Functional traits in agriculture: agrobiodiversity and ecosystem services.
Wood, Stephen A; Karp, Daniel S; DeClerck, Fabrice; Kremen, Claire; Naeem, Shahid; Palm, Cheryl A
2015-09-01
Functional trait research has led to greater understanding of the impacts of biodiversity in ecosystems. Yet, functional trait approaches have not been widely applied to agroecosystems and understanding of the importance of agrobiodiversity remains limited to a few ecosystem processes and services. To improve this understanding, we argue here for a functional trait approach to agroecology that adopts recent advances in trait research for multitrophic and spatially heterogeneous ecosystems. We suggest that trait values should be measured across environmental conditions and agricultural management regimes to predict how ecosystem services vary with farm practices and environment. This knowledge should be used to develop management strategies that can be easily implemented by farmers to manage agriculture to provide multiple ecosystem services. Copyright © 2015 Elsevier Ltd. All rights reserved.
Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems.
Fanin, Nicolas; Gundale, Michael J; Farrell, Mark; Ciobanu, Marcel; Baldock, Jeff A; Nilsson, Marie-Charlotte; Kardol, Paul; Wardle, David A
2018-02-01
Understanding how loss of biodiversity affects ecosystem functioning, and thus the delivery of ecosystem goods and services, has become increasingly necessary in a changing world. Considerable recent attention has focused on predicting how biodiversity loss simultaneously impacts multiple ecosystem functions (that is, ecosystem multifunctionality), but the ways in which these effects vary across ecosystems remain unclear. Here, we report the results of two 19-year plant diversity manipulation experiments, each established across a strong environmental gradient. Although the effects of plant and associated fungal diversity loss on individual functions frequently differed among ecosystems, the consequences of biodiversity loss for multifunctionality were relatively invariant. However, the context-dependency of biodiversity effects also worked in opposing directions for different individual functions, meaning that similar multifunctionality values across contrasting ecosystems could potentially mask important differences in the effects of biodiversity on functioning among ecosystems. Our findings highlight that an understanding of the relative contribution of species or functional groups to individual ecosystem functions among contrasting ecosystems and their interactions (that is, complementarity versus competition) is critical for guiding management efforts aimed at maintaining ecosystem multifunctionality and the delivery of multiple ecosystem services.
NASA Astrophysics Data System (ADS)
Pappas, C.
2017-12-01
Terrestrial ecosystem processes respond differently to hydrometeorological variability across timescales, and so does our scientific understanding of the underlying mechanisms. Process-based modeling of ecosystem functioning is therefore challenging, especially when long-term predictions are envisioned. Here we analyze the statistical properties of hydrometeorological and ecosystem variability, i.e., the variability of ecosystem process related to vegetation carbon dynamics, from hourly to decadal timescales. 23 extra-tropical forest sites, covering different climatic zones and vegetation characteristics, are examined. Micrometeorological and reanalysis data of precipitation, air temperature, shortwave radiation and vapor pressure deficit are used to describe hydrometeorological variability. Ecosystem variability is quantified using long-term eddy covariance flux data of hourly net ecosystem exchange of CO2 between land surface and atmosphere, monthly remote sensing vegetation indices, annual tree-ring widths and above-ground biomass increment estimates. We find that across sites and timescales ecosystem variability is confined within a hydrometeorological envelope that describes the range of variability of the available resources, i.e., water and energy. Furthermore, ecosystem variability demonstrates long-term persistence, highlighting ecological memory and slow ecosystem recovery rates after disturbances. We derive an analytical model, combining deterministic harmonics and stochastic processes, that represents major mechanisms and uncertainties and mimics the observed pattern of hydrometeorological and ecosystem variability. This stochastic framework offers a parsimonious and mathematically tractable approach for modelling ecosystem functioning and for understanding its response and resilience to environmental changes. Furthermore, this framework reflects well the observed ecological memory, an inherent property of ecosystem functioning that is currently not captured by simulation results with process-based models. Our analysis offers a perspective for terrestrial ecosystem modelling, combining current process understanding with stochastic methods, and paves the way for new model-data integration opportunities in Earth system sciences.
Ecological Understanding 1: Ways of Experiencing Photosynthesis.
ERIC Educational Resources Information Center
Carlsson, Britta
2002-01-01
Investigates 10 student teachers' understanding of the different ways in which the function of the ecosystem could be experienced. Explores the functional aspects of the ecosystem using a system approach. Concludes that the idea of transformation is crucial to more complex ways of understanding photosynthesis. (Contains 62 references.) (Author/YDS)
Linking plant and ecosystem functional biogeography.
Reichstein, Markus; Bahn, Michael; Mahecha, Miguel D; Kattge, Jens; Baldocchi, Dennis D
2014-09-23
Classical biogeographical observations suggest that ecosystems are strongly shaped by climatic constraints in terms of their structure and function. On the other hand, vegetation function feeds back on the climate system via biosphere-atmosphere exchange of matter and energy. Ecosystem-level observations of this exchange reveal very large functional biogeographical variation of climate-relevant ecosystem functional properties related to carbon and water cycles. This variation is explained insufficiently by climate control and a classical plant functional type classification approach. For example, correlations between seasonal carbon-use efficiency and climate or environmental variables remain below 0.6, leaving almost 70% of variance unexplained. We suggest that a substantial part of this unexplained variation of ecosystem functional properties is related to variations in plant and microbial traits. Therefore, to progress with global functional biogeography, we should seek to understand the link between organismic traits and flux-derived ecosystem properties at ecosystem observation sites and the spatial variation of vegetation traits given geoecological covariates. This understanding can be fostered by synergistic use of both data-driven and theory-driven ecological as well as biophysical approaches.
Linking plant and ecosystem functional biogeography
Reichstein, Markus; Bahn, Michael; Mahecha, Miguel D.; Kattge, Jens; Baldocchi, Dennis D.
2014-01-01
Classical biogeographical observations suggest that ecosystems are strongly shaped by climatic constraints in terms of their structure and function. On the other hand, vegetation function feeds back on the climate system via biosphere–atmosphere exchange of matter and energy. Ecosystem-level observations of this exchange reveal very large functional biogeographical variation of climate-relevant ecosystem functional properties related to carbon and water cycles. This variation is explained insufficiently by climate control and a classical plant functional type classification approach. For example, correlations between seasonal carbon-use efficiency and climate or environmental variables remain below 0.6, leaving almost 70% of variance unexplained. We suggest that a substantial part of this unexplained variation of ecosystem functional properties is related to variations in plant and microbial traits. Therefore, to progress with global functional biogeography, we should seek to understand the link between organismic traits and flux-derived ecosystem properties at ecosystem observation sites and the spatial variation of vegetation traits given geoecological covariates. This understanding can be fostered by synergistic use of both data-driven and theory-driven ecological as well as biophysical approaches. PMID:25225392
Supplementing forest ecosystem health projects on the ground
Cathy Barbouletos; Lynette Z. Morelan
1995-01-01
Understanding the functions and processes of ecosystems is critical before implementing forest ecosystem health projects on the landscape. Silvicultural treatments such as thinning, prescribed fire, and reforestation can simulate disturbance regimes and landscape patterns that have regulated forest ecosystems for centuries. As land managers we need to understand these...
Yang, Haile; Chen, Jiakuan
2018-01-01
The successful integration of ecosystem ecology with landscape ecology would be conducive to understanding how landscapes function. There have been several attempts at this, with two main approaches: (1) an ecosystem-based approach, such as the meta-ecosystem framework and (2) a landscape-based approach, such as the landscape system framework. These two frameworks are currently disconnected. To integrate these two frameworks, we introduce a protocol, and then demonstrate application of the protocol using a case study. The protocol includes four steps: 1) delineating landscape systems; 2) classifying landscape systems; 3) adjusting landscape systems to meta-ecosystems and 4) integrating landscape system and meta-ecosystem frameworks through meta-ecosystems. The case study is the analyzing of the carbon fluxes in the Northern Highlands Lake District (NHLD) of Wisconsin and Michigan using this protocol. The application of this protocol revealed that one could follow this protocol to construct a meta-ecosystem and analyze it using the integrative framework of landscape system and meta-ecosystem frameworks. That is, one could (1) appropriately describe and analyze the spatial heterogeneity of the meta-ecosystem; (2) understand the emergent properties arising from spatial coupling of local ecosystems in the meta-ecosystem. In conclusion, this protocol is a useful approach for integrating the meta-ecosystem framework and the landscape system framework, which advances the describing and analyzing of the spatial heterogeneity and ecosystem function of interconnected ecosystems.
Chen, Jiakuan
2018-01-01
The successful integration of ecosystem ecology with landscape ecology would be conducive to understanding how landscapes function. There have been several attempts at this, with two main approaches: (1) an ecosystem-based approach, such as the meta-ecosystem framework and (2) a landscape-based approach, such as the landscape system framework. These two frameworks are currently disconnected. To integrate these two frameworks, we introduce a protocol, and then demonstrate application of the protocol using a case study. The protocol includes four steps: 1) delineating landscape systems; 2) classifying landscape systems; 3) adjusting landscape systems to meta-ecosystems and 4) integrating landscape system and meta-ecosystem frameworks through meta-ecosystems. The case study is the analyzing of the carbon fluxes in the Northern Highlands Lake District (NHLD) of Wisconsin and Michigan using this protocol. The application of this protocol revealed that one could follow this protocol to construct a meta-ecosystem and analyze it using the integrative framework of landscape system and meta-ecosystem frameworks. That is, one could (1) appropriately describe and analyze the spatial heterogeneity of the meta-ecosystem; (2) understand the emergent properties arising from spatial coupling of local ecosystems in the meta-ecosystem. In conclusion, this protocol is a useful approach for integrating the meta-ecosystem framework and the landscape system framework, which advances the describing and analyzing of the spatial heterogeneity and ecosystem function of interconnected ecosystems. PMID:29415066
Conceptual ecological models to guide integrated landscape monitoring of the Great Basin
Miller, D.M.; Finn, S.P.; Woodward, Andrea; Torregrosa, Alicia; Miller, M.E.; Bedford, D.R.; Brasher, A.M.
2010-01-01
The Great Basin Integrated Landscape Monitoring Pilot Project was developed in response to the need for a monitoring and predictive capability that addresses changes in broad landscapes and waterscapes. Human communities and needs are nested within landscapes formed by interactions among the hydrosphere, geosphere, and biosphere. Understanding the complex processes that shape landscapes and deriving ways to manage them sustainably while meeting human needs require sophisticated modeling and monitoring. This document summarizes current understanding of ecosystem structure and function for many of the ecosystems within the Great Basin using conceptual models. The conceptual ecosystem models identify key ecological components and processes, identify external drivers, develop a hierarchical set of models that address both site and landscape attributes, inform regional monitoring strategy, and identify critical gaps in our knowledge of ecosystem function. The report also illustrates an approach for temporal and spatial scaling from site-specific models to landscape models and for understanding cumulative effects. Eventually, conceptual models can provide a structure for designing monitoring programs, interpreting monitoring and other data, and assessing the accuracy of our understanding of ecosystem functions and processes.
Trait-based approaches for understanding microbial biodiversity and ecosystem functioning
Krause, Sascha; Le Roux, Xavier; Niklaus, Pascal A.; Van Bodegom, Peter M.; Lennon, Jay T.; Bertilsson, Stefan; Grossart, Hans-Peter; Philippot, Laurent; Bodelier, Paul L. E.
2014-01-01
In ecology, biodiversity-ecosystem functioning (BEF) research has seen a shift in perspective from taxonomy to function in the last two decades, with successful application of trait-based approaches. This shift offers opportunities for a deeper mechanistic understanding of the role of biodiversity in maintaining multiple ecosystem processes and services. In this paper, we highlight studies that have focused on BEF of microbial communities with an emphasis on integrating trait-based approaches to microbial ecology. In doing so, we explore some of the inherent challenges and opportunities of understanding BEF using microbial systems. For example, microbial biologists characterize communities using gene phylogenies that are often unable to resolve functional traits. Additionally, experimental designs of existing microbial BEF studies are often inadequate to unravel BEF relationships. We argue that combining eco-physiological studies with contemporary molecular tools in a trait-based framework can reinforce our ability to link microbial diversity to ecosystem processes. We conclude that such trait-based approaches are a promising framework to increase the understanding of microbial BEF relationships and thus generating systematic principles in microbial ecology and more generally ecology. PMID:24904563
Barnes, Andrew D; Weigelt, Patrick; Jochum, Malte; Ott, David; Hodapp, Dorothee; Haneda, Noor Farikhah; Brose, Ulrich
2016-05-19
Predicting ecosystem functioning at large spatial scales rests on our ability to scale up from local plots to landscapes, but this is highly contingent on our understanding of how functioning varies through space. Such an understanding has been hampered by a strong experimental focus of biodiversity-ecosystem functioning research restricted to small spatial scales. To address this limitation, we investigate the drivers of spatial variation in multitrophic energy flux-a measure of ecosystem functioning in complex communities-at the landscape scale. We use a structural equation modelling framework based on distance matrices to test how spatial and environmental distances drive variation in community energy flux via four mechanisms: species composition, species richness, niche complementarity and biomass. We found that in both a tropical and a temperate study region, geographical and environmental distance indirectly influence species richness and biomass, with clear evidence that these are the dominant mechanisms explaining variability in community energy flux over spatial and environmental gradients. Our results reveal that species composition and trait variability may become redundant in predicting ecosystem functioning at the landscape scale. Instead, we demonstrate that species richness and total biomass may best predict rates of ecosystem functioning at larger spatial scales. © 2016 The Author(s).
Potential and limitations of inferring ecosystem photosynthetic capacity from leaf functional traits
Talie Musavi; Mirco Migliavacca; Martine Janet van de Weg; Jens Kattge; Georg Wohlfahrt; Peter M. van Bodegom; Markus Reichstein; Michael Bahn; Arnaud Carrara; Tomas F. Domingues; Michael Gavazzi; Damiano Gianelle; Cristina Gimeno; André Granier; Carsten Gruening; Kateřina Havránková; Mathias Herbst; Charmaine Hrynkiw; Aram Kalhori; Thomas Kaminski; Katja Klumpp; Pasi Kolari; Bernard Longdoz; Stefano Minerbi; Leonardo Montagnani; Eddy Moors; Walter C. Oechel; Peter B. Reich; Shani Rohatyn; Alessandra Rossi; Eyal Rotenberg; Andrej Varlagin; Matthew Wilkinson; Christian Wirth; Miguel D. Mahecha
2016-01-01
The aim of this study was to systematically analyze the potential and limitations of using plant functional trait observations from global databases versus in situ data to improve our understanding of vegetation impacts on ecosystem functional properties (EFPs). Using ecosystem photosynthetic capacity as an example, we first provide an objective approach to derive...
Lewandowska, Aleksandra M; Biermann, Antje; Borer, Elizabeth T; Cebrián-Piqueras, Miguel A; Declerck, Steven A J; De Meester, Luc; Van Donk, Ellen; Gamfeldt, Lars; Gruner, Daniel S; Hagenah, Nicole; Harpole, W Stanley; Kirkman, Kevin P; Klausmeier, Christopher A; Kleyer, Michael; Knops, Johannes M H; Lemmens, Pieter; Lind, Eric M; Litchman, Elena; Mantilla-Contreras, Jasmin; Martens, Koen; Meier, Sandra; Minden, Vanessa; Moore, Joslin L; Venterink, Harry Olde; Seabloom, Eric W; Sommer, Ulrich; Striebel, Maren; Trenkamp, Anastasia; Trinogga, Juliane; Urabe, Jotaro; Vyverman, Wim; Van de Waal, Dedmer B; Widdicombe, Claire E; Hillebrand, Helmut
2016-05-19
Numerous studies show that increasing species richness leads to higher ecosystem productivity. This effect is often attributed to more efficient portioning of multiple resources in communities with higher numbers of competing species, indicating the role of resource supply and stoichiometry for biodiversity-ecosystem functioning relationships. Here, we merged theory on ecological stoichiometry with a framework of biodiversity-ecosystem functioning to understand how resource use transfers into primary production. We applied a structural equation model to define patterns of diversity-productivity relationships with respect to available resources. Meta-analysis was used to summarize the findings across ecosystem types ranging from aquatic ecosystems to grasslands and forests. As hypothesized, resource supply increased realized productivity and richness, but we found significant differences between ecosystems and study types. Increased richness was associated with increased productivity, although this effect was not seen in experiments. More even communities had lower productivity, indicating that biomass production is often maintained by a few dominant species, and reduced dominance generally reduced ecosystem productivity. This synthesis, which integrates observational and experimental studies in a variety of ecosystems and geographical regions, exposes common patterns and differences in biodiversity-functioning relationships, and increases the mechanistic understanding of changes in ecosystems productivity. © 2016 The Author(s).
Riparian ecosystems and buffers - multiscale structure, function, and management: introduction
Kathleen A. Dwire; Richard R. Lowrance
2006-01-01
Given the importance of issues related to improved understanding and management of riparian ecosystems and buffers, the American Water Resources Association (AWRA) sponsored a Summer Specialty Conference in June 2004 at Olympic Valley, California, entitled 'Riparian Ecosystems and Buffers: Multiscale Structure, Function, and Management.' The primary objective...
Megafauna and ecosystem function from the Pleistocene to the Anthropocene
Malhi, Yadvinder; Doughty, Christopher E.; Galetti, Mauro; Smith, Felisa A.; Svenning, Jens-Christian; Terborgh, John W.
2016-01-01
Large herbivores and carnivores (the megafauna) have been in a state of decline and extinction since the Late Pleistocene, both on land and more recently in the oceans. Much has been written on the timing and causes of these declines, but only recently has scientific attention focused on the consequences of these declines for ecosystem function. Here, we review progress in our understanding of how megafauna affect ecosystem physical and trophic structure, species composition, biogeochemistry, and climate, drawing on special features of PNAS and Ecography that have been published as a result of an international workshop on this topic held in Oxford in 2014. Insights emerging from this work have consequences for our understanding of changes in biosphere function since the Late Pleistocene and of the functioning of contemporary ecosystems, as well as offering a rationale and framework for scientifically informed restoration of megafaunal function where possible and appropriate. PMID:26811442
Megafauna and ecosystem function from the Pleistocene to the Anthropocene.
Malhi, Yadvinder; Doughty, Christopher E; Galetti, Mauro; Smith, Felisa A; Svenning, Jens-Christian; Terborgh, John W
2016-01-26
Large herbivores and carnivores (the megafauna) have been in a state of decline and extinction since the Late Pleistocene, both on land and more recently in the oceans. Much has been written on the timing and causes of these declines, but only recently has scientific attention focused on the consequences of these declines for ecosystem function. Here, we review progress in our understanding of how megafauna affect ecosystem physical and trophic structure, species composition, biogeochemistry, and climate, drawing on special features of PNAS and Ecography that have been published as a result of an international workshop on this topic held in Oxford in 2014. Insights emerging from this work have consequences for our understanding of changes in biosphere function since the Late Pleistocene and of the functioning of contemporary ecosystems, as well as offering a rationale and framework for scientifically informed restoration of megafaunal function where possible and appropriate.
NASA Astrophysics Data System (ADS)
Wu, J.; van der Linden, L.; Lasslop, G.; Carvalhais, N.; Pilegaard, K.; Beier, C.; Ibrom, A.
2012-04-01
The ecosystem carbon balance is affected by both external climatic forcing (e.g. solar radiation, air temperature and humidity) and internal dynamics in the ecosystem functional properties (e.g. canopy structure, leaf photosynthetic capacity and carbohydrate reserve). In order to understand to what extent and at which temporal scale, climatic variability and functional changes regulated the interannual variation (IAV) in the net ecosystem exchange of CO2 (NEE), data-driven analysis and semi-empirical modelling (Lasslop et al. 2010) were performed based on a 13 year NEE record in a temperate deciduous forest (Pilegaard et al 2011, Wu et al. 2012). We found that the sensitivity of carbon fluxes to climatic variability was significantly higher at shorter than at longer time scales and changed seasonally. This implied that the changing distribution of climate anomalies during the vegetation period could have stronger impacts on future ecosystem carbon balances than changes in average climate. At the annual time scale, approximately 80% of the interannual variability in NEE was attributed to the variation in the model parameters, indicating the observed IAV in the carbon dynamics at the investigated site was dominated by changes in ecosystem functioning. In general this study showed the need for understanding the mechanisms of ecosystem functional change. The method can be applied at other sites to explore ecosystem behavior across different plant functional types and climate gradients. Incorporating ecosystem functional change into process based models will reduce the uncertainties in long-term predictions of ecosystem carbon balances in global climate change projections. Acknowledgements. This work was supported by the EU FP7 project CARBO-Extreme, the DTU Climate Centre and the Danish national project ECOCLIM (Danish Council for Strategic Research).
The evolving role of science in wilderness to our understanding of ecosystems and landscapes
Norman L. Christensen
2000-01-01
Research in wilderness areas (areas with minimal human activity and of large spatial extent) formed the foundation for ecological models and theories that continue to shape our understanding how ecosystems change through time, how ecological communities are structured and how ecosystems function. By the middle of this century, large expanses of wilderness had become...
William J. Matthews; A. Maria Miller-Lemke; Melvin L. Warren; Donna Cobb; Jeffery G. Stewart; Betty Crump; Frances P. Gelwick
2004-01-01
Abstract - Fish play diverse and important roles in stream ecosystems, but details about ecosystem effects are poorly known for many freshwater fish species. A requisite first step to understanding functional roles of individual species is information on their trophic ecology in the context of particular environmental settings. Stomach contents were...
Deep Space Gateway Ecosystem Observatory
NASA Astrophysics Data System (ADS)
Huemmrich, K. F.; Campbell, P. E.; Middleton, E. M.
2018-02-01
Advance global understanding of seasonal change and diurnal variability of terrestrial ecosystem function, photosynthesis, and stress responses using spectral reflectance, thermal, and fluorescence signals.
β-Diversity, Community Assembly, and Ecosystem Functioning.
Mori, Akira S; Isbell, Forest; Seidl, Rupert
2018-05-25
Evidence is increasing for positive effects of α-diversity on ecosystem functioning. We highlight here the crucial role of β-diversity - a hitherto underexplored facet of biodiversity - for a better process-level understanding of biodiversity change and its consequences for ecosystems. A focus on β-diversity has the potential to improve predictions of natural and anthropogenic influences on diversity and ecosystem functioning. However, linking the causes and consequences of biodiversity change is complex because species assemblages in nature are shaped by many factors simultaneously, including disturbance, environmental heterogeneity, deterministic niche factors, and stochasticity. Because variability and change are ubiquitous in ecosystems, acknowledging these inherent properties of nature is an essential step for further advancing scientific knowledge of biodiversity-ecosystem functioning in theory and practice. Copyright © 2018 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Quantification of rates and patterns of community dynamics is central for understanding the organization and function of ecosystems. These insights may support a greater empirical understanding of ecological resilience, and the application of resilience concepts toward ecosystem management. Distinct...
A birds-eye view of biological connectivity in mangrove systems
NASA Astrophysics Data System (ADS)
Buelow, Christina; Sheaves, Marcus
2015-01-01
Considerable advances in understanding of biological connectivity have flowed from studies of fish-facilitated connectivity within the coastal ecosystem mosaic. However, there are limits to the information that fish can provide on connectivity. Mangrove-bird communities have the potential to connect coastal habitats in different ways and at different scales than fish, so incorporation of these links into our models of coastal ecosystem mosaics affords the opportunity to greatly increase the breadth of our understanding. We review the habitat and foraging requirements of mangrove-bird functional groups to understand how bird use of mangroves facilitates biological connectivity in coastal ecosystem mosaics, and how that connectivity adds to the diversity and complexity of ecological processes in mangrove ecosystems. Avian biological connectivity is primarily characterized by foraging behavior and habitat/resource requirements. Therefore, the consequence of bird links for coastal ecosystem functioning largely depends on patterns of habitat use and foraging, and potentially influences nutrient cycling, top-down control and genetic information linkage. Habitats that experience concentrated bird guano deposition have high levels of nitrogen and phosphorus, placing particular importance on the consequences of avian nutrient translocation and subsidization for coastal ecosystem functioning. High mobility allows mangrove-bird communities to link mangrove forests to other mangrove, terrestrial and marine-pelagic systems. Therefore, the spatial scale of coastal connectivity facilitated by birds is substantially more extensive than fish-facilitated connectivity. In particular, migratory birds link habitats at regional, continental and inter-continental scales as they travel among seasonally available feeding areas from breeding grounds to non-breeding grounds; scales at which there are few fish equivalents. Knowledge of the nature and patterns of fish connectivity have contributed to shifting the initial, historical perception of mangrove-ecosystem functioning from that of a simple system based on nutrient and energy retention, to a view that includes fish-facilitated energy export. In a similar way, understanding the nature and implications of mangrove connectivity through bird movements and migrations affords new possibilities for revising our view of the extent of functional links between mangroves and other ecosystems.
Impact of seasonal variation on soil bacterial diversity and ecosystem functioning
NASA Astrophysics Data System (ADS)
Amoo, Adenike Eunice; Oluranti Babalola, Olubukola
2017-04-01
Soil biodiversity boosts the functioning of the ecosystem thereby contributing to the provision of various ecosystem services. Understanding the link between biodiversity and ecosystem functioning and their reaction to environmental heterogeneity can maximize the contribution of soil microbes to ecosystem services. The diversity, abundance and function of microorganisms can be altered by seasonal variation. There is a dearth of information on how soil biodiversity respond to environmental changes. The impact of seasonal variation on bacterial communities and its effects on soil functioning in four South African forests was investigated. The samples were analysed for pH, moisture content, total carbon and nitrogen, soil nitrate and extractable phosphate. High-throughput sequencing and quantitative PCR were used to determine the diversity and abundance of bacteria. Community level physiological profiles (CLPPs) were measured using the MicroResp™ method. Enzyme activities were additionally used as proxy for ecosystem functions. The functional genes for nitrification and phosphate solubilisation were also measured. Seasonal variation has strong effects on bacterial communities and consequently soil processes. A reduction in biodiversity has direct results on soil ecosystem functioning.
Lara, Mark J.; Johnson, David R.; Andresen, Christian; ...
2016-08-27
To date, the majority of our knowledge regarding the impacts of herbivory on arctic ecosystem function has been restricted to short-term (<5 years) exclusion or manipulation experiments. Here, our understanding of long-term responses of sustained herbivory and/or herbivore exclusion on arctic tundra ecosystem function is severely limited.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lara, Mark J.; Johnson, David R.; Andresen, Christian
To date, the majority of our knowledge regarding the impacts of herbivory on arctic ecosystem function has been restricted to short-term (<5 years) exclusion or manipulation experiments. Here, our understanding of long-term responses of sustained herbivory and/or herbivore exclusion on arctic tundra ecosystem function is severely limited.
Schmidt, Susanne I; Cuthbert, Mark O; Schwientek, Marc
2017-08-15
Micro scale processes are expected to have a fundamental role in shaping groundwater ecosystems and yet they remain poorly understood and under-researched. In part, this is due to the fact that sampling is rarely carried out at the scale at which microorganisms, and their grazers and predators, function and thus we lack essential information. While set within a larger scale framework in terms of geochemical features, supply with energy and nutrients, and exchange intensity and dynamics, the micro scale adds variability, by providing heterogeneous zones at the micro scale which enable a wider range of redox reactions. Here we outline how understanding micro scale processes better may lead to improved appreciation of the range of ecosystems functions taking place at all scales. Such processes are relied upon in bioremediation and we demonstrate that ecosystem modelling as well as engineering measures have to take into account, and use, understanding at the micro scale. We discuss the importance of integrating faunal processes and computational appraisals in research, in order to continue to secure sustainable water resources from groundwater. Copyright © 2017 Elsevier B.V. All rights reserved.
Ecosystem health: I. Measuring ecosystem health
NASA Astrophysics Data System (ADS)
Schaeffer, David J.; Herricks, Edwin E.; Kerster, Harold W.
1988-07-01
Ecosystem analysis has been advanced by an improved understanding of how ecosystems are structured and how they function. Ecology has advanced from an emphasis on natural history to consideration of energetics, the relationships and connections between species, hierarchies, and systems theory. Still, we consider ecosystems as entities with a distinctive character and individual characteristics. Ecosystem maintenance and preservation form the objective of impact analysis, hazard evaluation, and other management or regulation activities. In this article we explore an approach to ecosystem analysis which identifies and quantifies factors which define the condition or state of an ecosystem in terms of health criteria. We relate ecosystem health to human/nonhuman animal health and explore the difficulties of defining ecosystem health and suggest criteria which provide a functional definition of state and condition. We suggest that, as has been found in human/nonhuman animal health studies, disease states can be recognized before disease is of clinical magnitude. Example disease states for ecosystems are functionally defined and discussed, together with test systems for their early detection.
ISS observations offer insights into plant function
Stavros, E. Natasha; Schimel, David; Pavlick, Ryan; ...
2017-06-22
Technologies on the International Space Station will provide ~1 year of synchronous observations of ecosystem composition, structure and function, in 2018. Here, we discuss these instruments and how they can be used to constrain global models and improve our understanding of the current state of terrestrial ecosystems.
Bannar-Martin, Katherine H; Kremer, Colin T; Ernest, S K Morgan; Leibold, Mathew A; Auge, Harald; Chase, Jonathan; Declerck, Steven A J; Eisenhauer, Nico; Harpole, Stanley; Hillebrand, Helmut; Isbell, Forest; Koffel, Thomas; Larsen, Stefano; Narwani, Anita; Petermann, Jana S; Roscher, Christiane; Cabral, Juliano Sarmento; Supp, Sarah R
2018-02-01
The research of a generation of ecologists was catalysed by the recognition that the number and identity of species in communities influences the functioning of ecosystems. The relationship between biodiversity and ecosystem functioning (BEF) is most often examined by controlling species richness and randomising community composition. In natural systems, biodiversity changes are often part of a bigger community assembly dynamic. Therefore, focusing on community assembly and the functioning of ecosystems (CAFE), by integrating both species richness and composition through species gains, losses and changes in abundance, will better reveal how community changes affect ecosystem function. We synthesise the BEF and CAFE perspectives using an ecological application of the Price equation, which partitions the contributions of richness and composition to function. Using empirical examples, we show how the CAFE approach reveals important contributions of composition to function. These examples show how changes in species richness and composition driven by environmental perturbations can work in concert or antagonistically to influence ecosystem function. Considering how communities change in an integrative fashion, rather than focusing on one axis of community structure at a time, will improve our ability to anticipate and predict changes in ecosystem function. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
Ecosystem productivity is associated with bacterial phylogenetic distance in surface marine waters.
Galand, Pierre E; Salter, Ian; Kalenitchenko, Dimitri
2015-12-01
Understanding the link between community diversity and ecosystem function is a fundamental aspect of ecology. Systematic losses in biodiversity are widely acknowledged but the impact this may exert on ecosystem functioning remains ambiguous. There is growing evidence of a positive relationship between species richness and ecosystem productivity for terrestrial macro-organisms, but similar links for marine micro-organisms, which help drive global climate, are unclear. Community manipulation experiments show both positive and negative relationships for microbes. These previous studies rely, however, on artificial communities and any links between the full diversity of active bacterial communities in the environment, their phylogenetic relatedness and ecosystem function remain hitherto unexplored. Here, we test the hypothesis that productivity is associated with diversity in the metabolically active fraction of microbial communities. We show in natural assemblages of active bacteria that communities containing more distantly related members were associated with higher bacterial production. The positive phylogenetic diversity-productivity relationship was independent of community diversity calculated as the Shannon index. From our long-term (7-year) survey of surface marine bacterial communities, we also found that similarly, productive communities had greater phylogenetic similarity to each other, further suggesting that the traits of active bacteria are an important predictor of ecosystem productivity. Our findings demonstrate that the evolutionary history of the active fraction of a microbial community is critical for understanding their role in ecosystem functioning. © 2015 John Wiley & Sons Ltd.
Whole-ecosystem experimental manipulations of tropical forests.
Fayle, Tom M; Turner, Edgar C; Basset, Yves; Ewers, Robert M; Reynolds, Glen; Novotny, Vojtech
2015-06-01
Tropical forests are highly diverse systems involving extraordinary numbers of interactions between species, with each species responding in a different way to the abiotic environment. Understanding how these systems function and predicting how they respond to anthropogenic global change is extremely challenging. We argue for the necessity of 'whole-ecosystem' experimental manipulations, in which the entire ecosystem is targeted, either to reveal the functioning of the system in its natural state or to understand responses to anthropogenic impacts. We survey the current range of whole-ecosystem manipulations, which include those targeting weather and climate, nutrients, biotic interactions, human impacts, and habitat restoration. Finally we describe the unique challenges and opportunities presented by such projects and suggest directions for future experiments. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Gagic, Vesna; Bartomeus, Ignasi; Jonsson, Tomas; Taylor, Astrid; Winqvist, Camilla; Fischer, Christina; Slade, Eleanor M.; Steffan-Dewenter, Ingolf; Emmerson, Mark; Potts, Simon G.; Tscharntke, Teja; Weisser, Wolfgang; Bommarco, Riccardo
2015-01-01
Drastic biodiversity declines have raised concerns about the deterioration of ecosystem functions and have motivated much recent research on the relationship between species diversity and ecosystem functioning. A functional trait framework has been proposed to improve the mechanistic understanding of this relationship, but this has rarely been tested for organisms other than plants. We analysed eight datasets, including five animal groups, to examine how well a trait-based approach, compared with a more traditional taxonomic approach, predicts seven ecosystem functions below- and above-ground. Trait-based indices consistently provided greater explanatory power than species richness or abundance. The frequency distributions of single or multiple traits in the community were the best predictors of ecosystem functioning. This implies that the ecosystem functions we investigated were underpinned by the combination of trait identities (i.e. single-trait indices) and trait complementarity (i.e. multi-trait indices) in the communities. Our study provides new insights into the general mechanisms that link biodiversity to ecosystem functioning in natural animal communities and suggests that the observed responses were due to the identity and dominance patterns of the trait composition rather than the number or abundance of species per se. PMID:25567651
von Schiller, Daniel; Acuña, Vicenç; Aristi, Ibon; Arroita, Maite; Basaguren, Ana; Bellin, Alberto; Boyero, Luz; Butturini, Andrea; Ginebreda, Antoni; Kalogianni, Eleni; Larrañaga, Aitor; Majone, Bruno; Martínez, Aingeru; Monroy, Silvia; Muñoz, Isabel; Paunović, Momir; Pereda, Olatz; Petrovic, Mira; Pozo, Jesús; Rodríguez-Mozaz, Sara; Rivas, Daniel; Sabater, Sergi; Sabater, Francesc; Skoulikidis, Nikolaos; Solagaistua, Libe; Vardakas, Leonidas; Elosegi, Arturo
2017-10-15
River ecosystems are subject to multiple stressors that affect their structure and functioning. Ecosystem structure refers to characteristics such as channel form, water quality or the composition of biological communities, whereas ecosystem functioning refers to processes such as metabolism, organic matter decomposition or secondary production. Structure and functioning respond in contrasting and complementary ways to environmental stressors. Moreover, assessing the response of ecosystem functioning to stressors is critical to understand the effects on the ecosystem services that produce direct benefits to humans. Yet, there is more information on structural than on functional parameters, and despite the many approaches available to measure river ecosystem processes, structural approaches are more widely used, especially in management. One reason for this discrepancy is the lack of synthetic studies analyzing river ecosystem functioning in a way that is useful for both scientists and managers. Here, we present a synthesis of key river ecosystem processes, which provides a description of the main characteristics of each process, including criteria guiding their measurement as well as their respective sensitivity to stressors. We also discuss the current limitations, potential improvements and future steps that the use of functional measures in rivers needs to face. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Identifying the biotic (e.g. decomposers, vegetation) and abiotic (e.g. temperature, moisture) mechanisms controlling litter decomposition is key to understanding ecosystem function, especially where variation in ecosystem structure due to successional processes may alter the str...
A multi-biome gap in understanding of crop and ecosystem responses to elevated CO2.
Leakey, Andrew D B; Bishop, Kristen A; Ainsworth, Elizabeth A
2012-06-01
A key finding from elevated [CO(2)] field experiments is that the impact of elevated [CO(2)] on plant and ecosystem function is highly dependent upon other environmental conditions, namely temperature and the availability of nutrients and soil moisture. In addition, there is significant variation in the response to elevated [CO(2)] among plant functional types, species and crop varieties. However, experimental data on plant and ecosystem responses to elevated [CO(2)] are strongly biased to economically and ecologically important systems in the temperate zone. There is a multi-biome gap in experimental data that is most severe in the tropics and subtropics, but also includes high latitudes. Physiological understanding of the environmental conditions and species found at high and low latitudes suggest they may respond differently to elevated [CO(2)] than well-studied temperate systems. Addressing this knowledge gap should be a high priority as it is vital to understanding 21st century food supply and ecosystem feedbacks on climate change. Published by Elsevier Ltd.
Woodin, Sarah Ann; Volkenborn, Nils; Pilditch, Conrad A.; Lohrer, Andrew M.; Wethey, David S.; Hewitt, Judi E.; Thrush, Simon F.
2016-01-01
Seafloor biodiversity is a key mediator of ecosystem functioning, but its role is often excluded from global budgets or simplified to black boxes in models. New techniques allow quantification of the behavior of animals living below the sediment surface and assessment of the ecosystem consequences of complex interactions, yielding a better understanding of the role of seafloor animals in affecting key processes like primary productivity. Combining predictions based on natural history, behavior of key benthic species and environmental context allow assessment of differences in functioning and process, even when the measured ecosystem property in different systems is similar. Data from three sedimentary systems in New Zealand illustrate this. Analysis of the behaviors of the infaunal ecosystem engineers in each system revealed three very different mechanisms driving ecosystem function: density and excretion, sediment turnover and surface rugosity, and hydraulic activities and porewater bioadvection. Integrative metrics of ecosystem function in some cases differentiate among the systems (gross primary production) and in others do not (photosynthetic efficiency). Analyses based on behaviors and activities revealed important ecosystem functional differences and can dramatically improve our ability to model the impact of stressors on ecosystem and global processes. PMID:27230562
Woodin, Sarah Ann; Volkenborn, Nils; Pilditch, Conrad A; Lohrer, Andrew M; Wethey, David S; Hewitt, Judi E; Thrush, Simon F
2016-05-27
Seafloor biodiversity is a key mediator of ecosystem functioning, but its role is often excluded from global budgets or simplified to black boxes in models. New techniques allow quantification of the behavior of animals living below the sediment surface and assessment of the ecosystem consequences of complex interactions, yielding a better understanding of the role of seafloor animals in affecting key processes like primary productivity. Combining predictions based on natural history, behavior of key benthic species and environmental context allow assessment of differences in functioning and process, even when the measured ecosystem property in different systems is similar. Data from three sedimentary systems in New Zealand illustrate this. Analysis of the behaviors of the infaunal ecosystem engineers in each system revealed three very different mechanisms driving ecosystem function: density and excretion, sediment turnover and surface rugosity, and hydraulic activities and porewater bioadvection. Integrative metrics of ecosystem function in some cases differentiate among the systems (gross primary production) and in others do not (photosynthetic efficiency). Analyses based on behaviors and activities revealed important ecosystem functional differences and can dramatically improve our ability to model the impact of stressors on ecosystem and global processes.
Qiu, Kaiyang; Xie, Yingzhong; Xu, Dongmei; Pott, Richard
2018-05-15
The effects of biodiversity on ecosystem functions have been extensively studied, but little is known about the effects of ecosystem functions on biodiversity. This knowledge is important for understanding biodiversity-ecosystem functioning relationships. Desertification reversal is a significant global challenge, but the factors that play key roles in this process remain unclear. Here, using data sampled from areas undergoing desertification reversal, we identify the dominant soil factors that play a role in vegetation recovery with ordinary least squares and structural equation modelling. We found that ecosystem functions related to the cycling of soil carbon (organic C, SOC), nitrogen (total N, TN), and potassium (available K, AK) had the most substantial effects on vegetation recovery. The effects of these ecosystem functions were simultaneously influenced by the soil clay, silt and coarse sand fractions and the soil water content. Our findings suggest that K plays a critical role in ecosystem functioning and is a limiting factor in desertification reversal. Our results provide a scientific basis for desertification reversal. Specifically, we found that plant biodiversity may be regulated by N, phosphorus (P) and K cycling. Collectively, biodiversity may respond to ecosystem functions, the conservation and enhancement of which can promote the recovery of vegetation.
Research needs to better understand Lake Ontario ecosystem function: A workshop summary
Stewart, Thomas J.; Rudstam, Lars G.; Watkins, James M.; Johnson, Timothy B.; Weidel, Brian C.; Koops, Marten A.
2016-01-01
Lake Ontario investigators discussed and interpreted published and unpublished information during two workshops to assess our current understanding of Lake Ontario ecosystem function and to identify research needs to guide future research and monitoring activities. The purpose of this commentary is to summarize key investigative themes and hypotheses that emerged from the workshops. The outcomes of the workshop discussions are organized under four themes: spatial linkages and interactions, drivers of primary production, trophic transfer, and human interactions.
New directions in coral reef microbial ecology.
Garren, Melissa; Azam, Farooq
2012-04-01
Microbial processes largely control the health and resilience of coral reef ecosystems, and new technologies have led to an exciting wave of discovery regarding the mechanisms by which microbial communities support the functioning of these incredibly diverse and valuable systems. There are three questions at the forefront of discovery: What mechanisms underlie coral reef health and resilience? How do environmental and anthropogenic pressures affect ecosystem function? What is the ecology of microbial diseases of corals? The goal is to understand the functioning of coral reefs as integrated systems from microbes and molecules to regional and ocean-basin scale ecosystems to enable accurate predictions of resilience and responses to perturbations such as climate change and eutrophication. This review outlines recent discoveries regarding the microbial ecology of different microenvironments within coral ecosystems, and highlights research directions that take advantage of new technologies to build a quantitative and mechanistic understanding of how coral health is connected through microbial processes to its surrounding environment. The time is ripe for natural resource managers and microbial ecologists to work together to create an integrated understanding of coral reef functioning. In the context of long-term survival and conservation of reefs, the need for this work is immediate. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
Advancing mangrove macroecology
Rivera-Monroy, Victor H.; Osland, Michael J.; Day, John W.; Ray, Santanu; Rovai, Andre S.; Day, Richard H.; Mukherjee, Joyita; Rivera-Monroy, Victor H.; Lee, Shing Yip; Kristensen, Erik; Twilley, Robert R.
2017-01-01
Mangrove forests provide a wide range of ecosystem services to society, yet they are among the most anthropogenically impacted coastal ecosystems in the world. In this chapter, we discuss and provide examples for how macroecology can advance our understanding of mangrove ecosystems. Macroecology is broadly defined as a discipline that uses statistical analyses to investigate large-scale, universal patterns in the distribution, abundance, diversity, and organization of species and ecosystems, including the scaling of ecological processes and structural and functional relationships. Macroecological methods can be used to advance our understanding of how non-linear responses in natural systems can be triggered by human impacts at local, regional, and global scales. Although macroecology has the potential to gain knowledge on universal patterns and processes that govern mangrove ecosystems, the application of macroecological methods to mangroves has historically been limited by constraints in data quality and availability. Here we provide examples that include evaluations of the variation in mangrove forest ecosystem structure and function in relation to macroclimatic drivers (e.g., temperature and rainfall regimes) and climate change. Additional examples include work focused upon the continental distribution of aboveground net primary productivity and carbon storage, which are rapidly advancing research areas. These examples demonstrate the value of a macroecological perspective for the understanding of global- and regional-scale effects of both changing environmental conditions and management actions on ecosystem structure, function, and the supply of goods and services. We also present current trends in mangrove modeling approaches and their potential utility to test hypotheses about mangrove structural and functional properties. Given the gap in relevant experimental work at the regional scale, we also discuss the potential use of mangrove restoration and rehabilitation projects as macroecological studies that advance the critical selection and conservation of ecosystem services when managing mangrove resources. Future work to further incorporate macroecology into mangrove research will require a concerted effort by research groups and institutions to launch research initiatives and synthesize data collected across broad biogeographic regions.
Morris, Rebecca J.
2010-01-01
Huge areas of diverse tropical forest are lost or degraded every year with dramatic consequences for biodiversity. Deforestation and fragmentation, over-exploitation, invasive species and climate change are the main drivers of tropical forest biodiversity loss. Most studies investigating these threats have focused on changes in species richness or species diversity. However, if we are to understand the absolute and long-term effects of anthropogenic impacts on tropical forests, we should also consider the interactions between species, how those species are organized in networks, and the function that those species perform. I discuss our current knowledge of network structure and ecosystem functioning, highlighting empirical examples of their response to anthropogenic impacts. I consider the future prospects for tropical forest biodiversity, focusing on biodiversity and ecosystem functioning in secondary forest. Finally, I propose directions for future research to help us better understand the effects of anthropogenic impacts on tropical forest biodiversity. PMID:20980318
Ecosystem approach in education
NASA Astrophysics Data System (ADS)
Nabiullin, Iskander
2017-04-01
Environmental education is a base for sustainable development. Therefore, in our school we pay great attention to environmental education. Environmental education in our school is based on ecosystem approach. What is an ecosystem approach? Ecosystem is a fundamental concept of ecology. Living organisms and their non-living environments interact with each other as a system, and the biosphere planet functions as a global ecosystem. Therefore, it is necessary for children to understand relationships in ecosystems, and we have to develop systems thinking in our students. Ecosystem approach and systems thinking should help us to solve global environmental problems. How do we implement the ecosystem approach? Students must understand that our biosphere functions as a single ecosystem and even small changes can lead to environmental disasters. Even the disappearance of one plant or animal species can lead to irreversible consequences. So in the classroom we learn the importance of each living organism for the nature. We pay special attention to endangered species, which are listed in the Red Data List. Kids are doing projects about these organisms, make videos, print brochures and newspapers. Fieldwork also plays an important role for ecosystem approach. Every summer, we go out for expeditions to study species of plants and animals listed in the Red Data List of Tatarstan. In class, students often write essays on behalf of any endangered species of plants or animals, this also helps them to understand the importance of each living organism in nature. Each spring we organise a festival of environmental projects among students. Groups of 4-5 students work on a solution of environmental problems, such as water, air or soil pollution, waste recycling, the loss of biodiversity, etc. Participants shoot a clip about their project, print brochures. Furthermore, some of the students participate in national and international scientific Olympiads with their projects. In addition to biological relationships some complicated chemical and physical processes occur in ecosystems, so the ecosystem approach also involves interdisciplinary connection between biology, chemistry, physics, geology, mathematics, and others. Therefore, our schoolteachers of these subjects work together on environmental education of students. Ecosystem approach allows students to achieve a deeper understanding of how ecosystems work. This may help them to find keys for understanding and solving environmental problems such as climate change, loss of biodiversity, pollution, waste, energy efficiency etc.
Ecosystem engineering affects ecosystem functioning in high-Andean landscapes.
Badano, Ernesto I; Marquet, Pablo A
2008-04-01
Ecosystem engineers are organisms that change the distribution of materials and energy in the abiotic environment, usually creating and maintaining new habitat patches in the landscape. Such changes in habitat conditions have been widely documented to affect the distributions and performances of other species but up to now no studies have addressed how such effects can impact the biotically driven physicochemical processes associated with these landscapes, or ecosystem functions. Based on the widely accepted positive relationship between species diversity and ecosystem functions, we propose that the effects of ecosystem engineers on other species could have an impact on ecosystem functions via two mutually inclusive mechanisms: (1) by adding new species into landscapes, hence increasing species diversity; and (2) by improving the performances of species already present in the landscape. To test these hypotheses, we focused on the effects of a high-Andean ecosystem engineer, the cushion plant Azorella monantha, by comparing the accumulation of plant biomass and nitrogen fixed in plant tissues as species richness increases in landscapes with and without the engineer species. Our results show that both ecosystem functions increased with species richness in both landscape types, but landscapes including A. monantha cushions reached higher outcomes of plant biomass and nitrogen fixed in plant tissues than landscapes without cushions. Moreover, our results indicate that such positive effects on ecosystem functions could be mediated by the two mechanisms proposed above. Then, given the conspicuousness of ecosystem engineering in nature and its strong influence on species diversity, and given the well-known relationship between species diversity and ecosystem function, we suggest that the application of the conceptual framework proposed herein to other ecosystems would help to advance our understanding of the forces driving ecosystem functioning.
Analysis of Water Use Efficiency derived from MODIS satellite image in Northeast Asia
NASA Astrophysics Data System (ADS)
Park, J.; Jang, K.; Kang, S.
2014-12-01
Water Use Efficiency (WUE) is defined as ratio of evapotranspriation (ET) to gross primary productivity (GPP). It can detect the changes of ecosystem properties due to the variability of enviromental condition, and provide a chance to understand the linkage between carbon and water processes in terrestrial ecosystem. In a changing climate, the understanding of ecosystem functional responses to climate variability is crucial for evaluating effect. However, continental or sub-continental scale WUE analysis is were rare. In this study, WUE was estimated in the Northeast Asia using satellite data from 2003 to 2010. ET and GPP were estimated using various MODIS products. The estimated ET and GPP showed favorable agreements with flux tower observations. WUE in the study domain showed considerable variations according to the plant functional types and climatic and elevational gradients. The results produced in this study indicate that satellite remote sensing provides a useful tool for monitoring variability of terrestrial ecosystem functions.
The Human Dimensions of Riparian Areas: Implications for Management and Planning
John F. Dwyer; Pamela J. Jakes; Susan C. Barro
2000-01-01
This chapter introduces an important dimension in building our understanding of how riparian systems function -- people. The human dimensions of natural resource management concerns how people value and interact with these ecosystems, their processes and functions. People as users, managers, owners, or involved citizens are integral components of riparian ecosystems...
Organism-Sediment Interactions Govern Post-Hypoxia Recovery of Ecosystem Functioning
Van Colen, Carl; Rossi, Francesca; Montserrat, Francesc; Andersson, Maria G. I.; Gribsholt, Britta; Herman, Peter M. J.; Degraer, Steven; Vincx, Magda; Ysebaert, Tom; Middelburg, Jack J.
2012-01-01
Hypoxia represents one of the major causes of biodiversity and ecosystem functioning loss for coastal waters. Since eutrophication-induced hypoxic events are becoming increasingly frequent and intense, understanding the response of ecosystems to hypoxia is of primary importance to understand and predict the stability of ecosystem functioning. Such ecological stability may greatly depend on the recovery patterns of communities and the return time of the system properties associated to these patterns. Here, we have examined how the reassembly of a benthic community contributed to the recovery of ecosystem functioning following experimentally-induced hypoxia in a tidal flat. We demonstrate that organism-sediment interactions that depend on organism size and relate to mobility traits and sediment reworking capacities are generally more important than recovering species richness to set the return time of the measured sediment processes and properties. Specifically, increasing macrofauna bioturbation potential during community reassembly significantly contributed to the recovery of sediment processes and properties such as denitrification, bedload sediment transport, primary production and deep pore water ammonium concentration. Such bioturbation potential was due to the replacement of the small-sized organisms that recolonised at early stages by large-sized bioturbating organisms, which had a disproportionately stronger influence on sediment. This study suggests that the complete recovery of organism-sediment interactions is a necessary condition for ecosystem functioning recovery, and that such process requires long periods after disturbance due to the slow growth of juveniles into adult stages involved in these interactions. Consequently, repeated episodes of disturbance at intervals smaller than the time needed for the system to fully recover organism-sediment interactions may greatly impair the resilience of ecosystem functioning. PMID:23185440
Gagic, Vesna; Bartomeus, Ignasi; Jonsson, Tomas; Taylor, Astrid; Winqvist, Camilla; Fischer, Christina; Slade, Eleanor M; Steffan-Dewenter, Ingolf; Emmerson, Mark; Potts, Simon G; Tscharntke, Teja; Weisser, Wolfgang; Bommarco, Riccardo
2015-02-22
Drastic biodiversity declines have raised concerns about the deterioration of ecosystem functions and have motivated much recent research on the relationship between species diversity and ecosystem functioning. A functional trait framework has been proposed to improve the mechanistic understanding of this relationship, but this has rarely been tested for organisms other than plants. We analysed eight datasets, including five animal groups, to examine how well a trait-based approach, compared with a more traditional taxonomic approach, predicts seven ecosystem functions below- and above-ground. Trait-based indices consistently provided greater explanatory power than species richness or abundance. The frequency distributions of single or multiple traits in the community were the best predictors of ecosystem functioning. This implies that the ecosystem functions we investigated were underpinned by the combination of trait identities (i.e. single-trait indices) and trait complementarity (i.e. multi-trait indices) in the communities. Our study provides new insights into the general mechanisms that link biodiversity to ecosystem functioning in natural animal communities and suggests that the observed responses were due to the identity and dominance patterns of the trait composition rather than the number or abundance of species per se. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Linking fine root morphology, hydraulic functioning, and shade tolerance of trees
USDA-ARS?s Scientific Manuscript database
Understanding root traits and trade-offs in their functioning is important for understanding plant functioning in natural ecosystems as well as agricultural systems. The aim of the present study was to determine the relationship between root morphology and the hydraulic characteristics of fine roots...
Ecosystem Services in Environmental Science Literacy
ERIC Educational Resources Information Center
Ruppert, John Robert
2015-01-01
Human beings depend on a set of benefits that emerge from functioning ecosystems, termed Ecosystem Services (ES), and make decisions in everyday life that affect these ES. Recent advancements in science have led to an increasingly sophisticated understanding of ES and how they can be used to inform environmental decision-making. Following suit, US…
Functional traits explain ecosystem function through opposing mechanisms.
Cadotte, Marc W
2017-08-01
The ability to explain why multispecies assemblages produce greater biomass compared to monocultures, has been a central goal in the quest to understand biodiversity effects on ecosystem function. Species contributions to ecosystem function can be driven by two processes: niche complementarity and a selection effect that is influenced by fitness (competitive) differences, and both can be approximated with measures of species' traits. It has been hypothesised that fitness differences are associated with few, singular traits while complementarity requires multidimensional trait measures. Here, using experimental data from plant assemblages, I show that the selection effect was strongest when trait dissimilarity was low, while complementarity was greatest with high trait dissimilarity. Selection effects were best explained by a single trait, plant height. Complementarity was correlated with dissimilarity across multiple traits, representing above and below ground processes. By identifying the relevant traits linked to ecosystem function, we obtain the ability to predict combinations of species that will maximise ecosystem function. © 2017 John Wiley & Sons Ltd/CNRS.
Towards answering the "so what" question in marine renewables environmental impact assessment.
NASA Astrophysics Data System (ADS)
Degraer, Steven; Birchenough, Silvana N. R.; Braeckman, Ulrike; Coolen, Joop W. P.; Dannheim, Jennifer; De Mesel, Ilse; Grégoire, Marilaure; Kerckhof, Francis; Lacroix, Geneviève; Lindeboom, Han; Moens, Tom; Soetaert, Karline; Vanaverbeke, Jan; Van Hoey, Gert
2016-04-01
Marine renewable energy (MRE) projects are increasingly occupying the European North-Atlantic coasts and this is clearly observed in the North Sea. Given the expected impacts on the marine environment, each individual project is accompanied by a legally mandatory, environmental monitoring programme. These programmes are focused on the resultant effects on ecosystem component structure (e.g. species composition, numbers and densities) of single industrial projects. To date, there is a tendency to further narrow down to only a selection of ecosystem components (e.g. marine mammals and birds). While a wide knowledge-based understanding of structural impacts on (a selection of) ecosystem components exists, this evidence is largely lacking when undertaking impact assessments at the ecosystem functioning level (e.g. trophic interactions, dispersal and nutrient cycling). This critical knowledge gap compromises a scientifically-underpinned answer to the "so what" question of environmental impacts, i.e. whether the observed impacts are considered to be good or bad, or acceptable or unacceptable. The importance of ecosystem functioning is further acknowledged in the descriptors 4 and 6 of the Marine Strategy Framework Directive (EU MSFD) and is at the heart of a sustainable use and management of our marine resources. There hence is a fundamental need to focus on ecosystem functioning at the spatial scales at which marine ecosystems function when assessing MRE impacts. Here, we make a plea for an increased investment in a large (spatial) scale impact assessment of MRE projects focused on ecosystem functioning. This presentation will cover a selection of examples from North Sea MRE monitoring programmes, where the current knowledge has limited conclusions on the "so what" question. We will demonstrate how an ecosystem functioning-focused approach at an appropriate spatial scale could advance our current understanding, whilst assessing these issues. These examples will cover biogeochemical cycling, food webs and connectivity in a cumulative MRE impact assessment context. This presentation will highlight both the available knowledge base and further elaborate on the knowledge gaps. We will offer guidance on how these knowledge gaps could be further investigated, based on examples taken from the recently started projects FaCE-It, Functional biodiversity in a changing sedimentary environment: implications for biogeochemistry and food webs in a managerial setting (financed by the Belgian Science Policy) and UNDINE, Understanding the influence of man-made structures on the ecosystem functions of the North Sea (financed by INSITE). This presentation will set the scene and offer further thinking on the current issues associated to MRE monitoring, particularly beyond the level of ecological structure and individual industrial projects. The overall message will aid advancing and strengthening a collaborative MRE monitoring, helping scientists, managers and regulators to answer the much needed "so what" question to support environmental assessments. Keywords: offshore wind farms, cumulative effects, spatial upscaling, ecosystem functioning, biogeochemical cycling, food webs Contact author: Steven Degraer, steven.degraer@naturalsciences.be
Structure and functioning of dryland ecosystems in a changing world.
Maestre, Fernando T; Eldridge, David J; Soliveres, Santiago; Kéfi, Sonia; Delgado-Baquerizo, Manuel; Bowker, Matthew A; García-Palacios, Pablo; Gaitán, Juan; Gallardo, Antonio; Lázaro, Roberto; Berdugo, Miguel
2016-11-01
Understanding how drylands respond to ongoing environmental change is extremely important for global sustainability. Here we review how biotic attributes, climate, grazing pressure, land cover change and nitrogen deposition affect the functioning of drylands at multiple spatial scales. Our synthesis highlights the importance of biotic attributes (e.g. species richness) in maintaining fundamental ecosystem processes such as primary productivity, illustrate how N deposition and grazing pressure are impacting ecosystem functioning in drylands worldwide, and highlight the importance of the traits of woody species as drivers of their expansion in former grasslands. We also emphasize the role of attributes such as species richness and abundance in controlling the responses of ecosystem functioning to climate change. This knowledge is essential to guide conservation and restoration efforts in drylands, as biotic attributes can be actively managed at the local scale to increase ecosystem resilience to global change.
Structure and functioning of dryland ecosystems in a changing world
Maestre, Fernando T.; Eldridge, David J.; Soliveres, Santiago; Kéfi, Sonia; Delgado-Baquerizo, Manuel; Bowker, Matthew A.; García-Palacios, Pablo; Gaitán, Juan; Gallardo, Antonio; Lázaro, Roberto; Berdugo, Miguel
2017-01-01
Understanding how drylands respond to ongoing environmental change is extremely important for global sustainability. Here we review how biotic attributes, climate, grazing pressure, land cover change and nitrogen deposition affect the functioning of drylands at multiple spatial scales. Our synthesis highlights the importance of biotic attributes (e.g. species richness) in maintaining fundamental ecosystem processes such as primary productivity, illustrate how N deposition and grazing pressure are impacting ecosystem functioning in drylands worldwide, and highlight the importance of the traits of woody species as drivers of their expansion in former grasslands. We also emphasize the role of attributes such as species richness and abundance in controlling the responses of ecosystem functioning to climate change. This knowledge is essential to guide conservation and restoration efforts in drylands, as biotic attributes can be actively managed at the local scale to increase ecosystem resilience to global change. PMID:28239303
The shift to watershed management of rivers from a more reach-based approach has had far-reaching implications for the way we characterize and classify rivers and then use this information to understand and manage biodiversity, ecological functions, and ecosystem services in rive...
Hay, Mark E.
2012-01-01
Chemical cues constitute much of the language of life in the sea. Our understanding of biotic interactions and their effects on marine ecosystems will advance more rapidly if this language is studied and understood. Here, I review how chemical cues regulate critical aspects of the behavior of marine organisms from bacteria to phytoplankton to benthic invertebrates and water column fishes. These chemically mediated interactions strongly affect population structure, community organization, and ecosystem function. Chemical cues determine foraging strategies, feeding choices, commensal associations, selection of mates and habitats, competitive interactions, and transfer of energy and nutrients within and among ecosystems. In numerous cases, the indirect effects of chemical signals on behavior have as much or more effect on community structure and function as the direct effects of consumers and pathogens. Chemical cues are critical for understanding marine systems, but their omnipresence and impact are inadequately recognized. PMID:21141035
Pattern formation--A missing link in the study of ecosystem response to environmental changes.
Meron, Ehud
2016-01-01
Environmental changes can affect the functioning of an ecosystem directly, through the response of individual life forms, or indirectly, through interspecific interactions and community dynamics. The feasibility of a community-level response has motivated numerous studies aimed at understanding the mutual relationships between three elements of ecosystem dynamics: the abiotic environment, biodiversity and ecosystem function. Since ecosystems are inherently nonlinear and spatially extended, environmental changes can also induce pattern-forming instabilities that result in spatial self-organization of life forms and resources. This, in turn, can affect the relationships between these three elements, and make the response of ecosystems to environmental changes far more complex. Responses of this kind can be expected in dryland ecosystems, which show a variety of self-organizing vegetation patterns along the rainfall gradient. This paper describes the progress that has been made in understanding vegetation patterning in dryland ecosystems, and the roles it plays in ecosystem response to environmental variability. The progress has been achieved by modeling pattern-forming feedbacks at small spatial scales and up-scaling their effects to large scales through model studies. This approach sets the basis for integrating pattern formation theory into the study of ecosystem dynamics and addressing ecologically significant questions such as the dynamics of desertification, restoration of degraded landscapes, biodiversity changes along environmental gradients, and shrubland-grassland transitions. Copyright © 2015 Elsevier Inc. All rights reserved.
Ecosystem impacts of exotic annual invaders in the genus Bromus
Matthew J. Germino; Jayne Belnap; John M. Stark; Edith B Allen; Benjamin Rau
2016-01-01
An understanding of the impacts of exotic plant species on ecosystems is necessary to justify and guide efforts to limit their spread, restore natives, and plan for conservation. Invasive annual grasses such as Bromus tectorum, B. rubens, B. hordeaceus, and B. diandrus (hereafter collectively referred to as Bromus) transform the structure and function of ecosystems...
Richard A. MacKenzie; Michele Dionne; Jeremy Miller; Michael Haas; Pamela A. Morgan
2015-01-01
Fringing marshes are abundant ecosystems that dominate the New England coastline. Despite their abundance, very little baseline data is available from them and few studies have documented the ecosystems services that they provide. This information is important for conservation efforts as well as for an increased understanding of how fringing marshes function compared...
Scaling ozone responses of forest trees to the ecosystem level in a changing climate
D.F. Karnosky; K.S. Pregitzer; D.R. Zak; M.E. Kubiske; G.R. Hendrey; D. Weinstein; M. Nosal; K.E. Percy
2005-01-01
Many uncertainties remain regarding how climate change will alter the structure and function of forest ecosystems. At the Aspen FACE experiment in northern Wisconsin, we are attempting to understand how an aspen/birch/maple forest ecosystem responds to long-term exposure to elevated carbon dioxide (CO2) and ozone (O3),...
The spread of invasive species and infectious disease as drivers of ecosystem change.
Todd A. Crowl; Thomas O. Crist; Robert R. Parmenter; Gary Belovsky; Ariel E. Lugo
2008-01-01
Invasive species, disease vectors, and pathogens affect biodiversity, ecosystem function and services, and human health. Climate change, land use, and transport vectors interact in complex ways to determine the spread of native and non-native invasive species, pathogens, and their effects on ecosystem dynamics. Early detection and in-depth understanding of invasive...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stavros, E. Natasha; Schimel, David; Pavlick, Ryan
Technologies on the International Space Station will provide ~1 year of synchronous observations of ecosystem composition, structure and function, in 2018. Here, we discuss these instruments and how they can be used to constrain global models and improve our understanding of the current state of terrestrial ecosystems.
Harnessing long-term flux records to better understand ecosystem response to drought
NASA Astrophysics Data System (ADS)
Novick, K. A.; Ficklin, D. L.; Stoy, P. C.; Williams, C. A.; Bohrer, G.; Oishi, A. C.; Papuga, S. A.; Blanken, P.; Noormets, A.; Scott, R. L.; Wang, L.; Roman, D. T.; Yi, K.; Sulman, B. N.; Phillips, R.
2016-12-01
While ongoing climate change affects a number of meteorological drivers relevant to plant functioning, the predicted increase in the frequency and severity of droughts may ultimately have the biggest impact on ecosystem carbon cycling. Because it is difficult to experimentally manipulate all of the meteorological drivers that change during drought (including precipitation, light, temperature, and humidity), our understanding of the mechanisms by which plants respond to drought is generally limited to an understanding of how plants respond to variable soil moisture. As flux tower records grow in length and number, they permit us to harness natural spatial and temporal variability in hydrologic condition to better understand how ecosystems respond to the full suite of meteorological drivers that change during drought stress. Here, a series of case studies are presented that illustrate how long term flux data can be used to disentangle limitations to ecosystem functioning imposed by declining soil moisture as compared to rising atmospheric demand for water during drought. At the site-level, we pair observations from the Morgan-Monroe State Forest Ameriflux tower (active since 1999) with eco-physiological datasets collected during the severe 2012 Midwestern drought. We show that vapor pressure deficit (VPD) limits ecosystem carbon uptake and transpiration as much as soil moisture, but that individual species vary in their sensitivity to these drivers. We then present results from two cross-site Ameriflux syntheses that quantify how VPD as compared to soil moisture limitations to carbon and water cycling vary across broad climate gradients spanning semi-arid to mesic biomes. Informed by these results, we end by highlighting ways that flux network data may be leveraged together with other eco-physiological networks and databases to further expand our understanding of the mechanisms determining ecosystem response to drought.
Guy-Haim, Tamar; Lyons, Devin A; Kotta, Jonne; Ojaveer, Henn; Queirós, Ana M; Chatzinikolaou, Eva; Arvanitidis, Christos; Como, Serena; Magni, Paolo; Blight, Andrew J; Orav-Kotta, Helen; Somerfield, Paul J; Crowe, Tasman P; Rilov, Gil
2018-03-01
Invasive ecosystem engineers (IEE) are potentially one of the most influential types of biological invaders. They are expected to have extensive ecological impacts by altering the physical-chemical structure of ecosystems, thereby changing the rules of existence for a broad range of resident biota. To test the generality of this expectation, we used a global systematic review and meta-analysis to examine IEE effects on the abundance of individual species and communities, biodiversity (using several indices) and ecosystem functions, focusing on marine and estuarine environments. We found that IEE had a significant effect (positive and negative) in most studies testing impacts on individual species, but the overall (cumulative) effect size was small and negative. Many individual studies showed strong IEE effects on community abundance and diversity, but the direction of effects was variable, leading to statistically non-significant overall effects in most categories. In contrast, there was a strong overall effect on most ecosystem functions we examined. IEE negatively affected metabolic functions and primary production, but positively affected nutrient flux, sedimentation and decomposition. We use the results to develop a conceptual model by highlighting pathways whereby IEE impact communities and ecosystem functions, and identify several sources of research bias in the IEE-related invasion literature. Only a few of the studies simultaneously quantified IEE effects on community/diversity and ecosystem functions. Therefore, understanding how IEE may alter biodiversity-ecosystem function relationships should be a primary focus of future studies of invasion biology. Moreover, the clear effects of IEE on ecosystem functions detected in our study suggest that scientists and environmental managers ought to examine how the effects of IEE might be manifested in the services that marine ecosystems provide to humans. © 2017 John Wiley & Sons Ltd.
Toward a social-ecological theory of forest macrosystems for improved ecosystem management
Kleindl, William J.; Stoy, Paul C.; Binford, Michael W.; Desai, Ankur R.; Dietze, Michael C.; Schultz, Courtney A.; Starr, Gregory; Staudhammer, Christina; Wood, David J. A.
2018-01-01
The implications of cumulative land-use decisions and shifting climate on forests, require us to integrate our understanding of ecosystems, markets, policy, and resource management into a social-ecological system. Humans play a central role in macrosystem dynamics, which complicates ecological theories that do not explicitly include human interactions. These dynamics also impact ecological services and related markets, which challenges economic theory. Here, we use two forest macroscale management initiatives to develop a theoretical understanding of how management interacts with ecological functions and services at these scales and how the multiple large-scale management goals work either in consort or conflict with other forest functions and services. We suggest that calling upon theories developed for organismal ecology, ecosystem ecology, and ecological economics adds to our understanding of social-ecological macrosystems. To initiate progress, we propose future research questions to add rigor to macrosystem-scale studies: (1) What are the ecosystem functions that operate at macroscales, their necessary structural components, and how do we observe them? (2) How do systems at one scale respond if altered at another scale? (3) How do we both effectively measure these components and interactions, and communicate that information in a meaningful manner for policy and management across different scales?
Water: Wisconsin lakes, streams and wetlands
Wisconsin has a tremendous diversity of aquatic habitat: headwater streams, large rivers, inland lakes, and two Great Lakes. Knowing the fundamentals of aquatic ecosystem science is critical to understand how these ecosystems function and to predict how they will respond to human...
Response diversity determines the resilience of ecosystems to environmental change.
Mori, Akira S; Furukawa, Takuya; Sasaki, Takehiro
2013-05-01
A growing body of evidence highlights the importance of biodiversity for ecosystem stability and the maintenance of optimal ecosystem functionality. Conservation measures are thus essential to safeguard the ecosystem services that biodiversity provides and human society needs. Current anthropogenic threats may lead to detrimental (and perhaps irreversible) ecosystem degradation, providing strong motivation to evaluate the response of ecological communities to various anthropogenic pressures. In particular, ecosystem functions that sustain key ecosystem services should be identified and prioritized for conservation action. Traditional diversity measures (e.g. 'species richness') may not adequately capture the aspects of biodiversity most relevant to ecosystem stability and functionality, but several new concepts may be more appropriate. These include 'response diversity', describing the variation of responses to environmental change among species of a particular community. Response diversity may also be a key determinant of ecosystem resilience in the face of anthropogenic pressures and environmental uncertainty. However, current understanding of response diversity is poor, and we see an urgent need to disentangle the conceptual strands that pervade studies of the relationship between biodiversity and ecosystem functioning. Our review clarifies the links between response diversity and the maintenance of ecosystem functionality by focusing on the insurance hypothesis of biodiversity and the concept of functional redundancy. We provide a conceptual model to describe how loss of response diversity may cause ecosystem degradation through decreased ecosystem resilience. We explicitly explain how response diversity contributes to functional compensation and to spatio-temporal complementarity among species, leading to long-term maintenance of ecosystem multifunctionality. Recent quantitative studies suggest that traditional diversity measures may often be uncoupled from measures (such as response diversity) that may be more effective proxies for ecosystem stability and resilience. Certain conclusions and recommendations of earlier studies using these traditional measures as indicators of ecosystem resilience thus may be suspect. We believe that functional ecology perspectives incorporating the effects and responses of diversity are essential for development of management strategies to safeguard (and restore) optimal ecosystem functionality (especially multifunctionality). Our review highlights these issues and we envision our work generating debate around the relationship between biodiversity and ecosystem functionality, and leading to improved conservation priorities and biodiversity management practices that maximize ecosystem resilience in the face of uncertain environmental change. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.
Obscuring ecosystem function with application of the ecosystem services concept.
Peterson, Markus J; Hall, Damon M; Feldpausch-Parker, Andrea M; Peterson, Tarla Rai
2010-02-01
Conservationists commonly have framed ecological concerns in economic terms to garner political support for conservation and to increase public interest in preserving global biodiversity. Beginning in the early 1980s, conservation biologists adapted neoliberal economics to reframe ecosystem functions and related biodiversity as ecosystem services to humanity. Despite the economic success of programs such as the Catskill/Delaware watershed management plan in the United States and the creation of global carbon exchanges, today's marketplace often fails to adequately protect biodiversity. We used a Marxist critique to explain one reason for this failure and to suggest a possible, if partial, response. Reframing ecosystem functions as economic services does not address the political problem of commodification. Just as it obscures the labor of human workers, commodification obscures the importance of the biota (ecosystem workers) and related abiotic factors that contribute to ecosystem functions. This erasure of work done by ecosystems impedes public understanding of biodiversity. Odum and Odum's radical suggestion to use the language of ecosystems (i.e., emergy or energy memory) to describe economies, rather than using the language of economics (i.e., services) to describe ecosystems, reverses this erasure of the ecosystem worker. Considering the current dominance of economic forces, however, implementing such solutions would require social changes similar in magnitude to those that occurred during the 1960s. Niklas Luhmann argues that such substantive, yet rapid, social change requires synergy among multiple societal function systems (i.e., economy, education, law, politics, religion, science), rather than reliance on a single social sphere, such as the economy. Explicitly presenting ecosystem services as discreet and incomplete aspects of ecosystem functions not only allows potential economic and environmental benefits associated with ecosystem services, but also enables the social and political changes required to ensure valuation of ecosystem functions and related biodiversity in ways beyond their measurement on an economic scale.
The Functionally-Assembled Terrestrial Ecosystem Simulator Version 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Chonggang; Christoffersen, Bradley
The Functionally-Assembled Terrestrial Ecosystem Simulator (FATES) is a vegetation model for use in Earth system models (ESMs). The model includes a size- and age-structured representation of tree dynamics, competition between functionally diverse plant functional types, and the biophysics underpinning plant growth, competition, mortality, as well as the carbon, water, and energy exchange with the atmosphere. The FATES model is designed as a modular vegetation model that can be integrated within a host land model for inclusion in ESMs. The model is designed for use in global change studies to understand and project the responses and feedbacks between terrestrial ecosystems andmore » the Earth system under changing climate and other forcings.« less
Tundra biome research in Alaska: the structure and function of cold-dominated ecosystems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, J.; West, G.C.
1970-11-01
The objective of the Tundra Biome Program is to acquire a basic understanding of tundra, both alpine and arctic, and taiga. Collectively these are referred to as the cold-dominated ecosystems. The program's broad objectives are threefold: To develop a predictive understanding of how the wet arctic tundra ecosystem operates, particularly as exemplified in the Barrow, Alaska, area; to obtain the necessary data base from the variety of cold-dominated ecosystem types represented in the United States, so that their behavior can be modeled and simulated, and the results compared with similar studies underway in other circumpolar countries; to bring basic environmentalmore » knowledge to bear on problems of degradation, maintenance, and restoration of the temperature-sensitive and cold-dominated tundra/taiga ecosystems. (GRA)« less
James M. Vose; Jose Manuel Maass
1999-01-01
Long-term monitoring of ecological and hydrological processes is critical to understanding ecosystem function and responses to anthropogenic and natural disturbances. Much of the world's knowledge of ecosystem responses to disturbance comes from long-term studies on gaged watersheds. However, there are relatively few long-term sites due to the large cost and...
Drinkwater, K. F.; Grant, S. M.; Heymans, J. J.; Hofmann, E. E.; Hunt, G. L.; Johnston, N. M.
2016-01-01
The determinants of the structure, functioning and resilience of pelagic ecosystems across most of the polar regions are not well known. Improved understanding is essential for assessing the value of biodiversity and predicting the effects of change (including in biodiversity) on these ecosystems and the services they maintain. Here we focus on the trophic interactions that underpin ecosystem structure, developing comparative analyses of how polar pelagic food webs vary in relation to the environment. We highlight that there is not a singular, generic Arctic or Antarctic pelagic food web, and, although there are characteristic pathways of energy flow dominated by a small number of species, alternative routes are important for maintaining energy transfer and resilience. These more complex routes cannot, however, provide the same rate of energy flow to highest trophic-level species. Food-web structure may be similar in different regions, but the individual species that dominate mid-trophic levels vary across polar regions. The characteristics (traits) of these species are also different and these differences influence a range of food-web processes. Low functional redundancy at key trophic levels makes these ecosystems particularly sensitive to change. To develop models for projecting responses of polar ecosystems to future environmental change, we propose a conceptual framework that links the life histories of pelagic species and the structure of polar food webs. PMID:27928038
Murphy, E J; Cavanagh, R D; Drinkwater, K F; Grant, S M; Heymans, J J; Hofmann, E E; Hunt, G L; Johnston, N M
2016-12-14
The determinants of the structure, functioning and resilience of pelagic ecosystems across most of the polar regions are not well known. Improved understanding is essential for assessing the value of biodiversity and predicting the effects of change (including in biodiversity) on these ecosystems and the services they maintain. Here we focus on the trophic interactions that underpin ecosystem structure, developing comparative analyses of how polar pelagic food webs vary in relation to the environment. We highlight that there is not a singular, generic Arctic or Antarctic pelagic food web, and, although there are characteristic pathways of energy flow dominated by a small number of species, alternative routes are important for maintaining energy transfer and resilience. These more complex routes cannot, however, provide the same rate of energy flow to highest trophic-level species. Food-web structure may be similar in different regions, but the individual species that dominate mid-trophic levels vary across polar regions. The characteristics (traits) of these species are also different and these differences influence a range of food-web processes. Low functional redundancy at key trophic levels makes these ecosystems particularly sensitive to change. To develop models for projecting responses of polar ecosystems to future environmental change, we propose a conceptual framework that links the life histories of pelagic species and the structure of polar food webs. © 2016 The Authors.
Bacterial biodiversity-ecosystem functioning relations are modified by environmental complexity.
Langenheder, Silke; Bulling, Mark T; Solan, Martin; Prosser, James I
2010-05-26
With the recognition that environmental change resulting from anthropogenic activities is causing a global decline in biodiversity, much attention has been devoted to understanding how changes in biodiversity may alter levels of ecosystem functioning. Although environmental complexity has long been recognised as a major driving force in evolutionary processes, it has only recently been incorporated into biodiversity-ecosystem functioning investigations. Environmental complexity is expected to strengthen the positive effect of species richness on ecosystem functioning, mainly because it leads to stronger complementarity effects, such as resource partitioning and facilitative interactions among species when the number of available resource increases. Here we implemented an experiment to test the combined effect of species richness and environmental complexity, more specifically, resource richness on ecosystem functioning over time. We show, using all possible combinations of species within a bacterial community consisting of six species, and all possible combinations of three substrates, that diversity-functioning (metabolic activity) relationships change over time from linear to saturated. This was probably caused by a combination of limited complementarity effects and negative interactions among competing species as the experiment progressed. Even though species richness and resource richness both enhanced ecosystem functioning, they did so independently from each other. Instead there were complex interactions between particular species and substrate combinations. Our study shows clearly that both species richness and environmental complexity increase ecosystem functioning. The finding that there was no direct interaction between these two factors, but that instead rather complex interactions between combinations of certain species and resources underlie positive biodiversity ecosystem functioning relationships, suggests that detailed knowledge of how individual species interact with complex natural environments will be required in order to make reliable predictions about how altered levels of biodiversity will most likely affect ecosystem functioning.
Bacterial Biodiversity-Ecosystem Functioning Relations Are Modified by Environmental Complexity
Langenheder, Silke; Bulling, Mark T.; Solan, Martin; Prosser, James I.
