zanoni, Vicki M.

    2004-01-01

    For the last three decades, Earth science remote sensing technologies have been providing an enormous amount of useful data and information serving to broaden our understanding of the home planet as a system. NASA's Earth science program has deployed about 18 complex satellites and is in the process of defining and launching multiple observing systems in this decade. At the same time, the European Community and many other countries such as Russia, France, India, Japan, and China have also significantly contributed to Earth science research. To date, the majority of such efforts have concentrated on expanding our scientific understanding of the multiple nonlinear and chaotic processes of Earth's behavior. In recent years, legislators and stakeholders have put serious pressure on the science community to devote more attention to making use of scientific results for societal benefit. For instance, there are a number of areas such as energy forecasting, aviation safety, agricultural efficiency, disaster management, air quality and public health that can directly take advantage of Earth science results to analyze and predict large scale problems and conditions. This is becoming even more important now that we live in a global economy interconnected via the internet and transportation systems; regional environmental conditions can have far reaching impact across continental boundaries. These factors dictate requirements for global data that can help us assess and control the devastating problems of famine, water resources, wildfires, human health and more. To do this requires a serious, organized, and systematic approach that transfers fundamental research products to the applied sciences domain. This paper presents a systems engineering and management process that can effectively make such transfer of data to the user community. Examples are presented on how the above decision making framework can help in solving critical problems such as the spread of vector borne

  2. Observation and integrated Earth-system science: A roadmap for 2016-2025

    NASA Astrophysics Data System (ADS)

    Simmons, Adrian; Fellous, Jean-Louis; Ramaswamy, Venkatachalam; Trenberth, Kevin; Asrar, Ghassem; Balmaseda, Magdalena; Burrows, John P.; Ciais, Philippe; Drinkwater, Mark; Friedlingstein, Pierre; Gobron, Nadine; Guilyardi, Eric; Halpern, David; Heimann, Martin; Johannessen, Johnny; Levelt, Pieternel F.; Lopez-Baeza, Ernesto; Penner, Joyce; Scholes, Robert; Shepherd, Ted

    2016-05-01

    This report is the response to a request by the Committee on Space Research of the International Council for Science to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of interacting components of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. All types of observation are considered, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced. Instances are given of present types of observation, what is already on the roadmap for 2016-2025 and some of the issues to be faced. Observations that are organised on a systematic basis and observations that are made for process understanding and model development, or other research or demonstration purposes, are covered. Specific accounts are given for many of the variables of the Earth system. The current status and prospects for Earth-system modelling are summarized. The evolution towards applying Earth-system models for environmental monitoring and prediction as well as for climate simulation and projection is outlined. General aspects of the improvement of models, whether through refining the

  3. Implementation of small group discussion as a teaching method in earth and space science subject

    NASA Astrophysics Data System (ADS)

    Aryani, N. P.; Supriyadi

    2018-03-01

    In Physics Department Universitas Negeri Semarang, Earth and Space Science subject is included in the curriculum of the third year of physics education students. There are various models of teaching earth and space science subject such as textbook method, lecturer, demonstrations, study tours, problem-solving method, etc. Lectures method is the most commonly used of teaching earth and space science subject. The disadvantage of this method is the lack of two ways interaction between lecturers and students. This research used small group discussion as a teaching method in Earth and Space science. The purpose of this study is to identify the conditions under which an efficient discussion may be initiated and maintained while students are investigating properties of earth and space science subjects. The results of this research show that there is an increase in student’s understanding of earth and space science subject proven through the evaluation results. In addition, during the learning process, student’s activeness also increase.

  4. EarthLabs Modules: Engaging Students In Extended, Rigorous Investigations Of The Ocean, Climate and Weather

    NASA Astrophysics Data System (ADS)

    Manley, J.; Chegwidden, D.; Mote, A. S.; Ledley, T. S.; Lynds, S. E.; Haddad, N.; Ellins, K.

    2016-02-01

    EarthLabs, envisioned as a national model for high school Earth or Environmental Science lab courses, is adaptable for both undergraduate middle school students. The collection includes ten online modules that combine to feature a global view of our planet as a dynamic, interconnected system, by engaging learners in extended investigations. EarthLabs support state and national guidelines, including the NGSS, for science content. Four modules directly guide students to discover vital aspects of the oceans while five other modules incorporate ocean sciences in order to complete an understanding of Earth's climate system. Students gain a broad perspective on the key role oceans play in fishing industry, droughts, coral reefs, hurricanes, the carbon cycle, as well as life on land and in the seas to drive our changing climate by interacting with scientific research data, manipulating satellite imagery, numerical data, computer visualizations, experiments, and video tutorials. Students explore Earth system processes and build quantitative skills that enable them to objectively evaluate scientific findings for themselves as they move through ordered sequences that guide the learning. As a robust collection, EarthLabs modules engage students in extended, rigorous investigations allowing a deeper understanding of the ocean, climate and weather. This presentation provides an overview of the ten curriculum modules that comprise the EarthLabs collection developed by TERC and found at http://serc.carleton.edu/earthlabs/index.html. Evaluation data on the effectiveness and use in secondary education classrooms will be summarized.

  5. Better Preserved on Mars than on Earth

    NASA Image and Video Library

    2017-02-13

    In many ways, Mars bears remarkable similarities to Earth, but in some ways it is drastically different. Scientists often use Earth as an example, or analog, to help us to understand the geologic history of the Red Planet. As we continue to study Mars, it is vitally important to remember in what ways it differs from Earth. One very apparent way, readily observed from orbit, has to do with its preservation of numerous craters of all sizes, which are densest in its Southern hemisphere. Earth has comparatively little preserved craters -- about 1,000 to 1,500 times fewer -- due to very active geologic processes, especially involving water. When it comes to impact craters, there are some things that can no longer be observed on Earth, but can be observed on Mars. This color composite shows one such example. It covers a portion of the northern central peak of an unnamed, 20-kilometer crater that contains abundant fragmental bedrock called "breccia." The geological relationships here suggest that these breccias include ones formed by the host crater, and others formed from numerous impacts in the distant past. Because there are fewer craters preserved on Earth, terrestrial central uplifts do not expose bedrock formed by previous craters. It may have been the case in the past, but such craters were destroyed over geologic time. The map is projected here at a scale of 25 centimeters (9.9 inches) per pixel. [The original image scale is 28 centimeters (11 inches) per pixel (with 1 x 1 binning); objects on the order of 82 centimeters (32 inches) across are resolved.] North is up. http://photojournal.jpl.nasa.gov/catalog/PIA21455

  6. Looking Homeward Toward Earth: The Power of Perspective

    NASA Astrophysics Data System (ADS)

    Abdalati, W.

    2012-08-01

    With the 1968 "Earthrise" image of planet Earth emerging from beyond the lunar horizon, society's view of our celestial home was changed forever. Beautiful and vulnerable, and suspended in dark stillness, this image inspired an appreciation that we are one human race, whose fate hinges delicately on our collective actions. Since that time, space-based observations of the Earth have continued to provide essential insights and information across the full spectrum of human activities and natural processes, and have even become a mainstream part of our daily lives. From documenting disappearing Arctic ice cover, to providing key insights to hurricane evolution, to tracking the amount of movement and cycles of Earth's biomass, these observations allow us to understand how and why our world is changing, and what these changes mean for life on Earth. But beyond their tremendous scientific value, they can be a powerful and inspiring tool for generating a true appreciation of the complexities and beauty of the world in which we live. From that iconic Earthrise photograph to the viral popularity of event-based satellite imagery, the power of the space-based perspective satisfies our need for constant and current information, and fuels our emotional connection to the planet we call home.

  7. Jupyter meets Earth: Creating Comprehensible and Reproducible Scientific Workflows with Jupyter Notebooks and Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Erickson, T.

    2016-12-01

    Deriving actionable information from Earth observation data obtained from sensors or models can be quite complicated, and sharing those insights with others in a form that they can understand, reproduce, and improve upon is equally difficult. Journal articles, even if digital, commonly present just a summary of an analysis that cannot be understood in depth or reproduced without major effort on the part of the reader. Here we show a method of improving scientific literacy by pairing a recently developed scientific presentation technology (Jupyter Notebooks) with a petabyte-scale platform for accessing and analyzing Earth observation and model data (Google Earth Engine). Jupyter Notebooks are interactive web documents that mix live code with annotations such as rich-text markup, equations, images, videos, hyperlinks and dynamic output. Notebooks were first introduced as part of the IPython project in 2011, and have since gained wide acceptance in the scientific programming community, initially among Python programmers but later by a wide range of scientific programming languages. While Jupyter Notebooks have been widely adopted for general data analysis, data visualization, and machine learning, to date there have been relatively few examples of using Jupyter Notebooks to analyze geospatial datasets. Google Earth Engine is cloud-based platform for analyzing geospatial data, such as satellite remote sensing imagery and/or Earth system model output. Through its Python API, Earth Engine makes petabytes of Earth observation data accessible, and provides hundreds of algorithmic building blocks that can be chained together to produce high-level algorithms and outputs in real-time. We anticipate that this technology pairing will facilitate a better way of creating, documenting, and sharing complex analyses that derive information on our Earth that can be used to promote broader understanding of the complex issues that it faces. http://jupyter.orghttps://earthengine.google.com

  8. The Changing Earth Science Network- Projects and Results from the First Call

    NASA Astrophysics Data System (ADS)

    Dransfeld, Steffen; Fernandez, Diego; Doron, Maeva; Martinez, Elodie; Shutler, Jamie; Papandrea, Enzo; Biggs, Juliet; Dagestad, Knut-Frode; Palazzi, Elisa; Garcia-Comas, Maya; de Graaf, Martin; Schneising, Oliver; Pavon, Patricia Oliva

    2010-12-01

    To better understand the different processes and interactions that govern the earth system and to determine whether recent human-induced changes could ultimately de-stabilise its dynamics, both natural system variability and the consequences of human activities have to be observed and quantified. In this context, the European Space Agency published in 2006 "The Changing Earth: New Scientific Challenges for ESA's living Planet Programme" as the main driver of ESA's new EO science strategy. The document outlines 25 major scientific challenges covering all the different aspects of the Earth system, where EO technology and ESA missions may provide a key contribution. In this context, and responding to a request from ESAC (Earth Science Advisory Committee) to enhance the ESA scientific support towards the achievement of "The Challenges", the Agency has launched the Changing Earth Science Network as an important programmatic component of the new Support To Science Element (STSE) of the Earth Observation Envelope Programme (EOEP). In this paper we summarize the objectives of this initive and provide a review of the first projects that were selected in 2009 and are now generating their first results.

  9. Are we alone? Lessons from the evolution of life on earth.

    PubMed

    Via, S

    2001-12-01

    The understanding of life on Earth that we have obtained from the science of evolutionary biology offers clues to the qustion of what life might be like if found elsewhere. After presenting the basics of the evolutionary process, I discuss the factors that determine the outcome of evolution, the role of key innovations and extinction in evolution, and whether the evolution of human life is inevitable.

  10. "Galileo Calling Earth..."

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This guide presents an activity for helping students understand how data from the Galileo spacecraft is sent to scientists on earth. Students are asked to learn about the concepts of bit-rate and resolution and apply them to the interpretation of images from the Galileo Orbiter. (WRM)

  11. The Earth System Model

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark; Rood, Richard B.; Hildebrand, Peter; Raymond, Carol

    2003-01-01

    The Earth System Model is the natural evolution of current climate models and will be the ultimate embodiment of our geophysical understanding of the planet. These models are constructed from components - atmosphere, ocean, ice, land, chemistry, solid earth, etc. models and merged together through a coupling program which is responsible for the exchange of data from the components. Climate models and future earth system models will have standardized modules, and these standards are now being developed by the ESMF project funded by NASA. The Earth System Model will have a variety of uses beyond climate prediction. The model can be used to build climate data records making it the core of an assimilation system, and it can be used in OSSE experiments to evaluate. The computing and storage requirements for the ESM appear to be daunting. However, the Japanese ES theoretical computing capability is already within 20% of the minimum requirements needed for some 2010 climate model applications. Thus it seems very possible that a focused effort to build an Earth System Model will achieve succcss.

  12. Geochemical Constraints on Core Formation in the Earth

    NASA Technical Reports Server (NTRS)

    Jones, John H.; Drake, Michael J.

    1986-01-01

    New experimental data on the partitioning of siderophile and chalcophile elements among metallic and silicate phases may be used to constrain hypotheses of core formation in the Earth. Three current hypotheses can explain gross features of mantle geochemistry, but none predicts siderophile and chalcophile element abundances to within a factor of two of observed values. Either our understanding of metal-silicate interactions and/or our understanding of the early Earth requires revision.

  13. A Carbonate Li Isotope Record Through Earth's History

    NASA Astrophysics Data System (ADS)

    Asael, D.; Kalderon-Asael, B.; Planavsky, N.

    2016-12-01

    Lithium (Li) isotopes emerge as a powerful geochemical proxy for tracking continental weathering through time. Extensive work on Li fractionation in modern systems has brought to a profound understanding of the modern Li budget as well as to a consensus that marine carbonates faithfully record seawater Li isotope signature. As such record is essential in order to track global-scale changes in weathering processes and intensity through Earth's history, we have generated Li isotope data from marine carbonates from over 40 units, ranging in age from 3.0 Ga to modern. Preliminary results provide evidence for strongly inhibited weathering-mediated clay formation prior to the Paleozoic, which we attribute to the pre-Paleozoic lack of land plants. The initial rise in the Li isotope values is observed during the Ordovician, which is followed by a subsequent drop to background values and then begins the generally increasing trend that is already well reported. These findings are open for interpretation but they still support the view that the emergence of land plants dramatically changed the process of weathering and it seems that biomass has a potentially significant role in mineral breakdown in soils. Li isotopes provide a novel perspective on weathering and the impact on the Earth system of the rise of land plants - one of the most significant transitions in Earth's history.