2010-01-01
Background With the recognition that environmental change resulting from anthropogenic activities is causing a global decline in biodiversity, much attention has been devoted to understanding how changes in biodiversity may alter levels of ecosystem functioning. Although environmental complexity has long been recognised as a major driving force in evolutionary processes, it has only recently been incorporated into biodiversity-ecosystem functioning investigations. Environmental complexity is expected to strengthen the positive effect of species richness on ecosystem functioning, mainly because it leads to stronger complementarity effects, such as resource partitioning and facilitative interactions among species when the number of available resource increases. Methodology/Principal Findings Here we implemented an experiment to test the combined effect of species richness and environmental complexity, more specifically, resource richness on ecosystem functioning over time. We show, using all possible combinations of species within a bacterial community consisting of six species, and all possible combinations of three substrates, that diversity-functioning (metabolic activity) relationships change over time from linear to saturated. This was probably caused by a combination of limited complementarity effects and negative interactions among competing species as the experiment progressed. Even though species richness and resource richness both enhanced ecosystem functioning, they did so independently from each other. Instead there were complex interactions between particular species and substrate combinations. Conclusions/Significance Our study shows clearly that both species richness and environmental complexity increase ecosystem functioning. The finding that there was no direct interaction between these two factors, but that instead rather complex interactions between combinations of certain species and resources underlie positive biodiversity ecosystem functioning relationships, suggests that detailed knowledge of how individual species interact with complex natural environments will be required in order to make reliable predictions about how altered levels of biodiversity will most likely affect ecosystem functioning. PMID:20520808
Driving terrestrial ecosystem models from space
NASA Technical Reports Server (NTRS)
Waring, R. H.
1993-01-01
Regional air pollution, land-use conversion, and projected climate change all affect ecosystem processes at large scales. Changes in vegetation cover and growth dynamics can impact the functioning of ecosystems, carbon fluxes, and climate. As a result, there is a need to assess and monitor vegetation structure and function comprehensively at regional to global scales. To provide a test of our present understanding of how ecosystems operate at large scales we can compare model predictions of CO2, O2, and methane exchange with the atmosphere against regional measurements of interannual variation in the atmospheric concentration of these gases. Recent advances in remote sensing of the Earth's surface are beginning to provide methods for estimating important ecosystem variables at large scales. Ecologists attempting to generalize across landscapes have made extensive use of models and remote sensing technology. The success of such ventures is dependent on merging insights and expertise from two distinct fields. Ecologists must provide the understanding of how well models emulate important biological variables and their interactions; experts in remote sensing must provide the biophysical interpretation of complex optical reflectance and radar backscatter data.
Hunsicker, Mary E; Ciannelli, Lorenzo; Bailey, Kevin M; Buckel, Jeffrey A; Wilson White, J; Link, Jason S; Essington, Timothy E; Gaichas, Sarah; Anderson, Todd W; Brodeur, Richard D; Chan, Kung-Sik; Chen, Kun; Englund, Göran; Frank, Kenneth T; Freitas, Vânia; Hixon, Mark A; Hurst, Thomas; Johnson, Darren W; Kitchell, James F; Reese, Doug; Rose, George A; Sjodin, Henrik; Sydeman, William J; van der Veer, Henk W; Vollset, Knut; Zador, Stephani
2011-12-01
Predator-prey interactions are a primary structuring force vital to the resilience of marine communities and sustainability of the world's oceans. Human influences on marine ecosystems mediate changes in species interactions. This generality is evinced by the cascading effects of overharvesting top predators on the structure and function of marine ecosystems. It follows that ecological forecasting, ecosystem management, and marine spatial planning require a better understanding of food web relationships. Characterising and scaling predator-prey interactions for use in tactical and strategic tools (i.e. multi-species management and ecosystem models) are paramount in this effort. Here, we explore what issues are involved and must be considered to advance the use of predator-prey theory in the context of marine fisheries science. We address pertinent contemporary ecological issues including (1) the approaches and complexities of evaluating predator responses in marine systems; (2) the 'scaling up' of predator-prey interactions to the population, community, and ecosystem level; (3) the role of predator-prey theory in contemporary fisheries and ecosystem modelling approaches; and (4) directions for the future. Our intent is to point out needed research directions that will improve our understanding of predator-prey interactions in the context of the sustainable marine fisheries and ecosystem management. 2011 Blackwell Publishing Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Ghadouani, Anas; Reichwaldt, Elke S.; Coggins, Liah X.; Ivey, Gregory N.; Ghisalberti, Marco; Zhou, Wenxu; Laurion, Isabelle; Chua, Andrew
2014-05-01
Wastewater stabilisation ponds (WSPs) are highly productive systems designed to treat wastewater using only natural biological and chemical processes. Phytoplankton, microbial communities and hydraulics play important roles for ecosystem functionality of these pond systems. Although WSPs have been used for many decades, they are still considered as 'black box' systems as very little is known about the fundamental ecological processes which occur within them. However, a better understanding of how these highly productive ecosystems function is particularly important for hydrological processes, as treated wastewater is commonly discharged into streams, rivers, and oceans, and subject to strict water quality guidelines. WSPs are known to operate at different levels of efficiency, and treatment efficiency of WSPs is dependent on physical (flow characteristics and sludge accumulation and distribution) and biological (microbial and phytoplankton communities) characteristics. Thus, it is important to gain a better understanding of the role and influence of pond hydraulics and vital microbial communities on pond performance and WSP functional stability. The main aim of this study is to investigate the processes leading to differences in treatment performance of WSPs. This study uses a novel and innovative approach to understand these factors by combining flow cytometry and metabolomics to investigate various biochemical characteristics, including the metabolite composition and microbial community within WSPs. The results of these analyses will then be combined with results from the characterisation of pond hydrodynamics and hydraulic performance, which will be performed using advanced hydrodynamic modelling and advanced sludge profiling technology. By understanding how hydrodynamic and biological processes influence each other and ecosystem function and stability in WSPs, we will be able to propose ways to improve the quality of the treatment using natural processes, with less reliance on chemical treatment. This will in turn contribute to the reduction in the cost of operation, but more importantly reduce the impact on the environment (i.e., discharge, GHGs), and increase water quality and the potential for water reuse worldwide.
UNDERSTANDING THE ROLE OF OZONE STRESS IN ALTERING BELOWGROUND PROCESSES
Forested ecosystems are comprised of tremendous biological diversity and functional complexity both above and belowground. Soil ecosystems are known to contain thousands of species, with many more that have not yet been identified. Soil heterotrophic organisms depend on green p...
Benthic incubation chambers for estimating nitrogen flux at the sediment water interface
USEPA’s Sustainable and Healthy Communities (SHC) research program seeks to better understand how ecosystem functions produce ecosystem goods and services (EGS) in order to develop quantitative tools for informing decisions that lead to more sustainable results. Our incompl...
Harvey, Eric; Séguin, Annie; Nozais, Christian; Archambault, Philippe; Gravel, Dominique
2013-01-01
Understanding the impacts of species extinctions on the functioning of food webs is a challenging task because of the complexity of ecological interactions. We report the impacts of experimental species extinctions on the functioning of two food webs of freshwater and marine systems. We used a linear model to partition the variance among the multiple components of the diversity effect (linear group richness, nonlinear group richness, and identity). The identity of each functional group was the best explaining variable of ecosystem functioning for both systems. We assessed the contribution of each functional group in multifunctional space and found that, although the effect of functional group varied across ecosystem functions, some functional groups shared common effects on functions. This study is the first experimental demonstration that functional identity dominates the effects of extinctions on ecosystem functioning, suggesting that generalizations are possible despite the inherent complexity of interactions.
NASA Astrophysics Data System (ADS)
Hmelo-Silver, C.; Gray, S.; Jordan, R.
2010-12-01
Complex systems surround us, and as Sabelli (2006) has argued, understanding complex systems is a critical component of science literacy. Understanding natural and designed systems are also prominent in the new draft science standards (NRC, 2010) and therefore of growing importance in the science classroom. Our work has focused on promoting an understanding of one complex natural system, aquatic ecosystems, which given current events, is fast becoming a requisite for informed decision-making as citizens (Jordan et al. 2008). Learners have difficulty understanding many concepts related to complex natural systems (e.g., Hmelo-Silver, Marathe, & Liu, 2007; Jordan, Gray, Liu, Demeter, & Hmelo-Silver, 2009). Studies of how students think about complex ecological systems (e.g; Hmelo-Silver, Marathe, & Liu, 2007; Hogan, 2000, Hogan & Fisherkeller, 1996: Covitt & Gunkel, 2008) have revealed difficulties in thinking beyond linear flow, single causality, and visible structure. Helping students to learn about ecosystems is a complex task that requires providing opportunities for students to not only engage directly with ecosystems but also with resources that provide relevant background knowledge and opportunities for learners to make their thinking visible. Both tasks can be difficult given the large spatial and temporal scales on which ecosystems operate. Additionally, visible components interact with often invisible components which can obscure ecosystem processes for students. Working in the context of aquatic ecosystems, we sought to provide learners with representations and simulations that make salient the relationship between system components. In particular, we provided learners with opportunities to experience both the micro-level and macro-level phenomena that are key to understanding ecosystems (Hmelo-Silver, Liu, Gray, & Jordan, submitted; Liu & Hmelo-Silver, 2008; Jacobson & Wilensky, 2006). To accomplish this, we needed to help learners make connections across the levels of ecosystems. A big part of this is making phenomena accessible to their experience. We accomplished through the use of physical models and computers simulations at different scale. In an effort to promote a coherent understanding in our learners, we sought to develop tools that can provide dynamic feedback that will enable them to modify, enrich, and repair their mental models as needed (e.g., Roschelle, 1996). Additionally, we also wanted to develop a conceptual representation that can be used across multiple ecosystems to prepare students to learn about new systems in the future (Bransford & Schwartz, 1999). Our approach to this has been to use the structure-behavior-function (SBF) conceptual representation (Liu & Hmelo-Silver, 2009; Vattam et al., in press). Often, learning life science is about learning the names of structures. One of our design principles is to ensure instruction emphasizes the behaviors (or mechanisms) of systems as well as the functions (the system outputs) in addition to the structures. We have used simulations to help make behaviors and functions visible and a modeling tool that supports students in thinking about the SBF conceptual representation. In this presentation, we will report on the results of classroom interventions and the lessons learned.
Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning.
He, Zhili; Zhang, Ping; Wu, Linwei; Rocha, Andrea M; Tu, Qichao; Shi, Zhou; Wu, Bo; Qin, Yujia; Wang, Jianjun; Yan, Qingyun; Curtis, Daniel; Ning, Daliang; Van Nostrand, Joy D; Wu, Liyou; Yang, Yunfeng; Elias, Dwayne A; Watson, David B; Adams, Michael W W; Fields, Matthew W; Alm, Eric J; Hazen, Terry C; Adams, Paul D; Arkin, Adam P; Zhou, Jizhong
2018-02-20
Contamination from anthropogenic activities has significantly impacted Earth's biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN), representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate) increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminants would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate) increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5) increased significantly ( P < 0.05) as uranium or nitrate increased, and their changes could be used to successfully predict uranium and nitrate contamination and ecosystem functioning. This study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning. IMPORTANCE Disentangling the relationships between biodiversity and ecosystem functioning is an important but poorly understood topic in ecology. Predicting ecosystem functioning on the basis of biodiversity is even more difficult, particularly with microbial biomarkers. As an exploratory effort, this study used key microbial functional genes as biomarkers to provide predictive understanding of environmental contamination and ecosystem functioning. The results indicated that the overall functional gene richness/diversity decreased as uranium increased in groundwater, while specific key microbial guilds increased significantly as uranium or nitrate increased. These key microbial functional genes could be used to successfully predict environmental contamination and ecosystem functioning. This study represents a significant advance in using functional gene markers to predict the spatial distribution of environmental contaminants and ecosystem functioning toward predictive microbial ecology, which is an ultimate goal of microbial ecology. Copyright © 2018 He et al.
Ecosystem functioning is enveloped by hydrometeorological variability.
Pappas, Christoforos; Mahecha, Miguel D; Frank, David C; Babst, Flurin; Koutsoyiannis, Demetris
2017-09-01
Terrestrial ecosystem processes, and the associated vegetation carbon dynamics, respond differently to hydrometeorological variability across timescales, and so does our scientific understanding of the underlying mechanisms. Long-term variability of the terrestrial carbon cycle is not yet well constrained and the resulting climate-biosphere feedbacks are highly uncertain. Here we present a comprehensive overview of hydrometeorological and ecosystem variability from hourly to decadal timescales integrating multiple in situ and remote-sensing datasets characterizing extra-tropical forest sites. We find that ecosystem variability at all sites is confined within a hydrometeorological envelope across sites and timescales. Furthermore, ecosystem variability demonstrates long-term persistence, highlighting ecological memory and slow ecosystem recovery rates after disturbances. However, simulation results with state-of-the-art process-based models do not reflect this long-term persistent behaviour in ecosystem functioning. Accordingly, we develop a cross-time-scale stochastic framework that captures hydrometeorological and ecosystem variability. Our analysis offers a perspective for terrestrial ecosystem modelling and paves the way for new model-data integration opportunities in Earth system sciences.
Shanlei Sun; Ge Sun; Peter Caldwell; Steven G. McNulty; Erika Cohen; Jingfeng Xiao; Yang Zhang
2015-01-01
Understanding and quantitatively evaluating the regional impacts of climate change and variability (e.g., droughts) on forest ecosystem functions (i.e., water yield, evapotranspiration, and productivity) and services (e.g., fresh water supply and carbon sequestration) is of great importance for developing climate change adaptation strategies for National Forests and...
Re-introducing environmental change drivers in biodiversity-ecosystem functioning research
De Laender, Frederik; Rohr, Jason R.; Ashauer, Roman; Baird, Donald J.; Berger, Uta; Eisenhauer, Nico; Grimm, Volker; Hommen, Udo; Maltby, Lorraine; Meliàn, Carlos J.; Pomati, Francesco; Roessink, Ivo; Radchuk, Viktoriia; Van den Brink, Paul J.
2016-01-01
For the past 20 years, research on biodiversity and ecosystem functioning (B-EF) has only implicitly considered the underlying role of environmental change. We illustrate that explicitly re-introducing environmental change drivers in B-EF research is needed to predict the functioning of ecosystems facing changes in biodiversity. Next, we show how this reintroduction improves experimental control over community composition and structure, which helps to obtain mechanistic insight about how multiple aspects of biodiversity relate to function, and how biodiversity and function relate in food-webs. We also highlight challenges for the proposed re-introduction, and suggest analyses and experiments to better understand how random biodiversity changes, as studied by classic approaches in B-EF research, contribute to the shifts in function that follow environmental change. PMID:27742415
Kahmen, Ansgar; Perner, Jörg; Audorff, Volker; Weisser, Wolfgang; Buchmann, Nina
2005-02-01
In the past years, a number of studies have used experimental plant communities to test if biodiversity influences ecosystem functioning such as productivity. It has been argued, however, that the results achieved in experimental studies may have little predictive value for species loss in natural ecosystems. Studies in natural ecosystems have been equivocal, mainly because in natural ecosystems differences in diversity are often confounded with differences in land use history or abiotic parameters. In this study, we investigated the effect of plant diversity on ecosystem functioning in semi-natural grasslands. In an area of 10x20 km, we selected 78 sites and tested the effects of various measures of diversity and plant community composition on productivity. We separated the effects of plant diversity on ecosystem functioning from potentially confounding effects of community composition, management or environmental parameters, using multivariate statistical analyses. In the investigated grasslands, simple measures of biodiversity were insignificant predictors of productivity. However, plant community composition explained productivity very well (R2=0.31) and was a better predictor than environmental variables (soil and site characteristics) or management regime. Thus, complex measures such as community composition and structure are important drivers for ecosystem functions in semi-natural grasslands. Furthermore, our data show that it is difficult to extrapolate results from experimental studies to semi-natural ecosystems, although there is a need to investigate natural ecosystems to fully understand the relationship of biodiversity and ecosystem functioning.
How lichens impact on terrestrial community and ecosystem properties.
Asplund, Johan; Wardle, David A
2017-08-01
Lichens occur in most terrestrial ecosystems; they are often present as minor contributors, but in some forests, drylands and tundras they can make up most of the ground layer biomass. As such, lichens dominate approximately 8% of the Earth's land surface. Despite their potential importance in driving ecosystem biogeochemistry, the influence of lichens on community processes and ecosystem functioning have attracted relatively little attention. Here, we review the role of lichens in terrestrial ecosystems and draw attention to the important, but often overlooked role of lichens as determinants of ecological processes. We start by assessing characteristics that vary among lichens and that may be important in determining their ecological role; these include their growth form, the types of photobionts that they contain, their key functional traits, their water-holding capacity, their colour, and the levels of secondary compounds in their thalli. We then assess how these differences among lichens influence their impacts on ecosystem and community processes. As such, we consider the consequences of these differences for determining the impacts of lichens on ecosystem nutrient inputs and fluxes, on the loss of mass and nutrients during lichen thallus decomposition, and on the role of lichenivorous invertebrates in moderating decomposition. We then consider how differences among lichens impact on their interactions with consumer organisms that utilize lichen thalli, and that range in size from microfauna (for which the primary role of lichens is habitat provision) to large mammals (for which lichens are primarily a food source). We then address how differences among lichens impact on plants, through for example increasing nutrient inputs and availability during primary succession, and serving as a filter for plant seedling establishment. Finally we identify areas in need of further work for better understanding the role of lichens in terrestrial ecosystems. These include understanding how the high intraspecific trait variation that characterizes many lichens impacts on community assembly processes and ecosystem functioning, how multiple species mixtures of lichens affect the key community- and ecosystem-level processes that they drive, the extent to which lichens in early succession influence vascular plant succession and ecosystem development in the longer term, and how global change drivers may impact on ecosystem functioning through altering the functional composition of lichen communities. © 2016 Cambridge Philosophical Society.
Environmental proteomics reveals taxonomic and functional changes in an enriched aquatic ecosystem.
Northrop, Amanda C; Brooks, Rachel; Ellison, Aaron M; Gotelli, Nicholas J; Ballif, Bryan A
2017-10-01
Aquatic ecosystem enrichment can lead to distinct and irreversible changes to undesirable states. Understanding changes in active microbial community function and composition following organic-matter loading in enriched ecosystems can help identify biomarkers of such state changes. In a field experiment, we enriched replicate aquatic ecosystems in the pitchers of the northern pitcher plant, Sarracenia purpurea . Shotgun metaproteomics using a custom metagenomic database identified proteins, molecular pathways, and contributing microbial taxa that differentiated control ecosystems from those that were enriched. The number of microbial taxa contributing to protein expression was comparable between treatments; however, taxonomic evenness was higher in controls. Functionally active bacterial composition differed significantly among treatments and was more divergent in control pitchers than enriched pitchers. Aerobic and facultative anaerobic bacteria contributed most to identified proteins in control and enriched ecosystems, respectively. The molecular pathways and contributing taxa in enriched pitcher ecosystems were similar to those found in larger enriched aquatic ecosystems and are consistent with microbial processes occurring at the base of detrital food webs. Detectable differences between protein profiles of enriched and control ecosystems suggest that a time series of environmental proteomics data may identify protein biomarkers of impending state changes to enriched states.
Connectivity, non-random extinction and ecosystem function in experimental metacommunities.
Staddon, Philip; Lindo, Zoë; Crittenden, Peter D; Gilbert, Francis; Gonzalez, Andrew
2010-05-01
The spatial insurance hypothesis indicates that connectivity is an important attribute of natural ecosystems that sustains both biodiversity and ecosystem function. We tested the hypothesis by measuring the impact of manipulating connectivity in experimental metacommunties of a natural and diverse microecosystem. Isolation led to the extinction of large-bodied apex predators, subsequently followed by increases in prey species abundance. This trophic cascade was associated with significantly altered carbon and nitrogen fluxes in fragmented treatments. The ecosystem impacts were characteristic of a function debt because they persisted for several generations after the initial loss of connectivity. Local extinctions and disruption of ecosystem processes were mitigated, and even reversed, by the presence of corridors in the connected metacommunities, although these beneficial effects were unexpectedly delayed. We hypothesized that corridors maintained grazer movement between fragments, which enhanced microbial activity, and decomposition in comparison to isolated fragments. Our results indicate that knowledge of habitat connectivity and spatial processes is essential to understand the magnitude and timing of ecosystem perturbation in fragmented landscapes.
Emmott, Stephen; Hutton, Jon; Lyutsarev, Vassily; Smith, Matthew J.; Scharlemann, Jörn P. W.; Purves, Drew W.
2014-01-01
Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures. PMID:24756001
Harfoot, Michael B J; Newbold, Tim; Tittensor, Derek P; Emmott, Stephen; Hutton, Jon; Lyutsarev, Vassily; Smith, Matthew J; Scharlemann, Jörn P W; Purves, Drew W
2014-04-01
Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures.
Soil ecosystem functioning under climate change: plant species and community effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kardol, Paul; Cregger, Melissa; Campany, Courtney E
2010-01-01
Feedbacks of terrestrial ecosystems to climate change depend on soil ecosystem dynamics. Soil ecosystems can directly and indirectly respond to climate change. For example, warming directly alters microbial communities by increasing their activity. Climate change may also alter plant community composition, thus indirectly altering the microbial communities that feed on their inputs. To better understand how climate change may directly and indirectly alter soil ecosystem functioning, we investigated old-field plant community and soil ecosystem responses to single and combined effects of elevated [CO2], warming, and water availability. Specifically, we collected soils at the plot level (plant community soils), and beneathmore » dominant plant species (plant-specific soils). We used microbial enzyme activities and soil nematodes as indicators for soil ecosystem functioning. Our study resulted in two main findings: 1) Overall, while there were some interactions, water, relative to increases in [CO2] and warming, had the largest impact on plant community composition, soil enzyme activities, and soil nematodes. Multiple climate change factors can interact to shape ecosystems, but in this case, those interactions were largely driven by changes in water availability. 2) Indirect effects of climate change, via changes in plant communities, had a significant impact on soil ecosystem functioning and this impact was not obvious when looking at plant community soils. Climate change effects on enzyme activities and soil nematode abundance and community structure strongly differed between plant community soils and plant-specific soils, but also within plant-specific soils. In sum, these results indicate that accurate assessments of climate change impacts on soil ecosystem functioning require incorporating the concurrent changes in plant function and plant community composition. Climate change-induced shifts in plant community composition will likely modify or counteract the direct impact of climate change on soil ecosystem functioning, and hence, these indirect effects should be taken into account when predicting how climate change will alter ecosystem functioning.« less
Soil ecosystem functioning under climate change: plant species and community effects.
Kardol, Paul; Cregger, Melissa A; Campany, Courtney E; Classen, Aimee T
2010-03-01
Feedbacks of terrestrial ecosystems to atmospheric and climate change depend on soil ecosystem dynamics. Soil ecosystems can directly and indirectly respond to climate change. For example, warming directly alters microbial communities by increasing their activity. Climate change may also alter plant community composition, thus indirectly altering the soil communities that depend on their inputs. To better understand how climate change may directly and indirectly alter soil ecosystem functioning, we investigated old-field plant community and soil ecosystem responses to single and combined effects of elevated [CO2], warming, and precipitation in Tennessee (USA). Specifically, we collected soils at the plot level (plant community soils) and beneath dominant plant species (plant-specific soils). We used microbial enzyme activities and soil nematodes as indicators for soil ecosystem functioning. Our study resulted in two main findings: (1) Overall, while there were some interactions, water, relative to increases in [CO2] and warming, had the largest impact on plant community composition, soil enzyme activity, and soil nematodes. Multiple climate-change factors can interact to shape ecosystems, but in our study, those interactions were largely driven by changes in water. (2) Indirect effects of climate change, via changes in plant communities, had a significant impact on soil ecosystem functioning, and this impact was not obvious when looking at plant community soils. Climate-change effects on enzyme activities and soil nematode abundance and community structure strongly differed between plant community soils and plant-specific soils, but also within plant-specific soils. These results indicate that accurate assessments of climate-change impacts on soil ecosystem functioning require incorporating the concurrent changes in plant function and plant community composition. Climate-change-induced shifts in plant community composition will likely modify or counteract the direct impact of atmospheric and climate change on soil ecosystem functioning, and hence, these indirect effects should be taken into account when predicting the manner in which global change will alter ecosystem functioning.
UNDERSTANDING PLANT-SOIL RELATIONSHIPS USING CONTROLLED ENVIRONMENT FACILITIES
Although soil is a component of terrestrial ecosystems, it is comprised of a complex web of interacting organisms, and therefore, can be considered itself as an ecosystem. Soil microflora and fauna derive energy from plants and plant residues and serve important functions in mai...
NASA Astrophysics Data System (ADS)
Dronova, I.; Taddeo, S.; Foster, K.
2017-12-01
Projecting ecosystem responses to global change relies on the accurate understanding of properties governing their functions in different environments. An important variable in models of ecosystem function is canopy leaf area index (LAI; leaf area per unit ground area) declared as one of the Essential Climate Variables in the Global Climate Observing System and extensively measured in terrestrial landscapes. However, wetlands have been largely under-represented in these efforts, which globally limits understanding of their contribution to carbon sequestration, climate regulation and resilience to natural and anthropogenic disturbances. This study provides a global synthesis of >350 wetland-specific LAI observations from 182 studies and compares LAI among wetland ecosystem and vegetation types, biomes and measurement approaches. Results indicate that most wetland types and even individual locations show a substantial local dispersion of LAI values (average coefficient of variation 65%) due to heterogeneity of environmental properties and vegetation composition. Such variation indicates that mean LAI values may not sufficiently represent complex wetland environments, and the use of this index in ecosystem function models needs to incorporate within-site variation in canopy properties. Mean LAI did not significantly differ between direct and indirect measurement methods on a pooled global sample; however, within some of the specific biomes and wetland types significant contrasts between these approaches were detected. These contrasts highlight unique aspects of wetland vegetation physiology and canopy structure affecting measurement principles that need to be considered in generalizing canopy properties in ecosystem models. Finally, efforts to assess wetland LAI using remote sensing strongly indicate the promise of this technology for cost-effective regional-scale modeling of canopy properties similar to terrestrial systems. However, such efforts urgently require more rigorous corrections for three-dimensional contributions of non-canopy material and non-vegetated surfaces to wetland canopy reflectance.
Donald C. Buso; Gene E. Likens; John S. Eaton
2000-01-01
The Hubbard Brook Ecosystem Study (HBES), begun in 1963, is a long-term effort to understand the structure, function and change in forest watersheds and associated aquatic ecosystems at the Hubbard Brook Experimental Forest in New Hampshire. Chemical analyses of streamwater and precipitation collections began in 1963, and analyses of lakewater collections began in 1967...
Great Lakes rivermouth ecosystems: scientific synthesis and management implications
Larson, James H.; Trebitz, Anett S.; Steinman, Alan D.; Wiley, Michael J.; Carlson Mazur, Martha; Pebbles, Victoria; Braun, Heather A.; Seelbach, Paul W.
2013-01-01
At the interface of the Great Lakes and their tributary rivers lies the rivermouths, a class of aquatic ecosystem where lake and lotic processes mix and distinct features emerge. Many rivermouths are the focal point of both human interaction with the Great Lakes and human impacts to the lakes; many cities, ports, and beaches are located in rivermouth ecosystems, and these human pressures often degrade key ecological functions that rivermouths provide. Despite their ecological uniqueness and apparent economic importance, there has been relatively little research on these ecosystems as a class relative to studies on upstream rivers or the open-lake waters. Here we present a synthesis of current knowledge about ecosystem structure and function in Great Lakes rivermouths based on studies in both Laurentian rivermouths, coastal wetlands, and marine estuarine systems. A conceptual model is presented that establishes a common semantic framework for discussing the characteristic spatial features of rivermouths. This model then is used to conceptually link ecosystem structure and function to ecological services provided by rivermouths. This synthesis helps identify the critical gaps in understanding rivermouth ecology. Specifically, additional information is needed on how rivermouths collectively influence the Great Lakes ecosystem, how human alterations influence rivermouth functions, and how ecosystem services provided by rivermouths can be managed to benefit the surrounding socioeconomic networks.
Rare Species Support Vulnerable Functions in High-Diversity Ecosystems
Mouillot, David; Bellwood, David R.; Baraloto, Christopher; Chave, Jerome; Galzin, Rene; Harmelin-Vivien, Mireille; Kulbicki, Michel; Lavergne, Sebastien; Lavorel, Sandra; Mouquet, Nicolas; Paine, C. E. Timothy; Renaud, Julien; Thuiller, Wilfried
2013-01-01
Around the world, the human-induced collapses of populations and species have triggered a sixth mass extinction crisis, with rare species often being the first to disappear. Although the role of species diversity in the maintenance of ecosystem processes has been widely investigated, the role of rare species remains controversial. A critical issue is whether common species insure against the loss of functions supported by rare species. This issue is even more critical in species-rich ecosystems where high functional redundancy among species is likely and where it is thus often assumed that ecosystem functioning is buffered against species loss. Here, using extensive datasets of species occurrences and functional traits from three highly diverse ecosystems (846 coral reef fishes, 2,979 alpine plants, and 662 tropical trees), we demonstrate that the most distinct combinations of traits are supported predominantly by rare species both in terms of local abundance and regional occupancy. Moreover, species that have low functional redundancy and are likely to support the most vulnerable functions, with no other species carrying similar combinations of traits, are rarer than expected by chance in all three ecosystems. For instance, 63% and 98% of fish species that are likely to support highly vulnerable functions in coral reef ecosystems are locally and regionally rare, respectively. For alpine plants, 32% and 89% of such species are locally and regionally rare, respectively. Remarkably, 47% of fish species and 55% of tropical tree species that are likely to support highly vulnerable functions have only one individual per sample on average. Our results emphasize the importance of rare species conservation, even in highly diverse ecosystems, which are thought to exhibit high functional redundancy. Rare species offer more than aesthetic, cultural, or taxonomic diversity value; they disproportionately increase the potential breadth of functions provided by ecosystems across spatial scales. As such, they are likely to insure against future uncertainty arising from climate change and the ever-increasing anthropogenic pressures on ecosystems. Our results call for a more detailed understanding of the role of rarity and functional vulnerability in ecosystem functioning. PMID:23723735
Rare species support vulnerable functions in high-diversity ecosystems.
Mouillot, David; Bellwood, David R; Baraloto, Christopher; Chave, Jerome; Galzin, Rene; Harmelin-Vivien, Mireille; Kulbicki, Michel; Lavergne, Sebastien; Lavorel, Sandra; Mouquet, Nicolas; Paine, C E Timothy; Renaud, Julien; Thuiller, Wilfried
2013-01-01
Around the world, the human-induced collapses of populations and species have triggered a sixth mass extinction crisis, with rare species often being the first to disappear. Although the role of species diversity in the maintenance of ecosystem processes has been widely investigated, the role of rare species remains controversial. A critical issue is whether common species insure against the loss of functions supported by rare species. This issue is even more critical in species-rich ecosystems where high functional redundancy among species is likely and where it is thus often assumed that ecosystem functioning is buffered against species loss. Here, using extensive datasets of species occurrences and functional traits from three highly diverse ecosystems (846 coral reef fishes, 2,979 alpine plants, and 662 tropical trees), we demonstrate that the most distinct combinations of traits are supported predominantly by rare species both in terms of local abundance and regional occupancy. Moreover, species that have low functional redundancy and are likely to support the most vulnerable functions, with no other species carrying similar combinations of traits, are rarer than expected by chance in all three ecosystems. For instance, 63% and 98% of fish species that are likely to support highly vulnerable functions in coral reef ecosystems are locally and regionally rare, respectively. For alpine plants, 32% and 89% of such species are locally and regionally rare, respectively. Remarkably, 47% of fish species and 55% of tropical tree species that are likely to support highly vulnerable functions have only one individual per sample on average. Our results emphasize the importance of rare species conservation, even in highly diverse ecosystems, which are thought to exhibit high functional redundancy. Rare species offer more than aesthetic, cultural, or taxonomic diversity value; they disproportionately increase the potential breadth of functions provided by ecosystems across spatial scales. As such, they are likely to insure against future uncertainty arising from climate change and the ever-increasing anthropogenic pressures on ecosystems. Our results call for a more detailed understanding of the role of rarity and functional vulnerability in ecosystem functioning.
NASA Astrophysics Data System (ADS)
Wang, Shaoqiang
2014-05-01
Evidence is mounting that an increase in extreme climate events has begun to occur worldwide during the recent decades, which affect biosphere function and biodiversity. Ecosystems returned to its original structures and functions to maintain its sustainability, which was closely dependent on ecosystem resilience. Understanding the resilience and recovery capacity of ecosystem to extreme climate events is essential to predicting future ecosystem responses to climate change. Given the overwhelming importance of this region in the overall carbon cycle of forest ecosystems in China, south China suffered a destructive ice storm in 2008. In this study, we used the number of freezing day and a process-based model (Boreal Ecosystem Productivity Simulator, BEPS) to characterize the spatial distribution of ice storm region in southeastern China and explore the impacts on carbon cycle of forest ecosystem over the past decade. The ecosystem variables, i.e. Net primary productivity (NPP), Evapotranspiration (ET), and Water use efficiency (WUE, the ratio of NPP to ET) from the outputs of BEPS models were used to detect the resistance and resilience of forest ecosystem in southern China. The pattern of ice storm-induced forest productivity widespread decline was closely related to the number of freezing day during the ice storm period. The NPP of forest area suffered heavy ice storm returned to normal status after five months with high temperature and ample moisture, indicated a high resilience of subtropical forest in China. The long-term changes of forest WUE remain stable, behaving an inherent sensitivity of ecosystem to extreme climate events. In addition, ground visits suggested that the recovery of forest productivity was attributed to rapid growth of understory. Understanding the variability and recovery threshold of ecosystem following extreme climate events help us to better simulate and predict the variability of ecosystem structure and function under current and future climate change.
USDA-ARS?s Scientific Manuscript database
Understanding and predicting ecosystem functioning in water limited ecosystems requires a thorough assessment of the role plant root systems. Widespread ecological phenomena such as shrub encroachment may drastically change root distribution in the soil profile affecting the uptake of water and nutr...
Reintroducing Environmental Change Drivers in Biodiversity-Ecosystem Functioning Research.
De Laender, Frederik; Rohr, Jason R; Ashauer, Roman; Baird, Donald J; Berger, Uta; Eisenhauer, Nico; Grimm, Volker; Hommen, Udo; Maltby, Lorraine; Meliàn, Carlos J; Pomati, Francesco; Roessink, Ivo; Radchuk, Viktoriia; Van den Brink, Paul J
2016-12-01
For the past 20 years, research on biodiversity and ecosystem functioning (B-EF) has only implicitly considered the underlying role of environmental change. We illustrate that explicitly reintroducing environmental change drivers in B-EF research is needed to predict the functioning of ecosystems facing changes in biodiversity. Next we show how this reintroduction improves experimental control over community composition and structure, which helps to provide mechanistic insight on how multiple aspects of biodiversity relate to function and how biodiversity and function relate in food webs. We also highlight challenges for the proposed reintroduction and suggest analyses and experiments to better understand how random biodiversity changes, as studied by classic approaches in B-EF research, contribute to the shifts in function that follow environmental change. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Revisiting the Holy Grail: using plant functional traits to understand ecological processes.
Funk, Jennifer L; Larson, Julie E; Ames, Gregory M; Butterfield, Bradley J; Cavender-Bares, Jeannine; Firn, Jennifer; Laughlin, Daniel C; Sutton-Grier, Ariana E; Williams, Laura; Wright, Justin
2017-05-01
One of ecology's grand challenges is developing general rules to explain and predict highly complex systems. Understanding and predicting ecological processes from species' traits has been considered a 'Holy Grail' in ecology. Plant functional traits are increasingly being used to develop mechanistic models that can predict how ecological communities will respond to abiotic and biotic perturbations and how species will affect ecosystem function and services in a rapidly changing world; however, significant challenges remain. In this review, we highlight recent work and outstanding questions in three areas: (i) selecting relevant traits; (ii) describing intraspecific trait variation and incorporating this variation into models; and (iii) scaling trait data to community- and ecosystem-level processes. Over the past decade, there have been significant advances in the characterization of plant strategies based on traits and trait relationships, and the integration of traits into multivariate indices and models of community and ecosystem function. However, the utility of trait-based approaches in ecology will benefit from efforts that demonstrate how these traits and indices influence organismal, community, and ecosystem processes across vegetation types, which may be achieved through meta-analysis and enhancement of trait databases. Additionally, intraspecific trait variation and species interactions need to be incorporated into predictive models using tools such as Bayesian hierarchical modelling. Finally, existing models linking traits to community and ecosystem processes need to be empirically tested for their applicability to be realized. © 2016 Cambridge Philosophical Society.
García-Palacios, Pablo; Vandegehuchte, Martijn L; Shaw, E Ashley; Dam, Marie; Post, Keith H; Ramirez, Kelly S; Sylvain, Zachary A; de Tomasel, Cecilia Milano; Wall, Diana H
2015-04-01
In recent years, there has been an increase in research to understand how global changes' impacts on soil biota translate into altered ecosystem functioning. However, results vary between global change effects, soil taxa, and ecosystem processes studied, and a synthesis of relationships is lacking. Therefore, here we initiate such a synthesis to assess whether the effect size of global change drivers (elevated CO2, N deposition, and warming) on soil microbial abundance is related with the effect size of these drivers on ecosystem functioning (plant biomass, soil C cycle, and soil N cycle) using meta-analysis and structural equation modeling. For N deposition and warming, the global change effect size on soil microbes was positively associated with the global change effect size on ecosystem functioning, and these relationships were consistent across taxa and ecosystem processes. However, for elevated CO2, such links were more taxon and ecosystem process specific. For example, fungal abundance responses to elevated CO2 were positively correlated with those of plant biomass but negatively with those of the N cycle. Our results go beyond previous assessments of the sensitivity of soil microbes and ecosystem processes to global change, and demonstrate the existence of general links between the responses of soil microbial abundance and ecosystem functioning. Further we identify critical areas for future research, specifically altered precipitation, soil fauna, soil community composition, and litter decomposition, that are need to better quantify the ecosystem consequences of global change impacts on soil biodiversity. © 2014 John Wiley & Sons Ltd.
Andrew R. Neill; Klaus J. Puettmann; Adrian Ares
2013-01-01
To understand the impacts of overstory density reductions on resilience of forest ecosystems (i.e., the capacity of an ecosystem to maintain desired ecosystem functions in a fl uctuating environment), we examined overstory basal area and understory vegetation cover and richness collected 6 years after thinning in seven 40- to 60-year-old forests dominated by Douglas-fi...
A quantitative assessment of a terrestrial biosphere model's data needs across North American biomes
NASA Astrophysics Data System (ADS)
Dietze, Michael C.; Serbin, Shawn P.; Davidson, Carl; Desai, Ankur R.; Feng, Xiaohui; Kelly, Ryan; Kooper, Rob; LeBauer, David; Mantooth, Joshua; McHenry, Kenton; Wang, Dan
2014-03-01
Terrestrial biosphere models are designed to synthesize our current understanding of how ecosystems function, test competing hypotheses of ecosystem function against observations, and predict responses to novel conditions such as those expected under climate change. Reducing uncertainties in such models can improve both basic scientific understanding and our predictive capacity, but rarely are ecosystem models employed in the design of field campaigns. We provide a synthesis of carbon cycle uncertainty analyses conducted using the Predictive Ecosystem Analyzer ecoinformatics workflow with the Ecosystem Demography model v2. This work is a synthesis of multiple projects, using Bayesian data assimilation techniques to incorporate field data and trait databases across temperate forests, grasslands, agriculture, short rotation forestry, boreal forests, and tundra. We report on a number of data needs that span a wide array of diverse biomes, such as the need for better constraint on growth respiration, mortality, stomatal conductance, and water uptake. We also identify data needs that are biome specific, such as photosynthetic quantum efficiency at high latitudes. We recommend that future data collection efforts balance the bias of past measurements toward aboveground processes in temperate biomes with the sensitivities of different processes as represented by ecosystem models. ©2014. American Geophysical Union. All Rights Reserved.
Estimating value of estuarine habitat to human beneficiaries requires that we understand how habitat alteration impacts function through both production and delivery of ecosystem goods and services (EGS). Here we expand on the habitat valuation technique of Bell (1997) with an es...
USDA-ARS?s Scientific Manuscript database
-A long-standing ambition in ecosystem science has been to understand the relationship between ecosystem community composition, structure and function. Differential water use and hydraulic redistribution have been proposed as one mechanism that might allow for the coexistence of overstory woody plan...
Identifying Thresholds for Ecosystem-Based Management
Samhouri, Jameal F.; Levin, Phillip S.; Ainsworth, Cameron H.
2010-01-01
Background One of the greatest obstacles to moving ecosystem-based management (EBM) from concept to practice is the lack of a systematic approach to defining ecosystem-level decision criteria, or reference points that trigger management action. Methodology/Principal Findings To assist resource managers and policymakers in developing EBM decision criteria, we introduce a quantitative, transferable method for identifying utility thresholds. A utility threshold is the level of human-induced pressure (e.g., pollution) at which small changes produce substantial improvements toward the EBM goal of protecting an ecosystem's structural (e.g., diversity) and functional (e.g., resilience) attributes. The analytical approach is based on the detection of nonlinearities in relationships between ecosystem attributes and pressures. We illustrate the method with a hypothetical case study of (1) fishing and (2) nearshore habitat pressure using an empirically-validated marine ecosystem model for British Columbia, Canada, and derive numerical threshold values in terms of the density of two empirically-tractable indicator groups, sablefish and jellyfish. We also describe how to incorporate uncertainty into the estimation of utility thresholds and highlight their value in the context of understanding EBM trade-offs. Conclusions/Significance For any policy scenario, an understanding of utility thresholds provides insight into the amount and type of management intervention required to make significant progress toward improved ecosystem structure and function. The approach outlined in this paper can be applied in the context of single or multiple human-induced pressures, to any marine, freshwater, or terrestrial ecosystem, and should facilitate more effective management. PMID:20126647
Tomas, Fiona; Martínez-Crego, Begoña; Hernán, Gema; Santos, Rui
2015-11-01
Coastal communities are under threat from many and often co-occurring local (e.g., pollution, eutrophication) and global stressors (e.g., climate change), yet understanding the interactive and cumulative impacts of multiple stressors in ecosystem function is far from being accomplished. Ecological redundancy may be key for ecosystem resilience, but there are still many gaps in our understanding of interspecific differences within a functional group, particularly regarding response diversity, that is, whether members of a functional group respond equally or differently to anthropogenic stressors. Herbivores are critical in determining plant community structure and the transfer of energy up the food web. Human disturbances may alter the ecological role of herbivory by modifying the defense strategies of plants and thus the feeding patterns and performance of herbivores. We conducted a suite of experiments to examine the independent and interactive effects of anthropogenic (nutrient and CO2 additions) and natural (simulated herbivory) disturbances on a seagrass and its interaction with two common generalist consumers to understand how multiple disturbances can impact both a foundation species and a key ecological function (herbivory) and to assess the potential existence of response diversity to anthropogenic and natural changes in these systems. While all three disturbances modified seagrass defense traits, there were contrasting responses of herbivores to such plant changes. Both CO2 and nutrient additions influenced herbivore feeding behavior, yet while sea urchins preferred nutrient-enriched seagrass tissue (regardless of other experimental treatments), isopods were deterred by these same plant tissues. In contrast, carbon enrichment deterred sea urchins and attracted isopods, while simulated herbivory only influenced isopod feeding choice. These contrasting responses of herbivores to disturbance-induced changes in seagrass help to better understand the ecological functioning of seagrass ecosystems in the face of human disturbances and may have important implications regarding the resilience and conservation of these threatened ecosystems. © 2015 John Wiley & Sons Ltd.
Systems biology approach to bioremediation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Romy; Wu, Cindy H.; Hazen, Terry C.
2012-06-01
Bioremediation has historically been approached as a ‘black box’ in terms of our fundamental understanding. Thus it succeeds and fails, seldom without a complete understanding of why. Systems biology is an integrated research approach to study complex biological systems, by investigating interactions and networks at the molecular, cellular, community, and ecosystem level. The knowledge of these interactions within individual components is fundamental to understanding the dynamics of the ecosystem under investigation. Finally, understanding and modeling functional microbial community structure and stress responses in environments at all levels have tremendous implications for our fundamental understanding of hydrobiogeochemical processes and the potentialmore » for making bioremediation breakthroughs and illuminating the ‘black box’.« less
Confronting the coral reef crisis.
Bellwood, D R; Hughes, T P; Folke, C; Nyström, M
2004-06-24
The worldwide decline of coral reefs calls for an urgent reassessment of current management practices. Confronting large-scale crises requires a major scaling-up of management efforts based on an improved understanding of the ecological processes that underlie reef resilience. Managing for improved resilience, incorporating the role of human activity in shaping ecosystems, provides a basis for coping with uncertainty, future changes and ecological surprises. Here we review the ecological roles of critical functional groups (for both corals and reef fishes) that are fundamental to understanding resilience and avoiding phase shifts from coral dominance to less desirable, degraded ecosystems. We identify striking biogeographic differences in the species richness and composition of functional groups, which highlight the vulnerability of Caribbean reef ecosystems. These findings have profound implications for restoration of degraded reefs, management of fisheries, and the focus on marine protected areas and biodiversity hotspots as priorities for conservation.
Placing biodiversity in ecosystem models without getting lost in translation
NASA Astrophysics Data System (ADS)
Queirós, Ana M.; Bruggeman, Jorn; Stephens, Nicholas; Artioli, Yuri; Butenschön, Momme; Blackford, Jeremy C.; Widdicombe, Stephen; Allen, J. Icarus; Somerfield, Paul J.
2015-04-01
A key challenge to progressing our understanding of biodiversity's role in the sustenance of ecosystem function is the extrapolation of the results of two decades of dedicated empirical research to regional, global and future landscapes. Ecosystem models provide a platform for this progression, potentially offering a holistic view of ecosystems where, guided by the mechanistic understanding of processes and their connection to the environment and biota, large-scale questions can be investigated. While the benefits of depicting biodiversity in such models are widely recognized, its application is limited by difficulties in the transfer of knowledge from small process oriented ecology into macro-scale modelling. Here, we build on previous work, breaking down key challenges of that knowledge transfer into a tangible framework, highlighting successful strategies that both modelling and ecology communities have developed to better interact with one another. We use a benthic and a pelagic case-study to illustrate how aspects of the links between biodiversity and ecosystem process have been depicted in marine ecosystem models (ERSEM and MIRO), from data, to conceptualisation and model development. We hope that this framework may help future interactions between biodiversity researchers and model developers by highlighting concrete solutions to common problems, and in this way contribute to the advance of the mechanistic understanding of the role of biodiversity in marine (and terrestrial) ecosystems.
Resilience and stability of a pelagic marine ecosystem
Lindegren, Martin; Checkley, David M.; Ohman, Mark D.; Koslow, J. Anthony; Goericke, Ralf
2016-01-01
The accelerating loss of biodiversity and ecosystem services worldwide has accentuated a long-standing debate on the role of diversity in stabilizing ecological communities and has given rise to a field of research on biodiversity and ecosystem functioning (BEF). Although broad consensus has been reached regarding the positive BEF relationship, a number of important challenges remain unanswered. These primarily concern the underlying mechanisms by which diversity increases resilience and community stability, particularly the relative importance of statistical averaging and functional complementarity. Our understanding of these mechanisms relies heavily on theoretical and experimental studies, yet the degree to which theory adequately explains the dynamics and stability of natural ecosystems is largely unknown, especially in marine ecosystems. Using modelling and a unique 60-year dataset covering multiple trophic levels, we show that the pronounced multi-decadal variability of the Southern California Current System (SCCS) does not represent fundamental changes in ecosystem functioning, but a linear response to key environmental drivers channelled through bottom-up and physical control. Furthermore, we show strong temporal asynchrony between key species or functional groups within multiple trophic levels caused by opposite responses to these drivers. We argue that functional complementarity is the primary mechanism reducing community variability and promoting resilience and stability in the SCCS. PMID:26763697
Madin, Elizabeth M. P.; Gaines, Steven D.; Madin, Joshua S.; Link, Anne-Katrin; Lubchenco, Peggy J.; Selden, Rebecca L.; Warner, Robert R.
2012-01-01
Efforts to restore top predators in human-altered systems raise the question of whether rebounds in predator populations are sufficient to restore pristine foodweb dynamics. Ocean ecosystems provide an ideal system to test this question. Removal of fishing in marine reserves often reverses declines in predator densities and size. However, whether this leads to restoration of key functional characteristics of foodwebs, especially prey foraging behavior, is unclear. The question of whether restored and pristine foodwebs function similarly is nonetheless critically important for management and restoration efforts. We explored this question in light of one important determinant of ecosystem function and structure – herbivorous prey foraging behavior. We compared these responses for two functionally distinct herbivorous prey fishes (the damselfish Plectroglyphidodon dickii and the parrotfish Chlorurus sordidus) within pairs of coral reefs in pristine and restored ecosystems in two regions of these species' biogeographic ranges, allowing us to quantify the magnitude and temporal scale of this key ecosystem variable's recovery. We demonstrate that restoration of top predator abundances also restored prey foraging excursion behaviors to a condition closely resembling those of a pristine ecosystem. Increased understanding of behavioral aspects of ecosystem change will greatly improve our ability to predict the cascading consequences of conservation tools aimed at ecological restoration, such as marine reserves. PMID:22403650
Asynchrony among local communities stabilises ecosystem function of metacommunities.
Wilcox, Kevin R; Tredennick, Andrew T; Koerner, Sally E; Grman, Emily; Hallett, Lauren M; Avolio, Meghan L; La Pierre, Kimberly J; Houseman, Gregory R; Isbell, Forest; Johnson, David Samuel; Alatalo, Juha M; Baldwin, Andrew H; Bork, Edward W; Boughton, Elizabeth H; Bowman, William D; Britton, Andrea J; Cahill, James F; Collins, Scott L; Du, Guozhen; Eskelinen, Anu; Gough, Laura; Jentsch, Anke; Kern, Christel; Klanderud, Kari; Knapp, Alan K; Kreyling, Juergen; Luo, Yiqi; McLaren, Jennie R; Megonigal, Patrick; Onipchenko, Vladimir; Prevéy, Janet; Price, Jodi N; Robinson, Clare H; Sala, Osvaldo E; Smith, Melinda D; Soudzilovskaia, Nadejda A; Souza, Lara; Tilman, David; White, Shannon R; Xu, Zhuwen; Yahdjian, Laura; Yu, Qiang; Zhang, Pengfei; Zhang, Yunhai
2017-12-01
Temporal stability of ecosystem functioning increases the predictability and reliability of ecosystem services, and understanding the drivers of stability across spatial scales is important for land management and policy decisions. We used species-level abundance data from 62 plant communities across five continents to assess mechanisms of temporal stability across spatial scales. We assessed how asynchrony (i.e. different units responding dissimilarly through time) of species and local communities stabilised metacommunity ecosystem function. Asynchrony of species increased stability of local communities, and asynchrony among local communities enhanced metacommunity stability by a wide range of magnitudes (1-315%); this range was positively correlated with the size of the metacommunity. Additionally, asynchronous responses among local communities were linked with species' populations fluctuating asynchronously across space, perhaps stemming from physical and/or competitive differences among local communities. Accordingly, we suggest spatial heterogeneity should be a major focus for maintaining the stability of ecosystem services at larger spatial scales. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Wieder, William R.; Knowles, John F.; Blanken, Peter D.; Swenson, Sean C.; Suding, Katharine N.
2017-04-01
Abiotic factors structure plant community composition and ecosystem function across many different spatial scales. Often, such variation is considered at regional or global scales, but here we ask whether ecosystem-scale simulations can be used to better understand landscape-level variation that might be particularly important in complex terrain, such as high-elevation mountains. We performed ecosystem-scale simulations by using the Community Land Model (CLM) version 4.5 to better understand how the increased length of growing seasons may impact carbon, water, and energy fluxes in an alpine tundra landscape. The model was forced with meteorological data and validated with observations from the Niwot Ridge Long Term Ecological Research Program site. Our results demonstrate that CLM is capable of reproducing the observed carbon, water, and energy fluxes for discrete vegetation patches across this heterogeneous ecosystem. We subsequently accelerated snowmelt and increased spring and summer air temperatures in order to simulate potential effects of climate change in this region. We found that vegetation communities that were characterized by different snow accumulation dynamics showed divergent biogeochemical responses to a longer growing season. Contrary to expectations, wet meadow ecosystems showed the strongest decreases in plant productivity under extended summer scenarios because of disruptions in hydrologic connectivity. These findings illustrate how Earth system models such as CLM can be used to generate testable hypotheses about the shifting nature of energy, water, and nutrient limitations across space and through time in heterogeneous landscapes; these hypotheses may ultimately guide further experimental work and model development.
Biodiversity of arbuscular mycorrhizal fungi and ecosystem function.
Powell, Jeff R; Rillig, Matthias C
2018-03-30
Contents Summary I. pathways of influence and pervasiveness of effects II. AM fungal richness effects on ecosystem functions III. Other dimensions of biodiversity IV. Back to basics - primary axes of niche differentiation by AM fungi V. Functional diversity of AM fungi - a role for biological stoichiometry? VI. Past, novel and future ecosystems VII. Opportunities and the way forward Acknowledgements References SUMMARY: Arbuscular mycorrhizal (AM) fungi play important functional roles in ecosystems, including the uptake and transfer of nutrients, modification of the physical soil environment and alteration of plant interactions with other biota. Several studies have demonstrated the potential for variation in AM fungal diversity to also affect ecosystem functioning, mainly via effects on primary productivity. Diversity in these studies is usually characterized in terms of the number of species, unique evolutionary lineages or complementary mycorrhizal traits, as well as the ability of plants to discriminate among AM fungi in space and time. However, the emergent outcomes of these relationships are usually indirect, and thus context dependent, and difficult to predict with certainty. Here, we advocate a fungal-centric view of AM fungal biodiversity-ecosystem function relationships that focuses on the direct and specific links between AM fungal fitness and consequences for their roles in ecosystems, especially highlighting functional diversity in hyphal resource economics. We conclude by arguing that an understanding of AM fungal functional diversity is fundamental to determine whether AM fungi have a role in the exploitation of marginal/novel environments (whether past, present or future) and highlight avenues for future research. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Barrio, I. C.; Hik, D. S.; Jónsdóttir, I. S.; Bueno, C. G.; Mörsdorf, M. A.; Ravolainen, V. T.
2016-09-01
Plant-herbivore interactions are central to the functioning of tundra ecosystems, but their outcomes vary over space and time. Accurate forecasting of ecosystem responses to ongoing environmental changes requires a better understanding of the processes responsible for this heterogeneity. To effectively address this complexity at a global scale, coordinated research efforts, including multi-site comparisons within and across disciplines, are needed. The Herbivory Network was established as a forum for researchers from Arctic and alpine regions to collaboratively investigate the multifunctional role of herbivores in these changing ecosystems. One of the priorities is to integrate sites, methodologies, and metrics used in previous work, to develop a set of common protocols and design long-term geographically-balanced, coordinated experiments. The implementation of these collaborative research efforts will also improve our understanding of traditional human-managed systems that encompass significant portions of the sub-Arctic and alpine areas worldwide. A deeper understanding of the role of herbivory in these systems under ongoing environmental changes will guide appropriate adaptive strategies to preserve their natural values and related ecosystem services.
Assessing the effects of large mobile predators on ecosystem connectivity.
McCauley, Douglas J; Young, Hillary S; Dunbar, Robert B; Estes, James A; Semmens, Brice X; Micheli, Fiorenza
2012-09-01
Large predators are often highly mobile and can traverse and use multiple habitats. We know surprisingly little about how predator mobility determines important processes of ecosystem connectivity. Here we used a variety of data sources drawn from Palmyra Atoll, a remote tropical marine ecosystem where large predators remain in high abundance, to investigate how these animals foster connectivity. Our results indicate that three of Palmyra's most abundant large predators (e.g., two reef sharks and one snapper) use resources from different habitats creating important linkages across ecosystems. Observations of cross-system foraging such as this have important implications for the understanding of ecosystem functioning, the management of large-predator populations, and the design of conservation measures intended to protect whole ecosystems. In the face of widespread declines of large, mobile predators, it is important that resource managers, policy makers, and ecologists work to understand how these predators create connectivity and to determine the impact that their depletions may be having on the integrity of these linkages.
The role of palaeoecological records in assessing ecosystem services
NASA Astrophysics Data System (ADS)
Jeffers, Elizabeth S.; Nogué, Sandra; Willis, Katherine J.
2015-03-01
Biological conservation and environmental management are increasingly focussing on the preservation and restoration of ecosystem services (i.e. the benefits that humans receive from the natural functioning of healthy ecosystems). Over the past decade there has been a rapid increase in the number of palaeoecological studies that have contributed to conservation of biodiversity and management of ecosystem processes; however, there are relatively few instances in which attempts have been made to estimate the continuity of ecosystem goods and services over time. How resistant is an ecosystem service to environmental perturbations? And, if damaged, how long it does it take an ecosystem service to recover? Both questions are highly relevant to conservation and management of landscapes that are important for ecosystem service provision and require an in-depth understanding of the way ecosystems function in space and time. An understanding of time is particularly relevant for those ecosystem services - be they supporting, provisioning, regulating or cultural services that involve processes that vary over a decadal (or longer) timeframe. Most trees, for example, have generation times >50 years. Understanding the response of forested ecosystems to environmental perturbations and therefore the continuity of the ecosystem services they provide for human well-being - be it for example, carbon draw-down (regulating service) or timber (provisioning service) - requires datasets that reflect the typical replacement rates in these systems and the lifecycle of processes that alter their trajectories of change. Therefore, data are required that span decadal to millennial time-scales. Very rarely, however, is this information available from neo-ecological datasets and in many ecosystem service assessments, this lack of a temporal record is acknowledged as a significant information gap. This review aims to address this knowledge gap by examining the type and nature of palaeoecological datasets that might be critical to assessing the persistence of ecosystem services across a variety of time scales. Specifically we examine the types of palaeoecological records that can inform on the dynamics of ecosystem processes and services over time - and their response to complex environmental changes. We focus on three key areas: a) exploring the suitability of palaeoecological records for examining variability in space and time of ecosystem processes; b) using palaeoecological data to determine the resilience and persistence of ecosystem services and goods over time in response to drivers of change; and c) how best to translate raw palaeoecological data into the relevant currencies required for ecosystem service assessments.
Sircely, Jason; Naeem, Shahid
2012-01-01
Recent studies indicate that species richness can enhance the ability of plant assemblages to support multiple ecosystem functions. To understand how and when ecosystem services depend on biodiversity, it is valuable to expand beyond experimental grasslands. We examined whether plant diversity improves the capacity of agroecosystems to sustain multiple ecosystem services—production of wood and forage, and two elements of soil formation—in two types of smallholder fallows in western Kenya. In 18 grazed and 21 improved fallows, we estimated biomass and quantified soil organic carbon, soil base cations, sand content, and soil infiltration capacity. For four ecosystem functions (wood biomass, forage biomass, soil base cations, steady infiltration rates) linked to the focal ecosystem services, we quantified ecosystem service multi-functionality as (1) the proportion of functions above half-maximum, and (2) mean percentage excess above mean function values, and assessed whether plant diversity or environmental favorability better predicted multi-functionality. In grazed fallows, positive effects of plant diversity best explained the proportion above half-maximum and mean percentage excess, the former also declining with grazing intensity. In improved fallows, the proportion above half-maximum was not associated with soil carbon or plant diversity, while soil carbon predicted mean percentage excess better than diversity. Grazed fallows yielded stronger evidence for diversity effects on multi-functionality, while environmental conditions appeared more influential in improved fallows. The contrast in diversity-multi-functionality relationships among fallow types appears related to differences in management and associated factors including disturbance and species composition. Complementary effects of species with contrasting functional traits on different functions and multi-functional species may have contributed to diversity effects in grazed fallows. Biodiversity and environmental favorability may enhance the capacity of smallholder fallows to simultaneously provide multiple ecosystem services, yet their effects are likely to vary with fallow management. PMID:23209662
Rudolf, Volker H W; Rasmussen, Nick L
2013-05-01
A central challenge in community ecology is to understand the connection between biodiversity and the functioning of ecosystems. While traditional approaches have largely focused on species-level diversity, increasing evidence indicates that there exists substantial ecological diversity among individuals within species. By far, the largest source of this intraspecific diversity stems from variation among individuals in ontogenetic stage and size. Although such ontogenetic shifts are ubiquitous in natural communities, whether and how they scale up to influence the structure and functioning of complex ecosystems is largely unknown. Here we take an experimental approach to examine the consequences of ontogenetic niche shifts for the structure of communities and ecosystem processes. In particular we experimentally manipulated the stage structure in a keystone predator, larvae of the dragonfly Anax junius, in complex experimental pond communities to test whether changes in the population stage or size structure of a keystone species scale up to alter community structure and ecosystem processes, and how functional differences scale with relative differences in size among stages. We found that the functional role of A. junius was stage-specific. Altering what stages were present in a pond led to concurrent changes in community structure, primary producer biomass (periphyton and phytoplankton), and ultimately altered ecosystem processes (respiration and net primary productivity), indicating a strong, but stage-specific, trophic cascade. Interestingly, the stage-specific effects did not simply scale with size or biomass of the predator, but instead indicated clear ontogenetic niche shifts in ecological interactions. Thus, functional differences among stages within a keystone species scaled up to alter the functioning of entire ecosystems. Therefore, our results indicate that the classical approach of assuming an average functional role of a species can be misleading because functional roles are dynamic and will change with shifts in the stage structure of the species. In general this emphasizes the importance of accounting for functional diversity below the species level to predict how natural and anthropogenic changes alter the functioning of natural ecosystems.
The functional value of Caribbean coral reef, seagrass and mangrove habitats to ecosystem processes.
Harborne, Alastair R; Mumby, Peter J; Micheli, Fiorenza; Perry, Christopher T; Dahlgren, Craig P; Holmes, Katherine E; Brumbaugh, Daniel R
2006-01-01
Caribbean coral reef habitats, seagrass beds and mangroves provide important goods and services both individually and through functional linkages. A range of anthropogenic factors are threatening the ecological and economic importance of these habitats and it is vital to understand how ecosystem processes vary across seascapes. A greater understanding of processes will facilitate further insight into the effects of disturbances and assist with assessing management options. Despite the need to study processes across whole seascapes, few spatially explicit ecosystem-scale assessments exist. We review the empirical literature to examine the role of different habitat types for a range of processes. The importance of each of 10 generic habitats to each process is defined as its "functional value" (none, low, medium or high), quantitatively derived from published data wherever possible and summarised in a single figure. This summary represents the first time the importance of habitats across an entire Caribbean seascape has been assessed for a range of processes. Furthermore, we review the susceptibility of each habitat to disturbances to investigate spatial patterns that might affect functional values. Habitat types are considered at the scale discriminated by remotely-sensed imagery and we envisage that functional values can be combined with habitat maps to provide spatially explicit information on processes across ecosystems. We provide examples of mapping the functional values of habitats for populations of three commercially important species. The resulting data layers were then used to generate seascape-scale assessments of "hot spots" of functional value that might be considered priorities for conservation. We also provide an example of how the literature reviewed here can be used to parameterise a habitat-specific model investigating reef resilience under different scenarios of herbivory. Finally, we use multidimensional scaling to provide a basic analysis of the overall functional roles of different habitats. The resulting ordination suggests that each habitat has a unique suite of functional values and, potentially, a distinct role within the ecosystem. This review shows that further data are required for many habitat types and processes, particularly forereef and escarpment habitats on reefs and for seagrass beds and mangroves. Furthermore, many data were collected prior to the regional mass mortality of Diadema and Acropora, and subsequent changes to benthic communities have, in many cases, altered a habitat's functional value, hindering the use of these data for parameterising maps and models. Similarly, few data exist on how functional values change when environmental parameters, such as water clarity, are altered by natural or anthropogenic influences or the effects of a habitat's spatial context within the seascape. Despite these limitations, sufficient data are available to construct maps and models to better understand tropical marine ecosystem processes and assist more effective mitigation of threats that alter habitats and their functional values.
Microbial communities, processes and functions in acid mine drainage ecosystems.
Chen, Lin-xing; Huang, Li-nan; Méndez-García, Celia; Kuang, Jia-liang; Hua, Zheng-shuang; Liu, Jun; Shu, Wen-sheng
2016-04-01
Acid mine drainage (AMD) is generated from the oxidative dissolution of metal sulfides when water and oxygen are available largely due to human mining activities. This process can be accelerated by indigenous microorganisms. In the last several decades, culture-dependent researches have uncovered and validated the roles of AMD microorganisms in metal sulfides oxidation and acid generation processes, and culture-independent studies have largely revealed the diversity and metabolic potentials and activities of AMD communities, leading towards a full understanding of the microbial diversity, functions and interactions in AMD ecosystems. This review describes the diversity of microorganisms and their functions in AMD ecosystems, and discusses their biotechnological applications in biomining and AMD bioremediation according to their capabilities. Copyright © 2016 Elsevier Ltd. All rights reserved.
Marzluff, John
2017-01-01
Emerging evidence that cities drive micro-evolution raises the question of whether rapid urbanization of Earth might impact ecosystems by causing systemic changes in functional traits that regulate urban ecosystems' productivity and stability. Intraspecific trait variation—variation in organisms' morphological, physiological or behavioural characteristics stemming from genetic variability and phenotypic plasticity—has significant implications for ecological functions such as nutrient cycling and primary productivity. While it is well established that changes in ecological conditions can drive evolutionary change in species' traits that, in turn, can alter ecosystem function, an understanding of the reciprocal and simultaneous processes associated with such interactions is only beginning to emerge. In urban settings, the potential for rapid trait change may be exacerbated by multiple selection pressures operating simultaneously. This paper reviews evidence on mechanisms linking urban development patterns to rapid phenotypic changes, and differentiates phenotypic changes for which there is evidence of micro-evolution versus phenotypic changes which may represent plasticity. Studying how humans mediate phenotypic trait changes through urbanization could shed light on fundamental concepts in ecological and evolutionary theory. It can also contribute to our understanding of eco-evolutionary feedback and provide insights for maintaining ecosystem function over the long term. This article is part of the themed issue ‘Human influences on evolution, and the ecological and societal consequences’. PMID:27920374
Molofsky, Jane; Keller, Stephen R; Lavergne, Sébastien; Kaproth, Matthew A; Eppinga, Maarten B
2014-04-01
Biological invasions can transform our understanding of how the interplay of historical isolation and contemporary (human-aided) dispersal affects the structure of intraspecific diversity in functional traits, and in turn, how changes in functional traits affect other scales of biological organization such as communities and ecosystems. Because biological invasions frequently involve the admixture of previously isolated lineages as a result of human-aided dispersal, studies of invasive populations can reveal how admixture results in novel genotypes and shifts in functional trait variation within populations. Further, because invasive species can be ecosystem engineers within invaded ecosystems, admixture-induced shifts in the functional traits of invaders can affect the composition of native biodiversity and alter the flow of resources through the system. Thus, invasions represent promising yet under-investigated examples of how the effects of short-term evolutionary changes can cascade across biological scales of diversity. Here, we propose a conceptual framework that admixture between divergent source populations during biological invasions can reorganize the genetic variation underlying key functional traits, leading to shifts in the mean and variance of functional traits within invasive populations. Changes in the mean or variance of key traits can initiate new ecological feedback mechanisms that result in a critical transition from a native ecosystem to a novel invasive ecosystem. We illustrate the application of this framework with reference to a well-studied plant model system in invasion biology and show how a combination of quantitative genetic experiments, functional trait studies, whole ecosystem field studies and modeling can be used to explore the dynamics predicted to trigger these critical transitions.
Graham, Emily B.; Knelman, Joseph E.; Schindlbacher, Andreas; ...
2016-02-24
In this study, microorganisms are vital in mediating the earth’s biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: ‘When do we need to understand microbial community structure to accurately predict function?’ We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of processmore » rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, Emily B.; Knelman, Joseph E.; Schindlbacher, Andreas
In this study, microorganisms are vital in mediating the earth’s biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: ‘When do we need to understand microbial community structure to accurately predict function?’ We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of processmore » rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.« less
Graham, Emily B.; Knelman, Joseph E.; Schindlbacher, Andreas; Siciliano, Steven; Breulmann, Marc; Yannarell, Anthony; Beman, J. M.; Abell, Guy; Philippot, Laurent; Prosser, James; Foulquier, Arnaud; Yuste, Jorge C.; Glanville, Helen C.; Jones, Davey L.; Angel, Roey; Salminen, Janne; Newton, Ryan J.; Bürgmann, Helmut; Ingram, Lachlan J.; Hamer, Ute; Siljanen, Henri M. P.; Peltoniemi, Krista; Potthast, Karin; Bañeras, Lluís; Hartmann, Martin; Banerjee, Samiran; Yu, Ri-Qing; Nogaro, Geraldine; Richter, Andreas; Koranda, Marianne; Castle, Sarah C.; Goberna, Marta; Song, Bongkeun; Chatterjee, Amitava; Nunes, Olga C.; Lopes, Ana R.; Cao, Yiping; Kaisermann, Aurore; Hallin, Sara; Strickland, Michael S.; Garcia-Pausas, Jordi; Barba, Josep; Kang, Hojeong; Isobe, Kazuo; Papaspyrou, Sokratis; Pastorelli, Roberta; Lagomarsino, Alessandra; Lindström, Eva S.; Basiliko, Nathan; Nemergut, Diana R.
2016-01-01
Microorganisms are vital in mediating the earth’s biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: ‘When do we need to understand microbial community structure to accurately predict function?’ We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology. PMID:26941732
Graham, Emily B; Knelman, Joseph E; Schindlbacher, Andreas; Siciliano, Steven; Breulmann, Marc; Yannarell, Anthony; Beman, J M; Abell, Guy; Philippot, Laurent; Prosser, James; Foulquier, Arnaud; Yuste, Jorge C; Glanville, Helen C; Jones, Davey L; Angel, Roey; Salminen, Janne; Newton, Ryan J; Bürgmann, Helmut; Ingram, Lachlan J; Hamer, Ute; Siljanen, Henri M P; Peltoniemi, Krista; Potthast, Karin; Bañeras, Lluís; Hartmann, Martin; Banerjee, Samiran; Yu, Ri-Qing; Nogaro, Geraldine; Richter, Andreas; Koranda, Marianne; Castle, Sarah C; Goberna, Marta; Song, Bongkeun; Chatterjee, Amitava; Nunes, Olga C; Lopes, Ana R; Cao, Yiping; Kaisermann, Aurore; Hallin, Sara; Strickland, Michael S; Garcia-Pausas, Jordi; Barba, Josep; Kang, Hojeong; Isobe, Kazuo; Papaspyrou, Sokratis; Pastorelli, Roberta; Lagomarsino, Alessandra; Lindström, Eva S; Basiliko, Nathan; Nemergut, Diana R
2016-01-01
Microorganisms are vital in mediating the earth's biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: 'When do we need to understand microbial community structure to accurately predict function?' We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.
NASA Astrophysics Data System (ADS)
Fonte, S.; Pauli, N.; Rousseau, L.; SIX, J. W. U. A.; Barrios, E.
2014-12-01
The Quesungual agroforestry system from western Honduras has been increasingly promoted as a promising alternative to traditional slash-and-burn agriculture in tropical dry forest regions of the Americas. Improved residue management and the lack of burning in this system can greatly impact soil biological functioning and a number of key soil-based ecosystem services, yet our understanding of these processes has not been thoroughly integrated to understand system functionality as a whole that can guide improved management. To address this gap, we present a synthesis of various field studies conducted in Central America aimed at: 1) quantifying the influence of the Quesungual agroforestry practices on soil macrofauna abundance and diversity, and 2) understanding how these organisms influence key soil-based ecosystem services that ultimately drive the success of this system. A first set of studies examined the impact of agroecosystem management on soil macrofauna populations, soil fertility and key soil processes. Results suggest that residue inputs (derived from tree biomass pruning), a lack of burning, and high tree densities, lead to conditions that support abundant, diverse soil macrofauna communities under agroforestry, with soil organic carbon content comparable to adjacent forest. Additionally, there is great potential in working with farmers to develop refined soil quality indicators for improved land management. A second line of research explored interactions between residue management and earthworms in the regulation of soil-based ecosystem services. Earthworms are the most prominent ecosystem engineers in these soils. We found that earthworms are key drivers of soil structure maintenance and the stabilization of soil organic matter within soil aggregates, and also had notable impacts on soil nutrient dynamics. However, the impact of earthworms appears to depend on residue management practices, thus indicating the need for an integrated approach for management of soil biological function and ecosystem services in the Quesungual agroforestry system.
NASA Astrophysics Data System (ADS)
Enquist, B. J.
2016-12-01
The link between variation in species-specific traits - due to acclimation, adaptation, and how ecological communities assemble in time and space - and larger scale ecosystem processes is an important focus for global change research. Understanding such linkages requires synthesis of evolutionary, biogeograpahic, and biogeochemical approaches. Recent observations reveal several paradoxical patterns across ecosystems. Optimality principles provide a novel framework for generating numerous predictions for how ecosystems have and will reorganize and respond to climate change. Tropical elevation gradients are natural laboratories to assess how changing climate can ramify to influence tropical forest diversity and ecosystem functioning. We tested several new predictions from trait- and metabolic scaling theories by assessing the covariation between climate, traits, biomass and gross and net primary productivity (GPP and NPP) across tropical forest plots spanning elevation gradients. We measured multiple leaf physiological, morphological, and stoichiometric traits linked to variation in tree growth. Consistent with theory, observed decreases in NPP and GPP with temperature were best predicted by forest biomass, and scaled allometrically as predicted by theory but the effect of temperature was much less, characterized by a kinetic response much lower ( 0.1eV) than predicted ( 0.65eV). This is likely due to an observed exponential increase in the mean community leaf P:N ratio and photosynthetic nutrient use efficiency with decreases in temperature. Our results are consistent with predictions from Trait Driver Theory, where adaptive/acclamatory shifts in plant traits compensate for the kinetic effects of temperature on tree growth. Further, most of the traits measured showed significantly skewed trait distributions consistent with recent observations that observed shifts in species composition. The development of trait-based scaling theory provides a robust basis to predict how shifts in climate have and will influence functional composition and ecosystem functioning. Together, these results highlight the potential critical importance optimality principles for understanding the role of the biosphere within the integrated earth system.
Coupling Spatiotemporal Community Assembly Processes to Changes in Microbial Metabolism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, Emily B.; Crump, Alex R.; Resch, Charles T.
Community assembly processes govern shifts in species abundances in response to environmental change, yet our understanding of assembly remains largely decoupled from ecosystem function. Here, we test hypotheses regarding assembly and function across space and time using hyporheic microbial communities as a model system. We pair sampling of two habitat types through hydrologic fluctuation with null modeling and multivariate statistics. We demonstrate that dual selective pressures assimilate to generate compositional changes at distinct timescales among habitat types, resulting in contrasting associations of Betaproteobacteria and Thaumarchaeota with selection and with seasonal changes in aerobic metabolism. Our results culminate in a conceptualmore » model in which selection from contrasting environments regulates taxon abundance and ecosystem function through time, with increases in function when oscillating selection opposes stable selective pressures. Our model is applicable within both macrobial and microbial ecology and presents an avenue for assimilating community assembly processes into predictions of ecosystem function.« less
Barbet-Massin, Morgane; Jetz, Walter
2015-08-01
Animal assemblages fulfill a critical set of ecological functions for ecosystems that may be altered substantially as climate change-induced distribution changes lead to community disaggregation and reassembly. We combine species and community perspectives to assess the consequences of projected geographic range changes for the diverse functional attributes of avian assemblages worldwide. Assemblage functional structure is projected to change highly unevenly across space. These differences arise from both changes in the number of species and changes in species' relative local functional redundancy or distinctness. They sometimes result in substantial losses of functional diversity that could have severe consequences for ecosystem health. Range expansions may counter functional losses in high-latitude regions, but offer little compensation in many tropical and subtropical biomes. Future management of local community function and ecosystem services thus relies on understanding the global dynamics of species distributions and multiscale approaches that include the biogeographic context of species traits. © 2015 John Wiley & Sons Ltd.
Wetland biogeochemistry and ecological risk assessment
NASA Astrophysics Data System (ADS)
Bai, Junhong; Huang, Laibin; Gao, Haifeng; Zhang, Guangliang
2017-02-01
Wetlands are an important ecotone between terrestrial and aquatic ecosystems and can provide great ecological service functions. Soils/sediments are one of the important components of wetland ecosystems, which support wetland plants and microorganisms and influence wetland productivity. Moreover, wetland soils/sediments serve as sources, sinks and transfers of carbon, nitrogen, phosphorus and chemical contaminants such as heavy metals. In natural wetland ecosystems, wetland soils/sediments play a great role in improving water quality as these chemical elements can be retained in wetland soils/sediments for a long time. Moreover, the biogeochemical processes of the abovementioned elements in wetland soils/sediments can drive wetland evolution and development, and their changes will considerably affect wetland ecosystem health. Therefore, a better understanding of wetland soil biogeochemistry will contribute to improving wetland ecological service functions.
Nutrient controls on biocomplexity of mangrove ecosystems
McKee, Karen L.
2004-01-01
Mangrove forests are important coastal ecosystems that provide a variety of ecological and societal services. These intertidal, tree-dominated communities along tropical coastlines are often described as “simple systems,” compared to other tropical forests with larger numbers of plant species and multiple understory strata; however, mangrove ecosystems have complex trophic structures, and organisms exhibit unique physiological, morphological, and behavioral adaptations to environmental conditions characteristic of the land-sea interface. Biogeochemical functioning of mangrove forests is also controlled by interactions among the microbial, plant, and animal communities and feedback linkages mediated by hydrology and other forcing functions. Scientists with the U.S. Geological Survey (USGS) at the National Wetlands Research Center are working to understand more fully the impact of nutrient variability on these delicate and important ecosystems.
A global Fine-Root Ecology Database to address below-ground challenges in plant ecology
Iversen, Colleen M.; McCormack, M. Luke; Powell, A. Shafer; ...
2017-02-28
Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. And while fine roots play an important role in ecosystem functioning, fine-root traits are underrepresented in global trait databases. This has hindered efforts to analyze fine-root trait variation and link it with plant function and environmental conditions at a global scale. This Viewpoint addresses the need for a centralized fine-root trait database, and introduces the Fine-Root Ecology Database (FRED, http://roots.ornl.gov) which so far includes > 70 000 observations encompassing a broad range of rootmore » traits and also includes associated environmental data. FRED represents a critical step toward improving our understanding of below-ground plant ecology. For example, FRED facilitates the quantification of variation in fine-root traits across root orders, species, biomes, and environmental gradients while also providing a platform for assessments of covariation among root, leaf, and wood traits, the role of fine roots in ecosystem functioning, and the representation of fine roots in terrestrial biosphere models. There has been a continued input of observations into FRED to fill gaps in trait coverage will improve our understanding of changes in fine-root traits across space and time.« less
A global Fine-Root Ecology Database to address below-ground challenges in plant ecology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iversen, Colleen M.; McCormack, M. Luke; Powell, A. Shafer
Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. And while fine roots play an important role in ecosystem functioning, fine-root traits are underrepresented in global trait databases. This has hindered efforts to analyze fine-root trait variation and link it with plant function and environmental conditions at a global scale. This Viewpoint addresses the need for a centralized fine-root trait database, and introduces the Fine-Root Ecology Database (FRED, http://roots.ornl.gov) which so far includes > 70 000 observations encompassing a broad range of rootmore » traits and also includes associated environmental data. FRED represents a critical step toward improving our understanding of below-ground plant ecology. For example, FRED facilitates the quantification of variation in fine-root traits across root orders, species, biomes, and environmental gradients while also providing a platform for assessments of covariation among root, leaf, and wood traits, the role of fine roots in ecosystem functioning, and the representation of fine roots in terrestrial biosphere models. There has been a continued input of observations into FRED to fill gaps in trait coverage will improve our understanding of changes in fine-root traits across space and time.« less
The seaweed holobiont: understanding seaweed-bacteria interactions.