  14. An Algorithm for Converting Static Earth Sensor Measurements into Earth Observation Vectors

    NASA Technical Reports Server (NTRS)

    Harman, R.; Hashmall, Joseph A.; Sedlak, Joseph

    2004-01-01

    An algorithm has been developed that converts penetration angles reported by Static Earth Sensors (SESs) into Earth observation vectors. This algorithm allows compensation for variation in the horizon height including that caused by Earth oblateness. It also allows pitch and roll to be computed using any number (greater than 1) of simultaneous sensor penetration angles simplifying processing during periods of Sun and Moon interference. The algorithm computes body frame unit vectors through each SES cluster. It also computes GCI vectors from the spacecraft to the position on the Earth's limb where each cluster detects the Earth's limb. These body frame vectors are used as sensor observation vectors and the GCI vectors are used as reference vectors in an attitude solution. The attitude, with the unobservable yaw discarded, is iteratively refined to provide the Earth observation vector solution.

  15. Using Terrestrial GCMs to Understand Climate on Venus, Mars and Titan

    NASA Astrophysics Data System (ADS)

    Lebonnois, S.; Forget, F.; Hourdin, F.

    2008-12-01

    For many decades now, General Circulation Models have been developed for the Earth to model our climate. Using these tools, which complexity and efficiency increase with years and computers power, many features of the Earth's circulation may be analyzed and interpreted. But the Earth is a unique case, with rapid rotation rate, with seasons, with water oceans. The Earth GCMs have many parameters finely tuned to reproduce the many observations that are available. How robust are these models under evolving conditions ? To what point may we trust them when exploring Earth's future ? Earth, Venus, Mars and also Titan have dense atmospheres that present many differences, but also similarities. How mechanisms that are at work in the Earth's atmosphere do adapt under these different conditions ? Why are Venus and Titan's atmospheres in super-rotation ? Are the Martian storms produced by processes that also happen on the Earth ? Using the GCMs developed for the Earth for these different atmospheres is very appealing to study these questions. Though the amount of available data is much less for extraterrestrial atmospheres, adapting the terrestrial GCMs to these different environments is worth the effort. Even if the dynamical core may be used almost as it is, adapting the physical parameterizations is not straightforward, but based on the increasing amount of observational data, it may be done with more and more accuracy. These extraterrestrial GCMs may now be used to understand the different features of these climates, but also to compare the different behaviors of these atmospheres under different forcings. It explores the robustness of this kind of tools under widly different conditions, putting strength and confidence in our exploration of Earth's atmosphere future evolution. In this talk, we will present the adaptations that have been necessary to develop GCMs for Mars, Titan and Venus from the LMDZ Earth GCM. These models have then followed their own developments

  16. Our Impact on Earth

    NASA Astrophysics Data System (ADS)

    Warren, A.

    This paper discusses the problem of understanding the causes of changes in the Earth's environments. It reviews very briefly the role of the atmosphere, because it is an important element of the total picture. It discusses even more briefly the oceans, and then the land, moving from the wetter parts to the drier ones, these last being the writer's speciality as a desert geomorphologist. No apology is made for concentrating on the terrestrial deserts, for Mars is more like our deserts than any other part of Earth.

  17. Sally Ride EarthKAM - Automated Image Geo-Referencing Using Google Earth Web Plug-In

    NASA Technical Reports Server (NTRS)

    Andres, Paul M.; Lazar, Dennis K.; Thames, Robert Q.

    2013-01-01

    Sally Ride EarthKAM is an educational program funded by NASA that aims to provide the public the ability to picture Earth from the perspective of the International Space Station (ISS). A computer-controlled camera is mounted on the ISS in a nadir-pointing window; however, timing limitations in the system cause inaccurate positional metadata. Manually correcting images within an orbit allows the positional metadata to be improved using mathematical regressions. The manual correction process is time-consuming and thus, unfeasible for a large number of images. The standard Google Earth program allows for the importing of KML (keyhole markup language) files that previously were created. These KML file-based overlays could then be manually manipulated as image overlays, saved, and then uploaded to the project server where they are parsed and the metadata in the database is updated. The new interface eliminates the need to save, download, open, re-save, and upload the KML files. Everything is processed on the Web, and all manipulations go directly into the database. Administrators also have the control to discard any single correction that was made and validate a correction. This program streamlines a process that previously required several critical steps and was probably too complex for the average user to complete successfully. The new process is theoretically simple enough for members of the public to make use of and contribute to the success of the Sally Ride EarthKAM project. Using the Google Earth Web plug-in, EarthKAM images, and associated metadata, this software allows users to interactively manipulate an EarthKAM image overlay, and update and improve the associated metadata. The Web interface uses the Google Earth JavaScript API along with PHP-PostgreSQL to present the user the same interface capabilities without leaving the Web. The simpler graphical user interface will allow the public to participate directly and meaningfully with EarthKAM. The use of

  18. Steering operational synergies in terrestrial observation networks: opportunity for advancing Earth system dynamics modelling

    NASA Astrophysics Data System (ADS)

    Baatz, Roland; Sullivan, Pamela L.; Li, Li; Weintraub, Samantha R.; Loescher, Henry W.; Mirtl, Michael; Groffman, Peter M.; Wall, Diana H.; Young, Michael; White, Tim; Wen, Hang; Zacharias, Steffen; Kühn, Ingolf; Tang, Jianwu; Gaillardet, Jérôme; Braud, Isabelle; Flores, Alejandro N.; Kumar, Praveen; Lin, Henry; Ghezzehei, Teamrat; Jones, Julia; Gholz, Henry L.; Vereecken, Harry; Van Looy, Kris

    2018-05-01

    Advancing our understanding of Earth system dynamics (ESD) depends on the development of models and other analytical tools that apply physical, biological, and chemical data. This ambition to increase understanding and develop models of ESD based on site observations was the stimulus for creating the networks of Long-Term Ecological Research (LTER), Critical Zone Observatories (CZOs), and others. We organized a survey, the results of which identified pressing gaps in data availability from these networks, in particular for the future development and evaluation of models that represent ESD processes, and provide insights for improvement in both data collection and model integration. From this survey overview of data applications in the context of LTER and CZO research, we identified three challenges: (1) widen application of terrestrial observation network data in Earth system modelling, (2) develop integrated Earth system models that incorporate process representation and data of multiple disciplines, and (3) identify complementarity in measured variables and spatial extent, and promoting synergies in the existing observational networks. These challenges lead to perspectives and recommendations for an improved dialogue between the observation networks and the ESD modelling community, including co-location of sites in the existing networks and further formalizing these recommendations among these communities. Developing these synergies will enable cross-site and cross-network comparison and synthesis studies, which will help produce insights around organizing principles, classifications, and general rules of coupling processes with environmental conditions.

  19. Creating State-based Alliances to Support Earth and Space Science Education Reform

    NASA Astrophysics Data System (ADS)

    Geary, E. E.; Manduca, C. A.; Barstow, D.

    2002-05-01

    Seven years after the publication of the National Science Education Standards and adoption of new state science education standards, Earth and space science remains outside the mainstream K-12 curriculum. Currently, less than ten percent of high school students in the United States of America take an Earth or space science course before graduation. This state of affairs is simply unacceptable. "All of us who live on this planet have the right and the obligation to understand Earth's unique history, its dynamic processes, its abundant resources, and its intriguing mysteries. As citizens of Earth, with the power to modify our climate and ecosystems, we also have a personal and collective responsibility to understand Earth so that we can make wise decisions about its and our future". As one step toward addressing this situation, we support the establishment of state-based alliances to promote Earth and space science education reform. "In many ways, states are the most vital locus of change in our nation's schools. State departments of education define curriculum frameworks, establish testing policies, support professional development and, in some cases, approve textbooks and materials for adoption". State alliance partners should include a broad spectrum of K-16 educators, scientists, policy makers, parents, and community leaders from academic institutions, businesses, museums, technology centers, and not-for profit organizations. The focus of these alliances should be on systemic and sustainable reform of K-16 Earth and space science education. Each state-based alliance should focus on specific educational needs within their state, but work together to share ideas, resources, and models for success. As we build these alliances we need to take a truly collaborative approach working with the other sciences, geography, and mathematics so that collectively we can improve the caliber and scope of science and mathematics education for all students.

  20. A Community Framework for Integrative, Coupled Modeling of Human-Earth Systems

    NASA Astrophysics Data System (ADS)

    Barton, C. M.; Nelson, G. C.; Tucker, G. E.; Lee, A.; Porter, C.; Ullah, I.; Hutton, E.; Hoogenboom, G.; Rogers, K. G.; Pritchard, C.

    2017-12-01

    We live today in a humanized world, where critical zone dynamics are driven by coupled human and biophysical processes. First generation modeling platforms have been invaluable in providing insight into dynamics of biophysical systems and social systems. But to understand today's humanized planet scientifically and to manage it sustainably, we need integrative modeling of this coupled human-Earth system. To address both scientific and policy questions, we also need modeling that can represent variable combinations of human-Earth system processes at multiple scales. Simply adding more code needed to do this to large, legacy first generation models is impractical, expensive, and will make them even more difficult to evaluate or understand. We need an approach to modeling that mirrors and benefits from the architecture of the complexly coupled systems we hope to model. Building on a series of international workshops over the past two years, we present a community framework to enable and support an ecosystem of diverse models as components that can be interconnected as needed to facilitate understanding of a range of complex human-earth systems interactions. Models are containerized in Docker to make them platform independent. A Basic Modeling Interface and Standard Names ontology (developed by the Community Surface Dynamics Modeling System) is applied to make them interoperable. They are then transformed into RESTful micro-services to allow them to be connected and run in a browser environment. This enables a flexible, multi-scale modeling environment to help address diverse issues with combinations of smaller, focused, component models that are easier to understand and evaluate. We plan to develop, deploy, and maintain this framework for integrated, coupled modeling in an open-source collaborative development environment that can democratize access to advanced technology and benefit from diverse global participation in model development. We also present an initial

  1. Strides made in understanding space weather at Earth

    NASA Astrophysics Data System (ADS)

    Buonsanto, M. J.; Fuller-Rowell, T. J.

    Disturbances on the Sun can produce dramatic effects in the space environment surrounding the Earth. Energetic particle effects become more intense and pose a hazard to astronauts and damage spacecraft electronics; satellite lifetimes are shortened by increased atmospheric drag, and communications and navigation are disrupted by the changing plasma environment.“Space weather” has become the modern idiom for these effects, and periods of high activity are called geomagnetic storms. During a storm the ionosphere can be severely altered. A typical episode may reveal either a large decrease (negative phase) or increase (positive phase) in the normal daily peak ion density (NmF2) or total electron content (TEC). These changes in ion density are sometimes called ionospheric storms, and often persist for more than a day after a period of high geomagnetic activity.

  2. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, Janine; Kampf, Christopher J.; Weber, Bettina; Huffman, J. Alex; Pöhlker, Christopher; Andreae, Meinrat O.; Lang-Yona, Naama; Burrows, Susannah M.; Gunthe, Sachin S.; Elbert, Wolfgang; Su, Hang; Hoor, Peter; Thines, Eckhard; Hoffmann, Thorsten; Després, Viviane R.; Pöschl, Ulrich

    2016-12-01

    Aerosols of biological origin play a vital role in the Earth system, particularly in the interactions between atmosphere, biosphere, climate, and public health. Airborne bacteria, fungal spores, pollen, and other bioparticles are essential for the reproduction and spread of organisms across various ecosystems, and they can cause or enhance human, animal, and plant diseases. Moreover, they can serve as nuclei for cloud droplets, ice crystals, and precipitation, thus influencing the hydrological cycle and climate. The sources, abundance, composition, and effects of biological aerosols and the atmospheric microbiome are, however, not yet well characterized and constitute a large gap in the scientific understanding of the interaction and co-evolution of life and climate in the Earth system. This review presents an overview of the state of bioaerosol research, highlights recent advances, and outlines future perspectives in terms of bioaerosol identification, characterization, transport, and transformation processes, as well as their interactions with climate, health, and ecosystems, focusing on the role bioaerosols play in the Earth system.

  3. Understanding the creative processes of phenomenological research: The life philosophy of Løgstrup.

    PubMed

    Norlyk, Annelise; Dreyer, Pia; Haahr, Anita; Martinsen, Bente

    2011-01-01

    The creative processes of understanding patients' experiences in phenomenological research are difficult to articulate. Drawing on life philosophy as represented by the Danish philosopher K.E. Løgstrup (1905-1981), this article aims to illustrate Løgstrup's thinking as a way to elaborate the creation of cognition and understanding of patients' experiences. We suggest that Løgstrup's thoughts on sensation can add new dimensions to an increased understanding of the creative process of phenomenological research, and that his thinking can be seen as an epistemological ground for these processes. We argue with Løgstrup that sense-based impressions can facilitate an flash of insight, i.e., the spontaneous, intuitive flash of an idea. Løgstrup stresses that an "flash of insight" is an important source in the creation of cognition and understanding. Relating to three empirical phenomenological studies of patients' experiences, we illustrate how the notions of impression and flash of insight can add new dimensions to increased understanding of the creative processes in phenomenological research that have previously not been discussed. We illustrate that sense-based impressions can facilitate creative flash of insights that open for understanding of patients' experiences in the research process as well as in the communication of the findings. The nature of impression and flash of insight and their relevance in the creation of cognition and understanding contributes to the sparse descriptions in the methodological phenomenological research literature of the creative processes of this research. An elaboration of the creative processes in phenomenological research can help researchers to articulate these processes. Thus, Løgstrup's life philosophy has proven to be valuable in adding new dimensions to phenomenological empirical research as well as embracing lived experience.