Egan, Suhelen; Harder, Tilmann; Burke, Catherine; Steinberg, Peter; Kjelleberg, Staffan; Thomas, Torsten
2013-05-01
Seaweeds (macroalgae) form a diverse and ubiquitous group of photosynthetic organisms that play an essential role in aquatic ecosystems. These ecosystem engineers contribute significantly to global primary production and are the major habitat formers on rocky shores in temperate waters, providing food and shelter for aquatic life. Like other eukaryotic organisms, macroalgae harbor a rich diversity of associated microorganisms with functions related to host health and defense. In particular, epiphytic bacterial communities have been reported as essential for normal morphological development of the algal host, and bacteria with antifouling properties are thought to protect chemically undefended macroalgae from detrimental, secondary colonization by other microscopic and macroscopic epibiota. This tight relationship suggests that macroalgae and epiphytic bacteria interact as a unified functional entity or holobiont, analogous to the previously suggested relationship in corals. Moreover, given that the impact of diseases in marine ecosystems is apparently increasing, understanding the role of bacteria as saprophytes and pathogens in seaweed communities may have important implications for marine management strategies. This review reports on the recent advances in the understanding of macroalgal-bacterial interactions with reference to the diversity and functional role of epiphytic bacteria in maintaining algal health, highlighting the holobiont concept. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
A functional trait perspective on plant invasion
Drenovsky, Rebecca E.; Grewell, Brenda J.; D'Antonio, Carla M.; Funk, Jennifer L.; James, Jeremy J.; Molinari, Nicole; Parker, Ingrid M.; Richards, Christina L.
2012-01-01
Background and Aims Global environmental change will affect non-native plant invasions, with profound potential impacts on native plant populations, communities and ecosystems. In this context, we review plant functional traits, particularly those that drive invader abundance (invasiveness) and impacts, as well as the integration of these traits across multiple ecological scales, and as a basis for restoration and management. Scope We review the concepts and terminology surrounding functional traits and how functional traits influence processes at the individual level. We explore how phenotypic plasticity may lead to rapid evolution of novel traits facilitating invasiveness in changing environments and then ‘scale up’ to evaluate the relative importance of demographic traits and their links to invasion rates. We then suggest a functional trait framework for assessing per capita effects and, ultimately, impacts of invasive plants on plant communities and ecosystems. Lastly, we focus on the role of functional trait-based approaches in invasive species management and restoration in the context of rapid, global environmental change. Conclusions To understand how the abundance and impacts of invasive plants will respond to rapid environmental changes it is essential to link trait-based responses of invaders to changes in community and ecosystem properties. To do so requires a comprehensive effort that considers dynamic environmental controls and a targeted approach to understand key functional traits driving both invader abundance and impacts. If we are to predict future invasions, manage those at hand and use restoration technology to mitigate invasive species impacts, future research must focus on functional traits that promote invasiveness and invader impacts under changing conditions, and integrate major factors driving invasions from individual to ecosystem levels. PMID:22589328
Trajectories of ecosystem service change in restored peatlands
NASA Astrophysics Data System (ADS)
Evans, Martin; Shuttleworth, Emma; Pilkington, Mike; Allott, Tim; Walker, Jonathan; Spencer, Tom
2017-04-01
Peatlands provide a wide range of ecosystem services but across the world degradation of these systems through a range of human impacts has had a negative effect on the provision of these services. A wide variety of peatland restoration approaches have been developed with the aim of mitigating these impacts. Understanding of trajectories of change in ecosystem structure and function is central to evaluating the efficacy of these restoration methods. This paper considers data on post-restoration trajectories of water table change, vegetation recovery, runoff production and water quality based on extensive data from peatland restoration work in the southern Pennines of the U.K. Data have been compiled from multiple restoration initiatives undertaken across the region, spanning up to 12 years post restoration. The data show variations in the time scale of ecosystem change which are indicative of the process basis of the ecosystem trajectories. Rapid changes in runoff are controlled by physical changes to the peatland surface. These are contrasted with longer term evolution of vegetation and water table behaviour which suggest ongoing recovery as the ecosystem adjusts to the restoration process. In order to assess restoration of ecosystem function, and so of ecosystem services, it is important that the process links between ecosystem structure and function are well understood. Establishing typical restoration trajectories can be of practical use in determining restoration project milestones, and can also provide insight into the nature of these process links.
Functional consequences of realistic biodiversity changes in a marine ecosystem
Bracken, Matthew E. S.; Friberg, Sara E.; Gonzalez-Dorantes, Cirse A.; Williams, Susan L.
2008-01-01
Declines in biodiversity have prompted concern over the consequences of species loss for the goods and services provided by natural ecosystems. However, relatively few studies have evaluated the functional consequences of realistic, nonrandom changes in biodiversity. Instead, most designs have used randomly selected assemblages from a local species pool to construct diversity gradients. It is therefore difficult, based on current evidence, to predict the functional consequences of realistic declines in biodiversity. In this study, we used tide pool microcosms to demonstrate that the effects of real-world changes in biodiversity may be very different from those of random diversity changes. Specifically, we measured the relationship between the diversity of a seaweed assemblage and its ability to use nitrogen, a key limiting nutrient in nearshore marine systems. We quantified nitrogen uptake using both experimental and model seaweed assemblages and found that natural increases in diversity resulted in enhanced rates of nitrogen use, whereas random diversity changes had no effect on nitrogen uptake. Our results suggest that understanding the real-world consequences of declining biodiversity will require addressing changes in species performance along natural diversity gradients and understanding the relationships between species' susceptibility to loss and their contributions to ecosystem functioning. PMID:18195375
Wolfi, Amelia A; Zavaleta, Erika S
2015-01-01
While most studies of the relationship between biodiversity and ecosystem functioning have examined randomized diversity losses, several recent experiments have employed nested, realistic designs and found that realistic species losses had larger consequences than random losses for ecosystem functioning. Progressive, realistic, biodiversity losses are generally strongly nested, but this nestedness is a potentially confounding effect. Here, we address whether nonrandom trait loss or degree of nestedness drives the relationship between diversity and productivity in a realistic biodiversity-loss experiment. We isolated the effect of nestedness through post hoc analyses of data from an experimental biodiversity manipulation in a California serpentine grassland. We found that the order in which plant traits are lost as diversity declines influences the diversity-productivity relationship more than the degree of nestedness does. Understanding the relationship between the expected order of species loss and functional traits is becoming increasingly important in the face of ongoing biodiversity loss worldwide. Our findings illustrate the importance of species composition and the order of species loss, rather than nestedness per se, for understanding the mechanisms underlying the effects of realistic species losses on ecosystem functioning.
Functional Rarity: The Ecology of Outliers.
Violle, Cyrille; Thuiller, Wilfried; Mouquet, Nicolas; Munoz, François; Kraft, Nathan J B; Cadotte, Marc W; Livingstone, Stuart W; Mouillot, David
2017-05-01
Rarity has been a central topic for conservation and evolutionary biologists aiming to determine the species characteristics that cause extinction risk. More recently, beyond the rarity of species, the rarity of functions or functional traits, called functional rarity, has gained momentum in helping to understand the impact of biodiversity decline on ecosystem functioning. However, a conceptual framework for defining and quantifying functional rarity is still lacking. We introduce 12 different forms of functional rarity along gradients of species scarcity and trait distinctiveness. We then highlight the potential key role of functional rarity in the long-term and large-scale maintenance of ecosystem processes, as well as the necessary linkage between functional and evolutionary rarity. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pavao-Zuckerman, M.
2010-12-01
As rates of urbanization continue to rise and a greater proportion of the population lives in urban and suburban areas, the provision of ecological services and functions become increasingly important to sustain human and environmental health in urban ecosystems. Soils play a primary role in the healthy functioning of ecosystems that provide supporting, provisioning, regulating, preserving, and cultural ecosystem services, yet developing our understanding of how urban soils function to provide these services within an ecological context is just getting underway. Soils in urban ecosytems are highly heterogeneous, and are affected by both direct and indirect influences and local modifications which alter their functioning relative to non-urbanized local soils. Here I discuss the functioning of rain gardens in and around Tucson, AZ, that have been installed in the urban landscape with the purpose of providing various ecosystem services to local residents and the greater urban ecosystem. This reconnection of ecohydrologic flows in the city has the potential to alter the structure and function of urban ecosystems in positive (through the increase in water availability) and negative (through the import of pollutants to soils) ways. This study compares soil properties, microbial function, and ecosystem functions within the urban ecosystem to determine how urbanization alters soils in semi-arid environments, and to determine if green urban modifications in desert cities can improve soils and ecosystem services. Soils in rain gardens have nearly twice the organic matter contents of native and urban soils, and correspondingly, greater microbial function (as indicated through respiration potential), higher abundance (through substrate induced respiration), and community complexity (indicated by a 3x increase in metabolic diversity) in these green design modifications. Net N-mineralization rates are almost 1.5 times faster in the rain garden basins than urban soils in general. This study also includes the comparison of different approaches to installing rain gardens to illustrate the effects of different management strategies on biogeochemical cycling. The inclusion of mulch in the garden design increases microbial biomass and reduces the rate of N-mineralization. These data indicate that soil quality is improved in arid system rain gardens. Such urban modifications both improve soils and reconnect ecohydrologic flows in Tucson neighborhoods, suggesting that the provision of ecosystem services in cities can be assisted with small scale green infrastructure modifications. In fact, such small scale improvements in ecosystem functioning may contribute to broader scale resilience of the urban ecosystem.
Paul C. Selmants; Karen L. Adair; Creighton M. Litton; Christian P. Giardina; Egbert Schwartz
2016-01-01
Soil bacteria play a key role in regulating terrestrial biogeochemical cycling and greenhouse gas fluxes across the soil-atmosphere continuum. Despite their importance to ecosystem functioning, we lack a general understanding of how bacterial communities respond to climate change, especially in relatively understudied ecosystems like tropical montane wet...
E.S. Euskirchen; A.D. McGuire; F.S. III Chapin; S. Yi; C.C. Thompson
2009-01-01
Assessing potential future changes in arctic and boreal plant species productivity, ecosystem composition, and canopy complexity is essential for understanding environmental responses under expected altered climate forcing. We examined potential changes in the dominant plant functional types (PFTs) of the sedge tundra, shrub tundra, and boreal forest ecosystems in...
Soil organic nitrogen mineralization across a global latitudinal gradient
D.L. Jones; K. Kielland; F.L. Sinclair; R.A. Dahlgren; K.K. Newsham; J.F. Farrar; D.V. Murphy
2009-01-01
Understanding and accurately predicting the fate of carbon and nitrogen in the terrestrial biosphere remains a central goal in ecosystem science. Amino acids represent a key pool of C and N in soil, and their availability to plants and microorganisms has been implicated as a major driver in regulating ecosystem functioning. Because of potential differences in...
Heather E. Golden; Charles R. Lane; Devendra M. Amatya; Karl W. Bandilla; Hadas Raanan Kiperwas Kiperwas; Christopher D. Knightes; Herbert Ssegane
2014-01-01
Geographically isolated wetlands (GIW), depressional landscape features entirely surrounded by upland areas, provide a wide range of ecological functions and ecosystem services for human well-being. Current and future ecosystem management and decision-making rely on a solid scientific understanding of how hydrologic processes affect these important GIW services and...
Community and ecosystem consequences of Microstegium vimineum invasions in eastern forests
S. Luke. Flory
2011-01-01
Over the past two decades, biological invasions have come to the forefront as a major factor driving global environmental change. Introduced species can reduce biodiversity, inhibit the natural process of succession, and alter ecosystem functions such as nutrient and carbon cycling. There is an urgent need to understand the effects of invasions on native systems in...
Interactive effects of global climate change and pollution on marine microbes: the way ahead.
Coelho, Francisco J R C; Santos, Ana L; Coimbra, Joana; Almeida, Adelaide; Cunha, Angela; Cleary, Daniel F R; Calado, Ricardo; Gomes, Newton C M
2013-06-01
Global climate change has the potential to seriously and adversely affect marine ecosystem functioning. Numerous experimental and modeling studies have demonstrated how predicted ocean acidification and increased ultraviolet radiation (UVR) can affect marine microbes. However, researchers have largely ignored interactions between ocean acidification, increased UVR and anthropogenic pollutants in marine environments. Such interactions can alter chemical speciation and the bioavailability of several organic and inorganic pollutants with potentially deleterious effects, such as modifying microbial-mediated detoxification processes. Microbes mediate major biogeochemical cycles, providing fundamental ecosystems services such as environmental detoxification and recovery. It is, therefore, important that we understand how predicted changes to oceanic pH, UVR, and temperature will affect microbial pollutant detoxification processes in marine ecosystems. The intrinsic characteristics of microbes, such as their short generation time, small size, and functional role in biogeochemical cycles combined with recent advances in molecular techniques (e.g., metagenomics and metatranscriptomics) make microbes excellent models to evaluate the consequences of various climate change scenarios on detoxification processes in marine ecosystems. In this review, we highlight the importance of microbial microcosm experiments, coupled with high-resolution molecular biology techniques, to provide a critical experimental framework to start understanding how climate change, anthropogenic pollution, and microbiological interactions may affect marine ecosystems in the future.
Interactive effects of global climate change and pollution on marine microbes: the way ahead
Coelho, Francisco J R C; Santos, Ana L; Coimbra, Joana; Almeida, Adelaide; Cunha, Ângela; Cleary, Daniel F R; Calado, Ricardo; Gomes, Newton C M
2013-01-01
Global climate change has the potential to seriously and adversely affect marine ecosystem functioning. Numerous experimental and modeling studies have demonstrated how predicted ocean acidification and increased ultraviolet radiation (UVR) can affect marine microbes. However, researchers have largely ignored interactions between ocean acidification, increased UVR and anthropogenic pollutants in marine environments. Such interactions can alter chemical speciation and the bioavailability of several organic and inorganic pollutants with potentially deleterious effects, such as modifying microbial-mediated detoxification processes. Microbes mediate major biogeochemical cycles, providing fundamental ecosystems services such as environmental detoxification and recovery. It is, therefore, important that we understand how predicted changes to oceanic pH, UVR, and temperature will affect microbial pollutant detoxification processes in marine ecosystems. The intrinsic characteristics of microbes, such as their short generation time, small size, and functional role in biogeochemical cycles combined with recent advances in molecular techniques (e.g., metagenomics and metatranscriptomics) make microbes excellent models to evaluate the consequences of various climate change scenarios on detoxification processes in marine ecosystems. In this review, we highlight the importance of microbial microcosm experiments, coupled with high-resolution molecular biology techniques, to provide a critical experimental framework to start understanding how climate change, anthropogenic pollution, and microbiological interactions may affect marine ecosystems in the future. PMID:23789087
Veresoglou, Stavros D.; Halley, John M.; Rillig, Matthias C.
2015-01-01
No species lives on earth forever. Knowing when and why species go extinct is crucial for a complete understanding of the consequences of anthropogenic activity, and its impact on ecosystem functioning. Even though soil biota play a key role in maintaining the functioning of ecosystems, the vast majority of existing studies focus on aboveground organisms. Many questions about the fate of belowground organisms remain open, so the combined effort of theorists and applied ecologists is needed in the ongoing development of soil extinction ecology. PMID:26593272
Towards a framework for assessment and management of cumulative human impacts on marine food webs.
Giakoumi, Sylvaine; Halpern, Benjamin S; Michel, Loïc N; Gobert, Sylvie; Sini, Maria; Boudouresque, Charles-François; Gambi, Maria-Cristina; Katsanevakis, Stelios; Lejeune, Pierre; Montefalcone, Monica; Pergent, Gerard; Pergent-Martini, Christine; Sanchez-Jerez, Pablo; Velimirov, Branko; Vizzini, Salvatrice; Abadie, Arnaud; Coll, Marta; Guidetti, Paolo; Micheli, Fiorenza; Possingham, Hugh P
2015-08-01
Effective ecosystem-based management requires understanding ecosystem responses to multiple human threats, rather than focusing on single threats. To understand ecosystem responses to anthropogenic threats holistically, it is necessary to know how threats affect different components within ecosystems and ultimately alter ecosystem functioning. We used a case study of a Mediterranean seagrass (Posidonia oceanica) food web and expert knowledge elicitation in an application of the initial steps of a framework for assessment of cumulative human impacts on food webs. We produced a conceptual seagrass food web model, determined the main trophic relationships, identified the main threats to the food web components, and assessed the components' vulnerability to those threats. Some threats had high (e.g., coastal infrastructure) or low impacts (e.g., agricultural runoff) on all food web components, whereas others (e.g., introduced carnivores) had very different impacts on each component. Partitioning the ecosystem into its components enabled us to identify threats previously overlooked and to reevaluate the importance of threats commonly perceived as major. By incorporating this understanding of system vulnerability with data on changes in the state of each threat (e.g., decreasing domestic pollution and increasing fishing) into a food web model, managers may be better able to estimate and predict cumulative human impacts on ecosystems and to prioritize conservation actions. © 2015 Society for Conservation Biology.
Houadria, Mickal; Blüthgen, Nico; Salas-Lopez, Alex; Schmitt, Mona-Isabel; Arndt, Johanna; Schneider, Eric; Orivel, Jérôme; Menzel, Florian
2016-01-01
The diversity-stability relationship has been under intense scrutiny for the past decades, and temporal asynchrony is recognized as an important aspect of ecosystem stability. In contrast to relatively well-studied interannual and seasonal asynchrony, few studies investigate the role of circadian cycles for ecosystem stability. Here, we studied multifunctional redundancy of diurnal and nocturnal ant communities in four tropical rain forest sites. We analyzed how it was influenced by species richness, functional performance, and circadian asynchrony. In two neotropical sites, species richness and functional redundancy were lower at night. In contrast, these parameters did not differ in the two paleotropical sites we studied. Circadian asynchrony between species was pronounced in the neotropical sites, and increased circadian functional redundancy. In general, species richness positively affected functional redundancy, but the effect size depended on the temporal and spatial breadth of the species with highest functional performance. Our analysis shows that high levels of trophic performance were only reached through the presence of such high-performing species, but not by even contributions of multiple, less-efficient species. Thus, these species can increase current functional performance, but reduce overall functional redundancy. Our study highlights that diurnal and nocturnal ecosystem properties of the very same habitat can markedly differ in terms of species richness and functional redundancy. Consequently, like the need to study multiple ecosystem functions, multiple periods of the circadian cycle need to be assessed in order to fully understand the diversity-stability relationship in an ecosystem.
NASA Astrophysics Data System (ADS)
Bauters, Marijn; Bruneel, Stijn; Demol, Miro; Taveirne, Cys; Van Der Heyden, Dries; Boeckx, Pascal; Kearsley, Elizabeth; Cizungu, Landry; Verbeeck, Hans
2016-04-01
Tropical forests are key actors in the global carbon cycle. Predicting future responses of these forests to global change is challenging, but important for global climate models. However, our current understanding of such responses is limited, due to the complexity of forest ecosystems and the slow dynamics that inherently form these systems. Our understanding of ecosystem ecology and functioning could greatly benefit from experimental setups including strong environmental gradients in the tropics, as found on altitudinal transects. We setup two such transects in both South-America and Africa, focussing on shifts in carbon allocation, forest structure and functional composition. By a cross-continental comparison of both transects, we will gain insight in how different or alike both tropical forests biomes are in their responses, and how universal the observed adaption mechanisms are.
Context-dependent consumer control in New England tidal wetlands.
Moore, Alexandria
2018-01-01
Recent studies in coastal wetlands have indicated that consumers may play an important role in regulating large-scale ecosystem processes. Predator removal experiments have shown significant differences in above-ground biomass production in the presence of higher level consumers, or predators. These results indicate that predators play an important role in regulating biomass production, but the extent to which this regulation impacts additional ecosystem functions, such as nutrient cycling and organic matter accumulation, is unclear. This study evaluated the impact that consumers have on large-scale ecosystem processes within southern New England tidal wetlands and contributes to the general understanding of trophic control in these systems. I established enclosure cages within three coastal wetlands and manipulated the presence of green crab predators to assess how trophic interactions affect ecosystem functions. Findings suggest that although these consumers may exert some top-down effects, other environmental factors, such as other consumers not studied here or bottom-up interactions, may variably play a larger role in the maintenance of ecosystem processes within the region. These results indicate that the loss of top-down control as an important mechanism influencing ecosystem functions may not hold for all wetlands along the full extent of the New England coastline.
Context-dependent consumer control in New England tidal wetlands
2018-01-01
Recent studies in coastal wetlands have indicated that consumers may play an important role in regulating large-scale ecosystem processes. Predator removal experiments have shown significant differences in above-ground biomass production in the presence of higher level consumers, or predators. These results indicate that predators play an important role in regulating biomass production, but the extent to which this regulation impacts additional ecosystem functions, such as nutrient cycling and organic matter accumulation, is unclear. This study evaluated the impact that consumers have on large-scale ecosystem processes within southern New England tidal wetlands and contributes to the general understanding of trophic control in these systems. I established enclosure cages within three coastal wetlands and manipulated the presence of green crab predators to assess how trophic interactions affect ecosystem functions. Findings suggest that although these consumers may exert some top-down effects, other environmental factors, such as other consumers not studied here or bottom-up interactions, may variably play a larger role in the maintenance of ecosystem processes within the region. These results indicate that the loss of top-down control as an important mechanism influencing ecosystem functions may not hold for all wetlands along the full extent of the New England coastline. PMID:29771961
Understanding human uses and values in watershed analysis.
Roger D. Fight; Linda E. Kruger; Christopher Hansen-Murray; Arnold Holden; Dale Bays
2000-01-01
Watershed analysis is used as a tool to understand the functioning of aquatic and terrestrial ecosystem processes at the landscape scale and to assess opportunities to restore or improve those processes and associated watershed conditions. Assessing those opportunities correctly requires an understanding of how humans have interacted with the watershed in the past and...
Forest cover change, climate variability, and hydrological responses
Xiaohua Wei; Rita Winkler; Ge Sun
2017-01-01
Understanding ecohydrological response to environmental change is critical for protecting watershed functions, sustaining clean water supply, and other ecosystem services, safeguarding public safety, floods mitigation, and drought response. Understanding ecohyhdrological processes and their implications to forest and water management has become increasingly important...
Final Technical Report to DOE for the Award DE-SC0004601
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Jizhong
Understanding the responses, adaptations and feedback mechanisms of biological communities to climate change is critical to project future state of earth and climate systems. Although significant amount of knowledge is available on the feedback responses of aboveground communities to climate change, little is known about the responses of belowground microbial communities due to the challenges in analyzing soil microbial community structure. Thus the goal overall goal of this study is to provide system-level, predictive mechanistic understanding of the temperature sensitivity of soil carbon (C) decomposition to climate warming by using cutting-edge integrated metagenomic technologies. Towards this goal, the following fourmore » objectives will be pursued: (i) To determine phylogenetic composition and metabolic diversity of microbial communities in the temperate grassland and tundra ecosystems; (ii) To delineate the responses of microbial community structure, functions and activities to climate change in the temperate grassland and tundra ecosystems; (iii) To determine the temperature sensitivity of microbial respiration in soils with different mixtures of labile versus recalcitrant C, and the underlying microbiological basis for temperature sensitivity of these pools; and (iv) To synthesize all experimental data for revealing microbial control of ecosystem carbon processes in responses to climate change. We have achieved our goals for all four proposed objectives. First, we determined the phylogenetic composition and metabolic diversity of microbial communities in the temperate grassland and tundra ecosystems. For this objective, we have developed a novel phasing amplicon sequencing (PAS) approach for MiSeq sequencing of amplicons. This approach has been used for sequencing various phylogenetic and functional genes related to ecosystem functioning. A comprehensive functional gene array (e.g., GeoChip 5.0) has also been developed and used for soil microbial community analysis in this study. In addition, shot-gun metagenome sequencing along with the above approaches have been used to understand the phylogenetic and functional diversity, composition, and structure of soil microbial communities in both temperature grassland and tundra ecosystems. Second, we determined the response of soil microbial communities to climate warming in both temperate grassland and tundra ecosystems using various methods. Our major findings are: (i) Microorganisms are very rapid to respond to climate warming in the tundra ecosystem, AK, which is vulnerable, too. (ii) Climate warming also significantly shifted the metabolic diversity, composition and structure of microbial communities, and key metabolic pathways related to carbon turnover, such as cellulose degradation (~13%) and CO2 production (~10%), and to nitrogen cycling, including denitrification (~12%) were enriched by warming. (iii) Warming also altered the expression patterns of microbial functional genes important to ecosystem functioning and stability through GeoChip and metatranscriptomic analysis of soil microbial communities at the OK site. Third, we analyzed temperature sensitivity of C decomposition to climate warming for both AK and OK soils through laboratory incubations. Key results include: (i) Alaska tundra soils showed that after one year of incubation, CT in the top 15 cm could be as high as 25% and 15% of the initial soil C content at 25°C and 15°C incubations, respectively. (ii) analysis of 456 incubated soil samples with 16S rRNA gene, ITS and GeoChip hybridization showed that warming shifted the phylogenretic and functional diversity, composition, structure and metabolic potential of soil microbial communities, and at different stages of incubation, key populations and functional genes significantly changed along with soil substrate changes. Functional gene diversity and functional genes for degrading labile C components decrease along incubation when labile C components are exhausting, but the genes related to degrading recalcitrant C increase. These molecular data will be directly used for modeling. Fourth, we have developed novel approaches to integrate and model experimental data to understand microbial control of ecosystem C processes in response to climate change. We compared different methods to calculate Q10 for estimating temperature sensitivity, and new approaches for Q10 calculation and molecular ecological network analysis were also developed. Using those newly developed approaches, our result indicated that Q10s increased with the recalcitrance of C pools, suggesting that longer incubation studies are needed in order to assess the temperature sensitivity of slower C pools, especially at low temperature regimes. This project has been very productive, resulting in 42 papers published or in press, 4 submitted, and 13 in preparation.« less
Monitoring ecosystem quality and function in arid settings of the Mojave Desert
Belnap, Jayne; Webb, Robert H.; Miller, Mark E.; Miller, David M.; DeFalco, Lesley A.; Medica, Philip A.; Brooks, Matthew L.; Esque, Todd C.; Bedford, Dave
2008-01-01
Monitoring ecosystem quality and function in the Mojave Desert is both a requirement of state and Federal government agencies and a means for determining potential long-term changes induced by climatic fluctuations and land use. Because it is not feasible to measure every attribute and process in the desert ecosystem, the choice of what to measure and where to measure it is the most important starting point of any monitoring program. In the Mojave Desert, ecosystem function is strongly influenced by both abiotic and biotic factors, and an understanding of the temporal and spatial variability induced by climate and landform development is needed to determine where site-specific measurements should be made. We review a wide variety of techniques for sampling, assessing, and measuring climatic variables, desert soils, biological soil crusts, annual and perennial vegetation, reptiles, and small mammals. The complete array of ecosystem attributes and processes that we describe are unlikely to be measured or monitored at any given location, but the array of possibilities allows for the development of specific monitoring protocols, which can be tailored to suit the needs of land-management agencies.
Quinn, Courtney E; Quinn, John E; Halfacre, Angela C
2015-10-01
The interest in improved environmental sustainability of agriculture via biodiversity provides an opportunity for placed-based research on the conceptualization and articulation of ecosystem services. Yet, few studies have explored how farmers conceptualize the relationship between their farm and nature and by extension ecosystem services. Examining how farmers in the Southern Piedmont of South Carolina discuss and explain the role of nature on their farm, we create a detail-rich picture of how they perceive ecosystem services and their contributions to the agroeconomy. Using 34 semi-structured interviews, we developed a detail-rich qualitative portrait of these farmers' conceptualizations of ecosystem services. Farmers' conceptualization of four ecosystem services: provisioning, supporting, regulating, and cultural are discussed, as well as articulation of disservices. Results of interviews show that most interviewees expressed a basic understanding of the relationship between nature and agriculture and many articulated benefits provided by nature to their farm. Farmers referred indirectly to most services, though they did not attribute services to biodiversity or ecological function. While farmers have a general understanding and appreciation of nature, they lack knowledge on specific ways biodiversity benefits their farm. This lack of knowledge may ultimately limit farmer decision-making and land management to utilize ecosystem services for environmental and economic benefits. These results suggest that additional communication with farmers about ecosystem services is needed as our understanding of these benefits increases. This change may require collaboration between conservation biology professionals and extension and agriculture professionals to extended successful biomass provisioning services to other ecosystem services.
Schittko, Conrad; Hawa, Mahmoud; Wurst, Susanne
2014-01-01
A frequent pattern emerging from biodiversity-ecosystem function studies is that functional group richness enhances ecosystem functions such as primary productivity. However, the manipulation of functional group richness goes along with major disadvantages like the transformation of functional trait data into categories or the exclusion of functional differences between organisms in the same group. In a mesocosm study we manipulated plant functional diversity based on the multi-trait Functional Diversity (FD)-approach of Petchey and Gaston by using database data of seven functional traits and information on the origin of the species in terms of being native or exotic. Along a gradient ranging from low to high FD we planted 40 randomly selected eight-species mixtures under controlled conditions. We found a significant positive linear correlation of FD with aboveground productivity and a negative correlation with invasibility of the plant communities. Based on community-weighted mean calculations for each functional trait, we figured out that the traits N-fixation and species origin, i.e. being native or exotic, played the most important role for community productivity. Our results suggest that the identification of the impact of functional trait diversity and the relative contributions of relevant traits is essential for a mechanistic understanding of the role of biodiversity for ecosystem functions such as aboveground biomass production and resistance against invasion. PMID:24897501
Are Urban Ecosystem Services Useful for a Sustainable City?
NASA Astrophysics Data System (ADS)
Jenerette, D.
2014-12-01
In meeting the needs of rapidly expanding city residents, ecosystem functioning within the urban boundary may provide several key services ranging from life-sustaining services such as climate regulation and food production to services associated with recreation and aesthetics. In contrast, ecosystem disservices are associated with ecosystem characteristics that have a negative impact on residents and range from potentially injurious components such as increasing pollutant exposure or additional resource requirements such as irrigation water. Identifying trade-offs in both services and disservices is a priority for assessing how ecosystem functioning influences urban residents. Such assessments require a baseline understanding of their rates of production and acutely need expanded monitoring and modeling. Recent efforts at quantifying ecosystem services and disservices have relied on combinations of direct field surveys, in-situ environmental sensor networks, and remotely sensed vegetation. While much work has been conducted within single metropolitan regions, expanded efforts are underway to analyze networks of urban sites. Here I highlight recent findings associated with urban ecosystem services associated with variation in urban forests and urban gardens as two contrasting ecosystem types within a city. These research efforts are leading to improved understanding of the variation in the production of and specific desires for ecosystem services and disservices. Initial data across several studies suggests desires for services show sensitivity to both socioeconomic status as suggested by a hierarchy of needs hypothesis and local environmental conditions as suggested by an environmental determinism hypothesis. Consequently, the production of ecosystem services also varies dramatically across socioeconomic and climate gradients. Future projections of the rates of service production are highly uncertain with likely strong nonlinearities in responses to urban conditions. Designing for sustainable ecosystem services within cities such that benefits are maximized and costs are minimized as we prepare for a near future with 2.5 billion more urban residents.
Toward a Predictive Understanding of Earth’s Microbiomes to Address 21st Century Challenges
Blaser, Martin J.; Cardon, Zoe G.; Cho, Mildred K.; Dangl, Jeffrey L.; Green, Jessica L.; Knight, Rob; Maxon, Mary E.; Northen, Trent R.; Pollard, Katherine S.
2016-01-01
ABSTRACT Microorganisms have shaped our planet and its inhabitants for over 3.5 billion years. Humankind has had a profound influence on the biosphere, manifested as global climate and land use changes, and extensive urbanization in response to a growing population. The challenges we face to supply food, energy, and clean water while maintaining and improving the health of our population and ecosystems are significant. Given the extensive influence of microorganisms across our biosphere, we propose that a coordinated, cross-disciplinary effort is required to understand, predict, and harness microbiome function. From the parallelization of gene function testing to precision manipulation of genes, communities, and model ecosystems and development of novel analytical and simulation approaches, we outline strategies to move microbiome research into an era of causality. These efforts will improve prediction of ecosystem response and enable the development of new, responsible, microbiome-based solutions to significant challenges of our time. PMID:27178263
Toward a Predictive Understanding of Earth's Microbiomes to Address 21st Century Challenges.
Blaser, Martin J; Cardon, Zoe G; Cho, Mildred K; Dangl, Jeffrey L; Donohue, Timothy J; Green, Jessica L; Knight, Rob; Maxon, Mary E; Northen, Trent R; Pollard, Katherine S; Brodie, Eoin L
2016-05-13
Microorganisms have shaped our planet and its inhabitants for over 3.5 billion years. Humankind has had a profound influence on the biosphere, manifested as global climate and land use changes, and extensive urbanization in response to a growing population. The challenges we face to supply food, energy, and clean water while maintaining and improving the health of our population and ecosystems are significant. Given the extensive influence of microorganisms across our biosphere, we propose that a coordinated, cross-disciplinary effort is required to understand, predict, and harness microbiome function. From the parallelization of gene function testing to precision manipulation of genes, communities, and model ecosystems and development of novel analytical and simulation approaches, we outline strategies to move microbiome research into an era of causality. These efforts will improve prediction of ecosystem response and enable the development of new, responsible, microbiome-based solutions to significant challenges of our time. Copyright © 2016 Blaser et al.
Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms.
Niu, Shuli; Luo, Yiqi; Fei, Shenfeng; Yuan, Wenping; Schimel, David; Law, Beverly E; Ammann, Christof; Arain, M Altaf; Arneth, Almut; Aubinet, Marc; Barr, Alan; Beringer, Jason; Bernhofer, Christian; Black, T Andrew; Buchmann, Nina; Cescatti, Alessandro; Chen, Jiquan; Davis, Kenneth J; Dellwik, Ebba; Desai, Ankur R; Etzold, Sophia; Francois, Louis; Gianelle, Damiano; Gielen, Bert; Goldstein, Allen; Groenendijk, Margriet; Gu, Lianhong; Hanan, Niall; Helfter, Carole; Hirano, Takashi; Hollinger, David Y; Jones, Mike B; Kiely, Gerard; Kolb, Thomas E; Kutsch, Werner L; Lafleur, Peter; Lawrence, David M; Li, Linghao; Lindroth, Anders; Litvak, Marcy; Loustau, Denis; Lund, Magnus; Marek, Michal; Martin, Timothy A; Matteucci, Giorgio; Migliavacca, Mirco; Montagnani, Leonardo; Moors, Eddy; Munger, J William; Noormets, Asko; Oechel, Walter; Olejnik, Janusz; Kyaw Tha Paw U; Pilegaard, Kim; Rambal, Serge; Raschi, Antonio; Scott, Russell L; Seufert, Günther; Spano, Donatella; Stoy, Paul; Sutton, Mark A; Varlagin, Andrej; Vesala, Timo; Weng, Ensheng; Wohlfahrt, Georg; Yang, Bai; Zhang, Zhongda; Zhou, Xuhui
2012-05-01
• It is well established that individual organisms can acclimate and adapt to temperature to optimize their functioning. However, thermal optimization of ecosystems, as an assemblage of organisms, has not been examined at broad spatial and temporal scales. • Here, we compiled data from 169 globally distributed sites of eddy covariance and quantified the temperature response functions of net ecosystem exchange (NEE), an ecosystem-level property, to determine whether NEE shows thermal optimality and to explore the underlying mechanisms. • We found that the temperature response of NEE followed a peak curve, with the optimum temperature (corresponding to the maximum magnitude of NEE) being positively correlated with annual mean temperature over years and across sites. Shifts of the optimum temperature of NEE were mostly a result of temperature acclimation of gross primary productivity (upward shift of optimum temperature) rather than changes in the temperature sensitivity of ecosystem respiration. • Ecosystem-level thermal optimality is a newly revealed ecosystem property, presumably reflecting associated evolutionary adaptation of organisms within ecosystems, and has the potential to significantly regulate ecosystem-climate change feedbacks. The thermal optimality of NEE has implications for understanding fundamental properties of ecosystems in changing environments and benchmarking global models. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
The Coupling of Ecosystem Productivity and Water Availability in Dryland Regions
NASA Astrophysics Data System (ADS)
Scott, R. L.; Biederman, J. A.; Barron-Gafford, G.
2014-12-01
Land cover and climatic change will alter biosphere-atmosphere exchanges of water vapor and carbon dioxide depending, in part, on feedbacks between biotic activity and water availability. Eddy covariance observations allow us to estimate ecosystem-scale productivity and respiration, and these datasets are now becoming sufficiently mature to advance understanding of these ecohydrological interactions. Here we use a network of sites in semiarid western North America representing gradients of water availability and functional plant type. We examine how precipitation (P) controls evapotranspiration (ET), net ecosystem production (NEP), and its component fluxes of ecosystem respiration (Reco) and gross ecosystem production (GEP). Despite the high variability in seasonal and annual precipitation timing and amounts that we expect to influence ecosystem function, we find persistent overall relationships between P or ET and the fluxes of NEP, Reco and GEP across the network, indicating a commonality and resilience in ecosystem soil and plant response to water availability. But we also observe several important site differences such as prior seasonal legacy effects on subsequent fluxes which vary depending on dominant plant functional type. For example, multiyear droughts, episodic cool-season droughts, and hard winter freezes seem to affect the herbaceous species differently than the woody ones. Nevertheless, the overall, strong coupling between hydrologic and ecologic processes at these sites bolsters our ability to predict the response of dryland ecosystems to future precipitation change.
Consumer-driven nutrient dynamics in freshwater ecosystems: from individuals to ecosystems.
Atkinson, Carla L; Capps, Krista A; Rugenski, Amanda T; Vanni, Michael J
2017-11-01
The role of animals in modulating nutrient cycling [hereafter, consumer-driven nutrient dynamics (CND)] has been accepted as an important influence on both community structure and ecosystem function in aquatic systems. Yet there is great variability in the influence of CND across species and ecosystems, and the causes of this variation are not well understood. Here, we review and synthesize the mechanisms behind CND in fresh waters. We reviewed 131 articles on CND published between 1973 and 1 June 2015. The rate of new publications in CND has increased from 1.4 papers per year during 1973-2002 to 7.3 per year during 2003-2015. The majority of investigations are in North America with many concentrating on fish. More recent studies have focused on animal-mediated nutrient excretion rates relative to nutrient demand and indirect impacts (e.g. decomposition). We identified several mechanisms that influence CND across levels of biological organization. Factors affecting the stoichiometric plasticity of consumers, including body size, feeding history and ontogeny, play an important role in determining the impact of individual consumers on nutrient dynamics and underlie the stoichiometry of CND across time and space. The abiotic characteristics of an ecosystem affect the net impact of consumers on ecosystem processes by influencing consumer metabolic processes (e.g. consumption and excretion/egestion rates), non-CND supply of nutrients and ecosystem nutrient demand. Furthermore, the transformation and transport of elements by populations and communities of consumers also influences the flow of energy and nutrients across ecosystem boundaries. This review highlights that shifts in community composition or biomass of consumers and eco-evolutionary underpinnings can have strong effects on the functional role of consumers in ecosystem processes, yet these are relatively unexplored aspects of CND. Future research should evaluate the value of using species traits and abiotic conditions to predict and understand the effects of consumers on ecosystem-level nutrient dynamics across temporal and spatial scales. Moreover, new work in CND should strive to integrate knowledge from disparate fields of ecology and environmental science, such as physiology and ecosystem ecology, to develop a comprehensive and mechanistic understanding of the functional role of consumers. Comparative and experimental studies that develop testable hypotheses to challenge the current assumptions of CND, including consumer stoichiometric homeostasis, are needed to assess the significance of CND among species and across freshwater ecosystems. © 2016 Cambridge Philosophical Society.
The importance of benthic-pelagic coupling for marine ecosystem functioning in a changing world.
Griffiths, Jennifer R; Kadin, Martina; Nascimento, Francisco J A; Tamelander, Tobias; Törnroos, Anna; Bonaglia, Stefano; Bonsdorff, Erik; Brüchert, Volker; Gårdmark, Anna; Järnström, Marie; Kotta, Jonne; Lindegren, Martin; Nordström, Marie C; Norkko, Alf; Olsson, Jens; Weigel, Benjamin; Žydelis, Ramunas; Blenckner, Thorsten; Niiranen, Susa; Winder, Monika
2017-06-01
Benthic-pelagic coupling is manifested as the exchange of energy, mass, or nutrients between benthic and pelagic habitats. It plays a prominent role in aquatic ecosystems, and it is crucial to functions from nutrient cycling to energy transfer in food webs. Coastal and estuarine ecosystem structure and function are strongly affected by anthropogenic pressures; however, there are large gaps in our understanding of the responses of inorganic nutrient and organic matter fluxes between benthic habitats and the water column. We illustrate the varied nature of physical and biological benthic-pelagic coupling processes and their potential sensitivity to three anthropogenic pressures - climate change, nutrient loading, and fishing - using the Baltic Sea as a case study and summarize current knowledge on the exchange of inorganic nutrients and organic material between habitats. Traditionally measured benthic-pelagic coupling processes (e.g., nutrient exchange and sedimentation of organic material) are to some extent quantifiable, but the magnitude and variability of biological processes are rarely assessed, preventing quantitative comparisons. Changing oxygen conditions will continue to have widespread effects on the processes that govern inorganic and organic matter exchange among habitats while climate change and nutrient load reductions may have large effects on organic matter sedimentation. Many biological processes (predation, bioturbation) are expected to be sensitive to anthropogenic drivers, but the outcomes for ecosystem function are largely unknown. We emphasize how improved empirical and experimental understanding of benthic-pelagic coupling processes and their variability are necessary to inform models that can quantify the feedbacks among processes and ecosystem responses to a changing world. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
The Moquah Barrens Research Natural Area: Loss of a pine barrens ecosystem
Christine A. Ribic; David J. Rugg; Deahn M. Donner; Albert J. Beck; BJ. Byers
2016-01-01
The Moquah Barrens Research Natural Area (RNA) was established by the Chequamegon National Forest and the Lakes States Forest Experiment Station in 1935 with a research objective well-suited to the needs of the Forest Service and the scientific understanding of ecosystem function prevalent at the time of establishment. The original research plan was never implemented,...
Richard D. Periman
1999-01-01
The successful restoration of riparian ecosystems to sustainable conditions requires that we understand the dynamic historical relationships between humans and the environment. Research is needed that measures the continuing effects of past human activities on contemporary ecosystem structure and function. An interdisciplinary approach is needed that incorporates...
Martin G. Raphael; Randall J. Wilk
2013-01-01
One of the fundamental concepts behind the conservation strategy in the U.S. federal Northwest Forest Plan is the importance of habitat buff ers in providing functional stream and streamside ecosystems. To better understand the importance of riparian buff ers in providing habitat for associated organisms, we investigated responses of small mammals to various streamside...
'One physical system': Tansley's ecosystem as Earth's critical zone.
Richter, Daniel deB; Billings, Sharon A
2015-05-01
Integrative concepts of the biosphere, ecosystem, biogeocenosis and, recently, Earth's critical zone embrace scientific disciplines that link matter, energy and organisms in a systems-level understanding of our remarkable planet. Here, we assert the congruence of Tansley's (1935) venerable ecosystem concept of 'one physical system' with Earth science's critical zone. Ecosystems and critical zones are congruent across spatial-temporal scales from vegetation-clad weathering profiles and hillslopes, small catchments, landscapes, river basins, continents, to Earth's whole terrestrial surface. What may be less obvious is congruence in the vertical dimension. We use ecosystem metabolism to argue that full accounting of photosynthetically fixed carbon includes respiratory CO₂ and carbonic acid that propagate to the base of the critical zone itself. Although a small fraction of respiration, the downward diffusion of CO₂ helps determine rates of soil formation and, ultimately, ecosystem evolution and resilience. Because life in the upper portions of terrestrial ecosystems significantly affects biogeochemistry throughout weathering profiles, the lower boundaries of most terrestrial ecosystems have been demarcated at depths too shallow to permit a complete understanding of ecosystem structure and function. Opportunities abound to explore connections between upper and lower components of critical-zone ecosystems, between soils and streams in watersheds, and between plant-derived CO₂ and deep microbial communities and mineral weathering. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Ecosystem Risk Assessment Using the Comprehensive Assessment of Risk to Ecosystems (CARE) Tool
NASA Astrophysics Data System (ADS)
Battista, W.; Fujita, R.; Karr, K.
2016-12-01
Effective Ecosystem Based Management requires a localized understanding of the health and functioning of a given system as well as of the various factors that may threaten the ongoing ability of the system to support the provision of valued services. Several risk assessment models are available that can provide a scientific basis for understanding these factors and for guiding management action, but these models focus mainly on single species and evaluate only the impacts of fishing in detail. We have developed a new ecosystem risk assessment model - the Comprehensive Assessment of Risk to Ecosystems (CARE) - that allows analysts to consider the cumulative impact of multiple threats, interactions among multiple threats that may result in synergistic or antagonistic impacts, and the impacts of a suite of threats on whole-ecosystem productivity and functioning, as well as on specific ecosystem services. The CARE model was designed to be completed in as little as two hours, and uses local and expert knowledge where data are lacking. The CARE tool can be used to evaluate risks facing a single site; to compare multiple sites for the suitability or necessity of different management options; or to evaluate the effects of a proposed management action aimed at reducing one or more risks. This analysis can help users identify which threats are the most important at a given site, and therefore where limited management resources should be targeted. CARE can be applied to virtually any system, and can be modified as knowledge is gained or to better match different site characteristics. CARE builds on previous ecosystem risk assessment tools to provide a comprehensive assessment of fishing and non-fishing threats that can be used to inform environmental management decisions across a broad range of systems.
Ecosystem Risk Assessment Using the Comprehensive Assessment of Risk to Ecosystems (CARE) Tool
NASA Astrophysics Data System (ADS)
Battista, W.; Fujita, R.; Karr, K.
2016-02-01
Effective Ecosystem Based Management requires a localized understanding of the health and functioning of a given system as well as of the various factors that may threaten the ongoing ability of the system to support the provision of valued services. Several risk assessment models are available that can provide a scientific basis for understanding these factors and for guiding management action, but these models focus mainly on single species and evaluate only the impacts of fishing in detail. We have developed a new ecosystem risk assessment model - the Comprehensive Assessment of Risk to Ecosystems (CARE) - that allows analysts to consider the cumulative impact of multiple threats, interactions among multiple threats that may result in synergistic or antagonistic impacts, and the impacts of a suite of threats on whole-ecosystem productivity and functioning, as well as on specific ecosystem services. The CARE model was designed to be completed in as little as two hours, and uses local and expert knowledge where data are lacking. The CARE tool can be used to evaluate risks facing a single site; to compare multiple sites for the suitability or necessity of different management options; or to evaluate the effects of a proposed management action aimed at reducing one or more risks. This analysis can help users identify which threats are the most important at a given site, and therefore where limited management resources should be targeted. CARE can be applied to virtually any system, and can be modified as knowledge is gained or to better match different site characteristics. CARE builds on previous ecosystem risk assessment tools to provide a comprehensive assessment of fishing and non-fishing threats that can be used to inform environmental management decisions across a broad range of systems.
Frainer, André; McKie, Brendan G; Malmqvist, Björn
2014-03-01
Despite ample experimental evidence indicating that biodiversity might be an important driver of ecosystem processes, its role in the functioning of real ecosystems remains unclear. In particular, the understanding of which aspects of biodiversity are most important for ecosystem functioning, their importance relative to other biotic and abiotic drivers, and the circumstances under which biodiversity is most likely to influence functioning in nature, is limited. We conducted a field study that focussed on a guild of insect detritivores in streams, in which we quantified variation in the process of leaf decomposition across two habitats (riffles and pools) and two seasons (autumn and spring). The study was conducted in six streams, and the same locations were sampled in the two seasons. With the aid of structural equations modelling, we assessed spatiotemporal variation in the roles of three key biotic drivers in this process: functional diversity, quantified based on a species trait matrix, consumer density and biomass. Our models also accounted for variability related to different litter resources, and other sources of biotic and abiotic variability among streams. All three of our focal biotic drivers influenced leaf decomposition, but none was important in all habitats and seasons. Functional diversity had contrasting effects on decomposition between habitats and seasons. A positive relationship was observed in pool habitats in spring, associated with high trait dispersion, whereas a negative relationship was observed in riffle habitats during autumn. Our results demonstrate that functional biodiversity can be as significant for functioning in natural ecosystems as other important biotic drivers. In particular, variation in the role of functional diversity between seasons highlights the importance of fluctuations in the relative abundances of traits for ecosystem process rates in real ecosystems. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
Biocrusts in the context of global change
Reed, Sasha C.; Maestre, Fernando T.; Ochoa-Hueso, Raul; Kuske, Cheryl; Darrouzet-Nardi, Anthony N.; Darby, Brian; Sinsabaugh, Bob; Oliver, Mel; Sancho, Leo; Belnap, Jayne
2016-01-01
A wide range of studies show global environmental change will profoundly affect the structure, function, and dynamics of terrestrial ecosystems. The research synthesized here underscores that biocrust communities are also likely to respond significantly to global change drivers, with a large potential for modification to their abundance, composition, and function. We examine how elevated atmospheric CO2 concentrations, climate change (increased temperature and altered precipitation), and nitrogen deposition affect biocrusts and the ecosystems they inhabit. We integrate experimental and observational data, as well as physiological, community ecology, and biogeochemical perspectives. Taken together, these data highlight the potential for biocrust organisms to respond dramatically to environmental change and show how changes to biocrust community composition translate into effects on ecosystem function (e.g., carbon and nutrient cycling, soil stability, energy balance). Due to the importance of biocrusts in regulating dryland ecosystem processes and the potential for large modifications to biocrust communities, an improved understanding and predictive capacity regarding biocrust responses to environmental change are of scientific and societal relevance.
Mohanty, Anee; Wu, Yichao; Cao, Bin
2014-10-01
In natural and engineered environments, microorganisms often exist as complex communities, which are key to the health of ecosystems and the success of bioprocesses in various engineering applications. With the rapid development of nanotechnology in recent years, engineered nanomaterials (ENMs) have been considered one type of emerging contaminants that pose great potential risks to the proper function of microbial communities in natural and engineered ecosystems. The impacts of ENMs on microorganisms have attracted increasing research attentions; however, most studies focused on the antimicrobial activities of ENMs at single cell and population level. Elucidating the influence of ENMs on microbial communities represents a critical step toward a comprehensive understanding of the ecotoxicity of ENMs. In this mini-review, we summarize and discuss recent research work on the impacts of ENMs on microbial communities in natural and engineered ecosystems, with an emphasis on their influences on the community structure and function. We also highlight several important research topics which may be of great interest to the research community.
Current status of the East Sea Ecosystem in a changing world
NASA Astrophysics Data System (ADS)
Lee, Sang Heon; Kang, Chang-Keun; Lee, Chung IL; Kwak, Jung Hyun
2017-12-01
The East/Japan Sea (hereafter the East Sea) is changing quickly. Warming and structural changes in the East Sea have been reported by CREAMS, an acronym of ″Circulation Research of the East Asian Marginal Seas″, which began in 1993 as an international research program to understand the water mass structure and circulation in the East Sea (Kim and Kim, 1996; Kim, 1997; Kim et al., 2001, 2002). A subsequent research program of the EAST-I, an acronym of ″the East Asian Seas Time-series″, was launched by PICES (North Pacific Marine Science Organization) and financially supported by the Korean government, allowing us to deepen our knowledge about rapidly changing processes in the East Sea (Chang et al., 2010). Although there has been considerable progress in developing a mechanistic understanding of the East Sea ecosystem responses to disturbances, more comprehensive studies are needed to address the impacts of the frequency and intensity of disturbances on marine ecosystems. The most important question of the research has been: how do environmental changes affect structural and functional biodiversity? Recently launched research on ″Long-term change of structure and function in marine ecosystems of Korea″, which has been supported by the Korean government since 2011, has given an unprecedented insight into the ecosystem dynamics in the East Sea. It therefore seems an appropriate time to devote a special issue to the topic of ″Current status of the East Sea ecosystem in a changing world″.
Quantifying patterns of change in marine ecosystem response to multiple pressures.
Large, Scott I; Fay, Gavin; Friedland, Kevin D; Link, Jason S
2015-01-01
The ability to understand and ultimately predict ecosystem response to multiple pressures is paramount to successfully implement ecosystem-based management. Thresholds shifts and nonlinear patterns in ecosystem responses can be used to determine reference points that identify levels of a pressure that may drastically alter ecosystem status, which can inform management action. However, quantifying ecosystem reference points has proven elusive due in large part to the multi-dimensional nature of both ecosystem pressures and ecosystem responses. We used ecological indicators, synthetic measures of ecosystem status and functioning, to enumerate important ecosystem attributes and to reduce the complexity of the Northeast Shelf Large Marine Ecosystem (NES LME). Random forests were used to quantify the importance of four environmental and four anthropogenic pressure variables to the value of ecological indicators, and to quantify shifts in aggregate ecological indicator response along pressure gradients. Anthropogenic pressure variables were critical defining features and were able to predict an average of 8-13% (up to 25-66% for individual ecological indicators) of the variation in ecological indicator values, whereas environmental pressures were able to predict an average of 1-5 % (up to 9-26% for individual ecological indicators) of ecological indicator variation. Each pressure variable predicted a different suite of ecological indicator's variation and the shapes of ecological indicator responses along pressure gradients were generally nonlinear. Threshold shifts in ecosystem response to exploitation, the most important pressure variable, occurred when commercial landings were 20 and 60% of total surveyed biomass. Although present, threshold shifts in ecosystem response to environmental pressures were much less important, which suggests that anthropogenic pressures have significantly altered the ecosystem structure and functioning of the NES LME. Gradient response curves provide ecologically informed transformations of pressure variables to explain patterns of ecosystem structure and functioning. By concurrently identifying thresholds for a suite of ecological indicator responses to multiple pressures, we demonstrate that ecosystem reference points can be evaluated and used to support ecosystem-based management.
Sánchez, Marta I; Paredes, Irene; Lebouvier, Marion; Green, Andy J
2016-01-01
Filter-feeding organisms are often keystone species with a major influence on the dynamics of aquatic ecosystems. Studies of filtering rates in such taxa are therefore vital in order to understand ecosystem functioning and the impact of natural and anthropogenic stressors such as parasites, climate warming and invasive species. Brine shrimps Artemia spp. are the dominant grazers in hypersaline systems and are a good example of such keystone taxa. Hypersaline ecosystems are relatively simplified environments compared with much more complex freshwater and marine ecosystems, making them suitable model systems to address these questions. The aim of this study was to compare feeding rates at different salinities and temperatures between clonal A. parthenogenetica (native to Eurasia and Africa) and the invasive American brine shrimp A. franciscana, which is excluding native Artemia from many localities. We considered how differences observed in laboratory experiments upscale at the ecosystem level across both spatial and temporal scales (as indicated by chlorophyll-a concentration and turbidity). In laboratory experiments, feeding rates increased at higher temperatures and salinities in both Artemia species and sexes, whilst A. franciscana consistently fed at higher rates. A field study of temporal dynamics revealed significantly higher concentrations of chlorophyll-a in sites occupied by A. parthenogenetica, supporting our experimental findings. Artemia parthenogenetica density and biomass were negatively correlated with chlorophyll-a concentration at the spatial scale. We also tested the effect of cestode parasites, which are highly prevalent in native Artemia but much rarer in the invasive species. The cestodes Flamingolepis liguloides and Anomotaenia tringae decreased feeding rates in native Artemia, whilst Confluaria podicipina had no significant effect. Total parasite prevalence was positively correlated with turbidity. Overall, parasites are likely to reduce feeding rates in the field, and their negative impact on host fecundity is likely to exacerbate the difference between grazing rates of native and alien Artemia populations at the ecosystem level. The results of this study provide evidence for the first time that the replacement of native Artemia by A. franciscana may have major consequences for the functioning of hypersaline ecosystems. The strong effect of parasites on feeding rate underlines the importance of taking parasites into account in order to improve our understanding of the functioning of aquatic ecosystems.
Florida Integrated Science Center (FISC) Coral Reef Research
Poore, D.Z.
2008-01-01
Coral reefs provide important ecosystem services such as shoreline protection and the support of lucrative industries including fisheries and tourism. Such ecosystem services are being compromised as reefs decline due to coral disease, climate change, overfishing, and pollution. There is a need for focused, integrated science to understand the complex ecological interactions and effects of these many stressors and to provide information that will effectively guide policies and best management practices to preserve and restore these important resources. The U.S. Geological Survey Florida Integrated Science Center (USGS-FISC) is conducting a coordinated Coral Reef Research Project beginning in 2009. Specific research topics are aimed at addressing priorities identified in the 'Strategic Science for Coral Ecosystems 2007-2011' document (U.S. Geological Survey, 2007). Planned research will include a blend of historical, monitoring, and process studies aimed at improving our understanding of the development, current status and function, and likely future changes in coral ecosystems. Topics such as habitat characterization and distribution, coral disease, and trends in biogenic calcification are major themes of understanding reef structure, ecological integrity, and responses to global change.
NASA Astrophysics Data System (ADS)
Carey, C.; Eviner, V.; Beman, M.; Hart, S. C.
2013-12-01
Since western colonization, the ecology of California has seen marked transformations. In particular, invasion of terrestrial ecosystems by exotic plants has altered plant community composition, disturbances, soil hydrologic regimes, and nutrient cycling. In addition, as a result of fertilization and combustion of fossil fuels, California experiences some of the highest nitrogen (N) deposition rates in the country. Land use has also changed with the introduction of domestic livestock grazing about 250 years ago. Currently, approximately 32% of land in California experiences grazing pressure. These ecological changes likely affect the ecosystems of California simultaneously. However, with multifactor global change experiments in their infancy, little is known about potential interactive effects on ecosystem structure and function. Our study measured the response of soil N dynamics to a unique combination of treatments: invasion by exotic plants (Aegilops triuncialis and Taeniatherum caput-medusae), elevated N additions, and simulated cattle grazing (aboveground vegetation removal). In addition, we quantified the abundance of key functional genes involved in nitrification (amoA) and denitrification (nirS/nirK) in order to gain a mechanistic insight into changes in ecosystem functioning. We found that, while responses of soil N pools and processes to global change factors tend to be dominated by main effects, interactions among factors can substantially alter the overall response of the ecosystem. For instance, N additions increased potential nitrification and pools of total inorganic N (TIN; NH4+ and NO3-); when N additions and grazing were combined, however, nitrification potentials and TIN decreased to those of ambient N (control) levels. Additionally, neither N additions nor simulated grazing independently affected soil microbial biomass of invaded plots; yet, when combined, the microbial biomass increased significantly. Our results help to provide a better understanding of the regulatory role of the soil microbial community in terrestrial N cycling and also help to improve our understanding of the controls on global change-induced shifts in ecosystem functioning.
Freshwater processing of terrestrial dissolved organic matter: What governs lability?
NASA Astrophysics Data System (ADS)
D'Andrilli, J.; Smith, H. J.; Junker, J. R.; Scholl, E. A.; Foreman, C. M.
2016-12-01
Aquatic and terrestrial ecosystems are linked through the transfer of energy and materials. Allochthonous organic matter (OM) is central to freshwater ecosystem function, influencing local food webs, trophic state, and nutrient availability. In order to understand the nature and fate of OM from inland headwaters to the open ocean, it is imperative to understand the links between OM lability and ecosystem function. Thus, biological, chemical, and physical factors need to be evaluated together to inform our understanding of environmental lability. We performed a laboratory processing experiment on naturally occurring OM leachates from riparian leaves, grasses, and pine needles. Measures of water chemistry, OM optical and molecular characterization, bacterial abundances, microbial assemblage composition, respiration, and C:N:P were integrated to discern the nature and fate of labile and recalcitrant OM in a freshwater stream. Peak processing of all OM sources in the stream water occurred after two days, with spikes in bacterial cell abundances, respiration rates, microbial assemblage shifts, and maximum C utilization. Respiration rates and microbial assemblages were dependent on the degree of lability of the OM molecular composition. Within the first few days, no differences in respiration rates were observed between leachate sources, however, beyond day five, the rates diverged with C processing efficiency correlated with OM lability. Originally comprised of amino acid-like, labile fluorescent species, the inoculated stream water OM became more recalcitrant after 16 days, indicating humification processing over time. Our study highlights the importance of interdisciplinary approaches for understanding the processing and fate of OM in aquatic ecosystems.
Soil Functional Mapping: A Geospatial Framework for Scaling Soil Carbon Cycling
NASA Astrophysics Data System (ADS)
Lawrence, C. R.
2017-12-01
Climate change is dramatically altering biogeochemical cycles in most terrestrial ecosystems, particularly the cycles of water and carbon (C). These changes will affect myriad ecosystem processes of importance, including plant productivity, C exports to aquatic systems, and terrestrial C storage. Soil C storage represents a critical feedback to climate change as soils store more C than the atmosphere and aboveground plant biomass combined. While we know plant and soil C cycling are strongly coupled with soil moisture, substantial unknowns remain regarding how these relationships can be scaled up from soil profiles to ecosystems. This greatly limits our ability to build a process-based understanding of the controls on and consequences of climate change at regional scales. In an effort to address this limitation we: (1) describe an approach to classifying soils that is based on underlying differences in soil functional characteristics and (2) examine the utility of this approach as a scaling tool that honors the underlying soil processes. First, geospatial datasets are analyzed in the context of our current understanding of soil C and water cycling in order to predict soil functional units that can be mapped at the scale of ecosystems or watersheds. Next, the integrity of each soil functional unit is evaluated using available soil C data and mapping units are refined as needed. Finally, targeted sampling is conducted to further differentiate functional units or fill in any data gaps that are identified. Completion of this workflow provides new geospatial datasets that are based on specific soil functions, in this case the coupling of soil C and water cycling, and are well suited for integration with regional-scale soil models. Preliminary results from this effort highlight the advantages of a scaling approach that balances theory, measurement, and modeling.
Species richness and trophic diversity increase decomposition in a co-evolved food web.
Baiser, Benjamin; Ardeshiri, Roxanne S; Ellison, Aaron M
2011-01-01
Ecological communities show great variation in species richness, composition and food web structure across similar and diverse ecosystems. Knowledge of how this biodiversity relates to ecosystem functioning is important for understanding the maintenance of diversity and the potential effects of species losses and gains on ecosystems. While research often focuses on how variation in species richness influences ecosystem processes, assessing species richness in a food web context can provide further insight into the relationship between diversity and ecosystem functioning and elucidate potential mechanisms underpinning this relationship. Here, we assessed how species richness and trophic diversity affect decomposition rates in a complete aquatic food web: the five trophic level web that occurs within water-filled leaves of the northern pitcher plant, Sarracenia purpurea. We identified a trophic cascade in which top-predators--larvae of the pitcher-plant mosquito--indirectly increased bacterial decomposition by preying on bactivorous protozoa. Our data also revealed a facultative relationship in which larvae of the pitcher-plant midge increased bacterial decomposition by shredding detritus. These important interactions occur only in food webs with high trophic diversity, which in turn only occur in food webs with high species richness. We show that species richness and trophic diversity underlie strong linkages between food web structure and dynamics that influence ecosystem functioning. The importance of trophic diversity and species interactions in determining how biodiversity relates to ecosystem functioning suggests that simply focusing on species richness does not give a complete picture as to how ecosystems may change with the loss or gain of species.
Species Richness and Trophic Diversity Increase Decomposition in a Co-Evolved Food Web
Baiser, Benjamin; Ardeshiri, Roxanne S.; Ellison, Aaron M.
2011-01-01
Ecological communities show great variation in species richness, composition and food web structure across similar and diverse ecosystems. Knowledge of how this biodiversity relates to ecosystem functioning is important for understanding the maintenance of diversity and the potential effects of species losses and gains on ecosystems. While research often focuses on how variation in species richness influences ecosystem processes, assessing species richness in a food web context can provide further insight into the relationship between diversity and ecosystem functioning and elucidate potential mechanisms underpinning this relationship. Here, we assessed how species richness and trophic diversity affect decomposition rates in a complete aquatic food web: the five trophic level web that occurs within water-filled leaves of the northern pitcher plant, Sarracenia purpurea. We identified a trophic cascade in which top-predators — larvae of the pitcher-plant mosquito — indirectly increased bacterial decomposition by preying on bactivorous protozoa. Our data also revealed a facultative relationship in which larvae of the pitcher-plant midge increased bacterial decomposition by shredding detritus. These important interactions occur only in food webs with high trophic diversity, which in turn only occur in food webs with high species richness. We show that species richness and trophic diversity underlie strong linkages between food web structure and dynamics that influence ecosystem functioning. The importance of trophic diversity and species interactions in determining how biodiversity relates to ecosystem functioning suggests that simply focusing on species richness does not give a complete picture as to how ecosystems may change with the loss or gain of species. PMID:21673992
Bridging Food Webs, Ecosystem Metabolism, and Biogeochemistry Using Ecological Stoichiometry Theory.
Welti, Nina; Striebel, Maren; Ulseth, Amber J; Cross, Wyatt F; DeVilbiss, Stephen; Glibert, Patricia M; Guo, Laodong; Hirst, Andrew G; Hood, Jim; Kominoski, John S; MacNeill, Keeley L; Mehring, Andrew S; Welter, Jill R; Hillebrand, Helmut
2017-01-01
Although aquatic ecologists and biogeochemists are well aware of the crucial importance of ecosystem functions, i.e., how biota drive biogeochemical processes and vice-versa, linking these fields in conceptual models is still uncommon. Attempts to explain the variability in elemental cycling consequently miss an important biological component and thereby impede a comprehensive understanding of the underlying processes governing energy and matter flow and transformation. The fate of multiple chemical elements in ecosystems is strongly linked by biotic demand and uptake; thus, considering elemental stoichiometry is important for both biogeochemical and ecological research. Nonetheless, assessments of ecological stoichiometry (ES) often focus on the elemental content of biota rather than taking a more holistic view by examining both elemental pools and fluxes (e.g., organismal stoichiometry and ecosystem process rates). ES theory holds the promise to be a unifying concept to link across hierarchical scales of patterns and processes in ecology, but this has not been fully achieved. Therefore, we propose connecting the expertise of aquatic ecologists and biogeochemists with ES theory as a common currency to connect food webs, ecosystem metabolism, and biogeochemistry, as they are inherently concatenated by the transfer of carbon, nitrogen, and phosphorous through biotic and abiotic nutrient transformation and fluxes. Several new studies exist that demonstrate the connections between food web ecology, biogeochemistry, and ecosystem metabolism. In addition to a general introduction into the topic, this paper presents examples of how these fields can be combined with a focus on ES. In this review, a series of concepts have guided the discussion: (1) changing biogeochemistry affects trophic interactions and ecosystem processes by altering the elemental ratios of key species and assemblages; (2) changing trophic dynamics influences the transformation and fluxes of matter across environmental boundaries; (3) changing ecosystem metabolism will alter the chemical diversity of the non-living environment. Finally, we propose that using ES to link nutrient cycling, trophic dynamics, and ecosystem metabolism would allow for a more holistic understanding of ecosystem functions in a changing environment.
David J. Nowak
1994-01-01
Urban forests are complex ecosystems created by the interaction of anthropogenic and natural processes. One key to better management of these systems is to understand urban forest structure and its relationship to forest functions. Through sampling and inventories, urban foresters often obtain structural information (e.g., numbers, location, size, and condition) on...
A global Fine-Root Ecology Database to address below-ground challenges in plant ecology.
Iversen, Colleen M; McCormack, M Luke; Powell, A Shafer; Blackwood, Christopher B; Freschet, Grégoire T; Kattge, Jens; Roumet, Catherine; Stover, Daniel B; Soudzilovskaia, Nadejda A; Valverde-Barrantes, Oscar J; van Bodegom, Peter M; Violle, Cyrille
2017-07-01
Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. While fine roots play an important role in ecosystem functioning, fine-root traits are underrepresented in global trait databases. This has hindered efforts to analyze fine-root trait variation and link it with plant function and environmental conditions at a global scale. This Viewpoint addresses the need for a centralized fine-root trait database, and introduces the Fine-Root Ecology Database (FRED, http://roots.ornl.gov) which so far includes > 70 000 observations encompassing a broad range of root traits and also includes associated environmental data. FRED represents a critical step toward improving our understanding of below-ground plant ecology. For example, FRED facilitates the quantification of variation in fine-root traits across root orders, species, biomes, and environmental gradients while also providing a platform for assessments of covariation among root, leaf, and wood traits, the role of fine roots in ecosystem functioning, and the representation of fine roots in terrestrial biosphere models. Continued input of observations into FRED to fill gaps in trait coverage will improve our understanding of changes in fine-root traits across space and time. © 2017 UT-Battelle LLC. New Phytologist © 2017 New Phytologist Trust.
Community dynamics and ecosystem simplification in a high-CO2 ocean.
Kroeker, Kristy J; Gambi, Maria Cristina; Micheli, Fiorenza
2013-07-30
Disturbances are natural features of ecosystems that promote variability in the community and ultimately maintain diversity. Although it is recognized that global change will affect environmental disturbance regimes, our understanding of the community dynamics governing ecosystem recovery and the maintenance of functional diversity in future scenarios is very limited. Here, we use one of the few ecosystems naturally exposed to future scenarios of environmental change to examine disturbance and recovery dynamics. We examine the recovery patterns of marine species from a physical disturbance across different acidification regimes caused by volcanic CO2 vents. Plots of shallow rocky reef were cleared of all species in areas of ambient, low, and extreme low pH that correspond to near-future and extreme scenarios for ocean acidification. Our results illustrate how acidification decreases the variability of communities, resulting in homogenization and reduced functional diversity at a landscape scale. Whereas the recovery trajectories in ambient pH were highly variable and resulted in a diverse range of assemblages, recovery was more predictable with acidification and consistently resulted in very similar algal-dominated assemblages. Furthermore, low pH zones had fewer signs of biological disturbance (primarily sea urchin grazing) and increased recovery rates of the dominant taxa (primarily fleshy algae). Together, our results highlight how environmental change can cause ecosystem simplification via environmentally mediated changes in community dynamics in the near future, with cascading impacts on functional diversity and ecosystem function.
Knapp, Alan K.; Avolio, Meghan L.; Beier, Claus; Carroll, Charles J.W.; Collins, Scott L.; Dukes, Jeffrey S.; Fraser, Lauchlan H.; Griffin-Nolan, Robert J.; Hoover, David L.; Jentsch, Anke; Loik, Michael E.; Phillips, Richard P.; Post, Alison K.; Sala, Osvaldo E.; Slette, Ingrid J.; Yahdjian, Laura; Smith, Melinda D.
2017-01-01
Intensification of the global hydrological cycle, ranging from larger individual precipitation events to more extreme multiyear droughts, has the potential to cause widespread alterations in ecosystem structure and function. With evidence that the incidence of extreme precipitation years (defined statistically from historical precipitation records) is increasing, there is a clear need to identify ecosystems that are most vulnerable to these changes and understand why some ecosystems are more sensitive to extremes than others. To date, opportunistic studies of naturally occurring extreme precipitation years, combined with results from a relatively small number of experiments, have provided limited mechanistic understanding of differences in ecosystem sensitivity, suggesting that new approaches are needed. Coordinated distributed experiments (CDEs) arrayed across multiple ecosystem types and focused on water can enhance our understanding of differential ecosystem sensitivity to precipitation extremes, but there are many design challenges to overcome (e.g., cost, comparability, standardization). Here, we evaluate contemporary experimental approaches for manipulating precipitation under field conditions to inform the design of ‘Drought-Net’, a relatively low-cost CDE that simulates extreme precipitation years. A common method for imposing both dry and wet years is to alter each ambient precipitation event. We endorse this approach for imposing extreme precipitation years because it simultaneously alters other precipitation characteristics (i.e., event size) consistent with natural precipitation patterns. However, we do not advocate applying identical treatment levels at all sites – a common approach to standardization in CDEs. This is because precipitation variability varies >fivefold globally resulting in a wide range of ecosystem-specific thresholds for defining extreme precipitation years. For CDEs focused on precipitation extremes, treatments should be based on each site's past climatic characteristics. This approach, though not often used by ecologists, allows ecological responses to be directly compared across disparate ecosystems and climates, facilitating process-level understanding of ecosystem sensitivity to precipitation extremes.
Knapp, Alan K; Avolio, Meghan L; Beier, Claus; Carroll, Charles J W; Collins, Scott L; Dukes, Jeffrey S; Fraser, Lauchlan H; Griffin-Nolan, Robert J; Hoover, David L; Jentsch, Anke; Loik, Michael E; Phillips, Richard P; Post, Alison K; Sala, Osvaldo E; Slette, Ingrid J; Yahdjian, Laura; Smith, Melinda D
2017-05-01
Intensification of the global hydrological cycle, ranging from larger individual precipitation events to more extreme multiyear droughts, has the potential to cause widespread alterations in ecosystem structure and function. With evidence that the incidence of extreme precipitation years (defined statistically from historical precipitation records) is increasing, there is a clear need to identify ecosystems that are most vulnerable to these changes and understand why some ecosystems are more sensitive to extremes than others. To date, opportunistic studies of naturally occurring extreme precipitation years, combined with results from a relatively small number of experiments, have provided limited mechanistic understanding of differences in ecosystem sensitivity, suggesting that new approaches are needed. Coordinated distributed experiments (CDEs) arrayed across multiple ecosystem types and focused on water can enhance our understanding of differential ecosystem sensitivity to precipitation extremes, but there are many design challenges to overcome (e.g., cost, comparability, standardization). Here, we evaluate contemporary experimental approaches for manipulating precipitation under field conditions to inform the design of 'Drought-Net', a relatively low-cost CDE that simulates extreme precipitation years. A common method for imposing both dry and wet years is to alter each ambient precipitation event. We endorse this approach for imposing extreme precipitation years because it simultaneously alters other precipitation characteristics (i.e., event size) consistent with natural precipitation patterns. However, we do not advocate applying identical treatment levels at all sites - a common approach to standardization in CDEs. This is because precipitation variability varies >fivefold globally resulting in a wide range of ecosystem-specific thresholds for defining extreme precipitation years. For CDEs focused on precipitation extremes, treatments should be based on each site's past climatic characteristics. This approach, though not often used by ecologists, allows ecological responses to be directly compared across disparate ecosystems and climates, facilitating process-level understanding of ecosystem sensitivity to precipitation extremes. © 2016 John Wiley & Sons Ltd.
Evosystem Services: Rapid Evolution and the Provision of Ecosystem Services.
Rudman, Seth M; Kreitzman, Maayan; Chan, Kai M A; Schluter, Dolph
2017-06-01
Evolution is recognized as the source of all organisms, and hence many ecosystem services. However, the role that contemporary evolution might play in maintaining and enhancing specific ecosystem services has largely been overlooked. Recent advances at the interface of ecology and evolution have demonstrated how contemporary evolution can shape ecological communities and ecosystem functions. We propose a definition and quantitative criteria to study how rapid evolution affects ecosystem services (here termed contemporary evosystem services) and present plausible scenarios where such services might exist. We advocate for the direct measurement of contemporary evosystem services to improve understanding of how changing environments will alter resource availability and human well-being, and highlight the potential utility of managing rapid evolution for future ecosystem services. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ecosystem-scale plant hydraulic strategies inferred from remotely-sensed soil moisture
NASA Astrophysics Data System (ADS)
Bassiouni, M.; Good, S. P.; Higgins, C. W.
2017-12-01
Characterizing plant hydraulic strategies at the ecosystem scale is important to improve estimates of evapotranspiration and to understand ecosystem productivity and resilience. However, quantifying plant hydraulic traits beyond the species level is a challenge. The probability density function of soil moisture observations provides key information about the soil moisture states at which evapotranspiration is reduced by water stress. Here, an inverse Bayesian approach is applied to a standard bucket model of soil column hydrology forced with stochastic precipitation inputs. Through this approach, we are able to determine the soil moisture thresholds at which stomata are open or closed that are most consistent with observed soil moisture probability density functions. This research utilizes remotely-sensed soil moisture data to explore global patterns of ecosystem-scale plant hydraulic strategies. Results are complementary to literature values of measured hydraulic traits of various species in different climates and previous estimates of ecosystem-scale plant isohydricity. The presented approach provides a novel relation between plant physiological behavior and soil-water dynamics.
NASA Astrophysics Data System (ADS)
Battin, Tom J.; Dzubakova, Katharina; Boodoo, Kyle; Ulseth, Amber
2017-04-01
Streams and rivers are increasingly exposed to environmental change across various spatial and temporal scales. Consequently, ecosystem health and integrity are becoming compromised. Most management strategies designed to recover and maintain stream ecosystem health involve engineering measures of geomorphology. The success of such engineering measures relies on a thorough understanding of the underlying physical, chemical and biological process coupling across scales. First, we present results from experimental work unraveling the relevance of streambed heterogeneity for the resilience of phototrophic biofilms. This is critical as phototrophic biofilms are key for nutrient removal and hence for keeping the water clean. These biofilms are also the machinery of primary production and related carbon fluxes in stream ecosystems. Next, we show how climate change may affect primary production, including CO2, in streams and the networks they form. In fact, streams are now recognized as major sources of CO2 to the atmosphere and contributors to the global carbon cycle. Despite this, we do not yet understand how geomorphological features, themselves continuously reworked by hydrology and sedimentary dynamics, affect CO2 fluxes in streams. We show that gravel bars, clearly conspicuous geomorphological features, are hotspots of CO2 fluxes compared to the streamwater itself. This has major implications for carbon cycling and stream ecosystem functioning. Finally, we discuss what stream management could learn from ecohydraulic insights from young scientists doing excellent basic research.
Fester, Thomas; Giebler, Julia; Wick, Lukas Y; Schlosser, Dietmar; Kästner, Matthias
2014-06-01
The plant organism and associated microbial communities can be seen as a sunlight driven hotspot for the turnover of organic chemicals. In such environments the fate of a chemical will not only depend on its intrinsic structural stability toward (bio-)chemical reactions and its bioavailability but also on the functional effectiveness and stability of natural microbial communities as main drivers of natural attenuation of chemicals. Recent research demonstrates that interactions between plants and microorganisms are crucial for the biotransformation of organic chemicals, for various processes affecting the bioavailability of such compounds, and for the stability of the affected ecosystem. Practical bioremediation approaches, therefore, should encompass integrated measures targeting functional vegetation as well as functional microbial communities. Good examples for a successful practical approach are constructed wetlands, where an artificial, simplified ecosystem is used for the detoxification of organic contaminants. While such systems have considerable practical success, they are often treated as a black box and a sound mechanistic understanding of functional resilience and of the 'reactive power' of such plant-microbe ecosystems is poor. This situation has to change, if progress in the application of bioremediation is to be made. Copyright © 2014 Elsevier Ltd. All rights reserved.
Coral identity underpins architectural complexity on Caribbean reefs.
Alvarez-Filip, Lorenzo; Dulvy, Nicholas K; Côte, Isabelle M; Watkinson, Andrew R; Gill, Jennifer A
2011-09-01
The architectural complexity of ecosystems can greatly influence their capacity to support biodiversity and deliver ecosystem services. Understanding the components underlying this complexity can aid the development of effective strategies for ecosystem conservation. Caribbean coral reefs support and protect millions of livelihoods, but recent anthropogenic change is shifting communities toward reefs dominated by stress-resistant coral species, which are often less architecturally complex. With the regionwide decline in reef fish abundance, it is becoming increasingly important to understand changes in coral reef community structure and function. We quantify the influence of coral composition, diversity, and morpho-functional traits on the architectural complexity of reefs across 91 sites at Cozumel, Mexico. Although reef architectural complexity increases with coral cover and species richness, it is highest on sites that are low in taxonomic evenness and dominated by morpho-functionally important, reef-building coral genera, particularly Montastraea. Sites with similar coral community composition also tend to occur on reefs with very similar architectural complexity, suggesting that reef structure tends to be determined by the same key species across sites. Our findings provide support for prioritizing and protecting particular reef types, especially those dominated by key reef-building corals, in order to enhance reef complexity.
Ecosystem services provided by waterbirds.
Green, Andy J; Elmberg, Johan
2014-02-01
Ecosystem services are ecosystem processes that directly or indirectly benefit human well-being. There has been much recent literature identifying different services and the communities and species that provide them. This is a vital first step towards management and maintenance of these services. In this review, we specifically address the waterbirds, which play key functional roles in many aquatic ecosystems, including as predators, herbivores and vectors of seeds, invertebrates and nutrients, although these roles have often been overlooked. Waterbirds can maintain the diversity of other organisms, control pests, be effective bioindicators of ecological conditions, and act as sentinels of potential disease outbreaks. They also provide important provisioning (meat, feathers, eggs, etc.) and cultural services to both indigenous and westernized societies. We identify key gaps in the understanding of ecosystem services provided by waterbirds and areas for future research required to clarify their functional role in ecosystems and the services they provide. We consider how the economic value of these services could be calculated, giving some examples. Such valuation will provide powerful arguments for waterbird conservation. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.
Ian D. Thompson; Joice Ferreira; Toby Gardner; Manuel Guariguata; Lian Pin Koh; Kimiko Okabe; Yude Pan; Christine B. Schmitt; Jason Tylianakis; Jos Barlow; Valerie Kapos; Werner A. Kurz; John A. Parrotta; Mark D. Spalding; Nathalie van Vliet
2012-01-01
REDD+ actions should be based on the best science and on the understanding that forests can provide more than a repository for carbon but also offer a wide range of services beneficial to people. Biodiversity underpins many ecosystem services, one of which is carbon sequestration, and individual speciesâ functional traits play an important role in determining...
Integrating Flow, Form, and Function for Improved Environmental Water Management
NASA Astrophysics Data System (ADS)
Albin Lane, Belize Arela
Rivers are complex, dynamic natural systems. The performance of river ecosystem functions, such as habitat availability and sediment transport, depends on the interplay of hydrologic dynamics (flow) and geomorphic settings (form). However, most river restoration studies evaluate the role of either flow or form without regard for their dynamic interactions. Despite substantial recent interest in quantifying environmental water requirements to support integrated water management efforts, the absence of quantitative, transferable relationships between river flow, form, and ecosystem functions remains a major limitation. This research proposes a novel, process-driven methodology for evaluating river flow-form-function linkages in support of basin-scale environmental water management. This methodology utilizes publically available geospatial and time-series data and targeted field data collection to improve basic understanding of river systems with limited data and resource requirements. First, a hydrologic classification system is developed to characterize natural hydrologic variability across a highly altered, physio-climatically diverse landscape. Next, a statistical analysis is used to characterize reach-scale geomorphic variability and to investigate the utility of topographic variability attributes (TVAs, subreach-scale undulations in channel width and depth), alongside traditional reach-averaged attributes, for distinguishing dominant geomorphic forms and processes across a hydroscape. Finally, the interacting roles of flow (hydrologic regime, water year type, and hydrologic impairment) and form (channel morphology) are quantitatively evaluated with respect to ecosystem functions related to hydrogeomorphic processes, aquatic habitat, and riparian habitat. Synthetic river corridor generation is used to evaluate and isolate the role of distinct geomorphic attributes without the need for intensive topographic surveying. This three-part methodology was successfully applied in the Sacramento Basin of California, USA, a large, heavily altered Mediterranean-montane basin. A spatially-explicit hydrologic classification of California distinguished eight natural hydrologic regimes representing distinct flow sources, hydrologic characteristics, and rainfall-runoff controls. A hydro-geomorphic sub-classification of the Sacramento Basin based on stratified random field surveys of 161 stream reaches distinguished nine channel types consisting of both previously identified and new channel types. Results indicate that TVAs provide a quantitative basis for interpreting non-uniform as well as uniform geomorphic processes to better distinguish linked channel forms and functions of ecological significance. Finally, evaluation of six ecosystem functions across alternative flow-form scenarios in the Yuba River watershed highlights critical tradeoffs in ecosystem performance and emphasizes the significance of spatiotemporal diversity of flow and form for maintaining ecosystem integrity. The methodology developed in this dissertation is broadly applicable and extensible to other river systems and ecosystem functions, where findings can be used to characterize complex controls on river ecosystems, assess impacts of proposed flow and form alterations, and inform river restoration strategies. Overall, this research improves scientific understanding of the linkages between hydrology, geomorphology, and river ecosystems to more efficiently allocate scare water resources for human and environmental objectives across natural and built landscapes.
The Vertical Structure of Urban Soils and Their Convergence Across Cities
The theoretical patterns for vertical soil structure (e.g., A-B-C ordering of horizons) are a basis for research methods and our understanding of ecosystem structure and function in general. A general understanding of how urban soils differ from non-urban soils vertically is need...
The vertical geography of urban soils and its convergence across cities
The theoretical patterns for vertical soil structure (e.g., A-B-C ordering of horizons) are a basis for research methods and our understanding of ecosystem structure and function in general. A general understanding of how urban soils differ from non-urban soils vertically is need...
St. Petersburg Coastal and Marine Science Center coral reef research
Poore, Richard Z.; Kuffner, Ilsa B.; Kellogg, Christina A.
2010-01-01
The U.S. Geological Survey (USGS) Coral Reef Ecosystem STudies (CREST) Project specifically addresses priorities identified in the 'Facing tomorrow's challenges' U.S. Geological Survey science in the decade 2007-2017' document (USGS, 2007). Research includes a blend of historical, monitoring, and process studies aimed at improving our understanding of the development, current status and function, as well as likely future changes in coral ecosystems. Topics such as habitat characterization and distribution, coral disease, and trends in biogenic calcification are major focus areas. We seek to increase the understanding of reef structure, ecological integrity, and responses to global change.
The Potential and Flux Landscape Theory of Ecology
Zhang, Kun; Wang, Erkang; Wang, Jin
2014-01-01
The species in ecosystems are mutually interacting and self sustainable stable for a certain period. Stability and dynamics are crucial for understanding the structure and the function of ecosystems. We developed a potential and flux landscape theory of ecosystems to address these issues. We show that the driving force of the ecological dynamics can be decomposed to the gradient of the potential landscape and the curl probability flux measuring the degree of the breaking down of the detailed balance (due to in or out flow of the energy to the ecosystems). We found that the underlying intrinsic potential landscape is a global Lyapunov function monotonically going down in time and the topology of the landscape provides a quantitative measure for the global stability of the ecosystems. We also quantified the intrinsic energy, the entropy, the free energy and constructed the non-equilibrium thermodynamics for the ecosystems. We studied several typical and important ecological systems: the predation, competition, mutualism and a realistic lynx-snowshoe hare model. Single attractor, multiple attractors and limit cycle attractors emerge from these studies. We studied the stability and robustness of the ecosystems against the perturbations in parameters and the environmental fluctuations. We also found that the kinetic paths between the multiple attractors do not follow the gradient paths of the underlying landscape and are irreversible because of the non-zero flux. This theory provides a novel way for exploring the global stability, function and the robustness of ecosystems. PMID:24497975
Terrestrial biogeochemical cycles: global interactions with the atmosphere and hydrology
NASA Astrophysics Data System (ADS)
Schimel, David S.; Kittel, Timothy G. F.; Parton, William J.
1991-08-01
Ecosystem scientists have developed a body of theory to predict the behaviour of biogeochemical cycles when exchanges with other ecosystems are small or prescribed. Recent environmental changes make it clear that linkages between ecosystems via atmospheric and hydrological transport have large effects on ecosystem dynamics when considered over time periods of a decade to a century, time scales relevant to contemporary humankind. Our ability to predict behaviour of ecosystems coupled by transport is limited by our ability (1) to extrapolate biotic function to large spatial scales and (2) to measure and model transport. We review developments in ecosystem theory, remote sensing, and geographical information systems (GIS) that support new efforts in spatial modeling. A paradigm has emerged to predict behaviour of ecosystems based on understanding responses to multiple resources (e.g., water, nutrients, light). Several ecosystem models couple primary production to decomposition and nutrient availability using the above paradigm. These models require a fairly small set of environmental variables to simulate spatial and temporal variation in rates of biogeochemical cycling. Simultaneously, techniques for inferring ecosystem behaviour from remotely measured canopy light interception are improving our ability to infer plant activity from satellite observations. Efforts have begun to couple models of transport in air and water to models of ecosystem function. Preliminary work indicates that coupling of transport and ecosystem processes alters the behaviour of earth system components (hydrology, terrestrial ecosystems, and the atmosphere) from that of an uncoupled mode.
Holzwarth, Frédéric; Rüger, Nadja; Wirth, Christian
2015-03-01
Biodiversity and ecosystem functioning (BEF) research has progressed from the detection of relationships to elucidating their drivers and underlying mechanisms. In this context, replacing taxonomic predictors by trait-based measures of functional composition (FC)-bridging functions of species and of ecosystems-is a widely used approach. The inherent challenge of trait-based approaches is the multi-faceted, dynamic and hierarchical nature of trait influence: (i) traits may act via different facets of their distribution in a community, (ii) their influence may change over time and (iii) traits may influence processes at different levels of the natural hierarchy of organization. Here, we made use of the forest ecosystem model 'LPJ-GUESS' parametrized with empirical trait data, which creates output of individual performance, community assembly, stand-level states and processes. To address the three challenges, we resolved the dynamics of the top-level ecosystem function 'annual biomass change' hierarchically into its various component processes (growth, leaf and root turnover, recruitment and mortality) and states (stand structures, water stress) and traced the influence of different facets of FC along this hierarchy in a path analysis. We found an independent influence of functional richness, dissimilarity and identity on ecosystem states and processes and hence biomass change. Biodiversity effects were only positive during early succession and later turned negative. Unexpectedly, resource acquisition (growth, recruitment) and conservation (mortality, turnover) played an equally important role throughout the succession. These results add to a mechanistic understanding of biodiversity effects and place a caveat on simplistic approaches omitting hierarchical levels when analysing BEF relationships. They support the view that BEF relationships experience dramatic shifts over successional time that should be acknowledged in mechanistic theories.
NASA Astrophysics Data System (ADS)
Berbés-Blázquez, Marta
2012-04-01
Human well-being is intricately connected to ecosystem services. A keystone contribution to the ecosystem service literature has been the Millennium Ecosystem Assessment, MA, (Ecosystems and human well-being: a framework for assessment, Island Press, Washington, DC; 2003, 2005). Much of the work on ecosystem services to date has focused on the assessment and classification of environmental functions. The need for inclusion of community perspectives in ecosystem assessments has been widely recognized in order to better understand the distribution of impacts and benefits resulting from natural resource use. Communities can offer a direct route to understanding the complex relationships between ecosystems and human well-being and how environmental management affects their livelihoods. Photovoice has been made popular as a tool for participatory needs assessment but it has had limited use in ecosystem assessments to date. The purpose of this paper is twofold: (1) to present the results of a community-level assessment of environmental services in a watershed dominated by pineapple monoculture in Costa Rica; and (2) to evaluate the strengths and the limitations of photovoice as a tool for mapping the relationship between ecosystems and people. I argue that photovoice is an underutilized methodology that has the potential to complement biophysical ecosystem service assessments in the context of impoverished and resource-dependent communities, particularly, since assessing ecosystem services and acting upon that information requires integrating the knowledges of diverse stakeholders, recognizing power imbalances, and grappling with the complexity of social-ecological systems. Processes such as photovoice have the potential to catalyze community self-organization, which is a critical component for empowerment.
Berbés-Blázquez, Marta
2012-04-01
Human well-being is intricately connected to ecosystem services. A keystone contribution to the ecosystem service literature has been the Millennium Ecosystem Assessment, MA, (Ecosystems and human well-being: a framework for assessment, Island Press, Washington, DC; 2003, 2005). Much of the work on ecosystem services to date has focused on the assessment and classification of environmental functions. The need for inclusion of community perspectives in ecosystem assessments has been widely recognized in order to better understand the distribution of impacts and benefits resulting from natural resource use. Communities can offer a direct route to understanding the complex relationships between ecosystems and human well-being and how environmental management affects their livelihoods. Photovoice has been made popular as a tool for participatory needs assessment but it has had limited use in ecosystem assessments to date. The purpose of this paper is twofold: (1) to present the results of a community-level assessment of environmental services in a watershed dominated by pineapple monoculture in Costa Rica; and (2) to evaluate the strengths and the limitations of photovoice as a tool for mapping the relationship between ecosystems and people. I argue that photovoice is an underutilized methodology that has the potential to complement biophysical ecosystem service assessments in the context of impoverished and resource-dependent communities, particularly, since assessing ecosystem services and acting upon that information requires integrating the knowledges of diverse stakeholders, recognizing power imbalances, and grappling with the complexity of social-ecological systems. Processes such as photovoice have the potential to catalyze community self-organization, which is a critical component for empowerment.
The Flora Mission for Ecosystem Composition, Disturbance and Productivity
NASA Technical Reports Server (NTRS)
Asner, Gregory P.; Knox, Robert G.; Green, Robert O.; Ungar, Stephen G.
2005-01-01
Global land use and climate variability alter ecosystem conditions - including structure, function, and biological diversity - at a pace that requires unambiguous observations from satellite vantage points. Current global measurements are limited to general land cover, some disturbances, vegetation leaf area index, and canopy energy absorption. Flora is a pathfinding mission that provides new measurements of ecosystem structure, function, and diversity to understand the spatial and temporal dynamics of human and natural disturbances, and the biogeochemical and physiological responses of ecosystems to disturbance. The mission relies upon high-fidelity imaging spectroscopy to deliver full optical spectrum measurements (400-2500 nm) of the global land surface on a monthly time step at 45 meter spatial resolution for three years. The Flora measurement objectives are: (i) fractional cover of biological materials, (ii) canopy water content, (iii) vegetation pigments and light-use efficiency, (iv) plant functional types, (v) fire fuel load and fuel moisture content, and (vi) disturbance occurrence, type and intensity. These measurements are made using a multi-parameter, spectroscopic analysis approach afforded by observation of the full optical spectrum. Combining these measurements, along with additional observations from multispectral sensors, Flora will far advance global studies and models of ecosystem dynamics and change.
Anthropogenic and natural disturbances of carbon, nitrogen and water cycles and their global effects
NASA Astrophysics Data System (ADS)
Tian, H.; Melillo, J.; Virji, H.; Fu, C.; Dickinson, R.; Running, S.; Liu, J.; Wang, Q.; Reilly, J.
2006-05-01
Monsoon Asia includes the Indian sub-continent, Southeast Asia and East Asia. Monsoon Asia is home to more than one-half of the world population, but the total land area in this region is only about 16% of earth's land surface. This region is covered by a range of ecosystems from tropical forests in Southeast Asia to boreal forests in the northern Asia, and from temperate forests in Eastern Asia to deserts in western Asia and tundra in the Himalayan Mountains. These ecosystems account for about one fourth of the potential global terrestrial net primary productivity and for a similar fraction of the carbon stored in land ecosystems. The structure and functioning of these ecosystems are being affected by a complex set of multiple human-induced stresses including air pollution and land transformation. The unprecedented combination of economic and population growth has led to a dramatic land transformation and air pollution across monsoon Asia. The large-scale land transformation and air pollution have important implications for the cycles of carbon, nitrogen and water at regional and global scales. Clearly, monsoon Asia is of critical importance to the understanding of how changing climates and human impacts interact to influence the structure and functioning of ecosystems and the biosphere. In this study, we have reviewed recent advances in the understanding of human-induced changes in biogeochemical and hydrological cycles in Monsoon Asia, including the human-monsoon interactions and the linkage of Asian monsoon to global climate. Finally we have discussed gaps and limitations in existing information that need to be investigated in the future to improve our understanding of human/nature dynamics in monsoon Asia and its linkage to the Earth system.
NASA Astrophysics Data System (ADS)
Moore, Caitlin E.; Brown, Tim; Keenan, Trevor F.; Duursma, Remko A.; van Dijk, Albert I. J. M.; Beringer, Jason; Culvenor, Darius; Evans, Bradley; Huete, Alfredo; Hutley, Lindsay B.; Maier, Stefan; Restrepo-Coupe, Natalia; Sonnentag, Oliver; Specht, Alison; Taylor, Jeffrey R.; van Gorsel, Eva; Liddell, Michael J.
2016-09-01
Phenology is the study of periodic biological occurrences and can provide important insights into the influence of climatic variability and change on ecosystems. Understanding Australia's vegetation phenology is a challenge due to its diverse range of ecosystems, from savannas and tropical rainforests to temperate eucalypt woodlands, semi-arid scrublands, and alpine grasslands. These ecosystems exhibit marked differences in seasonal patterns of canopy development and plant life-cycle events, much of which deviates from the predictable seasonal phenological pulse of temperate deciduous and boreal biomes. Many Australian ecosystems are subject to irregular events (i.e. drought, flooding, cyclones, and fire) that can alter ecosystem composition, structure, and functioning just as much as seasonal change. We show how satellite remote sensing and ground-based digital repeat photography (i.e. phenocams) can be used to improve understanding of phenology in Australian ecosystems. First, we examine temporal variation in phenology on the continental scale using the enhanced vegetation index (EVI), calculated from MODerate resolution Imaging Spectroradiometer (MODIS) data. Spatial gradients are revealed, ranging from regions with pronounced seasonality in canopy development (i.e. tropical savannas) to regions where seasonal variation is minimal (i.e. tropical rainforests) or high but irregular (i.e. arid ecosystems). Next, we use time series colour information extracted from phenocam imagery to illustrate a range of phenological signals in four contrasting Australian ecosystems. These include greening and senescing events in tropical savannas and temperate eucalypt understorey, as well as strong seasonal dynamics of individual trees in a seemingly static evergreen rainforest. We also demonstrate how phenology links with ecosystem gross primary productivity (from eddy covariance) and discuss why these processes are linked in some ecosystems but not others. We conclude that phenocams have the potential to greatly improve the current understanding of Australian ecosystems. To facilitate the sharing of this information, we have formed the Australian Phenocam Network (http://phenocam.org.au/).
Díaz, Sandra; Cáceres, Daniel M.; Trainor, Sarah F.; Pérez-Harguindeguy, Natalia; Bret-Harte, M. Syndonia; Finegan, Bryan; Peña-Claros, Marielos; Poorter, Lourens
2011-01-01
The crucial role of biodiversity in the links between ecosystems and societies has been repeatedly highlighted both as source of wellbeing and as a target of human actions, but not all aspects of biodiversity are equally important to different ecosystem services. Similarly, different social actors have different perceptions of and access to ecosystem services, and therefore, they have different wants and capacities to select directly or indirectly for particular biodiversity and ecosystem characteristics. Their choices feed back onto the ecosystem services provided to all parties involved and in turn, affect future decisions. Despite this recognition, the research communities addressing biodiversity, ecosystem services, and human outcomes have yet to develop frameworks that adequately treat the multiple dimensions and interactions in the relationship. Here, we present an interdisciplinary framework for the analysis of relationships between functional diversity, ecosystem services, and human actions that is applicable to specific social environmental systems at local scales. We connect the mechanistic understanding of the ecological role of diversity with its social relevance: ecosystem services. The framework permits connections between functional diversity components and priorities of social actors using land use decisions and ecosystem services as the main links between these ecological and social components. We propose a matrix-based method that provides a transparent and flexible platform for quantifying and integrating social and ecological information and negotiating potentially conflicting land uses among multiple social actors. We illustrate the applicability of our framework by way of land use examples from temperate to subtropical South America, an area of rapid social and ecological change. PMID:21220325
NASA Astrophysics Data System (ADS)
Hotchkiss, E. R.
2017-12-01
Freshwater biological processes can alter the quantity and quality of organic carbon (OC) inputs from land before they are transported downstream, but the relative role of hydrologic transport and in-stream processing is still not well quantified at the scale of fluvial networks. Despite much research on the role of biology and hydrology in governing the form and fate of C in inland waters, conclusions about the function of freshwater ecosystems in modifying OC still largely depend on where we draw our ecosystem boundaries, i.e., the spatial scale of measurements used to assess OC transformations. Here I review freshwater OC uptake rates derived from bioassay incubations, synoptic modeling, reach-scale experiments, and ecosystem OC spiraling estimates. Median OC uptake velocities from standard bioassay incubations (0.02 m/d) and synoptic modeling (0.04 m/d) are 1-2 orders of magnitude lower than reach-scale experimental DOC additions and ecosystem OC spiraling estimates (2.2 and 0.27 m/d, respectively) in streams and rivers. Together, ecosystem metabolism and OC fluxes can be used to estimate the distance OC travels before being consumed and respired as CO2 through biological processes (i.e., OC spiraling), allowing for a more mechanistic understanding of the role of ecosystem processes and hydrologic fluxes in modifying downstream OC transport. Beyond the reach scale, data from stream network and stream-lake-river modeling simulations show how we may use linked sampling sites within networks to better understand the integrated sources and fate of OC in freshwaters. We currently underestimate the role of upstream processes in contributing to downstream fluxes: moving from single-ecosystem comparisons to linked-ecosystem simulations increases the contribution of in situ OC processing to CO2 emissions from 30% to >40%. Insights from literature reviews, ecosystem process measurements, and model simulations provide a framework for future considerations of integrated C transport, transformations, and fate when scaling patterns and processes in inland waters.
Key ecological responses to nitrogen are altered by climate ...
Here we review the effects of nitrogen and climate (e.g. temperature and precipitation) on four aspects of ecosystem structure and function including hydrologic-coupled nitrogen cycling, carbon cycling, acidification and biodiversity. Ecosystems are simultaneously exposed to multiple stressors; two dominant drivers threatening ecosystems are anthropogenic nitrogen loading and climate change. Evaluating the cumulative effects of these stressors provides a holistic view of ecosystem vulnerability, which would better inform policy decisions aimed to protect the sustainability of ecosystems. Our current knowledge of the cumulative effects of these stressors is growing, but limited. The goal of this paper is to synthesize the state of scientific knowledge on how ecosystems are affected by the interactions of meteorlogic/climatic factors (e.g., temperature and precipitation) and nitrogen addition. Understanding the interactions of meteorlogic/climatic factors and nitrogen will help to inform how current and projected variability may affect ecosystem response.
Animal diversity and ecosystem functioning in dynamic food webs
NASA Astrophysics Data System (ADS)
Schneider, Florian D.; Brose, Ulrich; Rall, Björn C.; Guill, Christian
2016-10-01
Species diversity is changing globally and locally, but the complexity of ecological communities hampers a general understanding of the consequences of animal species loss on ecosystem functioning. High animal diversity increases complementarity of herbivores but also increases feeding rates within the consumer guild. Depending on the balance of these counteracting mechanisms, species-rich animal communities may put plants under top-down control or may release them from grazing pressure. Using a dynamic food-web model with body-mass constraints, we simulate ecosystem functions of 20,000 communities of varying animal diversity. We show that diverse animal communities accumulate more biomass and are more exploitative on plants, despite their higher rates of intra-guild predation. However, they do not reduce plant biomass because the communities are composed of larger, and thus energetically more efficient, plant and animal species. This plasticity of community body-size structure reconciles the debate on the consequences of animal species loss for primary productivity.
Du, Ling; Mikle, Nathaniel; Zou, Zhenhua; Huang, Yuanyuan; Shi, Zheng; Jiang, Lifen; McCarthy, Heather R; Liang, Junyi; Luo, Yiqi
2018-07-01
Quantifying the ecological patterns of loss of ecosystem function in extreme drought is important to understand the carbon exchange between the land and atmosphere. Rain-use efficiency [RUE; gross primary production (GPP)/precipitation] acts as a typical indicator of ecosystem function. In this study, a novel method based on maximum rain-use efficiency (RUE max ) was developed to detect losses of ecosystem function globally. Three global GPP datasets from the MODIS remote sensing data (MOD17), ground upscaling FLUXNET observations (MPI-BGC), and process-based model simulations (BESS), and a global gridded precipitation product (CRU) were used to develop annual global RUE datasets for 2001-2011. Large, well-known extreme drought events were detected, e.g. 2003 drought in Europe, 2002 and 2011 drought in the U.S., and 2010 drought in Russia. Our results show that extreme drought-induced loss of ecosystem function could impact 0.9% ± 0.1% of earth's vegetated land per year and was mainly distributed in semi-arid regions. The reduced carbon uptake caused by functional loss (0.14 ± 0.03 PgC/yr) could explain >70% of the interannual variation in GPP in drought-affected areas (p ≤ 0.001). Our results highlight the impact of ecosystem function loss in semi-arid regions with increasing precipitation variability and dry land expansion expected in the future. Copyright © 2018 Elsevier B.V. All rights reserved.
Effects of biodiversity on ecosystem functioning: a consensus of current knowledge
Hooper, D.U.; Chapin, F. S.; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, M.; Naeem, S.; Schmid, B.; SetSlS, H.; Symstad, A.J.; Vandermeer, J.; Wardle, D.A.
2005-01-01
Humans are altering the composition of biological communities through a variety of activities that increase rates of species invasions and species extinctions, at all scales, from local to global. These changes in components of the Earth's biodiversity cause concern for ethical and aesthetic reasons, but they also have a strong potential to alter ecosystem properties and the goods and services they provide to humanity. Ecological experiments, observations, and theoretical developments show that ecosystem properties depend greatly on biodiversity in terms of the functional characteristics of organisms present in the ecosystem and the distribution and abundance of those organisms over space and time. Species effects act in concert with the effects of climate, resource availability, and disturbance regimes in influencing ecosystem properties. Human activities can modify all of the above factors; here we focus on modification of these biotic controls.The scientific community has come to a broad consensus on many aspects of the relationship between biodiversity and ecosystem functioning, including many points relevant to management of ecosystems. Further progress will require integration of knowledge about biotic and abiotic controls on ecosystem properties, how ecological communities are structured, and the forces driving species extinctions and invasions. To strengthen links to policy and management, we also need to integrate our ecological knowledge with understanding of the social and economic constraints of potential management practices. Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.Based on our review of the scientific literature, we are certain of the following conclusions:1) Species' functional characteristics strongly influence ecosystem properties. Functional characteristics operate in a variety of contexts, including effects of dominant species, keystone species, ecological engineers, and interactions among species (e.g., competition, facilitation, mutualism, disease, and predation). Relative abundance alone is not always a good predictor of the ecosystem-level importance of a species, as even relatively rare species (e.g., a keystone predator) can strongly influence pathways of energy and material flows.2) Alteration of biota in ecosystems via species invasions and extinctions caused by human activities has altered ecosystem goods and services in many well-documented cases. Many of these changes are difficult, expensive, or impossible to reverse or fix with technological solutions.3) The effects of species loss or changes in composition, and the mechanisms by which the effects manifest themselves, can differ among ecosystem properties, ecosystem types, and pathways of potential community change.4) Some ecosystem properties are initially insensitive to species loss because (a) ecosystems may have multiple species that carry out similar functional roles, (b) some species may contribute relatively little to ecosystem properties, or (c) properties may be primarily controlled by abiotic environmental conditions.5) More species are needed to insure a stable supply of ecosystem goods and services as spatial and temporal variability increases, which typically occurs as longer time periods and larger areas are considered.We have high confidence in the following conclusions:1) Certain combinations of species are complementary in their patterns of resource use and can increase average rates of productivity and nutrient retention. At the same time, environmental conditions can influence the importance of complementarity in structuring communities. Identification of which and how many species act in a complementary way in complex communities is just beginning.2) Susceptibility to invasion by exotic species is strongly influenced by species composition and, under similar environmental conditions, generally decreases with increasing species richness. However, several other factors, such as propagule pressure, disturbance regime, and resource availability also strongly influence invasion success and often override effects of species richness in comparisons across different sites or ecosystems.3) Having a range of species that respond differently to different environmental perturbations can stabilize ecosystem process rates in response to disturbances and variation in abiotic conditions. Using practices that maintain a diversity of organisms of different functional effect and functional response types will help preserve a range of management options.Uncertainties remain and further research is necessary in the following areas:1) Further resolution of the relationships among taxonomic diversity, functional diversity, and community structure is important for identifying mechanisms of biodiversity effects.2) Multiple trophic levels are common to ecosystems but have been understudied in biodiversity/ecosystem functioning research. The response of ecosystem properties to varying composition and diversity of consumer organisms is much more complex than responses seen in experiments that vary only the diversity of primary producers.3) Theoretical work on stability has outpaced experimental work, especially field research. We need long-term experiments to be able to assess temporal stability, as well as experimental perturbations to assess response to and recovery from a variety of disturbances. Design and analysis of such experiments must account for several factors that covary with species diversity.4) Because biodiversity both responds to and influences ecosystem properties, understanding the feedbacks involved is necessary to integrate results from experimental communities with patterns seen at broader scales. Likely patterns of extinction and invasion need to be linked to different drivers of global change, the forces that structure communities, and controls on ecosystem properties for the development of effective management and conservation strategies.5) This paper focuses primarily on terrestrial systems, with some coverage of freshwater systems, because that is where most empirical and theoretical study has focused. While the fundamental principles described here should apply to marine systems, further study of that realm is necessary.Despite some uncertainties about the mechanisms and circumstances under which diversity influences ecosystem properties, incorporating diversity effects into policy and management is essential, especially in making decisions involving large temporal and spatial scales. Sacrificing those aspects of ecosystems that are difficult or impossible to reconstruct, such as diversity, simply because we are not yet certain about the extent and mechanisms by which they affect ecosystem properties, will restrict future management options even further. It is incumbent upon ecologists to communicate this need, and the values that can derive from such a perspective, to those charged with economic and policy decision-making.
Effects of forest management on productivity and carbon sequestration: A review and hypothesis
A. Noormets; D. Epron; J.C. Domec; S.G. McNulty; T. Fox; G. Sun; J.S. King
2015-01-01
With an increasing fraction of the worldâs forests being intensively managed for meeting humanityâs need for wood, fiber and ecosystem services, quantitative understanding of the functional changes in these ecosystems in comparison with natural forests is needed. In particular, the role of managed forests as long-term carbon (C) sinks and for mitigating climate change...
Sophie Osborn; Vita Wright; Brett Walker; Amy Cilimburg; Alison Perkins
2002-01-01
Nonnative invasive plants are altering ecosystems around the world with alarming speed. They outcompete native plants and ultimately change the composition and function of the ecosystems they invade. This poses a particular problem in wilderness and other natural areas that are set aside to maintain natural conditions. Wilderness managers are not only faced with the...
From Process Understanding Via Soil Functions to Sustainable Soil Management - A Systemic Approach
NASA Astrophysics Data System (ADS)
Wollschlaeger, U.; Bartke, S.; Bartkowski, B.; Daedlow, K.; Helming, K.; Kogel-Knabner, I.; Lang, B.; Rabot, E.; Russell, D.; Stößel, B.; Weller, U.; Wiesmeier, M.; Rabot, E.; Vogel, H. J.
2017-12-01
Fertile soils are central resources for the production of biomass and the provision of food and energy. A growing world population and latest climate targets lead to an increasing demand for both, food and bio-energy, which requires preserving and improving the long-term productivity of soils as a bio-economic resource. At the same time, other soil functions and ecosystem services need to be maintained: filter for clean water, carbon sequestration, provision and recycling of nutrients, and habitat for biological activity. All these soil functions result from the interaction of a multitude of physical, chemical and biological processes that are not yet sufficiently understood. In addition, we lack understanding about the interplay between the socio-economic system and the soil system and how soil functions benefit human wellbeing. Hence, a solid and integrated assessment of soil quality requires the consideration of the ensemble of soil functions and its relation to soil management to finally be able to develop site-specific options for sustainable soil management. We present an integrated modeling approach that investigates the influence of soil management on the ensemble of soil functions. It is based on the mechanistic relationships between soil functional attributes, each explained by a network of interacting processes as derived from scientific evidence. As the evidence base required for feeding the model is for the most part stored in the existing scientific literature, another central component of our work is to set up a public "knowledge-portal" providing the infrastructure for a community effort towards a comprehensive knowledge base on soil processes as a basis for model developments. The connection to the socio-economic system is established using the Drivers-Pressures-Impacts-States-Responses (DPSIR) framework where our improved understanding about soil ecosystem processes is linked to ecosystem services and resource efficiency via the soil functions.
How can we identify and communicate the ecological value of deep-sea ecosystem services?
Jobstvogt, Niels; Townsend, Michael; Witte, Ursula; Hanley, Nick
2014-01-01
Submarine canyons are considered biodiversity hotspots which have been identified for their important roles in connecting the deep sea with shallower waters. To date, a huge gap exists between the high importance that scientists associate with deep-sea ecosystem services and the communication of this knowledge to decision makers and to the wider public, who remain largely ignorant of the importance of these services. The connectivity and complexity of marine ecosystems makes knowledge transfer very challenging, and new communication tools are necessary to increase understanding of ecological values beyond the science community. We show how the Ecosystem Principles Approach, a method that explains the importance of ocean processes via easily understandable ecological principles, might overcome this challenge for deep-sea ecosystem services. Scientists were asked to help develop a list of clear and concise ecosystem principles for the functioning of submarine canyons through a Delphi process to facilitate future transfers of ecological knowledge. These ecosystem principles describe ecosystem processes, link such processes to ecosystem services, and provide spatial and temporal information on the connectivity between deep and shallow waters. They also elucidate unique characteristics of submarine canyons. Our Ecosystem Principles Approach was successful in integrating ecological information into the ecosystem services assessment process. It therefore has a high potential to be the next step towards a wider implementation of ecological values in marine planning. We believe that successful communication of ecological knowledge is the key to a wider public support for ocean conservation, and that this endeavour has to be driven by scientists in their own interest as major deep-sea stakeholders.
How Can We Identify and Communicate the Ecological Value of Deep-Sea Ecosystem Services?
Jobstvogt, Niels; Townsend, Michael; Witte, Ursula; Hanley, Nick
2014-01-01
Submarine canyons are considered biodiversity hotspots which have been identified for their important roles in connecting the deep sea with shallower waters. To date, a huge gap exists between the high importance that scientists associate with deep-sea ecosystem services and the communication of this knowledge to decision makers and to the wider public, who remain largely ignorant of the importance of these services. The connectivity and complexity of marine ecosystems makes knowledge transfer very challenging, and new communication tools are necessary to increase understanding of ecological values beyond the science community. We show how the Ecosystem Principles Approach, a method that explains the importance of ocean processes via easily understandable ecological principles, might overcome this challenge for deep-sea ecosystem services. Scientists were asked to help develop a list of clear and concise ecosystem principles for the functioning of submarine canyons through a Delphi process to facilitate future transfers of ecological knowledge. These ecosystem principles describe ecosystem processes, link such processes to ecosystem services, and provide spatial and temporal information on the connectivity between deep and shallow waters. They also elucidate unique characteristics of submarine canyons. Our Ecosystem Principles Approach was successful in integrating ecological information into the ecosystem services assessment process. It therefore has a high potential to be the next step towards a wider implementation of ecological values in marine planning. We believe that successful communication of ecological knowledge is the key to a wider public support for ocean conservation, and that this endeavour has to be driven by scientists in their own interest as major deep-sea stakeholders. PMID:25055119
Frontiers in Ecosystem Science: Energizing the Research Agenda
NASA Astrophysics Data System (ADS)
Weathers, K. C.; Groffman, P. M.; VanDolah, E.
2014-12-01
Ecosystem science has a long history as a core component of the discipline of Ecology, and although topics of research have fluctuated over the years, it retains a clear identity and continues to be a vital field. As science is becoming more interdisciplinary, particularly the science of global environmental change, ecosystem scientists are addressing new and important questions at the interface of multiple disciplines. Over the last two years, we organized a series of workshops and discussion groups at multiple scientific-society meetings, including AGU to identify frontiers in ecosystem research. The workshops featured short "soapbox" presentations where speakers highlighted key questions in ecosystem science. The presentations were recorded (video and audio) and subjected to qualitative text analysis for identification of frontier themes, attendees completed surveys, and a dozen additional "key informants" were interviewed about their views about frontiers of the discipline. Our effort produced 253 survey participants; the two largest groups of participants were full professors (24%) and graduate students (24%); no other specific group was > 10%. Formal text analysis of the soapbox presentations produced three major themes; "frontiers," "capacity building," and "barriers to implementation" with four or five sub-themes within each major theme. Key "frontiers" included; 1) better understanding of the drivers of ecosystem change, 2) better understanding of ecosystem process and function, 3) human dimensions of ecosystem science, and 4) problem-solving/applied research. Under "capacity building," key topics included: holistic approaches, cross-disciplinary collaboration, public support for research, data, training, and technology investment. Under "barriers" key topics included: limitations in theoretical thinking, insufficient funding/support, fragmentation across discipline, data access and data synthesis. In-depth interviews with 13 experts validated findings from analysis of soapbox presentations and surveys and also resulted in a conceptual model for understanding disciplinary frontiers.
Casaburi, Giorgio; Duscher, Alexandrea A; Reid, R Pamela; Foster, Jamie S
2016-05-01
Modern stromatolites represent ideal ecosystems to understand the biological processes required for the precipitation of carbonate due to their long evolutionary history and occurrence in a wide range of habitats. However, most of the prior molecular work on stromatolites has focused on understanding the taxonomic complexity and not fully elucidating the functional capabilities of these systems. Here, we begin to characterize the microbiome associated with stromatolites of Little Darby Island, The Bahamas using predictive metagenomics of the 16S rRNA gene coupled with direct whole shotgun sequencing. The metagenomic analysis of the Little Darby stromatolites revealed many shared taxa and core pathways associated with biologically induced carbonate precipitation, suggesting functional convergence within Bahamian stromatolites. A comparison of the Little Darby stromatolites with other lithifying microbial ecosystems also revealed that although factors, such as geographic location and salinity, do drive some differences within the population, there are extensive similarities within the microbial populations. These results suggest that for stromatolite formation, 'who' is in the community is not as critical as metabolic activities and environmental interactions. Together, these analyses help improve our understanding of the similarities among lithifying ecosystems and provide an important first step in characterizing the shared microbiome of modern stromatolites. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Mapping Foliar Traits Across Biomes Using Imaging Spectroscopy: A Synthesis
NASA Astrophysics Data System (ADS)
Townsend, P. A.; Singh, A.; Wang, Z.
2016-12-01
One of the great promises of imaging spectroscopy - also known as hyperspectral remote sensing - is the ability to map the spatial variation in foliar functional traits, such as nitrogen concentration, pigments, leaf structure, photosynthetic capacity and secondary biochemistry, that drive terrestrial ecosystem processes. A remote-sensing approach enables characterization of within- and between-biome variations that may be crucial to understanding ecosystem responses to pests, pathogens and environmental change. We provide a synthesis of the foliar traits that can be mapped from imaging spectroscopy, as well as an overview of both the major applications of trait maps derived from hyperspectral imagery and current gaps in our knowledge and capacity. Specifically, we make the case that a global imaging spectroscopy mission will provide unique and urgent measurements necessary to understand the response of agricultural and natural systems to rapid global changes. Finally, we present a quantitative framework to utilize imaging spectroscopy to characterize spatial and temporal variation in foliar traits within and between biomes. From this we can infer the dynamics of vegetation function across ecosystems, especially in transition zones and environmentally sensitive systems. Eventual launch of a global imaging spectroscopy mission will enable collection of narrowband VSWIR measurements that will help close major gaps in our understanding of biogeochemical cycles and improve representation of vegetated biomes in Earth system process models.
Casaburi, Giorgio; Duscher, Alexandrea A.; Reid, R. Pamela; Foster, Jamie S.
2018-01-01
Summary Modern stromatolites represent ideal ecosystems to understand the biological processes required for the precipitation of carbonate due to their long evolutionary history and occurrence in a wide range of habitats. However, most of the prior molecular work on stromatolites has focused on understanding the taxonomic complexity and not fully elucidating the functional capabilities of these systems. Here, we begin to characterize the microbiome associated with stromatolites of Little Darby Island, The Bahamas using predictive metagenomics of the 16S rRNA gene coupled with direct whole shotgun sequencing. The metagenomic analysis of the Little Darby stromatolites revealed many shared taxa and core pathways associated with biologically induced carbonate precipitation, suggesting functional convergence within Bahamian stromatolites. A comparison of the Little Darby stromatolites with other lithifying microbial ecosystems also revealed that although factors, such as geographic location and salinity, do drive some differences within the population, there are extensive similarities within the microbial populations. These results suggest that for stromatolite formation, ‘who’ is in the community is not as critical as metabolic activities and environmental interactions. Together, these analyses help improve our understanding of the similarities among lithifying ecosystems and provide an important first step in characterizing the shared microbiome of modern stromatolites. PMID:26471001
Plant diversity and root traits benefit physical properties key to soil function in grasslands.
Gould, Iain J; Quinton, John N; Weigelt, Alexandra; De Deyn, Gerlinde B; Bardgett, Richard D
2016-09-01
Plant diversity loss impairs ecosystem functioning, including important effects on soil. Most studies that have explored plant diversity effects belowground, however, have largely focused on biological processes. As such, our understanding of how plant diversity impacts the soil physical environment remains limited, despite the fundamental role soil physical structure plays in ensuring soil function and ecosystem service provision. Here, in both a glasshouse and a long-term field study, we show that high plant diversity in grassland systems increases soil aggregate stability, a vital structural property of soil, and that root traits play a major role in determining diversity effects. We also reveal that the presence of particular plant species within mixed communities affects an even wider range of soil physical processes, including hydrology and soil strength regimes. Our results indicate that alongside well-documented effects on ecosystem functioning, plant diversity and root traits also benefit essential soil physical properties. © 2016 The Authors Ecology Letters published by CNRS and John Wiley & Sons Ltd.
Understanding the value of plant diversity for ecosystem functioning through niche theory
Isbell, Forest; Purves, Drew W.; Loreau, Michel
2016-01-01
Biodiversity experiments have generated robust empirical results supporting the hypothesis that ecosystems function better when they contain more species. Given that ecosystems provide services that are valued by humans, this inevitably suggests that the loss of species from natural ecosystems could diminish their value. This raises two important questions. First, will experimental results translate into the real world, where species are being lost at an alarming rate? And second, what are the benefits and pitfalls of such valuation exercises? We argue that the empirical results obtained in experiments are entirely consistent with well-established theories of species coexistence. We then examine the current body of work through the lens of niche theory and highlight where closer links with theory could open up opportunities for future research. We argue that niche theory predicts that diversity–functioning relationships are likely to be stronger (and require more species) in the field than in simplified experimental settings. However, we caution that while many of the biological processes that promote coexistence can also generate diversity–function relationships, there is no simple mapping between the two. This implies that valuation exercises need to proceed with care. PMID:27928043
Understanding the value of plant diversity for ecosystem functioning through niche theory.
Turnbull, Lindsay A; Isbell, Forest; Purves, Drew W; Loreau, Michel; Hector, Andy
2016-12-14
Biodiversity experiments have generated robust empirical results supporting the hypothesis that ecosystems function better when they contain more species. Given that ecosystems provide services that are valued by humans, this inevitably suggests that the loss of species from natural ecosystems could diminish their value. This raises two important questions. First, will experimental results translate into the real world, where species are being lost at an alarming rate? And second, what are the benefits and pitfalls of such valuation exercises? We argue that the empirical results obtained in experiments are entirely consistent with well-established theories of species coexistence. We then examine the current body of work through the lens of niche theory and highlight where closer links with theory could open up opportunities for future research. We argue that niche theory predicts that diversity-functioning relationships are likely to be stronger (and require more species) in the field than in simplified experimental settings. However, we caution that while many of the biological processes that promote coexistence can also generate diversity-function relationships, there is no simple mapping between the two. This implies that valuation exercises need to proceed with care. © 2016 The Author(s).
Brian R. Lockhart; Emile S. Gardiner; Theodore D. Leininger; Kristina F. Connor; Paul B. Hamel; Nathan M. Schiff; A. Dan Wilson; Margaret S. Devall
2006-01-01
Bottomland hardwood ecosystems, important for their unique functions and values, have experienced considerable degradation since European settlement through deforestation, development, and drainage. Currently, considerable effort is underway to restore ecological functions on degraded bottomland sites. Restoration requires a better understanding of the biological...
Hewitt, Judi E; Ellis, Joanne I; Thrush, Simon F
2016-08-01
Global climate change will undoubtedly be a pressure on coastal marine ecosystems, affecting not only species distributions and physiology but also ecosystem functioning. In the coastal zone, the environmental variables that may drive ecological responses to climate change include temperature, wave energy, upwelling events and freshwater inputs, and all act and interact at a variety of spatial and temporal scales. To date, we have a poor understanding of how climate-related environmental changes may affect coastal marine ecosystems or which environmental variables are likely to produce priority effects. Here we use time series data (17 years) of coastal benthic macrofauna to investigate responses to a range of climate-influenced variables including sea-surface temperature, southern oscillation indices (SOI, Z4), wind-wave exposure, freshwater inputs and rainfall. We investigate responses from the abundances of individual species to abundances of functional traits and test whether species that are near the edge of their tolerance to another stressor (in this case sedimentation) may exhibit stronger responses. The responses we observed were all nonlinear and some exhibited thresholds. While temperature was most frequently an important predictor, wave exposure and ENSO-related variables were also frequently important and most ecological variables responded to interactions between environmental variables. There were also indications that species sensitive to another stressor responded more strongly to weaker climate-related environmental change at the stressed site than the unstressed site. The observed interactions between climate variables, effects on key species or functional traits, and synergistic effects of additional anthropogenic stressors have important implications for understanding and predicting the ecological consequences of climate change to coastal ecosystems. © 2015 John Wiley & Sons Ltd.
Ecosystem regime shifts disrupt trophic structure.
Hempson, Tessa N; Graham, Nicholas A J; MacNeil, M Aaron; Hoey, Andrew S; Wilson, Shaun K
2018-01-01
Regime shifts between alternative stable ecosystem states are becoming commonplace due to the combined effects of local stressors and global climate change. Alternative states are characterized as substantially different in form and function from pre-disturbance states, disrupting the delivery of ecosystem services and functions. On coral reefs, regime shifts are typically characterized by a change in the benthic composition from coral to macroalgal dominance. Such fundamental shifts in the benthos are anticipated to impact associated fish communities that are reliant on the reef for food and shelter, yet there is limited understanding of how regime shifts propagate through the fish community over time, relative to initial or recovery conditions. This study addresses this knowledge gap using long-term data of coral reef regime shifts and recovery on Seychelles reefs following the 1998 mass bleaching event. It shows how trophic structure of the reef fish community becomes increasingly dissimilar between alternative reef ecosystem states (regime-shifted vs. recovering) with time since disturbance. Regime-shifted reefs developed a concave trophic structure, with increased biomass in base trophic levels as herbivorous species benefitted from increased algal resources. Mid trophic level species, including specialists such as corallivores, declined with loss of coral habitat, while biomass was retained in upper trophic levels by large-bodied, generalist invertivores. Recovering reefs also experienced an initial decline in mid trophic level biomass, but moved toward a bottom-heavy pyramid shape, with a wide range of feeding groups (e.g., planktivores, corallivores, omnivores) represented at mid trophic levels. Given the importance of coral reef fishes in maintaining the ecological function of coral reef ecosystems and their associated fisheries, understanding the effects of regime shifts on these communities is essential to inform decisions that enhance ecological resilience and economic sustainability. © 2017 by the Ecological Society of America.
The ecohydrology of water limited landscapes
NASA Astrophysics Data System (ADS)
Huxman, T. E.
2011-12-01
Developing a mechanistic understanding of the coupling of ecological and hydrological systems is crucial for understanding the land-surface response of large areas of the globe to changes in climate. The distribution of biodiversity, the quantity and quality of streamflow, the biogeochemistry that constrains vegetation cover and production, and the stability of soil systems in watersheds are all functions of water-life coupling. Many key ecosystem services are governed by the dynamics of near-surface hydrology and biological feedbacks on the landscape occur through plant influence over available soil moisture. Thus, ecohydrology has tremendous potential to contribute to a predictive framework for understanding earth system dynamics. Despite the importance of such couplings and water as a major limiting resource in ecosystems throughout the globe, ecology still struggles with a mechanistic understanding of how changes in rainfall affect the biology of plants and microbes, or how changes in plant communities affect hydrological dynamics in watersheds. Part of the problem comes from our lack of understanding of how plants effectively partition available water among individuals in communities and how that modifies the physical environment, affecting additional resource availability and the passage of water along other hydrological pathways. The partitioning of evapotranspiration between transpiration by plants and evaporation from the soil surface is key to interrelated ecological, hydrological, and atmospheric processes and likely varies with vegetation structure and atmospheric dynamics. In addition, the vertical stratification of autotrophic and heterotrophic components in the soil profile, and the speed at which each respond to increased water, exert strong control over the carbon cycle. The magnitude of biosphere-atmosphere carbon exchange depends on the time-depth-distribution of soil moisture, a fundamental consequence of local precipitation pulse characteristics, soil texture and plant functional type. The transport of metabolic products within plants and their differential activation result in non-intuitive patterns of exchange associated with the major drivers creating problems with the scaling of physiological processes of individual plants to ecosystems. Such dynamics, along with hysteretic behavior creates challenges for measurement, evaluation, modeling and predicting ecosystem behavior. New frameworks and conceptual approaches to modeling ecosystem metabolism and the role of water are helping to describe the consequences of precipitation variability and change.
John S. Kominoski; Catherine M. Pringle
2009-01-01
1. Understanding relationships between resource and consumer diversity is essential to predicting how changes in resource diversity might affect several trophic levels and overall ecosystem functioning...
NASA Astrophysics Data System (ADS)
Zheng, S. X.; Ren, H. Y.; Lan, Z. C.; Li, W. H.; Wang, K. B.; Bai, Y. F.
2010-03-01
Understanding the mechanistic links between environmental drivers, human disturbance, plant functional traits, and ecosystem properties is a fundamental aspect of biodiversity-ecosystem functioning research. Recent studies have focused mostly on leaf-level traits or community-level weighted traits to predict species responses to grazing and the consequent change in ecosystem functioning. However, studies of leaf-level traits or community-level weighted traits seldom identify the mechanisms linking grazing impact on leaf traits to ecosystem functioning. Here, using a multi-organization-level approach, we examined the effects of grazing on leaf traits (i.e., leaf area, leaf dry mass and specific leaf area) and ecosystem functioning across six communities of three vegetation types along a soil moisture gradient in the Xilin River Basin of Inner Mongolia grassland, China. Our results showed that the effects of grazing on leaf traits differed substantially when scaling up from leaf-level to species, functional group (i.e., life forms and water ecotype types), and community levels; and they also varied with vegetation type or site conditions. The effects of grazing on leaf traits diminished progressively along the hierarchy of organizational levels in the meadow, whereas the impacts were predominantly negative and the magnitude of the effects increased considerably at higher organizational levels in the typical steppe. Soil water and nutrient availability, functional trade-offs between leaf size and number of leaves per individual, and differentiation in avoidance and tolerance strategies among coexisting species are likely to be responsible for the observed responses of leaf traits to grazing at different levels of organization and among vegetation types. Our findings also demonstrate that, at both the functional group and community levels, standing aboveground biomass increased with leaf area and specific leaf area. Compared with the large changes in leaf traits and standing aboveground biomass, the soil properties were relatively unaffected by grazing. Our study indicates that a multi-organization-level approach provides more robust and comprehensive predictions of the effects of grazing on leaf traits and ecosystem functioning.
Multiple Stressors and the Functioning of Coral Reefs.
Harborne, Alastair R; Rogers, Alice; Bozec, Yves-Marie; Mumby, Peter J
2017-01-03
Coral reefs provide critical services to coastal communities, and these services rely on ecosystem functions threatened by stressors. By summarizing the threats to the functioning of reefs from fishing, climate change, and decreasing water quality, we highlight that these stressors have multiple, conflicting effects on functionally similar groups of species and their interactions, and that the overall effects are often uncertain because of a lack of data or variability among taxa. The direct effects of stressors on links among functional groups, such as predator-prey interactions, are particularly uncertain. Using qualitative modeling, we demonstrate that this uncertainty of stressor impacts on functional groups (whether they are positive, negative, or neutral) can have significant effects on models of ecosystem stability, and reducing uncertainty is vital for understanding changes to reef functioning. This review also provides guidance for future models of reef functioning, which should include interactions among functional groups and the cumulative effect of stressors.
Multiple Stressors and the Functioning of Coral Reefs
NASA Astrophysics Data System (ADS)
Harborne, Alastair R.; Rogers, Alice; Bozec, Yves-Marie; Mumby, Peter J.
2017-01-01
Coral reefs provide critical services to coastal communities, and these services rely on ecosystem functions threatened by stressors. By summarizing the threats to the functioning of reefs from fishing, climate change, and decreasing water quality, we highlight that these stressors have multiple, conflicting effects on functionally similar groups of species and their interactions, and that the overall effects are often uncertain because of a lack of data or variability among taxa. The direct effects of stressors on links among functional groups, such as predator-prey interactions, are particularly uncertain. Using qualitative modeling, we demonstrate that this uncertainty of stressor impacts on functional groups (whether they are positive, negative, or neutral) can have significant effects on models of ecosystem stability, and reducing uncertainty is vital for understanding changes to reef functioning. This review also provides guidance for future models of reef functioning, which should include interactions among functional groups and the cumulative effect of stressors.
The gut microbiome: Connecting spatial organization to function
Tropini, Carolina; Earle, Kristen A.; Huang, Kerwyn Casey; Sonnenburg, Justin L.
2017-01-01
The first rudimentary evidence that the human body harbors a microbiota hinted at the complexity of host-associated microbial ecosystems. Now, almost 400 years later, a renaissance in the study of microbiota spatial organization, driven by coincident revolutions in imaging and sequencing technologies, is revealing functional relationships between biogeography and health, particularly in the vertebrate gut. In this review, we present our current understanding of principles governing the localization of intestinal bacteria, and spatial relationships between bacteria and their hosts. We further discuss important emerging directions that will enable progressing from the inherently descriptive nature of localization and –omics technologies to provide functional, quantitative, and mechanistic insight into this complex ecosystem. PMID:28407481
Microbial Potential for Ecosystem N Loss Is Increased by Experimental N Deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freedman, Zachary B.; Upchurch, Rima A.; Zak, Donald R.
Fossil fuel combustion and fertilizer use has increased the amount of biologically available N entering terrestrial ecosystems. Nonetheless, our understanding of how anthropogenic N may alter the physiological mechanisms by which soil microorganisms cycle N in soil is still developing. Here, we applied shotgun metagenomics to a replicated long-term field experiment to determine how two decades of experimental N deposition, at a rate expected by mid-century, has affected the genetic potential of the soil microbial community to cycle N in soils. Experimental N deposition lead to a significant and persistent increase in functional assemblages mediating N cycle transformations associated withmore » ecosystem N loss (i.e., denitrification and nitrification), whereas functional assemblages associated with N input and retention (i.e., N fixation and microbial N assimilation) were less positively affected. Furthermore, the abundance and composition of microbial taxa, as well as functional assemblages involved in housekeeping functions (i.e., DNA replication) were unaffected by experimental N deposition. Here taken together, our results suggest that functional genes and gene pathways associated with ecosystem N loss have been favored by experimental N deposition, which may represent a genetic mechanism fostering increased N loss as anthropogenic N deposition increases in the future.« less
Microbial Potential for Ecosystem N Loss Is Increased by Experimental N Deposition
Freedman, Zachary B.; Upchurch, Rima A.; Zak, Donald R.; ...
2016-10-13
Fossil fuel combustion and fertilizer use has increased the amount of biologically available N entering terrestrial ecosystems. Nonetheless, our understanding of how anthropogenic N may alter the physiological mechanisms by which soil microorganisms cycle N in soil is still developing. Here, we applied shotgun metagenomics to a replicated long-term field experiment to determine how two decades of experimental N deposition, at a rate expected by mid-century, has affected the genetic potential of the soil microbial community to cycle N in soils. Experimental N deposition lead to a significant and persistent increase in functional assemblages mediating N cycle transformations associated withmore » ecosystem N loss (i.e., denitrification and nitrification), whereas functional assemblages associated with N input and retention (i.e., N fixation and microbial N assimilation) were less positively affected. Furthermore, the abundance and composition of microbial taxa, as well as functional assemblages involved in housekeeping functions (i.e., DNA replication) were unaffected by experimental N deposition. Here taken together, our results suggest that functional genes and gene pathways associated with ecosystem N loss have been favored by experimental N deposition, which may represent a genetic mechanism fostering increased N loss as anthropogenic N deposition increases in the future.« less
Ecological linkages between aboveground and belowground biota.
Wardle, David A; Bardgett, Richard D; Klironomos, John N; Setälä, Heikki; van der Putten, Wim H; Wall, Diana H
2004-06-11
All terrestrial ecosystems consist of aboveground and belowground components that interact to influence community- and ecosystem-level processes and properties. Here we show how these components are closely interlinked at the community level, reinforced by a greater degree of specificity between plants and soil organisms than has been previously supposed. As such, aboveground and belowground communities can be powerful mutual drivers, with both positive and negative feedbacks. A combined aboveground-belowground approach to community and ecosystem ecology is enhancing our understanding of the regulation and functional significance of biodiversity and of the environmental impacts of human-induced global change phenomena.
Ecological mechanisms underpinning climate adaptation services.
Lavorel, Sandra; Colloff, Matthew J; McIntyre, Sue; Doherty, Michael D; Murphy, Helen T; Metcalfe, Daniel J; Dunlop, Michael; Williams, Richard J; Wise, Russell M; Williams, Kristen J
2015-01-01
Ecosystem services are typically valued for their immediate material or cultural benefits to human wellbeing, supported by regulating and supporting services. Under climate change, with more frequent stresses and novel shocks, 'climate adaptation services', are defined as the benefits to people from increased social ability to respond to change, provided by the capability of ecosystems to moderate and adapt to climate change and variability. They broaden the ecosystem services framework to assist decision makers in planning for an uncertain future with new choices and options. We present a generic framework for operationalising the adaptation services concept. Four steps guide the identification of intrinsic ecological mechanisms that facilitate the maintenance and emergence of ecosystem services during periods of change, and so materialise as adaptation services. We applied this framework for four contrasted Australian ecosystems. Comparative analyses enabled by the operational framework suggest that adaptation services that emerge during trajectories of ecological change are supported by common mechanisms: vegetation structural diversity, the role of keystone species or functional groups, response diversity and landscape connectivity, which underpin the persistence of function and the reassembly of ecological communities under severe climate change and variability. Such understanding should guide ecosystem management towards adaptation planning. © 2014 John Wiley & Sons Ltd.
Tribal Ecosystem Research Program (TERP) Workshop ...
USEPA is developing alternative approaches to quantify improvements to impaired waterbodies (USEPA 303(d)/TMDL Draft Guidance). Tribal environmental programs are leading the way in the paradigm shift towards sustainability of natural resources. Resources such as wildlife, aquatic habitat are dependent on the development of a riparian and upland management strategy, which considers and adapts to certain ecological relationships. Tribal traditional environmental knowledge (TEK) is a central concept in the cultural and resource stewardship practices of Native Americans. Native American populations have been accumulating knowledge of these ecosystem relationships, and have relied on them for basic survival for thousands of years. As such, TEK is the accumulated understanding of ecosystem function. As North America’s first environmental stewards, Native American populations have developed a unique relationship with the land and its resources. Objective of this workshop is to fuse TEK with environmental science to create an ecosystem, or landscape, research program oriented toward land management practices. This is essentially translating and combining TEK with an ecosystem function approach to provide a comprehensive basis for identifying and evaluating current and historical land use practices. Tribal and USEPA cooperative stream and wetland research focuses on making the connections between upland and riparian ecosystems. Analyzing spatial relationships and short
Invasive aquarium fish transform ecosystem nutrient dynamics
Capps, Krista A.; Flecker, Alexander S.
2013-01-01
Trade of ornamental aquatic species is a multi-billion dollar industry responsible for the introduction of myriad fishes into novel ecosystems. Although aquarium invaders have the potential to alter ecosystem function, regulation of the trade is minimal and little is known about the ecosystem-level consequences of invasion for all but a small number of aquarium species. Here, we demonstrate how ecological stoichiometry can be used as a framework to identify aquarium invaders with the potential to modify ecosystem processes. We show that explosive growth of an introduced population of stoichiometrically unique, phosphorus (P)-rich catfish in a river in southern Mexico significantly transformed stream nutrient dynamics by altering nutrient storage and remineralization rates. Notably, changes varied between elements; the P-rich fish acted as net sinks of P and net remineralizers of nitrogen. Results from this study suggest species-specific stoichiometry may be insightful for understanding how invasive species modify nutrient dynamics when their population densities and elemental composition differ substantially from native organisms. Risk analysis for potential aquarium imports should consider species traits such as body stoichiometry, which may increase the likelihood that an invasion will alter the structure and function of ecosystems. PMID:23966642
Sitters, Holly; Di Stefano, Julian; Christie, Fiona; Swan, Matthew; York, Alan
2016-01-01
Animal species diversity is often associated with time since disturbance, but the effects of disturbances such as fire on functional diversity are unknown. Functional diversity measures the range, abundance, and distribution of trait values in a community, and links changes in species composition with the consequences for ecosystem function. Improved understanding of the relationship between time since fire (TSF) and functional diversity is critical given that the frequency of both prescribed fire and wildfire is expected to increase. To address this knowledge gap, we examined responses of avian functional diversity to TSF and two direct measures of environmental heterogeneity, plant diversity, and structural heterogeneity. We surveyed birds across a 70-year chronosequence spanning four vegetation types in southeast Australia. Six bird functional traits were used to derive four functional diversity indices (richness, evenness, divergence, and dispersion) and the effects of TSF, plant diversity and structural heterogeneity on species richness and the functional diversity indices were examined using mixed models. We used a regression tree method to identify traits associated with species more common in young vegetation. Functional richness and dispersion were negatively associated with TSF in all vegetation types, suggesting that recent prescribed fire generates heterogeneous vegetation and provides greater opportunities for resource partitioning. Species richness was not significantly associated with TSF, and is probably an unreliable surrogate for functional diversity in fire-prone systems. A positive, relationship between functional evenness and structural heterogeneity was comnon to all vegetation types, suggesting that fine-scale (tens of meters) structural variation can enhance ecosystem function. Species more common in young vegetation were primarily linked by their specialist diets, indicating that ecosystem services such as seed dispersal and insect control are enhanced in more recently burnt vegetation. We suggest that patchy prescribed fire sustains functional diversity, and that controlled use of patchy fire to break up large expanses of mature vegetation will enhance ecosystem function.
Broader perspective on ecosystem sustainability: consequences for decision making.
Sidle, Roy C; Benson, William H; Carriger, John F; Kamai, Toshitaka
2013-06-04
Although the concept of ecosystem sustainability has a long-term focus, it is often viewed from a static system perspective. Because most ecosystems are dynamic, we explore sustainability assessments from three additional perspectives: resilient systems; systems where tipping points occur; and systems subject to episodic resetting. Whereas foundations of ecosystem resilience originated in ecology, recent discussions have focused on geophysical attributes, and it is recognized that dynamic system components may not return to their former state following perturbations. Tipping points emerge when chronic changes (typically anthropogenic, but sometimes natural) push ecosystems to thresholds that cause collapse of process and function and may become permanent. Ecosystem resetting occurs when episodic natural disasters breach thresholds with little or no warning, resulting in long-term changes to environmental attributes or ecosystem function. An example of sustainability assessment of ecosystem goods and services along the Gulf Coast (USA) demonstrates the need to include both the resilient and dynamic nature of biogeomorphic components. Mountain road development in northwest Yunnan, China, makes rivers and related habitat vulnerable to tipping points. Ecosystems reset by natural disasters are also presented, emphasizing the need to understand the magnitude frequency and interrelationships among major disturbances, as shown by (i) the 2011 Great East Japan Earthquake and resulting tsunami, including how unsustainable urban development exacerbates geodisaster propagation, and (ii) repeated major earthquakes and associated geomorphic and vegetation disturbances in Papua New Guinea. Although all of these ecosystem perturbations and shifts are individually recognized, they are not embraced in contemporary sustainable decision making.
Broader perspective on ecosystem sustainability: Consequences for decision making
Sidle, Roy C.; Benson, William H.; Carriger, John F.; Kamai, Toshitaka
2013-01-01
Although the concept of ecosystem sustainability has a long-term focus, it is often viewed from a static system perspective. Because most ecosystems are dynamic, we explore sustainability assessments from three additional perspectives: resilient systems; systems where tipping points occur; and systems subject to episodic resetting. Whereas foundations of ecosystem resilience originated in ecology, recent discussions have focused on geophysical attributes, and it is recognized that dynamic system components may not return to their former state following perturbations. Tipping points emerge when chronic changes (typically anthropogenic, but sometimes natural) push ecosystems to thresholds that cause collapse of process and function and may become permanent. Ecosystem resetting occurs when episodic natural disasters breach thresholds with little or no warning, resulting in long-term changes to environmental attributes or ecosystem function. An example of sustainability assessment of ecosystem goods and services along the Gulf Coast (USA) demonstrates the need to include both the resilient and dynamic nature of biogeomorphic components. Mountain road development in northwest Yunnan, China, makes rivers and related habitat vulnerable to tipping points. Ecosystems reset by natural disasters are also presented, emphasizing the need to understand the magnitude frequency and interrelationships among major disturbances, as shown by (i) the 2011 Great East Japan Earthquake and resulting tsunami, including how unsustainable urban development exacerbates geodisaster propagation, and (ii) repeated major earthquakes and associated geomorphic and vegetation disturbances in Papua New Guinea. Although all of these ecosystem perturbations and shifts are individually recognized, they are not embraced in contemporary sustainable decision making. PMID:23686583
Liu, Yang; El-Kassaby, Yousry A
2018-05-29
While temperature and precipitation comprise important ecological filtering for native ranges of forest trees and are predisposing factors underlying forest ecosystem dynamics, the extent and severity of drought raises reasonable concerns for carbon storage and species diversity. Based on historical data from common garden experiments across the Pacific Northwest region, we developed non-linear niche models for height-growth trajectories of conifer trees at the sapling stage using annual or seasonal climatic variables. The correlations between virtual tree height for each locality and ecosystem functions were respectively assessed. Best-fitted models were composed of two distinct components: evapotranspiration and the degree-days disparity for temperature regimes between 5 °C and 18 °C (effective temperature sum and growth temperature, respectively). Tree height prediction for adaptive generalists (e.g., Pinus monticola, Thuja plicata) had smaller residuals than for specialists (e.g., Pinus contorta, Pseudotsuga menziesii), albeit a potential confounding factor - tree age. Discernably, there were linearly positive patterns between tree height growth and ecosystem functions (productivity, biomass and species diversity). Additionally, there was a minor effect of tree diversity on height growth in coniferous forests. This study uncovers the implication of key ecological filtering and increases our integrated understanding of how environmental cues affect tree stand growth, species dominance and ecosystem functions.
Ajaz Ahmed, Mukhtar Ahmed; Abd-Elrahman, Amr; Escobedo, Francisco J; Cropper, Wendell P; Martin, Timothy A; Timilsina, Nilesh
2017-09-01
Understanding ecosystem processes and the influence of regional scale drivers can provide useful information for managing forest ecosystems. Examining more local scale drivers of forest biomass and water yield can also provide insights for identifying and better understanding the effects of climate change and management on forests. We used diverse multi-scale datasets, functional models and Geographically Weighted Regression (GWR) to model ecosystem processes at the watershed scale and to interpret the influence of ecological drivers across the Southeastern United States (SE US). Aboveground forest biomass (AGB) was determined from available geospatial datasets and water yield was estimated using the Water Supply and Stress Index (WaSSI) model at the watershed level. Our geostatistical model examined the spatial variation in these relationships between ecosystem processes, climate, biophysical, and forest management variables at the watershed level across the SE US. Ecological and management drivers at the watershed level were analyzed locally to identify whether drivers contribute positively or negatively to aboveground forest biomass and water yield ecosystem processes and thus identifying potential synergies and tradeoffs across the SE US region. Although AGB and water yield drivers varied geographically across the study area, they were generally significantly influenced by climate (rainfall and temperature), land-cover factor1 (Water and barren), land-cover factor2 (wetland and forest), organic matter content high, rock depth, available water content, stand age, elevation, and LAI drivers. These drivers were positively or negatively associated with biomass or water yield which significantly contributes to ecosystem interactions or tradeoff/synergies. Our study introduced a spatially-explicit modelling framework to analyze the effect of ecosystem drivers on forest ecosystem structure, function and provision of services. This integrated model approach facilitates multi-scale analyses of drivers and interactions at the local to regional scale. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cross-disciplinarity in the advance of Antarctic ecosystem research.
Gutt, J; Isla, E; Bertler, A N; Bodeker, G E; Bracegirdle, T J; Cavanagh, R D; Comiso, J C; Convey, P; Cummings, V; De Conto, R; De Master, D; di Prisco, G; d'Ovidio, F; Griffiths, H J; Khan, A L; López-Martínez, J; Murray, A E; Nielsen, U N; Ott, S; Post, A; Ropert-Coudert, Y; Saucède, T; Scherer, R; Schiaparelli, S; Schloss, I R; Smith, C R; Stefels, J; Stevens, C; Strugnell, J M; Trimborn, S; Verde, C; Verleyen, E; Wall, D H; Wilson, N G; Xavier, J C
2018-02-01
The biodiversity, ecosystem services and climate variability of the Antarctic continent and the Southern Ocean are major components of the whole Earth system. Antarctic ecosystems are driven more strongly by the physical environment than many other marine and terrestrial ecosystems. As a consequence, to understand ecological functioning, cross-disciplinary studies are especially important in Antarctic research. The conceptual study presented here is based on a workshop initiated by the Research Programme Antarctic Thresholds - Ecosystem Resilience and Adaptation of the Scientific Committee on Antarctic Research, which focussed on challenges in identifying and applying cross-disciplinary approaches in the Antarctic. Novel ideas and first steps in their implementation were clustered into eight themes. These ranged from scale problems, through risk maps, and organism/ecosystem responses to multiple environmental changes and evolutionary processes. Scaling models and data across different spatial and temporal scales were identified as an overarching challenge. Approaches to bridge gaps in Antarctic research programmes included multi-disciplinary monitoring, linking biomolecular findings and simulated physical environments, as well as integrative ecological modelling. The results of advanced cross-disciplinary approaches can contribute significantly to our knowledge of Antarctic and global ecosystem functioning, the consequences of climate change, and to global assessments that ultimately benefit humankind. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Understanding the biological underpinnings of ecohydrological processes
NASA Astrophysics Data System (ADS)
Huxman, T. E.; Scott, R. L.; Barron-Gafford, G. A.; Hamerlynck, E. P.; Jenerette, D.; Tissue, D. T.; Breshears, D. D.; Saleska, S. R.
2012-12-01
Climate change presents a challenge for predicting ecosystem response, as multiple factors drive both the physical and life processes happening on the land surface and their interactions result in a complex, evolving coupled system. For example, changes in surface temperature and precipitation influence near-surface hydrology through impacts on system energy balance, affecting a range of physical processes. These changes in the salient features of the environment affect biological processes and elicit responses along the hierarchy of life (biochemistry to community composition). Many of these structural or process changes can alter patterns of soil water-use and influence land surface characteristics that affect local climate. Of the many features that affect our ability to predict the future dynamics of ecosystems, it is this hierarchical response of life that creates substantial complexity. Advances in the ability to predict or understand aspects of demography help describe thresholds in coupled ecohydrological system. Disentangling the physical and biological features that underlie land surface dynamics following disturbance are allowing a better understanding of the partitioning of water in the time-course of recovery. Better predicting the timing of phenology and key seasonal events allow for a more accurate description of the full functional response of the land surface to climate. In addition, explicitly considering the hierarchical structural features of life are helping to describe complex time-dependent behavior in ecosystems. However, despite this progress, we have yet to build an ability to fully account for the generalization of the main features of living systems into models that can describe ecohydrological processes, especially acclimation, assembly and adaptation. This is unfortunate, given that many key ecosystem services are functions of these coupled co-evolutionary processes. To date, both the lack of controlled measurements and experimentation has precluded determination of sufficient theoretical development. Understanding the land-surface response and feedback to climate change requires a mechanistic understanding of the coupling of ecological and hydrological processes and an expansion of theory from the life sciences to appropriately contribute to the broader Earth system science goal.
Reconstructing disturbances and their biogeochemical consequences over multiple timescales
McLauchlan, Kendra K.; Higuera, Philip E.; Gavin, Daniel G.; Perakis, Steven S.; Mack, Michelle C.; Alexander, Heather; Battles, John; Biondi, Franco; Buma, Brian; Colombaroli, Daniele; Enders, Sara K.; Engstrom, Daniel R.; Hu, Feng Sheng; Marlon, Jennifer R.; Marshall, John; McGlone, Matt; Morris, Jesse L.; Nave, Lucas E.; Shuman, Bryan; Smithwick, Erica A.H.; Urrego, Dunia H.; Wardle, David A.; Williams, Christopher J.; Williams, Joseph J.
2014-01-01
Ongoing changes in disturbance regimes are predicted to cause acute changes in ecosystem structure and function in the coming decades, but many aspects of these predictions are uncertain. A key challenge is to improve the predictability of postdisturbance biogeochemical trajectories at the ecosystem level. Ecosystem ecologists and paleoecologists have generated complementary data sets about disturbance (type, severity, frequency) and ecosystem response (net primary productivity, nutrient cycling) spanning decadal to millennial timescales. Here, we take the first steps toward a full integration of these data sets by reviewing how disturbances are reconstructed using dendrochronological and sedimentary archives and by summarizing the conceptual frameworks for carbon, nitrogen, and hydrologic responses to disturbances. Key research priorities include further development of paleoecological techniques that reconstruct both disturbances and terrestrial ecosystem dynamics. In addition, mechanistic detail from disturbance experiments, long-term observations, and chronosequences can help increase the understanding of ecosystem resilience.
Bridging Food Webs, Ecosystem Metabolism, and Biogeochemistry Using Ecological Stoichiometry Theory
Welti, Nina; Striebel, Maren; Ulseth, Amber J.; Cross, Wyatt F.; DeVilbiss, Stephen; Glibert, Patricia M.; Guo, Laodong; Hirst, Andrew G.; Hood, Jim; Kominoski, John S.; MacNeill, Keeley L.; Mehring, Andrew S.; Welter, Jill R.; Hillebrand, Helmut
2017-01-01
Although aquatic ecologists and biogeochemists are well aware of the crucial importance of ecosystem functions, i.e., how biota drive biogeochemical processes and vice-versa, linking these fields in conceptual models is still uncommon. Attempts to explain the variability in elemental cycling consequently miss an important biological component and thereby impede a comprehensive understanding of the underlying processes governing energy and matter flow and transformation. The fate of multiple chemical elements in ecosystems is strongly linked by biotic demand and uptake; thus, considering elemental stoichiometry is important for both biogeochemical and ecological research. Nonetheless, assessments of ecological stoichiometry (ES) often focus on the elemental content of biota rather than taking a more holistic view by examining both elemental pools and fluxes (e.g., organismal stoichiometry and ecosystem process rates). ES theory holds the promise to be a unifying concept to link across hierarchical scales of patterns and processes in ecology, but this has not been fully achieved. Therefore, we propose connecting the expertise of aquatic ecologists and biogeochemists with ES theory as a common currency to connect food webs, ecosystem metabolism, and biogeochemistry, as they are inherently concatenated by the transfer of carbon, nitrogen, and phosphorous through biotic and abiotic nutrient transformation and fluxes. Several new studies exist that demonstrate the connections between food web ecology, biogeochemistry, and ecosystem metabolism. In addition to a general introduction into the topic, this paper presents examples of how these fields can be combined with a focus on ES. In this review, a series of concepts have guided the discussion: (1) changing biogeochemistry affects trophic interactions and ecosystem processes by altering the elemental ratios of key species and assemblages; (2) changing trophic dynamics influences the transformation and fluxes of matter across environmental boundaries; (3) changing ecosystem metabolism will alter the chemical diversity of the non-living environment. Finally, we propose that using ES to link nutrient cycling, trophic dynamics, and ecosystem metabolism would allow for a more holistic understanding of ecosystem functions in a changing environment. PMID:28747904
García-Palacios, Pablo; Bowker, Matthew A.; Maestre, Fernando T.; Soliveres, Santiago; Valladares, Fernando; Papadopoulos, Jorge; Escudero, Adrián
2015-01-01
Roadside grasslands undergoing secondary succession are abundant, and represent ecologically meaningful examples of novel, human-created ecosystems. Interactions between plant and soil communities (hereafter plant–soil interactions) are of major importance in understanding the role of biotic control in ecosystem functioning, but little is known about these links in the context of ecosystem restoration and succession. The assessment of the key biotic communities and interactions driving ecosystem development will help practitioners to better allocate the limited resources devoted to roadside grassland restoration. We surveyed roadside grasslands from three successional stages (0–2, 7–9 and > 20 years) in two Mediterranean regions of Spain. Structural equation modeling was used to evaluate how interactions between plants, biological soil crusts [BSCs], and soil microbial functional diversity [soil microorganisms] affect indicators of ecosystem development and restoration: plant similarity to the reference ecosystem, erosion control and soil C storage and N accumulation. Changes in plant community composition along the successional gradient exerted the strongest influence on these indicators. High BSC cover was associated with high soil stability, and high soil microbial functional diversity from late-successional stages was associated with high soil fertility. Contrary to our expectations, the indirect effects of plants, mediated by either BSCs or soil microorganisms, were very weak in both regions, suggesting a minor role for plant–soil interactions upon ecosystem development indicators over long periods. Our results suggest that natural vegetation dynamics effectively improved ecosystem development within a time frame of 20 years in the grasslands evaluated. They also indicate that this time could be shortened if management actions focus on: 1) maintain well-conserved natural areas close to roadsides to enhance plant compositional changes towards late-successional stages, 2) increase BSC cover in areas under strong erosion risk, to avoid soil loss, and 3) enhance soil microbial functional diversity in resource-limited areas, to enhance soil C and N accumulation. PMID:22073661
Prager, Case M; Naeem, Shahid; Boelman, Natalie T; Eitel, Jan U H; Greaves, Heather E; Heskel, Mary A; Magney, Troy S; Menge, Duncan N L; Vierling, Lee A; Griffin, Kevin L
2017-04-01
Rapid environmental change at high latitudes is predicted to greatly alter the diversity, structure, and function of plant communities, resulting in changes in the pools and fluxes of nutrients. In Arctic tundra, increased nitrogen (N) and phosphorus (P) availability accompanying warming is known to impact plant diversity and ecosystem function; however, to date, most studies examining Arctic nutrient enrichment focus on the impact of relatively large (>25x estimated naturally occurring N enrichment) doses of nutrients on plant community composition and net primary productivity. To understand the impacts of Arctic nutrient enrichment, we examined plant community composition and the capacity for ecosystem function (net ecosystem exchange, ecosystem respiration, and gross primary production) across a gradient of experimental N and P addition expected to more closely approximate warming-induced fertilization. In addition, we compared our measured ecosystem CO 2 flux data to a widely used Arctic ecosystem exchange model to investigate the ability to predict the capacity for CO 2 exchange with nutrient addition. We observed declines in abundance-weighted plant diversity at low levels of nutrient enrichment, but species richness and the capacity for ecosystem carbon uptake did not change until the highest level of fertilization. When we compared our measured data to the model, we found that the model explained roughly 30%-50% of the variance in the observed data, depending on the flux variable, and the relationship weakened at high levels of enrichment. Our results suggest that while a relatively small amount of nutrient enrichment impacts plant diversity, only relatively large levels of fertilization-over an order of magnitude or more than warming-induced rates-significantly alter the capacity for tundra CO 2 exchange. Overall, our findings highlight the value of measuring and modeling the impacts of a nutrient enrichment gradient, as warming-related nutrient availability may impact ecosystems differently than single-level fertilization experiments.