  4. Understanding the creative processes of phenomenological research: The life philosophy of Løgstrup

    PubMed Central

    Dreyer, Pia; Haahr, Anita; Martinsen, Bente

    2011-01-01

    The creative processes of understanding patients’ experiences in phenomenological research are difficult to articulate. Drawing on life philosophy as represented by the Danish philosopher K.E. Løgstrup (1905–1981), this article aims to illustrate Løgstrup's thinking as a way to elaborate the creation of cognition and understanding of patients’ experiences. We suggest that Løgstrup's thoughts on sensation can add new dimensions to an increased understanding of the creative process of phenomenological research, and that his thinking can be seen as an epistemological ground for these processes. We argue with Løgstrup that sense-based impressions can facilitate an flash of insight, i.e., the spontaneous, intuitive flash of an idea. Løgstrup stresses that an “flash of insight” is an important source in the creation of cognition and understanding. Relating to three empirical phenomenological studies of patients’ experiences, we illustrate how the notions of impression and flash of insight can add new dimensions to increased understanding of the creative processes in phenomenological research that have previously not been discussed. We illustrate that sense-based impressions can facilitate creative flash of insights that open for understanding of patients’ experiences in the research process as well as in the communication of the findings. The nature of impression and flash of insight and their relevance in the creation of cognition and understanding contributes to the sparse descriptions in the methodological phenomenological research literature of the creative processes of this research. An elaboration of the creative processes in phenomenological research can help researchers to articulate these processes. Thus, Løgstrup's life philosophy has proven to be valuable in adding new dimensions to phenomenological empirical research as well as embracing lived experience. PMID:22076123

  5. Functional design for operational earth resources ground data processing

    NASA Technical Reports Server (NTRS)

    Baldwin, C. J. (Principal Investigator); Bradford, L. H.; Hutson, D. E.; Jugle, D. R.

    1972-01-01

    The author has identified the following significant results. Study emphasis was on developing a unified concept for the required ground system, capable of handling data from all viable acquisition platforms and sensor groupings envisaged as supporting operational earth survey programs. The platforms considered include both manned and unmanned spacecraft in near earth orbit, and continued use of low and high altitude aircraft. The sensor systems include both imaging and nonimaging devices, operated both passively and actively, from the ultraviolet to the microwave regions of the electromagnetic spectrum.

  6. Developing and Applying a Set of Earth Science Literacy Principles

    ERIC Educational Resources Information Center

    Wysession, Michael E.; LaDue, Nicole; Budd, David A.; Campbell, Karen; Conklin, Martha; Kappel, Ellen; Lewis, Gary; Raynolds, Robert; Ridky, Robert W.; Ross, Robert M.; Taber, John; Tewksbury, Barbara; Tuddenham, Peter

    2012-01-01

    The 21st century will be defined by challenges such as understanding and preparing for climate change and ensuring the availability of resources such as water and energy, which are issues deeply rooted in Earth science. Understanding Earth science concepts is critical for humanity to successfully respond to these challenges and thrive in the…

  7. Earth Science Enterprise Technology Strategy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Earth Science Enterprise (ESE) is dedicated to understanding the total Earth system and the effects of natural and human-induced changes on the global environment. The goals of ESE are: (1) Expand scientific knowledge of the Earth system using NASA's unique vantage points of space, aircraft, and in situ platforms; (2) Disseminate information about the Earth system; and (3) Enable the productive use of ESE science and technology in the public and private sectors. ESE has embraced the NASA Administrator's better, faster, cheaper paradigm for Earth observing missions. We are committed to launch the next generation of Earth Observing System (EOS) missions at a substantially lower cost than the EOS first series. Strategic investment in advanced instrument, spacecraft, and information system technologies is essential to accomplishing ESE's research goals in the coming decades. Advanced technology will play a major role in shaping the ESE fundamental and applied research program of the future. ESE has established an Earth science technology development program with the following objectives: (1) To accomplish ESE space-based and land-based program elements effectively and efficiently; and (2) To enable ESE's fundamental and applied research programs goals as stated in the NASA Strategic Plan.

  8. Understanding scale dependency of climatic processes with diarrheal disease

    NASA Astrophysics Data System (ADS)

    Nasr Azadani, F.; Jutla, A.; Akanda, A. S. S.; Colwell, R. R.

    2015-12-01

    The issue of scales in linking climatic processes with diarrheal diseases is perhaps one of the most challenging aspect to develop any predictive algorithm for outbreaks and to understand impacts of changing climate. Majority of diarrheal diseases have shown to be strongly associated with climate modulated environmental processes where pathogens survive. Using cholera as an example of characteristic diarrheal diseases, this study will provide methodological insights on dominant scale variability in climatic processes that are linked with trigger and transmission of disease. Cholera based epidemiological models use human to human interaction as a main transmission mechanism, however, environmental conditions for creating seasonality in outbreaks is not explicitly modeled. For example, existing models cannot create seasonality, unless some of the model parameters are a-priori chosen to vary seasonally. A systems based feedback approach will be presented to understand role of climatic processes on trigger and transmission disease. In order to investigate effect of changing climate on cholera, a downscaling approach using support vector machine will be used. Our preliminary results using three climate models, ECHAM5, GFDL, and HADCM show that varying modalities in future cholera outbreaks.

  9. Policy for Robust Space-based Earth Science, Technology and Applications

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.; Escobar, Vanessa M.; Macauley, Molly; Aschbacher, Josef; Milagro-Perez, Maria Pilar; Doorn, Bradley; Friedl, Lawrence

    2012-01-01

    Over the past six decades, satellite remote sensing technology has contributed to the transformation of using earth science not only to advance science, but to improve quality of life. With satellite missions launched almost every year, new types of earth science data are being incorporated into science, models and decision-making systems in a broad array of organizations. A challenge for space agencies has been ensuring that satellite missions serve both the scientific community and the applied community of decision makers without the missions becoming unfocused and overly expensive. By understanding and considering the needs of the environmental data and applied research user community early on in the mission-design process, agencies can ensure that satellites meet the needs of multiple constituencies. This paper describes the mission development process in the European Space Agency and the National Aeronautics and Space Administration and compares and contrasts the successes of and challenges faced by these agencies in balancing science and applications within their missions.

  10. Marking Tests to Certify Part Identification Processes for Use in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Roxby, D. L.

    2015-01-01

    The primary purpose for the MISSE marking tests was to define Data Matrix symbol marking processes that will remain readable after exposure to Low Earth Orbit environments. A wide range of different Data Matrix symbol marking processes and materials, including some still under development, were evaluated. The samples flown on MISSE 1 and 2 were in orbit for 3 years and 348 days, MISSE 3 and 4 were in orbit for 1 year and 15 days, MISSE 6 was in orbit for 1 year and 130 days, and MISSE 8 was in orbit for 2 years and 55 days. The initial MISSE marking tests clearly reflected that intrusive marking processes can be successfully used for this purpose. All of the intrusive marking processes tested exceeded program expectations and met 100 percent of the principle investigators objectives. However, subsequent tests demonstrated that some additive marking processes will also satisfy the requirements. This was an unexpected result.

  11. Multiple Modes of Inquiry in Earth Science

    ERIC Educational Resources Information Center

    Kastens, Kim A.; Rivet, Ann

    2008-01-01

    To help teachers enrich their students' understanding of inquiry in Earth science, this article describes six modes of inquiry used by practicing geoscientists (Earth scientists). Each mode of inquiry is illustrated by using examples of seminal or pioneering research and provides pointers to investigations that enable students to experience these…

  12. Parental and youth understanding of the informed consent process for pediatric endoscopy.

    PubMed

    Jubbal, Kevin; Chun, Stanford; Chang, Jeremy; Zhang, Sherry; Terrones, Laura; Huang, Jeannie S

    2015-06-01

    Informed consent (IC) is an essential communication between patient/representative and physician that acknowledges patient autonomy; assent is the equivalent process performed between youth and physician. For clinical procedures involving youth, only the IC process between guardian/parent and physician is required to be performed. Nevertheless, experts recommend that youth undergo assent whenever possible. In the present study, we explored both parental and youth understanding of required IC elements in IC discussions before pediatric endoscopy. Following signing of IC documents on the day of endoscopy at a tertiary care academic medical center, youth and their parents underwent structured interviews to assess comprehension of key elements of the IC process. A total of 88 children and adolescents and their parents were evaluated. Two youth and 12 parents demonstrated comprehensive understanding of key IC elements for pediatric endoscopy. Suboptimal youth understanding was demonstrated for nature of the procedure (25% with adequate understanding) and related risks (17%), and alternatives (14%) to the procedure. Suboptimal parental understanding was demonstrated for procedure alternatives (24%). Youth overall understanding of IC varied by age, whereas parental global understanding of IC varied by physician. Understanding of IC performed for pediatric endoscopy could be improved in both parents and youth. Our findings suggest that interventions targeting parents, youth, and physicians may be helpful. Further study is needed to determine whether our findings are representative of IC understanding at other pediatric endoscopy centers.

  13. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOEpatents

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-31

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  14. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  15. SCOSTEP: Understanding the Climate and Weather of the Sun-Earth System

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk

    2011-01-01

    The international solar-terrestrial physics community had recognized the importance of space weather more than a decade ago, which resulted in a number of international collaborative activities such as the Climate and Weather of the Sun Earth System (CAWSES) by the Scientific Committee on Solar Terrestrial Physics (SCOSTEP). The CAWSES program is the current major scientific program of SCOSTEP that will continue until the end of the year 2013. The CAWSES program has brought scientists from all over the world together to tackle the scientific issues behind the Sun-Earth connected system and explore ways of helping the human society. In addition to the vast array of space instruments, ground based instruments have been deployed, which not only filled voids in data coverage, but also inducted young scientists from developing countries into the scientific community. This paper presents a summary of CAWSES and other SCOSTEP activities that promote space weather science via complementary approaches in international scientific collaborations, capacity building, and public outreach.

  16. Meteors as a Delivery Vehicle for Organic Matter to the Early Earth

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; DeVincenzi, D. (Technical Monitor)

    2001-01-01

    Only in recent years has a concerted effort been made to study the circumstances under which extraterrestrial organic matter is accreted on Earth by way of meteors. Meteors are the luminous phenomena associated with the (partial) ablation of meteoric matter and represent the dominant pathway from space to Earth, with the possible exception of rare giant impacts of asteroids and comets. Meteors dominated the supply of organics to the early Earth if organic matter survived this pathway efficiently. Moreover, meteors are a source of kinetic energy that can convert inert atmospheric gases such as CO, N, and H2O into useful compounds, such as HCN and NO. Understanding these processes relies heavily on empirical evidence that is still very limited. Here I report on the observations in hand and discuss their relevance in the context of the origin of life.

  17. Understanding the Advising Learning Process Using Learning Taxonomies

    ERIC Educational Resources Information Center

    Muehleck, Jeanette K.; Smith, Cathleen L.; Allen, Janine M.

    2014-01-01

    To better understand the learning that transpires in advising, we used Anderson et al.'s (2001) revision of Bloom's (1956) taxonomy and Krathwohl, Bloom, and Masia's (1964) affective taxonomy to analyze eight student-reported advising outcomes from Smith and Allen (2014). Using the cognitive processes and knowledge domains of Anderson et al.'s…

  18. Understanding metallic bonding: Structure, process and interaction by Rasch analysis

    NASA Astrophysics Data System (ADS)

    Cheng, Maurice M. W.; Oon, Pey-Tee

    2016-08-01

    This paper reports the results of a survey of 3006 Year 10-12 students on their understandings of metallic bonding. The instrument was developed based on Chi's ontological categories of scientific concepts and students' understanding of metallic bonding as reported in the literature. The instrument has two parts. Part one probed into students' understanding of metallic bonding as (a) a submicro structure of metals, (b) a process in which individual metal atoms lose their outermost shell electrons to form a 'sea of electrons' and octet metal cations or (c) an all-directional electrostatic force between delocalized electrons and metal cations, that is, an interaction. Part two assessed students' explanation of malleability of metals, for example (a) as a submicro structural rearrangement of metal atoms/cations or (b) based on all-directional electrostatic force. The instrument was validated by the Rasch Model. Psychometric assessment showed that the instrument possessed reasonably good properties of measurement. Results revealed that it was reliable and valid for measuring students' understanding of metallic bonding. Analysis revealed that the structure, process and interaction understandings were unidimensional and in an increasing order of difficulty. Implications for the teaching of metallic bonding, particular through the use of diagrams, critiques and model-based learning, are discussed.

  19. Crescent Earth and Moon

    NASA Technical Reports Server (NTRS)

    1977-01-01

    This picture of a crescent-shaped Earth and Moon -- the first of its kind ever taken by a spacecraft -- was recorded Sept. 18, 1977, by NASA's Voyager 1 when it was 7.25 million miles (11.66 million kilometers) from Earth. The Moon is at the top of the picture and beyond the Earth as viewed by Voyager. In the picture are eastern Asia, the western Pacific Ocean and part of the Arctic. Voyager 1 was directly above Mt. Everest (on the night side of the planet at 25 degrees north latitude) when the picture was taken. The photo was made from three images taken through color filters, then processed by the Jet Propulsion Laboratory's Image Processing Lab. Because the Earth is many times brighter than the Moon, the Moon was artificially brightened by a factor of three relative to the Earth by computer enhancement so that both bodies would show clearly in the print. Voyager 2 was launched Aug. 20, 1977, followed by Voyager 1 on Sept. 5, 1977, en route to encounters at Jupiter in 1979 and Saturn in 1980 and 1981. JPL manages the Voyager mission for NASA's Office of Space Science.