Garcia-Palacios, P.; Bowker, M.A.; Maestre, F.T.; Soliveres, S.; Valladares, F.; Papadopoulos, J.; Escudero, A.
2011-01-01
Roadside grasslands undergoing secondary succession are abundant, and represent ecologically meaningful examples of novel, human-created ecosystems. Interactions between plant and soil communities (hereafter plant-soil interactions) are of major importance in understanding the role of biotic control in ecosystem functioning, but little is known about these links in the context of ecosystem restoration and succession. The assessment of the key biotic communities and interactions driving ecosystem development will help practitioners to better allocate the limited resources devoted to roadside grassland restoration. We surveyed roadside grasslands from three successional stages (0-2, 7-9, and > 20 years) in two Mediterranean regions of Spain. Structural equation modeling was used to evaluate how interactions between plants, biological soil crusts (BSCs), and soil microbial functional diversity (soil microorganisms) affect indicators of ecosystem development and restoration: plant similarity to the reference ecosystem, erosion control, and soil C storage and N accumulation. Changes in plant community composition along the successional gradient exerted the strongest influence on these indicators. High BSC cover was associated with high soil stability, and high soil microbial functional diversity from late-successional stages was associated with high soil fertility. Contrary to our expectations, the indirect effects of plants, mediated by either BSCs or soil microorganisms, were very weak in both regions, suggesting a minor role for plant-soil interactions upon ecosystem development indicators over long periods. Our results suggest that natural vegetation dynamics effectively improved ecosystem development within a time frame of 20 years in the grasslands evaluated. They also indicate that this time could be shortened if management actions focus on: (1) maintaining wellconserved natural areas close to roadsides to enhance plant compositional changes towards late-successional stages, (2) increasing BSC cover in areas under strong erosion risk, to avoid soil loss, and (3) enhancing soil microbial functional diversity in resource-limited areas, to enhance soil C and N accumulation. ?? 2011 by the Ecological Society of America.
Ecosystem services and economic theory: integration for policy-relevant research.
Fisher, Brendan; Turner, Kerry; Zylstra, Matthew; Brouwer, Roy; de Groot, Rudolf; Farber, Stephen; Ferraro, Paul; Green, Rhys; Hadley, David; Harlow, Julian; Jefferiss, Paul; Kirkby, Chris; Morling, Paul; Mowatt, Shaun; Naidoo, Robin; Paavola, Jouni; Strassburg, Bernardo; Yu, Doug; Balmford, Andrew
2008-12-01
It has become essential in policy and decision-making circles to think about the economic benefits (in addition to moral and scientific motivations) humans derive from well-functioning ecosystems. The concept of ecosystem services has been developed to address this link between ecosystems and human welfare. Since policy decisions are often evaluated through cost-benefit assessments, an economic analysis can help make ecosystem service research operational. In this paper we provide some simple economic analyses to discuss key concepts involved in formalizing ecosystem service research. These include the distinction between services and benefits, understanding the importance of marginal ecosystem changes, formalizing the idea of a safe minimum standard for ecosystem service provision, and discussing how to capture the public benefits of ecosystem services. We discuss how the integration of economic concepts and ecosystem services can provide policy and decision makers with a fuller spectrum of information for making conservation-conversion trade-offs. We include the results from a survey of the literature and a questionnaire of researchers regarding how ecosystem service research can be integrated into the policy process. We feel this discussion of economic concepts will be a practical aid for ecosystem service research to become more immediately policy relevant.
Marzloff, Martin Pierre; Melbourne-Thomas, Jessica; Hamon, Katell G; Hoshino, Eriko; Jennings, Sarah; van Putten, Ingrid E; Pecl, Gretta T
2016-07-01
As a consequence of global climate-driven changes, marine ecosystems are experiencing polewards redistributions of species - or range shifts - across taxa and throughout latitudes worldwide. Research on these range shifts largely focuses on understanding and predicting changes in the distribution of individual species. The ecological effects of marine range shifts on ecosystem structure and functioning, as well as human coastal communities, can be large, yet remain difficult to anticipate and manage. Here, we use qualitative modelling of system feedback to understand the cumulative impacts of multiple species shifts in south-eastern Australia, a global hotspot for ocean warming. We identify range-shifting species that can induce trophic cascades and affect ecosystem dynamics and productivity, and evaluate the potential effectiveness of alternative management interventions to mitigate these impacts. Our results suggest that the negative ecological impacts of multiple simultaneous range shifts generally add up. Thus, implementing whole-of-ecosystem management strategies and regular monitoring of range-shifting species of ecological concern are necessary to effectively intervene against undesirable consequences of marine range shifts at the regional scale. Our study illustrates how modelling system feedback with only limited qualitative information about ecosystem structure and range-shifting species can predict ecological consequences of multiple co-occurring range shifts, guide ecosystem-based adaptation to climate change and help prioritise future research and monitoring. © 2016 John Wiley & Sons Ltd.
Scientific Conceptions of Photosynthesis among Primary School Pupils and Student Teachers of Biology
ERIC Educational Resources Information Center
Dimec, Darja Skribe; Strgar, Jelka
2017-01-01
Photosynthesis is the most important biochemical process on Earth. Most living beings depend on it directly or indirectly. Knowledge about photosynthesis enables us to understand how the world functions as an ecosystem and how photosynthesis acts as a bridge between the non-living and living worlds. It is, therefore, understandable that…
Ecosystem services: From theory to implementation
Daily, Gretchen C.; Matson, Pamela A.
2008-01-01
Around the world, leaders are increasingly recognizing ecosystems as natural capital assets that supply life-support services of tremendous value. The challenge is to turn this recognition into incentives and institutions that will guide wise investments in natural capital, on a large scale. Advances are required on three key fronts, each featured here: the science of ecosystem production functions and service mapping; the design of appropriate finance, policy, and governance systems; and the art of implementing these in diverse biophysical and social contexts. Scientific understanding of ecosystem production functions is improving rapidly but remains a limiting factor in incorporating natural capital into decisions, via systems of national accounting and other mechanisms. Novel institutional structures are being established for a broad array of services and places, creating a need and opportunity for systematic assessment of their scope and limitations. Finally, it is clear that formal sharing of experience, and defining of priorities for future work, could greatly accelerate the rate of innovation and uptake of new approaches. PMID:18621697
Ecosystem services: from theory to implementation.
Daily, Gretchen C; Matson, Pamela A
2008-07-15
Around the world, leaders are increasingly recognizing ecosystems as natural capital assets that supply life-support services of tremendous value. The challenge is to turn this recognition into incentives and institutions that will guide wise investments in natural capital, on a large scale. Advances are required on three key fronts, each featured here: the science of ecosystem production functions and service mapping; the design of appropriate finance, policy, and governance systems; and the art of implementing these in diverse biophysical and social contexts. Scientific understanding of ecosystem production functions is improving rapidly but remains a limiting factor in incorporating natural capital into decisions, via systems of national accounting and other mechanisms. Novel institutional structures are being established for a broad array of services and places, creating a need and opportunity for systematic assessment of their scope and limitations. Finally, it is clear that formal sharing of experience, and defining of priorities for future work, could greatly accelerate the rate of innovation and uptake of new approaches.
NASA Astrophysics Data System (ADS)
Kelly, A. E.; Goulden, M.; Fellows, A. W.
2013-12-01
California's Mediterranean climate supports a broad diversity of ecosystem types, including Sequoia forests in the mid-montane Sierra Nevada. Understanding how winter cold and summer drought interact to produce the lush forest in the Sierra is critical to predicting the impacts of projected climate change on California's ecosystems, water supply, and carbon cycling. We investigated how smooth gradients of temperature and water availability produced sharp thresholds in biomass, productivity, growing season, water use, and ultimately ecosystem type and function. We used the climate gradient of the western slope of the Sierra Nevada as a study system. Four eddy covariance towers were situated in the major ecosystem types of the Sierra Nevada at approximately 800-m elevation intervals. Eddy flux data were combined with remote sensing and direct measurements of biomass, productivity, soil available water, and evapotranspiration to understand how weather and available water control ecosystem production and function. We found that production at the high elevation lodgepole site at 2700 m was strongly limited by winter cold. Production at the low elevation oak woodland site at 400 m was strongly limited by summer drought. The yellow pine site at 1200 m was only 4 °C cooler than the oak woodland site, yet had an order of magnitude more biomass and productivity with year-round growth. The mixed conifer site at 2000 m is 3.5 °C warmer than the lodgepole forest, yet also has higher biomass, ten times higher productivity, and year-round growth. We conclude that there is a broad climatological 'sweet spot' within the Sierra Nevada, in which the Mediterranean climate can support large-statured forest with high growth rates. The range of the mid-elevation forest was sharply bounded by water limitation at the lower edge and cold limitation at the upper edge despite small differences in precipitation and temperature across these boundaries. Our results suggest that small changes in precipitation or winter warming could markedly alter ecosystem structure and function as well as carbon and water cycling in the Sierra Nevada.
The invasibility of marine algal assemblages: role of functional diversity and identity.
Arenas, Francisco; Sánchez, Iñigo; Hawkins, Stephen J; Jenkins, Stuart R
2006-11-01
The emergence of the biodiversity-ecosystem functioning debate in the last decade has renewed interest in understanding why some communities are more easily invaded than others and how the impact of invasion on recipient communities and ecosystems varies. To date most of the research on invasibility has focused on taxonomic diversity, i.e., species richness. However, functional diversity of the communities should be more relevant for the resistance of the community to invasions, as the extent of functional differences among the species in an assemblage is a major determinant of ecosystem processes. Although coastal marine habitats are among the most heavily invaded ecosystems, studies on community invasibility and vulnerability in these habitats are scarce. We carried out a manipulative field experiment in tide pools of the rocky intertidal to test the hypothesis that increasing functional richness reduces the susceptibility of macroalgal communities to invasion. We selected a priori four functional groups on the basis of previous knowledge of local species characteristics: encrusting, turf, subcanopy, and canopy species. Synthetic assemblages containing one, two, three, or four different functional groups of seaweeds were created, and invasion by native species was monitored over an eight-month period. Cover and resource availability in the assemblages with only one functional group showed different patterns in the use of space and light, confirming true functional differences among our groups. Experimental results showed that the identity of functional groups was more important than functional richness in determining the ability of macroalgal communities to resist invasion and that resistance to invasion was resource-mediated.
McCormack, M. Luke; Dickie, Ian A.; Eissenstat, David M.; ...
2015-03-10
Fine roots acquire essential soil resources and mediate biogeochemical cycling in terrestrial ecosystems. Estimates of carbon and nutrient allocation to build and maintain these structures remain uncertain due to challenges in consistent measurement and interpretation of fine-root systems. We define fine roots as all roots less than or equal to 2 mm in diameter, yet it is now recognized that this approach fails to capture the diversity of form and function observed among fine-root orders. We demonstrate how order-based and functional classification frameworks improve our understanding of dynamic root processes in ecosystems dominated by perennial plants. In these frameworks, finemore » roots are separated into either individual root orders or functionally defined into a shorter-lived absorptive pool and a longer-lived transport fine root pool. Furthermore, using these frameworks, we estimate that fine-root production and turnover represent 22% of terrestrial net primary production globally a ca. 30% reduction from previous estimates assuming a single fine-root pool. In the future we hope to develop tools to rapidly differentiate functional fine-root classes, explicit incorporation of mycorrhizal fungi in fine-root studies, and wider adoption of a two-pool approach to model fine roots provide opportunities to better understand belowground processes in the terrestrial biosphere.« less
Jeremias, Guilherme; Barbosa, João; Marques, Sérgio M; Asselman, Jana; Gonçalves, Fernando J M; Pereira, Joana L
2018-07-01
Freshwater ecosystems are amongst the most threatened ecosystems on Earth. Currently, climate change is one of the most important drivers of freshwater transformation and its effects include changes in the composition, biodiversity and functioning of freshwater ecosystems. Understanding the capacity of freshwater species to tolerate the environmental fluctuations induced by climate change is critical to the development of effective conservation strategies. In the last few years, epigenetic mechanisms were increasingly put forward in this context because of their pivotal role in gene-environment interactions. In addition, the evolutionary role of epigenetically inherited phenotypes is a relatively recent but promising field. Here, we examine and synthesize the impacts of climate change on freshwater ecosystems, exploring the potential role of epigenetic mechanisms in both short- and long-term adaptation of species. Following this wrapping-up of current evidence, we particularly focused on bringing together the most promising future research avenues towards a better understanding of the effects of climate change on freshwater biodiversity, specifically highlighting potential molecular targets and the most suitable freshwater species for future epigenetic studies in this context. © 2018 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Quetin, G. R.; Swann, A. L. S.
2017-12-01
Successfully predicting the state of vegetation in a novel environment is dependent on our process level understanding of the ecosystem and its interactions with the environment. We derive a global empirical map of the sensitivity of vegetation to climate using the response of satellite-observed greenness and leaf area to interannual variations in temperature and precipitation. Our analysis provides observations of ecosystem functioning; the vegetation interactions with the physical environment, across a wide range of climates and provide a functional constraint for hypotheses engendered in process-based models. We infer mechanisms constraining ecosystem functioning by contrasting how the observed and simulated sensitivity of vegetation to climate varies across climate space. Our analysis yields empirical evidence for multiple physical and biological mediators of the sensitivity of vegetation to climate as a systematic change across climate space. Our comparison of remote sensing-based vegetation sensitivity with modeled estimates provides evidence for which physiological mechanisms - photosynthetic efficiency, respiration, water supply, atmospheric water demand, and sunlight availability - dominate the ecosystem functioning in places with different climates. Earth system models are generally successful in reproducing the broad sign and shape of ecosystem functioning across climate space. However, this general agreement breaks down in hot wet climates where models simulate less leaf area during a warmer year, while observations show a mixed response but overall more leaf area during warmer years. In addition, simulated ecosystem interaction with temperature is generally larger and changes more rapidly across a gradient of temperature than is observed. We hypothesize that the amplified interaction and change are both due to a lack of adaptation and acclimation in simulations. This discrepancy with observations suggests that simulated responses of vegetation to global warming, and feedbacks between vegetation and climate, are too strong in the models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munger, J. William; Foster, David R.; Richardson, Andrew D.
This report summarizes work to improve quantitative understanding of the terrestrial ecosystem processes that control carbon sequestration in unmanaged forests It builds upon the comprehensive long-term observations of CO2 fluxes, climate and forest structure and function at the Harvard Forest in Petersham, MA. This record includes the longest CO2 flux time series in the world. The site is a keystone for the AmeriFlux network. Project Description The project synthesizes observations made at the Harvard Forest HFEMS and Hemlock towers, which represent the dominant mixed deciduous and coniferous forest types in the northeastern United States. The 20+ year record of carbonmore » uptake at Harvard Forest and the associated comprehensive meteorological and biometric data, comprise one of the best data sets to challenge ecosystem models on time scales spanning hourly, daily, monthly, interannual and multi-decadal intervals, as needed to understand ecosystem change and climate feedbacks.« less
Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems.
Barnosky, Anthony D; Hadly, Elizabeth A; Gonzalez, Patrick; Head, Jason; Polly, P David; Lawing, A Michelle; Eronen, Jussi T; Ackerly, David D; Alex, Ken; Biber, Eric; Blois, Jessica; Brashares, Justin; Ceballos, Gerardo; Davis, Edward; Dietl, Gregory P; Dirzo, Rodolfo; Doremus, Holly; Fortelius, Mikael; Greene, Harry W; Hellmann, Jessica; Hickler, Thomas; Jackson, Stephen T; Kemp, Melissa; Koch, Paul L; Kremen, Claire; Lindsey, Emily L; Looy, Cindy; Marshall, Charles R; Mendenhall, Chase; Mulch, Andreas; Mychajliw, Alexis M; Nowak, Carsten; Ramakrishnan, Uma; Schnitzler, Jan; Das Shrestha, Kashish; Solari, Katherine; Stegner, Lynn; Stegner, M Allison; Stenseth, Nils Chr; Wake, Marvalee H; Zhang, Zhibin
2017-02-10
Conservation of species and ecosystems is increasingly difficult because anthropogenic impacts are pervasive and accelerating. Under this rapid global change, maximizing conservation success requires a paradigm shift from maintaining ecosystems in idealized past states toward facilitating their adaptive and functional capacities, even as species ebb and flow individually. Developing effective strategies under this new paradigm will require deeper understanding of the long-term dynamics that govern ecosystem persistence and reconciliation of conflicts among approaches to conserving historical versus novel ecosystems. Integrating emerging information from conservation biology, paleobiology, and the Earth sciences is an important step forward on the path to success. Maintaining nature in all its aspects will also entail immediately addressing the overarching threats of growing human population, overconsumption, pollution, and climate change. Copyright © 2017, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Fisher, Joshua B.; Melton, Forrest; Middleton, Elizabeth; Hain, Christopher; Anderson, Martha; Allen, Richard; McCabe, Matthew F.; Hook, Simon; Baldocchi, Dennis; Townsend, Philip A.; Kilic, Ayse; Tu, Kevin; Miralles, Diego D.; Perret, Johan; Lagouarde, Jean-Pierre; Waliser, Duane; Purdy, Adam J.; French, Andrew; Schimel, David; Famiglietti, James S.; Stephens, Graeme; Wood, Eric F.
2017-04-01
The fate of the terrestrial biosphere is highly uncertain given recent and projected changes in climate. This is especially acute for impacts associated with changes in drought frequency and intensity on the distribution and timing of water availability. The development of effective adaptation strategies for these emerging threats to food and water security are compromised by limitations in our understanding of how natural and managed ecosystems are responding to changing hydrological and climatological regimes. This information gap is exacerbated by insufficient monitoring capabilities from local to global scales. Here, we describe how evapotranspiration (ET) represents the key variable in linking ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources, and highlight both the outstanding science and applications questions and the actions, especially from a space-based perspective, necessary to advance them.
NASA Technical Reports Server (NTRS)
Fisher, Joshua B.; Melton, Forrest; Middleton, Elizabeth; Hain, Christopher; Anderson, Martha; Allen, Richard; McCabe, Matthew F.; Hook, Simon; Baldocchi, Dennis; Townsend, Philip A.;
2017-01-01
The fate of the terrestrial biosphere is highly uncertain given recent and projected changes in climate. This is especially acute for impacts associated with changes in drought frequency and intensity on the distribution and timing of water availability. The development of effective adaptation strategies for these emerging threats to food and water security are compromised by limitations in our understanding of how natural and managed ecosystems are responding to changing hydrological and climatological regimes. This information gap is exacerbated by insufficient monitoring capabilities from local to global scales. Here, we describe how evapotranspiration (ET) represents the key variable in linking ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources, and highlight both the outstanding science and applications questions and the actions, especially from a space-based perspective, necessary to advance them.
Metagenomic Insights of Microbial Feedbacks to Elevated CO2 (Invited)
NASA Astrophysics Data System (ADS)
Zhou, J.; Tu, Q.; Wu, L.; He, Z.; Deng, Y.; Van Nostrand, J. D.
2013-12-01
Understanding the responses of biological communities to elevated CO2 (eCO2) is a central issue in ecology and global change biology, but its impacts on the diversity, composition, structure, function, interactions and dynamics of soil microbial communities remain elusive. In this study, we first examined microbial responses to eCO2 among six FACE sites/ecosystems using a comprehensive functional gene microarray (GeoChip), and then focused on details of metagenome sequencing analysis in one particular site. GeoChip is a comprehensive functional gene array for examining the relationships between microbial community structure and ecosystem functioning and is a very powerful technology for biogeochemical, ecological and environmental studies. The current version of GeoChip (GeoChip 5.0) contains approximately 162,000 probes from 378,000 genes involved in C, N, S and P cycling, organic contaminant degradation, metal resistance, antibiotic resistance, stress responses, metal homeostasis, virulence, pigment production, bacterial phage-mediated lysis, soil beneficial microorganisms, and specific probes for viruses, protists, and fungi. Our experimental results revealed that both ecosystem and CO2 significantly (p < 0.05) affected the functional composition, structure and metabolic potential of soil microbial communities with the ecosystem having much greater influence (~47%) than CO2 (~1.3%) or CO2 and ecosystem (~4.1%). On one hand, microbial responses to eCO2 shared some common patterns among different ecosystems, such as increased abundances for key functional genes involved in nitrogen fixation, carbon fixation and degradation, and denitrification. On the other hand, more ecosystem-specific microbial responses were identified in each individual ecosystem. Such changes in the soil microbial community structure were closely correlated with geographic distance, soil NO3-N, NH4-N and C/N ratio. Further metagenome sequencing analysis of soil microbial communities in one particular site showed eCO2 altered the overall structure of soil microbial communities with ambient CO2 samples retaining a higher functional gene diversity than eCO2 samples. Also the taxonomic diversity of functional genes decreased at eCO2. Random matrix theory (RMT)-based network analysis showed that the identified networks under ambient and elevated CO2 were substantially different in terms of overall network topology, network composition, node overlap, module preservation, module-based higher order organization (meta-modules), topological roles of individual nodes, and network hubs, indicating that elevated CO2 dramatically altered the network interactions among different phylogenetic and functional groups/populations. In addition, the changes in network structure were significantly correlated with soil carbon and nitrogen content, indicating the potential importance of network interactions in ecosystem functioning. Taken together, this study indicates that eCO2 may decrease the overall functional and taxonomic diversity of soil microbial communities, but such effects appeared to be ecosystem-specific, which makes it more challenging for predicting global or regional terrestrial ecosystems responses to eCO2.
Determining the mechanism by which fish diversity influences production.
Carey, Michael P; Wahl, David H
2011-09-01
Understanding the ability of biodiversity to govern ecosystem function is essential with current pressures on natural communities from species invasions and extirpations. Changes in fish communities can be a major determinant of food web dynamics, and even small shifts in species composition or richness can translate into large effects on ecosystems. In addition, there is a large information gap in extrapolating results of small-scale biodiversity-ecosystem function experiments to natural systems with realistic environmental complexity. Thus, we tested the key mechanisms (resource complementarity and selection effect) for biodiversity to influence fish production in mesocosms and ponds. Fish diversity treatments were created by replicating species richness and species composition within each richness level. In mesocosms, increasing richness had a positive effect on fish biomass with an overyielding pattern indicating species mixtures were more productive than any individual species. Additive partitioning confirmed a positive net effect of biodiversity driven by a complementarity effect. Productivity was less affected by species diversity when species were more similar. Thus, the primary mechanism driving fish production in the mesocosms was resource complementarity. In the ponds, the mechanism driving fish production changed through time. The key mechanism was initially resource complementarity until production was influenced by the selection effect. Varying strength of intraspecific interactions resulting from differences in resource levels and heterogeneity likely caused differences in mechanisms between the mesocosm and pond experiments, as well as changes through time in the ponds. Understanding the mechanisms by which fish diversity governs ecosystem function and how environmental complexity and resource levels alter these relationships can be used to improve predictions for natural systems.
Holzwarth, Frédéric; Rüger, Nadja; Wirth, Christian
2015-01-01
Biodiversity and ecosystem functioning (BEF) research has progressed from the detection of relationships to elucidating their drivers and underlying mechanisms. In this context, replacing taxonomic predictors by trait-based measures of functional composition (FC)—bridging functions of species and of ecosystems—is a widely used approach. The inherent challenge of trait-based approaches is the multi-faceted, dynamic and hierarchical nature of trait influence: (i) traits may act via different facets of their distribution in a community, (ii) their influence may change over time and (iii) traits may influence processes at different levels of the natural hierarchy of organization. Here, we made use of the forest ecosystem model ‘LPJ-GUESS’ parametrized with empirical trait data, which creates output of individual performance, community assembly, stand-level states and processes. To address the three challenges, we resolved the dynamics of the top-level ecosystem function ‘annual biomass change’ hierarchically into its various component processes (growth, leaf and root turnover, recruitment and mortality) and states (stand structures, water stress) and traced the influence of different facets of FC along this hierarchy in a path analysis. We found an independent influence of functional richness, dissimilarity and identity on ecosystem states and processes and hence biomass change. Biodiversity effects were only positive during early succession and later turned negative. Unexpectedly, resource acquisition (growth, recruitment) and conservation (mortality, turnover) played an equally important role throughout the succession. These results add to a mechanistic understanding of biodiversity effects and place a caveat on simplistic approaches omitting hierarchical levels when analysing BEF relationships. They support the view that BEF relationships experience dramatic shifts over successional time that should be acknowledged in mechanistic theories. PMID:26064620
Connecting Earth observation to high-throughput biodiversity data.
Bush, Alex; Sollmann, Rahel; Wilting, Andreas; Bohmann, Kristine; Cole, Beth; Balzter, Heiko; Martius, Christopher; Zlinszky, András; Calvignac-Spencer, Sébastien; Cobbold, Christina A; Dawson, Terence P; Emerson, Brent C; Ferrier, Simon; Gilbert, M Thomas P; Herold, Martin; Jones, Laurence; Leendertz, Fabian H; Matthews, Louise; Millington, James D A; Olson, John R; Ovaskainen, Otso; Raffaelli, Dave; Reeve, Richard; Rödel, Mark-Oliver; Rodgers, Torrey W; Snape, Stewart; Visseren-Hamakers, Ingrid; Vogler, Alfried P; White, Piran C L; Wooster, Martin J; Yu, Douglas W
2017-06-22
Understandably, given the fast pace of biodiversity loss, there is much interest in using Earth observation technology to track biodiversity, ecosystem functions and ecosystem services. However, because most biodiversity is invisible to Earth observation, indicators based on Earth observation could be misleading and reduce the effectiveness of nature conservation and even unintentionally decrease conservation effort. We describe an approach that combines automated recording devices, high-throughput DNA sequencing and modern ecological modelling to extract much more of the information available in Earth observation data. This approach is achievable now, offering efficient and near-real-time monitoring of management impacts on biodiversity and its functions and services.
Bagstad, Kenneth J.; Villa, Ferdinando; Batker, David; Harrison-Cox, Jennifer; Voigt, Brian; Johnson, Gary W.
2014-01-01
Ecosystem services mapping and modeling has focused more on supply than demand, until recently. Whereas the potential provision of economic benefits from ecosystems to people is often quantified through ecological production functions, the use of and demand for ecosystem services has received less attention, as have the spatial flows of services from ecosystems to people. However, new modeling approaches that map and quantify service-specific sources (ecosystem capacity to provide a service), sinks (biophysical or anthropogenic features that deplete or alter service flows), users (user locations and level of demand), and spatial flows can provide a more complete understanding of ecosystem services. Through a case study in Puget Sound, Washington State, USA, we quantify and differentiate between the theoretical or in situ provision of services, i.e., ecosystems’ capacity to supply services, and their actual provision when accounting for the location of beneficiaries and the spatial connections that mediate service flows between people and ecosystems. Our analysis includes five ecosystem services: carbon sequestration and storage, riverine flood regulation, sediment regulation for reservoirs, open space proximity, and scenic viewsheds. Each ecosystem service is characterized by different beneficiary groups and means of service flow. Using the ARtificial Intelligence for Ecosystem Services (ARIES) methodology we map service supply, demand, and flow, extending on simpler approaches used by past studies to map service provision and use. With the exception of the carbon sequestration service, regions that actually provided services to people, i.e., connected to beneficiaries via flow paths, amounted to 16-66% of those theoretically capable of supplying services, i.e., all ecosystems across the landscape. These results offer a more complete understanding of the spatial dynamics of ecosystem services and their effects, and may provide a sounder basis for economic valuation and policy applications than studies that consider only theoretical service provision and/or use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Hao; He, Zhili; Wang, Aijie
Numerous studies have shown that the continuous increase of atmosphere CO 2 concentrations may have profound effects on the forest ecosystem and its functions. However, little is known about the response of belowground soil microbial communities under elevated atmospheric CO 2 (eCO 2) at different soil depth profiles in forest ecosystems. In this paper, we examined soil microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) after a 10-year eCO 2 exposure using a high-throughput functional gene microarray (GeoChip). The results showed that eCO 2 significantly shifted the compositions, including phylogenetic and functional genemore » structures, of soil microbial communities at both soil depths. Key functional genes, including those involved in carbon degradation and fixation, methane metabolism, denitrification, ammonification, and nitrogen fixation, were stimulated under eCO 2 at both soil depths, although the stimulation effect of eCO 2 on these functional markers was greater at the soil depth of 0 to 5 cm than of 5 to 15 cm. Moreover, a canonical correspondence analysis suggested that NO 3-N, total nitrogen (TN), total carbon (TC), and leaf litter were significantly correlated with the composition of the whole microbial community. This study revealed a positive feedback of eCO 2 in forest soil microbial communities, which may provide new insight for a further understanding of forest ecosystem responses to global CO 2 increases. The concentration of atmospheric carbon dioxide (CO 2) has continuously been increasing since the industrial revolution. Understanding the response of soil microbial communities to elevated atmospheric CO 2 (eCO 2) is important for predicting the contribution of the forest ecosystem to global atmospheric change. This study analyzed the effect of eCO 2 on microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) in a forest ecosystem. Our findings suggest that the compositional and functional structures of microbial communities shifted under eCO 2 at both soil depths. Finally, more functional genes involved in carbon, nitrogen, and phosphorus cycling were stimulated under eCO 2 at the soil depth of 0 to 5 cm than at the depth of 5 to 15 cm.« less
Yu, Hao; He, Zhili; Wang, Aijie; ...
2017-10-27
Numerous studies have shown that the continuous increase of atmosphere CO 2 concentrations may have profound effects on the forest ecosystem and its functions. However, little is known about the response of belowground soil microbial communities under elevated atmospheric CO 2 (eCO 2) at different soil depth profiles in forest ecosystems. In this paper, we examined soil microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) after a 10-year eCO 2 exposure using a high-throughput functional gene microarray (GeoChip). The results showed that eCO 2 significantly shifted the compositions, including phylogenetic and functional genemore » structures, of soil microbial communities at both soil depths. Key functional genes, including those involved in carbon degradation and fixation, methane metabolism, denitrification, ammonification, and nitrogen fixation, were stimulated under eCO 2 at both soil depths, although the stimulation effect of eCO 2 on these functional markers was greater at the soil depth of 0 to 5 cm than of 5 to 15 cm. Moreover, a canonical correspondence analysis suggested that NO 3-N, total nitrogen (TN), total carbon (TC), and leaf litter were significantly correlated with the composition of the whole microbial community. This study revealed a positive feedback of eCO 2 in forest soil microbial communities, which may provide new insight for a further understanding of forest ecosystem responses to global CO 2 increases. The concentration of atmospheric carbon dioxide (CO 2) has continuously been increasing since the industrial revolution. Understanding the response of soil microbial communities to elevated atmospheric CO 2 (eCO 2) is important for predicting the contribution of the forest ecosystem to global atmospheric change. This study analyzed the effect of eCO 2 on microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) in a forest ecosystem. Our findings suggest that the compositional and functional structures of microbial communities shifted under eCO 2 at both soil depths. Finally, more functional genes involved in carbon, nitrogen, and phosphorus cycling were stimulated under eCO 2 at the soil depth of 0 to 5 cm than at the depth of 5 to 15 cm.« less
Yu, Hao; He, Zhili; Wang, Aijie; Xie, Jianping; Wu, Liyou; Van Nostrand, Joy D; Jin, Decai; Shao, Zhimin; Schadt, Christopher W; Zhou, Jizhong; Deng, Ye
2018-01-01
Numerous studies have shown that the continuous increase of atmosphere CO 2 concentrations may have profound effects on the forest ecosystem and its functions. However, little is known about the response of belowground soil microbial communities under elevated atmospheric CO 2 (eCO 2 ) at different soil depth profiles in forest ecosystems. Here, we examined soil microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) after a 10-year eCO 2 exposure using a high-throughput functional gene microarray (GeoChip). The results showed that eCO 2 significantly shifted the compositions, including phylogenetic and functional gene structures, of soil microbial communities at both soil depths. Key functional genes, including those involved in carbon degradation and fixation, methane metabolism, denitrification, ammonification, and nitrogen fixation, were stimulated under eCO 2 at both soil depths, although the stimulation effect of eCO 2 on these functional markers was greater at the soil depth of 0 to 5 cm than of 5 to 15 cm. Moreover, a canonical correspondence analysis suggested that NO 3 -N, total nitrogen (TN), total carbon (TC), and leaf litter were significantly correlated with the composition of the whole microbial community. This study revealed a positive feedback of eCO 2 in forest soil microbial communities, which may provide new insight for a further understanding of forest ecosystem responses to global CO 2 increases. IMPORTANCE The concentration of atmospheric carbon dioxide (CO 2 ) has continuously been increasing since the industrial revolution. Understanding the response of soil microbial communities to elevated atmospheric CO 2 (eCO 2 ) is important for predicting the contribution of the forest ecosystem to global atmospheric change. This study analyzed the effect of eCO 2 on microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) in a forest ecosystem. Our findings suggest that the compositional and functional structures of microbial communities shifted under eCO 2 at both soil depths. More functional genes involved in carbon, nitrogen, and phosphorus cycling were stimulated under eCO 2 at the soil depth of 0 to 5 cm than at the depth of 5 to 15 cm. Copyright © 2017 American Society for Microbiology.
NASA Astrophysics Data System (ADS)
Serbin, S. P.; Dietze, M.; Desai, A. R.; LeBauer, D.; Viskari, T.; Kooper, R.; McHenry, K. G.; Townsend, P. A.
2013-12-01
The ability to seamlessly integrate information on vegetation structure and function across a continuum of scales, from field to satellite observations, greatly enhances our ability to understand how terrestrial vegetation-atmosphere interactions change over time and in response to disturbances. In particular, terrestrial ecosystem models require detailed information on ecosystem states and canopy properties in order to properly simulate the fluxes of carbon (C), water and energy from the land to the atmosphere as well as address the vulnerability of ecosystems to environmental and other perturbations. Over the last several decades the amount of available data to constrain ecological predictions has increased substantially, resulting in a progressively data-rich era for global change research. In particular remote sensing data, specifically optical data (leaf and canopy), offers the potential for an important and direct data constraint on ecosystem model projections of C and energy fluxes. Here we highlight the utility of coupling information provided through the Ecosystem Spectral Information System (EcoSIS) with complex process models through the Predictive Ecosystem Analyzer (PEcAn; http://www.pecanproject.org/) eco-informatics framework as a means to improve the description of canopy optical properties, vegetation composition, and modeled radiation balance. We also present this an efficient approach for understanding and correcting implicit assumptions and model structural deficiencies. We first illustrate the challenges and issues in adequately characterizing ecosystem fluxes with the Ecosystem Demography model (ED2, Medvigy et al., 2009) due to improper parameterization of leaf and canopy properties, as well as assumptions describing radiative transfer within the canopy. ED2 is especially relevant to these efforts because it contains a sophisticated structure for scaling ecological processes across a range of spatial scales: from the tree-level (demography, physiology) to the distribution of stands across a landscape, which allows for the direct use of remotely sensed data at the appropriate spatial scale. A sensitivity analysis is employed within PEcAn to illustrate the influence of ED2 parameterizations on modeled C and energy fluxes for a northern temperate forest ecosystem as an example of the need for more detailed information on leaf and canopy optical properties. We then demonstrate a data assimilation approach to synthesize spectral data contained within EcoSIS in order to update model parameterizations across key vegetation plant functional types, as well as a means to update vegetation state information (i.e. composition, LAI) and improve the description of radiation transfer through model structural updates. A better understanding of the radiation balance of ecosystems will improve regional and global scale C and energy balance projections.
An experimental analysis of granivory in a desert ecosystem: Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, J.H.
1987-03-01
Controlled, replicated experiments are revealing the network of interactions that determine structure, dynamics, and energy transfer in a desert community that is functionally interconnected by the consumption of seeds (granivory). This community includes seed-eating rodents, ants, and birds, seed-producing annual and perennial plants, and other kinds of organisms that interact with these. The experiments entail removal of important species or functional groups of granivores or plants and supplementation of seed resources. The results demonstrate a large number of direct and indirect interactions that have important effects on the abundance of species and functional groups, the structure of the community, andmore » the dynamics of energy flow. The results suggest that networks of interaction are structured with sufficient overlap in resource requirements and interconnections through indirect pathways that community- and ecosystem-level processes, such as energy flow, are relatively insensitive to major perturbations in the abundance of particular species or functional groups. This preliminary finding has important implications for understanding the response of ecosystems to natural and human-caused perturbations, for the management of agricultural and other human-modified ecosystems, and for the design of perturbation-resistant networks for acquisition and distribution of human resources such energy and information. 44 refs.« less
Global Patterns in Ecological Indicators of Marine Food Webs: A Modelling Approach
Heymans, Johanna Jacomina; Coll, Marta; Libralato, Simone; Morissette, Lyne; Christensen, Villy
2014-01-01
Background Ecological attributes estimated from food web models have the potential to be indicators of good environmental status given their capabilities to describe redundancy, food web changes, and sensitivity to fishing. They can be used as a baseline to show how they might be modified in the future with human impacts such as climate change, acidification, eutrophication, or overfishing. Methodology In this study ecological network analysis indicators of 105 marine food web models were tested for variation with traits such as ecosystem type, latitude, ocean basin, depth, size, time period, and exploitation state, whilst also considering structural properties of the models such as number of linkages, number of living functional groups or total number of functional groups as covariate factors. Principal findings Eight indicators were robust to model construction: relative ascendency; relative overhead; redundancy; total systems throughput (TST); primary production/TST; consumption/TST; export/TST; and total biomass of the community. Large-scale differences were seen in the ecosystems of the Atlantic and Pacific Oceans, with the Western Atlantic being more complex with an increased ability to mitigate impacts, while the Eastern Atlantic showed lower internal complexity. In addition, the Eastern Pacific was less organised than the Eastern Atlantic although both of these systems had increased primary production as eastern boundary current systems. Differences by ecosystem type highlighted coral reefs as having the largest energy flow and total biomass per unit of surface, while lagoons, estuaries, and bays had lower transfer efficiencies and higher recycling. These differences prevailed over time, although some traits changed with fishing intensity. Keystone groups were mainly higher trophic level species with mostly top-down effects, while structural/dominant groups were mainly lower trophic level groups (benthic primary producers such as seagrass and macroalgae, and invertebrates). Keystone groups were prevalent in estuarine or small/shallow systems, and in systems with reduced fishing pressure. Changes to the abundance of key functional groups might have significant implications for the functioning of ecosystems and should be avoided through management. Conclusion/significance Our results provide additional understanding of patterns of structural and functional indicators in different ecosystems. Ecosystem traits such as type, size, depth, and location need to be accounted for when setting reference levels as these affect absolute values of ecological indicators. Therefore, establishing absolute reference values for ecosystem indicators may not be suitable to the ecosystem-based, precautionary approach. Reference levels for ecosystem indicators should be developed for individual ecosystems or ecosystems with the same typologies (similar location, ecosystem type, etc.) and not benchmarked against all other ecosystems. PMID:24763610
Global patterns in ecological indicators of marine food webs: a modelling approach.
Heymans, Johanna Jacomina; Coll, Marta; Libralato, Simone; Morissette, Lyne; Christensen, Villy
2014-01-01
Ecological attributes estimated from food web models have the potential to be indicators of good environmental status given their capabilities to describe redundancy, food web changes, and sensitivity to fishing. They can be used as a baseline to show how they might be modified in the future with human impacts such as climate change, acidification, eutrophication, or overfishing. In this study ecological network analysis indicators of 105 marine food web models were tested for variation with traits such as ecosystem type, latitude, ocean basin, depth, size, time period, and exploitation state, whilst also considering structural properties of the models such as number of linkages, number of living functional groups or total number of functional groups as covariate factors. Eight indicators were robust to model construction: relative ascendency; relative overhead; redundancy; total systems throughput (TST); primary production/TST; consumption/TST; export/TST; and total biomass of the community. Large-scale differences were seen in the ecosystems of the Atlantic and Pacific Oceans, with the Western Atlantic being more complex with an increased ability to mitigate impacts, while the Eastern Atlantic showed lower internal complexity. In addition, the Eastern Pacific was less organised than the Eastern Atlantic although both of these systems had increased primary production as eastern boundary current systems. Differences by ecosystem type highlighted coral reefs as having the largest energy flow and total biomass per unit of surface, while lagoons, estuaries, and bays had lower transfer efficiencies and higher recycling. These differences prevailed over time, although some traits changed with fishing intensity. Keystone groups were mainly higher trophic level species with mostly top-down effects, while structural/dominant groups were mainly lower trophic level groups (benthic primary producers such as seagrass and macroalgae, and invertebrates). Keystone groups were prevalent in estuarine or small/shallow systems, and in systems with reduced fishing pressure. Changes to the abundance of key functional groups might have significant implications for the functioning of ecosystems and should be avoided through management. Our results provide additional understanding of patterns of structural and functional indicators in different ecosystems. Ecosystem traits such as type, size, depth, and location need to be accounted for when setting reference levels as these affect absolute values of ecological indicators. Therefore, establishing absolute reference values for ecosystem indicators may not be suitable to the ecosystem-based, precautionary approach. Reference levels for ecosystem indicators should be developed for individual ecosystems or ecosystems with the same typologies (similar location, ecosystem type, etc.) and not benchmarked against all other ecosystems.
NASA Astrophysics Data System (ADS)
van Dam, A.; Gettel, G. M.; Kipkemboi, J.; Rahman, M. M.
2011-12-01
Papyrus wetlands in East Africa provide ecosystem services supporting the livelihoods of millions but are rapidly degrading due to economic development. For ecosystem conservation, an integrated understanding of the natural and social processes driving ecosystem change is needed. This research focuses on integrating the causal relationships between hydrology, ecosystem function, and livelihood sustainability in Nyando wetland, western Kenya. Livelihood sustainability is based on ecosystem services that include plant and animal harvest for building material and food, conversion of wetlands to crop and grazing land, water supply, and water quality regulation. Specific objectives were: to integrate studies of hydrology, ecology, and livelihood activities using a Bayesian Network (BN) model and include stakeholder involvement in model development. The BN model (Netica 4.16) had 35 nodes with seven decision nodes describing demography, economy, papyrus market, and rainfall, and two target nodes describing ecosystem function (defined by groundwater recharge, nutrient and sediment retention, and biodiversity) and livelihood sustainability (drinking water supply, crop production, livestock production, and papyrus yield). The conditional probability tables were populated using results of ecohydrological and socio-economic field work and consultations with stakeholders. The model was evaluated for an average year with decision node probabilities set according to data from research, expert opinion, and stakeholders' views. Then, scenarios for dry and wet seasons and for economic development (low population growth and unemployment) and policy development (more awareness of wetland value) were evaluated. In an average year, the probability for maintaining a "good" level of sediment and nutrient retention functions, groundwater recharge, and biodiversity was about 60%. ("Good" is defined by expert opinion based on ongoing field research.) In the dry season, the probability was reduced to about 40% and in the wet season increased to about 85%. Both ecosystem functions and livelihood sustainability were most sensitive to flooding and the human pressure, notably the area of crop conversion, grazing pressure, and papyrus harvest. Flooded conditions limit cropping, livestock herding and vegetation harvesting but have a strong positive effect on ecosystem function. Preliminary results suggest that the effects of economic and policy development on ecosystem function and livelihood sustainability were negligible, but more data on these aspects will be included in further model development. The advantage of this modeling approach, which integrates data from hydrological, ecological, and socio-economic studies, is that it highlights the relative effect of hydrologic conditions and socio-economic pressures on ecosystem function. This model is static, however, with long-term changes in climate and exploitation levels superimposed on seasonal hydrology dynamics. Further work should address this issue as well as further constrain probabilities at each node as field research continues.
Alternative states of a semiarid grassland ecosystem: implications for ecosystem services
Miller, Mark E.; Belote, R. Travis; Bowker, Matthew A.; Garman, Steven L.
2011-01-01
Ecosystems can shift between alternative states characterized by persistent differences in structure, function, and capacity to provide ecosystem services valued by society. We examined empirical evidence for alternative states in a semiarid grassland ecosystem where topographic complexity and contrasting management regimes have led to spatial variations in levels of livestock grazing. Using an inventory data set, we found that plots (n = 72) cluster into three groups corresponding to generalized alternative states identified in an a priori conceptual model. One cluster (biocrust) is notable for high coverage of a biological soil crust functional group in addition to vascular plants. Another (grass-bare) lacks biological crust but retains perennial grasses at levels similar to the biocrust cluster. A third (annualized-bare) is dominated by invasive annual plants. Occurrence of grass-bare and annualized-bare conditions in areas where livestock have been excluded for over 30 years demonstrates the persistence of these states. Significant differences among all three clusters were found for percent bare ground, percent total live cover, and functional group richness. Using data for vegetation structure and soil erodibility, we also found large among-cluster differences in average levels of dust emissions predicted by a wind-erosion model. Predicted emissions were highest for the annualized-bare cluster and lowest for the biocrust cluster, which was characterized by zero or minimal emissions even under conditions of extreme wind. Results illustrate potential trade-offs among ecosystem services including livestock production, soil retention, carbon storage, and biodiversity conservation. Improved understanding of these trade-offs may assist ecosystem managers when evaluating alternative management strategies.
Ingels, Jeroen; Vanreusel, Ann; Brandt, Angelika; Catarino, Ana I; David, Bruno; De Ridder, Chantal; Dubois, Philippe; Gooday, Andrew J; Martin, Patrick; Pasotti, Francesca; Robert, Henri
2012-01-01
Because of the unique conditions that exist around the Antarctic continent, Southern Ocean (SO) ecosystems are very susceptible to the growing impact of global climate change and other anthropogenic influences. Consequently, there is an urgent need to understand how SO marine life will cope with expected future changes in the environment. Studies of Antarctic organisms have shown that individual species and higher taxa display different degrees of sensitivity to environmental shifts, making it difficult to predict overall community or ecosystem responses. This emphasizes the need for an improved understanding of the Antarctic benthic ecosystem response to global climate change using a multitaxon approach with consideration of different levels of biological organization. Here, we provide a synthesis of the ability of five important Antarctic benthic taxa (Foraminifera, Nematoda, Amphipoda, Isopoda, and Echinoidea) to cope with changes in the environment (temperature, pH, ice cover, ice scouring, food quantity, and quality) that are linked to climatic changes. Responses from individual to the taxon-specific community level to these drivers will vary with taxon but will include local species extinctions, invasions of warmer-water species, shifts in diversity, dominance, and trophic group composition, all with likely consequences for ecosystem functioning. Limitations in our current knowledge and understanding of climate change effects on the different levels are discussed. PMID:22423336
King, Joshua R.; Warren, Robert J.; Bradford, Mark A.
2013-01-01
Earthworms, termites, and ants are common macroinvertebrates in terrestrial environments, although for most ecosystems data on their abundance and biomass is sparse. Quantifying their areal abundance is a critical first step in understanding their functional importance. We intensively sampled dead wood, litter, and soil in eastern US temperate hardwood forests at four sites, which span much of the latitudinal range of this ecosystem, to estimate the abundance and biomass m−2 of individuals in macroinvertebrate communities. Macroinvertebrates, other than ants and termites, differed only slightly among sites in total abundance and biomass and they were similar in ordinal composition. Termites and ants were the most abundant macroinvertebrates in dead wood, and ants were the most abundant in litter and soil. Ant abundance and biomass m−2 in the southernmost site (Florida) were among the highest values recorded for ants in any ecosystem. Ant and termite biomass and abundance varied greatly across the range, from <1% of the total macroinvertebrate abundance (in the northern sites) to >95% in the southern sites. Our data reveal a pronounced shift to eusocial insect dominance with decreasing latitude in a temperate ecosystem. The extraordinarily high social insect relative abundance outside of the tropics lends support to existing data suggesting that ants, along with termites, are globally the most abundant soil macroinvertebrates, and surpass the majority of other terrestrial animal (vertebrate and invertebrate) groups in biomass m−2. Our results provide a foundation for improving our understanding of the functional role of social insects in regulating ecosystem processes in temperate forest. PMID:24116079
Effects of repetitive droughts on carbon, nutrient and water cycles of heathland ecosystem
NASA Astrophysics Data System (ADS)
Rineau, Francois; Beenaerts, Natalie; Nijs, Ivan; De Boeck, Hans; Vangronsveld, Jaco
2017-04-01
A large body of research is now focusing on the understanding of mechanisms regulating ecosystem functioning, predictions on their activity in the long-term, and the management practices to keep them running. For this purpose, Hasselt University decided to invest in the construction of a high technological research infrastructure: the "Ecotron Hasselt University", where twelve large ecosystem replicates can be continuously monitored and controlled. The ecotrons will be fed with real-time climatic data from a nearby ICOS tower located on top of a heathland landscape. The research performed there will focus on understanding the response of heathland ecosystem services (ES) to yearly repeated droughts of different intensities. We aim to perform as well an economical valuation of these ES. From a biological point of view, we will measure soil processes that drive the three most valuable ES: water, C and nutrient cycles, and especially how soil organisms affect them, through which mechanisms and at different drought intensities. Species interactions and their influence on C sequestration and organic matter degradation will be also incorporated into a state-of-the art soil C cycling model.
Development of Global Change Research in Developing Countries
NASA Astrophysics Data System (ADS)
Sierra, Carlos A.; Yepes, Adriana P.
2010-10-01
Ecosystems and Global Change in the Context of the Neotropics; Medellín, Colombia, 19-20 May 2010; Research in most areas of global environmental change is overwhelmingly produced outside developing countries, which are usually consumers rather than producers of the knowledge associated with their natural resources. While there have been important recent advances in understanding the causes of global-¬scale changes and their consequences to the functioning of tropical ecosystems, there is still an important gap in the understanding of these changes at regional and national levels (where important political decisions are usually made). A symposium was held with the aim of surveying the current state of research activities in a small, developing country such as Colombia. It was jointly organized by the Research Center on Ecosystems and Global Change, Carbono and Bosques; the National University of Colombia at Medellín and the Colombian Ministry of the Environment, Housing, and Regional Development. This 2-¬day symposium gathered Colombian and international scientists involved in different areas of global environmental change, tropical ecosystems, and human societies.
UNDERSTANDING ECOSYSTEM RESPONSE TO OZONE STRESS
Ecological risk assessment of ozone impact requires consideration of many factors that, perhaps, are not of concern in human health risk assessment. The episodic nature of ozone exposure, functional complexity of species, and broad spatial and temporal scales characteristic of n...
Noise-resistant spectral features for retrieving foliar chemical parameters
USDA-ARS?s Scientific Manuscript database
Foliar chemical constituents are important indicators for understanding vegetation growing status and ecosystem functionality. Provided the noncontact and nondestructive traits, the hyperspectral analysis is a superior and efficient method for deriving these parameters. In practical implementation o...
Ecological homogenization of residential macrosystems
Peter M. Groffman; Meghan Avolio; Jeannine Cavender-Bares; Neil D. Bettez; J. Morgan Grove; Sharon J. Hall; Sarah E. Hobbie; Kelli L. Larson; Susannah B. Lerman; Dexter H. Locke; James B. Heffernan; Jennifer L. Morse; Christopher Neill; Kristen C. Nelson; Jarlath O' Neil-Dunne; Diane E. Pataki; Colin Polsky; Rinku Roy Chowdhury; Tara L. E. Trammell
2017-01-01
Similarities in planning, development and culture within urban areas may lead to the convergence of ecological processes on continental scales. Transdisciplinary, multi-scale research is now needed to understand and predict the impact of human-dominated landscapes on ecosystem structure and function.
Living science: Science as an activity of living beings.
MacLennan, Bruce J
2015-12-01
The philosophy of science should accommodate itself to the facts of human existence, using all aspects of human experience to adapt more effectively, as individuals, species, and global ecosystem. This has several implications: (1) Our nature as sentient beings interacting with other sentient beings requires the use of phenomenological methods to investigate consciousness. (2) Our embodied, situated, purposeful physical interactions with the world are the foundation of scientific understanding. (3) Aristotle's four causes are essential for understanding living systems and, in particular, the final cause aids understanding the role of humankind, and especially science, in the global ecosystem. (4) In order to fulfill this role well, scientists need to employ the full panoply of human faculties. These include the consciousness faculties (thinking, sensation, feeling, intuition), and therefore, as advocated by many famous scientists, we should cultivate our aesthetic sense, emotions, imagination, and intuition. Our unconscious faculties include archetypal structures common to all humans, which can guide scientific discovery. By striving to engage the whole of human nature, science will fulfill better its function for humans and the global ecosystem. Copyright © 2015. Published by Elsevier Ltd.
E. Louise Loudermilk; J. Kevin Hiers; Scott Pokswinski; Joseph J. O' Brien; Analie Barnett; Robert J. Mitchell
2016-01-01
Understanding plantâplant facilitation is critical for predicting how plant community function will respond to changing disturbance and climate. In longleaf pine (Pinus palustris Mill.) ecosystems of the southeastern United States, understanding processes that affect pine reproduction is imperative for conservation efforts that aim to maintain...
Measuring water fluxes in forests: The need for integrative platforms of analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Eric J.
To understand the importance of analytical tools such as those provided by Berdanier et al. (2016) in this issue of Tree Physiology, one must understand both the grand challenges facing Earth system modelers, as well as the minutia of engaging in ecophysiological research in the field. It is between these two extremes of scale that many ecologists struggle to translate empirical research into useful conclusions that guide our understanding of how ecosystems currently function and how they are likely to change in the future. Likewise, modelers struggle to build complexity into their models that match this sophisticated understanding of howmore » ecosystems function, so that necessary simplifications required by large scales do not themselves change the conclusions drawn from these simulations. As both monitoring technology and computational power increase, along with the continual effort in both empirical and modeling research, the gap between the scale of Earth system models and ecological observations continually closes. In addition, this creates a need for platforms of model–data interaction that incorporate uncertainties in both simulations and observations when scaling from one to the other, moving beyond simple comparisons of monthly or annual sums and means.« less
Measuring water fluxes in forests: The need for integrative platforms of analysis
Ward, Eric J.
2016-08-09
To understand the importance of analytical tools such as those provided by Berdanier et al. (2016) in this issue of Tree Physiology, one must understand both the grand challenges facing Earth system modelers, as well as the minutia of engaging in ecophysiological research in the field. It is between these two extremes of scale that many ecologists struggle to translate empirical research into useful conclusions that guide our understanding of how ecosystems currently function and how they are likely to change in the future. Likewise, modelers struggle to build complexity into their models that match this sophisticated understanding of howmore » ecosystems function, so that necessary simplifications required by large scales do not themselves change the conclusions drawn from these simulations. As both monitoring technology and computational power increase, along with the continual effort in both empirical and modeling research, the gap between the scale of Earth system models and ecological observations continually closes. In addition, this creates a need for platforms of model–data interaction that incorporate uncertainties in both simulations and observations when scaling from one to the other, moving beyond simple comparisons of monthly or annual sums and means.« less
Understanding vaginal microbiome complexity from an ecological perspective
Hickey, Roxana J.; Zhou, Xia; Pierson, Jacob D.; Ravel, Jacques; Forney, Larry J.
2012-01-01
The various microbiota normally associated with the human body have an important influence on human development, physiology, immunity, and nutrition. This is certainly true for the vagina wherein communities of mutualistic bacteria constitute the first line of defense for the host by excluding invasive, nonindigenous organisms that may cause disease. In recent years much has been learned about the bacterial species composition of these communities and how they differ between individuals of different ages and ethnicities. A deeper understanding of their origins and the interrelationships of constituent species is needed to understand how and why they change over time or in response to changes in the host environment. Moreover, there are few unifying theories to explain the ecological dynamics of vaginal ecosystems as they respond to disturbances caused by menses and human activities such as intercourse, douching, and other habits and practices. This fundamental knowledge is needed to diagnose and assess risk to disease. Here we summarize what is known about the species composition, structure, and function of bacterial communities in the human vagina and the applicability of ecological models of community structure and function to understanding the dynamics of this and other ecosystems that comprise the human microbiome. PMID:22683415
The Swedish Research Infrastructure for Ecosystem Science - SITES
NASA Astrophysics Data System (ADS)
Lindroth, A.; Ahlström, M.; Augner, M.; Erefur, C.; Jansson, G.; Steen Jensen, E.; Klemedtsson, L.; Langenheder, S.; Rosqvist, G. N.; Viklund, J.
2017-12-01
The vision of SITES is to promote long-term field-based ecosystem research at a world class level by offering an infrastructure with excellent technical and scientific support and services attracting both national and international researchers. In addition, SITES will make data freely and easily available through an advanced data portal which will add value to the research. During the first funding period, three innovative joint integrating facilities were established through a researcher-driven procedure: SITES Water, SITES Spectral, and SITES AquaNet. These new facilities make it possible to study terrestrial and limnic ecosystem processes across a range of ecosystem types and climatic gradients, with common protocols and similar equipment. In addition, user-driven development at the nine individual stations has resulted in e.g. design of a long-term agricultural systems experiment, and installation of weather stations, flux systems, etc. at various stations. SITES, with its integrative approach and broad coverage of climate and ecosystem types across Sweden, constitutes an excellent platform for state-of-the-art research projects. SITES' support the development of: A better understanding of the way in which key ecosystems function and interact with each other at the landscape level and with the climate system in terms of mass and energy exchanges. A better understanding of the role of different organisms in controlling different processes and ultimately the functioning of ecosystems. New strategies for forest management to better meet the many and varied requirements from nature conservation, climate and wood, fibre, and energy supply points of view. Agricultural systems that better utilize resources and minimize adverse impacts on the environment. Collaboration with other similar infrastructures and networks is a high priority for SITES. This will enable us to make use of each others' experiences, harmonize metadata for easier exchange of data, and support each other to widen the user community.
Sari C. Saunders; Jiquan Chen; Thomas D. Drummer; Thomas R. Crow; Kimberley D. Brosofske; Eric J. Gustafson
2002-01-01
Understanding landscape organization across scales is vital for determining the impacts of management and retaining structurally and functionally diverse ecosystems. We studied the relationships of a functional variable, decomposition, to microclimatic, vegetative and structural features at multiple scales in two distinct landscapes of northern Wisconsin, USA. We hoped...
How much dead wood in channels is enough?
T. E. Lisle
2002-01-01
Abstract - Private forest managers often seek guidelines on how much dead wood should be retained in streams in order to adequately fulfill ecosystem functions. There are three approaches to answering this question for a particular reach of channel. The first approach uses an understanding of ecologic functions of dead wood in streams to determine the amount needed to...
Wessén, Ella; Söderström, Mats; Stenberg, Maria; Bru, David; Hellman, Maria; Welsh, Allana; Thomsen, Frida; Klemedtson, Leif; Philippot, Laurent; Hallin, Sara
2011-01-01
Characterization of spatial patterns of functional microbial communities could facilitate the understanding of the relationships between the ecology of microbial communities, the biogeochemical processes they perform and the corresponding ecosystem functions. Because of the important role the ammonia-oxidizing bacteria (AOB) and archaea (AOA) have in nitrogen cycling and nitrate leaching, we explored the spatial distribution of their activity, abundance and community composition across a 44-ha large farm divided into an organic and an integrated farming system. The spatial patterns were mapped by geostatistical modeling and correlations to soil properties and ecosystem functioning in terms of nitrate leaching were determined. All measured community components for both AOB and AOA exhibited spatial patterns at the hectare scale. The patchy patterns of community structures did not reflect the farming systems, but the AOB community was weakly related to differences in soil pH and moisture, whereas the AOA community to differences in soil pH and clay content. Soil properties related differently to the size of the communities, with soil organic carbon and total nitrogen correlating positively to AOB abundance, while clay content and pH showed a negative correlation to AOA abundance. Contrasting spatial patterns were observed for the abundance distributions of the two groups indicating that the AOB and AOA may occupy different niches in agro-ecosystems. In addition, the two communities correlated differently to community and ecosystem functions. Our results suggest that the AOA, not the AOB, were contributing to nitrate leaching at the site by providing substrate for the nitrite oxidizers. PMID:21228891
NASA Astrophysics Data System (ADS)
Henkel, J. R.; Dausman, A.; Cowan, J.; Sutter, B.
2017-12-01
Healthy and sustainable ecosystems are essential for thriving and resilient coastal communities. As a result of settlements following the Deepwater Horizon oil spill, the Gulf Coast Ecosystem Restoration Council (Council) and other funding entities, will receive billions of dollars over the next 15 years for restoration projects and programs. These and future restoration efforts present an opportunity to improve the function of coastal wetlands in the Gulf of Mexico, and potentially address long-standing barriers to ecosystem health and resilience in the region. In its Comprehensive Plans, the Council has committed to science-based decision-making, collaboration among its eleven state and federal members, and close coordination with other Gulf restoration and conservation funding efforts including NRDA, NFWF and other federal programs to leverage resources and integrate complementary restoration efforts. To help fulfill these commitments the Council is exploring methods and tools to collect and assess data to evaluate and report on both ecological and socio-economic outcomes of restoration projects. Application of these tools in coordination with restoration partners, will demonstrate the cascading benefits of ecosystem restoration in a quantifiable way, and can help decision-makers increase investments in ecosystem restoration that will support the long-term sustainability of coastal systems. An understanding of ecosystem function and services can also provide a transparent lens for communicating the results of successful ecosystem restoration projects to the public (helping answer the "So what?" of ecosystem restoration). As the Council moves forward making decisions based on the best available science, improving ecosystem functioning and services will play a role in project and program selection and will result in more resilient ecosystems. This will enable the Council to help communities enhance their ability to recover from natural and manmade disasters and thrive in the face of changing environmental conditions.
Möllmann, Christian; Conversi, Alessandra; Edwards, Martin
2011-08-23
Abrupt and rapid ecosystem shifts (where major reorganizations of food-web and community structures occur), commonly termed regime shifts, are changes between contrasting and persisting states of ecosystem structure and function. These shifts have been increasingly reported for exploited marine ecosystems around the world from the North Pacific to the North Atlantic. Understanding the drivers and mechanisms leading to marine ecosystem shifts is crucial in developing adaptive management strategies to achieve sustainable exploitation of marine ecosystems. An international workshop on a comparative approach to analysing these marine ecosystem shifts was held at Hamburg University, Institute for Hydrobiology and Fisheries Science, Germany on 1-3 November 2010. Twenty-seven scientists from 14 countries attended the meeting, representing specialists from seven marine regions, including the Baltic Sea, the North Sea, the Barents Sea, the Black Sea, the Mediterranean Sea, the Bay of Biscay and the Scotian Shelf off the Canadian East coast. The goal of the workshop was to conduct the first large-scale comparison of marine ecosystem regime shifts across multiple regional areas, in order to support the development of ecosystem-based management strategies. This journal is © 2011 The Royal Society
Integrating plant ecological responses to climate extremes from individual to ecosystem levels.
Felton, Andrew J; Smith, Melinda D
2017-06-19
Climate extremes will elicit responses from the individual to the ecosystem level. However, only recently have ecologists begun to synthetically assess responses to climate extremes across multiple levels of ecological organization. We review the literature to examine how plant responses vary and interact across levels of organization, focusing on how individual, population and community responses may inform ecosystem-level responses in herbaceous and forest plant communities. We report a high degree of variability at the individual level, and a consequential inconsistency in the translation of individual or population responses to directional changes in community- or ecosystem-level processes. The scaling of individual or population responses to community or ecosystem responses is often predicated upon the functional identity of the species in the community, in particular, the dominant species. Furthermore, the reported stability in plant community composition and functioning with respect to extremes is often driven by processes that operate at the community level, such as species niche partitioning and compensatory responses during or after the event. Future research efforts would benefit from assessing ecological responses across multiple levels of organization, as this will provide both a holistic and mechanistic understanding of ecosystem responses to increasing climatic variability.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).
Schwarzmüller, Florian; Eisenhauer, Nico; Brose, Ulrich
2015-05-01
Human activities may compromise biodiversity if external stressors such as nutrient enrichment endanger overall network stability by inducing unstable dynamics. However, some ecosystems maintain relatively high diversity levels despite experiencing continuing disturbances. This indicates that some intrinsic properties prevent unstable dynamics and resulting extinctions. Identifying these 'ecosystem buffers' is crucial for our understanding of the stability of ecosystems and an important tool for environmental and conservation biologists. In this vein, weak interactions have been suggested as stabilizing elements of complex systems, but their relevance has rarely been tested experimentally. Here, using network and allometric theory, we present a novel concept for a priori identification of species that buffer against externally induced instability of increased population oscillations via weak interactions. We tested our model in a microcosm experiment using a soil food-web motif. Our results show that large-bodied species feeding at the food web's base, so called 'trophic whales', can buffer ecosystems against unstable dynamics induced by nutrient enrichment. Similar to the functionality of chemical or mechanical buffers, they serve as 'biotic buffers' that take up stressor effects and thus protect fragile systems from instability. We discuss trophic whales as common functional building blocks across ecosystems. Considering increasing stressor effects under anthropogenic global change, conservation of these network-intrinsic biotic buffers may help maintain the stability and diversity of natural ecosystems. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Ecosystem management: A comparison of greater yellowstone and georges bank
NASA Astrophysics Data System (ADS)
Burroughs, Richard H.; Clark, Tim W.
1995-09-01
Ecosystem management links human activities with the functioning of natural environments over large spatial and temporal scales. Our examination of Greater Yellowstone and Georges Bank shows similarities exist between human uses, administrative characteristics, and some biophysical features. Each region faces growing pressures to replace traditional extractive uses with more sustainable extractive or noncommodity uses coupled with concern about endangered species. Ecosystem management as a set of practical guidelines for making decisions under evolving expectations is far from complete, and it embodies new demands on individuals and institutions. In each system these challenges are considered relative to: the public's symbolic understanding of the management challenge, ecosystem management ambiguities, information availability, information use, administrative setting, and learning capabilities of governance organizations Progress in making ecosystem management operational may occur as refinements in content and approach make it an increasingly attractive option for resource users, the public, and government officials.
Adapting California’s ecosystems to a changing climate
Elizabeth Chornesky,; David Ackerly,; Paul Beier,; Frank Davis,; Flint, Lorraine E.; Lawler, Joshua J.; Moyle, Peter B.; Moritz, Max A.; Scoonover, Mary; Byrd, Kristin B.; Alvarez, Pelayo; Heller, Nicole E.; Micheli, Elisabeth; Weiss, Stuart
2017-01-01
Significant efforts are underway to translate improved understanding of how climate change is altering ecosystems into practical actions for sustaining ecosystem functions and benefits. We explore this transition in California, where adaptation and mitigation are advancing relatively rapidly, through four case studies that span large spatial domains and encompass diverse ecological systems, institutions, ownerships, and policies. The case studies demonstrate the context specificity of societal efforts to adapt ecosystems to climate change and involve applications of diverse scientific tools (e.g., scenario analyses, downscaled climate projections, ecological and connectivity models) tailored to specific planning and management situations (alternative energy siting, wetland management, rangeland management, open space planning). They illustrate how existing institutional and policy frameworks provide numerous opportunities to advance adaptation related to ecosystems and suggest that progress is likely to be greatest when scientific knowledge is integrated into collective planning and when supportive policies and financing enable action.
NASA Astrophysics Data System (ADS)
Hoshiba, Yasuhiro; Hirata, Takafumi; Shigemitsu, Masahito; Nakano, Hideyuki; Hashioka, Taketo; Masuda, Yoshio; Yamanaka, Yasuhiro
2018-06-01
Ecosystem models are used to understand ecosystem dynamics and ocean biogeochemical cycles and require optimum physiological parameters to best represent biological behaviours. These physiological parameters are often tuned up empirically, while ecosystem models have evolved to increase the number of physiological parameters. We developed a three-dimensional (3-D) lower-trophic-level marine ecosystem model known as the Nitrogen, Silicon and Iron regulated Marine Ecosystem Model (NSI-MEM) and employed biological data assimilation using a micro-genetic algorithm to estimate 23 physiological parameters for two phytoplankton functional types in the western North Pacific. The estimation of the parameters was based on a one-dimensional simulation that referenced satellite data for constraining the physiological parameters. The 3-D NSI-MEM optimized by the data assimilation improved the timing of a modelled plankton bloom in the subarctic and subtropical regions compared to the model without data assimilation. Furthermore, the model was able to improve not only surface concentrations of phytoplankton but also their subsurface maximum concentrations. Our results showed that surface data assimilation of physiological parameters from two contrasting observatory stations benefits the representation of vertical plankton distribution in the western North Pacific.
An exactly solvable coarse-grained model for species diversity
NASA Astrophysics Data System (ADS)
Suweis, Samir; Rinaldo, Andrea; Maritan, Amos
2012-07-01
We present novel analytical results concerning ecosystem species diversity that stem from a proposed coarse-grained neutral model based on birth-death processes. The relevance of the problem lies in the urgency for understanding and synthesizing both theoretical results from ecological neutral theory and empirical evidence on species diversity preservation. The neutral model of biodiversity deals with ecosystems at the same trophic level, where per capita vital rates are assumed to be species independent. Closed-form analytical solutions for the neutral theory are obtained within a coarse-grained model, where the only input is the species persistence time distribution. Our results pertain to: the probability distribution function of the number of species in the ecosystem, both in transient and in stationary states; the n-point connected time correlation function; and the survival probability, defined as the distribution of time spans to local extinction for a species randomly sampled from the community. Analytical predictions are also tested on empirical data from an estuarine fish ecosystem. We find that emerging properties of the ecosystem are very robust and do not depend on specific details of the model, with implications for biodiversity and conservation biology.
Process-based upscaling of surface-atmosphere exchange
NASA Astrophysics Data System (ADS)
Keenan, T. F.; Prentice, I. C.; Canadell, J.; Williams, C. A.; Wang, H.; Raupach, M. R.; Collatz, G. J.; Davis, T.; Stocker, B.; Evans, B. J.
2015-12-01
Empirical upscaling techniques such as machine learning and data-mining have proven invaluable tools for the global scaling of disparate observations of surface-atmosphere exchange, but are not based on a theoretical understanding of the key processes involved. This makes spatial and temporal extrapolation outside of the training domain difficult at best. There is therefore a clear need for the incorporation of knowledge of ecosystem function, in combination with the strength of data mining. Here, we present such an approach. We describe a novel diagnostic process-based model of global photosynthesis and ecosystem respiration, which is directly informed by a variety of global datasets relevant to ecosystem state and function. We use the model framework to estimate global carbon cycling both spatially and temporally, with a specific focus on the mechanisms responsible for long-term change. Our results show the importance of incorporating process knowledge into upscaling approaches, and highlight the effect of key processes on the terrestrial carbon cycle.
COMPLEXITIES IN UNDERSTANDING ECOSYSTEM RESPONSE TO OZONE
Ecological risk assessment of 03 impact requires consideration of many factors that, perhaps are not of concern in human health risk assessments. The episodic nature of 03 exposure, functional complexity of species assemblages, and the broad spatial and temporal scales character...
NASA Astrophysics Data System (ADS)
Osenga, E. C.; Cundiff, J.; Arnott, J. C.; Katzenberger, J.; Taylor, J. R.; Jack-Scott, E.
2015-12-01
An interactive tool called the Forest Health Index (FHI) has been developed for the Roaring Fork watershed of Colorado, with the purpose of improving public understanding of local forest management and ecosystem dynamics. The watershed contains large areas of White River National Forest, which plays a significant role in the local economy, particularly for recreation and tourism. Local interest in healthy forests is therefore strong, but public understanding of forest ecosystems is often simplified. This can pose challenges for land managers and researchers seeking a scientifically informed approach to forest restoration, management, and planning. Now in its second iteration, the FHI is a tool designed to help bridge that gap. The FHI uses a suite of indicators to create a numeric rating of forest functionality and change, based on the desired forest state in relation to four categories: Ecological Integrity, Public Health and Safety, Ecosystem Services, and Sustainable Use and Management. The rating is based on data derived from several sources including local weather stations, stream gauge data, SNOTEL sites, and National Forest Service archives. In addition to offering local outreach and education, this project offers broader insight into effective communication methods, as well as into the challenges of using quantitative analysis to rate ecosystem health. Goals of the FHI include its use in schools as a means of using local data and place-based learning to teach basic math and science concepts, improved public understanding of ecological complexity and need for ongoing forest management, and, in the future, its use as a model for outreach tools in other forested communities in the Intermountain West.
Seasonality of semi-arid and savanna-type ecosystems in an Earth system model
NASA Astrophysics Data System (ADS)
Dahlin, K.; Swenson, S. C.; Lombardozzi, D.; Kamoske, A.
2016-12-01
Recent work has identified semi-arid and savanna-type (SAST) ecosystems as a critical component of interannual variability in the Earth system (Poulter et al. 2014, Ahlström et al. 2015), yet our understanding of the spatial and temporal patterns present in these systems remains limited. There are three major factors that contribute to the complex behavior of SAST ecosystems, globally. First is leaf phenology, the timing of the appearance, presence, and senescence of plant leaves. Plants grow and drop their leaves in response to a variety of cues, including soil moisture, rainfall, day length, and relative humidity, and alternative phenological strategies might often co-exist in the same location. The second major factor in savannas is soil moisture. The complex nature of soil behavior under extremely dry, then extremely wet conditions is critical to our understanding of how savannas function. The third factor is fire. Globally, virtually all savanna-type ecosystems operate with some non-zero fire return interval. Here we compare model output from the Community Land Model (CLM5-BGC) in SAST regions to remotely sensed data on these three variables - phenology (MODIS LAI), soil moisture (SMAP), and fire (GFED4) - assessing both annual spatial patterns and intra-annual variability, which is critical in these highly variable systems. We present new SAST-specific first- and second-order benchmarks, including numbers of annual LAI peaks (often >1 in SAST systems) and correlations between soil moisture, LAI, and fire. Developing a better understanding of how plants respond to seasonal patterns is a critical first step in understanding how SAST ecosystems will respond to and influence climate under future scenarios.
Spasojevic, Marko J; Bahlai, Christie A; Bradley, Bethany A; Butterfield, Bradley J; Tuanmu, Mao-Ning; Sistla, Seeta; Wiederholt, Ruscena; Suding, Katharine N
2016-04-01
Understanding the mechanisms underlying ecosystem resilience - why some systems have an irreversible response to disturbances while others recover - is critical for conserving biodiversity and ecosystem function in the face of global change. Despite the widespread acceptance of a positive relationship between biodiversity and resilience, empirical evidence for this relationship remains fairly limited in scope and localized in scale. Assessing resilience at the large landscape and regional scales most relevant to land management and conservation practices has been limited by the ability to measure both diversity and resilience over large spatial scales. Here, we combined tools used in large-scale studies of biodiversity (remote sensing and trait databases) with theoretical advances developed from small-scale experiments to ask whether the functional diversity within a range of woodland and forest ecosystems influences the recovery of productivity after wildfires across the four-corner region of the United States. We additionally asked how environmental variation (topography, macroclimate) across this geographic region influences such resilience, either directly or indirectly via changes in functional diversity. Using path analysis, we found that functional diversity in regeneration traits (fire tolerance, fire resistance, resprout ability) was a stronger predictor of the recovery of productivity after wildfire than the functional diversity of seed mass or species richness. Moreover, slope, elevation, and aspect either directly or indirectly influenced the recovery of productivity, likely via their effect on microclimate, while macroclimate had no direct or indirect effects. Our study provides some of the first direct empirical evidence for functional diversity increasing resilience at large spatial scales. Our approach highlights the power of combining theory based on local-scale studies with tools used in studies at large spatial scales and trait databases to understand pressing environmental issues. © 2015 John Wiley & Sons Ltd.
Morris, Aaron; Guégan, Jean-François; Benbow, M Eric; Williamson, Heather; Small, Pamela L C; Quaye, Charles; Boakye, Daniel; Merritt, Richard W; Gozlan, Rodolphe E
2016-09-01
Emerging infectious disease outbreaks are increasingly suspected to be a consequence of human pressures exerted on natural ecosystems. Previously, host taxonomic communities have been used as indicators of infectious disease emergence, and the loss of their diversity has been implicated as a driver of increased presence. The mechanistic details in how such pathogen-host systems function, however, may not always be explained by taxonomic variation or loss. Here we used machine learning and methods based on Gower's dissimilarity to quantify metrics of invertebrate functional diversity, in addition to functional groups and their taxonomic diversity at sites endemic and non-endemic for the model generalist pathogen Mycobacterium ulcerans, the causative agent of Buruli ulcer. Changes in these metrics allowed the rapid categorisation of the ecological niche of the mycobacterium's hosts and the ability to relate specific host traits to its presence in aquatic ecosystems. We found that taxonomic diversity of hosts and overall functional diversity loss and evenness had no bearing on the mycobacterium's presence, or whether the site was in an endemic area. These findings, however, provide strong evidence that generalist environmentally persistent bacteria such as M. ulcerans can be associated with specific functional traits rather than taxonomic groups of organisms, increasing our understanding of emerging disease ecology and origin.
NASA Astrophysics Data System (ADS)
Litvak, M. E.; Krofcheck, D. J.; Hilton, T. W.; Fox, A. M.; Osuna, J. L.
2011-12-01
Water is critically important for biotic processes in semi-arid ecosystems and 2011 is developing as one of the most severe drought years on record for many parts of the Southwestern US. To quantify the impact of this severe drought on regional carbon and energy balance, we need a more detailed understanding of how water limitation alters ecosystem processes across a range of semi-arid biomes. We quantified the impact of severe drought and changes in both the quantity and distribution of precipitation on ecosystem biotic structure and function across the range of biomes represented in the NM elevation gradient network (desert grassland, creosote shrubland, juniper savanna, piñon-juniper woodland, ponderosa pine forest and subalpine mixed conifer forest). We compared how daily, seasonal and annual carbon and energy balance and their components in each of these biomes respond to changes in rainfall patterns using continuous measurements of carbon, water and energy exchange and associated measurements in each of these biomes during a 5 year period (2006-2011) that included a severe drought, and large variability in both winter precipitation and the timing and intensity of the monsoon. To understand the underlying mechanisms, we used time series of radiation absorbed by vegetation, surface albedo, soil moisture storage, phenology, gross primary productivity (GPP), ecosystem respiration (Re), and WorldView-2 images acquired pre- and post-monsoon in each of these biomes. In all of the biomes except the desert grassland site, the strength and timing of both winter and monsoon precipitation are important controls over carbon and energy dynamics in this region, though we see site-specific sensitivities across the elevation gradient. Over the past 5 years, carbon dynamics in the desert grassland site appears to be decoupled from winter precipitation. In addition, carbon dynamics in disturbed grassland and pinon-juniper ecosystems were more sensitive to severe drought than their undisturbed counterparts. We use the results to extend theory related to the vulnerability of semi-arid ecosystems to climate change and to understand biotic feedbacks within these biomes that may help to maintain resilience against structural and functional change. We also used the NCAR Community Land Model (CLM) parameterized for each biome and run in point mode to quantify the implications these changes in rainfall patterns have on ecosystem physiology, and regional carbon balance.
Soil indicators to assess the effectiveness of restoration strategies in dryland ecosystems
NASA Astrophysics Data System (ADS)
Costantini, E. A. C.; Branquinho, C.; Nunes, A.; Schwilch, G.; Stavi, I.; Valdecantos, A.; Zucca, C.
2015-12-01
Soil indicators may be used for assessing both land suitability for restoration and the effectiveness of restoration strategies in restoring ecosystem functioning and services. In this review paper, several soil indicators, which can be used to assess the effectiveness of restoration strategies in dryland ecosystems at different spatial and temporal scales, are discussed. The selected indicators represent the different viewpoints of pedology, ecology, hydrology, and land management. The recovery of soil capacity to provide ecosystem services is primarily obtained by increasing soil rooting depth and volume, and augmenting water accessibility for vegetation. Soil characteristics can be used either as indicators of suitability, that is, inherently slow-changing soil qualities, or as indicators for modifications, namely dynamic, thus "manageable" soil qualities. Soil organic matter forms, as well as biochemistry, micro- and meso-biology, are among the most utilized dynamic indicators. On broader territorial scales, the Landscape Function Analysis uses a functional approach, where the effectiveness of restoration strategies is assessed by combining the analysis of spatial pattern of vegetation with qualitative soil indicators. For more holistic and comprehensive projects, effective strategies to combat desertification should integrate soil indicators with biophysical and socio-economic evaluation and include participatory approaches. The integrated assessment protocol of Sustainable Land Management developed by the World Overview of Conservation Approaches and Technologies network is thoroughly discussed. Two overall outcomes stem from the review: (i) the success of restoration projects relies on a proper understanding of their ecology, namely the relationships between soil, plants, hydrology, climate, and land management at different scales, which is particularly complex due to the heterogeneous pattern of ecosystems functioning in drylands, and (ii) the selection of the most suitable soil indicators follows a clear identification of the different and sometimes competing ecosystem services that the project is aimed at restoring.
Recent advances in plant-herbivore interactions
Burkepile, Deron E.; Parker, John D.
2017-01-01
Plant-herbivore interactions shape community dynamics across marine, freshwater, and terrestrial habitats. From amphipods to elephants and from algae to trees, plant-herbivore relationships are the crucial link generating animal biomass (and human societies) from mere sunlight. These interactions are, thus, pivotal to understanding the ecology and evolution of virtually any ecosystem. Here, we briefly highlight recent advances in four areas of plant-herbivore interactions: (1) plant defense theory, (2) herbivore diversity and ecosystem function, (3) predation risk aversion and herbivory, and (4) how a changing climate impacts plant-herbivore interactions. Recent advances in plant defense theory, for example, highlight how plant life history and defense traits affect and are affected by multiple drivers, including enemy pressure, resource availability, and the local plant neighborhood, resulting in trait-mediated feedback loops linking trophic interactions with ecosystem nutrient dynamics. Similarly, although the positive effect of consumer diversity on ecosystem function has long been recognized, recent advances using DNA barcoding to elucidate diet, and Global Positioning System/remote sensing to determine habitat selection and impact, have shown that herbivore communities are probably even more functionally diverse than currently realized. Moreover, although most diversity-function studies continue to emphasize plant diversity, herbivore diversity may have even stronger impacts on ecosystem multifunctionality. Recent studies also highlight the role of risk in plant-herbivore interactions, and risk-driven trophic cascades have emerged as landscape-scale patterns in a variety of ecosystems. Perhaps not surprisingly, many plant-herbivore interactions are currently being altered by climate change, which affects plant growth rates and resource allocation, expression of chemical defenses, plant phenology, and herbivore metabolism and behavior. Finally, we conclude by noting that although the field is advancing rapidly, the world is changing even more rapidly, challenging our ability to manage these pivotal links in the food chain. PMID:28232868
Deep time ocean hypoxia: The impact on Jurassic marine ecosystems
NASA Astrophysics Data System (ADS)
Caswell, B. A.; Frid, C. L. J.
2016-02-01
In order to understand how the environment will change over the next 100-1000 years and how this will impact the biosphere we need long-term data from a range of scenarios. This long-term perspective can be achieved by looking at periods of comparable environmental change in Earth history. Two past periods of ocean deoxygenation, 150 and 183 million years ago, are compared: (1) a period of global climate change, analogous to that occurring today, and (2) a period of regional hypoxia associated with changing circulation and nutrient supply. Palaeoecological changes in populations, communities, and seafloor functioning were investigated using data spanning millions of years at high resolution (100s-1000s years). Large shifts in biodiversity, body-size and the population-size of the dominant benthic taxa occurred in response to ocean anoxia. Ecological change spanned multiple trophic levels and suggest that changes in primary productivity impacted macrobenthos and their pelagic predators resulting in biogeographic range shifts. Quantitative analyses of changes in biological traits and core ecosystem functions show changes in nutrient regeneration, food web dynamics, and benthic-pelagic coupling. During ocean deoxygenation Jurassic ecosystems showed functional resilience and redundancy, but ultimately functioning collapsed. Quantification of the relationships between ecological change and various proxies for palaeoenvironmental change show that both hypoxia and primary productivity were important drivers. Environmental thresholds for local ecosystem change are identified. The patterns of Jurassic ecosystem change share many similarities with present-day hypoxic systems. Critically, the recovery from global anoxia was very slow and connectivity, with potential sources of new recruits, was an important contributor to ecosystem recovery. This emphasises the risks of relying on patterns of short-term and small-scale resilience when managing modern marine systems.
Temporal variation in development of ecosystem services from oyster reef restoration
LaPeyre, Megan K.; Humphries, Austin T.; Casas, Sandra M.; La Peyre, Jerome F.
2014-01-01
Restoration ecology relies heavily on ecosystem development theories that generally assume development of fully functioning natural systems over time, but often fail to identify the time-frame required for provision of desired functions, or acknowledge different pathways of functional development. In estuaries, a decline of overall habitat quality and functioning has led to significant efforts to restore critical ecosystem services, recently through the creation and restoration of oyster reefs. Oyster reef restoration generally occurs with goals of (1) increasing water quality via filtration through sustainable oyster recruitment, (2) stabilizing shorelines, and (3) creating and enhancing critical estuarine habitat for fish and invertebrates. We restored over 260 m2 of oyster reef habitat in coastal Louisiana and followed the development and provision of these ecosystem services from 2009 through 2012. Oysters recruited to reefs immediately, with densities of oysters greater than 75 mm exceeding 80 ind m−2 after 3 years, and provision of filtration rates of 1002 ± 187 L h−1 m−2; shoreline stabilization effects of the created reefs were minimal over the three years of monitoring, with some evidence of positive shoreline stabilization during higher wind/energy events only; increased nekton abundance of resident, but not larger transient fish was immediately measurable at the reefs, however, this failed to increase through time. Our results provide critical insights into the development trajectories of ecosystem services provided by restored oyster reefs, as well as the mechanisms mediating these changes. This is critical both ecologically to understand how and where a reef thrives, and for policy and management to guide decision-making related to oyster reef restoration and the crediting and accounting of ecosystem services.
Estimation and Application of Ecological Memory Functions in Time and Space
NASA Astrophysics Data System (ADS)
Itter, M.; Finley, A. O.; Dawson, A.
2017-12-01
A common goal in quantitative ecology is the estimation or prediction of ecological processes as a function of explanatory variables (or covariates). Frequently, the ecological process of interest and associated covariates vary in time, space, or both. Theory indicates many ecological processes exhibit memory to local, past conditions. Despite such theoretical understanding, few methods exist to integrate observations from the recent past or within a local neighborhood as drivers of these processes. We build upon recent methodological advances in ecology and spatial statistics to develop a Bayesian hierarchical framework to estimate so-called ecological memory functions; that is, weight-generating functions that specify the relative importance of local, past covariate observations to ecological processes. Memory functions are estimated using a set of basis functions in time and/or space, allowing for flexible ecological memory based on a reduced set of parameters. Ecological memory functions are entirely data driven under the Bayesian hierarchical framework—no a priori assumptions are made regarding functional forms. Memory function uncertainty follows directly from posterior distributions for model parameters allowing for tractable propagation of error to predictions of ecological processes. We apply the model framework to simulated spatio-temporal datasets generated using memory functions of varying complexity. The framework is also applied to estimate the ecological memory of annual boreal forest growth to local, past water availability. Consistent with ecological understanding of boreal forest growth dynamics, memory to past water availability peaks in the year previous to growth and slowly decays to zero in five to eight years. The Bayesian hierarchical framework has applicability to a broad range of ecosystems and processes allowing for increased understanding of ecosystem responses to local and past conditions and improved prediction of ecological processes.
Structural and Functional Studies of Archaeal Viruses*
Lawrence, C. Martin; Menon, Smita; Eilers, Brian J.; Bothner, Brian; Khayat, Reza; Douglas, Trevor; Young, Mark J.
2009-01-01
Viruses populate virtually every ecosystem on the planet, including the extreme acidic, thermal, and saline environments where archaeal organisms can dominate. For example, recent studies have identified crenarchaeal viruses in the hot springs of Yellowstone National Park and other high temperature environments worldwide. These viruses are often morphologically and genetically unique, with genomes that show little similarity to genes of known function, complicating efforts to understand their viral life cycles. Here, we review progress in understanding these fascinating viruses at the molecular level and the evolutionary insights coming from these studies. PMID:19158076
Illustrating the Interaction of Nature and People in Ecosystem Services: The Case of Terroir in Wine
NASA Astrophysics Data System (ADS)
Nicholas, K. A.
2014-12-01
The ecosystem services (ES) approach is increasingly used in research and policy, with the Common International Framework on Ecosystem Services (CICES) "cascade" gaining traction as a framework for conceptualizing the production of ecosystem services by the natural environment, and then people consuming these services and obtaining benefits depending on their values. However, uptake of the ES concept on the ground by ecosystem managers, and understanding by everyday citizens, is still limited. One barrier is the challenge of providing tangible, examples of everyday benefits and values that people can readily connect with the biophysical structures and functions that underlie their provision. Winegrowing offers one promising case to illustrate the linkages all along the chain of production and consumption of ecosystem services. The sensitive winegrape has long been known for its properties of terroir, where the taste of wine reflects the environmental conditions of the place where it is grown, a feature valued by consumers. Here the CICES framework is illustrated with the case of winegrowing, demonstrating that the current linear model of natural production and human consumption of ES needs to be modified for this case because people influence each of the five stages by shaping and responding to their environment, producing a two-way interaction between people and the environment throughout. For example, while natural drivers such as climate and soils are key to the provision of the service of winegrape yields, landowners modify the biophysical environment through site selection and growers modify plant ecophysiological function through farming practices such as pruning and irrigation in order to influence the final service. Similarly, winemakers' expertise is needed to transform the service of winegrape yields into the product of wine that can be enjoyed and valued by consumers, whose preferences shape wine styles as well. This case illustrates how incorporating both natural and human factors all along the chain of production and consumption of ecosystem services can better represent the potential services provided, and highlights the need to identify relevant decisionmakers at each stage to better understand and manage ecosystem services under environmental change.
Microbial Communities Are Well Adapted to Disturbances in Energy Input
Vallino, Joseph J.
2016-01-01
ABSTRACT Although microbial systems are well suited for studying concepts in ecological theory, little is known about how microbial communities respond to long-term periodic perturbations beyond diel oscillations. Taking advantage of an ongoing microcosm experiment, we studied how methanotrophic microbial communities adapted to disturbances in energy input over a 20-day cycle period. Sequencing of bacterial 16S rRNA genes together with quantification of microbial abundance and ecosystem function were used to explore the long-term dynamics (510 days) of methanotrophic communities under continuous versus cyclic chemical energy supply. We observed that microbial communities appeared inherently well adapted to disturbances in energy input and that changes in community structure in both treatments were more dependent on internal dynamics than on external forcing. The results also showed that the rare biosphere was critical to seeding the internal community dynamics, perhaps due to cross-feeding or other strategies. We conclude that in our experimental system, internal feedbacks were more important than external drivers in shaping the community dynamics over time, suggesting that ecosystems can maintain their function despite inherently unstable community dynamics. IMPORTANCE Within the broader ecological context, biological communities are often viewed as stable and as only experiencing succession or replacement when subject to external perturbations, such as changes in food availability or the introduction of exotic species. Our findings indicate that microbial communities can exhibit strong internal dynamics that may be more important in shaping community succession than external drivers. Dynamic “unstable” communities may be important for ecosystem functional stability, with rare organisms playing an important role in community restructuring. Understanding the mechanisms responsible for internal community dynamics will certainly be required for understanding and manipulating microbiomes in both host-associated and natural ecosystems. PMID:27822558
Marie Oliver; David D' Amore
2015-01-01
New research reveals how topography, soil temperature, and subtle shifts in soil drainage are key drivers in ecosystem function in the coastal temperate rain forests of southeast Alaska and British Columbia. These studies, by Dave D'Amore and his colleagues, provide a better understanding of the influence of soil hydrology on dissolved organic carbon export and...
Faunal impact on vegetation structure and ecosystem function in mangrove forests: A review
Cannicci, Stefano; Burrows, Damien; Fratini, Sara; Smith, Thomas J.; Offenberg, Joachim; Dahdouh-Guebas, Farid
2008-01-01
The last 20 years witnessed a real paradigm shift concerning the impact of biotic factors on ecosystem functions as well as on vegetation structure of mangrove forests. Before this small scientific revolution took place, structural aspects of mangrove forests were viewed to be the result of abiotic processes acting from the bottom-up, while, at ecosystem level, the outwelling hypothesis stated that mangroves primary production was removed via tidal action and carried to adjacent nearshore ecosystems where it fuelled detrital based food-webs. The sesarmid crabs were the first macrofaunal taxon to be considered a main actor in mangrove structuring processes, thanks to a number of studies carried out in the Indo-Pacific forests in the late 1970s and early 1980s. Following these classical papers, a number of studies on Sesarmidae feeding and burrowing ecology were carried out, which leave no doubts about the great importance of these herbivorous crabs in structuring and functioning Old world ecosystems. Although Sesarmidae are still considered very important in shaping mangrove structure and functioning, recent literature emphasizes the significance of other invertebrates. The Ocypodidae have now been shown to have the same role as Sesarmidae in terms of retention of forest products and organic matter processing in New world mangroves. In both New and Old world mangroves, crabs process large amounts of algal primary production, contribute consistently to retention of mangrove production and as ecosystem engineers, change particle size distribution and enhance soil aeration. Our understanding of the strong impact of gastropods, by means of high intake rates of mangrove products and differential consumption of propagules, has changed only recently. The role of insects must also be stressed. It is now clear that older techniques used to assess herbivory rates by insects strongly underestimate their impact, both in case of leaf eating and wood boring species and that herbivorous insects can potentially play a strong role in many aspects of mangrove ecology. Moreover, researchers only recently realized that ant–plant interactions may form an important contribution to our understanding of insect–plant dynamics in these habitats. Ants seem to be able to relieve mangroves from important herbivores such as many insects and sesarmid crabs. It thus seems likely that ants have positive effects on mangrove performance.
Society and Ecosystem Carbon Budget through Life Cycle Assessment: Results from Asian Drylands
NASA Astrophysics Data System (ADS)
Chen, J.
2017-12-01
Land use, land cover changes, and ecosystem-specific management practices are recognized for their roles in mediating the climatic effects on ecosystem structure and function. A major challenge is that our understanding and forecasting of ecosystem functions, such as C fluxes, cannot rely solely on conventional biophysical regulations from the local ecosystem to the global scale. A second challenge lies in quantifying the magnitude of the C fluxes from managed ecosystems and landscapes over the lifetime of the C cycle, and to deduct the various energy inputs during management. Our specific challenge here is to quantify the landscape-scale C footprint of both managed agricultural-forest landscapes and people - the societal input and engagement in ecosystem studies. Using the East Asia Drylands (Chen et al., 2013) and an agricultural watershed in southwestern Michigan as a test bed, the mechanisms (carbon as an example) from both human activities and biophysical changes on ecosystem C dynamics at different temporal and spatial scales are proposed to be explored by modeling total net ecosystem C production (physical and social C fluxes), performing a spatially-explicit life cycle assessment (LCA) on the total C production. Remote sensing technology, available geospatial data, records of management practices, surveys of historical practices, a land surface model, and in situ measurements of C fluxes are all needed to achieve our objectives. Our case study calls for direct involvement of society as both the driver and beneficiary of ecosystem dynamics. Reference Chen, J., Wan, S., Henebry, G., Qi, J., Gutman, G., Sun, G., and Kappas, M. (Eds.) 2013. Dryland East Asia (DEA): Land Dynamics Amid Social And Climate Change. HEP and De Gruyter, 470 pp.
Large-scale degradation of Amazonian freshwater ecosystems
NASA Astrophysics Data System (ADS)
Castello, L.; Macedo, M.
2016-12-01
The integrity of freshwater ecosystems depends on their hydrological connectivity with land, water, and climate systems. Hydrological connectivity regulates the structure and function of Amazonian freshwater ecosystems and the provisioning of services that sustain local populations. However, the hydrological connectivity of Amazonian freshwater ecosystems is increasingly disrupted by construction of dams, mining, land-cover changes, and global climate change. This review analyzes these drivers of degradation; evaluates their impacts on hydrological connectivity; and identifies policy deficiencies that hinder freshwater ecosystem protection. There are 155 large hydroelectric dams in operation, 21 dams under construction, and there will be only three free-flowing tributaries if all 277 planned dams for the Basin are built. Land-cover changes driven by mining, dam and road construction, and agriculture and cattle ranching have already affected 20% of the Basin and up to 50% of riparian forests in some regions. Global climate change will likely exacerbate these impacts by creating warmer and dryer conditions, with less predictable rainfall and more extreme events (e.g. droughts and floods). The resulting hydrological alterations are rapidly degrading freshwater ecosystems both independently and via complex feedbacks and synergistic interactions. The ecosystem impacts include biodiversity loss, warmer stream temperatures, stronger and more frequent floodplain fires, and changes to biogeochemical cycles, transport of organic and inorganic materials, and freshwater community structure and function. The impacts also include reductions in water quality, fish yields, and availability of water for navigation, power generation, and human use. This degradation of Amazonian freshwater ecosystems cannot be curbed presently because existing policies are inconsistent across the Basin, ignore cumulative effects, and do not consider the hydrological connectivity of freshwater ecosystems. Maintaining the integrity of these freshwater ecosystems requires a basin-wide research and policy framework to understand and manage hydrological connectivity across multiple spatial scales and jurisdictional boundaries.
The response of tropical rainforests to drought-lessons from recent research and future prospects.
Bonal, Damien; Burban, Benoit; Stahl, Clément; Wagner, Fabien; Hérault, Bruno
We review the recent findings on the influence of drought on tree mortality, growth or ecosystem functioning in tropical rainforests. Drought plays a major role in shaping tropical rainforests and the response mechanisms are highly diverse and complex. The numerous gaps identified here require the international scientific community to combine efforts in order to conduct comprehensive studies in tropical rainforests on the three continents. These results are essential to simulate the future of these ecosystems under diverse climate scenarios and to predict the future of the global earth carbon balance. Tropical rainforest ecosystems are characterized by high annual rainfall. Nevertheless, rainfall regularly fluctuates during the year and seasonal soil droughts do occur. Over the past decades, a number of extreme droughts have hit tropical rainforests, not only in Amazonia but also in Asia and Africa. The influence of drought events on tree mortality and growth or on ecosystem functioning (carbon and water fluxes) in tropical rainforest ecosystems has been studied intensively, but the response mechanisms are complex. Herein, we review the recent findings related to the response of tropical forest ecosystems to seasonal and extreme droughts and the current knowledge about the future of these ecosystems. This review emphasizes the progress made over recent years and the importance of the studies conducted under extreme drought conditions or in through-fall exclusion experiments in understanding the response of these ecosystems. It also points to the great diversity and complexity of the response of tropical rainforest ecosystems to drought. The numerous gaps identified here require the international scientific community to combine efforts in order to conduct comprehensive studies in tropical forest regions. These results are essential to simulate the future of these ecosystems under diverse climate scenarios and to predict the future of the global earth carbon balance.
Ecological restoration can reestablish ecosystem services (ES) that provide important social benefits, but managers with limited funds and resources are forced to prioritize potential restoration sites. Prioritizing restoration sites based on ecological functioning and expected ...
SPATIAL AND FUNCTIONAL CHARACTERIZATION OF ISOLATED WETLANDS
The USEPA is conducting isolated wetland (IW) research at locations around the USA to better understand the ecological importance and ecosystem services provided by IW and to develop methods to monitor and assess their condition. The first research component explores the use of r...
Bell, T L; Adams, M A
2011-01-01
This review discusses how understanding of functional relationships between parasitic plants and their woody hosts have benefited from a range of approaches to their study. Gross comparisons of nutrient content between infected and uninfected hosts, or parts of hosts, have been widely used to infer basic differences or similarities between hosts and parasites. Coupling of nutrient information with additional evidence of key processes such as transpiration, respiration and photosynthesis has helped elucidate host-parasite relationships and, in some cases, the anatomical nature of their connection and even the physiology of plants in general. For example, detailed analysis of xylem sap from hosts and parasites has increased our understanding of the spatial and temporal movement of solutes within plants. Tracer experiments using natural abundance or enriched application of stable isotopes ((15)N, (13)C, (18)O) have helped us to understand the extent and form of heterotrophy, including the effect of the parasite on growth and functioning of the host (and its converse) as well as environmental effects on the parasite. Nutritional studies of woody hosts and parasites have provided clues to the distribution of parasitic plants and their roles in ecosystems. This review also provides assessment of several corollaries to the host-parasite association.
NASA Astrophysics Data System (ADS)
Gu, Huan
Urban forests play an important role in the urban ecosystem by providing a range of ecosystem services. Characterization of forest structure, species variation and growth in urban forests is critical for understanding the status, function and process of urban ecosystems, and helping maximize the benefits of urban ecosystems through management. The development of methods and applications to quantify urban forests using remote sensing data has lagged the study of natural forests due to the heterogeneity and complexity of urban ecosystems. In this dissertation, I quantify and map forest structure, species gradients and forest growth in an urban area using discrete-return lidar, airborne imaging spectroscopy and thermal infrared data. Specific objectives are: (1) to demonstrate the utility of leaf-off lidar originally collected for topographic mapping to characterize and map forest structure and associated uncertainties, including aboveground biomass, basal area, diameter, height and crown size; (2) to map species gradients using forest structural variables estimated from lidar and foliar functional traits, vegetation indices derived from AVIRIS hyperspectral imagery in conjunction with field-measured species data; and (3) to identify factors related to relative growth rates in aboveground biomass in the urban forests, and assess forest growth patterns across areas with varying degree of human interactions. The findings from this dissertation are: (1) leaf-off lidar originally acquired for topographic mapping provides a robust, potentially low-cost approach to quantify spatial patterns of forest structure and carbon stock in urban areas; (2) foliar functional traits and vegetation indices from hyperspectral data capture gradients of species distributions in the heterogeneous urban landscape; (3) species gradients, stand structure, foliar functional traits and temperature are strongly related to forest growth in the urban forests; and (4) high uncertainties in our ability to map forest structure, species gradient and growth rate occur in residential neighborhoods and along forest edges. Maps generated from this dissertation provide estimates of broad-scale spatial variations in forest structure, species distributions and growth to the city forest managers. The associated maps of uncertainty help managers understand the limitations of the maps and identify locations where the maps are more reliable and where more data are needed.
Modeling extreme drought impacts on terrestrial ecosystems when thresholds are exceeded
NASA Astrophysics Data System (ADS)
Holm, J. A.; Rammig, A.; Smith, B.; Medvigy, D.; Lichstein, J. W.; Dukes, J. S.; Allen, C. D.; Beier, C.; Larsen, K. S.; Ficken, C. D.; Pockman, W.; Anderegg, W.; Luo, Y.
2016-12-01
Recent IPCC Assessment Reports suggest that with predicted climate changes future precipitation- and heat-related extreme events are becoming stronger and more frequent with potential for prolonged droughts. To prepare for these changes and their impacts, we need to develop a better understanding of terrestrial ecosystem responses to extreme drought events. In particular, we focus here on large-extent and long-lasting extreme drought events with noticeable impacts on the functioning of forested ecosystems. While most of ecosystem manipulative experiments have been motivated by ongoing and predicted climate change, the majority only applied relatively moderate droughts, not addressing the "very" extreme tail of these scenarios, i.e. "extreme extremes (EEs)". We explore the response of forest ecosystems to EEs using two demographic-based dynamic global vegetation models (DGVMs) (i.e. ED2, LPJ-GUESS) in which the abundances of different plant functional types, as well as tree size- and age-class structure, are emergent properties of resource competition. We evaluate the model's capabilities to represent extreme drought scenarios (i.e., 50% and 90% reduction in precipitation for 1-year, 2-year, and 4-year drought scenarios) at two dry forested sites: Palo Verde, Costa Rica (i.e. tropical) and EucFACE, Australia (i.e. temperate). Through the DGVM modeling outcomes we determine the following five testable hypotheses for future experiments: 1) EEs cannot be extrapolated from mild extremes due to plant plasticity and functional composition. 2) Response to EEs depends on functional diversity, trait combinations, and phenology, such that both models predicted even after 100 years plant biomass did not recover. 3) Mortality from drought reduces the pressure on resources and prevents further damage by subsequent years of drought. 4) Early successional stands are more vulnerable to extreme droughts while older stand are more resilient. 5) Elevated atmospheric CO2 alleviates impacts of extreme droughts while increased temperature exacerbates mortality. This study highlighted a number of questions about our current understanding of EEs and their corresponding thresholds and tipping points, and provides an analysis of confidence in model representation and accuracy of processes related to EEs.
Eldridge, David J; Delgado-Baquerizo, Manuel; Woodhouse, Jason N; Neilan, Brett A
2016-11-01
The effects of mammalian ecosystem engineers on soil microbial communities and ecosystem functions in terrestrial ecosystems are poorly known. Disturbance from livestock has been widely reported to reduce soil function, but disturbance by animals that forage in the soil may partially offset these negative effects of livestock, directly and/or indirectly by shifting the composition and diversity of soil microbial communities. Understanding the role of disturbance from livestock and ecosystem engineers in driving soil microbes and functions is essential for formulating sustainable ecosystem management and conservation policies. We compared soil bacterial community composition and enzyme concentrations within four microsites: foraging pits of two vertebrates, the indigenous short-beaked echidna (Tachyglossus aculeatus) and the exotic European rabbit (Oryctolagus cuniculus), and surface and subsurface soils along a gradient in grazing-induced disturbance in an arid woodland. Microbial community composition varied little across the disturbance gradient, but there were substantial differences among the four microsites. Echidna pits supported a lower relative abundance of Acidobacteria and Cyanobacteria, but a higher relative abundance of Proteobacteria than rabbit pits and surface microsites. Moreover, these microsite differences varied with disturbance. Rabbit pits had a similar profile to the subsoil or the surface soils under moderate and high, but not low disturbance. Overall, echidna foraging pits had the greatest positive effect on function, assessed as mean enzyme concentrations, but rabbits had the least. The positive effects of echidna foraging on function were indirectly driven via microbial community composition. In particular, increasing activity was positively associated with increasing relative abundance of Proteobacteria, but decreasing Acidobacteria. Our study suggests that soil disturbance by animals may offset, to some degree, the oft-reported negative effects of grazing-induced disturbance on soil function. Further, our results suggest that most of this effect will be derived from echidnas, with little positive effects due to rabbits. Activities that enhance the habitat for echidnas or reduce rabbit populations are likely to have a positive effect on soil function in these systems. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
NASA Astrophysics Data System (ADS)
Friedel, Michael; Buscema, Massimo
2016-04-01
Aquatic ecosystem models can potentially be used to understand the influence of stresses on catchment resource quality. Given that catchment responses are functions of natural and anthropogenic stresses reflected in sparse and spatiotemporal biological, physical, and chemical measurements, an ecosystem is difficult to model using statistical or numerical methods. We propose an artificial adaptive systems approach to model ecosystems. First, an unsupervised machine-learning (ML) network is trained using the set of available sparse and disparate data variables. Second, an evolutionary algorithm with genetic doping is applied to reduce the number of ecosystem variables to an optimal set. Third, the optimal set of ecosystem variables is used to retrain the ML network. Fourth, a stochastic cross-validation approach is applied to quantify and compare the nonlinear uncertainty in selected predictions of the original and reduced models. Results are presented for aquatic ecosystems (tens of thousands of square kilometers) undergoing landscape change in the USA: Upper Illinois River Basin and Central Colorado Assessment Project Area, and Southland region, NZ.
NASA Astrophysics Data System (ADS)
Horion, Stephanie; Ivits, Eva; Verzandvoort, Simone; Fensholt, Rasmus
2017-04-01
Ongoing pressures on European land are manifold with extreme climate events and non-sustainable use of land resources being amongst the most important drivers altering the functioning of the ecosystems. The protection and conservation of European natural capital is one of the key objectives of the 7th Environmental Action Plan (EAP). The EAP stipulates that European land must be managed in a sustainable way by 2020 and the UN Sustainable development goals define a Land Degradation Neutral world as one of the targets. This implies that land degradation (LD) assessment of European ecosystems must be performed repeatedly allowing for the assessment of the current state of LD as well as changes compared to a baseline adopted by the UNCCD for the objective of land degradation neutrality. However, scientifically robust methods are still lacking for large-scale assessment of LD and repeated consistent mapping of the state of terrestrial ecosystems. Historical land degradation assessments based on various methods exist, but methods are generally non-replicable or difficult to apply at continental scale (Allan et al. 2007). The current lack of research methods applicable at large spatial scales is notably caused by the non-robust definition of LD, the scarcity of field data on LD, as well as the complex inter-play of the processes driving LD (Vogt et al., 2011). Moreover, the link between LD and changes in land use (how land use changes relates to change in vegetation productivity and ecosystem functioning) is not straightforward. In this study we used the segmented trend method developed by Horion et al. (2016) for large-scale systematic assessment of hotspots of change in ecosystem functioning in relation to LD. This method alleviates shortcomings of widely used linear trend model that does not account for abrupt change, nor adequately captures the actual changes in ecosystem functioning (de Jong et al. 2013; Horion et al. 2016). Here we present a new methodology for assessing gradual and abrupt changes in ecosystem functioning in Europe. Based on segmented trend analysis of water-use efficiency (WUE) time series, an Ecosystem Change Type (ECT) map was produced over Europe at 1km resolution for the period 1999 to 2013. An analysis of auxiliary data on land use/cover change, drought trends, and soil threats was performed over hotspot areas to better understand the observed changes in ecosystem functioning and their driving mechanisms. The ECT map was validated using the case study sites from the EU-funded RECARE project. Overall, the ECT map accurately highlighted areas characterized by a major change in pathways of ecosystem functioning as well as indicated the type and timing of changes. Allan, R. et al. (2007). Climate and land degradation. Verlag Berlin Heidelberg: Springer. de Jong, R et al. (2013). Remote Sensing, 5, 1117-1133 Horion, S. et al. (2016). Global Change Biology, 22, 2801-2817 Vogt, J. V et al. (2011). Land Degradation & Development, 22: 150-165.
Metagenomics-Enabled Understanding of Soil Microbial Feedbacks to Climate Warming
NASA Astrophysics Data System (ADS)
Zhou, J.; Wu, L.; Zhili, H.; Kostas, K.; Luo, Y.; Schuur, E. A. G.; Cole, J. R.; Tiedje, J. M.
2014-12-01
Understanding the response of biological communities to climate warming is a central issue in ecology and global change biology, but it is poorly understood microbial communities. To advance system-level predictive understanding of the feedbacks of belowground microbial communities to multiple climate change factors and their impacts on soil carbon (C) and nitrogen (N) cycling processes, we have used integrated metagenomic technologies (e.g., target gene and shotgun metagenome sequencing, GeoChip, and isotope) to analyze soil microbial communities from experimental warming sites in Alaska (AK) and Oklahoma (OK), and long-term laboratory incubation. Rapid feedbacks of microbial communities to warming were observed in the AK site. Consistent with the changes in soil temperature, moisture and ecosystem respiration, microbial functional community structure was shifted after only 1.5-year warming, indicating rapid responses and high sensitivity of this permafrost ecosystem to climate warming. Also, warming stimulated not only functional genes involved in aerobic respiration of both labile and recalcitrant C, contributing to an observed 24% increase in 2010 growing season and 56% increase of decomposition of a standard substrate, but also functional genes for anaerobic processes (e.g., denitrification, sulfate reduction, methanogenesis). Further comparisons by shotgun sequencing showed significant differences of microbial community structure between AK and OK sites. The OK site was enriched in genes annotated for cellulose degradation, CO2 production, denitrification, sporulation, heat shock response, and cellular surface structures (e.g., trans-membrane transporters for glucosides), while the AK warmed plots were enriched in metabolic pathways related to labile C decomposition. Together, our results demonstrate the vulnerability of permafrost ecosystem C to climate warming and the importance of microbial feedbacks in mediating such vulnerability.
NASA Astrophysics Data System (ADS)
Reed, S.; Ferrenberg, S.; Tucker, C.; Rutherford, W. A.; Wertin, T. M.; McHugh, T. A.; Morrissey, E.; Kuske, C.; Belnap, J.
2017-12-01
Drylands represent our planet's largest terrestrial biome, making up over 35% of Earth's land surface. In the context of this vast areal extent, it is no surprise that recent research suggests dryland inter-annual variability and responses to change have the potential to drive biogeochemical cycles and climate at the global-scale. Further, the data we do have suggest drylands can respond rapidly and non-linearly to change. Nevertheless, our understanding of the cross-system consistency of and mechanisms behind dryland responses to a changed environment remains relatively poor. This poor understanding hinders not only our larger understanding of terrestrial ecosystem function, but also our capacity to forecast future global biogeochemical cycles and climate. Here we present data from a series of Colorado Plateau manipulation experiments - including climate, land use, and nitrogen deposition manipulations - to explore how vascular plants, microbial communities, and biological soil crusts (a community of mosses, lichens, and/or cyanobacteria living in the interspace among vascular plants in arid and semiarid ecosystems worldwide) respond to a host of environmental changes. These responses include not only assessments of community composition, but of their function as well. We will explore photosynthesis, net soil CO2 exchange, soil carbon stocks and chemistry, albedo, and nutrient cycling. The experiments were begun with independent questions and cover a range of environmental change drivers and scientific approaches, but together offer a relatively holistic picture of how some drylands can change their structure and function in response to change. In particular, the data show very high ecosystem vulnerability to particular drivers, but surprising resilience to others, suggesting a multi-faceted response of these diverse systems.
Sustaining "the Genius of Soils"
NASA Astrophysics Data System (ADS)
Sposito, G.
2011-12-01
Soils are weathered porous earth surficial materials that exhibit an approximately vertical stratification reflecting the continual action of percolating water and living organisms. They are complex open, multicomponent, multiphase biogeochemical systems which function as both provisioning and regulatory agents in terrestrial ecosystems while influencing aquatic ecosystems through their impacts on evapotranspiration and runoff. The ability of soils to engage in their supportive ecosystem functions depends on what has been termed metaphorically as their "natural capital," the defining properties that condition soil response to biological, geological, and hydrological processes as well as human-driven activities. Natural capital must necessarily differ among soils depending on how they have developed under the five soil-forming processes, but it also can be determined by land use and by the flows of matter and energy that link the global atmosphere, biosphere, and hydrosphere. These latter two determinants have in recent decades begun to exhibit strong variability that exceeds what has been characteristic of them during the past 10 millennia of earth history, thereby raising the apocalyptic issue of whether a deleterious or even catastrophic undermining of the ability of soils to function supportively in ecosystems is in the offing. Resolving this issue will require deeper understanding of how soils perform their provisioning and regulatory functions, how they respond to land-use changes, and how they mediate the global flows of matter and energy.
Coggan, Nicole V; Hayward, Matthew W; Gibb, Heloise
2018-02-28
Ecosystem engineers have been widely studied for terrestrial systems, but global trends in research encompassing the range of taxa and functions have not previously been synthesised. We reviewed contemporary understanding of engineer fauna in terrestrial habitats and assessed the methods used to document patterns and processes, asking: (a) which species act as ecosystem engineers and with whom do they interact? (b) What are the impacts of ecosystem engineers in terrestrial habitats and how are they distributed? (c) What are the primary methods used to examine engineer effects and how have these developed over time? We considered the strengths, weaknesses and gaps in knowledge related to each of these questions and suggested a conceptual framework to delineate "significant impacts" of engineering interactions for all terrestrial animals. We collected peer-reviewed publications examining ecosystem engineer impacts and created a database of engineer species to assess experimental approaches and any additional covariates that influenced the magnitude of engineer impacts. One hundred and twenty-two species from 28 orders were identified as ecosystem engineers, performing five ecological functions. Burrowing mammals were the most researched group (27%). Half of all studies occurred in dry/arid habitats. Mensurative studies comparing sites with and without engineers (80%) were more common than manipulative studies (20%). These provided a broad framework for predicting engineer impacts upon abundance and species diversity. However, the roles of confounding factors, processes driving these patterns and the consequences of experimentally adjusting variables, such as engineer density, have been neglected. True spatial and temporal replication has also been limited, particularly for emerging studies of engineer reintroductions. Climate change and habitat modification will challenge the roles that engineers play in regulating ecosystems, and these will become important avenues for future research. We recommend future studies include simulation of engineer effects and experimental manipulation of engineer densities to determine the potential for ecological cascades through trophic and engineering pathways due to functional decline. We also recommend improving knowledge of long-term engineering effects and replication of engineer reintroductions across landscapes to better understand how large-scale ecological gradients alter the magnitude of engineering impacts. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.
Toward a methodical framework for comprehensively assessing forest multifunctionality.
Trogisch, Stefan; Schuldt, Andreas; Bauhus, Jürgen; Blum, Juliet A; Both, Sabine; Buscot, François; Castro-Izaguirre, Nadia; Chesters, Douglas; Durka, Walter; Eichenberg, David; Erfmeier, Alexandra; Fischer, Markus; Geißler, Christian; Germany, Markus S; Goebes, Philipp; Gutknecht, Jessica; Hahn, Christoph Zacharias; Haider, Sylvia; Härdtle, Werner; He, Jin-Sheng; Hector, Andy; Hönig, Lydia; Huang, Yuanyuan; Klein, Alexandra-Maria; Kühn, Peter; Kunz, Matthias; Leppert, Katrin N; Li, Ying; Liu, Xiaojuan; Niklaus, Pascal A; Pei, Zhiqin; Pietsch, Katherina A; Prinz, Ricarda; Proß, Tobias; Scherer-Lorenzen, Michael; Schmidt, Karsten; Scholten, Thomas; Seitz, Steffen; Song, Zhengshan; Staab, Michael; von Oheimb, Goddert; Weißbecker, Christina; Welk, Erik; Wirth, Christian; Wubet, Tesfaye; Yang, Bo; Yang, Xuefei; Zhu, Chao-Dong; Schmid, Bernhard; Ma, Keping; Bruelheide, Helge
2017-12-01
Biodiversity-ecosystem functioning (BEF) research has extended its scope from communities that are short-lived or reshape their structure annually to structurally complex forest ecosystems. The establishment of tree diversity experiments poses specific methodological challenges for assessing the multiple functions provided by forest ecosystems. In particular, methodological inconsistencies and nonstandardized protocols impede the analysis of multifunctionality within, and comparability across the increasing number of tree diversity experiments. By providing an overview on key methods currently applied in one of the largest forest biodiversity experiments, we show how methods differing in scale and simplicity can be combined to retrieve consistent data allowing novel insights into forest ecosystem functioning. Furthermore, we discuss and develop recommendations for the integration and transferability of diverse methodical approaches to present and future forest biodiversity experiments. We identified four principles that should guide basic decisions concerning method selection for tree diversity experiments and forest BEF research: (1) method selection should be directed toward maximizing data density to increase the number of measured variables in each plot. (2) Methods should cover all relevant scales of the experiment to consider scale dependencies of biodiversity effects. (3) The same variable should be evaluated with the same method across space and time for adequate larger-scale and longer-time data analysis and to reduce errors due to changing measurement protocols. (4) Standardized, practical and rapid methods for assessing biodiversity and ecosystem functions should be promoted to increase comparability among forest BEF experiments. We demonstrate that currently available methods provide us with a sophisticated toolbox to improve a synergistic understanding of forest multifunctionality. However, these methods require further adjustment to the specific requirements of structurally complex and long-lived forest ecosystems. By applying methods connecting relevant scales, trophic levels, and above- and belowground ecosystem compartments, knowledge gain from large tree diversity experiments can be optimized.
Hoeinghaus, David J; Agostinho, Angelo A; Gomes, Luiz C; Pelicice, Fernando M; Okada, Edson K; Latini, João D; Kashiwaqui, Elaine A L; Winemiller, Kirk O
2009-10-01
Applying the ecosystem services concept to conservation initiatives or in managing ecosystem services requires understanding how environmental impacts affect the ecology of key species or functional groups providing the services. We examined effects of river impoundments, one of the leading threats to freshwater biodiversity, on an important ecosystem service provided by large tropical rivers (i.e., artisanal fisheries). The societal and economic importance of this ecosystem service in developing countries may provide leverage to advance conservation agendas where future impoundments are being considered. We assessed impoundment effects on the energetic costs of fisheries production (embodied energy) and commercial market value of the artisanal fishery of the Paraná River, Brazil, before and after formation of Itaipu Reservoir. High-value migratory species that dominated the fishery before the impoundment was built constituted a minor component of the contemporary fishery that is based heavily on reservoir-adapted introduced species. Cascading effects of river impoundment resulted in a mismatch between embodied energy and market value: energetic costs of fisheries production increased, whereas market value decreased. This was partially attributable to changes in species functional composition but also strongly linked to species identities that affected market value as a result of consumer preferences even when species were functionally similar. Similar trends are expected in other large tropical rivers following impoundment. In addition to identifying consequences of a common anthropogenic impact on an important ecosystem service, our assessment provides insight into the sustainability of fisheries production in tropical rivers and priorities for regional biodiversity conservation.
Friess, Daniel A.; Krauss, Ken W.; Horstman, Erik M.; Balke, Thorsten; Bouma, Tjeerd J.; Galli, Demis; Webb, Edward L.
2011-01-01
Intertidal wetlands such as saltmarshes and mangroves provide numerous important ecological functions, though they are in rapid and global decline. To better conserve and restore these wetland ecosystems, we need an understanding of the fundamental natural bottlenecks and thresholds to their establishment and long-term ecological maintenance. Despite inhabiting similar intertidal positions, the biological traits of these systems differ markedly in structure, phenology, life history, phylogeny and dispersal, suggesting large differences in biophysical interactions. By providing the first systematic comparison between saltmarshes and mangroves, we unravel how the interplay between species-specific life-history traits, biophysical interactions and biogeomorphological feedback processes determine where, when and what wetland can establish, the thresholds to long-term ecosystem stability, and constraints to genetic connectivity between intertidal wetland populations at the landscape level. To understand these process interactions, research into the constraints to wetland development, and biological adaptations to overcome these critical bottlenecks and thresholds requires a truly interdisciplinary approach.
Necpálová, Magdalena; Anex, Robert P.; Fienen, Michael N.; Del Grosso, Stephen J.; Castellano, Michael J.; Sawyer, John E.; Iqbal, Javed; Pantoja, Jose L.; Barker, Daniel W.
2015-01-01
The ability of biogeochemical ecosystem models to represent agro-ecosystems depends on their correct integration with field observations. We report simultaneous calibration of 67 DayCent model parameters using multiple observation types through inverse modeling using the PEST parameter estimation software. Parameter estimation reduced the total sum of weighted squared residuals by 56% and improved model fit to crop productivity, soil carbon, volumetric soil water content, soil temperature, N2O, and soil3NO− compared to the default simulation. Inverse modeling substantially reduced predictive model error relative to the default model for all model predictions, except for soil 3NO− and 4NH+. Post-processing analyses provided insights into parameter–observation relationships based on parameter correlations, sensitivity and identifiability. Inverse modeling tools are shown to be a powerful way to systematize and accelerate the process of biogeochemical model interrogation, improving our understanding of model function and the underlying ecosystem biogeochemical processes that they represent.
Microbial ecology of deep-water mid-Atlantic canyons
Kellogg, Christina A.
2011-01-01
The research described in this fact sheet will be conducted from 2012 to 2014 as part of the U.S. Geological Survey's DISCOVRE (DIversity, Systematics, and COnnectivity of Vulnerable Reef Ecosystems) Program. This integrated, multidisciplinary effort will be investigating a variety of topics related to unique and fragile deep-sea ecosystems from the microscopic level to the ecosystem level. One goal is to improve understanding, at the microbiological scale, of the benthic communities (including corals) that reside in and around mid-Atlantic canyon habitats and their associated environments. Specific objectives include identifying and characterizing the microbial associates of deep-sea corals, characterizing the microbial biofilms on hard substrates to better determine their role in engineering the ecosystem, and adding a microbial dimension to benthic community structure and function assessments by characterizing micro-eukaryotes, bacteria, and archaea in deep-sea sediments.
Rhizosphere engineering: Enhancing sustainable plant ecosystem productivity
Ahkami, Amir H.; White, III, Richard Allen; Handakumbura, Pubudu P.; ...
2017-04-21
Here, the rhizosphere is arguably the most complex microbial habitat on earth, comprising an integrated network of plant roots, soil and a diverse microbial consortium of bacteria, archaea, viruses, and microeukaryotes. Understanding, predicting and controlling the structure and function of the rhizosphere will allow us to harness plant-microbe interactions and other rhizosphere activities as a means to increase or restore plant ecosystem productivity, improve plant responses to a wide range of environmental perturbations, and mitigate effects of climate change by designing ecosystems for long-term soil carbon storage. Here, we review critical knowledge gaps in rhizosphere science, and how mechanistic understandingmore » of rhizosphere interactions can be leveraged in rhizosphere engineering efforts with the goal of maintaining sustainable plant ecosystem services for food and bioenergy production in an ever changing global climate.« less
Rhizosphere engineering: Enhancing sustainable plant ecosystem productivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahkami, Amir H.; White, III, Richard Allen; Handakumbura, Pubudu P.
Here, the rhizosphere is arguably the most complex microbial habitat on earth, comprising an integrated network of plant roots, soil and a diverse microbial consortium of bacteria, archaea, viruses, and microeukaryotes. Understanding, predicting and controlling the structure and function of the rhizosphere will allow us to harness plant-microbe interactions and other rhizosphere activities as a means to increase or restore plant ecosystem productivity, improve plant responses to a wide range of environmental perturbations, and mitigate effects of climate change by designing ecosystems for long-term soil carbon storage. Here, we review critical knowledge gaps in rhizosphere science, and how mechanistic understandingmore » of rhizosphere interactions can be leveraged in rhizosphere engineering efforts with the goal of maintaining sustainable plant ecosystem services for food and bioenergy production in an ever changing global climate.« less
NASA Astrophysics Data System (ADS)
Su, Hongxin; Feng, Jinchao; Axmacher, Jan C.; Sang, Weiguo
2015-03-01
We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning.
Su, Hongxin; Feng, Jinchao; Axmacher, Jan C; Sang, Weiguo
2015-03-13
We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning.
Su, Hongxin; Feng, Jinchao; Axmacher, Jan C.; Sang, Weiguo
2015-01-01
We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning. PMID:25766381
Baker, Timothy R; Vela Díaz, Dilys M; Chama Moscoso, Victor; Navarro, Gilberto; Monteagudo, Abel; Pinto, Ruy; Cangani, Katia; Fyllas, Nikolaos M; Lopez Gonzalez, Gabriela; Laurance, William F; Lewis, Simon L; Lloyd, Jonathan; Ter Steege, Hans; Terborgh, John W; Phillips, Oliver L
2016-03-01
Understanding the resilience of moist tropical forests to treefall disturbance events is important for understanding the mechanisms that underlie species coexistence and for predicting the future composition of these ecosystems. Here, we test whether variation in the functional composition of Amazonian forests determines their resilience to disturbance.We studied the legacy of natural treefall disturbance events in four forests across Amazonia that differ substantially in functional composition. We compared the composition and diversity of all free-standing woody stems 2-10 cm diameter in previously disturbed and undisturbed 20 × 20 m subplots within 55, one-hectare, long-term forest inventory plots.Overall, stem number increased following disturbance, and species and functional composition shifted to favour light-wooded, small-seeded taxa. Alpha-diversity increased, but beta-diversity was unaffected by disturbance, in all four forests.Changes in response to disturbance in both functional composition and alpha-diversity were, however, small (2 - 4% depending on the parameter) and similar among forests. Synthesis . This study demonstrates that variation in the functional composition of Amazonian forests does not lead to large differences in the response of these forests to treefall disturbances, and overall, these events have a minor role in maintaining the diversity of these ecosystems.
Xiao, Chunwang; Zhou, Yong; Su, Jiaqi; Yang, Fan
2017-01-01
Globally, many terrestrial ecosystems are experiencing a rapid loss of biodiversity. Continued improvements in our understanding of interrelationships between plant diversity and soil microbes are critical to address the concern over the consequences of the decline in biodiversity on ecosystem functioning and services. By removing forbs, or grasses, or, to an extreme scenario, both forbs and grasses in a steppe vegetation in Inner Mongolia, we studied how plant functional group (PFG) loss affects soil microbial community composition using phospholipid fatty acid analysis (PLFA) and litter decomposition using a litter-bag method. PFG loss significantly decreased above- and below-ground plant biomass, soil microbial biomass carbon (SMBC) and nitrogen (SMBN), but had no effect on the ratio of SMBC to SMBN. Although the ratio of fungal to bacterial PLFAs remained unaffected, PFG loss significantly reduced the amount of bacterial, fungal, and total PLFAs. PFG loss decreased litter monthly mass loss and decay constant, and such decrease was significant when both forbs and grasses were removed. Our results provide robust evidence that PFG loss in grassland ecosystem can lead to a rapid response of soil microbial activity which may affect litter decomposition and soil nutrient cycling, suggesting that the assessment of plant-microbe interactions in soils is an integral component of ecosystem response to biodiversity loss.
The resilience and functional role of moss in boreal and arctic ecosystems.
Turetsky, M R; Bond-Lamberty, B; Euskirchen, E; Talbot, J; Frolking, S; McGuire, A D; Tuittila, E-S
2012-10-01
Mosses in northern ecosystems are ubiquitous components of plant communities, and strongly influence nutrient, carbon and water cycling. We use literature review, synthesis and model simulations to explore the role of mosses in ecological stability and resilience. Moss community responses to disturbance showed all possible responses (increases, decreases, no change) within most disturbance categories. Simulations from two process-based models suggest that northern ecosystems would need to experience extreme perturbation before mosses were eliminated. But simulations with two other models suggest that loss of moss will reduce soil carbon accumulation primarily by influencing decomposition rates and soil nitrogen availability. It seems clear that mosses need to be incorporated into models as one or more plant functional types, but more empirical work is needed to determine how to best aggregate species. We highlight several issues that have not been adequately explored in moss communities, such as functional redundancy and singularity, relationships between response and effect traits, and parameter vs conceptual uncertainty in models. Mosses play an important role in several ecosystem processes that play out over centuries - permafrost formation and thaw, peat accumulation, development of microtopography - and there is a need for studies that increase our understanding of slow, long-term dynamical processes. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Using ecological production functions to link ecological ...
Ecological production functions (EPFs) link ecosystems, stressors, and management actions to ecosystem services (ES) production. Although EPFs are acknowledged as being essential to improve environmental management, their use in ecological risk assessment has received relatively little attention. Ecological production functions may be defined as usable expressions (i.e., models) of the processes by which ecosystems produce ES, often including external influences on those processes. We identify key attributes of EPFs and discuss both actual and idealized examples of their use to inform decision making. Whenever possible, EPFs should estimate final, rather than intermediate, ES. Although various types of EPFs have been developed, we suggest that EPFs are more useful for decision making if they quantify ES outcomes, respond to ecosystem condition, respond to stressor levels or management scenarios, reflect ecological complexity, rely on data with broad coverage, have performed well previously, are practical to use, and are open and transparent. In an example using pesticides, we illustrate how EPFs with these attributes could enable the inclusion of ES in ecological risk assessment. The biggest challenges to ES inclusion are limited data sets that are easily adapted for use in modeling EPFs and generally poor understanding of linkages among ecological components and the processes that ultimately deliver the ES. We conclude by advocating for the incorporation into E
The resilience and functional role of moss in boreal and arctic ecosystems
Turetsky, M.; Bond-Lamberty, B.; Euskirchen, E.S.; Talbot, J. J.; Frolking, S.; McGuire, A.D.; Tuittila, E.S.
2012-01-01
Mosses in northern ecosystems are ubiquitous components of plant communities, and strongly influence nutrient, carbon and water cycling. We use literature review, synthesis and model simulations to explore the role of mosses in ecological stability and resilience. Moss community responses to disturbance showed all possible responses (increases, decreases, no change) within most disturbance categories. Simulations from two process-based models suggest that northern ecosystems would need to experience extreme perturbation before mosses were eliminated. But simulations with two other models suggest that loss of moss will reduce soil carbon accumulation primarily by influencing decomposition rates and soil nitrogen availability. It seems clear that mosses need to be incorporated into models as one or more plant functional types, but more empirical work is needed to determine how to best aggregate species. We highlight several issues that have not been adequately explored in moss communities, such as functional redundancy and singularity, relationships between response and effect traits, and parameter vs conceptual uncertainty in models. Mosses play an important role in several ecosystem processes that play out over centuries – permafrost formation and thaw, peat accumulation, development of microtopography – and there is a need for studies that increase our understanding of slow, long-term dynamical processes.
USDA-ARS?s Scientific Manuscript database
Successful management of riverine ecosystems often requires mitigation of alien plant invasions. Understanding how environmental variation within watersheds influences distribution and spread of invasive plants is essential to restoring impacted ecological functions and conserving native plant commu...
USDA-ARS?s Scientific Manuscript database
Microorganisms are the main drivers shaping the functioning and equilibrium of all ecosystems, contributing to nutrient cycling, primary production, litter decomposition, and multi-trophic interactions. Knowledge about the microbial assemblies in specific ecological niches is pivotal to understand ...
Scaling up functional traits for ecosystem services with remote sensing: concepts and methods.
Abelleira Martínez, Oscar J; Fremier, Alexander K; Günter, Sven; Ramos Bendaña, Zayra; Vierling, Lee; Galbraith, Sara M; Bosque-Pérez, Nilsa A; Ordoñez, Jenny C
2016-07-01
Ecosystem service-based management requires an accurate understanding of how human modification influences ecosystem processes and these relationships are most accurate when based on functional traits. Although trait variation is typically sampled at local scales, remote sensing methods can facilitate scaling up trait variation to regional scales needed for ecosystem service management. We review concepts and methods for scaling up plant and animal functional traits from local to regional spatial scales with the goal of assessing impacts of human modification on ecosystem processes and services. We focus our objectives on considerations and approaches for (1) conducting local plot-level sampling of trait variation and (2) scaling up trait variation to regional spatial scales using remotely sensed data. We show that sampling methods for scaling up traits need to account for the modification of trait variation due to land cover change and species introductions. Sampling intraspecific variation, stratification by land cover type or landscape context, or inference of traits from published sources may be necessary depending on the traits of interest. Passive and active remote sensing are useful for mapping plant phenological, chemical, and structural traits. Combining these methods can significantly improve their capacity for mapping plant trait variation. These methods can also be used to map landscape and vegetation structure in order to infer animal trait variation. Due to high context dependency, relationships between trait variation and remotely sensed data are not directly transferable across regions. We end our review with a brief synthesis of issues to consider and outlook for the development of these approaches. Research that relates typical functional trait metrics, such as the community-weighted mean, with remote sensing data and that relates variation in traits that cannot be remotely sensed to other proxies is needed. Our review narrows the gap between functional trait and remote sensing methods for ecosystem service management.
Abundance and Diversity of Soil Arthropods in the Olive Grove Ecosystem
Gonçalves, Maria Fátima; Pereira, José Alberto
2012-01-01
Arthropods are part of important functional groups in soil food webs. Recognizing these arthropods and understanding their function in the ecosystem as well as when they are active is essential to understanding their roles. In the present work, the abundance and diversity of soil arthropods is examined in olive groves in the northeast region of Portugal during the spring. Five classes of arthropods were found: Chilopoda, Malacostraca, Entognatha, Insecta, and Arachnida. Captures were numerically dominated by Collembola within Entognatha, representing 70.9% of total captures. Arachnida and Insecta classes represented about 20.4 and 9.0%, respectively. Among the predatory arthropods, the most representative groups were Araneae and Opiliones from Arachnida, and Formicidae, Carabidae, and Staphylinidae from Insecta. From the Formicidae family, Tetramorium semilaeve (Andre 1883), Tapinoma nigerrimum (Nylander 1856), and Crematogaster scutellaris (Olivier 1792) were the most representative ant species. Arthropods demonstrated preference during the day, with 74% of the total individuals recovered in this period, although richness and similarity were analogous during the day and night. PMID:22943295
Miller, David M.; Ng, Gene-Hua Crystal; Maher, Katharine
2014-01-01
Paleoecology (or ecological biogeography) describes the past distribution of species or communities and is an informative path used to understand the future in the face of climate change. Paleoecological changes in the Southwest over the past several thousand years happened in the presence of landscape manipulations by humans, a factor that adds relevance but increases difficulty of interpretation. What paleo-records are needed for (1) understanding past climate-driven changes (climate proxies), (2) resolving species sensitivity to and resilience against change (biogeographical data), and (3) understanding past ecosystem function and changes (environmental data)? What information is most urgently needed for ecosystem forecasts, and are there kinds of monitoring we need to start now so that we will have ground truth in the near future? These are major questions. Answering them for the arid and semiarid landscape of the Southwest in part relies on careful thought about the spatial and temporal scales of data needed.
Pitcher, Tony J.
2005-01-01
‘Back-to-the-future’ (BTF) is an integrative approach to a restoration ecology of the oceans that attempts to solve the fisheries crisis. To this end, it harnesses the latest understanding of ecosystem processes, developments in whole ecosystem simulation modelling, and insight into the human dimension of fisheries management. BTF includes new methods for describing past ecosystems, designing fisheries that meet criteria for sustainability and responsibility, and evaluating the costs and benefits of fisheries in restored ecosystems. Evaluation of alternative policy choices, involving trade-offs between conservation and economic values, employs a range of economic, social and ecological measures. Automated searches maximize values of objective functions, and the methodology includes analyses of model parameter uncertainty. Participatory workshops attempt to maximize compliance by fostering a sense of ownership among all stakeholders. Some challenges that have still to be met include improving methods for quantitatively describing the past, reducing uncertainty in ecosystem simulation techniques and in making policy choices robust against climate change. Critical issues include whether past ecosystems make viable policy goals, and whether desirable goals may be reached from today’s ecosystem. Examples from case studies in British Columbia, Newfoundland and elsewhere are presented. PMID:15713591
Nielsen, Uffe N; Ball, Becky A
2015-04-01
Altered precipitation patterns resulting from climate change will have particularly significant consequences in water-limited ecosystems, such as arid to semi-arid ecosystems, where discontinuous inputs of water control biological processes. Given that these ecosystems cover more than a third of Earth's terrestrial surface, it is important to understand how they respond to such alterations. Altered water availability may impact both aboveground and belowground communities and the interactions between these, with potential impacts on ecosystem functioning; however, most studies to date have focused exclusively on vegetation responses to altered precipitation regimes. To synthesize our understanding of potential climate change impacts on dryland ecosystems, we present here a review of current literature that reports the effects of precipitation events and altered precipitation regimes on belowground biota and biogeochemical cycling. Increased precipitation generally increases microbial biomass and fungal:bacterial ratio. Few studies report responses to reduced precipitation but the effects likely counter those of increased precipitation. Altered precipitation regimes have also been found to alter microbial community composition but broader generalizations are difficult to make. Changes in event size and frequency influences invertebrate activity and density with cascading impacts on the soil food web, which will likely impact carbon and nutrient pools. The long-term implications for biogeochemical cycling are inconclusive but several studies suggest that increased aridity may cause decoupling of carbon and nutrient cycling. We propose a new conceptual framework that incorporates hierarchical biotic responses to individual precipitation events more explicitly, including moderation of microbial activity and biomass by invertebrate grazing, and use this framework to make some predictions on impacts of altered precipitation regimes in terms of event size and frequency as well as mean annual precipitation. While our understanding of dryland ecosystems is improving, there is still a great need for longer term in situ manipulations of precipitation regime to test our model. © 2014 John Wiley & Sons Ltd.
Hellmann, Christine; Große-Stoltenberg, André; Thiele, Jan; Oldeland, Jens; Werner, Christiane
2017-06-23
Spatial heterogeneity of ecosystems crucially influences plant performance, while in return plant feedbacks on their environment may increase heterogeneous patterns. This is of particular relevance for exotic plant invaders that transform native ecosystems, yet, approaches integrating geospatial information of environmental heterogeneity and plant-plant interaction are lacking. Here, we combined remotely sensed information of site topography and vegetation cover with a functional tracer of the N cycle, δ 15 N. Based on the case study of the invasion of an N 2 -fixing acacia in a nutrient-poor dune ecosystem, we present the first model that can successfully predict (R 2 = 0.6) small-scale spatial variation of foliar δ 15 N in a non-fixing native species from observed geospatial data. Thereby, the generalized additive mixed model revealed modulating effects of heterogeneous environments on invader impacts. Hence, linking remote sensing techniques with tracers of biological processes will advance our understanding of the dynamics and functioning of spatially structured heterogeneous systems from small to large spatial scales.
Nifong, James C; Layman, Craig A; Silliman, Brian R
2015-01-01
Large-bodied, top-predators are often highly mobile, with the potential to provide important linkages between spatially distinct food webs. What biological factors contribute to variation in cross-ecosystem movements, however, have rarely been examined. Here, we investigated how ontogeny (body size), sex and individual-level behaviour impacts intrapopulation variation in cross-ecosystem foraging (i.e. between freshwater and marine systems), by the top-predator Alligator mississippiensis. Field surveys revealed A. mississippiensis uses marine ecosystems regularly and are abundant in estuarine tidal creeks (from 0·3 to 6·3 individuals per km of creek, n = 45 surveys). Alligator mississippiensis captured in marine/estuarine habitats were significantly larger than individuals captured in freshwater and intermediate habitats. Stomach content analysis (SCA) showed that small juveniles consumed marine/estuarine prey less frequently (6·7% of individuals) than did large juveniles (57·8%), subadult (73%), and adult (78%) size classes. Isotopic mixing model analysis (SIAR) also suggests substantial variation in use of marine/estuarine prey resources with differences among and within size classes between sexes and individuals (range of median estimates for marine/estuarine diet contribution = 0·05-0·76). These results demonstrate the importance of intrapopulation characteristics (body size, sex and individual specialization) as key determinants of the strength of predator-driven ecosystem connectivity resulting from cross-ecosystem foraging behaviours. Understanding the factors, which contribute to variation in cross-ecosystem foraging behaviours, will improve our predictive understanding of the effects of top-predators on community structure and ecosystem function. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Malone, Sparkle; Tulbure, Mirela; Pérez-Luque, Antonio J.; Assal, Timothy J.; Bremer, Leah; Drucker, Debora; Hillis, Vicken; Varela, Sara; Goulden, Michael
2016-01-01
Drought is a global issue that is exacerbated by climate change and increasing anthropogenic water demands. The recent occurrence of drought in California provides an important opportunity to examine drought response across ecosystem classes (forests, shrublands, grasslands, and wetlands), which is essential to understand how climate influences ecosystem structure and function. We quantified ecosystem resistance to drought by comparing changes in satellite-derived estimates of water-use efficiency (WUE = net primary productivity [NPP]/evapotranspiration [ET]) under normal (i.e., baseline) and drought conditions (ΔWUE = WUE2014 − baseline WUE). With this method, areas with increasing WUE under drought conditions are considered more resilient than systems with declining WUE. Baseline WUE varied across California (0.08 to 3.85 g C/mm H2O) and WUE generally increased under severe drought conditions in 2014. Strong correlations between ΔWUE, precipitation, and leaf area index (LAI) indicate that ecosystems with a lower average LAI (i.e., grasslands) also had greater C-uptake rates when water was limiting and higher rates of carbon-uptake efficiency (CUE = NPP/LAI) under drought conditions. We also found that systems with a baseline WUE ≤ 0.4 exhibited a decline in WUE under drought conditions, suggesting that a baseline WUE ≤ 0.4 might be indicative of low drought resistance. Drought severity, precipitation, and WUE were identified as important drivers of shifts in ecosystem classes over the study period. These findings have important implications for understanding climate change effects on primary productivity and C sequestration across ecosystems and how this may influence ecosystem resistance in the future.
Consistently inconsistent drivers of microbial diversity and abundance at macroecological scales.
Hendershot, John Nicholas; Read, Quentin D; Henning, Jeremiah A; Sanders, Nathan J; Classen, Aimée T
2017-07-01
Macroecology seeks to understand broad-scale patterns in the diversity and abundance of organisms, but macroecologists typically study aboveground macroorganisms. Belowground organisms regulate numerous ecosystem functions, yet we lack understanding of what drives their diversity. Here, we examine the controls on belowground diversity along latitudinal and elevational gradients. We performed a global meta-analysis of 325 soil communities across 20 studies conducted along temperature and soil pH gradients. Belowground taxa, whether bacterial or fungal, observed along a given gradient of temperature or soil pH were equally likely to show a linear increase, linear decrease, humped pattern, trough-shaped pattern, or no pattern in diversity along the gradient. Land-use intensity weakly affected the diversity-temperature relationship, but no other factor did so. Our study highlights disparities among diversity patterns of soil microbial communities. Belowground diversity may be controlled by the associated climatic and historical contexts of particular gradients, by factors not typically measured in community-level studies, or by processes operating at scales that do not match the temporal and spatial scales under study. Because these organisms are responsible for a suite of key processes, understanding the drivers of their distribution and diversity is fundamental to understanding the functioning of ecosystems. © 2017 by the Ecological Society of America.
Bouska, Kristen; Houser, Jeff N.; De Jager, Nathan R.; Hendrickson, Jon S.
2018-01-01
The Upper Mississippi River System (UMRS) is a large and complex floodplain river ecosystem that spans the jurisdictions of multiple state and federal agencies. In support of ongoing ecosystem restoration and management by this broad partnership, we are undertaking a resilience assessment of the UMRS. We describe the UMRS in the context of an ecological resilience assessment. Our description articulates the temporal and spatial extent of our assessment of the UMRS, the relevant historical context, the valued services provided by the system, and the fundamental controlling variables that determine its structure and function. An important objective of developing the system description was to determine the simplest, adequate conceptual understanding of the UMRS. We conceptualize a simplified UMRS as three interconnected subsystems: lotic channels, lentic off-channel areas, and floodplains. By identifying controlling variables within each subsystem, we have developed a shared understanding of the basic structure and function of the UMRS, which will serve as the basis for ongoing quantitative evaluations of factors that likely contribute to the resilience of the UMRS. As we undertake the subsequent elements of a resilience assessment, we anticipate our improved understanding of interactions, feedbacks, and critical thresholds will assist natural resource managers to better recognize the system’s ability to adapt to existing and new stresses.
Ecosystem restoration on the California Channel Islands
Halvorson, W.L.
2004-01-01
Restoration of natural habitat has become increasingly important over the last three decades in the United States, first as mitigation for development (especially in wetlands), and more recently in natural areas. This latter restoration has come about as land managing agencies have seen the need to reverse the impact of past land uses and agencies like the National Park Service have taken on the responsibility for less-than-pristine lands. Restorations have typically been carried out with little prior study and with no follow-up monitoring. On the Channel Islands, the need for restoration is great, but the desire is to base this restoration on sound ecological understanding. By conducting surveys, implementing long-term research and monitoring, and by conducting population and community dynamics research, the necessary data is obtained to arrive at such an understanding. Once management actions have been taken to effect restoration, monitoring is used to determine the success of those actions. The intention is to gain enough of an understanding of the islands' ecosystems that we can manage to restore, not just populations of native plants and animals, but also the processes of a naturally functioning ecosystem. ?? International Scientific Publications, New Delhi.
The Role of Biomarkers in the Assessment of Aquatic Ecosystem Health
Hook, Sharon E; Gallagher, Evan P; Batley, Graeme E
2016-01-01
Ensuring the health of aquatic ecosystems and identifying species at risk from the detrimental effects of environmental contaminants can be facilitated by integrating analytical chemical analysis with carefully selected biological endpoints measured in tissues of species of concern. These biological endpoints include molecular, biochemical and physiological markers (i.e. biomarkers) that when integrated, can clarify issues of contaminant bioavailability, bioaccumulation and ecological effects while enabling a better understanding of the effects of non-chemical stressors. In the case of contaminant stressors, an understanding of chemical modes of toxicity can be incorporated with diagnostic markers of aquatic animal physiology to help understand the health status of aquatic organisms in the field. Furthermore, new approaches in functional genomics and bioinformatics can help discriminate individual chemicals, or groups of chemicals among complex mixtures that may contribute to adverse biological effects. While the use of biomarkers is not a new paradigm, such approaches have been underutilized in the context of ecological risk assessment and natural resource damage assessment. From a regulatory standpoint, these approaches can help better assess the complex effects from coastal development activities to assessing ecosystem integrity pre- and post-development or site remediation. PMID:24574147
Marine biological diversity: Some important issues, opportunities and critical research needs
NASA Astrophysics Data System (ADS)
Butman, Cheryl Ann; Carlton, James T.
1995-07-01
Marine biological diversity is changing, dramatically in some cases, and most recent changes are due to broad-scale human activities. Knowledge of "biodiversity" — the variety of genomes (the genetic material specifying all characteristics and functions within an organism), species and ecosystems — is the foundation for understanding and predicting how human and natural effects can change the ocean's ecosystems. Evaluating the scale and ultimate consequences to life in the sea of a plethora of anthropogenic effects is difficult, however, because there is inadequate knowledge of both the patterns of and the processes that control marine biodiversity. Recognizing change and evaluating its consequences require sufficient knowledge of present and historical natural patterns of biodiversity, and sufficient understanding of how and why these patterns vary in space and time. Data on biodiversity patterns and their causes are sorely lacking for most marine ecosystems. Adequate understanding of what creates and maintains diversity must be the scientific underpinning for policy decisions regarding pollutant and waste disposal, habitat alteration, fisheries management and the preservation of threatened or endangered species. The inability, at this time, to provide such information to policy makers may have important implications for the conservation of marine life [Norse, 1993].
Effects of fire on major forest ecosystem processes: an overview.
Chen, Zhong
2006-09-01
Fire and fire ecology are among the best-studied topics in contemporary ecosystem ecology. The large body of existing literature on fire and fire ecology indicates an urgent need to synthesize the information on the pattern of fire effects on ecosystem composition, structure, and functions for application in fire and ecosystem management. Understanding fire effects and underlying principles are critical to reduce the risk of uncharacteristic wildfires and for proper use of fire as an effective management tool toward management goals. This overview is a synthesis of current knowledge on major effects of fire on fire-prone ecosystems, particularly those in the boreal and temperate regions of the North America. Four closely related ecosystem processes in vegetation dynamics, nutrient cycling, soil and belowground process and water relations were discussed with emphases on fire as the driving force. Clearly, fire can shape ecosystem composition, structure and functions by selecting fire adapted species and removing other susceptible species, releasing nutrients from the biomass and improving nutrient cycling, affecting soil properties through changing soil microbial activities and water relations, and creating heterogeneous mosaics, which in turn, can further influence fire behavior and ecological processes. Fire as a destructive force can rapidly consume large amount of biomass and cause negative impacts such as post-fire soil erosion and water runoff, and air pollution; however, as a constructive force fire is also responsible for maintaining the health and perpetuity of certain fire-dependent ecosystems. Considering the unique ecological roles of fire in mediating and regulating ecosystems, fire should be incorporated as an integral component of ecosystems and management. However, the effects of fire on an ecosystem depend on the fire regime, vegetation type, climate, physical environments, and the scale of time and space of assessment. More ecosystem-specific studies are needed in future, especially those focusing on temporal and spatial variations of fire effects through long-term experimental monitoring and modeling.
NASA Astrophysics Data System (ADS)
Mestdagh, Sebastiaan; Bagaço, Leila; Braeckman, Ulrike; Ysebaert, Tom; De Smet, Bart; Moens, Tom; Van Colen, Carl
2018-05-01
Human activities, among which dredging and land use change in river basins, are altering estuarine ecosystems. These activities may result in changes in sedimentary processes, affecting biodiversity of sediment macrofauna. As macrofauna controls sediment chemistry and fluxes of energy and matter between water column and sediment, changes in the structure of macrobenthic communities could affect the functioning of an entire ecosystem. We assessed the impact of sediment deposition on intertidal macrobenthic communities and on rates of an important ecosystem function, i.e. sediment community oxygen consumption (SCOC). An experiment was performed with undisturbed sediment samples from the Scheldt river estuary (SW Netherlands). The samples were subjected to four sedimentation regimes: one control and three with a deposited sediment layer of 1, 2 or 5 cm. Oxygen consumption was measured during incubation at ambient temperature. Luminophores applied at the surface, and a seawater-bromide mixture, served as tracers for bioturbation and bio-irrigation, respectively. After incubation, the macrofauna was extracted, identified, and counted and then classified into functional groups based on motility and sediment reworking capacity. Total macrofaunal densities dropped already under the thinnest deposits. The most affected fauna were surficial and low-motility animals, occurring at high densities in the control. Their mortality resulted in a drop in SCOC, which decreased steadily with increasing deposit thickness, while bio-irrigation and bioturbation activity showed increases in the lower sediment deposition regimes but decreases in the more extreme treatments. The initial increased activity likely counteracted the effects of the drop in low-motility, surficial fauna densities, resulting in a steady rather than sudden fall in oxygen consumption. We conclude that the functional identity in terms of motility and sediment reworking can be crucial in our understanding of the regulation of ecosystem functioning and the impact of habitat alterations such as sediment deposition.
NASA Astrophysics Data System (ADS)
Chiaverano, L.; Robinson, K. L.; Ruzicka, J.; Quiñones, J.; Tam, J.; Acha, M.; Graham, W. M.; Brodeur, R.; Decker, M. B.; Hernandez, F., Jr.; Leaf, R.; Mianzan, H.; Uye, S. I.
2016-02-01
Increases in the frequency of jellyfish mass occurrences in a number of coastal areas around the globe have intensified concerns that some ecosystems are becoming "jellyfish-dominated". Gelatinous planktivores not only compete with forage fish for food, but also feed on fish eggs and larvae. When jellyfish abundance is high, the fraction of the energy and the efficiency at which it is transferred upwards in the food web are reduced compared with times when fish are dominant. Hence, ecosystems supporting major forage fish fisheries are the most likely to experience fish-to-jellyfish shifts due to the harvest pressure on mid-trophic planktivores. Although forage fish-jellyfish replacement cycles have been detected in recent decades in some productive, coastal ecosystems (e.g. Gulf of Mexico, Northern California Current), jellyfish are typically not included in ecosystem-based fisheries management (EBFM) production models. Here we explored the roles of jellyfish and forage fish as trophic energy transfer pathways to higher trophic levels in the Northern Humboldt Current (NHC) ecosystem, one of the most productive ecosystems in the world. A trophic network model with 33 functional groups was developed using ECOPATH and transformed to an end-to-end model using ECOTRAN techniques to map food web energy flows. Predicted, relative changes in functional group productivity were analyzed in simulations with varying forage fish consumption rates, jellyfish consumption rates, and forage fish harvest rates in a suite of static, alternative-energy-demand scenarios. Our modeling efforts will not only improve EBFM of forage fish and their predators in the NHC ecosystem, but also increase our understanding of trophic interactions between forage fish and large jellyfish, an important, but overlooked component in most ecosystem models to date.
Review of the ecosystem service implications of mangrove encroachment into salt marshes.
Kelleway, Jeffrey J; Cavanaugh, Kyle; Rogers, Kerrylee; Feller, Ilka C; Ens, Emilie; Doughty, Cheryl; Saintilan, Neil
2017-10-01
Salt marsh and mangrove have been recognized as being among the most valuable ecosystem types globally in terms of their supply of ecosystem services and support for human livelihoods. These coastal ecosystems are also susceptible to the impacts of climate change and rising sea levels, with evidence of global shifts in the distribution of mangroves, including encroachment into salt marshes. The encroachment of woody mangrove shrubs and trees into herbaceous salt marshes may represent a substantial change in ecosystem structure, although resulting impacts on ecosystem functions and service provisions are largely unknown. In this review, we assess changes in ecosystem services associated with mangrove encroachment. While there is quantitative evidence to suggest that mangrove encroachment may enhance carbon storage and the capacity of a wetland to increase surface elevation in response to sea-level rise, for most services there has been no direct assessment of encroachment impact. On the basis of current understanding of ecosystem structure and function, we theorize that mangrove encroachment may increase nutrient storage and improve storm protection, but cause declines in habitat availability for fauna requiring open vegetation structure (such as migratory birds and foraging bats) as well as the recreational and cultural activities associated with this fauna (e.g., birdwatching and/or hunting). Changes to provisional services such as fisheries productivity and cultural services are likely to be site specific and dependent on the species involved. We discuss the need for explicit experimental testing of the effects of encroachment on ecosystem services in order to address key knowledge gaps, and present an overview of the options available to coastal resource managers during a time of environmental change. © 2017 John Wiley & Sons Ltd.
Ecosystem-based analysis of a marine protected area where fisheries and protected species coexist.
Espinoza-Tenorio, Alejandro; Montaño-Moctezuma, Gabriela; Espejel, Ileana
2010-04-01
The Gulf of California Biosphere Reserve (UGC&CRDBR) is a Marine Protected Area that was established in 1993 with the aim of preserving biodiversity and remediating environmental impacts. Because remaining vigilant is hard and because regulatory measures are difficult to enforce, harvesting has been allowed to diminish poaching. Useful management strategies have not been implemented, however, and conflicts remain between conservation legislation and the fisheries. We developed a transdisciplinary methodological scheme (pressure-state-response, loop analysis, and Geographic Information System) that includes both protected species and fisheries modeled together in a spatially represented marine ecosystem. We analyzed the response of this marine ecosystem supposing that conservation strategies were successful and that the abundance of protected species had increased. The final aim of this study was to identify ecosystem-level management alternatives capable of diminishing the conflict between conservation measures and fisheries. This methodological integration aimed to understand the functioning of the UGC&CRDBR community as well as to identify implications of conservation strategies such as the recovery of protected species. Our results suggest research hypotheses related to key species that should be protected within the ecosystem, and they point out the importance of considering spatial management strategies. Counterintuitive findings underline the importance of understanding how the community responds to disturbances and the effect of indirect pathways on the abundance of ecosystem constituents. Insights from this research are valuable in defining policies in marine reserves where fisheries and protected species coexist.
Ecosystem-Based Analysis of a Marine Protected Area Where Fisheries and Protected Species Coexist
NASA Astrophysics Data System (ADS)
Espinoza-Tenorio, Alejandro; Montaño-Moctezuma, Gabriela; Espejel, Ileana
2010-04-01
The Gulf of California Biosphere Reserve (UGC&CRDBR) is a Marine Protected Area that was established in 1993 with the aim of preserving biodiversity and remediating environmental impacts. Because remaining vigilant is hard and because regulatory measures are difficult to enforce, harvesting has been allowed to diminish poaching. Useful management strategies have not been implemented, however, and conflicts remain between conservation legislation and the fisheries. We developed a transdisciplinary methodological scheme (pressure-state-response, loop analysis, and Geographic Information System) that includes both protected species and fisheries modeled together in a spatially represented marine ecosystem. We analyzed the response of this marine ecosystem supposing that conservation strategies were successful and that the abundance of protected species had increased. The final aim of this study was to identify ecosystem-level management alternatives capable of diminishing the conflict between conservation measures and fisheries. This methodological integration aimed to understand the functioning of the UGC&CRDBR community as well as to identify implications of conservation strategies such as the recovery of protected species. Our results suggest research hypotheses related to key species that should be protected within the ecosystem, and they point out the importance of considering spatial management strategies. Counterintuitive findings underline the importance of understanding how the community responds to disturbances and the effect of indirect pathways on the abundance of ecosystem constituents. Insights from this research are valuable in defining policies in marine reserves where fisheries and protected species coexist.