  20. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Wilson, Gregory S.; Huntress, Wesley T.

    1990-01-01

    The rationale behind Mission to Planet Earth is presented, and the program plan is described in detail. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic earth orbits to collect muultidisciplinary data. A sophisticated data system will process and archive an unprecedented large amount of information about the earth and how it functions as a system. Attention is given to the space observatories, the data and information systems, and the interdisciplinary research.

  1. Using Authentic Data in High School Earth System Science Research - Inspiring Future Scientists

    NASA Astrophysics Data System (ADS)

    Bruck, L. F.

    2006-05-01

    Using authentic data in a science research class is an effective way to teach students the scientific process, problem solving, and communication skills. In Frederick County Public Schools, MD a course has been developed to hone scientific research skills, and inspire interest in careers in science and technology. The Earth System Science Research course provides eleventh and twelfth grade students an opportunity to study Earth System Science using the latest information developed through current technologies. The system approach to this course helps students understand the complexity and interrelatedness of the Earth system. Consequently students appreciate the dynamics of local and global environments as part of a complex system. This course is an elective offering designed to engage students in the study of the atmosphere, biosphere, cryosphere, geosphere, and hydrosphere. This course allows students to utilize skills and processes gained from previous science courses to study the physical, chemical, and biological aspects of the Earth system. The research component of the course makes up fifty percent of course time in which students perform independent research on the interactions within the Earth system. Students are required to produce a scientific presentation to communicate the results of their research. Posters are then presented to the scientific community. Some of these presentations have led to internships and other scientific opportunities.

  2. Observation and integrated Earth-system science: A roadmap for 2016–2025

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Adrian; Fellous, Jean-Louis; Ramaswamy, V.

    This report is the response to a request by the Committee on Space Research of the International Council for Science to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of interacting components of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. All types ofmore » observation are considered, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced. Instances are given of present types of observation, what is already on the roadmap for 2016–2025 and some of the issues to be faced. Observations that are organized on a systematic basis and observations that are made for process understanding and model development, or other research or demonstration purposes, are covered. Specific accounts are given for many of the variables of the Earth system. The current status and prospects for Earth-system modelling are summarized. The evolution towards applying Earth-system models for environmental monitoring and prediction as well as for climate simulation and projection is outlined. General aspects of the improvement of models, whether through refining the

  3. NASA/MSFC FY91 Global Scale Atmospheric Processes Research Program Review

    NASA Technical Reports Server (NTRS)

    Leslie, Fred W. (Editor)

    1991-01-01

    The reports presented at the annual Marshall Research Review of Earth Science and Applications are compiled. The following subject areas are covered: understanding of atmospheric processes in a variety of spatial and temporal scales; measurements of geophysical parameters; measurements on a global scale from space; the Mission to Planet Earth Program (comprised of and Earth Observation System and the scientific strategy to analyze these data); and satellite data analysis and fundamental studies of atmospheric dynamics.

  4. Modeling for Understanding in Science Education

    Science.gov Websites

    Modeling for Understanding in Science Education Earth-Moon-Sun Dynamics Natural Selection Welcome ! Modeling for Understanding in Science Education (MUSE) is a collaborative project of university researchers

  5. The Teaching of Anthropogenic Climate Change and Earth Science via Technology-Enabled Inquiry Education

    NASA Technical Reports Server (NTRS)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2016-01-01

    A gap has existed between the tools and processes of scientists working on anthropogenic global climate change (AGCC) and the technologies and curricula available to educators teaching the subject through student inquiry. Designing realistic scientific inquiry into AGCC poses a challenge because research on it relies on complex computer models, globally distributed data sets, and complex laboratory and data collection procedures. Here we examine efforts by the scientific community and educational researchers to design new curricula and technology that close this gap and impart robust AGCC and Earth Science understanding. We find technology-based teaching shows promise in promoting robust AGCC understandings if associated curricula address mitigating factors such as time constraints in incorporating technology and the need to support teachers implementing AGCC and Earth Science inquiry. We recommend the scientific community continue to collaborate with educational researchers to focus on developing those inquiry technologies and curricula that use realistic scientific processes from AGCC research and/or the methods for determining how human society should respond to global change.

  6. Visualizing Sun-Earth-Moon Relationships through Hands-On Modeling

    NASA Astrophysics Data System (ADS)

    Morton, Abby

    2013-04-01

    "Tell me and I forget, teach me and I may remember, involve me and I learn." -Benjamin Franklin Understanding the spatial relationships between the sun, Earth and Moon is fundamental to any basic earth science education. Since both of the following concepts involve shadows on three-dimensional spheres, seeing them on paper is not often conducive to understanding. In the first activity, students use five Styrofoam balls painted to look like the sun and the four positions of the earth in each season. Students position the Earth-balls in their correct order around the sun and translate what they are seeing onto paper. In the second activity, students hold up a Styrofoam ball painted half white, half black. A picture of the sun is projected at the front of the classroom. They move the ball around their heads as if they were the Earth, keeping the lit side of the moon always facing the sun. They then draw the phases of the moon as they see them.

  7. Mobility of rare earth element in hydrothermal process and weathering product: a review

    NASA Astrophysics Data System (ADS)

    Lintjewas, L.; Setiawan, I.

    2018-02-01

    The Rare Earth Element (REE), consists of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Lu, Ho, Er, Tm, Yb, are important elements to be used as raw materials of advanced technology such as semiconductors, magnets, and lasers. The research of REE in Indonesia has not been done. Several researches were conducted on granitic rocks and weathering product such as Bangka, Sibolga, West Kalimantan, West Sulawesi and Papua. REE can be formed by hydrothermal processes such as Bayan Obo, South China. The REE study on active hydrothermal system (geothermal) in this case also has the potential to produce mineral deposits. The purpose of this review paper is to know the mobility of REE on hydrothermal process and weathering products. Mobility of REE in the hydrothermal process can change the distribution patterns and REE content such as Ce, Eu, La, Lu, Nd, Sm, and Y. Another process besides the hydrothermal is weathering process. REE mobility is influenced by weathering products, where the REE will experience residual and secondary enrichment processes in heavier minerals.

  8. The Lifecycle of NASA's Earth Science Enterprise Data Resources

    NASA Technical Reports Server (NTRS)

    McDonald, Kenneth R.; McKinney, Richard A.; Smith, Timothy B.; Rank, Robert

    2004-01-01

    A major endeavor of NASA's Earth Science Enterprise (ESE) is to acquire, process, archive and distribute data from Earth observing satellites in support of a broad set of science research and applications in the U. S. and abroad. NASA policy directives specifically call for the agency to collect, announce, disseminate and archive all scientific and technical data resulting from NASA and NASA-funded research. During the active life of the satellite missions, while the data products are being created, validated and refined, a number of NASA organizations have the responsibility for data and information system functions. Following the completion of the missions, the responsibility for the long-term stewardship of the ocean and atmospheric, and land process data products transitions to the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Geological Survey (USGS), respectively. Ensuring that long-term satellite data be preserved to support global climate change studies and other research topics and applications presents some major challenges to NASA and its partners. Over the last several years, with the launch and operation of the EOS satellites and the acquisition and production of an unprecedented volume of Earth science data, the importance of addressing these challenges has been elevated. The lifecycle of NASA's Earth science data has been the subject of several agency and interagency studies and reports and has implications and effects on agency charters, policies and budgets and on their data system's requirements, implementation plans and schedules. While much remains to be done, considerable progress has been made in understanding and addressing the data lifecycle issues.

  9. Climate Literacy: Progress in Climate and Global Change Undergraduate Courses in Meteorology and Earth System Science Programs at Jackson State University

    NASA Astrophysics Data System (ADS)

    Reddy, S. R.; Tuluri, F.; Fadavi, M.

    2017-12-01

    JSU Meteorology Program will be offering AMS Climate Studies undergraduate course under MET 210: Climatology in spring 2013. AMS Climate Studies is offered as a 3 credit hour laboratory course with 2 lectures and 1 lab sessions per week. Although this course places strong intellectual demands upon each student, the instructors' objective is to help each student to pass the course with an adequate understanding of the fundamentals and advanced and advanced courses. AMS Climate Studies is an introductory college-level course developed by the American Meteorological Society for implementation at undergraduate institutions nationwide. The course places students in a dynamic and highly motivational educational environment where they investigate Earth's climate system using real-world environmental data. The AMS Climate Studies course package consists of a textbook, investigations manual, course website, and course management system-compatible files. Instructors can use these resources in combinations that make for an exciting learning experience for their students. This is a content course in Earth Science. It introduces a new concept that views Earth as a synergistic physical system applied concepts of climatology, for him/her to understand basic atmospheric/climate processes, physical and dynamical climatology, regional climatology, past and future climates and statistical analysis using climate data and to be prepared to profit from studying more of interrelated phenomenon governed by complex processes involving the atmosphere, the hydrosphere, the biosphere, and the solid Earth. The course emphasizes that the events that shape the physical, chemical, and biological processes of the Earth do not occur in isolation. Rather, there is a delicate relationship between the events that occur in the ocean, atmosphere, and the solid Earth. The course provides a multidimensional approach in solving scientific issues related to Earth-related sciences,

  10. Earth Science Contexts for Teaching Physics. Part 2: Contexts Relating to the Teaching of Energy, Earth and Beyond and Radioactivity.

    ERIC Educational Resources Information Center

    King, Chris; Kennett, Peter

    2002-01-01

    Explains how physics teaching can be more relevant for elementary and secondary students by integrating physics and earth science content that students can relate to and understand. Identifies and explains Earth contexts that can be appropriately implemented into the physics curriculum such as energy resources and radioactivity. (Author/YDS)

  11. Using NASA Space Imaging Technology to Teach Earth and Sun Topics

    NASA Astrophysics Data System (ADS)

    Verner, E.; Bruhweiler, F. C.; Long, T.

    2011-12-01

    We teach an experimental college-level course, directed toward elementary education majors, emphasizing "hands-on" activities that can be easily applied to the elementary classroom. This course, Physics 240: "The Sun-Earth Connection" includes various ways to study selected topics in physics, earth science, and basic astronomy. Our lesson plans and EPO materials make extensive use of NASA imagery and cover topics about magnetism, the solar photospheric, chromospheric, coronal spectra, as well as earth science and climate. In addition we are developing and will cover topics on ecosystem structure, biomass and water on Earth. We strive to free the non-science undergraduate from the "fear of science" and replace it with the excitement of science such that these future teachers will carry this excitement to their future students. Hands-on experiments, computer simulations, analysis of real NASA data, and vigorous seminar discussions are blended in an inquiry-driven curriculum to instill confident understanding of basic physical science and modern, effective methods for teaching it. The course also demonstrates ways how scientific thinking and hands-on activities could be implemented in the classroom. We have designed this course to provide the non-science student a confident basic understanding of physical science and modern, effective methods for teaching it. Most of topics were selected using National Science Standards and National Mathematics Standards that are addressed in grades K-8. The course focuses on helping education majors: 1) Build knowledge of scientific concepts and processes; 2) Understand the measurable attributes of objects and the units and methods of measurements; 3) Conduct data analysis (collecting, organizing, presenting scientific data, and to predict the result); 4) Use hands-on approaches to teach science; 5) Be familiar with Internet science teaching resources. Here we share our experiences and challenges we face while teaching this course.

  12. Applications notice. [application of space techniques to earth resources, environment management, and space processing

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The discipline programs of the Space and Terrestrial (S&T) Applications Program are described and examples of research areas of current interest are given. Application of space techniques to improve conditions on earth are summarized. Discipline programs discussed include: resource observations; environmental observations; communications; materials processing in space; and applications systems/information systems. Format information on submission of unsolicited proposals for research related to the S&T Applications Program are given.

  13. NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools

    NASA Technical Reports Server (NTRS)

    Waters, Eric D.; Garcia, Jessica; Beers, Benjamin; Philips, Alan; Holt, James B.; Threet, Grady E., Jr.

    2013-01-01

    The Earth to Orbit (ETO) Team of the Advanced Concepts Office (ACO) at NASA Marshal Space Flight Center (MSFC) is considered the preeminent group to go to for prephase A and phase A concept definition. The ACO team has been at the forefront of a multitude of launch vehicle studies determining the future direction of the Agency as a whole due, in part, to their rapid turnaround time in analyzing concepts and their ability to cover broad trade spaces of vehicles in that limited timeframe. Each completed vehicle concept includes a full mass breakdown of each vehicle to tertiary subsystem components, along with a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. Additionally, a structural analysis of the vehicle based on material properties and geometries is performed as well as an analysis to determine the flight loads based on the trajectory outputs. As mentioned, the ACO Earth to Orbit Team prides themselves on their rapid turnaround time and often need to fulfill customer requests within limited schedule or little advanced notice. Due to working in this fast paced environment, the ETO team has developed some finely honed skills and methods to maximize the delivery capability to meet their customer needs. This paper will describe the interfaces between the 3 primary disciplines used in the design process; weights and sizing, trajectory, and structural analysis, as well as the approach each discipline employs to streamline their particular piece of the design process.