Smetacek, Victor
2012-09-01
The oceans cover 70% of the planet's surface, and their planktonic inhabitants generate about half the global primary production, thereby playing a key role in modulating planetary climate via the carbon cycle. The ocean biota have been under scientific scrutiny for well over a century, and yet our understanding of the processes driving natural selection in the pelagic environment - the open water inhabited by drifting plankton and free-swimming nekton - is still quite vague. Because of the fundamental differences in the physical environment, pelagic ecosystems function differently from the familiar terrestrial ecosystems of which we are a part. Natural selection creates biodiversity but understanding how this quality control of random mutations operates in the oceans - which traits are selected for under what circumstances and by which environmental factors, whether bottom-up or top-down - is currently a major challenge. Rapid advances in genomics are providing information, particularly in the prokaryotic realm, pertaining not only to the biodiversity inventory but also functional groups. This essay is dedicated to the poorly understood tribes of planktonic protists (unicellular eukaryotes) that feed the ocean's animals and continue to run the elemental cycles of our planet. It is an attempt at developing a conceptually coherent framework to understand the course of evolution by natural selection in the plankton and contrast it with the better-known terrestrial realm. I argue that organism interactions, in particular co-evolution between predators and prey (the arms race), play a central role in driving evolution in the pelagic realm. Understanding the evolutionary forces shaping ocean biota is a prerequisite for harnessing plankton for human purposes and also for protecting the oceanic ecosystems currently under severe stress from anthropogenic pressures.
Pierret, Alain; Maeght, Jean-Luc; Clément, Corentin; Montoroi, Jean-Pierre; Hartmann, Christian; Gonkhamdee, Santimaitree
2016-01-01
Background Deep roots are a common trait among a wide range of plant species and biomes, and are pivotal to the very existence of ecosystem services such as pedogenesis, groundwater and streamflow regulation, soil carbon sequestration and moisture content in the lower troposphere. Notwithstanding the growing realization of the functional significance of deep roots across disciplines such as soil science, agronomy, hydrology, ecophysiology or climatology, research efforts allocated to the study of deep roots remain incommensurate with those devoted to shallow roots. This is due in part to the fact that, despite technological advances, observing and measuring deep roots remains challenging. Scope Here, other reasons that explain why there are still so many fundamental unresolved questions related to deep roots are discussed. These include the fact that a number of hypotheses and models that are widely considered as verified and sufficiently robust are only partly supported by data. Evidence has accumulated that deep rooting could be a more widespread and important trait among plants than usually considered based on the share of biomass that it represents. Examples that indicate that plant roots have different structures and play different roles with respect to major biochemical cycles depending on their position within the soil profile are also examined and discussed. Conclusions Current knowledge gaps are identified and new lines of research for improving our understanding of the processes that drive deep root growth and functioning are proposed. This ultimately leads to a reflection on an alternative paradigm that could be used in the future as a unifying framework to describe and analyse deep rooting. Despite the many hurdles that pave the way to a practical understanding of deep rooting functions, it is anticipated that, in the relatively near future, increased knowledge about the deep rooting traits of a variety of plants and crops will have direct and tangible influence on how we manage natural and cultivated ecosystems. PMID:27390351
Warming alters community size structure and ecosystem functioning
Dossena, Matteo; Yvon-Durocher, Gabriel; Grey, Jonathan; Montoya, José M.; Perkins, Daniel M.; Trimmer, Mark; Woodward, Guy
2012-01-01
Global warming can affect all levels of biological complexity, though we currently understand least about its potential impact on communities and ecosystems. At the ecosystem level, warming has the capacity to alter the structure of communities and the rates of key ecosystem processes they mediate. Here we assessed the effects of a 4°C rise in temperature on the size structure and taxonomic composition of benthic communities in aquatic mesocosms, and the rates of detrital decomposition they mediated. Warming had no effect on biodiversity, but altered community size structure in two ways. In spring, warmer systems exhibited steeper size spectra driven by declines in total community biomass and the proportion of large organisms. By contrast, in autumn, warmer systems had shallower size spectra driven by elevated total community biomass and a greater proportion of large organisms. Community-level shifts were mirrored by changes in decomposition rates. Temperature-corrected microbial and macrofaunal decomposition rates reflected the shifts in community structure and were strongly correlated with biomass across mesocosms. Our study demonstrates that the 4°C rise in temperature expected by the end of the century has the potential to alter the structure and functioning of aquatic ecosystems profoundly, as well as the intimate linkages between these levels of ecological organization. PMID:22496185
Microbial eukaryotic distributions and diversity patterns in a deep-sea methane seep ecosystem.
Pasulka, Alexis L; Levin, Lisa A; Steele, Josh A; Case, David H; Landry, Michael R; Orphan, Victoria J
2016-09-01
Although chemosynthetic ecosystems are known to support diverse assemblages of microorganisms, the ecological and environmental factors that structure microbial eukaryotes (heterotrophic protists and fungi) are poorly characterized. In this study, we examined the geographic, geochemical and ecological factors that influence microbial eukaryotic composition and distribution patterns within Hydrate Ridge, a methane seep ecosystem off the coast of Oregon using a combination of high-throughput 18S rRNA tag sequencing, terminal restriction fragment length polymorphism fingerprinting, and cloning and sequencing of full-length 18S rRNA genes. Microbial eukaryotic composition and diversity varied as a function of substrate (carbonate versus sediment), activity (low activity versus active seep sites), sulfide concentration, and region (North versus South Hydrate Ridge). Sulfide concentration was correlated with changes in microbial eukaryotic composition and richness. This work also revealed the influence of oxygen content in the overlying water column and water depth on microbial eukaryotic composition and diversity, and identified distinct patterns from those previously observed for bacteria, archaea and macrofauna in methane seep ecosystems. Characterizing the structure of microbial eukaryotic communities in response to environmental variability is a key step towards understanding if and how microbial eukaryotes influence seep ecosystem structure and function. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Dynamical implications of bi-directional resource exchange within a meta-ecosystem.
Messan, Marisabel Rodriguez; Kopp, Darin; Allen, Daniel C; Kang, Yun
2018-05-05
The exchange of resources across ecosystem boundaries can have large impacts on ecosystem structures and functions at local and regional scales. In this article, we develop a simple model to investigate dynamical implications of bi-directional resource exchanges between two local ecosystems in a meta-ecosystem framework. In our model, we assume that (1) Each local ecosystem acts as both a resource donor and recipient, such that one ecosystem donating resources to another results in a cost to the donating system and a benefit to the recipient; and (2) The costs and benefits of the bi-directional resource exchange between two ecosystems are correlated in a nonlinear fashion. Our model could apply to the resource interactions between terrestrial and aquatic ecosystems that are supported by the literature. Our theoretical results show that bi-directional resource exchange between two ecosystems can indeed generate complicated dynamical outcomes, including the coupled ecosystems having amensalistic, antagonistic, competitive, or mutualistic interactions, with multiple alternative stable states depending on the relative costs and benefits. In addition, if the relative cost for resource exchange for an ecosystem is decreased or the relative benefit for resource exchange for an ecosystem is increased, the production of that ecosystem would increase; however, depending on the local environment, the production of the other ecosystem may increase or decrease. We expect that our work, by evaluating the potential outcomes of resource exchange theoretically, can facilitate empirical evaluations and advance the understanding of spatial ecosystem ecology where resource exchanges occur in varied ecosystems through a complicated network. Copyright © 2018 Elsevier Inc. All rights reserved.
Robert R. Ziemer; Thomas E. Lisle
1998-01-01
Streamflow is an essential variable in understanding the functioning of watersheds and associated ecosystems because it supplies the primary medium and source of energy for the movement of water, sediment, organic material, nutrients, and thermal energy. Changes in streamflow are almost invariably linked to changes in other watershed processes such as erosion,...
NASA Astrophysics Data System (ADS)
Dolan, K. A.; Hurtt, G. C.; Fisk, J.; Flanagan, S.; LePage, Y.; Sahajpal, R.
2014-12-01
Disturbance plays a critical role in shaping the structure and function of forested ecosystems as well as the ecosystem services they provide, including but not limited to: carbon storage, biodiversity habitat, water quality and flow, and land atmosphere exchanges of energy and water. As recent studies highlight novel disturbance regimes resulting from pollution, invasive pests and climate change, there is a need to include these alterations in predictions of future forest function and structure. The Ecosystem Demography (ED) model is a mechanistic model of forest ecosystem dynamics in which individual-based forest dynamics can be efficiently implemented over regional to global scales due to advanced scaling methods. We utilize ED to characterize the sensitivity of potential vegetation structure and function to changes in rates of density independent mortality. Disturbance rate within ED can either be altered directly or through the development of sub-models. Disturbance sub-models in ED currently include fire, land use and hurricanes. We use a tiered approach to understand the sensitivity of North American ecosystems to changes in background density independent mortality. Our first analyses were conducted at half-degree spatial resolution with a constant rate of disturbance in space and time, which was altered between runs. Annual climate was held constant at the site level and the land use and fire sub-models were turned off. Results showed an ~ 30% increase in non-forest area across the US when disturbance rates were changed from 0.6% a year to 1.2% a year and a more than 3.5 fold increase in non-forest area when disturbance rates doubled again from 1.2% to 2.4%. Continued runs altered natural background disturbance rates with the existing fire and hurricane sub models turned on as well as historic and future land use. By quantify differences between model outputs that characterize ecosystem structure and function related to the carbon cycle across the US, we are identifying areas and characteristics that display higher sensitivities to change in disturbance rates.
NASA Astrophysics Data System (ADS)
Haddock, Steven H. D.; Moline, Mark A.; Case, James F.
2010-01-01
Bioluminescence spans all oceanic dimensions and has evolved many times—from bacteria to fish—to powerfully influence behavioral and ecosystem dynamics. New methods and technology have brought great advances in understanding of the molecular basis of bioluminescence, its physiological control, and its significance in marine communities. Novel tools derived from understanding the chemistry of natural light-producing molecules have led to countless valuable applications, culminating recently in a related Nobel Prize. Marine organisms utilize bioluminescence for vital functions ranging from defense to reproduction. To understand these interactions and the distributions of luminous organisms, new instruments and platforms allow observations on individual to oceanographic scales. This review explores recent advances, including the chemical and molecular, phylogenetic and functional, community and oceanographic aspects of bioluminescence.
What can ecosystems learn? Expanding evolutionary ecology with learning theory.
Power, Daniel A; Watson, Richard A; Szathmáry, Eörs; Mills, Rob; Powers, Simon T; Doncaster, C Patrick; Czapp, Błażej
2015-12-08
The structure and organisation of ecological interactions within an ecosystem is modified by the evolution and coevolution of the individual species it contains. Understanding how historical conditions have shaped this architecture is vital for understanding system responses to change at scales from the microbial upwards. However, in the absence of a group selection process, the collective behaviours and ecosystem functions exhibited by the whole community cannot be organised or adapted in a Darwinian sense. A long-standing open question thus persists: Are there alternative organising principles that enable us to understand and predict how the coevolution of the component species creates and maintains complex collective behaviours exhibited by the ecosystem as a whole? Here we answer this question by incorporating principles from connectionist learning, a previously unrelated discipline already using well-developed theories on how emergent behaviours arise in simple networks. Specifically, we show conditions where natural selection on ecological interactions is functionally equivalent to a simple type of connectionist learning, 'unsupervised learning', well-known in neural-network models of cognitive systems to produce many non-trivial collective behaviours. Accordingly, we find that a community can self-organise in a well-defined and non-trivial sense without selection at the community level; its organisation can be conditioned by past experience in the same sense as connectionist learning models habituate to stimuli. This conditioning drives the community to form a distributed ecological memory of multiple past states, causing the community to: a) converge to these states from any random initial composition; b) accurately restore historical compositions from small fragments; c) recover a state composition following disturbance; and d) to correctly classify ambiguous initial compositions according to their similarity to learned compositions. We examine how the formation of alternative stable states alters the community's response to changing environmental forcing, and we identify conditions under which the ecosystem exhibits hysteresis with potential for catastrophic regime shifts. This work highlights the potential of connectionist theory to expand our understanding of evo-eco dynamics and collective ecological behaviours. Within this framework we find that, despite not being a Darwinian unit, ecological communities can behave like connectionist learning systems, creating internal conditions that habituate to past environmental conditions and actively recalling those conditions.
Primates in 21st century ecosystems: does primate conservation promote ecosystem conservation?
Norconk, Marilyn A; Boinski, Sue; Forget, Pierre-Michel
2011-01-01
Contributors to this issue of the American Journal of Primatology were among the participants in an invited symposium at the 2008 Association for Tropical Biology and Conservation meeting in Paramaribo, Suriname. They were asked to assess how essential primates are to tropical ecosystems and, given their research interests, discuss how primate research contributes to the broader understanding about how ecosystems function. This introduction to the issue is divided into three parts: a review of the roles that nonhuman primates play in tropical ecosystems; the implementation of large-scale landscape methods used to identify primate densities; and concerns about the increasingly porous boundaries between humans, nonhuman primates, and pathogens. Although 20th century primate research created a rich database on individual species, including both theoretical and descriptive approaches, the dual effects of high human population densities and widespread habitat destruction should warn us that creative, interdisciplinary and human-related research is needed to solve 21st century problems. © 2010 Wiley-Liss, Inc.
Adventures in holistic ecosystem modelling: the cumberland basin ecosystem model
NASA Astrophysics Data System (ADS)
Gordon, D. C.; Keizer, P. D.; Daborn, G. R.; Schwinghamer, P.; Silvert, W. L.
A holistic ecosystem model has been developed for the Cumberland Basin, a turbid macrotidal estuary at the head of Canada's Bay of Fundy. The model was constructed as a group exercise involving several dozen scientists. Philosophy of approach and methods were patterned after the BOEDE Ems-Dollard modelling project. The model is one-dimensional, has 3 compartments and 3 boundaries, and is composed of 3 separate submodels (physical, pelagic and benthic). The 28 biological state variables cover the complete estuarine ecosystem and represent broad functional groups of organisms based on trophic relationships. Although still under development and not yet validated, the model has been verified and has reached the stage where most state variables provide reasonable output. The modelling process has stimulated interdisciplinary discussion, identified important data gaps and produced a quantitative tool which can be used to examine ecological hypotheses and determine critical environmental processes. As a result, Canadian scientists have a much better understanding of the Cumberland Basin ecosystem and are better able to provide competent advice on environmental management.
Kellogg, Christina A.; Hopkins, M. Camille
2017-09-26
Microbiomes are the communities of microorganisms (for example, bacteria, viruses, and fungi) that live on, in, and around people, plants, animals, soil, water, and the atmosphere. Microbiomes are active in the functioning of diverse ecosystems, for instance, by influencing water quality, nutrient acquisition and stress tolerance in plants, and stability of soil and aquatic environments. Microbiome research conducted by the U.S. Geological Survey spans many of our mission areas. Key research areas include water quality, understanding climate effects on soil and permafrost, ecosystem and wildlife health, invasive species, contaminated environments to improve bioremediation, and enhancing energy production. Microbiome research will fundamentally strengthen the ability to address the global challenges of maintaining clean water, ensuring adequate food supply, meeting energy needs, and preserving human and ecosystem health.
Toward Understanding, Managing, and Protecting Microbial Ecosystems
Bodelier, Paul L. E.
2011-01-01
Microbial communities are at the very basis of life on earth, catalyzing biogeochemical reactions driving global nutrient cycles. However, unlike for plants and animals, microbial diversity is not on the biodiversity–conservation agenda. The latter, however, would imply that microbial diversity is not under any threat by anthropogenic disturbance or climate change. This maybe a misconception caused by the rudimentary knowledge we have concerning microbial diversity and its role in ecosystem functioning. This perspective paper identifies major areas with knowledge gaps within the field of environmental microbiology that preclude a comprehension of microbial ecosystems on the level we have for plants and animals. Opportunities and challenges are pointed out to open the microbial black box and to go from descriptive to predictive microbial ecology. PMID:21747797
Hydrology, phenology and the USA National Phenology Network
Kish, George R.
2010-01-01
Phenology is the study of seasonally-recurring biological events (such as leaf-out, fruit production, and animal reproduction and migration) and how these events are influenced by environmental change. Phenological changes are some of the most sensitive biological indicators of climate change, and also affect nearly all aspects of ecosystem function. Spatially extensive patterns of phenological observations have been closely linked with climate variability. Phenology and hydrology are closely linked and affect one another across a variety of scales, from leaf intercellular spaces to the troposphere, and over periods of seconds to centuries. Ecosystem life cycles and diversity are also influenced by hydrologic processes such as floods and droughts. Therefore, understanding the relationships between hydrology and phenology is increasingly important in understanding how climate change affects biological and physical systems.
Multiple stressors and the potential for synergistic loss of New England salt marshes
Angelini, Christine; Bertness, Mark D.
2017-01-01
Climate change and other anthropogenic stressors are converging on coastal ecosystems worldwide. Understanding how these stressors interact to affect ecosystem structure and function has immediate implications for coastal planning, however few studies quantify stressor interactions. We examined past and potential future interactions between two leading stressors on New England salt marshes: sea-level rise and marsh crab (Sesarma reticulatum) grazing driven low marsh die-off. Geospatial analyses reveal that crab-driven die-off has led to an order of magnitude more marsh loss than sea-level rise between 2005 and 2013. However, field transplant experimental results suggest that sea-level rise will facilitate crab expansion into higher elevation marsh platforms by inundating and gradually softening now-tough high marsh peat, exposing large areas to crab-driven die-off. Taking interactive effects of marsh softening and concomitant overgrazing into account, we estimate that even modest levels of sea-level rise will lead to levels of salt marsh habitat loss that are 3x greater than the additive effects of sea-level rise and crab-driven die-off would predict. These findings highlight the importance of multiple stressor studies in enhancing mechanistic understanding of ecosystem vulnerabilities to future stress scenarios and encourage managers to focus on ameliorating local stressors to break detrimental synergisms, reduce future ecosystem loss, and enhance ecosystem resilience to global change. PMID:28859097
Multiple stressors and the potential for synergistic loss of New England salt marshes.
Crotty, Sinead M; Angelini, Christine; Bertness, Mark D
2017-01-01
Climate change and other anthropogenic stressors are converging on coastal ecosystems worldwide. Understanding how these stressors interact to affect ecosystem structure and function has immediate implications for coastal planning, however few studies quantify stressor interactions. We examined past and potential future interactions between two leading stressors on New England salt marshes: sea-level rise and marsh crab (Sesarma reticulatum) grazing driven low marsh die-off. Geospatial analyses reveal that crab-driven die-off has led to an order of magnitude more marsh loss than sea-level rise between 2005 and 2013. However, field transplant experimental results suggest that sea-level rise will facilitate crab expansion into higher elevation marsh platforms by inundating and gradually softening now-tough high marsh peat, exposing large areas to crab-driven die-off. Taking interactive effects of marsh softening and concomitant overgrazing into account, we estimate that even modest levels of sea-level rise will lead to levels of salt marsh habitat loss that are 3x greater than the additive effects of sea-level rise and crab-driven die-off would predict. These findings highlight the importance of multiple stressor studies in enhancing mechanistic understanding of ecosystem vulnerabilities to future stress scenarios and encourage managers to focus on ameliorating local stressors to break detrimental synergisms, reduce future ecosystem loss, and enhance ecosystem resilience to global change.
Benchmarking Terrestrial Ecosystem Models in the South Central US
NASA Astrophysics Data System (ADS)
Kc, M.; Winton, K.; Langston, M. A.; Luo, Y.
2016-12-01
Ecosystem services and products are the foundation of sustainability for regional and global economy since we are directly or indirectly dependent on the ecosystem services like food, livestock, water, air, wildlife etc. It has been increasingly recognized that for sustainability concerns, the conservation problems need to be addressed in the context of entire ecosystems. This approach is even more vital in the 21st century with formidable increasing human population and rapid changes in global environment. This study was conducted to find the state of the science of ecosystem models in the South-Central region of US. The ecosystem models were benchmarked using ILAMB diagnostic package developed as a result of International Land Model Benchmarking (ILAMB) project on four main categories; viz, Ecosystem and Carbon Cycle, Hydrology Cycle, Radiation and Energy Cycle and Climate forcings. A cumulative assessment was generated with weighted seven different skill assessment metrics for the ecosystem models. This synthesis on the current state of the science of ecosystem modeling in the South-Central region of US will be highly useful towards coupling these models with climate, agronomic, hydrologic, economic or management models to better represent ecosystem dynamics as affected by climate change and human activities; and hence gain more reliable predictions of future ecosystem functions and service in the region. Better understandings of such processes will increase our ability to predict the ecosystem responses and feedbacks to environmental and human induced change in the region so that decision makers can make an informed management decisions of the ecosystem.
Spatial Assessment of Forest Ecosystem Functions and Services using Human Relating Factors for SDG
NASA Astrophysics Data System (ADS)
Song, C.; Lee, W. K.; Jeon, S. W.; Kim, T.; Lim, C. H.
2015-12-01
Application of ecosystem service concept in environmental related decision making could be numerical and objective standard for policy maker between preserving and developing perspective of environment. However, pursuing maximum benefit from natural capital through ecosystem services caused failure by losing ecosystem functions through its trade-offs. Therefore, difference between ecosystem functions and services were demonstrated and would apply human relating perspectives. Assessment results of ecosystem functions and services can be divided 3 parts. Tree growth per year set as the ecosystem function factor and indicated through so called pure function map. After that, relating functions can be driven such as water conservation, air pollutant purification, climate change regulation, and timber production. Overall process and amount are numerically quantified. These functional results can be transferred to ecosystem services by multiplying economic unit value, so function reflecting service maps can be generated. On the other hand, above services, to implement more reliable human demand, human reflecting service maps are also be developed. As the validation, quantified ecosystem functions are compared with former results through pixel based analysis. Three maps are compared, and through comparing difference between ecosystem function and services and inversed trends in function based and human based service are analysed. In this study, we could find differences in PF, FRS, and HRS in relation to based ecosystem conditions. This study suggests that the differences in PF, FRS, and HRS should be understood in the decision making process for sustainable management of ecosystem services. Although the analysis is based on in sort existing process separation, it is important to consider the possibility of different usage of ecosystem function assessment results and ecosystem service assessment results in SDG policy making. Furthermore, process based functional approach can suggest environmental information which is reflected the other kinds of perspective.
Hisano, Masumi; Searle, Eric B; Chen, Han Y H
2018-02-01
Forest ecosystems are critical to mitigating greenhouse gas emissions through carbon sequestration. However, climate change has affected forest ecosystem functioning in both negative and positive ways, and has led to shifts in species/functional diversity and losses in plant species diversity which may impair the positive effects of diversity on ecosystem functioning. Biodiversity may mitigate climate change impacts on (I) biodiversity itself, as more-diverse systems could be more resilient to climate change impacts, and (II) ecosystem functioning through the positive relationship between diversity and ecosystem functioning. By surveying the literature, we examined how climate change has affected forest ecosystem functioning and plant diversity. Based on the biodiversity effects on ecosystem functioning (B→EF), we specifically address the potential for biodiversity to mitigate climate change impacts on forest ecosystem functioning. For this purpose, we formulate a concept whereby biodiversity may reduce the negative impacts or enhance the positive impacts of climate change on ecosystem functioning. Further B→EF studies on climate change in natural forests are encouraged to elucidate how biodiversity might influence ecosystem functioning. This may be achieved through the detailed scrutiny of large spatial/long temporal scale data sets, such as long-term forest inventories. Forest management strategies based on B→EF have strong potential for augmenting the effectiveness of the roles of forests in the mitigation of climate change impacts on ecosystem functioning. © 2017 Cambridge Philosophical Society.
NASA Astrophysics Data System (ADS)
Ransome, E. J.; Timmers, M.; Hartmann, A.; Collins, A.; Meyer, C.
2016-02-01
Coral reefs harbor diverse and distinct eukaryotic, bacterial and viral communities, which are critically important for their success. The lack of standardized measures for comprehensively assessing reef diversity has been a major obstacle in understanding the complexity of eukaryotic and microbial associations, and the processes that drive ecosystem shifts on reefs. ARMS, which mimic the structural complexity of the reef using artificial settlement plates, were used to systematically measure reef biodiversity across the Indo-Pacific. This device allows for standardized sampling of reef microbes to metazoans, providing the opportunity to investigate the fundamental links between these groups at an ecosystem level. We integrate the use of traditional ecology methods with metagenomics and metabolomics (metabolic predictors) to quantify the taxonomic composition of one of the planet's most diverse ecosystems and to assess the fundamental links between these cryptic communities and ecosystem function along geographical and anthropogenic stress gradients.
Could ecosystem management provide a new framework for Alzheimer's disease?
Hubin, Ellen; Vanschoenwinkel, Bram; Broersen, Kerensa; De Deyn, Peter P; Koedam, Nico; van Nuland, Nico A; Pauwels, Kris
2016-01-01
Alzheimer's disease (AD) is a progressive neurodegenerative brain disorder that involves a plethora of molecular pathways. In the context of therapeutic treatment and biomarker profiling, the amyloid-beta (Aβ) peptide constitutes an interesting research avenue that involves interactions within a complex mixture of Aβ alloforms and other disease-modifying factors. Here, we explore the potential of an ecosystem paradigm as a novel way to consider AD and Aβ dynamics in particular. We discuss the example that the complexity of the Aβ network not only exhibits interesting parallels with the functioning of complex systems such as ecosystems but that this analogy can also provide novel insights into the neurobiological phenomena in AD and serve as a communication tool. We propose that combining network medicine with general ecosystem management principles could be a new and holistic approach to understand AD pathology and design novel therapies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Morioka, Yusuke; Everroad, R. Craig; Shino, Amiu; Matsushima, Akihiro; Haruna, Hideaki; Moriya, Shigeharu; Toyoda, Tetsuro; Kikuchi, Jun
2012-01-01
Ecosystems can be conceptually thought of as interconnected environmental and metabolic systems, in which small molecules to macro-molecules interact through diverse networks. State-of-the-art technologies in post-genomic science offer ways to inspect and analyze this biomolecular web using omics-based approaches. Exploring useful genes and enzymes, as well as biomass resources responsible for anabolism and catabolism within ecosystems will contribute to a better understanding of environmental functions and their application to biotechnology. Here we present ECOMICS, a suite of web-based tools for ECosystem trans-OMICS investigation that target metagenomic, metatranscriptomic, and meta-metabolomic systems, including biomacromolecular mixtures derived from biomass. ECOMICS is made of four integrated webtools. E-class allows for the sequence-based taxonomic classification of eukaryotic and prokaryotic ribosomal data and the functional classification of selected enzymes. FT2B allows for the digital processing of NMR spectra for downstream metabolic or chemical phenotyping. Bm-Char allows for statistical assignment of specific compounds found in lignocellulose-based biomass, and HetMap is a data matrix generator and correlation calculator that can be applied to trans-omics datasets as analyzed by these and other web tools. This web suite is unique in that it allows for the monitoring of biomass metabolism in a particular environment, i.e., from macromolecular complexes (FT2DB and Bm-Char) to microbial composition and degradation (E-class), and makes possible the understanding of relationships between molecular and microbial elements (HetMap). This website is available to the public domain at: https://database.riken.jp/ecomics/. PMID:22319563
Leaf bacterial diversity mediates plant diversity and ecosystem function relationships.
Laforest-Lapointe, Isabelle; Paquette, Alain; Messier, Christian; Kembel, Steven W
2017-06-01
Research on biodiversity and ecosystem functioning has demonstrated links between plant diversity and ecosystem functions such as productivity. At other trophic levels, the plant microbiome has been shown to influence host plant fitness and function, and host-associated microbes have been proposed to influence ecosystem function through their role in defining the extended phenotype of host organisms However, the importance of the plant microbiome for ecosystem function has not been quantified in the context of the known importance of plant diversity and traits. Here, using a tree biodiversity-ecosystem functioning experiment, we provide strong support for the hypothesis that leaf bacterial diversity is positively linked to ecosystem productivity, even after accounting for the role of plant diversity. Our results also show that host species identity, functional identity and functional diversity are the main determinants of leaf bacterial community structure and diversity. Our study provides evidence of a positive correlation between plant-associated microbial diversity and terrestrial ecosystem productivity, and a new mechanism by which models of biodiversity-ecosystem functioning relationships can be improved.
Forest dynamics following eastern hemlock mortality in the southern Appalachians
Chelcy R. Ford; Katherine J. Elliott; Barton D. Clinton; Brian D. Kloeppel; James M. Vose
2011-01-01
Understanding changes in community composition caused by invasive species is critical for predicting effects on ecosystem function, particularly when the invasive threatens a foundation species. Here we focus on dynamics of forest structure, composition and microclimate, and how these interact in southern Appalachian riparian forests following invasion by hemlock...
USDA-ARS?s Scientific Manuscript database
Satellite remote sensing provides unmatched spatiotemporal information on vegetation gross primary productivity (GPP). Yet, understanding of the relationship between GPP and remote sensing observations and how it changes as a function of factors such as scale, biophysical constraint, and vegetation ...
Housing is positively associated with invasive exotic plant species richness in New England, USA
Gregorio I. Gavier-Pizarro; Volker C. Radeloff; Susan I. Stewart; Cynthia D. Huebner; Nicholas S. Keuler
2010-01-01
Understanding the factors related to invasive exotic species distributions at broad spatial scales has important theoretical and management implications, because biological invasions are detrimental to many ecosystem functions and processes. Housing development facilitates invasions by disturbing land cover, introducing nonnative landscaping plants, and facilitating...
Natural and anthropogenic stress negatively impact seagrass production and ecosystem function. Our goal is to better understand seagrass response to reduced light, nutrient and organic loading at a variety of ecological scales (individual to landscape) in order to help develop p...
Managing a Watershed Monitoring Project with Innovative Data Telemetry and Communications Software
In collaboration with Clermont County, the U.S. EPA is developing watershed-wide load and transport models to better understand environmental stressors in stream flow and the structure and function of stream ecosystems in the tributaries of the Lower East Fork River. Watershed s...
Managing a Watershed Monitoring Project with Innovative Data Telemetry and Communications Software
In collaboration with Clermont County, the U.S. EPA is developing watershed-wide load and transport models to better understand environmental stressors in stream flow and the structure and function of stream ecosystems in the tributaries of the Lower East Fork River. Watershed se...
Méndez, Verónica; Wood, Jamie R; Butler, Simon J
2018-05-01
Functional diversity metrics are increasingly used to augment or replace taxonomic diversity metrics to deliver more mechanistic insights into community structure and function. Metrics used to describe landscape structure and characteristics share many of the same limitations as taxonomy-based metrics, particularly their reliance on anthropogenically defined typologies with little consideration of structure, management, or function. However, the development of alternative metrics to describe landscape characteristics has been limited. Here, we extend the functional diversity framework to characterize landscapes based on the diversity of resources available across habitats present. We then examine the influence of resource diversity and provenance on the functional diversities of native and exotic avian communities in New Zealand. Invasive species are increasingly prevalent and considered a global threat to ecosystem function, but the characteristics of and interactions between sympatric native and exotic communities remain unresolved. Understanding their comparative responses to environmental change and the mechanisms underpinning them is of growing importance in predicting community dynamics and changing ecosystem function. We use (i) matrices of resource use (species) and resource availability (habitats) and (ii) occurrence data for 62 native and 25 exotic species and 19 native and 13 exotic habitats in 2015 10 × 10 km quadrats to examine the relationship between native and exotic avian and landscape functional diversity. The numbers of species in, and functional diversities of, native and exotic communities were positively related. Each community displayed evidence of environmental filtering, but it was significantly stronger for exotic species. Less environmental filtering occurred in landscapes providing a more diverse combination of resources, with resource provenance also an influential factor. Landscape functional diversity explained a greater proportion of variance in native and exotic community characteristics than the number of habitat types present. Resource diversity and provenance should be explicitly accounted for when characterizing landscape structure and change as they offer additional mechanistic understanding of the links between environmental filtering and community structure. Manipulating resource diversity through the design and implementation of management actions could prove a powerful tool for the delivery of conservation objectives, be they to protect native species, control exotic species, or maintain ecosystem service provision.
Effect of antecedent terrestrial land-use on C and N cycling in created wetlands
NASA Astrophysics Data System (ADS)
McCalley, C. K.; Al Graiti, T.; Williams, T.; Huang, S.; McGowan, M. B.; Eddingsaas, N. C.; Tyler, A. C.
2017-12-01
Land-use legacies and their interaction with both management actions and climate variability has a poorly characterized impact on the development of ecosystem functions and the trajectory of climate-carbon feedbacks. The complex structure-function relationships in wetlands foster delivery of valuable, climate sensitive, ecosystem services (carbon sequestration, nutrient removal, flood control, etc.) but also make them susceptible to colonization by invasive plants and lead to emission of key greenhouse gases. This project uses created wetland ecosystems as a model to understand how heterogeneity in antecedent conditions interacts with management options to create unique structure-function scenarios and a range of climate feedback outcomes. We utilized ongoing experiments in created wetlands that differ in antecedent conditions (crop agriculture, livestock grazing) and investigated how management options (invasive species removal, organic matter addition) interact with legacy impacts to promote key ecosystem functions, including greenhouse gas emissions, carbon sequestration, denitrification and plant biodiversity. The effects of antecedent land-use on soil chemistry, coupled with hydrologic patterns resulted in wetlands with divergent C and N dynamics despite their similar creation history. Additionally, the occurrence of extreme weather events (drought and excessive flooding) during the study period highlighted the overarching role that increased climate variability will play in determining key ecosystem processes in wetlands. Responses to management were linked to hydro-period: while organic matter addition successfully increased soil organic matter to more closely replicate natural systems at all sites, it had the largest impact on C and N cycling when soils were saturated. Overall, environmental conditions that promoted saturated soils, both those shaped by human activities or climate extremes, enhanced primary productivity, nutrient removal and greenhouse gas production as well as decreased soil respiration.
Habitat suitability and ecological niches of different plankton functional types in the global ocean
NASA Astrophysics Data System (ADS)
Vogt, Meike; Brun, Philipp; Payne, Mark R.; O'Brien, Colleen J.; Bednaršek, Nina; Buitenhuis, Erik T.; Doney, Scott C.; Leblanc, Karine; Le Quéré, Corinne; Luo, Yawei; Moriarty, Róisín; O'Brien, Todd D.; Schiebel, Ralf; Swan, Chantal
2013-04-01
Marine plankton play a central role in the biogeochemical cycling of important elements such as carbon, nitrogen, and sulphur. While our knowledge about marine ecosystem structure and functioning is still scarce and episodic, several recent observational studies confirm that marine ecosystems have been changing due to recent climate change, overfishing, and coastal eutrophication. In order to better understand marine ecosystem dynamics, the MAREDAT initiative has recently collected abundance and biomass data for 5 autotrophic (diatoms, Phaeocystis, coccolithophores, nitrogen fixers, picophytoplankton), and 6 heterotrophic plankton functional types (PFTs; bacteria, micro-, meso- and macrozooplankton, foraminifera and pteropods). Species distribution models (SDMs) are statistical tools that can be used to derive information about species habitats in space and time. They have been used extensively for a wide range of ecological applications in terrestrial ecosystems, but here we present the first global application in the marine realm, which was made possible by the MAREDAT data synthesis effort. We use a maximum entropy SDM to simulate global habitat suitability, habitat extent and ecological niches for different PFTs in the modern ocean. Present habitat suitability is derived from presence-only MAREDAT data and the observed annual and monthly mean levels of physiologically relevant variables such as SST, nutrient concentration or photosynthetic active radiation received in the mixed layer. This information can then be used to derive ecological niches for different species or taxa within each PFT, and to compare the ecological niches of different PFTs. While these results still need verification because data was not available for all ocean regions for all PFTs, they can give a first indication what present and future plankton habitats may look like, and what consequences we may have to expect for future marine ecosystem functioning and service provision in a warmer world.
Lopez, C.B.; Cloern, J.E.; Schraga, T.S.; Little, A.J.; Lucas, L.V.; Thompson, J.K.; Burau, J.R.
2006-01-01
A presumed value of shallow-habitat enhanced pelagic productivity derives from the principle that in nutrient-rich aquatic systems phytoplankton growth rate is controlled by light availability, which varies inversely with habitat depth. We measured a set of biological indicators across the gradient of habitat depth within the Sacramento-San Joaquin River Delta (California) to test the hypothesis that plankton biomass, production, and pelagic energy flow also vary systematically with habitat depth. Results showed that phytoplankton biomass and production were only weakly related to phytoplankton growth rates whereas other processes (transport, consumption) were important controls. Distribution of the invasive clam Corbicula fluminea was patchy, and heavily colonized habitats all supported low phytoplankton biomass and production and functioned as food sinks. Surplus primary production in shallow, uncolonized habitats provided potential subsidies to neighboring recipient habitats. Zooplankton in deeper habitats, where grazing exceeded phytoplankton production, were likely supported by significant fluxes of phytoplankton biomass from connected donor habitats. Our results provide three important lessons for ecosystem science: (a) in the absence of process measurements, derived indices provide valuable information to improve our mechanistic understanding of ecosystem function and to benefit adaptive management strategies; (b) the benefits of some ecosystem functions are displaced by water movements, so the value of individual habitat types can only be revealed through a regional perspective that includes connectedness among habitats; and (c) invasive species can act as overriding controls of habitat function, adding to the uncertainty of management outcomes. ?? 2006 Springer Science+Business Media, Inc.
Climate change, cranes, and temperate floodplain ecosystems
King, Sammy L.
2010-01-01
Floodplain ecosystems provide important habitat to cranes globally. Lateral, longitudinal, vertical, and temporal hydrologic connectivity in rivers is essential to maintaining the functions and values of these systems. Agricultural development, flood control, water diversions, dams, and other anthropogenic activities have greatly affected hydrologic connectivity of river systems worldwide and altered the functional capacity of these systems. Although the specific effects of climate change in any given area are unknown, increased intensity and frequency of flooding and droughts and increased air and water temperatures are among many potential effects that can act synergistically with existing human modifications in these systems to create even greater challenges in maintaining ecosystem productivity. In this paper, I review basic hydrologic and geomorphic processes of river systems and use three North American rivers (Guadalupe, Platte, and Rio Grande) that are important to cranes as case studies to illustrate the challenges facing managers tasked with balancing the needs of cranes and people in the face of an uncertain climatic future. Each river system has unique natural and anthropogenic characteristics that will affect conservation strategies. Mitigating the effects of climate change on river systems necessitates an understanding of river/floodplain/landscape linkages, which include people and their laws as well as existing floodplain ecosystem conditions.
Fire in Australian savannas: from leaf to landscape
Beringer, Jason; Hutley, Lindsay B; Abramson, David; Arndt, Stefan K; Briggs, Peter; Bristow, Mila; Canadell, Josep G; Cernusak, Lucas A; Eamus, Derek; Edwards, Andrew C; Evans, Bradley J; Fest, Benedikt; Goergen, Klaus; Grover, Samantha P; Hacker, Jorg; Haverd, Vanessa; Kanniah, Kasturi; Livesley, Stephen J; Lynch, Amanda; Maier, Stefan; Moore, Caitlin; Raupach, Michael; Russell-Smith, Jeremy; Scheiter, Simon; Tapper, Nigel J; Uotila, Petteri
2015-01-01
Savanna ecosystems comprise 22% of the global terrestrial surface and 25% of Australia (almost 1.9 million km2) and provide significant ecosystem services through carbon and water cycles and the maintenance of biodiversity. The current structure, composition and distribution of Australian savannas have coevolved with fire, yet remain driven by the dynamic constraints of their bioclimatic niche. Fire in Australian savannas influences both the biophysical and biogeochemical processes at multiple scales from leaf to landscape. Here, we present the latest emission estimates from Australian savanna biomass burning and their contribution to global greenhouse gas budgets. We then review our understanding of the impacts of fire on ecosystem function and local surface water and heat balances, which in turn influence regional climate. We show how savanna fires are coupled to the global climate through the carbon cycle and fire regimes. We present new research that climate change is likely to alter the structure and function of savannas through shifts in moisture availability and increases in atmospheric carbon dioxide, in turn altering fire regimes with further feedbacks to climate. We explore opportunities to reduce net greenhouse gas emissions from savanna ecosystems through changes in savanna fire management. PMID:25044767
McKey, Doyle; Rostain, Stéphen; Iriarte, José; Glaser, Bruno; Birk, Jago Jonathan; Holst, Irene; Renard, Delphine
2010-04-27
The scale and nature of pre-Columbian human impacts in Amazonia are currently hotly debated. Whereas pre-Columbian people dramatically changed the distribution and abundance of species and habitats in some parts of Amazonia, their impact in other parts is less clear. Pioneer research asked whether their effects reached even further, changing how ecosystems function, but few in-depth studies have examined mechanisms underpinning the resilience of these modifications. Combining archeology, archeobotany, paleoecology, soil science, ecology, and aerial imagery, we show that pre-Columbian farmers of the Guianas coast constructed large raised-field complexes, growing on them crops including maize, manioc, and squash. Farmers created physical and biogeochemical heterogeneity in flat, marshy environments by constructing raised fields. When these fields were later abandoned, the mosaic of well-drained islands in the flooded matrix set in motion self-organizing processes driven by ecosystem engineers (ants, termites, earthworms, and woody plants) that occur preferentially on abandoned raised fields. Today, feedbacks generated by these ecosystem engineers maintain the human-initiated concentration of resources in these structures. Engineer organisms transport materials to abandoned raised fields and modify the structure and composition of their soils, reducing erodibility. The profound alteration of ecosystem functioning in these landscapes coconstructed by humans and nature has important implications for understanding Amazonian history and biodiversity. Furthermore, these landscapes show how sustainability of food-production systems can be enhanced by engineering into them follows that maintain ecosystem services and biodiversity. Like anthropogenic dark earths in forested Amazonia, these self-organizing ecosystems illustrate the ecological complexity of the legacy of pre-Columbian land use.
McKey, Doyle; Rostain, Stéphen; Iriarte, José; Glaser, Bruno; Birk, Jago Jonathan; Holst, Irene; Renard, Delphine
2010-01-01
The scale and nature of pre-Columbian human impacts in Amazonia are currently hotly debated. Whereas pre-Columbian people dramatically changed the distribution and abundance of species and habitats in some parts of Amazonia, their impact in other parts is less clear. Pioneer research asked whether their effects reached even further, changing how ecosystems function, but few in-depth studies have examined mechanisms underpinning the resilience of these modifications. Combining archeology, archeobotany, paleoecology, soil science, ecology, and aerial imagery, we show that pre-Columbian farmers of the Guianas coast constructed large raised-field complexes, growing on them crops including maize, manioc, and squash. Farmers created physical and biogeochemical heterogeneity in flat, marshy environments by constructing raised fields. When these fields were later abandoned, the mosaic of well-drained islands in the flooded matrix set in motion self-organizing processes driven by ecosystem engineers (ants, termites, earthworms, and woody plants) that occur preferentially on abandoned raised fields. Today, feedbacks generated by these ecosystem engineers maintain the human-initiated concentration of resources in these structures. Engineer organisms transport materials to abandoned raised fields and modify the structure and composition of their soils, reducing erodibility. The profound alteration of ecosystem functioning in these landscapes coconstructed by humans and nature has important implications for understanding Amazonian history and biodiversity. Furthermore, these landscapes show how sustainability of food-production systems can be enhanced by engineering into them fallows that maintain ecosystem services and biodiversity. Like anthropogenic dark earths in forested Amazonia, these self-organizing ecosystems illustrate the ecological complexity of the legacy of pre-Columbian land use. PMID:20385814
NASA Astrophysics Data System (ADS)
Geers, T. M.; Pikitch, E. K.; Frisk, M. G.
2016-07-01
The Gulf of Mexico (GoM) is a valuable ecosystem both socially and economically, and fisheries contribute substantially to this value. Gulf menhaden, Brevoortia patronus, support the largest fishery in the Gulf (by weight) and provide forage for marine mammals, seabirds and commercially and recreationally important fish species. Understanding the complex interactions among multiple fisheries and myriad unfished species requires tools different from those used in traditional single-species management. One such tool, Ecopath with Ecosim (EwE) is increasingly being used to construct food web models of aquatic ecosystems and to evaluate fisheries management options within a broader, ecosystem context. Here, an EwE model was developed to examine the impact of Gulf fisheries on ecosystem structure and maturity. This model builds on previously published EwE models of the GoM, and is tailored to the range and habitat of Gulf menhaden. The model presented here consists of 47 functional groups, including 4 seabird groups, 1 marine mammal group, 3 elasmobranch groups, 26 bony fish groups, 9 invertebrate groups, 3 primary producer groups and 1 detritus group. A number of different management scenarios for Gulf fisheries were modeled and the results were evaluated in terms of impacts on ecosystem maturity and development. The results of the model simulations indicated that the northern Gulf of Mexico is in an immature state (sensuOdum, 1969). Management scenarios that increased fishing pressure over time consistently resulted in a decrease in the maturity indices. In particular, we found that Gulf menhaden, as a key forage fish in the ecosystem, plays a substantial role in the structure and functioning of the ecosystem.
NASA Astrophysics Data System (ADS)
Fisher, J. B.; Stavros, E. N.; Pavlick, R.; Hook, S. J.; Eldering, A.; Dubayah, R.; Schimel, D.
2016-12-01
Terrestrial ecosystems can be described in terms of trait composition, physiological function, and physical structure; all three of these are observable remotely to varying degrees. Yet, no mission is able to singularly capture all three together, thus inhibiting our ability to dynamically measure and describe ecosystems as holistic, integrated, and interconnected entities. The International Space Station (ISS) is a new platform for global ecology. The variable overpass time offers a key advantage to investigations interested in sampling over the diurnal cycle, critical to understanding ecosystem function. The ISS also offers another key advantage—financial; it is already there with funded astronaut cargo re-supply missions, so the cost of launch and platform do not need to be added onto new science missions, thereby enabling NASA to select more missions at lower costs. In 2018, NASA will begin sending a series of independently-selected missions to the ISS focused on terrestrial ecosystems. First, ECOSTRESS will produce thermal-based evapotranspiration (ET) data, among other products. OCO-3 will arrive a few months later to measure chlorophyll fluorescence (related to gross primary production, GPP) and atmospheric CO2. Finally, GEDI will produce LiDAR-based ecosystem structure (height, leaf area index, biomass). While each mission is independently developed and funded, the respective mission scientists are working together to bridge observations and leverage their unique contemporaneous and synergistic value for global ecology. A composition-based mission is still missing from the ISS, but airborne and other space agency missions may be leveraged. This talk will describe these ISS-based terrestrial ecosystem science missions, and discuss synergies that will enable the study of ecosystems as a whole that is larger than the sum of their parts.
Large-scale degradation of Amazonian freshwater ecosystems.
Castello, Leandro; Macedo, Marcia N
2016-03-01
Hydrological connectivity regulates the structure and function of Amazonian freshwater ecosystems and the provisioning of services that sustain local populations. This connectivity is increasingly being disrupted by the construction of dams, mining, land-cover changes, and global climate change. This review analyzes these drivers of degradation, evaluates their impacts on hydrological connectivity, and identifies policy deficiencies that hinder freshwater ecosystem protection. There are 154 large hydroelectric dams in operation today, and 21 dams under construction. The current trajectory of dam construction will leave only three free-flowing tributaries in the next few decades if all 277 planned dams are completed. Land-cover changes driven by mining, dam and road construction, agriculture and cattle ranching have already affected ~20% of the Basin and up to ~50% of riparian forests in some regions. Global climate change will likely exacerbate these impacts by creating warmer and dryer conditions, with less predictable rainfall and more extreme events (e.g., droughts and floods). The resulting hydrological alterations are rapidly degrading freshwater ecosystems, both independently and via complex feedbacks and synergistic interactions. The ecosystem impacts include biodiversity loss, warmer stream temperatures, stronger and more frequent floodplain fires, and changes to biogeochemical cycles, transport of organic and inorganic materials, and freshwater community structure and function. The impacts also include reductions in water quality, fish yields, and availability of water for navigation, power generation, and human use. This degradation of Amazonian freshwater ecosystems cannot be curbed presently because existing policies are inconsistent across the Basin, ignore cumulative effects, and overlook the hydrological connectivity of freshwater ecosystems. Maintaining the integrity of these freshwater ecosystems requires a basinwide research and policy framework to understand and manage hydrological connectivity across multiple spatial scales and jurisdictional boundaries. © 2015 John Wiley & Sons Ltd.
Euliss, Ned H.; Mushet, David M.; Smith, Loren M.; Conner, William H.; Burkett, Virginia R.; Wilcox, Douglas A.; Hester, Mark W.; Zheng, Haochi
2013-01-01
In the late nineteenth century and twentieth century, there was considerable interest and activity to develop the United States for agricultural, mining, and many other purposes to improve the quality of human life standards and prosperity. Most of the work to support this development was focused along disciplinary lines with little attention focused on ecosystem service trade-offs or synergisms, especially those that transcended boundaries of scientific disciplines and specific interest groups. Concurrently, human population size has increased substantially and its use of ecosystem services has increased more than five-fold over just the past century. Consequently, the contemporary landscape has been highly modified for human use, leaving behind a fragmented landscape where basic ecosystem functions and processes have been broadly altered. Over this period, climate change also interacted with other anthropogenic effects, resulting in modern environmental problems having a complexity that is without historical precedent. The challenge before the scientific community is to develop new science paradigms that integrate relevant scientific disciplines to properly frame and evaluate modern environmental problems in a systems-type approach to better inform the decision-making process. Wetland science is a relatively new discipline that grew out of the conservation movement of the early twentieth century. In the United States, most of the conservation attention in the earlier days was on wildlife, but a growing human awareness of the importance of the environment led to the passage of the National Environmental Policy Act in 1969. Concurrently, there was a broadening interest in conservation science, and the scientific study of wetlands gradually gained acceptance as a scientific discipline. Pioneering wetland scientists became formally organized when they formed The Society of Wetland Scientists in 1980 and established a publication outlet to share wetland research findings. In comparison to older and more traditional scientific disciplines, the wetland sciences may be better equipped to tackle today’s complex problems. Since its emergence as a scientific discipline, the study of wetlands has frequently required interdisciplinary and integrated approaches. This interdisciplinary/integrated approach is largely the result of the fact that wetlands cannot be studied in isolation of upland areas that contribute surface and subsurface water, solutes, sediments, and nutrients into wetland basins. However, challenges still remain in thoroughly integrating the wetland sciences with scientific disciplines involved in upland studies, especially those involved with agriculture, development, and other land-conversion activities that influence wetland hydrology, chemistry, and sedimentation. One way to facilitate this integration is to develop an understanding of how human activities affect wetland ecosystem services, especially the trade-offs and synergisms that occur when land-use changes are made. Used in this context, an understanding of the real costs of managing for a particular ecosystem service or groups of services can be determined and quantified in terms of reduced delivery of other services and in overall sustainability of the wetland and the landscapes that support them. In this chapter, we discuss some of the more salient aspects of a few common wetland types to give the reader some background on the diversity of functions that wetlands perform and the specific ecosystem services they provide to society. Wetlands are among the most complex ecosystems on the planet, and it is often difficult to communicate to a diverse public all of the positive services wetlands provide to mankind. Our goal is to help the reader develop an understanding that management options can be approached as societal choices where decisions can be made within a spatial and temporal context to identify trade-offs, synergies, and effects on long-term sustainability of wetland ecosystems. This will be especially relevant as we move into alternate climate futures where our portfolio of management options for mitigating damage to ecosystem function or detrimental cascading effects must be diverse and effective.
Parr, T W; Sier, A R J; Battarbee, R W; Mackay, A; Burgess, J
2003-07-01
Widespread concern over the state of the environment and the impacts of anthropogenic activities on ecosystem services and functions has highlighted the need for high-quality, long-term datasets for detecting and understanding environmental change. In July 2001, an international conference reviewed progress in the field of long-term ecosystem research and monitoring (LTERM). Examples are given which demonstrate the need for long-term environmental monitoring and research, for palaeoecological reconstructions of past environments and for applied use of historical records that inform us of past environmental conditions. LTERM approaches are needed to provide measures of baseline conditions and for informing decisions on ecosystem management and environmental policy formulation. They are also valuable in aiding the understanding of the processes of environmental change, including the integrated effects of natural and anthropogenic drivers and pressures, recovery from stress and resilience of species, populations, communities and ecosystems. The authors argue that, in order to realise the full potential of LTERM approaches, progress must be made in four key areas: (i) increase the number, variety and scope of LTERM activities to help define the operational range of ecosystems; (ii) greater integration of research, monitoring, modelling, palaeoecological reconstruction and remote sensing to create a broad-scale early warning system of environmental change; (iii) development of inter-disciplinary approaches which draw upon social and environmental science expertise to understand the factors determining the vulnerability and resilience of the nature-society system to change; and (iv) more and better use of LTERM data and information to inform the public and policymakers and to provide guidance on sustainable development.
Cloud shading and fog drip influence the metabolism of a coastal pine ecosystem.
Carbone, Mariah S; Park Williams, A; Ambrose, Anthony R; Boot, Claudia M; Bradley, Eliza S; Dawson, Todd E; Schaeffer, Sean M; Schimel, Joshua P; Still, Christopher J
2013-02-01
Assessing the ecological importance of clouds has substantial implications for our basic understanding of ecosystems and for predicting how they will respond to a changing climate. This study was conducted in a coastal Bishop pine forest ecosystem that experiences regular cycles of stratus cloud cover and inundation in summer. Our objective was to understand how these clouds impact ecosystem metabolism by contrasting two sites along a gradient of summer stratus cover. The site that was under cloud cover ~15% more of the summer daytime hours had lower air temperatures and evaporation rates, higher soil moisture content, and received more frequent fog drip inputs than the site with less cloud cover. These cloud-driven differences in environmental conditions translated into large differences in plant and microbial activity. Pine trees at the site with greater cloud cover exhibited less water stress in summer, larger basal area growth, and greater rates of sap velocity. The difference in basal area growth between the two sites was largely due to summer growth. Microbial metabolism was highly responsive to fog drip, illustrated by an observed ~3-fold increase in microbial biomass C with increasing summer fog drip. In addition, the site with more cloud cover had greater total soil respiration and a larger fractional contribution from heterotrophic sources. We conclude that clouds are important to the ecological functioning of these coastal forests, providing summer shading and cooling that relieve pine and microbial drought stress as well as regular moisture inputs that elevate plant and microbial metabolism. These findings are important for understanding how these and other seasonally dry coastal ecosystems will respond to predicted changes in stratus cover, rainfall, and temperature. © 2012 Blackwell Publishing Ltd.
Using stable isotopes to resolve eco-hydrological dynamics of soil-plant-atmosphere feedbacks
NASA Astrophysics Data System (ADS)
Dubbert, M.; Piayda, A.; Kübert, A.; Cuntz, M.; Werner, C.
2016-12-01
Water is the main driver of ecosystem productivity in most terrestrial ecosystems worldwide. Extreme events are predicted to increase in frequency in many regions and dynamic responses in soil-vegetation-atmosphere feedbacks play a privotal role in understanding the ecosystem water balance and functioning. In this regard, more interdisciplinary approaches, bridging hydrology, ecophysiology and atmospheric sciences are needed and particularly water stable isotopes are a powerful tracer of water transfer in soils and at the soil-plant interface (Werner and Dubbert 2016). Here, we present observations 2 different ecosystems. Water fluxes, atmospheric concentrations and their isotopic compositions were measured using laser spectroscopy. Soil moisture and its isotopic composition in several depths as well as further water sources in the ecosystem were monitored throughout the year. Using these isotopic approaches we disentangled soil-plant-atmosphere feedback processes controlling the ecosystem water cycle including vegetation effects on soil water infiltration and distribution, event water use of vegetation and soil fluxes, vegetational soil water uptake depths plasticity and partitioning of ecosystem water fluxes. In this regard, we review current strategies of ET partitioning and highlight pitfalls in the presented strategies (Dubbert et al. 2013, Dubbert et al.2014a). We demonstrate that vegetation strongly influenced water cycling, altering infiltration and distribution of precipitation. In conclusion, application of stable water isotope tracers delivers a process based understanding of interactions between soil, understorey and trees governing ecosystem water cycling necessary for prediction of climate change impact on ecosystem productivity and vulnerability. ReferencesDubbert, M. et al. (2013): Partitioning evapotranspiration - Testing the Craig and Gordon model with field measurements of oxygen isotope ratios of evaporative fluxes. Journal of Hydrology Dubbert, M. et al. (2014a): Oxygen isotope signatures of transpired water vapor: the role of isotopic non-steady-state transpiration under natural conditions. New Phytologist. Werner, C. and Dubbert, M. (2016): Resolving rapid dynamics of soil-plant-atmosphere interactions. New Phytologist.
NASA Astrophysics Data System (ADS)
Scott, R. L.; Biederman, J.; Barron-Gafford, G.; Hamerlynck, E. P.
2015-12-01
Global-scale studies indicate that semiarid ecosystems strongly regulate the long-term trend and interannual variability of the terrestrial carbon sink, possibly due to changes in vegetation and an inherent sensitivity to changes in water availability. However, we lack understanding of how climate shifts, such as the ongoing decadal-scale drought in the Southwest US, impact carbon sink functioning in semiarid ecosystems with differing structure. Therefore, we investigated the response of net ecosystem production of carbon dioxide (NEP) to changes in annual water availability in four Southwest US ecosystems varying in relative shrub, tree and grass abundance. Using eddy covariance carbon dioxide and water vapor flux measurements collected over the last drought-impacted decade, we identified a precipitation "pivot point" in the annual carbon balance for each ecosystem type where annual NEP switched from negative to positive. At the three sites with larger amounts of grass, rather than woody plant, cover, pivot points were closer to the drought-period mean annual precipitation (MAP) than MAP over the preceding 30 years, suggesting the carbon pools of these grassier ecosystems have more quickly adjusted to the decadal-scale drought. Current-year water availability, as quantified by evapotranspiration (ET) overwhelmingly drove the response of gross ecosystem photosynthesis (GEP) and respiration (Reco) fluxes. Ecosystem water use efficiency (GEP/ET) increased with water availability and leaf area index, resulting in a more efficient photosynthetic use of water in wetter years and at wetter sites. Grasslands supported a higher leaf area than shrublands at a given water availability, and thus had higher GEP/ET. Differences in GEP/ET were also related to the relative proportion of abiotic evaporation, estimated from the ET intercept in a linear regression of ET and GEP, to total ET at a site, highlighting the importance of ET partitioning for understanding how semiarid rainfall drives plant productivity.
Aerosols in atmospheric chemistry and biogeochemical cycles of nutrients
NASA Astrophysics Data System (ADS)
Kanakidou, Maria; Myriokefalitakis, Stelios; Tsigaridis, Kostas
2018-06-01
Atmospheric aerosols have complex and variable compositions and properties. While scientific interest is centered on the health and climatic effects of atmospheric aerosols, insufficient attention is given to their involvement in multiphase chemistry that alters their contribution as carriers of nutrients in ecosystems. However, there is experimental proof that the nutrient equilibria of both land and marine ecosystems have been disturbed during the Anthropocene period. This review study first summarizes our current understanding of aerosol chemical processing in the atmosphere as relevant to biogeochemical cycles. Then it binds together results of recent modeling studies based on laboratory and field experiments, focusing on the organic and dust components of aerosols that account for multiphase chemistry, aerosol ageing in the atmosphere, nutrient (N, P, Fe) emissions, atmospheric transport, transformation and deposition. The human-driven contribution to atmospheric deposition of these nutrients, derived by global simulations using past and future anthropogenic emissions of pollutants, is put into perspective with regard to potential changes in nutrient limitations and biodiversity. Atmospheric deposition of nutrients has been suggested to result in human-induced ecosystem limitations with regard to specific nutrients. Such modifications favor the development of certain species against others and affect the overall functioning of ecosystems. Organic forms of nutrients are found to contribute to the atmospheric deposition of the nutrients N, P and Fe by 20%–40%, 35%–45% and 7%–18%, respectively. These have the potential to be key components of the biogeochemical cycles since there is initial proof of their bioavailability to ecosystems. Bioaerosols have been found to make a significant contribution to atmospheric sources of N and P, indicating potentially significant interactions between terrestrial and marine ecosystems. These results deserve further experimental and modeling studies to reduce uncertainties and understand the feedbacks induced by atmospheric deposition of nutrients to ecosystems.
Global environmental change effects on ecosystems: the importance of land-use legacies.
Perring, Michael P; De Frenne, Pieter; Baeten, Lander; Maes, Sybryn L; Depauw, Leen; Blondeel, Haben; Carón, María M; Verheyen, Kris
2016-04-01
One of the major challenges in ecology is to predict how multiple global environmental changes will affect future ecosystem patterns (e.g. plant community composition) and processes (e.g. nutrient cycling). Here, we highlight arguments for the necessary inclusion of land-use legacies in this endeavour. Alterations in resources and conditions engendered by previous land use, together with influences on plant community processes such as dispersal, selection, drift and speciation, have steered communities and ecosystem functions onto trajectories of change. These trajectories may be modulated by contemporary environmental changes such as climate warming and nitrogen deposition. We performed a literature review which suggests that these potential interactions have rarely been investigated. This crucial oversight is potentially due to an assumption that knowledge of the contemporary state allows accurate projection into the future. Lessons from other complex dynamic systems, and the recent recognition of the importance of previous conditions in explaining contemporary and future ecosystem properties, demand the testing of this assumption. Vegetation resurvey databases across gradients of land use and environmental change, complemented by rigorous experiments, offer a means to test for interactions between land-use legacies and multiple environmental changes. Implementing these tests in the context of a trait-based framework will allow biologists to synthesize compositional and functional ecosystem responses. This will further our understanding of the importance of land-use legacies in determining future ecosystem properties, and soundly inform conservation and restoration management actions. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Saint-Béat, Blanche; Maps, Frédéric; Babin, Marcel
2018-01-01
The extreme and variable environment shapes the functioning of Arctic ecosystems and the life cycles of its species. This delicate balance is now threatened by the unprecedented pace and magnitude of global climate change and anthropogenic pressure. Understanding the long-term consequences of these changes remains an elusive, yet pressing, goal. Our work was specifically aimed at identifying which biological processes impact Arctic planktonic ecosystem functioning, and how. Ecological Network Analysis (ENA) indices reveal emergent ecosystem properties that are not accessible through simple in situ observation. These indices are based on the architecture of carbon flows within food webs. But, despite the recent increase in in situ measurements from Arctic seas, many flow values remain unknown. Linear inverse modeling (LIM) allows missing flow values to be estimated from existing flow observations and, subsequent reconstruction of ecosystem food webs. Through a sensitivity analysis on a LIM model of the Amundsen Gulf in the Canadian Arctic, we were able to determine which processes affected the emergent properties of the planktonic ecosystem. The analysis highlighted the importance of an accurate knowledge of the various processes controlling bacterial production (e.g. bacterial growth efficiency and viral lysis). More importantly, a change in the fate of the microzooplankton within the food web can be monitored through the trophic level of mesozooplankton. It can be used as a "canary in the coal mine" signal, a forewarner of larger ecosystem change.
Microbial Community Functional Change during Vertebrate Carrion Decomposition
Pechal, Jennifer L.; Crippen, Tawni L.; Tarone, Aaron M.; Lewis, Andrew J.; Tomberlin, Jeffery K.; Benbow, M. Eric
2013-01-01
Microorganisms play a critical role in the decomposition of organic matter, which contributes to energy and nutrient transformation in every ecosystem. Yet, little is known about the functional activity of epinecrotic microbial communities associated with carrion. The objective of this study was to provide a description of the carrion associated microbial community functional activity using differential carbon source use throughout decomposition over seasons, between years and when microbial communities were isolated from eukaryotic colonizers (e.g., necrophagous insects). Additionally, microbial communities were identified at the phyletic level using high throughput sequencing during a single study. We hypothesized that carrion microbial community functional profiles would change over the duration of decomposition, and that this change would depend on season, year and presence of necrophagous insect colonization. Biolog EcoPlates™ were used to measure the variation in epinecrotic microbial community function by the differential use of 29 carbon sources throughout vertebrate carrion decomposition. Pyrosequencing was used to describe the bacterial community composition in one experiment to identify key phyla associated with community functional changes. Overall, microbial functional activity increased throughout decomposition in spring, summer and winter while it decreased in autumn. Additionally, microbial functional activity was higher in 2011 when necrophagous arthropod colonizer effects were tested. There were inconsistent trends in the microbial function of communities isolated from remains colonized by necrophagous insects between 2010 and 2011, suggesting a greater need for a mechanistic understanding of the process. These data indicate that functional analyses can be implemented in carrion studies and will be important in understanding the influence of microbial communities on an essential ecosystem process, carrion decomposition. PMID:24265741
NASA Astrophysics Data System (ADS)
White, J. C.; Hill, M. J.; Bickerton, M. A.; Wood, P. J.
2017-09-01
The widespread degradation of lotic ecosystems has prompted extensive river restoration efforts globally, but many studies have reported modest ecological responses to rehabilitation practices. The functional properties of biotic communities are rarely examined within post-project appraisals, which would provide more ecological information underpinning ecosystem responses to restoration practices and potentially pinpoint project limitations. This study examines macroinvertebrate community responses to three projects which aimed to physically restore channel morphologies. Taxonomic and functional trait compositions supported by widely occurring lotic habitats (biotopes) were examined across paired restored and non-restored (control) reaches. The multivariate location (average community composition) of taxonomic and functional trait compositions differed marginally between control and restored reaches. However, changes in the amount of multivariate dispersion were more robust and indicated greater ecological heterogeneity within restored reaches, particularly when considering functional trait compositions. Organic biotopes (macrophyte stands and macroalgae) occurred widely across all study sites and supported a high alpha (within-habitat) taxonomic diversity compared to mineralogical biotopes (sand and gravel patches), which were characteristic of restored reaches. However, mineralogical biotopes possessed a higher beta (between-habitat) functional diversity, although this was less pronounced for taxonomic compositions. This study demonstrates that examining the functional and structural properties of taxa across distinct biotopes can provide a greater understanding of biotic responses to river restoration works. Such information could be used to better understand the ecological implications of rehabilitation practices and guide more effective management strategies.
The Food Web of Potter Cove (Antarctica): complexity, structure and function
NASA Astrophysics Data System (ADS)
Marina, Tomás I.; Salinas, Vanesa; Cordone, Georgina; Campana, Gabriela; Moreira, Eugenia; Deregibus, Dolores; Torre, Luciana; Sahade, Ricardo; Tatián, Marcos; Barrera Oro, Esteban; De Troch, Marleen; Doyle, Santiago; Quartino, María Liliana; Saravia, Leonardo A.; Momo, Fernando R.
2018-01-01
Knowledge of the food web structure and complexity are central to better understand ecosystem functioning. A food-web approach includes both species and energy flows among them, providing a natural framework for characterizing species' ecological roles and the mechanisms through which biodiversity influences ecosystem dynamics. Here we present for the first time a high-resolution food web for a marine ecosystem at Potter Cove (northern Antarctic Peninsula). Eleven food web properties were analyzed in order to document network complexity, structure and topology. We found a low linkage density (3.4), connectance (0.04) and omnivory percentage (45), as well as a short path length (1.8) and a low clustering coefficient (0.08). Furthermore, relating the structure of the food web to its dynamics, an exponential degree distribution (in- and out-links) was found. This suggests that the Potter Cove food web may be vulnerable if the most connected species became locally extinct. For two of the three more connected functional groups, competition overlap graphs imply high trophic interaction between demersal fish and niche specialization according to feeding strategies in amphipods. On the other hand, the prey overlap graph shows also that multiple energy pathways of carbon flux exist across benthic and pelagic habitats in the Potter Cove ecosystem. Although alternative food sources might add robustness to the web, network properties (low linkage density, connectance and omnivory) suggest fragility and potential trophic cascade effects.
Ecosystem Functions across Trophic Levels Are Linked to Functional and Phylogenetic Diversity
Thompson, Patrick L.; Davies, T. Jonathan; Gonzalez, Andrew
2015-01-01
In experimental systems, it has been shown that biodiversity indices based on traits or phylogeny can outperform species richness as predictors of plant ecosystem function. However, it is unclear whether this pattern extends to the function of food webs in natural ecosystems. Here we tested whether zooplankton functional and phylogenetic diversity explains the functioning of 23 natural pond communities. We used two measures of ecosystem function: (1) zooplankton community biomass and (2) phytoplankton abundance (Chl a). We tested for diversity-ecosystem function relationships within and across trophic levels. We found a strong correlation between zooplankton diversity and ecosystem function, whereas local environmental conditions were less important. Further, the positive diversity-ecosystem function relationships were more pronounced for measures of functional and phylogenetic diversity than for species richness. Zooplankton and phytoplankton biomass were best predicted by different indices, suggesting that the two functions are dependent upon different aspects of diversity. Zooplankton community biomass was best predicted by zooplankton trait-based functional richness, while phytoplankton abundance was best predicted by zooplankton phylogenetic diversity. Our results suggest that the positive relationship between diversity and ecosystem function can extend across trophic levels in natural environments, and that greater insight into variation in ecosystem function can be gained by combining functional and phylogenetic diversity measures. PMID:25693188
Ecosystem functions across trophic levels are linked to functional and phylogenetic diversity.
Thompson, Patrick L; Davies, T Jonathan; Gonzalez, Andrew
2015-01-01
In experimental systems, it has been shown that biodiversity indices based on traits or phylogeny can outperform species richness as predictors of plant ecosystem function. However, it is unclear whether this pattern extends to the function of food webs in natural ecosystems. Here we tested whether zooplankton functional and phylogenetic diversity explains the functioning of 23 natural pond communities. We used two measures of ecosystem function: (1) zooplankton community biomass and (2) phytoplankton abundance (Chl a). We tested for diversity-ecosystem function relationships within and across trophic levels. We found a strong correlation between zooplankton diversity and ecosystem function, whereas local environmental conditions were less important. Further, the positive diversity-ecosystem function relationships were more pronounced for measures of functional and phylogenetic diversity than for species richness. Zooplankton and phytoplankton biomass were best predicted by different indices, suggesting that the two functions are dependent upon different aspects of diversity. Zooplankton community biomass was best predicted by zooplankton trait-based functional richness, while phytoplankton abundance was best predicted by zooplankton phylogenetic diversity. Our results suggest that the positive relationship between diversity and ecosystem function can extend across trophic levels in natural environments, and that greater insight into variation in ecosystem function can be gained by combining functional and phylogenetic diversity measures.
Savage, Jessica A; Clearwater, Michael J; Haines, Dustin F; Klein, Tamir; Mencuccini, Maurizio; Sevanto, Sanna; Turgeon, Robert; Zhang, Cankui
2016-04-01
Despite the crucial role of carbon transport in whole plant physiology and its impact on plant-environment interactions and ecosystem function, relatively little research has tried to examine how phloem physiology impacts plant ecology. In this review, we highlight several areas of active research where inquiry into phloem physiology has increased our understanding of whole plant function and ecological processes. We consider how xylem-phloem interactions impact plant drought tolerance and reproduction, how phloem transport influences carbon allocation in trees and carbon cycling in ecosystems and how phloem function mediates plant relations with insects, pests, microbes and symbiotes. We argue that in spite of challenges that exist in studying phloem physiology, it is critical that we consider the role of this dynamic vascular system when examining the relationship between plants and their biotic and abiotic environment. © 2015 John Wiley & Sons Ltd.
Linking biodiversity to ecosystem function: Implications for conservation ecology
Schwartz, M.W.; Brigham, C.A.; Hoeksema, J.D.; Lyons, K.G.; Mills, M.H.; van Mantgem, P.
2000-01-01
We evaluate the empirical and theoretical support for the hypothesis that a large proportion of native species richness is required to maximize ecosystem stability and sustain function. This assessment is important for conservation strategies because sustenance of ecosystem functions has been used as an argument for the conservation of species. If ecosystem functions are sustained at relatively low species richness, then arguing for the conservation of ecosystem function, no matter how important in its own right, does not strongly argue for the conservation of species. Additionally, for this to be a strong conservation argument the link between species diversity and ecosystem functions of value to the human community must be clear. We review the empirical literature to quantify the support for two hypotheses: (1) species richness is positively correlated with ecosystem function, and (2) ecosystem functions do not saturate at low species richness relative to the observed or experimental diversity. Few empirical studies demonstrate improved function at high levels of species richness. Second, we analyze recent theoretical models in order to estimate the level of species richness required to maintain ecosystem function. Again we find that, within a single trophic level, most mathematical models predict saturation of ecosystem function at a low proportion of local species richness. We also analyze a theoretical model linking species number to ecosystem stability. This model predicts that species richness beyond the first few species does not typically increase ecosystem stability. One reason that high species richness may not contribute significantly to function or stability is that most communities are characterized by strong dominance such that a few species provide the vast majority of the community biomass. Rapid turnover of species may rescue the concept that diversity leads to maximum function and stability. The role of turnover in ecosystem function and stability has not been investigated. Despite the recent rush to embrace the linkage between biodiversity and ecosystem function, we find little support for the hypothesis that there is a strong dependence of ecosystem function on the full complement of diversity within sites. Given this observation, the conservation community should take a cautious view of endorsing this linkage as a model to promote conservation goals.
Using the CARDAMOM framework to retrieve global terrestrial ecosystem functioning properties
NASA Astrophysics Data System (ADS)
Exbrayat, Jean-François; Bloom, A. Anthony; Smallman, T. Luke; van der Velde, Ivar R.; Feng, Liang; Williams, Mathew
2016-04-01
Terrestrial ecosystems act as a sink for anthropogenic emissions of fossil-fuel and thereby partially offset the ongoing global warming. However, recent model benchmarking and intercomparison studies have highlighted the non-trivial uncertainties that exist in our understanding of key ecosystem properties like plant carbon allocation and residence times. It leads to worrisome differences in terrestrial carbon stocks simulated by Earth system models, and their evolution in a warming future. In this presentation we attempt to provide global insights on these properties by merging an ecosystem model with remotely-sensed global observations of leaf area and biomass through a data-assimilation system: the CARbon Data MOdel fraMework (CARDAMOM). CARDAMOM relies on a Markov Chain Monte Carlo algorithm to retrieve confidence intervals of model parameters that regulate ecosystem properties independently of any prior land-cover information. The MCMC method thereby enables an explicit representation of the uncertainty in land-atmosphere fluxes and the evolution of terrestrial carbon stocks through time. Global experiments are performed for the first decade of the 21st century using a 1°×1° spatial resolution. Relationships emerge globally between key ecosystem properties. For example, our analyses indicate that leaf lifespan and leaf mass per area are highly correlated. Furthermore, there exists a latitudinal gradient in allocation patterns: high latitude ecosystems allocate more carbon to photosynthetic carbon (leaves) while plants invest more carbon in their structural parts (wood and root) in the wet tropics. Overall, the spatial distribution of these ecosystem properties does not correspond to usual land-cover maps and are also partially correlated with disturbance regimes. For example, fire-prone ecosystems present statistically significant higher values of carbon use efficiency than less disturbed ecosystems experiencing similar climatic conditions. These results raise concerns on the suitability of the plant functional type paradigm for terrestrial carbon cycling.
A conceptual framework for the study of human ecosystems in urban areas
Steward T.A. Pickett; William R. Burch; Shawn E. Dalton; Timothy W. Foresman; J. Morgan Grove; Rowan Rowntree
1997-01-01
The need for integrated concepts, capable of satisfying natural and social scientists and supporting integrated research, motivates a conceptual framework for understanding the role of humans in ecosystems. The question is how to add humans to the ecological models used to understand urban ecosystems. The ecosystem concept can serve as the basis, but specific social...
Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems
Nathaly R. Guerrero-Ramírez; Dylan Craven; Peter B. Reich; John J. Ewel; Forest Isbell; Julia Koricheva; John A. Parrotta; Harald Auge; Heather E. Erickson; David I. Forrester; Andy Hector; Jasmin Joshi; Florencia Montagnini; Cecilia Palmborg; Daniel Piotto; Catherine Potvin; Christiane Roscher; Jasper van Ruijven; David Tilman; Brian Wilsey; Nico Eisenhauer
2017-01-01
The effects of biodiversity on ecosystem functioning generally increase over time, but the underlying processes remain unclear. Using 26 long-term grassland and forest experimental ecosystems, we demonstrate that biodiversityâecosystem functioning relationships strengthen mainly by greater increases in functioning in high-diversity communities in grasslands and forests...
State of the Salton Sea—A science and monitoring meeting of scientists for the Salton Sea
Barnum, Douglas A.; Bradley, Timothy; Cohen, Michael; Wilcox, Bruce; Yanega, Gregor
2017-01-19
IntroductionThe Salton Sea (Sea) is an ecosystem facing large systemic changes in the near future. Managers and stakeholders are seeking solutions to the decline of the Sea and have turned to the scientific community for answers. In response, scientists gathered in Irvine, California, to review existing science and propose scientific studies and monitoring needs required for understanding how to retain the Sea as a functional ecosystem. This document summarizes the proceedings of this gathering of approximately 50 scientists at a September 8–10, 2014, workshop on the State of the Salton Sea.
The role of recurrent disturbances for ecosystem multifunctionality.
Villnäs, Anna; Norkko, Joanna; Hietanen, Susanna; Josefson, Alf B; Lukkari, Kaarina; Norkko, Alf
2013-10-01
Ecosystem functioning is threatened by an increasing number of anthropogenic stressors, creating a legacy of disturbance that undermines ecosystem resilience. However, few empirical studies have assessed to what extent an ecosystem can tolerate repeated disturbances and sustain its multiple functions. By inducing increasingly recurring hypoxic disturbances to a sedimentary ecosystem, we show that the majority of individual ecosystem functions experience gradual degradation patterns in response to repetitive pulse disturbances. The degradation in overall ecosystem functioning was, however, evident at an earlier stage than for single ecosystem functions and was induced after a short pulse of hypoxia (i.e., three days), which likely reduced ecosystem resistance to further hypoxic perturbations. The increasing number of repeated pulse disturbances gradually moved the system closer to a press response. In addition to the disturbance regime, the changes in benthic trait composition as well as habitat heterogeneity were important for explaining the variability in overall ecosystem functioning. Our results suggest that disturbance-induced responses across multiple ecosystem functions can serve as a warning signal for losses of the adaptive capacity of an ecosystem, and might at an early stage provide information to managers and policy makers when remediation efforts should be initiated.
INVASIVE PLANTS HARBOR HUNGRY DETRITIVORES THAT ALTER ECOSYSTEM FUNCTION
Ecosystems are expected to function more efficiently in response to a diverse community of inhabitants. However, biological invasions may change expected relationships between ecosystem function and diversity. We observed increased decomposition, a measure of ecosystem function...
Global variation of carbon use efficiency in terrestrial ecosystems
NASA Astrophysics Data System (ADS)
Tang, Xiaolu; Carvalhais, Nuno; Moura, Catarina; Reichstein, Markus
2017-04-01
Carbon use efficiency (CUE), defined as the ratio between net primary production (NPP) and gross primary production (GPP), is an emergent property of vegetation that describes its effectiveness in storing carbon (C) and is of significance for understanding C biosphere-atmosphere exchange dynamics. A constant CUE value of 0.5 has been widely used in terrestrial C-cycle models, such as the Carnegie-Ames-Stanford-Approach model, or the Marine Biological Laboratory/Soil Plant-Atmosphere Canopy Model, for regional or global modeling purposes. However, increasing evidence argues that CUE is not constant, but varies with ecosystem types, site fertility, climate, site management and forest age. Hence, the assumption of a constant CUE of 0.5 can produce great uncertainty in estimating global carbon dynamics between terrestrial ecosystems and the atmosphere. Here, in order to analyze the global variations in CUE and understand how CUE varies with environmental variables, a global database was constructed based on published data for crops, forests, grasslands, wetlands and tundra ecosystems. In addition to CUE data, were also collected: GPP and NPP; site variables (e.g. climate zone, site management and plant function type); climate variables (e.g. temperature and precipitation); additional carbon fluxes (e.g. soil respiration, autotrophic respiration and heterotrophic respiration); and carbon pools (e.g. stem, leaf and root biomass). Different climate metrics were derived to diagnose seasonal temperature (mean annual temperature, MAT, and maximum temperature, Tmax) and water availability proxies (mean annual precipitation, MAP, and Palmer Drought Severity Index), in order to improve the local representation of environmental variables. Additionally were also included vegetation phenology dynamics as observed by different vegetation indices from the MODIS satellite. The mean CUE of all terrestrial ecosystems was 0.45, 10% lower than the previous assumed constant CUE of 0.50. CUE varied significantly between sites - from 0.13 to 0.93 - and between ecosystem types, ranging between 0.41 and 0.60, decreasing from wetlands, to tundra, to croplands, to grasslands until the lower CUE found on average for forested ecosystems. Our analysis shows that ecosystem type was the most important predictor of CUE in terrestrial ecosystems, immediately followed by Tmax; MAT and management practices. For crop, forest and wetland ecosystems CUE varied with climate zones and a strong linear negative correlation was found between CUE and MAT and MAP for grassland ecosystems. Overall, the interaction between different environmental variables showed significant effects on CUE for all ecosystem types. Our results challenge the consideration of a constant value of 0.5 for modeling global purposes, and argue for a deeper understanding of environmental controls on CUE for different ecosystem types.
Dryland ecohydrology and climate change: critical issues and technical advances
NASA Astrophysics Data System (ADS)
Wang, L.; D'Odorico, P.; Evans, J. P.; Eldridge, D.; McCabe, M. F.; Caylor, K. K.; King, E. G.
2012-04-01
Drylands cover about 40% of the terrestrial land surface and account for approximately 40% of global net primary productivity. Water is fundamental to the biophysical processes that sustain ecosystem function and food production, particularly in drylands, where a tight coupling exists between water resource availability and ecosystem productivity, surface energy balance, and biogeochemical cycles. Currently, drylands support at least 2 billion people and comprise both natural and managed ecosystems. In this synthesis, we identify some current critical issues in the understanding of dryland systems and discuss how arid and semiarid environments are responding to the changes in climate and land use. Specifically, we focus on dryland agriculture and food security, dryland population growth, desertification, shrub encroachment and dryland development issues as factors of change requiring increased understanding and management. We also review recent technical advances in the quantitative assessment of human versus climate change related drivers of desertification, evapotranspiration partitioning using field deployable stable water isotope systems and the remote sensing of key ecohydrological processes. These technological advances provide new tools that assist in addressing major critical issues in dryland ecohydrology under climate change
Busch, D. Shallin; McElhany, Paul
2016-01-01
Ocean acidification (OA) has the potential to restructure ecosystems due to variation in species sensitivity to the projected changes in ocean carbon chemistry. Ecological models can be forced with scenarios of OA to help scientists, managers, and other stakeholders understand how ecosystems might change. We present a novel methodology for developing estimates of species sensitivity to OA that are regionally specific, and applied the method to the California Current ecosystem. To do so, we built a database of all published literature on the sensitivity of temperate species to decreased pH. This database contains 393 papers on 285 species and 89 multi-species groups from temperate waters around the world. Research on urchins and oysters and on adult life stages dominates the literature. Almost a third of the temperate species studied to date occur in the California Current. However, most laboratory experiments use control pH conditions that are too high to represent average current chemistry conditions in the portion of the California Current water column where the majority of the species live. We developed estimates of sensitivity to OA for functional groups in the ecosystem, which can represent single species or taxonomically diverse groups of hundreds of species. We based these estimates on the amount of available evidence derived from published studies on species sensitivity, how well this evidence could inform species sensitivity in the California Current ecosystem, and the agreement of the available evidence for a species/species group. This approach is similar to that taken by the Intergovernmental Panel on Climate Change to characterize certainty when summarizing scientific findings. Most functional groups (26 of 34) responded negatively to OA conditions, but when uncertainty in sensitivity was considered, only 11 groups had relationships that were consistently negative. Thus, incorporating certainty about the sensitivity of species and functional groups to OA is an important part of developing robust scenarios for ecosystem projections. PMID:27513576
Travers-Trolet, Morgane; Shin, Yunne-Jai; Shannon, Lynne J; Moloney, Coleen L; Field, John G
2014-01-01
The effects of climate and fishing on marine ecosystems have usually been studied separately, but their interactions make ecosystem dynamics difficult to understand and predict. Of particular interest to management, the potential synergism or antagonism between fishing pressure and climate forcing is analysed in this paper, using an end-to-end ecosystem model of the southern Benguela ecosystem, built from coupling hydrodynamic, biogeochemical and multispecies fish models (ROMS-N2P2Z2D2-OSMOSE). Scenarios of different intensities of upwelling-favourable wind stress combined with scenarios of fishing top-predator fish were tested. Analyses of isolated drivers show that the bottom-up effect of the climate forcing propagates up the food chain whereas the top-down effect of fishing cascades down to zooplankton in unfavourable environmental conditions but dampens before it reaches phytoplankton. When considering both climate and fishing drivers together, it appears that top-down control dominates the link between top-predator fish and forage fish, whereas interactions between the lower trophic levels are dominated by bottom-up control. The forage fish functional group appears to be a central component of this ecosystem, being the meeting point of two opposite trophic controls. The set of combined scenarios shows that fishing pressure and upwelling-favourable wind stress have mostly dampened effects on fish populations, compared to predictions from the separate effects of the stressors. Dampened effects result in biomass accumulation at the top predator fish level but a depletion of biomass at the forage fish level. This should draw our attention to the evolution of this functional group, which appears as both structurally important in the trophic functioning of the ecosystem, and very sensitive to climate and fishing pressures. In particular, diagnoses considering fishing pressure only might be more optimistic than those that consider combined effects of fishing and environmental variability.
Travers-Trolet, Morgane; Shin, Yunne-Jai; Shannon, Lynne J.; Moloney, Coleen L.; Field, John G.
2014-01-01
The effects of climate and fishing on marine ecosystems have usually been studied separately, but their interactions make ecosystem dynamics difficult to understand and predict. Of particular interest to management, the potential synergism or antagonism between fishing pressure and climate forcing is analysed in this paper, using an end-to-end ecosystem model of the southern Benguela ecosystem, built from coupling hydrodynamic, biogeochemical and multispecies fish models (ROMS-N2P2Z2D2-OSMOSE). Scenarios of different intensities of upwelling-favourable wind stress combined with scenarios of fishing top-predator fish were tested. Analyses of isolated drivers show that the bottom-up effect of the climate forcing propagates up the food chain whereas the top-down effect of fishing cascades down to zooplankton in unfavourable environmental conditions but dampens before it reaches phytoplankton. When considering both climate and fishing drivers together, it appears that top-down control dominates the link between top-predator fish and forage fish, whereas interactions between the lower trophic levels are dominated by bottom-up control. The forage fish functional group appears to be a central component of this ecosystem, being the meeting point of two opposite trophic controls. The set of combined scenarios shows that fishing pressure and upwelling-favourable wind stress have mostly dampened effects on fish populations, compared to predictions from the separate effects of the stressors. Dampened effects result in biomass accumulation at the top predator fish level but a depletion of biomass at the forage fish level. This should draw our attention to the evolution of this functional group, which appears as both structurally important in the trophic functioning of the ecosystem, and very sensitive to climate and fishing pressures. In particular, diagnoses considering fishing pressure only might be more optimistic than those that consider combined effects of fishing and environmental variability. PMID:24710351
Hirakata, Yuga; Oshiki, Mamoru; Kuroda, Kyohei; Hatamoto, Masashi; Kubota, Kengo; Yamaguchi, Takashi; Harada, Hideki; Araki, Nobuo
2016-09-29
Predation by protists is top-down pressure that regulates prokaryotic abundance, community function, structure, and diversity in natural and artificial ecosystems. Although the effects of predation by protists have been studied in aerobic ecosystems, they are poorly understood in anoxic environments. We herein studied the influence of predation by Metopus and Caenomorpha ciliates-ciliates frequently found in anoxic ecosystems-on prokaryotic community function, structure, and diversity. Metopus and Caenomorpha ciliates were cocultivated with prokaryotic assemblages (i.e., anaerobic granular sludge) in an up-flow anaerobic sludge blanket (UASB) reactor for 171 d. Predation by these ciliates increased the methanogenic activities of granular sludge, which constituted 155% of those found in a UASB reactor without the ciliates (i.e., control reactor). Sequencing of 16S rRNA gene amplicons using Illumina MiSeq revealed that the prokaryotic community in the UASB reactor with the ciliates was more diverse than that in the control reactor; 2,885-3,190 and 2,387-2,426 operational taxonomic units (>97% sequence similarities), respectively. The effects of predation by protists in anaerobic engineered systems have mostly been overlooked, and our results show that the influence of predation by protists needs to be examined and considered in the future for a better understanding of prokaryotic community structure and function.
Single cell transcriptomics to explore the immune system in health and disease†
Regev, Aviv; Teichmann, Sarah A.
2017-01-01
The immune system varies in cell types, states, and locations. The complex networks, interactions and responses of immune cells produce diverse cellular ecosystems composed of multiple cell types, accompanied by genetic diversity in antigen receptors. Within this ecosystem, innate and adaptive immune cells maintain and protect tissue function, integrity and homeostasis upon changes in functional demands and diverse insults. Characterizing this inherent complexity requires studies at single-cell resolution. Recent advances such as, massively-parallel single cell RNA-Seq and sophisticated computational methods are catalysing a revolution in our understanding of immunology. Here, we provide an overview of the state of single cell genomics methods and an outlook on the use of single-cell techniques to decipher the adaptive and innate components of immunity. PMID:28983043
Saleem, Muhammad; Moe, Luke A
2014-10-01
Multitrophic level microbial loop interactions mediated by protist predators, bacteria, and viruses drive eco- and agro-biotechnological processes such as bioremediation, wastewater treatment, plant growth promotion, and ecosystem functioning. To what extent these microbial interactions are context-dependent in performing biotechnological and ecosystem processes remains largely unstudied. Theory-driven research may advance the understanding of eco-evolutionary processes underlying the patterns and functioning of microbial interactions for successful development of microbe-based biotechnologies for real world applications. This could also be a great avenue to test the validity or limitations of ecology theory for managing diverse microbial resources in an era of altering microbial niches, multitrophic interactions, and microbial diversity loss caused by climate and land use changes. Copyright © 2014 Elsevier Ltd. All rights reserved.
The metabolic regimes of flowing waters
Bernhardt, Emily S.; Heffernan, Jim B.; Grimm, Nancy B.; Stanley, Emily H.; Harvey, Judson; Arroita, M.; Appling, Alison; Cohen, M.J.; McDowell, William H.; Hall, R.O.; Read, Jordan S.; Roberts, B.J.; Stets, Edward; Yackulic, Charles B.
2018-01-01
The processes and biomass that characterize any ecosystem are fundamentally constrained by the total amount of energy that is either fixed within or delivered across its boundaries. Ultimately, ecosystems may be understood and classified by their rates of total and net productivity and by the seasonal patterns of photosynthesis and respiration. Such understanding is well developed for terrestrial and lentic ecosystems but our understanding of ecosystem phenology has lagged well behind for rivers. The proliferation of reliable and inexpensive sensors for monitoring dissolved oxygen and carbon dioxide is underpinning a revolution in our understanding of the ecosystem energetics of rivers. Here, we synthesize our current understanding of the drivers and constraints on river metabolism, and set out a research agenda aimed at characterizing, classifying and modeling the current and future metabolic regimes of flowing waters.
Predicting ecosystem vulnerability to biodiversity loss from community composition.
Heilpern, Sebastian A; Weeks, Brian C; Naeem, Shahid
2018-05-01
Ecosystems vary widely in their responses to biodiversity change, with some losing function dramatically while others are highly resilient. However, generalizations about how species- and community-level properties determine these divergent ecosystem responses have been elusive because potential sources of variation (e.g., trophic structure, compensation, functional trait diversity) are rarely evaluated in conjunction. Ecosystem vulnerability, or the likely change in ecosystem function following biodiversity change, is influenced by two types of species traits: response traits that determine species' individual sensitivities to environmental change, and effect traits that determine a species' contribution to ecosystem function. Here we extend the response-effect trait framework to quantify ecosystem vulnerability and show how trophic structure, within-trait variance, and among-trait covariance affect ecosystem vulnerability by linking extinction order and functional compensation. Using in silico trait-based simulations we found that ecosystem vulnerability increased when response and effect traits positively covaried, but this increase was attenuated by decreasing trait variance. Contrary to expectations, in these communities, both functional diversity and trophic structure increased ecosystem vulnerability. In contrast, ecosystem functions were resilient when response and effect traits covaried negatively, and variance had a positive effect on resiliency. Our results suggest that although biodiversity loss is often associated with decreases in ecosystem functions, such effects are conditional on trophic structure, and the variation within and covariation among response and effect traits. Taken together, these three factors can predict when ecosystems are poised to lose or gain function with ongoing biodiversity change. © 2018 by the Ecological Society of America.
Alpine soil carbon is vulnerable to rapid microbial decomposition under climate cooling.
Wu, Linwei; Yang, Yunfeng; Wang, Shiping; Yue, Haowei; Lin, Qiaoyan; Hu, Yigang; He, Zhili; Van Nostrand, Joy D; Hale, Lauren; Li, Xiangzhen; Gilbert, Jack A; Zhou, Jizhong
2017-09-01
As climate cooling is increasingly regarded as important natural variability of long-term global warming trends, there is a resurging interest in understanding its impact on biodiversity and ecosystem functioning. Here, we report a soil transplant experiment from lower to higher elevations in a Tibetan alpine grassland to simulate the impact of cooling on ecosystem community structure and function. Three years of cooling resulted in reduced plant productivity and microbial functional potential (for example, carbon respiration and nutrient cycling). Microbial genetic markers associated with chemically recalcitrant carbon decomposition remained unchanged despite a decrease in genes associated with chemically labile carbon decomposition. As a consequence, cooling-associated changes correlated with a decrease in soil organic carbon (SOC). Extrapolation of these results suggests that for every 1 °C decrease in annual average air temperature, 0.1 Pg (0.3%) of SOC would be lost from the Tibetan plateau. These results demonstrate that microbial feedbacks to cooling have the potential to differentially impact chemically labile and recalcitrant carbon turnover, which could lead to strong, adverse consequences on soil C storage. Our findings are alarming, considering the frequency of short-term cooling and its scale to disrupt ecosystems and biogeochemical cycling.
Effects of Resource Chemistry on the Composition and Function of Stream Hyporheic Biofilms
Hall, E. K.; Besemer, K.; Kohl, L.; Preiler, C.; Riedel, K.; Schneider, T.; Wanek, W.; Battin, T. J.
2012-01-01
Fluvial ecosystems process large quantities of dissolved organic matter as it moves from the headwater streams to the sea. In particular, hyporheic sediments are centers of high biogeochemical reactivity due to their elevated residence time and high microbial biomass and activity. However, the interaction between organic matter and microbial dynamics in the hyporheic zone remains poorly understood. We evaluated how variance in resource chemistry affected the microbial community and its associated activity in experimentally grown hyporheic biofilms. To do this we fed beech leaf leachates that differed in chemical composition to a series of bioreactors filled with sediment from a sub-alpine stream. Differences in resource chemistry resulted in differences in diversity and phylogenetic origin of microbial proteins, enzyme activity, and microbial biomass stoichiometry. Specifically, increased lignin, phenolics, and manganese in a single leachate resulted in increased phenoloxidase and peroxidase activity, elevated microbial biomass carbon:nitrogen ratio, and a greater proportion of proteins of Betaproteobacteria origin. We used this model system to attempt to link microbial form (community composition and metaproteome) with function (enzyme activity) in order to better understand the mechanisms that link resource heterogeneity to ecosystem function in stream ecosystems. PMID:22347877
Networks Depicting the Fine-Scale Co-Occurrences of Fungi in Soil Horizons.
Toju, Hirokazu; Kishida, Osamu; Katayama, Noboru; Takagi, Kentaro
2016-01-01
Fungi in soil play pivotal roles in nutrient cycling, pest controls, and plant community succession in terrestrial ecosystems. Despite the ecosystem functions provided by soil fungi, our knowledge of the assembly processes of belowground fungi has been limited. In particular, we still have limited knowledge of how diverse functional groups of fungi interact with each other in facilitative and competitive ways in soil. Based on the high-throughput sequencing data of fungi in a cool-temperate forest in northern Japan, we analyzed how taxonomically and functionally diverse fungi showed correlated fine-scale distributions in soil. By uncovering pairs of fungi that frequently co-occurred in the same soil samples, networks depicting fine-scale co-occurrences of fungi were inferred at the O (organic matter) and A (surface soil) horizons. The results then led to the working hypothesis that mycorrhizal, endophytic, saprotrophic, and pathogenic fungi could form compartmentalized (modular) networks of facilitative, antagonistic, and/or competitive interactions in belowground ecosystems. Overall, this study provides a research basis for further understanding how interspecific interactions, along with sharing of niches among fungi, drive the dynamics of poorly explored biospheres in soil.
Effects of resource chemistry on the composition and function of stream hyporheic biofilms.
Hall, E.K.; Besemer, K.; Kohl, L.; Preiler, C.; Reidel, K.; Schneider, T.; Wanek, W.; Battin, T.J.
2012-01-01
Fluvial ecosystems process large quantities of dissolved organic matter as it moves from the headwater streams to the sea. In particular, hyporheic sediments are centers of high biogeochemical reactivity due to their elevated residence time and high microbial biomass and activity. However, the interaction between organic matter and microbial dynamics in the hyporheic zone remains poorly understood. We evaluated how variance in resource chemistry affected the microbial community and its associated activity in experimentally grown hyporheic biofilms. To do this we fed beech leaf leachates that differed in chemical composition to a series of bioreactors filled with sediment from a sub-alpine stream. Differences in resource chemistry resulted in differences in diversity and phylogenetic origin of microbial proteins, enzyme activity, and microbial biomass stoichiometry. Specifically, increased lignin, phenolics, and manganese in a single leachate resulted in increased phenoloxidase and peroxidase activity, elevated microbial biomass carbon:nitrogen ratio, and a greater proportion of proteins of Betaproteobacteria origin. We used this model system to attempt to link microbial form (community composition and metaproteome) with function (enzyme activity) in order to better understand the mechanisms that link resource heterogeneity to ecosystem function in stream ecosystems.
Postfire management in forested public lands of the western USA
Beschta, R.L.; Rhodes, J.J.; Kauffman, J.B.; Gresswell, Robert E.; Minshall, G.W.; Frissell, C.A.; Perry, D.A.; Hauer, R.
2004-01-01
Forest ecosystems in the western United States evolved over many millennia in response to disturbances such as wildfires. Land use and management practices have altered these ecosystems, however, including fire regimes in some areas. Forest ecosystems are especially vulnerable to postfire management practices because such practices may influence forest dynamics and aquatic systems for decades to centuries. Thus, there is an increasing need to evaluate the effect of postfire treatments from the perspective of ecosystem recovery. We examined, via the published literature and our collective experience, the ecological effects of some common postfire treatments. Based on this examination, promising postfire restoration measures include retention of large trees, rehabilitation of firelines and roads, and, in some cases, planting of native species. The following practices are generally inconsistent with efforts to restore ecosystem functions after fire: seeding exotic species, livestock grazing, placement of physical structures in and near stream channels, ground-based postfire logging, removal of large trees, and road construction. Practices that adversely affect soil integrity, persistence or recovery of native species, riparian functions, or water quality generally impede ecological recovery after fire. Although research provides a basis for evaluating the efficacy of postfire treatments, there is a continuing need to increase our understanding of the effects of such treatments within the context of societal and ecological goals for forested public lands of the western United States.
NASA Astrophysics Data System (ADS)
McKnight, Diane
2017-04-01
As Dr. George Aiken emphasized throughout his distinguished research career, the diversity of sources of dissolved organic material (DOM) is associated with a diversity of dissolved organic compounds with a range of chemistries and reactivities that are present in the natural environment. From a limnological perspective, dissolved organic matter (DOM) can originate from allochthonous sources on the landscape which drains into a lake, river, wetland, coastal region, or other aquatic ecosystem, or from autochthonous sources within the given aquatic ecosystem. In many landscapes, the precursor organic materials that contribute to the DOM of the associated aquatic ecosystem can be derived from diverse sources, e.g. terrestrial plants, plant litter, organic material in different soil horizons, and the products of microbial growth and decay. Yet, through his focus on the underlying chemical processes a clear, chemically robust foundation for understanding DOM reactivity has emerged from Aiken's research. These processes include the enhancement in solubility due to ionized carboxylic acid functional groups and the reactions of organic sulfur groups with mercury. This approach has advanced understand of carbon cycling in the lakes of the Mars-like barren landscapes of the McMurdo Dry Valleys in Antarctica and the rivers draining the warming tundra of the Arctic.
The meaning of functional trait composition of food webs for ecosystem functioning.
Gravel, Dominique; Albouy, Camille; Thuiller, Wilfried
2016-05-19
There is a growing interest in using trait-based approaches to characterize the functional structure of animal communities. Quantitative methods have been derived mostly for plant ecology, but it is now common to characterize the functional composition of various systems such as soils, coral reefs, pelagic food webs or terrestrial vertebrate communities. With the ever-increasing availability of distribution and trait data, a quantitative method to represent the different roles of animals in a community promise to find generalities that will facilitate cross-system comparisons. There is, however, currently no theory relating the functional composition of food webs to their dynamics and properties. The intuitive interpretation that more functional diversity leads to higher resource exploitation and better ecosystem functioning was brought from plant ecology and does not apply readily to food webs. Here we appraise whether there are interpretable metrics to describe the functional composition of food webs that could foster a better understanding of their structure and functioning. We first distinguish the various roles that traits have on food web topology, resource extraction (bottom-up effects), trophic regulation (top-down effects), and the ability to keep energy and materials within the community. We then discuss positive effects of functional trait diversity on food webs, such as niche construction and bottom-up effects. We follow with a discussion on the negative effects of functional diversity, such as enhanced competition (both exploitation and apparent) and top-down control. Our review reveals that most of our current understanding of the impact of functional trait diversity on food web properties and functioning comes from an over-simplistic representation of network structure with well-defined levels. We, therefore, conclude with propositions for new research avenues for both theoreticians and empiricists. © 2016 The Author(s).
The meaning of functional trait composition of food webs for ecosystem functioning
Albouy, Camille
2016-01-01
There is a growing interest in using trait-based approaches to characterize the functional structure of animal communities. Quantitative methods have been derived mostly for plant ecology, but it is now common to characterize the functional composition of various systems such as soils, coral reefs, pelagic food webs or terrestrial vertebrate communities. With the ever-increasing availability of distribution and trait data, a quantitative method to represent the different roles of animals in a community promise to find generalities that will facilitate cross-system comparisons. There is, however, currently no theory relating the functional composition of food webs to their dynamics and properties. The intuitive interpretation that more functional diversity leads to higher resource exploitation and better ecosystem functioning was brought from plant ecology and does not apply readily to food webs. Here we appraise whether there are interpretable metrics to describe the functional composition of food webs that could foster a better understanding of their structure and functioning. We first distinguish the various roles that traits have on food web topology, resource extraction (bottom-up effects), trophic regulation (top-down effects), and the ability to keep energy and materials within the community. We then discuss positive effects of functional trait diversity on food webs, such as niche construction and bottom-up effects. We follow with a discussion on the negative effects of functional diversity, such as enhanced competition (both exploitation and apparent) and top-down control. Our review reveals that most of our current understanding of the impact of functional trait diversity on food web properties and functioning comes from an over-simplistic representation of network structure with well-defined levels. We, therefore, conclude with propositions for new research avenues for both theoreticians and empiricists. PMID:27114571
Observing Changing Ecological Diversity in the Anthropocene
NASA Technical Reports Server (NTRS)
Schimel, David S.; Asner, Gregory P.; Moorcroft, Paul
2012-01-01
As the world enters the Anthropocene, the planet's environment is changing rapidly, putting critical ecosystem services at risk. Understanding and forecasting how ecosystems will change over the coming decades requires understanding the sensitivity of species to environmental change. The extant distribution of species and functional groups contains valuable information about the performance of different species in different environments. However, with high rates of environmental change, information inherent in ranges of many species will disappear, since that information exists only under quasi-equilibrium conditions. The information content of distributional data obtained now is greater than data obtained in the future. New remote sensing technologies can map chemical and structural traits of plant canopies and allow inference of trait and in many cases, species ranges. Current satellite remote sensing data can only produce relatively simple classifications, but new techniques have dramatically higher biological information content.
Process-Driven Ecological Modeling for Landscape Change Analysis
NASA Astrophysics Data System (ADS)
Altman, S.; Reif, M. K.; Swannack, T. M.
2013-12-01
Landscape pattern is an important driver in ecosystem dynamics and can control system-level functions such as nutrient cycling, connectivity, biodiversity and carbon sequestration. However, the links between process, pattern and function remain ambiguous. Understanding the quantitative relationship between ecological processes and landscape pattern across temporal and spatial scales is vital for successful management and implementation of ecosystem-level projects. We used remote sensing imagery to develop critical landscape metrics to understand the factors influencing landscape change. Our study area, a coastal area in southwest Florida, is highly dynamic with critically eroding beaches and a range of natural and developed land cover types. Hurricanes in 2004 and 2005 caused a breach along the coast of North Captiva Island that filled in by 2010. We used a time series of light detection and ranging (lidar) elevation data and hyperspectral imagery from 2006 and 2010 to determine land cover changes. Landscape level metrics used included: Largest Patch Index, Class Area, Area-weighted mean area, Clumpiness, Area-weighted Contiguity Index, Number of Patches, Percent of landcover, Area-weighted Shape. Our results showed 1) 27% increase in sand/soil class as the channel repaired itself and shoreline was reestablished, 2) 40% decrease in the mudflat class area due to conversion to sand/soil and water, 3) 30% increase in non-wetland vegetation class as a result of new vegetation around the repaired channel, and 4) the water class only slightly increased though there was a marked increase in the patch size area. Thus, the smaller channels disappeared with the infilling of the channel, leaving much larger, less complex patches behind the breach. Our analysis demonstrated that quantification of landscape pattern is critical to linking patterns to ecological processes and understanding how both affect landscape change. Our proof of concept indicated that ecological processes can correlate to landscape pattern and that ecosystem function changes significantly as pattern changes. However, the number of links between landscape metrics and ecological processes are highly variable. Extensively studied processes such as biodiversity can be linked to numerous landscape metrics. In contrast, correlations between sediment cycling and landscape pattern have only been evaluated for a limited number of metrics. We are incorporating these data into a relational database linking landscape and ecological patterns, processes and metrics. The database will be used to parameterize site-specific landscape evolution models projecting how landscape pattern will change as a result of future ecosystem restoration projects. The model is a spatially-explicit, grid-based model that projects changes in community composition based on changes in soil elevations. To capture scalar differences in landscape change, local and regional landscape metrics are analyzed at each time step and correlated with ecological processes to determine how ecosystem function changes with scale over time.
Geiselman, Joy; DeGange, Anthony R.; Oakley, Karen; Derksen, Dirk; Whalen, Mary
2012-01-01
Ecosystems and their wildlife communities are not static; they change and evolve over time due to numerous intrinsic and extrinsic factors. A period of rapid change is occurring in the Arctic for which our current understanding of potential ecosystem and wildlife responses is limited. Changes to the physical environment include warming temperatures, diminishing sea ice, increasing coastal erosion, deteriorating permafrost, and changing water regimes. These changes influence biological communities and the ways in which human communities interact with them. Through the new initiative Changing Arctic Ecosystems (CAE) the U.S. Geological Survey (USGS) strives to (1) understand the potential suite of wildlife population responses to these physical changes to inform key resource management decisions such as those related to the Endangered Species Act, and (2) provide unique insights into how Arctic ecosystems are responding under new stressors. Our studies examine how and why changes in the ice-dominated ecosystems of the Arctic are affecting wildlife and will provide a better foundation for understanding the degree and manner in which wildlife species respond and adapt to rapid environmental change. Changes to Arctic ecosystems will be felt broadly because the Arctic is a production zone for hundreds of species that migrate south for the winter. The CAE initiative includes three major research themes that span Arctic ice-dominated ecosystems and that are structured to identify and understand the linkages between physical processes, ecosystems, and wildlife populations. The USGS is applying knowledge-based modeling structures such as Bayesian Networks to integrate the work.
NASA Astrophysics Data System (ADS)
Gallery, R. E.; Aronson, E. L.; Fairbanks, D.; Murphy, M. A.; Rich, V. I.; Hart, S. C.
2015-12-01
Microbial communities that control nutrient transformation and storage in ecosystems are themselves influenced by landscape topography and vegetative cover. Globally, disturbances such as fires and insect outbreaks are increasing in frequency and severity with enormous impacts on global carbon cycling. The resiliency of soil microbial communities to these heterogeneous disturbances determines rates of nutrient transformations as well as ecosystem structure and recovery. Natural and anthropogenic disturbances are a common thread throughout Critical Zone Observatories and ecosystems in general. Using the 2013 Thompson Ridge Fire in the Jemez River Basin CZO as a case study, we examine the effect of a wildfire disturbance regime on successional changes in soil microbiota and ecosystem fluxes across a landscape with high topographic variation. We find that, layered over the topographic controls of hotspots of biogeochemical activity, fire alters organic substrate quality, microbial biomass, community structure, and activity. For example, fire increases soil pH, which is commonly found as an explanatory variable describing bacterial community structure. Soil microbes excrete exoenzymes to decompose polymers and acquire nutrients, and these activities can indicate changing microbial function or soil quality. In these mixed conifer forests, we find shifts from carbon to nitrogen-dominated exoenzyme activities in burned forests with alkaline soils, suggesting shifts of microbial taxa and function that correspond with recovering soil microbial biomass. More generally we ask - what combination of tools and perspectives is needed to fully understand soil microbial ecology and biogeochemistry of the critical zone? Results from an NSF Science Across Virtual Institutes (SAVI) CZO Network Biogeochemistry Workshop highlight the importance of incorporating a standard suite of microbial activity and community assays along with soil biogeochemical and flux measurements to enable comparisons across the broader CZO network. These characterizations would provide regional microbial function and biodiversity data in a standardized framework that can be used to enable more effective management and valuation of critical zone services and inform projections under global change scenarios.
NASA Astrophysics Data System (ADS)
Rivas-Ubach, A.; Liu, Y.; Bianchi, T. S.; Tolic, N.; Jansson, C.; Paša-Tolić, L.
2017-12-01
The role of nutrients in organisms, especially primary producers, has been a topic of special interest in ecosystem research for understanding the ecosystem structure and function. The majority of macro-elements in organisms, such as C, H, O, N and P, do not act as single elements but are components of organic compounds (lipids, peptides, carbohydrates, etc), which are more directly related to the physiology of organisms and thus to the ecosystem function. However, accurately deciphering the overall content of the main compound classes (lipids, proteins, carbohydrates,…) in organisms is still a major challenge. van Krevelen (vK) diagrams have been widely used as an estimation of the main compound categories present in environmental samples based on O:C vs H:C molecular ratios, but a stoichiometric classification based exclusively on O:C and H:C ratios is feeble. Different compound classes show large O:C and H:C ratio overlapping and other heteroatoms, such as N and P, should be considered to robustly distinguish the different classes. We propose a new compound classification for biological/environmental samples based on the C:H:O:N:P stoichiometric ratios of thousands of molecular formulas of characterized compounds from 6 different main categories: lipids, peptides, amino-sugars, carbohydrates, nucleotides and phytochemical compounds (oxy-aromatic compounds). This new multidimensional stoichiometric compound constraints classification (MSCC) can be applied to data obtained with high resolution mass spectrometry (HRMS), allowing an accurate overview of the relative abundances of the main compound categories present in organismal samples. The MSCC has been optimized for plants, but it could be also applied to different organisms and serve as a strong starting point to further investigate other environmental complex matrices (soils, aerosols, etc). The proposed MSCC advances environmental research, especially eco-metabolomics, ecophysiology and ecological stoichiometry studies, providing a new tool to understand the ecosystem structure and function at the molecular level.
Small-diameter trees used for chemithermomechanical pulps.
Gary C. Myers; R. James Barbour; Said M. Abubakr
1999-01-01
During the course of restoring and maintaining forest ecosystem health and function in the western interior of the United States, many small-diameter stems are removed from densely stocked stands. In general, these materials are considered nonusable or underutilized. Information on the properties of these resources is needed to help managers understand when timber...
Understanding and controlling nonnative forest pests in the South
Donald A. Duerr; James H. Miller
2005-01-01
lnvasive nonnative forest pests are multiplying and spreading in every forest type in the Southern United States, The costs of controlling these pests have become extremely high, and the damage they cause to ecosystem composition, structure, and function continues to increase. Plants imported for potential release for forage, crops, soil reclamation, and ornamental...
USDA-ARS?s Scientific Manuscript database
Since root endophytes may ameliorate drought stress, understanding which plants associate with endophytes is important, especially in arid ecosystems. Here we characterized the root endophytes of 42 plants from an arid region of Argentina. We related colonization by arbuscular mycorrhizal fungi (AMF...
Interactive visual analysis promotes exploration of long-term ecological data
T.N. Pham; J.A. Jones; R. Metoyer; F.J. Swanson; R.J. Pabst
2013-01-01
Long-term ecological data are crucial in helping ecologists understand ecosystem function and environmental change. Nevertheless, these kinds of data sets are difficult to analyze because they are usually large, multivariate, and spatiotemporal. Although existing analysis tools such as statistical methods and spreadsheet software permit rigorous tests of pre-conceived...
Role of forage crops and soil microbes in promoting soil health and productivity
USDA-ARS?s Scientific Manuscript database
The United Nations General Assembly has declared 2015 the International Year of Soils (IYS 2015). The IYS 2015 aims to increase awareness and understanding of the importance of soil for food security and essential ecosystem functions. Although often taken for granted, soils are key to human civiliza...
Species coexistence in a changing world
Valladares, Fernando; Bastias, Cristina C.; Godoy, Oscar; Granda, Elena; Escudero, Adrián
2015-01-01
The consequences of global change for the maintenance of species diversity will depend on the sum of each species responses to the environment and on the interactions among them. A wide ecological literature supports that these species-specific responses can arise from factors related to life strategies, evolutionary history and intraspecific variation, and also from environmental variation in space and time. In the light of recent advances from coexistence theory combined with mechanistic explanations of diversity maintenance, we discuss how global change drivers can influence species coexistence. We revise the importance of both competition and facilitation for understanding coexistence in different ecosystems, address the influence of phylogenetic relatedness, functional traits, phenotypic plasticity and intraspecific variability, and discuss lessons learnt from invasion ecology. While most previous studies have focused their efforts on disentangling the mechanisms that maintain the biological diversity in species-rich ecosystems such as tropical forests, grasslands and coral reefs, we argue that much can be learnt from pauci-specific communities where functional variability within each species, together with demographic and stochastic processes becomes key to understand species interactions and eventually community responses to global change. PMID:26528323
Species coexistence in a changing world.
Valladares, Fernando; Bastias, Cristina C; Godoy, Oscar; Granda, Elena; Escudero, Adrián
2015-01-01
The consequences of global change for the maintenance of species diversity will depend on the sum of each species responses to the environment and on the interactions among them. A wide ecological literature supports that these species-specific responses can arise from factors related to life strategies, evolutionary history and intraspecific variation, and also from environmental variation in space and time. In the light of recent advances from coexistence theory combined with mechanistic explanations of diversity maintenance, we discuss how global change drivers can influence species coexistence. We revise the importance of both competition and facilitation for understanding coexistence in different ecosystems, address the influence of phylogenetic relatedness, functional traits, phenotypic plasticity and intraspecific variability, and discuss lessons learnt from invasion ecology. While most previous studies have focused their efforts on disentangling the mechanisms that maintain the biological diversity in species-rich ecosystems such as tropical forests, grasslands and coral reefs, we argue that much can be learnt from pauci-specific communities where functional variability within each species, together with demographic and stochastic processes becomes key to understand species interactions and eventually community responses to global change.
NASA Astrophysics Data System (ADS)
Millar, C. I.; Fagre, D. B.
2004-12-01
Mountain regions are uniquely sensitive to changes in climate, vulnerable to climate effects on biotic and physical factors of intense social concern, and serve as critical early-warning systems of climate impacts. Escalating demands on western North American (WNA) mountain ecosystems increasingly stress both natural resources and rural community capacities; changes in mountain systems cascade to issues of national concern. Although WNA has long been a focus for climate- and climate-related environmental research, these efforts remain disciplinary and poorly integrated, hindering interpretation into policy and management. Knowledge is further hampered by lack of standardized climate monitoring stations at high-elevations in WNA. An initiative is emerging as the Consortium for Integrated Climate Research in Western Mountains (CIRMOUNT) whose primary goal is to improve knowledge of high-elevation climate systems and to better integrate physical, ecological, and social sciences relevant to climate change, ecosystem response, and natural-resource policy in WNA. CIRMOUNT seeks to focus research on climate variability and ecosystem response (progress in understanding synoptic scale processes) that improves interpretation of linkages between ecosystem functions and human processing (progress in understanding human-environment integration), which in turn would yield applicable information and understanding on key societal issues such as mountains as water towers, biodiversity, carbon forest sinks, and wildland hazards such as fire and forest dieback (progress in understanding ecosystem services and key thresholds). Achieving such integration depends first on implementing a network of high-elevation climate-monitoring stations, and linking these with integrated ecosystem-response studies. Achievements since 2003 include convening the 2004 Mountain Climate Sciences Symposium (1, 2) and several special sessions at technical conferences; initiating a biennial mountain climate research symposium (MTNCLIM), the first to be held in spring 2005; developing a strategy for climate-monitoring in WNA; installing and networking high-elevation (>3000m) climate-monitoring stations; and completing three target regions (Glacier National Park, MT; Sierra Nevada and White Mountains, CA) of the international GLORIA (Global Observation Research Initiative in Alpine Environments) plant-monitoring project, the first in WNA. CIRMOUNT emphasizes integration at the regional scale in WNA, collaborating with and complementing projects such as the Western Mountain Initiative, whose mandate is more targeted than CIRMOUNT's, and global programs such as GLORIA and the international Mountain Research Initiative. Achievement of continuing success in WNA hinges on the capacity to secure long-term funding and institutional investment. (1) See associated URL for paper and poster pdfs (2) Discussing the future of western U.S. mountains, climate change, and ecosystems. EOS 31 August 2004, 85(35), p. 329
High Microbial Diversity Promotes Soil Ecosystem Functioning.
Maron, Pierre-Alain; Sarr, Amadou; Kaisermann, Aurore; Lévêque, Jean; Mathieu, Olivier; Guigue, Julien; Karimi, Battle; Bernard, Laetitia; Dequiedt, Samuel; Terrat, Sébastien; Chabbi, Abad; Ranjard, Lionel
2018-05-01
In soil, the link between microbial diversity and carbon transformations is challenged by the concept of functional redundancy. Here, we hypothesized that functional redundancy may decrease with increasing carbon source recalcitrance and that coupling of diversity with C cycling may change accordingly. We manipulated microbial diversity to examine how diversity decrease affects the decomposition of easily degradable (i.e., allochthonous plant residues) versus recalcitrant (i.e., autochthonous organic matter) C sources. We found that a decrease in microbial diversity (i) affected the decomposition of both autochthonous and allochthonous carbon sources, thereby reducing global CO 2 emission by up to 40%, and (ii) shaped the source of CO 2 emission toward preferential decomposition of most degradable C sources. Our results also revealed that the significance of the diversity effect increases with nutrient availability. Altogether, these findings show that C cycling in soil may be more vulnerable to microbial diversity changes than expected from previous studies, particularly in ecosystems exposed to nutrient inputs. Thus, concern about the preservation of microbial diversity may be highly relevant in the current global-change context assumed to impact soil biodiversity and the pulse inputs of plant residues and rhizodeposits into the soil. IMPORTANCE With hundreds of thousands of taxa per gram of soil, microbial diversity dominates soil biodiversity. While numerous studies have established that microbial communities respond rapidly to environmental changes, the relationship between microbial diversity and soil functioning remains controversial. Using a well-controlled laboratory approach, we provide empirical evidence that microbial diversity may be of high significance for organic matter decomposition, a major process on which rely many of the ecosystem services provided by the soil ecosystem. These new findings should be taken into account in future studies aimed at understanding and predicting the functional consequences of changes in microbial diversity on soil ecosystem services and carbon storage in soil. Copyright © 2018 American Society for Microbiology.
NASA Astrophysics Data System (ADS)
Worrich, Anja; König, Sara; Banitz, Thomas; Centler, Florian; Frank, Karin; Kästner, Matthias; Miltner, Anja; Thullner, Martin; Wick, Lukas
2015-04-01
Although bacterial degraders in soil are commonly exposed to fluctuating environmental conditions, the functional performance of the biodegradation processes can often be maintained by resistance and resilience mechanisms. However, there is still a gap in the mechanistic understanding of key factors contributing to the stability of such an ecosystem service. Therefore we developed an integrated approach combining microcosm experiments, simulation models and ecological theory to directly make use of the strengths of these disciplines. In a continuous interplay process, data, hypotheses, and central questions are exchanged between disciplines to initiate new experiments and models to ultimately identify buffer mechanisms and factors providing functional stability. We focus on drying and rewetting-cycles in soil ecosystems, which are a major abiotic driver for bacterial activity. Functional recovery of the system was found to depend on different spatial processes in the computational model. In particular, bacterial motility is a prerequisite for biodegradation if either bacteria or substrate are heterogeneously distributed. Hence, laboratory experiments focussing on bacterial dispersal processes were conducted and confirmed this finding also for functional resistance. Obtained results will be incorporated into the model in the next step. Overall, the combination of computational modelling and laboratory experiments identified spatial processes as the main driving force for functional stability in the considered system, and has proved a powerful methodological approach.
Linking genes to ecosystem trace gas fluxes in a large-scale model system
NASA Astrophysics Data System (ADS)
Meredith, L. K.; Cueva, A.; Volkmann, T. H. M.; Sengupta, A.; Troch, P. A.
2017-12-01
Soil microorganisms mediate biogeochemical cycles through biosphere-atmosphere gas exchange with significant impact on atmospheric trace gas composition. Improving process-based understanding of these microbial populations and linking their genomic potential to the ecosystem-scale is a challenge, particularly in soil systems, which are heterogeneous in biodiversity, chemistry, and structure. In oligotrophic systems, such as the Landscape Evolution Observatory (LEO) at Biosphere 2, atmospheric trace gas scavenging may supply critical metabolic needs to microbial communities, thereby promoting tight linkages between microbial genomics and trace gas utilization. This large-scale model system of three initially homogenous and highly instrumented hillslopes facilitates high temporal resolution characterization of subsurface trace gas fluxes at hundreds of sampling points, making LEO an ideal location to study microbe-mediated trace gas fluxes from the gene to ecosystem scales. Specifically, we focus on the metabolism of ubiquitous atmospheric reduced trace gases hydrogen (H2), carbon monoxide (CO), and methane (CH4), which may have wide-reaching impacts on microbial community establishment, survival, and function. Additionally, microbial activity on LEO may facilitate weathering of the basalt matrix, which can be studied with trace gas measurements of carbonyl sulfide (COS/OCS) and carbon dioxide (O-isotopes in CO2), and presents an additional opportunity for gene to ecosystem study. This work will present initial measurements of this suite of trace gases to characterize soil microbial metabolic activity, as well as links between spatial and temporal variability of microbe-mediated trace gas fluxes in LEO and their relation to genomic-based characterization of microbial community structure (phylogenetic amplicons) and genetic potential (metagenomics). Results from the LEO model system will help build understanding of the importance of atmospheric inputs to microorganisms pioneering fresh mineral matrix. Additionally, the measurement and modeling techniques that will be developed at LEO will be relevant for other investigators linking microbial genomics to ecosystem function in more well-developed soils with greater complexity.
Differential sensitivity to regional-scale drought in six central US grasslands.
Knapp, Alan K; Carroll, Charles J W; Denton, Elsie M; La Pierre, Kimberly J; Collins, Scott L; Smith, Melinda D
2015-04-01
Terrestrial ecosystems often vary dramatically in their responses to drought, but the reasons for this are unclear. With climate change forecasts for more frequent and extensive drought in the future, a more complete understanding of the mechanisms that determine differential ecosystem sensitivity to drought is needed. In 2012, the Central US experienced the fourth largest drought in a century, with a regional-scale 40% reduction in growing season precipitation affecting ecosystems ranging from desert grassland to mesic tallgrass prairie. This provided an opportunity to assess ecosystem sensitivity to a drought of common magnitude in six native grasslands. We tested the prediction that drought sensitivity is inversely related to mean annual precipitation (MAP) by quantifying reductions in aboveground net primary production (ANPP). Long-term ANPP data available for each site (mean length = 16 years) were used as a baseline for calculating reductions in ANPP, and drought sensitivity was estimated as the reduction in ANPP per millimeter reduction in precipitation. Arid grasslands were the most sensitive to drought, but drought responses and sensitivity varied by more than twofold among the six grasslands, despite all sites experiencing 40% reductions in growing season precipitation. Although drought sensitivity generally decreased with increasing MAP as predicted, there was evidence that the identity and traits of the dominant species, as well as plant functional diversity, influenced sensitivity. A more comprehensive understanding of the mechanisms leading to differences in drought sensitivity will require multi-site manipulative experiments designed to assess both biotic and abiotic determinants of ecosystem sensitivity.
Alvarez-Añorve, Mariana Y; Quesada, Mauricio; Sánchez-Azofeifa, G Arturo; Avila-Cabadilla, Luis Daniel; Gamon, John A
2012-05-01
The function of most ecosystems has been altered by human activities. To asses the recovery of plant communities, we must evaluate the recovery of plant functional traits. The seasonally dry tropical forest (SDTF), a highly threatened ecosystem, is assumed to recover relatively quickly from disturbance, but an integrated evaluation of recovery in floristic, structural, and functional terms has not been performed. In this study we aimed to (a) compare SDTF plant functional, floristic, and structural change along succession; (b) identify tree functional groups; and (c) explore the spectral properties of different successional stages. Across a SDTF successional gradient, we evaluated the change of species composition, vegetation structure, and leaf spectral reflectance and functional traits (related to water use, light acquisition, nutrient conservation, and CO(2) acquisition) of 25 abundant tree species. A complete recovery of SDTF takes longer than the time period inferred from floristic or structural data. Plant functional traits changed along succession from those that maximize photoprotection and heat dissipation in early succession, where temperature is an environmental constraint, to those that enhance light acquisition in late succession, where light may be limiting. A spectral indicator of plant photosynthetic performance (photochemical reflectance index) discriminated between early and late succession. This constitutes a foundation for further exploration of remote sensing technologies for studying tropical succession. A functional approach should be incorporated as a regular descriptor of forest succession because it provides a richer understanding of vegetation dynamics than is offered by either the floristic or structural approach alone.
NASA Astrophysics Data System (ADS)
Roberts, Lisa Elisabeth N.
Current policy and research have led the field of science education towards a model of "science as practice." In the past decade, several research programs on model-based reasoning practices in education have articulated key dimensions of practice, including constructing and defending models, comparing models to empirical data, using representations to identify patterns in data and use those as inscriptions to buttress arguments. This study presents a detailed case of how the use of a physical microcosm and children's self-directed representations of an ecosystem constrained and afforded student sense-making in an urban elementary classroom. The case analyzed the experiences of a 10-year old fifth grade student, Jorge, and the variation in his expressed understanding of ecosystems as he interacted with academic tasks, along with models and representations, to design, observe and explain an ecological microcosm. The study used a conceptual framework that brings together theories of situated cognition and Doyle's work on academic task to explain how and why Jorge's perception and communication of dimensions of ecosystem structure, function, and behavior appear to "come in and out of focus," influenced by the affordances of the tools and resources available, the academic task as given by the teacher, and Jorge's own experiences and knowledge of phenomena related to ecosystems. Findings from this study suggest that elementary students' ability or inability to address particular ecological concepts in a given task relate less to gaps in their understanding and more to the structure of academic tasks and learning contexts. The process of a student interacting with curriculum follows a dynamic trajectory and leads to emergent outcomes. As a result of the complex interactions of task, tools, and his own interests and agency, Jorge's attunement to the role of water in ecosystems comes in and out of focus throughout the unit. The instructional constraint of needing to integrate the FOSS Water Cycle curriculum into the Bottle Biology Project became an affordance for Jorge to ask questions, observe, and theorize about the role of water and the water cycle in an ecosystem. The practice of modeling a closed ecosystem made salient to Jorge the boundaries of a system and the conservation of water within that system. The closed ecosystem model also presented constraints to students' sense making about the role of interactions when students lack domain knowledge in ecology. Relying on students' own talk, photographs and representations as explanations of phenomena in the Bio Bottle, without establishing norms of representational conventions and communication, resulted in missed opportunities for Jorge to reinforce his sense making during the activity and to develop conventions of scientific representation. Findings from this study can be used to inform the design and implementation of learning environments and curricular activities for elementary and middle school students that address all three dimensions of the Next Generation Science Standards: a) developing conceptual understanding of key concepts in the domain of ecology, b) the cross-cutting concept of systems, and c) multiple practices that ecologists use in developing and evaluating models that explain ecosystem structures, functions, and change over time.
NASA Astrophysics Data System (ADS)
Wieder, W. R.; Bradford, M.; Koven, C.; Talbot, J. M.; Wood, S.; Chadwick, O.
2016-12-01
High uncertainty and low confidence in terrestrial carbon (C) cycle projections reflect the incomplete understanding of how best to represent biologically-driven C cycle processes at global scales. Ecosystem theories, and consequently biogeochemical models, are based on the assumption that different belowground communities function similarly and interact with the abiotic environment in consistent ways. This assumption of "Scale Invariance" posits that environmental conditions will change the rate of ecosystem processes, but the biotic response will be consistent across sites. Indeed, cross-site comparisons and global-scale analyses suggest that climate strongly controls rates of litter mass loss and soil organic matter turnover. Alternatively, activities of belowground communities are shaped by particular local environmental conditions, such as climate and edaphic conditions. Under this assumption of "Scale Dependence", relationships generated by evolutionary trade-offs in acquiring resources and withstanding environmental stress dictate the activities of belowground communities and their functional response to environmental change. Similarly, local edaphic conditions (e.g. permafrost soils or reactive minerals that physicochemically stabilize soil organic matter on mineral surfaces) may strongly constrain the availability of substrates that biota decompose—altering the trajectory of soil biogeochemical response to perturbations. Identifying when scale invariant assumptions hold vs. where local variation in biotic communities or edaphic conditions must be considered is critical to advancing our understanding and representation of belowground processes in the face of environmental change. Here we introduce data sets that support assumptions of scale invariance and scale dependent processes and discuss their application in global-scale biogeochemical models. We identify particular domains over which assumptions of scale invariance may be appropriate and potential thresholds where shifts in ecosystem function may be expected. Finally, we discuss the mechanistic insight that can be applied in process-based models and datasets that can evaluate models across spatial and temporal scales.
Concostrina-Zubiri, L; Huber-Sannwald, E; Martínez, I; Flores Flores, J L; Reyes-Agüero, J A; Escude, A; Belnap, J
Grazing represents one of the most common disturbances in drylands worldwide, affecting both ecosystem structure and functioning. Despite the efforts to understand the nature and magnitude of grazing effects on ecosystem components and processes, contrasting results continue to arise. This is particularly remarkable for the biological soil crust (BSC) communities (i.e., cyanobacteria, lichens, and bryophytes), which play an important role in soil dynamics. Here we evaluated simultaneously the effect of grazing impact on BSC communities (resistance) and recovery after livestock exclusion (resilience) in a semiarid grassland of Central Mexico. In particular, we examined BSC species distribution, species richness, taxonomical group cover (i.e., cyanobacteria, lichen, bryophyte), and composition along a disturbance gradient with different grazing regimes (low, medium, high impact) and along a recovery gradient with differently aged livestock exclosures (short-, medium-, long-term exclusion). Differences in grazing impact and time of recovery from grazing both resulted in slight changes in species richness; however, there were pronounced shifts in species composition and group cover. We found we could distinguish four highly diverse and dynamic BSC species groups: (1) species with high resistance and resilience to grazing, (2) species with high resistance but low resilience, (3) species with low resistance but high resilience, and (4) species with low resistance and resilience. While disturbance resulted in a novel diversity configuration, which may profoundly affect ecosystem functioning, we observed that 10 years of disturbance removal did not lead to the ecosystem structure found after 27 years of recovery. These findings are an important contribution to our understanding of BCS dynamics from a species and community perspective placed in a land use change context.
Concostrina-Zubiri, L.; Huber-Sannwald, E.; Martínez, I.; Flores Flores, J. L.; Reyes-Agüero, J. A.; Escudero, A.; Belnap, Jayne
2014-01-01
Grazing represents one of the most common disturbances in drylands worldwide, affecting both ecosystem structure and functioning. Despite the efforts to understand the nature and magnitude of grazing effects on ecosystem components and processes, contrasting results continue to arise. This is particularly remarkable for the biological soil crust (BSC) communities (i.e., cyanobacteria, lichens, and bryophytes), which play an important role in soil dynamics. Here we evaluated simultaneously the effect of grazing impact on BSC communities (resistance) and recovery after livestock exclusion (resilience) in a semiarid grassland of Central Mexico. In particular, we examined BSC species distribution, species richness, taxonomical group cover (i.e., cyanobacteria, lichen, bryophyte), and composition along a disturbance gradient with different grazing regimes (low, medium, high impact) and along a recovery gradient with differently aged livestock exclosures (short-, medium-, long-term exclusion). Differences in grazing impact and time of recovery from grazing both resulted in slight changes in species richness; however, there were pronounced shifts in species composition and group cover. We found we could distinguish four highly diverse and dynamic BSC species groups: (1) species with high resistance and resilience to grazing, (2) species with high resistance but low resilience, (3) species with low resistance but high resilience, and (4) species with low resistance and resilience. While disturbance resulted in a novel diversity configuration, which may profoundly affect ecosystem functioning, we observed that 10 years of disturbance removal did not lead to the ecosystem structure found after 27 years of recovery. These findings are an important contribution to our understanding of BCS dynamics from a species and community perspective placed in a land use change context.
NASA Astrophysics Data System (ADS)
Yokozawa, M.; Kawai, Y.; Toda, M.
2016-12-01
The increase in extreme climate episodes associated with ongoing climate change may induce extensive damage to terrestrial ecosystems, changing plant functional traits that regulate ecosystem carbon budget. Over the last two decades, an advanced observational operation of tower-based eddy covariance has enhanced our ability to understand spatial and temporal features of ecosystem carbon exchange worldwide. In contrast, there remain several unresolved issues regarding plant function responses to extreme climate episodes and the resulting effects on the terrestrial carbon balance. In this work, we examined the effects of an extreme climatic event (typhoon) on plant functional traits of a cool-temperate forest in Japan using a model data fusion technique. We used a semi-process model to describes the time changes in net ecosystem exchange (NEE) of CO2 between atmosphere and ecosystem based on the distributions of foliage and size of an individual in a plant population, assuming the diameter profile and the pipe model theory (Shinozaki et al., 1964). The canopy photosynthesis model (Yokozawa et al., 1996) provides us the vertical distribution of gross photosynthetic rates within stand. It can allow us to examine the differences in photosynthetic rate with plant functional traits changed by climate disturbance. The DREAM(ZS) algorithm (ter Braak & Vrugt, 2008) was used to estimate the model parameters. To reduce the effects of heteroscedastic error, a generalized likelihood function was adopted (Schoup & Vrugt, 2010). The estimated annual parameter which represents the initial slope of light-photosynthetic rate curve, significantly changed after typhoon disturbance in 2004. Time changes in the profile of the maximum photosynthetic rate also shows the intensive response to the disturbance. After the disturbance, the values at upper foliage layer are higher than at lower foliage layer in contrast to that before disturbance. Specifically, just after disturbance in 2004b-5a, the value at uppermost foliage layer was estimated to be the highest value. It implies that the plant population recovered the damage by changing the distribution of leaves having different functional traits, i.e. resilient behavior.
Chen, Wendy Y; Aertsens, Joris; Liekens, Inge; Broekx, Steven; De Nocker, Leo
2014-08-01
The strategic importance of ecosystem service valuation as an operational basis for policy decisions on natural restoration has been increasingly recognized in order to align the provision of ecosystem services with the expectation of human society. The contingent valuation method (CVM) is widely used to quantify various ecosystem services. However, two areas of concern arise: (1) whether people value specific functional ecosystem services and overlook some intrinsic aspects of natural restoration, and (2) whether people understand the temporal dimension of ecosystem services and payment schedules given in the contingent scenarios. Using a peri-urban riparian meadow restoration project in Flanders, Belgium as a case, we explored the impacts of residents' perceived importance of various ecosystem services and stated financial constraints on their willingness-to-pay for the proposed restoration project employing the CVM. The results indicated that people tended to value all the benefits of riparian ecosystem restoration concurrently, although they accorded different importances to each individual category of ecosystem services. A longer payment scheme can help the respondents to think more about the flow of ecosystem services into future generations. A weak temporal embedding effect can be detected, which might be attributed to respondents' concern about current financial constraints, rather than financial bindings associated with their income and perceived future financial constraints. This demonstrates the multidimensionality of respondents' financial concerns in CV. This study sheds light on refining future CV studies, especially with regard to public expectation of ecosystem services and the temporal dimension of ecosystem services and payment schedules.
NASA Astrophysics Data System (ADS)
Chen, Wendy Y.; Aertsens, Joris; Liekens, Inge; Broekx, Steven; De Nocker, Leo
2014-08-01
The strategic importance of ecosystem service valuation as an operational basis for policy decisions on natural restoration has been increasingly recognized in order to align the provision of ecosystem services with the expectation of human society. The contingent valuation method (CVM) is widely used to quantify various ecosystem services. However, two areas of concern arise: (1) whether people value specific functional ecosystem services and overlook some intrinsic aspects of natural restoration, and (2) whether people understand the temporal dimension of ecosystem services and payment schedules given in the contingent scenarios. Using a peri-urban riparian meadow restoration project in Flanders, Belgium as a case, we explored the impacts of residents' perceived importance of various ecosystem services and stated financial constraints on their willingness-to-pay for the proposed restoration project employing the CVM. The results indicated that people tended to value all the benefits of riparian ecosystem restoration concurrently, although they accorded different importances to each individual category of ecosystem services. A longer payment scheme can help the respondents to think more about the flow of ecosystem services into future generations. A weak temporal embedding effect can be detected, which might be attributed to respondents' concern about current financial constraints, rather than financial bindings associated with their income and perceived future financial constraints. This demonstrates the multidimensionality of respondents' financial concerns in CV. This study sheds light on refining future CV studies, especially with regard to public expectation of ecosystem services and the temporal dimension of ecosystem services and payment schedules.
The added complications of climate change: understanding and managing biodiversity and ecosystems
Amanda Staudt,; Allison K. Leidner,; Jennifer Howard,; Kate A. Brauman,; Jeffrey S. Dukes,; Hansen, Lara J.; Paukert, Craig P.; Sabo, John L.; Solorzano, Luis A.
2013-01-01
Ecosystems around the world are already threatened by land-use and land-cover change, extraction of natural resources, biological disturbances, and pollution. These environmental stressors have been the primary source of ecosystem degradation to date, and climate change is now exacerbating some of their effects. Ecosystems already under stress are likely to have more rapid and acute reactions to climate change; it is therefore useful to understand how multiple stresses will interact, especially as the magnitude of climate change increases. Understanding these interactions could be critically important in the design of climate adaptation strategies, especially because actions taken by other sectors (eg energy, agriculture, transportation) to address climate change may create new ecosystem stresses.
Intraspecific plant-soil feedback and intraspecific overyielding in Arabidopsis thaliana.
Bukowski, Alexandra R; Petermann, Jana S
2014-06-01
Understanding the mechanisms of community coexistence and ecosystem functioning may help to counteract the current biodiversity loss and its potentially harmful consequences. In recent years, plant-soil feedback that can, for example, be caused by below-ground microorganisms has been suggested to play a role in maintaining plant coexistence and to be a potential driver of the positive relationship between plant diversity and ecosystem functioning. Most of the studies addressing these topics have focused on the species level. However, in addition to interspecific interactions, intraspecific interactions might be important for the structure of natural communities. Here, we examine intraspecific coexistence and intraspecific diversity effects using 10 natural accessions of the model species Arabidopsis thaliana (L.) Heynh. We assessed morphological intraspecific diversity by measuring several above- and below-ground traits. We performed a plant-soil feedback experiment that was based on these trait differences between the accessions in order to determine whether A. thaliana experiences feedback at intraspecific level as a result of trait differences. We also experimentally tested the diversity-productivity relationship at intraspecific level. We found strong differences in above- and below-ground traits between the A. thaliana accessions. Overall, plant-soil feedback occurred at intraspecific level. However, accessions differed in the direction and strength of this feedback: Some accessions grew better on their own soils, some on soils from other accessions. Furthermore, we found positive diversity effects within A. thaliana: Accession mixtures produced a higher total above-ground biomass than accession monocultures. Differences between accessions in their feedback response could not be explained by morphological traits. Therefore, we suggest that they might have been caused by accession-specific accumulated soil communities, by root exudates, or by accession-specific resource use based on genetic differences that are not expressed in morphological traits. Synthesis. Our results provide some of the first evidence for intraspecific plant-soil feedback and intraspecific overyielding. These findings may have wider implications for the maintenance of variation within species and the importance of this variation for ecosystem functioning. Our results highlight the need for an increased focus on intraspecific processes in plant diversity research to fully understand the mechanisms of coexistence and ecosystem functioning.
Intraspecific plant–soil feedback and intraspecific overyielding in Arabidopsis thaliana
Bukowski, Alexandra R; Petermann, Jana S
2014-01-01
Understanding the mechanisms of community coexistence and ecosystem functioning may help to counteract the current biodiversity loss and its potentially harmful consequences. In recent years, plant–soil feedback that can, for example, be caused by below-ground microorganisms has been suggested to play a role in maintaining plant coexistence and to be a potential driver of the positive relationship between plant diversity and ecosystem functioning. Most of the studies addressing these topics have focused on the species level. However, in addition to interspecific interactions, intraspecific interactions might be important for the structure of natural communities. Here, we examine intraspecific coexistence and intraspecific diversity effects using 10 natural accessions of the model species Arabidopsis thaliana (L.) Heynh. We assessed morphological intraspecific diversity by measuring several above- and below-ground traits. We performed a plant–soil feedback experiment that was based on these trait differences between the accessions in order to determine whether A. thaliana experiences feedback at intraspecific level as a result of trait differences. We also experimentally tested the diversity–productivity relationship at intraspecific level. We found strong differences in above- and below-ground traits between the A. thaliana accessions. Overall, plant–soil feedback occurred at intraspecific level. However, accessions differed in the direction and strength of this feedback: Some accessions grew better on their own soils, some on soils from other accessions. Furthermore, we found positive diversity effects within A. thaliana: Accession mixtures produced a higher total above-ground biomass than accession monocultures. Differences between accessions in their feedback response could not be explained by morphological traits. Therefore, we suggest that they might have been caused by accession-specific accumulated soil communities, by root exudates, or by accession-specific resource use based on genetic differences that are not expressed in morphological traits. Synthesis. Our results provide some of the first evidence for intraspecific plant–soil feedback and intraspecific overyielding. These findings may have wider implications for the maintenance of variation within species and the importance of this variation for ecosystem functioning. Our results highlight the need for an increased focus on intraspecific processes in plant diversity research to fully understand the mechanisms of coexistence and ecosystem functioning. PMID:25360284
A Biochemist's View of Ecosystem Rates and their Response to Changing Temperature
NASA Astrophysics Data System (ADS)
Arcus, V. L.
2017-12-01
Enzyme kinetics lie at the heart of biochemistry and the Michaelis-Menten equation that defines the relationship between substrate and rate is over 100 years old. About 80 years ago Eyring and Polyani formulated Transistion State Theory (TST) which describes the temperature-dependence of chemical reaction rates and the precise relationship between activation energy and the rate. TST provided a robust theoretical foundation for the Arrhenius equation and together, these equations are the foundation equations for the biochemist. Can these equations provide any insights into rates at larger scales, such as organism growth rates and those rates that interest ecosystem scientists (e.g. heterotrophic respiration, gross primary production)? Let us begin by considering a microbial cell. Microbial growth (i.e. cell division) requires the coordinated kinetics of thousands of enzymes including DNA/RNA polymerases, ribosomes, biosynthetic enzymes - all under a regime of highly complex regulatory effects. There is no a priori reason to expect that Michaelis-Menten kinetics and TST will adequately describe this vastly complex process. Indeed, Lloyd and Taylor showed 23 years ago that soil respiration is not well described by the Arrhenius function. More recently, Heskel and colleagues showed that leaf respiration is also not well described by the Arrhenius function. It is the same case for rates of photosynthesis. Despite this failure of the basic equations of biochemistry to map to biological rates at greater scales, what insights can biochemistry provide to ecosystem science? As nearly all of biological metabolism is mediated through enzyme kinetics, I will begin with the Michaelis-Menten equation under regimes of low and high substrate concentrations. This simplified view can provide surprising insights into processes at larger scales. I will also consider the relationship between the activation energy and the reaction rate. Many, many ecosystem-rate papers focus on the activation energy and thus, it is important to understand this relationship. Finally, I will consider the Arrhenius and TST equations and their failure for ecosystem processes and the reasons for this failure. Understanding the failure is a first step towards a resolution to this long-standing problem in ecosystem science.
Stability measures in arid ecosystems
NASA Astrophysics Data System (ADS)
Nosshi, M. I.; Brunsell, N. A.; Koerner, S.
2015-12-01
Stability, the capacity of ecosystems to persist in the face of change, has proven its relevance as a fundamental component of ecological theory. Here, we would like to explore meaningful and quantifiable metrics to define stability, with a focus on highly variable arid and semi-arid savanna ecosystems. Recognizing the importance of a characteristic timescale to any definition of stability, our metrics will be focused scales from annual to multi-annual, capturing different aspects of stability. Our three measures of stability, in increasing order of temporal scale, are: (1) Ecosystem resistance, quantified as the degree to which the system maintains its mean state in response to a perturbation (drought), based on inter-annual variability in Normalized Difference Vegetation Index (NDVI). (2) An optimization approach, relevant to arid systems with pulse dynamics, that models vegetation structure and function based on a trade off between the ability to respond to resource availability and avoid stress. (3) Community resilience, measured as species turnover rate (β diversity). Understanding the nature of stability in structurally-diverse arid ecosystems, which are highly variable, yields theoretical insight which has practical implications.
NASA Astrophysics Data System (ADS)
Keith, D. J.; Milstead, B.; Walker, H.; Worthy, D.; Szykman, J.; Wusk, M.; Kagey, L.; Howell, C.; Snook, H.; Drueke, C.
2010-12-01
Northeastern lakes and ponds provide important ecosystem services to New England residents and visitors. These include the provisioning of abundant, clean water for consumption, agriculture, and industry as well as cultural services (recreation, aesthetics, and wilderness experiences) which enhance local economies and quality of life. Less understood, but equally important, are the roles that these lakes play in protecting all life through supportive services such as nutrient cycling. Nitrogen and phosphorus have a direct impact on the condition of fresh water lakes. Excesses of these nutrients can lead to eutrophication, toxic cyanobacteria blooms, decreased biodiversity, and loss of ecosystem function leading to a reduction in the availability and delivery of ecosystem services. In this study, we examined how variations in lake nutrient concentrations and phytoplankton pigment concentrations correlated with changes in the potential to provide cultural ecosystem services. Using a NASA Cessna 206 aircraft, hyperspectral data were collected during late summer 2009 from 55 lakes in New Hampshire, Massachusetts, Connecticut, and Rhode Island over a 2 day period. From the spectral data, algorithms were created which estimated concentrations of chlorophyll a, phycocyanin, and colored dissolved organic matter. The remotely sensed estimates were supplemented by in situ chlorophyll a, total nitrogen, total phosphorus and lake color data from 43 lakes sampled by field crews from the New England states. The purpose of this research is to understand how variations in lake nutrient concentrations and phytoplankton pigment concentrations correlate with changes in availability of cultural ecosystem services in the surveyed lakes. This dataset will be combined with information from the EPA National Lake Survey (2007), the EPA New England Lakes and Ponds Survey (2008) and the USGS SPARROW model to explore the association between lake condition and the provisioning of ecosystem services on a regional scale. Under the EPA Ecological Services Research Program (ESRP), this information will provide managers and researchers with a better understanding of links between management decisions affecting nutrient fluxes and impacts on selected ecosystem services.
Invasive species: an increasing threat to marine ecosystems under climate change?
NASA Astrophysics Data System (ADS)
Artioli, Yuri; Galienne, Chris; Holt, Jason; Wakelin, Sarah; Butenschön, Momme; Schrum, Corinna; Daewel, Ute; Pushpadas, Dhania; Cannaby, Heather; Salihoglu, Baris; Zavatarelli, Marco; Clementi, Emanuela; Olenin, Sergej; Allen, Icarus
2013-04-01
Planktonic Non-Indigenous Species (NIS) are a potential threat to marine ecosystems: a successful invasion of such organisms can alter significantly the ecosystem structure with shift in species composition that can affect different levels of the trophic network and also with local extinction of native species in the more extreme cases. Such changes will also impact some ecosystem functions like primary and secondary production or nutrient cycling, and services, like fishery, aquaculture or carbon sequestration. Understanding how climate change influences the susceptibility of a marine ecosystem to invasion is challenging as the success and the impact of an invasion depend on many different factors all tightly interconnected (e.g. time of the invasion, location, state of the ecosystem…). Here we present DivERSEM, a new version of the biogeochemical model ERSEM modified in order to account for phytoplankton diversity. With such a model, we are able to simulate invasion from phytoplankton NIS, to assess the likelihood of success of such an invasion and to estimate the potential impact on ecosystem structure, using indicator like the Biopollution index. In the MEECE project (www.meece.eu), the model has been coupled to a 1D water column model (GOTM) in two different climate scenarios (present day and the IPCC SRES A1B scenario for 2100) in 4 different European shelf seas (North Sea, Baltic Sea, Black Sea and Adriatic Sea). The model has been forced with atmospheric data coming from the IPSL climate model, and nutrient concentration extracted from a set of 3D biogeochemical models running under the same climate scenario. The response of the ecosystem susceptibility to invasion to climate change has been analysed comparing the successfulness of invasions in the two time slices and its impact on community structure and ecosystem functions. At the same time, the comparison among the different basins allowed to highlight some of the characteristics that make the ecosystems more vulnerable to NIS.
Stormwater management and ecosystem services: a review
NASA Astrophysics Data System (ADS)
Prudencio, Liana; Null, Sarah E.
2018-03-01
Researchers and water managers have turned to green stormwater infrastructure, such as bioswales, retention basins, wetlands, rain gardens, and urban green spaces to reduce flooding, augment surface water supplies, recharge groundwater, and improve water quality. It is increasingly clear that green stormwater infrastructure not only controls stormwater volume and timing, but also promotes ecosystem services, which are the benefits that ecosystems provide to humans. Yet there has been little synthesis focused on understanding how green stormwater management affects ecosystem services. The objectives of this paper are to review and synthesize published literature on ecosystem services and green stormwater infrastructure and identify gaps in research and understanding, establishing a foundation for research at the intersection of ecosystems services and green stormwater management. We reviewed 170 publications on stormwater management and ecosystem services, and summarized the state-of-the-science categorized by the four types of ecosystem services. Major findings show that: (1) most research was conducted at the parcel-scale and should expand to larger scales to more closely understand green stormwater infrastructure impacts, (2) nearly a third of papers developed frameworks for implementing green stormwater infrastructure and highlighted barriers, (3) papers discussed ecosystem services, but less than 40% quantified ecosystem services, (4) no geographic trends emerged, indicating interest in applying green stormwater infrastructure across different contexts, (5) studies increasingly integrate engineering, physical science, and social science approaches for holistic understanding, and (6) standardizing green stormwater infrastructure terminology would provide a more cohesive field of study than the diverse and often redundant terminology currently in use. We recommend that future research provide metrics and quantify ecosystem services, integrate disciplines to measure ecosystem services from green stormwater infrastructure, and better incorporate stormwater management into environmental policy. Our conclusions outline promising future research directions at the intersection of stormwater management and ecosystem services.
Analysis of Reptile Biodiversity and Ecosystem Services within ...
A focus for resource management, conservation planning, and environmental decision analysis has been mapping and quantifying biodiversity and ecosystem services. The challenge has been to integrate ecology with economics to better understand the effects of human policies and actions and their subsequent impacts on human well-being and ecosystem function. Biodiversity is valued by humans in varied ways, and thus is an important input to include in assessing the benefits of ecosystems to humans. Some biodiversity metrics more clearly reflect ecosystem services (e.g., game species, threatened and endangered species), whereas others may indicate indirect and difficult to quantify relationships to services (e.g., taxa richness and cultural value). In the present study, we identify and map reptile biodiversity and ecosystem services metrics. The importance of reptiles to biodiversity and ecosystems services is not often described. We used species distribution models for reptiles in the conterminous United States from the U.S. Geological Survey’s Gap Analysis Program. We focus on species richness metrics including all reptile species richness, taxa groupings of lizards, snakes and turtles, NatureServe conservation status (G1, G2, G3) species, IUCN listed reptiles, threatened and endangered species, Partners in Amphibian and Reptile Conservation listed reptiles, and rare species. These metrics were analyzed with the Protected Areas Database of the United States to
Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems.
Guerrero-Ramírez, Nathaly R; Craven, Dylan; Reich, Peter B; Ewel, John J; Isbell, Forest; Koricheva, Julia; Parrotta, John A; Auge, Harald; Erickson, Heather E; Forrester, David I; Hector, Andy; Joshi, Jasmin; Montagnini, Florencia; Palmborg, Cecilia; Piotto, Daniel; Potvin, Catherine; Roscher, Christiane; van Ruijven, Jasper; Tilman, David; Wilsey, Brian; Eisenhauer, Nico
2017-11-01
The effects of biodiversity on ecosystem functioning generally increase over time, but the underlying processes remain unclear. Using 26 long-term grassland and forest experimental ecosystems, we demonstrate that biodiversity-ecosystem functioning relationships strengthen mainly by greater increases in functioning in high-diversity communities in grasslands and forests. In grasslands, biodiversity effects also strengthen due to decreases in functioning in low-diversity communities. Contrasting trends across grasslands are associated with differences in soil characteristics.
Cotrozzi, Lorenzo; Townsend, Philip A; Pellegrini, Elisa; Nali, Cristina; Couture, John J
2018-03-01
The Mediterranean basin can be considered a hot spot not only in terms of climate change (CC) but also for air quality. Assessing the impact of CC and air pollution on ecosystem functions is a challenging task, and adequate monitoring techniques are needed. This paper summarizes the present knowledge on the use of reflectance spectroscopy for the evaluation of the effects of air pollution on plants. First, the history of this technique is outlined. Next, we describe the vegetation reflectance spectrum, how it can be scaled from leaf to landscape levels, what information it contains, and how it can be exploited to understand plant and ecosystem functions. Finally, we review the literature concerning this topic, with special attention to Mediterranean air pollutants, showing the increasing interest in this technique. The ability of spectroscopy to detect the influence of air pollution on plant function of all major and minor Mediterranean pollutants has been evaluated, and ozone and its interaction with other gases (carbon dioxide, nitrogen oxides, and sulfur dioxide) have been the most studied. In the recent years, novel air pollutants, such as particulate matter, nitrogen deposition, and heavy metals, have drawn attention. Although various vegetation types have been studied, few of these species are representative of the Mediterranean environment. Thus, major emphasis should be placed on using vegetation spectroscopy for better understanding and monitoring the impact of air pollution on Mediterranean plants in the CC era.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abernethy, Erin F.; Turner, Kelsey L.; Beasley, James C.
Invasive species have significantly affected ecosystems, particularly islands, and species invasions continue with increasing globalization. Largely unstudied, the influence of invasive species on island ecosystem functions, especially scavenging and decomposition, could be substantive. Quantifying carcass utilization by different scavengers and shifts in community dynamics in the presence of invasive animals is of particular interest for understanding impacts on nutrient recycling. Invasive species could benefit greatly from carcass resources within highly invaded island ecosystems, through increased invasion success and population growth, subsequently exacerbating their impacts on native species. Here, we quantified how experimentally placed invasive amphibian, reptile, small mammal, and birdmore » carcasses were utilized by vertebrate and invertebrate scavengers on the Big Island of Hawai’i in three island habitats: a barren lava field, a vegetated lava field, and a rainforest. We used camera traps to record vertebrate scavengers removing carcasses and elapsed time until removal. We evaluated differences in cavenging between vertebrates and invertebrates and within the vertebrate community across different habitats and carcass types. Despite the small carcass sizes (<1 kg) used in this study, 55% of carcasses were removed by vertebrate scavengers, all invasive: mongoose, rodents, cats, pigs, and a common myna. Our data indicate that invasive vertebrate scavengers in this island ecosystem are highly efficient at assimilating a range of carrion resources across a variety of habitats. Carcasses of invasive animals could contribute substantially to energy budgets of other invasive vertebrate species. Finally, this may be a critical component contributing to successful invasions especially on islands and subsequent impacts on ecosystem function.« less
Abernethy, Erin F.; Turner, Kelsey L.; Beasley, James C.; ...
2016-10-01
Invasive species have significantly affected ecosystems, particularly islands, and species invasions continue with increasing globalization. Largely unstudied, the influence of invasive species on island ecosystem functions, especially scavenging and decomposition, could be substantive. Quantifying carcass utilization by different scavengers and shifts in community dynamics in the presence of invasive animals is of particular interest for understanding impacts on nutrient recycling. Invasive species could benefit greatly from carcass resources within highly invaded island ecosystems, through increased invasion success and population growth, subsequently exacerbating their impacts on native species. Here, we quantified how experimentally placed invasive amphibian, reptile, small mammal, and birdmore » carcasses were utilized by vertebrate and invertebrate scavengers on the Big Island of Hawai’i in three island habitats: a barren lava field, a vegetated lava field, and a rainforest. We used camera traps to record vertebrate scavengers removing carcasses and elapsed time until removal. We evaluated differences in cavenging between vertebrates and invertebrates and within the vertebrate community across different habitats and carcass types. Despite the small carcass sizes (<1 kg) used in this study, 55% of carcasses were removed by vertebrate scavengers, all invasive: mongoose, rodents, cats, pigs, and a common myna. Our data indicate that invasive vertebrate scavengers in this island ecosystem are highly efficient at assimilating a range of carrion resources across a variety of habitats. Carcasses of invasive animals could contribute substantially to energy budgets of other invasive vertebrate species. Finally, this may be a critical component contributing to successful invasions especially on islands and subsequent impacts on ecosystem function.« less