  14. Plasma jets in the near-Earth's magnetotail (Julius Bartels Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Nakamura, Rumi

    2014-05-01

    The Earth's magnetosphere is formed as a consequence of the interaction between the magnetized solar wind and the terrestrial magnetic field. While the large-scale and average (>hours) properties of the Earth's magnetotail current sheet can be well described by overall solar wind-magnetosphere interaction, the most dramatic energy conversion process takes place in an explosive manner involving transient (up to several minutes) and localized (up to a few RE) phenomena in the plasma sheet/current sheet regions. One of the most clear observables of such processes are the localized and transient plasma jets called Bursty bulk flows (BBF), embedding velocity peaks of 1-min duration, which are called flow bursts. This talk is a review of the current understanding of these plasma jets by highlighting the results from multi-spacecraft observations by the Cluster and THEMIS spacecraft. The first four-spacecraft mission Cluster crossed the near-Earth plasma sheet with inter-spacecraft distance of about 250 km to 10000 km, ideal for studying local structures of the flow bursts. The five-spacecraft THEMIS mission , separated by larger distances , succeeded to monitor the large-scale evolution of the fast flows from the mid-tail to the inner magnetosphere. Multi-point observations of BBFS have established the importance of measuring local gradients of the fields and the plasma to understand the BBF structures such as the spatial scales and 3D structure of localized Earthward convecting flux tubes. Among others the magnetic field disturbance forming at the front of BBF, called dipolarization front (DF), has been intensively studied. From the propagation properties of DF relative to the flows and by comparing with ionospheric data, the evolution of the fast flows in terms of magnetosphere-ionospheric coupling through field-aligned currents are established. An important aspect of BBF is the interaction of the Earthward plasma jets and the Earth's dipole field. Multi

  15. Understanding system disturbance and ecosystem services in restored saltmarshes: Integrating physical and biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Spencer, K. L.; Harvey, G. L.

    2012-06-01

    Coastal saltmarsh ecosystems occupy only a small percentage of Earth's land surface, yet contribute a wide range of ecosystem services that have significant global economic and societal value. These environments currently face significant challenges associated with climate change, sea level rise, development and water quality deterioration and are consequently the focus of a range of management schemes. Increasingly, soft engineering techniques such as managed realignment (MR) are being employed to restore and recreate these environments, driven primarily by the need for habitat (re)creation and sustainable coastal flood defence. Such restoration schemes also have the potential to provide additional ecosystem services including climate regulation and waste processing. However, these sites have frequently been physically impacted by their previous land use and there is a lack of understanding of how this 'disturbance' impacts the delivery of ecosystem services or of the complex linkages between ecological, physical and biogeochemical processes in restored systems. Through the exploration of current data this paper determines that hydrological, geomorphological and hydrodynamic functioning of restored sites may be significantly impaired with respects to natural 'undisturbed' systems and that links between morphology, sediment structure, hydrology and solute transfer are poorly understood. This has consequences for the delivery of seeds, the provision of abiotic conditions suitable for plant growth, the development of microhabitats and the cycling of nutrients/contaminants and may impact the delivery of ecosystem services including biodiversity, climate regulation and waste processing. This calls for a change in our approach to research in these environments with a need for integrated, interdisciplinary studies over a range of spatial and temporal scales incorporating both intensive and extensive research design.

  16. Non-resonant excitation of rare-earth ions via virtual Auger process

    NASA Astrophysics Data System (ADS)

    Yassievich, I. N.

    2011-05-01

    The luminescence of rare-earth ions (REI) is often intensified by defects associated with REIs or excitons bound to these defects. In this paper we show that the presence of such a state opens the possibility of non-resonance optical pumping via the process involving virtual Auger transition. It is the second order perturbation process when an electron arrives in an virtual intermediate state due to the optical transition (the first step) and the Auger transition is the second one. We have calculated the cross-section of such an excitation process when the optical transition is accompanied by creation of the exciton bound to the defect associated with REI and obtained a simple analytical expression for the cross-section. The excess energy of the excitation quanta is taken away by multiphonon emission. The electron-phonon interaction with local phonon vibrations of the bound exciton is assumed to determine the multiphonon process. It is shown that the probability of the process under study exceeds considerably the probability of direct optical 4f-4f absorption even in the case when the energy distance between the excitation quantum energy and the exciton energy is about 0.1 of the exciton energy. The excitation mechanism considered leads to the appearance of a broad unsymmetrical band in the excitation spectrum with the red side much wider and flatter than the blue one.

  17. DECADE Web Portal: Integrating MaGa, EarthChem and GVP Will Further Our Knowledge on Earth Degassing

    NASA Astrophysics Data System (ADS)

    Cardellini, C.; Frigeri, A.; Lehnert, K. A.; Ash, J.; McCormick, B.; Chiodini, G.; Fischer, T. P.; Cottrell, E.

    2014-12-01

    The release of gases from the Earth's interior to the exosphere takes place in both volcanic and non-volcanic areas of the planet. Fully understanding this complex process requires the integration of geochemical, petrological and volcanological data. At present, major online data repositories relevant to studies of degassing are not linked and interoperable. We are developing interoperability between three of those, which will support more powerful synoptic studies of degassing. The three data systems that will make their data accessible via the DECADE portal are: (1) the Smithsonian Institution's Global Volcanism Program database (GVP) of volcanic activity data, (2) EarthChem databases for geochemical and geochronological data of rocks and melt inclusions, and (3) the MaGa database (Mapping Gas emissions) which contains compositional and flux data of gases released at volcanic and non-volcanic degassing sites. These databases are developed and maintained by institutions or groups of experts in a specific field, and data are archived in formats specific to these databases. In the framework of the Deep Earth Carbon Degassing (DECADE) initiative of the Deep Carbon Observatory (DCO), we are developing a web portal that will create a powerful search engine of these databases from a single entry point. The portal will return comprehensive multi-component datasets, based on the search criteria selected by the user. For example, a single geographic or temporal search will return data relating to compositions of emitted gases and erupted products, the age of the erupted products, and coincident activity at the volcano. The development of this level of capability for the DECADE Portal requires complete synergy between these databases, including availability of standard-based web services (WMS, WFS) at all data systems. Data and metadata can thus be extracted from each system without interfering with each database's local schema or being replicated to achieve integration at

  18. Measurements and modeling of CO 2 concentration and isotopes to improve process-level understanding of Arctic and boreal carbon cycling. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keeling, Ralph F.

    The major goal of this project was to improve understanding of processes that control the exchanges of CO 2 between the atmosphere and the land biosphere on decadal and longer time scales. The approach involves measuring the changes in atmospheric CO 2 concentration and the isotopes of CO 2 ( 13C/ 12C and 18O/ 16O) at background stations and uses these and other datasets to challenge and improve numerical models of the earth system. The project particularly emphasized the use of these data to improve understanding of changes occurring in boreal and arctic ecosystems over the past 50 years andmore » to seek from these data improved understanding of large-scale processes impacting carbon cycling, such as the responses to warming, CO 2 fertilization, and disturbance. The project also led to advances in the understanding of changes in water-use efficiency of land ecosystems globally based on trends in 13C/ 12C. The core element of this project was providing partial support for continuing measurements of CO 2 concentrations and isotopes from the Scripps CO 2 program, initiated by C. D. Keeling in the 1960s. The measurements included analysis of flasks collected at an array of ten stations distributed from the Arctic to the Antarctic. The project also supported modeling studies and interpretive work to help understand the origins of the large ~50% increase in the amplitude of the atmospheric CO 2 cycle detected at high northern latitudes between 1960 and present and to understand the long-term trend in carbon 13C/ 12C of CO 2. The seasonal cycle work was advanced through collaborations with colleagues at MPI Jena and Imperial College« less

  19. Using Immersive Visualizations to Improve Decision Making and Enhancing Public Understanding of Earth Resource and Climate Issues

    NASA Astrophysics Data System (ADS)

    Yu, K. C.; Raynolds, R. G.; Dechesne, M.

    2008-12-01

    New visualization technologies, from ArcGIS to Google Earth, have allowed for the integration of complex, disparate data sets to produce visually rich and compelling three-dimensional models of sub-surface and surface resource distribution patterns. The rendering of these models allows the public to quickly understand complicated geospatial relationships that would otherwise take much longer to explain using traditional media. We have impacted the community through topical policy presentations at both state and city levels, adult education classes at the Denver Museum of Nature and Science (DMNS), and public lectures at DMNS. We have constructed three-dimensional models from well data and surface observations which allow policy makers to better understand the distribution of groundwater in sandstone aquifers of the Denver Basin. Our presentations to local governments in the Denver metro area have allowed resource managers to better project future ground water depletion patterns, and to encourage development of alternative sources. DMNS adult education classes on water resources, geography, and regional geology, as well as public lectures on global issues such as earthquakes, tsunamis, and resource depletion, have utilized the visualizations developed from these research models. In addition to presenting GIS models in traditional lectures, we have also made use of the immersive display capabilities of the digital "fulldome" Gates Planetarium at DMNS. The real-time Uniview visualization application installed at Gates was designed for teaching astronomy, but it can be re-purposed for displaying our model datasets in the context of the Earth's surface. The 17-meter diameter dome of the Gates Planetarium allows an audience to have an immersive experience---similar to virtual reality CAVEs employed by the oil exploration industry---that would otherwise not be available to the general public. Public lectures in the dome allow audiences of over 100 people to comprehend

  20. Radio interference in the near-earth environment

    NASA Technical Reports Server (NTRS)

    Erickson, W. C.

    1988-01-01

    Natural and man-made radio frequency interference (RFI) are potentially serious obstacles to the successful operation of an array of spacecraft used for low frequency (1 to 30 MHz) radio interferometry in the near-earth environment. Several satellites and planetary probes have carried radio astronomy experiments, and the moderate data base that they provide are examined to help understand the near-earth RFI environment. The general conclusion is that the region of space within 100 earth-radii of the earth is a hostile environment for any radio astronomy experiment. If a low frequency array in earth orbit is to yield useful astronomical results, severe interference problems must be anticipated and overcome. A number of recommendations are made to further examine the feasibility of such an array.

  1. Using Interactive Technology to Support Students' Understanding of the Greenhouse Effect and Global Warming

    NASA Astrophysics Data System (ADS)

    Varma, Keisha; Linn, Marcia C.

    2012-08-01

    In this work, we examine middle school students' understanding of the greenhouse effect and global warming. We designed and refined a technology-enhanced curriculum module called Global Warming: Virtual Earth. In the module activities, students conduct virtual experiments with a visualization of the greenhouse effect. They analyze data and draw conclusions about how individual variables effect changes in the Earth's temperature. They also carry out inquiry activities to make connections between scientific processes, the socio-scientific issues, and ideas presented in the media. Results show that participating in the unit increases students' understanding of the science. We discuss how students integrate their ideas about global climate change as a result of using virtual experiments that allow them to explore meaningful complexities of the climate system.

  2. Thematic Mapper research in the earth sciences

    NASA Technical Reports Server (NTRS)

    Salomonson, Vincent V.; Stuart, Locke

    1989-01-01

    This paper's studies were initiated under the NASA program for the purpose of conducting the earth sciences research using the Landsat Thematic Mapper. The goals of the program include studies of the factors influencing the growth, health, condition, and distribution of vegetation on the earth; the processes controlling the evolution of the earth's crust; the earth's water budget and the hydrologic processes that operate at local, regional, and global scales; the physical and chemical interaction between different types of surficial materials; and the interaction between the earth's surface and its atmosphere. Twenty-seven domestic and five foreign investigations were initiated in 1985, with the results from most of them already published (one study was terminated due to the delay in the TDRSS). Twelve of the studies addressed hydrology, snow and ice, coastal processes, and near-shore oceanographic phenomena; seven addressed vegetation, soils, or animal habitat; and twelve addressed geologic subjects.

  3. Preface to highly siderophile element constraints on Earth and planetary processes

    NASA Astrophysics Data System (ADS)

    Riches, Amy J. V.

    2017-11-01

    The geochemical properties of the highly siderophile elements (HSEs; Os, Ir, Ru, Rh, Pt, Pd, Re and Au) - being strongly iron-loving, but also chalcophile (i.e., having an affinity for sulphide), and generally occurring at ultra trace levels in silicate rocks, their weathered products, and oceanic waters - mean that this suite of elements and their isotopic compositions are useful in tracing a wide variety of processes. Thus, the HSEs are useful probes with which to tackle major research questions pertinent to past and present day change at a variety of scales and in a range of Earth and other-worldly environments by constraining reservoir compositions, chemical drivers, and the timing of key events and/or transformation rates.

  4. Promoting Climate Literacy and Conceptual Understanding among In-service Secondary Science Teachers requires an Epistemological Perspective

    NASA Astrophysics Data System (ADS)

    Bhattacharya, D.; Forbes, C.; Roehrig, G.; Chandler, M. A.

    2017-12-01

    Promoting climate literacy among in-service science teachers necessitates an understanding of fundamental concepts about the Earth's climate System (USGCRP, 2009). Very few teachers report having any formal instruction in climate science (Plutzer et al., 2016), therefore, rather simple conceptions of climate systems and their variability exist, which has implications for students' science learning (Francies et al., 1993; Libarkin, 2005; Rebich, 2005). This study uses the inferences from a NASA Innovations in Climate Education (NICE) teacher professional development program (CYCLES) to establish the necessity for developing an epistemological perspective among teachers. In CYCLES, 19 middle and high school (male=8, female=11) teachers were assessed for their understanding of global climate change (GCC). A qualitative analysis of their concept maps and an alignment of their conceptions with the Essential Principles of Climate Literacy (NOAA, 2009) demonstrated that participants emphasized on EPCL 1, 3, 6, 7 focusing on the Earth system, atmospheric, social and ecological impacts of GCC. However, EPCL 4 (variability in climate) and 5 (data-based observations and modeling) were least represented and emphasized upon. Thus, participants' descriptions about global climatic patterns were often factual rather than incorporating causation (why the temperatures are increasing) and/or correlation (describing what other factors might influence global temperatures). Therefore, engaging with epistemic dimensions of climate science to understand the processes, tools, and norms through which climate scientists study the Earth's climate system (Huxter et al., 2013) is critical for developing an in-depth conceptual understanding of climate. CLiMES (Climate Modeling and Epistemology of Science), a NSF initiative proposes to use EzGCM (EzGlobal Climate Model) to engage students and teachers in designing and running simulations, performing data processing activities, and analyzing

  5. Research Data Alliance: Understanding Big Data Analytics Applications in Earth Science

    NASA Astrophysics Data System (ADS)

    Riedel, Morris; Ramachandran, Rahul; Baumann, Peter

    2014-05-01

    The Research Data Alliance (RDA) enables data to be shared across barriers through focused working groups and interest groups, formed of experts from around the world - from academia, industry and government. Its Big Data Analytics (BDA) interest groups seeks to develop community based recommendations on feasible data analytics approaches to address scientific community needs of utilizing large quantities of data. BDA seeks to analyze different scientific domain applications (e.g. earth science use cases) and their potential use of various big data analytics techniques. These techniques reach from hardware deployment models up to various different algorithms (e.g. machine learning algorithms such as support vector machines for classification). A systematic classification of feasible combinations of analysis algorithms, analytical tools, data and resource characteristics and scientific queries will be covered in these recommendations. This contribution will outline initial parts of such a classification and recommendations in the specific context of the field of Earth Sciences. Given lessons learned and experiences are based on a survey of use cases and also providing insights in a few use cases in detail.

  6. Research Data Alliance: Understanding Big Data Analytics Applications in Earth Science

    NASA Technical Reports Server (NTRS)

    Riedel, Morris; Ramachandran, Rahul; Baumann, Peter

    2014-01-01

    The Research Data Alliance (RDA) enables data to be shared across barriers through focused working groups and interest groups, formed of experts from around the world - from academia, industry and government. Its Big Data Analytics (BDA) interest groups seeks to develop community based recommendations on feasible data analytics approaches to address scientific community needs of utilizing large quantities of data. BDA seeks to analyze different scientific domain applications (e.g. earth science use cases) and their potential use of various big data analytics techniques. These techniques reach from hardware deployment models up to various different algorithms (e.g. machine learning algorithms such as support vector machines for classification). A systematic classification of feasible combinations of analysis algorithms, analytical tools, data and resource characteristics and scientific queries will be covered in these recommendations. This contribution will outline initial parts of such a classification and recommendations in the specific context of the field of Earth Sciences. Given lessons learned and experiences are based on a survey of use cases and also providing insights in a few use cases in detail.

  7. An OpenEarth Framework (OEF) for Integrating and Visualizing Earth Science Data

    NASA Astrophysics Data System (ADS)

    Moreland, J. L.; Nadeau, D. R.; Baru, C.; Crosby, C. J.

    2009-12-01

    The integration of data is essential to make transformative progress in understanding the complex processes operating at the Earth’s surface and within its interior. While our current ability to collect massive amounts of data, develop structural models, and generate high-resolution dynamics models is well developed, our ability to quantitatively integrate these data and models into holistic interpretations of Earth systems is poorly developed. We lack the basic tools to realize a first-order goal in Earth science of developing integrated 4D models of Earth structure and processes using a complete range of available constraints, at a time when the research agenda of major efforts such as EarthScope demand such a capability. Among the challenges to 3D data integration are data that may be in different coordinate spaces, units, value ranges, file formats, and data structures. While several file format standards exist, they are infrequently or incorrectly used. Metadata is often missing, misleading, or relegated to README text files along side the data. This leaves much of the work to integrate data bogged down by simple data management tasks. The OpenEarth Framework (OEF) being developed by GEON addresses these data management difficulties. The software incorporates file format parsers, data interpretation heuristics, user interfaces to prompt for missing information, and visualization techniques to merge data into a common visual model. The OEF’s data access libraries parse formal and de facto standard file formats and map their data into a common data model. The software handles file format quirks, storage details, caching, local and remote file access, and web service protocol handling. Heuristics are used to determine coordinate spaces, units, and other key data features. Where multiple data structure, naming, and file organization conventions exist, those heuristics check for each convention’s use to find a high confidence interpretation of the data. When

  8. Learning More About Our Earth: An Exploration of NASA's Contributions to Earth Science Through Remote Sensing Technologies

    NASA Technical Reports Server (NTRS)

    Lindsay, Francis

    2017-01-01

    NASA is commonly known for its pioneering work in space exploration and the technological advancements that made access to space possible. NASA is now increasingly known for the agency's research and technologies that support the Earth sciences. This is a presentation focusing on NASA's Earth science efforts told mostly through the technological innovations NASA uses to achieve a greater understanding of the Earth, making it possible to explore the Earth as a system. Enabling this science is NASA's fleet of over two dozen Earth science spacecraft, supported by aircraft, ships and ground observations. NASA's Earth Observing System (EOS) is a coordinated series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. With the launching of the three flagship satellite missions, Terra, Aqua and Aura, beginning in 1999, NASA's initial Mission to Planet Earth made it possible to measure aspects of the environment that touch the lives of every person around the world. NASA harnessing the unique space-based platform means, fortunately, no planet is better studied than the one we actually live on.

  9. Gaining insights into interrill soil erosion processes using rare earth element tracers

    USDA-ARS?s Scientific Manuscript database

    Increasing interest in developing process-based erosion models requires better understanding of the relationships among soil detachment, transportation, and deposition. The objectives are to 1) identify the limiting process between soil detachment and sediment transport for interrill erosion, 2) und...

  10. SensePath: Understanding the Sensemaking Process Through Analytic Provenance.

    PubMed

    Nguyen, Phong H; Xu, Kai; Wheat, Ashley; Wong, B L William; Attfield, Simon; Fields, Bob

    2016-01-01

    Sensemaking is described as the process of comprehension, finding meaning and gaining insight from information, producing new knowledge and informing further action. Understanding the sensemaking process allows building effective visual analytics tools to make sense of large and complex datasets. Currently, it is often a manual and time-consuming undertaking to comprehend this: researchers collect observation data, transcribe screen capture videos and think-aloud recordings, identify recurring patterns, and eventually abstract the sensemaking process into a general model. In this paper, we propose a general approach to facilitate such a qualitative analysis process, and introduce a prototype, SensePath, to demonstrate the application of this approach with a focus on browser-based online sensemaking. The approach is based on a study of a number of qualitative research sessions including observations of users performing sensemaking tasks and post hoc analyses to uncover their sensemaking processes. Based on the study results and a follow-up participatory design session with HCI researchers, we decided to focus on the transcription and coding stages of thematic analysis. SensePath automatically captures user's sensemaking actions, i.e., analytic provenance, and provides multi-linked views to support their further analysis. A number of other requirements elicited from the design session are also implemented in SensePath, such as easy integration with existing qualitative analysis workflow and non-intrusive for participants. The tool was used by an experienced HCI researcher to analyze two sensemaking sessions. The researcher found the tool intuitive and considerably reduced analysis time, allowing better understanding of the sensemaking process.

  11. Beyond Earth's Boundaries

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Kennedy Space Center, FL. John F. Kennedy Space Center.

    This resource for teachers of elementary age students provides a foundation for building a life-long interest in the U.S. space program. It begins with a basic understanding of man's attempt to conquer the air, then moves on to how we expanded into near-Earth space for our benefit. Students learn, through hands-on experiences, from projects…

  12. Using process monitor wafers to understand directed self-assembly defects

    NASA Astrophysics Data System (ADS)

    Cao, Yi; Her, YoungJun; Delgadillo, Paulina R.; Vandenbroeck, Nadia; Gronheid, Roel; Chan, Boon Teik; Hashimoto, Yukio; Romo, Ainhoa; Somervell, Mark; Nafus, Kathleen; Nealey, Paul F.

    2013-03-01

    As directed self-assembly (DSA) has gained momentum over the past few years, questions about its application to high volume manufacturing have arisen. One of the major concerns is about the fundamental limits of defectivity that can be attained with the technology. If DSA applications demonstrate defectivity that rivals of traditional lithographic technologies, the pathway to the cost benefits of the technology creates a very compelling case for its large scale implementation. To address this critical question, our team at IMEC has established a process monitor flow to track the defectivity behaviors of an exemplary chemo-epitaxy application for printing line/space patterns. Through establishing this baseline, we have been able to understand both traditional lithographic defect sources in new materials as well as new classes of assembly defects associated with DSA technology. Moreover, we have explored new materials and processing to lower the level of the defectivity baseline. The robustness of the material sets and process is investigated as well. In this paper, we will report the understandings learned from the IMEC DSA process monitor flow.

  13. Early Earth(s) Across Time and Space

    NASA Astrophysics Data System (ADS)

    Mojzsis, S.

    2014-04-01

    emerge in or on a suitable planet with Earth characteristics, within ca. 150 Myr after its formation. Our understanding of the thermal histories and chemical transformations of the crusts of early Earth, Moon, Mars and asteroids have accumulated to the point where it is now feasible to deduce the habitable potential of the early solar system and to place some upward constraints on the timing of life's appearance. The natural lifetime of a biosphere is strongly dependent not simply on its proximity to its star, but on the age and composition of the host planet.

  14. Bigger eyes in a wider universe: The American understanding of Earth in outer space, 1893--1941

    NASA Astrophysics Data System (ADS)

    Prosser, Jodicus Wayne

    Between 1893 and 1941, the understanding of the Milky Way galaxy within the American culture changed from a sphere to a spiral and Earth's location within it changed from the center to the periphery. These changes were based primarily upon scientific theories developed at Mount Wilson Observatory near Pasadena, California. This dissertation is an "astrosophy" that traces the history of changing depictions of the Milky Way in selected published sources and identifies key individuals, theories and technologies involved. It also demonstrates why the accepted depictions of the universe envisioned at Mount Wilson were cultural-scientific products created, in part, as the result of place. Southern California became the hearth of a culture that justified its superiority based upon its unique climate. Clear skies, remarkable visibility, and a perceived existence of intense natural light became the basis for the promotion of Mount Wilson as the premier location for astronomical observations. Conservation, en plein air paintings, and the concept of pays age moralisé are Southern Californian cultural products of the early 1900s that promoted an idealized society capable of exceptional intellectual endeavors and scientific accomplishments. The efforts of astronomers Hale, Shapley, Adams, Hubble and Ritchey resulted in the changing American understanding of the universe. This dissertation reveals how the diverse social interactions of these astronomers intersected Arroyo Seco meetings, women's organizations, the Valley Hunt Club elites, and philanthropic groups that comprised the schizophrenic culture of Pasadena. Their astronomical theories are compared to other aspects of the Southern Californian culture revealed in the writings of Raymond Chandler, Nathanael West and John Fante. The desire of astronomers to gain prestige from their discoveries is compared to competition in the creative processes of Hollywood. The theories created by astronomers and the films of the motion

  15. NASA Earth Science Image Analysis for Climate Change Decisions

    NASA Technical Reports Server (NTRS)

    Hilderbrand, Peter H.

    2011-01-01

    This talk will briefly outline the ways in which NASA observes the Earth, then describes the NASA satellite measurements, and then proceeds to show how these measurements are used to understand the changes that are occurring as Earth's climate warms.

  16. Fostering the uptake of satellite Earth Observation data for landslide hazard understanding: the CEOS Landslide Pilot

    NASA Astrophysics Data System (ADS)

    Kirschbaum, Dalia; Malet, Jean-Philippe; Roessner, Sigrid

    2017-04-01

    Landslides occur around the world, on every continent, and play an important role in the evolution of landscapes. They also represent a serious hazard in many areas of the world. Despite their importance, it has been estimated that past landslide and landslide potential maps cover less than 1% of the slopes in these landmasses. Systematic information on the type, abundance, and distribution of existing landslides is lacking. Even in countries where landslide information is abundant (e.g. Italy), the vast majority of landslides caused by meteorological (intense or prolonged rainfall, rapid snowmelt) or geophysical (earthquake) triggers go undetected. This paucity of knowledge has consequences on the design of effective remedial and mitigation measures. Systematic use of Earth observation (EO) data and technologies can contribute effectively to detect, map, and monitor landslides, and landslide prone hillsides, in different physiographic and climatic regions. The CEOS (Committee on Earth Observation Satellites) Working Group on Disasters has recently launched a Landslide Pilot (period 2017-2019) with the aim to demonstrate the effective exploitation of satellite EO across the full cycle of landslide disaster risk management, including preparedness, response, and recovery at global, regional, and local scales, with a distinct multi-hazard focus on cascading impacts and risks. The Landslide Pilot is focusing efforts on three objectives: 1. Establish effective practices for merging different Earth Observation data (e.g. optical and radar) to better monitor and map landslide activity over time and space. 2. Demonstrate how landslide products, models, and services can support disaster risk management for multi-hazard and cascading landslide events. 3. Engage and partner with data brokers and end users to understand requirements and user expectations and get feedback through the activities described in objectives 1-2. The Landslide Pilot was endorsed in April 2016 and work

  17. Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing

    PubMed Central

    Holl, Felix; Savory, David J.; Andrade-Pacheco, Ricardo; Gething, Peter W.; Bennett, Adam; Sturrock, Hugh J. W.

    2017-01-01

    Quantifying and monitoring the spatial and temporal dynamics of the global land cover is critical for better understanding many of the Earth’s land surface processes. However, the lack of regularly updated, continental-scale, and high spatial resolution (30 m) land cover data limit our ability to better understand the spatial extent and the temporal dynamics of land surface changes. Despite the free availability of high spatial resolution Landsat satellite data, continental-scale land cover mapping using high resolution Landsat satellite data was not feasible until now due to the need for high-performance computing to store, process, and analyze this large volume of high resolution satellite data. In this study, we present an approach to quantify continental land cover and impervious surface changes over a long period of time (15 years) using high resolution Landsat satellite observations and Google Earth Engine cloud computing platform. The approach applied here to overcome the computational challenges of handling big earth observation data by using cloud computing can help scientists and practitioners who lack high-performance computational resources. PMID:28953943

  18. Dynamic Noise and its Role in Understanding Epidemiological Processes

    NASA Astrophysics Data System (ADS)

    Stollenwerk, Nico; Aguiar, Maíra

    2010-09-01

    We investigate the role of dynamic noise in understanding epidemiological systems, such as influenza or dengue fever by deriving stochastic ordinary differential equations from markov processes for discrete populations. This approach allows for an easy analysis of dynamical noise transitions between co-existing attractors.

  19. Another Earth 2.0? Not So Fast

    NASA Astrophysics Data System (ADS)

    Schulze-Makuch, Dirk; Guinan, Edward

    2016-11-01

    The number of confirmed exoplanets now exceeds 3000, with an additional nearly 5000 exoplanet candidates awaiting confirmation in the NASA Exoplanet Archive (2016). Nearly weekly we hear about the detection of a new exoplanet similar in mass to Earth and located in the so-called habitable zone around its host star. The excitement is understandable given our desire to find a second Earth. However, the excitement should not lead to an over-interpretation of the findings, because the claim can only be to have some crude similarity to Earth based on a few selected geophysical parameters. Only a very small fraction of these planets will actually be Earth-like. Earth-like would imply multiple environmental habitats and presence of a sizable biosphere and complex ecosystems, without which Earth, as we experience it, would not exist. Thus, it should be clearly communicated to the public that we are probably still many years away from having the technological capability to detect an Earth-like planet or Earth 2.0 with adequate certainty.

  20. Trees for Mother Earth.

    ERIC Educational Resources Information Center

    Greer, Sandy

    1993-01-01

    Describes Trees for Mother Earth, a program in which secondary students raise funds to buy fruit trees to plant during visits to the Navajo Reservation. Benefits include developing feelings of self-worth among participants, promoting cultural exchange and understanding, and encouraging self-sufficiency among the Navajo. (LP)

  1. Origin of the earth's ocean basins

    NASA Technical Reports Server (NTRS)

    Frex, H.

    1977-01-01

    The earth's original ocean basins were mare-type basins produced 4 billion years ago by the flux of asteroid-sized objects responsible for the lunar mare basins. Scaling upwards from the observed number of lunar basins for the greater capture cross-section and impact velocity of the Earth indicates that at least 50 percent of an original global crust would have been converted to basin topography. These basins were flooded by basaltic liquids in times short compared to the isostatic adjustment time for the basin. The modern crustal dichotomy (60 percent oceanic, 40 percent continental crust) was established early in the history of the earth, making possible the later onset of plate tectonic processes. These later processes have subsequently reworked, in several cycles, principally the oceanic parts of the earth's crust, changing the configuration of the continents in the process. Ocean basins (and oceans themselves) may be rare occurrences on planets in other star systems.

  2. Welcome to NASA's Earth Science Enterprise. Version 3

    NASA Technical Reports Server (NTRS)

    2001-01-01

    There are strong scientific indications that natural change in the Earth system is being accelerated by human intervention. As a result, planet Earth faces the possibility of rapid environmental changes that would have a profound impact on all nations. However, we do not fully understand either the short-term effects of our activities, or their long-term implications - many important scientific questions remain unanswered. The National Aeronautics and Space Administration (NASA) is working with the national and international scientific communities to establish a sound scientific basis for addressing these critical issues through research efforts coordinated under the U.S. Global Change Research Program, the International Geosphere-Biosphere Program, and the World Climate Research Program. The Earth Science Enterprise is NASA's contribution to the U.S. Global Change Research Program. NASA's Earth Science Enterprise will use space- and surface-based measurement systems to provide the scientific basis for understanding global change. The space-based components will provide a constellation of satellites to monitor the Earth from space. A major component of the Earth Science Enterprise is the Earth Observing System (EOS). The overall objective of the EOS Program is to determine the extent, causes, and regional consequences of global climate change. EOS will provide sustained space-based observations that will allow researchers to monitor climate variables over time to determine trends. A constellation of EOS satellites will acquire global data, beginning in 1998 and extending well into the 21st century.

  3. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fröhlich-Nowoisky, Janine; Kampf, Christopher J.; Weber, Bettina

    Aerosols of biological origin play a vital role in the Earth system, particularly in the in-teractions between atmosphere, biosphere, climate, and public health. Airborne bacteria, fungal spores, pollen, and other bioparticles are essential for the reproduction and spread of organisms across various ecosystems, and they can cause or enhance human, animal, and plant diseases. Moreover, they can serve as nuclei for cloud droplets, ice crystals, and precipitation, thus influencing the hydrological cycle and climate. The actual formation, abundance, composition, and effects of biological aerosols and the atmospheric microbi-ome are, however, not yet well characterized and constitute a large gap inmore » the scientific understanding of the interaction and co-evolution of life and climate in the Earth system. This review presents an overview of the state of bioaerosol research and highlights recent advances in terms of bioaerosol identification, characterization, transport, and transfor-mation processes, as well as their interactions with climate, health, and ecosystems, focus-ing on the role bioaerosols play in the Earth system.« less

  4. Dangerous Near-Earth Asteroids and Meteorites

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Grigoryan, A. E.

    2015-07-01

    The problem of Near-Earth Objects (NEOs; Astreoids and Meteorites) is discussed. To have an understanding on the probablity of encounters with such objects, one may use two different approaches: 1) historical, based on the statistics of existing large meteorite craters on the Earth, estimation of the source meteorites size and the age of these craters to derive the frequency of encounters with a given size of meteorites and 2) astronomical, based on the study and cataloging of all medium-size and large bodies in the Earth's neighbourhood and their orbits to estimate the probability, angles and other parameters of encounters. Therefore, we discuss both aspects and give our present knowledge on both phenomena. Though dangerous NEOs are one of the main source for cosmic catastrophes, we also focus on other possible dangers, such as even slight changes of Solar irradiance or Earth's orbit, change of Moon's impact on Earth, Solar flares or other manifestations of Solar activity, transit of comets (with impact on Earth's atmosphere), global climate change, dilution of Earth's atmosphere, damage of ozone layer, explosion of nearby Supernovae, and even an attack by extraterrestrial intelligence.

  5. Size-Selective Modes of Aeolian Transport on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Swann, C.; Ewing, R. C.; Sherman, D. J.; McLean, C. J.

    2016-12-01

    conditions over the same surfaces was 309 µm, 695 µm and 1398 µm. For the mixed surfaces under Earth and Mars conditions, the size selection process resulted the formation of incipient ripples that migrated over a finer substrate. Determining the modes of transport under Martian conditions refines our understanding of the development of deflationary surfaces and bed forms.

  6. Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Gorelick, Noel

    2013-04-01

    The Google Earth Engine platform is a system designed to enable petabyte-scale, scientific analysis and visualization of geospatial datasets. Earth Engine provides a consolidated environment including a massive data catalog co-located with thousands of computers for analysis. The user-friendly front-end provides a workbench environment to allow interactive data and algorithm development and exploration and provides a convenient mechanism for scientists to share data, visualizations and analytic algorithms via URLs. The Earth Engine data catalog contains a wide variety of popular, curated datasets, including the world's largest online collection of Landsat scenes (> 2.0M), numerous MODIS collections, and many vector-based data sets. The platform provides a uniform access mechanism to a variety of data types, independent of their bands, projection, bit-depth, resolution, etc..., facilitating easy multi-sensor analysis. Additionally, a user is able to add and curate their own data and collections. Using a just-in-time, distributed computation model, Earth Engine can rapidly process enormous quantities of geo-spatial data. All computation is performed lazily; nothing is computed until it's required either for output or as input to another step. This model allows real-time feedback and preview during algorithm development, supporting a rapid algorithm development, test, and improvement cycle that scales seamlessly to large-scale production data processing. Through integration with a variety of other services, Earth Engine is able to bring to bear considerable analytic and technical firepower in a transparent fashion, including: AI-based classification via integration with Google's machine learning infrastructure, publishing and distribution at Google scale through integration with the Google Maps API, Maps Engine and Google Earth, and support for in-the-field activities such as validation, ground-truthing, crowd-sourcing and citizen science though the Android Open Data

  7. Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Gorelick, N.

    2012-12-01

    The Google Earth Engine platform is a system designed to enable petabyte-scale, scientific analysis and visualization of geospatial datasets. Earth Engine provides a consolidated environment including a massive data catalog co-located with thousands of computers for analysis. The user-friendly front-end provides a workbench environment to allow interactive data and algorithm development and exploration and provides a convenient mechanism for scientists to share data, visualizations and analytic algorithms via URLs. The Earth Engine data catalog contains a wide variety of popular, curated datasets, including the world's largest online collection of Landsat scenes (> 2.0M), numerous MODIS collections, and many vector-based data sets. The platform provides a uniform access mechanism to a variety of data types, independent of their bands, projection, bit-depth, resolution, etc..., facilitating easy multi-sensor analysis. Additionally, a user is able to add and curate their own data and collections. Using a just-in-time, distributed computation model, Earth Engine can rapidly process enormous quantities of geo-spatial data. All computation is performed lazily; nothing is computed until it's required either for output or as input to another step. This model allows real-time feedback and preview during algorithm development, supporting a rapid algorithm development, test, and improvement cycle that scales seamlessly to large-scale production data processing. Through integration with a variety of other services, Earth Engine is able to bring to bear considerable analytic and technical firepower in a transparent fashion, including: AI-based classification via integration with Google's machine learning infrastructure, publishing and distribution at Google scale through integration with the Google Maps API, Maps Engine and Google Earth, and support for in-the-field activities such as validation, ground-truthing, crowd-sourcing and citizen science though the Android Open Data

  8. Another Earth 2.0? Not So Fast.

    PubMed

    Schulze-Makuch, Dirk; Guinan, Edward

    2016-11-01

    The number of confirmed exoplanets now exceeds 3000, with an additional nearly 5000 exoplanet candidates awaiting confirmation in the NASA Exoplanet Archive ( 2016 ). Nearly weekly we hear about the detection of a new exoplanet similar in mass to Earth and located in the so-called habitable zone around its host star. The excitement is understandable given our desire to find a second Earth. However, the excitement should not lead to an over-interpretation of the findings, because the claim can only be to have some crude similarity to Earth based on a few selected geophysical parameters. Only a very small fraction of these planets will actually be Earth-like. Earth-like would imply multiple environmental habitats and presence of a sizable biosphere and complex ecosystems, without which Earth, as we experience it, would not exist. Thus, it should be clearly communicated to the public that we are probably still many years away from having the technological capability to detect an Earth-like planet or Earth 2.0 with adequate certainty. Key Words: Habitable zone-Second Earth-Habitable planet-Habitability-Life. Astrobiology 16, 817-821.

  9. Understanding and Predicting the Process of Software Maintenance Releases

    NASA Technical Reports Server (NTRS)

    Basili, Victor; Briand, Lionel; Condon, Steven; Kim, Yong-Mi; Melo, Walcelio L.; Valett, Jon D.

    1996-01-01

    One of the major concerns of any maintenance organization is to understand and estimate the cost of maintenance releases of software systems. Planning the next release so as to maximize the increase in functionality and the improvement in quality are vital to successful maintenance management. The objective of this paper is to present the results of a case study in which an incremental approach was used to better understand the effort distribution of releases and build a predictive effort model for software maintenance releases. This study was conducted in the Flight Dynamics Division (FDD) of NASA Goddard Space Flight Center(GSFC). This paper presents three main results: 1) a predictive effort model developed for the FDD's software maintenance release process; 2) measurement-based lessons learned about the maintenance process in the FDD; and 3) a set of lessons learned about the establishment of a measurement-based software maintenance improvement program. In addition, this study provides insights and guidelines for obtaining similar results in other maintenance organizations.

  10. Heliophysics 2009 Roadmap and Global Change: Possibilities for Improved Understanding of the Connection

    NASA Technical Reports Server (NTRS)

    Spann, Jim

    2010-01-01

    Heliophysics is the science that includes all aspects of the research needed to understand the Sun and its effects on the Earth and the solar system. Six science targets: 1. Origins of Near-Earth Plasma - to understand the origin and transport of terrestrial plasma from its source to the magnetosphere and solar wind. 2. Solar Energetic Particle Acceleration and Transport - to understand how and where solar eruptions accelerate energetic particles that reach Earth. 3. Ion-Neutral Coupling in the Atmosphere - to understand how neutral winds control ionospheric variability. 4. Climate Impacts of Space Radiation - to understand our atmosphere s response to auroral, radiation belt, and solar energetic particles, and the associated effects on nitric oxide (NO) and ozone. 5. Dynamic Geospace Coupling - to understand how magnetospheric dynamics provides energy into the coupled ionosphere-magnetosphere system. 6. Heliospheric Magnetics - to understand the flow and dynamics of transient magnetic structures form the solar interior to Earth.

  11. An Earth Day Reader.

    ERIC Educational Resources Information Center

    Moser, Don, Ed.

    1990-01-01

    Presents what the author believes to be some of the most important environmental books published since Earth Day 1970. Discusses each selection and how it provides the historical background, basic information, and appreciation necessary to understand the character of our environmental dilemma and our need to address it. (MCO)

  12. Clay particles as binder for earth buildings materials: a fresh look into rheology of dense clay suspensions

    NASA Astrophysics Data System (ADS)

    Landrou, Gnanli; Brumaud, Coralie; Habert, Guillaume

    2017-06-01

    In the ceramic industry and in many sectors, clay minerals are widely used. In earthen construction technique, clay plays a crucial role in the processing. The purpose of this research is to understand and modify the clay properties in earth material to propose an innovative strategy to develop a castable earth-based material. To do so, we focused on the modification of clay properties at fresh state with inorganic additives. As the rheological behaviour of clays is controlled by their surface charge, the addition of phosphate anion allows discussing deep the rheology of concentrated clay suspensions. We highlighted the thixotropic and shear thickening behaviour of a dispersed kaolinite clay suspensions. Indeed, by adding sodium hexametaphosphate the workability of clay paste increases and the behaviour is stable during time after a certain shear is applied. Moreover, we stress that the aging and the shift in critical strain in clay system are due to the re-arrangement of clay suspension and a decrease of deformation during time. The understanding of both effect: thixotropy and aging are crucial for better processing of clay-based material and for self-compacting clay concrete. Yet, studies need to pursue to better understand the mechanism.

  13. Earth cloud, aerosol, and radiation explorer optical payload development status

    NASA Astrophysics Data System (ADS)

    Hélière, A.; Wallace, K.; Pereira do Carmo, J.; Lefebvre, A.

    2017-09-01

    The European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA) are co-operating to develop as part of ESA's Living Planet Programme, the third Earth Explorer Core Mission, EarthCARE, with the ojective of improving the understanding of the processes involving clouds, aerosols and radiation in the Earth's atmosphere. EarthCARE payload consists of two active and two passive instruments: an ATmospheric LIDar (ATLID), a Cloud Profiling Radar (CPR), a Multi-Spectral Imager (MSI) and a Broad-Band Radiometer (BBR). The four instruments data are processed individually and in a synergetic manner to produce a large range of products, which include vertical profiles of aerosols, liquid water and ice, observations of cloud distribution and vertical motion within clouds, and will allow the retrieval of profiles of atmospheric radiative heating and cooling. MSI is a compact instrument with a 150 km swath providing 500 m pixel data in seven channels, whose retrieved data will give context to the active instrument measurements, as well as providing cloud and aerosol information. BBR measures reflected solar and emitted thermal radiation from the scene. Operating in the UV range at 355 nm, ATLID provides atmospheric echoes from ground to an altitude of 40 km. Thanks to a high spectral resolution filtering, the lidar is able to separate the relative contribution of aerosol and molecular scattering, which gives access to aerosol optical depth. Co-polarised and cross-polarised components of the Mie scattering contribution are measured on dedicated channels. This paper will provide a description of the optical payload implementation, the design and characterisation of the instruments.

  14. NASA's Earth Observing Data and Information System - Near-Term Challenges

    NASA Technical Reports Server (NTRS)

    Behnke, Jeanne; Mitchell, Andrew; Ramapriyan, Hampapuram

    2018-01-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of the NASA Earth observation program since the 1990's. EOSDIS manages data covering a wide range of Earth science disciplines including cryosphere, land cover change, polar processes, field campaigns, ocean surface, digital elevation, atmosphere dynamics and composition, and inter-disciplinary research, and many others. One of the key components of EOSDIS is a set of twelve discipline-based Distributed Active Archive Centers (DAACs) distributed across the United States. Managed by NASA's Earth Science Data and Information System (ESDIS) Project at Goddard Space Flight Center, these DAACs serve over 3 million users globally. The ESDIS Project provides the infrastructure support for EOSDIS, which includes other components such as the Science Investigator-led Processing systems (SIPS), common metadata and metrics management systems, specialized network systems, standards management, and centralized support for use of commercial cloud capabilities. Given the long-term requirements, and the rapid pace of information technology and changing expectations of the user community, EOSDIS has evolved continually over the past three decades. However, many challenges remain. Challenges addressed in this paper include: growing volume and variety, achieving consistency across a diverse set of data producers, managing information about a large number of datasets, migration to a cloud computing environment, optimizing data discovery and access, incorporating user feedback from a diverse community, keeping metadata updated as data collections grow and age, and ensuring that all the content needed for understanding datasets by future users is identified and preserved.

  15. Dust storms and their impact on ocean and human health: dust in Earth's atmosphere

    USGS Publications Warehouse

    Griffin, Dale W.; Kellog, Christina A.

    2004-01-01

    Satellite imagery has greatly influenced our understanding of dust activity on a global scale. A number of different satellites such as NASA's Earth-Probe Total Ozone Mapping Spectrometer (TOMS) and Se-viewing Field-of-view Sensor (SeaWiFS) acquire daily global-scale data used to produce imagery for monitoring dust storm formation and movement. This global-scale imagery has documented the frequent transmission of dust storm-derived soils through Earth's atmosphere and the magnitude of many of these events. While various research projects have been undertaken to understand this normal planetary process, little has been done to address its impact on ocean and human health. This review will address the ability of dust storms to influence marine microbial population densities and transport of soil-associated toxins and pathogenic microorganisms to marine environments. The implications of dust on ocean and human health in this emerging scientific field will be discussed.

  16. Venus, Earth, Xenon

    NASA Astrophysics Data System (ADS)

    Zahnle, K. J.

    2013-12-01

    Xenon has been regarded as an important goal of many proposed missions to Venus. This talk is intended to explain why. Despite its being the heaviest gas found in natural planetary atmospheres, there is more evidence that Xe escaped from Earth than for any element apart from helium: (i) Atmospheric Xe is very strongly mass fractionated (at about 4% per amu) from any known solar system source. This suggests fractionating escape that preferentially left the heavy Xe isotopes behind. (ii) Xe is underabundant compared to Kr, a lighter noble gas that is not strongly mass fractionated in air. (iii) Radiogenic Xe is strongly depleted by factors of several to ~100 compared to the quantities expected from radioactive decay of primordial solar system materials. In these respects Xe on Mars is similar to Xe on Earth, but with one key difference: Xe on Mars is readily explained by a simple process like hydrodynamic escape that acts on an initially solar or meteoritic Xe. This is not so for Earth. Earth's Xe cannot be derived by an uncontrived mass fractionating process acting on any known type of Solar System Xe. Earth is a stranger, made from different stuff than any known meteorite or Mars or even the Sun. Who else is in Earth's family? Comets? We know nothing. Father Zeus? Data from Jupiter are good enough to show that jovian Xe is not strongly mass-fractionated but not good enough to determine whether Jupiter resembles the Earth or the Sun. Sister Venus? Noble gas data from Venus are incomplete, with Kr uncertain and Xe unmeasured. Krypton was measured by several instruments on several spacecraft. The reported Kr abundances are discrepant and were once highly controversial. These discrepancies appear to have been not so much resolved as forgotten. Xenon was not detected on Venus. Upper limits were reported for the two most abundant xenon isotopes 129Xe and 132Xe. From the limited data it is not possible to tell whether Venus's affinities lie with the solar wind, or with

  17. Towards a Preservation Content Standard for Earth Observation Data

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuram; Lowe, Dawn; Murphy, Kevin

    2017-01-01

    Information from Earth observing missions (remote sensing with airborne and spaceborne instruments, and in situ measurements such as those from field campaigns) is proliferating in the world. Many agencies across the globe are generating important datasets by collecting measurements from instruments on board aircraft and spacecraft, globally and constantly. The data resulting from such measurements are a valuable resource that needs to be preserved for the benefit of future generations. These observations are the primary record of the Earths environment and therefore are the key to understanding how conditions in the future will compare to conditions today. Earth science observational data, derived products and models are used to answer key questions of global significance. In the near-term, as long as the missions data are being used actively for scientific research, it continues to be important to provide easy access to the data and services commensurate with current information technology. For the longer term, when the focus of the research community shifts toward new missions and observations, it is essential to preserve the previous mission data and associated information. This will enable a new user in the future to understand how the data were used for deriving information, knowledge and policy recommendations and to repeat the experiment to ascertain the validity and possible limitations of conclusions reached in the past and to provide confidence in long term trends that depended on data from multiple missions. Organizations that collect, process, and utilize Earth observation data today have a responsibility to ensure that the data and associated content continue to be preserved by them or are gathered and handed off to other organizations for preservation for the benefit of future generations. In order to ensure preservation of complete content necessary for understanding and reusing the data and derived digital products from todays missions, it is

  18. Rare-earth-doped optical-fiber core deposition using full vapor-phase SPCVD process

    NASA Astrophysics Data System (ADS)

    Barnini, A.; Robin, T.; Cadier, B.; Aka, G.; Caurant, D.; Gotter, T.; Guyon, C.; Pinsard, E.; Guitton, P.; Laurent, A.; Montron, R.

    2017-02-01

    One key parameter in the race toward ever-higher power fiber lasers remains the rare earth doped optical core quality. Modern Large Mode Area (LMA) fibers require a fine radial control of the core refractive index (RI) close to the silica level. These low RI are achieved with multi-component materials that cannot be readily obtained using conventional solution doping based Modified Chemical Vapor Deposition (MCVD) technology. This paper presents a study of such optical material obtained through a full-vapor phase Surface Plasma Chemical Vapor Deposition (SPCVD). The SPCVD process generates straight glassy films on the inner surface of a thermally regulated synthetic silica tube under vacuum. The first part of the presented results points out the feasibility of ytterbium-doped aluminosilicate fibers by this process. In the second part we describe the challenge controlling the refractive index throughout the core diameter when using volatile fluorine to create efficient LMA fiber profiles. It has been demonstrated that it is possible to counter-act the loss of fluorine at the center of the core by adjusting the core composition locally. Our materials yielded, when used in optical fibers with numerical apertures ranging from 0.07 to 0.09, power conversion efficiency up to 76% and low background losses below 20 dB/km at 1100nm. Photodarkening has been measured to be similar to equivalent MCVD based fibers. The use of cerium as a co-dopant allowed for a complete mitigation of this laser lifetime detrimental effect. The SPCVD process enables high capacity preforms and is particularly versatile when it comes to radial tailoring of both rare earth doping level and RI. Large core diameter preforms - up to 4mm - were successfully produced.

  19. Automated Job Controller for Clouds and the Earth's Radiant Energy System (CERES) Production Processing

    NASA Astrophysics Data System (ADS)

    Gleason, J. L.; Hillyer, T. N.

    2011-12-01

    Clouds and the Earth's Radiant Energy System (CERES) is one of NASA's highest priority Earth Observing System (EOS) scientific instruments. The CERES science team will integrate data from the CERES Flight Model 5 (FM5) on the NPOESS Preparatory Project (NPP) in addition to the four CERES scanning instrument on Terra and Aqua. The CERES production system consists of over 75 Product Generation Executives (PGEs) maintained by twelve subsystem groups. The processing chain fuses CERES instrument observations with data from 19 other unique sources. The addition of FM5 to over 22 instrument years of data to be reprocessed from flight models 1-4 creates a need for an optimized production processing approach. This poster discusses a new approach, using JBoss and Perl to manage job scheduling and interdependencies between PGEs and external data sources. The new optimized approach uses JBoss to serve handler servlets which regulate PGE-level job interdependencies and job completion notifications. Additional servlets are used to regulate all job submissions from the handlers and to interact with the operator. Perl submission scripts are used to build Process Control Files and to interact directly with the operating system and cluster scheduler. The result is a reduced burden on the operator by algorithmically enforcing a set of rules that determine the optimal time to produce data products with the highest integrity. These rules are designed on a per PGE basis and periodically change. This design provides the means to dynamically update PGE rules at run time and increases the processing throughput by using an event driven controller. The immediate notification of a PGE's completion (an event) allows successor PGEs to launch at the proper time with minimal start up latency, thereby increasing computer system utilization.

  20. NCAR Earth Observing Laboratory - An End-to-End Observational Science Enterprise

    NASA Astrophysics Data System (ADS)

    Rockwell, A.; Baeuerle, B.; Grubišić, V.; Hock, T. F.; Lee, W. C.; Ranson, J.; Stith, J. L.; Stossmeister, G.

    2017-12-01

    Researchers who want to understand and describe the Earth System require high-quality observations of the atmosphere, ocean, and biosphere. Making these observations not only requires capable research platforms and state-of-the-art instrumentation but also benefits from comprehensive in-field project management and data services. NCAR's Earth Observing Laboratory (EOL) is an end-to-end observational science enterprise that provides leadership in observational research to scientists from universities, U.S. government agencies, and NCAR. Deployment: EOL manages the majority of the NSF Lower Atmosphere Observing Facilities, which includes research aircraft, radars, lidars, profilers, and surface and sounding systems. This suite is designed to address a wide range of Earth system science - from microscale to climate process studies and from the planet's surface into the Upper Troposphere/Lower Stratosphere. EOL offers scientific, technical, operational, and logistics support to small and large field campaigns across the globe. Development: By working closely with the scientific community, EOL's engineering and scientific staff actively develop the next generation of observing facilities, staying abreast of emerging trends, technologies, and applications in order to improve our measurement capabilities. Through our Design and Fabrication Services, we also offer high-level engineering and technical expertise, mechanical design, and fabrication to the atmospheric research community. Data Services: EOL's platforms and instruments collect unique datasets that must be validated, archived, and made available to the research community. EOL's Data Management and Services deliver high-quality datasets and metadata in ways that are transparent, secure, and easily accessible. We are committed to the highest standard of data stewardship from collection to validation to archival. Discovery: EOL promotes curiosity about Earth science, and fosters advanced understanding of the